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Abstract

This dissertation proposes a novel approach for the recognition of compound 2D objects in images under real-time
conditions. A compound object consists of a number of rigid object parts that show arbitrary relative movements.
The underlying principle of the approach is based on minimizing the overall search effort, and hence the com-
putation time. This is achieved by restricting the search according to the relative movements of the object parts.
Minimizing the search effort leads to the use of a hierarchical model: only a selected root object part, which
stands at the top of the hierarchy, is searched within the entire search space. In contrast, the remaining parts are
searched recursively with respect to each other within very restricted search spaces. By using the hierarchical
model, prior knowledge about the spatial relations, i.e., relative movements, between the object parts is exploited
already in an early stage of the recognition. Thus, the computation time can be reduced considerably. Another
important advantage of the hierarchical model is that it provides an inherent determination of correspondence,
i.e., because of the restricted search spaces, ambiguous matches are avoided. Consequently, a complicated and
computationally expensive solution of the correspondence problem is not necessary. The approach shows addi-
tional remarkable features: it is general with regard to the type of object, it shows a very high robustness, and the
compound object is localized with high accuracy. Furthermore, several instances of the object in the image can
be found simultaneously.

One substantial concern of this dissertation is to achieve a high degree of automation. Therefore, a method that
automatically trains and creates the hierarchical model is proposed. For this, several example images that show
the relative movements of the object parts are analyzed. The analysis automatically determines the rigid object
parts as well as the spatial relations between the parts. This is very comfortable for the user because a complicated
manual description of the compound object is avoided. The obtained hierarchical model is used to recognize the
compound object in real-time.

The proposed strategy for recognizing compound objects requires an appropriate approach for recognizing rigid
objects. Therefore, the performance of the generalized Hough transform, which is a voting scheme to recognize
rigid objects, is further improved by applying several novel modifications. The performance of the new approach
is evaluated thoroughly by comparing it to several other rigid object recognition methods. The evaluation shows
that the proposed modified generalized Hough transform fulfills even stringent industrial demands.

As a by-product, a novel method for rectifying images in real-time is developed. The rectification is based on the
result of a preceding camera calibration. Thus, a very fast elimination of projective distortions and radial lens
distortions from images becomes possible. This is exploited to extend the object recognition approach in order to
be able to recognize objects in real-time even in projectively distorted images.



Zusammenfassung

In der vorliegenden Arbeit wird ein neues Verfahren vorgestellt, mit dem zusammengesetzte 2D Objekte in
Bildern unter Echtzeit-Anforderungen erkannt werden k¨onnen. Ein zusammengesetztes Objekt besteht aus meh-
reren starren Einzelteilen, die sich relativ zueinander in beliebiger Art bewegen k¨onnen. Das dem Verfahren
zugrunde liegende Prinzip basiert auf der bestm¨oglichen Verringerung des Suchaufwandes und dient somit dem
Ziel, die Berechnungszeit w¨ahrend der Erkennungsphase zu minimieren. Die Umsetzung dieses Zieles wird
durch die Einschr¨ankung der Suche entsprechend der relativen Bewegungen der Objektteile erreicht. Dies f¨uhrt
zu der Verwendung eines hierarchischen Modells: Lediglich das Objektteil, das an der Spitze der Hierarchie
steht, wird innerhalb des gesamten Suchraumes gesucht. Die verbleibenden Objektteile werden hingegen in-
nerhalb eingeschr¨ankter Suchr¨aume relativ zueinander unter Verwendung eines rekursiven Verfahrens gesucht.
Durch den Einsatz des hierarchischen Modells kann Vorwissen ¨uber die räumlichen Beziehungen, d.h. die rela-
tiven Bewegungen, zwischen den Objektteilen bereits in einer sehr fr¨uhen Phase der Erkennung genutzt werden.
Dadurch wird die Rechenzeit entscheidend reduziert. Ein weiterer großer Vorteil des hierarchischen Modells ist
die inhärente Bestimmung der Zuordnung: Durch die eingeschr¨ankten Suchr¨aume werden Probleme, die durch
auftretende Mehrdeutigkeiten hervorgerufen werden w¨urden, vermieden. Eine komplizierte und rechenintensive
Lösung des Zuordnungs-Problems w¨ahrend der Erkennungsphase er¨ubrigt sich somit. Das vorgestellte Verfahren
besitzt weitere bemerkenswerte Eigenschaften: Es ist nicht auf eine bestimmte Objektart beschr¨ankt, sondern ist
nahezu auf beliebige Objekte anwendbar. Das Verfahren zeichnet sich außerdem durch eine hohe Robustheit aus
und ermöglicht es, das zusammengesetzte Objekt mit hoher Genauigkeit im Bild zu lokalisieren. Dar¨uber hinaus
können auch mehrere Instanzen eines Objektes im Bild simultan gefunden werden.

Ein wesentliches Anliegen dieser Arbeit ist es, einen hohen Automatisierungsgrad zu erzielen. Aus diesem
Grund wird eine Methode entwickelt, die es erlaubt, das hierarchische Modell automatisch zu trainieren und
aufzubauen. Hierf¨ur werden einige Beispielbilder, in denen die relativen Bewegungen der Objektteile zu sehen
sind, analysiert. Durch die Analyse k¨onnen sowohl die starren Objektteile als auch die Relationen zwischen den
Teilen automatisch ermittelt werden. Dieses Vorgehen ist ¨außerst komfortabel, da sich eine komplizierte manuelle
Beschreibung des zusammengesetzten Objektes durch den Benutzer er¨ubrigt. Das somit abgeleitete hierarchische
Modell kann schließlich f¨ur die Erkennung in Echtzeit genutzt werden.

Die in dieser Arbeit vorgeschlagene Strategie zur Erkennung zusammengesetzter Objekte setzt die Nutzung eines
Verfahrens zur Erkennung starrer Objekte voraus. Deshalb werden einige neue Modifikationen der generali-
sierten Hough-Transformation, einem Voting-Mechanismus zur Erkennung starrer Objekte, vorgestellt, die die
Leistungsfähigkeit der generalisierten Hough-Transformation verbessern. Die erzielte Leistungsf¨ahigkeit wird
durch einen Vergleich mit weiteren Erkennungsverfahren f¨ur starre Objekte eingehend evaluiert. Es zeigt sich,
dass die modifizierte generalisierte Hough-Transformation strengen industriellen Anforderungen gen¨ugt.

Gleichsam als ein Nebenprodukt der vorliegenden Arbeit wird eine neue Methode zur Rektifizierung von Bildern
in Echtzeit vorgestellt. Die Rektifizierung basiert auf dem Ergebnis einer zuvor durchgef¨uhrten Kamerakali-
brierung. Dadurch ist es m¨oglich, sowohl projektive Verzerrungen als auch radiale Verzeichnungen des Ka-
meraobjektives in Bildern sehr effizient zu eliminieren. Die Rektifizierung kann dann genutzt werden, um das
Objekterkennungsverfahren dahingehend zu erweitern, Objekte auch in projektiv verzerrten Bildern in Echtzeit
zu erkennen.
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7

1 Introduction

Using a hierarchical model for the recognition of compound objects provides higher efficiency and inherent
determination of correspondence in contrast to standard methods, and hence facilitates real-time applications.
This is the thesis of this dissertation.

The high relevance of the increasing automation process in the field of industrial production is undisputed. The
already available high potential of automation can be attributed, amongst other things, to the progress in computer
vision in general and in machine vision in particular. One of the most important topics in machine vision,
and hence in industrial automation, is object recognition, i.e., objects of the real world must be automatically
recognized and localized in digital images by a computer.

The thesis refers to the recognition of compound objects in real-time. To emphasize the novel aspects of this dis-
sertation and to explain the basic idea behind it, definitions of the two decisive terms “real-time” and “compound
objects” are given:

The term “real-time” is used in many applications with different semantics. A definition of real-time from a
computer science point of view is given in (SearchSolaris.com 2002):

“Real-timeis a level of computer responsiveness that a user senses as sufficiently immediate or that
enables the computer to keep up with some external process (for example, to present visualizations
of the weather as it constantly changes). . . . Real-time describes a human rather than a machine sense
of time.”

Based upon this definition it is obvious that the upper boundary for the length of the processing time interval that
makes a process real-time capable is application dependent (Russ 2000). Thus, operating in real-time is not about
being “real fast” because the time interval may range from microseconds to megaseconds (Jensen 2002). In the
field of video processing, for example, often the video frame rate (about 30 ms) is decisive, whereas, in remote
sensing one would rather speak of online processing instead of real-time. This is because the image sequences
that are dealt with in remote sensing are based on arbitrary time patterns and are not necessarily equidistant in
time. Hence, it is not unusual that the real-time or online analysis of remotely sensed data takes several minutes
or even hours.

In this dissertation “real-time” primarily demands from the object recognition process a computation time that
enables the computer to keep up with an external process. The object recognition approach, however, should not
be related to any specific application. I.e., the time constraint must be derived from an external process that is
application independent. Since the process of image acquisition is an indispensable step in every application,
it is reasonable to take the video frame rate of common off-the-shelf cameras as reference, which typically is
1/30th of a second. In a multitude of applications new information is available not in each frame but only in each
third or fifth frame, for example. With this it is possible to give at least a coarse definition of what “real-time”
means in this dissertation: the computation time of the object recognition process should be in the range of a
few hundredths of a second to a few tenths of a second using common standard hardware. This requirement
considerably complicates the development of an appropriate object recognition method. By using a hierarchical
model, as it is proposed in this dissertation, the gain in efficiency facilitates real-time applications.

In contrast, the definition of “compound object” is considerably simpler. First of all, it should be pointed out that
in this dissertation 2D objects are considered because the recognition of 3D objects, as it is performed in the field
of robotics, for example, is not necessary for most applications in industry. The term “compound object” implies
that the object consists of a number of object parts. Furthermore, the object parts are allowed to move with
respect to each other in an arbitrary way. The term “movement”, in a mathematical sense, describes a translation
and a rotation. Following this definition, objects can be classified into the two classes:compound objectsand



8 CHAPTER 1. INTRODUCTION

non-compound orrigid objects. Rigid objects may also consist of several object parts, but the constellation of
the parts is fixed, i.e., the parts do not move with respect to each other. In contrast, compound objects consist
of several object parts that are rigid objects. Additionally, the constellation of the object parts is variable. For
instance, a wheel of a car can be seen as a rigid object consisting of the two parts, the rim and the tire. The car
itself can be seen as a compound object consisting of the body and the four moving wheels: the wheels rotate and
change their distance to the body because of the shock absorbers. Because the movements of the object parts,
and hence the appearance of the compound object, is not known `a priori, an efficient recognition of compound
objects in images is complicated dramatically in contrast to the recognition of rigid objects. Furthermore, a
correspondence problem arises when dealing with compound objects that additionally hampers the recognition:
even if the wheels of the car have been recognized, it is not immediately clear which of the four wheels is the
front left wheel, for example. Therefore, this correspondence problem must be solved in a subsequent step taking
into account the constellation of all object parts. For example, one is unable to assign the label “front left” to one
of the four wheels until the body of the car is recognized. Unfortunately, solving this correspondence problem
is complicated and computationally expensive, especially for compound objects that consist of a large number of
similar object parts. Consequently, real-time computation would be impossible. By using a hierarchical model,
however, additionally to the gain in efficiency an inherent determination of the correspondence is ensured, and
hence the correspondence problem becomes dispensable.

To summarize, the main novel aspect described in this dissertation is the development of an approach that com-
bines the ability to recognize compound objects with the ability to perform the recognition in real-time.
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2 Scope

In this chapter the scope of this dissertation is introduced. The conceptual formulation for the work is illustrated
by giving several example applications that are discussed in detail (Section 2.1). At first, the requirements for
the object recognition approach are derived from the example applications, and are completed by additional
constraints (Section 2.2). The concept of the object recognition approach that is described in this dissertation
is subsequently introduced (Section 2.3). After that, the background of the work, which considers the general
conditions under which the dissertation has originated, is explained (Section 2.4). The chapter is concluded by
a short overview in which the structure of this dissertation is described. This may help the reader to arrange the
single sections of this work into an entire framework and to understand the interrelationship between individual
working steps without losing touch with the central theme (Section 2.5).

2.1 Example Applications and Motivation

2D object recognition is used in many computer vision applications. It is particularly useful for machine vision,
where often an image of an object must be aligned with a (well-defined)modelof the object. In general, the
model contains a certain description of the object that can be used for recognition. For instance, a model can be
represented by a CAD model, a gray scale image, extracted features like points, lines, or elliptic arcs, or any other
description. In most cases, the result obtained by the object recognition approach directly represents the transfor-
mation of the model to the image of the object. Object recognition delivers the transformation parameters of a
predefined class of transformations, e.g., translation, rigid transformations, similarity transformations, or general
2D affine transformations (which are usually taken as an approximation of the true perspective transformations
an object may undergo). This definition implies that object recognition not only means recognizing an object,
i.e., deciding whether the object is present in the image or not, but additionally means localizing it, i.e., getting
its transformation parameters. The transformation refers to an arbitrary reference point of the model and is often
referred to asposein the literature (Rucklidge 1997). In the remainder of this dissertation no distinction will
be made between the two separate processes of recognition and localization: recognition will always include the
process of localization.

The pose that is returned by the object recognition approach can then be used for various tasks, ranging from
alignment, quality control, inspection tasks over character recognition to complex robot vision applications like
pick and place operations. In the following, several example applications are introduced in order to elaborate the
conceptual formulation for this dissertation and to derive the most important requirements that should be fulfilled.

A typical inspection application is illustrated in Figure 2.1. The task is to count the number of leads of the
integrated circuit (IC) and additionally check the distances between neighboring leads to ensure that short circuits
are avoided. Before these measurements can be performed the pose of the IC must be determined in the image
by using an object recognition approach. In this case, the print on the IC is an obvious distinct object that
can be used to build a model for the recognition process. A single image of the object should be sufficient to
automatically build the model in order to keep the model creation as simple as possible. Because the relative
position of the leads with respect to the print is approximately constant and known `a priori, two measurement
windows can be opened, which include the leads on both sides of the IC. This can be done after the pose of
the print has been determined by the recognition approach. Within the measurement windows subpixel precise
edges are computed and used to count the leads and to measure the distances between neighboring leads (see
Figure 2.1(b)). If one takes a closer look at Figure 2.1(a), a non-uniform illumination can be observed in the
image, which is due to a light source that was not perfectly mounted, leading to a stronger illumination of the
lower left corner of the image. A uniform illumination that additionally is constant over time is highly desirable
in most applications. Unfortunately, sometimes a controlled illumination is hard to achieve if one refrains from
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(a) Input image (b) Inspected leads of the IC

Figure 2.1: Example that illustrates the role of object recognition in inspection tasks. The leads of the integrated circuit (IC)
in (a) are to be inspected. The measurement windows (black), the extracted edges of the single leads (white), and the results
of the measurement are shown in (b).

using an expensive set-up. Thus, it becomes obvious that the object recognition method must be robust against
these kind of illumination conditions. For visualization purposes only, the contrast of the image in Figure 2.1(b)
is lowered. This auxiliary visualization step is performed whenever additional information is plotted within a
gray scale image and the original image contrast makes it necessary. Therefore, this must not be confused with a
meaningful image processing operation under any circumstances.

Figure 2.2 illustrates one possible role of object recognition in the field of optical character recognition (OCR).
Here, the task is to read the digits below the “disc” label. In many implementations, object recognition is not
directly applied to recognize the characters. Instead, OCR is performed as a classification process, in which
sample characters are trained and used to derive a set of classification parameters for each character. Often,
these parameters are not rotationally invariant. Hence, it is only possible to read characters that have the same
orientation as the characters used for training. In general, this assumption regarding the orientation is not valid.
A brute-force solution is to train the characters in all possible orientations. However, the computation time for
training and recognizing the characters increases. Additionally, the recognition rate decreases since the risk of
confusion is higher. For example, it is not immediately possible to distinguish the letters “d” and “p” if they
may appear in arbitrary orientation. A more sophisticated approach uses object recognition in a preliminary
stage. In the example of Figure 2.2, the parameters are trained using characters that have been horizontally
aligned. The CD label shown in Figure 2.2(a), however, may appear in arbitrary orientation. Therefore, the
image must be rotated back to a horizontal orientation before the OCR can be applied. This process is often
callednormalization. Object recognition can be used to obtain the orientation angle by which the image must
be rotated. Because the digits below the “disc” label are not known, but must be determined, they cannot serve
as object for the recognition process. In contrast, the appearance of the “disc” label itself is constant and is an
ideal pattern that can be searched in the image. As can be seen from this example, the recognition approach
should be robust against a moderate degree of image noise. After the label has been recognized, the image is
normalized, i.e., horizontally aligned by rotating it by the negative orientation of the found label. The result is
shown in Figure 2.2(b). Although in this case the entire image is rotated for demonstration purposes, normally, it
is sufficient to only rotate the part below the disc label to speed up the process. Finally, the region of interest, i.e.,
the part of the image, in which the OCR is to be performed, can be restricted to the image region directly below
the label. Based on these two examples, it can be postulated that the recognition approach must be invariant to
object orientation.

Another frequently arising problem is to check the quality of various kinds of prints. For example, it is established
by law that food must have an appropriate durability indication, e.g., “Best Before:”, “Best Before End:”, or “Use
By:”, followed by the corresponding date. Therefore, it is important that the date on food packagings is easy
to read, and hence the corresponding print must not have severe quality faults. To mention another example,
companies are very intent on handing out their products only with a perfectly printed company logo, because
otherwise the imperfections of the logo are directly attributed to possible imperfection of the company by the



2.1. EXAMPLE APPLICATIONS AND MOTIVATION 11

(a) Input image (b) Result of the OCR

Figure 2.2: Example that illustrates the role of object recognition in optical character recognition (OCR). The digits below the
“disc” label in (a) are to be read. To simplify the classification of the characters, the image is horizontally aligned according to
the orientation of the recognized “disc” label (b).

(a) Input image (b) Result of the print quality control

Figure 2.3: Example that illustrates the role of object recognition in quality control. The quality of the print on the label of the
pen clip in (a) is to be checked. An ideal template of the print is transformed according to the result of the object recognition
and compared to the input image. Gray value differences that exceed a predefined threshold are returned as errors (b).

potential customer. Figure 2.3(a) shows the print on a pen clip that represents the company logo “MVTec”. In
this example, the rightmost character “c” shows a substandard print quality in the upper part of the character. A
typical way to examine the print quality is to compare the gray values of the print that is to be checked with the
gray values of an ideal template, which holds a perfect instance of the print (Tobin et al. 1999). Absolute gray
value differences that exceed a predefined threshold are interpreted as severe quality faults and returned by the
program. The alignment of the ideal template over the print that is to be checked can be achieved using object
recognition by selecting, for example, the entire print as the object to be found. From this it can be reasoned that
even if parts of the object are missing, as is the case when dealing with print faults, the recognition method must
still be able to find the object. This is a hard but important requirement, since the case of missing parts is anything
but rare, especially in the field of industrial quality control. Furthermore, especially in the field of quality control
the colors of the object may vary, for example, depending on the used pressure during the print, on the amount of
ink on the stamps, or on the color mixture. Thus, not only a non-uniform illumination but also the change of the
object itself affects the gray values of the object in the image. Therefore, the object recognition approach should
be robust against general changes in brightness of the object. Finally, the returned pose of the object can then
be used to transform the ideal template to the desired position and orientation. Especially in this application the
real-time aspect becomes important since the operational capacity in the pen production is very high, and hence
fast computation for the object recognition is demanded.

Based on this example, another demand on the recognition method can be derived which deals with subpixel
object translations. The principle of the effect of subpixel translation is shown in Figure 2.4(a) using a synthetic
example, where a horizontal edge of the letter “M” is considered. For the ideal template a white background (gray
value 255) and a black foreground (gray value 0) are assumed. Let the horizontal edge of the letter exactly fall on
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Figure 2.4: The effect of subpixel translation on the gray values is shown in (a). Pixel precise object recognition methods
induce errors in the case of subpixel translations (b).

the border between two neighboring vertically arranged pixels. Then a sharp horizontal edge with a gray value
jump from 0 to 255 arises. If the letter is translated in a vertical direction by 1/2 pixel in both directions using a
step width of 1/10 pixel, the gray value of the corresponding pixel smoothly changes. Consequently, the originally
sharp horizontal edge becomes more and more blurred. When using a pixel precise object recognition method,
the subpixel translation would be undetectable, leading to a maximum difference of 1/2 pixel between the true
vertical location and the vertical location that is returned by the recognition method. The resulting absolute gray
value difference between the print and the incorrectly transformed ideal template are plotted in Figure 2.4(b). The
gray value differences, in this case, reach amplitudes of 127, which make a reliable detection of defects in the
print almost impossible. In contrast, such effects are avoided when using a subpixel precise object recognition
method. Further examples that show the need for subpixel precise object recognition can be found in image
registration and feature location measurements in photogrammetry, remote sensing, image sequence analysis, or
nondestructive evaluation (Tian and Huhns 1986).

The example application illustrated in Figure 2.5 introduces further important aspects to be considered in object
recognition. Here, the three metal parts shown in Figure 2.5(a) must be picked by a robot. From this example it
follows that the object recognition method should also be able to recognize several instances of the object in the
image at the same time. Additionally, the different metal parts may overlap each other, and hence the recognition
approach must also be able to handle occlusions up to a certain degree. This problem is equivalent to the situation
where parts of the object are missing, as occurred in the example application of Figure 2.3. Furthermore, the
image plane of the camera is not parallel to the plane in which the objects lie during image acquisition. This
deviation from the nadir view leads to projective image distortions that consequently influence the appearance of
the objects in the image and make the recognition much more difficult. After the metal parts have been localized
by the recognition method, the world coordinates of the pick points (see Figure 2.5(b)) are transmitted to the
robot. More common pick and place applications can be found in the semiconductor industry where circuit
boards are automatically equipped using robots.

Up to now, only examples with non-compound objects have been introduced. In the following, the motivation for
recognizing compound objects will be elaborated based upon further example applications. These examples are
also useful to elaborate the definition of compound objects that was given in Chapter 1. Because in the following
rigid objects must be distinguished from compound objects, the model representation of a rigid object is referred
to asrigid modeland the model of a compound object ascompound modelin the remainder of this dissertation.

To give a first example, the application of quality control shown in Figure 2.3 is used. However, in contrast to the
previously discussed example, now the considerations are extended to multiple occurrences of the pen clip (see
Figure 2.6). Because the printing process of the logo was performed in two steps by applying two independent
stamps, one for each color, misalignments within the print may occur between the dark gray letters “M Tec”
and the light gray letter “V”. Keeping the application of quality control in mind, it is necessary to perfectly
align the ideal template to the print. The misalignment within the print, however, causes a discrepancy between
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(a) Input image (b) Pick points for the robot

Figure 2.5: Example that illustrates the role of object recognition in pick and place applications. The metal parts shown in (a)
are to be picked by a robot. The pick points are marked in (b). It is important to note that the recognition approach must cope
with projective distortions and overlapping objects.

Figure 2.6: The logo “MVTec” is an example of a compound object that consists of the two object parts “M Tec” and “V”.

the appearance of the print in the image and the object description in the model that is used to recognize the
object. This discrepancy cannot be described by one global 2D transformation — which is typically used in the
recognition process — because different parts of the object are transformed individually. This leads to difficulties
during object recognition and during the detection of print quality faults. One solution is to split the object,
i.e., the entire print, into two separate objects, one representing the dark gray letters and the other the light gray
letter, respectively. The object recognition approach is then started twice (once for each object), resulting in two
independent poses for the two objects in the image. The drawback of this solution is that available information
regarding the relations between the two objects is not exploited. In this example, such information could be,
e.g., that the letter “V” is somewhere in between “M” and “Tec”. The consequence of ignoring this information
is a loss of efficiency, since both objects must be searched in the image without prior knowledge. This loss in
most cases is already important when dealing with objects that consist of two separate object parts — as in this
example. Considering the real-time requirement, the more object parts that are involved, the more important it
becomes. As a consequence, the object recognition approach should be able to handle compound objects that
consist of several object parts. The relations between the object parts should be explicitly modeled and taken into
account during the recognition process as prior knowledge in order to obtain a high efficiency and to be able to
fulfill the real-time requirement even for compound objects.

To get an idea of a more complex compound object, an example is presented in which the object consists of
more than two object parts. In Figure 2.7 several prints of a label are shown that are used to mark the mini-
mum durability on food packaging. The readability of the print can be checked by using a similar method as
explained in the application of quality control shown in Figure 2.3. When taking a look at the images given in
Figure 2.7 one can discern that the label, which represents the object, can be decomposed into five object parts:
the rectangular border, the string “BEST BEFORE END:”, and the three two-digit numbers of which the last
two are supplemented by a preceding slash. Obviously, a few images are already sufficient for a human being to
identify the object parts into which the label decomposes. The number of required images depends on the relative
movements that are shown in the images. The relative movement between two object parts must be shown in
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Figure 2.7: The compound object decomposes into five object parts: the rectangular border, the string “BEST BEFORE
END:”, and the three two-digit numbers, of which the last two are supplemented by a preceding slash.

at least one image. For example, if the movements between all object parts are already included in two images
then these two images are sufficient to detect the object parts. The object recognition approach should be able to
automatically identify the object parts of compound objects using a sufficient number of example images — as
shown in Figure 2.7. Furthermore, the relations between the single object parts and a search strategy should also
be derived automatically by using the same example images. Based on this information, the compound model
should be created. The compound model can then be used to recognize the compound object in an image. To
give an example, one possible search strategy is to search for the rectangular border at first, and then restrict the
search for the remaining parts to the image region lying inside the border.

In Figure 2.8, a last example of a compound object is introduced. It shows a circuit board equipped with five
electronic modules, which are visualized in the upper left image by enclosing white ellipses. A typical application
within the production process is to check whether all modules are present on the board and whether they are in
the correct position and orientation in order to guarantee the perfect operation of the board. Because the positions
and orientations of the electronic modules vary slightly from board to board, the five modules do not describe
one rigid object, but can be put together into one compound object. Hence, in this example the compound object
cannot be described by one physical object in the real world, but instead can be understood as a virtual object
containing the five electronic modules. Thus, a compound object does not necessarily correspond to a real world
object but can be seen on a more abstract level. Furthermore, in this example the background is strongly textured,
which additionally complicates the object recognition.

The presented examples give an insight into the broad spectrum of applications that can be automated to a high
degree using object recognition or that at least profit from object recognition in one of various ways. In order to
make these advantages available to a large number of users, special knowledge of the user about image processing
or computer vision must not be required. Furthermore, the degree of automation should be as high as possible
to limit the user interactions to a minimum. Consequently, the motivation from a practical point of view, upon
which this dissertation is based, is to develop an object recognition approach that is easy to use.

2.2 Requirements

Following the discussion of the example applications (Section 2.1), the requirements that an object recognition
approach should fulfill will now be summarized. They are completed by additional requirements that have to be
considered in industry.
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Figure 2.8: The five electronic modules, which are visualized in the upper left image (white ellipses), slightly vary their position
and orientation on the circuit boards. They can be represented by one compound object.

However, before listing the demands some general remarks must be mentioned. Firstly, one of the aims of this
dissertation is to develop an object recognition approach for a broad spectrum of applications. Consequently,
there must be no special requirements on the necessary hardware in order to maximize the field of possible
applications. Usually, only three hardware components should be necessary for real-time object recognition: a
camera, a computer, and a frame grabber. Starting with the first component, it should be sufficient to use off-
the-shelf cameras. In a majority of cases monochrome cameras are used to deliver the video signal in one of the
two most prevalent analog video formatsRS-170(monochrome equivalent toNTSC) with an image resolution
of 640× 480 pixels andCCIR (monochrome equivalent toPAL) with a resolution of 768× 576 pixels. On the
one hand, these cameras do not demand high financial investments and are therefore best qualified to satisfy
the condition of a broad applicability. On the other hand, the use of these cameras prohibits object recognition
approaches that are based on color information. As the second component, standard personal computers systems
are already available in most companies and deliver high performance for low cost. No special image processing
hardware should be needed. The frame grabber, as the last component, simply acts as an interface between camera
and computer. It takes the video signal, which can be understood as a continuous stream of video frames, and
grabs one or more images out of the sequence, whenever triggered to do so. In the case of analog cameras, the
frame grabber additionally converts the analog signal into a digital signal that can be processed by the computer.
Common frame grabbers use an 8-bit quantization. Thus, in the case of monochrome cameras, gray scale images
with a maximum of 256 different gray values are obtained.

Secondly, it is sufficient in many applications — especially in industry — to recognize planar objects (Steger
2001). Therefore, this dissertation only deals with the recognition of 2D objects. Since in the real world no 2D
objects exist, the meaning of “2D” in the context of this dissertation is discussed in the following. In general, the
mapping of a moving object into an image can be described by two separate transformations. The first describes
the transformation of the object in the real world (like 3D translation, 3D rotation, 3D scaling, etc.). The second
describes the mapping of the object from the real world (3D) into the image plane of the camera (2D). The two
transformations are abstracted in Figure 2.9(a). The 3D object is symbolized as a box that may be transformed
in 3D space to different positions and orientations. Assume that the object is planar, i.e., its thickness is small
relative to its distance from the camera. Assume furthermore that the transformation in the real world can be
described by a 2D transformation (like 2D translation, 2D rotation, 2D scaling, etc.) within the plane that is
spanned by the planar object. Consequently, also all possible appearances of the object are restricted to lie
within that plane. This plane will be calledobject planein the following. In Figure 2.9(a) the planar object is
represented by the upper surface of the box containing the string “Object”. Since the box moves on a planeε the
upper surface moves on the object planeε′ that is parallel toε at a distance that corresponds to the height of the
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Figure 2.9: The object recognition is restricted to planar objects. Projective distortions are caused by deviations from the
nadir view (a). By rectifying the image the projective distortions can be eliminated (b).

box. Consequently, the mapping from the real world into the image plane is a homography and can be described
by a projective transformation between two planes (ignoring any lens distortions for the moment).

Using camera calibration, the projective distortions of the object plane in the image can be eliminated by trans-
forming the image plane back into the object planeε′ (see Figure 2.9(b)). This process will be referred to as
rectificationin the following. Subsequently, the object recognition approach only needs to cope with the remain-
ing 2D transformation of the planar object in the real world. In the example applications presented so far, the
2D transformation can be described by a rigid motion (translation and rotation). In practice, it is sufficient that
the 3D object has at least an approximately planar surface: although a minor unevenness introduces additional
perspective distortions that cannot be eliminated by the rectification these distortions are negligible as long as the
deviation from the nadir view is also sufficiently small. What is important is that all transformations the 3D object
may undergo must lead to a 2D transformation of the planar object surface. In the following, the object will be
equated with its planar surface since the 3D object as a whole is irrelevant for further considerations in this work.
To give some examples, in Figure 2.1 the IC represents the 3D object with the print on the IC as the planar object
surface, in Figure 2.2 the CD cover represents the 3D object with the “disc” label as the planar object surface, in
Figure 2.3 the pen clip represents the 3D object, with the logo as the planar object surface, and in Figure 2.5 a
metal part represents both the 3D object and the (approximately) planar object surface.

Now, after the general conditions have been stated, the requirements for an object recognition approach are given:

• The object recognition approach should be able to handle compound objects.Compound objects should
not be treated as a set of independent objects that ignore the relations between them but should be explicitly
modeled leading to an increased computational efficiency. Furthermore, the correct correspondence of the
object parts should be given by the approach.

• Objects should be recognized in real-time.This is strongly connected with the previous requirement be-
cause without modeling the relations between object parts, real-time computation is hard to achieve when
dealing with compound objects. Nevertheless, this requirement additionally implies the existence of an
object recognition approach that is able to recognizerigid objects in real-time since a rigid object can be
seen as a degenerated compound object with only one object part. Because the computational complexity
of object recognition approaches depends on the image size, the real-time demand must be related to a
maximum occurring image size. Bearing the above considered hardware requirements in mind, RS-170
or CCIR images are assumed in this dissertation. Hence, objects should be recognized in real-time when
using images that have a size of not substantially larger than 768× 576 pixels.

• The model representation of a rigid object should be computed from an example image of the object.
Keeping in mind the claim that the object recognition approach should be easy to use, the computation
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of the rigid model should only ask for a single model image of the object. This is the most comfortable
way because usually it is too costly or time consuming to compute a more complicated model, e.g, a
CAD model, or to transform a given CAD model into a model representation that can be used for object
recognition.

• The model representation of a compound object should be computed from several example images of the
compound object.In contrast to the previous requirement, the model representation of compound objects
is more complicated to compute since movements between object parts cannot be detected from a single
example image. Nevertheless, in order to keep the model computation as simple as possible for the user,
it should be sufficient to make several example images available. The object recognition approach should
then be able to automatically derive the relations between the object parts from the given example images
and to derive the compound model.

• The object recognition approach should be general with regard to the type of object.The approach should
not be restricted to a special type of object. Thus, the model, which represents the object, should be able to
describe arbitrary objects. For example, if straight lines or corner points were chosen as features to describe
the object it would be impossible to recognize ellipse-shaped objects.

• The object recognition approach should be robust against occlusions up to a certain degree.This is often
highly desirable in cases where several objects may overlap each other or in cases where object parts are
missing.

• The object recognition approach should be robust against changes in brightness of an arbitrary type up to a
certain degree.Illumination changes often cannot be avoided and are, for instance, caused by non-uniform
illumination over the entire field of view, changing light (position, direction, intensity), objects with non-
Lambertian surfaces, etc. Furthermore, changes in the color of the object itself also lead to changes in
brightness in the image.

• The object recognition approach should be robust against clutter.Clutter in this context means any addi-
tional information in the image, aside from the object that is to be recognized. This information can, for
example, be a strongly textured background or additional objects that are visible in the image, and which
are possibly similar to the object of interest.

• The object recognition approach should be robust against image noise.Since noise cannot be avoided in
the image, the approach should be robust against noise up to a certain degree.

• Objects under rigid motion should be recognized.This is closely related to the requirement of real-time
computation. In general, the more degrees of freedom the transformation of an object includes the higher
the complexity of the recognition approach and therefore the higher the computation time to recognize the
object. Hence, the real-time demand is coupled with the allowable degrees of freedom. In this dissertation
rigid motion (translation and rotation) is considered, i.e., the object recognition approach should be able to
find the object at arbitrary position and orientation. This does not imply that the approach cannot be ex-
tended to more general transformations like similarity transformations or affine transformations. However,
there is a trade-off between the real-time demand and the transformation class.

• The approach should cope with deviations from the nadir view.Often, it is not possible to mount the camera
with a viewing direction perpendicular to the plane in which the object appears. The resulting projective
distortions should be managed by the recognition approach.

• The returned pose parameters should be of high accuracy.This means that the pose parameters should
not be restricted to discretely sampled values but go beyond any quantization resolution. For example, the
position parameters of the object should not be restricted to the pixel grid but should be subpixel precise.
The same holds for the object’s orientation.

• Finally, all instances of an object should be found in the image.The approach should not only find the
“best” instance of an object in an image but return all instances that fulfill a predefined criterion. In the
remainder of this dissertation found object instances in an image will be referred to asmatches.
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2.3 Concept

In this section, the concept of the proposed object recognition scheme is introduced. The basic idea is that the
recognition of compound objects can be seen as a framework in which the recognition of rigid objects is one im-
portant component. In Figure 2.10, an overview of the concept at a generalized level is given. The concept is split
into three blocks representing three approaches that can be characterized ascamera calibration and rectification
(see Figure 2.10(a)),recognition of rigid objects(see Figure 2.10(b)), andrecognition of compound objects(see
Figure 2.10(c)). The type of the graphical representation is chosen so that the input data, the processing steps,
and the output data of the three blocks are distinguished. Furthermore, theoffline phaseis visually separated
from theonline phase. In the offline phase, computations that can be done in a preliminary step and have to
be carried out only once for a specific object are performed, e.g., creating the model description of the object.
Therefore, these computations are not time-critical. In contrast, computations that are performed in the online
phase have to be executed whenever the model is used to find the object in the image. Thus, these computations
must be performed in real-time. In the following, the three main blocks are introduced and the relations between
the blocks are indicated.

The first block represents the camera calibration and the rectification (see Figure 2.10(a)). It is only relevant if the
camera was not mounted perpendicular to the plane in which the objects lie or the camera exhibits severe radial
distortions. Otherwise this block can be omitted. The idea behind the calibration is to eliminate projective distor-
tions by rectifying distorted images before the images are passed to further processing steps (see Figure 2.10(b)
and Figure 2.10(c)). This has the considerable advantage that all further processing steps do not need to concern
themselves with projective distortions at all. The disadvantage is that an additional image transformation and
a re-sampling step have to be performed, which are, in general, very time consuming. In order to reduce this
additional computation time, this process of rectification is split into an offline phase and an online phase. In
the offline phase, the camera calibration is computed using several images of a known calibration target and a
rectification mapis derived from the calibration data. This is a time consuming step, but it has to be performed
only once for a specific camera pose and a specific object plane. The rectification map can be seen as a kind
of look-up table that facilitates a fast rectification of an input image in the online phase. The resulting rectified
image is free of radial and projective distortions.

In the second block the general design of an approach for recognizing rigid objects is described (see Fig-
ure 2.10(b)). Here, in the offline phase, the rigid model is derived from an image of the object. The image
part that shows the object is referred to asmodel imageand — if necessary — has been rectified in a preceding
step using the rectification map. The rigid model can then be used in the online phase to recognize the object
in one or more (rectified)search images. While the rectification of the model image in the offline phase is not
time-critical the rectification of the search images in the online phase must be performed in real-time.

The third block describes the concept of the approach for recognizing compound objects (see Figure 2.10(c)).
Generally, the model of a compound object is referred to as compound model. In the proposed approach the
compound model shows a hierarchical structure, which is also indicated by the thesis “Using ahierarchical model
for the recognition of compound objects provides higher efficiency and inherent determination of correspondence
in contrast to standard methods, and hence facilitates real-time applications”. Therefore, the compound model
that is generated during the offline phase will also be referred to ashierarchical model. The hierarchical model
generation comprises the extraction of rigid object parts on the basis of the model image and several example
images. The most important thing to note is that for each rigid object part a rigid model is generated by employing
the offline phase of the recognition of rigid objects (see Figure 2.10(b)). Hence, the offline phase of recognizing
rigid objects is embedded in the offline phase of recognizing compound objects. Consequently, the resulting
hierarchical model holds a rigid model for each part of the compound object. The relations between the parts
and the search strategy for the online phase are automatically derived by analyzing the example images and
complete the hierarchical model. Analogous to the offline phase, the online phase of recognizing rigid objects is
embedded in the online phase of recognizing compound objects. An important characteristic of the online phase
for compound objects is, however, the computation of an individual search space for each object part in order to
minimize the search effort. This computation is based on the hierarchical model using the relations between the
parts and the derived search strategy.
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Figure 2.10: The concept of the object recognition described in this dissertation
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Consequently, the concept of recognizing compound objects represents a framework in which an approach for
recognizing rigid objects is embedded as a substantial part. This modularity facilitates the interchangeability
of the latter approach without affecting the concept of recognizing compound objects. Thus, the concept of
recognizing compound objects is independent from the chosen embedded approach. As another consequence, the
requirements listed in Section 2.2 that do not explicitly refer to compound objects have to be fulfilled, not only
by the approach for recognizing compound objects, but also by the approach for recognizing rigid objects.

2.4 Background

In this section, the background and the general external conditions from which the dissertation has originated and
under which it was developed are explained. This is essential because these conditions influence several aspects
of the work.

The author’s work has been supported by the software companyMVTec Software GmbH(Munich, Germany).
Their main product,HALCON, represents a machine vision tool that is based on a large library of image process-
ing operators (MVTec 2002). The implementation of the presented approach is partly based on image processing
operations that are provided by the HALCON library. The motivation for MVTec Software GmbH in supporting
the author’s work was, on the one hand, to extend their existing knowledge in the field of object recognition in
general. On the other hand, a new approach for the recognition of compound objects that can be directly included
in the HALCON library should be developed and implemented. HALCON is mainly applied to specific tasks
that arise in industry. A selection of the typical example applications are demonstrated in Section 2.1. Thus,
the requirements listed in Section 2.2, and hence the derived concept of this work introduced in Section 2.3, are
indirectly influenced by industrial demands.

Two approaches for recognizing rigid objects have been developed approximately simultaneously with the aim
of fulfilling the established requirements: on the commercial side, theshape-based matching(Steger 2002) has
been developed at MVTec Software GmbH, and on the scientific side, the author has developed themodified
generalized Hough transformin the context of this dissertation (Ulrich et al. 2001a). Because of these close
relationships, the developments have not been completely independent of each other but have overlapped in a few
areas. Both approaches are introduced in the dissertation, where the main focus is on the modified generalized
Hough transform. The overlapping points will only be explained once. However, the approach for recognizing
compound objects is then built on the basis of the shape-based matching because the latter has already been
thoroughly tested and included in the HALCON library.

2.5 Overview

In the following, a brief overview of the dissertation is given. According to to the concept outlined in Fig-
ure 2.10 the next three chapters correspond to the three main tasks. Chapter 3 describes the camera calibration
and the rectification. It comprises the introduction of the used camera model, the calibration, as well as the
novel rectification process. This chapter is then concluded with a small example. Chapter 4 addresses the recog-
nition of rigid objects. An extensive review of recognition methods is carried out and the generalized Hough
transform (Ballard 1981) as a promising candidate is selected and further examined. The drawbacks of the gen-
eralized Hough transform are elaborated and analyzed. In the following sections, several novel modifications
are introduced to eliminate the drawbacks. The respective modifications are applied, resulting in a modified
generalized Hough transform. Finally, after the shape-based matching is introduced, an extensive performance
evaluation compares the modified generalized Hough transform and the shape-based matching with several other
approaches for the recognition of rigid objects. In Chapter 5 the new approach for recognizing compound objects
is explained. A review of the respective literature is followed by an overview that broadly describes the pursued
strategy. A more detailed description of the single processing steps is subsequently given focusing on the main
novel aspects of this work. This chapter is then concluded with several examples that show the advantages of the
new approach. Finally, in Chapter 6 some conclusions are given.
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3 Camera Calibration and Rectification

Geometric camera calibration is a prerequisite for the extraction of precise 3D information from imagery in
computer vision, robotics, photogrammetry, and other areas.

Since in this dissertation only 2D objects are considered, the benefit of using 3D camera calibration for the
purpose of 2D object recognition should be addressed first. The first point has already been discussed in Chapter 2
and must be considered when the image plane is not parallel to the plane in which the objects occur, which results
in an homographic mapping between the two planes. In order to eliminate the resulting projective distortions
in the image, one has to know the 3D poses of both planes in the real world. The second point addresses the
problem of lens distortions, i.e., the physical reality of a camera geometrically deviates from the ideal perspective
geometry. Therefore, whenever precise measurements must be derived from the image data, these deviations must
be considered. In the case of compound objects, quantitative statements about the relative poses of the object parts
in the real world must be made. This is important in order to facilitate a correct automatic computation of the
hierarchical model. Hence, it is essential to perform a camera calibration in a preceding step. The remainder of
this chapter is organized as follows: In Section 3.1, a short review of camera calibration techniques is given in
order to select the appropriate method for the task of recognizing compound objects. Section 3.2 describes the
applied camera model and the involved parameters and in Section 3.3 the calibration process is briefly explained.
In Section 3.4, a novel way to rectify images based on the calibration result that facilitates real-time computation
is introduced. The rectified images are free of lens distortions and free of projective distortions of the object
plane. Finally, Section 3.5 concludes with an example.

3.1 Short Review of Camera Calibration Techniques

One aspect of camera calibration is to estimate the interior parameters of the camera. These parameters determine
how the image coordinates of a 3D object point are derived, given the spatial position of the point with respect
to the camera. The estimation of the geometrical relation between the camera and the scene is also an important
aspect of calibration. The corresponding parameters that characterize such a geometrical relation are called exte-
rior parameters or camera pose. Thus, the camera parameters describe the interior and exterior orientation of the
camera. In this work, camera calibration means to determine all camera parameters. It should be noted that some-
times camera calibration only comprises the determination of the interior camera parameters, as in the field of
photogrammetry and remote sensing. Literature provides several methods of camera calibration. In photogram-
metry two basic approaches can be distinguished: laboratory methods and field methods (Heipke et al. 1991). The
interior orientation of metric cameras is usually determined under laboratory conditions. The interior orientation
of metric cameras is constant and the image coordinate system is defined by special fiducial marks within the
camera. Field methods can be further subdivided into testfield calibration, simultaneous self calibration, and sys-
tem calibration. Testfield calibration is carried out for non- and semi-metric cameras prior to image acquisition.
The object coordinates of several control points within the testfield are known and used to derive the orientation
of the camera within a photogrammetric block adjustment. In (Ebner 1976), a simultaneous self calibration is
presented where the interior orientation parameters are determined simultaneously with the desired object space
information. Finally, system calibration combines testfield and simultaneous self calibration where images are
acquired that show both the testfield and the object and that are evaluated in one step (Kupfer 1987).

