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Abstract
Synthetic aperture radar (SAR) is the only way to assess deformation of the Earth’s surface
from space on the order of centimeters and millimeters due to its coherent nature and short
wavelengths (typically 3-25 cm). In particular, with the launches of new SAR sensors, such as
the German TerraSAR-X/TanDEM-X and the Italian COSMO-Skymed satellites, SAR remote
sensing from space has made a big leap forward. These satellites deliver SAR data with a very
high spatial resolution of up to 1 m, and hence open up for the first time opportunities to use
SAR for 2-D, 3-D, 4-D (space-time) or even higher dimensional imaging of urban structures
and individual buildings from space. That means the 3-D shape and deformation or subsidence
of the individual buildings can be retrieved.
A single SAR image can only provide cartographic information in the two native coordinates
"azimuth" and "range". In order to retrieve the 3-D position, i.e. including the "elevation" coor-
dinate, as well as motion information of the scattering objects, advanced interferometric SAR
techniques are required that exploit stacks of complex-valued SAR images with diversity in
space and time. Among them, tomographic SAR inversion, including SAR tomography and
differential SAR tomography, provides the most advanced means for 4-D SAR imaging to date.
It is a relatively new technique and is not yet exploited with very high resolution SAR data
over urban areas. The intention of this thesis is to further develop this technique, and hence,
to explore the potential of very high resolution SAR data for urban infrastructure mapping.
The work presented in this thesis contributes to the field by addressing the following four new
aspects:
Very high resolution tomographic SAR inversion is demonstrated using TerraSAR-X spotlight
data to provide 3-D and 4-D maps of an entire high rise city area including layover separation.
For individual buildings, a high proportion of double scatterers — up to 20% — is detected
by using a modified version of the conventional singular value decomposition inversion method
followed by model order selection.
Due to the tight orbital tube of modern SAR sensors the elevation aperture is small, i.e.
the inherent resolution in elevation is about 50 times worse than in azimuth or range. This
extreme anisotropy calls for super-resolution algorithms in the elevation direction while main-
taining the meter azimuth-range resolution. On the other hand, the high anisotropy of the
3-D tomographic resolution element renders the signals sparse in the elevation direction; only
a few point-like reflections are expected per azimuth-range cell. A compressive sensing based
algorithm tailored to very high resolution SAR data is developed for tomographic SAR inver-
sion by exploiting the sparsity of the signal in elevation. It is named "Scale-down by L1 norm
Minimization, Model selection, and Estimation Reconstruction" (SL1MMER, pronounced "slim-
mer"). SL1MMER combines the advantage of compressive sensing sparse reconstruction (e.g.
super-resolution properties and high point localization accuracy) and amplitude and phase es-
timation accuracy of linear estimation, and hence gives reliable estimation of the number of
scatterers, elevation, motion parameters, amplitude and phase of each scatterer. Furthermore,
a practical demonstration of the super-resolution of SL1MMER for SAR tomographic recon-
struction is provided with a tremendously increased proportion of detected double scatterers of
up to 38%.
A systematic performance assessment of the proposed SL1MMER algorithm is performed re-
garding the elevation estimation accuracy, super-resolution power and robustness. Compared
to the Cramér-Rao lower bound, both numeric results and an analytic approximation of the el-
evation estimation accuracy are provided. It is shown that SL1MMER is an efficient estimator.
The super-resolution factors are found by extensive simulations. These establish fundamental
bounds for super-resolution of spectral estimators. The achievable super-resolution factors of
SL1MMER in the typical parameter range of tomographic SAR are found to be promising and
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are on the order 1.5∼25. The minimal number of acquisitions required for a robust estimation
is derived and given by explicit formulas.
Conventional tomographic inversion allows only for the retrieval of linear motion, although
motion or deformation of buildings is often nonlinear (periodic, accelerating, stepwise, etc.).
A generalized time warp method is developed which enables tomographic SAR to estimate
multi-component nonlinear motion by a nonlinear warping of the time axis.
All developed methods are validated with both simulated and extensive processing of large
volumes of real data from TerraSAR-X.
I hope the work presented in this thesis constitutes a substantial contribution to the vision of
"a dynamic city model showing the shape and the deformation of each building".
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Zusammenfassung
Synthetik Apertur Radar (SAR) ist ein kohärentes Abbildungsverfahren und arbeitet mit
Wellenlängen von typisch 3 – 25 cm. Daher ist es das einzige Weltraum gestützte Verfahren, das
es erlaubt, Deformationen der Erdoberfläche mit Zentimeter- und sogar Millimeter-Genauigkeit
zu erfassen. Mit dem Start neuer SAR-Systeme, wie den deutschen TerraSAR-X und TanDEM-
X, sowie den italienischen COSMO-Skymed-Satelliten, hat die SAR-Fernerkundung einen
wichtigen Schritt in die Zukunft getan. Diese Satelliten liefern SAR-Daten mit sehr hoher räum-
licher Auflösung (VHR für englisch „very high resolution“) von bis zu 1m. Sie eröffnen deshalb
erstmals die Möglichkeit, SAR zur 2-D, 3-D, 4-D (raum-zeitlichen) oder sogar höherdimension-
alen Abbildung urbaner Infrastruktur und einzelner Gebäude vom Weltraum aus einzusetzen,
d.h. die 3-D Form von Gebäuden, sowie deren Deformationen oder Absenkungen abzuleiten.
Eine einzelne SAR-Aufnahme liefert nur kartographische Information in den beiden nativen
Koordinaten „Azimut“ und „Range“. Um die tatsächliche 3-D Lokalisation (also einschließlich
der dritten Koordinate „Elevation“) und die Bewegungsparameter der streuenden Objekte zu
schätzen, werden moderne interferometrische SAR-Verfahren benötigt. Diese nutzen Stapel
komplexwertiger SAR-Daten, aufgenommen von unterschiedlichen Orbitpositionen und zu un-
terschiedlichen Zeiten. Tomographische SAR-Inversion, also SAR-Tomographie und differen-
tielle SAR-Tomographie, stellt das derzeit fortschrittlichste 4-D SAR-Abbildungskonzept dar.
Diese relativ neue Methode wird allerdings noch kaum mit den nun verfügbaren VHR-Daten
zur Abbildung urbaner Gebiete genutzt. Diese Dissertation hat zum Ziel, die tomographische
Technik weiter zu entwickeln, um das Potential der VHR SAR-Systeme zur raum-zeitlichen
Abbildung urbaner Infrastruktur auszuschöpfen. Die Arbeit trägt dazu vier neue Aspekte und
Lösungen bei:
VHR tomographische SAR-Inversion wird mit TerraSAR-X Spotlight-Daten demonstriert. Es
wird gezeigt, dass eine 3-D und 4-D Karte eines gesamten Innenstadtgebiets mit Hochhäusern
abgeleitet werden kann, einschließlich der Auflösung von Layover-Bereichen, d.h. der Tren-
nung von mehrfachen Streuern in einem Bildpunkt. Für einzelne Gebäude werden mit einer
modifizierten Version des bekannten Einzelwert-Zerlegungs-Algorithmus und nachgeschalteter
Modelselektion hohe Zweifachstreuer-Dichten – bis zu 20% – detektiert.
Wegen des sehr engen Orbitschlauchs moderner SAR-Satelliten ist die Elevationsapertur klein
und damit die Auflösung in Elevationsrichtung ca. 50 mal schlechter als in Azimut und Range.
Diese starke Anisotropie des 3-D Auflösungselements verlangt nach Überauflösungsverfahren in
Elevation, ohne die Azimut- und Range-Auflösung zu verschlechtern. Andererseits garantiert
diese anisotrope Punktantwort auch, dass das Signal als „sparse“ in Elevation angesehen
werden kann. Somit werden nur wenige diskrete Streubeiträge pro Azimut-Range-Pixel er-
wartet. Dies legt die Nutzung von Compressive Sensing Verfahren nahe. Zur tomographis-
chen Inversion von VHR SAR-Daten wurde ein solcher Compressive Sensing basierter Algo-
rithmus entwickelt mit dem Namen „Scale-down by L1 norm Minimization, Model selection,
and Estimation Reconstruction“ (SL1MMER, ausgesprochen wie „slimmer“). SL1MMER kom-
biniert die Vorteile der Compressive Sensing Rekonstruktion, also Überauflösungsfähigkeit und
genaue Positionsbestimmung, mit der Amplituden- und Phasengenauigkeit linearer Schätzer.
Der Algorithmus gibt daher verlässliche Schätzungen der Anzahl der Streuer sowie deren Ele-
vationspositionen, Amplituden und Phasen. Die Überauflösungsfähigkeit von SL1MMER wird
mit realen TerraSAR-X-Daten demonstriert und zeigt eine beachtliche Steigerung der Anzahl
der Zweifachstreuer auf bis zu 38%.
Eine systematische Analyse der Leistungsfähigkeit des vorgeschlagenen SL1MMER-Algorithmus
zeigt dessen Elevations-Schätzgenauigkeit, Überauflösungsfähigkeit und Robustheit auf. Sowohl
numerische wie auch analytische Näherungen der Elevations-Genauigkeit werden mit der
Cramér-Rao-Grenze verglichen. Es wird gezeigt, dass SL1MMER ein effizienter Schätzer ist.
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Die erreichbare Überauflösung wird durch extensive Simulationen bestimmt. Diese Überauflö-
sungsfaktoren stellen zugleich absolute und grundsätzliche Grenzen für Spektralschätzer dar.
Für den typischen Parameterbereich in der SAR-Tomographie werden Überauflösungsfaktoren
von 1.5 – 25 erreicht. Schließlich wird die Mindestanzahl von Datensätzen zur robusten to-
pographischen Rekonstruktion hergeleitet.
Bisherige tomographische Inversionsverfahren berücksichtigen nur lineare Bewegung, obwohl
Deformationen von Gebäuden oder der Erdoberfläche meist nichtlinear sind, z.B. periodisch,
beschleunigt, oder abrupt. Daher wurde eine generalisierte „Time Warp“ Methode entwickelt,
mit der die Aufnahmezeiten auf beliebige Basisfunktionen abgebildet werden, so dass nichtlin-
eare multi-modale Bewegungen geschätzt werden können.
Alle im hier entwickelten Verfahren und Algorithmen wurden sowohl in Simulationen wie auch
durch Verarbeitung großer realer TerraSAR-X-Datenstapel validiert.
Die mit dieser Dissertation präsentierte Arbeit möge ein substantieller Beitrag sein zu der
Vision „Ein dynamisches Stadtmodell, das Form und Deformation jedes Gebäudes zeigt“.
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1 Motivation and objectives
In Earth observation, satellite remote sensing plays an important role since it enables us to
recover contact-free large-scale information about the physical properties of Earth’s surface. In
particular, unique capabilities are associated with the use of remote sensing via synthetic aper-
ture radars (SARs) which generate a microwave reflectivity map of an illuminated area through
transmission and reception of electromagnetic energy. As an active sensor, SAR functions inde-
pendently of solar illumination (Curlander and McDonough, 1991) (Cumming and Wong, 2004).
It is capable of penetrating clouds, (partially) vegetation canopy, soil and snow (Franceschetti
and Lanari, 1999) (Massonnet and Souyris, 2008). Compared to images obtained by optical
and infrared sensors, SAR images contain different information. In the optical image, molecu-
lar resonances on the object surfaces are mainly responsible for the spectral characteristics of
the object reflectivity; in the microwave region, dielectric and geometrical properties become
more relevant for backscattering (Elachi, 1988). As a consequence, radar images emphasize the
humidity, relief and morphological structure of the observed terrain.
SAR is the only remote sensing method to assess deformation on the order of centimeters and
millimeters due to its coherent nature and short wavelengths (typically 3-25 cm). Space-borne
SAR systems are particularly suited for long-term monitoring of such dynamic processes (Fer-
retti et al., 2000) (Kampes and Adam, 2005). A single SAR image can only provide cartographic
information. In order to retrieve the real three-dimensional (3-D) localization and motion infor-
mation of the scattering objects, advanced interferometric methods are required which exploit
stacks of complex-valued SAR images with diversity in space and time.
The topic of this thesis is very high resolution tomographic SAR inversion for urban infras-
tructure monitoring. To this end, very high resolution (VHR) SAR tomography (TomoSAR)
and differential SAR tomography (D-TomoSAR) are demonstrated using TerraSAR-X spotlight
data for providing 3-D and 4-D map of an entire high rise city area including layover separation
examples. A compressive sensing (CS) based algorithm (SL1MMER) tailored to VHR SAR
data is proposed for tomographic SAR inversion by exploiting the sparsity of the signal in el-
evation. A generalized time warp method is proposed which enables D-TomoSAR to estimate
multi-component nonlinear motion.

1.1 Scientific relevance of the topic

Conventional SAR imaging provides a projection of the 3-D object reflection to the two-
dimensional (2-D) azimuth-range (x-r) plane (Curlander and McDonough, 1991). Due to the
side-looking geometry, this projection introduces typical foreshortening, layover and shadowing
problems which handicap the interpretation of SAR images, especially of 1) volumetric scatter-
ers and 2) of urban areas and man-made objects, i.e. objects with surface elements oriented at
steeper angles than the local incidence angle (Hanssen, 2001). Advanced interferometric SAR
techniques enable 2.5-D, 3-D, 4-D or even higher dimensional SAR imaging (Bamler et al.,
2009). That means the 3-D shape and deformation or subsidence of the individual buildings
can be retrieved. In the following, the term "pixel" means an azimuth-range pixel and the
term "multiple scatterers" means the presence of several scattering objects at different elevation
positions but at the same pixel.
Across-track Interferometric SAR (InSAR) techniques combine two or more complex-valued
SAR images acquired from slightly different positions to determine geometric information about
the imaged objects by exploiting the phase differences (Zebker and Goldstein, 1986) (Massonnet
et al., 1993) (Gabriel and Goldstein, 1988) (Bamler and Hartl, 1998) (Gatelli et al., 1994) (Ruf
et al., 2002) (Eineder et al., 2009). This phase difference is related to the terrain topography
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and can be used to generate digital elevation models (DEMs) (Li and Goldstein, 2002). There-
fore, InSAR enables us to access the third dimension, elevation s, which is perpendicular to the
azimuth and range plane. Still, with only two acquisitions, multiple scatterers along elevation
within one pixel cannot be separated. Besides the topographic mapping, an extended version of
InSAR, called differential interferometric SAR (D-InSAR) can be used for precise mapping of
movement in the range direction (Zebker and Rosen, 1994) (Goldstein and Werner, 1998) (Mas-
sonnet and Rabaute, 2002) (Berardino et al., 2003) (Bamler and Eineder, 2005). The accuracy
of InSAR and D-InSAR is limited by temporal decorrelation of the surface and by electromag-
netic path delay variations in the troposphere (Hanssen, 2001). The latter distortions can be
reduced by temporal averaging of multiple interferograms which in turn reduces the temporal
resolution.
Persistent scatterer interferometry (PSI) was introduced in 1999 (Ferretti et al., 2000) (Fer-
retti et al., 2001) as a methodology for long-term monitoring of subsidence, preferably in urban
environments. Typically 20 - 100 interferometric data sets of the same area taken from ap-
proximately the same orbit are stacked for PSI analysis. Each pixel in each interferogram is
characterized by its range and azimuth coordinates as well as by the temporal and the spatial
baseline of the interferogram it belongs to. These are four coordinates which allow a much bet-
ter data analysis than in a single interferogram where temporal and spatial baselines are fixed.
By exploring different scales of the physical phenomena, PSI attempts to separate the following
phase contributions: elevation of the point, deformation parameter (e.g. deformation rate, am-
plitude of seasonal motion), orbit errors and tropospheric water vapor delay. (Colesanti et al.,
2002) (Hooper et al., 2004) (Adam et al., 2005) (Kampes, 2006) (Meyer et al., 2007) (Perissin
and Ferretti, 2007) (Rocca, 2007) (Vasco et al., 2008) (Gernhardt et al., 2010). PSI assumes
the presence of only a single scatterer in the pixel, however, in a high rise urban environment,
it is rather likely that multiple scatterers are mapped onto one pixel.
TomoSAR aims at real and unambiguous 3-D SAR imaging, i.e. imaging also in eleva-
tion (Homer et al., 1996) (Pasquali et al., 1995) (Reigber and Moreira, 2000) (Cheney,
2000) (Fornaro et al., 2003) (Lombardini et al., 2003) (Zhu et al., 2008) (Nannini et al.,
2009) (Baselice et al., 2009) (Reale et al., 2011). TomoSAR uses SAR data stacks, like PSI
does, to establish a synthetic aperture in the elevation direction (see section 2.1.2). While in
PSI the coordinates of single points are retrieved, TomoSAR tries to derive the full scattering
density, i.e. the reflectivity profile, in elevation by spectral analysis with special consideration
of the difficulties caused by sparse and irregular sampling. From this reconstructed profile in
elevation multiple scatterers in any pixel are separated, and hence the full 3-D (azimuth, range
and elevation) reflectivity distribution is obtained. Therefore, TomoSAR is the strictest way
of 3-D SAR imaging while classical InSAR can be regarded as the limiting case of parametric
TomoSAR.
D-TomoSAR, also referred to as 4-D focusing (Lombardini, 2005) (Fornaro et al., 2009) (Zhu
et al., 2010), exploits the strength of both TomoSAR and PSI. It uses the fact that the different
acquisitions are taken at different times and introduces a new dimension to the TomoSAR
system model attributing to the motion of the scatterers (Lombardini, 2005). By means of higher
dimensional spectral analysis, it is capable of retrieving elevation and deformation information
even of multiple scatterers inside a single SAR pixel. D-TomoSAR provides the most advanced
means for space-time 4-D SAR imaging.
Along with the launch of new SAR sensors, like the German TerraSAR-X/TanDEM-X and the
Italian COSMO-Skymed satellites, SAR remote sensing from space made a big leap forward.
Among all other advantages, such as high absolute geometric accuracy, precise orbit determi-
nation and short revisit time, this new class of SAR sensors deliver SAR data with a very
high spatial resolution of up to 1 m compared to the medium (10 ∼ 30 m)- and high (3 ∼ 10
m)-resolution SAR systems available so far (Bamler et al., 2009) (Eineder et al., 2009) (Wern-
inghaus and Buckreuss, 2010). In Fig. 1 and 2 the mean intensity maps of a TerraSAR-X stack
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Figure 1. TerraSAR-X mean intensity map from 30 images of a high rise urban area over downtown Las Vegas with a
spatial resolution of 1.1 m × 0.6 m in azimuth and range.

Figure 2. ERS mean intensity map from 51 images of the same area shown in Fig. 1 with a spatial resolution of 5 m ×
25 m in azimuth and range.
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(30 images) and an Earth Resources Satellite (ERS) stack (51 images) of the same area are
presented, respectively.
The 1 m resolution opens up for the first time the opportunity to use SAR for 2-D, 3-D, 4-D
(space-time) or even higher dimensional imaging of urban structures and individual buildings
from space. The inherent spatial scales of buildings are dominated by the typical height of floors
of 3 ∼ 3.5 m (i.e. in slant range (at 30o) 2.6 ∼ 3.0 m) and the spacing between windows. Hence,
in the context of urban structure imaging, a tremendous improvement in information content is
observed when going from high resolution (3 m) to VHR (1 m). The advantage of VHR imagery
for cartographic applications is obvious (Soergel et al., 2006). Yet the real potential of this class
of SAR data for urban mapping lies in applications where the coherent nature of SAR data is
exploited, such as in interferometry or tomography (Bamler et al., 2009) (Soergel, 2010).
As a consequence, further developing the above mentioned advanced interferometric techniques
to explore the potentials of VHR SAR data for urban infrastructure mapping is a new and
exciting field.

1.2 Objective and focus of the thesis

1.2.1 General goal
The general goal of the thesis is the optimum exploitation of interferometric VHR SAR data
stacks for urban infrastructure mapping and monitoring with the vision of

"A dynamic city model derived from TomoSAR and D-TomoSAR showing the shape and the
deformation of each building".

To this end, VHR TomoSAR has to be demonstrated by providing a layover separation ex-
ample using TerraSAR-X spotlight data. Together with its extension to D-TomoSAR, multiple
scatterers inside an azimuth-range cell have to be identified and resolved from sparsely and
irregularly sampled apertures considering different motion histories. Moreover, a 3-D and 4-D
map of an entire building complex and even an entire high rise city area has to be reconstructed
from a tomographic stack of SAR images.

1.2.2 Methodology goals
Compared to computed axial tomography (CAT), known from medical imaging, TomoSAR uses
only a small angular diversity. Hence, instead of back projection, spectral estimation (Jakowatz,
1996) (Stoica and Moses, 2005) is sufficient for TomoSAR if the range migration caused by the
different viewing angles is much smaller than the range resolution (Reigber, 2002) (Zhu and
Bamler, 2010d). Many spectral estimation methods are implemented for tomographic SAR
imaging. However, for urban infrastructure monitoring, the following requirements must be
met:

- Maintaining the meter azimuth-range resolution, i.e. the method should require no multi-
looking;

- Improving the elevation resolution, i.e. it has to provide super-resolution (SR) properties;
- High 3-D localization accuracy, i.e. it is required to provide robust performance and deliver
high elevation estimation accuracy;

- Retrieval of nonlinear motion.
Aiming at the development of tomographic algorithms fulfilling the above mentioned require-
ments, three methodology objectives must be achieved:
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Objective 1: New tomographic method
Tomographic SAR inversion is a relatively new technique and has not yet been exploited
with VHR SAR data over urban areas. The goal is to develop a robust TomoSAR and
D-TomoSAR algorithm that can go far beyond the Rayleigh resolution limit and gives
reliable estimation of the number of scatterers and the elevation, motion parameters,
complex-valued reflectivity of each scatterer from a few sparse and irregular spectral
samples while requiring no azimuth-range averaging.

Objective 2: Performance assessment
Systematic performance assessment of the tomographic method should be performed for
deriving confidence measures for the final space-time estimates. The elevation estimation
accuracy of two closely spaced interfering scatterers needs to be investigated, e.g. by
comparison to the Cramér-Rao lower bound (CRLB); the SR power, i.e. the minimal
separable distance between two scatterers under certain conditions, must be assessed and
compared to the Rayleigh resolution unit; the robustness of algorithm, i.e. the minimal
number of acquisitions required for a robust reconstruction given a certain signal-to-noise
ratio (SNR) has to be estimated. Finally, the limits of the algorithm, especially with the
application to tomographic SAR inversion, should be determined.

Objective 3: Multi-component motion estimation
The motion history appears as a phase term in the measurements. This phase term,
however, is often nonlinear (periodic, accelerating, stepwise, etc.), and hence cannot
be retrieved by spectral estimation within the framework of conventional D-TomoSAR.
This is particularly true if very high resolution mapping of urban infrastructure is to be
performed. Complicated motion, e.g. linear subsidence caused by long term geodynamic
processes coupled with seasonal motion caused by thermal dilation, must be taken into
account. Unmodelled motion not only leads to wrong motion estimates, but also interferes
with elevation estimation. The goal is to extend D-TomoSAR for multi-component
nonlinear motion separation and estimation.

1.3 Reader’s guide

The remainder of this thesis is organized as follows. Chapter 2 gives a brief introduction to the
basics of tomographic SAR inversion and CS. An overview on the state of the art, followed by
a discussion of the new aspects of this thesis regarding to most related work is presented in
Chapter 3. Chapter 4 summarizes the four main contributions of the attached relevant publica-
tions from the author including 1) the first demonstration of VHR TomoSAR and D-TomoSAR;
2) the SL1MMER algorithm for sparse tomographic SAR reconstruction; 3) a systematic per-
formance assessment of elevation estimation accuracy, SR power and robustness; 4) the time
warp method for multi-component nonlinear motion estimation in D-TomoSAR. Furthermore,
a practical demonstration of the SR of SL1MMER for SAR tomographic reconstruction is pro-
vided in Chapter 5 (not yet published). The results of this thesis and an outlook on further
work are discussed in the last chapter.
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2 Basics

2.1 Basics of SAR tomography

2.1.1 SAR geometry
A normal monostatic imaging SAR system consists of a side-looking transmitter and receiver
operated on a moving platform such as an airplane or satellite. The native 3-D reference frame
of a SAR sensor is defined as (see Fig. 3):

x: azimuth, the flight direction of the sensor, also called the along-track direction;
r: range, line-of-sight (LOS) direction of the antenna, also referred to as slant range;
θ: elevation angle, i.e. perpendicular to the azimuth-range plane. Due to the large range
distance on the order of hundreds kilometer and small angular diversities, it can be assumed
to be a straight line. It is often called elevation or cross range s

SAR maps in the three directions with different principles:
- Azimuth: synthetic aperture principle enabled by the movement of the sensor.
- Range: radar ranging principle, i.e. the transmitter emits pulses, e.g. chirps. These pulses
are reflected from objects on the ground and part of the energy reaches again the receiver.
Different objects can be resolved if they have a different distance to the sensor, i.e. their
echoes show a different two-way travel time.

