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KurzfassungDas Ziel dieser Arbeit ist die Entwiklung und Implementierung generisher, vom Modellwis-sen weitgehend unabhängiger Lösungsstrategien zur texturierten 3D Rekonstruktion urbanerGebiete aus Videosequenzen. Solhe Videosequenzen können sowohl mit einer Tagesliht- alsauh Infrarotkamera aufgenommen werden; in unseren Anwendungen handelt es sih über-wiegend um luftgetragene Aufnahmen. Die zahlreihen zivilen aber auh militärishen An-wendungsfelder der 3D Ershlieÿung der Szene mit minimalem Aufwand verlangen von denzu entwikelnden Verfahren besondere Robustheit gegenüber Videosequenzen suboptimalerQualität und kritishen Sensorbewegungen. Auh spielen ein einshätzbarer, parallelisier-barer Rehenaufwand und die Eignung der Verfahren, mit einem theoretish unendlihenDatenstrom annähernd shritthaltend fertig zu werden, eine wihtige Rolle.In dieser Arbeit wird vorausgesetzt, dass eine Euklidishe Rekonstruktion durh Kame-ramatrizen (Orientierungen) sowie eine dünne Punktwolke vorliegt. Die entwikelten Metho-den sind also in den Forshungsgebieten Rekonstruktion dihter 3D Punktwolken aus Mehr-kamerasystemen sowie Kompression dieser Punktwolken in Dreieksvermashungen ange-siedelt.Um eine dihte Punktwolke aus einem Bildverbund zu erhalten, müssen Korresponden-zen einer dihten Menge der Pixel eines sogenannten Referenzframes in anderen Bildernwiedergefunden werden. Formeln zur shnellen Berehnung der vom Referenzframe in andereBilder projizierten Punkte sind unentbehrlih; die shnellste Möglihkeit ist durh die Dis-paritätensuhe in epipolar rekti�zierten Bildern gegeben. Danah werden die Kostenfunktio-nen (auh Datenkosten genannt) zur e�ektiven Suhe der Punktkorrespondenzen aggregiert.Da diese Datenkostenterme allein auh bei Mehrkamerasystemen niht ausreihen, um dieTiefenwerte in shwah texturierten Bereihen sowie Bereihen von Verdekungen und sihwiederholender Muster zu rekonstruieren, muss ein zusätzliher Glattheitsterm eingeführtwerden, der sih auf die Annahme stützt, dass die Tiefen eines überwiegenden Anteils derPixel ungefähr gleih sind wie die Tiefen ihrer Nahbarn. Da das Finden eines exakten Mini-mums einer Gesamtkostenfunktion, die aus einem Datenterm, einem 2D Glattheitsterm undeinem zusätzlihen, zweks Ausgleihung von (insbesondere bei Shrägsihtaufnahmen typis-hen) Diskretisierungsartefakten eingeführten Dreieksterm besteht, in der Praxis unmöglihist, werden Approximationsverfahren angewandt. Die Verallgemeinerung des semiglobalenAlgorithmus auf Multi-view Systemen und die Benutzung sowie Evaluierung der Dreieksver-mashungen aus den bereits detektierten Punkten stellen den wissenshaftlihen Hauptbeitragzum bildbasierten Teil der Funktionsbibliothek dar.Unter der Annahme, dass sih die Gebäudeober�ähen anhand von Dreieksvermashun-gen zu texturierten Flähensegmenten aggregieren lassen, wurden im Rahmen dieser Dis-sertation zahlreihe Verfahren zur Rekonstruktion der Ober�ähen aus Punktwolken unter-suht, weiterentwikelt und bewertet. Am robustesten gegenüber sehr variabler Punktdihte,Raushen und Ausreiÿern (weit von der Ober�ähe entfernt liegende Punkte, die beispiel-sweise durh Spiegelungen, Verdekungen und kleine bewegte Objekte entstehen) hat sih



die auf L1-Splines basierender Algorithmus gezeigt, der den Hauptbeitrag des punktbasiertenTeils der Arbeit darstellt. Hier kann sowohl die Rekonstruktion einer skalaren Funktionals auh der Übergang zu einer automatish parametrisierten 3D Ober�ähe statt�nden.Im letzten Shritt solher globalen Verfahren wird zu jedem Dreiek der Vermashung einReferenzframe gewählt, in dem das Dreiek vollständig sihtbar ist (Texturierung).Zur Visualisierung der Ergebnisse wurden zahlreihe Datensätze getestet, die zum Teilanspruhsvolle historishe Gebäude darstellen, zum anderen Teil aber zerstörte Gebiete,deren genaue Rekonstruktion mit Hilfe modellbasierter Verfahren kaum möglih ist. Zurquantitativen Bewertung der Verfahren wurde für einen synthetishen und einen realen, miteiner sehr dihten Laserpunktwolke als Ground Truth gegebenen Datensatz die Hausdor�-Distanz als Maÿ für Vollständigkeit und Korrektheit einbezogen.Im letzten Teil der Arbeit wird zusammenfassend auf die Stärken und Shwähen dervorgestellten Verfahren eingegangen und möglihe Ansätze zur Behebung dieser Shwähenwerden erläutert.Zusammenfassend wird aus der Arbeit ersihtlih, dass sih das vorgestellte Konzeptzur qualitativ ansprehenden Rekonstruktion von Gebäuden und urbanem Gelände ausLuftvideos hervorragend eignet.



SummaryThe goal of this thesis is development and implementation of a generi proedure for tex-tured 3D reonstrution of urban terrain from video sequenes. These video sequenes anbe reorded by daylight or infrared ameras; in our appliations these ameras are mostlymounted onboard airborne sensor platforms. There are numerous ivil and military applia-tions of 3D reonstrution from videos obtained from heap, miniaturized ameras withoutany other information, but the reonstrution algorithms must be robust enough to proessvideo sequenes of limited quality and ope with ritial motions and senes. The paral-lelizable omputation osts, whih an be estimated, as well as adequay of reonstrutionproedures to keep step with a theoretially endless data stream play an important role inour onsiderations.We assume in this work that an Eulidean Reonstrution is given by a set of extrinsiand intrinsi amera parameters (orientations) orresponding to frames of the given videosequene as well as several 3D points. Two main diretions of researh will be obtaining dense3D point louds from multi-view systems and ompressing these point louds into triangularmeshes.To extrat a dense point loud from an image sequene, one must be able to performmathing of a dense set of pixels within the so-alled referene image of this sequene. Wederive fast equations for point projetion in other images and obtain initial information byomparing intensities of projeted points (data terms). The fastest way to projet pointsis given by onsidering disparity values from epipolarly reti�ed image pairs. Alternatively,depth values an be used. In the next step of the mathing proess, data ost aggregation isarried out over all images. Unfortunately, even for multi-view systems, the data term aloneis not su�ient for assigning orret depth values in areas of homogeneous olor distribution,repetitive patterns of texture, and near olusions, so a smoothness term, whih enouragesneighboring pixels to have similar depth values, must be introdued. Computationally ef-�ient methods must be applied for total energy minimization of a funtional onsisting ofthe data term, the 2D smoothness term and an additional triangulation-based smoothnessterm whose main task onsists of reduing disretization artifats typial for slanted sur-faes by biasing depth values towards the triangular mesh from already available points.The generalization of a semi-global algorithm for energy minimization to the multi-amerasystems as well as appliation and evaluation of triangular meshes from already detetedpoints represent the prinipal innovations of the image-based part of this thesis.A reasonable assumption that the surfae of buildings an be aggregated to polygonalmeshes motivated us to investigate, modify and evaluate numerous algorithms for shapereonstrution from point louds. The best results with respet to varying point density,data noise and a onsiderable number of outliers (points far away from the surfae resulting,for instane, from re�etions, olusions or small moving objets) were obtained with the
L1-spline-based proedure for geometri reonstrution whih is the prinipal ontribution ofthe shape reonstrution portion of our reonstrution pipeline. This an inlude either a



reonstrution of a salar funtion representing a 2.5D surfae or a real 3D surfae in anautomatially generated parameter domain. The last step of all these methods onsists ofassigning to every polygon (triangle) in the resulting mesh a referene amera whih om-pletely observes it (texturing). Reonstrution results from numerous data sets representingomplex historial buildings as well as destroyed strutures, whih an hardly be modeledwith non-generi approahes, demonstrate the e�etiveness of our algorithms. As a measureof ompleteness and orretness for quantitative evaluation of algorithms on a syntheti dataset and a simple real data set with a dense laser point loud as ground truth, the Hausdor�distane was used.The last part of the dissertation summarizes the advantages and disadvantages of thealgorithms and introdues onepts for future work for oping for remaining problems.It beomes lear that the reonstrution proedure presented in this work an be usedfor obtaining exellent textured 3D models for buildings and surrounding terrain from aerialand UAV-videos.



Chapter 1. Introdution 11
Chapter 1Introdution1.1 Motivation, sensors and requirementsBeause of their ability to over large parts of the senery, aerial images have always beenan extraordinarily attrative tool to gain information. In the past deade, it has beomeattrative to utilize unmanned aerial vehiles (UAVs) beause of their low ost and easyuse. The appliation areas for videos aptured by UAV an vary from ivil engineeringand urban planning to surveillane, automati navigation, and defense researh. Althoughin the ourse of this work, external referenes for sensor platforms are not required, thetehnial equipment of the miniaturized aerial vehiles has experiened rapid progress inthe most reent ouple of years: historially, UAVs were simple remotely piloted drones, butautonomous ontrol and apability to arry out pre-programmed �ight plans is inreasinglybeing employed in UAVs. Figure 1.1 shows several unmanned sensor platforms used for dataaquisition in our work.From the mathematial point of view, the appliations of these videos an be divided intoessentially two main ategories. On the one hand, the spatial depth is negligible for manyappliations, suh as video stabilization, image-mosaiking, image-based 2D geo-referening,detetion of moving objets and annotation of spae-oriented information into the videosequene, see [121℄. Real-time algorithms play an indispensable role here beause potentialthreats and targets must be deteted in time to take ation. For these appliations, the(bijetive) mapping from view to view an be desribed by a transformation of the plane, orthe so alled 2D homography, whih is given by a regular 3×3 matrix, and the 3D haraterof senes only interferes in the results of the performane wherefore e�orts must be taken toexlude its negative e�ets from onsideration (see Fig. 1.2).On the other hand, algorithms for 3D reonstrution require �ights at relatively small al-titudes and with slowly �ying platforms. Although there are also quasi-3D methods, suh asimage morphing desribed in [32℄, where, given an optial �ow funtion between two or moreimages, intermediate images an be rendered without expliit omputation of the 3D stru-ture of the senery, an aurate 3D reonstrution from a general on�guration of amerasan be ahieved only by obtaining struture and motion followed by dense reonstrution.However, beause of the need to open up the third dimension out of two-dimensionalimages, the algorithms for 3D reonstrution are time-onsuming, and, sine our area ofappliations always lies in the margin zone between 2D and 3D, they are less numeriallystable. The lightweight equipment that suh aerial vehiles may arry and the loal insta-bility that haraterizes the paths of these small vehiles result in onsiderable unertaintyin reonstrution and texturing of terrain. When external referenes suh as GPS are not



12 1.1. Motivation, sensors and requirementsavailable, the unertainty is larger still, beause the drift errors in amera position and ori-entation negatively in�uene the results. In addition, the quality of data aquired by small,instable, unmanned sensors is usually muh worse than that of typial high-resolution aerialimages beause of interlaing e�ets, lens distortions, motion blur and a rather low spatialresolution.
a. .b.

Figure 1.1: a. Piper up plane is able to arry onboard a unit onsisting of a daylight ameraand an infrared amera. Sine it an ahieve a height of up to 100 meters and a veloityof up to 15m/s, it is suitable mainly for 2D appliations. b. The md4-quadroopter is ableto store the video data onboard and perform automati �ights. Therefore the data an beevaluated after the mission is ompleted. . The m3d-UAV an be operated in hovering andruising modes.The majority of the urrent state-of-the-art objet reonstrution methods �rst retrievesthe amera trajetory and the objet ontours (given by sparse point louds) and thengenerates a dense reonstrution with texturing. Although there are several possibilitiesfor visualization, for example, voxels, level-sets, depth maps and polygonal meshes (seeFig. 1.3), we deided to represent our objets by triangular meshes sine they provide amore omfortable way for many relevant appliations, suh as visibility alulation. Thisis important for automati navigation while textured models are important for visual im-pression as well as mission planning to ease user's orientation in the unknown terrain. Theother three possibilities will either be mentioned in Chapter 3 (related work) or or will serveas intermediate results in the ourse of this work. In urban areas, an additional hallengeis reated by the need for replaement of traditional 2.5D "terrain skins" (representationsof height as a univalent funtion of latitude and longitude) by a fully 3D terrain represen-tation with multivalent height (vertial walls, balonies, overhanging roofs et.). In manyappliations, model generation must be performed in a reasonable time, whih justi�es us toprefer � sometimes � one algorithm beause it is faster than another algorithm, even thoughits performane is slightly worse. Moreover, we will lassify our algorithms into loal, orlose-to-real-time ones, i. e. those that an proess the video sequene either frame by frameor using "short" sub-sequenes, and global ones that an be applied only after the whole se-quene has been aptured and proessed by loal algorithms. Appliation of global methodsfor shape-reonstrution on 3D point sets obtained from loal methods makes up the mostimportant sienti� ontribution of our work.



Chapter 1. Introdution 13

Figure 1.2: Examples of 2D appliations: Top left: In almost-planar senes, detetion ofmoving objets an reliably be performed by means of homographies. In urban senes, the3D harater of the terrain auses parallaxes whih are the main reason for false alarms(e. g. the hurh tower top right). These false alarms an be suessfully eliminated if thevideo stream is geo-referened onto the orthophoto (bottom, see also [121℄). In this ase, itis also possible to estimate the veloities and heading diretions of moving objets.



14 1.2. Reonstrution pipeline and organization of this work

Figure 1.3: Four possibilities for sene (blak urve) representation: Voxel grid (top left),level-sets (top right), a triangular mesh, whih is the desired output of our work (bottomleft) and a depth-map representation (bottom right) (Fig. ourtesy of C. Streha).1.2 Reonstrution pipeline and organization of this workAs desribed in the previous setion, our goal is to obtain a textured surfae from a videosequene. We desribe in the two following subsetions the outline of the reonstrutionproedure and the organization of this work.1.2.1 Reonstrution pipelineOne popular framework for 3D reonstrution from video sequenes in a reasonable time,possibly proportional to the speed of video rendering, onsists of three main steps 1) obtain-ing amera poses and 3D points by means of deteting and traking harateristi points,2) reating dense 3D point louds from several (referene) images, 3) geometri model gen-eration and texturing (see Alg. 1.1)The �rst step will not be in the fous of this thesis. For the main referenes aboutmethods needed to obtain the amera trajetory and a sparse point loud from (alibratedor unalibrated) image sequenes, we refer to [9, 22, 105℄. The seond step inludes image-based methods and will be performed inrementally for several referene frames. Togetherwith Step 3.1 of loal tessellations, it has a onept of a real-time oriented model generation.The main funtion of Step 2.1 � sparse traking and triangulation � onsists of regularizingthe density of points (a proess also alled enrihing) sine the original point loud hasextremely low density in untextured regions. A oarse visibility information an be gener-ated by a triangular mesh from point sets. To improve and further enhane this visibilityinformation, Step 2.2 is applied. The task of this dense reonstrution module is to to pro-vide exat (apart from disretization errors) depth values for every pixel in every (referene)image. Loal tessellations are needed if there is no time to apply a global method for post-proessing. In this ase, the reonstrution terminates after Step 3.1. Otherwise, the wholeavailable information � point sets, amera matries and visibility information � is used inglobal approahes, whih make up Step 3.2 of our pipeline. This step onsists of retrieving



Chapter 1. Introdution 15Input: video sequeneStep 1: Relative orientation % see [9, 22, 105℄Step 2 Image-based reonstrutionStep 2.1: Sparse traking and triangulation % see Se. 4.4Step 2.2: Dense reonstrution % see Se. 4.5Step 3: Shape reonstrutionStep 3.1: Loal tessellations % see Se. 5.1Step 3.2: Global surf. extration and texturing % Global approah, see e. g. Se. 5.2Output: triangular meshAlgorithm 1.1: Three main steps of the reonstrution pipeline.triangulated surfaes, (optional) mesh manipulation and texturing triangles that make upthe mesh.1.2.2 Organization of this workAs indiated in Alg. 1.1, we over the image-based methods and those for shape reonstru-tion in Chapters 4 and 5, respetively. These steps require quite di�erent tehnologies. Onthe one hand, during enrihing, information from video frames, and, onsequently image-proessing methods will be used. On the other hand, the stage of post-proessing presup-poses appliation of shape reonstrution methods, suh that olor or intensity informationwill not be onsidered before texturing. The related work, preeding these setions willbe grouped into an image-based Se. 3.1 and a point-based Se. 3.2, followed by a shortSe. 3.3, whih desribes several already existing reonstrution proedures. For reasons ofompleteness, Chapter 2 will show the most important onepts for point mathing andshape reonstrution. The evaluation of the reonstrution algorithms will be demonstratedfor several data sets in Chapter 6. Finally, onlusions and diretions of future researh aregiven in Chapter 7.1.3 Main ontributionsSeveral new ideas will be developed in this work.1. Most state-of-the-art approahes do not onsider points already reonstruted duringStep 1 of the reonstrution pipeline in the ourse of omputation of depth maps.However, these points an propagate the depth information to neighboring pixels; asa onsequene, loal triangular networks, also alled tessellations, are used in thiswork. The starting point is usually the Delaunay triangulation of points in the im-ages. These triangles do not always oinide, not even approximately, with the objetsurfae. Therefore, we introdue novel ideas to evaluate the triangles as onsistentand inonsistent with the surfae, to try to orret the depth values of the inonsis-tent triangles using olor information and to support the pixel osts to be low at thedisparity values given by triangles onsistent with the surfae. A triangulation-basedsmoothness term will be the topi of Se. 4.5 while the neessary theoreti bakgroundis provided in Se. 4.1 and Se. 4.3.



16 1.3. Main ontributions2. Applying non-loal algorithms for multi-view on�gurations and not for stereo imagepairs has beome attrative only in the reent years. A relatively fast and easily-implementable approah of semi-global optimization was �rst introdued by Hirsh-müller in [67℄ for reti�ed image pairs. Few generalizations of this approah exist,like for example for the ase of three ameras in a speial trinoular on�guration[62℄. The prinipal innovation of our work, desribed in Se. 4.5.3, is to apply thisalgorithm for an arbitrary number of not neessarily reti�ed images after a loalapproah, supported by triangular meshes, assigns a ost value to every pixel and everydepth label. An important ontribution onerns the automati hoie of smoothnessparameters (Se. 4.5.4).3. Point louds reonstruted by passive sensors with small, unalibrated ameras oftenhave rather dramati negative properties of varying density, Gaussian noise and out-liers (points far away from the surfae, whih an result, for example, from shadows,re�etions and moving objets). A broad, detailed analysis of the performane of meth-ods for shape reonstrution applied on these point louds has, to our knowledge, notyet been arried out. It will thus be important to investigate how the state-of-the-artmethods for shape reonstrution � being applied on the original and enrihed pointloud � an ope with the negative properties mentioned above. Setion 3.2, dedi-ated to already existing methods of surfae reonstrution, is therefore overed witha higher level of detail. We will see that the L1-splines-based proedure of Se. 5.2,whih represents the most important ontribution of this work, provides the most a-urate reonstrution. The high omputing time of this proedure an be explained inpart by some tehnial limitations of the urrent implementation and in part beauseomputation of an L1-spline requires solving a linear program. In Chapter 7, we willdisuss how the omputing time an be redued.Beside these three main ontributions, we also are about1. Fast and point projetion equations that allow simultaneous proessing of large pointsets. A ompat losed-form representation of depth and disparity values as well as3D points is given in Se. 4.1.2. Sparse traking with the searh spae for orrespondenes redued to a line segmentbeause we are given amera matries and disparity ranges from the already availablepoints. These points also provide initial values for two iterative algorithms, namelyepipolar and simultaneous traking, desribed in Se. 4.4.2. The ost funtion andminimization proedure are then similar to the already existing methods of [94℄.3. Binoular stereo reonstrution, sine there is a large amount of software with di�erentoneptional advantages available in the Internet. Sine we must exploit the redundantinformation from many images, the algorithm ofmedian-depth maps was developed andis desribed in Se. 4.5.2.4. Reduing and homogenizing the number of triangle verties in the images by applyingrestrited top-down quadtree triangulations results in surfaes without raks. Thistopi, desribed in Se. 5.1.1, is an essential step to prepare the shape reonstrution ontriangular grids, whih have ertain advantages ompared with tensor-produt surfaesonsidered in Se. 3.2.4 and 5.2.1.5. Inremental reonstrution, whih ideally must be lose to real time and whih an bearried out without omputationally hallenging iterative or non-loal methods. Theevaluation of triangles is performed by a loal method (LIFT, see [22℄ and Se. 5.1.2)and an be inrementally updated.



Chapter 1. Introdution 171.4 Some notationBesides elementary knowledge of linear algebra and numerial analysis, the reader of thisdissertation is presumed to have basi knowledge of omputer vision. For detailed lari�-ation of terms homography, fundamental matrix, et. we refer to the book due to Hartleyand Zisserman, [61℄. The most important parameters whih an be found in more than onehapter of this work are inluded in the list below:x,y,p,X points
X point list
π plane in spae, given by a 1× 4 vetor
I images
P amera matries
d/j depth value / disrete depth or disparity label
D depth or disparity map
T triangle (a triple of integer numbers)
U ,V ,W loal baryentri oordinates of the triangle
T triangular mesh
F surfaen normal vetor
·x, ·y, ·u·v et. partial derivatives ∂ · /∂x et.
c, E,J ost, energy funtion, Jaobian (matrix)
‖ · ‖p Lp vetor norm ‖x‖p = (

∑

i |x|
p
i )

1/p, p = 2 if nothing else is stateddst Eulidean distane funtion, dst(x,y) = ‖x− y‖
c+/c− max(c, 0)/max(−c, 0)

(·)T /(·)−1 matrix transpose / inverse
0w, Iw zero-vetor of length w, w × w identity matrix
U U(a) = 1 if a is true and 0 otherwiseRemarks: Frames of a video sequene taken at time k will be denoted by Ik and orre-sponding amera matries by Pk.Generally, we denote 2D and 3D points and vetors by bold variables (x,y,X). Lettersin lower ase (e. g. x,y) will usually denote points/pixels in images; upper ase is reserved� espeially if ambiguous representations are possible � for 3D points. Also ·̌ stands forhomogeneous oordinates and ≃ denotes equality up-to-sale.We will denote inidene relations with "∈". For example, x ∈ I means that x lieswithin the retangular domain of image I and x ∈ T means that x lies in the triangle.The onstraint on baryentri oordinates of x is in this latter ase U + V + W = 1 and

U ,V ,W > 0. The inequalities in terms of x, y (oordinates of x) from the height and widthof I in the �rst, oordinates of verties of T in the seond ase an be easily established.
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Chapter 2Theoretial bakgroundThis hapter summarizes the most important basis and tools for omputer vision andshape reonstrution. Image pair reti�ation to epipolar geometry is an important toolto aelerate omputations and also to make window-based mathing algorithms invariantagainst rotation. Therefore we will onsider this topi separately in Se. 2.1. Then, two mainideas of mathing � the photo-onsisteny terms (Se. 2.2) and the smoothness assumptions(Se. 2.3) � are presented. Finally, a short introdution to approximation of surfaes fromtriangular irregular networks (TINs) is given in Se. 2.4.2.1 Image reti�ationImage reti�ation is an elegant way to perform a searh for orrespondenes in one onstantdiretion and thus omputationally optimize mathing algorithms. We will now brie�yreview implementation details, advantages, and disadvantages of binoular (Se. 2.1.1) andtrinoular reti�ation algorithms (Se. 2.1.2).2.1.1 Image pair reti�ationGiven a fundamental matrix F , searhing for orrespondenes an take plae along epipolarlines in the binoular ase. For reasons of speed and in order to ompensate for rotationaldeviations in the orientation of windows around orresponding pixels, reti�ation transfor-mations are applied on images. All epipolar lines in the reti�ed images are parallel, forexample, to the x-axis. The omputation of the fundamental matrix for two ameras1 P1, P2is arried out aording to:

F = (P2 · Č1)× (P2 · P †
1 ), (2.1)(see Eq. 9.1 in [61℄) where C1 is the loation of the �rst amera given by the one-dimensionalnull-spae of the 3 × 4-matrix P1 and P †

1 is pseudo-inverse of P1. If the epipole is insidethe image domain, one possibility for reti�ation is to extrat epipolar lines diretly andto orient them by means of polar oordinates (r, φ), where r is the distane to the epipoleand φ is the inlination angle of an epipolar line (see [110℄). Otherwise, one an �nd twohomographies HR
1 and HR

2 that transform the epipole to the point at in�nity [1 0 0]T andthus make epipolar lines lie horizontally in the images. There are nine degrees of freedom2whih an regulate HR
1 and HR

2 in the way suh that images look like original images after1Throughout this work, amera will be an abbreviation for amera matrix. We use monoular imagesequenes in our data sets, so there will be no possibility for misinterpretations.2The fundamental matrix has 7 degrees of freedom and eah of two homographies has 8. Sine thefundamental matrix must be �xed, we have 2 · 8− 7 = 9 degrees of freedom.



Chapter 2. Theoretial bakground 19transformation; in other words, projetive and a�ne omponents of HR
1 , HR

2 are minimized.Suh a pair of homographies an be obtained by some simple method (e. g. [110℄, p. 66) andthen optimized using some meaningful riterion [96℄. In this work, expliit minimization ofprojetive and a�ne omponents of the transformed images was hosen and is arried outby the method of Loop and Zhang [90℄, whih extrats �rst one parameter λ responsible forthe projetive transformation of images by means of a standard optimization problem. Theost funtion for this optimization uses the fat that a projetive transformation minimizingimage loss should be as lose as possible to an a�ne one. After λ is extrated, the hoie ofother parameters is rather trivial.We show the results of reti�ation by this method in Fig. 2.1 and also Fig. 4.7 (see p. 55)3and onlude that projetive image distortion of the reti�ed images is rather small sineimage transformations are very similar to rotations.

Figure 2.1: Top: Two frames from the sequene House reti�ed to epipolar geometry. Bot-tom: Two frames from the sequene Gottesaue reti�ed to epipolar geometry. Several hor-izontal epipolar lines are depited in red. The parameters of retifying homographies arehosen by means of [90℄ and as a result, the projetive distortion of images is almost negli-gible.2.1.2 Trinoular reti�ationSine our sequenes are not restrited to pairs of images, it is important to mention theexisting ways to retify also triplets of images. Given images I1, I2, I3, there is a possibilityto retify the images in a way that IR
1 , IR

2 are aligned horizontally, IR
2 , IR

3 vertially and
IR
1 , IR

3 diagonally (i. e. for (x1, y1) ∈ IR
1 , (x3, y3) ∈ IR

3 , the relation y3 − y1 = λ(x3 −3a detailed desription of data sets is given in Se. 6.1.



20 2.2. Image-based methods � data ost funtions

Figure 2.2: Left: Three images from the well-known benhmark data set Tsukuba [115℄in a trinoular on�guration; Right: for a general video stream taken from approximatelythe same altitude, trinoular reti�ation of images without signi�ant distortion is hardlypossible.
x1), where λ a salar preferably ±1 holds). The advantage of this kind of reti�ation isits robustness and elegane, sine it an be performed linearly [137℄. But it has one bigdisadvantage: It an be performed only for several speial ases, for example, for the ameraon�guration of the kind of Fig. 2.2 right, mounted on a robot in [62℄. For the general ase,it is already di�ult to ful�ll two �rst onditions: Given that the epipole e12 is transformedto [1 0 0]T , and, at the same time, e23 is transformed to [0 1 0]T , then new line atin�nity results from the straight line onneting the prototypes of e21 and e23. But if thisline intersets the image domain of I2 or just passes nearby, then there is no possibility ofreti�ation without signi�ant distortion (see Fig. 2.2, right). The problem of a straightline interseting an image domain arises more often (at least, in our appliations, where theimages were taken from approximately the same height) than a single point lying inside it.For this reason, we will reate sequenes of reti�ed image pairs, as desribed in Se. 4.1,instead of performing multi-image reti�ation for depth estimation.2.2 Image-based methods � data ost funtionsThe basi task of 3D reonstrution is to obtain the spatial oordinates and olor/intensityvalues of a point given its olor/intensity values of pixels in the images. If we use thereferene image I0 to olor the 3D points, then, for another image Ik we are interested in ageometri transformation Gk and a radiometri transformation Rk suh that

I0(x) = Rk (Ik (Gk(x))) + r(x, k), (2.2)where the residual term r(x, k) is zero in the ideal ase and an be supposed to be smallfor pratial situations. The geometri transformation Gk depends on the amera model.For example, if the depth of the sene is negligible (see [121℄), an (image-to-image) homog-raphy x̌k = Hkx̌ an be used. For a lassial pinhole amera, whih stands in fous of ourappliations, the relations an be expressed in terms of depth for multi-view on�gurations(or, equivalently, disparity for binoular on�gurations). The essential goal of mathingproblemati is to selet the unknown values of depth (or disparity) parameters to minimize
r given a suitable radiometri relation Rk of olor/intensity information between I0(x) and
Ik(xk), whih are our data-ost values. Hene in this setion, we will present several ideasfor hoosing Rk and we onsider, for the sake of simpliity, only gray images. However, it isimportant to note that in the general ase, I, r an be also vetors and R a multi-dimensionalmap.



Chapter 2. Theoretial bakground 21There are many other di�erent ost funtions mentioned in [69℄ to whih interestedreaders an refer, but here we only want to give a short overview about ost funtions wework with in order to perform robust depth estimation from a video sequene.2.2.1 Lp-based funtionsThe simplest assumption, namely I0(x) and Ik(xk) are approximately the same, means thatthe ost funtion c(x)
c(x) = ‖Ik(ω(xk))− I0(ω(x))‖p , where p ≥ 1 (2.3)must be small. Here ω is a small orrelation window ω around points of interest neededto ope with rounding errors. Note that with inreasing value of p, more weight will begiven to outliers in the orrelation window, whih an deteriorate results for pixels nearolusions or dead pixels in infrared images (pixels with onstant luminane values, similarto salt-and-pepper-noise). These are learly undesired e�ets and this is why usually p = 1or p = 2 are used. The ost funtions orresponding to p = 1 and p = 2 are Sum of AbsoluteDi�erenes and Sum of Squared Di�erenes, abbreviated by SAD and SSD, respetively. Inorder not to give too muh importane to non-plausible hanges of luminane, one an usetrunated ost funtions, therefore e. g. , for SAD, we will use

c(x) = ( 1

εmax

)
∑y∈ω(x)min (|I0(y)− Ik(yk)|, εmax) (2.4)instead of (2.3) in Chapter 4. Here εmax is a real-valued salar, and by division by εmax,the ost funtion is saled between 0 and 1. This ost funtion is sampling-sensitive beausefor non-integer oordinates of yk, the value Ik(yk) depends on the rounding proedure, soe�orts an be made to make (2.4) sampling-insensitive (see [13℄).2.2.2 Other parametri ost funtionsDue to the di�erent viewing angles of P0 and Pk onto the objet's surfae, there are lumi-nane gain a > 0 and o�set b in the intensity of the both images, in other words:

Ik(y) = aI0(y) + b. (2.5)This equation an be explained by onsidering the Phong lighting model (see [33℄, pp. 306-311) when the total intensity is expressed in terms of two summands4: ambient term Laand di�usion term Ld, whih is proportional to the intensity of the re�eted light emanatingfrom the ommon soure Ld as well as to the angle between the surfae normal and theviewing diretion. From the relations I0(y) = La + b(y)Ld, Ik(y) = La + bk(y)Ld, weobtain (2.5). In order to ahieve invariane with respet to linear transformations withoutknowledge of a and b, one an apply the funtion of Normalized Cross Correlation, denotedalso by (Zero-mean) NCC or (Z)NNC:
c̃(x) = ∑y∈ω(x) (I0(y)− Ī0(y)) · (Ik(yk)− Īk(yk)

)

√
∑y∈ω(x) (I0(y)− Ī0(y))2 ·∑y∈ω(x) (Ik(yk)− Īk(yk)

)2
,

c(x) = 1− c̃(x)
2

(2.6)4We omit here the Non-Lambertian speular omponent.



22 2.2. Image-based methods � data ost funtionsHere ·̄ is the averaging operator. In order to avoid alulation of square roots, c(x) from(2.6) an be replaed by:
1− c̃(x)|c̃(x)|

2
, (2.7)whih is also saled between 0 and 1. This kind of orrelation is quite sensitive to outlierssine a loal Taylor series expansion around zero desribes a quadrati polynomial.2.2.3 Nonparametri ost funtionsIn the ase of omplex radiometri relationships, one an still use assumptions about intensityordering of gray values or even formulate impliit funtions of probabilities of assigning grayvalues (mutual information).Intensity-ordering-based funtionsIf not the magnitude but rather the order of intensities in quadrati windows is of interest,the Census �lter [136℄ around a pixel an be onsidered. It de�nes a logial vetor variablewhere eah entry orresponds to a ertain pixel y ∈ ω(x). This entry is true if and only if

I0(y) < Ik(yk). Thus, Census not only stores the intensity ordering, but also the spatialstruture of the loal neighborhood. The omputation of dissimilarity an be measured byHamming-distanes. Using similar desriptor vetors around salient points in gradient spae,like SIFT [92℄ or SURF [8℄, theoretially an be generalized for dense sets of points. Thesedesriptors however do not ontain a reliable information in the regions of weak texture andtheir omputation requires a very high omputational ost.Mutual informationThe key idea of Mutual information is to quantify the extent to whih two random variablesare dependent by omputing the entropy of the joint probability distribution H1,2 and sub-trating it from the sum H1 +H2 of entropies of single probability distributions (see [133℄for further details). To do this, an assumption about orrespondenes must be made on aoarser level (initialization). If we know that x ∈ I0 and xk ∈ Ik are orresponding points,we inrease the probability P (m,n) where m = s(I0(x)), n = s(Ik(xk)) and s is a disretiza-tion funtion, that is, a suitable number of intensity levels. For example, if two 16-bit imagesare given, it makes more sense to onvert them to 8-bit and onsider m,n = {0, 1, 2, ...255}than omputing probabilities for eahm,n = {0, 1, 2, ...216−1)}. From P (m,n), we ompute
P1(m) =

∑

n P (m,n), P2(m) =
∑

m P (m,n),

H1(m) = log(P̃1(m)),H2(n) = log(P̃2(m)),H1,2 = log P̃ (m,n),where ·̃ is the (one- or two-dimensional) Gaussian smoothness funtion. The ost funtiongiven by Mutual Information (MI) is omputed aording to:
c(x) = −MI(m,n) = H̃1,2(m,n)− H̃1(m)− H̃2(n), (2.8)

m = s(I0(x)), n = s(Ik(xk)). The values of MI(m,n) are saled between 0 and 1 andstored in a square matrix, see Fig. 2.3. The pixel-wise aumulation of osts from (2.8)within a window an be performed as well, e. g. by averaging osts of entries. The questionof initialization without image pyramids will be the topi of Se. 4.5.1.
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Figure 2.3: Mutual information MI as a ost funtion stored in a 256× 256 square matrix(mathing table). It an handle simple hanges in illumination: in the pair of images onthe top left, the lower ost entries mostly lie near the main diagonal of the matrix (bottomleft). If we replae the seond image by its negative (as in the pair of images on the right),the entries of the mathing table hange in the suitable way (bottom right). Fig. ourtesyof P.Wernerus.2.3 Image-based-methods � smoothness funtionsCorret assignment of orrespondenes by minimizing one of the ost funtions of the previ-ous setion an be arried out, in the majority of pratial situations, only for a small numberof points in textured areas. As we will see in Chapter 4, mismathes from loal algorithmshappen due to radiometri deviations, repetitive patterns of texture and weakly texturedareas as well as many other fators. Sine we want to obtain 3D oordinates for pixelshomogeneously distributed in the image, we must make additional assumptions about senegeometry. In pratie, surfaes observed are pieewise ontinuous, whih means neighboringpixels usually have similar disparities. Belhumeur formulates in [10℄ the goal of mathing asa Bayesian problem:
P (S|D) ≃ P (D|S)P (S), S denotes Sene, D denotes Data.In other words, to maximize the probability of a sene given some data, not only datagenerated from the sene but also prior information about the sene have to be onsidered.Taking the logarithm of the last formula yields the well-known energy funtion

E =
∑x (Edata(x, S) + Esmooth(x, S)) . (2.9)The most popular way to impose the smoothness penalty on the disparity or depth, denotedby d in this work, is to punish the disparity or depth jumps of neighboring points5. In otherwords,

Esmooth(x, S) = Esmooth(x, dx) = ∑

{x,y}∈N

f(dx, dy,x,y),5From here on, d is the unknown we use in order to parametrize the Sene S. We leave this parameter-ization and also a disretization of depth values, whih is usually imposed for dense reonstrution, untilChapter 4.