In machine vision, mainly non-metric digital cameras (e.g., off-the-shelf CCD cameras) come into operation be-
cause of their lower prices, higher flexibility, and manageable size in contrast to metric and semi-metric cameras.
Because their interior orientation is not known `a priori and cannot be assumed to be constant, the requirement for
laboratory calibration methods is not fulfilled. Hence, in most cases, cameras are calibrated using field methods.
The advantages of simultaneous self calibration are its high accuracy and that no control point coordinates in
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object space need to be known `a priori (Wester-Ebbinghaus 1983). However, several images taken from differ-
ent camera poses must be acquired in order to perform the calibration. This contradicts the claim of the object
recognition approach to be simple and easy to use. Camera calibration should be possible in industry, even during
system operation without unmounting the camera. Another limitation of simultaneous self calibration is that it re-
quires a high number of corresponding points in the images, which are not available in all cases. The requirements
for testfield calibration are less stringent than the requirements for simultaneous self calibration. Nevertheless,
high accuracies are also possible. The geometric quality of solid-state imaging sensors was already verified in
(Gruen and Beyer 1987), where an accuracy of 1/10th of the pixel spacing was achieved with a planar testfield.
In (Heipke et al. 1991), it was shown that the calibration using a 3D testfield even fulfills the stringent accuracy
requirements of photogrammetric tasks. Accuracies up to 1/50th of the pixel spacing could be verified with a 3D
testfield in (Beyer 1987). Also in (Beyer 1992) and (Godding 1993) 3D testfields are applied for camera calibra-
tion. Unfortunately, the construction of the 3D testfield and the precise determination of the object coordinates
of the control points within the testfield are very time consuming and costly. Generally, the assignment of the
measured image coordinates to the control points must be done manually because the correspondence problem
in 3D is difficult to solve. The uncomfortable handling of such targets is another drawback that rules out the
use of 3D testfields in this work. Although in general, the accuracy achieved by a planar 2D testfield is lower in
comparison to 3D testfields, there are several arguments for preferring the use of a 2D testfield for calibration:
it is more robust, much easier to produce, less expensive to gauge, and simpler to transport. Furthermore, the
extraction and assignment of the control points in the image can be done automatically since the correspondence
problem in 2D is much easier to solve.

In order to perform the camera calibration, one has to select an appropriate camera model where the implemented
parameters describe the physical mapping process with sufficient accuracy. According to the literature, different
approaches for camera calibration are suitable for different camera models. In (Weng et al. 1992), the existing
techniques are classified into three categories.Direct non-linear minimizationrelates the parameters to be es-
timated with the 3D coordinates of control points and their image plane projections and minimizes the residual
errors using an iterative algorithm (Brown 1966, Faig 1975, Wong 1975). The advantages of this type of technique
are that the camera model can be very general to cover many types of distortions, and that a high accuracy can be
achieved. However, because of the non-linearity of the resulting equations, a good initial guess is required for the
iteration. Inclosed-form solutions, parameter values are computed directly through a non-iterative algorithm by
defining intermediate parameters that can be determined by solving linear equations. The final parameters are sub-
sequently computed from the intermediate parameters (Abdel-Aziz and Karara 1971, Wong 1975, Faugeras and
Toscani 1986). On the one hand this enables a fast computation, on the other hand, in general, distortion parame-
ters cannot be considered and poor results are obtained in the presence of noise. In (Abdel-Aziz and Karara 1971),
the direct linear transformation (DLT) has been extended to incorporate distortion parameters. However, the cor-
responding formulation is not exact. Finally,two-step methodsinvolve a direct solution for most of the calibration
parameters and some iterative solution for the remaining parameters. In (Tsai and Lenz 1988), a two-step method
is presented that is able to handle radial distortions. In (Weng et al. 1992), the two-step approach is extended to
also take more general distortions into account and in the second step not only the remaining but all parameters
are estimated iteratively.

The radial lens distortions of spherical lenses often cannot be eliminated even when using a lens design that
comprises a system of lenses aligned on the optical axis. Radial lens distortions cause concentric circles that
are centered at the optical axis to be mapped as circles with distorted radius. The influence of radial symmetric
distortions is about one magnitude higher than the influence of other distortions, e.g., decentering distortions
or thin prism distortions (Weng et al. 1992). Furthermore, the overall influence of distortions on small images
in comparison to photogrammetric images is much lower. Because of these two reasons, it is essential, but
also sufficient, for the camera calibration within the object recognition approach to model the radial distortions.
Nevertheless, the camera lens should be of a reasonable quality and should not show severe distortions in order
to keep the non-modeled part of the distortions as small as possible.

The approach proposed in (Lanser et al. 1995) is able to handle radial distortions and combines the advantages
of a 2D testfield with the higher accuracy of the 3D testfield. This is achieved by simultaneously evaluating
several images that show the 2D testfield in different distances and poses. The used iterative approach, which is
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Figure 3.1: Perspective projection of the world point pw to the point p in the image plane when using a pinhole camera
according to (Lenz 1987)

one representative of the direct non-linear minimization technique, allows high accuracies for the desired camera
parameters. Because the term “testfield” is unusual in computer vision, the more common term “calibration
target” will be used instead. The requirement for several images does not contradict the demand of ease of use,
because it is not difficult for a user to move an appropriate 2D calibration target to different poses and take
severalcalibration imagesof it while the camera position remains unchanged. Because the relative pose of the
calibration target in the images does not need to be known `a priori, the camera calibration can be easily performed
in practice, even in mobile or autonomous systems. Based on the above mentioned arguments this approach is
chosen to perform the camera calibration within the object recognition approach developed in this dissertation.
A detailed description of this approach is given in the following section.

3.2 Camera Model and Parameters

In order to calibrate a camera, a model for the mapping of the 3D points of the world to the 2D image generated
by the camera, lens, and frame grabber is necessary. In the approach described in (Lanser et al. 1995) the camera
model of (Lenz 1987) is used, where a pinhole camera with radial distortions is assumed. The camera model
describes the perspective projection of a 3D world pointpw into the pixel with row andcolumn coordinate
(r, c)> of the image (see Figure 3.1).

The perspective projection can be divided into three steps. In the first step the 3D world pointpw is transformed
from the world coordinate system (WCS) into a 3D pointpcam = (x, y, z)> of the camera coordinate system
(CCS). The transformation is described by the exterior camera parameters, which comprise a rotationR and a
translationt:

pcam = R · pw + t . (3.1)

In the second step, the 3D pointpcam in the CCS is projected into the image plane by assuming a pinhole camera
and using the equations of perspective transformation:

u = f
x

z
, v = f

y

z
, (3.2)

where the effective focal lengthf is the distance between the image plane and the optical center. Equation (3.2)
idealizes the perspective transformation by ignoring any lens distortions. In Figure 3.1 the world pointpw is
projected through the optical center of the lens to the pointp in the image plane, which is located at a distance
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of f behind the optical center. If no lens distortions were present,p would lie on a straight line frompw through
the optical center (see Figure 3.1). Lens distortions cause the pointp to lie at a different position. Because in the
present camera model radial distortions are considered, the “real” point(ũ, ṽ)> in the image coordinate system
can be calculated by:

ũ =
2u

1 +
√

1− 4κ(u2 + v2)
, ṽ =

2v
1 +

√
1− 4κ(u2 + v2)

. (3.3)

Here, the radial distortions are described by the parameterκ. If κ is negative, the distortions are barrel-shaped,
while for positiveκ they are pincushion-shaped. This model for the lens distortions has the advantage that it can
be easily inverted in order to calculate the correction of the distortions analytically:

u =
ũ

1 + κ(ũ2 + ṽ2)
, v =

ṽ

1 + κ(ũ2 + ṽ2)
. (3.4)

Finally, in the third step, the 2D image point(ũ, ṽ)> is transformed into the pixelp = (r, c)> of the image
coordinate system:

r =
ṽ

sy
+ cy, c =

ũ

sx
+ cx , (3.5)

wheresx andsy are scaling factors that describe the horizontal and vertical spacing of the CCD elements on
the sensor. The point(cx, cy)

> is the principal point of the image, which also defines the center of the radial
distortions. The parametersf , κ, sx, sy, cx, andcy are independent of the exterior orientation of the camera, and
hence represent the interior camera parameters. They describe the intrinsic mapping characteristics of the camera.
The parametersf , sx, andsy are not independent from each other since a change inf can be compensated by
an appropriate change insx andsy. Thus, they cannot be determined simultaneously. Sincesy is usually known
because the video signal is sampled line-synchronously by the frame grabber, this datum defect can be eliminated
by keepingsy fixed within the minimization process described in the following section.

Completing this section, it should be mentioned that in some applications cameras with telecentric lenses are used
instead of pinhole cameras. In contrast to pinhole cameras, telecentric lenses show no perspective projection but
parallel projection, i.e., no perspective distortions occur. The camera model for those kind of lenses can be easily
adapted changing equation (3.2) to

u = x, v = y . (3.6)

As can be seen, the effective focal length is no longer valid for telecentric lenses. Furthermore, the distancez of
the object to the image plane has no influence on the image coordinates. Consequently, when using telecentric
lenses in object recognition the restriction that objects always must appear in the same 3D plane is dispensable.
Even 3D objects can be recognized at arbitrary position if their rotation in 3D object space is restricted to rotations
around the viewing direction of the camera, because then the resulting mapping in the image can be described
by a simple rigid motion. The diameter of telecentric lenses, however, must have at least the same size as the
parallel projection of the extent of the object. The following considerations refer to pinhole cameras but can be
easily adapted for the use of telecentric lenses.

3.3 Camera Calibration

In this section, the approach for camera calibration proposed in (Lanser et al. 1995), which uses the model
introduced in the previous section, is briefly explained. This approach extends the single image calibration (SIC)
to a multi image calibration (MIC) and is able to handle numerous images of the calibration target. At first, the
calibration using single images is introduced, and afterwards, the necessary modifications for the multi image
calibration are explained.

In the SIC a single image of a 2D calibration target withN circular black colored marks is used (see Figure 3.2).
The centers of the circular marks represent the 3D control points. The 2D coordinates of the control points in
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the planar calibration target are known with high accuracy. The coordinate system of the control points also
defines the coordinate system, in which the pose of the camera, i.e., the exterior orientation, is computed. The
square border allows the inner part of the calibration target to be found automatically. Circular marks are used
because their center point can be determined with high accuracy. The circular marks are mapped to ellipses under
projective transformations. It should be noted that, in general, the extracted centers of the ellipses do not coincide
with the projected centers of the circular marks. Therefore, an analytical correction must be applied in order to
increase the accuracy (Kager 1981). Finally, the array layout of the rows and columns of the circles facilitates the
determination of the correspondence of the control points and their projections in the image.

Figure 3.2: 2D calibration target with 49 circular marks

The approach is based on minimizing the sum of squared distancese between the projected 3D centers of the
marks and the extracted 2D centers in the image by using a parameter adjustment. Letmi be the 3D centers
of the marks and̃mi the extracted 2D centers in the image. Eachmi is projected into a (sub)pixel point in the
image using the projectionπ : R3 7→ R

2, which is a function ofx = (R, t, f, κ, sx, sy, cx, cy)> and comprises
equations (3.1), (3.2), (3.3), and (3.5):

e(x) =
N∑

i=1

‖m̃i − π(mi,x)‖2 −→ min . (3.7)

Because of the given non-linear relationship, suitable starting values for the unknown camera parameters must
be known. Starting values for the interior camera parameters can be obtained from the specifications of the CCD
sensor and the lens. For the calculation of the starting values for the exterior camera parameters the interested
reader should refer to (Lanser et al. 1995).

The exact camera parameters can then be calculated using standard linear least-squares optimization routines
(Koch 1987) or preferably non-linear methods, e.g., based on the Levenberg-Marquardt algorithm (Levenberg
1944, Marquardt 1963, Press et al. 1992), because of their better convergence behavior, and hence higher tolerance
to unprecise starting values.

During the minimization process within the SIC, flat minima often occur because of correlations between the
camera parameters. This problem occurs, for example, if the 3D plane of the calibration target is approximately
parallel to the image plane. In order to stabilize the result and to improve the accuracy, the SIC is extended
to evaluate several calibration images of the calibration target simultaneously resulting in the MIC. A similar
approach can also be found in (Beardsley et al. 1992).

To get an accurate result, several images (in practice, 10–15 images are sufficient) should be taken, in which
the calibration target is moved so that all degrees of freedom are used while the camera remains fixed. The
detection of the marks in the image and the calculation of the starting values of the exterior camera parameters
is performed independently for each calibration image. It is important to note that, although the camera remains
fixed, the exterior camera parameters are specific for each image. This is because the world coordinate system, in
which the pose of the camera is described, is defined by the calibration target, which moves from image to image.
During the adjustment within the MIC, the different exterior camera parameters of all images and the constant
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interior camera parameters are estimated simultaneously using one of the above mentioned optimization routines.
The experiments in (Lanser et al. 1995) showed that the maximum distance between the projected 3D centers of
the marks and the corresponding image points was about 1/10th of a pixel after the adjustment. A camera with a
2/3 inch sensor, a 12.5 mm lens, and images of size 768× 576 was used in these experiments.

3.4 Rectification

In this section, the novel method for rectifying images in real-time is introduced. The rectification is based on the
previously determined camera parameters and eliminates projective as well as radial lens distortions. To achieve
real-time computation, the projection is split into two phases. In the offline phase, the mapping of the projection
is computed based upon the camera parameters, and stored within a look-up table, which is calledrectification
map. In the online phase, the rectification map can be applied to an image (original image) in order to rectify the
image in a very short period of time.

3.4.1 Computation of the Rectification Map

The rectification process corresponds to a projection of the image onto a 3D projection plane in the WCS.

The projection plane, which corresponds to the rectified image, is defined in the WCS with respect to the 3D plane
of the calibration target as shown in Figure 3.3. Thus, the calibration target should be placed on the object plane
in at least one of the images that are used for calibration. The origin of the WCS can be translated by a vector
o = (ox, oy, oz)

> to an arbitrary position that defines the position of the upper left pixel of the rectified image. If
an appropriate value foroz is chosen, planes parallel to the calibration target can be rectified. Therefore, it is, for
example, possible to take the thicknesst of the calibration target into account: in order to rectify the object plane
and not the plane described by the calibration target,oz must be set to−t. In order to complete the definition of
the rectified image, one has to specify the pixel sized in world units and the size of the rectified image by the
number of rowsR and the number of columnsC. In general, the value ford should be chosen according to the
information content of the original image, i.e., the pixels in the rectified image should approximately have the
same size (in object space) as in the original image on average. This minimizes the loss of information while
keeping the rectified image of manageable size. The pixelpw(r′, c′), r′ = 0, . . . , R− 1, c′ = 0, . . . , C − 1 of the
rectified image can be calculated in the WCS:

pw(r′, c′) = o + r′ · er + c′ · ec , (3.8)

whereer andec denote the 3D basis vectors of the spanning rectification plane with lengthd:

er = (0, d, 0)>, ec = (d, 0, 0)> . (3.9)

The 3D pointpw(r′, c′) can then be transformed into the 2D image pointp = (r, c)> of the original image
using equations (3.1), (3.2), (3.3), and (3.5). Since the transformation of the WCS into the CCS is a 3D rigid
transformation, angles are preserved by the transformation. Therefore, it is possible to speed up the computation
by pre-calculating the translated origino and the two 3D basis vectorser andec in the CCS using equation (3.1):

ocam = R · o + t, er,cam = R · er, ec,cam = R · ec . (3.10)

Thus, the pixels of the rectified image can be directly obtained in the CCS

pcam (r′, c′) = ocam + r′ · er,cam + c′ · ec,cam (3.11)

and transformed into the 2D image pointp = (r, c)> of the original image by using only equations (3.2), (3.3),
and (3.5). This procedure is applied to all pixels in the rectified image yielding a back-projected rectified image
within the original image (see Figure 3.4(a)). Thisbackward projectionis essential, because in theforward
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Figure 3.3: The plane of the calibration target is used to define the plane of the rectified image. Each pixel of the rectified
image can be computed in 3D world coordinates (pw) as a linear combination of the two 3D basis vectors er and ec. The
parameter d corresponds to the length of er and ec, respectively, and defines the pixel size of the rectified image in object
space in world units, e.g., meters.
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Figure 3.4: The rectified image is projected back into the original image (a) and re-sampled (b). It should be noted that
because of radial distortions, lines are not necessarily projected to lines.

projection, where the original image is projected into the rectification plane, gray values of pixels in the rectified
image may remain undefined.

In general, the resulting row and column coordinates(r, c) of the 2D image pointsp are not integer values.
Therefore, the gray value of the rectified image must be re-sampled from the original image using the gray values
in the neighborhood ofp. Bilinear interpolation is a common re-sampling method. It represents a compromise
between computation time and accuracy in comparison to other methods like nearest-neighbor or higher order
polynomial interpolation (Mikhail et al. 2001). The method uses the four neighboring pixels ofp as sampling
points:p1 = (r1, c1)

>, p2 = (r1, c2)
>, p3 = (r2, c1)

>, andp4 = (r2, c2)
>, wherer1 = brc, r2 = dre, c1 = bcc,

andc2 = dce. Figure 3.4(b) illustrates the principle of bilinear interpolation. Letg(r, c) andg′(r′, c′) be the gray
value of the original image and the rectified image, respectively. Theng′(r′, c′) can be finally obtained applying
bilinear interpolation:

g′(r′, c′) = w1g(r1, c1) +w2g(r1, c2) + w3g(r2, c1) + w4g(r2, c2) . (3.12)

The weightswi can be computed as

w1 = (1−∆r)(1−∆c), w2 = (1−∆r)∆c, w3 = ∆r(1−∆c), w4 = ∆r∆c , (3.13)

where∆r = r − r1 and∆c = c− c1. As one can see, the rectification of an image is a computationally expen-
sive procedure starting with the projection and ending with the computation of the interpolation weights. Hence,
real-time computation is impossible to achieve when using this straightforward method. A more sophisticated
technique exploits that the camera pose is constant during the acquisition of images for object recognition in
most cases. Therefore, the back-projection of the pixels of the rectified image into the original image remains
unchanged, and hence the interpolation weights are constant for each pixel of the rectified image. Consequently,
r(r′, c′), c(r′, c′), and the corresponding weightswi(r′, c′) only depend on the pixel coordinates of the rectified
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Figure 3.5: The process of computing the rectification map is summarized in two steps. In the first step, the pixels of the rec-
tified image are projected back into the original image. In the second step, the linearized coordinates l of the projected pixels,
the four corresponding interpolation weights wi, and the domain D of the rectified image are stored within the rectification
map.

image and can be stored in the rectification map. The rectification map, which is displayed in Figure 3.5, consists
of five 2D arrays that are of the same size as the rectified image itself (R × C). In the first array, thelinearized
coordinatel of p1 is stored, which can be calculated asl(r′, c′) = r1(r′, c′) ·C+c1(r′, c′). The linearized coordi-
nate is used because images are stored as linearized arrays, which has the advantage of a higher efficiency. From
the linearized coordinate and the known image widthC, the row and column coordinates can be recalculated.
The remaining four arrays hold the interpolation weightswi(r′, c′).

Because, in general, the forward projection of the rectangular outline of the original image does not result in a
rectangular outline in the rectified image, additionally, the image domainD ⊂ R

2 of the rectified image must
be stored within the rectification map. The image domain only contains those pixels of the rectified image that
are mapped into the (rectangular) domain of the original image, and can be efficiently stored using run-length
encoding (Haber¨acker 1995, J¨ahne 2002). The processes described so far can all be attributed to the offline phase
and only need to be executed once for a specific camera and object plane configuration. In the following, the
online phase of the rectification is described.

3.4.2 Rectification Process

The input data of the online phase, i.e., in the rectification process, are the image that must be rectified and the
rectification map that holds all necessary information for the rectification. The derivation of the rectification map
already implies the process of computing the output data, i.e., the rectified image. Therefore, only some short
remarks are given. At first, a new image is created where the image domain is set to the image domain of the
rectification mapD. Then, for each pixel(r′, c′)> within the image domain the gray valueg′(r′, c′) is computed
only from the four corresponding gray values of the original imageg(r, c), g(r, c+1), g(r+1, c), andg(r+1, c+1)
multiplied by the respective weightswi(r′, c′), i = 1, . . . ,4, using equation (3.12). The coordinatesr andc are
obtained from the linearized coordinatel(r′, c′) and the image width. Thus, this extremely lean computation
comprises the entire process of rectification in a compressed form and facilitates real-time computation. The
rectified image is not only free of radial and projective distortions in the object plane but — as an additional
feature — also exhibits square pixels since the pixel spacing is estimated independently during camera calibration
in each direction. Non-square pixels would also lead to deformations of an object in the image. This deformation
is not constant but dependents on the object orientation, and hence is critical for object recognition.

3.5 Example

In this section, an example is given, not only to prove the high efficiency of the rectification method, but also to
accentuate the need for considering the radial distortions within the camera model.

The label of the example application of Figure 2.7 in Section 2.1 is taken as the test object. Here, it is assumed
that it is not possible to mount the camera perpendicular to the object plane. This causes projective distortions of
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Figure 3.6: Deviations from the nadir view cause projective distortions in the object plane.

Figure 3.7: Three examples of the 15 calibration images that were taken from the calibration target. The extracted ellipse
centers of the projected marks are assigned to the given 3D circle centers of the calibration target and used to estimate the
camera parameters. The calibration target in the left image is used to define the object plane to be rectified.

the object plane as can be seen from Figure 3.6, where the “deformation” of the label depends on the pose of the
label in the image.

In order to rectify the images, the camera must be calibrated. Here, a calibration target of size 3 cm× 3 cm
was used and images that show the target in 15 different poses were taken. Figure 3.7 shows three of the 15
calibration images (640× 482 pixels). The 3D coordinates of the center points of the black circles are known
and used as control points within the camera calibration as described in Section 3.4. The computation time for
the whole camera calibration was about 2 s on a 2 GHz Pentium 4, including the segmentation of the calibration
target, the calculation of the starting values in all images, and the final parameter estimation using the Levenberg-
Marquardt method (Press et al. 1992). The resulting interior camera parameters in this example aref = 13 mm,
κ = −1095.2 [1/m2] (i.e, slightly barrel-shaped distortions),sx = 7.3µm, sy = 7.3µm, cx = 321.422 pixels,
andcy = 236.303 pixels. To get an impression of the achieved accuracy of the estimation, the 3D control points
are projected back into the image using the estimated parameters and compared to the extracted ellipse centers
resulting in a mean distance of 0.027 pixels.

Now, the rectified image can be defined. The pose of the calibration target in the left image of Figure 3.7 defines a
plane that is offset from the object plane by the thicknesst = 0.63 mm from the calibration target. Therefore, the
z component of the originoz must be set to−0.63 mm in order to correctly rectify the object plane. Additionally,
the pixel sized is chosen to be 0.32 mm to obtain a suitable size of the rectified image. To ensure that the upper
left pixel of the original image is contained in the image domainD of the rectified image,ox andoy are set
to -9.4 cm each. Finally, the heightR and widthC are chosen appropriately (R = 527,C = 515). Now, the
computation of the rectification map can be performed using the interior camera parameters, the exterior camera
parameters according to the left image of Figure 3.7, and the chosen values foro, d, R, andC. In the example it
took approximately 120 ms to compute the rectification map.

Since all time-consuming computations of the offline phase have been completed, now, in the online phase images
can be rectified in real-time. The three example images of Figure 3.6 are rectified by applying the computed
rectification map in an average time of only 8.3 ms per image. The result is shown in Figure 3.8.

Finally, two experiments are carried out to show that firstly, the achievable accuracy of the camera parameters
depends on the number of acquired calibration images and that secondly, it is essential to include the radial
distortions within the camera model.
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Figure 3.8: Rectified versions of the images shown in Figure 3.6. The average rectification time was 8.3 ms on a 2 GHz
Pentium 4.
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(b) Standard deviation ofκ (c) Effect of radial distortions

Figure 3.9: Standard deviation of the estimated effective focal length (a) and the radial distortions (b) versus the number
of images. In (c) subpixel precise edges are shown, once taking the radial distortions into account (white solid), and once
ignoring the radial distortions (white dashed).

For the first experiment, a basic set of 10 selected calibration images out of the entirety of 15 images is formed.
Then the number of imagesnI is varied from 1 to 10 and for eachnI , 10 sub-sets containingnI images are
taken from the basis set. It should be noted that only one sub-set of 10 images can be formed ifnI = 10. The
camera calibration is then performed for the different number of images for each of the 10 sub-sets. The standard
deviation of the estimated interior camera parameters are then calculated for eachnI . As an example of the
result, the standard deviation of the effective focal lengthf and of the parameterκ, which describes the radial
distortions, are plotted in Figure 3.9(a) and Figure 3.9(b), respectively. From both plots it appears that even for a
small number of calibration images, the accuracy of the camera calibration increases considerably in comparison
to the SIC. In this example, the calibration using only a single image is not meaningful: the standard deviation of
κ is σκ = 1782.0 1/m2, which is too high for precise measurements. This is because the used calibration target is
relatively small and the radial distortions within a small part of the image are approximately constant, and hence
hard to determine. Therefore, it is essential to base the calibration on several images where the calibration target
should appear in different parts of the image. The same holds for the effective focal length (f = 13 mm), the
standard deviation of which isσf = 2 mm. Generally, the achievable accuracy depends on the number of used
images and on the accuracy of the extracted ellipse centers in the calibration images. However, it is also apparent
from the plots, that continuously increasing the number of images does not necessarily increase the accuracy
much. The maximum achievable accuracy is restricted by the distortions that are not considered in the camera
model.

For the second experiment, the rectified image of the label that is displayed in Figure 3.8 on the right is used
to demonstrate the effect of radial distortions. In Figure 3.9(c), the enlarged detail of the image containing the
upper right corner of the label is shown. This image part is far enough away from the principal point to exhibit
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significant radial distortions. Subpixel precise edges are extracted in the image using the approach presented in
(Steger 1998) and visualized as white solid lines. In a second step, the image is rectified withκ set to 0 when
computing the rectification map. In the resulting rectified image, subpixel precise edges are again extracted and
overlaid on the image of Figure 3.9(c) as white dashed lines. From the displacement of the edges, it is obvious
that ignoring the radial distortions in this example would lead to position errors of up to 2 pixels. In general, the
position errors induced by radial distortions are in the range of 1 to 4 pixels using off-the-shelf lenses. Thus, it is
absolutely essential to model and eliminate the radial distortions in the images.
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4 Recognition of Rigid Objects

This chapter deals with the recognition of rigid objects. An extensive review of the respective literature is given
(Section 4.1). The novel approach for recognizing rigid objects, the modified generalized Hough transform, is
explained in detail (Section 4.2). Furthermore, a second new approach, the shape-based matching, which is pro-
posed in (Steger 2002), is introduced (Section 4.3). The shape-based matching is not included in the review
because of its exceptional position within this dissertation: firstly, some aspects of its development are closely
related to the modified generalized Hough transform and secondly, it is used as module within the implementation
of the proposed approach for recognizing compound objects. Finally, an extensive performance evaluation com-
pares the modified generalized Hough transform and the shape-based matching with several existing approaches
(Section 4.4).

4.1 Previous Work

Visual object recognition cannot be formulated as a single problem. Too many different paths lead to visual
object recognition, resulting in a diversity of approaches to the problem. In (Ullman 1989), some of these paths
are listed: the recognition of an object can be done either on the basis of its characteristic shape, color and texture,
location relative to other objects, or characteristic motion, for example. These primarily visual stimulations can
be supplemented by other sources, e.g., by the use of prior knowledge, expectations, and temporal continuity, or
other reasoning. In this section, the diversity of object recognition approaches is reviewed. The focus is set on
approaches that are based on shape, color, or texture. These are the most common and important aspects of visual
recognition, and therefore of object recognition.

4.1.1 Classification of Object Recognition Approaches

Although object recognition is quite natural, it is difficult to define the term “object recognition” in a simple,
precise, and uncontroversial manner. Sometimes object recognition means identifying individual specific objects.
For example, in the industrial applications introduced in Chapter 2, individual objects like a specific IC, the
“MVTec” logo, or a specific metal part are to be recognized. In other cases, recognition means identifying the
object as a member of a certain class. For instance, in photogrammetry and remote sensing, houses, roads, cars,
vegetation, or other classes of objects must be recognized in aerial or satellite imagery. A global frame including
a detailed review and evaluation of automatic object extraction from aerial imagery is given in (Mayer 1998).
This kind of recognition requires the existence of object properties that are, on the one hand, specific enough to
distinguish between different classes of objects but are, on the other hand, also general enough to comprise the
object variety within one class. Another frequently arising task in object recognition is to decide which object
or which class of objects is present in the image. This can be seen as a classification process that is based on
a large database of objects or object classes. In (Cohen and Guibas 1997), for instance, Chinese characters are
recognized in images by comparing them to a database of images comprising 500 possible characters.

In the scope of the present work, object recognition means identifying individual specific objects and not classes
of objects and, furthermore, is not interpreted as a classification process. Nevertheless, even in this restricted
domain, several terms are commonly used in the literature. The terms imply different applications, but can all
be summarized under “object recognition”. In Table 4.1, some examples are listed where the terms “object” and
“recognition” are treated separately: each of the two terms can be replaced by one of various expressions. For
example, “object” is often substituted by “image”, “pattern”, or “target”, while “recognition” is often substituted
by “alignment”, “matching”, or “detection”. These expressions can be combined arbitrarily within the same row
of Table 4.1, resulting in various paraphrases for the term “object recognition”. The table further discriminates
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between terms that imply a 2D approach (first row) and terms that are used in both, 2D and 3D approaches
(second row). For example, “image alignment” assumes a 2D approach, while the term “target recognition” is
used in 2D and 3D approaches.

object recognition

2D image
alignment / registration /

retrieval / comparison / matching

2D / 3D
object / pattern /

template / target / shape
recognition / matching /

localization / detection / alignment

Table 4.1: “Object recognition” — a term including various semantics

Apart from the classification of object recognition approaches that distinguishes between 2D and 3D approaches,
several other classification schemes are possible. In (Ullman 1989), object recognition approaches are divided
into invariant properties methods, object decomposition methods, andalignment methods, where also combi-
nations between the methods are allowed. In invariant properties methods, the overall recognition process is
broken down into the extraction of a number of different properties (that are invariant to a particular kind of
transformation), followed by a final decision based on these properties. Object decomposition methods rely on
the decomposition of objects into constituent parts, where in a first stage the parts are recognized and in a second
stage the initial classification of the individual parts is used to recognize the object itself by including know-
ledge about the relations between the parts. For example, in the first stage, straight lines are searched in the
image, which can be used in the second stage to recognize rectangles by exploiting knowledge about the relations
between the lines. Finally, alignment methods try to find a particular transformation that will maximize some
similarity measure. The similarity measure is often calledsimilarity metric if it fulfills the requirements for a
metric, i.e., non-negativity, symmetry, and triangle inequality (Bronstein et al. 2001). The similarity measure
describes the similarity between the transformed model and the image. The model is systematically compared
to the image using all degrees of freedom of the chosen class of transformations. The maxima of the similarity
measure are used to decide whether an object is present in the image and to determine its pose.

Another way to classify object recognition methods in general, and alignment methods in particular, is to use the
criteriafeature space, search space, search strategy, andsimilarity metric(Brown 1992). Feature space describes
the information that is used for object recognition (e.g., gray values, points, lines, elliptic arcs, etc.). Search
space is the class of transformation the object is allowed to undergo in the image. Search strategy describes how
to find the correct transformation within the search space and, finally, similarity metric is used to evaluate the
transformations.

In the following, the criterionfeature spaceis used to classify the reviewed approaches intointensity-based,
low level feature-based, andhigh level feature-based. In intensity-based approaches, the raw gray values are
used as feature, low level features are, e.g., edge pixels, points, or gray value gradients, and high level features
comprise lines, polygons, elliptic arcs, or object parts for instance. The approaches that use intensity or low
level features are further subdivided into those that use area-based and non-area-based strategies, respectively.
In area-based strategieseach pixel in the model image and in the search image is involved in the matching
process, whereas innon-area-based strategies, objects are represented in a more efficient way. The advantage of
this classification is that, in general, the algorithm’s complexity and the computational complexity of the object
recognition approach can be directly deduced from its corresponding class. While intensity-based approaches
often use simple algorithms, low and especially high level features often demand a more complex class of object
recognition approaches. Furthermore, approaches that involve area-based strategies are often connected with a
high computational complexity, while non-area-based strategies in general facilitate faster computations. Since
in this dissertation it is differentiated between the recognition of rigid objects and the recognition of compound
objects there are two sections about previous approaches. In the following, only approaches dealing with the
recognition of rigid objects will be reviewed, while approaches dealing with compound objects will be reviewed
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in Chapter 5. Because of the almost unlimited number of different approaches, in the following subsections only
the most important approaches for recognizing rigid objects will be included in this review.

4.1.1.1 Approaches Using Intensity Information

The simplest class of object recognition methods is based on the raw intensity information of the model image
and the search image. In the case of 8-bit gray scale images, the intensity information is given by the gray
values in the image. These methods are also often calleddirect methodsbecause they recover the unknown pose
parameters directly from the measurable image quantities at each pixel in the images (Irani and Anandan 1999).
This is in contrast to the feature-based methods, which first extract a set of distinct features from the images, and
then recover and analyze their correspondences.

Alignment methods are probably the most popular methods that are used for object recognition. They can be used
in both intensity-based approaches as well as in feature-based approaches. A comprehensive survey is given in
(Brown 1992). The principle of alignment methods will be explained in the following. LetÎm be the model image
with area of definitionD̂m ⊂ R2 andIs the search image with area of definitionDs ⊂ R2, respectively1. The
alignment method transformŝIm andD̂m to all discrete transformationsTi ∈ T within a specific transformation
classT (e.g., translations, rigid, similarity, affine, or perspective transformations) and computes the similarity
measureM(Ti) between the transformed model imagesIm = Ti(Îm) within Dm = Ti(D̂m) and the search
image for each of the discrete transformations. Thus, a high similarity results in a peak inM . The transformations
Ti that result in local maxima ofM(Ti) and that exceed a certain threshold are treated as matches and represent
the poses of the object instances in the image. Consequently, the run time complexity of alignment methods
can be formalized asO(|Ti|om), where|Ti| denotes the number of discrete transformations andom the number
of operations performed in the respective similarity measure. What also follows is that the accuracy of the
obtained pose parameters is restricted to the resolution of the sampling that is applied toT in order to get
the discrete transformationsTi. This is insufficient for many applications (cf. Section 2.2). Unfortunately, the
resolution of the sampling cannot be chosen arbitrarily fine because the finer the chosen resolution the more
discrete transformations must be computed and checked for similarity, which leads to an increasing computation
time. There are several more practical methods to refine the pose parameters. Some of them will be introduced
in Section 4.1.2. Furthermore, it is often useful to separate the translation partT t of T from the remaining
transformationsT \T t when dealing with alignment methods. The model image that has been transformed by the
remaining transformations is translated according to the pixel grid of the search image. This avoids unfavorable
gray value re-sampling. In order to simplify further discussions,T is assumed to only represent translations.
Consequently,M only depends on the translation parameters(x, y)> ∈ Ds that translate the model image within
the search image.

Area-Based Strategies. One of the most frequently applied intensity-based similarity measures in alignment
methods is thecross correlation(Brown 1992). It is calculated using the following expression:

CC (x, y) =
∑

(u,v)∈Dm

Im(u, v)Is(x+ u, y + v) . (4.1)

This corresponds to an image convolution ofIs with a non-mirrored convolution maskIm and approximately
describes the squared Euclidian gray value distance (Cha 2000). The run time complexity of this kind of align-
ment methods isO(nsnm), wherenm = |Dm| andns = |Ds| denote the number of image points (pixels) in the
domain of the model image and the search image, respectively (|Ti| = ns, om = nm). On the one hand, this
similarity measure always returns a high value for bright search image regions, no matter how similar the images
are. On the other hand, it is not invariant to changes in brightness. Therefore, in most applications its normal-
ized version (NCC ) is applied: the meanµ and the standard deviationσ of the gray values in the model image
and in the search image, respectively, are incorporated to achieve invariance to linear changes in brightness, i.e.,

1Throughout the remainder of this dissertation the area of definition will also be referred to asdomainor region of interest(ROI)
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NCC (x, y) = 1⇒ Is(x+ u, y + v) = aIm(u, v) + b, (a > 0):

NCC (x, y) =
1
nm

∑
(u,v)∈Dm

(
Im(u, v)− µm

σm
· I

s(x+ u, y + v)− µs(x, y)
σs(x, y)

)
. (4.2)

This zero-mean normalized cross correlation, which corresponds to the well-knowncorrelation coefficient, has
the additional advantage that it maps the similarity between images to an interval of[−1,+1], where 1 denotes
a perfect match. It will be simply referred to asnormalized cross correlationin the following. Other forms
of normalizing the cross correlation can also be found in literature, e.g., (Aschwanden and Guggenb¨uhl 1992,
Martin and Crowley 1995), each with its own characteristics.

The computation of the normalized cross correlation is relatively expensive. Because of its convolution char-
acter, the computation of the unnormalized cross correlation can be accelerated by transformingIm and Is

into the Fourier domain (e.g., by using the FFT (Fast Fourier Transformation) (Ballard and Brown 1982)) and
multiplying the resulting Fourier transforms (Anuta 1970):CC = F−1{F(Is)F∗(Im)}, whereF andF−1

are the Fourier transform and the inverse Fourier transform, respectively.F∗ symbolizes the conjugate com-
plex and accomplishes the reversal ofIm to get a mirrored filter mask. Unfortunately, the normalized form of
cross correlation does not have a simple and efficient frequency expression and is therefore much more difficult
to compute. Several methods that try to overcome this problem have been developed, e.g.,high-pass filtering
(Lewis 1995, J¨ahne 2002),phase correlation(Kuglin and Hines 1975, Foroosh et al. 2002), or a subsequent nor-
malization after the convolution (Lewis 1995). Because of the problems that occur when dealing with correlation
in the frequency domain, the normalized cross correlation is still computed in the spatial domain in most cases
(Gonzalez and Woods 1992). Thus, several methods have been investigated to speed up the computation in the
spatial domain, e.g., by appropriately rearranging (4.2) or by using apseudo-correlation(Radcliffe et al. 1993).
However, the major drawback of approaches using the normalized cross correlation is its limited robustness
against occlusions and clutter as well as against non-linear changes in brightness. Attempts have been made to
improve the alignment reliability by utilizing image preprocessing prior to the execution of the normalized cross
correlation (Bacon 1997). Unfortunately, there is no suitable preprocessing strategy that is appropriate for the
general case. Furthermore, the robustness against clutter cannot be improved by such methods.

Another class of alignment methods uses thesum of absolute or squared gray value differences(Brown 1992)
or one of its various derivatives. For instance, the sum of absolute gray value differencesSAD is computed as
follows:

SAD(x, y) =
1
nm

∑
(u,v)∈Dm

|Im(u, v) − Is(x+ u, y + v)| . (4.3)

Thus,SAD indicates the average difference of the gray values and therefore represents a measure that maps
the dissimilarity between two images to a positive value that is not limited by an upper boundary (apart from
the maximum gray value that can occur). This complicates making statements about the quality of matches.
In contrast to the correlation it is a measure of dissimilarity. Nevertheless, it will subsequently be referred to
as similarity measure because simple negation or inversion can be applied to straighten out this dilemma. Like
the normalized cross correlation, the sum of gray value differences is also sensitive to occlusions and clutter.
However, it is faster to compute. Additionally, some speed-ups can be incorporated. For example, in (Cha 2000),
a method that quickly eliminates most transformations from consideration is proposed. Hence, the computation
of the sum of gray value differences can be restricted to the remaining transformations.

In contrast to cross correlation, the sum of gray value differences can be made invariant only either to additive
changes in brightness (e.g.,

∑ |(Im(u, v)− µm)− (Is(x+ u, y + v)− µs)|) or to local multiplicative changes
(e.g.,

∑ |Im(u, v) − µm/µsIs(x+ u, y + v)|). However, linear changes in brightness cannot be taken into ac-
count in a simple way. In (Lai and Fang 1999c), the sum of gray value differences is made robust against linear
changes in brightness by modeling the varying brightness with low-order polynomials. Robustness against a
moderate amount of occlusion and clutter is obtained by computing the similarity measure in a statistically robust
manner.

Several experimental results of a comparative study regarding the normalized cross correlation and the sum
of gray value differences can be found in (Aschwanden and Guggenb¨uhl 1992). Also different modifications
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and normalization techniques are included in the study. They analyze the robustness of the similarity measures
by simulating different types of image distortions. It is shown that similarity measures that are based on the
normalized cross correlation are more robust against all types of tested distortions than similarity measures that
are based on gray value differences. In particular, changes in lighting conditions cause problems when using
difference-based measures. An alleviation to this problem is found in the use of more complicated normalization
techniques. However, under certain assumptions the computational requirements to implement these functions
are only slightly better than for the normalized cross correlation.

Non-Area-Based Strategies. Intensity-based approaches that are combined with non-area-based strategies
can lead to less computational effort and higher robustness. The principle is that not all pixels within the model
image and the search image are used to calculate the intensity based similarity measure. Instead, only a small
selected fraction is used. For example, in (Edwards and Murase 1998), the region of overlap between modeled
objects is determined and excluded from the calculation to increase the robustness against occlusions. However,
an expensive iterative processing is needed since the region of overlap is not known `a priori. Furthermore,
occlusions that occur because of missing object parts or because of an overlap with non-modeled objects cannot
be taken into account. In (Li et al. 1997), the computation of the cross correlation is restricted to only a few
pixels dependent on the image contrast in these pixels. This not only decreases the computation time but also
increases the robustness against occlusions and clutter. However, applying the FFT for efficiently computing the
correlation is no longer possible.

4.1.1.2 Approaches Using Low Level Features

There are two main motivations for using features in object recognition approaches, which can be directly con-
cluded from the weak points of most intensity-based approaches. The first motivation arises from the relatively
high sensitivity to occlusions and clutter of most intensity-based approaches. Several features can be found that
enable higher robustness against such variations. The second motivation can be attributed to the fact that features
combined with non-area-based strategies are able to represent an object in a more compressed, and hence efficient
form. Recognition approaches can take advantage of this property in order to achieve less computational effort.

When regarding alignment methods, a difference in the approaches that use features and approaches that use
intensity information should be mentioned. In feature-based approaches, there are, in general, two ways for an
alignment method to obtain the features of the transformed model image using the discrete transformationsTi.
The first possibility is to transform the model image and to calculate the features in the transformed model image.
In the second possibility, features are only calculated in the untransformed model image and merely the features
themselves are transformed. While the second method is faster, it usually suffers from quantization effects or
unpleasant properties of the feature extractor (e.g, inaccuracy or non-isotropy).

Area-Based Strategies. A first class of feature-based alignment methods concentrates on gray value statis-
tics. For example, gray value histograms (Ballard and Brown 1982) that are derived from images can be inter-
preted as features that are used to compute the similarity between the images, since the raw gray value information
is not directly used within the similarity measure. A similarity measure that is based on the difference between
two histograms is invariant to rotations. Histograms of angular measurements are used in (Cha and Srihari 2000)
to recognize handwritten characters. In (Bhat and Nayar 1998), a similarity measure is proposed that uses an
ordinal measure as feature, where images are represented by their gray value ranks. For illustration purposes,
the gray values of an imageI are written sequentially, e.g.,I = (5,10,50,40). Then the gray values are sorted
and the image is represented by its rankingsπ = (1,2,4,3). This representation can be used in alignment meth-
ods, where, not the gray values themselves, but the rankings of the model image and the respective part of the
search image are compared by applying a rank correlation coefficient (Gideon and Hollister 1987). Similarity
measures that are based on gray value rankings have the advantage that they are invariant to changes in brightness
that do not affect the ranking such as linear changes. Another advantage is that the ranking is less sensitive to
outliers, which leads to a higher robustness against occlusions and clutter in comparison to the normalized cross
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correlation or the sum of gray value differences. However, in general, the mapping of an image to its gray value
statistics is not an injective function: for example, when using histograms, the spatial arrangement of the pixels
is lost. This may lead to a large number of false positive matches, i.e., a high similarity value between obviously
dissimilar images, especially in the case of image clutter.

In (Kaneko et al. 2002), a similarity measure for alignment methods is proposed that is based on theincrement
sign correlation. In the first step, the two images to be compared are encoded into corresponding binary images.
For this, a procedure is applied that maps local gray value changes into 1 if the gray value of a neighboring pixel
(e.g., the right neighbor) is higher than the gray value of the current pixel, and into 0 otherwise. This increment
sign is used as the feature to represent the images. In the second step, a binary correlation coefficient is computed
based on the binary representations of both images. It is shown that this measure is robust against occlusions and
changes in brightness. The disadvantage of this method is the high reduction of information from (in general) 8
bit to 1 bit. This results in an increased number of false positive matches, especially in the case of small model
images, where the discriminative power of the increment sign correlation is poor. Furthermore, in the case of
model images showing regions of approximately constant gray values, the increment sign is more or less random.
This reduces the correlation coefficient even if the images are similar.