- Elevation: SAR does not provide imaging in this direction, and hence targets sharing the
same azimuth-range (x− r) coordinates but with different elevation positions can not be
distinguished.

The complex-valued pixels of a conventional two-dimensional backscattering map contain am-
plitude (brightness) and phase information. The non-ambiguous phase φ of a pixel with a range
distance r and at zero Doppler position x can be written as (omit an additional phase caused
by the scattering process):

φ = −4π
λ
r (1)

where λ is the wavelength. Since λ is typically several centimeters, the phase is very sensitive
to range.
The 3-D resolution element of a conventional SAR is illustrated in Fig. 4. The azimuth resolution
ρx of the SAR image is determined by the azimuth synthetic aperture length ∆x (Massonnet
and Souyris, 2008):

ρx = λ r

2∆x (2)

The TerraSAR-X spotlight data used in this thesis have an azimuth resolution of 1.1 m.
The achievable range resolution ρr depends on the chirp bandwidth W (Cumming and Wong,
2004):

ρr = c

2W (3)

where c denotes the speed of light. For instance, depending on the transmitted bandwidth,
the range resolutions provided by TerraSAR-X Spotlight data are 1.2 m at 150 MHz signal
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Figure 3. Radar side-looking imaging geometry. The flight direction of the sensor is normally called the along-track
direction or azimuth x; the LOS direction of the antenna is defined by the elevation angle θ, normally called range or
slant range r; the cross range direction, i.e. perpendicular to the azimuth-range (x − r) plane, is frequently referred to
as elevation s. Strictly speaking, the third dimension should be the elevation angle θ, however, due to the large range
distance on the order of hundreds kilometer, it can be assumed to be a straight line for small angular diversities.
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Figure 4. 2-D resolution element of a conventional SAR. The azimuth resolution ρx is determined by the azimuth synthetic
aperture length ∆x while the range resolution ρs is determined by the bandwidth W of the chirp emitted by the antenna
(Bamler, 2010).

bandwidth or 0.6 m at 300 MHz (Werninghaus and Buckreuss, 2010). The small deviation from
the theoretical values 1 m and 0.5 m is due to spectral weighting for sidelobe reduction. As
mentioned before, SAR does not provide imaging in the third dimension, therefore, as illustrated
in Fig. 4, conventional SAR has a hoop-shaped 3-D resolution element, i.e. no resolution in
elevation.
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2.1.2 TomoSAR imaging model
TomoSAR builds up a synthetic elevation aperture from a stack of N complex SAR datasets
of the same area taken at different times and slightly different orbit positions (see Fig. 5).
Based on the Fraunhofer approximation of free-space propagation, it is well known that far-
field diffraction acts like a Fourier transform. The focused complex value gn of an azimuth-range
pixel for the nth acquisition at aperture position bn (n = 1, ..., N) is therefore the integral of
the reflected signal along the elevation direction weighted by a linear phase term (note that a
possible deformation term is ignored here for simplicity):

gn =
∫

∆s

γ(s)exp(−j2πξns)ds (4)

where γ(s) represents the reflectivity function along elevation s. ξn= −2bn/(λr) is the spatial
(elevation) frequency. A detailed derivation of eq. (4) can be found overall in the literature,
e.g. (Fornaro et al., 2003) (Zhu, 2008). The imaging model eq. (4) can be approximated by
discretizing the continuous reflectivity function along s within its extent ∆s, in the presence of
noise ε, and can be written as (ignoring an inconsequential constant):

g = R γ + ε (5)

where g= (g1, g2, ..., gN)T is the measurements vector with N elements, R is an N×L mapping
matrix with Rnl = exp (−j2πξnsl), γ is the discrete reflectivity vector with L elements, γl =
γ(sl), and sl (l = 1, ..., L) are the discrete elevation positions.

b
elevation

b aperture

ss
z

s

 

3-D reflectivity 
distribution:

s

y
x  , ,x r s

r
Figure 5. TomoSAR imaging geometry. The elevation synthetic aperture is built up by multi-pass SAR data from slightly
different viewing angles. Flight direction is orthogonal out of the plane.

Eq. (5) is an irregularly sampled discrete Fourier transform of the elevation profile γ(s). There-
fore, one SAR acquisition may be considered to be one spectral coefficient of the complex
reflectivity of the object along elevation. Fig. 6 illustrates the Fourier domain TomoSAR imag-
ing model showing the slices (blue bold) of the object spectrum in the (fy − fz) plane that are
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Figure 6. Fourier domain TomoSAR imaging model showing the slices (blue bold) of the object spectrum in the (fy −fz)
plane that are transferred to the SAR image. A rectangular shape range system transfer function of bandwidth W
is assumed. The shaded area shows the maximum extent of the range-elevation frequency (fr − fs) support of the
tomographic transfer function, determined by chirp bandwidth W and elevation aperture size ∆b (see the zoom in on
the right).
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Figure 7. 3-D resolution element of a tomographic SAR, similar to the azimuth direction, the elevation resolution ρs is
determined by the elevation aperture size ∆b (Bamler, 2010).

transferred to the SAR image, where f(·) stands for frequency and the corresponding subscripts
represents the directions defined in Fig. 3. TomoSAR uses several of those slices obtained from
multi-pass measurements to retrieve the elevation reflectivity profile for each pixel. A special
limiting case of TomoSAR is InSAR where only two slices are used.
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Similar to the azimuth direction, for non-parametric spectral analysis, the expected elevation
resolution ρs, i.e. the width of the elevation point response function, depends on the elevation
aperture size ∆b and is approximately (provided there is sufficiently dense sampling of the
elevation aperture) (see Fig. 7):

ρs = λ r

2∆b (6)

As illustrated in Fig. 6, due to the tight orbit control of modern VHR SAR sensors, the angular
diversity between the slices is very small, and hence renders the 3-D SAR resolution element
extremely anisotropic. This will be further discussed in Chapter 4.

As mentioned in Chapter 1, TomoSAR can be treated as a spectral estimation problem, only if
the range migration δr caused by the different viewing angles is much smaller than the range
resolution ρr. This gives a limitation to the extent ∆s of the illuminated objects (Zhu and
Bamler, 2010d):

∆s� ρrr

∆b (7)

The condition (7) is mostly true for the space-borne case due to the large range distance
and small angle diversity. However, for the airborne case, instead of spectral estimation, back
projection might be required as in CAT (Reigber and Moreira, 2000).

2.1.3 Differential TomoSAR system model
For the space-borne case, the multi-pass acquisitions are taken over a time span of several weeks
to years (depending on the revisit time of the satellite and the number of stacked images).
Hence, the long-term motion of the scattering object during the acquisition period must be
considered. Taking a possible motion term into account, the system model eq. (4) can be
extended to (Lombardini, 2005):

gn =
∫

∆s

γ(s)exp (−j2π (ξns+ 2d(s, tn)/λ)) ds (8)

where d(s, tn) is the LOS displacement as a function of elevation and time. By assuming a linear
motion with elevation dependent velocity V (s) but possibly several scatterers per pixel, eq. (8)
simplifies to:

gn =
∫

∆s

γ(s)exp (−j2π (ξns+ ηnV (s))) ds (9)

ηn= 2tn/λ is the so-called "velocity frequency". Eq. (8) can be rewritten as (Zhu and Bamler,
2010d) (Zhu and Bamler, 2011a):

gn =
∫

∆v

∫
∆s

γ(s)δ (v − V (s)) exp (−j2π (ξns+ ηnv)) dsdv (10)

where ∆v is the range of possible velocities. An alternative, but equivalent, formulation of the
D-TomoSAR system model with the so called "velocity spectrum" can be found in (Fornaro
et al., 2009).
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Eq. (10) is a 2-D Fourier transform of γ(s)δ (v − V (s)) which is a delta-line in the elevation-
velocity (s − v) plane along v=V (s). Its projection onto the elevation axis is the reflectivity
profile γ(s).
If only K discrete scatterers are present, γ(s)δ (v − V (s)) consists of K δ-points in the 2-D
(s−v) plane at the respective elevations and velocities. The tomographic reconstruction will be
a blurred and noisy version of these peaks from which elevations and velocities are estimated.
Of course, eq. (10) can also be approximated by a discrete version sharing the same expression
as eq. (5).

2.2 Introduction to compressive sensing

2.2.1 Compressive sensing
The well-known Shannon sampling theorem states that for a band-limited signal to be recon-
structed exactly from its samples, the signal needs to be sampled at of least its (mathematical)
bandwidth (the so-called Nyquist rate). In fact, this principle underlies nearly all signal ac-
quisition methods used. However, such a sampling scheme excludes many signals of interest
that are not necessarily band-limited but that can still be represented by a model with a small
number of degrees of freedom (Starck et al., 2010). Compressive sensing theory completes the
sampling scheme and it allows us to go beyond the Shannon limit by exploiting the sparse
property of the signal (Candès, 2006) (Donoho, 2006) (Baraniuk, 2007) (Candès and Wakin,
2008). It offers an aesthetic non-parametric realization of a parametric estimator by assigning
some pre-conditions to the signals and the sensing systems.
A signal of interest x with length L is said to be K-sparse in an orthogonal basis Ψ if the pro-
jection coefficient vector γ = Ψx has only K non-zero or significant elements. x is represented
by ΨHγ. N measurements g can be obtained by projecting the signal onto N possibly random
basis functions Φ (the sensing matrix):

g = Φx (11)

Let us define R = ΦΨH as the sparse mapping operator, the measurement vector can be
rewritten as:

g = ΨΦHγ = Rγ (12)

Note that we chose the symbols g, R and γ such that they reflect our TomoSAR problem
statement of eq. (5).
CS theory tells us that in the absence of noise the exact solution of γ is the one satisfying
eq. (12) and employing the least number of coefficients, i.e. having the minimal L0 norm:

min
γ
‖γ‖0 s.t. g = Rγ (13)

Theoretically speaking, this is the correct solution, but unfortunately, the L0 norm minimiza-
tion problem is NP-hard. For N � O(K log(L/K)), i.e. with x sufficiently sparse, it can be
shown that the L1 norm minimization leads to probably the same result as the L0 norm mini-
mization (Gan et al., 2009) (Candès et al., 2006):

min
γ
‖γ‖1 s.t. g = Rγ (14)
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The use of the L1 norm as a sparsity-promoting function traces back several decades. A leading
early application was reflection seismology, in which a sparse reflection function (indicating
meaningful changes between subsurface layers) was sought from bandlimited data. The basic
idea is illustrated graphically in Fig. 8 with a simple example of a two-dimensional coefficient
vector. In this case, K = 1. Green lines represent the solutions fulfilling the under-determined
system model. Blue curves illustrate the points sharing the same L0, L2 or L1 norms, lie on the
axes, a circle and a diamond, respectively. Red points are the corresponding retrieved solutions.
The red point in the left sketch indicates the exact solution found by L0 norm minimization.
This solution is the sparsest fulfilling the under-determined system model since it locates on
the axis, and hence has only one non-zero coefficient, i.e. γ2. The conventional L2 norm always
gives non-sparse solutions, i.e. both coordinates γ1 and γ2 have non-zero values. The L1 norm
retrieves very likely the same sparse solution as the L0 norm.

In case there is no prior knowledge about K and in the presence of measurement noise, eq. (14)
can be approximated by:

γ̂ = arg min
γ

{
‖g−Rγ‖2

2 + λK‖γ‖1
}

(15)

where λK is a Lagrange multiplier depending on the number of samples N and the noise level
σε. Eq. (15) consists of an L2 norm residual and an L1 norm regularizer. Eq. (15) can be
interpreted as a Bayesian estimate with an exponential prior favoring sparse solutions (Seeger
and Wipf, 2010).

For a given K, quadratic relaxation can provide a good approximation of the sparsest solution:

γ̂ = min
γ
‖γ‖1 s.t. ‖g−Rγ‖2 < σε (16)

Eq. (15) and eq. (16) are different forms of the Least Absolute Shrinkage and Selection Operator
(LASSO) (Boyd and Vandenberghe, 2004) which was first proposed in statistics in order to solve
the inverse problem by minimizing the residual sum of squares (i.e. L2 norm) subject to the sum
of the absolute values of the coefficients (i.e. L1 norm) being smaller than a constant (Tibshirani,
1996). By appropriately choosing λk, eq. (15) is identical to eq. (16).

The statistical roles of different regularizers (e.g. the L0 norm, the conventional L2 norm and the
L1 norm) are understood by inspecting the priors (see Fig. 9) and the posteriors (see Fig. 10)
they lead to. The priors introduced by the L0.5, L2 and L0 norm are compared graphically in
Fig. 9. It is obvious that the Lp norm with p closer to 0 approximates the prior introduced by
the L0 norm better. Here the two green lines indicate the 3 dB width of the likelihood. The
corresponding posteriors (i.e. essentially the product of likelihood and prior) are visualized in
Fig. 10. The green line here represents the noise free solutions fulfilling the under-determined
system model as in Fig. 8 while the red point indicates the true sparsest solution of the system.
By comparing the posterior distributions, it can been seen that:

- The L0.5 norm finds the sparsest solutions located on the axes γ1 or γ2.
- The conventional L2 norm prior (i.e. Tikhonov regularization) gives again with a high
likelihood non-sparse solution because the maxima is not located on the axis.

- The L1 norm finds very probably the sparsest solution though with a biased amplitude,
i.e. the L1 norm favors slightly smaller amplitudes.

In contrary to the NP-hard L0 norm and the non-convex Lp norm (0 < p < 1), the L1 norm
minimization (as the limiting case of a convex problem) subject to linear equality constraints
can easily be recast as a linear programming problem making available a host of ever more
efficient solution algorithms. This fact makes CS a charming sampling paradigm.



2.2 Introduction to compressive sensing 21

2 sparse

1

0
γ

(a) L0 norm

2 non-sparse

1

2
γ

(b) L2 norm

2 sparse

1

1
γ

(c) L1 norm

Figure 8. Graphical comparison between L0 norm, L2 norm and L1 norm minimization for sparse reconstruction. Green
lines represent the solutions of the under-determined system model; blue curves illustrate the points sharing the same
L0, L2 and L1 norms respectively; red points are the corresponding retrieved solutions. The NP-hard L0 norm always
gives the sparsest solution; The conventional L2 norm gives a non-sparse solution; The L1 norm gives very likely the
same sparse solution as the L0 norm.
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Figure 9. Graphical comparison between the Lp norm (p = 0.5), the L2 norm and the L1 norm minimization for sparse
reconstruction in the presence of noise: likelihood and prior. The Lp norm minimization (p ≤ 1) can be interpreted as
MAP estimator with a prior favoring sparse solutions. Green lines: 3 dB width of the likelihood.
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Figure 10. Graphical comparison between the Lp norm (p = 0.5), the L2 norm and the L1 norm minimization for
sparse reconstruction: posteriors. Green lines represent the noise-free solutions of the under-determined system model;
red points: the true sparsest solutions. The L0.5 and the L1 norms give very likely the sparsest solution with a biased
amplitude (i.e. amplitude is often underestimated); The conventional L2 norm gives a non-sparse solution.

To make this possible, beside the sparsity of the signal, CS relies on two principles: incoherence,
which pertains to the sensing modality (Candès and Wakin, 2008), and restricted isometry
property (RIP) which guarantees sufficiently sparse reconstruction in the presence of noise.
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2.2.2 Incoherence and restricted isometry property (RIP)
The incoherence and RIP properties are the bargaining chip to find the unique sparse solution.

• Incoherence
The coherence between Φ and Ψ is defined by:

µ(R) = µ(Φ,Ψ) =
√
N max

1≤k,j≤N

|〈ϕk,ψj〉|
‖ϕk‖2‖ψj‖2

(17)

where ϕk is the kth row of the sensing matrix Φ while ψj is the jth row of the orthogonal
basis Ψ. µ has a value between 1 and

√
N . The incoherence property requires that rows of Φ

(sensing matrix) cannot sparsely represent the columns of ΨH (orthogonal basis) and vice
versa. A small µ means that the sparse mapping operator R will spread out information
of sparse (highly localized) coefficients over the entire measurement space (like a Fourier
transform does) and thus make them insensitive to random undersampling, otherwise
the reconstruction of non-zero coefficients will be biased towards certain positions. For
instance, let us randomly choose N rows from Ψ as our sensing matrix Φ. Then what
we are actually sensing with Φ is only the N elements of γ located at the positions
of the N randomly chosen columns. As a consequence of this counter-example, the sparse
reconstruction would only be possible if the K non-zero coefficients were located by chance
within the N chosen positions.
CS is mainly concerned with low coherence pairs, and the well acknowledged Φ and Ψ
pairs are (Candès and Wakin, 2008):

� Fourier matrix & identity matrix
Corresponds to the classical sampling scheme in time or space. The time-frequency
pair obeys µ = 1 and, therefore, has maximal incoherence. Further, spikes and
sinusoids are maximally incoherent not just in one dimension but in any number
of dimensions. If Ψ is the identity matrix, coefficients are identical to the signal.
This allows us to employ the numerous powerful sparse reconstruction techniques for
spectral estimation when the signal itself is sparse, i.e. sparse in an identity matrix
basis in the language of CS. Typical examples are ISAR (Zhang et al., 2009) and
TomoSAR (Budillon et al., 2009) (Zhu and Bamler, 2010c).

� Noiselets & wavelets basis
The coherence between noiselets and Haar wavelets is

√
2 and that between noiselets

and Daubechies D4 and D8 wavelets is, respectively, about 2.2 and 2.9 across a
wide range of sample sizes N (Candès and Wakin, 2008). Since most image data are
sparse or compressible in a wavelet basis, this reveals great potential for using CS for
image processing such as image sharpening (Yang et al., 2010) (Yang et al., 2008),
inpainting (Elad et al., 2005) (Fadili et al., 2009) (Shen et al., 2009), denoising (Elad
and Aharon, 2006) (Malgouyres and Zeng, 2009), medical Imaging (Lustig et al.,
2007) (Lustig et al., 2008) (Yu and Wang, 2009), Hyperspectral Imaging (Willett
et al., 2007) and radar imaging (Ender, 2010) (Baraniuk and Steeghs, 2007). In
addition, there are tremendously well-developed noiselet transform algorithms that
run in O(N) time. This fact is practically important since it allows numerically
efficient CS implementations.

� Random matrices & any fixed basis
Random matrices are matrices consisting of random vectors that have a flat power
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Figure 11. The violation of RIP and incoherence properties may cause artifacts in the reconstruction. (a): true reflectivity
profile; (b) reconstruction of a scatterer by several adjacent lines instead of a single peak; (c) reconstruction with noise-like
outliers.

spectral density. They are largely incoherent with any fixed basis with a coherence of
about

√
2 log(N). The most popular examples of such kind of matrices are random

waveforms with independent identically distributed (i.i.d.) Gaussian entries or ±1
binary entries. Surprisingly, the efficient mechanism ought to acquire signals with
random vectors, e.g. white noise. This feature inspired scientists to conceive novel
measuring systems (see the one pixel camera in (Duarte et al., 2008)).

• Restricted isometry property (RIP)
RIP guarantees the robust sparse reconstruction in the presence of noise. The RIP requires:

(1− δs) ‖ν‖2
2 ≤ ‖R ν‖2

2 ≤ (1 + δs) ‖ν‖2
2 (18)

where ν is any vector having K non-zero coefficients at the same positions as γ and δs is a
small positive number. The smaller δs is the better the sparse signal can be reconstructed
in the presence of noise. Eq. (18) essentially says that all sub-matrices of R composed of
K columns should be mutually nearly orthogonal and hence, preserve the energy of all
vectors having only non-zero elements at the same K positions as γ. There are a couple
of well-known stable measurement matrices (in the sense of RIP), e.g. random Gaussian,
random binary and randomly selected Fourier samples (Candès and Wakin, 2008).

As mentioned before, CS can be seen as the non-parametric realization of a parametric estima-
tor. To make this possible, first of all, the signal must be sparse, i.e. can be described by a model
with a small number of degrees of freedom. Let us assume the sparsity K and the positions of
non-zero elements are given. Then with N � K measurements, the system is over-determined
and it is well-known that an optimum solution can be obtained if the sparse mapping operator
R has full rank. Now the situation is that the positions of non-zero elements, i.e. the exact
model, are unknown. This would require any randomly chosen K rows of R to have full rank.
This is essentially the concept of RIP and incoherence.
Any violation of RIP and incoherence will introduce artifacts in the sparse reconstruction,
i.e. the solution γ̂ is no longer the sparsest one γ. There are two classes of artifacts shown
schematically in Fig. 11 (Zhu and Bamler, 2011b):
1) Single significant elements may be broadened to a few adjacent lines (Fig. 11, middle) and

with a certain probability small spurious impulses may show up (Fig. 11, right).
2) Eq. (15) will slightly, yet systematically, underestimate the amplitudes of the coefficients

because the L1 norm minimization favors smaller amplitudes. This artifact can be clearly
observed in Fig. 12 which shows a zoom into the region around the maximum of Fig. 10.c.
The posterior shows that biased amplitude estimates (i.e. under-estimated amplitudes, see
the position of the extreme) are preferred.

A new algorithm will be introduced in Chapter 4 to improve the CS estimator and correct for
these two deficiencies.
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Figure 12. A zoom into the posterior shown in Fig. 10.c. the sparsest solutions with biased amplitude estimates (i.e.
under-estimated amplitudes, see the position of the extreme) are preferred.

2.2.3 Sparse reconstruction resources
Various sparse reconstruction toolboxes are available for solving the L1 norm minimization
problem. According to the experiences of the author, an incomplete list of the toolboxes which
provide solvers for eq. (15) and/or eq (16) is:

• SparseLab
Provided by: D. Donoho, V. Stodden and Y. Tsaig (Donoho et al., 2005) (Donoho et al.,
2009)
Implemented algorithms: Stagewise orthogonal matching pursuit algorithm for solving
eq (16) and least angle regression algorithm for solving eq. (15)
Download link: http://sparselab.stanford.edu/

• l1_ls
Provided by: K. Koh, S. Kim and S. Boyd (Koh et al., 2007)
Implemented algorithms: interior-point method algorithm for solving eq. (15)
Download link: http://www.stanford.edu/ boyd/l1_ls/

• YALL1
Provided by : Y. Zhang, J. Yang and W. Yin (Yang and Zhang, 2009)
Implemented algorithms: the truncated Newton interior-point method for solving eq. (15)
Download link: http://yall1.blogs.rice.edu/

• cvx
Provided by M. Grant and S. Boyd (Grant and Boyd, 2011) (Grant and Boyd, 2008).
Implemented algorithms: SDPT convex optimization method for solving eq. (15)
Download link: http://cvxr.com/cvx/

• FPC_AS (fixed-point continuation and active set)
Provided by Z. Wen and W. Yin (Hale et al., 2007) (Wen et al., 2010).
Implemented algorithms: Algorithm based based upon the active-set algorithm with a
continuation strategy for solving eq. (15)
Download link: http://www.caam.rice.edu/ optimization/L1/FPC_AS/

• l1-MAGIC
Provided by: E. Candes and J. Romberg (Candès and Tao, 2005) (Candès et al., 2006)
Implemented algorithms: Algorithms are based on standard interior-point methods for
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solving eq. (16)
Download link: http://www.acm.caltech.edu/l1magic/

The above mentioned toolboxes are all written in Matlab c©. Based on the experimental com-
parison with application to pan-sharpening, the toolboxes provide comparable estimation accu-
racy (Wang, 2011). cvx and SparseLab are recommended by the author. cvx is implemented for
complex numbers and has been used for tomographic reconstruction in this thesis. SparseLab
provides so far the best computational efficiency. Note that the above mentioned evaluation of
the toolboxes is based on the versions published in 2010.
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3 State of the art in tomographic SAR
The idea of tomographic imaging in radar was proposed in (Chan and Farhat, 1981) (Farhat
et al., 1984). This concept was introduced to SAR in (Piau, 1994) (Jakowatz and Thompson,
1995) (Homer et al., 1996) as a way of overcoming limitations of standard 2-D imaging by
achieving, similar to CAT, focused 3-D images. The first experiments were carried out in a
laboratory with ideal experimental conditions (Pasquali et al., 1995), by using spaceborne
systems (Gatelli et al., 1994) (She et al., 1999) and airborne systems (Reigber and Moreira,
2000). Since then, this technique has developed considerably. Research is mainly carried out 1)
to exploit the application field of TomoSAR and 2) to explore methodologies for tomographic
reconstruction. In this Chapter, the state of the art in tomographic SAR will be discussed by
following the aforementioned two tracks. In addition, current research on CS applied to radar
is discussed.

3.1 Applications of TomoSAR

TomoSAR intends to resolve the reflected power distribution along the elevation direction.
The potential future applications of TomoSAR span geology, glaciology, biomass estimation,
forestry, and detection of buried structures for archeology and civil applications. According to
the scattering mechanism, the coherent targets, i.e. the signal, to be resolved can be categorized
as discrete scatterers and volumetric scatterers. The reflected power of discrete scatterers can
be characterized by several δ-functions, i.e. the signal can be described by a deterministic model
with a few parameters. Volumetric scatterers have a continuous backscatter profile associated
with completely random scattering phases, i.e. the signal can only be described by stochastic
models. Furthermore, for space-borne SAR systems, the data stacks are built up by collecting
multi-pass SAR images, and hence any LOS motion of the scatterers has influence on the phase
and is coupled with the phase term caused by the elevation of the point. Therefore, another
important issue is to resolve discrete scatterers with motion.