24 2.3. Image-based-methods � smoothness funtionswhere {x,y} ∈ N (or, alternatively, y ∈ N(x)) if and only if ‖x−y‖1 = 1, dx is the unknownparameter of depth at x and f is a salar non-dereasing funtion of ‖dx − dy‖. We givehere several possible ost funtions f some of whih an be found in related works ited inSe. 3.1.2.
f1(dx, dy) = λ1U(dx 6= dy) = { 0 if dx = dy

λ1 otherwise (2.10)
f2(dx, dy) = 



0 if dx = dy
λ1 if 0 < |dx − dy| ≤ d0
λ2 otherwise (2.11)

f3(dx, dy,x,y) = 


0 if dx = dy
λ2 if |I0(x)− I0(y)| ≤ g0
λ1 otherwise (2.12)

f4(dx, dy) = λ1|dx − dy|g0 (2.13)
f5(dx, dy) = λ1

(

1− d20
(dx − dy)2 + d20

)

. (2.14)Here λ1 < λ2, g0, d0 are positive numbers alled smoothness parameters, and numerousreferenes an be found about optimal hoie of smoothness parameters. See, for example,[28, 101, 79℄ (Se. 3), [59℄ and referenes therein.We review here the di�erenes in expressions (2.10)-(2.14). In (2.13), the depth dison-tinuities are punished hard beause the penalty funtion inreases monotonially with thedi�erene of depth values. As a result, the depth map is expeted to be oversmoothed nearolusions. On the other hand, Eq. (2.10) punishes all disontinuities equally. Merely twoases of small and big di�erenes of depth are onsidered in (2.11): for big di�erenes it isa onstant value. A smooth hange between small ost for small di�erenes and onstantost for big di�erenes is modeled in (2.14). Finally, if two neighboring pixels have similarintensities, they are less likely to belong to di�erent segments and so the disparity ost forsuh a pair of pixels should be larger, whih justi�es (2.12).Now suppose that we have a path v and want to enable depth values of points to inreaseor derease linearly along the path v instead of (possibly) inurring too many olusions.This approah results in the next kind of smoothness term, whih inludes triplets of neigh-bors:
f6(dx, dx−v, dx+v) = λ1|dx−v + dx−v − 2dx|. (2.15)It is also possible to ombine (2.14) with one of penalty terms ating on neighboring pixelsonly, for example, f1 of (2.10) or f2 of (2.11).Besides smoothness terms in the image spae, we give an example of an objet-basedsmoothness term from [79℄, see p. 63. The author uses the term interation: pixels x, xk intwo images of I and Ik an only interat when the reprojetion rays from x ∈ I,xk ∈ Iknearly interset in spae; the interation i = 〈x,xk, d〉 is set ative if the intersetion pointis lose to the objet surfae. Here d is a depth or disparity value, whih, as we will see inSe. 4.1, uniquely de�nes the 3D oordinate. For ative interations i, the boolean variable
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U(i) is set to true. Two interations i = 〈x,xk, dx〉 and i′ = 〈y,yk, dy〉 are neighbors({i, i′} ∈ N2) if and only if dx = dy and ‖x− y‖1 ≤ 1. The objet-based smoothness term

Esmooth =
∑

{i,i′}∈N2

λ(i, i′)U(U(i) 6= U(i′)) (2.16)with a salar funtion λ and U as in Se. 1.4 is not quite the same as one of the single-image-based disparity terms (2.10)-(2.15).2.4 Shape reonstrutionWe now onsider the shape reonstrution portion of the reonstrution pipeline. The taskit to perform polygonization of an input point loud whih means either ompression ofvery dense point louds (as a result of substep 2.2 of Alg. 1.1, if it took plae) and/orinterpolation of point louds with moderate density (if that step was omitted). It is learthat not every surfae an be exatly modeled by triangles. Therefore we assume a surfae
F interpolating or approximating suh a point loud X , and our task will be to �nd apolygonization homeomorphi6 to F . The neessary theoretial bakground about surfaepolygonization without expliit omputation of F will be given in Se. 2.4.1 while severalpossible ways of meshing of surfaes will be given in Se. 2.4.2. Note that an elaborate surveyof previous work on surfae omputation will be given in Se. 3.2.2.4.1 Diret polygonization of point loudsGiven a set of 2D points in a plane, there are plenty of ways to onnet (some of) them bymeans of straight line segments. However, depending on the on�guration, one way mayappear more ompat or more natural from a physial point of view than another one. Asan example, all four options for onneting points in left hand side portion of Fig. 3.1, p. 34are possible and have geometri justi�ation (as we will see below), but the �rst one � whihdoes the best job of reognizing that the shape onsists of two rings � seems somehow moreprobable; intuitively, its probability will inrease with the point density within two rings.In 3D, the situation is learly even more ompliated. If we imagine a surfae F passingthrough the 3D point loud X and wish to generate a triangular mesh T homeomorphito F , it beomes lear that the point sets must have speial properties with respet totheir density (a term to be explained below) and noise: their density must exeed a giventhreshold and noise level must be low. Amenta and Bern [4℄ give a su�ient riteria forsampling in order to make a triangular surfae homeomorphi to the original one.Here the de�nitions of medial axis (points in spae whih have at least two nearestneighbors on F in the Eulidean sense), loal feature size (distane from point to medialaxis, denoted as lfs) as well as ρ-sample X suh that dst(r,X ) < lfs(r)ρ for eah r ∈ F)are given. The main result, stated in [4℄, onsiders noise-free ρ-samples, ρ ≤ 0.1. Then it ispossible to reonstrut the triangular mesh homeomorphi to F . Note that a ρ-sample doesnot require the point density to be uniformly onstant. From the de�nition of the medialaxis, it must only be high enough in urved regions.The approahes related to that in [4℄ have an advantage that they do not require expliitknowledge of F for omputation of suh a triangular irregular network (TIN) T . This makesthem very attrative for several openly and ommerially available software pakages suhas meshlab. Therefore it will be worth reviewing these methods in Se. 3.2.1. However,the main drawbak of TINs is their extreme dependene on the sampling density of points.6Two surfaes F ,F ′, are said to be homeomorphi if there is a mapping (homomorphism) f : F ← F ′.Here f must be a ontinuous bijetion, f−1 is also ontinuous.



26 2.4. Shape reonstrutionApart from the fat that there are only heuristi methods to estimate ρ without knowledgeabout the surfae, it is rather impossible, beause of di�ulties of image-based algorithmsto �nd orrespondenes in homogeneously textured areas or in the areas not su�ientlyovered by the amera path, to satisfy the assumptions of [4℄. In addition, the resultingmesh T will usually ontain aesthetially unpleasant surfae artifats whih have to do withnoise and outliers in the data, sine no expliit assumption about the smoothness of thesurfaes underlying T . Sine we want to obtain polygonal meshes despite these negativeproperties and also be able to �ll sparsely sampled regions in a plausible way, it will beneessary to dedue methods that lak, to a ertain extent, a theoretial justi�ation, butare good enough to be applied in the pratial ase. For this pratial ase, we may makeuse of assumptions for objets we are dealing with, suh as orientation onsistene, or onedominant diretion whih is given by the z-axis.2.4.2 Polygonization of surfaesGeneration of meshesSuppose that the funtion desribing F is expliitly given. In the ase of 2.5D "terrainskins", altitudes z are represented in terms of x and y oordinates as a funtion z = f(x, y).Otherwise, there is a 3D parameterization X(u, v) := (x(u, v), y(u, v), z(u, v)) in some oor-dinate system (u, v). In both ases, one an perform (e. g. Delaunay) triangulation of (x, y)-,respetively (u, v)-points.Other methods have an impliit surfae as input. It is usually given by a signed distanefuntion sampled for points in spae. Sine sampling impliit surfaes goes beyond the sopeof this work, we mention the most famous algorithms [39, 53, 66, 91, 107℄ and refer to (e. g.)Akkouhe and Gallin [3℄ where a lassi�ation of these methods in three groups (surfaemeshing tehniques, surfae �tting tehniques and surfae traking tehniques) is made andalso to [17℄ where several interesting re�nements and more referenes of the existing methodsare desribed. Our default method for impliit surfae polygonization will be the well-knownalgorithm of marhing ubes [91℄.Mesh manipulationSome kinds of surfae tessellation routines desribed in the last paragraph often do not on-sider the (salar or vetor) properties of mesh verties, as for example, the partial derivativevalues, olor informations et. A onept and examples of ost funtions whih an beminimized with loal �ipping algorithms are given in [41℄ for 2.5D surfaes. Usually, aombination of several basi proedures are hosen for mesh simpli�ation, namely:1. vertex translation: Verties are transformed so that a total energy of the mesh isdiminished. See Fig. 2.4, top.2. edge �ip: A spatial quadrilateral ABCD onsisting of two triangles ABC and ACDis �ipped to BDC and BDA. See Fig. 5.3, p. 77, right.3. edge ollapse: Two verties are melt, that is, the edge between them disappears, thenumber of triangles is redued by two and that of edges by three, as shown in Fig. 2.4,bottom.4. edge split: A new vertex is added near an edge. If this is not a margin edge, then thenew vertex is onneted to other two verties of the quadrilateral and so the numberof triangles is inreased by two.
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Figure 2.4: Top: To redue an energy term (e. g. Laplaian), a dominant plane an be �tted.Bottom: To ompress the mesh, an edge ollapsing method is applied (inserting a new pointmarked by a red irle). Edge split and edge ollapse are inverse proedures.In [71℄, items 1-3 of those previously mentioned are seleted in random order to performmesh simpli�ation. Other authors restrit themselves to one operation � edge �ip in [103℄or edge ollapse in [89℄. Some publily or ommerially available software pakages arementioned in [126℄.While the four proedures mentioned above do not hange the topology of the mesh, theproedure of hole �lling usually has a topologially di�erent mesh as output. A hole as aloop of boundary edges (i. e., those inident with exatly one triangle) has to be identi�edand �lled with new verties and edges. One algorithm to perform hole-�lling is desribed in[134℄, the non-trivial part of the algorithm onsists in reasonable hoie of 3D oordinatesfor new verties to be added to the mesh.



28
Chapter 3Previous workTremendous amounts of work on sene reonstrution from video sequenes have been donein the past deades. Even though it is hardly possible to survey the tehnial details for allexisting algorithms, a detailed study of state-of-the-art is very important for us not only be-ause an evaluation of our algorithms and omparable methods will be desribed in Chapter6, but also in order to demonstrate that the innovations presented in this work are meaning-ful and robust to lose the gap in the area of generi urban terrain reonstrution from aerialvideos, often under non-ooperative onditions. Sine our work onsists of an image-basedand an objet-based module, we separately over algorithms for depth estimation from aset of images and surfae reonstrution algorithms in Se. 3.1 and Se. 3.2. Among numer-ous already existing pipelines that go the whole way from an image sequene to a texturedreonstrution, we give in Se. 3.3 a detailed desription of three proedures [116, 48, 111℄whih turned out to be very instrutive for our approah.3.1 Previous work on depth map omputationThe task of retrieving depth values for a relatively dense and homogeneously distributed setof pixels in the referene image an be aomplished by traking sparse points as in Se. 3.1.1or by using data, smoothness and other assumptions, as mentioned in Se. 3.1.2, 3.1.3, and3.1.4, respetively.3.1.1 Sparse trakingWe forget for a short moment the 3D aspet of the problem and solely wish to retrieve, fora pixel x ∈ I0, the orresponding point xk = x+wk ∈ Ik. This kind of mathing is loselyrelated to the optial �ow problem beause in the approahes of e. g. [72, 94℄, a funtionalinluding a data and a smoothness term must be minimized over the translation parameters
wk by means of ommon numerial methods. For example, in [21℄, the data ost onsists ofa non-dereasing funtion Ψ of weighted di�erenes of gray values and their Laplaians:

Ψ = Ψ(|I0(x)− Ik(x+wk)|+ γ|▽I0(x)− ▽Ik(x+wk)|) , γ ∈ R (3.1)and the smoothness term is the total variation of the �ow �eld, whih is given, in the aseof two images, by the norm of spatial-temporal seond-order derivatives. In order not to getstuk in loal minima, image pyramids downsaled by an arbitrary fator between 0 and 1are alulated and a steady-state solution of a linearized �xed-point-approximation of (3.1)determined for eah pyramid level is used as the initial value for the next level.



Chapter 3. Previous work 29The proess of optial �ow estimation an be generalized for a multi-view ase [113℄.Unfortunately, the omputational ost is very high and so disretization of derivatives andusing �xed-point numbers are neessary to perform minimization in a reasonable time. It istheoretially possible to detet moving objets by means of optial �ow algorithms sine thefuntionals do not prevent any point from being moved to any other point. For retrieving3D struture, however, it will be indispensable to introdue geometri onstraints and thusto redue the searh range for point orrespondenes to a one-dimensional spae, namelythe depth, whih redues the searh spae in the images to the (epipolar) line. Still, itis possible to use the features of the optial �ow estimation pipeline for a sparse set ofpoints, whih later an allow either diret surfae reonstrution or 2D meshing of pointsinto triangles and lassi�ation of these triangles into onsistent and inonsistent with thesurfae by onsidering pixels within these triangles.The state-of-the-art method for omputing orrespondenes for a sparse point set is thewell-known algorithm of Luas-Kanade-Tomasi (KLT, [94℄) whih iteratively searhes fora (e. g. a�ne) transformation of a window around a point in the �rst image that produesa similar window in the seond image. Usually the similarity is measured by the squarednorm of the di�erenes of the intensities within both windows; the optimization method anbe gradient desent. The algorithm has one important advantage � no need for any priorinformation; hene a simple reation of image pyramids and the identity transformation asa starting value is usually a suitable approximation for the position of pixels in the nextimage. But it is also its disadvantage beause the searh range for point orrespondenes istheoretially unlimited. For this reason, e�orts were made to inorporate the known amerapositions. Trummer et. al. [130℄ onsider the binoular ase and support traking of pointsalong epipolar lines. The omponent perpendiular to the epipolar lines is supposed toompensate for unertainties of amera poses. The algorithm is expeted to perform worsefor points that lie near edges parallel to epipolar lines. In order to make this approahmore stable with respet to this problem, one an onsider the work of Gruen [54, 55℄ as ageneralization of this approah in the ase of a multi-view system. In the system desribedin Eqs. 9-11 in [55℄, an a�ne transformation of points in images is supposed to ompensatefor rotations, so instead of onsidering relative orientation of ameras, he uses an over-parametrized system of equations for every point (six a�ne transformation parameters peramera and three spatial oordinates). In [54℄, an additional variable expressing radiometrideviation is introdued. A statistial test in order to eliminate unneessary parameters fromfurther alulations is performed afterwards. Note also that no use of information fromalready established orrespondenes is made in these approahes.3.1.2 Considering the data termMany existing approahes of stereo mathing are mentioned in the survey of Sharstein andSzeliski [115℄. Loal methods ompute depth maps pixel-by-pixel using the priniple "winnertakes all". For a pixel x = (x, y), values of a ost funtion (denoted by c = c(x) = c(x, d))are obtained for andidates in a suitable retangle
[x+ dmin − εx;x+ dmax + εx]× [y − εy; y + εy],where εx, εy are needed to take into aount unertainties in the amera parameters and

dmin, dmax are the disparity ranges omputed, for example, from already available points.The ost funtion an be SSD of gray values di�erenes, NCC or some other distane funtionof Se. 2.2. The point with the highest sore is hosen to be the orresponding point if itsatis�es some heuristis (for example, the value of the sore must exeed a ertain threshold).We an mention ontributions due to [69℄ where disparities that failed the ross-hek test(see Eq. (3.2) below) are marked as disarded and then �lled by values propagated from



30 3.1. Previous work on depth map omputationneighboring points, [18℄ where the window size for orrelation was adapted aording to theloal geometri onstellation (pixels with disparity similar to dx, i. e., lying near the fronto-parallel plane through x, obtain larger weights in e. g. (2.3)) and [114℄ where a di�usion termwas introdued.Of ourse, these methods produe a large set of outliers among point orrespondenes inthe regions of repeatable texture and homogeneously textured regions. This happens beauseno model assumptions about the surfae are made and so not all available information isused. In order to extrat only reliable, on�dent pixels, [112℄ suggests disarding ambiguousmathes by seleting the maximum stable omponent along an epipolar line. This largeststable subset is proved to be unique, but � espeially in areas of homogeneous texture, � itan be very sparse and even empty.3.1.3 Considering the smoothness termSine we want to retrieve a reliable set of orrespondenes homogeneously distributed in theimages, we strive for an e�ient minimization of (2.9). To redue omputing time, depthor disparity sales must be disretized into labels. For example, we assign for every integerdisparity value (in pixels) one of S + 1 values j = 0, ..., S. Even with this disretization,global minimization of (2.9) was shown to be an NP-hard problem [19, 51℄, whih meansthat the order of magnitude of operations needed for omputing an exat minimum annotbe less time-onsuming than the brute-fore proedure of O(SM ) on�gurations, where M isthe number of pixels in the images. We will sketh and disuss several methods of di�erentomplexity that allow determining a strong loal minimum of (2.9).Dynami Programming, tree-based optimizationThe method presented in [10℄ suggests minimizing the energy funtional along all epipolarlines using a well known method of dynami programming. We will use this method for multi-view optimization and, from a detailed desription of this method in Alg. 8.2 of the Appendix,we will see that the omplexity an be redued to O(MS) where M is the number of pixelsin the images and S is the number of depth/disparity values. However, the distributionof osts in the adjaent epipolar lines an be ompletely di�erent whih usually leads toimplausible bulges and onvexities in the �nal result. We do not disuss here heuristisfor additional optimization in the diretion perpendiular to epipolar lines, but turn ourattention to a generalization of this method given in [132℄ whih uses a minimum spanningtree [82℄ from the weighted graph of absolute gray value di�erenes of the neighboring pixelsinstead of (epipolar) lines. Sine by inluding an edge between neighboring pixels x and y inthe tree, one enfores the onstraint that pixels x and y should have similar disparities, it isreasonable to weight the edge of the graph by |I0(x)−I0(y)| and then to reate a minimumspanning tree of suh a graph.The algorithm starts at the leaves of the tree (as in [10℄, it starts in the �rst pixel of theepipolar line) and proesses along the branhes of the tree until the root is ahieved. Fromthe root, it is then possible to go to every leaf sine the reursive information, whih is thebest disparity value of the urrent pixel (i. e. hild) given a disparity value for the previouspixel (i. e. parent), is available; ompare Alg. 8.2, p. 144. The algorithm has the propertyof being invariant with respet to image subdivision (sine the minimum spanning tree ofa union of disjoint sub-images is a union of minimal spanning trees of these sub-images[82℄), whih o�ers an elegant way to ompute depth/disparity maps even from large images.However, also here bulges that orrespond to the branhes of the tree are inevitable in the�nal result.



Chapter 3. Previous work 312D Global approahesAs mentioned before, the proess of �nding a 2D global minimum of equation (2.9) is,unfortunately, a NP-hard problem, in ontrast to both of the methods mentioned above,whih obtain a global minimum of the 1D equivalent of equation (2.9). The algorithms ofalpha-expansion [80℄ and alpha-beta-swap [19℄ based on graph uts and belief propagation[77, 124℄ approximate this minimum by iterative proedures.For example, given a depth map D, an alpha-expansion (α-expansion) of D, as desribedin Kolmogorov and Zabih [80℄, is a on�guration D′ with D′(x) = D(x) or D′(x) = α. Nowone an de�ne a binary funtion f suh as f(x) is true if D′(x) = D(x) and false otherwise.It is possible to onstrut a graph that minimizes in a polynomial time the energy funtionfor binary variables:
E(f(x1), f(x2)...f(xn)) =

∑

i,j

E(f(xi), f(xj))if and only if E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0). The proedure of onstrution andminimization of the binary graph is given in [81℄.Now disparities from dmin to dmax are randomly ordered. The inner iteration onsists ofseleting a disparity j from the list and minimizing energy over all j-expansions of D viagraph uts. The outer iteration onsists of repeating the inner iteration until no improvementin the value of energy funtion has been ahieved.Espeially for Nadir �ights, the graph-uts approah turns out to be one of the bestmethods for removing noise without over-smoothing the edges. However, its main disad-vantage is an extremely long omputing time. Another drawbak is that the method hasproblems in senes with many slanted surfaes.Semi-global approahesAnother proedure for minimization of (2.9) is the method of Hirshmüller [67℄, originallyelaborated for disparity map omputation from a stereo pair. Here paths from di�erentdiretions leading into one pixel are aumulated. For only one path, the method beomesequivalent to the dynami programming. The key idea of algorithm is here, similar to [10℄,to use the previous pixel x− r in order to ompute the disparity value for the urrent pixelx. The di�erene is that the global value of the ost funtion is stored in a M × S arrayobtained by summing up osts of all paths of the same disparity and then the disparitywhih yields the lowest result is hosen.The original approah of [67℄ onsists of omputing image pyramids, then to start usinga random map and iteratively alulate improved maps, whih are used for a new ost al-ulation by means of Mutual Information (see Se. 2.2.3). Finally, images and orrespondingdisparity estimations are iteratively upsaled until the original sale is ahieved. Sine the�nal result usually looks too noisy beause of disretization into a �nite number of paths,the author suggests using a median �lter to obtain the �nal result.To �nd olusions and mismathes (in the referene image I1), one �rst omputes dis-parity map D12 from I1 to I2, then D21 from I2 to I1, after whih all pixels x with theproperty
∣
∣D12(x) +D21

(x+ [D12(x), 0]T )∣∣ > 1 (3.2)are marked as oluded. We will take a loser look at the implementation details for themulti-view ase in Se. 4.5.3 and we will see that it is also here possible to perform semi-globaloptimization in a linear time.



32 3.1. Previous work on depth map omputationThe semi-global approah has another advantage in omparison with the the graph-basedalgorithm, apart from omputing time. In its original implementation, graph uts approahassigns to pixels in the regions of homogeneous texture depth values from neighboring tex-tured pixels and propagates these values, whih leads to spurious disparities in whole regions.However, the semi-global approah solves this problem by onsidering di�erent pathes andthus smooths the �nal result, as we will see in Chapter 6.In the last paragraph of this subsetion, we mention other modi�ations of the semi-globalmathing. In the method due to [15℄, another sophistiated path hoie was given and theauthors of [62℄ generalized the semi-global method for the reti�ed on�guration of threeameras. Finally, in [68℄, partiular attention was paid to homogeneous segments. Mean-shift segmentation of the referene image was performed and inluded in the semi-globalmathing pipeline, with an assumption that homogeneous segments must have approximatelythe same disparity.3.1.4 Other approahesTo end this setion, several other methods for depth or disparity map omputation will belisted here, espeially those that use a set of more than two images and use already availablesets of points. Many authors perform image segmentation in order to improve reonstrutionin textureless areas [7, 14, 68, 77, 87℄. For example [14℄, after performing olor segmentationof one image of a reti�ed stereo pair and omputing disparity from some reliable points, theauthors store the three degrees of freedom of the homography indued by a sene plane forevery segment in a vetor v. The disadvantage is that, in general, v does not have geometrimeaning and depends, as we will see in Se. 4.3.1, only on the way the images are reti�ed.For this reason, the authors state that the weak point of the algorithm lies in the groupingplanar segments into layers by omputing Eulidean distanes of orresponding values of v.Besides this nontrivial task of assigning planes to segments and typial artifats arising fromover- and under-segmentation, olor segmentation is not possible for infrared images, whihare atually very important in our appliations. Furthermore, Szeliski and Coughlan [127℄extrated depth maps by means of splines. In [105℄, the Delaunay triangulation1 of pointsalready determined is obtained; [103℄ proposes using edge-�ip algorithms in order to obtaina better triangulation sine the edges of the Delaunay-triangles in the images are not likelyto orrespond to the objet edges, but the point orrespondenes obtained at that stage areusually too sparse.Using more than two images usually does not allow joint image reti�ation; neverthelessit is possible to use depth instead of disparity values. Multi-view systems are known to bemore robust against olusions and patterns of repeatable texture beause using redundantinformation from more than two images allows suppressing spurious loal maxima of theost funtion. One survey about handling olusions in stereo- and multi-view systems anbe found in [74℄. A global graph-uts-based algorithm for multi-view depth map extration[80℄ makes use of an additional term that marks olusions and takes on the value in�nity forforbidden on�gurations. The work of Mayer and Ton [98℄ is a simpli�ation of the reon-strution pipeline of Shlüter ([116℄, see Se. 3.3.1). A oarse 2.5D triangular mesh of pointsin a referene image is given and pixels inside the onvex hull are projeted into other imagesin order to obtain the loal minimum of the ost funtion and thus the orrespondenes.This approah has turned out to be rather unstable for more than three images.In the work of [86℄, whih makes up the Google 3D software, high-resolution images withenough overlap are used and depth maps are omputed by means of [77℄. This method is1There an be several Delaunay triangulations for degenerate sets of points, however, we an alwaysimagine a slightly transformed point set and so, for a general ase, there is only one Delaunay triangulation.



Chapter 3. Previous work 33known to perform well for many fronto-parallel surfaes. Model assumptions are then usedto perform tessellation.The well-known software desribed in [50℄ is a ontinuation of the Mirosoft-based soft-ware Photosynth. The main goal is to obtain dense reonstrutions from arbitrary imagestaken mostly by tourists from histori buildings and available in the Internet. Even morethan the depth map omputation itself, the authors are onerned about riteria for thehoie of loal neighbors of the referene image from whih the depth map is omputed.These are: global riteria suh as the number of ommon (SIFT, [92℄) features, angles be-tween reprojetion rays from these features and di�erenes of the resolution, as well as(after resaling images aording to the resolution hanges) loal riteria, whih inlude thehanges of the y-oordinates in the amera positions (in order to stabilize depth omputationnear horizontal lines) and the mathing sores of the loal features with the ZNCC-mathingfuntion (2.6). The (non-zero mean) NCC is the ost funtion for the region-growth-basedapproah for depth maps omputation, but an important feature here is that the olor shiftomponent (denoted luminane in Se. 2.2.2, Eq. (2.5)) is fored to be the same for eahimage pair and hene is inluded in the optimization. The output of the proedure is a 3Dpoint loud. For our appliations, a onlusion an be made that mathing SIFT points an-not provide the desired resolution for spatial depth (beause subpixel auray of mathingis not given) and therefore traking algorithms provide better subpixel oordinates for theharateristi points.3.2 Previous work on shape reonstrutionBeause of rapid progress in hardware development that allows proessing large point sets,there are plenty of algorithms for generating models from sattered point sets. The goalof this setion is to provide an overview of several surfae reonstrution algorithms and todisuss their potential advantages and disadvantages for appliation on our point louds.We will onsider in Ses. 3.2.1, 3.2.2, 3.2.3, 3.2.4, respetively, examples of four main ap-proahes of geometri reonstrution, namely, TINs (examples stemming from the generalidea of Se. 2.4.1), (impliit) iso-surfae extration, surfae reonstrution by level sets, andsurfae reonstrution by expliit funtions (tensor-produt splines). Se. 3.2.5 is dediatedto several alternative algorithms for surfae reonstrution.3.2.1 Polygonization of surfaes of unknown topologial type byTINsMotivated by the approah of Amenta and Bern, many approahes are based on the loalsample density. One of the typial examples presented in Gopi [52℄ requires that the dotprodut between the normals of neighboring points must be approximately onstant andbounded away from zero. Then a loal (2D) Delaunay triangulation of every sample point inits loal oordinate frame replaes the 3D Voronoi polygonization of [4℄. Medeiros et. al. [100℄even ompress the point set (by fusing neighboring points into lusters) and apply also aloal algorithm for triangulation. The method of Boissonnat [16℄ starts with the Delaunaytetrahedrization of 3D points, and deletes iteratively all tetrahedra whih either have oneborder fae and the vertex non-inident with this fae as an interior point, or two borderfaes and one interior edge. Other riteria (as in our ase, visibility riteria for the givenamera loations and orresponding depth images) an be applied, too. Another method,alled ball pivoting algorithm, is proposed by Bernardini et. al. [12℄. It starts with a ballaround a �xed edge in the point set. Its radius is diminished until the next point is hit. Thetriangle formed by this triple of points is added to the list and the proedure is propagatedfrom these reently added edges. Finally, α-shapes [43℄, a geometri tool widely used and



34 3.2. Previous work on shape reonstrutioninvestigated for surfae modeling, onsist of all triples of points suh that no further point of
X lies in one of two spheres of radius α around these triples of points. Clearly, for large valuesof α, the onvex hull of X will be obtained while for too small values of α, the resulting setof triangles will be empty (see Fig. 3.1, left, for visualization of these situations). To namesome advantages of α-shapes, we mention that the size of the triangles is automatiallyregularized, α-shapes are easy to generalize for higher dimensions, and, sine they are asubset of the Delaunay triangulation (or, in 3D, tetrahedrization) of X , they are in prinipaleasy to ompute.The onept of α-shapes an be generalized to the ase when information about distri-bution and quality of points is available. Here, weighted α-shapes [44℄ an be used. Thepoint X is given a weight (wX) suh that the weighted distane between two points X,Yis given by d̃(X,Y) = dst(X,Y)− wX − wY. Just as α-shapes are subsets of the Delaunaytriangulation (tetrahedrization) of X , weighted α-shapes are subsets of the so alled regularsimpliial omplexes, whih an be extrated in a manner similar to the way in whih theDelaunay triangulation of X is generated.Despite the advantages of α-shapes and other TINs-based methods, the reonstrutionresults produed by them su�er from the drawbaks mentioned at the end of Se. 2.4.1. Eventhough e. g. [11℄ gives a neessary ondition when a triangular mesh modeled by α-shape ishomeomorphi to F , in many pratial ases, the surfae is not topologially orret. Forexample, it is not guaranteed that an edge is shared by exatly two triangles. If α is toosmall, the resulting mesh will ontain holes. If α is too large, it will onnet points oftopologially di�erent fragments. Furthermore, noise around nearly planar regions in X willresult in visually unpleasant artifats.
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Figure 3.1: Left: Alpha-shapes (depited by blak line segments) for di�erent values of
α. The harateristi irles around segments that belong to the α-shape are depited inyan and their size is indiated by red irles on a blue bakground in the lower right ofeah portion. Right: Iso-surfae extration by [70℄. Surfae points X are depited by redrosses and the nodes Y of the volumetri grid by blue rosses. The value d of the signeddistane funtion is given by the length of the perpendiular from Y in the diretion of "its"tangential plane (blak horizontal line) if there is a sample point near the base-point, as inthe ase of Y1. Otherwise, as for Y2, it remains unde�ned. Problems are expeted in theareas near sudden hanges of normal vetor �eld, see Fig. 6.33, p. 114.



Chapter 3. Previous work 353.2.2 Iso-surfae extrationAn iso-surfae is a surfae in spae that represents points of a onstant value of a trivariatefuntion f(x, y, z). For the both state-of-the-art methods overed in this setion, f representsthe signed distane from the point to the surfae and it is omputed at the verties of atensor-produt volumetri grid (xk, yl, zm), k = 0, ..., gx, l = 0, ..., gy and m = 0, ..., gz and
gx, gy, gz are the numbers of nodes in the grid, usually hosen in the way to guaranteeapproximately equal resolution of the grid in x, y and z diretion. After extrating f , oneperforms meshing by means of one of the method mentioned in Se. 2.4.2.Hoppe's methodThe method of Hoppe et. al. [70℄ is able to reonstrut a smooth, orientable surfae of ar-bitrary topologial type and onsists of four steps (for shemati visualization, see Fig. 3.1,right). In the �rst step, the approximate omputation of a surfae tangent plane enter andnormal vetor for every sample point takes part. The tangent plane onsists of the surfaenormal n (always of length 1) and the plane enter C that an be omputed as an average ofneighboring points. Then the surfae normals are onsistently oriented, whih means thatfor neighboring points X and Y, the dot produt of the normals nTXnY (whih is expetedto be lose to ±1 sine the surfae is pieewise smooth) should be rather lose to 1 than to
−1. An exat solution of an energy funtion minimization implies a graph-uts-based mini-mization, but in [70℄, a sign-propagation approah is proposed. In the third step, the valueof the signed distane funtion dst(Y) from eah node Y of a volumetri grid is omputedby projeting Y onto the tangent plane i, where the enter of the plane i is the losest to
C. This funtion re�ets the distane from Y to the losest point on the surfae. Formally,we have i = argmin(dst(Y,Ci)), the base-point

V = Y− ni

(nT
i · (Y−Ci)

) and dst(Y) = nT
i (Y−Ci) (3.3)is set to be the value of the signed distane funtion if and only if there is a sample pointof X within a sphere of radius ρ around V. Otherwise it is set to in�nity. In the laststep, triangles are extrated from the volumetri grid by one of the approahes desribed inSe. 2.4.2.Experiments show that the approah of [70℄ performs well in presene of moderate Gaus-sian noise. Its another advantages is the topologial �exibility: there is no need to di�eren-tiate between 2.5D and 3D surfaes. But the approah has the following disadvantages: itis not immediately lear how to take the sample's auray (weighted points) into aount.For a point Y quite far from the surfae, a orret value of the signed distane funtion ishard to determine, espeially if the surfae has boundaries or there are unertainties in thevalues of n. Other problem an emerge near the points of the medial axis, where funtionvalues an di�er from negative to positive and so ghost triangles an appear. Also, theapproah does not perform well in regions of rapid urvature hanges and non-ontinuousdistribution of normal vetors.Based on values of the signed distane funtion retrieved by [70℄, loal adaptive [6℄ andglobal [42℄ methods were developed to support smoothing the funtion values at grid nodesand also at the intermediate points.Applying the Fourier transform for water-tight surfae extrationAnother well-known method of iso-surfae extration from water-tight surfaes (i. e., thosethat partition the spae into two sets, one with positive and one with negative values ofthe signed distane funtion) is given in [75℄. Given the point sample and normal vetors

(x,n), the proedure �rst retrieves the Fourier transform of the harateristi funtion χ of



36 3.2. Previous work on shape reonstrutionthe surfae (χ(x) = 1 if x ∈ F and χ(x) = 0 if x 6∈ F) from the point set S and the set oforiented normal vetors using Stokes's theorem.
χ̂(v) =

∫

R3

χ
F
e−ivTxdx =

∫

F

e−ivTxdx =

∫

∂F

Gv(x)n(x)dx ≈
∑x∈X

Gv(x)n(x),where ·̂ denotes the Fourier-transform, v = (k, l,m) is a triple of integer numbers and Gis a vetor funtion suh as div(Gv(x)) = e−ivTx for all v. In [75℄, the term Gv(x) =

ive−ivTx/||v||2 is proposed, beause it is the only funtion that is invariant under rotationsand translations and by whih "no points in�uenes its neighbor".After obtaining χ by Fast Fourier Transformation, the resulting mesh may be obtainedby any polygonization algorithm mentioned in Se. 2.4.2. Of ourse, our models are notwater-tight. Therefore, the resulting surfae must be �ltered in an additional step, e. g. byremoving piees of the surfae outside the bounding box of F .3.2.3 Surfae reonstrution by level setsThe key idea of the level set method is an exploration of the evolution of the open, possiblymulti-onneted set Ω ∈ R
n, bounded by a hyper-surfae F under in�uene of a veloity�eld, see [106℄. This veloity �eld an depend on position, time, geometry of F and manyother fators. The funtion φ(X, t), whih (similar to the last setion) is positive for X ∈ Ω,negative for X 6∈ Ω ∪ ∂Ω and zero at the border ∂Ω, is a kind of harateristi funtionfor Ω. A signi�ant advantage of the representation an be seen from Fig. 3.2: the threedi�erent urves in the top of the �gure have ompletely di�erent topology and an hardly beparametrized from a mere intuition. But, if one onsiders the three-dimensional ounter-partof these graphis (in Fig. 3.2, bottom), an evolution priniple beomes evident and lear.