Another class of approaches performs an intensity-based similarity measure not directly on the raw gray values
but on derivatives of the gray values. For example, in (Martin and Crowley 1995), the cross correlation and the
sum of gray value differences are computed on the first derivative magnitude (gradient magnitude) and the sum
of second derivatives (Laplacian). It is shown that the decision whether one should use the raw gray values, the
gradient magnitude, or the Laplacian for applying the cross correlation depends on the requirements of the task. In
the frequency domain, an ideal first derivative grows linearly with increasing frequency, while a second derivative
grows quadratically. Therefore, a correlation of first derivatives has a more precise peak than a correlation of
raw intensity images, but is more sensitive to high frequency noise. A second derivative doubles the effect.
Experiments in (Martin and Crowley 1995) showed that using the gradient magnitude usually provides more
stable results in comparison to the use of raw intensity values or of the Laplacian. The approaches presented in
(Scharstein 1994, Crouzil et al. 1996, Fitsch et al. 2002) extend the principle of these ideas by using the gradient
direction as feature. For example, in (Fitsch et al. 2002), angles between gradient directions are used as similarity
measure. This results in invariance to changes in brightness, since, the gradient directions are unaffected by
changing brightness. It also shows robustness against occlusions and clutter. In this approach, however, the object
representation by the chosen feature is not very efficient since for each pixel in the model image the orientation
is computed and used in the similarity measure. Thus, the number of features is equal to the number of pixels.
Therefore, there is no real improvement regarding the computation time in comparison to the intensity-based
approaches.

Non-Area-Based Strategies. The number of features that are involved in the matching process of non-area-
based strategies is less than the number of pixels. Several classes of feature-based object recognition methods
that are reviewed in this section use the object’s edges as geometric feature, which will also be referred to as
the objectshapein the following discussions. A review of edge extraction algorithms is not given here. Instead,
the reader should refer to standard text books (Ballard and Brown 1982, Gonzalez and Woods 1992, Haber¨acker
1995, Jähne 2002). Usually, the edge pixels are defined as pixels in the image where the magnitude of the
gradient is maximum in direction of the gradient. In most cases, edges are extracted in two steps. At first, the
image is convolved using an edge filter that provides the first partial derivatives of the gray values in row and
column direction. An edge filter responds to gray value changes in the image by taking the neighboring gray
values into account, e.g., theRoberts(Gonzalez and Woods 1992),Sobel(Gonzalez and Woods 1992),Canny
(Canny 1983, Canny 1986),Deriche (Deriche 1987), orLanser(Lanser and Eckstein 1992) filters. The edge
magnitudeγ can be computed from the first partial derivatives when using a gradient-based edge detection:

γ =

√(
∂I(x, y)
∂x

)2

+
(
∂I(x, y)
∂y

)2

. (4.4)

In the second step, a threshold is applied on the edge magnitude, which is a measure of the contrast in the image.
This results in the segmented edge regions of the image.
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Other recognition methods use points as geometric features. They can also be extracted from an image in various
ways, e.g., using so-calledinterest operators. For a comprehensive overview and evaluation of different interest
operators the interested reader should refer to (Heipke 1995, Schmid et al. 2000).

The first class of non-area-based strategies does not use the shape of the object, but is based on global image
transforms. Both the model image and the search image are transformed into the frequency domain, e.g., using
a wavelet-based transformation (Bronstein et al. 2001, Wang 2001): the original images can be represented as
a linear combination of the respective wavelet functions. By truncating the wavelet coefficients below a certain
magnitude, image data can be sparsely represented. However, a loss of detail must be expected. A set of such
coefficients can be used as feature vector for object recognition. Approaches that use wavelet techniques can
be found in (Jacobs et al. 1995) and (Wang et al. 1995), for example. The major drawback of these methods is
that because of their global nature, it is difficult to compare the model image to only a part of the search image.
Consequently, robustness against occlusions or clutter is hard to achieve when using global image transforms.

The second class of approaches works on an object as a whole, i.e., on a complete object area or shape. Therefore,
these methods are often called global object methods. The use of geometric moments is a very popular represen-
tative of this class (Teh and Chin 1988). Geometric moments are used in several object recognition applications
as features, e.g., (Liao and Pawlak 1996). By combining moments of different orders, one can find features that
are invariant to rotation, scaling, or other transformations of the objects. Some examples are area, circularity,
eccentricity, compactness, major axis orientation, Euler number (Veltkamp and Hagedorn 1999). These invariant
features can be computed in the model image as well as in the search image and can be represented in a feature
vector. The feature vector of both images can then be used to compute the similarity between both images using
an appropriate distance measure. The main advantage of object recognition based on moments is that the class of
transformationsT can be reduced by transformations that are covered by the invariants of the selected moments
themselves. Thus, the computational effort can be reduced considerably. Unfortunately, the computation of the
moments itself is very time consuming in general. This often annihilates the advantage of the reduced parame-
ter space. A closely related method uses the principle component analysis, which decomposes the object shape
into an ordered set of eigenvectors (also called eigenshapes). The eigenvectors of the object in the model image
and in the search image can be used to compute a similarity measure to recognize the object. Finally, in an-
other global object method, the shape of the object is represented by its contour parameterized by the arc-length
(Mokhtarian et al. 1996). The contour is successively smoothed using a Gaussian kernel. The characteristic
behavior of the contour while applying the smoothing is exploited and used as an object-specific feature. This
feature is invariant to orientation and moderate scale changes of the object and robust to noise. However, an
important drawback of all global object methods is that the complete object to be found in the search image must
be clearly segmented, which is in itself an ill-posed problem. Consequently, most of these methods fail in the
case of occlusions and clutter.

Another class of approaches performs object recognition using alignment methods. The most elementary simi-
larity measure that can be applied to alignment methods based on image edges is binary correlation. Here, the
intersection of edge pixels in the transformed model image and the search image is a measure of similarity. The
advantage of a simple computation is overshadowed by a high sensitivity to small edge displacements. I.e., a
high similarity measure is only obtained if the edges of model and search image are almost perfectly identical.
A method that relaxes this stringent requirement, and hence is less sensitive to small edge displacements, is pre-
sented in (Borgefors 1988). The algorithm matches points in the transformed model image and the search image
by minimizing a generalized distance between them. Although the algorithm is designed to cope with arbitrary
binary images, in most cases edges are used as features. The result of the edge extraction are two sets of points
Pm 3 pm

i , i = 1, . . . , nm andPs 3 ps
j , j = 1, . . . , ns, representing the edge pixels in the transformed model

image (model edges) and the search image (search edges), respectively, wherenm andns are the number of edge
pixels in the corresponding images. The average distance between the two sets of pixelsPm andPs is then
used as similarity measure to find the pose of the object in the image. Unfortunately, the distance computation
between two point sets is computationally expensive. Therefore, in (Borgefors 1988) a more efficient solution is
applied that exploits the distance transform (J¨ahne 2002) for the matching: in the search image, each non-edge
pixel is assigned a value that is a measure of the distance to the nearest edge pixel. The edge pixels have a
value of zero. Fast algorithms using iterative local operations are available for computing the distance transform
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(Soille 1999). Since the true Euclidean distance is expensive to compute, it is approximated by using integer
values (Danielsson 1980, Borgefors 1984). Assuming that the horizontal and vertical distance of neighboring
pixels isd and the diagonal distance isdd, then integer values ford anddd are chosen appropriately in order to
approximate the Euclidean distance, i.e.,dd/d ≈

√
2. Well known combinations are, for instance,d = 1, dd = 2

(city block distance),d = 1, dd = 1 (chess board distance), andd = 3, dd = 4 (chamfer distance). To compute
the average distance betweenPm andPs, the edge pixelsPm of the transformed model image are superimposed
on the distance-transformed search image and the distance values of the pixels in the distance image that are hit
byPm are added. In (Borgefors 1988), the distance measureB between two sets of points is computed using the
chamfer distance and the root mean square average:

B(Pm,Ps) =
1
3

√√√√ 1
nm

nm∑
i=1

v2
i , (4.5)

wherevi = minps
j∈Ps ‖pm

i −ps
j‖ are the distance values hit by the model edges, and‖ · ‖ is the underlying norm

of the chosen distance metric. To compensate the unit distance of 3 in the chamfer distance, the average is divided
by 3. For speed reasons, the implementation of (Borgefors 1988) uses a hierarchical structure by applying image
pyramids. The principle of image pyramids will be explained in Section 4.1.2. There are some major drawbacks,
which are inherently connected with this similarity measure. It is not a symmetric measure. I.e., a different
similarity value is obtained depending on which point set is used to compute the distance transform and which
point set is superimposed on the distance-transformed image. If the distance transform is computed on the search
image, then the distance measure is not robust against partial occlusions. The reason for this is that some missing
edge pixels in the search image cause the corresponding edge pixels of the model to get a high distance value.
This increases the root mean square average in a non-proportional way. Additionally, the distance measure is not
sensitive to even severe clutter, which would be desirable. E.g., if all pixels in the search image would represent
edge pixels, then the distances of all model edge pixels would be zero. Assume now that the distance transform is
computed on the model image. Then, on the one hand, the distance measure is not robust against moderate clutter.
On the other hand, it is not sensitive to even severe occlusions, which would also be desirable when considering
the case that no edge pixels are present in the search image. Concluding, a good distance measure (similarity
measure) should be, on the one hand, sensitive to occlusions and clutter, i.e., the distance measure (similarity
measure) should increase (decrease) when occlusions and clutter increases. On the other hand, it should be
robust against occlusion and clutter, i.e., the distance measure (similarity measure) should not increase (decrease)
in a non-proportional way. TheHausdorff distanceproposed in (Huttenlocher et al. 1993) and (Rucklidge 1997)
tries to remedy the above mentioned shortcomings. In (Huttenlocher et al. 1993) the Hausdorff distanceH is
defined as

H(Pm,Ps) = max(h(Pm,Ps), h(Ps,Pm)) , (4.6)

where
h(Pm,Ps) = max

pm
i ∈Pm

min
ps

j∈Ps
‖pm

i − ps
j‖ (4.7)

andminps
j∈Ps ‖pm

i − ps
j‖ again can be efficiently obtained by computing the distance transform onPs. The

functionh(Pm,Ps) is called thedirectedHausdorff distance fromPm to Ps. It identifies the pointpm
i ∈ Pm

that is farthest from any point ofPs and measures the distance frompm
i to its nearest neighbor inPs. By

computing the directed Hausdorff distance in both directions and taking the maximum of both, the Hausdorff
distance is a symmetric measure. Furthermore, it is sensitive to both occlusions and clutter in the search image
because one of both directed Hausdorff distances is affected and the maximum of both is taken. However, since
the maximum of all edge distances is taken in (4.7) it still shows no robustness against occlusions and clutter.
Therefore, in (Rucklidge 1997) thepartial directed Hausdorff distance is proposed:

hf (Pm,Ps) = fth
pm

i ∈Pm
min

ps
j∈Ps

‖pm
i − ps

j‖ , (4.8)

wherefthx∈X g(x) denotes thef -th quantile value ofg(x) over the setX , for values off between zero and
one. Hence,f denotes the fraction of points that are used to compute the partial directed Hausdorff distance. For
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example, the 1-th quantile value is the maximum and the 1/2-th quantile value is the median. Thus, whenf = 1,
the partial directed Hausdorff distance corresponds to the unmodified directed Hausdorff distance. Consequently,
the partial undirected Hausdorff distance is defined as

HfF fR(Pm,Ps) = max(hfF (Pm,Ps), hfR(Ps,Pm)) . (4.9)

Here, fF and fR are theforward fraction and reverse fraction, respectively, and define the fractions for the
evaluation of the directed distances. This measure is robust against 100(1− fF )% occlusions and 100(1− fR)%
clutter in the image.

The Hausdorff distance has undergone several further improvements and extensions, including, for example,
sophisticated search strategies, computational shortcuts, and enhanced robustness (Huttenlocher et al. 1993, Ol-
son and Huttenlocher 1996, Paumard 1997, Rucklidge 1997, Huttenlocher et al. 1999, Kwon et al. 2001, Sim and
Park 2001). To enhance the robustness against clutter, attempts have been made to also include the angle differ-
ence between the model edges and the search edges into the Hausdorff distance (Olson and Huttenlocher 1995, Ol-
son and Huttenlocher 1996, Olson and Huttenlocher 1997, Sim and Park 2001). Unfortunately, the computation is
based on several distance transforms, and hence is too computationally expensive for real-time object recognition.

Another class of feature-based object recognition methods are summarized under the termvoting schemes. One
of the most important representatives of this class ispose clustering, also known as thegeneralized Hough
transform(GHT) (Ballard 1981), which uses the edge position and direction as features. Its principle is based on
the well-knownHough transform(Hough 1962), which is a voting scheme to detect analytical curves in images.
Comprehensive surveys of different Hough transform techniques are given in (Illingworth and Kittler 1988) and
(Leavers 1993). Because an analytical description of objects is not always available, or not even possible, the
conventional Hough transform is only of limited use for object recognition. Therefore, Ballard (1981) generalizes
the Hough transform to detect arbitrary shapes. Here, the parameters that describe the analytical curve in the
classical Hough transform are replaced by parameters that define the class of allowed transformationsT . By
taking the edge direction into account, not only the number of false positives is reduced, but also a speed-up
is obtained. Strictly speaking, the gradient direction is computed instead of the (tangential) edge direction.
Let θm

i andθs
j be the associated gradient directions at the model edge pointpm

i and the search edges pointps
j ,

respectively. Similar to the edge magnitude (4.4) the gradient direction of the edge can be computed, for example,
from the partial derivatives obtained from an arbitrary gradient-based edge filter:

θ = arctan
∂I(x, y)/∂y
∂I(x, y)/∂x

. (4.10)

To perform the GHT, in the offline phase a look-up table (R-table) is computed by using information about
the edge positions and the corresponding gradient directions in the model image. TheR-table is generated as
follows: At first, an arbitrary reference pointom, e.g., the centroid of all model edge points, is chosen. Then the
displacement vectorsri = om − pm

i are calculated for all edge pointspm
i , i = 1, . . . , nm. Finally, ri is stored

as a function ofθm
i in theR-table. Informally speaking, theR-table contains the position of all edge points in the

model image with respect to a reference point sorted by their corresponding gradient direction.

For the online phase a two dimensional accumulator arrayA is set up over the domain of translations. Thus,A
represents the sampled parameter space ofT . In general, each cell of this array corresponds to a certain pixel
position of the reference pointos in the search image. For each edge pixelps

j in the search image the displacement
vectorsri that are stored under the corresponding gradient directionθm

i = θs
j are selected from theR-table. For

the selected vectors, the cellsps
j +ri in A receive a vote, i.e., they are incremented by 1. Thus, at each edge pixel

in the search image all possible candidates for the reference point are calculated. This is repeated for all edge
pixels in the search image. Finally, each cell inA has a value that specifies the likelihood that the reference point
is located in the cell. Thus, local maxima inA that exceed a certain threshold represent object instances found in
the search image.

The advantage of the GHT is the high robustness against occlusions, clutter, and against changes in brightness
of an arbitrary type. The GHT is more efficient in comparison to conventional alignment methods because it
does not explicitly compute all translations of the model image to test the similarity. In contrast, it restricts the
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search to the relevant information in the search image, i.e., the edge information. This is achieved by using
the relative position of the model edges with respect to the reference point (i.e., the displacement vectors) as
translation invariant feature. Thus, the transformation classT of the alignment method can be reduced by the
sub-class of translations. For example, if the class of rigid transformations is chosen then the model image needs
to be only rotated to all possible object orientations. Nevertheless, in the conventional form the GHT requires
large amounts of memory for the accumulator array and long computation times to recognize the object if more
general transformation classes than translations are considered.

Many algorithms have been suggested to reduce the computational load associated with the GHT. Davis (1982)
proposes a hierarchical Hough transform in which sub-patterns, i.e., simple geometric objects, such as line seg-
ments, instead of edge points are used as basic units. In a similar way, a local classification of the instances
of detected contours is performed in (Cantoni and Carrioli 1987). The implementations of these approaches
are complicated since local classifications of sub-patterns are required. It is also difficult to find the desired
sub-patterns in a search image accurately, especially in the presence of noise. In (Ballard and Sabbah 1983), a
two-level approach is proposed that takes similarity transformations into account, in which the factors of scaling
and rotation are estimated first from the lengths and directions of the line segments in the search image before the
GHT is applied. However, accurate extraction of line segment data from the image is a difficult task. A fast GHT
is described in (Jeng and Tsai 1990), where the basic GHT is performed on a sub-sampled version of the original
image and a subsequent inverse GHT operation is used to finally determine the pose in the original image. In this
approach the edge direction is ignored during the inverse GHT. Thus the robustness against clutter is reduced.
The method proposed in (Thomas 1992) uses displacement vectors relative to the gradient direction to achieve
orientation invariance. Hence, besides the invariance of the conventional GHT to translations, invariance to rigid
motion is obtained because one more degree of freedom withinT is eliminated. This method is extended to scale
invariance in (Kassim et al. 1999) without adding an extra dimension in parameter space. This is obtained by
incrementing a line of cells in the accumulator array that correspond to a range of defined scales instead of incre-
menting a single cell. In (Lo and Tsai 1997), even a perspective transformation invariant GHT is proposed using
only a 2D parameter space. However, the solution is connected with long computation times for the recognition
of perspectively distorted planar objects. This prohibits a use for real-time applications. Furthermore, when using
one of these methods, which are based on the projection of the parameter space to fewer dimensions, information
about the projected dimensions, e.g., orientation and scale of the object, is lost and must be reconstructed using
a subsequent computation step. In (Ma and Chen 1988), analytical features that consist of local curvature and
slope are used to reduce the 4D parameter space of similarity transformations to two 2D parameter spaces. This
approach reduces the computational complexity but also has some limitations. The memory requirement is as
high as in the case of the conventional GHT, the accuracy of the curvature estimator and the gradient operator
can adversely affect the performance, additional computations in the image space are required, and the algorithm
fails for shapes that are composed mainly of straight lines (i.e., zero curvature).

Another voting scheme that is also often applied isgeometric hashing(Wolfson 1990, Cohen and Guibas 1997).
Here, the object is represented as a set of geometric features, such as edges or points, and their geometric relations
are encoded using minimal sets of such features under the allowed transformation class. The geometric hashing
method described in (Wolfson 1990) is illustrated for a 2D object using affine transformation as transformation
class. The object is described by interest points, which are invariant under affine transformation, e.g., corners,
points of sharp concavities and convexities, or points of inflection. Thus, two sets of interest points are obtained,
one in the (untransformed) model image (model points) and one in the search image (search points). In the offline
phase, a model description is constructed from the model points by choosing any triplet of non-collinear points
e00, e10, ande01. The point triplet defines an affine basis, into which all other model points can be transformed
by representing each model pointpm

i as a linear combination of the affine basis:

pm
i = αi(e10 − e00) + βi(e01 − e00) + e00 . (4.11)

The obtained coordinate pair(αi, βi) is invariant under affine transformations. The(α, β)-plane is quantized into
a two-dimensional hash-table and the chosen point triplet is recorded in all cells of the table that are associated
with (αi, βi). To achieve robustness against occlusions, the calculation must be repeated for several different
affine basis triplets while using the same hash-table. In the online phase, an arbitrary triplet of non-collinear
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search points(e′00,e
′
10,e

′
01) is chosen and used to express the other search points as linear combination of this

affine basis. Thus, for each search pointps
j a coordinate pair (αj , βj) is obtained. Each triplet(e00,e10,e01) in

the cell of the hash-table that is associated with(αj , βj) receives a vote. The affine transformation that maps the
triplet (e′00,e

′
10,e

′
01) to the triplet(e00,e10,e01) that received the most votes is assumed to be the transformation

between the model points and the search points. The advantage of such methods is that several different objects
can be searched simultaneously without affecting the computation time of the online phase. However, in the case
of clutter there is a high probability for choosing a point triplet in the search image that is not represented in the
model image. Thus, to achieve a higher robustness, also in the online phase several point triplet must be selected
subsequently. This increases the computational effort.

Another approach that is closely related to geometric hashing but is not a real voting scheme is described in
(Hartley and Zisserman 2000). It is based on a robust estimator RANSAC (RANdom SAmple Consensus).
Continuing the example of affine transformations, a sample point triplet is selected randomly in the model image
and in the search image and the affine transformation is computed between these two triplets. The support for
this candidate transformation is measured by the number of points in the search image that lie within some
distance threshold to the transformed model points. This random selection is repeated a number of times and
the transformation with most support is deemed the searched transformation between the model and the search
points. Hartley and Zisserman (2000) showed that RANSAC can cope with a high rate of outliers, e.g., clutter in
the search image, even for a relatively small number of randomly selected samples.

4.1.1.3 Approaches Using High Level Features

A prominent class of object recognition methods represents an object not only by isolated features but also takes
the relations between the features into account. The relations between features can be seen as self-contained high
level features. In (Li 1999), for example, invariants under a certain class of transformations serve as features
and relations. The approach further distinguishes between invariants of order one, (representing a single feature,
i.e., an invariant property or invariant unary relation), invariants of order two (representing relations between two
features, i.e., an invariant binary relation), invariants of order three (representing relations between three features,
i.e., an invariant ternary relation), and so on. For each class of transformations, invariant relations of different
order can be found. Under rigid motion, the curvature (e.g., of a curve or a surface) is an invariant unary relation,
whereas the distance between two points is an invariant binary relation. Under similarity transformations, the
length ratio between two lines or the angle between two lines are preserved and are therefore invariant binary
relations, whereas the three angles in a triangle constitute an invariant ternary relation. The cross-ratio for four
points on a line is an invariant quaternary relation that is preserved under perspective transformation, and so
on. This information can be represented in a graph, where the nodes represent the unary relations and the edges
between the nodes represent the relations of higher order. Thus, the object recognition problem is transformed into
the problem of determining the similarity of graphs, which is also known asgraph matching. In (Bunke 2000),
it is shown that graphs are a versatile and flexible representation formalism suitable for a wide range of object
recognition tasks. Unfortunately, the complexity of graph matching is NP-complete, i.e., it cannot be solved in
polynomial time. Therefore, several algorithms have been developed that try to minimize the computational effort
by finding either optimal solutions, which in the worst-case take exponential time (Ullmann 1976, Messmer and
Bunke 1998), or approximate solutions, which are not guaranteed to find the optimum solution (Christmas et al.
1995). To give an example application, in (Kroupnova and Korsten 1997) an algorithm is proposed to recognize
electronic components on printed circuit boards using graph matching, where the nodes in the respective graph
represent region attributes (color, shape) and the edges in the graph represent spatial relations between the regions
(adjacent to, surrounds). However, because graph matching algorithms either are extremely slow or fail to find
the optimum solution, they are not really well suited for a robust real-time object recognition system.

Some of the approaches that use high level features can be interpreted as a natural extension of the approaches
that deal with low level features as introduced in the previous section. Geometric hashing, for instance, can be
extended to cope with higher level features like lines, for example. In (Procter and Illingworth 1997), 3D objects
are recognized using edge-triple features. 3D polyhedral objects can be decomposed into triples of connected
straight edges, which are projected as three straight, connected lines into the image. The two angles formed by
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these three consecutive lines are invariant under 2D similarity transformations. Images of the object are taken
from different viewing angles to build the hash table. For each edge-triple the two angles are used to index the
hash table. In the corresponding cell of the hash table the current viewing angle of the model is stored. In the
search image connected line triples are extracted and used to vote for the viewing angles stored in the associated
cell of the hash table. The viewing angle that receives most votes can be used to compute the transformation
of the object in the search image. By using high level features, namely edge-triples, instead of points, objects
can be represented by a smaller number of more meaningful structures. This reduces the computational effort of
the voting process and also the sensitivity to noise. However, the preprocessing, i.e., the extraction of the lines,
is computationally more expensive than the use of low level features. Furthermore, the method is restricted to
polyhedral or partially polyhedral objects.

To climb the next rung on the ladder of feature hierarchy, in (Vosselman and Tangelder 2000) complete 3D CAD
models are used to describe the object. An approach is designed to recognize parts of industrial installations
like straight pipes, curved pipes, T-junctions, and boxes. CAD models of these parts can be composed from
simpler CAD model primitives like cylinders, boxes, cones, and spheres. The CAD models are projected into
the image using a hidden line algorithm and fitted to the extracted edges in the search image using a constrained
least-squares adjustment, resulting in accurate pose parameters. However, the requirement for the existence of a
CAD model contradicts the requirement for an easy model generation.

4.1.2 Methods for Pose Refinement

For many applications it is insufficient to determine the pose of an object with an accuracy that is limited to the
chosen quantization of the transformation class. Therefore, several methods have been developed to refine the
discrete pose parameters of alignment methods in a subsequent step. Often the pose refinement is restricted to
the transformation class of translations. In general, the sampling of translations is done according to the pixel
grid, and hence methods to refine the translation parameters are referred to assubpixelrefinement methods. In
(Tian and Huhns 1986), four different subpixel refinement methods are distinguished: correlation interpolation,
intensity interpolation, differential methods, and phase correlation.

In correlation interpolation the similarity measures at the sampled pixel positions are used to locally fit an inter-
polation surface. Often a second-order interpolation function can provide an accurate representation (Tian and
Huhns 1986). In the refinement step the maximum of the surface is analytically computed, yielding a subpixel
precise object position.

Intensity interpolation locally adapts the parameter quantization. If a position accuracy of 0.1 pixel is desired,
then the model image is successively translated by 0.1 pixel steps in the neighborhood of a found match. Because
of the subpixel translation, the gray values of the translated model image must be computed by re-sampling the
original gray values.

The idea behind differential methods can be also interpreted as exploiting the well-knownoptical flow(cf., e.g.,
(Jähne 2002)) for the use of object recognition. The optical flow was originally applied in the analysis of image
sequences in order to detect object motion. It is based on thebrightness constancy assumption

I0(x+ ∆x, y + ∆y) = I1(x, y) , (4.12)

whereI0 andI1 are two images taken at timet0 andt1 and(∆x,∆y)> is the displacement vector, which describes
the object movement during the timet1 − t0 at a location(x, y)>. This equation assumes that the gray values in
imageI1 are identical to those inI0 but occur at a different position in the image as it happens when projecting
object movement into the image plane. Transferring this relationship to object recognition,I0 corresponds to
Im and I1 to Is, respectively, and the displacement vector represents the desired pose parameters. In order
to incorporate changes in brightness, a generalized brightness model is used in (Szeliski and Coughlan 1997):
I0(x+ ∆x, y+ ∆y) = aI1(x, y) + b, wherea andb model the global linear change in brightness. However, this
model cannot account for spatially varying brightness variations. To overcome this restriction, a dynamic model
is applied in (Negahdaripour 1998), which describes the parametersa(x, y) andb(x, y) as a function of location.
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This model is, for example, applied in (Lai and Fang 1999a, Lai and Fang 1999b) for object recognition, using
affine transformations as transformation class. This is achieved by writing the displacement vector(∆x,∆y)>

as a function of the affine transformation parameters and substituting this, together witha(x, y) andb(x, y), into
(4.12). The transformation parameters, and hence the object pose, can then be accurately calculated by using a
robust estimation. Good starting values for the parameters are needed, because there is a non-linear relationship
between the observed gray values in both images and the unknown transformation parameters. This requirement
is less problematic when dealing with image sequences where the object pose in two consecutive image frames
changes only slightly. However, it is of more importance in object recognition, because in general no such prior
information is available. Therefore, optical flow is an ideal candidate for pose refinement when starting values
for the parameters are obtained from any other pixel precise recognition method.

Phase correlation can be used to detect subpixel shifts with a higher accuracy than it is possible with the original
normalized cross correlation when using correlation interpolation methods. It exploits the fact that a shift in the
spatial domain is transformed in the Fourier domain into linear phase differences (cf., e.g., (St¨ocker 1995)). In
(Foroosh et al. 2002), a more sophisticated method is proposed that is based on the idea that in down-sampled
images phase correlation does not concentrate in a single peak but rather in several coherent peaks mostly adjacent
to each other and centered at the (subpixel) object position. The position and the magnitude of the peaks can then
be used to determine the exact object pose.

Another class of refinement approaches tries to minimize the geometrical distance between the features in the
model and the search image by using robust parameter estimation (Wallack and Manocha 1998). As for the
above described minimization of gray value differences (Lai and Fang 1999c) also here starting parameters are
needed, which can be obtained by a preceding pixel precise recognition method. The advantage of minimizing
the geometrical distance between features is the inherent robustness against changes in brightness. Thus, it is
dispensable to model the changes in brightness as required in approaches that use intensity information, as in
(Szeliski and Coughlan 1997), for example.

4.1.3 General Methods for Speed-Up

Some general improvements that can be used to speed up object recognition approaches and that are not restricted
to a special approach are introduced in the following.

In alignment methods, for example, most similarity measures can be computed using a recursive implementation
when dealing with rectangular model image domainsDm, which makes the computational complexity indepen-
dent of the size of the model image.

Another way to speed up the computation is to introduce stopping criteria (Barnea and Silverman 1972): the com-
putation of the similarity measure for a certain model image transformation can be immediately stopped as soon
as it is certain that the predefined threshold for the similarity measure cannot be reached for this transformation.
In this way, the computational cost is decreased considerably.

Reducing the number of discrete model image transformations is also often desirable, especially when dealing
with transformation classes that are more general than translations. Therefore, it can be reasonable to combine
similar model transformations into one common representative transformation. The similarity measure is then
only computed for the representative instead of for all transformations separately. The combination of simi-
lar transformed model images can be achieved, e.g., applying the Karhunen-Loeve decomposition proposed in
(Uenohara and Kanade 1997), or any other principal component analysis.

Furthermore, the search for objects is usually done in a coarse-to-fine manner, e.g., by using image pyramids.
Often objects can be more easily recognized in images that have a very low sampling rate. There are two main
reasons for this (Ballard and Brown 1982). Firstly, the computations are fewer because of the reduced image size.
Secondly, confusing details, which are present in the high resolution version of the image, may disappear at the
reduced resolution. However, to be able to accurately determine the pose of an object, detailed image information
is required, which is only revealed at the higher resolutions. This naturally leads to the use of image pyramids in
object recognition, where the search for objects is started at a low resolution with small image size, and refined at
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increasing resolutions until the highest resolution at the original image size is reached. The basic idea to compute
an image pyramid is based on the Nyquist theorem. This theorem states that the highest frequency that can be
represented in a sampled version of a signal is less than one-half of the sampling rate. Thus, in the original
image only frequencies below 1/2 [1/pixel] are represented. In a first step the original image is smoothed using
a low pass filter that eliminates frequencies exceeding 1/4 [1/pixel], e.g., by applying a Gaussian filter kernel
(Jähne 2002). In a second step the smoothed image can be sub-sampled using a sampling interval of 2 pixels,
without violating the Nyquist theorem, i.e., without created aliasing artifacts. These two steps are repeated
iteratively, which results in a series of images with an image area successively reduced to one fourth. This series
is called aGaussian Pyramid(Jähne 2002) and can be seen as a multi-scale representation of the original image
(Lindeberg 1994). As a matter of course, also other smoothing filters can be applied. Because in real-time object
recognition the computation time plays a decisive role, often the mean filter is used instead of the Gaussian filter
because it is less computationally expensive and serves as a sufficiently accurate approximation to the Gaussian
filter. The few artifacts coming from the deviation of the mean filter from the optimum low-pass filter are accepted
for the gain in speed.

In (Tanimoto 1981), some possible techniques are introduced to apply image pyramids to alignment methods. In
general the object is searched in an image pyramid usingrecursive descent: the search is started in a coarse (high)
level, and continued in a local area at the next finer (lower) level where the similarity measure in the coarse level is
promising. Depending on the application, the pyramid search strategy can be to obtain either the first match where
a certain threshold for the similarity measure is exceeded, the best match with globally maximum similarity, or
all matches that exceed the threshold. Furthermore, the pyramid search strategy can make use of standard search
techniques like depth-first search, breadth-first search, or forward-pruned search. Finally, in (Tanimoto 1981)
descent policiesand sensitivity policiesare distinguished. A descent policy specifies which descendants of a
pixel are to be tracked down the pyramid. Since one pixel on a coarse resolution corresponds to four pixels on
the next finer resolution one can track, for example, all four pixels. However, this would lead to an exploding
number of matches to track. Another more efficient possibility would be to only track the pixel that yields the
best match of the four pixels while disregarding the others. To increase the probability of locating the sought
object location correctly, the similarity measure is additionally computed for pixels that are adjacent to the four
directly descending pixels. Sensitivity policies specify the threshold for the similarity measure at each pyramid
level. The threshold can be chosen to be constant for all levels, adaptive, regarding the similarity of the matches
on the previous higher level, or as a function of the pyramid level. The last strategy requires the balancing of
conflicting requirements. On the one hand, it seems desirable that thresholds increase as the search goes deeper,
because it can be expected that objects become sharper and return higher similarity values. On the other hand,
when image noise is present, zooming in on objects reveals high-frequency noise, which lowers similarity values.
Thus, the threshold should decrease at the fine pyramid levels.

4.1.4 Conclusions

It becomes obvious that the power of object recognition approaches that are based on intensity information lies in
their simple and straightforward implementation as well as in their robustness against certain intensity transforma-
tions. Furthermore, no feature correspondence problem arises as in the case of several feature-based approaches.
However, intensity-based approaches are computationally expensive and are not robust against occlusions or clut-
ter, especially when area-based strategies are involved. In contrast, approaches based on low level features often
combine a higher robustness with efficient computations, especially in the case of non-area-based strategies. High
level features are often not of a general nature but only applicable to a specific type of object. They often imply
complex and computationally expensive algorithms to compute the features or to solve the correspondence prob-
lem. Some object recognition approaches inherently return the pose of the object with high precision, while other
approaches have to be complemented by an additional refinement method. Furthermore, the often inefficient
brute-force computation of several object recognition approaches can be speeded up by using approach-specific
sophisticated short-cuts during the online phase. Additionally, some general methods for speed-up, like the use
of a coarse-to-fine approach, are applicable to most object recognition approaches.
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The GHT as one representative of the class of non-area-based object recognition methods that uses low level
features is particularly efficient because of its inherent translation invariance. Only the edge position and the edge
direction are involved as features, and not higher level features. Therefore, the feature extraction time should be
manageable even for real-time applications. The GHT is also robust against occlusions, clutter, and changes in
brightness up to a certain degree. Furthermore, a low rate of false positives can be expected from this method
because the edge direction is taken into account. Obviously, the GHT as a rigid object recognition method shows
a very high potential to serve as core module within the approach for real-time recognition of compound objects.
Therefore, in the following section the GHT will be analyzed in more detail and several novel modifications will
be proposed to enhance its performance. In the subsequent section the shape-based matching, which was excluded
from the review in this section because of its special role within this dissertation, will be introduced. To assess the
performance of the modified generalized Hough transform and of the shape-based matching, their performances
will be evaluated and compared to the performances of several other approaches in the last section of this chapter.
For this, three of the reviewed standard approaches are selected. In spite of some known drawbacks of these
approaches, it is highly desirable to include them in the evaluation because they are widespread methods and
used in the majority of industrial object recognition applications. By this, a common denominator is created
that facilitates the comparability of the presented evaluation with other evaluations that also include one of the
three approaches. Additionally, three commercial high-end recognition tools will be evaluated. They have not
been included in the review since no detailed information about their principle is available. Nevertheless, their
performance helps to emphasize the high potential of the new approaches.

4.2 Modified Generalized Hough Transform

The principle of the GHT as well as some inherent advantages have already been addressed in Section 4.1.1.2.
However, the discussion has been done on a very coarse level of detail. On the one hand, this level of detail should
be sufficient to understand the general principle and to compare the GHT to other object recognition approaches.
On the other hand, it is not detailed enough to enable the reader to obtain a comprehensive impression of the
GHT. However, a comprehensive impression is essential to understand the modifications that have been applied
within the scope of this dissertation in order to improve the GHT. The goal of the modifications is to make the
GHT fulfill the requirements concerning the recognition of rigid objects introduced in Section 2.2. Therefore,
in the following the principle of the GHT is explained in more detail. Furthermore, the inherent advantages and
drawbacks of the GHT are elaborated and used as basis for the proposed modifications. Some modifications
are based on the ideas of the previously introduced methods concerning pose refinement (cf. Section 4.1.2) and
speed-up (cf. Section 4.1.3). These ideas are picked up and are further extended.

4.2.1 Generalized Hough Transform

4.2.1.1 Principle

The conventional Hough transform (HT) is a standard method to efficiently detect analytical curves (e.g., lines,
circles, ellipses) in images. Although the GHT is built on the idea of the HT, they both are independent methods.
Therefore, in this dissertation only the idea of the HT and its relations to the GHT are introduced. For further
details, the interested reader should refer to (Hough 1962) or to standard text books like (Ballard and Brown
1982, Jähne 2002).

To introduce the HT, the problem of detecting straight lines in images is considered. A straight line can be
described by the points(x, y)> that fulfill

r = x · cosϕ+ y · sinϕ . (4.13)

Thus, the line is represented by its distance to the originr and its orientationϕ (see Figure 4.1(a)). Figure 4.1(b)
shows an image after edge segmentation in which lines should be detected. Each edge pixel in the(x, y) image
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Figure 4.1: Example that illustrates the detection of straight lines using the HT. Lines are parameterized using a polar
coordinate representation (a). The edge pixels of the segmented image (b) are transformed into the Hough space (c). The
corresponding cells in an accumulator array are incremented and the maximum is extracted (d).

space describes a sinusoidal curve in the(r, ϕ) parameter space, which is also referred to asHough spacein
the literature. This can be seen from (4.13) by treatingx andy as fixed and lettingr andϕ vary. Thus, the
corresponding sinusoidal curve in the parameter space represents all lines in image space that meet in the same
image point(x, y)>. In Figure 4.1(c) the sinusoidal curves of the two example edge pixels shown in Figure 4.1(b)
are displayed. All image points on the same line intersect at the same point in the parameter space. This relation
between image space and parameter space is exploited in the HT. For this, the parameter space is divided into
rectangular cells and represented by an accumulator array. In the first stage, each edge pixel is transformed into the
Hough space and the corresponding cells are incremented. The second stage is an exhaustive search for maxima
in the accumulator array. The maxima represent the parameters of the straight lines in the image. Figure 4.1(d)
shows the resulting accumulator array, where higher values of the cells are visualized by brighter gray values.
The maximum represents the found straight line. The extension of this technique to detect curves other than
straight lines is straightforward. By using the gradient direction as additional information fewer cells need to
be incremented, which results in faster computations (Ballard and Brown 1982). For example, when detecting
straight lines, points in image space can be transformed to points in parameter space. The main advantages of the
HT are that it is relatively unaffected by gaps in the curves and by noise (Ballard and Brown 1982).

In contrast to the HT, the GHT is not restricted to analytical curves. The parameters that describe an analytical
curve in the HT correspond to the pose parameters of the object in the GHT. In the offline phase of the GHT,
theR-table is built from a model image that shows the object to be recognized. Thus, in the special case of the
GHT theR-table represents the model that will be later used to recognize the object in the search image during
the online phase. In the following, a simple example will illustrate the principle of the GHT. In the example, the
transformation class is restricted to translations to simplify the explanations. In Figure 4.2(a) a model image is
given, in which the object is defined by a ROI, which in this example is the inner part of the black rectangle. In
a preprocessing step of the offline phase, edge filtering is performed on the model image, resulting in the edge
magnitude and gradient direction. By applying a threshold on the edge magnitude, the model edges (pixels or
points) are obtained, which are shown in Figure 4.2(b). Additionally, the gradient direction is visualized by using
different gray values. This is all the information that is needed to compute theR-table.

(a) Model image and ROI (b) Model edges (c) Search image (d) Search edges

Figure 4.2: In the offline phase, based on a model image (a) edges are extracted and their gradient directions are com-
puted (b). For visualization purposes the gradient direction is encoded with different gray values. In the online phase, also for
the search image (c) edges and the corresponding gradient directions are computed (d).
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Figure 4.4: Example that illustrates the offline phase of the GHT. The gradient directions at the four selected example model
edge points are θm

1 = 280◦, θm
2 = 65◦, θm

3 = 65◦, θm
4 = 200◦. The associated displacement vectors ri are recorded in the

appropriate row of the R-table according to their gradient direction.

The principle is illustrated in Figure 4.3. At first, an arbitrary reference pointom = (om
x , o

m
y )> is chosen. In

general,om is selected to be the centroid of all model edge points, i.e.,om = 1/nm∑pm
i . For each model edge

point the displacement vector
ri = om − pm

i , ∀i = 1, . . . , nm (4.14)

is calculated. The displacement vectors are then stored in theR-table as a function ofθm
i , whereθm

i denotes the
gradient direction at the model edge pointpm

i . For this purpose, the range of possible gradient directions must be
quantized using quantization intervals of size∆θ. In general, the gradients occur in arbitrary direction, and hence
the range of possible gradient directions corresponds to the interval of[0◦,360◦[. Each rowk of the R-table is

then assigned one quantization intervalΘk, k = 0, . . . , nθ − 1, leading to an overall number ofnθ = 2π
∆θ rows.

Finally, the displacement vectorri of the model edge pointpm
i is recorded in the row of theR-table that contains

the associated gradient directionθm
i .

The exampleR-table in Figure 4.4 is built by using four selected model edge points. Here, the quantization
interval for the gradient directions was set to∆θ = 60◦. Since the gradient directions at the two pointspm

2 and
pm

3 are identical, both associated displacement vectors are recorded in the same row within theR-table.

For the online phase a two dimensional accumulator arrayA is set up over the domain of translations, representing
the sampled parameter space or Hough space ofT . Figure 4.5 shows the principle of an accumulator array for the
example search image of Figure 4.2. This is similar to the HT, however, each cell of this array now corresponds
to a certain range of positions of the reference pointos = (os

x, o
s
y)
> in the search image. In general, the size



4.2. MODIFIED GENERALIZED HOUGH TRANSFORM (MGHT) 49

of the cells is adapted to the pixel grid, i.e., each cell represents one pixel. The accumulator array is initialized
by setting the values of all cells to 0. For each edge pixelps

j in the search image the rowk in the R-table that
corresponds to the gradient directionθs

j is selected. Each displacement vector that is recorded within the selected
row represents the position of one reference point candidateŏ = (ŏx, ŏy)> relative tops

j in the search image.
Formally, the displacement vectors are added tops

j in order to obtain the reference point candidates:

ŏi,j = ps
j + ri, ∀j = 1, . . . , ns, ∀{i|θm

i ∈ Θk}, k|(θs
j ∈ Θk) . (4.15)

Finally, each cell in the accumulator arrayA that is hit by one reference point candidate receives a vote, i.e., its
value is incremented by one. After the voting process, each cell inA has a value that describes the likelihood
that the reference point is located in this cell. Thus, local maxima inA that exceed a certain threshold represent
found object instances in the search image. Figure 4.5 shows the principle of the online phase by means of seven
selected search edge points. In Figure 4.5(a) the cells of the accumulator array are overlaid on the search image of
Figure 4.2. For illustration purposes, in this case one cell covers several pixels. For example, the edge direction
θs

1 at pointps
1 is 65◦. In the R-table of Figure 4.4(b) the respective gradient interval isΘ1 = [60◦,120◦[, and

hencek = 1. The two displacement vectorsr2 andr3 that are recorded in rowk = 1 are added to the point
positionps

1 and the two obtained reference point candidates are used to increment the two corresponding cells.
Figure 4.5(b) shows the final accumulator array after the voting process, where the number of votes are entered
in each cell. The cell with maximum number of votes represents the position of the reference point, and hence
the found object instance in the search image.
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Figure 4.5: Example that illustrates the online phase of the GHT. The gradient directions at seven selected example search
edge points are θs

1 = 65◦, θs
2 = 65◦, θs

3 = 200◦,θs
4 = 280◦, θs

5 = 65◦, θs
6 = 200◦, and θs

7 = 280◦ (a). According to the gradient
direction the displacement vectors in the respective row of the R-table are added to the point positions, and the corresponding
cells receive a vote (b).

4.2.1.2 Advantages

The GHT shows several inherent advantages already in its original form. In contrast to alignment methods that
use an arbitrary similarity measure, it is not necessary to translate the model image to all possible positions of the
object in the search image. Instead, the translation is regarded implicitly since the model edges are stored relative
to the reference point. This saves significant computation time.

Further savings in computation time are achieved by taking the gradient direction information into account. Thus,
for one edge point in the search image only the model edge points with similar gradient direction instead of all
model edge points are used for incrementing the respective cells. Considering the gradient direction leads to
another important advantage. The robustness against clutter is increased considerably, i.e., the probability of
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false positive matches is decreased. This effect is illustrated in Figure 4.6, which shows the accumulator array
after the voting process. In contrast to Figure 4.5, now one cell corresponds to one pixel. The number of votes in
each cell is visualized as height in the 3D plots. Figure 4.6(a) shows the result of the voting process in the case that
no gradient direction information is taken into account. This can be simulated by creating anR-table that consists
of only a single row, i.e.,∆θ = 360◦. Consequently, for each edge pixel in the search image all displacement
vector are used for voting, independent of their associated gradient direction. Although the artificially created
search image is free of noise and the two additional objects differ from the searched object, the accumulator array
shows noisy regions and some additional (albeit small) peaks. The signal-to-noise-ratio (SNR), calculated as the
peak-signal-to-peak-noise in this case is 3.3. In Figure 4.6(b) the same situation is applied, however, the gradient
direction was quantized using an interval size of∆θ = 5◦. One can see that the noise in the accumulator array
has diminished significantly. The almost doubled SNR of 6.5 confirms the visual impression. In this example, an
acceptable SNR is obtained even if no gradient direction is considered, and hence the intrinsic peak can be easily
distinguished from the noise in the accumulator array. However, one can imagine the problems when dealing
with noisy, highly textured images, which contain additional objects that are similar to the object to be found. In
such cases the gradient direction is an absolutely essential information.