3.1.1 TomoSAR for resolving discrete scatterers
The major interest of resolving discrete scatterers rises from the need of layover scatterer
separation in urban environment. For this purpose, TomoSAR has been applied to C-band ERS
data of extended scenes over the Bay of Naples in (Fornaro et al., 2005), to TerraSAR-X data
over downtown Las Vegas in (Zhu et al., 2008) and to L-band airborne SAR data acquired by the
DLR’s experimental SAR (E-SAR) system over the city of Dresden in Germany in (Guillaso and
Reigber, 2005) (Sauer et al., 2009). In (Fornaro and Serafino, 2006) single and double scatterer
cases were separated at the same test-site as in (Fornaro et al., 2005). Another attempt to
separate layover scatterers can be found in (Ferretti et al., 2005) which extended the concept
of permanent scatterers to two scatterers inside a pixel. Due to the multi-pass nature of the
data acquisition, the application of pure 3-D tomographic SAR imaging (i.e. without taking
the motion into account) at spaceborne systems has been limited, however, the first attempts
of spaceborne TomoSAR could pave the way for resolving discrete scatterers with motion (see
section 3.1.4).

3.1.2 TomoSAR for imaging volumetric scatterers
Another important field of TomoSAR is to image volumetric scatterers. A typical target ap-
plication is sensing forest layer structure, height and biomass. Other potential applications are
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sensing ground topography, soil humidity and ice thickness. TomoSAR for imaging of the ver-
tical structure of forested terrain was investigation in (Reigber et al., 2000) (Lombardini and
Reigber, 2003). Imaging of targets hidden beneath the vegetation was demonstrated in (Nan-
nini et al., 2008). In (Frey et al., 2008), P-band tomographic SAR images of a larger forested
area (400 m × 1000 m) were presented for the first time. The sector interpolation method was
proposed for TomoSAR in (Lombardini et al., 2007) by exploiting a priori information about
the height sector containing the scatterers. An investigation into the minimal required number
of acquisitions required by using subspace methods was carried out in (Nannini et al., 2009).
Based on the Van Cittert-Zernike theorem (Van Cittert, 1934), a simple way to parameter-
ize imaging of the volumetric scatterers, the so-called coherence tomography, was proposed
in (Cloude, 2006) (Cloude, 2007). The basic idea is to localize volumetric scatterers based on
the estimated coherence.

3.1.3 TomoSAR for scatterer discrimination
Polarimetric SAR interferometry was proposed for scatterer discrimination in (Cloude and Pa-
pathanassiou, 1998) where a full polarimetric signal is decomposed into different orthogonal
scattering mechanisms within the SAR resolution pixel (e.g. double bounce at ground-trunk in-
terface and volume scattering in the canopy). Although interesting results have been achieved
in forested areas, elevation imaging is not possible in the presence of either more scatterers
with the same scattering mechanism or with more general distributed scattering mechanisms.
In (Reigber and Moreira, 2000) (Reigber et al., 2000), airborne polarimetric TomoSAR was
demonstrated using fully polarimetric L-band SAR data on the test-site of Oberpfaffenhofen
acquired by E-SAR where the Pauli-decomposition result was presented showing fully polari-
metric information from different scattering objects such as spruce forest, road, buildings, cars
and corner reflector. In (Cloude, 2006), polarization coherence tomography (PCT) was intro-
duced, which employs variation of the interferometric coherence with polarization to reconstruct
a vertical profile function (e.g. modeled as superposition of Legendre polynomials) in penetra-
ble volume scattering. More investigations of polarimetric TomoSAR can be found in (Guillaso
et al., 2003) (Guillaso and Reigber, 2005) (Sauer et al., 2009) (Tebaldini, 2010).

3.1.4 TomoSAR for resolving scatterers with motion
Resolving discrete scatterers with possible motion is also referred to as D-TomoSAR or 4-
D SAR focusing. The goal is not only to separate targets interfering in the same azimuth-
range pixel, but also to estimate their possible relative motion. It exploits the strength of
both TomoSAR (3-D SAR imaging) and PSI (long term motion monitoring). This concept was
proposed in (Lombardini, 2005) and applied to ERS real data in (Fornaro et al., 2009). The
extraction of time series of displacement for single and double interfering scatterers based on
the so-called velocity spectrum was presented in (Fornaro et al., 2009). In (Fornaro et al., 2010)
the application of 4-D imaging to a real data case using ERS data over the city of Rome was
presented. In (De Maio et al., 2009a) and (De Maio et al., 2009b) the problem of the detection
of single and double scatterers was addressed by presenting detectors based on the generalized
likelihood ratio test (GLRT). However, due to the lack of VHR SAR data, only PSI was able
to give some reasonable reconstruction of the structures and motion of buildings by selecting
the pixels containing only single scatterers. So far, tomographic reconstruction of the building
complex hasn’t been presented in the literature.
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3.2 TomoSAR algorithms

As depicted in section 2, since TomoSAR uses only a small angular diversity, instead of back
projection spectral estimation is sufficient in most cases. It makes numerous standard spec-
tral estimation resources applicable for tomographic SAR reconstruction. This section mainly
presents the spectral estimation methods with application to TomoSAR. In addition, back
projection methods are also addressed.

3.2.1 Spectral estimation methods
This section mainly discusses the classification of spectral estimators and gives an overview on
the most relevant methods with application to TomoSAR.
The standard spectral estimation methods can be classified as non-parametric methods (most of
the classic methods) and parametric methods (most of the modern methods): Non-parametric
methods make no assumption about the statistical properties of the received signals and simply
pass the data through a set of band-pass filters and measure the filter output powers; Para-
metric methods model the data as a sum of a few possibly damped sinusoids and estimate
their parameters (Stoica and Moses, 2005) (Li and Stoica, 2008). In general, parametric meth-
ods may offer better estimates if the data closely agrees with the assumed model, otherwise
nonparametric methods may be better.
With application to TomoSAR, the techniques can be further categorized as single-looking and
multi-looking methods. Single-looking methods are based on the stacked measurements of single
azimuth-range pixels and do not explore the correlation between the surrounding pixels. Multi-
looking methods require an estimation of the data covariance matrix Cgg which they take from
an ensemble average of the measurements at the surrounding pixels. Generally, multi-looking
methods obtain higher SNR and SR in elevation by sacrificing resolution in azimuth and range.
Note that all single-looking methods can be extended to multi-looks, e.g. by simply averaging
estimates of NL looks.
The most relevant spectral estimation algorithms, including the conventional beamforming
(BF), singular value decomposition (SVD), adaptive beamforming, multiple signal classification
(MUSIC), nonlinear least squares (NLS) and M-RELAX, are introduced in the following. The
description of the methods are based on single polarization TomoSAR. Their corresponding
extension to polarimetric TomoSAR was detailed in (Sauer, 2008).
• Conventional beamforming (BF)

Beamforming (Stoica and Moses, 1997) was the first algorithm to be used for solving the
layover problem (Pasquali et al., 1995). TomoSAR can be cast as an array signal processing
problem. In eq. (5), columns of R = [r1, r2, ..., rL] can be treated as steering vectors along
the elevation dimension and used for beamforming. To this end, the reflectivity along
elevation can be obtained by:

γ̂ = RHg (19)

It is simply an inverse Fourier transform applied to the irregularly sampled signals and
its magnitude is also named as periodogram. The name "beamforming" stands for the fact
that the reflected power at elevation position sl(l = 1, ..., L) can be estimated as:

|γ̂l|2 = |rH
Lg|2 (20)

Frequency (elevation) estimates correspond to the locations of the maxima of the |γ̂|2.
As a single-looking method, conventional beamforming is computational very efficient.
However, it has no SR capability. In addition, it has a severe and anomalous sidelobe
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problem caused by the irregular sampling. Further discussions of beamforming applied to
TomoSAR can be found in (She et al., 1999) (Lombardini et al., 2003) (Fornaro et al.,
2009).

• Singular value decomposition (SVD)
The SVD inversion framework has been described in (Fornaro et al., 2003). The discrete
reflectivity signal γ can be reconstructed from g through pseudo inversion of R, see eq. (5).
However, the solution may include significant noise propagation due to the ill-conditioned
nature of the problem. In particular, non-uniform track distribution exacerbates the ill-
conditioness. The SVD is a simple and valuable tool for analyzing image quality and the
amount of independent information about the unknowns which can be reliably retrieved
from observations in the presence of noise (Hansen, 1994). Consider now an estimate of γ
is obtained via the pseudo-inverse R†. Using the SVD, we get:

γ̂ = R†g =
N∑
n=1

σ−1
n

(
uH
ng
)

vn (21)

where the σn are the non-negative singular values (SVs) of R while the vectors un and vn
are the left and right singular vectors of R respectively. Due to the reciprocal of σn , noise
propagation caused by small SVs will compromise this solution and regularization tools
are required.
A well-known method to deal with an ill-conditioned matrix in eq. (21) is the truncated
singular value decomposition (TSVD) (Hansen, 1987). The basic idea of TSVD as well as
other regularization methods is to impose additional requirements on the solution, thus
hopefully damping the contributions from the errors of the right hand side of eq. (21). In the
case of TSVD this is achieved by discarding the components of the solution corresponding
to the smallest N − Q SVs. Here, Q is called "numerical rank" or "effective rank" of R
defined by the number of SVs greater than some noise level σε. The TSVD was implemented
in (Fornaro et al., 2003) for a TomoSAR experiment with 44 ERS acquisitions and robust
performance was achieved. However, from the perturbation theory for the TSVD (Hansen,
1987), it is a stable method only for problems with a well-determined numerical rank.
For Gaussian stationary white measurement noise, i.e. Cεε = σ2

εI, and a white prior, i.e.
Cγγ = I, transforming the maximum a posteriori (MAP) estimator of eq. (5) to the SV
space results in a soft thresholding, e.g. weighting the SVs according to their magnitudes,
also referred to as a Tikhonov regularization:

γ̂ =
(
RHC−1

εε R + C−1
γγ

)−1
RHC−1

εε g =
N∑
i=0

σi
σ2
i + σ2

ε

(
uH
i g
)

vi (22)

This type of weighting resembles the Wiener filter under white noise, and hence the method
is named SVD-Wiener in (Zhu, 2008). An experiment with 8 TerraSAR-X acquisitions was
carried out in (Zhu, 2008) where SVD-Wiener was demonstrated to provide more stable
performance especially for the case of few acquisitions.
In general, as a single-looking method, SVD based regularized inversion is computationally
efficient and is not sensitive to irregular sampling. Compared to beamforming, it shows
better sidelobe suppression and can provide slight SR.

• Adaptive beamforming (Capon)
Adaptive beamforming, also named Capon, was first proposed in (Capon, 1969) for array
processing of geo-seismic signals. Compared to conventional beamforming, Capon intro-
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duces self interference cancellation by weighting the steering vectors according to the co-
variance matrix Cgg. In practice, Cgg is estimated from multi-looking measurements with
NL looks. Let us assume the measurement vector for the nlth look is gnl

, nl = 1, · · ·NL.
Cgg is estimated by:

Ĉgg = 1
NL

NL∑
nl=1

(gnl
gH
nl

) (23)

Then, the reflected power at elevation position sl (l = 1, ..., L) can be estimated as:

|γ̂l|2 = 1
rH
l Ĉ−1

gg rl
(24)

Capon was first applied to TomoSAR in (Lombardini et al., 2001). Thanks to self-
cancellation, Capon has better performance regarding elevation resolution and sidelobe
suppression compared to beamforming. However, the self-cancellation may also be critical
when the steering vectors mismatch to the position range of the scatterers, phase noise is
too severe (this is particularly critical with application to TomoSAR since the unmodelled
motion often leads to severe phase errors) or the number of looks is too small (like
all other multi-looking methods) (Stoica and Moses, 1997). In addition, Capon is not
radiometrically correct.

• Multiple Signal Classification (MUSIC)
MUSIC is a model-based spectral estimator introduced in (Bienvenu, 1979) (Schmidt,
1979) for signals buried in white noise. It is a subspace-based technique which decomposes
the covariance matrix Cgg into its eigenvalues and eigenvectors and analyzes their proper-
ties (Stoica and Arye, 1989) (Stoica and Cedervall, 2002). As a first step, Cgg is estimated
by (23) and the eigenvalue decomposition of Ĉgg is performed. The number of scatterers
K is either given as priori or can be roughly estimated from the number of significant
eigenvalues. The noise subspace Ĝ, i.e. orthogonal to the signal space, can be determined
by the N −K eigenvectors corresponding to the N −K smallest eigenvalues. Therefore,
the "pseudospectrum" at elevation position sl (l = 1, ..., L) can be estimated as:

|γ̂l|2MU = 1
rH
l ĜĜHrl

(25)

The K elevations are determined as the locations of the K highest peaks of the MUSIC
spectrum |γ̂|2MU . Note the MUSIC spectrum is not the real reflected power, hence, MUSIC
is not radiometrically correct.
MUSIC was first introduced for TomoSAR in (Gini and Lombardini, 2002). It has been
further addressed in (Lombardini et al., 2001) (Gini and Lombardini, 2005) (Guillaso and
Reigber, 2005) (Nannini et al., 2008) (Sauer et al., 2009). In general, MUSIC provides
better resolution and lower sidelobes than beamforming and Capon. It was pointed out
in (Stoica and Arye, 1989) that MUSIC possesses good performance for uncorrelated
signals, i.e. the rank of the signal subspace is equal to the number of scatterers K, whereas
the estimation precision deteriorates significantly when the signals are highly correlated.
For correlated signals, a modified version of MUSIC can be found in (Stoica and Moses,
1990).

• Nonlinear least squares (NLS)
Assuming the presence of K scatterers inside a pixel with elevations of s = [s1, ..., sK ] and
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complex-valued reflectivity γ̂(s), the under-determined system model (5) reduces to the
following over-determined problem:

g = R(s)γ(s) + ε (26)

where the N × K matrix R(s) depends on the unknown elevations of the scatterers s
with the element Rnk = exp (−j2πξnsk). Eq. (26) is linear in amplitude and nonlinear in
elevation. The least squares error can be minimized with respect to a given γ(s) in a closed
analytic form. Thus, the main issue is to determine the unknown elevations where a K
dimensional search is needed (for differential TomoSAR, an additional search for velocity
is required). The optimum estimate γ̂(ŝ) is found to be (Stoica and Moses, 2005):

γ̂(ŝ) = arg min
γ(s)

{
‖g−R(s)γ(s)‖2

2

}
. (27)

For Gaussian white noise, NLS is identical to the maximum likelihood estimator (MLE).
It is therefore theoretically the best estimator for our application if and only if the data
closely agree with the assumed model. Therefore, in order to avoid model error, the NLS
estimator has been associated to a model selection step in (Zhu, 2008) for determining
the most likely true model. NLS was first applied for layover separation in (Ferretti
et al., 2005) and the result of NLS (together with model selection) was considered as a
performance reference for other estimators in (Zhu, 2008). Due to the large computational
effort to the multi-dimensional search, the NP-hard NLS is not recommended for practical
data processing.

• M-RELAX
M-RELAX was proposed in (Li and Stoica, 1996) as a more computationally efficient
approximation of NLS. The basic idea is, instead of a K-dimensional search, a one-
dimensional search is performed K times. After each iteration step, the dominating com-
ponent is subtracted from the measurements and new measurements are obtained. It can
provide generally higher estimation precision than MUSIC, especially in low SNR. How-
ever, it will break down if there are two closely spacing scatterers sharing comparable
amplitudes. In this case, a one-dimensional search may lead to a wrongly located max-
ima. M-RELAX for TomoSAR are addressed in (Gini and Lombardini, 2002) (Lombardini
et al., 2003).

The characteristics of the above mentioned spectral estimation methods with application to
TomoSAR are summarized in Table 1 regarding the computational cost, parametric or non-
parametric, single-look or multi-looking, estimation accuracy in case of multiple scatterers (in
the presence of only single scatterers, all above mentioned methods can give an accurate pa-
rameter estimation), elevation resolution and the risk of incorrect elevation estimates.

In general, depending on the application, different methods are recommended, e.g. for resolving
discrete scatterers with or without motion in urban environment, it is very important to main-
tain the azimuth-range resolution to observe the inherent scale of urban infrastructure, and
hence single-looking methods are recommended. It is recommended to use SVD or M-RELAX
for medium resolution applications. For high resolution applications, NLS can provide excellent
performance, however, the large computational cost renders it impractical. This confirms that
new TomoSAR algorithms are required for high resolution applications in urban environments
and this is one of the objectives of this thesis.
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3.2.2 Back projection methods
As mentioned, spectral estimation is only applicable for large range distances and small angular
diversities. If this is not the case back projection should be applied. Frequency domain back
projection was applied to TomoSAR in (Reigber and Moreira, 2000) (Nannini and Scheiber,
2007). A time domain back projection (TDBP) was proposed in (Frey et al., 2008) which
can cope with irregular sampling without introducing any approximation with respect to the
geometry.

Computati- Para- Multi- Accuracy - Elevation Risk of

Method -onal cost -metric -look multiple resolution incorrect

scatterers elevation

estimation

BF low no no low low medium

SVD low-medium no no medium low-medium low

Capon medium-high no yes high medium medium

MUSIC high yes yes high high medium

NLS+MS Very high yes no very high very high low

M-RELAX medium yes no high high high

Table 1. Summary of spectral estimation methods with application to TomoSAR

3.3 State of the art on compressive sensing applied to
radar

The potential of compressive sensing in radar lies in applications where signals are compress-
ible or sparse. Since CS is a relatively new technique, there is little literature that addresses
compressive sensing applied to radar.
(Baraniuk and Steeghs, 2007), one of the first publications on CS-radar, demonstrated that
one can eliminate the matched filter in the radar receiver and lower the receiver A/D converter
bandwidth using CS principles. (Bhattacharya et al., 2007) proposed the use of the CS frame-
work for fast compression of SAR raw data to ease the computational requirements of satellite
onboard processing. In (Herman and Strohmer, 2009), a "stylized" compressed sensing radar,
which transmits a sufficiently incoherent pulse and employs the techniques of compressive sens-
ing to reconstruct the target scene was proposed. With application to wide-angle SAR, (Varsh-
ney et al., 2008) addressed a graph-structured sparse signal representation algorithm for over-
complete dictionaries that can be decomposed into sub-dictionaries with dictionary elements
arranged in a hierarchy. (Berger et al., 2008a), (Xie and Zhang, 2010), (Berger et al., 2008b)
and (Shastry et al., 2010) discussed the possible use of CS in passive radar, ground-based radar
and MIMO radar, and ultra-wide band stochastic waveform radar respectively. (Ender, 2010) is
an interesting review article about CS applied to radar, including potential applications of pulse
compression, radar imaging, and airspace surveillance with array antennas. (Smith et al., 2010)
presented a study of how the analogue-to-digital converter sampling rate in a digital radar can
be reduced—without a reduction in waveform bandwidth—through the use of CS. In (Zhang
et al., 2009), CS was applied to inverse SAR and CS was demonstrated to outperform the con-
ventional range-Doppler approach in resolution. A first attempt to use CS for TomoSAR was
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presented in (Budillon et al., 2009) using simulated data and followed by a practical experiment
using ERS data in (Budillon et al., 2011). However, since medium resolution SAR data does
not possess a sparse representation in elevation, the achievable SR is strongly limited.
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4 Summary of the work
The four objectives, including one general and three methodology objectives, mentioned in
Chapter 1 are addressed in six peer-reviewed journal articles by the author (four as the first au-
thor, two as co-author). This chapter gives a brief summary of the articles (see the Appendices)
including the following four main contributions:
• A first demonstration of VHR TomoSAR and D-TomoSAR with 3-D and 4-D reconstruc-

tions of an entire city area using TerraSAR-X spotlight data is presented in section 4.1
(see also A.1 – A.3);
• Considering the sparsity of the signal in the elevation direction, a CS based algorithm

(SL1MMER) is proposed in section 4.2 for sparse tomographic SAR reconstruction (see
also A.4);
• A detailed systematic performance assessment is presented in section 4.3 regarding to

elevation estimation accuracy, SR power and the required minimum number of acquisitions
for robust reconstruction (see also A.5);
• To cope with the nonlinear motion problem, the time warp method is proposed in sec-

tion 4.4 for multi-component nonlinear motion estimation and a real data example is
provided where coupled linear and seasonal motion are separated (see also A.6).

Beyond what is presented in these journal papers, new tomographic SAR inversion processing
results of the entire high rise city area will be presented in this Chapter.

4.1 VHR TomoSAR and D-TomoSAR

In A.1 – A.3, the tomographic potential of VHR SARs and the achievable quality on the basis of
TerraSAR-X spotlight data of urban environments are demonstrated by presenting the first 3-D
and 4-D tomographic reconstructions of an entire building complex (incl. its radar reflectivity)
with a very high level of detail using a modified version of the conventional SVD method, called
SVD-Wiener (equivalent to a MAP linear estimator). Beyond the first demonstration presented
in A.2, a reconstruction of the entire city area shown in Fig. 1 will be presented in this section.
The stack used in this thesis consists of 60 TerraSAR-X spotlight images with a slant-range
resolution of 0.6 m and an azimuth resolution of 1.1 m covering a time period of more than
2 years, from February 2008 to June 2010, over downtown Las Vegas. The pre-processing in-
cluding atmospheric phase screen (APS) correction is performed by German Aerospace Center
(DLR) PSI-GENESIS system on a PS network of high-SNR pixels containing only single scat-
terers (Adam et al., 2008). Fig. 13 illustrates the elevation aperture positions and temporal
baselines relative to the master image acquired on April 17, 2009. During different time periods
this test site undergoes different deformations which will be detailed in section 4.4. Therefore,
the whole stack is divided into an "asterisk" sub-stack and a "diamond" sub-stack as shown in
Fig. 13. In this experiment, only the "asterisk" sub-stack consisting of 30 images is used with
an elevation aperture size of about 269.5 m. For non-parametric spectral analysis, this results
in an elevation resolution of ρs = 40.5 m, i.e. approximately 20 m resolution in height with the
elevation-to-height factor sin θ, where θ is the incidence angle of 31.8 degrees here.
The whole area is processed using the non-parametric SVD-Wiener algorithm described in A.2
followed by model order selection. The model order is limited to zero, one or two scatterers inside
one azimuth-range pixel. As detailed in A.2, by using the conventional D-TomoSAR system
model, this would result in a number of scatterers map and elevation and LOS linear deformation
velocity for each of the detected (single and double) scatterers, respectively. However, according
to the evidence in A.3, within the period of monitoring, rather than linear, a seasonal motion
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Figure 13. Left: Elevation aperture sampling positions of the 60 acquisitions. Right: spatial-temporal baseline distribution
(asterisks: sub-stack with seasonal motion only; diamonds: sub-stack with seasonal and linear motion.).

caused by thermal dilation dominates here, and hence the mean velocity is only in part able to
explain this movement. To cope with the single-, and even multi-component nonlinear motion
estimation problem, a time warp method is proposed in section 4.4 where the corresponding
motion estimates will be detailed. In this section, only the following results are presented:
• Number of scatterers map

Fig. 14 is the estimated number of scatterers map of the test area where blue indicates
that no scatterer is detected in the analyzed azimuth-range pixel, green indicates that one
(the so called "single scatterer") and red indicates that two scatterers (the so called "double
scatterers", i.e. layover) are detected. It is obvious that the denser layovered pixels (colored
by red) are located in the high rise areas.
• Single scatterer analysis

Fig. 15 presents the topography estimates (in meters) of the detected single scatterers.
Except for the layover areas, the full structure of the high rise city area is captured at a
very detailed level. Besides the buildings, more detail such as the roads which have weak
but correlated returns are well resolved.
• Double scatterers analysis

Fig. 16 and 17 are associated with the topography estimates of the ground and top
layer extracted from double scatterer results, respectively. These figures demonstrate
the capability of the tomographic approach to separate the interfering layers associ-
ated with ground infrastructure and the façade of the building. Its effectiveness in
resolving layover resolving is particularly evident in the homogeneity of the ground
scatterers layer colored blue, and the smooth gradation of colors on the layer corre-
sponding to the building façade. The high density of detected double scatterers should
be noticed which complete the structures of individual high rise buildings shown in Fig. 15.

Fig. 18 gives an overview of the ultimate information exploration achieved by TomoSAR by
combining the topographic estimates of the detected single and double scatterers. The full
structure of the layovered high rise buildings is now retrieved. A zoom into the Bellagio hotel
of the aforementioned results is presented in Fig. 19 – 20. For an individual building, e.g. the
skyscraper on the right, a considerable amount of double scatterers of up to 20% is detected.
This confirms the results with medium resolution SAR data in (Adam et al., 2005) and demon-
strates the necessity of tomographic reconstruction for urban infrastructure monitoring (for
more detail, see A.3).
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Figure 14. Results of model order selection: Number of scatterers map of the test area. Blue: zero scatterer inside the
azimuth-range pixel; green: one scatterer inside the pixel; red: two scatterers inside the pixel. For the mean intensity
image, see Fig. 1.