Figure 3.2: Top: the behavior of the level-set funtion is hard to desribe by an expliitfuntion. Bottom: in 3D, it is easy to observe how the level set funtion merely is moveddownward and so parameterization is easier in 3D. Soure: Wikipedia.Reonstrution of open, water-tight surfaes is one of the appliations of the level setmethod. The task is to obtain a steady-state solution for a partial di�erential equation (PDE)
∂φ/∂t + f(X, φ,∇φ) = 0 with a suitable funtion f ; the PDE representation means thatthe surfae is assumed to be a time-dependent funtion that ideally onverges to the orretsolution for t → ∞. This surfae deformation approah has turned to be very suitable foromputing a surfae given several kinds of information. A modi�ation of that method willbe presented in Se. 3.3.2, and one of its best-known alternatives is the snake algorithm (see,



Chapter 3. Previous work 37for example, [65℄). The partial di�erentiation of the PDE mentioned above helps to obtainthe Euler-Lagrange equation for its steady-state solution. The resulting funtional onsistsof a data term (whih an express, similarly to [106℄, the distane from the point loud to F ,or some radiometri relations [76℄), a smoothness term, whih aording to [106℄ punishesthe area of F , and, additionally, a saliene �eld, whih is used to redue the number andin�uene of outliers (see [93℄ for further information).The tehnial details of the approah for obtaining a solution of PDE mentioned aboveare desribed in [106℄. The �rst step is an approximation of φ and its derivatives on adisretized Carthesian grid. Then the solution of the disretized PDE an be obtained viaTVD (total variane diminishing) by Runge-Kutta shemes.The results of the level set approah are usually visually good even for a high perentageof outliers, espeially after being extended with the saliene term of [93℄. However, thetensor voting proedure works only if the number of inliers is high and their distributionis homogeneous. In addition to the rather high omputing time needed to solve the PDE,there are two other reasons why the level set proedure in its straightforward implementationan hardly be applied on our problem. First of all, the model assumption of a C2-funtionbias the results towards Gibbs artifats (over-swinging near sharp edges and gradient dis-ontinuities). The seond problem onsists of the fat the models to be instantiated in ourappliations are not neessarily water-tight.3.2.4 Approximation of surfaes on two-dimensional tensor-produtgridsIf the assumption of the z-axis as a dominant diretion holds (e. g., by �ights at su�ientlyhigh altitudes), it is possible to parametrize the terrain along its length and width by inde-pendent variables u and v and model the height
zi,j(u, v) = Ai,jFi(u)Gj(v), i = 0, ..., I, j = 0, ..., J (3.4)with basis funtions F (u), G(v) of independent parameters u, v and unknown salars Aij .Grid�tThe simplest possibility is to let F and G be �xed and model Ai,j . In the ase F = G = 1,

Ai,j represent the funtion values of z at the nodes (ui, vj) and will be denoted by zi,j .For example, grid�t, a widely used modeling tool available in MATLAB (see [38℄) an beapplied for obtaining the unknown zi,j and thus a C0-surfae homeomorphi to a plane. Theresulting surfae has to approximate the points X = (x, y, z) in the least square sense andthe interpolated method an be either:1 Bilinear: for ui < x < ui+1, vj < y < vj+1, we have
z(x, y) = t (szi,j + (S − s)zi+1,j) + (tj − t) (szi,j+1 + (S − s)zi+1,j+1) , (3.5)where s = x− ui, si = ui+1 − ui, t = y − vj , tj = vj+1 − vj (see Fig. 3.3, left).2 Triangular: here we use the loal baryentri oordinates of (x, y) in the trianglesobtained after traing the diagonal zi,jzi+1,j+1 of the spatial quadrilateral zi,jzi,j+1

zi+1,j+1zi+1,j . We have:
z(x, y) =

{
Uzi,j + Vzi+1,j +Wzi+1,j+1 s/t ≥ si/tj
Uzi,j + Vzi,j+1 +Wzi+1,j+1 s/t < si/tj .

(3.6)



38 3.2. Previous work on shape reonstrutionThe ondition s/t ≥ si/tj means that (x, y) lies in the upper triangle of Fig. 3.3,right, made by points (ui, vj), (ui+1, vj) and (ui+1, vj+1) with U ,V ,W are the loalbaryentri oordinates orresponding to this verties, while the ondition s/t < si/tjis equivalent to (x, y) is inident with the bottom triangle.3 Nearest neighbor: the oordinates of x and y only have to be rounded towards thenearest vertex of the retangle. Clearly, this kind of interpolation will be sub-optimalin the majority of ases, but it helps to save omputing time.The �rst two options for interpolation mentioned in the previous paragraph also have theirdrawbaks. For example, in (3.5) the result will be di�erent, in general, for urvilinearretangles, if we replae s, si and zi+1,j by t, tj and zi,j+1 respetively, beause two lines inspae do not neessarily interset. In (3.6), the result will be di�erent if the other diagonal ofthe quadrilateral is hosen. The optimization proess onsists of solving an over-determinedsystem of equations with a sparse, banded-strutured left-hand-side matrix A using well-known methods of linear algebra.
W V

U

Figure 3.3: Left: Bilinear interpolation of a point (x, y) and (unknown) funtion values inthe grid nodes. Right: Triangular interpolation. See text for further explanation.SplinesIn order to ope for the negative e�ets mentioned at the end of previous paragraph, onehas to use other funtions F (u), G(v) as the basis funtions in (3.4). Hoshek and Lasser[73℄ onsider in Chapter 6, among others, biubi polynomial splines
zi,j =

3∑

k=0

3∑

l=0

Ai,j,k,l(u− ui)
k(v − vj)

l. (3.7)Sine these splines will be very important for our appliations in Se. 5.2, we now providethe neessary theoretial bakground about biubi splines. A biubi C1-spline is uniquelydetermined by the values of the funtion z and its partial derivatives ∂z/∂u, ∂z/∂v at thegrid verties (ui, vj) whih we denote by zi,j , (zi,j)u, (zi,j)v, respetively.The integration of a data point (x, y, z) into the matrix A sueeds by assigning it toone of four triangles built by the diagonals of the ell ontaining (x, y) and omputing itsSibson-element [57, 85℄:If (x, y) lies in the triangle spei�ed by:
{

(ui, vj), (ui+1, vj),

(
ui + ui+1

2
,
vj + vj+1

2

)}then
x̃ = (x− ui)/si, ỹ = (y − vj)/tj with si = ui+1 − ui, tj = vj+1 − vj



Chapter 3. Previous work 39lies in the triangle T0 spei�ed by verties (0, 0), (1, 0) and (1/2, 1/2) and we an expressthe funtion value for z in terms of funtion and derivative values at the verties of theorresponding retangle by means of the following equation.
z(x, y) =

[
1− 3x̃2 + 2x̃3 − 3ỹ2 + 3x̃ỹ2 + ỹ3

]
zi,j

+si

[

x̃− 2x̃2 + x̃3 − ỹ2

2
+

x̃ỹ2

2

]

(zi,j)u+ tj

[

ỹ − x̃ỹ − 3ỹ2

2
+ x̃ỹ2 +

ỹ3

2

]

(zi,j)v

+
[
3x̃2 − 2x̃3 − 3x̃ỹ2 + ỹ3

]
zi+1,j + si

[

−x̃2 + x̃3 +
x̃ỹ2

2

]

(zi+1,j)u

+tj

[

x̃ỹ − ỹ2

2
− x̃ỹ2 +

ỹ3

2

]

(zi+1,j)v +
[
3ỹ2 − 3x̃ỹ2 − ỹ3

]
zi,j+1

+si

[
ỹ2

2
− x̃ỹ2

2

]

(zi,j+1)u + tj

[

x̃ỹ2 − ỹ2 +
ỹ3

2

]

(zi,j+1)v

+
[
3x̃ỹ2 − ỹ3

]
zi+1,j+1 + si

[

− x̃ỹ2

2

]

(zi+1,j+1)u + tj

[

−x̃ỹ2 +
ỹ3

2

]

(zi+1,j+1)v .

(3.8)
Expressions for the Sibson element in the other three triangles an be reated by mappingthese triangles onto T0. For instane, for the triangle with verties {(xi+1, yj), (xi+1, yj+1),and (xi + xi+1, yj + yj+1)/2} (or, equivalently, (x̃, ỹ) verties (1, 0), (1, 1), and (1/2, 1/2)),one adjusts (3.8) by replaing x̃ by 1 − ỹ and ỹ by x̃ and by rotating the indies ofthe four verties of the ell, replaing zi,j, zi+1,j , zi+1,j+1 and zi,j+1 (with derivatives) by
zi+1,j , zi+1,j+1, zi,j+1 and zi,j , respetively.Smoothing SurfaesThe surfaes desribed above are �tting surfaes, in other words, they assume a point set ofhigh auray more or less regularly distributed over the parameter domain [u0;uI ]×[v0; vJ ].The result of these routines applied for point sets with sparsely overed regions will be poorsine the matrix A will have a multi-dimensional null-spae. Similar to Se. 3.1, we will haveto extend the data term:

‖z − z(x, y)‖, (3.9)(where X = (x, y, z) is a sample point and z(x, y) as in (3.4)) by a smoothness term. In thease of grid�t, three possibilities are given:1 A Di�usion, or Laplaian term is the weighted norm (weight λ) of the numerialLaplaian ∆ of neighboring grid points. For example, for a point i, j suh that i, j >
0, i < I, j < J ,

∆ = [2zi,j − zi−1,j − zi+1,j 2zi,j − zi,j−1 − zi,j+1]
T
, (3.10)whih ontributes two new rows to the matrix A. The weight λ balanes data �delityand hypothesized properties of the surfae. For the grid points on the margin ofomputation domain but not in the orner, only one row of (3.10) is added. The totalnumber of equations thus obtained is 2(I − 1)(J − 1) + 2(I − 1) + 2(J − 1).2 The Gradient strategy suggests minimizing the norm of the gradient and is subtlydi�erent from what we saw before, sine here the diretional derivatives are biased tobe smooth aross ell boundaries in the grid. The total number of equations here is

(I + 1)J + (J + 1)I.



40 3.2. Previous work on shape reonstrution3 Springs minimizes springs between neighboring nodes as well as between data pointsand the nodes of the grid. In this ase, the nodes drag the surfae toward the loalmean of the data and therefore it is usually only a suboptimal hoie. The totalnumber of equations here is 2m+ (I + 1)J + (J + 1)I.One of the �rst two terms is usually applied in the ase of more ompliated basisfuntions, as desribed in the previous setion. Here the balane parameter λ as in (3.10)plays a role similar to that in equations of Se. 2.3. Theory to guide the hoie of λ is notyet well developed.In the ase of onventional splines [73, 122℄, regions with sharp hanges of urvature oftenannot be reonstruted orretly. For regions of rapid hange of urvature (e. g., ornersof building), overshoot (Gibbs) artifats emerge if the smoothness parameter λ is too smallwhile oversmoothing ours if λ is too large. One possibility to solve this problem is presentedin [20℄, where redution of the smoothness parameter near the harateristi edges in theimages is proposed; however, these edges have to be identi�ed in advane. Alternatively, the
L1-spline-based approah, originally elaborated by Lavery for approximation of 2.5D surfaes,allows non-overshooting and non-oversmoothing reonstrution of regions of sharp hangeof urvature without requiring additional information, albeit at additional omputation ost[84, 85℄. In addition, L1 splines provide aurate terrain reonstrution even in ases withonsiderable noise and outliers. The remaining problem is thus to generalize this approahfor our appliations � reonstrution of a fully 3D surfae represented by a vetor funtionX(u, v) under the assumption that the surfae is "nearly" 2.5D with the z-axis as dominantdiretion.Summarizing the ontents of this setion, we state that smoothing splines on tensor-produt grids are often used to retrieve plausible surfaes approximating noisy point louds.However, beause videos of the urban terrain reorded from a moderate height annot berepresented by a funtion z = z(x, y) but rather require representation by a parametrized3D-vetor funtion X(u, v), the question of parameterization must be solved. Typially,the parametrization by u and v is unknown a priori. If we sueed in �nding a suitableparameterization, the probability of obtaining good results is high.3.2.5 Other methodsHere we will desribe several approahes of meshing point louds that an be applied for thekind of data obtained from our image-based methods. For example, in [99℄, a onstrainedDelaunay triangulation [119℄ of sparse points and endpoints of harateristi edges in everyreferene image is obtained and afterwards a visibility onstraint for every triangle is heked.The triangles in a new referene view that olude a point obtained in an old referene vieware disarded. This approah leads to holes in the mesh and to artifats resulting fromnoise and outliers in the data. The group of spae-arving methods [83℄ also uses the powerpriniple: the more photographs are available, the more di�ult it is for 3D points tosatisfy either spatial or radiometri onstraints and one a surfae point fails to satisfy theseonstraints, no new image of that point an re-establish the reliability of this point.Several authors [1, 78℄ (see also ontributions mentioned in these two papers) performsurfae reonstrution by modifying the well-known Shepard method (Hoshek and Lasser[73℄, Chapter 9) for sattered point approximation. They interpolate on a volumetri gridY = (xk, yl, zm) the 3D funtion

a(Y) =

∑

i wi(Y)Xi
∑

i wi(Y)
where wi(Y) = − exp

(‖Y−Xi‖2
σ

)

,



Chapter 3. Previous work 41or some other funtion that has a maximum atXi and dereases toward zero in all diretions.Here, σ is a salar that depends on the distribution and quality of the points. The resultingsurfae is the zero set of the funtion
f(Y) = nT (Y) (Y− a(Y)) and n(Y) = argmin

(
∑

i

nT (Y) (Xi − a(Y))wi(Y)

)is the (oriented) normal vetor �eld to be estimated. Intuitively, the point sets are loallyapproximated by planes and the size of the loal neighborhood is given by the potentials wi.Di�erent approahes make use of topologial relations between the points and variation ofnorm (sine the L2-norm is known to be sensitive to noise and outliers).The approahes of [97, 34℄ and [117℄ are dediated to extrating speial kinds of surfaes.The work [97℄ searhes for vertial planar segments from sparse 3D points louds, sine manyghost planes may appear if the assumption of vertial segments identifying building walls isdropped. On the other hand, [34℄ �ts onis in the depth maps. Finally, [117℄ searhes forgeometri primitives in laser point louds using RANSAC with an otree-based evaluationost funtion.
P1

P2

P3X3

X2

X1

δ1(X1)

δ1(X2)

Figure 3.4: A typial approah of surfae (illustrated by the blue urve) reonstrutionfrom dense range images. As an approximation of the absolute value of the signed distanefuntion at X (nodes of a volumetri grid, denoted, in seleted ases, by orange irles),one takes min(|δi(X)|) over all referene images (identi�ed by the orresponding ameramatries Pi) with the sign +1 if and only if all δX are positive (as for the point X2). Atthe points for whih δi(X) annot be alulated (for instane, X3), the value of the signeddistane funtion is left unde�ned.Curless and Levoy [36℄ have a set of depth maps Di orresponding to several refereneimages as input and alulate, in a volumetri grid, a signed distane funtion onsisting ofa weighted sum of signed distanes to the surfae in the diretion of the amera view. Theproblem is the hoie of funtion values "behind the surfae" whih may lead to multi-sheetsurfaes. A possible solution onsists in keeping trak of the union of all regions behind thesurfae and setting its signs after all depth maps are proessed [80℄. A typial onstellationis shown in Fig. 3.4, where, for eah grid point X and eah referene amera Pi, the term
δi(X) = |CiX|−Di(PiX) an be alulated. (Note that, in an manner analogous to Fig. 3.4,we an write instead of the distane |CX| between X and amera enter, the depth value



42 3.3. Overview of three existing reonstrution pipelines
dX; see Se. 5.1.1.) The sign of the signed distane funtion at X is positive if and onlyif all δ(X) are positive. Turk and Levoy [129℄ remove the redundant parts of the meshes,onnet their boundaries and, �nally, update the positions of the verties. We assume thatthe results of this algorithm will be similar to the iso-surfae extration, sine the mesh isnot expeted to be topologially onsistent and the values of signed distane funtion are notexat. As an example, one sees that the bad approximation of the signed distane funtionin X1 and X2 resulting from the depth map at P1 (spei�ed by red dashed lines in Fig. 3.4)an be orreted by P2. However, in reality, suh a P2 is either not neessarily given or maybe oluded by another objet.3.3 Overview of three existing reonstrution pipelinesThere is quite a large amount of work on textured 3D reonstrution from images andvideos beause of the importane and elegane of this area. In this setion, we will presentseveral of approahes and disuss their appliability for our data. In partiular, we willlearn form Shlüter's dissertation of Se. 3.3.1 how to reate, starting from a oarse 2.5Dtriangulation, a 3D desription of surfae pathes in loal oordinates. The idea of enrihinga sparse 3D point set by means of radiometri relations and then fusing an enrihed pointset into a 3D surfae is presented in Se. 3.3.2 and a real-time oriented inremental approahof loal tessellations from depth maps is given in Se. 3.3.3. For additional relevant workon reonstrution pipelines that go the omplete way from image sequenes to textured 3Dmodels, we refer to [120℄.3.3.1 Shlüter's thesisThe approah of [116℄ generalizes global methods for 2.5D surfae-�tting on a retangulargrid by several images [63, 135℄ and uses multi-grid method to obtain dense 3D models with-out prior knowledge about the surfae. The 3D nodes are verties of a global triangulationto be de�ned for every pyramid level. The observations are de�ned for every pixel in everyimage that overs a path F of the surfae. The seletion of images sueeds by means ofvisibility onstraints previously omputed. Both the point of intersetion of a reprojetionray with F and its loal baryentri oordinates within the orresponding triangle in spaean be omputed, whih allows omputing surfae normals and main urvature diretions.The solution of the resulting di�erential equation presupposes updating F by means of slid-ing 3D points in the diretion of their normal vetors. Of ourse, updating the position ofevery single point an lead to ompletely wrong results, sine the interations of neighbor-ing pixels are not onsidered. Therefore, a regularization term that onsists of a distanefuntion between loal tangent planes for adjaent points is added.The bottlenek of the method is the hoie of the initial triangulation. While the authorlaims the 2.5D Delaunay triangulation of x and y oordinates of the available 3D pointsis good enough for the initialization, it is learly not su�ient for our appliations wherethe sensor platform may be loated near the walls of the building, so that, in the ase ofbalonies and overhanging roofs, projetion of points into the xy-plane will not orrespond toorret topologial relations between the points. Varying density of the 3D points obtainedby photogrammetri methods does not ontribute to the stability of suh a triangulation.Sine minimization parameters inlude both geometry and olor information (together withthe loal values of brightness and ontrast), the parameter matrix beomes rather largeand the solution annot easily be omputed for a large number of images overing a broadsene. Therefore the 3D data presented in [116℄ inlude only a few high-resolution intensityimages around a small objet (a single house) and not a omplete, theoretially in�nite video



Chapter 3. Previous work 43sequene with a lot of redundant information. For large data sets, it will be an advantageto split the proess up into the image-based and point-based stage.3.3.2 Reonstrution by Furukawa and PoneThe key idea of this work [48℄ is to obtain a set of pathes that are parts of the objet surfaeusing a sophistiated region-growing system. Every path is haraterized by its enter andnormal in the diretion of its referene image. These two parameters are obtained by min-imizing the NCC-sore. Initial guesses are given by mathing algorithms for harateristifeatures [92, 60℄ along epipolar lines in the images. At the initial stage, the path must bevisible in at least two images and not be oluded by other pathes in other images thatan potentially see it. At the expansion stage, neighbors of already reonstruted pathesmust be added to the reonstrution. For aomplishing this task, images are partitionedinto quadrati ells, eah of whih an potentially ontain several pathes. The empty ellsthe neighbors of whih ontain already reonstruted pathes are explored. The next stageis �ltering, where �rst pathes that olude more than n pathes and �nally pathes thatare oluded by more than m other pathes (n, m are automatially alulated thresholds)are deleted.Sine, until this stage, the algorithms are loal, many outliers are expeted and a subse-quent �ltering stage is indispensable. Sine pathes are sparse in spae and even more holeswill be left after the �ltering proess, Furukawa and Pone propose a post-proessing opti-mization that is desribed in [47℄. An energy funtion that inludes a smoothness term forminimization the seond derivatives of loal parameterizations of mesh nodes, a photometrionsisteny term based on the reonstruted pathes in the �rst phase, and a visibility termthat is additionally inserted in the ase aurate silhouettes are available, is minimized inthe last step.Similar to Shlüter's method, the authors strive to use all available information at thesame time. Using already available point orrespondenes while expanding path sets (whihwill be partly inferred in Chapter 4) and onsidering olor/intensity information while post-proessing makes results more robust. In the urrent implementation, this method produesa ombinatorial explosion for a large number of images (whih is given in our ase beause wedeal with theoretially in�nite video sequenes with unertainties in amera positions), butan be modi�ed for inremental proessing. Another drawbak of this method is insu�ientinvestigation of its performane for ritial motions, suh as forward/bakward motion,where not all points are situated in front of all ameras. Moreover, the post-proessingstep without visibility is biased towards shrinking models, whih an produe the empty setas output; in the ase of water-tight models, Furukawa and Pone prefer using Kazhdan'smethod ([75℄, see Se. 3.2.2) to perform the post-proessing step.3.3.3 Reonstrution algorithm by Nistér et. al.The system presented by Nistér et. al. in [111℄ an reate textured models from a geo-registered video taken from a moving ground vehile. The proess is inremental, so modelgeneration an be performed in real time. There are four parts of the reonstrution pipelinethat are interesting for our purposes. First, a plane-sweep algorithm that allows obtainingdepth maps from several images is presented. Then the onept of fusing depth maps, whihhas several simple depth maps as input, is desribed. Then a triangular mesh from a refer-ene image is obtained. Finally, interation of several suh triangular meshes is obtained bydeleting wrong and redundant triangles.The onept elaborated in [111℄ will be partly adopted for our work. However, there areseveral signi�ant di�erenes: while [111℄ assumes the set of several ameras to be �xed inthe ground vehile and uses an internal navigation unit, model assumptions an be made



44 3.3. Overview of three existing reonstrution pipelinesthat failitate, learly, the reonstrution. For example, diretions of dominant planes aregiven by the ground plane and faades whose approximate positions an be easily determined(Se. 6.2 of [111℄). Moreover, resolution of depth does not hange that dramatially as forthe aerial view, as one an see in Figs. 6.3 and 6.45 on pp. 84 and 126, respetively, of thispresent thesis, sine the distane between the points on the surfae orresponding to adjaentpixels an di�er by up to several meters. The question is, onsequently, that of �nding apost-proessing routine that allows omputation a global mesh onneting points in di�erentparts of surfae.
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Chapter 4Multi-view algorithms for depthmaps estimationThe goal of this hapter is to obtain a dense 3D point set from a set of images, orrespondingamera matries and also a sparse, but preise and reliable set of 3D points used for retrievingrelative orientation of ameras. Of ourse, suh points an ome from other soures, likeLIDAR points or manually measured ground ontrol points. However, in our ase, thesepoints are automatially extrated from the images and so usually stem from rather texturedareas and have extremely low density in the untextured regions. Eah short subsequene of 5to 10 images that we onsider in this hapter has a referene frame I0, typially in the middleof the subsequene. It an be assumed that the Non-Lambertian speular omponents an benegleted in relations between orresponding pixels in di�erent images of the subsequene.The desired output is the depth information of (almost) every pixel of I0 with maximumauray. We do not are about the (theoretially unlimited) length of the video stream,but will show in the next hapter how the outliers an be suessfully removed by usingseveral of referene images and simple geometri onstraints.The proposed pipeline of point homogenization onsists of two optional steps. The �rststep onerns harateristi points whose positions in 3D spae are to be determined withmaximum auray. This proess, used for enrihing the already available point set, is alledsparse traking and triangulation. The Delaunay triangulation of these points in images willsupport the seond step, namely, the pixel-wise depth omputation for whih the smoothnessonstraints as in Se. 2.3 must be enfored.Derivation of the most important relations for point-projetion in multi-view on�gu-rations, hoie of harateristi points, initial values of the unknown depth by means oftriangular meshes, sparse traking and triangulation, and dense mathing will be desribedin Ses. 4.1, 4.2, 4.3, 4.4 and 4.5, respetively. We shall make a di�erene between a reti�edbinoular on�guration and a multi-view on�guration (and thus subdivide Ses. 4.3-4.5)not only in order to desribe simple, but reliable heuristis for outlier rejetion in the aseof geometrially less stable binoular on�gurations, but for the sake of di�erenes in termsof disparity and depth estimation, sine for the reti�ed binoular ase, we do not need 3Dpoints and an work only in terms of disparities.It is important to emphasize that either of the two steps mentioned above an be omit-ted, usually at the ost of redued auray of the reonstrution. Sparse traking andtriangulation an be omitted and the (Delaunay) triangulation T of the already availablepoints in I0 an be thus the input for Se. 4.5, but then T will probably onsist of very smalltriangles in textured areas of I0 and large triangles far away from the surfae in textureless



46 4.1. Multi-view geometryareas of I0. As a onsequene, the evaluation of triangles into onsistent or inonsistent withthe surfae and thus rendering loal tessellations will not have muh sense. If the seondstep, the dense estimation, is omitted, only the (enrihed) point loud and the triangles of
T will be output of this hapter. However, even though some triangles that do not re�etorret depth information an often be �ltered by onsidering further referene frames andloal methods for shape reonstrution, whih we will desribe in Se. 5.1, the assumptionsof many surfae reonstrution methods [4℄ will generally not be satis�ed beause of the lowdensity of points in textureless areas.4.1 Multi-view geometryThe goal of this setion is to establish fast point projetion relations that an be used forprojeting millions of pixels into dozens of images for dense reonstrution. The best wayto parametrize spatial oordinates of points with a minimum of unknown parameters is toonsider the depth values d of pixels in the referene image I0 of a sequene, beause thesearh spae for point orrespondenes is one-dimensional and the expliit omputation of3D points is not required. We denote the amera orresponding to I0 by P0, as visualized inFig. 4.1, and all P0 the referene amera of the sequene. If P0 is a lassial pinhole amera,then the depth d := dx of the 3D point X orresponding to a pixel x = (x, y) ∈ I0 is thedistane from X to the image plane of I0 and is given by (see e. g. [61℄):

d(X) = (dx) = sgn(det(M))P 3
0X/‖M3‖, (4.1)where ·3 is the third row of ·, and M = P

{4}
0 is the 3 × 3 matrix obtained after omittingthe last olumn of P0. Throughout this work, the amera matrix P0 will be normalized,i. e. divided by the quantity sgn(det(M))‖M3‖. In homogeneous oordinates, we denote thevetor [x y 1]T by x̌ and we prove, starting from (4.1), the following result:Result 1: The oordinates of the 3D point X orresponding to x are given by:X = d ·M−1x̌+C0 (4.2)(as a funtion of d) while the reprojetion of x into the image Ik will be indued by thetransformation: x̌k(d) ≃ H0,kx̌+

ek
d

(4.3)where H0,k = P
{4}
k M−1, ek = PkČ0 are the in�nite homography and the epipole, respe-tively. Sine (4.3) denotes equality up to a multipliative onstant, one an perform a furthersubstitution (with an arbitrary real salar d0) in order to redue point projetion to additionof 2D points: xk(d) = ĥk + têk where t =
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.Proof: Sine the fronto-parallel plane π at distane d from the image plane has theequation:
π(d) = P 3

0 − (0 0 0 d) ,the oordinates of the 3D point X are given by:
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Figure 4.1: Point projetion in multi-view on�gurations. Cameras are depited by orangepyramids on the top, the objet surfae is below. A point x ∈ I0 with depth dx induesa 3D point X that an be projeted to images x1 ∈ I1 and x2 ∈ I2. Mathing an thensueed by omparing olor/intensity values of x,x1,x2.X̌ =
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Č0

d

]) x̌and thus X is given by (4.2). Moreover, (4.3) is also easily obtained:x̌k(d) = Pk ·X = Pk ·
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]) x̌ ≃ H0,kx̌+
ek
dwith notations for H0,k and ek mentioned above. Aording to (4.3), the reprojetion ofa point into the image k an be performed by adding two homogeneous quantities, sinethe values of hik = H0,kxi an be saved for every pixel xi. In order to derive (4.4), thesubsripts ·k an be dropped and, beause of a strong analogy in the alulations, it isenough to onsider only the x-oordinates:ĥ+ tê =
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,whih ompletes the proof.From the already available point orrespondenes, we approximately know the depthranges (d ∈ [dmin; dmax]), whih allows us obtaining depth ranges for t:

t ∈
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dmax − dmin

dmax + e3k/h
3
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, t =
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d+ e3k/h
3
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, d =
t · e3k/h3

ik + dmin

1− t
.We now desribe the properties of Eqs. (4.2)-(4.4).If we know the spatial depth of an arbitrary number of points xi ∈ I0, using (4.2) repre-sents an extremely fast way for obtaining their spatial oordinates, beause multipliation



48 4.1. Multi-view geometryand addition an be performed simultaneously and olumn-wise. The same argument anbe applied for Eqs. (4.3) and (4.4). There are more time-onsuming algorithms for obtaining3D points from point orrespondenes, whih, however, onsider unertainties in ameraparameters and point oordinates. The general ase an be handled the DLT1 solution bymeans of singular value deomposition of a 2K×4 matrix for every 3D point, see [61℄, Chap-ter 12. The solutions for error-free amera on�gurations and noisy point orrespondenesare presented in [61℄ for two-view on�gurations and in [123℄ for three views.Aording to (4.3), point projetion from image to image an be performed by addingtwo homogeneous quantities if one stores the values for hik, eik for every pixel of interest xi.This fat will be extensively used in Se. 4.5 when d is a ommon optimization parameterin arbitrary multi-view on�gurations and dense sets of pixels. Sine t depends on theamera index k in equation (4.4), we annot, unfortunately, generalize these onsiderationsfor t as a ommon optimization parameter in (4.4), unless K = 1 or images I0, Ik arereti�ed to epipolar geometry. However, for epipolarly reti�ed images, e3k = 0. Hene, tdoes not depend on k anymore, the transformations onern only the x-oordinates, thetime-onsuming onversion of (4.3) into inhomogeneous oordinates is not required and,sine the in�uene of all rotation angles exept the one around the baseline C0Ck hasbeen ompensated, the algorithms of Se. 4.4 and Se. 4.5 are made more invariant againstrotations. There are also disadvantages of image reti�ation: First of all, it an be arriedout using a linear transformation only if the epipole e lies outside the image domain andsigni�ant distortions of images are inevitable if it is lose to the image border. Moreover,due to interpolation errors in the ourse of image transformation, gradient alulations areless reliable. Throughout this work, we have a reti�ation option opt.r; if (and only if)its value is true and the epipoles are bounded away from the image borders, we retify theimages by means of the algorithm proposed in [90℄ (see Se. 2.1). As the result, we haveseveral reti�ed pairs of images and pairs of homographies. For example, if we retify I0 and
Ik, we have the reti�ed images IR

0k, IR
k0, the homographies HR

0k, H
R
k0, and, for every pixelof interest xi ∈ I0, we store HR

0kxi, HR
k0H0,kxi = ĥik as well as êik in 2K ×N matries andalways an perform a sum of 2D points for projetion of points.For two images reti�ed to epipolar geometry, the �rst oordinate of the left hand sideof (4.3) an be formulated as:
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(4.5)
dR is the new value of depth in terms of HR

0kP0 and v is a 1×3 vetor.From (4.5) we an obtain depth (in the terms of reti�ed images) from the disparityvalue j = xk − x:
d =

e1k
(x+ j)H3,3

0,k −H1
0,kx . (4.6)We illustrate in Fig. 4.2 fast ways of alulating 3D oordinates, depth values of points interms of original and reti�ed images as well as disparity values. The time-onsuming proessfor obtaining 3D points from point orrespondenes requires applying the DLT-algorithm.1Diret Linear Transformation
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(4.1)dR X

dx (4.2)(4.6) (4.5) x = PX (4.2)(4.1)
Figure 4.2: Reprojetion equations for multi-view on�gurations. The time-onsuming pixel-wise triangulation is denoted by a dashed line.4.2 Choie of harateristi pointsIf the original point loud is too sparse and not distributed regularly in the image, weneed to obtain 3D oordinates for some additional points. The riteria of state-of-the-artfeature extration proedures must therefore be modi�ed in order to inorporate the givenknowledge of amera matries. In this ase, the searh range for points is redued by the one-dimensional epipolar line as indiated by equations (4.3), (4.4) and (4.5). We are interestedin points whose neighborhoods have strong intensity hanges in the diretion parallel to theepipolar lines.We subdivide the referene image into small squares (e. g. 10 × 10 pixels) and selet, forevery square, a point with a maximum response of some ornerness operator C(I). For thetwo-amera ase, the authors of [29℄ onsidered the strutural tensor (ompare [46, 60℄) A(I)for a given image as well as the term

C̄(I) = trae(A(I)) − 0.04 det(A(I)), A(I) =
[

Ĩ2
x ĨxĨy

ĨxĨy Ĩ2
y

]

, (4.7)where Ix/y are image gradients given e. g. by the Sobel operator, ·̃ is the optional Gaussiansmoothness operator. The response of the term C̄(I) given by (4.7) onsists of points nearorners of the intensity image and so the probability of �nding them in the seond imageis relatively high. We use points obtained by (4.7) mostly in the binoular ase. In orderto save omputing time, we rely, instead of on the strutural tensor, only on the gradientoperator, namely,
C(I) = (1− α)Ĩ2

x + αĨ2
y , (4.8)where α ∈ [0, 1] is a positive salar needed to give more support to pixels with intensityhanges parallel to the epipolar lines. For example, if the x and y oordinates of the axesin the images approximately oinide with the orresponding oordinates in 3D spae andthe height of the sensor platform remains approximately onstant, the angle between x-axisand epipolar lines is usually small. Therefore α should be hosen lose to 1; but even thehoie α = 0.5 is reasonable. For multi-view on�gurations, we usually apply (4.8) insteadof (4.7). An illustration of the operator C(I) for an infrared image is presented in Fig. 4.3.If several points with known depth are available, we always ompute the Delaunay trian-gulation of these points in I0 and replae C(I0) of (4.8) by C(I0)C1(I0), where C1(x) is 0
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Figure 4.3: Top left: A referene frame of the video sequene Infrared. The other threepitures represent log(C(I) + 1) for di�erent hoies of α: top right: α = 0.5, bottom left:
α = 0.2, bottom right: α = 0.8. As a onsequene, horizontal lines are highlighted in thebottom left image and vertial lines are highlighted in the bottom right image.if the point x lies within the onvex hull of these points and the area of the inident triangleis smaller than a threshold (150-300 pixels in our experiments) and 1 otherwise; so newpoints will be found in the areas not yet su�iently overed. The points with response ofthe ornerness operator below a ertain threshold are exluded from further onsideration.4.3 Choie of initial values by means of triangular meshesOur goal is to obtain depth values for harateristi points from the previous setion. Thisis done by the iterative algorithms of Se. 4.4, whih require initialization. If a harateristipoint lies outside the onvex hull of points in I0 with available depth values or no pointsat all are assigned 3D oordinates, a brute-fore proedure onsists of evaluating a suitabledata ost funtion (see Se. 2.2) for several values of an unknown parameter and taking theone that leads to a global minimum. This approah is less sensitive to loal minima, butit is time-onsuming. A faster method an be applied if several points have already beenreonstruted. We obtain a 2D triangulation T of points already available and onsider thesupport planes of eah triangle in 3D spae. The initialization onsists of interseting thereprojetion ray of a pixel x with the support plane of the triangle T inident with x. In thefollowing three setions, we desribe 1) the proess of obtaining the initial disparity (withoutexpliit alulation of the orresponding 3D point) in the two-amera ase (Se. 4.3.1), 2)the proess of obtaining initial depth values from multi-view on�gurations (Se. 4.3.2) and,�nally, 3) the methods used for obtaining a suitable triangulation T and inidene relationsfor pixels in I0 with respet to triangles in T (Se. 4.3.3).