(a) Neglecting gradient direction (b) Considering gradient direction

Figure 4.6: The accumulator array shows several peaks after the voting process. The signal-to-noise ratio (SNR) can be
significantly increased by considering the gradient direction information. In this example, the SNR almost doubles from
3.3 (a) to 6.5 (b).

Another advantage of the GHT is its high robustness against occlusions. At first glance, one may think that
occlusions in the search image affect the position of the reference point (e.g., the centroid), and hence cause the
voting process to fail. However, this is not the case. In contrast to moment-based approaches, for example, which
require the object as a whole to be present in the image, the GHT is tolerant against a certain degree of occlusions.
Looking at the principle of the GHT again, the reference point in the search image is not computed as the centroid
of all edge points but is the result of the maximum search after the voting process. If some of the edge pixels in
the search image are missing because of partial occlusions, the peak height is merely reduced in proportion to the
fraction of occluded edge pixels. This is a rather intuitive behavior.

Furthermore, the GHT is robust against changes in brightness of an arbitrary type up to a certain degree. Since the
recognition is based on the image edges instead of the raw gray value information, changes in brightness do not
affect the recognition unless the edge magnitude falls below the threshold that is applied to edge segmentation.
The features that are used in the GHT are edge position and gradient direction. Both features do not change
dramatically when the brightness or the contrast in the image changes. However, if the contrast is too low in
some object parts of the search image fewer edges will be segmented. This leads to the same effect as partial
occlusions. Nevertheless, if the contrast is too low in the entire image the GHT fails to recognize the object,
unless the segmentation threshold is set to a lower value.

4.2.1.3 Drawbacks

In this dissertation objects must be found under the transformation class of rigid motion. Unfortunately, the GHT
was originally designed to cope with object translations only. If one wants to recognize objects that may appear
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in an arbitrary orientation the GHT must be extended accordingly: now for each possible orientationϕs of the
object in the search image a separateR-table is generated by using a certain orientation step∆ϕ to sample the
range of possible orientations. Depending on∆ϕ and the orientation range in which the object may appear, a
number ofR-tables is generated at discrete orientationsϕr, r = 0, . . . , nϕ − 1, wherenϕ denotes the number
of discrete orientations, and hence the number ofR-tables. Finally, eachR-table is labeled with its associated
orientationϕr. In the online phase,nϕ separate 2D accumulator arrays are built, one for eachR-table. All single
2D arrays can be put together into one 3D accumulator array. The first two dimensions represent the position of
the reference pointos and the third dimension represents the orientation of the objectϕs in the search image.
The voting process is then performed for eachR-table separately, where the votes are entered in the respective 2D
hyperplane of the accumulator array that is associated with the currentR-table. The position of local maxima in
the 3D array that exceed a threshold describe the position and orientation of found object instances. Obviously,
the computational effort in the online phase increases linearly with the number ofR-tables, and hence with the
number of rotation steps.

Thus, one weakness of the GHT algorithm is the — in general — huge parameter space represented by the 3D
accumulator arrayAwhen allowing rigid motion. Assume an image of size 768×576, a rotation step of∆ϕ = 1◦,
and an object that may appear at an arbitrary orientation. Hence, the number of discerned orientation stepsnϕ is
360. Consequently, the accumulator array would contain 768× 576× 360= 159· 106 cells. This involves large
amounts of memory to store the accumulator array as well as high computational costs in the online phase for the
initialization of the array and the search for local maxima after the voting process.

Another crucial part is the large number of voting eventsnvote that have to be performed. The average number of
voting events is

nvote = nϕnsn
m

nθ
, (4.16)

wherenθ = 2π
∆θ again is the number of different gradient direction intervals, and hence the number of rows in

theR-tables. Assuming a non-cluttered search image, i.e., no additional edges are present, and thusns = nm,
the effort for incrementing the respective cells in the accumulator array increases quadratically with the number
of model edge pixelsnm. This behavior hinders real-time performance, especially for large or highly textured
objects.

Additionally, the conventional GHT is sensitive to image noise. Although the edge position is relatively unaf-
fected by a moderate degree of noise, the gradient direction is much more sensitive. Since the gradient direction
is directly involved as feature within the GHT, image noise also has an impact on the performance of GHT. Es-
pecially, when the size of the gradient direction intervals∆θ is chosen small, the robustness may significantly
decrease.

Finally, the properties of the GHT lead to the fact that the accuracies achieved for the returned pose parameters
depend on the quantization of the transformation class of rigid motion. Thus, in the mentioned example the
accuracy of object position is limited to the pixel size and the accuracy of object orientation is limited to 1◦.
Unfortunately, in practice the quantization cannot be chosen arbitrarily fine because of memory requirements and
computation time. Furthermore, the robustness against clutter would decrease considerably when increasing the
resolution of the accumulator array. This is because the peak would be dispersed over an increasing number of
cells in the accumulator array.

In the following, the mentioned problems will be tackled, resulting in a modified Generalized Hough Transform
(MGHT) (Ulrich et al. 2001a, Ulrich et al. 2001b): a multi-resolution model and search strategy in combination
with an effective limitation of the search space is introduced in order to increase the efficiency, and hence meet
the real-time requirements. Furthermore, a technique for refining the returned pose parameters without noticeably
decelerating the online phase is presented. In addition, some crucial quantization problems and their solutions to
increase the robustness of the GHT are discussed.
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4.2.2 Computation of the R-tables

First of all, some general comments on the computation of theR-tables for the different object orientations
should be made. Feature extraction is a prerequisite for applying the principle of the GHT for object recognition.
In this dissertation the edge magnitude and the gradient direction are computed using the Sobel filter. This filter
represents a good compromise between computation time and accuracy: it can be computed in less time than,
for instance, the Lanser or Canny filters. Its anisotropic response and its worse accuracy can be balanced by the
proposed approach: it will be shown in this section that the effect of the anisotropy can be reduced considerably
by selecting an appropriate method for the computation of theR-tables. The residual anisotropy and the worse
accuracy can be balanced by choosing an adequate quantization∆θ of the gradient directions, which will be
explained in Section 4.2.5. Both the edge magnitudeγ and the gradient directionθ are computed from the first
partial gray value derivatives inx andy direction, which are returned by the Sobel filter. The edge pixels are
segmented by applying a thresholdγmin on the edge magnitude. This threshold must be set by the user because
it is highly correlated with the task of the application and with the type of object to be recognized. A subsequent
non-maximum suppression eliminates the edge pixels that are no local maxima in the direction of the gradient.
For this, the current edge pixel is compared to the two adjacent pixels in the gradient direction. However, because
of the discrete structure of the image, still two pixel wide edges may occur. Therefore, the number of edge pixels
can be further reduced by computing the skeleton based on a medial axis transform (Ballard and Brown 1982).
Thus, by using only the most representative edge pixels in theR-table the computational effort during the online
phase can be kept small.

To allow object rotation, for each object orientationϕ a separateR-table must be built. In general, this can be
accomplished by following one of four possibilities. The four possibilities arise by combining one of two methods
to build theR-tables with the decision whether theR-tables are built within the offline phase or within the online
phase.

The first method to build theR-tables is to compute theR-table for the model image as described before, yielding
a prototypeR-table. TheR-tables of all discrete orientationsϕr are then obtained by applying simple transfor-
mations on the prototypeR-table, as proposed in (Ballard 1981). For this, the limits of all gradient intervals
Θk, 0 ≤ k < nθ of the prototypeR-table are just incremented by the current rotation angleϕr. Furthermore,
all displacement vectors within the prototypeR-table are rotated byϕr. The second method to build theR-tables
is to rotate the model image itself and generate anR-table based on each of the rotated model images. When
using the Sobel filter the latter method has a crucial advantage. By deriving theR-tables from the rotated model
images the error caused by the anisotropy of the Sobel filter can be eliminated since the anisotropy is the same in
the rotated model image and in the search image, and hence the error cancels out. In contrast, the advantage of
the first method is its lower computational effort, since only a “small” number of displacement vectors must be
rotated but not the entire image.

Furthermore, both methods can be applied either in the offline phase or in the online phase leading to four different
combinations. Pre-computing theR-tables in the offline phase is more memory-intensive since all rotatedR-tables
must be stored in memory. However, it facilitates a substantially more efficient object recognition during the
online phase since no rotations must be performed online. In this dissertation theR-tables are derived from the
rotated model image in the offline phase. This, on the one hand, optimizes the computation time of the online
phase and, on the other hand, eliminates the anisotropy error. Hence, the second computation method is combined
with computing theR-tables offline.

Table 4.2 summarizes the four possibilities and additionally points out the respective advantages and drawbacks.
The combination used in this work is emphasized in bold type.

It should be noted that in some applications it might be less important to achieve real-time computation but to
keep the required memory amount as small as possible. Then it would be preferable to compute the required
R-tables online. Furthermore, in such cases it might be desirable to use the first computation method to allow a
reasonable computation time of the online phase even though the anisotropy error must be accepted.
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ComputingR-tables offline ComputingR-tables online

First computation method
1. computing prototype R-table

from model image
2. transforming prototypeR-table

for all orientations

• fast offline phase
• high memory for model
• very fast online phase
• anisotropy error

• very fast offline phase
• low memory for model
• slow online phase
• anisotropy error

Second computation method
1. rotating model image
2. computingR-tables from rotated

images

• slow offline phase
• high memory for model
• very fast online phase
• no anisotropy error

• very fast offline phase
• low memory for model
• very slow online phase
• no anisotropy error

Table 4.2: Four different possibilities to compute the R-tables when allowing object rotations

4.2.3 Increasing the Efficiency

4.2.3.1 Multi-Resolution Model

To reduce the size of the accumulator array and to speed up the online phase, the original GHT is embedded
in a coarse-to-fine framework using image pyramids as described in Section 4.1.3. This coarse-to-fine approach
affects both the offline phase and the online phase. In the offline phase, it leads to the generation of a multi-
resolution model. The construction of this multi-resolution model will be described below.

At first, an image pyramid of the model image is generated. LetIm
l , be the model image at pyramid levell,

l = 0, . . . , nl − 1, wherenl denotes the number of involved pyramid levels.Im
0 represents the model imageIm

at original resolution. For increasing values ofl the resolution, and hence the image dimensions, are successively
halved. To obtain the imageIm

l at pyramid levell, the imageIm
l−1 is smoothed using a mean filter of size 2× 2

in order to meet the Nyquist theorem, and sub-sampled using a sampling interval of 2 pixels, as described in
Section 4.1.3.

When determining the optimum value fornl two conflicting objectives must be balanced. On the one hand, the
number of pyramid levels should be chosen as high as possible to obtain a high potential for speeding up the
recognition process. On the other hand, the object on the top pyramid level, which has the lowest resolution,
must still be recognizable. I.e., the object must still exhibit significant characteristics that keep it distinguishable
from other objects in the image. Formally, the number of pyramid levels must be maximized under the constraint
that object characteristics are preserved. To avoid burdening the user with an additional input parameter and to
ensure a high degree of automation, in the following a method that automatically computesnl will be introduced.
Obviously a meaningful description of the object is impossible if the number of model edge pixels on the current
level falls below a certain threshold. This represents the first criterion that must be fulfilled. Several practical
tests have shown that pyramid levels containing less than ten model points can be discarded.

A minimum number of edge pixels is a necessary but in no way a sufficient requirement. Therefore, a more
sophisticated approach must be applied when evaluating the requirement for preserved object characteristics.
The principle of this second criterion is illustrated in Figure 4.7.

At first, an image pyramid is computed on the model image using the maximum number of levels, i.e., the top
pyramid level is only one pixel wide in at least one dimension. Figure 4.7(a) shows the first four pyramid levels of
the example model image. On all pyramid levels edges are segmented (see Figure 4.7(b)). For each pyramid level
that fulfills the criterion of a minimum number of model edges pixels, the edges are scaled back to the original
resolution and a distance transform (J¨ahne 2002) is computed on the scaled edges using the chamfer distance (cf.
Section 4.1.1.2) for high accuracy. Figure 4.7(c) shows the scaled edges and the associated distance transforms,
where brighter gray values represent higher distances. Finally, the model edges at the original resolution are
superimposed on the distance-transformed image and the mean distance of the original model edges to the (scaled)
edges at the current level is calculated by summing up the underlying gray values (see Figure 4.7(d)). Hence, this



54 CHAPTER 4. RECOGNITION OF RIGID OBJECTS

(a) Pyramid of model image

(b) Segmented model edges on each pyramid level

(c) Distance transform of the scaled model edges

(d) Model edges at original resolution superimposed on the distance transform

Figure 4.7: The number of pyramid levels is computed automatically by measuring the deformations of the model edges on
the respective pyramid levels (D(0) = 0%, D(1) = 1%, D(2) = 3%, D(3) = 9%).

is a measure of how much the model edges are deformed by the smoothing that comes with the image pyramid.
The average distance is normalized by dividing it by the size of the object. This takes into account that small
objects are already less distinctive and therefore allow only small deformations while bigger objects can cope
with higher deformations without loosing their distinctive characteristics. The object size is represented by the
radiusr0 of a circle that has the same area as the ellipse that has the same moments as the model edges at original
resolution. Thus, the normalized average distance is a measure of deformationD(l) that describes how much the
original shape is degenerated on pyramid levell. D(l) is computed as:

D(l) =
∑nm

i=1 minj=1,...,nm
l
‖pm

i − Λ(pm
j,l, l)‖

3nmr0
, (4.17)

wherepm
j,l, j = 1, . . . , nm

l are the model edge points at pyramid levell, ‖·‖ is the chamfer distance, andΛ(pm
j,l, l)

is the scaling of the model edge points from the current levell back to the original resolution:

Λ(x, l) = 2lx . (4.18)

The division by three in (4.17) again compensates the unit length of the chamfer distance. Finally,D(l) must not
exceed a certain threshold for all involved pyramid levels. This threshold is generic and independent from the
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D(0) = 0.0% D(5) = 7.6% D(6) = 16.1%

D(0) = 0.0% D(5) = 5.0% D(6) = 14.8%

D(0) = 0.0% D(3) = 4.6% D(4) = 10.4%

D(0) = 0.0% D(3) = 8.3% D(4) = 23.4%

(a) (b) (c) (d)

Figure 4.8: The number of pyramid levels are calculated for four examples. From the model image (a) edges are extracted (b).
The edges of the highest accepted pyramid level that fulfills the criterion D(l) < 10% (c) and the edges of the lowest non-
accepted level (d) are shown.

object and can be determined empirically. Several experiments involving different types of objects with various
sizes have shown thatD(l) should not exceed 10% in order to avoid strong deformations.

In order to visualize the theoretical results, four practical examples are presented in Figure 4.8. Figure 4.8(c)
shows the edges of the top pyramid level that has just been accepted by the algorithm. One can see that in most
cases the result of the automatic determination of the number of pyramid levels is very intuitive, except maybe
for the example in the third row, where one might chose the fourth instead of the third level as top pyramid level.
However, the deformation measureD(4) of 10.4% indicates a narrow decision.

After the pyramid of the model image has been derived, the generation of the multi-resolution model can be
started. While generating the model, one has to distinguish between the top levelIm

nl−1 and the lower levels.
In the online phase, also for the search image an image pyramid is derived by computing the same number of
pyramid levels as for the model image. A breadth-first search is then applied: the recognition process starts at the
top pyramid level of the search image without any prior information about the transformation parametersos and
ϕs available. Therefore, the conventional GHT is applied to the top pyramid level. Astop level strategy, all cells
in A that are local maxima and exceed a certain threshold are stored asmatch candidatesand used to initialize
approximate values on the next lower level. Thus, the coarse values on the top level are subsequently refined by
tracking the match candidates down through the pyramid to the highest resolution of the original search image.
Using the breadth-first strategy, all match candidates are refined at the current level before the candidates are
tracked to the next lower level. The breadth-first strategy is preferable for various reasons, most notably because
a heuristic for a best-first strategy is hard to define, and because depth-first search results in higher recognition
times if all matches should be found (Steger 2002).

Unfortunately, the GHT in its conventional form is not very well suited for the use of image pyramids because
the prior information cannot be used in a straightforward way, as it is the case when using alignment methods, for
example. This is the reason why only for the top level theR-table is built in its conventional form as described
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in Section 4.2.2. Whereas on the lower levelsIm
nl−2 to Im

0 a modified strategy is employed to efficiently take
advantage of the prior information, i.e., approximate transformation parameters, obtained from the next higher
level. Aslower levels strategy, during the refinement only the respective best match within a local neighborhood
of the approximate transformation parameters in parameter space is further tracked (see the description of the
descent policy of Section 4.1.3). This strategy combined with the top level strategy facilitates finding all matches
in the image while keeping the computational effort low. The problems of using image pyramids within the GHT
will be discussed in the following section. Additionally, the proposed solutions will be introduced.

4.2.3.2 Domain Restriction

The use of image pyramids in alignment methods naturally comes along with a significantly increased efficiency
of the online phase. This is because the parameter space on the lower levels can be restricted to a local neigh-
borhood around the approximate transformation parameters. The similarity measure needs then to be computed
only for a small number of object poses specified by this local neighborhood. In contrast, the GHT only profits
from the restriction of the parameter space in one of the three dimensions: the approximate value for the object’s
orientation can be used to apply onlyR-tables that are labeled with an orientation that is close to the approximate
value. However, the two dimensions describing the object’s position cannot be restricted in this straightforward
manner. This is because of the inherent property of the GHT that it eliminates the two degrees of freedom by
the position invariant description of the edge points with respect to the reference point. Thus, there is no explicit
translation of the model image over the search image that could be restricted, which is the case when using align-
ment methods. Therefore, a more sophisticated approach must be applied to take advantage of the approximate
pose parameters in all three dimensions.

Figure 4.9 may help to understand the principle that is illustrated in the following. Letõs = (õs
x, õ

s
y)
> andϕ̃s be

the approximate `a priori values of the pose parameters at the current pyramid level, which are obtained from the
upper level for a given match candidate. To refine the parameters in the current level, it is unnecessary to take
the edge pixels in the entire image into account. Instead,õs and ϕ̃s can be used together with the knowledge
about the position of the edge points with respect to the reference point to optimally restrict the image domain:
the approximate position of the edge points that belong to the match candidate can be computed in the current
level. In this way the domain for edge extraction on the current level can be restricted to the neighborhood of
the approximate edge position of all match candidates, where the neighborhood is defined by the propagated
uncertainties of the approximate pose parameters. Thus, the restriction is not directly applied to the parameter
space but to the image space by restricting the image domain. The uncertainty of the approximate parameter
values are expressed by the associated standard deviationsσõs

x
, σõs

y
, andσϕ̃s . These values can be derived from

the corresponding maximum errorsδx, δy, andδϕ that are to be expected when tracking the match candidate
down one level. The maximum errors of position and orientation are visualized in Figure 4.9(a) by a gray square
and a gray sector, respectively. Assuming an approximately equal distribution of the tracked parameters within
the interval of[−δ,+δ], respectively, the standard deviation (Bronstein et al. 2001) can be computed by

σ2
x =

+∞∫
−∞

(x− µx)2f(x) dx =
1
2δ

+δ∫
−δ

x2 dx =
δ2

3
, (4.19)

finally leading to

σõs
x

=
δx√

3
, σõs

y
=

δy√
3
, σϕ̃s =

δϕ√
3
. (4.20)

The values for the maximum errors have been derived from several tests. During the tests it turned out that it is
sufficient to setδx andδy to 3 pixels andδϕ to 3∆ϕ. The approximate position of each model edge pixel in
the search imagẽps

i = (x̃s
i , ỹ

s
i )
> can be obtained by transforming the associated negated displacement vector

according to the approximate pose parameters (see Figure 4.9(a)):

p̃s
i = õs −R(ϕ̃s)ri . (4.21)
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Figure 4.9: Approximate pose parameters are obtained from the upper pyramid level and can be used to calculate approxi-
mate edge positions (a). The uncertainty of the pose propagates to the edge position (b). The envelope of the error ellipses
thus obtained for all edge points describes a region in which edge points lie with a certain probability (c).

Here,ri represents the displacement vectors obtained from the non-rotated model image. The covariance matrix
for the two coordinates of̃ps

i is easily computed by applying the law of error propagation. The corresponding
error ellipse (Gotthardt 1968) is obtained from the eigenvectors and eigenvalues of the covariance matrix (see
Figure 4.9(b)). The error ellipse represents the boundary of a confidence region in whichp̃s

i lies with a proba-
bility of 39%. A more appropriate probability can be obtained by scaling the axis of the ellipse by a factor of
3.44 leading to a confidence of 1− e−(3.442/2) = 99.7% (Gotthardt 1968). Finally, the envelope of all single
confidence regions describes the image domain that the edge segmentation can be restricted to for the current
match candidate, where on average only 0.3% of the edge pixels are missed (see Figure 4.9(c)).

Unfortunately, the exact computation of the envelope region, as is was described above, is extremely time consum-
ing. Furthermore, the assumption of the equal error distribution is not entirely correct. Therefore, it is advisable
and meaningful to simplify the computations. The strategy is illustrated in Figure 4.10. Again the approximate
position of the model edge pixels in the search image is given (see Figure 4.10(a)). The idea is based on blurring
the model edges according to the maximum errors of position and orientation. The maximum errors in position
δx, δy are taken into account by dilating the edges using a structuring element of size(2δx+ 1)× (2δy+ 1) (see
Figure 4.10(b)). A dilation is a morphological region operation that efficiently expands the input region using
a certain structuring element (Soille 1999). Assuming thatδ = δx = δy the dilation provides a region that is
expanded byδ in both directions. The resulting dilated region is then successively rotated in both directions until
the two extremes of the maximum error in orientation±δϕ are reached. The final region is obtained by merging
all rotated regions (see Figure 4.10(c)). Since the sequence of the blurring affects the result, the blurring is done
a second time by starting with the rotation and dilating in the second step. The two resulting blurred regions are
merged by computing the union of the two regions.
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Figure 4.10: The computation of the blurred region is done in two steps. The model edges (a) are dilated (b) and successively
rotated (c) according to the maximum errors of the approximate pose parameters.
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The blurred region can be pre-computed in the offline phase, where for each pyramid level different from the top
level and for each discerned orientation one region is computed. For the top pyramid level no blurred regions
need to be computed because no prior information will be available. In the online phase, the respective blurred
region is selected according to the pyramid level and the approximate object orientationϕ̃s and is superimposed
on the current level of the search image at the position ofõs. If several candidates are to be tracked, for each
candidate the blurred region is superimposed. Edge extraction is then applied to the union of all superimposed
regions. This increases the efficiency of the online phase dramatically, because not only the edge extraction is
speeded up but also the voting process itself, since fewer edge pixels are involved. In addition, the size of the
accumulator arrayA can be narrowed down according to the maximum errors of the `a priori parameters. This
decreases the memory amount considerably. For each candidate that has to be refined in the current level, an
accumulator array merely of size(2δx + 1) × (2δy + 1) × (2δϕ + 1) is necessary. Using the values proposed
above, the array now has dimensions of 7× 7× 7 for each candidate instead of using one single array of size
768× 576× 360, for example.

Figure 4.11 illustrates the use of the blurred region during the online phase. In this example, three image pyramids
are used. On the top pyramid level the conventional GHT is performed, which results in two match candidates.
The position and orientation of the two candidates are visualized in Figure 4.11(a) by black circles and arrows,
respectively. By tracing the two candidates down one level, approximate pose parameters are obtained in level
1. To optimally restrict the image domain, the two corresponding blurred regions are superimposed based on the
approximate poses (see Figure 4.11(b)). On this level the bottom match does not receive enough votes, and hence
is discarded. Thus, on level 0 only one match candidate remains, for which the blurred region again is used to
restrict the image domain accordingly (see Figure 4.11(c)).

(a) Level 2 (top level) (b) Level 1 (c) Level 0

Figure 4.11: The blurred region is superimposed at the approximate pose of the match candidates at lower pyramid levels to
restrict the image domain for further processing.

While already in this artificial example the increased efficiency becomes clear, the restriction of the image domain
becomes even more effective when dealing with highly cluttered search images or with objects that are small in
relation to the image size. Furthermore, the use of the blurred region not only speeds up the online phase but
also increases the robustness against clutter on lower pyramid levels. The reason for the increased robustness is
that edges that are not in the neighborhood of the expected object edges are completely ignored. To avoid that
already on the top pyramid level candidate matches are falsely eliminated, the threshold for the minimum number
of votes should be slightly decreased for the top level.

4.2.3.3 Tiling the Model

A second improvement of the GHT leads to a further increase of efficiency. The principle of the conventional
GHT combined with the multi-resolution approach results in redundant voting events on lower pyramid levels.
This can be avoided by exploiting the prior information once more. The problem is shown in Figure 4.12(a).
Again, the prior information is displayed as the gray square, which represents the maximum error of the ap-
proximate position parameters from the level above. This area will be referred to as theapproximate zone. The
three edge pixelsps

1, ps
2, andps

2 have identical gradient directions. Thus, if any of those edge pixels is processed
in the online phase of the conventional GHT each of the three associated displacement vectorsr1, r2, andr3
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is added and the corresponding three cells of the accumulator array receive a vote. Consequently, it would be
impossible to narrow the accumulator array to the approximate zone. One possible solution is to check during
the voting process whether the added displacement vectors fall in the approximate zone or not. This query and
the summation of the vectors would take too much time to ensure real-time performance. Therefore, the opposite
approach is taken: already in the offline phase the information about the rough location of the edge pixels relative
to the reference point is calculated and stored within the model. This is done by overlaying a grid structure over
the model image and splitting the image into tiles. In Figure 4.12(b) the tiles are displayed as squares. For each
tile that is occupied by at least one edge pixel a separateR-table is generated (the squares with bold border in
Figure 4.12(b)). The displacement vectorri is then stored in the associatedR-table. Thus, unnecessary voting
steps in the online phase are already avoided in the preliminary stage of the offline phase. Analogously to the
blurred regions, the tiles are computed for all pyramid levels except for the top pyramid level and for all discrete
orientations. Accordingly, the final model that is used for object recognition consists of a multitude ofR-tables:
on the top pyramid level of the model image for each quantized orientation oneR-table is built. Whereas, on the
lower pyramid levels for each quantized orientation and for each occupied tile a separateR-table is created.
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Figure 4.12: The GHT in its conventional form cannot take prior information about the transformation parameters into ac-
count. Therefore, many unnecessary voting steps are executed (a). By using a tile structure, unnecessary voting steps are
avoided (b).

In the online phase, for the current edge pixel that is to be processed the associated tile is calculated using the
relative position of the current edge pixel to the approximate position of the reference point. Finally, only the
displacement vectors in theR-table of the respective tile (and with appropriate gradient direction) are used to
calculate the cells that receive a vote. Besides the decreased computational load in the online phase the tiling
further increases the robustness against clutter because unnecessary voting events are suppressed. In the current
example (see Figure 4.2), a speed-up of 78% is achieved when using tiles of size 7×7 pixels. An even higher gain
in efficiency can be expected for objects that show a high number of edge pixels with identical gradient direction.

Summarizing the most important points, the conventional GHT is not suited for the use of image pyramids in a
straightforward way. However, by applying a multi-resolution model that includes the domain restriction with
the blurred region and the avoidance of unnecessary voting steps with the tile structure, the advantages of image
pyramids also become accessible to the GHT. The multi-resolution model reduces the memory requirements in
the online phase drastically and facilitates real-time object recognition. Several tests that show the correctness of
the latter statement will be described in the performance evaluation, which is presented in Section 4.4. Further-
more, another important advantage of the proposed multi-resolution model is the increased robustness against
clutter.

4.2.4 Pose Refinement

In this section, a method for pose refinement that breaks the limits on the achievable accuracy that are induced
by the quantization of the parameter space is described. After the voting process on the lowest pyramid level,
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matches that correspond to cells in the accumulator array and that are local maxima exceeding a certain threshold
of votes are obtained. Therefore, the accuracy of the position parametersos

x andos
y is limited to the cell size used

in the accumulator array on the lowest pyramid level, which in general corresponds to the pixel grid. Analogously,
the accuracy of the orientation parameterϕs is limited to the step size∆ϕ that is used to rotate the model image
on the lowest pyramid level. The proposed refinement method is based on the idea of correlation interpolation
(Tian and Huhns 1986) that was introduced in Section 4.1.2. However, the proposed method is not restricted
to refine the object position, as it is the case in (Tian and Huhns 1986), but is able to simultaneously refine
position and orientation. Furthermore, not a correlation measure but the votes in the accumulator array are used
for interpolation. To refine the position and orientation, thefacet model principle(Haralick and Shapiro 1992) is
applied. It states that an image can be thought of as a continuous gray level intensity surface, where the acquired
digital image is a noisy sampling of a distorted version of this surface. To apply this principle to pose refinement,
the 3D parameter space is assumed to be a 3D continuous intensity surfacef(x, y, ϕ), where the intensitiesf
describe the likelihood that the object is present in the image at pose(x, y, ϕ)>. The accumulator array is the
sampled version off , in which the intensities correspond to the number of votes in the cells. To represent the
discrete accumulator array by a continuous function, a second order polynomial is locally fitted to the accumulator
array at the position of the discrete local maximum, which also defines the origin of the local coordinate system:

f(x, y, ϕ) = k0 + k1x+ k2y + k3ϕ+ k4x
2 + k5xy + k6xϕ+ k7y

2 + k8yϕ+ k9ϕ
2 . (4.22)

The coefficientsk0, . . . , k9 can be determined efficiently using the 3D facet model masks presented in (Steger
1998), where for each coefficient a 3× 3× 3 filter mask is designed. Thus, the votes in a 3× 3× 3 neighborhood
of the local maximum inA are used to estimate the ten parameters (see Figure 4.13(a)). The pose refinement
can finally be obtained by analytically computing the maximum of the continuous function (4.22). For this,f is
rewritten as:

f(x, y, ϕ) = (x, y, ϕ)
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The maximum is defined as the point where the gradient off vanishes:

∇f(x, y, ϕ) =
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 = 0 . (4.24)

Finally, the subpixel precise position of the maximum in the local coordinate system is obtained by solving (4.24)
with respect to(x, y, ϕ). This corresponds to the problem of solving a 3× 3 linear equation system:

 x
y
ϕ


 =


 2k4 k5 k6

k5 2k7 k8

k6 k8 2k9



−1 −k1

−k2

−k3


 . (4.25)

The obtained values for(x, y, ϕ) should lie in the range of[−1
2,+

1
2] × [−1

2,+
1
2] × [−1

2,+
1
2] to be accepted as

a meaningful result. The final refined pose is then obtained by adding the coordinates of the maximum in the
local coordinate system to the discrete pose parameters (see Figure 4.13(b)). The reason for choosing a second
order polynomial is that it represents the shape of the maximum in the accumulator array sufficiently enough.
Furthermore, the existence of a unique extremum, in which one is interested in, is ensured. Because the above
computations are only applied to local maxima in the discrete accumulator array, it is ensured that the fitted
polynomial always exhibits a maximum rather than a minimum. Only the final matches on the lowest pyramid
level need to be refined. This is the reason why the additional computation time for the pose refinement is almost
negligible.

4.2.5 Quantization Effects

When applying the principle of the GHT several problems are caused by the quantization of the parameters in
the accumulator array and of the gradient directions in theR-tables. A similar difficulty occurs when using the
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Figure 4.13: Applying a 3D facet model mask on the 3 × 3 × 3 neighborhood of a local maximum in the discrete parameter
space A (a). The object pose is refined by adding the coordinates of the maximum to the discrete pose parameters (b).

tile structure described in Section 4.2.3.3. In this section, these problems will be analyzed and the respective
solutions will be proposed.

4.2.5.1 Rotation

Two contrary objectives must be balanced for the determination of the orientation step size∆ϕ when rotating
the model image during model creation. On the one hand,∆ϕ should be chosen large to reduce the number
of R-tables, and hence the computational load in the online phase. On the other hand, if∆ϕ is chosen too
large, objects that appear between two discrete orientation steps may be missed in the online phase. Informally
speaking, the peak height in the parameter space must not drop down considerably if the object appears in the
middle of two sampled orientation steps. The optimum value for∆ϕ depends on the object, especially on its
size. More precisely,∆ϕ can be increased for decreasing object size. Formalizing the statements, in the optimum
case all displacement vectorsri of the model should hit the same cell ofA in the online phase, independent of
the object orientation. For this, the positions of the reference point candidatesŏ, which are obtained by adding
the displacement vectors, may only vary within the range of one cell. Assuming that one cell corresponds to one
pixel, the maximum allowable distanceε of ŏ from the center of the cell is 1/2 pixel inx andy, respectively. The
maximum allowable value for∆ϕ can be written as a function ofε (see Figure 4.14):

∆ϕ ≤ 2 arcsin
ε

rmax
≈ 2

ε

rmax
, (4.26)

with
rmax = max

i=1,...,nm
‖ri‖ . (4.27)

Thus,rmax is the farthest distance of all model edge points to the reference pointom, which serves as the fixed
point of the rotation.

The drawback of equation (4.26) is that the worst-case of only one isolated model edge point with a high distance
to the reference point is already sufficient to cause a very fine quantization of the orientation. However, a coarser
quantization would only decrease the peak height by one vote if the distance of the remaining edge pixels is
significantly smaller. Because of the resulting large memory amounts and time consuming computations caused
by a very fine quantization, a more tolerant computation of∆ϕ is required. Here, the distances of all model edge
pixels are taken into account instead of using onlyrmax as representative for the whole object. As previously
mentioned, if∆ϕ is chosen too large, the peak in the corresponding cell inA will be weakened because some of
the reference point candidates will miss the cell. By solving (4.26) with respect tormax one can compute for a
given orientation step∆ϕ the maximum allowable distance of the edge points from the reference point in order
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Figure 4.15: In (a), the model image, the reference point (white dot), and the extracted model edges (white) are shown. The
optimum orientation step for an object is computed based on the histogram of the displacement vector lengths (b). For a
chosen allowable weakening factor η the associated orientation step can be computed (c).

not to weaken the peak. Consequently, the weakening factorη can be formalized as the fraction of displacement
vectors that have a length that does not exceed the maximum allowable distance:

η(∆ϕ) =

∣∣∣{ri

∣∣∣‖ri‖ ≤ 2ε
∆ϕ

}∣∣∣
nm

. (4.28)

whereε = 0.5. The maximum possible peak heightΓmax that corresponds to the number of model points and
that is achieved when (4.26) is fulfilled, will then be reduced to

Γ(∆ϕ) = η(∆ϕ) · Γmax . (4.29)

By evaluatingη(∆ϕ) or, optionally,Γ(∆ϕ) for different values of the orientation step∆ϕ, a characteristic curve
for the current object is obtained, as shown in Figure 4.15. One possibility to choose an appropriate value for∆ϕ
is to specify a minimum value forη or Γ that is still tolerable in the online phase. Becauseη is a fractional value,
and hence is limited to the range of[0,1], it is more intuitive for the user to specify a value forη rather than for
Γ. Settingη to 1 means that the same value for∆ϕ as when using (4.26) is obtained. However, the use of (4.28)
instead of (4.26) facilitates a more intuitive and flexible calculation of the optimum orientation step for a specific
application.

The proposed computation is either executed for all pyramid levels separately, or as an approximation, only for
the original resolution, where∆ϕ is successively doubled for the next higher pyramid level.

4.2.5.2 Translation

Unfortunately, the height of the peak inA also depends on subpixel translations of the object. Under ideal
conditions the peak in the parameter space is equal tonm. If the object in the search image is translated by
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subpixel values inx andy relative to its position in the model image the peak height decreases because the votes
are dispersed over more than one cell. This effect reaches its maximum at a subpixel translation of 1/2 pixel in
each direction, which diminishes the peak to 25% of its original height. Figure 4.16(a) illustrates this behavior.

Under the assumption that the neighborhood of the peak is rotationally symmetric the peak height can be made
independent of subpixel translations by smoothing the 2D hyperplanes of the accumulator array, i.e.,ϕ = const.,
by a mean filter of size 2× 2. In Figure 4.16(b) the effect is illustrated. Although, in general, the number of
votes per cell is reduced because of the smoothing, the peak height is independent of the subpixel translation of
the object. However, the threshold for the extraction of local maxima must be adapted accordingly.

subpixel
translation

100
%

25% 25%

25% 25%

(a) Without mean filtering

subpixel
translation

25% 25%

2 2 mean filter×

(b) Applying a 2× 2 mean filter

Figure 4.16: Subpixel translations of 1/2 pixel in both directions disperse the original peak (100%) over four adjacent cells,
leading to a diminished peak height of 25% in each of the four cells (a). This effect is eliminated by applying a 2× 2 mean
filter to the votes in the 2D accumulator arrays, which results in peak heights that are independent of subpixel translations (b).

4.2.5.3 Gradient Direction

The optimum quantization of the gradient direction within theR-tables depends on various factors. The size∆θ
of the gradient direction intervals defines the range of gradient directions that are treated as equal during the
voting process. The smaller the interval, the faster the computation, because, on average, fewer displacement
vectors are contained in the same row of theR-table. Hence, fewer voting events must be performed for a given
gradient direction in the search image. However, an interval that is chosen too small leads to instable results. This
problem will be discussed in the following. The discussion is based on the computation of the maximum gradient
direction error that is expected to occur in the search image. From this error conclusions about the optimum value
of ∆θ can be drawn.

The first point to consider is the error of the gradient directions due to noise in the image. The gradient directions
are computed from the first partial directional derivatives inx andy direction returned by the Sobel filter:

θ = arctan
∂I(x, y)/∂y
∂I(x, y)/∂x

, (4.30)

where

∂I(x, y)
∂x

=: Ix =
1
NS

I(x, y) ∗


 1 0 −1

2 0 −2
1 0 −1


 (4.31)

and

∂I(x, y)
∂y

=: Iy =
1
NS

I(x, y) ∗


 −1 −2 −1

0 0 0
1 2 1


 . (4.32)

NS is the normalization factor for the Sobel filter. In the scope of this dissertationNS is set to 4, without any
restrictions, in order to obtain intuitive edge magnitudes. The derivative inx, for example, is explicitly computed
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as follows (it is important to note that the filter masks are mirrored during convolution):

Ix =
1
NS

(−I(x− 1, y + 1) + I(x+ 1, y + 1)− (4.33)

−2I(x− 1, y) + 2I(x+ 1, y)−
−I(x− 1, y − 1) + I(x+ 1, y − 1)) .

The derivative iny is computed accordingly. Now, assume that the gray values are independent from each other
and show a constant standard deviationσI in the image. Then the standard deviation ofIx can be determined by
applying the law of error propagation to (4.33). Finally,σ2

Ix
andσ2

Iy
are obtained as:

σ2
Ix

= σ2
Iy

=
12

(NS)2
σ2

I . (4.34)

In order to derive the standard deviation of the gradient directionθ, the partial derivatives of (4.30) with respect
to Ix andIy must be computed:

∂θ

∂Ix
= − Iy

Ix
2 + Iy

2 ,
∂θ

∂Iy
=

Ix

Ix
2 + Iy

2 . (4.35)

Applying the law of error propagation to (4.30) results in:

σ2
θ =

(
∂θ

∂Ix

)2

σ2
Ix

+

(
∂θ

∂Iy

)2

σ2
Iy
. (4.36)

By plugging (4.34) and (4.35) into (4.36) and applying some simplification steps, finally, the standard deviation
of the gradient direction is obtained:

σθ =
2
√

3

NS
√
I2
x + I2

y

σI . (4.37)

It is obvious thatσθ increases with lower edge magnitudesγ (=
√
I2
x + I2

y ). Fortunately, during edge seg-

mentation only pixels with an edge magnitude exceeding the thresholdγmin are selected for further processing.
Therefore, an upper boundary forσθ can be computed (assumingNS = 4):

σθ ≤
√

3
2γmin

σI . (4.38)

The standard deviationσI depends on the utilized camera and can be determined experimentally. For this, several
images (e.g., 50) of the same scene under identical exterior circumstances are acquired. For each pixel the gray
value standard deviation can be computed over the collection of images. An empirical value forσI can then be
obtained by computing the average standard deviation over all pixels. This procedure needs to be executed only
once for a specific camera (assuming a constant integration time) and therefore does not hamper the applicability
of the proposed approach. Off-the-shelf cameras of higher quality show typical values forσI in the range of
[1.5,2]. The practical correctness of the analytically derived values forσθ was experimentally confirmed. An
artificial image showing a gray value edge with a length of 1000 pixels was created. Random noise with Gaussian
distribution was added to the image usingσI as standard deviation. The gradient direction was computed using
the Sobel filter and the standard deviation of the gradient direction was derived over the 1000 edge pixels. This
procedure was repeated 100 times and a mean standard deviation was computed. The experiment was executed
for edge magnitudesγ in the range of[1,70]. Figure 4.17 displays the mean standard deviations obtained from
the experiments for two selected values ofσI in dependence on the edge magnitude. Additionally, the values
obtained analytical from (4.38) are plotted. Evidently, theory and practice show a very good correspondence.

After having derived the standard deviation of the gradient direction, the maximum error induced by noise in
the image can be determined. By assuming an approximately normal distribution of the computed gradient
direction, one can specify the desired percentage of gradient directions that should lie within a certain interval.
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Figure 4.17: The standard deviation σθ of the gradient direction obtained from the Sobel filter depends on the edge magnitude
γ. The experimentally obtained values show a very good correspondence with the values computed analytically from (4.38).

For example, if at least 95 percent should fall inside the interval then its boundaries are[−2σθ,+2σθ], i.e., the
maximum gradient direction errorξn induced by noise in the image is

ξn = 2σθ . (4.39)

Practical experiments have confirmed that assuming a confidence interval of 95 percent was sufficient for all
tested examples.

The second influence that must be taken into account is the inherent absolute accuracy of the Sobel filter, i.e.,
the difference between the real partial derivatives and the Sobel response. Since the Sobel filter is an anisotropic
filter, its absolute accuracy depends on the current gradient direction. The anisotropy error is eliminated to a
high degree by rotating the model image instead of the displacement vectors when deriving theR-tables for the
different object orientations, as proposed in Section 4.2.2. However, the anisotropy error within the range of one
orientation step∆ϕ still remains. The error of the gradient directioneθ depends on the frequency in the image
and on the actual gradient direction itself, and can be computed with the following formula (J¨ahne 2002):

eθ(f̄ , θ) ≈ −(πf̄)2

48
sin 4θ +O(f̄4) , (4.40)

wheref̄ ∈ ]−1,1[ is the frequency normalized to the maximum frequency that can be sampled (Nyquist fre-
quency). Therefore, errors with highest magnitude of about 11.8 degrees are obtained. This is the case when
applying the Sobel filter to image structures with frequencies close to the Nyquist frequency, i.e.,f̄ → 1, and
with gradient directions ofθ = π

4 (z + 1
2), z ∈ Z. Although the casēf = 1 cannot occur in practice because

the Sobel filter would return zero edge magnitude, the assumptionf̄ → 1 is reasonable in order to represent the
asymptotically worst-case scenario. The anisotropy errors are eliminated when calculating theR-tables in the
proposed way. Thus, if the object appears in the search image in exactly the same orientation from which an
R-table was computed, using a sampled orientationϕr, the errors cancel out. In general, objects do not care about
the sampled orientations but appear in arbitrary orientations. Consequently, each sampled orientationϕr must
represent a range of object orientations[ϕr − ∆ϕ

2 , ϕr + ∆ϕ
2 ]. Therefore, it is of interest, how much the error of

the gradient direction changes within this range of orientations. For this, (4.40) is differentiated with respect to
θ. Ignoring higher order terms and assuming the worst-case by settingf̄ to 1 one obtains:

e′θ(θ) =
π2

12
cos 4θ . (4.41)

Accordingly, the maximum change of the gradient error isπ2

12, obtained atθ = z π
4 , z ∈ Z. Assuming an

orientation step of∆ϕ, the maximum change of the anisotropy errorξa that may occur within one range of
orientations[ϕr − ∆ϕ

2 , ϕr + ∆ϕ
2 ] with respect to the reference orientationϕr is

ξa =
∆ϕ
2

max
θ

(e′θ(θ)) = ∆ϕ
π2

24
. (4.42)
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The third and most evident influence on the gradient direction directly arises from the orientation step∆ϕ itself.
Assume that anR-table was generated at the discrete orientationϕr. If the object appears at orientationϕr ± ∆ϕ

2

in the search image all gradient directions at corresponding edge points also change by the same value±∆ϕ
2 in

comparison to the gradient directions that are stored in theR-table. Therefore, the maximum error on the gradient
direction that is caused by the quantization of the object orientation is given by

ξ∆ϕ =
∆ϕ
2

. (4.43)

Finally, the resulting maximum errorξ of the gradient direction is the sum of all single errors (see Figure 4.18(a)):

ξ = ξn + ξa + ξ∆ϕ (4.44)

= 2σθ +

(
1
2

+
π2

24

)
∆ϕ ≈ 2σθ + 0.91∆ϕ .