Figure 15. Topography estimates of the detected single scatterers [unit: meters].
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Figure 16. Topography estimates of the separated double scatterers - one of the two from the building façade [unit:
meters].

Figure 17. Topography estimates of the separated double scatterers - one of the two from the ground structures [unit:
meters].
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Figure 18. Completed information by adding the information of the layover area: topography estimates of the detected
single and double scatterers [unit: meters]. Cf. Fig. 15. For double scatterers the higher one (façade) is displayed.

(a) Detected single scatterers (b) Detected single and double scatterers

Figure 19. Information increment by adding the information of the layover area: Zoom into the Bellagio hotel area [unit:
meters].
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(a) Building façade (b) Ground structures

Figure 20. Topography estimates of the separated double scatterers: Zoom into the Bellagio hotel area [unit: meters].
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4.2 Sparse tomographic SAR reconstruction — the
SL1MMER algorithm

The previous section demonstrated that VHR TomoSAR and D-TomoSAR can provide a very
detailed view of individual buildings and therefore enable 3-D and 4-D SAR imaging in urban
areas. However, due to the tight orbit tube of TerraSAR-X the elevation aperture is small, i.e.
the inherent resolution in elevation is about 50 times worse than in azimuth or range. This
extreme anisotropy calls for SR algorithms in the elevation direction. In order to maintain the
azimuth-range resolution for urban infrastructure imaging, these algorithms should not require
averaging in azimuth and range.
This section summarizes the work in A.4 and partially in A.5, in which:

- The sparsity of the VHR SAR data in elevation is explored;
- CS for TomoSAR is outlined. By comparing it with parametric (NLS) and non-parametric
(SVD-Wiener) reconstruction methods, the pros (e.g. SR properties and high point lo-
calization accuracy) and cons (e.g. outliers and biased reflectivity estimates) of CS for
TomoSAR are discussed using simulations and real data;

- A CS based algorithm (SL1MMER) is proposed which improves the CS algorithm and gives
reliable estimation of the number of scatterers, elevation, motion parameter, amplitude and
phase of each scatterer.

4.2.1 Sparse representation of the signal in elevation
In VHR X-band data, for one azimuth-range cell, the following signal contributions are expected
(see Fig. 21) (Zhu and Bamler, 2009):

- Weak diffuse scattering from—mostly horizontal or vertical —rough surfaces (roads, build-
ing walls). These contributions have an elevation extent of ρr/ tanθ for horizontal and
ρr · tan θ for vertical surfaces. In both cases these extents are much smaller than the el-
evation resolution ρs, and hence these surfaces can be treated as discrete scatterers in
elevation (delta-functions).

- Strong returns from metallic structures or specular and dihedral or trihedral reflections.
These are points that would also be used in PSI. They are the dominating signal contri-
butions. With VHR SAR data the density of these points can be very high (Bamler et al.,
2009) (Gernhardt et al., 2010).

- Returns from volumetric scatterers, e.g. from vegetation. These may result in a continuous
signal background in elevation. These ensembles of scatterers, however, often decorrelate
in time, and their response is therefore treated as noise.

The noise sources are the following:
- Gaussian noise which is caused by thermal noise and the above mentioned temporal decor-
relation.

- Calibration errors in amplitude. According to an unpublished DLR-internal calibration
report (Buckreuss, 2009), the radiometric stability of TerraSAR-X, i.e. the amplitude vari-
ations within one stack, is 0.14 dB and is therefore negligible compared to the typical
SNR.

- Phase errors caused by atmospheric delay and unmodelled motion. They require robust
and phase error tolerant estimation methods.

As a consequence, the high anisotropy of the 3-D tomographic resolution element together with
the fact that thick volumetric scatterers tend to temporarily decorrelate in X-band renders the
signals sparse in the elevation direction, i.e. only a few (typically 0 − 4) point-like reflections
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Figure 21. Possible signal contributions within one azimuth - range cell: The sparse representation of signal in elevation.

along elevation of unknown positions and unknown amplitudes and phases are expected per
azimuth-range pixel. As the central concept of and a prerequisite for CS this property suggests
using sparse reconstruction methods for tomographic SAR inversion.

4.2.2 SL1MMER — a compressive sensing based algorithm
The proposed CS-based TomoSAR spectral estimation algorithm is named "Scale-down by L1
norm Minimization, Model selection, and Estimation Reconstruction" (SL1MMER, pronounced
"slimmer"). It consists of three main steps: 1) a dimensionality scale-down by L1 norm minimiza-
tion, 2) model selection and 3) linear parameter estimation (see Fig. 22). Note that although
the SL1MMER algorithm was originally implemented for differential TomoSAR (D-TomoSAR),
in order to simplify the mathematics, the motion is neglected in the following introduction to
the algorithm.

1. Scale-down by L1 norm minimization

Since L� N , the system model eq. (5)

g = R γ + ε (28)

is severely under-determined. Hence, there are infinitely many solutions. Considering the spar-
sity of the signal in elevation (K = 0 ∼ 4), according to the CS theory described in section 2.2,
γ can be very well approximated by the solution with the least number of scatterers (non-zero
elements of γ), i.e. the minimal L0 norm. The required number of measurements depends mainly
on the sparsity K instead of the length of the signal L, i.e. N � O(K log(L/K)). In case there
is no prior knowledge about K and in the presence of measurement noise, the reconstruction
of γ with CS boils down to the L1- L2 norm minimization of eq. (15):

γ̂ = arg min
γ

{
‖g−Rγ‖2

2 + λK‖γ‖1
}

(29)
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Figure 22. Flow chart of the SL1MMER algorithm.

As described in section 2.2, eq. (29) gives the sparsest estimation of γ if (and only if) our
sparse mapping matrix R fulfills the RIP and incoherence properties. However, for our applica-
tion TomoSAR, RIP and incoherence are violated for several reasons. First the mapping matrix
R is pre-determined by the measurement system (the elevation aperture sampling pattern) and
may not be optimum. Second, the profile γ(s) to be reconstructed is often sampled much more
densely than the elevation resolution unit ρs in order to allow for good resolution and scat-
terer positioning accuracy. The small sampling distance renders R over-complete, reduces RIP
and increases coherence. This fact may introduce outliers in the estimated γ̂ (see section 2.2,
Fig. 11). In addition, as detailed in section 2.2, the L1 approximation introduces systematic
amplitude biases. Those artifacts are not critical when the aim is only to reconstruct a reason-
able reflectivity profile. However, high-quality sparse tomographic SAR inversion requires the
estimation of the number of scatterers, as well as the amplitude, phase, and elevation of each
scatterer. Hence, special care must be taken of these nuisance artifacts.
Nonetheless, CS plays a perfect role for dimensionality reduction as it gives a robust estimate
of the plausible positions of the scatterers. By only selecting columns corresponding to the non-
zero elements of γ̂, R is scaled down significantly. It renders the severely under-determined
system model finally over-determined (see Fig. 23.a).

2. Model selection

Step 1 shrinks R dramatically and gives a first sparse estimate of γ. This estimate, though, may
still contain the aforementioned outliers (Fig. 11) and, hence, the sparsity K (i.e. the number
of the scatterers) is often overestimated. Model selection is used to clean the γ estimate of
spurious, non-significant scatterers and to finally obtain the most likely number of scatterers
K̂ inside the azimuth-range pixel (Zhu et al., 2009). It provides a trade-off between the model
complexity and the model fit.
The model complexity can be described by the number of parameters k. In our case k = 3K
because each scatterer is characterized by three parameters (amplitude, phase, and elevation)
(or 4K for D-TomoSAR by adding an additional motion parameter). Let further θ(K) be the
vector of the unknown amplitudes, phases, and elevations for all K scatterers. The goodness
of model fit can be described by the likelihood p(g|θ(K), K). A more complex model always
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(a) Step 1: Scale-down of the underdetermined linear system by L1 norm
minimization. A sparse estimate γ̂ is obtained by eq. (29)(colored elements).
Among them there might be outliers (two gray elements with arrows). The
sparse mapping matrix R is scaled down dramatically by choosing its columns
corresponding to the non-zero elements of γ̂, i.e. the colored columns.
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(b) Step 2: Model selection. The outliers are removed and the number of the scatterers K is estimated.
By choosing those K̂ columns from R, the final mapping matrix R(̂s) is obtained.
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(c) Step 3: Final parameter estimation. The amplitude and phase, i.e. complex-valued
reflectivity of the K̂ scatterers are estimated from the aforementioned system.

Figure 23. Graphic illustration: The basic idea of SL1MMER

fits the observations better, hence, for selecting the true model, the model complexity must
be penalized to avoid over-fitting of the data. This is the main concept of penalized likelihood
criteria. They have the following general form (Bozdogan, 1987) (Hansen and Yu, 2001):

K̂ = arg min
K

{
−2 ln p

(
g|θ̂(K), K

)
+ 2C(K)

}
(30)

where C(K) is the complexity penalty. Note that for stationary white Gaussian measurement
noise, with covariance matrix Cεε = σ2

εI, the log-likelihood term is simply:

−2 ln p
(
g|θ̂(K), K

)
= σ2

ε ‖g−Rγ̂‖2
2 (31)

Many types of penalty terms are proposed in the literature, e.g. Bayesian information criterion
(BIC) (Burnham and Anderson, 2004), Akaike information criterion (AIC) (Schwarz, 1978),
and minimum description length (MDL) (Rissanen, 1978). As illustrated in Fig. 22, for each
model assumption K = 0, . . . , 4, the elevations are given by the previous scale-down step,
thus, the amplitudes and phases can be easily obtained by linear least-squares estimation. The
preferred number of scatterers K̂ inside an azimuth-range pixel is finally the one with the lowest
penalized likelihood criterion value according to (30) (see Fig. 23.b). Implementation details of
different model selection schemes for VHR TomoSAR are addressed in (Zhu et al., 2009).
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Figure 24. Simulation scenario: Two scatterers inside one resolution cell (one from the building façade and another from
the ground).

3. Parameter estimation

As a last refinement, a much slimmer mapping matrix R(̂s), i.e. the N × K̂ matrix with
Rn,k̂ (̂s) = exp(−j2πξnŝk), is built up, and the final complex-valued reflectivity γ (̂s) for the K̂
scatterer is obtained by solving the following over-determined linear system equation:

g = R(̂s) γ (̂s) + e (32)

where e combines the measurement noise and the model error, i.e. the deviation from sparsity
or unmodelled motion-induced phase terms (in the D-TomoSAR case). The sparse reflectivity
profile γ̂ (̂s) is finally found by standard least-squares estimation (see Fig. 23.c):

γ̂ (̂s) =
(
RH (̂s) R (̂s)

)−1
RH (̂s) g (33)

By introducing model selection (30) and refinement of the parameter estimation eq. (33),
SL1MMER combines the advantages of CS with the amplitude and phase accuracy of linear
estimators. As demonstrated in A.4 and A.5, compared to non-parametric and fully parametric
L2-norm methods, SL1MMER (Zhu and Bamler, 2010b) (Zhu and Bamler, 2010a):

- Is more robust than NLS parametric methods with respect to unmodelled phase errors and
does not suffer from self-cancellation artifacts, like CAPON (Capon, 1969) (Lombardini
and Reigber, 2003);

- Approaches the elevation estimation accuracy of NLS (i.e. the CRLB) under Gaussian
noise for two interfering scatterers;

- Is computationally more efficient than NLS;
- Requires no prior knowledge about the number of scatterers K;
- Provides amplitude and phase estimation accuracy approaching the CRLB;
- Can particularly achieve substantial SR in elevation while maintaining the full azimuth-
range resolution.

Here, an inductive simulation example is provided to show the SR of SL1MMER. Since multiple
scatterers inside an azimuth-range pixel most likely occurs in high rise urban areas, the situation



4.2 Sparse tomographic SAR reconstruction — the SL1MMER algorithm 45

(a) δs = 1.8ρs

(b) δs = 0.8ρs

(c) δs = 0.4ρs

Figure 25. Comparison of the reconstructed reflectivity profiles along elevation direction between SVD-Wiener and
SL1MMER under a SNR of 10dB. Red solid line: SVD-Wiener; Blue solid line: SL1MMER. (a): δs = 1.8ρs; (b): δs = 0.8ρs;
(c): δs = 0.4ρs.
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that two scatterers inside one pixel (one point scatter from the building façade and another
rough surface reflection from the ground, see the simulation scenario in Fig. 24) is simulated
using the elevation aperture distribution of the asterisk sub-stack in Fig. 13 (elevation resolution
ρs = 40.5 m, N = 30). The building is assumed to have a height of 40 m which results in a
maximum elevation extent of ∆s = 80 m ≈ 2ρs by assuming an incidence angle of 30o. The
decorrelation effect is introduced by adding Gaussian noise with a SNR of 10 dB. A perfect
TomoSAR algorithm should always be able to separate the contributions from the building
façade (elevation varying from 0 to 80 m) and the ground (zero elevation) even with a very
small distance. Assuming the two scatterers have the same amplitude and phase, Fig. 25 shows
a comparison of the reconstructed reflectivity profiles along the elevation direction using SVD-
Wiener (red) and SL1MMER (blue). Red lines represent the reconstruction using the non-
parametric method SVD-Wiener. Blue lines show the same result using SL1MMER. Starting
with two scatterers with elevation of 0 and 72.9 m, i.e. the distance δs = 1.8ρs, as shown in
Fig. 25.a, SL1MMER reconstructs spectral lines instead of sinc-like point response functions.
Both methods can distinguish the two scatterers well. However, with increasing range, once
the scatterers move closer into one elevation resolution cell with elevations of 0 and 32.4 m
(Fig. 25.b), i.e. δs = 0.8ρs, SVD-Wiener is no longer able to distinguish them while CS detects
very clearly two spectral lines with even closer scatterers, e.g. with a distance of 0.4ρs (see
Fig. 25.c). In A.4, the reflectivity profile in elevation is reconstructed for each "range pixel"
along the LOS direction using SL1MMER, SVD-Wiener and NLS. The comparison reveals that
SL1MMER provides a SR capability comparable to the parametric NLS estimator (see A.4 for
more details).

4.3 Systematic performance assessment of SL1MMER

The results shown in Fig. 25 lead naturally to the question of what the limits of the technique
are. Therefore, a systematic performance assessment of the proposed SL1MMER algorithm is
performed in A.5 concerning the following questions:

- How accurately can the positions of two closely spaced scatterers be estimated?
- What is the closest distance of two scatterers, such that they can be separated with a
detection rate of 50% at given N · SNR and amplitude ratio with a uniformly distributed
phase difference?

- How many acquisitions N are required for robust estimation? We define "robustness" as
the capability of separating two scatterers spaced by one Rayleigh resolution unit with a
probability of 90%.

Without going too much into detail, this section summarizes the findings in A.5.
- Compared to the CRLB, both numerical results and an analytic approximation of the
elevation estimation accuracy are provided in section 4.3.1.

- The SR factors are found by extensive simulations, and an easy-to-use polynomial approx-
imation is provided in section 4.3.2. Although TomoSAR has been taken as the preferred
application, the findings on SR in A.5 are generally applicable to sparse spectral estima-
tion, including SR SAR focusing of point-like objects. In addition, the results in A.5 are
approximately applicable to NLS estimation, and hence establish a fundamental bound for
SR of spectral estimators.

- The conditions for ensuring 90% detection rate of two scatterers with a distance of ρs(α =
1) are given in section 4.3.3 by explicit formulas.

Note that the BIC penalized likelihood criterion with a penalty term C(K) = 0.5 k lnN =
1.5K lnN is used throughout the investigation in all algorithms, i.e. the subsequent comparison
is independent of the model selection scheme.
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4.3.1 Location estimation accuracy
In the case of single scatterers, the location estimation accuracy of the SL1MMER algorithm is
investigated in A.4 under circular Gaussian noise and non-Gaussian phase noise. It is demon-
strated that the location (elevation) estimation accuracy of SL1MMER approaches the CRLB
under Gaussian noise and is superior than NLS under non-Gaussian phase noise. In this section,
the investigation will be focused on the case that two scatterers within one (azimuth-range)
pixel interfere with each other.
Assuming two scatterers at elevation positions s1 and s2 with amplitudes a1 and a2 and phases
ϕ1 and ϕ2, the unknown parameter vector can be written as θ= [ a1 ϕ1 s1 a2 ϕ2 s2 ]. In A.5,
the CRLB for location estimation errors, i.e. σs1 and σs2 , are derived by taking the inverse of
the Fisher information matrix J. For the sequel the elevation estimation error is split into two
contributions:

σsq = c0 · σsq ,0 (34)

where σsq ,0 is the CRLB of the elevation estimates of the qth scatterer in the absence of the other
one and c0 is the essential interference correction factor for closely spaced scatterers. Among
them:

σsq ,0 = λr0

4π
√

2 ·
√
N · SNRq · σb

(35)

σb is the standard deviation of the elevation aperture sample positions. For uniformly distributed
baselines (randomly or equidistantly spaced) bn and σsq ,0 can be related to the elevation reso-
lution ρs by:

σsq ,0 =

√
3/2
π

ρs
N · SNRq

≈ 0.39
N · SNRq

ρs (36)

In Fig. 26 we plot σsq ,0 normalized to the Rayleigh resolution unit ρs, as a function of N ·SNRq

to explore its impact on estimation accuracy where σsq ,0 follows exactly a −0.5 power law.
In the most relevant parameter range, i.e. N = 10, . . . , 100 and SNR = 0, . . . , 10dB, the
elevation estimation accuracy of a single scatterer is on the order of roughly 1/100 to 1/10 of
the resolution unit.
For the subsequent discussion only the impact of the normalized CRLB will be considered:

c0 = σs
σs,0

(37)

The dependency factors on c0 are systematically investigated in A.5. For a fixed elevation
aperture, c0 is almost independent of N and SNR, instead, it depends on the normalized
distance α (distance divided by ρs), the number of samples N (for very small N only) and the
phase difference ∆ϕ.
• Dependency on α

If the two scatterers are separated by much more than one Rayleigh resolution unit,
i.e. α � 1, their elevation estimation accuracy is the one of individual scatterers, i.e. c0
approaches 1. The closer they move, the more they interfere and the larger their elevation
estimation error becomes, i.e. c0 > 1.
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Figure 26. CRLB σs,0 of the elevation estimation accuracy of a single scatterer, normalized to the elevation resolution,
as a function of N · SNR.

• Dependency on N

Besides the N · SNRq term in eq. (35), for small N , c0 has a non-negligible additional
dependency on N . For the elevation estimation accuracy and super-resolution study, we
will neglect this effect and all experiments are based on sufficiently large N , e.g. N > 15.
The situation of small N will be discussed in section 4.3.3.

• Dependency on ∆ϕ
The phase difference ∆ϕ affects c0 with a period of π. The closer the two scatterers are,
i.e. the smaller α, the more pronounced is the dependence on their phase difference. For
α < 1, the effect of ∆ϕ is very significant. For ∆ϕ = 0, and π, the two scatterers interfere
with each other the most.

Since for the SR study the case of small α is particularly of interest, the impact of ∆ϕ must be
considered. For TomoSAR, the phase difference ∆ϕ is totally random because it depends on
the unknown geometric configuration. Hence, the CRLB for the elevation estimation error is
calculated by integrating the variances over ∆ϕ. The resulting dependence can be approximated
by the following analytic expression:

c2
0 = σ2

s

σ2
s,0
≈ max

{
2.57(α−1.5 − 0.11)2 + 0.62, 1

}
(38)

It fits the CRLB in this range of α slightly better than the approximation derived in (Swingler,
1993), c2

0 = max {(15/π2)2.5α−3, 1}. The square-root of the normalized CRLB variance inte-
grated over ∆ϕ as a function of α is plotted in Fig. 27 together with the approximation eq. (38)
from the author. The dependency on α−1.5 can be clearly observed. The normalized standard
deviation of elevation estimates for two interfering scatterers using NLS and SL1MMER as a
function of α is also shown in Fig. 27. These have been obtained by simulations with randomly
distributed phase differences. The elevation estimation accuracy of SL1MMER approaches the
CRLB and is comparable to NLS. For the leftmost experiment point, i.e. for α = 0.47, NLS and
SL1MMER appear to have a better accuracy than the CRLB. This is caused by the fact that
we always assume that the two closely spaced scatterers never exchange their positions which
is not valid when moving the two scatterers closer such that the standard deviation increases
and reaches the order of the distance between them.
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Figure 27. Theory vs. approximation vs. experiments: Normalized CRLB c0 of the elevation estimation accuracy of two
interfering scatterers integrated over ∆ϕ as a function of their normalized distance α.
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Figure 28. Super resolution is a detection problem. H0: zero or only one scatterer inside the given azimuth-range cell; H1:
two scatterers inside the given azimuth-range cell. The detection rate depends on SNR, number of samples N , elevation
resolution ρs, the distance between the two scatterers δs, the amplitude ratio a1/a2 and the phase difference between
the two scatterers ∆ϕ.

4.3.2 Super-resolution power
Nonlinear and parametric spectral estimation methods yield reconstructions with much sharper
point responses than traditional non-parametric linear algorithms. One might be tempted to
infer a very high resolution power from this narrow point response width. However, the needle-
like responses tell us neither the location accuracy of the individual points nor the ability of
the algorithm to resolve two close scatterers.

In A.5, the (elevation) resolution is defined by the minimum distance ρPD
between two δ-
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functions (scatterers) that are separable at a given SNR with a certain N , and at a pre-
specified probability of detection PD. Throughout this section ρPD

is normalized to the Rayleigh
resolution unit ρs. The SR factor κPD

is defined by:

κPD
= ρs
ρPD

(39)

It depends on the required detection rate PD and is larger than unity for SR. In this section,
the SR power for different N , SNR, as well as amplitude ratios and relative phase differences
∆ϕ of the two scatterers are investigated.

The problem of resolution can be regarded as a hypothesis test with the two hypotheses
(Fig. 28):

H0: zero or only one scatterer inside the cell;
H1: two scatterers inside the cell.

The goal is to derive the SR power of an estimator that provides location, amplitude and phase
of each scatterer. Since it is very complicated to find a theory supporting all possible situations,
the problem is approached experimentally. Starting with an example of detecting two scatterers
with the same amplitudes and phases by using N = 25 regularly sampled acquisitions, Fig. 28
shows the detection rate PD as a function of normalized distance α at different SNR levels using
SL1MMER (red), NLS (green) and maxima detection (blue). Maxima detection (MD) means
SVD-Wiener linear reconstruction followed by model order selection (see A.2). The SNR of each
scatterer for the two sets of curves is 0 and 6 dB, respectively. It gives us several perspectives
of the problem:

- The Rayleigh resolution unit is rather a definition in the absence of noise since PD for MD
increases with SNR.

- NLS is identical to a MLE under Gaussian noise with large N and high SNR. Hence, it
should result in the highest detection rate if there is no a priori knowledge about the true
hypothesis. In Fig. 29, NLS gives an improved PD compared to MD. The detection rate
depends strongly on the N · SNR.

- The SR power of SL1MMER is slightly better than that of NLS. The better detection rate
is due to the implicit model selection of the algorithm which gives a prior knowledge about
the true hypothesis.

Due to the similarity between NLS and SL1MMER, all the following results are approximately
applicable to NLS as well and, hence, establish a fundamental limit for SR. It is pointed out
in A.5 that:

- The SR power of SL1MMER depends asymptotically on the product of N and SNR;
- Irregular sampling does not have a large impact on SR;
- The detection rate varies dramatically with ∆ϕ.

Without loss of generality, a regular sampling in the elevation aperture [−∆b,∆b]/2 is used in
the following examples.

Following the above mentioned dependency analysis, the SR factor κ50% is analyzed, which
indicates the center point of the detection curve. Since the phase difference ∆ϕ is a random
variable and has significant impact on detection rate, the detection rate curves are averaged
over ∆ϕ before finding the 50% point. The markers in Fig. 30 stand for κ50% = ρs/ρ50% from
the simulations for varying N ·SNR within the range of interest (10-30 dB) under different am-
plitude ratios. It says the achievable super-resolution factors in this range typical for TomoSAR
are promising and on the order of 1.5−25. For the readers’ convenience the experimental results
are fitted to the following polynomial expansion:
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Figure 29. Detection rate as a function of α using SL1MMER (dashed star), NLS (dashed circle) and MD (solid) with
SNR = 0/0dB and 6/6dB, N = 25 and ∆ϕ = 0 (worst case).

Figure 30. Super-resolution factor averaged over ∆ϕ as a function of N · SNR under different amplitude ratios a1/a2:
Experimental results (markers) vs. polynomial fitting (solid lines).

κ50%(N · SNR) =
5∑
i=1

cSR,i(N · SNR)i (40)

where cSR,i is the coefficient for the ith order term of N · SNR.