Chapter 4. Multi-view algorithms for depth maps estimation 514.3.1 Binoular on�gurationSuppose two reti�ed images as well as a set of sparse point orrespondenes p1 and p2 aregiven. We an assume that the perentage of outliers among these points is low beausemost of the outliers are supposed to be eliminated by robust methods in Step 1 of ourreonstrution pipeline (Se. 1.2, Alg. 1.1). We are interested in omputing orrespondenesof all points inside the onvex hull of the points already available. Consider a triangulation
T of the point set and a triangle T ⊆ T . Suppose that the triangle T is onsistent withthe objet surfae, in other words, the surfae enlosed by three verties of T an be nearlyreplaed by the support plane of T . Then for any point x = (x1, y) ∈ T , the orrespondingpoint in the seond image is given by:Result 2: Let p1,T ,p2,T

2 be triplets of orresponding points in two epipolarly reti�edimages. The homography indued by T maps x1 onto the point x2 = (x2, y), where x2 =vx̌1, v = x2,T (p̌1,T )
−1, p̆1,T is the 3 × 3 matrix formed by the olumns of the projetiveoordinates of p1 and x2,T is the row vetor onsisting of x-oordinates of p2,T .Proof: Sine triangle verties p1,T ,p2,T are orresponding points, their orret loa-tions are on the orresponding epipolar lines. Therefore, they have pairwise idential y-oordinates. Moreover, the epipole is given by e2 = [1, 0, 0]T and the fundamental matrixis F = [e2]×. Inserting this information into Result 13.6 on p. 331 of [61℄ proves, after somesimpli�ation, the statement of Result 2.We wish to understand the nature of the parameter v, �rst mentioned in Eq. (4.5). Asene plane π (visualized by one of the two red segments in the left hand side portion ofFig. 4.4 onneting points with already available 3D oordinates) indues an image-to-imagehomography Hπ whih has three degrees of freedom [61℄. These three degrees of freedomstem from a plane equation and are stored in v. On the other hand, π an be de�ned bythree non-oplanar points, whih an be interpreted as three verties of a triangle T in spae.By Result 2, we have a relation that onnets the verties of T and the vetor v withoutmentioning intermediate results π or Hπ.Aording to Result 2, the disparity in the seond image is given by

jT,x = vx̆− x1, ,v = x2,T (p̆1,T )
−1whih not only provides an initialization for the algorithms of Se. 4.4, but also a oarseapproximation for the disparity/depth map itself, espeially in areas where the surfae isapproximately pieewise planar and does not have many self-olusions, as illustrated inthe example of Fig. 4.5. To ompute this approximation DT , it is su�ient to determineand store the entries of v for eah triangle; the disparities of any other point � with notneessarily integer oordinates � are omputed aording to Result 2. An optional step forimproving the quality of the initial depth map is to �t planes by lustering the values of vwhile onsidering neighborhood relations. This will be a subjet of future work.4.3.2 Multi-view on�gurationFrom the already available 3D points, we an obtain the depth values by equation (4.1).The depth value of a point indued by the triangulation is given by a linear ombination ofdepth values at the verties of the orresponding simplex (epipolar line endpoints in Fig. 4.4,left, for 2D and triangle verties T in Fig. 4.4, right, for 3D). In the two-dimensional analogyof triangular interpolation, Fig. 4.4, left, the oe�ients of the linear ombination are givenby proportions U ,V of lengths of small segments vs. the total segment length. In 3D, these2Here xT , yT ,PT et. are x, y,x-oordinates (respetively) of triangle verties spei�ed by a triplet ofinteger numbers T .
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Figure 4.4: Left: The idea of triangular interpolation (same symbols as in Fig. 4.1). Severalalready reonstruted points are denoted by red irles and the triangulation by solid redlines. The initial estimation of dT,x is retrieved from triangular meshes of already availablepoints (whose depths are indiated by red dashed lines) either by means of loal homogra-phies given by the plane π (as in Result 2) or by means of loal baryentri oordinates ofx within triangle T (see text to Se. 4.3.2). To obtain the loal baryentri oordinates, theareas of small triangles, must be divided by the area of T , as depited on the right.

Figure 4.5: Left: A referene frame of the video sequene House and a sparse point set(resulting from the struture from motion algorithm [22℄) with Delaunay triangles depitedin red. One sees the abundant density of points in highly textured regions (e. g. on a tree)and in the door lattie while the density of points in textureless areas (road and roof) isrelatively low. Right: Initialization of the depth map obtained from the depth values ofthe points on the left and Eq. (4.9). There are also some outliers on the house walls visibleby sudden depth hanges with respet to their neighbors. These outliers usually stem fromre�etions in the windows.



Chapter 4. Multi-view algorithms for depth maps estimation 53are proportions U ,V ,W of the areas of the small triangles vs. the total area, as illustrated inFig. 4.4, right, p. 52. This proportions are the the well-known loal baryentri oordinates
U ,V ,W of x in T . Formally we have:

dT,x = Uda + Vdb +Wdc, U =
axbc

aabc

,V =
aaxc
aabc

,W =
aabx
aabc

(4.9)and a denotes the area of a triangle. Equation 4.9 shows the advantage of parameterizingthe 3D points aording to their depth, not aording to their distane to the projetionenter. Similar to Se. 4.3.1, dT,x will from here on denote the depth value resulting fromtriangular interpolation.4.3.3 Choie of triangulation and establishing inidene relationsThe remaining questions for this setion are whih kind of triangulation to apply (sine wealready know, for example, from (3.6) that the results of the interpolation depend on thetriangulation) and how to assign to a point x ∈ I0 the inident triangle in T . The Delaunaytriangulation was hosen beause of its easy availability in many software pakages andbeause the max-min priniple allows exluding more (visually unpleasant) long and thintriangles. There is one more reason � atually an answer to the seond question � for hoosingDelaunay triangulations. Suppose we want to determine in whih triangle T ∈ T a pointx lies. There exist algorithms that allow �nding T in linear time when T is the Delaunaytriangulation. For example, one an alulate the vertex of the Voronoi-polygonization thatis the losest to x.If the ardinality of the point set is large, using these algorithms for eah point beomesomputationally expensive. An alternative, on whih we follow up in this work, is to reatea segmented image where a triangle is labeled by its number. The points outside the onvexhull are labeled by −1. The proess of labeling is very fast and it also has an advantagethat the baryentri oordinates or any other salar value (for example, the area of theinident triangle, mentioned in the last paragraph of Se. 4.2) an be stored for eah pixelone and for all. The result of this routine works quite well (espeially if the images andpoint oordinates are upsaled by a fator of 2 to 4, depending on image size) and with onlyseveral mismathes near the border of rather skinny triangles.4.4 Sparse traking and triangulationThe task of this setion is to enrih the point set, in other words, to �nd the orrespondenesfor new harateristi points obtained in Se. 4.2. From the resulting, extended point set,we will again use Delaunay triangulation to determine the set of triangles onsistent withthe surfae.4.4.1 Binoular on�gurationWe will �rst turn our attention to the binoular ase. This on�guration is rather unstablefor obtaining point orrespondenes beause of spurious mathes in the repetitively texturedareas and in the image regions near olusions. We assume that the images I1, I2 are reti�edto epipolar geometry and we searh for point mathes within orresponding epipolar lines.As visualized in Fig. 4.6, for a point x = (x1, y) in a triangle T ∈ T , the searh windowan potentially be redued to
Ws = [x1 + xmin;x1 + xmax]× [y − εy; y + εy],

xmin = max(jmin − εx,min(sT )), xmax = min(jmax + εx,max(sT )),
(4.10)



54 4.4. Sparse traking and triangulationwhere εx = εy are �xed salars whih ope for unertainties in amera orientations, sT are the
x-oordinates of at most six intersetion points between the epipolar lines at y, y−εy, y+εyand the edges of p1,T and jmin, jmax are the estimates of disparity ranges whih an beobtained from the point oordinates already available.

max(sT )min(sT )Figure 4.6: Mathing supported by triangular meshes in binoular ase. An exemplar trian-gle T from triplets of orresponding points p1,T ,p2,T (small red rosses) is depited by thinblue lines in both images. The searh range for orrespondenes within T (a point markedby a big red ross) an often be further onstrained by taking into aount intersetionpoints of epipolar lines (denoted for a seleted point by a thik red line) with edges of T . Indegenerated ases of olusions in triangles inonsistent with the surfae, this assumptiondoes not hold, but mismathes are usually exluded by appliations of one of three �ltersimposed on putative orrespondenes.The searh for orrespondene points an sueed be means of any data ost funtionmentioned in Se. 2.2. In [29℄, it was the Normalized Cross Correlation (NCC, see Eq. (2.6))between quadrati windows I1(ω(x1)) of size between 5 and 21 pixels and I2(ω(x2)). Ap-pliation of NCC is reasonable here sine we an assume a pieewise linear transformationbetween luminane values of both images, see (2.5). However, in order to avoid inludingmismathes in the set of orrespondenes, three �lters on the result are imposed before theorrespondene x1,x2 is added:1. The luminane di�erene between the windows is bounded, i. e.
‖I1(ω(x1))− I2(ω(x2))‖1 < wumax where w is the number of pixels in the windowand umax = 15 in our experiments,2. The orrelation oe�ient c0(x) = minj(x, j) of the winner is low enough (for example,below the threshold 0.5), and3. In order to rejet ambiguous orrespondenes, c0 must be low enough with respet tothe neighbors. Let c1 be the best mathing oe�ients in the sub-windows

([x1 + xmin;x2 − 2] ∪ [x2 + 2;x1 + xmax])× [y − 1; y + 1].If the ratio c0/c1 (best to seond-best) exeeds a threshold (whih is usually 0.9), themath is rejeted.The oordinates of orresponding points an be re�ned to subpixel values. We �rsthek whether jx ≈ jT,x, whih an be the ase if T is onsistent with the surfae. The



Chapter 4. Multi-view algorithms for depth maps estimation 55disparity jT,x is assigned to x if and only if |jx − jT,x| < 1. Otherwise, the subpixel valueof j an be assigned aording to one of the four methods disussed in [128℄. For the sakeof omputing time, subpixel oordinates for orrespondenes are omputed aording toorrelation parabolas (seond-order urves �tted into the ost distribution funtion). Wedenote by c− and c+ the orrelation values in the pixels to the left and right of x2. Theorretion term x̂2 in the x-diretion is then given by
x̂2 = x2 −

c+ − c−
2(c− + c+ − 2c0)

.In Fig. 4.7, new orrespondenes obtained from binoular sparse traking are shown.

Figure 4.7: Two reti�ed images of the sequene Bonnland and a point set (marked in green)deteted by means of (4.8) in a window of 20 × 20 pixels in the left image. In the rightimage, orrespondenes obtained by the loal method are marked in red.After performing this algorithm for all points, an additional heuristi an be appliedin order to rejet mismathes. A point with a deviation of disparity values of more thanone pixel from all its neighbors is rejeted. Here, the neighborhood relation is de�ned byommon edges within the triangulation T . We e�iently apply this proedure one prior toand one after the expansion.Of ourse, the proess of triangulation and mathing an be arried out several times for anarrower mathing searh spae given by (4.10), varying (diminishing) step and (inreasing)window sizes until a new, re�ned disparity map is obtained. An alternative of using aonstrained Delaunay triangulation (see [119℄) with seeded edges stemming from the old,oarser mesh allows evaluating triangles of the oarser mesh with respet to the surfaeonsisteny (to be de�ned in Se. 4.5) one for all, but has a signi�ant disadvantage ofhaving many long, skinny triangles.4.4.2 KLT-epipolar and simultaneous traking poliies fur multi-view on�gurationsObtaining point orrespondenes as desribed in the previous setion usually works well fordata sets with many fronto-parallel surfaes. In the ase of airborne sequenes with many



56 4.4. Sparse traking and triangulationslanted surfaes (whih we disuss in Chapter 6), a deviation of one pixel in the image spae(disparity) sometimes results in a deviation of several meters in objet spae. In order toinrease auray, we onsider redundant information from several images by inorporatinginto the standard KLT-traking algorithm [94℄ the knowledge of amera matries. Beauseof a strong analogy in the alulations, we will onentrate on the ase when the reti�ationoption opt.r of Se. 4.1 is set to zero in the explanations of this setion. For a harateristipoint x, we have to ompare the intensity distributions of I(x) and Ik(xk(d)), k = {1, ...,K}as in Eq. (4.3). The total error c̆ is omposed of c = [c1, ..., cK ] (the radiometri deviationterm) and (optionally) g = [g1, ..., gK ]T (the unertainties in the amera parameters). Here,the radiometri deviation an be desribed by di�erenes of gray values sine hanges ofluminane are small in neighboring images of the video sequene. Overall, we have
c̆ = [c Wg]T , ck = Ik

(
ω(xk(d) + gke⊥k ))− I0 (ω(x)) , (4.11)where W is a diagonal weight matrix, ω is a small window around x, Ik(ω(xk(d) + gke⊥k )is omputed by bilinear interpolation and e⊥k is the normalized perpendiular omponent tothe epipolar line ek: e⊥k =

[
e2k
−e1k

]

/
√

(e1k)
2 + (e2k)

2.The Jaobian of derivatives J̆ is sparse and has the following struture:
J̆ =

[
J J̄
0 WI

]

, where J = [J1, ...,JK ]
T
, J̄ =





J̄1 ... 0
...

0 ... J̄K



 ,

Jk =
∂ck
∂d

= [(Ik)x (Ik)y]
∂xk(d)

∂d
, J̄k =

∂ck
∂gk

= [(Ik)x (Ik)y] e⊥k , Ik =
∂gk
∂gk

= 1,

w is the number of pixels in the window ω and xk(d) of (4.3) is di�erentiated by thequotient rule. The system of normal equations an be solved for the parameter update
p = [∆d ∆g]T , for example, by the Levenberg-Marquardt algorithm (with a small salar λand identity matrix I):

(

J̆ T J̆ + λI
)

p = −J̆ T c̆,followed by sparse matrix tehniques for linear equation systems. In this work, the uner-tainties in amera parameters gk are not further onsidered. We thus have c̆ = c, J̆ = Jand
∆d = −J T c/

(
J TJ (1 + λ)

)
. (4.12)In this iterative minimization proedure, the initial value of d is re�ned until a given toleranein parameter updates is ahieved. In our implementation, we onsidered two poliies ofoptimization: In the KLT-epipolar poliy, points are sequentially traked from image toimage; pairs of images are optionally reti�ed and the error funtion is minimized aordingto (4.12). Point orrespondenes are triangulated linearly as desribed in [61℄ and rejetedif the total reprojetion error in pixels exeeds 1. Sine I0 is usually hosen in the middleof the subsequene, the algorithm is modi�ed by forward and bakward traking. For theseond poliy, simultaneous traking, we projet x into all images by (4.3) or (4.4) and useLevenberg-Marquardt optimization. If the algorithm onverges and the value of c̆ of (4.11)without onsidering amera unertainties lies below a �xed threshold εmax, the point is saidto be traked reliably and its 3D oordinates are omputed from the depth value by meansof (4.2).



Chapter 4. Multi-view algorithms for depth maps estimation 574.5 Multi-view dense mathing using triangular meshesThe task of dense mathing is to assign a depth to eah pixel of the referene image I0. Thealgorithms of the previous setion annot be applied to every pixel beause of suseptibilityto onverge to loal minima for pixels in areas of homogeneous texture and beause of ahigh omputational ost of a non-linear iterative minimization algorithm. Therefore, on theone hand, the values of unknown parameters must be disretized; for the binoular ase, thedisretization labels are given in the natural way by the integer disparity values. On theother hand, smoothness assumptions must be used in order to propagate the informationfrom already reonstruted points or points where the orret depth value an be reliablyobtained to those textureless regions.The initialization of the depth map with DT from Se. 4.3 an be used as a soft onstraintin order to bias the depth values of the pixels � espeially in areas of weak texture � tothose resulting from triangular interpolation. To do this, we introdue a triangulation-basedsmoothness term and a proess of evaluation of triangles. In Se. 4.5.1, we will use DT asinitialization for two non-loal algorithms, namely the global algorithm of graph uts with
α-expansions [81℄ and semi-global optimization used by [67℄ with Mutual Information asost funtion. Suh depth maps obtained from pairs of images an be fused into the mediandepth map desribed in Se. 4.5.2, whih has the advantage of a muh lower perentage ofoutliers and points with non-assigned depth values. Sine alulation of median depth mapsis omputationally intensive, a framework of loal and global simultaneous omputation ofdepth maps will be presented in Se. 4.5.3. Finally, we present in Se. 4.5.4 an approah forautomati seletion of the smoothness parameter λ, whih as we have learned in Se. 2.3,represents a trade-o� between the properties of the data given a sene (photo-onsisteneassumptions) and hypothesized properties of the sene (piee-wise smoothness assumptions).4.5.1 Binoular on�gurationTriangulation-based smoothingAs previously indiated, the evaluation of pixel osts is arried out by means of one of the ostfuntions c(x, j) = Edata(x, j) of Se. 2.2 for every integer value of disparity. A signi�antdi�erene of this approah with many state-of-the-art approahes is that we extensively use alarge point set that is (after applying traking routines desribed in Se. 4.4) homogeneouslydistributed in I0. We assume that the non-oluded parts of the sene an be pieewiseapproximated by triangles. The point is that, if a orret evaluation is made about whihtriangles are nearly onsistent with the surfae and whih are not, we will not only be ableto avoid mismathes in areas of repetitive patterns of textures and homogeneous texture,but also be able to obtain depth values of all points within these triangles with subpixelauray. This subpixel alulation, performed in order to avoid disretization errors (seeFig. 4.8, left) atually does not depend on the hoie of the ost funtion (see [128℄) and itreplaes segmentation of images as in [14, 68, 77, 87℄.In [28℄, the loal smoothness term

ET (x, j) = A(x, T )D(j, T,x) (4.13)is introdued. Here D an be pratially any salar nondereasing funtion in terms of
|j − jT,x|. The weight funtion A(x, T ) should be zero outside the onvex hull, re�et thereliability for the oordinates of points at the verties of a triangle T and beome smaller inits interior (as, for instane, in Fig. 4.8, middle and right). One possible hoie, followed upin this paper, is

A(x, T ) = A0 exp

(

−g(x, T )
σ

)

, D(j, T,x) = −1 + min

( |jx − jT,x|
j0

, 1

)

, (4.14)



58 4.5. Multi-view dense mathing using triangular mesheswhere x ∈ T , the amplitude A0 (whih in the future will be denoted by A) and j0 are twonon-negative onstants and the desent parameter σ ∈ [0;∞]. By g(x, T ), we denote theminimum distane from x to the verties of T . For j0, the value 2 is a reasonable hoie. Itis lear that for small values of σ, only the depth values for harateristi points are madeunlikely to hange (whih an be good when suh points are provided by other soures �suh as LIDAR-data � and thus possibly lie in the weakly textured areas). On the otherhand, for σ → ∞, the whole onvex hull ⋃T ∈ T will be a�eted:
A(x, T ) = { A if g(x, T ) < 1

0 otherwise for σ = 0,and
A(x, T ) = { A if x ∈ ⋃T ∈ T

0 otherwise for σ = ∞.

dmin

dmaxFigure 4.8: Left: Disretization of depth labels deteriorates the visual quality of the densereonstrution even in the ase of error-free mathing. The problem an be solved by on-sidering triangular meshes from 3D points already obtained rather than by inreasing thenumber of labels, beause, in the latter ase, mismathes appear due to limited resolution,the smoothness term of (4.23) tends to lose its sense and omputation ost inreases dra-matially. Middle and right: Weights A(x, T ) from (4.14) propagated from already availablepoints with a small/large value of σ (on the left/right, respetively) for the referene imageof sequene Tsukuba (see [115℄).In addition to the parameters A and σ, a third triangulation-based parameter γ ∈ [0; 1]is introdued in [28℄. If the perentage of pixels onsistent with the surfae within a triangleexeeds γ, then all pixels y of suh triangles are assigned the value dT,y. The de�nition ofa pixel x onsistent with the surfae is given by the ratio
r(x) = c0(x)

min {c ([jT,x]) , c ([jT,x] + 1)} , (4.15)where c0(x) = minj(c(x, j)) is the best ost value and [jT,x] is the "�oor value" of jT,x(the largest integer smaller than jT,x). Point x is said to be onsistent with the surfae if
r(x) = 1 for a global algorithm and r(x) > 0.8 for a loal algorithm.Using similarity information of triangles in RGB-imagesThe in�uene of parametersA, σ and γ helps to overwrite, at di�erent stages of the algorithm,the disparity values of a set of pixels with those stemming from triangular interpolation. Theperformane of this approah depends diretly on the quality of the triangular meshes. Inthe ase of olor images I1, I2, the authors of [29℄ propose a similarity analysis of trianglesbased on olor information and histogram evaluations: Eah olor ontains values from 0



Chapter 4. Multi-view algorithms for depth maps estimation 59to 255 and thus eah olor histogram has b bins with a bin size of 256/b. Let the numberof pixels in a triangle be N . In order to obtain the probability of this distribution and tomake it independent of the size of the triangle, we obtain for the lth bin of the normalizedhistogram
HT (l) =

1

N
·#
{

p

∣
∣
∣
∣
p ∈ T and 256 · l

b
≤ I0(p) <

256 · (l + 1)

b

}

.The three histograms HR
T , HG

T , HB
T represent the olor distribution of T . It is also useful tosplit big, inhomogeneous triangles that are inonsistent with the surfae into smaller ones.To perform splitting, harateristi edges [30℄ are found in every andidate triangle andsaved in the form of a binary image G(p). To �nd the line with maximum support, theradon transformation [37℄ is applied to G(p):

Ğ(u, ϕ) = R{G(p)} =

∫ ∞

−∞

∫ ∞

−∞

G(p)δ(pT eϕ − u)dp where δ(x) =

{
∞ x = 0
0 otherwiseis the Dira delta funtion and line parameters pT eϕ − u, where eϕ = (cosϕ, sinϕ)T is thenormal vetor and u the distane to the origin. The strongest edge in the triangle is foundwhen the maximum of Ğ(u, ϕ) exeeds a ertain threshold for the minimum line support.This line intersets the edges of T in two points. We disregard intersetion points too loseto a vertex of T . If new points are found, the original triangle is split in two or three smallertriangles. These new, smaller triangles onsider the edges in the image.Next, the similarity of two neighboring triangles has to be alulated by means of theolor distribution. There are a lot of di�erent approahes for measuring the distane betweenhistograms, see [31℄. We de�ne the distane between two neighboring triangles T1 and T2 asfollows:dst(T1, T2) = wR · d

(
HR

T1
, HR

T2

)
+ wG · d

(
HG

T1
, HG

T2

)
+ wB · d

(
HB

T1
, HB

T2

) (4.16)where wR, wG, wB are weights for the olors that are all set to be 1/3 in our method. Thedistane d between two histograms in (4.16) is the SAD of their bins. There are two possibleways to de�ne neighboring relations on a set of triangles: two triangles an be delaredneighbors if they either share one or two ommon verties (i. e. a ommon edge in this latterase). The value of dst(T1, T2) is set to in�nity if T1 and T2 are not neighbors.In the last step, disparity values in the vertexes of triangles that are inonsistent withthe surfae are orreted. For suh a triangle T1, another triangle
T2 = arg min

T∈T0

dst(T1, T )was de�ned in [29℄. Here, T0 denotes the set of triangles onsistent with the surfae. Ifarea(T2) > 30 pixels and dst(T1, T ) < 2, then T1 and T2 are likely to belong to the same(planar) region of the surfae and therefore the disparities of pixels in T1 are reomputedwith vT2
aording to Result 2. The more reliable, though time-onsuming approah, notfollowed in [29℄, onsists of expanding the already preomputed ost funtion Edata(x) bythe realulated triangle-based term E′

T = A(x, T2)D(j, T1,x) from (4.13) and (4.14).Re�nement with global and semi-global optimization algorithmsThe values of the funtion c(x) = Edata(x, d) +ET (x, d), omputed for eah pixel and eahdisparity value, an be stored in a S×M matrix A where S is the number of disparity labelsand M is the number of pixels. The result Dloc of a loal algorithm assigns to the pixel xi a



60 4.5. Multi-view dense mathing using triangular meshes

Figure 4.9: Top row, left: Initialization of the disparity map reated from the triangularmesh. Top row, right: Result of orretion of triangles as suggested in [29℄ for a pair of imagesfrom the sequene Tsukuba. Bottom row, left and right: Results of semi-global estimation ofthe disparity map without and with initialization of the disparity map, respetively. Right:Color sale representing di�erent disparity values.label orresponding to the minimum value within a olumn i ofA (followed by γ-smoothing ofthe triangles onsistent with the surfae). Two possibilities are now opened up: to use either
A or Dloc (or alternatively DT ) as an initialization of a (semi-)global optimization algorithmwith one of the smoothness energy terms of Se. 2.3. Before we go into the details of thesetwo kinds of optimization, we onsider two examples that justify eah of two approahes. Anexample of advantages of initialization with DT is in the ase of unlear luminane relations(suh that A annot be rendered). By alulating intensity orrespondenes with DT (see[29℄, Se. 2.4), one an determine values for the mutual information mathing tableMI(m,n)of Eq. (2.8) and does not have to onsider image pyramids. This helps save omputing time.On the other hand, suppose we have several very exat (e. g., LIDAR) 3D points. In thisase, we use a very high value of A and a low value of σ in (4.14) in order to �x the disparityvalues of the ground ontrol points in A and propagate these values to neighboring pointsusing smoothness terms.As explained in Se. 3.1.3, the main feature of the algorithm of [81℄ is an α-expansionthat expets a (depth) image D as input. The output D′ is either idential with D or somepixels of D′ are assigned the value α. In other words, if we have a good initialization,the energy omputed at the beginning already takes on a large negative value and so, onaverage, fewer expansion moves need to be taken. This allows reduing omputing time. Onthe other hand, initializing the semi-global optimization with a result of DT allows omittingimage pyramids without signi�ant visible and quantitative adverse a�ets on the results,as illustrated in Fig. 4.9, bottom.The seond alternative, namely, to onsider A, works in a slightly di�erent way and willbe overed for the multi-view ase in Se. 4.5.3 on the examples of dynami programmingand semi-global optimization.



Chapter 4. Multi-view algorithms for depth maps estimation 614.5.2 Median-based depth estimationA depth map produed in the previous setion usually has several outliers and artifats, es-peially in areas of re�etions, olusions, and homogeneously textured regions. To inreaseauray, it is neessary to use all available information from several images and severaldisparity maps obtained from I0 and Ik (k = 1, ...,K).One an ask why it makes sense to ompute pairwise depth maps from pairs of frames in asubsequene of the given video sequene if a multi-view reonstrution algorithm (presentedin Se. 4.5.3 below) that an handle all images simultaneously is available. The answer isthat the method desribed in this setion has a possibility of self-ontrol sine, for pixelswithout reliable depth, unde�ned values are likely to our while the algorithm of Se. 4.5.3has the advantage of being fast although, sine geometri ontrol is not given (that is, thealgorithm always delivers some depth map), it is possible to have some outliers beause ofradiometri irregularities in the referene image, low auray in the position of ameras,et. We an ompare the ideas behind the algorithms of Se 4.5.2 and Se. 4.5.3 with theepipolar and simultaneous traking of Se. 4.4. The seond important point is that themajority of the (semi)-global state-of-the-art methods available online (suh as the graph-uts method, belief propagation, et.) works only for reti�ed image pairs. If we searh fora ertain advantage of these algorithms and are interested in obtaining a stable result withfew outliers, we must be able to work with several disparity maps from a set of images ratherthan with an oriented subsequene (with external data provided by amera matries). Thesituation overed in this setion is shematially visualized by Fig. 4.10, left.The algorithm starts by omputing depth values dk,x = dk for a pixel x ∈ I0 fromdisparity maps between I0 and Ik obtained in the previous setion and use the hain ofequations (4.6) 7→ (4.2) 7→ (4.1) (ompare Fig. 4.2). But whih of these values dk should behosen? Clearly, if a luster with several values of dk an be identi�ed, we an assign to dxthe median of these values. In other words,
d̄ = dx = mediank {dk ||dk − d| < ε} (4.17)for some positive ε. Conversely, if for example, |dk − d′k| > ε for all 1 ≤ k < k′ ≤ K and noprior information (suh as the on�dene of disparity maps or information about whether xis onsistent with the surfae) about the depth value at x is available, the depth at x is leftunde�ned.Equation (4.17) is reursive. In order to identify the set of values in a luster, one aniteratively approximate d̄ by the weighted average
d̄ =

1

W

∑

k

dkwk with W =
∑

k

wk (4.18)and with initial weights wk = 1 if dk is not oluded and 0 otherwise. In the next iteration,we set wk = wk(dk − d̄)−β where β is a positive salar (β = 2 is used for our appliations).After the last iteration, we ompute d from the inliers among the values of dk by (4.17) andaept this value when the number of inliers is not smaller than max(K/3). Several remarksan be made here:1 If dT,x = DT (x) is available, it an be used as an additional observation in Eq. (4.17)and (4.18). The ounter is now K+1 and the initial weight for the term dT,x is largerthan 1 sine the probability that the triangle inident with x is onsistent with thesurfae is rather high.2 Sine the points in the bakground are obtained with lower auray than those in theforeground, one replaes the ε on the right of (4.17) by εd̄. Note that this right-handside only in�uenes the results of the �nal iteration.



62 4.5. Multi-view dense mathing using triangular meshes3 A total of 3 to 5 iterations an be used in the algorithm. Beause of the strutureof (4.18), the loop over the pixels an be avoided, so the omputation of weights and
d̄-values an proeed simultaneously. Therefore, the time for omputing the mediandepth map is omparing with the time for omputing depth maps.The last remark onerns the hoie of initial weights. Espeially in the ase of a lownumber of views, it makes sense not to set all wk = 1, but to obtain, for one single pixelx, the on�dene of the depth value at x. The on�dene is expeted to be high if theost funtion has a single sharp minimum and low if there are several loal minima (in otherwords, there are several plausible possibilities to math x in the orresponding epipolar line).The on�dene map is alulated in a manner similar to that used in [111℄:

C0(x) = ∑
d̃6=dx exp−

min
(

c(x, dx)− c(x, d̃), 0)2
σ2












−1

, (4.19)where σ is an empirially determined onstant. We use the on�dene funtion if the numberof available views is low and selet the math of highest on�dene.

Figure 4.10: Left: Median-based omputation of depth maps. In order to �nd dx, one antake into aount depth values dx,1, dx,2 resulting from images I1, I2 and also dT,x (sinethese values lie in a luster spei�ed by the ellipse on the left). For the point y, only
dy,2, dT,y must be taken into aount and dy,1 is an outlier. Right: Shemati visualizationof simultaneous multi-view dense estimation. Pixels have to be assigned labels using ostand smoothness penalty funtions. The triangulation from the enrihed set of points isshown by red irles and lines. A forbidden on�guration of interations {(x,x1) , (y,y1)}should be exluded either by adding an olusion term as in (2.9) or by modi�ation of theaggregation funtion.4.5.3 Fast simultaneous omputation of depth maps for multi-viewon�gurationsDisretizationFirst, the equations (4.3) and (4.4) of Se. 4.1 must be modi�ed by disretizing d or t intolabels dj and tj , respetively; here, j = 0, ..., S and S+1 is the number of bins (labels). Thedisretization hosen is inverse-linear,

dj =
S

(S − j)/dmin + j/dmax



Chapter 4. Multi-view algorithms for depth maps estimation 63(shematially visualized in Fig. 4.10, right), whih is more suitable than the linear one,namely,
dj = ((S − j)dmin + jdmax) /S,beause, in the inverse-linear ase, the projetions of the orresponding 3D points lie nearlyequidistant at epipolar lines and so the derease of the resolution is treated in a morenatural way. The resolution of depth for points near the amera is then higher (and so is theauray of the depth omputation) than in the bakground further away from the amera.The number of labels orresponds to the length (in pixels) of the longest epipolar line afterall available points are projeted into images I1, ..., IK by means of Eq. (4.3) using values

dmin, dmax (or, respetively, Eq. (4.4) and values of tmin, tmax).Choie of data and aggregation funtionAnalogously to binoular on�gurations, ost funtions for eah depth label and eah pixelmust be omputed. As a default ost funtion, the trunated SAD (2.4) is used. Exper-iments were also arried out for NCC as in (2.6) and MI as in (2.8). In ontrast to thesituation with the image pair reti�ed to epipolar geometry, where the ost evaluation pro-eeds by fast onvolution methods between windows of type (4.10), we need here also theinner loop of depth values (labels), whih presupposes extrating quadrati windows aroundreprojeted (e. g. by (4.4)) points by means of bilinear interpolation as in (3.5) (atually, bi-linear interpolation is performed if and only if the option opt.i is ativated; otherwise xk(d)is determined by rounding proedure). Between this inner loop over depth values and theouter loop over pixels, there is a loop over interations, i. e. whih pairs of windows must beompared to eah other. Sine there are K(K + 1)/2 possible kinds of interations i = 〈·, ·〉and we want our algorithm to be linear in the number of views, a subset of imust be seleted.One possibility, followed up in the urrent implementation, is to aggregate osts betweenthe referene image I0 and other images. This hoie di�ers from [79℄ whih proposes to useneighboring images. The latter approah, we admit, ould help us to treat all images sym-metrially and avoid error resulting from radiometri irregularities in the referene image(re�etions, small moving objets, dead pixels, et.), but we deided, similar to what wasdone in [111℄, to ompute osts from the referene image to other images, beause in doingso, a higher value of S and therefore a higher depth auray an be obtained. In [111℄, theminimum of sums of data ost funtions on the left and on the right of the referene imagehas been hosen. An olusion term, important in [79℄, an be omitted in the majority ofpratial situations if the hoie of the ost aggregation funtion is robust against olusions,in whih ase not every pixel x ∈ I0 must be seen in all images I1, ..., Ik, but, at the sametime x is enouraged to be observed in a large number of images (see Fig. 4.10, right). Forexample, in [22℄, where are was taken to exlude all triangles inonsistent with the surfae,it was enough to onsider the sum of osts ck over k. For a more sophistiated hoie ofaggregation funtion, we denote by K(εmax) the number of interations (of x) where theost funtion does not exeed a onstant εmax. Now, for example, the aggregation funtion"average error per interation"
Edata(x) = ∑

k {ck|ck ≤ εmax}
K(εmax)also tends to be small if only for a few images ck is small at d, whih is of ourse, unstable.Therefore we used positive onstants b, εmax and K0 to inrease the denominator for large

K(εmax) and the aggregation funtion hosen in this work was
Edata(x, d) = 



∑

k {ck|ck ≤ εmax}
(1 + b) (K(εmax)−K0) + 1

if K(εmax) > K0

+∞ otherwise. (4.20)



64 4.5. Multi-view dense mathing using triangular meshesThe onept of dense pixel mathing is explained in Alg. 8.1 of the Appendix.Considering triangular meshesEquations (4.13) and (4.14) for the triangulation-based term an, as in Se. 4.5.1, be writtenin terms of depth instead of disparity. We again use the triangulation-based smoothnessterm
ET (x, d) = A(x, T )D(d,x, T ), where (4.21)

A(x, T ) = A exp

(

−g(x, T )
σ

)

, D = −1 + min

( |dx − dT,x|
d0

, 1

) (4.22)with onstants A, σ, d0 and funtion g(x, T ) de�ned analogously to (4.14).The values of the funtion Edata(x, d) + ET (x, d), omputed for eah pixel and eahdepth level, are again stored in a S ×M matrix A. Similar to the binoular ase, the loalalgorithm, in order to obtain dxi
ompares the lowest ost within the olumn i (that is, j =

argminj′ A(j′, i)) with osts at rounded dT,xi
and assigns dxi

= dT,xi
if T is onsistent withthe surfae and dj otherwise. Furthermore, almost any algorithm for non-loal optimizationmentioned in Se. 3.1.3 an now be applied for the matrix thus obtained. We show twoexamples of the non-loal optimization in the next setion. After a depth level dx for a pixelx (a result of a loal or global algorithm) has been retrieved, we an ompute ost funtionsat dx and dT,x; if the ratio r(x) as in (4.15) is below a threshold, the pixel x is marked asonsistent with the surfae. The perentage of pixels onsistent with the surfae allows adeision about triangles: if the perentage exeeds a onstant salar γ, all pixels y of suhtriangles are assigned the value dT,y. The in�uene of the parameters A, σ and γ will beevaluated in Se. 6.3 along with other items.Two examples of non-loal optimizationAs two examples of non-loal optimization, the 1D optimization algorithm of dynami pro-gramming [10℄ and semi-global optimization as in [67℄ were onsidered. For both approahes,

Esmooth is hosen as in [67℄ (and, as in Eq. (2.11) on p. 24, d0=1):
Esmooth(x, j) = λ1 ·Nx(1) + λ2 ·

∞∑

j=2

Nx(j), (4.23)where λ1 and λ2 with λ1 ≤ λ2 are penalties for depth disontinuities andNx(j) is the numberof pixels y in the 4-neighborhood of x for whih the absolute di�erene of depth/disparityvalues at x and y is equal to j. This hoie of Esmooth is reasonable, beause penalty termsmonotonially inreasing with di�erenes of depth levels result in over-smoothing olusions.In the ase of dynami programming onsidered for an (epipolar3) line with M pixels, thedata ost matrix Aj,i is denoted, as done previously in Se. 2.2, by [c(1, j), ...c(M, j)] for eahvalue j = 1, ..., S and the smoothness ost matrix with entries is denoted by cs(j1, j2), ...,
cs(jM−1, jM ). The smoothness term an also depend on the intensity levels of relevant pixels(see (2.12)) and should be denoted by cs(jM−1, jM , I0(M − 1), I0(M)). However, this slightmisuse of notation does not lead to misunderstanding and is, therefore, not ritial. Thetask is to minimize

M∑

i=1

c(i, ji) +

M−1∑

i=1

cs(ji−1, ji) =

M−1∑

i=1

(c(i, ji) + cs(ji−1, ji)) + c(M, j)3Originally, dynami programming is used for a reti�ed stereo pair, so that in our appliations, epipolarlines oinide with horizontal (san)lines if and only if opt.r = 1