Imagine that in the offline phase the displacement vectorri is stored in rowk of the R-table, and hence the
associated gradient directionθm

i is in the intervalΘk. Furthermore, assume thatθm
i exactly lies at the upper

boundary of the intervalΘk. Because of the error of the gradient directions, in the online phase the gradient
direction at the corresponding edge point in the search image may change toθm

i + ξ in the worst-case and
therefore leave the intervalΘk. Consequently, in the conventional GHT the displacement vectors of the wrong
row in theR-table are used to increment the cells. In contrast, the correct displacement vectorri would remain
unconsidered. Thus, whenever a certain gradient direction occurs in the search image, it is not known whether
it is distorted by an error or not. This means that it is impossible to reliably compute the correct row of the
R-table. The optimum solution to this problem would be to consider all those displacement vectors for voting
where the associated gradient direction at most differs by±ξ from the computed gradient direction in the search
image. Unfortunately, this solution would slow down the computation in the online phase considerably because
additional comparisons would have to be performed. A more efficient solution is to generate overlapping gradient
direction intervals, as shown in Figure 4.18(b). For a correct computation, the overlap size must be chosen to be
ξ in both directions of the interval. This ensures that in spite of potential errors in the gradient direction the right
displacement vectors are chosen. To realize the overlap, the displacement vector with gradient directionθm

i that
is within the intervalΘk, and hence stored in rowk of theR-table, is additionally stored in neighboring rows of
the table. The neighboring rows are chosen so that they completely cover all possible gradient directions, which
are given by the intervalθ ∈ [θm

i − ξ, θm
i + ξ]. This ensures that in the online phase the computedR-table row

contains the correct displacement vector with a very high probability (95%).

ξ n
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ξ ∆ϕ
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ξ n
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(a) Gradient direction error

Θk

Θk-1

Θk+1

∆θ ξ

(b) Overlapping intervals

Figure 4.18: The associated gradient directions of the displacement vectors that are stored in interval Θk of the R-table may
be distorted by the maximum error ξ in the search image and therefore exceed the border of the interval (a). This can be
avoided using overlapping intervals, where the correct overlap is ξ in both directions (b).
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Once the overlap size has been correctly computed, the interval size∆θ itself can be chosen arbitrarily without
risking the loss of any displacement vectors in the online phase. However, the computation time of the online
phase directly depends on∆θ. The smaller the interval size, the faster the computation is. For the reason of
simplifying further considerations, in the following the tile structure will be disregarded without any restrictions
on the generality. Then, the number of voting events that must be performed on average for one edge pixel in the
search image (for one specific object orientation, i.e., for one specificR-table) can be quantified (cf. (4.16)):

nvote = nm ∆θ
2π

(
1 +

2ξ
∆θ

)
= nm ∆θ + 2ξ

2π
. (4.45)

From this, it is clear that the number of voting events, and hence the computation time in the online phase,
increases linearly with∆θ, reaching its minimum for∆θ = 0. Unfortunately, the memory requirement for
oneR-table increases with decreasing∆θ. Sincenvote in (4.45) represents the average number of displacement
vectors that are stored in one row of theR-table, and since there are2π

∆θ rows altogether, the number of (multiply)
stored displacement vectorsnr in one singleR-table is

nr = nvote 2π
∆θ

= nm
(

1 +
2ξ
∆θ

)
. (4.46)

It is essential to note thatnr is proportional to the memory that is needed to store oneR-table. This means
that there is a trade-off between computation time (4.45) and memory requirement (4.46) when choosing an
appropriate value for∆θ. Setting∆θ = 2ξ is an empirically determined suitable compromise. This means that
each displacement vector is stored twice in eachR-table.

Another factor that affects the gradient direction is subpixel translations. Taking the edges as 2D curves in the
image, the magnitude of the gradient direction variation that is caused by subpixel translation mainly depends on
the curvature of the edges. In Figure 4.19 an example of subpixel translation in they direction shows this effect.
Here, the gradients of the corner pixel and the pixel below significantly change because of the translation. One
possible solution for this problem is to introduce only “stable” edge points into the model. I.e., those pixels are
introduced whose gradient directions at most vary in a small range. The stable points can be found by translating
the model image by 1/2 pixel in each direction and comparing the computed gradient directionsθt with those
of the untranslated imageθ0. The edge pixels with small differences, i.e.,|θ0 − θt| ≤ ξ, form the model. This
ensures that the errors that are induced by subpixel translations are already covered by the appropriately chosen
overlap size of the gradient direction intervals. All other edge pixels are disregarded when computing theR-
tables. A more pragmatic approach of finding the stable points is to directly threshold the curvature of the edge
pixels. However, a suitable value for the threshold is difficult to find. It should be noted that if the fraction of edge
pixels that are to be eliminated by the above criterion is too high then the threshold for the maximum differences
should be relaxed. This is important in order to be still able to handle arbitrary objects (especially objects that
exhibit high curvature in most edge pixels).

edge position

gradient directions

edge pixel

subpixel
translation

in y direction

Figure 4.19: Subpixel translations affect the gradient directions, particularly in regions with high edge curvature.

4.2.5.4 Tile Structure

A problem similar to the quantization of the gradient directions occurs when using the tile structure described in
Section 4.2.3.3. To simplify further considerations, the size of the tiles should be chosen so that the uncertainty



68 CHAPTER 4. RECOGNITION OF RIGID OBJECTS

of the approximate position is taken into account. I.e., the dimension of the tiles in thex andy direction should
be 2δx and 2δy. Furthermore, it must be ensured that an error ofδx andδy of the approximate positioño does
not result in omitting the relevant edge pixels as a consequence of considering the wrong tile. This problem is
illustrated in Figure 4.20(a). In this example, the model consists of three edge pixels that are stored in tile 3 within
the model (for illustration purposes only, the reference point in this example differs from the centroid). However,
in the online phase, the approximate position ofõ may vary within the range ofδx andδy. Now, assume that
the approximate position is not computed at its true location but displaced by+δx and+δy. To compute the
respective tile numbers for the voting process, the tile structure is then centered at the displaced approximate
position, leading to the fact that the calculated tile number for the three edge pixels would now be 5 and 6 instead
of 3. However, in these two tiles no displacement vectors are stored, and thus no voting event would be executed.
Consequently, the match candidate would be deleted.
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Figure 4.20: In (a) the three edge pixels are originally contained in tile 3. Because of the maximum error δx and δy of the
approximate position õ, the edge pixels might move to neighboring tiles. With this, the tiles 5 and 6 are occupied and should
be taken into account during voting. The problem can be solved using overlapping tiles, which are realized by creating a
look-up table, where for each pixel in each tile the tile numbers that must be taken into account during voting are stored (b).

The solution is illustrated in Figure 4.20(b). To avoid omitting relevant tiles (tile 3 in this example), certain neigh-
boring tiles of the calculated tile must be considered additionally during voting. Since not all of the neighbors
need to be taken into account a look-up table that holds the relevant tiles to be checked is constructed. For exam-
ple, the two edge pixels on the left of Figure 4.20(a) fall into tile 5. It is easy to see that edge pixels occurring at
this position may only belong to tiles 2, 3, 5, or 6. Therefore, these four tiles must be taken into account during
the voting process. The associated tiles can be calculated for each edge pixel in each tile in the offline phase and
are stored together with the tile structure. This look-up table is computed for all lower pyramid levels. Finally,
in the online phase, for each edge pixel on lower pyramid levels the corresponding tiles are investigated by just
reading the entry in the look-up table. This facilitates a fast computation while keeping the memory requirement
low.

4.2.6 Implementation Details

To complete the description of the MGHT, some remarks that mainly concern the practical implementation of
the proposed approach will be made. At first, some additional points that have not been explained so far will be
discussed. Afterwards, a short summary of all necessary and possible user interactions provided by the imple-
mentation is given.

The first point to discuss is the threshold for the number of votes that a local maximum must achieve in the
accumulator array in order to be treated as a match candidate. This threshold strongly depends on the maximum
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degree of occlusion that may occur in the search image because the number of votes decreases proportionally to
the percentage of object occlusion. Therefore, the user must specify this threshold in order to balance between
computation time and allowable occlusions. If the threshold is set to a low value, then on the one hand objects
that are occluded to a high degree can be recognized, but on the other hand in general more match candidates
must be tracked through the pyramid. The most intuitive way for the user to determine the threshold value is
to specify the ratiosmin ∈ [0,1] to which the object must be visible in the image. With this, the number of
votes can be transformed into a score values that reflects the visibility of the object. Unfortunately, because the
accumulator array is smoothed after the voting process, the values of the cells do not represent the number of
votes any more. Consequently, the threshold cannot be computed by simply multiplying the number of model
edge pixels (or twice the number if∆θ = 2ξ) with smin . Therefore, a method to experimentally specify the peak
height in the smoothed accumulator array is applied: already in the offline phase the object is recognized in the
model image and the smoothed peak height is stored within the model as the reference peak height. In the online
phase, the smoothed values of the accumulator array are then normalized by the reference peak height, yielding
the score values. This value can be directly compared to the user-specified thresholdsmin . It should be noted
that s may exceed the value of 1 in cases of heavy clutter in the image since randomly distributed votes that
are caused by the clutter may falsely increase the actual peaks of the match candidates. Furthermore, on higher
pyramid levels the score value of the match candidates may decrease although the object is completely visible.
This effect can be attributed to the fact that image pyramids are not invariant to translations (Lindeberg 1994).
Hence, the user-specified thresholdsmin must be slightly reduced on higher pyramid levels in order to avoid that
matches are missed.

Because a breadth-first strategy is applied, the computation time when searching for several instances simultane-
ously does not dramatically increase in contrast to searching only for one single instance. Consequently, a second
point that should be remarked concerns the number of matches that should be found during object recognition.
Here, the user can choose between two options. The first option is to return all matches that have a score exceed-
ing the specified thresholdsmin . The second option allows the user to introduce additional information about
the maximum numbernmatch of objects instances that may appear in the search image. This information can
be used in the breadth-first search to eliminate a high number of match candidates during the tracking through
the pyramid. This results in a high gain of computational efficiency. One way to eliminate match candidates is
to count the number of candidates that exceed the thresholdsmin on the current pyramid level. If this number
is higher than the user-defined maximum number of object instances, extra match candidates with lower score
values are excluded from further processing. The score values of the candidates do not behave in a predictable
manner during the tracking through the pyramid. Thus, a candidate with lower score on a higher pyramid level
can turn into a candidate with higher score on a lower pyramid level. For this reason, a more tolerant heuristic
is applied. A match candidate is only eliminated if it additionally fulfills the condition that its score is signifi-
cantly lower than the lowest score of non-eliminated match candidates. Finally, on the lowest pyramid level only
thenmatch best match candidates that additionally fulfill the requirement for the minimum score are returned as
matches.

The last point to mention is the mutual overlapping of matches. In practice, sometimes one instance of an object in
the search image returns more than one match. For example, when dealing with objects that exhibit symmetries,
several matches are returned at similar positions, but at different orientations. In order to avoid this behavior,
the user can specify a fraction by which two returned matches are allowed to overlap each other at most. The
actual overlap fraction between two matches is approximated by the overlap between the two smallest enclosing
rectangles of the two objects at the pose of the respective matches. If the computed overlap fraction exceeds the
user-specified maximum overlap, the match with lower score value is eliminated.

In the following, all necessary and possible user interactions or parameter settings of the MGHT are summarized.

• Input data passed to the offline phase (model generation):

– The model image in which the object is defined by an arbitrary region of interestmustbe provided.
Usually, the ROI is specified by the user. Another possibility would be to generate the ROI automati-
cally using suitable segmentation techniques.
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– The usermustspecify the threshold for the minimum edge magnitudeγmin that is used for edge seg-
mentation. As previously mentioned, this value depends on the application and cannot be determined
automatically.

– The camera-specific noiseσI of the gray values in the imagemustalso be provided in order to auto-
matically compute the optimum quantization of the gradient direction intervals used in theR-tables.

– Optionally, the domain of the transformation classmaybe restricted by the user, i.e., the range of
possible object orientations can be restricted to a certain interval to avoid unnecessaryR-table gener-
ations. Thus, the memory requirement of the model and the computational effort in the online phase
is reduced.

– In general, the automatically determined values for the reference pointom, the number of pyramid
levelsnl, the orientation step∆ϕ, and the size of the gradient quantization intervals∆θ are suitable
for most applications. Nevertheless, the usermayoptionally overwrite these values in order to receive
a higher flexibility.

• Input data passed to the online phase (object recognition):

– The search imagemustbe provided, where an arbitrary ROImayrestrict the image domain for edge
extraction. Thus, the user may introduce additional prior knowledge about the object position as well
as the object orientation, which can be specified during model generation, to speed up the recognition.

– The minimum scoresmin mustbe provided to specify the minimum peak height for match candidates.

– Also in the search image edge extraction is performed. Therefore, the minimum edge magnitudecan
be optionally specified if it differs from the value set in the online phase. It is important to note that
the automatic computation of∆θ is based onγmin , which was specified in the offline phase.

– The maximum number of matchesnmatch canbe specified in order to speed up the computation.

– The maximum allowable overlap between different matchescan be specified to eliminate multiply
found object instances.

Finally, for each match the object pose and the associated score value is returned. The pose is represented by the
object positionos

x, os
y, and the object orientationϕs, whereϕs is 0 if the orientation of the object in the search

image is identical to its orientation in the model image.

4.2.7 Conclusions

To give an idea of the improvement of the MGHT in comparison to the conventional GHT, the memory require-
ment and the computational complexity of both methods are computed for a typical practical example. For this,
a search image size of 600× 600 pixels, a tile size of 7× 7 pixels, 3000 model points at the original resolution,
and four image pyramid levels are assumed. The result is summarized in Table 4.3. For the MGHT the memory
requirement of the model increases from 4.3 MB to 30.8 MB in comparison to the conventional GHT, which is
mainly caused by the tile structure. However, in the online phase, the memory requirement shrinks from 480 MB
to 0.5 MB because of the use of image pyramids. Since image pyramids are used and the computation time is
optimized by the proposed approach the computational complexity of the online phase is reduced considerably:
theoretically, the MGHT is about 16.000 times faster than the conventional GHT in this example. However, in
practice the recognition time is reduced from 45.60 s to 0.07 s on a 400 MHz Pentium II, which corresponds to a
factor of still 650. The difference to the theoretical value can be explained by the increased memory access within
the MGHT in contrast to the conventional GHT. Nevertheless, a tremendous improvement is still observable.

In summary, the MGHT that has been presented in this section eliminates the major drawbacks of the conven-
tional GHT while keeping its inherent advantages and fulfills the stated requirements concerning the recognition
of rigid objects listed in Section 2.2. A comprehensive performance evaluation, including a comparison with
other rigid object recognition methods, will be presented in Section 4.4 in order to support the theoretically de-
rived improvements. Although the descriptions in this section have been restricted to deal with rigid motion as
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GHT MGHT

Memory Requirement [MB] (Offline) 4.3 30.8

Memory Requirement [MB] (Online) 480 0.5

Computation Time [s] 45.60 0.07

Table 4.3: Improvement of the modified generalized Hough transform (MGHT) in comparison to the conventional generalized
Hough transform (GHT) according to memory requirement and computation time

the transformation class, the MGHT can be easily extended in a straight forward way to be able to cope with
more general transformations, like similarity or affine transformations. Therefore, also applications that require
parameter spaces of higher dimensions can benefit from the proposed modifications.

4.3 Shape-Based Matching

As mentioned in Section 2.4, simultaneously to the development of the MGHT, a new similarity measure has
been developed. This similarity measure is already included in the HALCON library and is referred to asshape-
based matching(SBM). In this section, the new similarity measure, an improved method for pose refinement,
and some implementation details are described. Further details can be found in (Steger 2001, Ulrich and Steger
2002, Steger 2002).

4.3.1 Similarity Measure

The model of the SBM consists of a set of model pointspm
i = (xm

i , y
m
i )> as in the case of the MGHT. Addi-

tionally, the model is complemented by the associated gradient direction vectorsdm
i = (ti, ui)>, i = 1, . . . , nm,

whereti = Im
x

∣∣∣pm
i

andui = Im
y

∣∣∣pm
i

. Figure 4.21 illustrates the principle of this similarity measure by means
of the example that has already been introduced in Section 4.2.1. Here, the third pyramid level is displayed
(see Figures 4.2, 4.7(a), and 4.7(b)). In the offline phase, edges are extracted from the model image, which is
shown in Figure 4.21(a), and their associated gradient direction vectors are computed. The resulting edges and
the normalized gradient direction vectors (white arrows) are shown in Figure 4.21(b).

(a) Model image

model edge pixels m
i

gradient direction vectors
of the model image at

the model edge pixels

m
id

p

(b) Model edges

gradient direction vectors of search imagesd ( , )x y

(c) Search image

Figure 4.21: In the shape-based matching edges are extracted and the associated gradient direction vectors are computed (b)
from the model image (a). The search image is edge filtered, resulting in a gradient direction vector at each model edge
pixel (c).
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The search image, which is shown in Figure 4.21(c), can be transformed into a representation in which a gradient
direction vectords(x, y) = (v(x, y), w(x, y))> is obtained for each image point(x, y)>. In the matching process,
the transformed model must be compared to the search image at a particular location using a certain similarity
measure. The basic idea behind the similarity measure within the SBM is to sum the normalized dot products of
the gradient direction vectors of the transformed model and the search image over all model points. From this, a
matching scores is obtained at each point(x, y)> in the search image. In Figure 4.21(c) the normalized gradient
direction vectors are displayed as black arrows at each pixel in the search image. A threshold on the similarity
measure has to be specified by the user. For this, a similarity measure with a well-defined range of values is
desirable. The following similarity measure achieves this goal:

s(x, y) =
1
nm

nm∑
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〈dm
i ,d
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where〈·, ·〉 represents the dot product between two vectors. Therefore,s(x, y) represents the averaged cosine of
the angle differences between the gradient directions of the transformed model points and the respective gradient
directions in the search image. The cosine takes into account that the gradient direction is influenced by image
noise. The effect of the resulting small angle differences on the similarity measure is reduced by the low sensi-
tivity of the cosine to small arguments, which yields a high robustness against noise. Figure 4.21(c) also shows
the calculation of the matching scores(x, y) for two example positions of the object in the search image. At the
true position (upper left) the angle differences between the direction vectors are small, and thus the cosine will
be close to 1 at each model edge pixel. The reason for the small differences can be attributed to artificially added
noise in the search image. At the second example position (lower right) the corresponding gradient directions
show significantly higher differences, leading to cosine values that are much smaller than 1.

This similarity measure shows several inherent advantages. Because of the normalization of the gradient direction
vectors, the similarity measure is invariant to arbitrary changes in brightness since all vectors are scaled to length
one. It is essential to note that edge filtering is applied to the search image, but no segmentation is performed,
i.e., no threshold on the edge magnitude is applied. This has the advantage that the similarity measure not only
exhibits robustness but true invariance against changes in brightness of an arbitrary type: there is no risk that
any edge pixel falls below an edge threshold if the contrast is too low. This constitutes the major advantage in
comparison to all the object recognition methods that rely on segmented features in the search image, like, for
instance, the Hausdorff distance or the GHT. Furthermore, this measure is robust against occlusion and clutter
because in case of missing features, either in the model or in the search image, noise will lead to random gradient
direction vectors, which, on average, will contribute nothing to the sum (see (Steger 2002) for further discussions
concerning this topic).

Focusing on (4.47) again, the similarity measure will return a high score if all the direction vectors of the model
and the search image align, i.e., have the same direction. A score of 1 indicates a perfect match between the
transformed model and the search image. Furthermore, the score roughly corresponds to the portion of the object
that is visible in the search image.

4.3.2 Implementation Details

An important feature of this similarity measure is that it does not need to be evaluated completely when object
recognition is based upon a thresholdsmin for the similarity measure. Letsj denote the partial sum of the dot
products up to thej-th model point:
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Obviously, all the remaining terms of the sum are all smaller or equal to 1. Therefore, the partial score can
never reach the required scoresmin if sj < smin − 1 + j/nm, and hence the evaluation of the sum can be
discontinued after thej-th element whenever this condition is fulfilled. This criterion speeds up the recognition
process considerably.

Nevertheless, further speed-ups are highly desirable. Another criterion is to set the condition that at each partial
sum the score is better thansmin , i.e., sj ≥ sminj/nm. When this criterion is used, the search will be very
fast, but it can no longer be ensured that the object recognition finds the correct instances of the object. This is
because if missing parts of the object are checked first, then the partial score will be below the required score. To
speed up the recognition process with a very low probability of missing the object, the following heuristic can be
used: the first part of the model points is examined with a relatively safe stopping criterion, while the remaining
part of the model points is examined with the hard thresholdsminj/nm. The user can specify a parameterg,
which represents the fraction of the model points that are examined with the hard threshold. This parameter will
be referred to asgreedinessbelow. If g = 1, all points are examined with the hard threshold, while forg = 0,
all points are examined with the safe stopping criterion. With this, the evaluation of the partial sums is stopped
wheneversj < min(smin − 1 + ζj/nm, sminj/nm), whereζ = (1− gsmin)/(1− g). The term greediness is
chosen because it appropriately reflects the intention of the parameter: ifg is set to 1 the search is very greedy,
i.e., the search strongly tends to early abort the evaluation of less promising transformations in order to reduce
the computation time. However, the risk of missing a match is high.

To further speed up the recognition process, the model is generated in multiple resolution levels, which are con-
structed by generating an image pyramid from the original image — in the same way as in the MGHT. Because
of runtime considerations, again the Sobel filter is used for feature extraction. To take rigid transformations
into account the model is also created for different object orientations. For this,2/rmax has proven to be an
appropriate value for the orientation step size∆ϕ (cf. Section 4.2.5.1). In the online phase, an image pyramid
is constructed for the search image. To identify potential matches, an exhaustive search is performed for the top
level of the pyramid. With the termination criteria using the thresholdsmin , this seemingly brute-force strategy
actually becomes extremely efficient. After the potential matches have been identified, they are tracked through
the resolution hierarchy until they are found at the lowest level of the image pyramid.

Furthermore, the same method for pose refinement that is applied to the MGHT can be used in the SBM (cf.
Section 4.2.4): once the object has been recognized on the lowest level of the image pyramid, its pose parameters
position and orientation are extracted to a resolution better than the discretization of the search space by fitting
again a second order polynomial (in the three pose variables) to the similarity measure values in a 3× 3× 3
neighborhood around the maximum score.

4.3.3 Least-Squares Pose Refinement

If an even higher accuracy is desirable than the accuracy that can be achieved by using the pose refinement de-
scribed in Section 4.2.4, a least-squares adjustment can be applied. Here, the sum of squared distances between
the transformed model points and the points in the search image is minimized. For this, it is necessary to extract
the model points as well as the corresponding points in the search image with subpixel accuracy. However, an
algorithm that performs a least-squares adjustment based on closest point distances would not improve the accu-
racy much since the points would still have an average distance significantly larger than 0 tangentially because the
model and search points are not necessarily samples at the same points and distances. Therefore, for each trans-
formed model point the closest point in the search image is found and the squared distance of that point to a line
defined by the corresponding model point and the corresponding tangent to the model point is minimized. I.e.,
the directions of the model points are taken to be correct and are assumed to describe the direction of the object’s
border. The tangents are defined by the edge pointspm
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i )> in the model image and the perpendicular

to the corresponding normalized gradient direction vectorsdm
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Finally, the sum of squared distances is minimized:

d2(a) =
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j(a)− xm
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j (a)− ym

i )]2 → min . (4.49)

Here,a represents the vector of the unknown (inverse) pose parameters andxs
j(a), ys

j(a) the transformed cor-
responding edge point of the search image. It should be noted that instead of transforming the tangents at the
model points by the pose parameters, the points in the search image are transformed back using the inverse pose
parametersa in order to simplify the calculations.

The potential corresponding edge pointsps
j in the search image are obtained by a non-maximum suppression of

the edge magnitude in gradient direction and are further extrapolated to subpixel accuracy (Steger 2000). Thus, a
segmentation of the search image is further avoided in order to maintain invariance against changes in brightness.
The model points are transformed according to the pose parameters that have been obtained from the polynomial
fitting (cf. Section 4.2.4). Because the points in the search image are not segmented and correspondence is based
on smallest euclidian distance, spurious points in the search image may be brought into correspondence with
model points. Therefore, to make the adjustment robust, only those edge points in the search image perpendicular
to the local tangent direction are taken into account. Furthermore, corresponding edge points that have a distance
larger than a statistically computed threshold are ignored in the adjustment. Since the point correspondences
may change by the newly estimated pose, an even higher accuracy can be gained by iterating the correspondence
search and the parameter adjustment. Typically, after three iterations the accuracy of the pose no longer improves.

4.4 Performance Evaluation of the MGHT and the SBM

In this section, an extensive empirical performance evaluation of the two developed approaches, the MGHT and
SBM, is presented.

To assess the performance of the two approaches, they are compared to six different 2D object recognition tech-
niques that are already available. For this purpose, three standard similarity measures are chosen because they are
frequently used methods in industry and therefore are rather well known: the sum of absolute differences (SAD)
and the normalized cross correlation (NCC) as two standard intensity-based approaches and the Hausdorff dis-
tance (HD) as a standard feature-based approach. They constitute a common basis that facilitates the comparabil-
ity of the subsequent evaluation with other evaluations that also include one of these standard approaches. Further-
more, including the three standard approaches in the performance evaluation is scientifically interesting because
no direct comparison of the three approaches could be found in literature. Additionally, to be able to evaluate
the potential of the two new approaches, three commercial high-end recognition tools have been included in the
evaluation: theGeometric Model Finder(GMF) developed byMatrox Electronic Systems Ltd.(Matrox 2002) as
well asPatMaxR© (PM) andPatQuickR© (PQ), both developed by Cognex (Cognex 2000). The analysis of the per-
formance characteristics of rigid object recognition methods is an important issue (cf. (Ulrich and Steger 2001)).
Firstly, it helps to identify breakdown points of the algorithms, i.e., areas where the algorithms cannot be used
because some of their underlying assumptions are violated. Secondly, it makes an algorithm comparable to other
algorithms, thus helping users to select the appropriate method for the task they have to solve. In the special case
of this dissertation a performance evaluation of rigid object recognition methods is essential in order to select the
approach that is best suited to serve as a module within the approach to recognize compound objects.

The remainder of the chapter is organized as follows. After a short introduction of the respective methods,
several criteria that allow an objective evaluation of object recognition approaches are introduced. Three main
criteria are used to evaluate the performance and to build a common basis that facilitates an objective comparison
(cf. (Ulrich and Steger 2002)): the robustness, the accuracy of the returned pose parameters, and the computation
time. Thereby, it is distinguished between the robustness against occlusions and clutter and the robustness against
arbitrary changes in brightness. Experiments on real images are used to apply the proposed criteria. For this, in
a first step, the experimental set-up for the evaluation measurements is explained in detail. In a second step, the
results are illustrated and analyzed.
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4.4.1 Additionally Evaluated Object Recognition Methods

4.4.1.1 Sum of Absolute Differences

The special implementation that has been investigated to evaluate the sum of absolute gray value differences con-
siders rigid motion and makes use of image pyramids to speed up the recognition process. The average distance
is used as dissimilarity measure using the formula given in (4.3). Since the SAD is a measure of dissimilarity, the
resulting average difference is also denoted as errore in the following. Hence, in contrast to all other methods this
measure is not normalized to a certain interval, but can take arbitrary values, where an error of 0 denotes a perfect
match. The position and orientation of the best match, i.e., the match with smallest error, is returned. Addition-
ally, it is possible to specify the maximum erroremax of the match to be tolerated, similar tosmin when using a
similarity measure. The loweremax is chosen, the faster the recognition is performed, since fewer matches must
be tracked down the pyramid. Subpixel accuracy of position and the refinement of the discrete orientation are
calculated by interpolating the minimum ofe.

4.4.1.2 Normalized Cross Correlation

For the purpose of evaluating the performance of the normalized cross correlation the implementation of the
Matrox Imaging Library(MIL) — as one typical representative — was used. The MIL is a software development
toolkit of Matrox Electronic Systems Ltd.(Matrox 2001). Some specific implementation characteristics should be
explained to ensure the correct appraisal of the evaluation results: The algorithm is able to find a predefined object
under rigid motion. A hierarchical search strategy using image pyramids is used to speed up the recognition. The
quality of the match is returned by calculating a score value ass = max(NCC ,0)2 ∈ [0,1], whereNCC is the
value of the NCC as it is obtained when using (4.2). The subpixel accuracy of the object position is achieved by
a surface fit to the match scores around the peak. The refinement of the object orientation is not comprehensively
explained in the documentation. However, it is supposed that the refinement of the obtained discrete object
orientation is realized by a finer resampling of the orientation in the angle neighborhood of the maximum score
and recalculating the NCC at each refined orientation.

4.4.1.3 Hausdorff Distance

The original implementation by Rucklidge (Rucklidge 1997) was utilized to rate the performance of the Haus-
dorff distance. The core of the implementation uses the partial HD (cf. (4.8) and (4.9)). The program expects the
forward and the reverse fraction as well as the thresholds for the forward and the reverse distance as input pa-
rameter. Both, the model image and the search image must be passed in binary form to the algorithm. Therefore,
edges are extracted in advance using a minimum edge magnitudeγmin by applying the same preprocessing steps
as in the case of the MGHT and the SBM to ensure a high comparability of the approaches. Since the method of
(Rucklidge 1997) returns all matches that fulfill the given score and distance criteria, the best match was selected
based on the minimum forward distance. If more than one match had the same minimum forward distance, the
match with the maximum forward fraction was selected as the best match. The forward fraction was interpreted
as score values ∈ [0,1] during the evaluation in order to measure the quality of the match. A score of 1 denotes
a perfect match in the sense that all model pixels fulfill the selected forward distance. The implementation is not
able to recognize rotated objects but only allows to recognize translated objects with fixed orientation. Further-
more, no subpixel refinement is included. Generally, it seems to be very difficult to compute a refinement of the
returned parameters directly based upon the forward or reverse fraction. Although the parameter space is treated
in a hierarchical way there is no use of image pyramids, which makes the algorithm very slow.

4.4.1.4 Geometric Model Finder

The Geometric Model Finder uses edge-based geometric features to find objects in images. Unfortunately, no
detailed information about the principle of the GMF is available from its documentation (Matrox 2002). The
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default threshold that is used for edge extraction in the model image as well as in the search image can be
influenced by a parameter that allows to chose the detail level, and hence whether a medium (default), a high, or
a very high number of edges are to be extracted. This parameter of the GMF is similar to the threshold for the
minimum edge magnitudeγmin used in the MGHT, the SBM, and the HD. To measure the quality of a match, a
score values ∈ [0,1] is computed and returned. The minimum score that must be reached by a match candidate
can be set by choosingsmin . Finally, the object pose is returned with subpixel accuracy. However, as a last
important parameter to mention, the accuracy level can be controlled choosing between a medium and a high
accuracy. The high accuracy is gained at the expense of a slower computation.

4.4.1.5 PatMax and PatQuick

As described in their documentation (Cognex 2000), PatMaxR© and PatQuickR© use geometric information. The
main difference between the two approaches is that PQ is a faster but less accurate version of PM. Both methods
apply a three-step geometric measurement process to an object: At first, it identifies and isolates the key individual
features within the model image and measures characteristics such as shape, dimensions, angle, arcs, and shading.
Then, it matches the key features of the model and the search image, encompassing both distance and relative
angle. By analyzing the geometric information from both the features and spatial relationships, PM and PQ are
able to determine the object’s position and orientation precisely, i.e., the accuracy is not limited to a quantized
sampling grid.

The model representation, however, which can be visualized by PM and PQ, apparently consists of subpixel
precise edge points and respective edge directions. From this, one can be led to conclude that the two approaches
use similar features as the SBM, in contrast to their documentation.

To speed up the search, a coarse-to-fine approach is implemented. Indeed, there is no parameter that enables users
to explicitly specify the number of image pyramids to be used. Instead, the parametercoarse grain limitcan be
used to control the size of the features to be used during recognition and, therefore, the depth of the hierarchical
search. This parameter has a similar meaning as the number of pyramid levels, but it cannot be equated with. To
indicate the quality of the match, a scores ∈ [0,1] is computed, where 1 again represents a perfect match.

4.4.2 Robustness

The first criterion to be considered is therobustnessof the approaches. This includes the robustness against
occlusions and clutter as well as the robustness against arbitrary changes in brightness.

Experimental Set-Up. For all subsequent experiments an IC (see Figure 4.22(a)) was chosen as the object
to be found. Only the part within the bounding box of the print on the IC is used as ROI, from which the
models of the different recognition approaches are created (see Figure 4.22(b)). For the recognition methods that
segment edges during model creation (MGHT, SBM, HD), the threshold for the minimum edge magnitudeγmin

in the model image was set to 30 for all experiments. The detail level of the GMF was set to medium, which is the
default value and results in approximately the same edges that are obtained when applying a threshold of 30 to the
edge magnitude. All images that were used for the evaluation are of size 652×494 pixels. The experiments were
performed on a 400 MHz Pentium II. For those recognition methods that use image pyramids (MGHT, SBM,
SAD, NCC), four pyramid levels were used to speed up the search. The algorithm presented in Section 4.2.3.1
found this number of levels to be the optimum for the IC. This number also agrees with human intuition. For PQ
and PM the automatically determined value for the parametercoarse grain limitwas assumed to be the optimum
one, and hence no manual setting was applied.

To apply the criterion of robustness, two image sequences were taken, one for testing the robustness against
occlusions and clutter, the other for testing the robustness against changes in brightness. The recognition rate
was defined as the number of images in which the object was recognized at the correct pose divided by the total
number of images, and hence is an indicator for robustness against occlusions. The false alarm rate was defined
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(a) Model image (b) ROI

Figure 4.22: An IC is used as the object to be recognized (a). The model is created from the print on the IC using a rectangular
ROI (b).

Figure 4.23: Six of the 500 images that were used to test the robustness against occlusions

as the number of images, in which the object was recognized at an incorrect pose divided by the total number of
images, and thus is an indicator for robustness against clutter. Such matches are called false positives.

The first sequence contains 500 images of the IC, in which the IC was kept at a fixed position and orientation and
was occluded to various degrees with various objects, so that in addition to occlusion, clutter of various degrees
was created in the images. Figure 4.23 shows six of the 500 images. In the corresponding model image of this
sequence, the size of the bounding box that defines the ROI is 180× 120 pixels at the lowest pyramid level and
contains 2127 edge pixels extracted by the Sobel filter. For the approaches that segment edges in the search image
(MGHT, HD, and GMF) the parameter to control the edge extraction was set to the same value as in the model
image.

Additionally, the relation between the actual degree of occlusion and the returned score value is examined, be-
cause the correlation between the visibilityv of the object and the scores can also be seen as an indicator for
robustness. If, for example, only half of the object is visible in the image then, intuitively, also the score should
be 0.5, i.e., one would expect a very high correlation in the ideal case. For this purpose, an effort was made to
keep the IC in exactly the same position in the image in order to be able to measure the degree of occlusion. The
true amount of occlusion was determined by extracting edges from the search images and intersecting the edge
region with the edges within the ROI in the model image. Since the objects that occlude the IC generate clutter
edges, this actually underestimates the occlusion.
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Figure 4.24: Three of the 200 images that were used to test the robustness against arbitrary changes in brightness

To test the robustness, the transformation class was restricted to translations, in order to reduce the time required
to execute the experiment. However, the allowable range of the translation parameters was not restricted, i.e.,
the object was searched in the entire image. It should be noted that the recognition rate would be lower and
the false alarm rate would be higher when allowing rigid motion instead of translations only. This is because
the probability for an arbitrarily rotated model to match a clutter object is higher than for the model at a fixed
orientation. Nevertheless, restricting the experiment to translations is legitimate because it can be assumed that the
resulting percentage change in both rates compared to rigid motion is approximately the same for all approaches.
Consequently, a qualitative comparison is ensured. For the MGHT, the SBM, the NCC, the HD, PQ, and PM
different values for the parameter of the minimum score were applied. As previously mentioned, in the case of the
HD the forward fraction was interpreted as score value. Initial tests with the forward and reverse fractions set to
0.3 resulted in run times of more than three hours per image. Therefore, the reverse fraction was set to a constant
value of 0.5 and the forward fraction was successively increased from 0.5 to 0.9 using an increment of 0.1. The
parameters for the maximum forward and reverse distance were set to 1 pixel. For the other three approaches the
minimum scoresmin was varied from 0.1 to 0.9. In the case of the SAD the maximum mean erroremax instead
of the minimum score was varied. Since the mean errore is not limited to an interval,emax was varied from 10
to 50 using an increment of 10. Tolerating higher values fore would result in hardly meaningful matches, i.e.,
an occluded object instance could not be distinguished from clutter in the search image. Furthermore, extremely
expensive computations would be the consequence, which would make the algorithm unsuitable for practical use.
Since the robustness of the SBM depends on the parameter greediness, additionally the value for greediness was
varied in the range of 0 to 1 using increments of 0.2.

To test the robustness against arbitrary changes in brightness, a second image sequence of the IC was taken. The
sequence contains 200 images including various illumination situations, e.g., spot lights, reflections, non-uniform
illumination, different ambient light intensity, etc. Three example images are displayed in Figure 4.24. Because
of the smaller distance between the IC and the camera, the ROI is now 255× 140 pixels and contains 3381
model points on the lowest pyramid level. The parameter settings of all methods are equivalent to the settings
for testing the robustness against occlusions. However, since the MGHT segments the search image, additionally
the threshold for the minimum edge magnitude in the online phase is varied from 5 to 30 using an increment
of 5. The same holds for the GMF, where the detail level was set to medium, high, and very high, respectively.
Furthermore, in the case of the SAD the range of values for the maximum mean erroremax was limited from 10
to 30 since higher values showed no significant improvements.

Results. At first, the sequence of the occluded IC was tested. A complete comparison of all approaches
concerning the robustness against occlusion is shown in Figure 4.25. The recognition rate is plotted versus the
minimum scoresmin and the maximum erroremax , respectively. For the SBM the greediness was set to 0 at
first, in order to receive the best obtainable recognition rate. As one would expect, the number of correctly
recognized objects decreases with increasing minimum score for all approaches. Thus, the higher the degree
of occlusions the smaller the parameter of the minimum score must be chosen in order to correctly recognize
the occluded objects. The opposite holds for the maximum error in the case of the SAD. In Figure 4.25 the
inferiority of the intensity-based approaches (SAD, NCC) to the feature-based approaches becomes clear. The
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Figure 4.25: The recognition rate indicates the robustness against occlusions. The recognition rate depends on the chosen
value for smin and emax , respectively.
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Figure 4.26: Recognition rate of the SBM additionally depends on the greediness parameter g in the case of occlusions. The
“greedier” the search, the more matches are missed.

NCC does not reach a recognition rate of 50% at all, even if the minimum score is chosen small. The approach
using the SAD as similarity measure also shows a poor behavior: although the expectation is fulfilled that the
robustness increases when the maximum error is set to a higher value, even relatively high values for the mean
maximum error (e.g., 30) only lead to a small recognition rate of about 35%. Admittedly, a further increase of the
maximum error results in higher recognition rates. However, no real improvement is achieved since meaningful
results of matches exhibiting maximum mean errors of 50 gray values are hardly imaginable. This suspicion will
be confirmed later. The HD, which incorporates the standard feature-based approach in the evaluation, shows
significantly better results, especially for high values ofsmin . This can be explained by the fact that in the case
of severe occlusions, clutter edges in the search image reduce the otherwise high distance values of the forward
distance and therefore lead to higher values for the forward fraction. The MGHT and the SBM both show very
high recognition rates. They are only beaten by the GMF, which achieves the best result in this particular test. It is
worth noting that the robustness of the MGHT hardly differs from the robustness achieved by the SBM even when
using a greediness of 0. Comparable results are obtained by PM and PQ, which both, however, are significantly
inferior to the MGHT, the SBM, and the GMF.

The robustness against occlusions of the SBM depends on the greediness parameterg. Figure 4.26 shows the
recognition rate for different values ofg. Apparently, the greediness parameter must be adjusted carefully when
dealing with occluded objects. For a given minimum score of 0.5, for example, the recognition rate varies in the
range between 48% and 82%, corresponding to the two extreme greediness values of 1 and 0. However, already
greediness values of 0.8 and 0.6, improve the recognition rate significantly to 64% and 70%, respectively.

Up to now, only the robustness against occlusions was analyzed. This constitutes only one component of two
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Figure 4.27: The receiver operating characteristic simultaneously evaluates the robustness against occlusions and clutter.

inherently associated attributes. Imagine a degenerated recognition method that simply returns matches at each
possible object pose within the class of transformations. In this case, the robustness against occlusions would be
perfect, because even if the object is not present in the image, i.e., the object is occluded by 100%, it still would
be found. Consequently, the second component that must be considered is the robustness against clutter, which on
its own is also insufficient because a degenerated recognition method that never returns any match shows a perfect
robustness against clutter. Hence, a high quality recognition approach combines robustness against occlusions
as well as against clutter. Analogously to the recognition rate the robustness against clutter can be quantified
by the false alarm rate. Thereceiver operating characteristicis a perfect feature to simultaneously evaluate the
robustness against occlusions as well as against clutter, since it plots the false alarm rate versus the recognition
rate.

In Figure 4.27 the receiver operating characteristic curves of the respective approaches are shown. Here, the
transformation class was restricted to translations. For arbitrary object orientations an even higher false alarm
rate must be expected. This is because the probability of a clutter object fitting the arbitrarily rotated object is
higher than fitting the object at one specific orientation.

The HD shows a very poor behavior because already for a low recognition rate of about 35%, false positives
are returned. The false alarm rate reaches its maximum of about 32% at a recognition rate of 73% (not visible
in the plot because of axis scaling). Also the NCC returns false positives even for low recognition rates. The
SAD does not return any false positive for recognition rates less than 35%, which corresponds to a maximum
mean error of 30 (see Figure 4.25). However, as already suspected in the previous analysis, the false alarm rate
increases considerably if higher maximum mean errors are tolerated. PQ on the one hand returns stable results
for recognition rates up to approximately 70%. On the other hand the false alarm rate dramatically increases
for higher recognition rates, culminating in 11% false positives for the maximum achieved recognition rate of
89% (also not visible in the plot). Better results are obtained by PM, which only returns a few false positives
(2.6%) even when high recognition rates (93%) are achieved. In comparison, the GMF performs worse for lower
recognition rates since the false alarm rate starts to increase already for a recognition rate of 50% and reaches
its maximum of 3.4% false positives. This depreciates the high recognition rates, which are obtainable with this
approach, considerably (see Figure 4.25). Finally, the two developed approaches, MGHT and SBM, exhibit the
highest robustness against occlusions and clutter of the evaluated object recognition methods. Even for very high
recognition rates of 95% and 98% the false alarm rates remain below 0.6% (three images) and 0.2% (one image),
respectively.

Figure 4.28 displays the returned values for the scores and mean errore, respectively, plotted versus the estimated
visibility v of the object. I.e., the correlation between these two quantities is visualized. For the plots,smin was
set to 30 (50 in the case of the HD) andemax was set to 40. False positive matches are not visualized in the
plots. To facilitate the visual evaluation, additionally, for the approaches returning a score value, the ideal curves
representing 100% correlation are plotted, i.e.,sideal = v/100. In the case of the NCC the score value is
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Figure 4.28: Returned values for score s and error e, respectively, plotted versus the visibility v of the object. In the ideal case
the correlation coefficient ρ should be 1 (in the case of the score values) and−1 (in the case of the error values), respectively.

computed ass = max(NCC ,0)2, and hence the associated ideal curve issideal = (v/100)2 (cf. Section 4.4.1.2).
Images in which no match was found are denoted by a score or error value of 0, i.e., the corresponding points
lie on thex axis of the plots. To precisely measure the correlation, additionally the correlation coefficientρ
(Bronstein et al. 2001) is computed from corresponding values of correctly found objects.

It can be seen from the plot regarding the SAD that the error is negatively correlated with the visibility — as
expected. The corresponding value forρ = −0.76 proves the visual impression. Nevertheless, the points are
widely spread and far from an ideal virtual line with negative gradient. In addition, despite of a very high degree
of visibility many objects were not recognized. One possible reason for this behavior could be that in some
images the clutter object does not occlude the IC yet, but casts its shadow onto the IC, which strongly influences
this metric. The magnitude of the correlation coefficient obtained for the NCC is comparable to that obtained for
the SAD. Furthermore, also here the points in the plot are widely spread and many objects with high visibility
were not recognized.

Most of the remaining approaches show a significantly higher positive correlation. This again confirms the higher
robustness of the feature-based approaches compared to the area-based approaches. As the rules exception, the
correlation coefficient obtained for PQ has a relatively low value. The plot of PM shows a better behavior, leading
to a higher value forρ. However, also here the points are not close to the ideal line but spread by a higher amount
in comparison to the MGHT, the SBM, the HD, and the GMF. These approaches all show similar results and a
point distribution that is much closer to the ideal one. In addition, objects with high visibility are recognized with
a high probability. However, again it becomes clear that in a few cases of higher object visibility the MGHT and
the SBM cannot recognize the object. Conversely, the HD and the GMF can recognize the objects. But one has
to keep in mind the corresponding false alarm rates.

In the following, the robustness against arbitrary changes in brightness is analyzed. Figure 4.29 shows a compar-
ison of the recognition rates of the respective approaches. For the MGHT, the SBM, and the GMF, the respective
best parameter settings are applied, i.e., the threshold for the edge extraction for the MGHT was set to the smallest
value of 5, the greediness of the SBM was set to 0, and the highest detail level was used for the GMF.