Table 2 lists the coefficients for different amplitude ratios a1/a2 and the solid lines in Fig. 30
illustrate the results of polynomial fitting. The results in Table 2 can be used as general fun-
damental bounds for SR of any imaging system.
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cSR,0 cSR,1 cSR,2(10−4) cSR,3(10−6) cSR,4(10−9) cSR,5(10−12)

a1/a2 = 1 2.4392 −0.0007 0.7116 −0.2013 0.2671 −0.1148

a1/a2 = 1.5 1.9717 0.0013 0.4374 −0.1197 0.1616 −0.0694

a1/a2 = 2 1.4691 0.0056 −0.0687 0.0392 −0.0444 0.0223

a1/a2 = 2.5 1.1108 0.0057 −0.1137 0.0463 −0.0531 0.0256

a1/a2 = 3 0.7343 0.0055 −0.0496 0.0147 −0.0064 0.0023

Table 2. Polynomial approximation of super-resolution factor as a function of N ·SNR: coefficients for different amplitude
ratios a1/a2

c1 c2

a1/a2 = 1 54.2 33.1

a1/a2 = 2 107.3 65.9

Table 3. Value of c1 and c2 under different amplitude ratios between the two scatterers (∆ϕ = 0, the worst case)

4.3.3 Required minimum number of acquisitions

As demonstrated in A.5 the performance of tomographic reconstruction deviates from the
N · SNR dependency for small N . Yet the required minimal number of acquisitions for robust
reconstruction at a given SNR is of great interest since each SAR acquisition is expensive.
In (Nannini et al., 2009), the minimal number of tracks for subspace methods for TomoSAR is
proposed by assuming a sufficient SNR which is rarely true for the spaceborne case. In A.5, the
robustness of the algorithm is defined by the minimal required number of acquisitions Nmin,90%
at a given SNR, which still allows detecting two scatterers with a distance of one Rayleigh
resolution unit with ∆ϕ = 0 (the worst case) at a high probability (PD ≥ 90%). At a given
SNR, it is found in A.5 that 90% detection rate of two scatterers with a distance of ρs(α = 1)
can be achieved when the following condition holds:

Nmin,90% · SNR
(

2.5− 1.5 cos
(

2∆ϕ+ 2π
(

1− 1
Nmin,90%

)))2
= c1 Nmin,90% < 15

Nmin,90% · SNR = c2 Nmin,90% ≥ 15
(41)

c1 and c2 are constants which depend on the amplitude ratio and phase difference between two
scatterers.

In Fig. 31, the required minimal number of acquisitions Nmin,90% obtained from the experiments
for different amplitude ratios (a1 = a2 (left), a1 = 2a2 (right)) and for ∆ϕ = 0 is presented. The
circles show the 90% detection rate positions with N ∈ [8, 20]. E.g. for a total SNR of 6 dB,
only 11 acquisitions are required for a1 = a2 (SNR = 3/3 dB respectively) while 17 acquisitions
are needed for a1 = 2a2 (SNR = 5/ − 1 dB respectively). The dashed line (N < 15) & solid
line (N ≥ 15) in Fig. 31 show the estimated N̂min,90% from eq. (41) with estimated ĉ1 and ĉ2
for a1 = a2 and a1 = 2a2 listed in Table 3. For N ≥ 15 the N and SNR can be substituted by
N · SNR = const.
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(a) a1 = a2 (b) a1 = 2a2

Figure 31. Required minimal number of acquisitions Nmin,90% for robust reconstruction (i.e. well detecting two scatterers
(PD ≥ 90%) with a distance of one Rayleigh resolution unit) at a given SNR: theory (dashed line (N < 15) and solid
line (N ≥ 15) ) vs. experiment (circles). The worst case ∆ϕ = 0 is assumed.

4.4 Multi-component nonlinear motion estimation —
the time warp method

Conventional D-TomoSAR uses multi-baseline, multi-temporal SAR acquisitions for recon-
structing the 3-D distribution of scatterers and their motion (section 2.1.3). The elevation
estimation of a scatterer exploits the linear relationship between the measured phase and the
product of baseline and elevation, and hence the full arsenal of spectral estimation methods
can be applied. Motion, however, is often nonlinear (periodic, accelerating, stepwise, etc.), and
hence does not fit well into the spectral analysis framework.

This section summarizes the work in A.6 in which a nonlinear warping of the time axis is intro-
duced to accommodate nonlinear motion models. The method is extended to multi-component
motion and validated with both simulated and real data. As hinted in section 4.1, the TerraSAR-
X stack used in this thesis undergoes different motions in the two sub-stacks (Fig. 13):

• The "asterisk" sub-stack: No long-term motion has been observed in the test area, i.e.
motion-induced phase is only induced by periodic thermal dilation.
• The "diamond" sub-stack: Since July 2009, the area shown in Fig. 32 has undergone a

pronounced subsidence centered at the convention center which can be seen from the
differential interferogram in Fig. 33 generated by two images taken on April 17, 2009
(master) and April 4, 2010 (slave). Hence, the "diamond" sub-stack is characterized by a
multi-component nonlinear motion, i.e. a combined linear and thermal dilation induced
seasonal motion.

This motion is used to validate the generalized time warp method for single-component and
multi-component nonlinear motion estimation, respectively. Note that since the demonstration
of the time warp method is independent of the tomographic (spectral estimation) method itself,
the simple linear reconstruction SVD-Wiener is used throughout this section.

4.4.1 Generalized D-TomoSAR system model
The displacement relative to the master acquisition d(s, tn) in eq. (8) may be modeled using a
linear combination of M basis functions τm(tn):
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Figure 32. Mean intensity map of the TerraSAR-X spotlight data stack of the test area surrounding the convention
center, Las Vegas, Nevada, USA.

34
Figure 33. Interferogram of the test site showing a pronounced circular subsidence pattern. The interferogram has
been generated by two TerraSAR-X images taken from the "diamond" sub-stack of Fig. 13. white box indicated the
investigation area of Fig. 37.
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d(s, tn) =
M∑
m=1

pm(s)τm(tn) (42)

where pm(s) is the corresponding motion coefficient to be estimated. The choice of the basis
functions depends on the underlying physical motion processes. For example, long-term geo-
dynamic processes may lead to a linear, accelerating or decelerating motion; instantaneous
geodynamic events, e.g. earthquake and volcano eruption, result in a stepwise motion; thermal
expansion causes a motion correlated to the temperature etc. Linear, seasonal and thermal
motion will be addressed in the next section. Alternatively, without a priori information about
the deformation mechanisms, the motion may be approximated by a sum of polynomials.

4.4.2 The time warp method
An approach is briefly introduced by the author in (Zhu and Bamler, 2009) to cope with the
problem of D-TomoSAR reconstruction with single-component nonlinear motion by rearranging
the acquisitions on the time axis (the so-called "time warp").
For M = 1, by introducing the temporal frequency η1,n = 2τ1,n(tn)/λ as a function of a motion
base function τ1,n(tn), and the motion coefficient p1, the proposed time warp method leads to
a generalized system description which can be adapted for different nonlinear motion models:

gn =
∫

∆p1

∫
∆s

γ(s) δ (p1 − p1(s)) exp (−j2π (ξns+ η1,np1)) dsdp1 (43)

The temporal frequency η1,n requires a warping, or resorting of the acquisition time from tn to
τ1,n. The time warp operation rewrites the D-TomoSAR model with single-component motion
(linear or nonlinear) as a standard 2-D spectral estimation problem which makes all spectral
estimators applicable. This principle is illustrated for a periodic motion model in Fig. 34. The
most common motion base functions are:

- Linear motion: τ1,n = tn and the coefficient p1(s) stands for the LOS velocity (v) as a
function of s.

- Seasonal motion: τ1,n = sin (2π(tn − t0)) and p1(s) stands for the amplitude (a) of the
periodic motion; t0 is the initial phase offset.

- Thermal dilation: τ1,n = T (tn), i.e. the temperature, and p1(s) is the scaling factor of the
thermal dilation along s.

The "asterisk" sub-stack is used to estimate the thermal dilation induced motion. Theoretically
speaking, the temperature history at the acquisition times should be chosen as the motion basis
function and the scaling factor should be estimated. However, due to the lack of ground truth, a
simple sine-function with a period of one year is used here. The initial offset is estimated to be
t0 = 0.013y by fitting the sine model to the monthly average temperature of the test site in the
years of 2008 to 2010. By applying the time warp method to this stack, the number of scatterers
map, topography and amplitude of seasonal motion can be obtained for each azimuth-range
pixel among them the topography estimates of the test area in Fig. 1 have been presented in
section 4.1. Fig. 35 exhibits the amplitude of the seasonal motion for the detected single and
double scatterers (see Fig. 14). Some properties of the thermal dilation can be observed:

- For the high rise buildings, the amplitude of the seasonal motion increases with increasing
height;

- The ground structures shows almost no seasonal motion;
- Some low buildings have a metallic structure, e.g. the shopping mall on the lower right
corner, and are more severely affected by thermal dilation than the surrounding infras-
tructure.
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Figure 34. The time warp converts seasonal periodic motions with different amplitudes (red and blue) into linear functions
of different slopes.

Figure 35. Estimated amplitude of thermal dilation caused seasonal motion of the detected single and double scatterers
[unit: millimeters].
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(a) Projection of the 3D spectral estimates onto elevation
direction (black line shows the true elevation position)

29

(b) Projection onto the a − v motion plane (asterisk
marks the true position)

Figure 36. Multi-component motion reconstruction example with linear and seasonal periodic motion using simulated
data: two scatterers inside the cell with elevations of −20/50 m, linear motion of 10/ − 5 mm/y and seasonal motion
amplitudes of 2/7 mm (SNR = 3 dB).
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Figure 37. Validation examples of the generalized time warp approach. Left: TerraSAR-X intensity map. Middle: reflec-
tivity profile (upper) and scatterer distribution in (a − v) motion plane (bottom) of analyzed ground pixel P1; Right:
the same plots of analyzed roof pixel P2. P is the reference point. Dashed lines mark the location of the maxima in the
spectral estimates.

4.4.3 "Let’s do the time warp again"
The generalization of the time warp method forM > 1 is straightforward. Let us define the mth

temporal frequency component at tn as ηm,n= 2τm(tn)/λ. Then eq. (8) can be rewritten as an
M + 1 dimensional Fourier transform of γ(s)δ (p1 − p1(s), p2 − p2(s), · · · , pM − pM(s)) which is
a delta-line in the M + 1 elevation-motion parameter space:

gn =
∫

∆pM

· · ·
∫

∆p1

∫
∆s

γ(s) δ (p1 − p1(s), p2 − p2(s), · · · , pM − pM(s)) ·

exp (−j2π(ξns+ η1,np1 + · · ·+ ηM,npM)) dsdp1 · · · dpM (44)

This extension is a general solution to the multi-component nonlinear motion estimation prob-
lem for D-TomoSAR, and hence completes the time warp concept for all possible complex
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motion models.
A multi-component motion reconstruction example using SVD-Wiener, i.e. combined linear
and seasonal motion, with two scatterers inside a SAR pixel, is presented here to illustrate this
concept. A realistic SNR of 3 dB and a baseline configuration of the TerraSAR-X "asterisk"-
stack with 30 acquisitions used in chapter 4.1 (see Fig. 13) are simulated. The two scatterers
are located at −20 and 50 m (ca. 2 Rayleigh elevation resolution), with linear motion of 10
and −5 mm/y and seasonal motion with amplitudes of 2 and 7 mm, respectively. In this case,
M = 2, therefore, it is a 3-D spectral estimation problem. Fig. 36 presents a projection of the 3-
D spectral estimates onto the elevation direction, i.e. a sum over the linear and periodic motion
plane. The right plot shows the corresponding projection in the amplitude-velocity (a−v) plane
and the white asterisk indicates the true amplitude and velocity. Comparing the estimates to
the simulation truth, it demonstrates that the generalized time warp method can give robust
estimation of multi-component nonlinear motion even under moderate SNR.
In a real data experiment, the generalized time warp method for M = 2 is applied to the
"diamond" sub-stack of Fig. 13 by choosing linear and seasonal motion as the basis functions.
Fig. 37, left, is the TerraSAR-X intensity map of the region of interest (marked by a box in
Fig. 33). According to Fig. 33, the center of the subsidence pattern, i.e. the "epicenter", is
located on the right upper part of the intensity map. Therefore, together with the seasonal
motion results shown in Fig. 35, one can expect that: 1) only the building structures suffer
from thermal dilation; 2) the closer to the "epicenter" the point is, the bigger is the linear
subsidence.
To validate the proposed generalized time warp method, the two pixels P1 and P2 marked by
red points are selected and will be analyzed in the following (see the left image of Fig. 37: P
is the reference point; all the estimates are relative to P ). As P1 is located outside the region
of the convention center, it is expected to contain only a single component linear motion.
P2 is located on the roof and is closer to the "epicenter". Hence, a combined seasonal and
more significant linear motion are expected. The middle and right image pairs in Fig. 37 are
the corresponding estimated reflectivity profiles (upper) and scatterer distributions in (a − v)
motion plane (bottom) of the analyzed ground pixel P1 and roof pixel P2, respectively. The
estimates reveal a single scatterer in the pixel P1 with an elevation of ≈ 12 m (≈ 6.3 m in
height relative to reference pixel), almost no seasonal motion and a subsidence of −5 mm/y.
P2 is also estimated to be a single scatterer, with an elevation of 32 m (≈16.9 m in height),
a seasonal motion with absolute amplitude of 4.5 mm and a subsidence of −10 mm/y. These
results are consistent with the expectation and, hence, demonstrate the capability of the time
warp method for multi-component nonlinear motion estimation.
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5 A practical demonstration of the super-
resolution of SL1MMER

In section 4.2.2, the SR capability of the proposed SL1MMER algorithm has been illustrated by
an example using simulated data. Further practical super-resolving examples by reconstructing
some selected pixels are provided in A.4 and A.5. So far, no substantial real data example has
been presented. This chapter presents a practical demonstration of the SR of SL1MMER for
SAR tomographic reconstruction.

5.1 Test building: Bellagio hotel

For the same reason explained in section 4.1, the "asterisk" sub-stack (Fig. 13) consisting of
30 spotlight TerraSAR-X images with an elevation resolution ρs of 40.5 m, i.e. ca. 23.7 m in
height, is used in this chapter. In particular, the Las Vegas Bellagio hotel has been chosen as
a test building to demonstrate the SR of SL1MMER since 1) From the tomographic result of
the non-parametric SVR-Wiener shown in Fig. 20, this building has severe layover effects; 2)
The surrounding infrastructure has a metallic structure, therefore the reflections from both the
building façade and ground structures are strong. It is expected that the SR of the algorithm
will be observed when reconstructing the layover area where the lower part of the building and
the ground infrastructures are mapped together.

(a) Optical image ( c©Google) (b) TerraSAR-X mean intensity map

Figure 38. Test building: Bellagio hotel

The left image of Fig. 38 shows the optical view of the Bellagio hotel in Las Vegas with a height
close to 125 m, corresponding to an elevation range of 237 m. The right image in Fig. 38 is
the corresponding TerraSAR-X mean intensity image. Compared to the optical image, many
noteworthy features of the SAR image can be pointed out: 1) The folding of the building towards
the sensor due to the layover phenomenon (the base of the Bellagio hotel is almost horizontally
aligned in the optical and TerraSAR images) and 2) Due to the weaker backscattering, ground
infrastructure visible in the optical image is completely "hidden" by the strong returns from the
building façade in the SAR image.
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(a) Detected single scatterers (b) Detected single and double scatterers

Figure 39. The same result as Fig. 19 but estimated by SL1MMER, i.e. topography estimates in meters. Left: detected
single scatterers; right: detected single and double scatterers (for double scatterers the higher one (façade) is displayed).

The goal is to separate the interfering layers associated with the ground and the façade of the
building and reconstruct the 3-D and 4-D maps of this area.

5.2 Experimental results

As depicted in section 4.4.2, within the acquisition period of this sub-stack, no long-term
motion has been observed in the test area, i.e. motion-induced phase is only caused by periodic
thermal dilation. The D-TomoSAR system model with a time warp assuming a seasonal motion
(t0 = 0.013 year) is used. The SL1MMER algorithm is applied to each pixel of the test area
and the same penalized likelihood criterion as applied in MD (section 4.1) is used, i.e. BIC
with a penalty term C(K) = 0.5 k lnN = 2K lnN . The number of scatterers map, elevation
and amplitude of seasonal motion for each of the detected single and double scatterers are then
obtained. Since the goal is to demonstrate the SR of SL1MMER, the discussion will be focused
on the topography estimates since the shape of the building can provide a plausible "ground
truth" for the estimates.
The left image of Fig. 39 presents the topography estimates, i.e. estimated elevations, of the
detected single scatterers while the corresponding fused topography estimates with both of the
detected single scatterers and the top layer of the detected double scatterers are shown in the
right image. The information increment is more significant than with MD shown in Fig. 19.
Fig. 40 presents the topography estimates of the two layers of the detected double scatterers, i.e.
a top layer mostly caused by reflections from the façade of the high rise building and a ground
layer caused by reflections from lower buildings and ground infrastructures. Again, the gradation
of elevation estimates on the top layer (see left image of Fig. 40) and the homogeneity on the
ground layer (see right image of Fig. 40) suggest the correctness of the elevation estimation
and the layover separation capability. It is interesting to observe that the full structure of the
high rise building is almost captured even only with the detected double scatterers. In addition,
"hidden" ground infrastructures are now "visible" again.
In Fig. 41 the reconstructed topography of the ground infrastructures (right) is interpreted with
the assistance of the optical image (left):

- There are two blocks on the ground layer (left top and right bottom, respectively) that
show brighter blue. This indicates higher topography at that area and this is consistent
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(a) Building façade (b) Ground structures

Figure 40. Topography estimates of the separated double scatterers - the same result as Fig. 20 but estimated by
SL1MMER.

(a) Optical image ( c©Google) (b) Layovered ground infrastructure reconstructed by
SL1MMER (lower layer - one of the detected double
scatterers)

Figure 41. Layovered ground infrastructure: Optical image ( c©Google) vs. reconstruction from layover separation obtained
by SL1MMER. The red circles: shadowing areas; the green circle: vegetation areas.

with the 3-D building model provided by Google-earth.
- Although most of the "hidden" ground infrastructure is retrieved, there are still some
areas (e.g. the ones marked by circles) showing homogenous black color, i.e. no layovered
coherent object on the ground layer. By comparison with the optical image, it can be easily
found that the areas marked by red circles are shadowing areas while the areas marked by
green circles are vegetation areas, i.e. no coherent return. This fact confirms our estimates.

- Some pixels at the area near the top of the building have very large topography estimates
showing some regular structures even for the lower layer. It seems that both of the detected
scatterers are located on the building façade. This might be caused by the complicated
structures on the top of the Bellagio hotel. However, to verify it, a more precise 3-D model
of the building is required.
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5.3 Comparison with linear detector — maxima detec-
tion

In this section, the results obtained by using the SL1MMER algorithm will be compared to the
result of maxima detection (MD) shown in section 4.1 (i.e. SVD-Wiener linear reconstruction
followed by model order selection).
Fig. 42 presents the number of scatterers map obtained by MD (left) and SL1MMER (right)
over the test area where blue indicates zero scatterers inside the azimuth-range pixel, green
stands for one and red for two. Non-parametric estimators can only detect two scatterers with
an elevation distance larger than approximately the Rayleigh elevation resolution unit ρs (i.e.
40.5 m in elevation, ca. 23.7 m in height). Therefore, it is not surprising that the double
scatterers detected by MD are mainly located on the upper part of the building area. The
result of SL1MMER shows a much denser red color which indicates a larger amount of detected
double scatterers. In the following discussion, the percentage of detected double scatterers is with
respect to the sum of all detected scatterers, i.e. single plus double (note a pixel including double
scatterers is counted twice). For the whole area, 29.9% and 13.1% of the scatterers detected
by SL1MMER and MD, respectively, are double scatterers. In particular, for an individual
building, i.e. the skyscraper on the right, SL1MMER increases the percentage of the detected
double scatterers from 20.4% (MD, see section 4.1) to 37.8%.

(a) MD (SVD-Wiener plus model selection) (b) SL1MMER

Figure 42. Number of scatterers map obtained by MD and SL1MMER at the test area. Blue: zero scatterers inside the
azimuth-range pixel; green: one scatterer inside the pixel; red: two scatterers inside the pixel. For the whole area, 29.9%
and 13.1% of the scatterers detected by SL1MMER and MD, respectively, are double scatterers. In particular, for an
individual building, i.e. the skyscraper on the right, SL1MMER increases the percentage of the detected double scatterers
from 20.4% (MD, see section 4.1) to 37.8%.

The dramatically improved layover separation capability is mainly associated with the SR power
of SL1MMER. E.g. in Fig. 43, the top layer (building façade) of the double scatterers detected by
MD and SL1MMER is illustrated. Besides the aforementioned information increment within
the layover area in general, the marked areas are worthy of special attention. The magenta
boxes mark the areas where the lower parts of the hotel façade and the ground structures are
mapped together while the yellow box marks an area where the lower ground structures (of
different height) are layovered. Those are the typical areas where SR is required for layover
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(a) Building façade: MD (b) Building façade: SL1MMER

Figure 43. MD vs. SL1MMER: topography estimates of the separated double scatterers - one of the two from the building
façade. Magenta boxes: areas where the low part of the hotel and the ground structures are mapped together; Yellow
box: area where the ground structures (of different height) are mapped together. In both cases, SL1MMER detects a big
amount of double scatterers while non-parametric MD can not well separate them.

separation since the elevation distances between the two scatterers are small. In all marked
areas, SL1MMER detects a large amount of double scatterers while non-parametric MD can
not separate them well.
In order to further quantify the SR capability of SL1MMER, the histogram of the elevation
distances between each of the detected double scatterer pairs is provided in Fig. 44. The blue
curve represents the result of SL1MMER while the red curve shows the results of MD. In
this plot, 135 bins with a elevation spacing of 2 m are used for producing the histogram. The
horizontal axis, i.e. the elevation distance between the detected double scatterers is normalized
to the Rayleigh resolution unit ρs. Theoretically, the case of two scatterers within one Rayleigh
resolution, i.e. the normalized elevation distance α < 1, is relevant for SR. In our case, the L2
norm regularization introduced in MD gives also SR though non-significant. Therefore, for a fair
comparison, the 3 dB width of the point response function (PRF) in elevation (the black line)
is chosen as the watershed. I.e. only on the left hand side of the black line, the two scatterers
are super-resolved.
Fig. 44 demonstrates:

- SL1MMER has impressive SR capability, i.e. many of double scatterers with α < 1 are
detected;

- The layover separation capability of SL1MMER is much higher compared to MD, i.e. much
more double scatterers are detected by SL1MMER compared to MD, mainly contributed
to SR (green zone);

- For α > 1, SL1MMER also provides remarkably better layover separation performance
(pink zone).

5.4 Discussion — the role of super-resolution for urban
infrastructure monitoring

The histogram in Fig. 44 gives us a strong hint that there are much more double scatterers
with smaller elevation distances and the amount of double scatterers decays strongly with the
distance. This leads eventually to a discussion of the role of SR in tomographic SAR inversion
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3 dB point response width3 dB point response width3 dB point response width

Figure 44. SL1MMER detects much more double scatterers than MD: histogram of the distance between the detected
double scatterers using MD (red) and SL1MMER (blue) (135 bins, distance spacing: 2 m). The elevation distance is
normalized to the Rayleigh resolution unit ρs. Note since the L2 norm regularization gives also slight SR, the black line
marks the 3 dB width of the point response function in elevation. The green area is the information increment contributed
by SR of SL1MMER.

for urban infrastructure monitoring by addressing the following two questions:

1) Why are there much more double scatterers with smaller elevation distances?
The layover phenomena in a SAR image of an urban area is mainly caused by the following
two scenarios:
- Buildings with different heights layovered with the ground:
As sketched in Fig. 45, the layover caused by the taller building and the lower building
both covers the range with smaller elevation distances. However, only the layover area
of the taller building cover the range with larger elevation distances.

- Taller building layovered with the ground and the roof of the lower building:
As sketched in Fig. 46, the layover of the taller building and lower building also leads
to smaller elevation distances.

From these purely geometric considerations, double scatterer pairs with smaller elevation
distances are more frequent than with larger distances. If we assume that the heights of the
buildings follow a uniform distribution, the elevation distance between the double scatterer
pairs should follow approximately a logarithmic law:

p(δs) = sin θ
hmax

(ln(hmax)− ln(δs sin θ)) for δs = 0, . . . , hmaxsin θ (45)

where hmax is maximum building height and p(δs) is the probability density function of
the elevation distance between two scatterers δs

2) How much more information can be obtained in practice?
In the test area shown in Fig. 38, the SL1MMER algorithm which can provide SR detected
29.9% double scatterers pairs while 45.5% of them are within the Rayleigh resolution
unit, even in this test site, where most of the buildings are high rise buildings. Therefore,
according to eq. (45), it is expect that more than half of the double scatterer pairs have an
elevation distance smaller than the Rayleigh resolution unit. The above discussion makes
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Figure 45. Buildings with different heights layovered with the ground. Double scatterer pairs with small distances are
present at both buildings, and hence are more frequent.