Chapter 4. Multi-view algorithms for depth maps estimation 65over all SM possible on�gurations of ji. This is arried out by omputing and storing thebest path P (i, j) from 1 to i for eah value of ji+1, as explained in the Alg. 8.2.The omplexity of Alg. 8.2 is atually O(MS2) (instead of the SM omplexity of thebrute-fore proedure whih onsiders every on�guration), beause omputing C(j) byminimization over j′ is itself an O(S) proedure. By a suitable hoie of smoothness funtion,one an ahieve a omplexity of O(MS). Suh a smoothness funtion λ must depend as littleas possible on j (although dependene on I, as in (2.12), is not a problem). For example,in order to ompute C1(j) with a disparity term given by (2.10) or (2.12), we need onlyto ompare C(j) and C(P (j)) + λ(i)). For the smoothness term mentioned in (4.23), fourvalues of must be ompared (see (4.24)). The generalization of the Alg. 8.2 for (2.15) (inwhih the smoothness term involves ji, ji+1, and ji+2) is straightforward. The di�erenewith Alg. 8.2 is just that we need to ompute C1(j + 2) in order to know the best path
P (i, j). For example in order to know the optimal hoie of the label j1 for every value of
j3, we must ompute

min
j1

(c(1, j1) + c(2, j2) + λ1|j1 + j3 − 2j2|) ,for every j2 and j3, a proedure of O(MS3) omplexity. Also in this ase, of ourse, theomplexity an be redued for speial kinds of depth terms.As for the semi-global optimization algorithm, the NP-hard 2D problem (2.9) was solvedby approximating the term Esmooth. As stated in [67℄, at least eight paths (two horizontal,two vertial and four diagonal) are neessary to provide good overage of I0. Throughoutour experiments, up to 16 paths are used. A global aumulation of all possible paths isreplaed by paths emanating from eah pixel along a straight line. Suppose we have a pixelx and a path diretion r suh that the previous pixel x − r is denoted by y. With (4.23),the path ost at x at depth label j in the diretion r is reursively de�ned by
L′r(x, j) = c(x, j) + min

[

L′r(y, j), L′r(y, j ± 1) + λ1,min
i

L′r(y, i) + λ2

]

. (4.24)This reursive formula is initialized by orresponding values of A at the beginning of allpaths. Beause the value L′r(x, j) always inreases as the path is traversed, preautionsmust be taken to bound L. Thus, (4.24) is extended to
Lr(x, j) = L′r(x, j)−min

j′
Lr(y, j′). (4.25)Sine minj′ Lr(y, j′) is onstant for all j, the position of the minimum-ost depth does nothange and Lr is bounded by Lr ≤ εmax + λ2. To ompute the osts for a depth, the pathsfor all omputed diretions r are summed up to

C(x, j) =∑r Lr(x, j).The depth label dx is then hosen as the label that yields the lowest overall ost: arg
minj C(x, j). Sine 16 paths are used in our experiments, the upper limit of C is C <
16(εmax + λ2). By saling the entries of the data ost matrix so that both εmax and λ2 arebounded by 2048, the size of C an be limited to 16 bits and thus a 16-bit integer vetor isused throughout the omputations. At the last step, outliers (whih an sporadially emergein the regions between the paths) are eliminated by means of a median �lter. The subpixelalulation an proeed by �tting a orrelation parabola to the values of the ost funtion,as we explained at the end of Se. 4.4.1.The semi-global optimization algorithm also has omplexity O(MS) (or, to be exat,
O(MSr) where r is the number of paths) for our speial hoie of ost funtion. In general,



66 4.5. Multi-view dense mathing using triangular meshesits omplexity is O(MS2r) (sine the seond summand of (4.24) is, in the general ase,
min[L(y, j′) + cs(j, j

′,x,y)] over j′). Applying semi-global optimization helps eliminatestreaking artifats without signi�ant inrease in omputing time. It will, therefore, be ourdefault method for the reonstrution pipeline.4.5.4 Choie of smoothness parametersAs for the hoie of smoothness parameters, the results presented in the next hapter showthat the di�erene λ2−λ1 should be bounded away from zero, sine otherwise the algorithmprefers one big jump of the depth to its slow, ontinuous hange that is harateristi forsmooth surfaes. As a result, the depth maps beome too noisy. On the other hand, if
λ2 ≫ λ1, the results easily beome over-smoothed near olusions and the deviations ofdepth in these areas beome, onsequently, very high. The best results were ahieved forthe ratio λ2/λ1 = 2 to 3. The hoie of λ1 is not trivial, but also not ritial, sine it istypial for global algorithms to produe results of omparable quality for quite a wide rangeof smoothness parameters. Due to equations (4.1) and (4.23), however, it is lear that λ1must not depend on image size while its order of magnitude must depend on the di�erenesof entries in the data ost term.The following strategy is applied: after the loal algorithm is performed and a label j isassigned to a pixel x ∈ I0, we alulate the term

C1(x) = |c(x, j)− c(x, j + 1)|+ |c(x, j)− c(x, j − 1)| =
∑

|j̃−j|=1

|c(x, j)− c(x, j̃)| (4.26)in order to estimate, quite rigorously, the on�dene of x. This quantity C1(x) measureshow well the ost funtion at dj outperforms the ost funtions of the previous and followinglabels, so that the depth value of x an be hanged (oversmoothed) by λ1. The quantity
C1(x) is a speial ase of

C2(x) = 1

s

∑

j̃ 6=j

|c(x, j)− c(x, j̃)|, (4.27)and a simpli�ation of the term C(x) of (4.19). Here again, we denote by c(x, j) the valueof Edata(x, j) +ET (x, j). For illustration of this, see Fig. 4.11.Now let us assume that typially not more than 10 to 20% of all points are harateristienough that the depth an be estimated with a preision of one (depth or disparity) label(sine the vast majority of points lies in areas of rather weak texture). Then it is su�ientto take a value of λ1 orresponding to a quantile between the 80th and 90th quantiles ofthe histogram of {C1(x)|x ∈ I0}. Due to disretization e�ets, one ould onsider a lowerquantile value C2(x) of (4.27).To explain the reason for our assumption, we go one step further and take into aountpixels orresponding to smooth surfaes in objet spae. These are the pixels whose depthvalues we should be able to hange by applying the smoothness term and whih often liein homogeneously textured areas. The question how many pixels we must be able to over-smooth is equivalent to the question how many pixels lie in homogeneous, topologiallyonneted regions. This is the reason why the smoothness parameters the data set Tsukubawill turn out to be somehow lower than for data sets that are typial for our appliations:there are not that many homogeneous regions in the referene image.
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Figure 4.11: Con�dene maps C1(x) (left) and C2(x) (right) from equations (4.26) and (4.27),respetively, of the data set Tsukuba. The referene image is depited, for omparison oftextured and homogeneous areas, in Fig. 6.4, p. 90, on the right.



68
Chapter 5Shape reonstrutionThe input of a shape reonstrution proedure onsists of a 3D point loud sampled from oneor several depth maps obtained, as desribed in the previous hapter, from the orrespondingreferene image(s). The desired output is a disrete set of 3D points as well as trianglesonneting these points. Atually, there are two tasks that fae us here. First, we onsiderthe urgent need for "lose-to-real-time" algorithms and, onsequently, their inrementalharater. In this ase, we must make use of several referene images with orrespondingdepth maps and generate from them triangular meshes "up-to-now" without onsidering theglobal harater of data. We desribe the loal inremental fusion of tessellations (LIFT)algorithm in Se. 5.1. The seond task will be unifying these results into a global mesh.To do this, we apply methods disussed in Se. 5.2 and Se. 5.3. Here the L1-splines-basedproedure of Se. 5.2 is onsidered as our default method and represents the main innovationof our work. For omparison of the results on syntheti and real data, we implementedseveral methods mentioned in Se. 3.2, namely, alpha-shapes, iso-surfae extration, grid-�tand onventional splines, details of whih are reviewed in Se. 5.3. Finally, the texturingproedure, desribed in Se. 5.4, onsists of hoosing a referene amera for eah triangle ofthe mesh.5.1 Loal tessellations from depth mapsThe goal of this setion is the desription of an inremental proedure for ompressing thedata stemming from one or more referene images. We disuss �rst a method for tessellationof one referene frame (Se. 5.1.1). If the number of referene frames is more than one, anaive approah is to onsider the union of all tessellations. However, sine suh a tessel-lation usually ontains spurious triangles, it is better to onsider geometri onstraints toremove these triangles. The loal inremental fusion of tessellations (LIFT) algorithm willbe explained in detail in Se. 5.1.2.5.1.1 Tessellation from one referene frameWe start our treatment of meshing with a minimum of information. Suppose we have onereferene view and the orresponding depth mapD. If the depth map was retrieved aordingto Chapter 4, we already have a list of triangles onsistent with the surfae and an restritourselves to this list only. Sine the verties of these triangles were obtained in the proessof (epipolar or simultaneous) traking, some of them (espeially those in textureless areas)get lost. As a onsequene, the triangles have di�erent sizes and, sine many verties lie inthe textured areas, the number of triangles beomes unneessarily high. In the rest of thesetion, we are onerned with ompression and homogenization of the point set.



Chapter 5. Shape reonstrution 69Starting from one single depth map, the simplest way to reate a triangular mesh is toonsider a anonial triangulation (see [105℄): we subdivide the image into small squares of
q×q pixels and further subdivide eah square by one of its diagonals into two triangles. Twoimprovements of this approah are proposed and applied. The �rst improvement onsists ofhoosing mesh verties aording to their auray. For every anonial vertex x, we searh,in a small window (some q/4 to q/3 pixels) around x, for a point y with the maximum valueof the on�dene map (given, e. g., by (4.27)) and replae x by y. The seond improvementonsists of subdividing a triangle with depth disontinuities into two smaller triangles alongits symmetry axis. This kind of subdivision is very e�ient (see Fig. 5.1) and preserves theangles of triangles. We have found out that the ondition

dmax(T )− dmin(T )

dmin(T ) + d
> ε(where dmax(T ), dmin(T ) are maximum and minimum depth values of a triangle and d, ε arepositive onstants) is a reasonable riterion for subdivision. The maximum possible orderof iterative subdivisions (also alled generation of triangles) is set to 4. In order to avoidraks in the �nal surfae (that result if a 2D mesh vertex is an inner point of an edge,beause the orresponding 3D point is not neessarily inident with the an edge onnetingthe 3D endpoints of this edge) new verties must be inserted, as in Fig. 5.1, bottom right.The proess of inserting new verties and subdividing triangles (whih atually have passedthe riteria mentioned above) to avoid raks is alled restrited (top-down) quadtree trian-gulation (RQT or RTDQT) and was introdued in [108℄. The report [108℄ and the souresgiven there provide only hints about how to ompute RTDQT. We desribe in the two fol-lowing paragraphs the basi terminology and the omplete proedure for implementationof RTDQTs from the initial, anonial triangulation. For ompleteness, the proedure isformulated as pseudo-ode in Alg. 8.3 of the appendix.

Figure 5.1: Left: The depth map of a referene frame from the sequene Infrared and theanonial triangulation of verties orreted by the on�dene map with pyramid-depth level2; triangles with jumps of depth are shown in red, those without jumps in green. Top right:The edges and verties of a part of the left image marked by the yellow retangle. The raksin the �nal surfae are learly visible. Bottom right: No raks are visible if a restritedtriangulation is performed.The di�erent levels of details for verties and triangles orrespond to generations g. Onthe oarsest level, g = 0, for a vertex at the midpoint of the largest edge of suh a triangle,
g = 1 and so on (see Fig.5.2, left). The generation of a triangle is given by the generation of



70 5.1. Loal tessellations from depth mapsits youngest vertex, suh that we an de�ne for a triangle T (if g(T ) > 0) its parent and twohildren. If the edge e of T opposite to its youngest vertex is not inident with the marginof the (retangular) domain, then the triangle of the same generation sharing e with T isalled, the friend of T . On the oarsest level, g = 0, these are just triangles whih sharethe diagonal of the same retangle. Note that two friends are not brothers (i. e. hildren ofthe same parent) unless g = 0 and that it is easily possible to ompute for every triangle itsfriend by omparing the indexes of its vertexes.The ativity status s of a triangle an be ative (s(T ) = 1), if it is in the list, non-ative(s(T ) = 0), if a triangle of an older generation inident with T is ative and lost(s(T ) = −1)if there is a hain of hildren of T ending up in an ative triangle. Splitting a triangle Tan always be performed by setting its status to 0 and the status of its hildren to 1 (seeproedure Split(T ) of Alg. 8.3). The RTDQT has the property that the generations of twotriangles sharing the same edge di�er at most by one, in other words, for every ative triangle,either its friend, or the friend's parent, or its friend's hild, is ative (Alternatively, no vertexan be the inner point of a triangle's edge). The main idea of the proedure rtdqtSplit(T ),where T is the triangle to be split, is to identify the friend of T . If this triangle is ative, it issplit. If it is non-ative, then, by de�nition, its parent P must be ative and the proedureis repeated for P . Even if the algorithm is reursive, it will onverge sine the generationof P is neessarily lower than that of T and the moment must ome when g(P ) = 0. Theproess of re�ning starts with the anoni triangulation on the oarsest level. From levelto level, the list of ative triangle satisfying a splitting riterion is determined. For everytriangle T of this kind (unless g(T ) > n0 where n0 is a �xed number of maximum pyramidlevel), the proedure of rtdqtSplit(T ) is performed and so a new set of ative triangles isgenerated.

Figure 5.2: Left: Canoni triangulation of an arbitrary retangular domain. The trianglesof generation 0 are marked by rosses, for generation 1, by diamonds and dotted edges andfor generation 2 by small stars. For four exemplar triangles marked in green, we show theirhildren as well as their friends marked in red. There is no friend for a triangle near domainmargin. Top right: Craks are likely to emerge if restrited triangulation is not arried out.Bottom right: To perform the algorithm, one has to identify the friend B of a triangle T tobe split, and if B is not ative, then the same algorithm must be applied to the parent of B.



Chapter 5. Shape reonstrution 715.1.2 Tessellation from several referene framesThe union of loal triangular meshes from di�erent referene frames, as the output of theprevious setion, an be now onsidered. However, several triangles inonsistent with thesurfae may be inluded in the result. Also, there are many redundant triangles that emergebeause the di�erent referene images have a partial overlap (see, for instane, images onthe top of Fig. 6.3, p. 84). After a loal tessellation for the new referene view (denoted by
Im) has been alulated, it is possible to rejet several triangles that were inorretly orredundantly assigned to the list of triangles onsistent with the surfae. In the followingparagraph, we review the main ideas of the loal inremental fusion of tessellations (LIFT)algorithm, whih is also illustrated as pseudo-ode in Alg. 8.4, p. 145.From eah pixel x of the urrent referene frame Im, we set the value of the booleanvariable status to 1 and projet the orresponding 3D point X (extrated by means of theorresponding depth map Dm at x) into the other referene images I1, ...Im−1. (In [22℄,double indexing Ir1 , ..., Irm−1

was used to di�erentiate between the loal approah within asubsequene and a global approah, where results from di�erent subsequenes are fused intoa global mesh). Sine we have depth values for these points (xk), we an ompute the errorterm
δ(x) = d(X)−Dk(xk)with depth d(X) omputed from Pk aording to (4.1). For a positive onstant ε (tolerane),

δ(x) > εd(X) means that X oludes some point of Dk; in this ase, the olusion ounter
o(T ) for the triangle T inident with x is inreased. On the other hand, |δ(x)| < εd(X)meansthat the pixel x was already proessed at an earlier stage, so, in this ase, the redundanyounter r(T ) of T is inreased. In either of these situations, the variable status is set to be0. After all pixels of the new referene image has been proessed, we delete all trianglesfor whih either o(T )/a(T ) > 0.1 or (o(T ) + r(T ))/a(T ) > 0.99 holds. Here a(T ) (areaounter) denotes the number of pixels proessed in every triangle. The starting values forthe ounters for a(T ), r(T ), o(T ) are all set to 0 for every triangle T .A modi�ation of this algorithm an be also found in [22℄ and it was originally appliedon the Delaunay triangulations from the point sets in the referene images. The mostsigni�ant di�erene between Alg. 8.4 and [22℄ is the following. Sine Step 2.2 of our pipelinewas ompletely omitted in [22℄, the evaluation of triangles took plae within LIFT. For thease status = 1 after the inner loop in Alg. 8.4, the loal approah with the aggregationfuntion ‖ck′(x)‖ taken over neighboring images k′ = m± 1, m± 2, ..., (not other refereneimages!) was performed; here ck′ denotes the SAD-values from either gray or olor values ina small window. If the value of the aggregated ost funtion exeeds a threshold, the pixelis delared as inonsistent with the surfae. After all pixels of the new referene image havebeen evaluated, also triangles with a high perentage of pixels inonsistent with the surfaeare deleted as well. This has the advantage of performing a geometri and image-basedevaluation on triangles in one step but the disadvantage of potential wrong lassi�ation oftriangles. For example, large triangles from homogeneous, untextured regions are biased tobe inluded into the list while triangles near oluded regions are biased to be exluded,sine the aggregation funtion near oluded regions is less robust than the one hosen in(4.20).We now refer to other di�erenes between Alg. 8.4 and [22℄ as well as extensions of theLIFT algorithm. Fitting dominant planes into loal tessellations and orreting points inthe diretion of normal vetors of these planes is a meaningful preproessing step. Theomputation of dominant planes proeeds by means of the RANSAC proedure with the
Td,d-test (see [95℄) until a su�iently large onsensus set is obtained. After the 3D pointsof this set are projeted onto the plane aording to (3.3), they are deleted (temporarily)from the point list and the proedure begins again. This has an advantage, beside improved



72 5.2. L1-splines-based proedureposition of 3D points, that triangles lying in one of the dominant planes an be preferredby dereasing the maximum threshold for perentages of redundant and oluded pixels(o(T )/a(T ) and r(T )/a(T ), respetively) within them. In order to redue omputing time,the set of test points an be diminished from all pixels of the referene frame to the 3D pointsavailable up-to-now. This idea is proposed by [99℄. Similar to [111℄, we also undertook e�ortsto avoid inonsistent meshes (i. e. those loally non-homeomorphi to a plane) and to reduethe number of verties by fusing verties of the new loal tessellation with those of theprevious one if they are too lose. The losest point in the previous mesh is omputed in theHausdor� metri alulation (overed in Chapter 6). As the �nal step, we optionally deletetriangles of the previous mesh that olude the new mesh.Clearly, for an inreasing number of frames, it beomes quite expensive both to keepall referene images with the orresponding depth maps in memory and to proess the newreferene image while realling all available referene images. The omputational ost of suha proedure depends quadratially on the number of referene images. More sophistiatedmethods (for example, otree deomposition of the 3D spae to be reonstruted) an proessall tessellations simultaneously. These methods will ertainly be a topi of future work. Inthe urrent implementation, in order to keep the ost of the proedure linear, we keepand proess only a �xed number, between 2 and 5, of previous loal tessellations. Otherimportant parameters of the algorithm are the following:1. The number of images in the subsequenes is 5 to 7, as we will see in Chapter 6.2. The number of frames between the frames within a subsequene varies between 2 and12, depending on the sensor's veloity (see also Chapter 7).3. The distane between subsequene in the urrent implementation is hosen so that twosuessive subsequenes almost overlap, i. e., the number of frames between the lastframe of the kth and the �rst frame of k + 1st subsequene is small.4. The value of q (from Se. 5.1.2) of the resolution on the �nest level is 10-20 pixels.Consequently, it is 40-80 pixels for the oarsest level. The number of triangles in atessellation in a subsequene usually does not exeed 10000.5. Finally, the value of ε in Alg. 8.3 depends on the distane from the amera enter tothe objet points, the baseline, and the foal length. Mostly ε = 0.05.The proedure desribed in this setion allows obtaining a lose-to-real-time reonstru-tion in the form of (quite regularly distributed) sample points in the areas overed up tonow and triangles that onnet these points. This onept is su�ient for the majorityof appliations. However, the visual quality of models thus obtained is unfortunately notalways su�ient. Two auses of insu�ient visual quality are holes and other topologialinonsistenies in the triangular mesh and noise in the triangle verties. In order to solvethese problems, we will onsider the whole point loud in the next setions.5.2 L1-splines-based proedureThe ore element of our algorithm for shape reonstrution is the L1-splines-based proedure,also desribed in [24℄. Starting with a 2D tensor-produt domain (ui, vj), i = 0, ..., I, j =
0, ..., J , our main task is to obtain a di�erentiable homeomorphism in the form of a ubispline that approximates the point loud. Expliitly, this means that the surfae to bereonstruted must be homeomorphi to a plane. This puts restritions on the topologialvariety of surfaes, but it is a plausible assumption for a �ying sensor overing the urbanterrain and thus eliminates, for a vast majority of ases, a large soure of errors.



Chapter 5. Shape reonstrution 73Sine we strive for generi models automatially instantiated for data sets with irregulardensity of points, high perentage of outliers and sharp hanges of urvature, we annotrely on most least-squares-approahes. In order to obtain, on arbitrary grids, smooth ap-proximations free from extraneous overshoot and osillations, we adopted the ideas of L1approximating splines, whose main idea (see [85℄ and referenes therein) onsists of repla-ing (the outlier-sensitive mean-based) L2-norm by the median-based L1-norm. Overall, ouralgorithm onsists of four steps, namely,1. Generation of a nonparametri 2.5D surfae from the point loud in form of a C1 ubispline2. Creation of a parametrized data set using the latest 2.5D or 3D surfae3. Generation of a parametri 3D surfae and return to Step 2 until a stopping riterionis satis�ed4. Tessellation of the 3D surfae.The point loud serves as input of the algorithm while for texturing step, explained inSe. 5.4, amera matries and depth information are also needed. If one wants to reonstruta smooth surfae from depth maps or 3D harater of the sene is not present, Steps 2 and3 an be omitted. When vertial strutures (like building walls have) to be reonstruted,Steps 2 and 3 are neessary and a pair of independent parameters u, v are to be determined.This is why we denote the surfaes obtained in Step 1 and Step 3 by nonparametri andparametri, respetively.The four steps will be explained in the Subsetions 5.2.1, 5.2.2, 5.2.3, and 5.2.4, respe-tively, of this setion.5.2.1 Funtional and algorithm for 2.5D L1 splinesThe �rst step of the proedure is orientation of the point loud X = {Xm|m = 1, ...,M},sine the nonparametri 2.5D representation assumes that one is able a priori to rotate thepoint loud so that the z-axis oinides roughly with the physial vertial diretion. For thedata onsidered here, this assumption is reasonable, sine the physial vertial diretion anbe estimated either by the normal vetor of the plane robustly approximating the ameraenters or by the dominating diretion of vertial straight lines (deteted by [30℄ in theimages and triangulated by means of the DLT-method of [61℄). This latter approah wassuessfully used in [97℄.In this setion, the problem of the 2.5D surfae approximation given a set of samplepoints X is onsidered. Given a retangular grid (ui, vj) (where u0 < u1 < ... < uI , v0 <
v1 < ... < vJ and the {(xm, ym)} of the data points are assumed to lie in the retangle
[u0;uI ]× [v0; vJ ]), we wish to approximate the data with a C1 ubi spline z(u, v) that bestpasses through the data points.The (vertial) error of a single sample pointXm is |z(xm, ym)−zm|, where z(x, y) is givenby (3.8) or by the analogous formula for one of the other triangles. The way to aggregate theerror of the whole data set has a large in�uene on what surfae one obtains. Unfortunately,the traditional hoie whih is the least squares minimization

∑

m

(z(xm, ym)− zm)
2virtually always produes inaurate results with extraneous artifats and osillation inareas of rapid urvature hange (for example, vertial disontinuities or near-disontinuities,



74 5.2. L1-splines-based proedurewhih are ommon in terrain). Evidene in the reent literature [85℄ suggests that surfaesalulated by minimizing sums of absolute values are more robust and have fewer artifatsthan surfaes alulated by minimizing sums of squares. For this reason, we deided tominimize the sum of the absolute values (along with other terms) instead of the sum ofsquares.The funtional that we minimize to reate an L1 spline onsists of a weighted sum ofthe absolute (vertial) deviations of the data from the surfae, a smoothness term, similarto the Laplaian of Se. 3.2.4 and a regularization term that resolves nonuniqueness when itours:
(1− λ)

M∑

m=1

wm |z(xm, ym)− zm|+ λ

∫

(|zuu|+ 2 |zuv|+ |zvv|)du dv
+ε
∑

nodes (|zu|+ |zv|) −→ min .

(5.1)In the �rst term (data term) of (5.1), the weights wm an be hosen to re�et uner-tainty in the point oordinates. If there is no information on the unertainty in the pointoordinates, all of the wm are set equal to 1. The parameter λ ∈ [0; 1] expresses the balanebetween how losely the data points are �tted and the tendeny of the surfae to be lose to apieewise planar surfae, without extraneous, nonphysial osillations. If λ is too small, theseond term (smoothness term) of (5.1) beomes rather unessential and so the disturbanesaused by outliers beome learly visible. If, however, it is too large, areas near hara-teristi edges beome oversmoothed. In order to approximate the integral whih makes upthe smoothness term in (5.1) by a disretized value, eah grid ell [ui;ui+1] × [vjvj+1] isdivided into N2 equal subells (N ≥ 3) and the sum of absolute values of the integrandat the midpoints of those sides of the subells that are interior to the ell is omputed.The value of the integrand is approximated by di�erential quotients of funtion values givenby (3.8). The last term of (5.1), onsisting of the sum of the absolute values of the �rstderivatives at the grid nodes, is added to the funtional in order to prevent it from havinga non-unique minimum. L1 funtionals are in general, non-onvex and an have an in�nitenumber of solutions. This third term is responsible for hoosing from this set the mostphysially meaningful one. If ε is small enough, onsideration of the last term in (5.1) doesnot hange the minimum value of the funtional.The task is thus to solve an overdetermined system of equations Ab = c in the L1 norm.Formally:
b = argmin

b′



‖Ab′ − c
︸ ︷︷ ︸r ‖1



, (5.2)where A is a oe�ient matrix stemming from (5.1) that has r = M +6IJN(N − 1)+2(I+
1)(J + 1) rows and 3(I + 1)(J + 1) olumns (reall that M is the ardinality of the pointset, N is the number of grid ells used for disretization of the integral in (5.1) and I × J isthe dimension of the grid). It an be assumed that A has the full rank. A linear programan be obtained from (5.2) by onsidering the residuals r. We have to minimize

12r

[ r+r− ] subjet to [A | Ir | − Ir]





br+r− 

 = c and [ r+r− ]

> 02rwith r+, r− as in Se. 1.4. The minimization is arried out by means of a primal-a�nealgorithm. This is an interior-point method that starts with a least squares solution of (5.2)and, by iteratively updating the weight matrix W and omputing the weighted least-squares



Chapter 5. Shape reonstrution 75solution WAb = Wc, either onverges to a L1-solution of (5.2) (if parameter updates liebelow a reasonable tolerane) or terminates if a maximum number of iterations is reahed.The algorithm onverges theoretially both for ases of unique minima [131℄ and for asesof multiple minima [2℄. It is losely related with the robust least-squares approah beausethe outliers are supposed to be given smaller weights in the ourse of the minimizationproedure. Consequently, it is possible to keep trak trak on outliers in the data; however,these outlier tests are not arried out in our approah.The proof of the statement that primal-a�ne algorithm orresponds to a L1-solutionof (5.2) was given in [102℄. The most time-onsuming step is the least-squares solution ofthe overdetermined linear system, that is, solution of ATW 2Ab = ATW 2c. By properlyordering the unknowns, the symmetri, positive de�nite matrix ATW 2A an have a minimalone-sided bandwidth (number of superdiagonals + 1 for the main diagonal) of 3min(I, J)+9.We give, for ompleteness, the pseudo-ode for the primal-a�ne algorithm that we use inAlg. 8.5 of the Appendix and refer to [85℄ for further details.5.2.2 Parameterization of data pointsWhile the method presented in the previous setion produes good results for 2.5D data,the question now is how to generalize it for a 3D point loud. What we need is a globalparametrization u, v that allows alulation of a triplet of splines x(u, v), y(u, v), z(u, v),whih we now denote by X(u, v). Suh a parametrization usually exists for typial airbornevideo data of an urban sene, beause the surfae is usually homeomorphi to the plane. Ifthe point density is su�ient and adaptive to urvature hanges, one ould apply methods ofmulti-dimensional saling (see, for example, [35℄) and (in the ase of 3D to 2D dimensionalityredution) losely related surfae �attening. These methods roughly onsist of minimizinga norm of a matrix with observationsdst ((um, vm), (un, vn))− dst(Xm,Xn)over 2M values of the parameters um, vm and where Xn, n ∈ {1, ..., N} is a neighbor of Xm.The hoie of neighbors an be arried out by means of the approximate nearest neighbors(ANN) algorithm as desribed in [104℄. In the ontext of surfae reonstrution by bivariateB-splines, this approah was applied by Ek and Hoppe in [42℄. Unfortunately, despite theband struture of the MN × 2N observation matrix, solving the system for (um, vm) wasnoted to be an extremely time-onsuming and unstable proess. We projet the data pointsXm onto the (most reently generated) surfae to obtain "orreted" points X̂m and use itsoordinates (u, v) = (ûm, v̂m) as a parameterization for the surfae X to be alulated next.The unknowns in this ase are the (u, v)-oordinates of the point X̂m at the surfae that islosest to X. We use the Levenberg-Marquardt algorithm [49, 61℄, where the ost funtion
ε and the Jaobian J are given by:

ε = ε(u, v) = X−X(u, v) → min,J = [X(u, v)u X(u, v)v] .The terms of X(u, v),X(u, v)v,X(u, v)u are given by (3.8) (in whih one has to replae zby the entries of X and selet the suitable Sibson-triangle) and its derivatives. While forparameterization of the 2.5D surfae, the �rst two rows J are made up by the identitymatrix and the third row is zu, zv, it is a full 3 × 2 matrix at all following iterations (seeSe. 5.2.3). This parametrization proess is shematially visualized on the left of Fig. 5.3.5.2.3 Funtional and algorithm for 3D L1 splinesAfter parameter values (um, vm) have been assigned to eah point (xm, ym, zm) as indiatedin the previous setion, we ompute a 3D L1 spline by minimizing the funtional



76 5.2. L1-splines-based proedure
(1 − λ)

M∑

m=1

|wm|z(um, vm)− zm|+ λ

∫

(|zuu|+ 2 |zuv|+ |zvv|)du dv+
ǫ
∑

nodes

(|zu|+ |zv|) +
12∑

1

[analogous expressions], (5.3)where by "analogous expressions" we mean replaing z in (5.3) by the 12 funtions x, y,
x±y, x±z, y±z and x±y±z , respetively. The funtional (5.3) is more robust (at the ostof omputing time!) with respet to outliers than three unorrelated funtionals as in (5.1)for x(u, v), y(u, v) and z(u, v). Funtional (5.3) is minimized by the primal-a�ne algorithmdesribed in Se. 5.2.1 (with details suitably adjusted). The omplete proess onsists ofstarting from a 2.5D L1 spline and then iterating the two steps of parameterization and 3Dspline generation several times.The smoothness parameter λ in (5.3) does not need to be the same as in the (5.1). Theautomati hoie of suitable λ is not a trivial problem. Neither theoretial nor heuristiguidane is urrently available. Like in (2.9) of the image-based part of this dissertation,hanging λ by small values (in our ase ±0.05) does not result in large hanges in the L1splines. Usually, it is reommended that λ be bounded away from zero in the non-parametrispline sine we must make sure that the orret topologial relations are not a�eted byoutliers. For other iterations, smaller values of λ an be used.5.2.4 Tessellation of the spline surfaeAs a result from the previous setions, we have an expliit representation of the objetsurfae X(u, v) and also of its partial derivatives. Our task now is to reate a triangularmesh that best �ts the spline surfae. This triangular mesh will be, at a later stage, themain input of the texturing proedure: its task will be to texture eah triangle using one ofthe available referene views.Surfae meshingThere are two possibilities for meshing the surfae obtained using the proedures of Se. 5.2.3.The authors of [24℄ applied the Delaunay triangulation of the (u, v)-values of the pointsX̂m (the points on the surfae losest to the data points Xm) of the last of the iterativelyalulated spline surfae. Points within a retangle R = [ui; ui+1]×[vj ; vj+1] are ompressedintomultipointsXr that oinide with the enter of R. Another possibility is to use anonialtriangulation of spline nodes in the (u, v) domain (retangles ut by one of the diagonals, asproposed in 5.1.1). Sine the number of spline nodes in eah diretion is about 30-50, we areable to model our objets by means of several thousands of triangles. Although this seondapproah results in a higher number of triangles, we use it in our further onsiderationsbeause it represents the spline surfae at its �nest resolution and the high number oftriangles an be redued by e�ient mesh-manipulation methods desribed in Se. 2.4.2.In our implementation, an optional step after tessellation is mesh manipulation by anedge-�ipping method. From the initial triangulation, the (u, v)-values of 3D points X andthe values of their normal vetors nX = (Xu×Xv)/‖Xu×Xv‖, we wish to obtain a new meshthat is more onsistent with nX, as indiated in Fig. 5.3, right. To do this, one starts withonsidering for a triangle T with verties ABC the terms (atually, three salar produts)n1(T ) = (nT,0)

T · [nA nB nC] , (5.4)



Chapter 5. Shape reonstrution 77where nT,0 is the normal vetor of the triangle given bynT,0 =
(A−B)× (A−C)

‖(A−B)× (A−C)‖ .If the normal vetor of T is nearly parallel to the normal vetor at one of its verties,the orresponding entry of the vetor n1(T ) in (5.4) is lose to ±1. Therefore, we hoose,among a large number of possible energy funtions for a triangle T , the very simple term
E(T ) = −‖n1(T )‖∞ and wish to minimize the total energy E(T ) =

∑

T∈T E(T ) overtriangulations T .The next step of our minimization algorithm onsists of obtaining all interior edges of
T . Eah of them is assoiated with a quadrilateral, so the energy value E(Q) of everyquadrilateral Q is omputed. The energy of Q is given by the sum of the energies of bothtriangles omposing Q. The energy values are now stored in non-dereasing order.The ativity status of all quadrilaterals is now set to be 1. The iteration loop runs overall swappable quadrilaterals of the list, where a quadrilateral Q is delared swappable if itsativity status is 1, all its angles do not exeed π and the angle between the oriented normalvetors of the two triangles from whih Q is made up is below a �xed value (π/2 − ε). If
E(Q) > E(Q′) (whereQ′ is a swapped quadrilateral), the triangles omposingQ are replaedby those omposing Q′, inidene and energy information of all quadrilaterals around Q isrealulated and their ativity status is set to be 1. Finally, the ativity status of Q′ is setto be 0.