The SAD shows even worse recognition rates than in the case of occlusions: now, the best recognition rate that
could be obtained using a maximum error of 30 was only 11%. By comparing this value to the result obtained for
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Figure 4.29: The recognition rate indicates the robustness against arbitrary changes in brightness. The recognition rate
depends on the chosen value for smin and emax , respectively.

a maximum error of 20, which is also 11%, it is obvious that even by further increasing the maximum allowable
error no meaningful improvement can be reached. In contrast, the recognition rate of the NCC is substantially
better. Obviously, the robustness of the NCC against changes in brightness is higher than against occlusions.
This can be attributed to its normalization, which compensates at least global changes in brightness. The result
obtained by the HD is superior to that of the NCC. Especially, in the case of large values for the minimum score
it shows good results. However, for lower values it cannot reach the performance of the remaining approaches.
If the minimum score is set low enough, the recognition rate of the MGHT even surpasses that of the SBM, PQ,
and PM, reaching a result comparable to the GMF. For higher values its recognition rate decreases rapidly. PM
and PQ show approximately equivalent results, both of which are inferior to the SBM for almost all values of
smin . Also here, the GMF achieves a very high and approximately constant recognition rate even for large values
of smin .

In the case of the MGHT and the GMF the recognition rate additionally depends on the chosen threshold for
the edge extraction in the search image. As in the case of occlusions the recognition rate of the SBM addition-
ally is influenced by the greediness parameter. Therefore, Figure 4.30 shows the recognition rates of the three
approaches for different parameter settings.

The MGHT (see Figure 4.30(a)) allows to specify the minimum edge magnitudeγmin . The recognition rate of
the MGHT strongly depends on the chosen threshold for edge extraction in the search image. As expected, higher
recognition rates are obtained for lower values of the minimum edge magnitude, because fewer edge pixels fall
below the thresholdγmin . The higher the minimum edge magnitude, the more edge pixels are missed, because
dimming the light as well as stronger ambient illumination reduces the contrast. Thus, this effect is comparable
to the effect of higher occlusion. Therefore, a high recognition rate can be obtained by setting the minimum score
to a lower value or by choosing a lower threshold for the edge magnitude. For example, a minimum score of
0.5 and an edge threshold of 10 leads to a recognition rate of 84%. Nevertheless, the true invariance of the SBM
against changes in brightness could not be reached by the MGHT. In the case of the GMF (see Figure 4.30(b)) the
influence of the edge extraction is less distinct. Nevertheless, if the medium detail level is chosen, the recognition
rate decreases by more than 15%. The recognition rate of the SBM (see Figure 4.30(c)) in the case of changing
brightness is less sensitive to the chosen greediness parameterg than in the case of occlusions. Only, when
settingg to 1 and choosing high values forsmin a significant deterioration in the recognition rate is observable.
Disregarding the result obtained with greediness set to 1, the discrepancy is smaller than 10%.

4.4.3 Accuracy

The second evaluation criterion is theaccuracyof the approaches. The accuracy is determined by comparing the
exact (known) position and orientation of the object with the returned pose parameters of the different candidates.
Since the HD does not return the object position with subpixel accuracy this criterion is only applied to the
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Figure 4.30: The recognition rate in case of changes in brightness additionally depends on the threshold for edge extraction
in the search image. The threshold can be set by γmin for the MGHT (a) and by the detail level for the GMF (b). For the
SBM (c) the greediness g influences the recognition rate.

remaining candidates. Additionally, the least-squares pose refinement (LSPR), which has been presented in
Section 4.3.3, is taken into account in order to evaluate the gain in accuracy that is achieved by this method.
Therefore, in the following the results denoted by SBM refer to the pose refinement that is obtained by the
polynomial fitting, whereas LSPR implies the additional improvement of the pose parameters that is obtained by
the least-squares adjustment in the SBM.

Experimental Set-Up. To evaluate the accuracy, the IC was mounted onto a table that can be shifted with an
accuracy of 1µm and can be rotated with an accuracy of 0.7’ (0.011667◦). Figure 4.31 illustrates the experimental
set-up. Three image sequences were acquired: In the first sequence, the IC was shifted in 10µm increments to
the left in the horizontal direction, which resulted in shifts of about 1/7 pixel in the image. A total of 40 shifts
were performed, while 10 images were taken for each position of the object. The IC was not occluded in this
experiment and the illumination was approximately constant. In the second sequence, the IC was shifted in the
vertical direction with upward movement in the same way. In this case, a total of 50 shifts were performed. The
intention of the third sequence was to test the accuracy of the returned object orientation. For this purpose, the
IC was rotated 50 times for a total of 5.83◦. Again, 10 images were taken at each orientation.

The search angle for the object orientation was restricted to the range of[−30◦; +30◦] for all approaches, whereas
the object position again was not restricted. Since no occlusions were presentsmin could be uniformly set to 0.8
for all approaches. For the SADemax was specified to be 25. The greediness parameter of the SBM was set
to 0.5, which represents a good compromise between recognition rate and computation time. For the GMF, the
accuracy level was varied from medium to high.
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Figure 4.31: To test the accuracy, the IC was mounted on a precise xyϕ-stage, which can be shifted with an accuracy of 1 µm
and can be rotated with an accuracy of 0.7’ (0.011667◦).

Results. To assess the accuracy of the extracted object position, a straight line was fitted to the mean extracted
coordinates of position. This is legitimated by the linear variation of the position and orientation of the IC in the
world, which can be assumed when using the precisexyϕ-stage. Because the IC is shifted in world units (µm)
while the recognition approaches return the position of the IC in pixel coordinates, the exact position of the IC is
only known in world units but not in pixel coordinates. Because this scaling is unknown, the slope of the straight
line cannot be set to 1 but must be estimated during the line fit. In contrast, to assess the accuracy of the extracted
object orientation the straight line does not need to be estimated but can be computed directly. This is because
the unit in which the IC is rotated on the stage and the unit in which the recognition approaches return the object
orientation are identical, and hence no scaling needs to be considered. The residual errors, i.e., the differences of
the extracted position and orientation to the straight lines, shown in the Figures 4.32 and 4.33, are a well suited
indication of the achievable accuracies.
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Figure 4.32: Position accuracy plotted as the difference between the actual x coordinate of the IC and the x coordinate
returned by the recognition approach while shifting the IC successively by 1/7 pixel to the left

As can be seen from Figure 4.32, the position accuracy of the MGHT, the SBM, the LSPR, the NCC, the
GMF (both accuracy levels), and PM are very similar. The corresponding errors are in most cases smaller
than 1/20 pixel. The conspicuous peaks in both error plots of Figure 4.32 occur for all these approaches with
similar magnitude. Therefore, and because of the nearly identical lines, it is probable that the IC was not shifted
accurately enough, and hence the error must be attributed to a deficient acquisition. Nevertheless, it can be con-
cluded that the error in position in most cases must at least be smaller than 1/20 pixel, which is sufficient for
most applications. However, the high and oscillating error of about 1/10 pixel when using the SAD cannot be
attributed to this deficient acquisition. This error occurs because of subpixel translations that influence the gray
values especially in high contrast areas of the image. Finally, PQ shows the highest errors in thex coordinate of
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Figure 4.33: Orientation accuracy plotted as the difference between the actual object orientation of the IC and the returned
angle by the recognition approach while rotating the IC successively by approximately 1/9◦ counterclockwise. The different
scalings of the plots should be noted.

all approaches in the test, reaching a maximum error of 1/5 pixel. Since the errors iny approximately have the
same magnitude as inx they are not presented.

Figure 4.33 shows the corresponding errors of the returned object orientation. Here, the SBM complemented by
the LSPR, the GMF, and PM are superior to all other candidates. They reach maximum errors between 1/50◦ and
1/100◦ in this example. Furthermore, the improvement of both the LSPR in comparison to the SBM and the high
accuracy level of the GMF in comparison to the medium accuracy level becomes visible. The error of the SBM is
reduced to 42% when using the LSPR. Similarly, the high accuracy level of the GMF results in orientation errors
that are about 84% in magnitude of the errors when using the medium accuracy level. The remaining approaches
return a less accurate object orientation. The corresponding maximum errors of the MGHT, the SAD, the NCC,
and PQ are about 1/6◦ (10’) in this example. However, it should be remarked that the accuracy of the MGHT
can be easily improved by the LSPR in a similar way as the SBM because the same features (edge position and
orientation) are used in both methods. Thus, a similar accuracy level can be expected when applying the LSPR
to the MGHT.

4.4.4 Computation Time

The computation timerepresents the third evaluation criterion. Indeed, it is very hard to compare different
recognition methods with this criterion because the computation time strongly depends on the individual imple-
mentation of the recognition methods. Nevertheless, in conjunction with the achievable robustness and accuracy
the associated computation times at least allow a qualitative comparison. The HD was excluded from this test
because the implementation does not use image pyramids, which results in unreasonably long recognition times.
This would lead to an unfair comparison.



86 CHAPTER 4. RECOGNITION OF RIGID OBJECTS

Experimental Set-Up. In order to test the third criterion, the configurations that were used for testing the
robustness against occlusions (cf. Section 4.4.2) and for testing the accuracy (cf. Section 4.4.3) are used. The
computation time of the recognition processes was measured on a 400 MHz Pentium II for each image of the
sequences and for each recognition method. Therefore, one has to keep in mind that the measured recognition
times would reduce to a fraction on current computers (e.g., a 2.8 GHz Pentium 4). However, it can be assumed
that the relation of the recognition times between different approaches approximately remains unchanged.

The computation time of the SBM was measured for two greediness values of 0 and 1 with using the sequence for
testing the robustness in order to be able to estimate the increase in computational cost for a gain in robustness.
Furthermore, in order to assess the correlation between the size of parameter space and computation time, the
two sequences for testing the accuracy (horizontal shift and rotation) are used a second time without restricting
the angle interval to[−30◦,30◦], but searching the object in the full range of orientations ([0◦,360◦[).

In this context it should be noted that the MGHT and the GMF are the only candidates whose implementations are
able to recognize the object even if it partially lies outside the search image. The other approaches automatically
restrict the range of possible object positions to those at which the object completely lies within the search
image. Therefore, particularly in the case of large objects both methods are disadvantaged when comparing their
computation times to those of the remaining approaches. This should be kept in mind when analyzing the results.

Results. At first, the computation time of the respective approaches during the robustness test is analyzed. In
Figure 4.34 the mean computation timeT over the 500 images of the sequence is plotted for three different values
of emax (SAD) andsmin (others), respectively. This facilitates an easy assignment of the computation times to
the recognition rates displayed in Figure 4.25. Because for real-time applications the maximum time to find the
object is often of interest, additionally, the maximum computation time is plotted. One can see that the approaches
can be divided into two groups, where the approaches within the same group exhibit similar recognition times. In
the first group (MGHT, SBM, NCC, PM, PQ) the mean recognition time varies in the range from 18 to 59 ms. In
general, the lowersmin is chosen, the higher the robustness against occlusions (see Figure 4.25), but the higher
the computation time. It also becomes evident that PQ is faster than PM. Furthermore, a greediness value of
1 speeds up the SBM in comparison to a greediness value of 0, especially ifsmin is chosen small, i.e., a high
number of match candidates must be tracked through the pyramid. In the second group (SAD, GMF) the mean
recognition time is much higher. Even ifemax of the SAD is set to the relatively small value of 30, where the
associated recognition rate is only 34%, the maximum computation time already exceeds one second. If higher
recognition rates should be obtained (at the expense of higher false alarm rates) the computation time may even
reach several seconds. The high recognition rates of the GMF have already been depreciated by the associated
high false alarm rates. Additionally, its computation time reaches several seconds. Hence, the performance of
the GMF suffers from a further depreciation. However, in contrast to all other approaches the computation time
increases ifsmin is set to a higher value. During evaluation it became obvious that the GMF is slowed down
considerably if the object cannot be found or if the scores is nearsmin . From this, it can be deduced that the
implementation of the SAD and the GMF are not suited for real-time object recognition.

Figure 4.35 shows the respective mean and maximum computation times when applying the accuracy test. Again,
the MGHT, the SBM, PM, and PQ show fast computations. Furthermore, the mean computation time of the SBM
extended by the LSPR only marginally increases in comparison to the SBM. The computation time of the LSPR,
which is represented as the difference between the computation time of “SBM+LSPR” and “SBM” in the plots,
does not depend on the size of the parameter space: it is constant for a given object, and is 8 ms in the case of the
translation sequence and 10 ms using the rotation sequence. Therefore, the larger the parameter space the smaller
the influence of this constant part becomes. In contrast, again the SAD and the GMF are substantially slower.
However, because the object does not show partial occlusions in the two sequences, the GMF is not slowed down
to a high degree as in the occlusion case. This is becausesmin was set to 0.8 and the score hardly differs from 1.
Becauseemax was set to 25, the robustness of the SAD would be very poor. Thus, also the SAD would show much
longer recognition times if higher robustness was desired. When looking at the result of the NCC an increase of
computation time is noticeable when searching the rotated object. During evaluation it became evident that the
more the IC is rotated relative to the reference orientation in the model image the longer the computation time
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Figure 4.34: Mean and maximum recognition times of the respective approaches when applying the sequence for testing the
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Figure 4.35: Mean and maximum recognition times of the respective approaches when applying the sequence of the shifted
IC (a) and that of the rotated IC (b). The computation time of each approach is represented by two bars, where the left bar
and the right bar correspond to the restricted and the unrestricted orientation search range, respectively. The associated time
increase ∆T is printed in percent.

of the NCC became. Obviously, the implementation of (Matrox 2001) does not scan the whole orientation range
at the highest pyramid level before the matches are tracked through the pyramid, but starts with a narrow angle
range close to the reference orientation. Hence, the computation time of the NCC is not directly comparable to
the other approaches, because the orientation range of[−30◦; +30◦] and[0◦; 360◦[ is not really scanned. Hence,
a comparable computation time would be still higher.

From the time increase∆T when extending the angle search range from[−30◦; +30◦] to [0◦; 360◦[ conclusions
can be drawn about the ability of the approaches to deal with more general transformation classes. The percent-
age increase of the mean computation time is printed in Figure 4.35. As can be seen from Figure 4.35(a) the
computation time of the GMF merely increases by 4% and 3%, respectively. Obviously, the GMF ignores the
restriction of the orientation search range and always recognizes the object within the full range of orientations.
This makes the use of prior knowledge about the object orientation more difficult. With this discovery the com-
putation time of the GMF that is plotted in Figure 4.34 is overestimated because the GMF cannot profit from
the parameter space restriction as the remaining approaches. Nevertheless, the computation is much too slow
for real-time applications. Because of the implementation characteristics of the GMF and the NCC, only the
MGHT, the SBM, the LSPR, the SAD, PM, and PQ can be compared objectively when using∆T as criterion.
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Here, the MGHT shows the smallest time increase (∆T = 56%), which indicates an advantage of the MGHT
over the remaining approaches if the parameter space increases. The time increase of the SBM extended by the
LSPR is lower than that of the SBM because of the constant part of the LSPR. Also, the computation time of
PM only increases moderately. For most methods, a similar behavior is obtained when searching for the rotated
IC (see Figure 4.35(b)). Also here, the MGHT seems to be the method that is most suited when dealing with
large parameter spaces. The corresponding time increase is only 29% in this case. The computation times of
PM and PQ and the associated values for∆T are significantly higher than in the case of the shifted IC. The
reason for the totally different computation times when using the two sequences is the automatic computation of
the coarse grain limits (cf. Section 4.4.1.5). During the first sequence that uses the shifted IC the grain limit of
both methods was automatically set to 3.72, while during the second sequence that uses the rotated IC the grain
limit was automatically set to only 2.92. This results in an increased complexity. There is no obvious reason
for this difference, because the object was the same in both cases. Experiments have shown that the automatic
computation of the grain limit may result in a completely different value if the ROI of the model image is shifted
by just one pixel without changing the number of edge points within the region.

4.4.5 Conclusions

The aim of the performance evaluation in the framework of this dissertation was to select the approach that is
best suited to serve as a module within the approach for recognizing compound objects and that fulfills the stated
requirements listed in Section 2.3. Therefore, in the following for each evaluated recognition approach the most
important results are summarized.

There are two main reasons why the HD is unsuited regarding the stated criteria. Its strong trend to return false
positive matches leads to a very low robustness against clutter. Furthermore, there is no easy way to refine the
pose of the HD directly from the distance values by interpolation. No fair statements about the computation time
can be made because of the mentioned implementation characteristics. As a positive property, the acceptable
robustness against occlusions should be mentioned, which, however, is depreciated by the bad receiver operating
characteristic.

The SAD also exhibits several drawbacks. A reasonable robustness against occlusions is only obtained in com-
bination with increasing false alarm rates and dramatically long computation times, which make real-time ap-
plications impossible. Furthermore, it is in no way robust against changes in brightness. This could already be
derived from the corresponding formula (4.3). Finally, the accuracy obtained by interpolating the score values is
only mediocre.

In contrast, the robustness against changes in brightness of the NCC is higher because of its normalization.
However, the low robustness against occlusions as well as the trend to false positive matches limit its applicability
decisively. While the position accuracy is very high the returned object orientation is less accurate.

The GMF achieves the highest robustness of all approaches against both occlusions and changes in brightness.
Unfortunately, the associated high false alarm rates and a computation time that reaches several seconds are
substantial arguments against the use of the GMF.

PM shows a good compromise between robustness, accuracy, and computation time. However, its receiver op-
erating characteristic is significantly worse than that of the MGHT and the SBM. The obtained accuracy is very
high and the computation time is also satisfactory.

Although PQ is faster than PM, its receiver operating characteristic is worse. This must be attributed to its
tendency to return false positive matches. Furthermore, the speed-up is won at the cost of a reduced accuracy.
Especially, the position accuracy is the worst in the test.

Finally, the two developed approaches MGHT and SBM both show a very well balanced behavior regarding
robustness, accuracy, and computation time. The receiver operating characteristics of both are the best of all
approaches in the test. They combine highest robustness against occlusions with highest robustness against
clutter. Also, the robustness against changes in brightness of the SBM is only beaten by the GMF. If smaller
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score values are tolerated the MGHT also shows high robustness against changes in brightness, which, however,
cannot keep up with the true invariance of the similarity measure used within the SBM. Both methods show
highest position accuracy in the test. The accuracy in orientation of the SBM is already high and can be further
increased by the LSPR. The MGHT shows lower orientation accuracy, which, however can keep up with the
SAD, NCC, and PQ, and could be further improved by using the LSPR. Finally, the computation time of the
MGHT and the SBM on average is the fastest of all approaches in the test. Here, the MGHT seems to be best
suited for extending the parameter space to further dimensions.

Aside from these conclusions, it should be pointed out that some of the results might change if, for example,
other implementations of the approaches, other parameter constellations, or other image sequences are chosen.
Therefore, the presented evaluation is more of a qualitative nature than of a quantitative one. Nevertheless, the
results are very objective and help to find the optimum approach for a specific application.

The approach for recognizing compound objects, which will be introduced in the following chapter, has a modular
design and is therefore independent of the used module for recognizing rigid objects. For the implementation of
the approach for compound objects the SBM was selected because, apart from the argument that the SBM is
already part of a commercial software and thoroughly tested, its true invariance against changes in brightness is
a second argument to prefer the SBM to the MGHT. The advantage of the MGHT when dealing with higher
dimensional parameter spaces is less important since only rigid motion is considered in this dissertation.
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5 Recognition of Compound Objects

This chapter describes the novel approach for recognizing compound objects. At first, a review of the respective
literature is given (Section 5.1). After a coarse description of the approach (Section 5.2), the single steps are
described in detail (Sections 5.3–5.5). Finally, several examples show the high performance of the new approach
(Section 5.6).

5.1 Previous Work

Approaches dealing with the recognition of compound objects are rarer to find in literature than those dealing
with rigid objects. In the following, the most important approaches will be described.

A prominent class of object recognition methods deals with constrained objects in general and articulated objects
in particular. Although approaches of this kind mainly deal with the recognition of 3D objects it is worth to
include them in the present review because some of the proposed ideas might be also useful in 2D. A constraint
object is an object that is composed of a set of rigid object parts. The constellation of the parts is restricted by
constraints of an arbitrary type. In articulated objects these constraints are special kinematic constraints, e.g.,
rotational or translational joints.

Most methods that deal with the recognition of articulated objects like (Grimson 1989, Lowe 1991, Li and Lee
2002) are too restrictive for the recognition of compound objects because the presence of joints in compound
objects cannot be assumed in general. Several methods try to recognize articulated objects by decomposing the
object into its parts and estimating the pose of each part separately. In a subsequent step the constraints between
the parts are checked (Grimson 1987, Grimson 1989, Kratchounova et al. 1996). Although these approaches
are attractive because of their simplicity, the performance suffers: the information about the constraints is not
exploited during the recognition process. Also, solving the correspondences would be computationally expensive
because of its combinatorial character. In (Hel-Or and Werman 1994a, Hel-Or and Werman 1994b), an approach
is presented that covers articulated or other more general constrained models. Here, the process of solving the
correspondence problem is fused with the process of checking the constraints. This is done in a recursive process
where the pose of the current object part is predicted using a Kalman filter. The prediction is based on the poses of
the parts for which the correspondence problem has already been solved. The predicted pose is then compared to
all matches of the current part by computing a distance measure. The match with minimum distance is selected.
The whole process is repeated for all object parts. By successively selecting the best match for all object parts,
the computational effort that is associated with the correspondence problem is reduced considerably. However, in
some cases it might be dangerous to fix the pose of the current part in an early stage. Especially, if the prediction
relies on the poses of only a few parts this may cause problems. The major drawback of these methods is that the
recognition process itself ignores the information about the constraints between the parts. Thus, approaches of
this kind assume that all possible matches of all object parts are already given as input data.

The approach presented in (Li and Lee 2002) is able to recognize articulated objects. Each rigid object part is rep-
resented by an attributed graph. Also from the search image one attributed graph is generated and automatically
partitioned into small subgraphs. In general, the subgraphs do not coincide with the object parts. Graph match-
ing is then performed between one of the subgraphs and the graphs that represent the object parts. The graph
matching is performed using a Hopfield network. Alternatively, other optimization techniques can be applied to
the problem of graph matching, e.g., genetic algorithms (Suganthan 2002). The matching results are stored and
a different subgraph is selected. Another matching is performed and the result is added to the previous ones and
so on. A decision on the final result is made by interpreting all accumulated results. The obtained poses are clus-
tered to eliminate spurious matches. By accumulating the results of several matches the robustness against noise,
occlusions, and ambiguities is increased. Unfortunately, the graph matching process is very time consuming, and
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hence unsuitable for real-time object recognition. Furthermore, information about the constraints is not exploited
during the recognition process but only considered afterwards.

In (Felzenszwalb and Huttenlocher 2000), an object is represented by a collection of parts arranged in a de-
formable configuration. The deformable configuration is represented by spring-like connections between pairs of
parts. The globally best match in an image is found. This is done by minimizing an energy function that takes
into account both the “spring” forces between the parts and the match quality for each part. Thus, the approach is
able to solve the correspondence problem efficiently. However, information about the relations between the parts
is ignored during the recognition process itself. Hence, there is no speed-up in comparison to simply matching
each part separately: it takes several seconds to find the object, which is too slow for real-time applications.
Furthermore, the model must be set up manually, which prevents the practical use. Another drawback is that only
the best match can be found, and hence the approach fails if more than one instance of the object is present in the
image.

A hierarchical recognition of articulated 3D objects is presented in (Hauck et al. 1997). They assume that the
pose of a static part is given and determine the poses of the remaining parts recursively. The relations between
the object parts are represented by rotational or translational joints. By making use of the relations and already
obtained information the efficiency of the recognition is increased. For this, the possible 3D poses of the remain-
ing parts are successively predicted and projected into the image using a hierarchical representation of the object
parts. Thus, self-occlusions of the object parts can be taken into account by eliminating possibly occluded image
features from the recognition process. Additionally, the search space is restricted to the predicted poses, which
increases the efficiency. However, the manual generation of the 3D model is complex and time consuming. Fur-
thermore, only articulated objects can be handled by the approach. Moreover, the 3D pose of the static part must
be knownà priori in the camera coordinate system in order to correctly project the 3D poses of the remaining
parts. Finally, the approach fails if object parts are undetectable because then the pose prediction is impossible.
Nevertheless, the idea of the hierarchical representation together with the recursive search promises to increase
the efficiency also of 2D object recognition approaches.

Another category of approaches deals with the recognition of elastic, flexible, or deformable objects (Jain et al.
1996, Pilu and Fisher 1997, Lee and Street 2000, Duta et al. 2001, Sclaroff and Liu 2001, Belongie et al. 2002).
These approaches are mainly used to recognize natural objects that slightly change their appearance. Often this
change in appearance cannot be modeled by a global transformation but requires to take into account local defor-
mations. For example, in medical imaging these approaches can be applied to the registration of MRI (magnetic
resonance imaging), CT (computed tomography), PET (positron emission tomography), FMRI (functional mag-
netic resonance imaging), ultrasound imaging, etc. Apart from human organs, a recognition of plants or animals
is facilitated by these methods. However, these methods fail to model compound objects, which do not show real
deformations because their object parts themselves are rigid.

Another approach for recognizing deformable objects is given in (Gavrila and Philomin 1999). Here, a detection
method for objects with varying shape is described. The method uses a shape hierarchy to capture the variety
of object shapes. It is based on the idea that similar object shapes can be grouped together and represented by a
prototype shape. Thus, in the offline phase a hierarchy is computed from a set of training shapes using stochastic
optimization techniques. In the online phase, matching is performed with this prototype, rather than with the
individual shapes. This is done by involving a simultaneous coarse-to-fine approach over the shape hierarchy
and over the transformation parameters. To increase the performance, the existing set of training shapes can
be extended with generated “virtual shapes” (Gavrila and Giebel 2001). This improves the representational
capability of the prototype shapes. Approaches of this kind are suitable for compound objects that consist of only
a few parts with only small relative movements. The relative movements could be seen as shape variations of
the compound object. However, more object parts with even moderate movements would lead to a combinatorial
explosion of the number of required models.
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5.2 Strategy

The approach for recognizing compound objects proposed in this dissertation is based on a hierarchical model
representation of the compound object (Ulrich et al. 2002). The strategy behind the approach can be split into
three stages. Figure 5.1 displays a flowchart for each stage in a very condensed form. In the first stage the
hierarchical model is trained based on several example images (see Figure 5.1(a)). Here, the rigid object parts of
the compound object are extracted and the relations between single object parts are derived. It should be noted
that the result of training the hierarchical model is not the hierarchical model itself: in fact, only the relations
between the object parts are trained. The relations represent one essential component of the hierarchical model.
This should be kept in mind during further discussions. The second stage incorporates the actual creation of the
hierarchical model based upon the trained relations (see Figure 5.1(b)). Here, a distinguishedroot part is selected
from all object parts using certain criteria. Furthermore, the optimum hierarchical search strategy is found, with
the root part at the top of this hierarchy. Finally, in the third stage the hierarchical model is used to find the
compound object in the search image (see Figure 5.1(c)): In order to achieve real-time capability, only the root
part is searched within the full parameter space. Whereas, the remaining parts are searched with respect to each
other only within a restricted parameter space according to the extracted relations. Consequently, the offline
phase includes the first two stages, while the third stage represents the online phase. In this section, a coarse
description of the three stages will be given in order to introduce the underlying strategy. The description will
then be elaborated on a finer level of detail in the following three sections.
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Figure 5.1: Condensed flow charts represent the three stages of the proposed approach for recognizing compound objects.
The offline phase includes training (a) and creating (b) the hierarchical model. The object recognition (c) represents the
online phase.

In Figure 5.2 the detailed flowchart of the algorithm to train the hierarchical model is presented. A model image
Im, in which the compound object is defined by a ROI, and several example imagesIe

i , i = 1, . . . ne represent
the major input data to the algorithm. To enhance the illustrative power of the following explanations, an artificial
example is used, which further clarifies the intermediate processing steps and results. Figure 5.3 shows the input
data of the example. All images are of size 512×512. Taking a closer look at the example images two inherently
connected observations can be immediately made. Firstly, the compound object (man) obviously consists of
several rigid object parts (head, upper body, two arms, two hands, two legs, and two feet). Secondly, the parts
move with respect to each other to different degrees. The objective of the first offline phase, i.e., the training of
the hierarchical model, exactly is to simulate the human visual perception. This process includes extracting the
rigid object parts together with the relations that describe the mutual movements.

Therefore, analyzing the process of visual perception may help to reproduce the human observations. For the
following discussions it is essential to strictly distinguish between components and parts: One object part con-
sists of one or more components. The components that belong to the same object part do not show any relative
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Figure 5.2: Training the hierarchical model (first stage of the offline phase)

movements, while different parts move with respect to each other. Assume that there is no prior knowledge about
the compound object. Consequently, if one focuses on the model image and disregards the example images, one
is unable to determine the rigid object parts since no information about the movement is available. However, it is
possible to decompose the object into small components. In this example, the following components are percep-
tible: hat, face, two arms, two hands, two legs, two feet, square margin of the upper body, and six components,
one for each letter printed on the upper body. This means, that in this example the decomposition is done on the
basis of image regions that exhibit a homogenous gray value. When extending the field of view to the example
images, a human tries to match the corresponding components of the model image in the example images. Fi-
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(a) Model image (b) Example images

Figure 5.3: Input data of the artificial example. A rectangular ROI defines the compound object in the model image (a). Six
example images show the movements of the respective object parts (b).

nally, the components that do not move with respect to each other in all example images are unconsciously and
immediately merged into rigid object parts by the human brain.

With this knowledge it is possible to model the extraction of rigid object parts as shown in Figure 5.2. At first, the
domain of the model image defined by the ROI is initially decomposed into small components. The resultingnc

components are described bync ROIs that refer to the model image. For each of the components a rigid model is
generated using an arbitrary suitable object recognition approach. The pose of each component is then determined
by the recognition approach in each example image and stored in thecomponent pose matrixof sizene × nc.
From the component pose matrix the components that do not show any relative movement in all example images
are determined. The rigid object parts can then be extracted by merging the ROIs of the respective components.
Also, for the resultingnp(≤ nc) object parts, rigid models are generated and used to determine the pose of each
part in each example image in an analogous way as for the components. This results in thepart pose matrixof
sizene × np. Finally, the relations between the parts can be extracted by analyzing the part pose matrix. The
relations are stored in the squarerelation matrixof sizenp×np. I.e., for an arbitrary pair of object parts(p, q) the
relative movement of partq with respect to partp is stored in rowp and columnq. The relation matrix together
with the ROIs of the extracted model parts represent the output data of the training process.

As an example, Figure 5.4 shows the relations of the left arm and the upper body, respectively, to all other object
parts, i.e., the two corresponding rows of the relation matrix are visualized. Hence, the relative movements of
the object parts with respect to the left arm and the upper body are displayed. For visualization purposes, these
movements are projected back into the model image. The object parts are symbolized by their reference points.
The relative positions of the part’s reference points is symbolized by enclosing rectangles, and the relative orien-
tations by circle sectors. A relative orientation of 0◦ is localized at the “3” of a clock’s dial and the center of the
clock’s dial is visualized at the mean position of the respective part. For example, when looking at Figure 5.4(a)
one can see that the relative movement of the left hand with respect to the left arm is smaller than the relative
movements of the other parts. Furthermore, the relative movements with respect to the upper body displayed in
Figure 5.4(b) on average are smaller than the movements with respect to the left arm.

In the second stage of the offline phase the information trained in the first stage is used to create the hierarchical
model. The process is illustrated in the flowchart of Figure 5.5 in a generalized form. The model image and the
output data of the training are passed as input data to the process. Because the orientation ranges of the object
parts in the search image do not need to coincide with the orientation ranges used during training, again rigid
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(a) (b)

Figure 5.4: Relations visualized for the left arm (a) and the upper body (b) in the model image. The object parts are
symbolized by their reference points (small circles). The relations are visualized as rectangles (relative positions) and circle
sectors (relative orientations).

models that cover the desired orientation range are generated. In order to find an appropriate root part, the rigid
models of all parts are analyzed using certain criteria, which will be introduced later in this work. Based on the
root part and the relations, an optimum hierarchical search strategy can be found by minimizing the search effort
in the online phase. Here, it is assumed that in the online phase the extent of the relative part movements is less
or equal than the extent of the relative part movements represented in the example images. If this assumption
fails, the automatically derived relations must be extended manually by appropriate tolerance values. Then, the
relations between partsp andq represent the search effort that must be spent to search partq relative to partp
under the assumption that the pose of partp is already known. For example, if the poses of the left arm and of
the upper body in the search image are known it would be more efficient to search the left hand relative to the left
arm instead of searching it relative to the upper body (see Figure 5.4). Finally, the hierarchical model comprises
the rigid models of all object parts, the relation matrix, and the optimum hierarchical search strategy.

Figure 5.6 visualizes the resulting hierarchical model for the example case. It uses the head as the root part.
Assuming a minimum search effort in the future search image, it further searches the upper body relative to the
head, searches the two arms, and the two legs relative to the upper body, and searches the hands and the feet
relative to the arms and the legs, respectively. To valuate the overall search effort, the relations between the parts
that are adjacent in the search tree are visualized, i.e., they are connected by a edge in the tree. Thus, during the
online phase the reference points of the respective object parts must only be searched within the small rectangular
regions and within an orientation range visualized by the circle sectors.

Finally, the process of object recognition is displayed in the flowchart of Figure 5.7. Analogously to the online
phase of rigid object recognition, the search image and the model — which now is a hierarchical model — are
passed as input data to the algorithm. At first, the rigid model of the root part is selected from the hierarchical
model and used to determine the pose of the root part in the search image. Since no prior knowledge about the
pose is available the rigid object recognition approach must search the root part by scanning the full parameter
space of positions and orientations.

Once the root part is found, the remainingnp − 1 parts can be searched within a restricted relative search space.
Thus, for each partq the predecessor partp in the search tree is selected. Assume, for example, that a depth-first
search is applied to the search tree presented in Figure 5.8(a). After the pose of the head is determined, the next
part to search (i = 2) would be the upper body, i.e.,q = “Upper Body”. The associated predecessor part in the
search tree is the head, and hencep = “Head”. The parameter space that must be scanned by the recognition
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Figure 5.6: The hierarchical model comprises the rigid models of all object parts, the relations between the parts, and the
hierarchical search strategy (a), which is represented by a hierarchical search tree (b).

approach to search partq is defined by the pose of partp and the relation between the partsp andq. The rigid
model of partq is selected from the hierarchical model and used to determine the pose of partq within the
restricted parameter space. The whole process is repeated for each part, finally obtaining the poses of all object
parts. An example search image of size 512× 512 and the corresponding found object instance is displayed in
Figure 5.8(b). It should be noted that it is not necessary that the absolute orientation of the object in the search
image is covered within the example images, since only relative movements between object parts are trained.

To give an impression of the advantage when using the proposed hierarchical model, the recognition time for
this example was 20 ms on a 2 GHz Pentium 4. In contrast, the brute-force method that would search all parts
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Figure 5.7: Object recognition (online phase)

in the entire search space independently from each other would take 310 ms (using the SBM in both cases). The
second obvious advantage should also be pointed out here: because of the inherently determined correspondence,
which is provided by the hierarchical model, the returned match of the compound object implicitly covers a
topologically sound representation. In contrast, when searching the parts independently, it is not immediately
possible to distinguish between the matches of the left and the right arm, for example. Furthermore, if several
object instances are present in the image, it is hard to assign a match of a certain object part to the correct instance
of the compound object.

Although the basic idea of the approach seems to be very simple, several difficulties that are not obvious at
first glance occur. They will be discussed in the following sections together with the detailed explanation of the
previously introduced steps.



98 CHAPTER 5. RECOGNITION OF COMPOUND OBJECTS

Upper
Body

Head

Right
Leg

Right
Foot

Right
Arm

Right
Hand

Left
Arm

Left
Hand

Left
Leg

Left
Foot

1

2

3 5 7 9

4 6 8 10

(a) Depth-first search (b) Search image and found object instance

Figure 5.8: A depth-first search is applied to the search tree. In (a) the search order is indicated by numbers. In (b) an
example search image and the corresponding found object instance is displayed. The poses of the individual object parts are
visualized by superimposing the edges of the parts at the returned pose in white.

5.3 Training the Hierarchical Model

5.3.1 Initial Decomposition

In the first step, the compound object must initially be broken up into small components. The condition the initial
decomposition must fulfill is that each object part must be represented by at least one component. Otherwise the
algorithm is unable to find the rigid object parts automatically since only a merging of components but no further
splitting is provided by the algorithm. Therefore, an over-segmentation, which leads to a high number of small
components, is strongly desirable. Unfortunately, very small components may fail the property of being unique
or even seldom, which is a generally demanded quality for a feature (cf. (F¨orstner and G¨ulch 1987)). This makes
it difficult to determine the pose unambiguously during the training phase. However, this problem can be solved
by the proposed approach, as will be shown later.

Several decomposition and grouping methods that can be found in literature are suitable for the task of initial
decomposition. In general, grouping means the search for closely related primitives in the image. Gestalt psy-
chology has uncovered a set of principles that guide the grouping process in the visual domain (Koffka 1935,
Wertheimer 1938, Rock and Palmer 1990). These principles are based on different criteria that must be satisfied
by related primitives. Such criteria can require that related primitives exhibit similar properties (e.g., size, color,
shape) or that certain relations between the primitives are fulfilled (e.g., proximity, connectivity, parallelism,
symmetry, good continuity). Although it has been proven that these principles indeed work, a satisfactory under-
standing of how they operate still needs to be found. Computer vision has taken advantage of these principles,
e.g., in the field of perceptual organization and grouping (Ullman 1979, Marr 1982, Witkin and Tenenbaum 1983,
Lowe 1985). In photogrammetry, grouping is applied in the extraction of various objects from aerial imagery.
Only to mention a few examples, grouping is utilized for runway detection in airport scenes (Huertas et al. 1990),
building detection (Lin et al. 1994), and road detection (Steger et al. 1997, Baumgartner 1998, Wiedemann and
Hinz 1999). Unfortunately, an optimum selection of criteria is not possible in general, but is highly correlated
with the application task. However, the approach for recognizing compound objects must fulfill the demand to
be general with regard to the type of object. Consequently, without additional knowledge about the object no
optimum grouping criteria or combination of criteria that could be used to extract components from the model
image are available.
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Nevertheless, for the purpose of decomposition a method is proposed that is on the one hand general enough
to work with most objects and on the other hand still results in meaningful components. This method solely
uses the connectivity and proximity criteria, where the edges in the model image serve as primitives. For this,
edges are extracted within the ROI in the same way as it is done during the model generation of the MGHT
or the SBM (cf. Section 4.2.2). The connected regions of the resulting edges are computed using a standard
image processing algorithm (J¨ahne 2002). They represent the component hypotheses. Connected regions that are
smaller than a certain threshold (20 edge pixels has proven to be a suitable value) are eliminated in order to avoid
meaningless components that must be attributed to image noise or that are generally hard to identify. To apply
the second criterion of proximity, for a certain component hypothesis the fraction of edge pixels that only have a
small distance (e.g., 5 pixels) to another component hypothesis is computed. If this fraction is high enough (e.g.,
50%) the two component hypotheses are merged. The attentive reader may see the correspondence between this
fraction and the forward fraction used in the Hausdorff distance (cf. equation (4.9) in Section 4.1.1.2). This step
is repeated iteratively until no more components fulfill the criterion for merging.

In Figure 5.9(a) the result of the edge extraction with the subsequent computation of connected regions is shown.
In this case 22 hypotheses are generated. Since some pairs of components are closely neighbored they are
assumed to form one component. Furthermore, the dot on the letter “j” is too small to be able to represent a
meaningful component and is therefore eliminated. The final result, which contains 18 components, is shown in
Figure 5.9(b).
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Figure 5.9: Component hypotheses are obtained by edge extraction and computation of connected edge regions (a). The
hypotheses are numbered consecutively. The final components are obtained by eliminating small (11) and merging closely
neighbored (7+8, 9+10, 13+14) hypotheses (b).

The proposed strategy assumes that the edges in the model image of two different rigid object parts are neither
connected nor close to each other in the above specified sense. While this assumption is true for a multitude of
compound objects, its validity cannot be guaranteed in general. This is why the result of the above described
method must be at least validated by user interaction and possibly substituted by a completely manual definition
of the components. A manual definition can be done by passing several ROIs to the training algorithm, one for
each component.

Another possibility is to allow the user to introduce prior knowledge. E.g., the user could choose among sev-
eral offered decomposition and grouping methods, which can be easily incorporated in the approach. For ex-
ample, in (Shapiro and Haralick 1979, Abe et al. 1996, Latecki and Lak¨amper 1999, Rosin 2000) 2D object
shapes are partitioned into subparts by using the shape convexity as criterion. They base on the assumption
that meaningful subparts exhibit a high convexity. Other partitioning schemes approximate the shape as the
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best combination of primitives such as polygons or constant curvature segments (Wuescher and Boyer 1991).
Another class of approaches uses the curvature as splitting criterion (Hoffman and Richards 1984, Siddiqi and
Kimia 1995, Singh et al. 1999). Here, the object shape is broken up into smaller parts at the points of minimum
negative curvature. Approaches of this kind are able to split connected shapes. Hence, the requirement that the
edges in the model image of two different rigid object parts must not be connected can be discarded.

5.3.2 Rigid Models for the Components

In the second step, for each component a rigid model is generated. The use of image pyramids in object recog-
nition — so used in the SBM — is a desirable feature in order to achieve real-time performance. However, one
has to take care of unfavorable scale-space effects that occur when dealing with image pyramids. A scale-space
representation can be seen as a generalized form of image pyramids. It comprises a continuous scale parameter
and preserves the same spatial sampling at all scales, i.e., no sub-sampling is performed. Furthermore, only the
“optimum” Gaussian kernel is applied for low-pass filtering (Lindeberg 1994).

In scale-space the edges of the components are influenced by neighboring edges. This is uncritical in most
cases when dealing with large objects, as is usually the case in rigid object recognition. In large objects there
are still enough edges left that are not influenced by neighboring edges, and hence still provide a good match.
However, some problems occur when dealing with small objects, like the components: the ratio of edge pixels
of a component that is influenced by neighboring edge pixels can become high, i.e., the influence of neighboring
edges increases. The principle of this scale-space effect is illustrated in Figure 5.10. The scale-space behavior
of the 1D profile of an ideal step edge is shown. Here,x represents the profile direction,y the gray values, and
σ the size of the Gaussian smoothing kernel, and thus the degree of smoothing. In the original image, i.e., for
σ = 0, the subpixel precise edge position is atx = 2.0. Assuming that no further gray value changes appear in
the neighborhood of the edge (see Figure 5.10(a)), the edge position remains unchanged even for successively
stronger smoothing. Accordingly, when transferring this to the case of rigid model generation, the edge position
would be the same on each pyramid level. Unfortunately, this assumption is not valid in general. If, for example,
a rigid model is to be created from the component that represents the left arm (see component number 3 in
Figure 5.9(b)) the outer square of the upper body (component number 4) influences the scale-space behavior, and
hence the model creation on higher pyramid levels. In Figure 5.10(b) a second step edge is added to the profile
and the edge position in scale-space is computed again. It can be seen that the higher the smoothing is, the larger
the displacement of the original edge position becomes. This is uncritical if the left arm would always appear
at the same relative pose with respect to the upper body because the edge displacement in scale-space would be
the same in the model image and in all example images. However, in some example images the left arm moves
with respect to the upper body, and hence the representation of the left arm in the pyramid of the example image
differs from the representation in the model image. Especially, in the case of small components this may lead to
a severe dissimilarity on higher pyramid levels between the information stored in the model and that represented
in the search image. This possibly causes the recognition method not to find the component.

The problem could be avoided if no image pyramids were applied in the recognition method. However, the long
computation times involved are definitely unsuitable for the practical use, even for the offline phase. Therefore,
an alternative solution is proposed: the disturbing gray value inhomogeneities in the neighborhood of the model
edges are eliminated. This is achieved by successively expanding the gray values of the model image that are
adjacent to a component edge pixel in the direction of the edge gradient.

Figure 5.11(a) shows the principle of gray value expansion. The component edge region is dilated by one pixel,
obtaining the pixels that are adjacent to the edge region. The gray values of the adjacent pixels are used as seed
values that are expanded to the neighborhood. Thus, the gray values of the edge pixels and those of the adjacent
pixels remain unchanged to ensure an extraction of the component edges that is the same as in the original image
when applying the Sobel filter. For the gray value expansion, the already dilated edge region is successively
dilated by one pixel. After each dilation, the gray values of the pixels that are added by the dilation are calculated
from the already available gray values of the preceding dilation step. For this purpose, the gray values of the
preceding dilation that are within a 3× 3 neighborhood are averaged. Furthermore, to avoid artifacts that would
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Figure 5.10: Scale-space behavior of an ideal 1D edge profile. For homogeneous gray values in the neighborhood, the edge
position remains constant in scale-space (a). In contrast, the edge position is disturbed if gray value changes appear that are
close to the edge, e.g., caused by a neighboring edge (b).

lead to pseudo edges during model generation, a 1D smoothing of the newly calculated gray values is applied in
a second step. In Figure 5.11(b) the part of the model image showing the left arm is displayed. The edges of the
upper body and of the left hand would influence the model generation for the component representing the left
arm. Figure 5.11(c) shows the result after applying the gray value expansion. The neighboring image structure,
and hence the disturbing influences are eliminated.
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Figure 5.11: Successive gray value expansion is applied to the component edges in order to eliminate disturbing gray value
inhomogeneities of the neighborhood (a). In (b) the left arm in the model image is shown. The extracted component edges
are superimposed in white. After applying the gray value expansion to the component edges, the neighborhood is free of
disturbing influences (c).