Figure 46. Higher building layovered with the ground and the roof of the lower building. As in Fig. 45, double scatterer
pairs are more probable with small elevation distances.

it obvious that SR is even more important than already assumed.
The practical demonstration of SR of SL1MMER presented in this Chapter completes the
methodological investigation in this work concerning new tomographic SAR inversion algo-
rithms tailored to VHR SAR data. Moreover, it also demonstrates that super-resolution is a
very crucial requirement for VHR tomographic SAR inversion for urban infrastructure moni-
toring.
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6 Conclusion and outlook

6.1 Conclusion

The aim of this thesis is the optimum exploitation of tomographic VHR SAR data stacks for
urban infrastructure mapping and monitoring with the vision of
"A dynamic city model derived from TomoSAR and D-TomoSAR showing the shape and the

deformation of each building".
In order to realize this vision, four objectives, including one general and three methodology
objectives, summarized in Chapter 1, have been pursued. With reference to the work presented
in this thesis, the following conclusions can be drawn:
• VHR tomographic SAR inversion is able to reconstruct the shape and motion of individual

buildings and city areas by providing:
Number of scatterers. The incoherent pixels (zero scatterers) and layover areas (two scat-
terers) of a SAR image can be clearly identified and distinguished from the coherent but
non-layover areas. This also assists those applications requiring a single dominating scat-
terer inside a pixel, like PSI.
Topography and motion maps of single scatterers. Except from the layover areas, the full
4-D (3-D location and motion) structure of the high rise city area is captured at a very
detailed level. Those are the standard products expected from PSI processing. On the
one hand, tomographic SAR inversion possesses the capability of PSI, i.e. accurate 3-D
localization of PSs and long-term motion monitoring. On the other hand, tomographic
SAR inversion does not require the pre-selection of the long-term stable pixels, i.e. the
PSs, and hence it can provide reference results for evaluating PS selection algorithms.
Reflectivity, topography and motion maps of detected double scatterers. Information for
layover areas is retrieved. Promising layover separation results are obtained. For individual
buildings, a high proportion of double scatterers — up to 38% — are detected. The
amount of information increment for individual buildings demonstrates the necessity of
tomographic reconstruction for urban infrastructure monitoring.
• The motion or deformation of buildings is often nonlinear (periodic, accelerating, stepwise,

etc.). This is particularly true with VHR SAR data. Multi-component nonlinear motion of
multiple scatterers can be separated and further estimated by tomographic reconstruction
using the newly developed generalized time warp method.
• Super-resolution is crucial for VHR tomographic SAR inversion for urban infrastructure.

Without super-resolution, large parts of the layover area are not accessible or are wrongly
estimated.
This attributes to the purely geometric consideration. The layover phenomena in a SAR
image of an urban area is mainly caused by the following two scenarios: 1) Buildings
with different heights layovered with the ground; 2) Taller building layovered with the
ground and the roof of the lower building. Both scenarios favor double scatterer pairs with
smaller elevation distances than with larger distances. If we assume that the heights of the
buildings follow a uniform distribution, the elevation distance between the double scatterer
pairs should follow approximately a logarithmic law.
• Super-resolution is possible. According to the derived fundamental bounds, the achievable

super-resolution factors in the typical parameter range of tomographic SAR are found to
be promising and are on the order 1.5∼25. E.g. in the TerraSAR-X case, ca. 4 m elevation
resolution (i.e. ca. 2 m in height) can be achieved with 25 acquisitions at a high SNR of
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13dB. Those bounds of SR can be achieved with the newly proposed SL1MMER algorithm.
Experiments using TerraSAR-X demonstrate that SL1MMER increases tremendously the
proportion of the detected double scatterers from 20% to 38%. This dramatically improved
layover separation capability is proven to be mainly associated with the SR power of
SL1MMER.
• It is important to understand the fact that the high anisotropic 3-D tomographic resolu-

tion element of modern SAR sensors renders the signals sparse in the elevation direction.
The proposed CS based SL1MMER algorithm exploits this sparse properties. Besides the
mentioned SR capability, it is an efficient estimator which provides reliable elevation, mo-
tion, amplitude and phase estimates approaching the CRLB, and hence the accuracy only
depends on the data quality.
• A robust reconstruction is defined by detecting two scatterers with a distance of one

Rayleigh resolution unit at a high probability. Based on this definition, from the derived
formulas, it is evident that the minimal number of acquisitions required by the algorithm
for robust reconstruction is about 10∼20 as a function of SNR.
• Even if the L1-L2 norm minimization is computationally more efficient than the NP-hard

NLS, it is still by far more demanding than PSI processing or the simpler linear estimators.

6.2 Outlook

Based on the current status of VHR tomographic SAR inversion presented in this work, a few
topics for further study are outlined which mainly concern 1) Data based fusion, 2) Combination
of tomographic SAR inversion and PSI, 3) New visualization methods, and 4) Exploitation of
sparse signals in the field of remote sensing.

6.2.1 Data based fusion
The data used in this thesis is a single stack of TerraSAR-X spotlight data. Merging measure-
ments of the same or different SAR sensors from different views can increase dramatically the
information content:

• The results obtained from a single pass direction, i.e. ascending or descending, represent
only the 3-D position and motion of the scattering objects for the side illuminated by the
sensor, e.g. only one or two façades of a building. The information of the shadowed side
is not measured. Fusion of the results from different pass directions, i.e. ascending and
descending, can provide the full shape of buildings.
• Tomographic reconstruction from a single viewing angle, can only provide motion param-

eters in the LOS direction. Merging motion measurements from different viewing angles
allows the retrieval of motion parameters in the range-elevation plane. With acquisitions
from different heading angles, even the motion information in azimuth can be estimated
though the estimation accuracy is limited by the geometric configuration. Since the differ-
ence in heading angles is usually small, we possess relatively worse estimation accuracy in
azimuth. This would render the 3-D error ellipse anisotropic.
• Another possibility is to fuse two or more stacks sharing comparable wavelengths and
comparable incidence angles, such that the range-elevation frequency support of the tomo-
graphic transfer function is as compact as possible (see Fig. 6). The fusion process can be
implemented before tomographic SAR inversion with special consideration to the possibly
oscillating point response function. Such a straightforward data fusion renders the SNR
higher, and hence leads to more robust parameter estimation.
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• With TanDEM-X, for the first time there is a real multi-antenna array system in space,
even though only with single baseline. It enables us to acquire data pairs simultaneously
and repeatedly in time. The fusion of TerraSAR-X and TanDEM-X data, i.e. adding a
couple of TanDEM-X acquisition pairs to the TerraSAR-X data stacks, can be used to
improve the result of tomographic SAR inversion on the one hand, and to explore the
limits of tomographic reconstruction on the other hand.
The TanDEM-X data pairs are free of motion, atmosphere and temporal decorrelation,
and hence possesses much higher data quality. An elegant way to realize the fusion is
introducing the noise covariance matrix Cεε to all the linear estimators mentioned in
Chapter 3 and 4. Taking the L1-L2 minimization of eq. (15) as an example, introducing a
weighting according to Cεε, yield:

γ̂ = arg min
γ

{
(g−Rγ)H C−1

εε (g−Rγ) + λK‖γ‖1
}

(46)

Or alternatively, it can be written as:

γ̂ = arg min
γ

{
‖g−Rγ‖2

Cεε
+ λK‖γ‖1

}
(47)

Note that since so far TanDEM-X only offers stripmap products, multi-resolution tomo-
graphic processing, i.e TerraSAR-X spotlight data stack plus a few TanDEM-X stripmap
pairs, are required. Also for this task eq. (46) is the basis.
• Modern spaceborne SAR satellite constellation concepts, like the COSMO-SkyMed constel-

lation, allow for acquiring SAR data of the same area from different viewing angles within
very short time period. Distinct from aforementioned spectral estimation approach, their
realization will open up the opportunity for real nominal SAR tomography, i.e. spaceborne
tomographic reconstruction via back projection.

Besides fusion based on SAR data only, fusion of data from multiple sensors, such as SAR,
stereo-optical images and Light Detection and Ranging (LiDAR), is very much of interest. The
different sensors complement each other: Stereo-optical data have the best visual interpretabil-
ity, LiDAR provides very accurate surface models and tomographic SAR inversion as well as
the related PSI are the only methods to provide the dynamic component of buildings, e.g.
seasonal thermal dilation, structural deformation, or subsidence due to groundwater extraction
or underground construction. Their fusion leads directly towards the vision of "a 4-D city".

6.2.2 Combination of tomographic SAR inversion and PSI
PSI is a special case of TomoSAR and has advantages of 1) Computational efficiency and 2)
Direct access to phase histories independent of the motion models. However, it is restricted to
single scatterers. Tomographic SAR inversion delivers more information such as the number of
scatterers, topography and motion information of layover areas even with very high elevation
resolution. However, it is computationally more expensive. For practical data processing, the
combination of the efficiency of PSI and the information increment of tomographic SAR could
be very helpful. For instance, as the pre-processing for tomographic reconstruction, PSI can
be implemented at the first stage to pixels where single dominating scatterers are ensured,
e.g. by examining the pixel intensities. This pre-processing on PS points builds up a reference
network for tomographic reconstruction. In addition, the APS can be estimated and corrected
in this pre-processing step. Subsequently, tomographic reconstruction can be implemented to
the remaining pixels.
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6.2.3 New visualization methods
Tomographic SAR inversion creates large volumetric data sets containing a huge amount of
information. For a better visualization of the tomographic SAR results, a challenge is to develop
new approaches which can: 1) Provide meaningful visualization of the directional dependencies
of the information since the expected fused TomoSAR results will contain 3-D positioning and
3-D motion information; 2) Handle the large differences in scale, because the data sets may
cover several kilometers in each direction, while the deformations are measured in millimeters
per year; 3) Visualize anisotropic uncertainties, e.g. by visualizing boundaries using different
transparencies and/or fuzzy visualization.

6.2.4 Exploitation of sparse signals in remote sensing
The SL1MMER algorithm and some findings (e.g. SR bounds) presented in this thesis are
generally applicable to sparse reconstruction. Although TomoSAR is taken as the preferred
application here, there are other potential applications which can be further exploited. For in-
stance, SL1MMER has been implemented for pan-sharpening in (Zhu, 2011) by exploring the
sparsity of the multi-spectral image patches in a dictionary pair learnt from the panchromatic
image. It is demonstrated to give higher spatial and spectral resolution with less spectral dis-
tortion compared to the conventional methods. In remote sensing, other potential applications
are hyperspectral image sharpening and spectral unmixing, ship detection, or radar focusing
of targets containing only a few scattering centers which becomes particularly relevant for the
even higher resolution SAR systems of the future.
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Summary: The new class of high resolution spaceborne SAR systems, like TerraSAR-X and 
COSMO-Skymed opens new possibilities for SAR interferometry. The 1m resolution is particularly 
helpful when 2D, 2.5D, 3D, or 4D (space-time) imaging of buildings and urban infrastructure is re-
quired, where the non-interferometric interpretation of SAR imagery is difficult. Structure and defor-
mation of individual buildings can be mapped, rather than only coarse deformation patterns of areas. 
The paper demonstrates several new developments in high resolution SAR interferometry using Ter-
raSAR-X as an example. Of particular interest is the very high resolution spotlight mode, which 
requires some care in interferometric processing. Results from interferometry, Persistent Scatterer 
Interferometry (PSI), and tomographic SAR in urban environment are presented. The high resolution 
of TerraSAR-X also supports accurate speckle and feature tracking. An example of glacier monitoring 
is shown and discussed. 
 
Zusammenfassung: Neue Möglichkeiten der SAR-Interferometrie durch hochauflösende Weltraum 
gestützte SAR-Systeme  
Die neue Generation hochauflösender SAR-Satelliten, wie TerraSAR-X und COSMO-Skymed, eröff-
nen neue Möglichkeiten in der SAR-Interferometrie. Die Auflösung von ca. 1m wird vor allem benö-
tigt, wenn Gebäude und urbane Infrastruktur 2-, 2,5-, 3- oder 4-dimensional abgebildet werden sollen. 
Gerade diese Objekte sind in nicht-interferometrischen SAR-Bildern schlecht zu interpretieren. So 
können nun Struktur und Deformation einzelner Gebäude interferometrisch aus dem Weltraum ver-
messen werden, wo bisher nur grobe Deformationsmuster einer Stadt erfassbar waren. In diesem 
Aufsatz werden mehrere neue Entwicklungen der hochauflösenden SAR-Interferometrie am Beispiel 
TerraSAR-X vorgestellt. Von besonderem Interesse sind dabei Daten aus dem Spotlight-Modus, 
deren interferometrische Verarbeitung erläutert wird. Ergebnisse aus Interferometrie, Persistent Scat-
terer Interferometrie (PSI) und SAR-Tomographie werden präsentiert. Die Anwendung von Speckle 
Tracking und Feature Tracking zur Erfassung von Gletscherbewegungen wird demonstriert.   
 
1 Introduction 
In 2007 Synthetic Aperture Radar (SAR) remote sensing from space (BAMLER & HARTL 1998) made a 
big leap forward. With the German TerraSAR-X and the Italian COSMO-Skymed satellites have been 
launched that deliver SAR data with a spatial resolution of up to 1 m compared to typically 10–25 m 
available so far. The advantage of very high resolution (VHR) imagery for cartographic applications 
is obvious. The real potential of this class of SAR data, however, lies in applications, where the 
coherent nature of SAR data is exploited, like interferometry or tomography. The 1m resolution is 
particularly helpful when it comes to 2D, 2.5D, 3D, or 4D imaging of buildings and urban structures. 
The inherent spatial scales of buildings are dominated by the typical height between floors of 3–4 m. 
Hence, for imaging of urban structures we can expect a tremendous improvement in information 
content with the new VHR data. 

This paper presents recent results of TerraSAR-X interferometric data exploitation. The results are 
representative for the potential of all of the new VHR SAR systems. 

 
2 TERRASAR-X DATA CHARACTERISTICS 
TerraSAR-X can be operated in three basic resolution modes (cf. Fig. 1, BUCKREUSS 2003): 

Stripmap is the standard mode. It allows imaging of long strips at a ground resolution of about 3m. 
The swath width is about 40 km. 



 

Spotlight mode uses electronic antenna beam sweeping to increase the coherent integration time, and, 
hence, the resolution. The beam steering range is ±0.75°. Up to 249 different azimuth patterns are 
sequentially activated to approximate a continuous beam sweep. 1m resolution in azimuth can be 
achieved. Depending on the transmitted bandwidth slant range resolutions are 1.2m (@ 150MHz 
signal bandwidth) or 0.6m (@ 300MHz). The downside is that in spotlight mode only short scene 
lengths and narrow swaths of 5–10km can be acquired, which are, however, sufficient for most 
investigations in urban environments. 

ScanSAR is a mode of an increased swath width of 100km at the expense of resolution (ScanSAR 
product resolution: 17m). 

These resolution modes are available at different look angles (20° – 55°) and different polarizations, 
which makes TerraSAR-X an extremely flexible SAR instument. 

An important advantage of TerraSAR-X compared to competitors is the high absolute geometric 
accuracy of the final data products. Every pixel is absolutely georeferenced to within 0.5 – 1 m, 
provided that an accurate digital surface model is available. This has been achieved by a precise orbit 
determination and a careful calibration of all instrumental and physical timing error sources, e.g., 
tropospheric signal delay. 

Another advantage of TerraSAR-X is its short revisit time of 11 days. It allows generating 
interferometric data stacks three times as fast as with ENVISAT/ASAR with its 35 days revisit cycle. 

For interferometric applications the short X-band wavelength of 3.1cm is not optimum, since many 
objects that remain coherent at longer wavelengths will decorrelate rapidly. Even low vegetation is 
subject to strong temporal decorrelation at this wavelength. On the other hand, the short wavelength 
lets surfaces appear rough that would be smooth at longer wavelengths. E.g., roads or flat roofs, 
which show up as totally black in longer wavelength images, have proven to give sufficient 
backscatter with TerraSAR-X to be exploited as interferometrically useful objects. 

 

 

Fig. 1: Basic imaging modes of TerraSAR-X (BUCKREUSS 2003) 

 
3 SPOTLIGHT INTERFEROMETRY 
The focused complex TerraSAR-X spotlight images are represented in zero-Doppler coordinates. Due 
to the quais-continuous beam steering during data acquisition, however, there is a systematic Doppler 
centroid drift in azimuth direction which must be accounted for during all subsequent InSAR 
processing steps (EINEDER et al. 2009). Fig. 2 shows the variation of the processed azimuth spectrum 
of a typical TerraSAR-X product. Although the sampling rate is sufficient to avoid aliasing, the linear 
drift and the wraps to the principal sampling band are significant. In consequence, the center 
frequency of the interpolation kernels, used for interferometric image coregistration, must be adjusted 
in azimuth (band-pass interpolator of varying center frequency). Also the azimuth common band 
spectral filtering needs to be updated accordingly. These required operations complicate processing so 
that standard interferometric processing systems can not be used. We have integrated spotlight 
capabilities into DLR’s InSAR processing software GENESIS  early enough to be ready for launch of 



 

TerraSAR-X. Therefore, we were able to process spotlight interferograms already during the 
commissioning phase (ADAM et al. 2007). The interferogram of the city of Paris (cf. Fig. 3) and the 
detail views shown in Fig. 4 – Fig. 5 demonstrate the wealth of information in this new class of data. 

 

 

Fig. 2: Support (grey) of time-varying Doppler spectrum of a complex TerraSAR-X spotlight 
image. 

 

 

Fig. 3: Flat earth phase corrected TerraSAR-X spotlight interferogram (city of Paris). 

 



 

  

Fig. 4: Zoom of Fig. 3: TerraSAR-X 
spotlight interferogram of the Eiffel tower. 
One phase cycle corresponds to 321 m 
height. 

Fig. 5: Zoom of Fig. 3: TerraSAR-X spotlight 
interferogram of the Mirabeau bridge in 
Paris. It shows phase changes of 270°. This 
can be interpreted as a bump of 240 m or 
(realistically) as a deformation between 
acquisitions of 12 mm in the radar line of 
sight direction. 

 
 
4 PERSISTENT SCATTERER INTERFEROMETRY (PSI) 
Persistent Scatterer Interferometry (PSI) has been introduced in 1999 (FERRETTI et al. 2001) as a 
methodology for long-term monitoring of subsidence, preferably in urban environment. Typically 
20 – 100 interferometric data sets of the same area taken from repeat orbit cycles are stacked for PSI 
analysis. Each pixel in each interferogram is characterized by its range and azimuth coordinates as 
well as by the temporal and the spatial baselines of the interferogram it belongs to. These four co-
ordinates allow for a much better data analysis than possible from a single interferogram, where 
temporal and spatial baselines are fixed. The goal of the PSI analysis is to separate the following 
contributions to the interferometric phase: 

Elevation of the point: Elevation is the spatial co-ordinate orthogonal to range and azimuth. Its phase 
contribution is proportional to the spatial baseline. 

Deformation rate: If linear deformation, e.g., subsidence, can be assumed, its phase contribution is 
proportional to the temporal baseline. If the deformation is non-linear often some other parameterized 
temporal model is assumed whose parameters are adjusted.  

Orbit errors and tropospheric water vapor delay: These are spatially long wavelength patterns and 
and temporally uncorrelated. 
By exploiting these proportionalities and correlation properties, elevation and deformation rate can be 
estimated. Fig. 6 shows the PS location in 3D on Hotel Bellagio in Las Vegas and provides an exam-
ple for the DEM update and Fig. 7 illustrates an example (Las Vegas Convention Center) for the 
deformation estimation. 
 



 

 

Fig. 6: The color coded elevation estimated by the PSI processing facilitates a geocoding of 
the PSs [unit: m]. This example presents the 3D location precision and the PS density which 
perfectly provides the shape of the building’s front (Hotel Bellagio, Las Vegas). Note that the 
Google-Earth building model is too broad. 

 
Fig. 7: The PS density of TerraSAR-X allows to monitor the structural stress of buildings. 
This example presents the deformation (red to blue: -15mm/y to +15mm/y) which results 
from thermal delation of the building’s roof (Las Vegas Convention Center) 



 

 

Since the data stacks cover a time span of months or years, i.e., much longer than the coherence times 
of distributed objects (e.g., vegetation), PSI performs all the analysis steps only on bright temporarily 
stable points, the so-called persistent, or permanent, scatterers (PSs). They are identified in the data 
stacks by metrics like signal-to-clutter-ratio. In pactise, the SCR allows an ensemble estimate and a 
prediction of the phase stability. Typical PSs are metallic structures (gratings, poles), facade or roof 
elements that act as dihedral or trihedral corner reflectors, etc. 

PSI has been applied very successfully with medium resolution SAR data from ERS-1/2 and 
ENVISAT/ASAR. Subsidence rate accuracies of better than 1mm/a have been reported (FERRETTI et 
al. 2007, ADAM et al. 2009) However, the physical interpretation of these estimates has proven 
difficult. The low resolution does not give access to details of the buildings. The PSs appear to be 
quite randomly distributed at a density of about 100–500 PS/km2, i.e., one PS per block of 
100m x 100m to 50m x 50m. There is no guarantee that a particular building of interest is represented 
by a PS. It is also difficult to differentiate between the subsidence of the building itself or of the 
pavement surrounding the building. 

Many PS are structures acting as dihedral or trihedral reflectors. Assuming a background clutter of 
-4 dB and a PS detection threshold of 6 dB above clutter, then in ENVISAT/ASAR-type data an ideal 
full trihedral structure of about 30 cm side length is required to be detected as a PS. This estimation is 
based on the radar cross section (RCS) of a full trihedral 2412  aRCS   a ground resolution of 

24.4 m x 4.8 m. With TerraSAR-X high resolution spotlight mode and the same assumptions (i.e., a 
23° look angle which results in a ground resolution of 1.5 m x 1.1 m) any full trihedral structure of 
8 cm side length will be detected as a PS. These types of structures are typically plenty on modern 
building facades and can be well resolved due to the high resolution. Therefore, we can detect many 
PSs at a single building and are able to estimate deformation of the building itself. Our first 
experiences with TerraSAR-X high resolution spotlight date show typical PS densities of 124,000 
PS/km2, i.e., one PS per area of 2 m x 2 m. The PS density depends on resolution (cf. Fig. 8), 
incidence angle (cf. Fig. 9), and polarization. The increase of PSs with resolution is dramatic because 
the very high resolution fits well with the typical spatial scales of constructive elements at buildings. 
The loss of PS density at shallower incidence angles is due to partial shadowing of facades from 
adjacent buildings. The effect depends on the height of the building, its orientation, and its distance to 
other buildings. 

 

 
Fig. 8: PS density as a function of spatial resolution. The test site is the city of Berlin. Two 
areas with different urban development are selected. Area 1 has a high building density and 
area 2 is a typical urban area. 

 



 

 

Fig. 9: PS density as a function of incidence angle. The PS density is measured in 
ascending and descending stacks and two different thresholds on the SCR for the PS 
detection are applied. The two upper graphs correspond to the low threshold resulting in a 
high PS density, while the lower ones show the distribution for the high threshold. Both 
thresholds are higher than the one used for Fig. 8. In princpile, flat look angles result in a 
loss of PS density because of shadowing. However, 42-47 deg look angle result in the 
highest PS density. 

 
 
5 SAR TOMOGRAPHY 
Conventional SAR maps the 3D radar reflectivity distribution on ground into the 2D range-azimuth 
radar coordinate system. Consequences of this geometry are imaging ambiguities like layover, which 
are particularily pronounced in urban areas. SAR Tomography (TomoSAR) aims at accessing the 
third dimension, elevation (perpendicular to the range-azimuth plane), resolving layover, and 
mapping any scatterer in 3D coordinates (REIGBER & MOREIRA 2000). TomoSAR uses stacks of 
several acquisistions from repeat orbits (and slightly different viewing angles) to establish a synthetic 
aperture in the elevation direction. In contrast to the – otherwise quite similar – synthetic aperture 
principle employed in the azimuth direction, TomoSAR must deal with sparse (typically only a few 
tens of acquisitions) and irregular sampling of the elevation aperture. The reflectivity distribution in 
the elevation direction for each range-azimuth pixel, and therefore the full 3D reflectivity distribution, 
is estimated by spectral analysis with special consideration of the mentioned difficulties caused by 
sparse and irregular sampling. The achievable resolution s  in the elevation direction depends on the 

extent sB  of the elevation aperture, i.e., the maximum spatial baseline spread, via / 2s sr B   

where  is the wavelengh and r is range (In classical InSAR with baseline sB , s
 

is the elevation 

that causes an  interferometric phase of 2). Since the different acquisitions are taken at different 
times, possible motion of the sactterers has to be accounted for. Classical InSAR and PSI can be 
regarded as special cases of parametric TomoSAR.  