C

B

A

D

Figure 5.3: Left: Parameterization of the approximating spline surfae (see Se. 5.2.2). The2.5D spline surfae is depited by the green urve, the point loud is depited by red rossesand the orret surfae is indiated by a blak dotted line. Points are projeted onto thesurfae (depited in seleted ases by blue rosses) and the �rst two oordinates are hosenas independent parameters (blue irles). The approah will preserve topologial relationsof points when the inlination angle of the z-axis against the vertial diretion of buildingwalls is small and the input surfae is good enough.Right: Visualization of the edge-�ippingproess. Two triangles sharing a ommon edge and not re�eting the values of the normalvetors of their verties (given by derivatives) are �ipped along this edge.In our appliations, it was onvenient not to inlude quadrilaterals Q into the list when
E(Q) was below 0.0001 and so the number of iterations was always below 500. It is alsoimportant to point out that the �nal triangulation depends on the order of swapping andso there is generally no guaranty that, at the end of the proess, the energy takes on theglobal minimum value argminT E(T ) over all possible triangulations T . However, sine theenergy of every swap redues the total energy, it will be always lower than the energy in thebeginning and therefore the algorithm terminates (in a loal minimum of the total energyfuntion) after a �nite number of iterations, namely, when there are no longer any swappablequadrilaterals in the list. Further redution of total energy an be ahieved by onsidering



78 5.3. Implementation details of other proedures for surfae reonstrutionmore sophistiated methods like simulated annealing, see, for instane, [118℄, but also hereno statement an be made about onditions under whih a global minimum of energy anbe ahieved in a reasonable time. Furthermore, simulated annealing is very sensitive to thehoie of relaxation parameters and, as stated in [118℄, quantitative improvements of thegeometri ost funtion are not as signi�ant as those of the loal result.5.3 Implementation details of other proedures for sur-fae reonstrutionIn the next three short setions, we give brief desriptions of implementation details ofseveral approahes that will be used to provide omparison with results obtained by the
L1-splines-based proedure.5.3.1 Alpha-shapesThe main properties of Alpha-shapes (α-shapes, [43℄) were disussed in Se. 3.2.1. Beauseof its indisputable advantages (no need for 3D parameterization, regularized triangle sizeset.), the α-shapes-based proedure will be our default TIN-based method for shape reon-strution. To ompute an α-shape, one needs the Delaunay tetrahedrization of the inputpoint loud, after whih for eah fae, the maximum and minimum value of α for whih Tbelongs to the α-shape an be obtained. These values are stored in a 2 × N array where
N is the number of triangles. Then it is a trivial task to selet triangles belonging to the
α-shape from this array.The value of α should be slightly larger than the average triangle edge size in meshesobtained by a loal method. After the α-shape has been obtained, the verties and mesh anbe manipulated in order to detet large planar regions and to redue the number of triangles.For the omparison of omputational results, the Steps 1-4 of the proedure mentioned atthe beginning of Se. 5.2 are replaed by triangulation with α-shapes.5.3.2 Iso-surfae extrationSimilar to the previous setion, we wish to understand the advantages and disadvantages ofiso-surfae extration with respet to our appliations. The most important parameters forthe iso-surfae extration algorithm of [70℄ desribed in Se. 3.2.2 are ρ (sampling density)and r (resolution). If ρ is too large, ompletely wrong results for the signed distane funtionan be obtained, as depited in Fig. 5.4, top left. However, if ρ is too small, two many valuesremain unde�ned (Fig. 5.4, top right). A resolution grid that is too �ne usually leads not onlyto an unneessarily large number of triangles with oordinates of verties ontaminated bynoise, but also to inreased omputing time, sine, at least at present, gx ·gy ·gz ·M distaneevaluations (where gx, gy, gz are the numbers of nodes in a grid in the x, y and z diretions,respetively, and M the ardinality of the input point loud) for determination of losestpoints in (3.3) are required for every grid point. Grids that are too oarse usually ignoresome �ne details. For the data set Gottesaue, depited in Fig. 5.4, bottom (intermediateresult), we set gx = gy = gz = 26 = 64.Computing depth maps and rendering loal tessellations aording to Se. 5.1 allowsthe assumption of a onstant point density at least in large portions of the surfae. We anompute the neighbors of a sample point using the well-known approximate nearest neighbors(ANN) method, [104℄. The matrix of distanes between the point set and its neighbors isobtained as well and a number proportional to the median of these distane values is set tobe ρ. Now, if a sample point X projeted by a referene amera, in whih it is visible, lies in



Chapter 5. Shape reonstrution 79a triangle onsistent with the surfae, we assign to the normal vetor at X the normal vetorof the triangle. Otherwise, the alulation of the normal vetor is arried out by �tting aplane with RANSAC from the neighbors of X. The most di�ult part of the algorithm,namely determining the orientation of the normal vetor, an be signi�antly simpli�ed inour appliations, beause one an take the vetor from X toward the amera as an initialorientation of the normal vetor of X ∈ X . Multipliation by −1 proeeds merely in theregions of sharp urvature hanges (it an not be ompletely skipped!) and is ompletedafter several iterations. Finally, meshing is provided by the marhing ubes algorithm [91℄.In the post-proessing step, another problem, namely, ghost triangles near the medialaxis, an be partially solved by seleting a rather small value for resolution and then deletingall verties lying in the ube where either the maximum of negative values at the verties orthe minimum of positive verties is bounded away from zero. Finally, neighborhood relationsof verties sharing a triangle edge are established and we delete all triangles with too fewneighbors. n n
ρ

ρ

Y

Ydst(Y) dst(Y)

Figure 5.4: Top: Problemati of parameter hoie for iso-surfae extration. Top left: Toolarge ρ and a too small value is assigned to dst(Y), namely the distane to the regressionplane. Top right: Sine no points of the sample lie in a irle of radius ρ (whih was hosen tobe too small), the value of signed distane funtion at Y remains unde�ned. A meaningfulvalue would be assigned if ρ were slightly larger. The regression plane is always denotedby the thik blak line, its normal vetor by the arrow on the left, the input point setby red rosses and the points inluded into the onsensus set for plane �tting by greenellipses. Bottom: An intermediate result of signed distane funtion extration for the dataset Gottesaue. The original point loud is indiated in blak, Y with positive values of thesigned distane funtion in green, and those with negative values in red. One an see severalwrong assignments whih are mainly situated near regions with sharp gradient hanges (e. g.,towers), points of medial axis and outliers in the data. The result of the omplete proedurefor this data set is depited in Fig. 6.33, p. 114, middle left.



80 5.4. Texturing5.3.3 Conventional (L2) splines and grid�tThe proedure for onventional, or L2 splines of Se. 3.2.4 is the same as that stated for
L1 splines in Se. 5.2 exept that the absolute values in the minimization priniples of (5.1)and (5.3) are replaed by squares. A onventional spline is easily obtained, sine it is (thespline orresponding to) the value of b after the �rst iteration of Alg. 8.5. The tessellationproedure remains the same. Comparison of proedures based on onventional splines withour default proedure based on L1 splines is of interest beause onventional splines areommonly used in geometri modeling and beause all of the di�erenes in the results an bediretly attributed to the di�erenes in the funtionals by whih these splines are alulated.Computational results generated by the Grid�t routine ([38℄, see also Se. 3.2.4) for 2.5Dsurfaes in partiular and for di�erent grid sizes, regularization kinds, and smoothness terms,help understand to what extend C0-surfaes an perform suessful reonstrution from pho-togrammetrially generated point louds. Comparison of surfaes generated by Grid�t with
L1-splines provides an additional omponent of omparison that assists in understandingthe ontext.5.4 TexturingTo texture the 3D surfae obtained by a global algorithm, we must �nd for every triangle
T of the mesh a (referene) amera k that ompletely observes it under a reasonable angle.�Reasonable angle� means that the osine of the angle α between the triangle normal n0,Tand the ray onneting its enter of gravity (denoted by G(T )) with the loation of refereneamera (Ck) must be bounded away from zero. The hoie of suh a amera is not a trivialtask beause there is a lot of available information (the distane G(T )Ck, whih should notbeome too large, depth information for points within T in Ik, and many others). So we �rstextrat by means of depth maps information about whih vertex is seen in whih refereneimage. This set will be denoted by v(X) for the given vertex X. Then, the sets ∪3

i=1v(Xi)and ∩3
i=1v(Xi) are evaluated for the three verties of T . If the �rst set is non-empty, wetake one view from the intersetion set for texturing. Otherwise it is lear that the trianglean theoretially be textured using any image of the seond set. We therefore start withremoving the views that annot texture T either beause at least one of it verties is notvisible in the image or beause of oarse deviation from the indiated depth information, inother words
min

(

min
i

(|Dk(PkXi)− d(Xi)|) , |Dk(G(T ))− d(G(T ))|
)

< 2ε · Dk(G(T )),where d(X) is the depth of the point X aording to (4.1), and on the right, ε is the sameas in Alg. 8.4 and the fator 2 onsiders the fat that the positions of mesh verties areslightly hanged by a global method. In [24℄, the referene image with the smallest value of
c1(k, T ) = |G(T )Ck|(1−cosα) was hosen from the remaining set of referene images. If theunertainties in amera parameters are not negligible, the approah is modi�ed by hoosingthe minimum value of c1(k, T )−Ac2(k, T ) where A is a large positive onstant and the valueof c2(k, T ) is set to 1 if a triangle sharing an edge with T is hosen by the referene image kand 0 otherwise. This not only allows seleting ameras with low values of α and small valuesof |G(T )Ck| for texturing T , but also making small errors of point projetions less visible(sine triangles are textured luster-wise from referene images). The last strategy ahievesits best impat as an iterative proedure where triangles already textured are propagatedalong their edges. Finally, triangles that annot be assigned to any amera are textured bya neutral olor and their transparenies are set to 0.5.



Chapter 6. Evaluation of algorithms 81
Chapter 6Evaluation of algorithmsAfter presenting reonstrution algorithms in Chapters 4 and 5, evaluation of results ob-tained by these algorithms will be desribed in this hapter. To emphasize the generiharater of our approah, video sequenes of quite various types and quality will be de-sribed in Se. 6.1. For eah frame of the video sequene, we are given, as stated in Chapter1, the orresponding amera matrix. As additional input, a sparse set of 3D-points is giventogether with a visibility information (whih point is seen in whih amera). Evaluation ofsparse traking algorithms, whih represent Step 2.1 of our reonstrution pipeline of p. 15,takes plae in Se. 6.2. Qualitative and quantitative evaluation of dense image-based meth-ods (Step 2.2) is provided in Se. 6.3. Evaluation of the methods for shape reonstrutiondesribed in Se. 6.4 (Steps 3.1 and 3.2) is divided into two parts: in Se. 6.4, sreen-shotsof meshes and textured model representations are presented; a separate setion (Se. 6.5) isdediated to quantitative evaluation. In order to visualize di�erent steps of our algorithmfrom input images over depth maps and dense points louds to textured model instanes,qualitative results for two additional video sequenes are presented in Se. 6.6; for thesesequenes, only main hallenges will be mentioned, but a detailed performane analysis willnot be performed. Information about omputing time is given in the onluding Se. 6.7.6.1 Data setsThe �rst data set that we disuss in this setion is the well-known Tsukuba data set [115℄.Several images and the disparity map between two of these images (I3,3, I3,4) are providedfor veri�ation and evaluation of the results. Although we do not onsider this data set asharateristi for our appliations and hene do not perform shape reonstrution in thisase, we deided to demonstrate the performane of the image-based part of the algorithmfor a data set with available ground truth. Sine the surfae has many self-olusions, thegrading of the geometri omplexity of the sene is delared as high in Table 6.1 (whererelevant properties of all data sets mentioned in this Chapter are summarized). For pointtraking, we use either �ve images (I2,2, I3,2, I3,3 (referene image) I3,4 and I4,4 � in orderto mimi a �ying sensor) or nine images with (2 ≤ r, c ≤ 4) and again I3,3 is hosen to bethe referene image. For dense estimation, the number of images was hosen to be �ve.In the next data set, Turntable houses, only the moving parts of the images need bereonstruted. Sine the (unmoved) bakground (see Figs. 6.1 and 6.5) does not satisfy theollineation onstraint, it does not make muh sense to perform a dense reonstrution ofthis data set, but it is still interesting to observe the results of sparse traking for di�erentmethods and parameter sets for this labor data set. The extration of amera trajetoryand sparse point loud was arried out by the struture-from-motion approah of [22, 23℄



82 6.1. Data setsfollowed by a bundle blok geometri error minimization. The total number of ameras was81 and the number of points 8159. The shape reonstrution methods are applied to thispoint loud. Several video frames of the data set as well as the result of Step 1 of ourreonstrution pipeline are visualized in Fig. 6.1, top and bottom, respetively.

Figure 6.1: Top: Three views from the original sequene Turntable houses. Bottom: Theomplete amera trajetory and the point loud as a result of a struture-from-motion algo-rithm are the input of our reonstrution pipeline.Our next sequene, Gottesaue, shows a real building Gottesaue Palae in Karlsruhe,Germany. The results of the reonstrution presented in [24, 25℄ were derived from 339images and 39059 points obtained using the methods of [22℄ without bundle adjustment(whih was not possible to perform reliably for suh a large number of ameras). Theresults depited in Fig. 6.6, bottom, were produed by generating four workspaes fromsubsequenes showing di�erent but overlapping parts of the building. Eah subsequenewas self-alibrated and reonstruted by [22℄ with bundle adjustment in a Eulidean spaeand then transformed into the same oordinate system. Nevertheless, beause of the �ightin turbulent onditions (with a onsequene of a high level of noise and outliers, partlyprodued by drift e�ets of the amera trajetory) and the hallenging geometry (huge depthranges, �ne details in the struture of the palae and its surrounding terrain, abundane ofnon-fronto-parallel planes), the radiometri and geometri omplexity of this sequene arelassi�ed to be high and very high, respetively, in Table 6.1. The total numbers of ameramatries and points are 310 and 39165, respetively; several frames of the video sequenetogether with the results of sparse reonstrution are illustrated in Fig. 6.2.We also present an infrared video sequene of a skysraper in the ity Frankfurt (Oder)in the eastern part of Germany. This video was also reorded by an airborne sensor (in aheliopter) and reonstruted by a SLAM-method [9℄ after self-alibration of a short subse-quene was performed. The whole sequene has 418 images and 3109 points (see Fig. 6.3).Its partiular omplexity onsists of dead pixels and many textureless areas (radiometry) aswell as slanted surfae of huge depth ranges in the bakground (geometry). Contrary to the
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Figure 6.2: Top: Three views from the original sequene Gottesaue. Bottom: Part of theamera trajetory and the point loud as a result of a struture-from-motion algorithm dueto [22℄ are the input of our reonstrution pipeline.
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Figure 6.3: Top: Three views from the original sequene Infrared. Bottom: Part of theamera trajetory and the point loud as a result of a SLAM algorithm due to [9℄ are theinput of our reonstrution pipeline.



Chapter 6. Evaluation of algorithms 85points in the bakground, 3D points at the walls of the tower an be omputed with a higherauray. For this reason and also beause of the abundane of planar regions (similar tothe situation in the sequene Turntable houses), we deided to show the result of the LIFTalgorithm in Se. 6.4.1 for these two data sets.The video sequene Ettlingen hurh is used for quantitative evaluation of several shapereonstrution algorithms in Se. 6.5 beause a laser point loud representing the surfaeis available. Beause of many �ne details, the omplexity of sene is high. Finally, todemonstrate the reliability of our reonstrution pipeline for di�erent situations, we presentin Se. 6.6 qualitative results for two additional data sets: Wangen and Speyer, but, sinethe quantitative analysis of these two sequenes does not represent a signi�ant di�erenefrom other data sets and, therefore, was not arried out, we do not onsider them in Table6.1 below. Note that in Table 6.1, an important measure for geometri omplexity of theinput data is given by the ratio �eld of view/spatial resolution ranges that re�ets the rangesfor the quotient baseline/depth.Table 6.1: Summary of data sets available for this work. It is also mentioned whih exper-iments (denoted by Se. 6.2-6.5) were arried out for whih data set. "dl" means daylightvideo with three spetral hannels, "ir" infrared video, and "i" denotes image sequene. Theomplexity of radiometri or geometri on�gurations of the sene is denoted by "!", if thesene is very omplex, a "!!" is put. If the reason why a ertain experiment was not arriedout with a ertain data set is not given, it was omitted beause of redundany. See text forfurther details.Data set Tsukuba Turntable h. Gottesaue Infrared Ettlingen h.dl/ir dli dl dl ir dlisensor platf. �xed hand-held Cessna heliopter hand-heldimage 384 × 288 720 × 566 720 × 566 640 × 480 650×475num. offrames / 9/- 81/8159 310/39165 418/3109 5/8693D-Pointsdist. am/pt 10 to 39 7.5 to 10 17 to 25 10 to 17 14 to 17foal (pix) 300 1.07·103 3.39·103 4.67·103 1.38·103fow / spat.res. ranges 1 to 3.77 0.70 to 0.96 0.21 to 0.30 0.12 to 0.21 0.5 to 0.59omplexityrad./geom. 0/! 0/0 !/!! !/! 0/!test-runs 6.2, 6.3 6.2, 6.4 6.2, 6.3, 6.4 6.2, 6.3, 6.4 6.56.2 Sparse traking and triangulationFor the benhmark data set Tsukuba, we �rst onvert the data into the format desribedat the beginning of Chapter 4. Sine the ameras have the same alibration and rotationmatries, we need only modify the amera enters. They lie in the same plane and in aequally spaed retangular grid. We hoose a reasonable alibration matrix to guaranteenumerial stability of the alulations, rotation matries are set to be identity matries,and the translation vetor orresponding to image Ir,c is [1.5(c − 3) 1.5(r − 3) 0]T . Theevaluation is arried out by projeting a 3D point into the images I3,3, I3,4 and omputingthe minimum absolute di�erene between x3,3 − x3,4 and the true disparity values dgt atrounded x3,3 and its 8 neighbors (in order to avoid rounding errors). In other words, we



86 6.2. Sparse traking and triangulationhave the set of inorretly traked pixels:
B =

{x ∣∣∣minv |dgt(x3,3 + v)− (x3,3 − x3,4)| ≥ 1
}

, (6.1)where v = [vx vy], −1 ≤ vx, vy ≤ 1 and the error quantity min(·) in (6.1) is denoted by ε.We provide in Table 6.2 the results of the state-of-the-art implementation of KLT-traking,as well as the epipolar and simultaneous traking desribed in Se. 4.4, applied to 1238harateristi points obtained as desribed in Se. 4.2.Table 6.2: The numbers of points traked orretly, inorretly and lost for di�erent methods,di�erent numbers of ameras and di�erent window size (win) of the sequene Tsukuba. opt.rwas set to zero everywhere. For the standard KLT-method, image pyramids at the thirdlevel were neessary to produe these results. The total number of points was 1238.meth. KLT, pyr = 5, am = 3 KLT, pyr = 5, am = 5 KLT, pyr = 5,am = 9win 5 7 9 11 5 7 9 11 5 7 9 11total 936 1005 1030 1039 650 741 787 798 475 572 608 619or. 859 916 941 954 649 732 777 789 474 570 606 618inor. 77 89 89 85 1 9 10 9 1 2 2 1lost 302 233 208 199 588 497 451 440 763 666 630 619meth. KLT-epi, am = 3 KLT-epi, am = 5 KLT-epi, am = 9win 3 5 7 9 3 5 7 9 3 5 7 9total 1061 1038 1018 1003 993 991 949 929 987 974 942 910or. 918 938 933 918 978 981 938 917 981 965 936 900inor. 143 100 85 85 15 10 11 12 6 9 6 10lost 177 200 220 235 245 247 289 309 251 264 296 328meth. simultan, am = 3 simultan, am = 5 simultan, am = 9win 3 5 7 9 3 5 7 9 3 5 7 9total 1125 1156 1171 1181 883 970 975 982 613 733 754 766or. 1026 1086 1086 1076 872 962 971 964 612 731 749 761inor. 99 70 85 105 11 8 4 18 1 2 5 5lost 113 82 67 57 355 268 263 256 625 505 484 472For the data set Turntable houses, the onsidered subsequene onsists of seven images
I1, ..., I7 and the triangulation results are shown for 900 points deteted in the refereneimage I4. Sine it is quite di�ult to obtain a data set with reliable ground truth andsine a omparison with results obtained by di�erent methods shows similar tendeniesas in the ase of the benhmark sequene, we ompare the results of the epipolar andsimultaneous traking algorithms for all non-benhmark sequenes with the standard KLT-traking algorithm. We use 1 pixel as threshold for reprojetion errors for triangulation forwhih the number of outliers in the benhmark data set is extremely low. After the 3Dpoints are normalized to have average standard deviation of x, y, and z-oordinates of 1, apoint traked by the epipolar and simultaneous traking algorithms is delared as trakedorretly if the Eulidean distane between the orresponding 3D point and its ounterpartobtained by the KLT-traking algorithm is below 0.1. Table 6.3 shows how many pointswere lost, traked orretly (or.) and traked inorretly (inor.).For the sequene Gottesaue, the number of points with a high response of the operator(4.8) of Se. 4.2 is 1517. Again, seven images are used for triangulation. Table 6.4 showsthe sensitivity of the standard KLT-method for a video sequene taken from a small planein extremely bumpy and turbulent onditions while Table 6.5 shows triangulation resultsobtained by epipolar and simultaneous traking. Finally, for the sequene Infrared (and itsshort subsequene of seven images), we are interested in keeping the number of outliers small
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Table 6.3: Results of traking harateristi points for the data set Turntable houses withseven images, variable window size (win) and reti�ation option (opt.r). The total numberof points was 900. The standard KLT-traking with the window size 11 and the number ofimage pyramid levels 5 yielded 180 points.meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init = 1win 3 7 11 15 19 3 7 11 15 19total 279 360 380 414 425 231 284 323 356 377or. 92 138 144 153 152 67 99 116 126 136inor. 0 0 1 2 3 1 0 1 2 2lost 88 42 35 25 25 112 81 63 52 42meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0win 3 7 11 15 19 3 7 11 15 19total 188 303 348 377 393 138 263 316 339 361or. 44 101 127 139 148 26 69 100 120 128inor. 1 3 3 3 2 2 3 4 4 4lost 135 76 50 38 30 152 108 76 56 48meth. simultaneous, opt.r = 0, init = 1 simultaneous, opt.r = 1, init = 1win 3 7 11 15 19 3 7 11 15 19total 525 617 671 684 691 896 896 898 898 898or. 124 131 141 139 142 162 164 164 165 165inor. 1 0 1 2 2 18 16 16 15 15lost 55 49 38 39 36 0 0 0 0 0meth. simultaneous, opt.r = 0, init = 0 simultaneous, opt.r = 1, init = 0win 3 7 11 15 19 3 7 11 15 19total 563 574 583 575 564 889 872 840 818 792or. 114 128 143 145 145 130 147 160 160 163inor. 3 3 1 3 1 49 31 16 16 13lost 63 49 36 32 34 1 2 4 4 4



88 6.2. Sparse traking and triangulationand, for this purpose, varied the norm of the value of maximum total error εmax; a pointis lost if at the end of the optimization proess of Se. 4.4.2, ‖c‖ from (4.11) exeeds εmax.Table 6.6 (from [28℄) shows the results for 1170 harateristi points.Table 6.4: Results of traking harateristi points by the standard KLT-traking with andwithout initialization for the data set Gottesaue, seven images and variable window size(win) and the number of image pyramid levels (pyr).meth. KLT-epi, pyr = 5, init = 0 KLT-epi, pyr = 1, init = 0win 5 7 11 15 19 23 5 7 11 15 19 23total 64 134 313 473 532 542 1 2 2 10 18 20meth. KLT, pyr = 5, init = 1 KLT, pyr = 1, init = 1win 5 7 11 15 19 23 5 7 11 15 19 23total 96 212 369 479 532 542 99 200 349 430 480 489Table 6.5: Results of traking harateristi points for the data set Gottesaue with sevenimages and variable window size (win), reti�ation and initialization options. The maximalerror per pixel and interation was 30.meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init = 1win 7 11 15 19 23 7 11 15 19 23total 765 829 833 852 849 767 868 867 872 861or. 375 424 433 428 415 369 429 442 443 427inor. 12 10 5 7 17 18 12 3 2 11lost 92 45 41 44 47 92 38 34 34 41meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0win 7 11 15 19 23 7 11 15 19 23total 999 1029 1045 1049 1046 946 977 975 947 930or. 400 417 421 410 405 399 427 441 432 429inor. 25 12 11 22 22 22 14 2 6 12lost 54 50 47 47 52 58 38 36 41 38meth. sim. εmax = 50, opt.r = 0, init = 1 sim. εmax = 50, opt.r = 1, init = 1win 7 11 15 19 23 7 11 15 19 23total 866 881 890 856 848 1219 1217 1191 1129 1087or. 339 357 356 347 345 387 396 394 395 380inor. 23 13 14 13 10 72 62 60 55 66lost 117 109 109 119 124 20 21 25 29 33We an see from Tables 6.2-6.6 that both poliies (epipolar and simultaneous traking)yield more reliably reonstruted points than the original version of KLT-traking withoutonsidering amera matries (the total number is always higher). For the video sequeneGottesaue, reorded in turbulent onditions, standard KLT-traking fails to obtain a largeset of orrespondenes if the number of image pyramid levels is below 5 (Table 6.4). Assoon as the initialization of depths provided by triangular interpolation as desribed inSe. 4.3 is arried out, the total number of reliably triangulated points depends mainly onthe window size and not so muh on the number of pyramid levels. For the epipolar andsimultaneous traking algorithm, initialization is not ruial. The results are similar tothose in Tables 6.3 and 6.5. Inreasing the window size usually ontributes to a largernumber of triangulated points, beause the risk of ending up in a loal minimum of the ostfuntion delines; unfortunately, the omputing time depends quadratially on the window



Chapter 6. Evaluation of algorithms 89size. Inreasing the number of ameras always ontributes to better reonstrution, as onean observe in Table 6.2. The parameter εmax pratially does not in�uene the resultsof the epipolar traking algorithm. In simultaneous traking, it learly ontributes to alarger number of traked points (and, learly, outliers between them). The next questiononerns the reti�ation option opt.r: for the data sets Gottesaue and Infrared, one ansigni�antly redue the number of outliers for growing window size in epipolar traking byusing opt.r. The explanation is the following: while, for smaller windows, the interpolationerrors in values of derivatives omputed for reti�ed images deteriorate the results, thereal invariane against rotation begins to show its e�ets for larger windows. We do notdisuss the reti�ation option for Tsukuba, sine it is already reti�ed nor for the sequeneTurntable houses beause here too many points lie on unmoved parts of the sene andinvariane against rotation annot be ahieved for them. From Table 6.6, where e�orts havebeen made to redue the number of outliers, it beomes lear that the number of outliersfor epipolar traking is usually slightly smaller than for simultaneous traking. Probably,the main reason lies in gross errors in single images. For simultaneous traking, the onlypossibility to sort out points is to derease εmax, in other words, the e�et of gross errors anbe distributed aross all images preventing the point from being disarded during traking.Also, the interpolation errors for (optional) image reti�ation and gradient omputation aswell as amera unertainties annot be orreted geometrially (i. e. by reprojetion errors).Sine in pairwise traking gross errors in single images are deteted and eliminated rightaway, we will use epipolar traking as our default option.We are also interested in the loations of the lost points and inorretly traked pointsin the images. Figures 6.4-6.7, on the left, show the already available features, depited byorange points, and, on the right, the newly traked features (yellow), the lost features (yanirles) and the features traked inorretly (red diamonds). As ould be expeted, most ofthe lost points lie near olusions; this is not really surprising, beause only one part of thetemplate window is seen in the new image and the other part hanges from image to image.This problem an be partly solved by onsidering ost funtions other than the c in (4.11)or norms other than L2 for weighting the entries within windows, but we let that be a topifor future work. The few outliers lie in the weakly textured regions; here the ost funtiondoes not have a lear minimum and so the result is not reliable. One an apply heuristisas desribed in [29℄ and in Se. 4.4.1 in order to eliminate outliers, but we do not onsiderthese options here.Table 6.6: Results of traking harateristi points for the data set Infrared with sevenimages, variable window size (win) and reti�ation option (opt.r). The total number ofpoints was 900 and the standard KLT-traking with window size 11 and image pyramidlevels 5 yielded 583 points. See also [28℄.meth. KLT-epi, opt.r = 0 KLT-epi, opt.r = 1win 7 11 15 19 7 11 15 19total 764 807 821 813 616 709 757 770or. 487 530 545 538 416 474 593 510inor. 0 0 1 10 0 0 1 4lost 96 53 37 35 167 109 79 69meth. simultaneous, opt.r = 0 simultaneous, opt.r = 1win 7 11 15 19 7 11 15 19total 985 995 995 971 957 987 966 942or. 571 575 576 564 563 570 557 550inor. 2 3 3 11 4 6 12 14lost 10 5 4 8 16 7 14 19



90 6.2. Sparse traking and triangulationConlusionIn the urrent version of our implementation, we use epipolar traking as a default option.The reason is that the number of outliers is usually lower than in the ase of simultaneoustraking and amera unertainties are better taken into aount during the �nal triangulationstep. In the future work, we will restruture the simultaneous traking algorithm: �rst by�ltering out, by means of radiometri di�erenes, the images where olusions are probableand seond by taking amera unertainties into aount.

Figure 6.4: Left: The ground truth result of the benhmark data set Tsukuba needed forSe. 6.3 with the original point loud olored in orange. Middle: Disparity sale bar. Onthe right, the referene image with results of epipolar traking. Points with disparity valuesorretly assigned by epipolar traking are depited by yellow dots, the lost points by yanirles and outliers by red diamonds. See also [28℄.

Figure 6.5: Left: The referene image of a subsequene of the data set Turntable houses withthe results of epipolar traking. Points with disparity values orretly assigned by epipolartraking are depited by yellow dots, the lost points by yan irles and outliers by reddiamonds. Points lost in the standard KLT traking algorithm are depited by green dots.Right: A view of the 3D-point loud with already available points marked in orange.
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Figure 6.6: Left: the median-based depth map will be our ground truth of a subsequeneof the data set Gottesaue in Se. 6.3. The original point loud is olored in orange. Middle:Depth sale bar. On the right, the referene image with results of epipolar traking. Pointswith disparity values orretly assigned by epipolar traking are depited by yellow dots,the lost points by yan irles and outliers by red diamonds. Points lost in the standardKLT-traking algorithm are depited by green dots.

Figure 6.7: Left: The median-based depth map will be our ground truth for a subsequene ofthe data set Infrared in Se. 6.3. The original point loud is in orange. Middle: Depth salebar. On the right, the referene image with results of epipolar traking. Points with disparityvalues orretly assigned by epipolar traking are depited by yellow dots, the lost pointsby yan irles and outliers by red diamonds. Points lost in the standard KLT-trakingalgorithm are marked by green dots.



92 6.3. Dense reonstrution6.3 Dense reonstrutionThis setion will illustrate dense reonstrution of seleted subsequenes of video data withwhih we deal. We will struture this setion in a manner similar to what we did in Chapter 4,�rst handling the binoular ase (Se. 6.3.1) and then multi-view reonstrution (Se. 6.3.2).A subjet of partiular interest will be the automati hoie of the smoothness parameters
λ1, λ2, overed in Se. 6.3.3.6.3.1 Binoular aseFor the benhmark data set with the ground truth depth map shown in Fig. 6.4, the eval-uation is arried out analogously to the previous setion and we followed the hoie of theauthors of [115℄ to measure the number of inorretly traked pixels, whih we denote by
NB =

∑

B 1, as a funtion of di�erent parameters. Alternatively, one an ompute theaverage sum of relative depth deviations, denoted by εB =
∑

B ε, with B and ε de�ned inEq. (6.1). For the data sets Infrared and Gottesaue, we hose the ground truth to be themedian depth map using the methods of Se. 4.5.2. This method is very robust � the reasonthat justi�es us to take it as a ground truth � but also very time-onsuming sine semi-global optimization must be performed altogether 2K times (with ross-hek as in (3.2),and K + 1 number of images). We show in eah of Figs. 6.8, 6.9, and 6.10, a typial resultof the disparity estimation omputed for the sequenes Tsukuba, Gottesaue, and Infrared,respetively, with a loal method supported by triangular meshes. One an see the twotypial soures of errors: either too muh noise makes it impossible to assign a triangle asonsistent with the surfae or a triangle is spuriously delared as onsistent with the surfae.For the binoular ase, this is espeially visible in Fig. 6.9, where the stripes on the roof �whih go perpendiular to the epipolar lines � provoke too many mismathes that annotbe orreted by the evaluation on triangles. As we will see later, this situation will be fairlyseldom for the loal algorithm applied to multi-view on�gurations beause the pixels insomewhat textured area will be helped out of loal minima by redundant views.

Figure 6.8: Top left: Illustration of the disparity map omputed by the loal algorithm fromimages I3,3, I3,4 of the sequene Tsukuba. Top right: Evaluation of the result on the left withinorret mathes depited in blak. The triangles onsistent with the surfae are markedin green, those inonsistent with the surfae in red. The ground truth result is depited inFig. 6.4, p. 90, left.In the next step, we turn our attention to global and semi-global methods. Figures 6.11,6.12 and 6.13 illustrate typial results for the sequenes Tsukuba, Gottesaue, and Infrared,respetively, of the graph-uts-algorithm implementation of [81℄ (top) and the semi-globaloptimization due to Hirshmüller as in [67℄ (bottom). In the graph uts algorithm, the



Chapter 6. Evaluation of algorithms 93data-ost funtion was given by the trunated SSD, as in Eq. (2.4), p = 2, the smoothnessfuntion was given by (2.16), where
λ(i, i′) = λ1U(u ≥ 8) + 3λ1U(u < 8), u = min (|I(x)− I(y)|, |I ′(x′)− I ′(y′)|) ,and points x = (x, y) with the property d(x, y) = d(x + 1, y) + 1 were marked as oluded.In the implementation of the semi-global algorithm for the binoular ase, mutual informa-tion was our the data-funtion; also the ross-hek test aording to (3.2) followed by theevaluation on triangles by the methods of Se. 4.5.1 was arried out.

Figure 6.9: Top left: Part of the reti�ed referene image from the sequene Gottesaue.Triangles delared as onsistent with the surfae by the loal algorithm are olored in greenwhile inonsistent triangles are olored in red. Right: Disparity map DT produed bythe triangular interpolation desribed in Se. 4.3.1. Bottom left: a typial result Dloc ofthe loal depth omputation. Bottom right: evaluation of Dloc on the left with inorretmathes depited in blak and triangles onsistent and inonsistent with the surfae in greenand red, respetively.The next several �gures show quantitative evaluations of the binoular dense reonstru-tion. The global results, demonstrated for the three sequenes Tsukuba, Gottesaue, andInfrared, in Figs, 6.14, 6.15, and 6.16, respetively, are important for understanding, amongother things, the performane of the graph uts algorithm (always top row) in ompari-son with the performane of semi-global mathing (bottom row). The loal results will beovered in Se. 6.3.2 beause of a strong analogy with the multi-view ase.One an see that the graph-uts algorithm, despite its positive properties to performwell near olusions and in regions of repetitive patterns of texture, is barely suitable foromputing disparity maps for the sequenes Gottesaue and Infrared. In the latter sequene,appliation of the graph-uts algorithm even deteriorates the results of the loal algorithmsupported by triangular meshes, while, in the �rst, it improves them only slightly. The
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Figure 6.10: Top left: Part of the reti�ed referene image from the sequene Infrared.Triangles delared onsistent with the surfae by the loal algorithm are olored in greenwhile inonsistent triangles are olored in red. Right: Disparity map DT produed by thetriangular interpolation desribed in Se. 4.3.1. Bottom left: a typial result Dloc of the loaldisparity omputation. Bottom right: evaluation of Dloc on the left with inorret mathesdepited in blak and triangles onsistent and inonsistent with the surfae in green andred, respetively.idea behind the graph-based algorithm based on alpha-expansions is to overwrite a setof pixels of a given initial disparity map D by a salar value α. In other words, if wehave a pixel with disparity label α in a textured region, this value will be propagated toneighboring untextured regions until no improvements take plae. Hene a risk to fall intoa loal minimum is very high. The suseptibility of the algorithm towards fronto-parallelplanes additionally aggravate this problem; and evaluation of triangles annot atually solveit beause the perentage of pixels that the algorithm reognizes to be onsistent withthe surfae is rather low (see Fig. 6.12). As a result, the disparity values are likely to begrouped into segments whose borders are often drawn somewhere within textureless regions.The semi-global method an redue the number of pixels with wrongly assigned disparities,espeially if evaluation of triangles takes plae, but for the remaining pixels (whih areusually situated near olusions, the values of the disparities are fored to be near to thoseof neighboring pixels or are interpolated linearly. Therefore the value of εB inreases while
NB falls and we an state that oasional over-smoothing edges represents the main drawbakof the semi-global method.With respet to the hoie of the smoothness parameter for the graph-based method,good experienes were made with the heuristi desribed in [79℄. One an see a lear min-imum in the number of pixels with inorretly assigned disparity values in Fig. 6.14 whih
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Figure 6.11: Top left: Illustration of the disparity map omputed by the graph uts algorithm[81℄ for the sequene Tsukuba. Top right: Evaluation of the result on the left with inorretmathes depited in blak. Bottom: Result and evaluation of the semi-global algorithm.results from the automatially seleted value of λ1. In the ase of data sets with less self-olusions (for instane, Nadir �ights over urban terrains), λ1 an be hosen slightly largerthan the automatially omputed value. In the ase of the semi-global optimization, we havetwo smoothness parameters. Both in binoular and multi-amera on�gurations, visuallygood results were obtained if the strategy to hoose a moderate value of λ1 (to admit slantedsurfaes) and λ2 = 2λ1 was followed. We refer to Se. 6.3.3, where the question of automatihoie of λ1 for dynami programming and semi-global optimization methods will be overedin a more detailed way.Our next issue onerns redution of the omputing time by initialization of the graph-uts algorithm. As one an see from Figs. 6.12 and 6.13, quantitative results of a globalalgorithm do not depend signi�antly on the initialization, so we are onerned here aboutthe number of iterations in the proess of omputing the disparity map. Sine we have herea random proess, we arried out the energy minimization several times and omputed theaverage number of iterations. The test data set was Gottesaue beause the number of pixelsin the images was larger than in other data sets and so the randomization e�ets of order ofdisparity values for alpha-expansions ould be redued. The orrelation between the energyratios at the beginning and at the end of the algorithm is indiated in Table 6.7. We seethat a good initialization is equivalent to a low energy at the beginning of the graph-utsalgorithms and so, in the majority of ases and espeially for larger values of smoothnessparameter λ, less iterations are needed to reah a (loal) minimum of the energy funtional.For the semi-global method, omputation ofMutual information mathing table from thetriangular mesh and initialization with this result helps to produe omparable results as inthe ase of image pyramids as one an see from the blue and yan urves in Fig. 6.15. Thiskind of initialization an thus be preferred to the omputation of image pyramids proposedin [67℄.
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Figure 6.12: Top left: Illustration of the disparity map omputed by graph uts algorithmfrom two frames of the sequene Gottesaue. The disretization artifats are very visible inthe �nal result beause no subpixel mathing is performed. Top right: Evaluation of theresult on the left with inorret mathes depited in blak. Typial problems emerging in thisalgorithm are shown by marking some disparity labels; of ourse no jumps in the disparityexist in the reality (see Fig. 6.6 above). Bottom, left and right: Result and evaluation of thesemi-global algorithm.
Table 6.7: Correlation between the energy ratios at the beginning and the end of the graphuts algorithm and the omputing time, whih is diretly proportional to the number ofiterations. Sequene Gottesaue, di�erent smoothness parameters λ.no init

λ 100 200 300 400 500 600
E0/E 0av. iter 12.7 10.3 10.05 9.15 8.05 6.85init Dloc

E0/E −0.43 0.12 0.29 0.36 0.44 0.48av. iter 14.45 11.85 8.95 8.55 7.35 6.75init DT

E0/E −0.12 0.31 0.44 0.50 0.56 0.59av. iter 11.6 8.25 8.65 8.5 6.9 6.05
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Figure 6.13: Top left: Illustration of the disparity map omputed by graph uts algorithmfrom two frames of the sequene Infrared. Top right: Evaluation of the result on the leftwith inorret mathes depited in blak. Bottom: result and evaluation of the semi-globalalgorithm.
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Figure 6.14: Results of disparity estimation for the sequene Tsukuba with the graph-utsmethods. Left: The %�-value NB of pixels with inorretly assigned disparity values as afuntion of smoothness parameters λ1 and the triangulation-based parameter γ. The hoiefor γ = 0.75 is always marked by solid lines and γ = 1 by dotted lines. The blak, greenand red urves represent results initialized with the loal disparity map Dloc, initialized with
DT and without initialization, respetively. On the right, average error per pixel εB for allon�gurations desribed above. Quantitative analysis of this data set with the semi-globalmethod will be performed for a multi-view on�gurations in the next setion.