To guarantee that all disturbing influences are eliminated, the size of the expansion must be chosen appropriately.
If, for example,nl pyramid levels are used in the proposed way, the gray values at both sides of the component
edges must be expanded by at least 2nl

pixels to fully eliminate the influence of all neighboring image structures.

The gray value expansion provides acceptable results in almost all cases. However, in rare cases pseudo edges are
introduced by the algorithm. This may happen whenever two progressing gray value fronts of strongly different
intensities collide. This often negligible effect can be weakened by stronger smoothing at the line of contact.
Another problem arises in the case of strongly blurred edges. The expanded gray values would lead to lower edge
magnitudes on higher pyramid levels in comparison to the original gray values. Both problems can be avoided by,
alternatively, using other, more sophisticated approaches (Elder and Zucker 1998, Elder 1999). They explicitly
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model the edges by determining the edge location, magnitude, and blur scale of the underlying intensity change.
After modifying the modeled edges, e.g., by deleting disturbing edges in the neighborhood, the image can be
reconstructed from the remaining modeled edges.

Finally, two rigid models are built for each of the components. The first one is created based on the image in
which the disturbing edges have been eliminated, the second one is based on the original image. This is because
it is not known in advance whether the neighboring edges of a component belong to the same or to another rigid
object part. However, eliminating edges that belong to the same rigid object part is critical because this again
would lead to differences in the model and the example images. Using two models covers both cases, and hence
leads to a higher probability that all components are found later in the example images. The consequence that
the search for the components leads to duplicate matches is uncritical since it is compensated by the algorithm
described in the following sections. In general, false positive or double matches are preferred during the training
of the hierarchical model in comparison to missing a match.

5.3.3 Pose Determination of the Components

The rigid models of the components are used to search the components in each example image using the rigid
object recognition approach. Because for each component two models are used, most components are at least
found twice. Furthermore, one component may be found several times in an example image because of three
reasons. Firstly, if a component exhibits rotation symmetry, like the components 3, 4, 5, 6, 7, 13, 14, 15, 16, 17,
and 18 in Figure 5.9(b), it is found several times at similar positions but at different orientations. Secondly, if
two or more components are similar to each other, like component pairs (3,5), (13,14), (15,16), and (17,18), in
general each component is found at its correct pose as well as at the pose of the similar component(s). This also
includes partial similarities, i.e., one component is similar to a fraction of another component. The component
representing the left leg (15), for example, will be found four times in each example image because of its rotation
symmetry of 180◦ and its similarity to the right leg (16). Thirdly, a component may also show similarities to
image clutter, where, in general, smaller components are more likely to show similarities to clutter than larger
components. Consequently, the result of the component search is not unique.

In the following section, an approach that solves the ambiguities by selecting the most likely pose for each com-
ponent in each example image is presented. Here, the component poses that are able to represent the compound
object in a least “deformed” way in comparison to the compound object in the model image are supposed to
be more likely. The deformation is caused by the relative movement of the components. In (Ullman 1979),
this problem is called the correspondence problem, where correspondence is the process that identifies elements
in different views as representing the same object (component) at different times (in different images), thereby
maintaining the perceptual identity of objects in motion or change. Thus, the movement of the components that
is introduced when comparing their poses in the model image and in an example image is interpreted as appar-
ent motion. Ullman (1979) proposes to solve the correspondence problem by minimizing the overall apparent
motion. This is the basis for further considerations.

In the following, the exact solution for solving the ambiguities is presented. Upon closer examination, the prob-
lem of finding the most likely poses turns out to be a graph matching problem between a model graphGm and a
search graphGs. The model graph represents the compound object in the model image, where the nodes in the
graph represent the components, which are labeled with the associated component number. Furthermore, each
node is linked to all other nodes by arcs, where an arc between two nodes is labeled by the relative position and
orientation between the two associated components in the model image. Accordingly,Gs represents the poses of
the component matches in an example image. In general, the number of nodes inGs is higher than inGm because
of ambiguous matches. Furthermore, only the nodes inGs that correspond to poses of distinct components are
linked by arcs. Again the arcs are labeled by the relative poses of the components. Finally, the task of solving
the ambiguities corresponds to findingGm within Gs. The special class of graph matching that can be applied
to this problem is often calledinexact subgraph isomorphism(Kroupnova and Korsten 1997) orerror-correcting
subgraph isomorphism(Messmer 1996) in the literature. A comprehensive introduction to graph matching is
given in (Messmer 1996). Agraph isomorphismis a bijection between the nodes of two graphs. Asubgraph
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isomorphismof Gm andGs tries to find a subgraphGs′ of Gs and a graph isomorphism fromGm to Gs′. An
efficient algorithm is presented in (Ullmann 1976). Finally, anerror-correcting subgraph isomorphismis more
tolerant and is able to find an optimum subgraph isomorphism even if the two graphs are different to each other.
The solution is often realized by introducing graph edit operations with associated costs. The goal is to find a
sequence of edit operations with minimum cost that must be applied toGm for a subgraph isomorphism to exist.

In the present case, because the number of nodes inGs is higher than inGm, a subgraph isomorphism must be
found. Furthermore, the subgraph to find inGs differs from the model graphGm because the components may
move with respect to each other. Hence, an error-correcting subgraph isomorphism is the right choice. The graph
edit operations comprise modifying the relative poses between the components and deleting nodes for the case that
a component is missing in the example image. Unfortunately, finding an error-correcting subgraph isomorphism
is known to be NP-complete, and thus its time complexity is exponential in the number of nodes. In (Messmer and
Bunke 1998), an algorithm is presented that reduces the computational load at the cost of exponentially increasing
memory requirement. Both alternatives are not suitable for a practical solution of the ambiguities. Therefore, in
the following an approach is presented that on the one hand shows only polynomial time complexity and on the
other hand provides acceptable results. The idea is based on rating the single component matches, where matches
that lead to less plausible configurations are penalized. The problem of solving the ambiguities can then be seen
as uniquely assigning a match to each component such that the overall rating is maximized, while simultaneously
considering certain constraints. For this, the component matches are represented as a bipartite graph (i.e., a graph
with two subsets of nodes). The solution is then obtained by applying bipartite graph matching using linear
programming.

5.3.3.1 Rating of Matches

Let nc be the number of components andMi = (om
i , ϕ

m
i ) the pose of componenti in the model image, with

positionom
i , orientationϕm

i , andi = 1, . . . , nc. In the implementation using the SBM the orientationϕm
i of all

components is 0 since the orientation in the model image is taken as the reference. The componentimay be found
ni times in the current example image because of symmetries, similarities, or clutter. The poses of the associated
matches areEi,k = (oe

i,k, ϕ
e
i,k), with k = 1, . . . , ni. Figure 5.12 shows the matchesEi,k of all 18 components

in the fourth example image. Here, the duplicate matches that arise from the use of two models per component
are neglected for illustrative purposes. However, theses matches can be treated in the same way like any other
ambiguous matches that are introduced because of symmetries or similarities. For instance, component 15 (left
leg) is found four times: at the correct pose (match 1), at the same position, but rotated by 180◦ (match 2), and at
the position of the right leg at the two respective orientations (match 3, match 4).

The decisive point of the idea behind the approach for finding the most likely match of each component in the
example image is based on rating the associated poses of all matches. The rating is performed by penalizing the
matches that are less plausible by using a cost value. For this, the (unambiguous) poses of the components in the
model image are taken as the reference, forming the reference component configuration. In the example image,
a match receives a cost value that describes the quantified change in the component configuration that would be
introduced when this match is assumed to be correct. This follows the above described principle of minimizing
the overall apparent motion, where the apparent motion corresponds to the overall configuration change.

In the following, the single steps that are used to compute the cost valueΨi0,k0 of thek0-th match of component
i0 will be explained. At first, the parameters of the 2D rigid transformation that transform poseMi0 into Ei0,k0

are computed, resulting in a rotation matrixR with rotation angleα and a translationt:

α = ϕe
i0,k0

− ϕm
i0 (5.1)

t = oe
i0,k0

−R(α) · om
i0 . (5.2)

In the second step, the reference component configuration is projected into the example image by transforming
the poses of all componentsi, providing the projected posesM ′

i = (om
i
′, ϕm

i
′):

om
i
′ = R(α) · om

i + t (5.3)

ϕm
i
′ = ϕm

i + α . (5.4)
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Figure 5.12: Matches of each of the 18 components in the fourth example image indicated by superimposed white edges.
The orientations of the matches are indicated by white arrows. The match numbers are displayed by white numerals.

Figure 5.13 shows the projection of the reference component configuration into the example image for each of
the four matchesk0 = 1, . . . ,4 of componenti0 = 3.

The projected pose of componenti can then be compared to a certain matchk (k = 1, . . . , ni) of the component
i in the example image by computing a distance measureψ:

ψ(M ′
i , Ei,k) =

√
‖om

i
′ − oe

i,k‖2 + w2(ϕm
i
′ − ϕe

i,k)2 , (5.5)

where‖ · ‖ denotes the euclidian vector length andw is a weighting factor to balance the difference in position
and orientation. A suitable value forw can be obtained, for example, based on the quantization of the object
orientation∆ϕ. Assuming a position quantization of 1 pixel,w could be set to 1/∆ϕ, for example. Because the
correct match of componenti is not knownà priori, the distance measureψ(M ′

i , Ei,k) is computed for all matches
k. The match with minimum distance is assumed to be correct and is used to compute the cost valueΨi0,k0.
This assumption is the only difference to the exact computation using the previously explained error-correcting
subgraph isomorphism, and is uncritical unless the true component configuration in the current example image
does not differ extremely from the reference component configuration. Finally, the associated distance value is
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(a) Match 1 (b) Match 2

(c) Match 3 (d) Match 4

Figure 5.13: Projection of the reference component configuration into the example image for each of the four matches of
component 3 (left arm)

used in the computation of the cost valueΨi0,k0 of matchk0 of componenti0:

Ψi0,k0 =
nc∑
i=1

min
k=1,...,ni

ψ(M ′
i , Ei,k) . (5.6)

The computation of the cost value is repeated for each matchk0 and each componenti0 by applying (5.1)–(5.6).
In some applications it might be desirable to apply a threshold on the cost value and eliminate the corresponding
matches in order to reduce the sensitivity to outliers. The cost values are then used in the following algorithm to
find the most likely match of each component using a global optimization.

5.3.3.2 Identification of Physical Instances

A simple way to get the most likely match of componenti would be to select the matchk, whereΨi,k is minimal
for k = 1, . . . , ni. Although thislocal optimizationwould assign one unique match to each component, one
important condition would be neglected. It would be still possible that several matches of different components
are assigned to the samephysical instancein the example image. A physical instance represents an arbitrary
structure in the example image to which components are matched. The problem is illustrated in Figure 5.14,
where the compound object from the previous examples is reduced to an upper body and two legs in order
to keep the explanations as clear and simple as possible. Furthermore, a clutter object has been added to the
example image. Thus, four physical instances are present in the example image: the upper body, the two legs,
and the clutter object.

If the match with the lowest cost value would be selected for each component, components 2 and 3 match the
same physical instance (the actual instance of the right leg) in the example image. However, a desirable result
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would assign component 2 to match 1 and component 3 to match 3. Therefore, the task of aglobal optimization
is to find for each componenti the matchki such that

nc∑
i=1

Ψi,ki
−→ min (5.7)

subject to the constraint that multiple matches are avoided, i.e., that at most one component is matched to a certain
physical instance.

A prerequisite to solve the proposed minimization is to check whether two or more matches are assigned to
the same physical instance. For this purpose, the similarities and symmetries of the components are analyzed
in a preliminary stage. This is achieved by a pairwise matching of the single components to each other. All
ordered pairs of components are selected. From the edges of the first component an artificial gray value image is
generated by applying the algorithm of gray value expansion explained in Section 5.3.2. The second component
is searched within the artificially generated image. If there are any matches then the relative pose of the second
component with respect to the first component is computed and stored as the result of the analysis. After the
relative poses of all pairs have been computed, the matches in the example image can be examined. If the relative
pose of two components in the example image is identical to the relative pose that has been obtained as the
result of the previous analysis (within a certain tolerance), it is known that the matches are assigned to the same
physical instance. For example, if the right leg is searched within the artificial image created from the left leg
two matches are returned. Because in this example the two components are identical, the two resulting relative
poses are((0,0)>,0◦) and((0,0)>,180◦). With this information the respective six matches of each of the both
components in the example image can be assigned to three physical instances.

1

2 3

(a) Model image (b) Components

(c) Example image
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Figure 5.14: Example to illustrate the problem of multiple matches. From the model image (a) components are extracted (b)
and searched in the example image (c). The matches of the components 1–3 are shown in (d)–(f), respectively, by white
numerals. The match with respective minimum cost is selected for each component and displayed in (g)–(i). Components 2
and 3 match the same physical instance in the image.

5.3.3.3 Building the Bipartite Graph

Based on the previous considerations, a bipartite graph with the set of nodesV can be generated, which represents
the problem in a structured form. A bipartite graph is distinguished by the property thatV satisfiesV = V1∪ V2,
whereV1 ∩ V2 = ∅, and each arc connects a node inV1 to a node inV2. Hence, no pair of nodes that are within
the same setV1 orV2 are directly connected. The graph representing the current example is shown in Figure 5.15.
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Here, three set of nodes are displayed. The first two setsV c andV mat represent the components and the matches
of the components in the example image, respectively. Each arc is weighted by anaffinity valueΨi,k = −Ψi,k,
i.e., the higher the affinity value the more likely the match. Thus, minimizing the overall cost is equivalent to
maximizing the overall affinities. Furthermore, the matches are grouped according to their associated physical
instance, leading to the third set of nodesV phys , wherenphys ≤ nmat . Here,nphys = |V phys | is the number
of physical instances andnmat = |V mat | =

∑nc

i=1ni is the total number of matches in the example image.
Finally, the bipartite graph is formed by the two sets of nodesV c andV phys , and is displayed in Figure 5.16(a).
Consequently, each node inV phys may be the head of several arcs.

1

1/1 1/2 1/3 1/4 2/1 2/2 3/1 3/2 2/3 2/6 3/3 3/6 2/4 2/5 3/5 3/4

2 3

physical instance:
upper body

physical instance:
left leg

physical instance:
right leg

physical instance:
clutter

match 3 of component 1

component 1:
upper body

component 2:
left leg

component 3:
right leg

Ψ1,1 Ψ1,2 Ψ1,3 Ψ1,4 Ψ2,1 Ψ2,2

Ψ2,3
Ψ2,6

Ψ2,4

Ψ2,5

Ψ3,5 Ψ3,4

Ψ3,1

Ψ3,2

Ψ3,3 Ψ3,6

Figure 5.15: A bipartite graph with two sets of nodes V c and V phys represents the ambiguous matches in the example image
(see Figure 5.14(d)–(f)). V c is the set of nodes representing the components (three circular nodes in the upper row). The 16
small oval nodes in the lower row represent the single matches of the components. The matches are grouped according to
their associated physical instance, leading to the set of nodes V phys representing the physical instances (four big oval nodes
in the lower row).
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Figure 5.16: In (a) the bipartite graph of Figure 5.15 is displayed in a condensed form. The result of the bipartite graph
matching contains the most likely component configuration (b) in the example image.
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5.3.3.4 Bipartite Graph Matching using Linear Programming

Now, the problem of solving the ambiguities can be formulated as a bipartite graph matching problem fromV c to
V phys . Informally speaking, in graph theory a matching is a set of arcs, where a node is the head of at most one
arc. This constraint exactly takes the original desire into account that a physical instance is assigned to at most
one component. It should be noted that some physical instance, which may, for example, be caused by image
clutter, may not have a corresponding component. When solving the ambiguities, a second constraint must be
considered: a node is the tail of at most one arc. This ensures that to each component at most one match, and
hence at most one physical component, is assigned. Because of possibly missing components in the example
image, some components may not have a physical instance. Finally, since it is desirable that as many components
as possible are found in the example images, the task is to find a set of arcs with maximum size and with maximum
overall affinity that simultaneously fulfills the two stated constraints. The result of this special class of bipartite
graph matching is displayed in Figure 5.16(b). Here, the solution includes three arcs that represent match 1
of component 1, match 1 of component 2, and match 3 of component 3. To convince oneself of the intuitive
correctness of the solution, one can take a look at the respective matches displayed in Figure 5.12(d)–(f). Now,
also component 2 is found at the correct pose.

The graph matching problem can be solved applying methods of linear programming. Linear programming is
concerned with maximizing a linear objective function of continuous real variables, subject to linear constraints.
Formally speaking, the task is to find a vectorx = (x1, x2, . . . , xnx)> of nx variables that maximizes the function

a>x −→ max (5.8)

subject to the primary constraints
xi ≥ 0 ,∀i = 1, . . . , nx (5.9)

and simultaneously subject tonb additional constraints of the form

Ax ≤ b , (5.10)

with a = (a1, a2, . . . , anx)>, b = (b1, b2, . . . , bnb)>, and thenb × nx matrix A (Bronstein et al. 2001).

In order to transfer the bipartite graph matching problem into the form of linear programming, a variablexi,k

is assigned to each arc in the graph, wherei = 1, . . . , nc andk = 1, . . . , ni. Thexi,k are the unknowns to be
estimated within the linear programming. If the arc that represents matchk of componenti is part of the solution,
xi,k will be 1, otherwisexi,k will be 0. Thus, the objective function (5.8) is

nc∑
i=1

ni∑
k=1

Ψi,k · xi,k −→ max , (5.11)

with the aim of a maximum number of matches with maximum overall affinity. Several additional constraints
must be taken into account. Because the primary constraint only considers thatxi,k ≥ 0, additionallynmat

constraints
xi,k ≤ 1 ,∀i = 1, . . . , nc ,∀k = 1, . . . , ni (5.12)

must be formalized explicitly (cf. (5.10)). This ensures thatxi,k ∈ [0,1], but a meaningful solution requiresxi,k to
take binary values (i.e.,xi,k ∈ {0,1}) only. Fortunately, this is ensured by a theorem frominteger programming
(Garfinkel and Nemhauser 1972). This also becomes immediately evident when recalling the linearity of the
objective function: the inequality constraints can be geometrically interpreted as a convex polyhedron in the
nmat -dimensional parameter space. Consequently, the position of the maximum is restricted to lie at a vertex of
the polyhedron, in whichxi,k is always either 0 or 1 (ignoring the special case in which the level lines of the
objective function are parallel to an edge of the polyhedron).

Next, the constraint that to each component at most one match is assigned is introduced. Thus, the sum of allxi,k

that are associated with the arcs leaving the same component node must be smaller or equal to 1 (cf. (5.10)):

ni∑
k=1

xi,k ≤ 1 ,∀i = 1, . . . , nc . (5.13)
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This results innc additional inequality constraints. However, in the case ofni ≤ 1 the constraint for component
i can be omitted since it is already represented in (5.12).

The final constraints ensure that each physical instance is assigned to at most one component. This can be
formalized by restricting the sum of allxi,k that are associated with the arcs ending in the same physical instance
to be smaller or equal to 1. Letnmat

j be the number of matches that are assigned to the physical instancej and
let xi,k(j, l) be the variablexi,k that represents thel-th match that is assigned to the physical instancej. Then the
constraint can be formalized as (cf. (5.10)):

nmat
j∑

l=1

xi,k(j, l) ≤ 1 ,∀j = 1, . . . , nphys . (5.14)

Thus, the resulting linear programming problem is described by the objective function (5.11), which must be
maximized subject to the constraints described by (5.12)–(5.14). Several efficient standard algorithms are avail-
able in the literature for linear programming. One of the most popular representatives is thesimplex method
(Press et al. 1992, Bronstein et al. 2001). Although it has been proven that its theoretically worst case runtime
complexity is exponential, it merely shows polynomial time complexity on average for practical problems. Nev-
ertheless, several “true” polynomial-time algorithms have been developed, e.g., (Karmarkar 1984). Since the
description of one of these algorithms would go beyond the scope of this dissertation the reader is referred to the
literature. Finally, the result of the linear programming provides a value for eachxi,k that is either 0 or 1. In
the present example, allxi,k are returned as 0 exceptx1,1, x2,1, andx3,3, which are returned as 1, as one would
expect (see Figure 5.16(b)).

It should be noted that the algorithm is able to handle missing components by choosing the constraints in the
proposed way. However, it requires that at most one instance of the compound object is present in each example
image since otherwise the algorithm would pick out the best component matches from different instances.

Returning to the original example, the ambiguities are solved for each example image individually according
to the above described method. Hence, a unique pose for each component in each example image is obtained.
The final result for all example images is shown in Figure 5.17. The unique poses are stored within thene × nc

component pose matrix.

By solving the ambiguities during the training of the hierarchical model the correspondence problem that would
arise during the online phase when searching the object parts independently from each other is already implicitly
solved within the hierarchical model. Thus, one can say that the correspondence problem is shifted from the
online to the offline phase with the considerable advantage that a real-time recognition of compound objects is
made possible.

5.3.4 Extraction of Object Parts

The rigid parts of the compound object may be represented by several single components because of the over-
segmentation during the initial decomposition. Therefore, the initial components that belong to the same rigid
object part, and hence exhibit identical apparent movement over all example images, can be merged by analyzing
the unique poses obtained in the previous section. The merged components represent the rigid object parts. The
strategy comprises two steps. In the first step, for each pair of componentsi1 and i2 the probability that the
two components belong to the same object part is computed in a statistically founded manner, resulting in a
square probability matrix of sizenc × nc. In the second step, the probability matrix is clustered using a pairwise
clustering algorithm. The obtained clusters represent the desired object parts.

LetMi1 = (om
i1
, ϕm

i1
) with positionom

i1
= (xm

i1
, ym

i1
)> be the pose of componenti1 in the model image andEi1 =

(oe
i1
, ϕe

i1
) with positionoe

i1
= (xe

i1
, ye

i1
)> the corresponding unique pose in the example image. Accordingly, the

poses of a second componenti2 areMi2 andEi2, respectively. Furthermore, assume that accuracy information
is available for each pose. The accuracies are represented by the 3× 3 covariance matricesKe

i1
and Ke

i2
,

which contain the variances and covariances ofx, y, andϕ. If the used recognition method does not return any
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(a) Model image (b) Example images

Figure 5.17: Ambiguities solved by linear programming. The model image and the reference component configuration is
shown in (a). Similar components are distinguished by different line widths for visualization purposes. For each example
image the result of the linear programming assigns an unambiguous pose to each component (b).

accuracy information for the pose parameters, the accuracy must be specified empirically (e.g., by applying tests
with various objects of different size and shape). The reference position and orientation of the components in the
model image are assumed to be error-free. Starting with this information, the probability that the two components
belong to the same object part can be computed.

At first, the parametersα andt of the rigid transformation that transformMi1 intoEi1 are computed (cf. (5.1) and
(5.2) in Section 5.3.3.1). By applying the transformation to the poseMi2 the projected poseE′i2

of componenti2
in the example image is obtained (cf. (5.3) and (5.4) in Section 5.3.3.1). The assumption that both components
belong to the same object part would require that componenti1 and i2 have moved identically with respect to
the model image, and henceE′i2

= Ei2. In general, this requirement is not fulfilled, even for components of the
same object part because of the limited accuracy of the object recognition method. One method to get a kind
of probability value for the current pair of components is to compute a distance measure betweenE′i2

andEi2.
The drawback of this method is that it is hard to decide up to which distance the components can be treated as
belonging to the same part. A better result can be obtained by computing a real probability valuepi1,i2 ∈ [0,1].
This is achieved by applying methods of hypothesis testing. Stating the hypothesisE′i2

= Ei2 requires

xe
i2
′ − xe

i2 = 0 (5.15)

ye
i2
′ − ye

i2 = 0 (5.16)

ϕe
i2
′ − ϕe

i2 = 0 . (5.17)

The hypothesis can be rewritten in matrix formHx = w, where

H =


 1 0 0 −1 0 0

0 1 0 0 −1 0
0 0 1 0 0 −1


 ,x = (xe

i2
′, ye

i2
′, ϕe

i2
′, xe

i2 , y
e
i2 , ϕ

e
i2)

>,w =


 0

0
0


 . (5.18)

For further processing, the covariance matrixKe
i2

′ of the projected poseE′i2
is needed. It can be obtained

by applying the law of error propagation to the covariance matrixKe
i1

with respect to equations (5.1)–(5.4):
Ke

i2

′ = AKe
i1
A>. Here,A is the 3× 3 Jacobian matrix, which contains the partial derivatives of the pose
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parameters inE′i2
with respect to the pose parameters inEi1. After some simplifications,A reads as follows:

A =


 1 0 ∆x1,2 sin∆ϕm,e + ∆y1,2 cos ∆ϕm,e

0 1 −∆x1,2 cos ∆ϕm,e + ∆y1,2 sin ∆ϕm,e

0 0 1


 , (5.19)

with ∆x1,2 = xm
i2
− xm

i1
, ∆y1,2 = ym

i2
− ym

i1
, and∆ϕm,e = ϕe

i1
− ϕm

i1
. Now, the associated covariance matrix of

x can be composed:

Kxx =

(
Ke

i2
′ 0

0 Ke
i2

)
, (5.20)

where0 represents a 3× 3 zero matrix.

With the results obtained by the previous calculations all information to perform the actual hypothesis testing is
available. At first, a test valueT is computed (Koch 1987):

T =
1
r
(Hx)>(HKxxH>)−1Hx , (5.21)

wherer = 3 denotes the number of equations in the hypothesis (5.15)–(5.17). The test valueT ∼ Fm,n has
a (Fisher)F -distribution with the parametersm and n denoting the degrees of freedom. The parameterm
corresponds to the number of equationsr and the parametern to the redundancy involved in computing the
accuracies of the pose parameters. If a value forn is not available, e.g., because the accuracy information has
been obtained by empirically tests instead of a preceding parameter adjustment, it is assumed that the accuracies
have been determined by using an infinite large set of samples. Consequently,n → ∞ and theF distribution
degenerates to theχ2-distribution withT · r ∼ χ2

r. Hence, the probabilitypi1,i2 that the two components belong
to the same object part can be written as

pi1,i2 = 1−
T∫

−∞
Fr,n(t) dt n→∞= 1−

T ·r∫
−∞

χ2
r(t) dt , (5.22)

with Fr,n(t) andχ2
r(t) representing the probability density function of the respective distributions. For practical

considerations, the evaluation of (5.22) can be reduced to the calculation of the associated incomplete gamma
function (Press et al. 1992).

The probability matrix that is obtained by repeating the computations for each directed pair of components is not
symmetric, i.e.,pi1,i2 6= pi2,i1. This at first glance non-intuitive observation becomes evident when examining the
transformation described by (5.1)–(5.4) more closely. The small example in Figure 5.18 facilitates the discus-
sion. Assume that the pose of the two components shown in Figure 5.18(a) are determined in the example image
shown in Figure 5.18(b). In the first step, the poses of component 1 in the model image and the example image,
respectively, are used to compute the rigid transformation parameters (i.e.,i1 = 1). In the second step, compo-
nent 2 is projected into the example image using the calculated transformation (i.e.,i2 = 2). The projected pose
of component 2 only differs in orientation from its true pose (see Figure 5.18(c)). A different observation can be
made if component 2 is used to compute the transformation parameters and component 1 is projected accordingly
(i.e., i1 = 2, i2 = 1). The projected pose of component 1 not only differs in orientation but additionally differs
in position from its true pose. Hence, in the second case the associateddirectedprobability value is significantly
lower. In order to receive a symmetricundirectedprobability measure, the minimum of both corresponding di-
rected probabilities is taken since a rigid object simultaneously requires that both directed probability values are
small. Finally, because a high probability value is required for components of the same object part in all images,
either the minimum value or a more robust quantile value over all example images is computed. Consequently,
another demand on the example images can be derived. Assume that the minimum probability value is decisive.
If in all example images two object parts accidently move in the same manner, then the algorithm will mistakenly
assume that the two parts can be combined in one rigid part. Therefore, different object parts must show a relative
movement in at least one example image in order to be detected as two separate object parts.
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1

2

(a) Model image (b) Example image (c) i1 = 1 (d) i1 = 2

Figure 5.18: Non-symmetry of relative movement. The poses of the two components that are extracted from the model
image (a) are uniquely determined in the example image (b). In (c) component 2 is projected according to the pose of
component 1. The true and projected pose only differ in orientation. However, when projecting component 1 according to the
pose of component 2, additionally a translation difference occurs (d).

1.00.80.60.40.20.0

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

Hat
Face

Left arm
Outer square

Right arm
Inner square

"O"
"b"
"j"
"e"
"c"
"t"

Left hand
Right hand

Left leg
Right leg
Left foot

Right foot

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0

)
(1

1
)

(1
2

)
(1

3
)

(1
4

)
(1

5
)

(1
6

)
(1

7
)

(1
8

)

F
ac

e
L

ef
t

ar
m

O
u

te
r

sq
u

ar
e

R
ig

h
t

ar
m

In
n

er
sq

u
ar

e
"O

"
"b

"
"j

"
"e

"
"c

"
"t

"
L

ef
t

h
an

d
R

ig
h

t
h

an
d

L
ef

t
le

g
R

ig
h

t
le

g
L

ef
t

fo
o

t
R

ig
h

t
fo

o
t

(1
)

H
at

3

1 2

4

9

5 6

7 8

10

(a) Probability matrix (b) Object parts

Figure 5.19: The symmetric probability matrix contains information about the probability that a pair of components belongs
to the same rigid object part (a). After clustering the matrix, ten rigid object parts are obtained (b). It should be noted that
the numbers in (a) representing the components and the numbers in (b) representing the obtained object parts must not be
confused.

In Figure 5.19(a) the finally obtained symmetric probability matrix is shown after computing the minimum over
all example images. One can see that the pairwise probability for belonging to the same object part is high for the
hat and the face as well as for the components forming the upper body. In contrast, the remaining probabilities
are approximately zero.

In the second step the components are partitioned into groups, orclusters, such that the probability between
components in the same cluster is high and the probability between components in different clusters is small.
The clusters finally represent the rigid object parts. In the following, the computed probability matrix is also
referred to as a similarity matrix, where the similarity expresses the rigidity between components. Many different
clustering algorithms for similarity matrices, or dissimilarity matrices, respectively, have become available. A
comprehensive overview is given in (Jain et al. 1999). To find the rigid object parts, a hierarchical agglomerative
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clustering algorithm is applied to the similarity matrix (actually, it is sufficient to take the upper triangular matrix
into account):

1. Initializenc clusters, each containing one component.

2. Find the maximum entry in similarity matrix. If the maximum similarity is less than a thresholdpmin ,
return clusters and stop calculation.

3. Merge associated pair of clusters into one cluster.

4. Update similarity matrix to reflect the merge operation.

5. If at least two clusters are left, go to step 2, else return clusters.

The update of the similarity matrix stated in step 3 means recalculating the similarity values between the new
cluster and the remaining clusters using a certainlinkage metric. The linkage metric characterizes the similarity
between a pair of clusters. The most popular methods either use thesingle-link, average-link, or complete-link
algorithm (Berkhin 2002). In the single-link algorithm, the similarity between two clusters is the maximum of
the similarities between all pairs of components drawn from the two clusters. Accordingly, the complete-link
algorithm takes the minimum similarity and the average-link algorithm the average similarity. On the one hand,
the complete-link algorithm is too stringent, and hence often fails to link components belonging to the same
object part. On the other hand, the single-link algorithm suffers from a chaining effect: in spite of a very low
probability value the two associated components may be merged into the same cluster if the low probability is
bridged by other components. In contrast, the average-link algorithm has proven to be a suitable compromise,
and hence is applied to cluster the components. Finally, the number of returned clusters specifies the number of
rigid object partsnp within the compound object. The result is shown in Figure 5.19(b), where the probability
matrix of Figure 5.19(a) has been clustered using a thresholdpmin for the probability of 0.5 (cf. step 2 of the
clustering algorithm). The 18 components have been clustered into 10 object parts. Now the hat and the face
form one object part. Furthermore, the components of the upper body belong to the same object part.

Finally, for the object parts that consist of exactly one component the pose of the component is adopted by the
object part in each example image. For those object parts that consist of more than one component the poses
must be explicitly determined. Simply taking the average pose over all involved components within a cluster
would introduce errors. To avoid these errors, a new rigid model is created for the corresponding object parts
from the model image and used to search the object parts in all example images. This can be realized in a similar
manner as for the components. However, the search can be focused on a very restricted parameter space since an
approximate pose is known. Therefore, the computational effort is negligible and no ambiguities must be solved.
After this step, for each rigid object part the pose parameters in each image are available and stored within the
ne × np part pose matrix for further analysis.

Some concluding remarks concerning the image rectification should be mentioned. In order to ensure a correct
computation of the probability values, it is necessary that the model image and all example images are free of
distortions. Therefore, it is essential that all images are rectified with the approach presented in Chapter 3 in
order to eliminate radial and projective distortions. Otherwise the distortions would lead to pseudo-movements
between components that belong to the same rigid object part, and hence would result in small probability values.
Consequently, also the search images in the subsequent online phase must be rectified because the extraction of
the relations, which will be described in the following section, is also based on the (rectified) example images.
Nevertheless, in some very time-critical practical cases it may be desirable to refrain from image rectification.
Therefore, if no significant projective distortions are present one can compensate existing radial distortions using
one of two possibilities. The first possibility is to appropriately reduce the thresholdpmin for the probability value.
The second possibility is to appropriately increase the standard deviations of the pose parameters, which are used
in the hypothesis test. Consequently, small relative movements between object parts cannot be distinguished
from effects caused by the radial distortions any longer. However, if no small movements must be expected and
detected this is a suitable possibility in practice to avoid the rectification and to further speed up the online phase.
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5.3.5 Analysis of Relations between Object Parts

Now that the poses of the object parts are available in each example image, information about the relations or
the relative movements between the single object parts can be extracted. To compute the relation between object
partsi1 andi2, the pose of object parti2 is computed in the local coordinate system of object parti1. Let (oi1, ϕi1)
and(oi2, ϕi2) be the poses of the two object parts in an example image or in the model image. The transformation
into the local coordinate system can be described by a rotation matrixR with rotation angleα and a translation
t:

α = −ϕi1 (5.23)

t = −R(α) · oi1 . (5.24)

The pose(oi2
′, ϕi2

′) of object parti2 in the local coordinate system is obtained as:

oi2
′ = R(α) · oi2 + t (5.25)

ϕi2
′ = ϕi2 + α . (5.26)

If equations (5.23)–(5.26) are applied in the model image and all example images the relative movement of part
i2 with respect toi1 becomes available.

The extraction of the relations between two object parts is exemplified in Figure 5.20. Here, the pose of the
right leg defines a local coordinate system into which the pose of the left arm is transformed for all images. The
reference point of the transformed left arm describes a movement within the local coordinate system. To quantify
the position relation, the convex hull of the transformed reference points could be used. Hence, the polygon of
the convex hull would describe the border of the area within which the reference point of the left arm is assumed
to appear in the local coordinate system. Furthermore, the enclosing angle interval of the orientation of the
transformed left arm is assumed to describe the orientation relation. On the one hand, these assumptions imply
that the example images cover the extrema of all possible relative movements. If it is not guaranteed that this
requirement is fulfilled it is advisable to add appropriate tolerance values manually to the automatically computed
relations. Otherwise object parts could be missed during the search in the online phase. On the other hand, even
one outlier could unnecessarily inflate the convex hull and the enclosing angle interval, respectively. This would
result in a sub-optimal online phase because of an increased computation time. Although this is less critical in
comparison to missing object parts, it sometimes is desirable to avoid outliers by applying a statistically robust
elimination of single extreme poses.

In the later online phase the left arm only needs to be searched within the parameter range described by the
relations if the right leg has been found before. The number of polygon points in the convex hull may take values
that correspond to the number of used images. Thus, the use of the convex hull would be accompanied by a high
computational load within the online phase. This is because all polygon points would have to be transformed
appropriately in order to compute the ROI in which the reference point is to be searched. Therefore, the smallest
enclosing rectangle of arbitrary orientation is used instead to describe the position relation. Although the convex
hull would be able to describe the relations in a less wasteful way, the rectangle is preferable also because the
negligible loss in efficiency is justified by relaxed demands on the example images.

Finally, the computations are repeated for each directed object pair and the extracted smallest rectangle and the
orientation angle interval are stored within thenp × np relation matrix. The smallest rectangle is represented
by its centroidcr

i1,i2
, its semi axesar

i1,i2
and bri1,i2

, and its orientationβr
i1,i2

. The orientation angle interval is

represented by its boundariesϕr ,min
i1,i2

andϕr ,max
i1,i2

. Apart from the position and the orientation relation additional
information about the mean and the standard deviation of the relative movements are stored. The result is shown
in Figure 5.21.

After this step, the training of the hierarchical model is completed. The result comprises the relation matrix as
well as the ROIs of the object parts. Each ROI refers to the associated edge region of one object part in the model
image. The result represents the input data for creating the hierarchical model.
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Figure 5.20: Example showing the extraction of the relative movement of the left arm (i2) with respect to the right leg (i1).
The position relation is described by the smallest enclosing rectangle of the reference points, the orientation relation by the
smallest enclosing angle interval.

5.4 Creating the Hierarchical Model

5.4.1 Rigid Models for the Object Parts

The first step to create the hierarchical model is to generate a rigid model for each object part. Although already
during the training models have been created, the orientation range for which the models have been built does not
necessarily coincide with the desired orientation range during the online phase. For example, the user may intro-
duce prior knowledge about the possible orientation of the compound object in the search image. This is similar
to the model creation for rigid object recognition (cf. Section 4.2.6) and may help to keep the memory require-
ment of the model small. However, when dealing with compound objects the question arises how the orientation
of a compound object is defined. In this dissertation the orientation of the compound object is equated with the
orientation of a user-specified reference object part. For the reference part the user may specify the orientation
range for which the associated rigid model should be created. The orientation ranges of the remaining object parts
are then automatically defined by the relations between the parts. Because the search order is unknown `a priori,
a worst case estimation is used to get the orientation ranges of the remaining object parts.
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1m 2m 3m 4m 5m

6m 7m 8m 9m 10m

Figure 5.21: The relations of all pairs of object parts are visualized. Each picture represents an object part i1 for which the
relative movements of the remaining parts i2 are displayed.

5.4.2 Optimum Search Trees

Based on the relations, an optimum hierarchical search strategy can be found by minimizing the computational
search effort in the online phase. One major part of the optimum hierarchical search strategy is represented by
the optimum search trees. In this section, the definition and computation of the search trees is explained.

The relation between parti1 andi2 is used to compute the relative search effortΩr
i1,i2

that must be spent in order
to search parti2 relative to parti1. The computation of the search effort depends on the kind of applied rigid
object recognition method. If either the MGHT or the SBM is used the search effort is approximately given by:

Ωr
i1,i2 = 2ar

i1,i2 · 2b
r
i1,i2 · (ϕ

r ,max
i1,i2

− ϕr ,min
i1,i2

) ·
nm,top

i2

4nl
i2
−1 ·∆ϕtop

i2

. (5.27)

The search effortΩr
i1,i2

is proportional to the area of the rectangle multiplied by the size of the orientation angle
interval, both given by the relations. Hence, this product represents the size of the continuous 3D parameter space
to be scanned. Because of the quantization of the parameter space and the use of image pyramids, the search effort
of part i2 is reduced by a factor that depends on the number of pyramid levelsnl

i2
and the quantization of the

orientation on the top pyramid level given by the orientation step∆ϕtop
i2

. Finally, the search effort increases

linearly with the number of model edge pointsnm,top
i2

that remain at the top pyramid level. It should be noted
that the search effort is not symmetric, i.e.,Ωr

i1,i2
6= Ωr

i2,i1
(for details see Figures 5.18 and Figure 5.21 of

Sections 5.3.4 and 5.3.5, respectively).

Assume that partj serves as root part, i.e., partj is the only part that will be searched within the entire search
space during the online phase. Then, the task for finding the optimum hierarchical search tree for the preselected
root partj can be equated with minimizing the overall relative search effortΩ̄r

j :

Ω̄r
j =

np∑
i=1,i 6=j

Ωr
p(i),i −→ min , (5.28)

whereΩr
p(i),i denotes the effort to search object parti relative to its predecessor partp(i). By definition, the root

part does not have a predecessor part, and hence is excluded from the calculation. Informally speaking, this opti-
mization problem means to find a predecessor part for each object part such thatΩ̄r

j is minimized. Furthermore, it
must be ensured that in the online phase the pose ofp(i) has already been determined before searching for parti.
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Figure 5.22: The object parts and the relations between them are represented in a directed graph (a). For illustration purposes
a small subgraph is selected showing four nodes and the corresponding weights (b). The minimum spanning arborescence
of the graph represents the optimum search tree (c). Here, part 9 was selected as the root part.
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Figure 5.23: All possible spanning arborescences of the subgraph shown in Figure 5.22(b) with part 9 as root part

Consequently, the search in the online phase can be represented by a tree, where the root node represents the root
part, which is searched within the entire search space, and the other nodes represent the parts that are searched
relative to their associated predecessor part.

To solve this optimization problem, one may think of the object parts and the relations between them as a complete
directed graphG(V,E), whereV denotes the set of nodes with|V | = np andE is the set of arcs with|E| =
np(np − 1). A complete directed graph is a directed graph where each two nodesi1 andi2 are connected by the
two arcs(i1, i2) and(i2, i1). The nodes in the graph represent the object parts, the arcs represent the relations.
The arc (i1, i2) is weighted by the search effortΩr

i1,i2
and the arc (i2, i1) is weighted byΩr

i2,i1
. Figure 5.22(a)

shows the corresponding graph of the example.

The optimum search tree can now be obtained by computing the minimum spanning arborescence ofG with
respect to a certain root nodej. In the relevant literature, the termarborescenceis used synonymously with the
term tree, however, it implies that the tree has directed arcs. The minimum spanning arborescence in a directed
graph is defined as a directed spanning treeH(V,E′), whereE′ is a subset ofE such that the sum ofΩr

i1,i2

for all (i1, i2) in E′ is minimized. The directed spanning tree is defined as a graph that connects all nodes with
np − 1 arcs, i.e., each node, except the root node, has exactly one incoming arc. To illustrate this definition,
in Figure 5.22(b) a detailed view of a small subgraph with four nodes is shown. After selecting part 9 as the
root part, the minimum spanning arborescence is calculated. The result is shown in Figure 5.22(c). It is easy to
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convince oneself that in the result three arcs are contained, where each non-root node has exactly one incoming
arc and that the overall sum of weights associated with the result is 10735. This is the minimum weight among all
possible directed spanning arborescences rooted at part 9. For illustrative purposes Figure 5.23 shows all possible
spanning arborescences of the respective subgraph. As can be seen, there are 16 different ways to connect the
three nodes to the root node. The result of Figure 5.22(c) suggests that after the upper body (part 9) is found in
the image, it is most efficient to search the left arm (part 1) and the left leg (part 5) relative to the upper body and
to search the left hand (part 3) relative to the left arm.

The minimum spanning arborescence can be seen as the equivalent to the well-known minimum spanning tree in
an undirected graph (ifΩr

i2,i1
would be symmetric one would obtain a undirected graph). The two most prominent

algorithms to efficiently compute the minimum spanning tree are the Kruskal and the Prim algorithm (Graham and
Hell 1985, Clark and Holton 1994). Unfortunately, these algorithms cannot be used or even extended to cope with
directed graphs. Solving the problem of finding the minimum spanning arborescence in a directed graph is much
more complicated in comparison to solving the equivalent undirected problem. A polynomial algorithm for the
minimum spanning arborescence was independently proposed in (Chu and Tseng-Hong 1965), (Edmonds 1967),
and (Bock 1971). In (Tarjan 1977) and (Gabow et al. 1986), efficient implementations of the algorithm are
presented. The implementation used in this dissertation is presented in (Fischetti and Toth 1993). It makes use
of simple data structures leading to a run time complexity of onlyO(n2), wheren is the number of nodes in the
graph. For a detailed description of the algorithm or of the implementation the interested reader should refer to
the cited literature.

Root Root

Root Root
Root

Ω̄r
1 = 27 · 103 Ω̄r

2 = 28 · 103 Ω̄r
3 = 25 · 103 Ω̄r

4 = 26 · 103 Ω̄r
5 = 29 · 103
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Root Root

Root

Root

Ω̄r
6 = 39 · 103 Ω̄r

7 = 29 · 103 Ω̄r
8 = 39 · 103 Ω̄r

9 = 29 · 103 Ω̄r
10 = 30 · 103

Figure 5.24: The minimum spanning arborescences for each of the ten object parts serving as root part and the associated
overall search efforts are shown. Additionally, the relations between two adjacent nodes are superimposed.

It is obvious that for different root partsj different minimum spanning arborescences are obtained with different
overall weightsΩ̄r

j . Therefore, for each root part the associated minimum spanning arborescence is computed.
Figure 5.24 shows the result for each of the ten object parts serving as root part. It should be noted that although
in this example the same two object parts are directly connected in all minimum spanning arborescences it is not
necessarily the case in general.

5.4.3 Root Part Ranking

To complete the optimum hierarchical search strategy, the question remains, which part to choose as the root
part. One criterion for a suitable root part is a small overall search effortΩ̄r

j of the associated minimum spanning
arborescences.
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However,Ω̄r
j only describes the search effort that must be spent during the relative search. Therefore, the effort

Ωroot
j that must be spent to search the root partj itself must be considered as a second criterion:

Ωroot
j = R · C · (ϕmax

j − ϕmin
j ) ·

nm,top
j

4nl
j−1 ·∆ϕtop

j

, (5.29)

whereR andC are the number of rows and columns in the search image, and hence describe the position search
range for the root object part, while(ϕmax

j − ϕmin
j ) describes the orientation angle search range.