From the reconstructed reflectivity profile in elevation, multiple layovered objects in any pixel are 
separated and the following information can be retrieved: 

Number of scattering objects: As essential prior knowledge for higher order PSI, the number of 
scatterers in a resolution cell can be estimated by applying model order selection schemes to the 
estimated reflectivity profile. 

Reflectivity and elevation of the scattering objects: It is obtained by implementing parameter 
estimation to the reflectivity profile estimates and leads to better localization and understanding of the 
scattering objects in three dimensions.  



 

Like PSI, TomoSAR benefits greatly from the high resolution of TerraSAR-X data, as the density of 
coherent pixels and the signal-to-clutter ratio increase significantly with resolution.   

In the following examples, TomoSAR is applied to TerraSAR-X high-resolution spotlight data 
acquired over the city of Las Vegas, USA. 16 scenes are used. The elevation resolution is about s = 
40.5m due to the limited baseline range of the stack of 269.5m. This, however, does not mean that 
individual scatterers can only be located to within this poor elevation resolution. The Cramér-Rao 
Lower Bound (CRLB) on elevation estimates can be shown to be: 

ˆ
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where NOA is the number of acquisitions, SNR is the signal-to-noise ratio, and Bs is the standard 
deviation of the baseline distribution. For instance, the stack used in this example has Bs = 78.4m, 

0.031m   and r = 704km. Let us assume the SNR=10dB, the CRLB on elevation estimation is 
1.24m.  With regular baseline distribution samples, the location accuracy can be related to the eleva-
tion resolution by: 

ˆ
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As input data to our tomographic algorithm we use TerraSAR-X data stacks generated by DLR’s 
GENESIS PSI processor mentioned before. Fig. 10, left, shows the Wynn hotel in Las Vegas with a 
height close to 200m, corresponding to an elevation range of 380m. The middle image in Fig. 10 is 
the corresponding TerraSAR-X intensity image where green dots refer to selected PS points. The 
mean intensity image indicates that pixels containing multiple scatterers are mainly located at the 
intersection of the bright texture of the building with structures near ground. To exemplify the poten-
tial of the TomoSAR method, two pixels marked by red stars and a reference point marked by a yel-
low star have been selected and will be analyzed in the following. As P1 is located outside of the 
region of the high-rise building, it is expected that it only contains a single scatterer situated near the 
ground. By contrast, as P2 is located at the intersection area, we expect two scatterers inside this 
pixel, among them a weaker ground reflection and a stronger reflection from the building facade. The 
corresponding reflectivity estimates for those two pixels are shown in the right image of Fig. 10. 
Ground and building contributions can be well separated, even with such a small number of acquisi-
tions. The spectral estimation method used for this elevation profiles was a singular value decomposi-
tion (SVD)-based approach (FORNARO et al. 2003) with singular value weighting according to the 
Wiener criteron (ZHU et al. 2009). In this example, we can see the potential of the tomographic ap-
proach to separate multiple scatterers in one cell using TerraSAR-X data. 
 
 

  

Fig. 6: Wynn Hotel, Las Vegas: Optical image (left) with viewing direction of SAR (LOS = 
line-of-sight) and two iso-elevation lines (yellow). Mean TerraSAR-X intensity image (center) 
with reference (yellow) and analysis points (red) P1 and P2. Reconstructed elevation profiles 
(right) for analysis points P1 (single scatterer) and P2 (two scatterers). 



 

With this convincing result of PS based tomography, a pixel based 3D focusing procedure is now 
applied to the same data stack. The Las Vegas convention center with a height of about 20m as shown 
in the left image of Fig. 11 is a very interesting test building for 3D focusing as it is very large and 
has a regular shape. Therefore, we expect strong and stable returns which provide a very good starting 
point for pixel-by-pixel 3D focusing. The right image of Fig. 11 shows the corresponding mean 
TerraSAR-X intensity image. Due to the limited extent of the investigated area phase errors caused by 
water vapor disturbances can be neglected. The reflectivity profile in elevation direction is 
reconstructed pixel by pixel. First the number of scatterers is estimated by model order selection 
based on the Akaike information criterion (SAKAMOTO et al. 1986), then reflectivity and elevation of 
each scatterer are estimated. Since the different acquisitions have been taken at different times, 
deformation must be considered, i.e., an additional velocity parameter is estimated in our SVD-
Wiener algorithm, leading to a full 4D reconstruction. The left image of Fig. 12 shows the DEM 
generated from the elevation estimates (height relative to the reference point). The black cross marks 
the position of the selected reference point. Compared to the InSAR DEM generation procedure, 
TomoSAR overcomes layover and phase unwrapping problems. The full structure of the convention 
center has been captured at a very detailed level. For instance, different parts of the building have 
different heights, which is not visible in the Google Earth building model. Besides the building, more 
details such as the roads surrounding the convention center and even two bridges above the roads 
have been captured. There are still some distortions remaining in the middle of the image (red part) 
where a smooth roof is expected. It may be due to the incorrect linear deformation model assumption. 
The right image of Fig. 12 shows the extracted deformation velocity corresponding to the reference 
point. The deformation velocity map is consistent with the PSI processing result of Fig. 7. By 
checking the deformation of the distorted part mentioned above, unexpected significant subsidence 
appears which confirms again the incorrect linear deformation model assumption. 

  

  

Fig. 7: Optical image of Las Vegas Convention Center (left) and corresponding mean Ter-
raSAR-X intensity image (right). 

 



 

  

Fig. 8: Left: Generated DEM [unit: m]. Right: Extracted linear deformation velocity w.r.t. the 
reference point [unit: cm/y] (Black cross: reference point). 

 
 
6 FEATURE AND SPECKLE TRACKING 
The shrinkage or growth of glaciers and especially their flow velocity are indicators for subtle 
climatic changes. In the past InSAR techniques have proved to be useful tools for monitoring the 
remote ice sheets of Antarctica and Greenland (GRAY et al. 1998, JOUGHIN 2002), where conventional 
ground based measurements are not available. Today, high resolution systems such as TerraSAR-X 
have the potential to further improve the robustness of glacier velocity measurements and they even 
allow two derive accurate two dimensional motion fields. 

SAR interferometry allows the measurement of glacier motion in the radar line of sight with sub-
wavelength accuracy, i.e., millimeters to centimeters, depending on the radar wavelength. Typically, 
the interferometric phase difference between two images taken in two consecutive orbital repeat 
cycles is exploited, but in many practical cases this method is much too sensitive for typical glacier 
velocities between 0.1 and 5 meters per day. A further problem arises if spatial velocity gradients lead 
to more than one fringe per sample which can not be resolved anymore. Assuming an interferometric 
phase determination accuracy of λ/10, velocity sensitivities of 0.8 mm/day are achieved with 
ENVISAT or 1.4 mm/day for TerraSAR-X. Using multiple repeat cycles further increases the 
sensitivity. Furthermore the InSAR method requires the surface to stay coherent between the times of 
the repeated observations. This assumption usually holds if the time between acquisistions is short, 
like the one day during the ERS-1/ERS-2 tandem campaign  1996-2000, or the 3-day repeat orbital 
period during the ERS-1 ice orbit phase 1993/1994. However, it is seldom the case in the normal 
repeat cycles of SARs such as the 24-day repeat orbit of RADARSAT-1 and 2 or the 35 days of ERS 
and ENVISAT/ASAR. The TerraSAR-X orbital cycle of 11 days and the high resolution seem to be a 
good combination for coherent (speckle) and incoherent (feature) tracking. 
 



 

   

Fig. 13: Left: TerraSAR-X intensity image of the Antarctic Recovery glacier (30.10.2008). 
Center: 11 day interferogram (29 meter baseline). Right: Motion field derived from Speckle 
Tracking. Average coherence: 0.3. Horizontal direction (right): range. Vertical direction (up): 
azimuth.  

 

Fig. 13 shows the TerraSAR-X intensity image of the Antarctic Recovery glacier and the 
interferogram generated from two images separated by 11 days. The great advantage of the method is 
evident: even in homogenous areas where the human eye can not identify any texture, the 
interferometric phase signal reveals surface motion. But a number of constranits impede the InSAR 
method: First, due to the 2pi-phase ambiguity in each SAR image only relative measurements are 
available between two points in the interferogram. Therefore, phase unwrapping and a reference point 
with known (e.g., zero) motion is required. Second, only the line-of-sight component of the surface 
motion is sensed by the radar, and the three-dimensional surface velocity vector must be derived by 
either using a DEM and downhill flow assumptions or, by combining satellite passes with different 
aspect angles. Third, InSAR suffers from decorrelation caused by all surface changes in the size of the 
wavelength. Such changes occur frequently on glaciers due to melting, rain, snowfall or structural 
deformation. 

High resolution SAR sensors can overcome the above obstacles. Firstly, if image correlation 
techniques are applied (ignoring the interferometric phase information), ambiguity problems are 
obsolete. Both, coherent speckle (GRAY et al. 2001) or incoherent features can be tracked with similar 
correlation methods. Especially coherent speckle tracking requires both images taken from the same 
position in space, i.e., from orbital repeat cycles. The major error sources for correlation techniques 
are: 1) atmospheric water vapor of max. 50 cm (range) depending on the humidity,  2) orbital errors 
on the order of 10 cm (range & azimuth), and 3) the accuracy of the correlation approach. The latter 
can be brought down to 10 centimeters and below by increasing the correlation chip size accordingly. 
The overall absolute accuracy of e.g., 50 cm / 11 days = 4.5 cm/day is sufficient for many 
applications and can be increased easily by using local zero-motion-tie-points, increasing the 
correlation window or the time lag (increasing the time lag generally leads to decorrelation errors that 
overcompensates the gain in accuracy). Secondly, image correlation can be performed in both range 
and azimuth directions and therefore provides a two-dimensional motion vector. Thirdly, geometric 
phase decorrelation will impede the InSAR phase derivation but not image correlation as long as 
some object contrast is present, e.g., from crevasses or other surface structures. 

Fig. 14 shows the correlation function between pairs of TerraSAR-X images with different coherence 
and surface characteristics. For convenience, TerraSAR-X EEC-SE products (EINEDER 2005, FRITZ & 



 

EINEDER 2009) were used, i.e., spatially enhanced geocoded detected images with 1.25 m pixel 
spacing. In these products only about 1.3 looks are averaged to keep the highest quadratic spatial 
resolution. The small number of looks leaves a good part of the coherent speckle – wide band pseudo-
noise that allows accurate correlation. Using these products all correlation can be easily performed in 
geocoded ground range pixels since co-registration and terrain compensation has been done in the 
TerraSAR-X SAR processor before. 

The left image shows a patch of an Antarctic glacier (Recovery) with high coherence. In consequence 
the speckle signal delivers a well defined peak even on ice surfaces without object contrast. The 
correlation peak width is 4 pixels (6 meters). With the used correlation block size of about 2562 
indepenndent resolution cells (64 x 64 pixels) and the coherence of about 0.3 an accuracy of 0.029 
pixels (0.037 meter) is estimated  according to (BAMLER & EINEDER 2005). 

The right image shows a patch of a glacier with significant surface changes within 11 days which lead 
to strong phase decorrelation. In consequence, coherent speckle tracking is no more possible and 
features have to be used to derive the motion field. The object contrast in Fig. 14 right is caused by 
crevasses. The achievable resolution now depends on the spatial structure of the features. High 
contrast and sharp features allow higher accuracy than slowly undulating patterns. In our experiments 
it turned out that about 4x4=16 looks may to be averaged to sufficiently reduce the amplitude of 
incoherent speckle maintaining the signal of the lower resolution features. The width of the 
correlation peak is much wider than that of the speckle tracking result: 17 pixels in range and 12 in 
azimuth (85 m x 72m). Correlation coefficient of the object features is much lower, in the order of 
0.08. With the used correlation block size of 2562 resolution cells this transforms (BAMLER & 

EINEDER 2005) to an accuracy of 0.47 (East) and 0.33 (North) pixels corresponding to 2.3 m and 
1.6 m.  

In conclusion, relative accuracies of 0.3 cm/day and, depending on orbit errors and atmospheric 
conditions, absolute accuracies of 5 cm/day can be achieved by speckle correlation. 20 cm/day are 
achievable by feature correlation with rather simple methods. More details of the work performed by 
the authors can be found in (ROTT et al. 2008) and (FLORICIOIU et al. 2008). 
 

  
a) Recovery Ice Stream 11 days (coherent) b) Drygalski Glacier 11 days (incoherent) 

Fig. 14: Correlation functions of TerraSAR-X images with 11 day interval.  Upper left: multi-
temporal color composite. Lower right: 2D-correlation function. Upper right: range cut 
through correlation maximum. Lower left: azimuth cut through maximum. a) Homeogeneous 
coherent glacier surface. Correlation peak width: 6 m. b) Decorrelated surface with cre-
vasses. Resolution: 85 m and 72 m in range and azimuth, respectively. Window size: 256 x 
256 pixels. Right image was averaged and decimated by a factor of 4 before correlation. 



 

7 Outlook 
Using different interferometric techniques a number of encouraging results were achieved 
within short time after the launch of TerraSAR-X. Some of them, such as glacier monitor-
ing may be transferred to applications soon while more novel techniques such as TomoSAR 
will need more experiments to prove their applicability. In 2009 the launch of the co-
operative sister satellite TanDEM-X will open even more opportunities for interferometric 
imaging by adding simultaneously acquired image pairs with high coherence. 
 
 
Acknowledgements 
The authors appreciate the contributions of Dana Floriciouiu for providing images from the 
TerraSAR-X Antarctic campaign. 
 
References 
ADAM, N., EINEDER, M., SCHÄTTLER, B. & YAGUE-MARTINEZ, N., 2007: First TerraSAR-X Interfer-

ometry Evaluation. – Proceedings of ESA FRINGE Workshop, Frascati. 

ADAM, N., EINEDER, M., YAGUE-MARTINEZ, N. & BAMLER, R., 2008: High Resolution Interferometric 
Stacking with TerraSAR-X. – Proceedings of IEEE International Geoscience and Remote 
Sensing Symposium 2008, Boston, USA. 

ADAM N., PARIZZI, A., EINEDER, M. & CROSETTO, M., 2008: Practical Persistent Scatterer Processing 
Validation in the Course of the TERRAFIRMA Project. – Journal of Applied Geophysics, in 
print 2009. 

BAMLER, R. & HARTL, P., 1998: Synthetic Aperture Radar Interferometry. – Inverse Problems 14, R1–
R54. 

BAMLER, R. & EINEDER, M., 2005: Accuracy of Differential Shift Estimation by Correlation and Split 
Bandwidth Interferometry for Wideband and Delta-k SAR Systems. – IEEE Geoscience and 
Remote Sensing Letters 2 (2), 151–155. 

BUCKREUSS, S., BALZER, W., MÜHLBAUER, P., WERNINGHAUS, R. & PITZ, W., 2003: The TerraSAR-X 
Satellite Project. – Proceedings of IEEE International Geoscience and Remote Sensing Sym-
posium 2003, Toulouse, France. 

EINEDER, M., ADAM, N., BAMLER, R., YAGUE-MARTINEZ, N. & BREIT, H., 2009: Spaceborne Spotlight 
SAR Interferometry with TerraSAR-X. – IEEE Transactions on Geoscience and Remote 
Sensing 47 (5): 1524–1535. 

EINEDER, M., SCHÄTTLER, B., BREIT, H., FRITZ, T. & ROTH, A., 2005: TerraSAR-X SAR Products and 
Processing Algorithms. – Proceedings of IEEE International Geoscience and Remote Sensing 
Symposium 2005, Seoul, South Korea. 

FERRETTI, A., PRATI, C. & ROCCA, F., 2001: Permanent Scatterers in SAR Interferometry- – IEEE 
Transactions on Geoscience and Remote Sensing 39 (1): 8–20. 

FERRETTI, A., SAVIO, G., BARZAGHI, R., BORGHI, A., MUSAZZI, S., NOVALI, F., PRATI, C. & ROCCA, F., 
2007: Submillimeter Accuracy of InSAR Time Series: Experimental Validation. – IEEE 
Transactions on Geoscience and Remote Sensing 45 (5): 1142–1153. 

FLORICIOIU, D., EINEDER, M., ROTT, H. & NAGLER, T., 2008: Velocities of Major Outlet Glaciers of the 
Patagonia Icefield Observed by TerraSAR-X. – Proceedings of IEEE International Geo-
science and Remote Sensing Symposium 2008, Boston, USA. 

FORNARO, G., SERAFINO, F. & SOLDOVIERI, F., 2003: Three-dimensional focusing with multipass SAR 
data. – IEEE Transactions on Geoscience and Remote Sensing 41 (3): 507–517. 

FRITZ, T. & EINEDER, M., 2009: TerraSAR-X Ground Segment – Basic Product Specification Docu-
ment. – Doc.: TX-GS-DD-3302, Revision 1.6, available online. 



 

GRAY, A. L., MATTAR, K.E. & VACHON, P. W., 1998: InSAR results from the RADARSAT Antarctic 
Mapping Mission Data: Estimation of Glacier Motion using a Simple Registration Procedure. 
– Proceedings of IEEE International Geoscience and Remote Sensing Symposium 1998, Seat-
tle, USA. 

GRAY, A. L., SHORT, N., MATTAR, K. E. & JEZEK, K. C., 2001: Velocities and flux of the Filchner ice 
shelf and its tributaries determined from speckle tracking interferometry. – Canadian Journal 
of Remote Sensing 27 (3): 193–206. 

JOUGHIN, I., 2002: Ice-sheet velocity mapping: a combined interferometric and speckle-tracking ap-
proach. – Annals of Glaciology 34. 

REIGBER, A. & MOREIRA, A., 2000: First demonstration of airborne SAR tomography using multibase-
line L-band data. – IEEE Transactions on Geoscience and Remote Sensing 38 (5): 2142–
2152. 

ROTT, H., EINEDER, M., NAGLER, T. & FLORICIOIU, D., 2008: New results on dynamic instability of 
Antarctic Peninsula glaciers detected by TerraSAR-X ice motion analysis. – In: European 
Conference on Synthetic Aperture Radar (EUSAR), VDE Conference Services, EUSAR 
European Conference on Synthetic Aperture Radar 2008, Friedrichshafen, Germany. 

SAKAMOTO, Y., ISHIGURO, M. & KITAGAWA, G., 1986: Akaike information criterion statistics. – Rei-
del, Dordrecht, The Netherlands. 

ZHU, X., ADAM, N., BRCIC, R. & BAMLER, R., 2009: Space-borne High Resolution SAR Tomography: 
Experiments in Urban Environment Using TerraSAR-X Data. – Proceedings of Joint Urban 
Remote Sensing Event 2009, Shanghai, China. 

 

 

Addresses of the Authors: 

Prof. Dr.-Ing. habil. RICHARD BAMLER, Dr. rer. nat. MICHAEL EINEDER, NICO ADAM, Remote Sensing 
Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling, 
Germany, Tel.: +49-8153-28-2673, -1396, -1326, Fax: -1420, e-mail: richard.bamler@dlr.de, micha-
el.einder@dlr.de, nico.adam@dlr.de 

Prof. Dr.-Ing. habil. RICHARD BAMLER, XIAOXIANG ZHU, STEFAN GERNHARDT, Technische Universität 
München, Lehrstuhl für Methodik der Fernerkundung, Institut für Photogrammetrie und Kartogra-
phie, Arcisstraße 21, 80333 München, Germany, Tel.: +49-8153-28-2673, Fax: -1420, e-mail: ri-
chard.bamler@dlr.de, xiaoxiang.zhu@bv.tum.de, Stefan.Gernhardt@bv.tum.de. 

 



85

A.2 Zhu, X., Bamler, R., 2010d. Very High Resolution
Spaceborne SAR Tomography in Urban Environ-
ment. IEEE Transactions on Geoscience and Re-
mote Sensing 48 (12): 4296-4308



4296 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 12, DECEMBER 2010

Very High Resolution Spaceborne SAR
Tomography in Urban Environment
Xiao Xiang Zhu, Student Member, IEEE, and Richard Bamler, Fellow, IEEE

Abstract—Synthetic aperture radar tomography (TomoSAR)
extends the synthetic aperture principle into the elevation direc-
tion for 3-D imaging. It uses stacks of several acquisitions from
slightly different viewing angles (the elevation aperture) to re-
construct the reflectivity function along the elevation direction by
means of spectral analysis for every azimuth–range pixel. The new
class of meter-resolution spaceborne SAR systems (TerraSAR-X
and COSMO-Skymed) offers a tremendous improvement in to-
mographic reconstruction of urban areas and man-made in-
frastructure. The high resolution fits well to the inherent scale
of buildings (floor height, distance of windows, etc.). This paper
demonstrates the tomographic potential of these SARs and the
achievable quality on the basis of TerraSAR-X spotlight data
of urban environment. A new Wiener-type regularization to the
singular-value decomposition method—equivalent to a maximum
a posteriori estimator—for TomoSAR is introduced and is ex-
tended to the differential case (4-D, i.e., space–time). Different
model selection schemes for the estimation of the number of
scatterers in a resolution cell are compared and proven to be ap-
plicable in practice. Two parametric estimation algorithms of the
scatterers’ elevation and their velocities are evaluated. First 3-D
and 4-D reconstructions of an entire building complex (including
its radar reflectivity) with very high level of detail from spaceborne
SAR data by pixelwise TomoSAR are presented.

Index Terms—Differential synthetic aperture radar tomogra-
phy (D-TomoSAR), spotlight SAR, TerraSAR-X, urban mapping.

I. INTRODUCTION

A CONVENTIONAL space- or airborne synthetic aperture
radar (SAR) maps the 3-D reflectivity distribution of a

scene to be imaged into the 2-D azimuth–range (x−r) plane.
This can be seen as a projection along the third radar coordinate,
namely, elevation (s). x, r, and s form an orthogonal coordinate
system specific to the particular SAR imaging geometry. This
projection particularly handicaps the interpretation of SAR
images of the following: 1) volumetric scatterers and 2) urban
areas and man-made objects, i.e., objects with constructive
elements oriented at steeper angles than the local incidence
angle.
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Fig. 1. TomoSAR imaging geometry. The coordinate s is referred to as
elevation.

SAR tomography (TomoSAR), introduced to SAR in the
early 1990s [1], extends the synthetic aperture principle into
the elevation direction for 3-D imaging (within the first Born
approximation). It uses data stacks of several acquisitions from
slightly different viewing angles (the elevation aperture) to re-
construct the reflectivity function along the elevation direction
by means of spectral analysis for every azimuth–range pixel,
and hence obtains focused 3-D SAR images (Fig. 1). A further
extension is differential SAR tomography (D-TomoSAR) [2],
also referred to as 4-D focusing. It provides retrieval of both the
elevation and the deformation information of multiple scatterers
inside an azimuth–range resolution cell and therefore obtains a
4-D (space–time) map of scatterers.
Compared to computed axial tomography, known from med-

ical imaging, TomoSAR uses only a small angular diversity.
Hence, instead of back projection, spectral estimation is suf-
ficient for TomoSAR if the range migration δr caused by
the different viewing angles is much smaller than the range
resolution ρr. This gives a limitation to the extent Δs of the
illuminated objects

Δs � ρrr

Δb
(1)

where r is the range and Δb is the perpendicular (or effective)
baseline range (i.e., the elevation aperture length). The term
“baseline” is a heritage of interferometry. It is the spatial dimen-
sion in the elevation aperture, relative to a reference (master)
track.
The first experiments in TomoSAR were carried out in the

laboratory [3] under ideal experimental conditions or by using

0196-2892/$26.00 © 2010 IEEE
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airborne systems [1], [4]. Spaceborne TomoSAR tests were
reported in [5] and [6]. It has been applied to C-band European
Remote Sensing Satellite (ERS) data over extended scenes in
[7] and to TerraSAR-X data in [8]. In [9], the single- and
double-scatterer cases were separated. The concept of 4-D SAR
imaging (D-TomoSAR) was proposed in [2] and first applied to
ERS data in [10].
The major challenges in spaceborne TomoSAR are the fol-

lowing. First, acquisitions are unevenly distributed in baseline,
i.e., in the elevation aperture space, so that appropriate regular-
ization is required instead of a classical Fourier-based inversion
[11]. Second, 3-D data cannot be collected simultaneously,
at least with existing satellites, but must rather be acquired
via repeated passes that are separated in time. Hence, time-
dependent phase terms from motion and from the propagation
medium are present in the data and must be considered. Third,
the number of acquisitions may be limited.
In 2007, SAR remote sensing from space made a big leap

forward; the German TerraSAR-X and the Italian COSMO-
Skymed satellites have been launched. They deliver SAR data
with a very high spatial resolution of up to 1 m compared
to medium (10–30-m)- and high (3–10-m)-resolution SAR
systems available so far. The advantage of very high resolution
(VHR) imagery for cartographic applications is obvious. The
real potential of this class of SAR data, however, lies in appli-
cations, where the coherent nature of SAR data is exploited,
like interferometry or tomography. The 1-m resolution is par-
ticularly helpful when it comes to 2-D, 3-D, or 4-D imaging
of buildings and urban structures. The inherent spatial scales of
buildings are dominated by the typical height between floors of
3–3.5 m, i.e., in slant range (at 30◦) 2.6–3.0 m, and the distance
of windows. Hence, for imaging of urban structures, we can
expect a tremendous improvement in information content when
we go from high to VHR. We work with TerraSAR-X spotlight
data. These VHR X-band spaceborne repeat-pass tomographic
data stacks of urban areas have some particular properties: A
very detailed view of individual buildings is possible; the den-
sity of bright (high clutter-to-noise ratio) points, like persistent
scatterers, is extremely high (40 000–100 000/km2). However,
also nonlinear (e.g., thermally induced) movements of different
building parts must be expected and will introduce additional
phase errors and require robust inversion methods.
This paper aims at demonstrating the potential of the new

class of VHR spaceborne SAR systems for TomoSAR in ur-
ban environment. In particular, we introduce a new Wiener-
type regularization to the singular-value decomposition (SVD)
method [7] for TomoSAR and extend it to the D-TomoSAR case
(Section IV). Different model selection schemes for the esti-
mation of the number of scatterers are evaluated and validated
(Section V). Two parametric estimation algorithms of the scat-
terers’ elevation and their velocities are evaluated (Section VI).
We demonstrate first 3-D and 4-D reconstructions of an entire
building from spaceborne VHR data by pixelwise TomoSAR
(Section VII). We will concentrate on urban areas and man-
made infrastructure. Volumetric objects, like trees, can be con-
sidered incoherent in X-band repeat pass and are hence treated
as noise. A limited number (typically one to three) of scatterers
is expected along every elevation profile that allows parametric
estimation.