98 6.3. Dense reonstrution

λ1

λ1λ1

λ1

NB, %� εB · 103

NB, %� εB · 103

Figure 6.15: Results of disparity estimation for the sequene Gottesaue with non-loal meth-ods. Top left: Graph-guts algorithm: the %�-value (NB) of pixels with inorretly assigneddisparity values as a funtion of λ1. The blak, green and red urves represent results ini-tialized with the loal disparity map Dloc, initialized with DT and without initialization,respetively. The dashed, solid and dotted urves represent hoies γ = 0.5, γ = 0.75 and
γ = 1.0, respetively. Bottom left: Results for the semi-global algorithm. The %�-value of
NB as a funtion of λ1, where γ = 0.75 is always marked by solid lines and γ = 1 by dottedlines. Blue and yan urves denote the results from the initialization as in [29℄ while all otherurves use image pyramids and mutual information as the ost funtion. Green and yanurves stem from the hoie λ2 = λ1, blak and blue urves stem from the hoie λ2 = 2λ1and the red urve from the hoie λ2 = min(4λ1, 2047) (see explanation of Eq. (4.25)). Onthe right, average error εB per pixel for all on�gurations desribed above.
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Figure 6.16: Results of disparity estimation for the sequene Infrared with non-loal methods.Top left: Graph-uts algorithm The %�-value of NB as a funtion of λ1, where γ = 0.67 ismarked by solid lines and γ = 1 by dashed lines. The blak urves denote the results withinitialization and red urves without. Bottom left: Results for the semi-global algorithm.Green urves stem from the hoie λ2 = λ1, blak urves stem from the hoie λ2 = 2λ1 andthe red urve from the hoie λ2 = min(4λ1, 2047). The dotted, solid and dashed urvesrepresent the hoies γ = 0.5, 0.75 and 1.1, respetively. On the right, average error perpixel εB for all on�gurations desribed above.



100 6.3. Dense reonstrution6.3.2 Multi-view on�gurationsIn order to demonstrate that the mathing ambiguities in regions of repetitive patterns oftexture and near olusions an be resolved by using redundant views, we now replae thebinoular on�guration of the previous setion by the multi-view on�guration made up by�ve images in data set Tsukuba and seven images in both data sets Gottesaue and Infrared.The ground truth result remains the same as in the last setion, but we hanged slightlythe evaluation riterion for data sets Gottesaue and Infrared in order to take into aountthe rather vast depth ranges whih vary from several dozens to at least several hundreds ofmeters. We say that a pixel x is assigned to B if the deviation of dx from the ground truth
dgt(x) value is more than 5%, in other words:

ε = |dgt(x)− d(x)|/|dgt(x)| > 0.05,and the de�nitions for NB, εB remain the same.

Figure 6.17: Top Left: Triangular mesh and the result of the loal disparity map of thedata set Tsukuba from �ve images and the mesh rendered from the enrihed point set wherethe triangles onsistent and inonsistent with the surfae are marked in green and red,respetively. Top right: Evaluation of the result on the left by means of the ground truthdisparity map depited in Fig. 6.4, all mathes where the di�erene exeeds one pixel aredepited in blak. Bottom left: Part of the referene image (denoted by yellow retangleabove) where triangles inonsistent with the surfae are given red olor. Bottom right:evaluation of this part, almost all wrong mathes lie inside of red triangles.Extended tests were arried out for 9 loal parameters (number of ameras K, windowsize, ost funtion whih we denote here by εmax, reti�ation option opt.r and interpolationoption opt.i, the parameter εy responsible for ompensating errors due to unertainties inamera positions as well as triangulation-based smoothness terms A, σ, γ) and two globalparameters λ1, λ2 for semi-global optimization. Many of these parameters were already ob-jet of related researh (see [115℄ and referenes therein), therefore we will not vary here the



Chapter 6. Evaluation of algorithms 101value of every parameter by letting �xed all others (and this for eah data set), but restritourselves to desribing in the graphis below the in�uene of the most important ones, es-peially those related to triangular meshes and global methods. For the other parameters,we give only summarizing observations.We show in Figs. 6.17, 6.18, and 6.19 typial results of the loal approah with onsideringthe loal smoothness term ET from Eq. (4.21) for the data sets Tsukuba, Gottesaue, andInfrared, respetively. The result of applying the loal triangulation-based smoothness termsfrom the enrihed point set (as the result of Se. 6.2) is shown together with the triangulatedpoint set, triangles onsistent and inonsistent with the surfae (olored in green and red,respetively), and binarized absolute di�erenes from the ground truth. For the non-loaloptimization algorithms of dynami programming and multi-view semi-global optimization,we show typial results of the multi-view dense reonstrution for the three data sets inFigs. 6.20, 6.21 and 6.22, respetively.

Figure 6.18: Left: Triangular mesh and the loal result of the depth map of the data setGottesaue from seven images and the mesh rendered from the enrihed point set wherethe triangles onsistent and inonsistent with the surfae are marked in green and red,respetively. Right: Evaluation of the result on the left with inorret mathes depited inblak.

Figure 6.19: Left: Triangular mesh and the loal result of the depth map of the dataset Infrared from seven images and the mesh rendered from the enrihed point set wherethe triangles onsistent and inonsistent with the surfae are marked in green and red,respetively. Right: Evaluation of the result on the left with inorret mathes depited inblak.
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Figure 6.20: Top left: The result of energy minimization with dynami programming for thedata set Tsukuba, �ve images, window size = 3. Top right: Evaluation of the result on theleft with inorret mathes depited in blak. Bottom left and right: Result and evaluationof the semi-global algorithm.

Figure 6.21: Top left: Result of energy minimization with dynami programming for thedata set Gottesaue, seven images. Top right: Evaluation of this result with inorret mathesdepited in blak. Bottom left and right: Result and evaluation of the semi-global algorithm.



Chapter 6. Evaluation of algorithms 103In Figs. 6.23, 6.24, and 6.25, dependene of the results on the window size, ost funtion,
A, σ and γ for data sets Tsukuba, Gottesaue, and Infrared, respetively, is represented. Thered and green urves stand for the trunated SAD from Eq. (2.4) with εmax = 15 and40, respetively. The blue urves stand for the NCC (2.6) and the blak urves for thesimpli�ation (2.7). A smaller perentage of inorretly reonstruted pixel makes learthat for a video sequene, it makes more sense to use (trunated) SAD as a ost funtion.A possible explanation lies in the parameters a and b of (2.5). These additional degrees offreedom allow a more �exible distribution of gray values within windows, but their valuesmust also satisfy (at least a pieewise-)smoothness ondition beause the re�etion oe�ientof the material surfae is made of as well as the angle between normal vetor of a point anda amera plane are onstant in the whole regions. As a onsequene, Eq. (2.6) is impliitlyover-parametrized and therefore blue and blak urves lie above the red and green ones.In other experiments, whih go beyond the sope of this work, we were able to asertain aslight improvement of the results after ativating opt.r or opt.i (the bilinear interpolationinstead of rounding) while inreasing εy (see Eq. (4.10), p. 53) does not in�uene muh theresults. Finally, augmenting the number of ameras K and the window size win is helpfulto redue NB and εB although the omputing times learly inrease.

Figure 6.22: Top left: The result of energy minimization with dynami programming for thedata set Infrared, seven images, window size = 3. Top right: Evaluation of the result on theleft with inorret mathes depited in blak. Bottom left and right: Result and evaluationof the semi-global algorithm.We go on by investigating the in�uene of the triangulation-based smoothness termswhose presene usually not only inreases the auray but also smoothers the e�ets oftoo small K, or opt.r = 0. As one an see from Figs. 6.9 and 6.18, there are almost nomismathes in triangles onsistent with the surfae. If γ(T ) < 1, then all pixels within T
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Figure 6.23: Top left: The %�-value (NB) of pixels with inorretly assigned depth valuesas a funtion of A, ost funtion and γ, data set Tsukuba, window size = 5, opt.r = 0 and
σ = 50. The dashed urves orrespond to the value γ = 0.67, solid urves for γ = 1. Thebehavior for di�erent ost funtion: red and green urves for (2.4) with εmax = 15 and 40,respetively, blue urves for (2.6) and the blak urves for (2.7). Bottom row: Variation of
σ and γ. Blak urves orrespond to γ = 0.75 and green urves to γ = 0.95, the dashed,solid and dotted lines orrespond to di�erent hoies of sigma (σ = 0, 10, 50, respetively).On the right, average error εB per pixel for all on�gurations desribed above.

NB, %� εB · 103

A AFigure 6.24: Top row, left: The %�-value of NB as a funtion of A, ost funtion and γ,data set Gottesaue, window size = 5, opt.r = 0, number of images = 5 (images 1, 2, 4, 6,7 used) and σ = 50. The dashed urves orrespond to the value γ = 0.67, solid urves for
γ = 1. The behavior for di�erent ost funtion: red and green urves for trunated SADfrom Eq. (2.4) with εmax = 15 and 40, respetively, blue urves for NCC from Eq. (2.6) andthe blak urves for (2.7). On the right: Average error εB per pixel for all on�gurationsdesribed above.



Chapter 6. Evaluation of algorithms 105are assigned depth values dT ; this assumption is reasonable, beause for large point loudsnearly homogeneously distributed in the image, the number of triangles ompatible with thesurfae will normally be quite high. One an see the noisy distribution of depth values withinred triangles and the smooth (and orret) depth values by green triangles in Figs. 6.17 and6.19. Delaring a triangle onsistent with the surfae an be further eased by adding atriangulation-based smoothness term ET of the form (4.14) or (4.22); this approah provesto be very e�ient at a pixel x in a low textured area (see Fig. 6.23 and Fig. 6.25) wherethe ost funtion is likely to yield quite similar results for several depth labels. In this ase,a support for the plausible value dT,x an help to assign orret depth values with subpixelauray. Of ourse, if T is inonsistent with the surfae (i. e. when one or two of its vertieslie on an olusion edge), then T will be mapped in a wrong way; therefore the terms NB, εBbeome larger if σ and A are unreasonably high. The results of triangular interpolationbeome indeed worse for very high σ and A, as one an see, for example, from the dottedlines in Fig. 6.23 where too many triangles were delared onsistent with the surfae.

NB, %� εB · 103
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win winFigure 6.25: Left: The %�-value of NB as a funtion of A, σ and γ, data set Infrared, windowsize = 3, opt.r = 0, number of images = 7. The green urves orrespond to the value γ = 0.67,blak urves for γ = 1 and the red horizontal line shows the result without onsiderationof triangulation-based smoothing. The behavior for di�erent σ-values (σ = 10: dashed lineor σ = 50: solid line) is illustrated as well. Bottom left: NB (in %�) as a funtion of thewindow size. The di�erent urves are shown for opt.r = 0 (green line) and opt.r = 1 (blakline) as well as di�erent hoies of images: for the dashed line, all 7 images were onsidered,for the solid line, images 1, 2, 4, 6, 7 were used and for the dotted line, only images 1, 4, 7.The referene image was always image 4 and the number of levels for disparity omputationwas the same for eah experiment. On the right, top and bottom: Average error εB per pixelfor all on�gurations desribed above.



106 6.3. Dense reonstrution
semi-global opt.NB, %�dyn. programmingNB, %�

Figure 6.26: Left: The %�-value of NB as a funtion of λ1 for dynami programming in thedata set Tsukluba. Right: Results of semi-global mathing. The dotted, solid and dashedurves orrespond to di�erent hoies (1, 2, 4, respetively) for the ratio λ2/λ1. Furthermore,
γ = 0.67 for blak urves and γ = 0.95 for green urves.

semi-global opt.
λ1λ1
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NB, %�

Figure 6.27: Left: The %�-value of NB as a funtion of λ1 for dynami programming in thedata set Gottesaue. Right: Results of semi-global mathing. The dotted, solid and dashedurves orrespond to di�erent hoies (1, 2, 4, respetively) for the ratio λ2/λ1. Furthermore,
γ = 0.5 for blak urves and γ = 0.95 for green urves with the ost funtion initialized bya trunated SAD (see Eq. (2.4), εmax = 40), blue urves stand for NCC in (2.6) and redurves for (2.7). For blue and green urves, the value of γ was always 0.5.



Chapter 6. Evaluation of algorithms 107Sine the improvements of our loal algorithm (for a �xed point set) are limited by thenumber of triangles onsistent with the surfae and it depends on the omplexity of the senehow far we an go with inreasing σ and A and also dereasing γ, a further optimizationan be ahieved by applying non-loal algorithms. In Figs. 6.26, 6.27, 6.28, values of NB fordynami programming and the semi-global algorithm are presented (sine the results for ε
Bshow a similar behavior) for the data sets Tsukuba, Gottesaue, and Infrared, respetively.For all data sets, we varied the values of λ1 and ratios λ2/λ1. On the other hand, we varied γin Fig. 6.26, γ and the ost funtion in Fig. 6.27 and the number of ameras in Fig. 6.28. Theresults on�rm that anything what improves the performane of a loal algorithm, will alsodo of a global one. We deided to use for all data sets window size 3 (beause onsidering onlypixels themselves without neighbors results in a rapid inrease of the number of mismathesand larger windows make inrease omputing time without very signi�ant improvementsof the results), opt.r was set to zero (beause image transformations take extra omputingtime) and the number of images was �ve for Tsukuba data set and seven for other data sets.We an see from illustrations and graphis that dynami programming an eliminate mostoutliers within epipolar lines, but sine epipolar lines are usually di�erently over-smoothed,there are visually unpleasant streaking artifats in the result. Applying the semi-globalalgorithm with 16 smoothing diretions allows eliminating these artifats and so the numberof mismathes (whih are mostly made up by points near olusion edges and far away fromthe amera positions) usually tends against zero (ompare Figs. 6.20-6.22 for visualization,Figs. 6.26-6.28 for quantitative evaluation). The %�-values for NB derease from around45 (loal method) to 20 (dynami programming) and to 15 (semi-global mathing) for bothdata sets. For the data set Tsukuba, the lowest values of NB are around 1.3% and 2.9% (withand without orretion for rounding errors, respetively). This means that our method isone of the best among those mentioned by [115℄ and so a multi-view on�guration supportedby a dynami or, even more, a semi-global algorithm outperforms most of the two-ameraalgorithms. semi-global opt.NB, %�dyn. programmingNB, %�

Figure 6.28: Left: The %�-value of NB as a funtion of λ1 in the data set Infrared fordynami programming. On the right, results for semi-global mathing. The blak urvesresult from onsidering all 7 images, the green urves from onsidering only images 1, 4, 7.The dotted, solid and dashed urves are for ratios λ2/λ1 = 1, 2, 4, respetively.



108 6.3. Dense reonstrution6.3.3 Automati hoie of smoothness parametersOur next issue will be the automati hoie of smoothness onstants λ1 and λ2. For the datasets Tsukuba and Infrared, we write down the best ranges of λ1 (with respet to NB and εBand ratios λ2/λ1. We an learly see from Eq. (4.27) that the automati hoie of smoothnessparameter must depend on the ost/aggregation funtion c. As a onsequene, Table 6.8shows the results for four typial ost funtions: NCC from (2.7), Se. 2.2.2 (p. 21), MutualInformation (MI) from (2.8), Se. 2.2.3 (p. 22)1, as well as the trunated SAD from (2.4)with two di�erent values of εmax = 15 and 40. Here Cγ
1 and Cγ

2 are the values of on�deneterms in equations Eqs. (4.26) and (4.27) of Se. 4.5.4, respetively, whih orrespond to thequantile γ and the supersripts ·S and ·D denote parameters orresponding to semi-globaloptimization and dynami programming respetively.Table 6.8: Correlation between quantile values for on�dene terms Cγ
1 and Cγ

2 and smooth-ness parameters λ1 and λ2 whih yielded best results for the evaluation pipeline desribedabove. The number of ameras was two, the size of the orrelation window win = 5,triangulation-based onstants A = 50, σ = 50, opt.r was set to 1 and the ost values forassigned (non-oluded) values of c(x, j) were saled between 0 and 1, in other words, multi-pliation by 2048 required in the onsiderations of p. 65 was not arried out. Similar resultswere obtained also for other sequenes and other parameter settings.data set Seq.Tsukuba Seq. Infraredmethod NCC MI SAD SAD NCC MI SAD SAD
εmax = 15 εmax = 40 εmax = 15 εmax = 40

C
0.7
2 0.36 0.15 0.38 0.30 0.40 0.22 0.50 0.41

C
0.9
2 0.45 0.24 0.50 0.45 0.48 0.34 0.59 0.53

C
0.7
1 0.26 0.051 0.20 0.12 0.094 0.023 0.13 0.063

C
0.9
1 0.18 0.13 0.37 0.27 0.20 0.068 0.28 0.140.18- 0.13- 0.37- 0.27- 0.20- 0.068- 0.28- 0.14-
λS
1 0.68 0.29 0.98 0.78 0.78 0.29 0.98 0.78

λS
2 /λ

S
1 2-4 1 2 4 2-4 1-2 2-4 20.49- 0.29- 0.49- 0.59- 0.49- 0.20- 0.29- 0.39-

λD
1 0.78 0.59 0.78 0.78 0.68 0.39 0.98 0.59

λD
2 /λD

1 1-2 1-2 2 2 2-4 2 2-4 2From Table 6.8, one an learly see that the quantile values of Cγ
1 and Cγ

2 show similartendenies as λ1 for both algorithms desribed above. If one of quantile values beomeslarger, a right-shift of the range suitable for λ1 an also be expeted. Conversely, for smallerquantile values, also smaller λ1 an be hosen. Generally, a value around 1.5 · C0.9
2 and

2.5 · C0.9
1 is a suitable hoie for λ1 and, aording to our earlier onsiderations, the defaultvalue for λ2/λ1 is 2.1In the experiments to this hapter, it was important to hek the onsistenes of best hoies for smooth-ness parameters and quantile values of the on�dene maps for all available ost funtions; therefore MutualInformation was inluded into omputations and, sine, at the time of evaluation, omputation of this ostfuntion was only possible in the ase of a reti�ed stereo pair, the number of images was restrited to betwo.



Chapter 6. Evaluation of algorithms 109ConlusionSummarizing the ontent of this setion, we an state that dense depth maps extrationrepresents a very useful module for our pipeline �rst beause it ontributes to homogenizationof the point louds (better input for Steps 3.1 and 3.2 of our reonstrution pipeline) andseond beause it enhanes the visibility information in the texturing portion of Step 3.2.We have seen that the loal methods supported by triangular meshes an redue the numberof wrong mathes within triangles onsistent with the surfae. We an even laim that thebigger the number of points onsistent with the surfae is, the more similar the results of loaloptimization with a triangulation-based smoothness term in a binoular on�guration are tothose in a multi-view on�guration. In the general ase, multi-view on�gurations provide abetter resolution of depth and allow treating olusions and the regions of repetitive texturein a robust way. In order to save omputing time, we prefer the simultaneous methodsupported by triangular meshes to the median-based method and, espeially with respetof treating regions with homogeneous texture and slanted surfaes, we reommend usingthe semi-global global algorithms as non-loal optimization method beause of its learadvantages to algorithms of dynami programming and graph-uts.6.4 Shape reonstrution methods � qualitative resultsIn this setion, results for textured reonstrution from our main data sets are presentedand disussed. Setion 6.4.1 shows reonstrution results for the LIFT proedure; theseresults an be obtained if Step 3.2 of the reonstrution pipeline Alg. 1.1, p. 15 is ompletelyomitted. Results of our main proedure for surfae reonstrution by L1 splines are presentedin Se. 6.4.2 and those of other proedures in Se. 6.4.3.6.4.1 Results for the LIFT-algorithmThe results for the Loal Inremental Fusion of Tessellations algorithm, LIFT, supported bydominant-planes extration from loal tessellations (as desribed in Se. 5.1.2) are presentedin Figs. 6.29 and 6.30 for the video sequenes Turntable Houses and Infrared, respetively. Inthe data set Infrared, points far away from the skysraper were deleted beause long skinnytriangles deteriorated the visual quality of the results. Although there seem to be little sense(from the point of view of photogrammetry) to reonstrut piees of surfaes situated severalhundreds of meters from the amera loations while the length of the baseline measuresonly several meters, it will be, nevertheless, interesting to see in the next setions how thepoint-based methods are able to reonstrut this kind of surfae (even when interrupted byolusions, as in the example of the video sequene Infrared).6.4.2 L1-splines-based resultsFor the domain on whih the nonparametri and parametri L1-splines of Step 1 and Step3, respetively, of the proedure desribed in Se. 5.2 are alulated, we used an equally-spaed retangular grid extending from minm(Xm) to maxm(Xm) and from minm(Ym) to
maxm(Ym) in the horizontal and vertial diretions, respetively. For the data sets TurntableHouses and Infrared, the number of grid ells was 30× 30. We used the original point louddepited in Figs. 6.1 (bottom) and 6.3 (bottom) as input for the algorithm; several refereneimages (some of them are shown in Figs. 6.1 and 6.3, top) were used for texturing. Notethe abruptly hanging nature of the point loud, with adjaent sparse and dense regions(hundreds data points desribing the oblique roof near almost no points on the �at roof ofFig. 6.1) and the hanges of depth (Fig. 6.3). The weights wm were hosen equal to 1 dividedby the number of pointsXm in eah triangle of the Sibson element, the smoothness parameter
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Figure 6.29: Two sreen shots from the textured model of the sequene Turntable Housesreonstruted by the LIFT-proedure. Note the small number of undeteted triangles inon-sistent with the surfae. Several video frames and a view of the reonstruted point loudand the amera trajetory are given in Fig. 6.1, p. 82.

Figure 6.30: Results of reonstrution from the sequene Infrared with the LIFT algorithm,two sreen shots from the textured model. Video frames as well as a part of the ameratrajetory are given in Fig. 6.3, p. 84.
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λ was set to be 0.7 for the nonparametri spline and the �rst parametri spline, and 0.8 forthe seond and third parametri splines (in aordane with our onsiderations in Se. 5.2.3).Two views of the �nal mesh and three views of textured images are given in Fig. 6.31 for thedata set Turntable Houses. A olormap view of the �nal mesh and a view of the result of thetextured reonstrution are given in Fig. 6.32 for the data set Infrared. Note the topologialonnetivity of meshes in Fig. 6.31 in omparison to Fig. 6.29 and the ability of L1-splines-based surfaes to obtain good reonstrution in sparsely overed areas. These areas an beobserved by slightly lighter piees that mark the texture of triangles not ompletely seenby any of the referene ameras behind the tower in Fig. 6.32, bottom. We also refer thereader to [24℄ where the proess of surfae evolution � e. g. using the nonparametri splinethat results from Step 1 of the L1-splines-based proedure � is illustrated.

Figure 6.31: Reonstrution results of the data set Turntable Houses produed by the L1-spline-based proedure of Se. 5.2. Top: Two views of the triangular mesh. Middle andbottom: Three views of the textured reonstrution. The bottom view ontains the 3Dpoints (depited in blue) as well as a part of amera trajetory. See also [24℄.
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Figure 6.32: Reonstrution results of data set Infrared produed by the L1-spline-basedproedure of Se. 5.2. Top: A olormap view of the triangular mesh. Bottom: A view of thetextured reonstrution with the input point loud depited in green.6.4.3 Reonstrution results by other global methods for shape re-onstrutionComparison with the alpha-shapes proedure and iso-surfae extrationIt was shown in [25℄ that, for non-regularized point louds with many outliers, α-shapes arenot able to provide signi�antly better reonstrution than the loal methods of Se. 5.1.The reonstrution results are somewhat better if the input of the algorithm is given bythe regularized (for instane, RTDQT) nodes of Se. 5.1.1. The number of holes is therebyredued, but the problems of a noisy point loud and an unneessarily high number oftriangles remain. One an now use ommerially available software pakages mentionedin [126℄ to perform interatively operations of mesh ompression and hole �lling, but anautomati approah is hardly possible here. The result of the α-shapes proedure withtexturing as in Se. 5.2.4 is visualized for data set Gottesaue in Fig. 6.33, top left. Asmentioned in Se. 3.2.2, the most hallenging step of the algorithm based on iso-surfaeextration lies in the retrieval of the normal vetor �eld in the areas of sharp gradienthange. In the middle left portion of Fig. 6.33, severe artifats are learly visible in theareas of the gabled roof and the towers. The visually best results of all of the methodsimplemented here were obtained by applying the proedure based on L1 splines, depitedin Fig. 6.33, middle right and bottom. We an see that the L1-splines-based surfae is lessa�eted by noise and outliers in the point loud, as one an see in the area in front of thebuilding; it is homeomorphi to a plane (has genus zero) and also the hanges of gradient arereliably treated. Unfortunately, the problem of parameterization is not ompletely solvedhere beause the surfae remains a 2.5D manifold z(x, y), not a parametrized 3D manifold
(x(u, v), y(u, v), z(u, v)). We also refer the reader to [25℄, where, for further omparison, thequalitative results of the proedure based on onventional splines are shown and present



Chapter 6. Evaluation of algorithms 113in the next subsetion a omparison in performane of two proedures in three exemplaryregions of the surfae.Comparison with the onventional-splines-based proedureWe are now interested in the loations and distributions of the errors in the surfaes re-onstruted from the sequene Gottesaue by means of L1 splines and onventional splines.Other methods are left out of onsideration here sine they produe topologially inonsis-tent meshes. Figure 6.34, left, shows a referene frame of this sequene. In this frame, wemanually seleted three portions of the surfae orresponding roughly to the ground, walland roof. Then the residual errors of the points near the three regression planes were om-puted. The three histograms depited in the right hand side portion of Fig. 6.34 illustratethe error distribution of points to the ground plane π1 : z − z0 = 0 by the red histogram, ofpoints to the wall plane π2 : x−x0 = 0 by the blue histogram and of points to the roof plane
π3 : ax+ by + cz + d = 0 by the green histogram. We rotated the point loud as desribedat the beginning of Se. 5.2.1, oriented the ground plot of the palae to be nearly parallel tothe oordinate axes and, �nally, hose a translation vetor and a saling fator to put theinput point loud into the bounding box [−4; 4] × [−4; 4] × [−1.5; 1.5]. In Fig. 6.34, right,one sees that all histograms nearly orrespond to Gaussian distributions, possibly ontami-nated by several outliers. The error distribution of the points near the ground plane is lessfavorable (due to the low quality of points in the textureless areas, further distane from theamera and the drift errors) than that of the points near the wall and roof. Also, sine theparameters a, b, c, d of the roof plane were omputed automatially, the error distribution ofpoints on the roof is the best. We illustrate by means of the histograms of Fig. 6.35, left andright, the error distributions of surfae points sampled from triangles onstruted by theonventional-splines-based and the L1-splines-based approahes, respetively. In Tab. 6.9,we report the numbers of triangles that partiipate in the evaluation and the measuresof the error funtion that result from the sum of zero-mean absolute di�erenes of the z-oordinates (in the ase of π1 and π3) and the x-oordinates (in the ase of π2) between theplane and the orresponding spline. For instane, in the ase of π3, this measure is

ε =
1

N

N∑

i=1

|z(u, v)− ū|, u = z(u, v) + (ax + by + d)/c, (6.2)where N is the number of points in the triangles to be evaluated. We an see that the error ofthe non-parametri L1-splines-based surfae is always lower than that of the onventional-splines-based surfae and that, due to the parametrization problem, the performane isworse in the area of the wall than in the ground plane and roof plane. Fully 3D parametrisplines as in Se. 5.2.2 and Se. 5.2.3 allow reduing the error for the wall from 0.041 (whihorresponds, after onsideration of the real building size, to approximately 0.33m) to 0.018(some 0.14m), but the value for the roof plane inreases (for a reason that is not yet lear2)from 0.014 to 0.022.Results for onventional ubi splines were shown here to demonstrate the suseptibil-ity of these splines to Gibbs artifats in areas of fast gradient hange, noise and outliers.Although these results were the only results for onventional splines presented here, theonlusions of this work and of [25℄ about onventional ubi splines an be generalized toother types of onventional splines mentioned in Se. 3.2.4.2One possible interpretation is suggested by the small dormers: these are textured regions in images andtherefore ontain many data points. They also lie in a vertial plane and so they are inonsistent with π3while likely to be reonstruted by the parametri L1-spline
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Figure 6.33: Reonstrution results from the sequene Gottesaue, top left: α-shapes pro-edure, middle left: iso-surfae extration, bottom: L1-splines-based proedure. All three�gures represent the frontal view of the building. Top right: another view of the reonstru-tion by the L1-splines-based proedure.

Figure 6.34: Left: A referene frame from the sequene Gottesaue and, marked by the greenurve, the part of a surfae to be evaluated. The three portions of the surfae belong to theground plane, the wall and the roof. Right: Error distributions of sample points near theground plane (red histogram), wall (blue histogram) and roof (green histogram).
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Figure 6.35: Distribution of the (non-zero-mean) deviations u from (6.2) for the proedurebased on onventional splines (left) and L1-splines (right). Red histograms stand for thereonstrution results of the ground plane, blue from the walls and green for the roof.

Table 6.9: Zero mean average deviations ε from (6.2) of the spline-based surfaes from threeseleted planes. Sequene Gottesaue, 40×40 tensor-produt grid, λ = 0.3. The �rst numberin parentheses denotes the deviations in meter while the seond is the number of evaluatedtriangles. deviations ε (in m) (number of triangle)Method Ground plane Wall Roof
L2- splines 0.030 (0.24)(36) 0.045 (0.36)(21) 0.030 (0.24)(18)
L1- splines 0.025 (0.2)(21) 0.041 (0.33)(24) 0.014 (0.11)(24)(non-param)
L1- splines 0.025 (0.2)(24) 0.018 (0.14)(11) 0.022 (0.18)(14)(param)



116 6.5. Shape reonstrution methods � quantitative evaluation6.5 Shape reonstrution methods � quantitative evalu-ationWhile the last setion presented sreen shots of the reonstrution results, the task of thissetion is to perform a quantitative evaluation of several proedures for shape reonstru-tion. The evaluation of methods for shape reonstrution is arried out in two separatesetions for two main reasons. First, �nding ground truth and an appropriate measure forthe omparison of ground truth with triangular meshes for buildings with many ompliatedstrutures are not trivial problems. Although the omparison measure should ideally ontainpenalty terms for both geometry and texture, we onentrate here only on the geometry ofthe reonstrution and adopt the well known Hausdor� Distane. We motivate in Se. 6.5.1our hoie of the Hausdor� distane as a metri for the quality of reonstrution while, inSe. 6.5.2, we desribe several tehnial details of the omputation of this distane. Whilebeing applied on point louds obtained from our reonstrution pipeline, any distane mea-sure is biased not only by the quality of the input data set but also by the reonstrutionresult of Step 2, whih makes it almost indispensable to onsider a syntheti data set (notontaminated by systemati errors, suh as amera drift), as we do in Se. 6.5.3, beforeevaluation of a real data set an be performed in Se. 6.5.4.6.5.1 Hausdor� distane as a measure for ompleteness and or-retnessA ruial issue when making omparisons is the metri (measure of similarity) in whih theomparisons are made. Conventional metris suh as the average error and generalizationsthereof, suh as the Lp norms [40℄, measure similarity in ways inonsistent with humanpereption. For many ommonplae situations, for example, thin walls in urban terrain,these metris indiate that two sets are nearly the same when observers judge them to bedissimilar, and, onversely, for other situations, they indiate that two sets are very di�erentwhile the user assesses them to be very similar.Given a ground truth model Y and a reonstrution result denoted by X , our goal is toevaluate X in terms of ompleteness (i. e. how muh of Y is modeled by X ) and orretness(how losely X models Y). These two anhors for evaluation of any algorithm were usedby e. g. Heipke et. al. in [64℄ and, speially for geometri reonstrution, by Seitz et. al. [120℄.The latter paper motivated us to use the Hausdor� distane as the quantitative measure toompare di�erent proedures for geometri surfae reonstrution. Other appliations of theHausdor� metri are to measure similarity of objets in omputer vision [58℄ and to mathobjets with templates for identi�ation in geometri modeling and traking [109℄.We denote the distane from a point X to mesh Y and the distane from mesh X tomesh Y by dst(X,Y) = infY d(X,Y) and dst(X ,Y) = supX dst(X,Y), respetively. For ourpurposes, d(X,Y) is the Eulidean distane between X and Y and in all de�nitions above,"inf" an be replaed by "min" and "sup" by "max", beause we always deal with ompatsurfaes. The Hausdor� metri for the "distane" from one set of points X (ould be disjointpoints or a ontinuous surfae) to another set of points Y is
dH(X ,Y) = max {dst(X ,Y), dst(Y,X )} . (6.3)One an see from Fig. 6.36, left, that dst(X ,Y) desribes the orretness and dst(Y,X )the ompleteness of the reonstrution to be evaluated. The Hausdor� metri is sensitiveto outliers, a property that makes it a suitable tool for evaluating surfae reonstrutionmethods for pratial appliability suh as automati navigation. Note that, in our ase, theoutliers to be punished are not the input sample points lying far from the surfae but those



Chapter 6. Evaluation of algorithms 117triangles of the resulting mesh that ontain points far from the surfae. There also existgeneralizations of the Hausdor� distane that play down the e�et of outliers, for example,the generalization of [5℄, where an error integral over a disretized volumetri domain D

dp,c,D(X ,Y) =
(∫

V∈D

min (|dst(V,X ) − dst(V,Y)|p , c)
)1/pwith two salars c > 0, p ≥ 1 is onsidered. However, in our work, the original Hausdor�distane of Eq. (6.3) (whih omes out of the last equation in ase p, c → ∞) is adopted toperform omparisons for a simple objet.6.5.2 Details of the implementationCare must be taken with the implementation details of the omputation of the Hausdor�distane in order to prevent the algorithm from beoming quadratially expensive in terms ofthe sampled points, whih is, of ourse, the worst-ase senario of (6.3). Sine we work withtriangular meshes (Y = (Y, T )), we observe that the distane dst(X,Y) is either a shortestdistane from X to a vertex of the point set Y or the shortest length of the perpendiularfrom X to one of the faes given that the base point V as in (3.3) lies within a triangle T .A rather e�ient way to ompute dst(X,Y) is thus as follows.1. ompute d1 = minX dst(X,Y),2. by onsidering normals nT (of length 1) of all triangles in the mesh, ompute simul-taneously (with (3.3)) both the length of the perpendiulars d⊥(X, T ) and the basepoints V,3. as a last step, perform for every triangle T , for whih d⊥(X, T ) lies below d1, thetest V ∈ T is performed. The minimum of these values is denoted by d2. We havedst(X,Y) = min(d1, d2).The third step is the most time-onsuming. It ould be arried out, for example, byheking whether the sum of the baryentri oordinates U ,V ,W of V ∈ T is equal to 1.However, two heuristis an be applied to avoid this alulation. The �rst heuristi is atrivial one that takes into aount the oming alulation of dst(X ,Y). If we see that d1or d2 is already smaller than the value dst(X ,Y), we interrupt the alulation. The seondheuristi diretly onerns step 3 previously mentioned. If we assume that V ∈ T , then bythe Pythagorean Theorem,

d⊥(X, T )2 = dst(X,Y)2 − dst(Y,V)2 > max
(dst(X,YT )

2
)
− ξ(T )2, (6.4)where Y is a vertex of T and ξ(T ) is the maximal Eulidean distane between a point Vwithin a triangle and the verties of the triangle:

ξ(T ) = max
V∈T

(

minYT

(d(V,YT ))

)It an be proven that ξ(T ) is either the radius of irumferene (if no angle of T exeeds
π/2) or the distane from the vertex opposite to its longest side to the intersetion point ofthe perpendiular bisetor of the seond-longest side of T with the longest side (otherwise),as illustrated in Fig. 6.37. The proof of this statement is trivial in the �rst ase; in theseond ase, one denotes the smallest angle of T by β and the median angle by α. Then thestatement follows after analysis of the two subases α ≥ 2β and α < 2β (see Fig. 6.37). Theomputation of the two quantities in the rightmost part of (6.4) proeeds simultaneously and
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supX (infY d(X,Y))

supY (infX d(X,Y))

maxX (dst(X,Y))
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Figure 6.36: Left: The Hausdor� distane measures ompleteness and orretness of thereonstrution, and, as originally formulated, is sensitive to outliers (Soure: Wikipedia).Right: A on�guration of two points sets onsisting eah of two retangles (or, equivalently,four triangles) for whih both values dst(X ,Y) (orresponds to AB) and maxX(dst(X,Y))(that is larger or equal than AC) di�er signi�antly.