As a third criterion the uniqueness of the root part must be considered. The root part should exhibit as few
symmetries and as few similarities to other object parts as possible. Assume that the left leg (part 5) serves as
root part in the online phase and is searched within the full orientation search range. Because of its rotation
symmetry and its similarity to the right leg, it would be found at four different poses (ignoring possible clutter in
the search image). When looking at the associated search tree the upper body and the left foot must be searched
relative to each of the four poses of the left leg. Consequently, the search effort in the online phase increases
with the number of symmetries and similarities. Therefore, the symmetries and similarities of all object parts are
determined using the analysis described in Section 5.3.3.2, which matches object partj to itself and to all other
object parts. Assume that object partj has been foundnsym

j times on itself andnsim
j times on other object parts

during the analysis. Then, the search effort of the relative searchΩ̄r
j must be multiplied by(nsym

j + nsim
j ) in

order to approximately estimate the influence of the non-uniqueness of the root part on the search effort. One
could argue that it is sufficient to only multiply the relative search effort of the parts that are adjacent to the root
part since the search can be aborted if the adjacent parts are not found. However, the multiplication of the overall
relative search effort is legitimated since the object recognition, which will be described in Section 5.5, should be
able to cope with occlusions. Thus, the search cannot be stopped if one object part is missing.

Finally, the search effortΩj that is associated with the root partj is obtained:

Ωj = Ωroot
j + (nsym

j + nsim
j )Ω̄r

j . (5.30)

By sorting the possible root parts with respect toΩj in ascending order one obtains a root part ranking that
expresses the suitability of all object parts to serve as the root part. In Table 5.1 the respective ranking of the
example is presented. It can be seen that the head (part 10) and the upper body (part 9) are best suited to serve
as the root part. This is because they both do not show any rotation symmetry or similarity to other object parts
and because five pyramid levels can be used during the search. In contrast, taking one of the two hands (part 3 or
part 4) as root part would result in the highest search effort: they both exhibit symmetries and mutual similarities.
Furthermore, only three pyramid levels can be used because of their small size.

After this step, the creation of the hierarchical model is completed. However, a manual selection of the root part
by the user is still reasonable. This is because the selection of a suitable root part also depends on the application
(cf. Section 5.5.1). Therefore, the root part ranking is returned in order to help the user to select the appropriate
root part for his specific application. Consequently, the search trees for all root parts are stored in the hierarchical
model. In the online phase, the search tree that is associated with the user-specified root part is selected from the
hierarchical model and used to search the object. Summing up, the hierarchical model consists of the rigid models
of the object parts, the relations between the parts, and the hierarchical search strategy. The hierarchical search
strategy is represented by the optimum search trees, which are given by the minimum spanning arborescences,
and the root part ranking.

Rank 1 2 3 4 5 6 7 8 9 10

Root part j 10 9 7 8 5 6 1 2 3 4

Ωj · 10−5 4 5 21 21 26 27 32 32 140 140

Table 5.1: The root part ranking expresses the suitability of the object parts to serve as the root part. Parts 10 and 9 are best
suited, whereas parts 3 and 4 would result in the highest search effort.
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As a last point, a special case should be discussed that, however, is rather rare in practice: assuming a compound
object that consists of identical object parts, then no distinct root part can be determined. For example, a chain
consists of several identical links. In this case, the presented approach cannot be used because solving the
ambiguities during the training would fail. This is because there is no preferable configuration of the links since
the overall configuration itself is ambiguous. However, even if a hierarchical model is available its use would not
be advisable because the root part would be found as many times as links are contained in the chain. Then, for
each found instance of the root part the hierarchical search would be started, which leads to a high computational
effort. Fortunately, in this case the use of the hierarchical model is not necessary. In contrast, it is sufficient to
search only one single link in the image. The search already returns all instances of links, and thus the matches
of all object parts. Hence, no further (relative) searches need to be performed. However, the correspondence
problem still needs to be solved. It should be noted that in most cases when dealing with objects that consist
of identical parts, it is possible to determine an auxiliary root part. For example, if several identical modules
on a circuit board must be recognized, it is desirable to use the hierarchical model, and hence profit from the
inherent determination of the correspondence. This can be achieved by including an additional object part in the
compound object, e.g., a different module, a corner of the circuit board, a fiducial mark, or any other print on the
board. The additional object part can then serve as the root part.

5.5 Object Recognition

After the hierarchical model has been generated in the offline phase, it is used to efficiently search the compound
object in an arbitrary search image during the online phase. In addition to the high efficiency, the inherent deter-
mination of the correspondence of the object parts within the hierarchical model makes a solution of ambiguities
during the online phase unnecessary. Section 5.5.1 outlines the principle of the hierarchical object recognition.
Section 5.5.2 describes extensions for the handling of special problems that can occur during recognition.

5.5.1 Principle of Hierarchical Object Recognition

The recognition of the compound object in a given search image is based on the hierarchical model. As additional
input data the user may specify the root part that should be used during the search if it differs from the first entry
in the root part ranking. Furthermore, the user may restrict the search space within the search image. The
recognition of the compound object is then split into two steps. In the first step, the root part is searched within
the user defined search space. In the second step, starting from the pose of the root part, the poses of the remaining
parts are determined during the relative search according to the search tree that is associated with the specified
root part. As another parameter, the search order that is applied to the search tree can be chosen to be, e.g.,
breadth-first search or depth-first search (see Figure 5.8(a) in Section 5.2). The search order assigns each object
part a number that describes its position within the search order.

Despite the automatically computed root part ranking, a manual selection of the root part may still be reasonable.
This is because the computation of the root part ranking is only based on the endeavor to minimize the search
effort. However, the selection of the root part not only affects the computation time, but the root part plays another
decisive role in the case of occlusions or missing object parts: it is important that the root part of the compound
object instance in the search image is recognized. If the root part cannot be recognized, e.g., because of occlusions
or because it is missing in the search image, then the recognition of the remaining parts becomes more difficult.
Therefore, in case severe occlusions or missing parts must be expected, the user should ensure to select a root
part that is not only accompanied by a small search effort but also by a high possibility to be recognized. Because
this selection depends on the object and the application, and thus requires background information, it cannot be
automated. Nevertheless, for the case that no such prominent object part can be specified, e.g., because all object
parts are approximately equal, in Section 5.5.2.4 a solution that is able to cope with the case of a missing root
part is proposed.
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In the following, the principle of the hierarchical recognition is explained in more detail. Letqi, i = 1, . . . , np be
the object part at positioni within the search order andpi, i = 2, . . . , np be the associated predecessor part within
the search tree. For example, the root part is at the first position within the search order, and hence is represented
by q1. It should be noted that the root part does not have a predecessor part in the search tree. The aim of the
recognition is to return one hierarchical match for each instance of the compound object in the search image. A
hierarchical match comprises the matches of all object parts that belong to the same object instance. Therefore,
it contains at most one pose for each object part. Each match of the root part instantiates one hierarchical match,
which at this time only contains the respective pose of the root part. Then, according to the search order the
next object partqi is successively selected. The search space for partqi is calculated based on the pose of the
associated predecessor partpi. The search space is split into the position search space for the reference point and
the orientation search space. The position search space is described by the rectangle that is given by the position
relation between partpi andqi transformed according to the pose of partpi. Accordingly, the orientation search
space is given by the transformed orientation relation. Let(os

pi
, ϕs

pi
) be the pose of the predecessor part in the

search image. Then the position search space for partqi is represented by the rectangle that is described by the
parameterscqi , aqi , bqi , andβqi :

cqi = os
pi

+ R(ϕs
pi

)cr
pi,qi

(5.31)

aqi = ar
pi,qi

(5.32)

bqi = brpi,qi
(5.33)

βqi = ϕs
pi

+ βr
pi,qi

. (5.34)

The orientation search space is described by the angle interval[ϕmin
qi

, ϕmax
qi

]:

ϕmin
qi

= ϕs
pi

+ ϕr ,min
pi,qi

(5.35)

ϕmax
qi

= ϕs
pi

+ ϕr ,max
pi,qi

. (5.36)

Finally, part qi is searched by scanning the computed search space. The obtained pose is stored within the
hierarchical match. If there are several hierarchical matches (e.g., because multiple instances of the root part have
been found) the search space is computed for each hierarchical match separately. This process is successively
repeated for all object parts.

To rate the quality of the hierarchical match, a score values is computed by weighting the returned score values
sqi of the single object parts:

s =
np∑
i=1

fqisqi , (5.37)

wherefqi = wqi/
∑np

i=1wqi represents the weighting factor of object partqi andwqi is the respective weight.
If an object part could not be found its score value is set to 0. Because the score values of the single parts
approximately indicate the fraction of occluded edge pixels, it is reasonable to setwqi to the number of model
edge pixels of the associated object part. Thus, the contribution of a single part to the score is proportional to the
number of its model edge pixels. According to the recognition of rigid objects a minimum score valuesmin can
be set by the user. Consequently, a hierarchical match can be discarded afterj object parts have been searched
whenever the following condition holds:

s̃j + s̄j < smin , (5.38)

wheres̃j =
∑j

i=1 fqisqi denotes the score that is obtained from the parts that have been searched already. The
score that is at most reachable by the remaining parts is denoted ass̄j =

∑np

i=j+1 fqi . For this, perfect matches,
i.e., sqi = 1, are assumed for the parts that still have to be searched. By evaluating (5.38) after each searched
object part, unnecessary computations can be avoided, which leads to an increased efficiency.

Finally, for each found instance of the compound object the precise poses of all found object parts that belong to
the associated hierarchical match are returned. Furthermore, the score value of the compound object as well as
the score values of all object parts are returned.



122 CHAPTER 5. RECOGNITION OF COMPOUND OBJECTS

A difference between the SBM and the MGHT should be noted when dealing with restricted search spaces as
in the case of the hierarchical search. Because the MGHT shows inherent translation invariance, it is difficult
to benefit from the prior information about the object position given by the position search space. This problem
is similar to the problem that occurs when tracking matches through the pyramid (cf. Section 4.2.3.2). Unfor-
tunately, the principle of the blurred region cannot be applied in the proposed way because the position search
spaces of the object parts vary in dependence on the corresponding predecessor part. This would require an
exploding number of blurred regions to store within the hierarchical model. In order to avoid huge amounts of
required memory, the domain restriction must be either computed in the online phase or completely neglected.
However, both alternatives increase the computation time. Hence, using the SBM for the recognition of com-
pound objects is more efficient than using the MGHT. Apart from that, similar results can be expected for both
approaches, however, a lower robustness against changes in brightness must be accepted when the MGHT is
used.

5.5.2 Practical Extensions

5.5.2.1 Missed Object Parts

Sometimes it may happen that one object part cannot be found. Consequently, its pose is not available to restrict
the search space for the object parts that reside directly below the missed object part in the search tree. On the
one hand, it should be avoided to search the respective parts within an unrestricted search space. This would lead
to an increased computation effort and to possibly ambiguous matches. On the other hand, the approach should
be robust against occlusions. Therefore, three different strategies that make the search for an object part possible
even if the pose of the predecessor is unavailable have been implemented: The first strategy is to step back in the
search tree until a found object part is available. The search is then performed relative to the pose of this object
part. Thus, in the worst case the search is performed relative to the pose of the root part. The second strategy is
to perform the relative search from the pose of the (already found) object part from which the search effort of the
relative search is minimal. In a third (trivial) strategy all object parts that reside below the missed object part in
the search tree are not searched at all but are also treated as missing. The second strategy is applied as default.
However, the user may select the appropriate strategy for his specific task.

In some applications it is desirable that a pose is obtained even for the object parts that could not be found. Based
on the poses of all found object parts within the hierarchical match the most likely pose of a missed object part can
be calculated. For this, a weighted mean pose is calculated using the mean and standard deviation of the relative
movements that have been computed in Section 5.3.5. From the pose of one found object part and the mean value
of position and orientation relation to the missed part, the mean pose of the missed part can be calculated. This
calculation can be done with respect to each found object part. The most likely pose is obtained by computing
the weighted mean of all obtained mean poses, where the weight is proportional to the inverse variance of the
relative movement.

5.5.2.2 Multiple Matches

In some cases it may happen that multiple instances of one object part are found despite the restricted search
space. In this case the current hierarchical match is duplicated according to the number of found matches.
Each match of the object part is then assigned to a different hierarchical match. The search is continued for all
hierarchical matches.

Figure 5.25 shows a small example to illustrate the search for a compound object. It should be noted that the root
part (upper body) is symmetric, i.e., its pose is ambiguous, and that in the search image shown in Figure 5.25(b)
a clutter object is present that is similar to the left hand.

The progress of the search is shown in Figure 5.26. At first, the root part, which is the upper body in this example,
is searched within the entire search space. Because the root part is rotationally symmetric, it is found twice. Thus,
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Figure 5.25: A compound object consisting of five object parts. In (a) the hierarchical model is visualized. Additionally, the
position in the search order of each part is displayed. In the search image (b) a clutter object is present.

two hierarchical matches are initialized. They are shown in the first row of Figure 5.26. Because the contribution
of the upper body to the edge pixels in the entire compound objectfq1 is 0.6, the scorẽs1 is 0.6.

The next part in the search order is the left arm. The respective search space in both hierarchical matches
is additionally visualized in the first row. Because of the symmetric constellation of the arms with respect to
the upper body, the left arm is found in both hierarchical matches (see second row of Figure 5.26). However,
the search for the left hand leads to different results in both hierarchical matches. The search using the first
hierarchical match results in two matches for the left hand, because of the additionally present clutter object in
the image. Consequently, the first hierarchical match is duplicated once, yielding a third hierarchical match. The
two matches of the left hand are then assigned to the first and the third hierarchical match, respectively. Because
the score returned for the clutter object is less than 1, the score of the third hierarchical match is onlys̃3 = 0.78
in contrast tõs3 = 0.8 of the first hierarchical match. The search for the left hand using the second hierarchical
match remains unsuccessful. The right arm, which is the next part in the search order must be searched relative to
the pose of the upper body. However, the pose of the upper body is identical in the first and the third hierarchical
match. Therefore, the search needs to be performed only once for both hierarchical matches. This prevents
an increase in computation time when dealing with multiple matches. In contrast, the search for the right arm
in the second hierarchical match must be performed. The last step is the search for the right hand. Finally,
three hierarchical matches are returned. The first and the third hierarchical match only differ in the match of the
left hand. Therefore, the two corresponding scores (s = 1.00 ands = 0.98) differ only slightly. The second
hierarchical match represents a rotated instance of the compound object with occluded hands. Consequently, the
corresponding score is lower (s = 0.90).

5.5.2.3 Elimination of Overlapping Matches

Sometimes it is desirable that hierarchical matches that represent the same instance of the object are eliminated.
In the previous example (cf. Section 5.5.2.2), only the first hierarchical match should be returned. Therefore, in a
subsequent step after the search, the hierarchical matches are checked for mutual overlap. If the overlap fraction
between two hierarchical matches exceeds a user-specified threshold the hierarchical match with the lower score is
eliminated. To compute the overlap fraction, the object part matches are represented by their smallest enclosing
rectangle. For each hierarchical match the union region of the smallest enclosing rectangles of all object part
matches is computed. The overlap is computed by intersecting the union regions of two hierarchical matches.
The overlap fraction is then obtained by dividing the area of the intersection region by the area of the smaller of
both union regions. In order to save computation time, one can take profit of the fact that the overlap fraction
for duplicated matches is 1 at the time of duplication. Therefore, it is sufficient to only check those object part
matches for overlap that are different. Furthermore, the smallest enclosing rectangles for each object part can
be computed in the offline phase. For the overlap check in the online phase they only need to be transformed
according to the pose parameters of the object part matches. This facilitates an efficient computation of the
overlap fraction.
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Figure 5.26: Search for the compound object using the hierarchical model. Found instances of object parts are represented by
white edges. The orientation of the match is displayed as a white arrow. The search space is displayed using white rectangles
and circle sectors. After the j-th part has been searched, the score s̃j is computed (fq1 = 0.60, fq2 = 0.15,fq3 = 0.05,
fq4 = 0.15, and fq5 = 0.05).

5.5.2.4 Missed Root Part

An important point to discuss is the treatment of a missed root part. In some applications it cannot be ensured
à priori that the root part of each instance of the compound object is found. Thus, the hierarchical search cannot
be started. Consequently, the compound object cannot be found by the approach even if all object parts except
the root part are visible.

Therefore, if the user specifies that the root part may be missing a special extension of the approach is applied. In
this extension the search is not restricted to the use of a single root part. In contrast, the search is performed by
successively selecting different root parts in accordance with the root part ranking. For each selected root part the
associated search tree is used to search the remaining parts. The number of root parts that must be used can either
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be selected by the user or determined automatically based on the minimum score. If, for example,k root parts
have been searched it is still possible that some instances of the compound object have not been detected yet.
This is possible for object instances with exactly thesek object parts occluded. Consequently, the score that can
maximally be achieved for such object instances corresponds to the sum of weighting factors of the remaining
np− k root parts. Thus, no further root part needs to be searched when this sum is smaller than the user-specified
minimum score.

Some particularities that arise when using several root parts should be discussed in the following. Firstly, the
increasing computational effort must be mentioned. Fortunately, some matches of the current root part can be
immediately eliminated without instantiating a new hierarchical match. This is done by checking whether a match
of the current root part is identical to an already found match during the relative search of a previously used root
part. The respective matches of the current root part can then be eliminated without the risk of missing an instance
of the compound object. Thus, the computational effort can be reduced considerably. Nevertheless, the effort is
still higher in comparison to the use of only a single root part. Therefore, the computation time is compared to the
brute-force method that searches all object parts in the entire search space: LetΩ be the average computational
effort of searching an object part in the entire search space. Accordingly, letΩr be the average computational
effort of searching an object part relative to another part in a restricted search space, and henceΩr � Ω, in
general. Furthermore, letninst be the number of object instances in the search image. The computational effort
using the proposed hierarchical model with the extension of missing root parts can then be estimated as:

(1− smin)npΩ + ninst(np − 1)Ωr . (5.39)

Here,(1− smin)np is the number of root parts that must be searched within the entire search space to ensure
that all object instances with a score exceedingsmin are found. For each found instance the relative search must
be performed fornp − 1 object parts. In contrast, the computational effort using the brute-force method can be
estimated as:

npΩ . (5.40)

Consequently, the search using the hierarchical model is more efficient than the brute-force method if the follow-
ing condition holds (assuming the worst case ofnp →∞):

smin > ninst Ω
r

Ω
. (5.41)

This condition is not very restrictive, and hence fulfilled in most applications. For example, assuming that at least
50% of the compound object is visible (smin = 0.5) andΩr/Ω = 0.05, which is still a high ratio, the search
using the hierarchical model is faster than the brute-force method if fewer than ten instances are present in the
image. Apart from this it should be kept in mind that the substantial advantage of the inherently determined
correspondence of the object parts still remains even when using several root parts.

A last point that must be taken into account when dealing with several root parts is the possibility to introduce
prior knowledge by the user about the pose of the first root part in the search image. This knowledge is used
to restrict the search for the first root part. To take advantage of this prior knowledge when performing the
search for other root parts, the search space for the other root parts must be explicitly determined. For this, the
restricted search space of the first root part is propagated through the search tree that is associated with the first
root part. The propagation is performed by successively accumulating the relative search spaces to the user-
specified search space over the path in the search tree that starts at the first root part and ends at the current root
part. The orientation search space is trivially computed by successively adding the orientation search spaces.
Figure 5.27 shows the more complex calculation of the position search space of the second root part based on
the user-specified search space of the first root part. In Figures 5.27(a)–(d) the exact calculation is shown in
detail. The user-specified orientation search space[ϕmin

1 , ϕmax
1 ] for the first root part is propagated to the range

of reference positions of the second root part.

For one specific position of the first root part within the user-specified position search space the circular arc
on which the centroids of all rectangles must fall that describe the position of part 2 can be calculated. Let
ϕ1,2 = arctan(y1,2/x1,2), wherex1,2 andy1,2 are the coordinates of the vectorcr

1,2 that describes the relative
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Figure 5.27: Computation of the position search space for the second root part based on the user-specified search space
for the first root part. The exact computation is shown in (a)–(d). Because of the expensive computation, an approximate
solution is shown (e)–(g).

position of part 2 with respect to part 1. Then the circular arc is defined by the radius‖cr
1,2‖ and the angle interval

[ϕs, ϕe], with the start angleϕs = ϕ1,2+ϕmin
1 and the end angleϕe = ϕ1,2+ϕmax

1 . At each point on the circular
arc the rectangle that describes the relative position search range of part 2 is superimposed. The envelope of all
rectangles describes the position search space of the second root part based on one specific position of the first
root part (see Figure 5.27(c)). To take all possible positions of the first root part into account, the resulting image
region must be enlarged by using the Minkowski addition (Pratt 2001) with the user-specified position search
space of the first root part as structuring element. The reference point of the structuring element must correspond
to the previously specified position of the first part. The result is shown in Figure 5.27(d). One can see that
the exact computation of the position search space is rather expensive. Therefore, an approximate solution is
proposed. The single steps are shown in Figures 5.27(e)–(g). The user-specified search space for the root part
as well as the relative search spaces are approximated by the smallest enclosing circles with radiusr1 andr2.
Consequently, the search region for the second root part can be represented by an annulus sector with an inner
radius of‖cr

1,2‖ − r1 − r2, an outer radius of‖cr
1,2‖ + r1 + r2 and an angle interval of[ϕs, ϕe]. Finally, two

semi-circles with radiusr1 + r2 must be appended at both ends of the annulus sector. Although the resulting
approximate position search space is larger than the exact solution, it can be computed much more efficiently.
Therefore, one can take profit from the user-specified prior information about the position and orientation of the
first root part even when using other root parts.

5.6 Examples

Because of the novelty of the proposed approach for recognizing compound objects, there exist no comparable
recognition methods, and hence a comparison with the performance of other approaches is not possible. For-
tunately, many properties of the compound object recognition approach are inherited from the underlying rigid
object recognition approach. I.e., in principle the results of the evaluation in Section 4.4 can be transferred. How-
ever, a remark on the robustness should be annotated. The calculation of the score value of the compound object
differs from the calculation in the rigid case. This influences the robustness of the approach since the score value
is used to decide on the presence of an object instance. Furthermore, the user-specified parameters influence the
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Figure 5.28: Recognition of the print on a pen clip. The pose of the light gray letter varies with respect to the dark gray letters.

robustness of the approach: depending on the selected treatment of missed object parts, and depending on the
handling of missing root parts, the robustness against occlusions changes. This should be kept in mind by the
user when specifying the corresponding parameters. Nevertheless, it is possible to evaluate the computation time
in comparison to the brute-force method that searches all object parts in the entire search space independently
from each other. In this section, selected examples that emphasize the considerable advantages of the proposed
approach are presented. The image size in all examples is 640×482. All computations are performed on a 2 GHz
Pentium 4.

In the first example (see Figure 5.28), the company logo that was already introduced in Figure 2.6 is used as
the compound object. The model image, a ROI that contains the entire print on the pen clip, and 10 example
images are passed as input data to the process of training the hierarchical model. The example images show
the relative movement of the light gray letter with respect to the dark gray letters. As the first intermediate
result the automatically found components are visualized in Figure 5.28(a) by superimposing their edges on the
model image in white. For each letter a separate component was detected. During the pose determination of the
components in the example images no ambiguities occurred because the components are free of any similarities
or symmetries. In Figure 5.28(b) the extracted object parts that are obtained from clustering the similarity matrix
are shown. The threshold for the minimum probabilitypmin was set to 0.5. As one would expect, the dark gray
letters are clustered into one rigid object part. Although no rectification was applied to the images in this example,
the relative movement between both parts was large enough to be easily separated from pseudo movements that
are caused by the radial distortions. The complete training process took 25 s.

In the next step, the hierarchical model was created. Because the logo is expected to appear only in a very limited
orientation range, the model was created in a small angle interval. This was done by restricting the expected
orientation angle of the part that represents the dark gray letters to[−20◦,+20◦]. In Figure 5.28(c) the object
parts are represented by their reference points. The part that represents the dark gray letters was selected as root
part by the approach. One can see that the relative movement of the light gray letter is very small in position as
well as in orientation. Because only two object parts are involved in this example, the search tree is degenerated
to only two nodes with one single connection (displayed as a bold black line). Generating the hierarchical model
took 6 s.

Finally, the hierarchical model was used to search the object in 20 different search images that are distinct from the
example images that were used to train the hierarchical model. Figures 5.28(d)–(g) show four examples, in which
the returned poses of the parts are visualized by their edges superimposed in white. The average computation time
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Figure 5.29: Recognition of electronic modules on a circuit board. The relative position and orientation of the modules on the
board vary slightly.

of the recognition process was 21 ms if one object instance was present in the image and 27 ms if two instances
were present (as, e.g., in Figures 5.28(f) and (g)). The recognition of the root part took 15 ms, the recognition of
the second part for each instance about 6 ms. In contrast, the independent recognition of both parts without using
the hierarchical model would take about 30 ms (one instance) and 37 ms (two instances), respectively. Therefore,
a speed-up of about 40% is received when using the hierarchical model. Although in this case the improvement in
computation time that is obtained by the use of the hierarchical model is not enormous, there is still the additional
advantage of the inherently determined correspondence. Thus, whenever more than one object is present in the
image, the correspondence between the found object part instances and the correct compound object is implicitly
given.

The second example (see Figure 5.29) deals with the circuit board that was introduced in Figure 2.8. In this
example, the object parts are specified manually by the user because obviously an automatic extraction of the
components using the proposed approach would fail. Therefore, instead of one ROI, now five ROIs are passed
to the algorithm, each representing one object part (see Figure 5.29(a)). The associated object parts’ edges
are shown in Figure 5.29(b). To train the hierarchical model, 12 example images were provided. Also in this
example no rectification was needed. Because two of the five electronic modules are identical (part 3 and part 5),
the approach had to solve the occurring ambiguities during the training. It took 24 s to train the hierarchical
model. The creation of the hierarchical model was restricted to an orientation angle interval of[−45◦,+45◦].
The final hierarchical model is displayed in Figure 5.29(c). Part 2 was recommended by the approach to serve as
the root part, from which part 4 is searched. The pose of part 4 is then exploited to restrict the search space of
part 1, from which finally part 3 and part 5 are searched. Because of the relatively small size of the object parts,
the model creation only took 3 s.

In the online phase, the compound object was recognized in several search images. On average, it only took
20 ms to find the object, of which 14 ms must be attributed to the recognition of the root part and only 6 ms to
the recognition of all remaining parts. In comparison, without using the hierarchical model the search would take
240 ms and the correspondence would remain unsolved. Thus, an impressive speed-up of 1100% is obtained.
This example demonstrates the obvious substantial advantages of the hierarchical recognition.

In the third example (see Figure 5.30), the print on the label that was already shown in Figure 2.7 is used as
the compound object. However, in this example the camera was not mounted perpendicular to the object plane,
resulting in severe projective distortions (see Figure 3.6). Therefore, a camera calibration was necessary in order
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Figure 5.30: Recognition of the print on a label under projective distortions. The rectangular border, the string, and three
parts of the date move with respect to each other.

to rectify the images. As described in Section 3.5, 15 images of a calibration target were taken to calculate the
rectification map (see Figure 3.7). The rectified images were defined by choosing an image size of 515× 527
with a pixel size of 0.32 mm. The camera calibration took 2 s and the computation of the associated rectification
map 120 ms.

Based on the rectified model image and the rectified example images the training was started. The compound
object was defined to be the print on the label, and hence a rectangular ROI that encloses the entire print in the
model image was passed to the training algorithm. The rectified model image together with the result of the initial
decomposition is shown in Figure 5.30(a). One can see that each letter of the string “BEST BEFORE END” and
each digit of the date “29/11/02” represents one component. Additionally, the inner and the outer rectangle of the
black border were found to constitute two separate components. 18 rectified example images were made available
and were passed to the training.

The object parts that were returned after analyzing the example images are displayed in Figure 5.30(b). Again,
the threshold for the minimum probability was set to 0.5. Because the letters of the string do not exhibit any
relative movement, they were clustered into one rigid object part. The same holds for the inner and the outer
rectangle of the border. Furthermore, the date was grouped into three rigid object parts. In this example, several
ambiguities were successfully solved by the algorithm: both rectangles, the letters “S”, “N”, and “O” as well as
the digit “0” and the slash “/” show rotation symmetry, and hence are found at least twice in each example image.
Furthermore, there are several mutual similarities between different components: the letters “B”,“E”, as well as
the digits “1”, “2”, and the slash “/” appear more than once. Additionally, the letter “O” and the digit “0” show
high similarity. Because of the large number of components, it took 12 minutes to train the hierarchical model.
One possible way to speed up the training is to restrict the search space of the components. Here, the example
images have been acquired such that the orientation of the components varied only slightly. Thus, the orientation
search space during the training could be restricted to the interval[−20◦,+20◦], which resulted in a computation
time of 3 minutes. Furthermore, ambiguities due to orientation symmetries are avoided.

The subsequent creation of the hierarchical model was not restricted to an orientation range, but performed
within the full orientation range of 360◦. The resulting search tree and the associated relations are displayed
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Figure 5.31: Recognition of a DIP switch module. Each switch can be toggled either on or off. Thus, the print on the module
and all switches move with respect to each other.

in Figure 5.30(c). The rectangular border of the label was recommended by the approach to serve as the root
part despite its rotation symmetry. Indeed, the search would be slower if the string would be chosen as root part
because the number of associated pyramid levels of the string is one less than that of the rectangular border. The
suggested search tree implies to search the string and the middle part of the date relative to the pose of the border.
Finally, based on the pose of the middle part of the date the two remaining parts of the date are searched. The
computation time to create the model was 16 s.

The online phase in this example consists of the rectification of the search image and the subsequent search
with the hierarchical model. In the Figures 5.30(d)–(g), four search images are shown. To validate the resulting
matches, the edges of the found object parts are projected back from the world coordinate system into the original
search image and displayed in white. One can see that despite the severe distortions and the relative movements
of the object parts the compound object was correctly recognized in all search images. The complete online
phase took only 51 ms on average: 8 ms for the rectification, 33 ms for the search for the root part, and 10 ms
for the relative search for the remaining parts. Without the hierarchical model the search would take 512 ms.
Consequently, the speed-up that is achieved in this example is higher than 900%.

In a last example (see Figure 5.31), a DIP switch module containing 12 switches represents the compound object.
Because each switch can be toggled either on or off, the appearance of the entire module changes. Therefore,
in order to train the relations between the single object parts it is sufficient to use 12 example images. In each
example image another switch is toggled on, while the remaining switches are all toggled off. A rectangular ROI
that encloses the print and all switches on the module is passed to the training algorithm. Also, in this example
no rectification was necessary. In Figure 5.31(a) the automatically detected components are superimposed on the
model image. Here, matches must be expected that are highly ambiguous: because all switches show identical
square shapes, each switch was found at 48 different poses in each example image. Nevertheless, the algorithm
was able to solve all ambiguities correctly. In Figure 5.31(b) the final extracted object parts, which have been
determined by setting the threshold for the minimum probability to 0.5, are shown. The entire print is combined
in one object part, while each switch is represented by a separate object part. The computation time for train-
ing the hierarchical model was 11 minutes. When restricting the search for the components to the interval of
[−20◦,+20◦] the computation time can be reduced to 31 s.

Again, the hierarchical model is created without restricting the orientation range. The result is shown in Fig-
ure 5.31(c). As one would expect the print on the module is best suited to serve as the root part. The search tree
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Figure 5.32: Recognition of objects with varying size. The white pads on the die in (a) can be represented by four corners
that move with respect to each other (b). Analogously, the metal angles in (c) can be represented by six corners (d).

suggests to search each switch relative to the pose of the root part. The time to create the hierarchical model was
17 s.

Finally, several search images that show different numbers of objects have been acquired. Four examples are
shown in the Figures 5.31(d)–(g). Up to three objects appear simultaneously in the image. As a matter of course,
also modules with arbitrary switch configuration that deviate from the configuration in the example images can
be found. Because occlusions must be expected, the threshold for the minimum score of the root part was set to a
low value of 0.6. In contrast the minimum score of the switches was set to 0.8. Lower values would lead to false
positive matches because the switches differ only slightly from their white background. With these parameter
values, all instances were found correctly. Of course, occluded switches could not be found. The recognition
of the object took 22 ms (root: 14 ms, others: 8 ms), 38 ms (root: 22 ms, others: 16 ms), or 45 ms (root: 23 ms,
others: 22 ms), depending on whether one, two, or three instances were found. The times for recognizing the parts
independently without the hierarchical model would be 166 ms, 346 ms, and 682 ms. Furthermore, additional time
would be necessary to solve the ambiguities. The gain in computation time can be expressed by the associated
speed-ups of 650%–1400%.

Another advantage of the approach is that some objects can be recognized even if their size changes. Normally,
this would require a recognition approach that is able to handle similarity transformations. However, the proposed
approach can model the changes in scale as relative movements. Figure 5.32 shows two examples. In the first
example the white pads on the die must be recognized. The pads may occur at different sizes. Four appropriate
model parts can be defined by passing four ROIs to the training. Each ROI contains one corner of the rectangle.
Hence, by choosing the corners of the rectangle as model parts exploits the fact that angles are preserved under
similarity transformations. It is sufficient to train the model with two example images one showing the smallest
occurring pad and one showing the largest occurring pad. Thus, the trained relations between the parts cover all
possible object scales. Analogously, in the second example metal angles must be recognized. Here, six object
parts that represent the six corners are involved. Again, two example images are enough to train the model.
Actually, it would be sufficient to recognize only two object parts in both examples to determine the pose of
the object. The scale of the object can be determined from the distance between the two object parts. If more
than two object parts are used the computation of the scale becomes ambiguous. In this case the scale can be
determined in a least-squares adjustment by minimizing the distances between the scaled model and the returned
poses of the object parts. In a similar way objects that are transformed by more general transformation classes
can be recognized. However, instead of angles other appropriate geometric invariants must be found.
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6 Conclusions

In this dissertation, a novel approach for recognizing compound objects in real-time is proposed. A compound
object is defined as a number of rigid object parts that show arbitrary relative movements. The basic idea behind
the approach is to minimize the search effort, and hence the computation time, by restricting the search in accor-
dance with the relative movements of the object parts. This naturally leads to the use of a hierarchical model: only
the root object part, which stands at the top of the hierarchy, is searched within the entire search space. In con-
trast, the remaining parts are searched recursively with respect to each other within very restricted search spaces.
By using the hierarchical model, prior knowledge about the spatial relations, i.e., relative movements, between
the object parts is exploited already in an early stage of the recognition. Thus, the computation time is reduced
dramatically. Furthermore, the hierarchical model provides an inherent determination of the correspondence, i.e.,
because of the restricted search spaces, ambiguous matches are avoided. Therefore, a complicated and expensive
solution of the correspondence problem is not necessary.

The proposed strategy for recognizing compound objects requires an appropriate approach for recognizing rigid
objects. In an extensive review of rigid object recognition methods, the generalized Hough transform proves to
be one of the most promising candidates. Its inherent translation invariance, as well as the high robustness, are
the most important advantages. Nevertheless, it is shown that there are still several modifications necessary to
fulfill industrial demands. The method is extended to recognize objects at arbitrary orientations. This leads to
high computation times and large amounts of required memory. Therefore, several effective extensions to in-
crease the efficiency are proposed. The use of image pyramids, which leads to a multi-resolution model with an
associated coarse-to-fine search, is a major improvement. It is shown that the benefit achieved by the use of the
multi-resolution model can be further augmented: a method for optimally restricting the image domain that is
processed during the coarse-to-fine search is proposed. By splitting the model into tiles, redundant processing
steps are avoided and the gain in efficiency is further increased. Additionally, several new methods to enhance the
degree of automation and robustness are proposed. Finally, the obtained discrete values for the object position and
orientation are analytically refined to achieve a high accuracy. It is shown that this modified generalized Hough
transform is about 650 times faster than the conventional generalized Hough transform in a standard example.
The performance of the new approach is evaluated thoroughly by comparing it to three standard approaches and
three high-end recognition tools. Furthermore, a second new approach, the shape-based matching (Steger 2002),
which was developed simultaneously to the modified generalized Hough transform, is introduced and included
in the evaluation. The evaluation shows that both new approaches are considerably superior to existing standard
approaches. Their behavior with respect to robustness, accuracy, and computation time is better balanced in com-
parison to all other approaches, except for one high-end recognition tool, which shows comparable results. From
this discussion it can be seen that both approaches fulfill the industrial requirements discussed in Section 2.2.
Furthermore, it follows that the modified generalized Hough transform is more than simply a by-product of this
dissertation. In contrast, it can be seen as one of the best stand-alone recognition approaches for rigid objects. The
field of applications that can benefit from this new approach is almost unlimited. Not only applications that use
the conventional generalized Hough transform can be improved, but most applications that require rigid object
recognition can achieve a high performance with this approach.

The shape-based matching is chosen to serve as a module within the approach for recognizing compound objects
because it has already been thoroughly tested and included in a commercial software library. Furthermore, in
contrast to the modified generalized Hough transform, it shows true invariance against changes in brightness. To
achieve a high degree of automation, the hierarchical model is automatically trained. For this, some example
images that show the relative movements of the object parts are automatically analyzed and used to determine
the rigid object parts as well as the spatial relations between the parts. This is very comfortable for the user
because a complicated manual description of the compound object is avoided. During the subsequent creation of
the hierarchical model, the optimum hierarchical search strategy is automatically derived. The strategy includes
a rating of the ability of each object part to serve as the root part: parts that facilitate a fast search when used as
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root part receive a good rating. Additionally, for each part that might be selected as the root part, an associated
search tree, which represents the hierarchical search, is automatically computed. The hierarchical model that is
finally obtained is used to recognize the compound object in real-time. By default, the part with the best rating is
selected as root part. However, in order to exploit prior knowledge about possibly occluded object parts, the root
part may be selected by the user and passed as input parameter to the search. In this case, the ratings of the root
parts may assist the user while specifying the desired root part. The search is then performed in accordance with
the search tree that is associated with the specified root part.

The training of the hierarchical model is performed in several steps by following the principle of human visual
perception. At first, the compound object is split into several small components. Then, the components are rec-
ognized in the example images. Components that do not exhibit any relative movements are merged into rigid
object parts. Finally, the relations between the parts are determined. It is shown that the high degree of au-
tomation during the training of the hierarchical model is accompanied by several problems that must be solved.
One major problem is the non-uniqueness of the components, which, e.g., can be caused by rotation symmetries
or mutual similarities of the components. Thus, one component may be recognized several times in the same
example image. To solve this correspondence problem, a new method that uses a global criterion is proposed
to estimate the likelihood of the found instances. Finally, it is shown that the correspondence problem can be
transformed into a bipartite graph matching problem, which can be solved efficiently using linear programming.
Thus, for each component, the most likely instance is obtained with respect to the global criterion. Because the
correspondence problem is already solved during the training, the resulting hierarchical model provides an inher-
ent determination of the correspondence. Consequently, solving the correspondence during the object recognition
is unnecessary, which is a considerable advantage of the proposed approach. To obtain the rigid object parts, the
probability that two components belong to the same object part is computed. This computation is performed in a
statistically sound manner by using hypotheses testing. The resulting square probability matrix is clustered and
the corresponding components are merged into object parts.

The creation of the hierarchical model includes the derivation of the search trees that minimize the search effort.
It is shown that this problem can be translated into the problem of finding the minimum spanning arborescence
in a directed graph. This guarantees an exact and efficient solution. Finally, several practical extensions that must
be considered during the hierarchical search conclude the approach for recognizing compound objects.

Furthermore, as a by-product a method for rectifying images in real-time is proposed. By combining this method
with camera calibration, a very fast elimination of projective distortions and radial lens distortions from images
becomes possible. Thus, the recognition of compound objects is extended to deal with projective transformations
of the object plane. It is shown that the rectification is performed in less than 10 ms on standard hardware
using RS-170 or CCIR-sized images. Thus, it facilitates the real-time recognition of objects even under severe
projective distortions. The new method is not restricted to object recognition but could also be used in several
other applications that require fast computations. Whenever more than one image must be rectified with the same
mapping, a gain in computation time can be achieved by the proposed method. Moreover, the method can be used
to eliminate arbitrary distortions that are not necessarily caused by lens distortions or projective distortions. For
example, distortions that are caused by non-planar object surfaces can be eliminated. Once the rectification map
is built the image of the curved surface can be unwrapped into a plane in real-time. Consequently, the further
processing needs to focus only on “planar” algorithms, and hence can be simplified significantly.

Several examples show that the proposed approach for recognizing compound objects fulfills the real-time re-
quirement. The computation time varies between 20 ms and 51 ms in the presented examples, which corresponds
to an improvement of up to 1400% in comparison to standard recognition methods.

To summarize, the approach is able to recognize compound objects, to perform the recognition in real-time,
and to provide an inherent determination of the correspondence between object parts. Furthermore, it exhibits
a very high degree of automation. The approach is general with regard to the type of object, and shows a very
high robustness against occlusions, clutter, and changes in brightness. The pose parameters of all object parts
are returned with high accuracy. Even objects under projective distortions can be recognized. Finally, several
instances of the object in the image can be found simultaneously. There is no other approach available that
demonstrates comparable features.
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Nevertheless, the proposed approach shows room for some promising extensions that are worth mentioning. They
are discussed in the following.

The first point concerns the accuracy of the pose parameters that are returned by the rigid object recognition ap-
proach. Although the accuracy is not precisely known, the approach for training the hierarchical model requires
such accuracy information. For the current implementation, the accuracy values have been determined empir-
ically and set to a constant value. Unfortunately, the accuracy depends on several factors that were not taken
into account. For example, the accuracy depends on object characteristics like the object size, the number of
model points, the object shape, the histogram of the gradient directions, or object symmetries. One way to make
accuracy information available would be to perform several empirical tests while using objects with different
characteristics, determining the achieved accuracy, and model the accuracy as a function of the characteristics.
Other influences that are not correlated with object characteristics cannot be considered by this method. Another
possibility would be to derive the accuracy based on the score values in parameter space. For example, the cur-
vature of the local maximum could be an indicator of the achievable accuracy. Unfortunately, initial tests have
shown that this is a very weak indicator.

A second possible extension would be to merge object parts that only show a small relative movement into one
rigid object part on higher pyramid levels. This is because the relative movement decreases for higher pyramid
levels with respect to the quantization of the parameter space. The resulting larger object parts would increase the
robustness because, in general, larger objects can be found with higher reliability. Furthermore, it would enhance
the efficiency because larger object parts allow the use of more pyramid levels.

Another improvement deals with the rectification. When using recognition approaches that perform a segmen-
tation of the search image during the online phase (like the modified generalized Hough transform) a further
speed-up could be achieved when dealing with image distortions: the rectification in the online phase can be
restricted to the features, like edge position or edge orientation, in order to avoid the complete rectification of the
entire image. This would, however, result in only a moderate speed-up of the entire recognition process since
the contribution of the proposed rectification to the overall computation time is small. Unfortunately, the shape-
based matching is not suited to take advantage of this improvement because no segmentation of the search image
is performed, and hence no speed-up can be achieved.

Finally, in some applications it is desirable to recognize an object under more general transformations than rigid
transformations. For example, if the distance between camera and object is variable, or if the object itself occurs
in different sizes, an additional scaling must be considered, which results in similarity transformations. The
recognition of rigid objects and compound objects can be extended in a straightforward way to take scaling into
account. However, extending the automatic training of the hierarchical model turns out to be more complex. The
rigidity assumption of object parts must be relaxed. Consequently, the rating of the matches during the solution
of the ambiguities would have to be redesigned.

In conclusion, it should be pointed out that the principle of the proposed approach for recognizing compound 2D
objects can be applied to the recognition of 3D objects from 2D images as well. There are different approaches
for recognizing 3D rigid objects, e.g., (Procter and Illingworth 1997, Vosselman and Tangelder 2000, Pope and
Lowe 2000, Blask´o and Fua 2001). By using one of these approaches, the training and the creation of the
hierarchical model can be performed in the same way as in the 2D case. Consequently, also the recognition of
compound 3D objects can benefit from the use of the proposed hierarchical recognition. The computation time is
reduced considerably. This is especially important in 3D because, in general, more complex and time consuming
algorithms are involved than in 2D. Furthermore, the correspondence problem, which is much more complicated
in 3D, must be only solved once during the training but not during the recognition process itself. Thus, real-
time applications in 3D, e.g., in the field of autonomous mobile systems (Lanser et al. 1997), augmented reality
(Blaskó and Fua 2001), or 3D object tracking (Torre et al. 2000) can profit from the proposed approach.
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Gotthardt, E. (1968):Einführung in die Ausgleichungsrech-
nung, Wichmann, Karlsruhe.

Graham, R. L. and Hell, P. (1985): On the history of the
minimum spanning tree problem,Annals of the History
of Computing7(1): 43–57.

Grimson, W. E. L. (1987): Recognition of object families
using parameterized models,International Conference
on Computer Vision, 93–101.

Grimson, W. E. L. (1989): On the recognition of
parametrized 2-D objects,International Journal of
Computer Vision2(4): 353–372.

Gruen, A. W. and Beyer, H. A. (1987): Real-time
photogrammetry at the digital photogrammetric sta-
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