Figure 6.37: Computation of ξ(T ) in the ase one of angles of T exeeds π/2.



Chapter 6. Evaluation of algorithms 119is therefore very fast. Veri�ation of the neessary ondition (6.4) allows rejeting trianglesthat do not satisfy V ∈ T without omputing U + V +W .One an now have an idea to evaluate dst(X ,Y) by evaluating eah vertex X ∈ X by theproedure desribed above and taking the maximum value max(dst(X,Y)). Unfortunately,even in the ase of onneted meshes, the extreme point is not neessarily a vertex, but an liein the interior of an edge, as illustrated in Fig. 6.36, right, and, by a "suitable" (worst-ase)hoie of parameters, the di�erene dst(X ,Y) −max(dst(X,Y)) an be, theoretially, arbi-trarily high. In the ase of meshes topologially di�erent from planes (e. g. with holes) whihmay be obtained from appliation of proedures based on α-shapes or iso-surfae extration,
max(dst(X,Y)) is even a worse estimate of the one-sided distane. Therefore, for the generalase, we implemented several features of the algorithm desribed in [56℄: the points sampledfrom triangles in X and Y are stored in an otree array, whose �nest resolution multipliedby 3

√
2 is the disretization error. From the enters of the disjoint ells of the otree, theells �lled by points of the other set are identi�ed and, if the omputation to the submeshmakes sense (i. e. the distane between ells is not too short), it is arried out by the methodsused for omputing dst(X,Y). The option of fast omputation of maxX(dst(X,Y)), whih,for non-pathologi ases suh as that in Fig. 6.36, is a good approximation of dst(X ,Y), isadopted for tensor-produt surfaes that produe meshes without holes.6.5.3 Evaluation of several algorithms on a syntheti data setThe test objet represented by the point loud X must be simple enough that it an beorretly evaluated with the Hausdor� metri. On the other hand, it should possess allof the properties of a point loud obtained by photogrammetri methods in urban terrain:gradient disontinuities (harateristi for man-made objets), high amplitude of Gaussiannoise, several outliers and varying density of points. In [26℄, the point loud X to be used inthe omparisons represents a house with an overhanging roof (see Fig. 6.38). Computationalexperiments were arried out for levels 0.025 and 0.15 of Gaussian noise and for outlierperentages of 0%, 1% and 10% for x, y, and z oordinates of the point (in the ase ofiso-surfae extration, also for normal vetors). Here, outliers were randomly hosen pointsin the bounding box of the objet. The density of points remained roughly unhangedin all experiments but was variable in di�erent regions of the data set. For eah level ofnoise and outliers, we arried out data set generation, reonstrution and evaluation 10 to15 times and omputed the average of the Hausdor� distanes (6.3). Qualitative resultsfrom the L1-splines-based proedure are shown in Figs. 6.39. As we see in the graphisthat demonstrate the quantitative performane of di�erent algorithms Fig. 6.40, our defaultproedure turns out to be the most robust with respet to the inreasing outlier perentage.In order to reonstrut this learly 3D point set X by tensor-produt surfaes, we manuallyhose suitable spatial homographies for points on the ground, on the walls, on the roof andunder the overhang that transform the points from di�erent parts of the house into the (u, v)-plane and preserve topologial relations between these points. The (u, v)-parametrization isshown in Fig. 6.38, top enter. For the qualitative illustrations of other proedures, we referto [26℄.As one saw previously, the L1-splines-based proedure shows the most stable results withrespet to the perentage of outliers and noise, despite limitations due to the relatively smallnumber of grid nodes and the rather in�exible struture of a tensor-produt retangular grid.In is also notieable to observe the high Hausdor�-distane error of the iso-surfae extrationgenerated by the method of [75℄ in the absene of noise whih we believe happens beauseof degenerate on�gurations, for instane, planar strutures.
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Figure 6.38: Model Syntheti house with overhanging roof and a point loud without outliers,see also [26℄. On the left: view from side, right: view from top, middle at top: parametriza-tion in (u, v)-domain (points on the ground, on the walls, on the horizontal, upper and loweroverhanging parts of the roof are marked in blak, red, green, yan and yellow, respetively).

Figure 6.39: Modeling the data set Syntheti house with overhanging roof with L1-splines (seealso [26℄). Outlier perentage is 0.01 everywhere. Equally spaed grid. Left: λ = 0.3, right:
λ = 0.5. The endpoints (X,Y) produing the largest values of dh(X ,Y) are surrounded bya red irle and onneted by a green line.
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A

dh

Figure 6.40: The average values of the Hausdor� distane dh obtained for the data setSyntheti house with overhanging roof for Gaussian noise amplitudes (A) 0.025-0.15 by alpha-shapes (green/yan line: a small/large value), iso-surfae extration (red), grid-�t (blak)and L1-splines (blue). Curves for data sets without outliers are shown by solid lines, foroutlier perentage 0.01 by dotted lines.6.5.4 Evaluation of a real data setIn this setion, we again turn our attention to real data. Fragments of �ve high-resolutionimages of the sequene Ettlingen hurh present the entrane area of the Herz-Jesu hurhin Ettlingen, near Karlsruhe, Germany. The laser point set Y, obtained from multiple sanpositions by means of Zoller+Fröhlih IMAGER 5003 laser sanner and registered intera-tively, as a ground truth, several images and orresponding amera matries are available[125℄ for evaluation of multi-view dense estimation and surfae reonstrution algorithms.We seleted and down-sampled �ve images of the sequene. Our referene image (presentedin Fig. 6.41, right) is the third image of the subsequene. We mention here the two mainproblems that emerged during the evaluation proess:1. The laser point set ontains several millions of points and is therefore not onvenientfor further proessing (e. g., building meshes). For this reason, we did not performmeshing of the ground truth point loud Y, but generalized our alulations diretlyfor the point set. For example, in order to alulate dst(X ,Y), the ANN algorithm dueto [104℄ an be used. Here X , T is again the mesh resulting from the reonstrution.2. As one an see from Fig. 6.41, left, the laser point set Y is not omplete (due to theunfavorable position of the sanner) and therefore annot be onsidered as ideal groundtruth. The error in orretness of our reonstrution results will be unneessarily highif are is not taken to exlude the triangles lying in the regions where no ground truthis given. In the urrent implementation, we projeted Y by the referene amera intothe image and alulated the histogram that assigns the number of laser points toeah triangle of the reonstrution. If we denote by T0 all triangles whose support setontains less than a �xed number of points in Y, then we exlude the set of triangles
T1 = {T | one of verties of T is inident with a triangle of T0 }from onsideration. Of ourse, this approah will fail if some empty triangles areoluded from the referene image by regions su�iently overed by laser sannerdata, but this is not the ase for our data set. By luk, also triangles near the imageborders with spurious depth values at the verties � mainly beause these regions were



122 6.6. Computational results for the reonstrution pipeline for two more data setsnot overed by a su�ient number of images, e. g., in the bottom left orner and onthe right � belong to T1 and are left out of onsideration.Beause of last two issues, we will treat separately the two values of the Hausdor� distanein Eq. (6.3), whih, as we saw previously, denote the orretness and ompleteness of thereonstrution. We denote the two penalties for orretness and ompleteness by d1 and d2,respetively.We begin with sparse reonstrution from a set of images and points traked by themethod of [94℄ and triangulated by means of the DLT algorithm [61℄. In Fig. 6.41, left, thesepoints are depited in green while every 200th laser point is shown in blue. We omputethe Delaunay triangulation of these points, and, sine the number of outliers is low and thesurfae we wish to desribe is approximately 2.5D, the value of d1 is low for this simplemesh. The value for d2 is rather high beause large portions of the referene image arenot overed. Then we omputed the depth map as desribed in Se. 4.5.3 with parameterssuitable for this data set (window win = 2, data ost funtion: NCC, triangulation-basedparameters: A = 50, σ = 100, γ = 0.75, non-loal optimization: semi-global algorithm) andthe RTDQT-mesh (see Se. 5.1.1) starting from this depth map, as illustrated in Fig. 6.42,top left and right, respetively. One sees that the number of outliers (aused in this aseby re�etions in the windows) and, therefore, the value of d1 inreases. If one omputes a2.5D L1 spline from these nodes, as desribed in Se. 5.2.1, the value of d1 beomes smallerwhile the value of d2 also slightly dereases. In Fig. 6.42, in the bottom row, left and middle,meshes obtained by the RTDQT and L1-spline-based proedure, respetively, as well aspairs of points that are responsible for the maximum values of the orretness (d1) andompleteness (d2) penalties are depited. On the right of Fig. 6.42, bottom, we show twosreen shots of the textured reonstrution. Quantitative results for the three proeduresalready mentioned here and two other tensor-produt-based proedures, namely grid�d andonventional splines, are shown in Table 6.10.Remark: The deviations of around one meter seem, learly, very high for this simpleimage sequene. However the output of this setion is always the highest deviation thatan be indeed quite high. Computation of average deviations for 3D models would requiremodi�ation of (6.3) that, unfortunately, is not available yet. Computation of averagedeviations for "2.5D models" is equivalent to omparison of depth maps and yields similarresults as in Se. 6.3.Table 6.10: Reonstrution results for the data set Ettlingen hurh produed by severalmethods. The grid size for all tensor-produt-based methods was 50× 50. The smoothnessparameter λ was 0.1 for L1 splines and onventional splines, and 0.8 for grid�t. The objetbounding box measures were [8.3; 10.8]× [−9.5;−5.9]× [−5.6; 0.8] m. method Delaunay RTDQT L1-splines onv. splines grid�d
d1 0.216 0.754 0.186 0.718 0.298
d2 1.00 0.610 0.486 0.478 0.5986.6 Computational results for the reonstrution pipelinefor two more data setsWe deided to inlude in this work two more data sets that assist in (and are very suitablefor) demonstrating the potential of our reonstrution pipeline and, in partiular, that of the
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Figure 6.41: Left: The ground truth mesh with verties given by laser points (in blue) fromthe image sequene Ettlingen hurh, view from behind. Note that orientation of the z-axisin the input data set is from top to bottom. The triangulated points are illustrated by greendots both in the 3D spae (left) as well as in the image spae of the referene image (right).
L1-splines-based proedure. The village of Wangen in Switzerland represents a destroyedurban senery (designated for training of polie units, �re �ghters and military fores) andwas reorded by a quadroopter of the type depited in Fig. 1.1, b. It is lear that the model-based approahes are not expeted to do a good job for this kind of sene. On the otherhand, this senario is exatly what the automati navigation, disaster management, anddefense missions in non-ooperative terrain are faing in a ontinuously inreasing numberof ases.The sparse point loud and the amera trajetory were reonstruted by means of ourstruture-from-motion algorithm [22℄. Sine the images are nearly 2.5D, it is, for qualitativeillustration of the results, su�ient to ompute RTDQT with �lled holes from one refereneframe and to model the distane of 3D points to the image plane of the referene frameusing ubi splines (that is, using the 2.5D surfae of Se. 5.2.1 only and not the ompleteproedure). The referene image, orresponding depth map omputed using median depthestimation, and several views from the point louds triangulated by means of (4.2) andexported into an OpenGL-interfae (whih assigns to eah 3D point its olor) are depitedin Fig. 6.43. Furthermore, we illustrate in Fig. 6.44 ompressed representations of the 3Dpoint loud produed by RTDQT-mesh (top left) and by the L1-spline-based proedure(bottom left and right). The main observation that an be made here is that the the 2.5D
L1 spline an suppress the noise in the oordinates of the 3D points.The next data set shows the athedral of Speyer, a historial building in the southwestof Germany. The video sequene, from whih 200 frames were automatially extrated andoriented by the proedures of [22℄, was reorded in late autumn by a hand-held ameramounted on a Cessna. In this ase, the reonstrution is partiularly di�ult beause of thelea�ess trees, whih not only violate the assumption of a pieewise smooth surfae needed



124 6.6. Computational results for the reonstrution pipeline for two more data sets

Figure 6.42: Evaluation of the data set Ettlingen hurh. Top left: depth map omputedby means of the simultaneous algorithm of Se. 4.5.3. Top right: RTDQT-mesh produedfrom the depth map. Bottom left and middle: Top view of the RTDQT-mesh and the meshobtained from the L1-splines-based proedure. The pairs of points in the ground truth andresulting meshes responsible for the highest values of the orretness (d1) and ompleteness(d2) penalty terms are depited by blue stars and denoted, for further lari�ation, by 1 and2, respetively. Bottom right: Visualization of the textured reonstrution provided by the
L1-splines-based proedure.
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Figure 6.43: Top left: The referene image of the sequene Wangen. On the right, the depthmap reated as a median fusion of six depth maps as desribed in Se. 4.5.2. Note that evenby means of depth map, one an learly see whih part of the roof in the house at the bottomleft still remains and whih does not. (This is extremely di�ult to realize when viewingthe original image sequene!) Bottom: Three views of the dense point loud (Fig. ourtesyof P.Wernerus).

Figure 6.44: Top left: a view of the textured reonstrution from the sequene Wangen bythe loal algorithm of Se.5.1.1 with pyramids up to level 4 and one referene image. Bottom:A similar view of the L1-spline-based reonstrution. One an see how the 3D points notexatly omputed by depth maps were replaed by spline verties. Right: Another view ofthe L1-splines-based reonstrution. The original point loud is depited in blue.



126 6.7. Computing timesfor the image-based methods of Chapter 4 but also ontribute to degeneray of the surfae,whih is no longer a 2D manifold of genus zero (ontrary to the assumptions of Chapter 5).Nevertheless, our methods showed their robustness and ahieved reliable reonstrution inthe large parts of the sene. Various steps of the reonstrution from referene frames tothe views of the textured mesh are visualized in Figs. 6.45 and 6.46.ConlusionFrom the ontents of Ses. 6.4-6.6, it beomes lear that the L1-splines-based proedure isable to produe topologially onsistent surfaes with reliable information even in areas notovered by the amera. Moreover, it an ope with a onsiderable perentage of outliers inthe point louds.

Figure 6.45: Three referene images from the sequene Speyer (top) and orresponding depthmaps (bottom) reated by the algorithm desribed in Se. 4.5.3.6.7 Computing timesThis setion gives a oarse information about omputing times for the main modules of theprogram oded on a standard laptop by the author of this work in a MATLAB GUI with sev-eral C(++)-�les (mostly oded as mex-funtions) for the most time-onsuming proedures.Generally, there are two important properties of our algorithm that prevent the softwarefrom rapidly inreasing the time for omputation. The �rst is the subdivision in the image-and point-based steps and the seond is its modular struture; the time-onsuming modulesof dense depth maps or L1-splines an be omitted or replaed by the simple Delaunay tri-angulation or the (less time-onsuming) proedure of α-shapes, respetively. The user andeide whih modules should be ativated.Aording to the reonstrution pipeline Alg.1.1, there are four main modules: Sparsetraking, dense reonstrution, loal tessellations and global approah for shape reonstru-tion (inluding texturing). In the following four paragraphs, we will report the omputingtimes of these modules and their main subroutines. The omputational "bottleneks" of therespetive modules will be desribed as well.Sparse traking inludes MATLAB implementations of the epipolar and simultaneoustraking algorithms and a mex-funtion for the standard KLT algorithm. MATLAB �les
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Figure 6.46: Reonstrution results for the sequene Speyer. Top row: Two views of thedense point loud (Fig. ourtesy of Peter Wernerus). Middle: Two views of the mesh resultingfrom the L1-spline-based proedure with original point loud depited in green. Bottom:Two views of textured reonstrution.



128 6.7. Computing timesneed around 0.25 minutes for some 500 points and two pitures. The bottlenek is the hoieof the relevant image fragment in (4.11), whih takes plae by means of bilinear interpolationand is therefore rather time-onsuming in MATLAB. The mex-funtion of standard KLT-traking with 5 pyramids requires less than 0.1 seond for the same input data.Dense reonstrution onsists of two submodules oded by mex-funtions: omputationof the data term with triangulation-based smoothing and a smoothness funtion that is bydefault semi-global optimization. For 7 images with 384×288 pixels and 21 depth labels,both submodules need some 0.5 minutes. The urrent bottleneks are the data exhangeand the not very e�ient omputation of the aggregation funtion (4.20). Use of dynamiprogramming instead of semi-global optimization allows reduing the omputing time by upto 3 seonds.Loal tessellations are omputed diretly from depths maps. Less than one minute isusually required in MATLAB in order to ompute a LIFT interation between two loaltessellations (shapes). The omputing time inreases linearly with the number of shapes,and the whole proedure is then quadrati. Running the C-ode for (optional) �tting ofseveral dominant planes in relatively sparse point louds requires some 1-2 seonds.Global approah is the last step of our algorithm. The most time-onsuming proedureis learly the L1-spline based minimization algorithm, whih inludes iterative solution of alinear equation system and has either 3(I+1)(J+1) or 9(I+1)(J+1) unknowns (the valuesof z(x, y) or X(u, v) and their derivatives at Steps 1 and 3, respetively, of Se. 5.2). So theomputation of L1 splines depends on the number of iterations (the inner iteration loop isneeded for the primal-a�ne algorithm and the outer to ompute the parametri spline inSe. 5.2) and an take up to about 1 hour of time (I = J = 40, 1 outer iteration). Renderingof a 2.5D L1 spline requires, however, only 1 minute. Improvements in the urrent (C-)odean be arried out. In addition, we mention in Se. 7.2 several general ideas for future workthat an redue the omputing time of the algorithm by orders of magnitude.Other shape-reonstrution proedures are signi�antly faster. For example, the alu-lation of an α-shape for several thousands of 3D points requires only about 1 seond. Themost omputationally expensive portion of this proedure is Delaunay tetrahedrization. Iso-surfae extration (implementation in C++ and MATLAB) requires 2 to 3 minutes beausethe normals of all points must be omputed and oriented by identifying neighbors andRANSAC-based plane �tting.The omputing times for all other routines needed for our approah (detetion of hara-teristi points, texturing, mesh manipulation, et.) are not higher than a ouple of seonds.
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Chapter 7Summary and outlookThe onept presented in this work has proved to provide good visual and quantitativereonstrution results for monoular, unalibrated video sequenes of a hallenging qualityfrom both infrared and daylight ameras. The proedure is subdivided into two major parts:image-based and point-based. This separation was retained throughout the whole proessnot only in order to save omputation time but also in order to avoid getting stuk in a loalminimum of some global minimization funtional. We showed in the image-based portionhow to obtain depth maps from short subsequenes of images. In the point-based portion,also alled shape reonstrution, these depth maps are integrated into a global triangularmesh and textured by the images.The algorithm is nearly autonomous. The only user intervention may onsist of selet-ing the method of surfae reonstrution and speifying thresholds minm(xm), maxm(xm),
minm(ym) and maxm(ym) to reonstrut the fragment of interest. The reonstrutionpipeline is real-time oriented and only the last step � surfae reonstrution � must waituntil the whole point loud is obtained. We start the detailed disussion of our onlusionsin Se. 7.1 by emphasizing the main features of the image-based methods. The methods forshape reonstrution are summarized in Se. 7.2. For every ontribution mentioned in thiswork, we disuss not only the main advantages and drawbaks, but also ideas reommendedfor future work whih suppose improvements over the existing drawbaks.7.1 Image-based methodsUsing the algorithms presented in Chapter 4, we are able to ompute orrespondenes fora sparse or dense point sets from several images, optionally pairwise reti�ed to epipolargeometry, using modular ost funtions, with or without triangular meshes, with or withoutsubpixel preision and with or without non-loal re�nement (for dense methods) by meansof dynami programming, semi-global optimization, or, in the binoular ase, graph-basedapproah of alpha-expansions.Sparse traking and triangulationWe have seen from Tables 6.2-6.6 of Se. 6.2 that onsideration of multi-amera systems is apowerful tool in order to obtain both exat spatial oordinates from harateristi points inimages and dense depth maps without too many additional heuristis. The preision of theresults obtained by epipolar and simultaneous traking poliies is, in theory, approximatelythe same sine, in the end, all ameras partiipate in the reonstrution. But in pratie,simultaneous traking su�ers more from unertainties in amera positions, from the not



130 7.1. Image-based methodsalways orret assumption of almost fronto-parallel objet planes (whih requires inludingorientation (the normal vetor) of π from Result 1 into the optimization pipeline and, inpartiular, Eq. (4.11), as it was done in [54℄ for sparse traking, [18℄ for loal methods (seeSe. 3.1.2) as well as [76℄ for global surfae reonstrution methods followed by the level setproedure of Se. 3.2.3) and from radiometri artifats in the referene image. While the lastproblem an be solved by varying interating pairs of images, both of the other problemsan hardly be solved without introduing additional parameters and statistial tests as in[54℄. Considering amera unertainties as desribed in Se. 6.2 would probably improve thesituation beause the error bounds for amera matries are usually known from Step 1 ofAlg. 1.1.Depth map extrationA new idea of applying triangulation-based smoothing was presented in the ourse of thiswork. It onsisted of a smoothness term and an additional evaluation step that asertainswhether a triangle is onsistent or inonsistent with the surfae. This helps overome thebiases of the non-loal methods toward fronto-parallel surfaes. Sine triangulation-basedterms are also a kind of smoothing, they usually seem � at �rst glane � not to bring verysigni�ant improvement of the graphis of Figs. 6.26-6.28 if they are followed by non-loalmethods with suitably hosen parameters, but these graphis do not re�et the fat thatthe depth values of points within triangles onsistent with the surfae are obtained withsubpixel preision. An isolated outlier within the point set usually does not a�et theperformane of the algorithm beause triangles inident with it are supposed to be �lteredout as inonsistent with the surfae. By onsidering further referene frames, as desribed inSe. 5.1.2, it is also possible to orret gross errors for triangles spuriously added to the list oftriangles onsistent with the surfae. Other advantages of the triangulation-based approah� its ability to initialize depth maps, disentanglement from disretization heuristis, theperspetive of optimization with global methods only in areas made up of triangles that areinonsistent with the surfae � make us believe that the approah an still be improved.One an, for example, onsider for equations (4.21) and (4.22) a term A(T ) instead of A,where A(T ) dereases as the variane of the depth at triangle verties inreases, and σ(T )instead of σ, where σ(T ) is larger for triangles with homogeneous olor distribution in orderto improve the lassi�ation of triangles into onsistent and inonsistent with the surfae.Within one subsequene, our future work will also onsist of pushing forward the histogramapproah desribed in [29℄ for �nding similar triangles and realulating ost funtions fortriangles with �ipped depth values. This approah must �rst be generalized for multi-ameraon�gurations.As for non-loal methods, numerous tests were arried out with dynami programming,semi-global optimization, and, in the binoular ase, with the graph-uts-based approah.Semi-global optimization with 16 optimization paths obtained learly better results thandynami programming (due to streaking artifats) and the graph-uts-based approah (dueto its suseptibility to fronto-parallel planes) while the omputing time turned out to bea lear advantage of dynami programming. Overall, the implementation of the image-based part of our reonstrution pipeline is very favorable for future developments. Newost funtions as well as other aggregation funtions and non-loal algorithms an easilybe added as additional modules. Beause of the e�ient, abstrat problem statement fordynami programming and semi-global mathing, other smoothness funtions an also beintegrated into the software if neessary. However, for multi-view dense reonstrution ofour data sets, the smoothness term (4.23) ontributed to better results than other termsmentioned in Se. 2.3.In the urrent version of the software, automati hoie of referene frames and other im-



Chapter 7. Summary and outlook 131ages of the subsequene is insu�iently overed. Motion blur and many other artifats anmake the referene frame unsuitable for dense reonstrution. Other images an have paral-laxes to the referene frame that are either too large (whih leads to many disparity/depthlevels and therefore high omputing time) or too small, whih has the onsequene thatthe numerial stability for retrieving 3D struture is lost. Adopting some of the heuristismentioned in [50℄ will help to overome these drawbaks.7.2 Shape reonstrution and visualizationLoal methods for shape reonstrutionWe start this setion by summarizing our loal method, the LIFT algorithm introdued inSe. 5.1. This is a lose-to-real-time inremental method for �ltering triangles that not onlydoes not require solving texturing problem (as in global methods, see Se. 5.2.4) but alsoallows overing the objet surfae with multi-sensorial texture. An example of triangulation-based multi-sensorial surfae representation is presented in [27℄, where the author workswith disparities and Result 2, for whih the 3D struture does not need to be expliitlyomputed. A textured 3D model representation from additional soures (e. g. ombinationof infrared and daylight videos) is also possible. The simple onept of the LIFT algorithmallows improving the quality of the mesh by additional soures, suh as dominant planes.The main oneptual drawbak of the urrent implementation is that the algorithm is biasedtoward the old reonstrution: if a new triangle bloks an old one, it is deleted, although itis theoretially possible that the positions of the verties of the old triangle are less aurate.The parameter ε in Alg. 8.4 is thus a user-spei�ed threshold and the results are very sensitiveto its hoie. In order to solve these problems, it will be neessary to take the auray ofthe 3D points into aount and to onsider the global struture of the senery, for instane,by maintaining and updating, after proessing every referene frame, an otree struture.Global methods for shape reonstrutionAmong many proedures tested in the ourse of this work, the L1-splines-based proedureperforms the most robust reonstrution of the urban terrain despite highly varying densityof points, high amplitude of Gaussian noise and outliers. The fat that the L1-norm isoupled to the oordinate axis and is not a�ne invariant against rotations and a�ne trans-formations does not signi�antly a�et the omputational results. Making use of additionalinformation, suh as known footprints of buildings that might be obtained from photogram-metri or arhitetural databases, or developing approahes for removing outliers, wouldimprove the performane of all proedures, inluding that of the L1-spline-based proedure.Still, by not using the bells and whistles, one gets lear insight into the fundamental apabil-ities of the proposed method una�eted by other fators. The present work treats the asewhen the footprints of buildings and other model-based information (exept the diretion ofthe z-axis, desribed in Se. 5.2.1) are not a priori known.There were several limitations in the urrent implementation of the L1-splines-basedproedure, namely,1. use of a stati, oarse, equally spaed retangular grid that does not adapt to the loaldensity and harateristis of the point loud,2. non-adaptive balane parameters in funtionals (5.1) and (5.3),3. high omputing time due to global alulation of the L1 splines and



132 7.2. Shape reonstrution and visualization4. use of the parameterization of points desribed in Se. 5.2.2 that is very sensitive tothe quality of the initial triangulation and the orret hoie of the z-axis.The results that we have presented in this work prove the priniple of omparability orsuperiority of our method in omparison with other proedures but, beause of the limita-tions mentioned above, the proedure for this method is not yet fully �exible and not yetomputing-time-optimized. By making further improvements in the implementation of the
L1-spline-based proedure, we expet to ahieve further improved textured reonstrutions.Spei�ally, in the future, we will investigate extending the proedure of Se. 5.2 using1. �exible triangular grids that adapt to the loal density and harateristis of the pointloud. Possible diretions of researh on triangular grids inlude but are not limited to

C0 linear splines (for omparison with grid�t) and C1 ubi L1 splines. These splinesonsist of Clough-Toher elements (separate ubi polynomials in three subtrianglesof a mesh triangle) [73℄ and are analogous to C1 ubi L1 splines on retangulargrids, whih onsist of Sibson elements. The triangulation to be hosen will be data-dependent, with roughly the same number of data points assigned to eah triangle inthe parametri (u, v)-domain, and it will preserve topologial relations.2. loally adaptive balane parameters λ in funtionals (5.1) and (5.3) (that will not over-smooth the edges desribing the walls of buildings). Alternatively, sine an automatihoie of λ is in general a non-trivial issue, use of L1 spline �ts [84℄, whih do notinvolve any balane parameter, an be onsidered.3. redution of omputing time by 1-4 orders of magnitude by loal proessing of thepoint loud using domain deomposition, that is, by omputing loal models on over-lapping loal domains and assembling the loal models to generate the global model(see [88℄). This is feasible without detriment to auray beause L1 splines keep loalperturbations in the data ompletely (not just mostly) loal in the surfae.The parameterization of points is indeed a rather ompliated issue for future work. FromFig. 5.3, left, one an see that the building walls will not beome ompletely vertial evenafter a large number of iterations and that the approah an fail if the angle between the
z-axis and the orret vertial diretion is too large. (It ould be asserted that an angle of 15degrees is already ritial for a data set similar to the syntheti one desribed in Se. 6.5.3,but, in this ase, the problem an be alleviated by resaling the point loud). We will searhfor a solution both by manipulating the point loud by means of the approahes mentionedin Se. 5.2.2 and by modifying approahes that are not based on systems of oordinates (suhas level sets with onsideration of image information) by our L1-splines-based tools.Two possibilities for meshing the surfae after its generation were mentioned in Se. 5.2.4:Delaunay-triangulation of multi-points and anoni triangulation of the spline nodes. Here,our future work will onsist of further e�ort to manipulate the mesh with the goal of om-pressing the mesh without deteriorating its quality.Due to the strit separation of image- and point-based methods in our reonstrutionpipeline as well as the quite simple texturing step desribed in Se. 5.2.4, our textured modelshave several disadvantages, suh as di�erenes in the luminane of neighboring trianglesthat have been textured from di�erent images, oasional errors aused by hoosing a wrongamera (if the visibility relations are not exat) and, �nally, the fat that the ameras arenot error-free and so the hoie of image oordinates is not always exat. Improving thetexturing portion of the reonstrution proedure an proeed by a ombination of followingideas that will be part of our future work.1. modi�ation of the ost funtion and applying non-loal labeling algorithms on trian-gular grids in the same way that the algorithm mentioned in Se. 3.1 and Se. 4.5.3works on retangular grids.



Chapter 7. Summary and outlook 1332. smoothing, as desribed e. g. in [45℄, the olor distribution of the triangles by usinglinear ombinations I(T ) = ∑

k tkIk(T ) where I(T ) denotes intensity or olor valuesof the triangle T in 3D spae, the Ik(T ) denote intensity or olor values of triangles inthe images Ik in whih T is visible, and the tk are transpareny values that satisfy theonstraint∑ tk = 1 and depend on the angles that the triangle normal builds with theamera rays toward the enter of gravity of T . Of ourse, the problems of a rapidlyinreasing number of triangles as well as unertainties in the positions of ameras mustbe taken into aount.3. simultaneous onsideration of image- and objet-based modeling as mentioned in theend of the previous paragraph.Evaluation of algorithms for shape reonstrutionOur next group of observations onerns performane evaluation of shape reonstrution al-gorithms by means of the Hausdor� distane as desribed in Se. 6.5. Experiments desribedin this setion as well as in [26℄ make lear the orrelation between lower Hausdor� distaneand better reonstrution in the view of the user interested in pratial appliations. Threeimportant diretions of future work are1. modifying the error funtion to make it less outlier-sensitive,2. applying modi�ations of Eq. (6.3) that allow onsidering not only geometry, but alsotexture deviations of the reonstruted models and3. omparing the proedures investigated in this work with a wider lass of reonstrutionproedures.ConlusionDespite several still existing problems � e�orts to ope with them are urrently being made �it is lear that the reonstrution proedure presented in this work an be used for obtainingexellent textured 3D models for buildings and surrounding terrain from monoular aerialand UAV-videos.
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Chapter 8AppendixSeleted Algorithms Used in the Disserta-tionfor i = 1 : M do % number of pixelsevaluate Iω2 = I0(ω(xi)for k = 1 : K do % K + 1 number of amerasfor j = 1 : S do % number of depth labelsobtain xik(j) from xi and dj % with eq. of Se. 4.1if xik(d) ∈ Ik thenevaluate Iω2 = Ik(ω(xik(j)) % e. g. bilinear interp.and ompute ck(i, j) from Iω1 , I

ω
2 % with eq. of Se. 2.2Set C(k, j) = ck(i, j)elseset C(k, j) = ∞end ifend forend forfor j = 1 : S doaggregate C(k, j) into Edata(x, j) % using e. g. (4.20)store A(j, i) = Edata(x, j) + ET (x, j) % using (4.21) and (4.22)end forend for Algorithm 8.1: Dense simultaneous pixel mathing.
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initialize C(j) = c(1, j), P (i, j) = ∅for i = 1 : M − 1 dofor j = 1 : S doompute: C1(j) = minj′ (C(j′) + cs(j

′, j))and set P (i, j) = argminj′ (C(j′) + cs(j
′, j))end forfor j = 1 : S do

C(j) = C1(j) + c(i, j)end forend for
jM = argmin(C(j))for i = 1 : M − 1 do

jM−i = P (M − i, jM−i+1)end for Algorithm 8.2: Dynami programming algorithm.proedure rtdqtSplit(T )if exists B = friend(T ) then
u = s(B)if u == 1 thensplit(B)else if u == 0 then

P = parent(B) % sine s(T ) = 1 and s(B) = 0, s(P ) = 1% aording to de�nition of RTDQTrtdqtSplit(T ) % and so B beomes ativesplit(B)end ifend ifsplit(T )proedure split(T )
s(T ) = 0

s(hildren(T )) = 1

g(hildren(T )) = g(T ) + 1 % inrease generationAlgorithm 8.3: One step of the (reursive) algorithm for restrited top-down quadtree tri-angulation. For neessary de�nitions, see text.
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Get N = total number of triangles in Tkfor j = 1 : N do %InitializeSet a(j) = 0, r(j) = 0, o(j) = 0 % area, redundany, olusion ounterend forfor x ∈ T ∪ Im dodetermine j suh as x ∈ Tj % see Se. 4.3.3retrieve Dm(x) and alulate X % using (4.9) and (4.2)set a(j) = a(j) + 1 and set status = 1while status and k < m− 1 do

k = k + 1projet X with Pk to obtain xkif xk ∈ Tk and Tk surfae-onsistent then % T ∈ Ik!retrieve δ = Dm(xi)− d(X) % d(X) from (4.1)if |δ| < εd(X) then % X is appr. the same pointset r(j) = r(j) + 1, set status = 0else if δ > εd(X) then % X bloks Tset o(j) = o(j) + 1, set status = 0end ifend ifend whileend forfor j = 1 : N doif o(j) > 0.1a(j) or o(j) + r(j) > 0.99a(j) then
Tj is marked as inonsistent with the surfaeend ifend forAlgorithm 8.4: The LIFT algorithm performs geometri evaluation of T into redundant,onsistent and inonsistent with the surfae by means of depth maps of previous refereneframes. The input is the amera matries Pk, the orresponding triangulations Tk, the depthmaps Dk and a positive salar threshold ε.
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Set k = 0 % number of iterationsSet b = 0, ω = 0, ε = ∞while k < kmax and ε > εmax do
k = k + 1

W =diag(1− |ωi|) % ωi is the ith element of ωsolve WAbnew = Wc for bnew % least squares solutionif ‖bnew − b‖1 > εmax or k < kmax then % the normalized L1-normompute r = c−Ab,v = W 2r % residual r, temporal vetor v
α = maxi

(

max
(

vi
1−ωi

, vi
1+ωi

))

ω = ω + cv/α % reompute primal a�ne weightsend ifset b = bnewend whileAlgorithm 8.5: Primal A�ne Algorithm. Given a matrix A and data vetor c, obtaina solution vetor b for (5.2). Two additional parameters are: the maximum number ofiterations kmax and the error tolerane εmax normalized by a number of nodes (I+1)(J+1).
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