Fig. 2. (Left) Elevation aperture sampling positions of the 25 acquisitions.
(Right) Spatial–temporal baseline distribution (to be used for D-TomoSAR in
Section III).

II. DATA SET

For the purpose of this paper, we work with TerraSAR-X
“high-resolution spotlight data” (TerraSAR-X product termi-
nology) acquired with a range bandwidth of 300 MHz. They
have a slant-range resolution of 0.6 m and an azimuth resolution
of 1.1 m. In this mode, image lengths of 5–10 km can be
acquired, which is sufficient for our investigations in urban
environments. Note that interferometric use of spotlight data
requires some special care, e.g., in synchronous data acqui-
sition, coregistration, and resampling [12]. Our test site is
Las Vegas, NV, U.S. The acquisition repeat cycle is 11 days.
The orbit of TerraSAR-X is controlled in a predefined tube of
500 m diameter throughout the entire mission [13]. Due to this
small orbit tube, the precondition for the spectral estimation ap-
proximation mentioned in (1) is very easily fulfilled. It is worth
mentioning that, unlike in airborne TomoSAR, the relatively
large temporal separation of the repeated passes of spaceborne
data collection introduces motion and atmospheric phase con-
tributions that have to be accounted for—albeit as nuisance pa-
rameters. This requires a lot more data sets to get unambiguous
results and resolve multiple scatterers inside an azimuth–range
cell. In our experiment, a data stack of 25 scenes is used for our
test site. The elevation aperture sampling positions are shown
in Fig. 2. The elevation aperture size Δb is about 269.5 m.
According to (1), with r = 704 km and ρr = 0.6 m, the eleva-
tion extent Δs of the illuminated objects must be much smaller
than 1568 m. This is always true for our test site. Therefore,
in the following sections, we handle TomoSAR as a spectral
estimation problem, and the detailed system model will be
introduced in Section III.
For nonparametric spectral analysis, the expected elevation

resolution ρs, i.e., the width of the elevation point response
function (PRF), depends on the elevation aperture length Δb
and is approximately (sufficiently dense sampling of the eleva-
tion aperture provided)

ρs =
λr

2Δb
(2)

where λ is the wavelength. It results in 40.5-m resolution in
elevation expected for our stack, which is approximately 20-m
resolution in height with the elevation-to-height factor sin θ,
where θ is the incidence angle and equals 31.8◦ here. This,
however, does not mean that individual scatterers can only be
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Fig. 3. Possible signal contributions in a single SAR image azimuth–range
pixel.

located to within this poor elevation resolution. The Cramér–
Rao lower bound (CRLB) on elevation estimates can be shown
to be [14]

σŝ =
λr

4π
√

NOA · √2SNR · σb

(3)

where NOA is the number of acquisitions, SNR is the signal-
to-noise ratio, and σb is the standard deviation of the baseline
distribution. For instance, the stack used in this example has
σb = 70.9 m. For many bright points, we can assume an SNR
of 10 dB; then, the CRLB on elevation estimation is 1.1 m, i.e.,
almost a 1/40 of the elevation resolution.

III. TOMOSAR

A. System Model

For a single SAR acquisition, the focused complex-valued
measurement gn(x0, r0) of a specific azimuth–range pixel
(x0, r0) for the nth acquisition with aperture position bn and
temporal baseline tn is the integral of the reflected signal along
the elevation direction, as shown in Fig. 3. In VHRX-band data,
we expect the following signal contributions (see Fig. 3).
1) Weak diffuse scattering from—mostly horizontal or

vertical—rough surfaces (roads and building walls). They
have an elevation extent of ρr/ tan θ for horizontal and
ρr · tan θ for vertical surfaces. In both cases, these extents
are much smaller than our elevation resolution ρs, and
hence, these surfaces can be treated as discrete scatterers
in the elevation direction (delta functions).

2) Strong returns from metallic structures or specular and
dihedral or trihedral reflections. These are points that
would also be used in persistent scatter interferometry.
They are the dominating signal contributions. With VHR
SAR data, the density of these points can be very high, as
mentioned before.

3) Returns from volumetric scatterers, e.g., from vegetation.
These result in a continuous signal background in el-
evation. These ensembles of scatterers, however, often
decorrelate in time, and their response is therefore treated
as noise.

The noise sources are the following.
a) Gaussian noise, which is caused by thermal noise and

temporal decorrelation, as mentioned previously.

b) Calibration errors in amplitude. According to an unpub-
lished DLR internal calibration report [15], the radiomet-
ric stability of TerraSAR-X, i.e., the amplitude variations
within one stack, is 0.14 dB and is therefore negligible
compared to our typical SNR.

c) Phase errors caused by atmospheric delay and unmodeled
motion. They require robust and phase-error-tolerant esti-
mation methods.

One SAR acquisition may be considered to be one tomo-
graphic projection of the complex reflectivity of the object
along elevation [16] (note that the deformation term is ignored
here for simplicity)

gn =
∫
Δs

γ(s) exp (−j2πξns) ds, n = 1, . . . , N (4)

where γ(s) represents the reflectivity function along elevation
s. ξn = −2bn/(λr) is the spatial (elevation) frequency. The
continuous-space system model of (4) can be approximated by
discretizing the continuous reflectivity function along s within
its extent Δs by sl (l = 1, . . . , L)

gn ≈ δs ·
L∑

l=1

γ(sl) exp(−j2πξnsl), n = 1, . . . , N (5)

where L is the number of discrete elevation indices and the
discretization interval is δs = Δs/(L − 1). After dropping the
inconsequential leading constant δs, the system imaging model
becomes

g = R γ (6)

where g is the measurement vector with N elements gn, R is
an N × L mapping matrix with Rnl = exp(−j2πξnsl), and γ
is the discrete reflectivity vector with L elements γl = γ(sl).
Equation (6) is essentially an irregularly sampled discrete
Fourier transform of the elevation profile γ(s). The objective
of TomoSAR is to retrieve the reflectivity profile for each
azimuth–range pixel and then use it to estimate scattering para-
meters such as the number of scatterers present in the cell, their
elevations, reflectivities, and line-of-sight (LOS) deformation
velocities (see Section IV). This can be achieved from a spectral
analysis of the multipass data stack with N SAR acquisitions.

B. Processing Sequence

The processing procedure, with the objective of reconstruct-
ing the 3-D scatterer distribution from measurements of the
scattered field and estimating LOS deformation, is shown in
Fig. 4. The preprocessing, including atmospheric phase screen
correction, is performed by the German Aerospace Center
(DLR)’s PSI-GENESIS system [17]–[20].
To acquire an estimate of the reflectivity profile along

elevation for a certain azimuth–range pixel, nonparametric
spectral analysis is used for the first stage of processing.
Except the maximum elevation extent Δs of the object and
some statistical properties of the prior and the noise, no prior
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Fig. 4. Processing sequence of tomographic SAR data stacks.

knowledge, such as the number of scattering objects, and
no assumption about the scattering mechanism are required.
The estimated profile is then used as a prior knowledge for
model order selection and parameter estimation. There are
many inversion methods, such as SVD, Capon, multiple signal
classification (MUSIC), etc. However, it is not our purpose
to compare different spectral estimation methods, which have
been discussed in detail in [21]–[23]. The high phase errors
due to unmodeled motion require robust methods (see self-
cancellation of Capon [24]). In addition, we want to maintain
the full range and azimuth resolution since the 1-m range–
azimuth resolution of the data is essential for urban applica-
tions. As mentioned in Section I, the inner scale of buildings is
typically in the range of 2–3 m. Any blurring, as it is necessary
for the covariance matrix estimation in MUSIC, Capon, etc.,
is lethal for the information content; individual bright points
will be merged to bright clusters. Moreover, the typical signals
of buildings are not ergodic. Taking all this into account, the
SVD-based method has been chosen because of its good behav-
ior at high noise levels without compromising azimuth–range
resolution. With nonparametric estimates, the scatterers’ distri-
bution in the elevation–velocity (v−s) plane, to be introduced
later, and a 3-D reflectivity map of the entire illuminated
scene are obtained. They are input to model order selection,
i.e., to the estimation of the number of discrete (pointlike)
scatterers.
With prior knowledge of the number of scatterers, a param-

etric spectral estimator, for instance, nonlinear least squares
(NLS), which is the maximum-likelihood estimator (MLE) for
Gaussian white noise, can be applied to the measurements to
refine the estimates at the cost of large computational effort.
Alternatively, we can simply estimate the location of the scatter-
ers by detecting the peaks of the nonparametric SVD estimates,
which is much faster but may introduce estimation bias caused
by interference between multiple scatterers.
We will not go into the details of preprocessing as they are

sufficiently addressed in the literature. The remaining modules
(gray boxes in Fig. 4) are outlined next.

IV. MAP ESTIMATOR AND WIENER SVD

The standard MAP estimator for γ from (6) is given by

γ̂MAP =
(
RTC−1

εε R + C−1
γγ

)−1
RTC−1

εε g (7)

where Cεε is the noise covariance matrix and Cγγ is the
covariance matrix of the prior. It reduces to

γ̂MAP =
(
RTR + |ε|2I)−1

RTg (8)

if both the noise and the prior are assumed to be white, i.e.,
the noise covariance matrix Cεε = |ε|2I, the covariance matrix
of the prior Cγγ = I, and the signal power is assumed to be
normalized to unity. This nonparametric spectral estimation
method has been chosen because of its robustness at high noise
levels without sacrificing the azimuth–range resolution.
Although the MAP estimator from (8) could be implemented

directly, the treatment of the problem in the singular-value (SV)
space is helpful. As will be shown, the distribution of the SVs
helps us understand the determinedness of the problem and
estimate the noise level.
In this section, we will show that the MAP estimator is

equivalent to a Wiener-type regularization of the SVs. It is a
more strict solution than the original truncated SVD (TSVD)
method [16]. We also give its extension to D-TomoSAR.

A. SVD method

The SVD inversion framework has been elegantly described
in [16]. The discrete reflectivity signal γ can be reconstructed
from g through pseudoinversion of the imaging system matrix
R [(6)]. However, due to the nonuniform track distribution, the
solution may include significant noise propagation due to the
ill-conditioned nature of the problem. The SVD is a simple
and valuable tool for analyzing image quality and the amount
of independent information about the unknowns that can be
reliably retrieved from observations in the presence of noise
[11]. The SVD of R is a decomposition of the form

R = UΣVT =
N∑

n=1

unσnvT
n . (9)

where U = (u1, . . . ,uN) and V = (v1, . . . ,vN) are matrices
with orthonormal columns, UTU = VTV = IN, and Σ =
diag(σ1, . . . , σN ) has nonnegative diagonal elements such that
σ1 ≥ · · · ≥ σN ≥ 0. σn denotes the SVs of R, while the vec-
tors un and vn are the left and right singular vectors of R,
respectively. Consider now that an estimate of γ is obtained via
the pseudoinverse R†. Using the SVD, we get

γ̂ = R†g =
N∑

n=1

σ−1
n

(
uT

ng
)
vn. (10)

Due to the reciprocal of σn, noise propagation caused by
small SVs will compromise this solution, and regularization
tools are required.
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Fig. 5. (Left) SV spectra corresponding to ill-conditioned matrices with well-
and ill-determined numerical ranks. (Right) Corresponding SV spectrum of our
TomoSAR configuration with elevation aperture sampling from Fig. 2.

B. Wiener Regularization

A well-known method for dealing with an ill-conditioned
matrix in problem (7) is TSVD [25]. The basic idea of TSVD
and other regularization methods is to impose additional re-
quirements on the solution, thus hopefully damping the con-
tributions from the errors of the right-hand side of (7). In the
case of TSVD, this is achieved by discarding the components of
the solution corresponding to the smallest N − Q SVs. These
contributions to the solution are most likely noise and would be
amplified unduely by the inverse of σn. Q is called “numerical
rank” or “effective rank” of R defined by the number of SVs
bigger than some noise level ε. The TSVD was implemented
in [16] for an experiment with 44 acquisitions, and robust
performance was achieved.
Depending on the SV spectrum, it is common to charac-

terize an ill-conditioned matrix as either with a well- or an
ill-determined numerical rank [26]. An ill-conditioned matrix
with a well-determined numerical rank has a well-defined gap
between the significant SVs contributing to the signal space
and the small SVs contributing to the noise space (see Fig. 5,
left, green crosses). Matrices with ill-determined rank degrade
gradually from the signal to the noise space (see Fig. 5, left,
black dots). Any distribution of SVs in between the two ex-
tremes of the left figure of Fig. 5 may, of course, be expected
in practical applications. However, from the perturbation theory
for the TSVD [25], TSVD is a stable method only for problems
with a well-determined numerical rank.
The corresponding SVs of our Las Vegas TerraSAR-X data

set with the baseline distribution of Fig. 2 are shown in the right
plot of Fig. 5. It is obviously of ill-determined numerical rank.
The result is then overly dependent on how a hard threshold
is set. Transforming the MAP estimator of (8) to the SV space
results readily in a soft thresholding, e.g., weighting the SVs
according to their magnitudes, also referred to as a Tikhonov
regularization

γ̂MAP =
(
ΣT Σ + |ε|2I)−1

VΣT UT g

=
N∑

n=1

σ−1
n,Wiener

(
uT

ng
)
vn (11)

where σ−1
n,Wiener denotes the optimum weights

σ−1
n,Wiener =

σn

|σn|2 + |ε|2 . (12)

It replaces σ−1
n in (10). |ε|2 is the noise power level. A small

ε corresponds to a high SNR. This type of weighting resembles
the Wiener filter under white noise, and hence, we call the

Fig. 6. Two close scatterers separable with D-TomoSAR due to the different
velocities. (Left) Reconstructed reflectivity profile with TomoSAR; the scatter-
ers are not separable. (Right) Retrieved scatterer distribution in the s−v plane
with D-TomoSAR.

method SVD-Wiener. It provides more stable performance,
particularly for the case of few (15–30) acquisitions.
Now, we come to the problem of estimating the noise level ε.

Let us define coefficients βn = uT
n g, which are the projection

of measurements onto the singular vectors. The noise level
can be estimated from the nε coefficients βn (n = N − nε +
1, . . . , N) corresponding to the noise space (in our experiment,
nε can be set to 14; see Fig. 5, right). An estimate ε̂ of the noise
level ε for every azimuth–range pixel can be obtained via

ε̂ =

√√√√ N

nε

N∑
n=N−nε+1

|βn|2. (13)

C. Extension to D-TomoSAR

Taking the motion term into account, the system model (4)
can be extended to

gn =
∫
Δs

γ(s) exp (−j2π (ξns + ηnV (s))) ds,

n = 1, . . . , N (14)

where V (s) is the deformation LOS velocity profile along
elevation and ηn = 2tn/λmay, in analogy, be called a “velocity
frequency.” Formally, (14) can be rewritten as

gn =
∫
Δv

∫
Δs

γ(s)δ (v − V (s)) exp (−j2π(ξns + ηnv)) ds dv,

n = 1, . . . , N (15)

where Δv is the velocity range, which is typically on the order
of some tens of centimeters per year. Equation (12) is a 2-D
Fourier transform of γ(s)δ(v − V (s)), which is a delta line in
the elevation–velocity (s−v) plane along v = V (s). Projected
onto the elevation axis, γ(s)δ(v − V (s)) follows the reflectivity
profile γ(s). If we accept γ(s)δ(v − V (s)) as the object to
be reconstructed, the SVD-based spectral estimation methods
used for TomoSAR can be easily extended to the 4-D case
that includes the LOS deformation terms, i.e., D-TomoSAR [2],
[10]. Instead of treating the deformation phase term as noise,
D-TomoSAR can provide retrieval of the elevation and
deformation information of multiple scatterers inside an
azimuth–range resolution cell and thus obtain a 4-D map of
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scatterers. It is required for reliable 3-D and 4-D city mapping
from repeat-pass acquisitions.
Likewise, due to the ill-conditioning of the problem, regular-

ization tools, such as TSVD and Wiener filtering, can be im-
plemented, as described earlier. Fig. 6 shows an example. Two
scatterers with an elevation distance of 20 m (s1 = 0 m; s2 =
20 m) are simulated. With standard 3-D TomoSAR, they are
not separable with our baseline configuration since they are
within a 40-m elevation resolution element, as shown in the left
plot of Fig. 6. However, due to their different velocities (V1 =
0 cm/year; V2 = −2 cm/year), they can be easily distinguished
in the s−v plane, as shown in the right panel of Fig. 6.

V. MODEL ORDER SELECTION

By implementing nonparametric spectral estimation, the re-
flected power along the elevation direction can be extracted.
Model selection schemes aim at estimating the number of point
scatterers along elevation inside an azimuth–range pixel [29].
Let k be a parameter that defines the complexity of the

model. In our case, k is the number of parameters to describe γ.
It depends on the number of scatterers np in the azimuth–range
pixel. As each scatterer can be described by three parameters
(amplitude, phase, and elevation), k = 3 np. Let further θ(k) be
the vector of the unknown amplitudes, phases, and elevations
for all the np scatterers. Then, the reflectivity profile can be
written as γ(θ(k)). The relationship between γ(θ(k)) and the
observed data g is described by the observation model [(6)].
p(g|θ(k), k) is the likelihood function. Under the assumption
that the model errors or disturbances e = g − R γ(θ(k)) are
circular Gaussian distributed with zero mean and a covari-
ance matrix of Cεε = |ε|2I, the likelihood function can be
written as

p (g|θ(k), k) =
1

πN |ε|2N
exp

(
− 1
|ε|2 ‖g − Rγ (θ(k))‖2

)
.

(16)

It will increase with increasing k, since a more complex model
fits the observations better. As a consequence, maximization
of the likelihood function is not sufficient for model selection.
Instead of using only the likelihood as a criterion, penalized
likelihood criteria are used for model selection. The general
form of penalized likelihood criteria is

θ̂(k) = arg max
θ(k)

{ln p (g|θ(k), k) − C (θ(k))} . (17)

ln p(g|θ(k), k) is the log-likelihood and C(θ(k)) is a com-
plexity penalty, from which we can see that model selection is
actually a tradeoff between how well the model fits the data and
the complexity of the model. Note that the likelihood depends
on the noise model, e.g., for Gaussian noise, the log-likelihood
is essentially the sum of squared residuals. If this term only
depends on the model dimension, then

k̂ = arg max
k

{
ln p

(
g|θ̂(k), k

)
− C(k)

}
. (18)

In other words, estimate the best parameters for each k, and
then choose among these models. In our application, model

Fig. 7. Probability of correctly detecting two scatterers using different model
selection schemes.

complexity only depends on the number of scatterers np in the
azimuth–range pixel. It is common in the literature to multiply
the cost function by a factor of minus two

k̂ = arg min
k

{
−2 ln p

(
g|θ̂(k), k

)
+ 2C(k)

}
. (19)

For each k = 3 np (e.g., np = 1, 2, or 3), the estimated am-
plitudes, phases, and elevations of the np scatterers are used to
synthesize an estimate of γ and to compute ‖g − R γ̂(θ̂(k))‖2,
the exponent of the likelihood function. The preferred model is
finally the one with the lowest penalized likelihood criterion
value according to (15).
There are many types of penalized likelihood criteria, such

as the Bayesian information criterion (BIC), the Akaike infor-
mation criterion (AIC), and the minimum description length
(MDL). Their basic principles are the same, and the main
difference is in the penalty term. In [30], BIC, MDL, and
AIC are discussed in detail for the purpose of determining the
number of scatterers inside an azimuth–range pixel of multipass
SAR data stack with nine acquisitions.

BIC is also called the Schwarz criterion or Schwarz informa-
tion criterion (SIC). It is so named because Gideon E. Schwarz
[31] gave a Bayesian argument for adopting it. The detailed
derivation and performance of BIC are described in [32]. If
the models are quasi-nested [33], BIC with C(k) = 0.5 k lnN ,
where N refers to the number of samples (in our case, the
number of acquisitions), is an approximation of the Bayesian
method that says that models should be compared according to
their posterior probabilities.

MDL is a formalization of Occam’s razor and tries to find
the hypotheses or combination of hypotheses that compress
the data the most [34]. The MDL was introduced by Jorma
Rissanen in 1978 [35]; it is an important concept in information
and learning theory. Without prior knowledge of the model, it
is identical to BIC with a penalty term of C(k) = 0.5 k lnN .

AIC with C(k) = k tries to minimize the expected rela-
tive distance between the fitted model and the unknown true
mechanism that generated the observed data [36]. Rejecting a
null hypothesis when it should have been accepted creates a
type I error; accepting a null hypothesis when it should have
been rejected creates a type II error. AIC effectively trades off
those two types of errors. As a result, AIC may give less weight
to simplicity than to data fit as compared to classical hypothesis
testing [37]. Therefore, when the number of samples is large,
AIC tends to underpenalize complexity.
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Fig. 8. Estimated elevations using (a) NLS estimation and (b) MD with SNR = 20 dB. (c) Elevation point spread function from SVD-Wiener reconstruction.
The estimation truth is a horizontal line referring to the ground and a diagonal line referring to the scatterer at variable elevation. The red lines in the plots show
±3 times the CRLB on elevation estimates for the single scatterer.

Fig. 9. Wynn hotel, Las Vegas. (Left) Optical image with viewing direction of SAR (LOS = line of sight) and (yellow) two iso-elevation lines. (Right) Mean
TerraSAR-X intensity image with (red) analysis points P1 and P2.

Fig. 10. Elevation profiles at analysis points P1 (single scatterer) and P2 (two scatterers) marked in Fig. 11.
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Fig. 11. (Top) Las Vegas Convention Center (Google Earth). (Bottom)
TerraSAR-X intensity map.

AICc is the small-sample bias adjustment for AIC [38]

AICc = AIC +
2k(k + 1)
N − k − 1

. (20)

An issue with all these model selection methods is selection
bias, which cannot be easily corrected. Selection bias refers
to the fact that model criteria are particularly risky when a
selection is made from a large number of competing models.
The random fluctuation in the data will increase the scores of
some models more than others. The more models there are,
the greater is the risk that the optimal model is chosen at
random. In [36], it was emphasized that selection criteria should
not be followed blindly and that the term “selection” sug-
gests something definite, which, in fact, has not been reached.
Therefore, the selection of a criterion must be based on the
experiments for the specific situation, and it is also not possible
for model order selection algorithms to control the false-alarm
probability.

In order to choose a favorable model selection method,
different schemes are evaluated on simulated data with the
elevation aperture sampling of Fig. 2. The decorrelation effect
is simulated by adding Gaussian noise with a certain SNR.
Phase noise due to unmodeled deformation and atmospheric
effects are simulated by adding a uniformly distributed phase
on [−0.5π, 0.5π). The simulated “truth” is two scatterers at
elevations of −20 and 40 m with reflectivities of 1 and 0.8,
respectively. The distance between the two scatterers is hence
1.5 elevation resolution cells. The most important characteristic
for evaluating the performance of the model selection criteria is
the detection rate that refers here to the probability of correctly
detecting the number of scatterers. A Monte Carlo simulation
with 1000 realizations per SNR value was performed to eval-
uate the detection rates of different schemes. The probability
of correctly detecting two scatterers for various SNRs is shown
in Fig. 7.
In this example, the number of scatterers is chosen from

three hypotheses, namely, one, two, or three scatterers. Since
the complexity of the model only depends on k, the MDL is
identical to BIC in our application, and they give the same
results. All the model selection schemes appear to have similar
performance. At a typical SNR of 3 dB, a threshold that is also
often used for persistent scatterer identification, the probability
of correctly detecting the number of scatterers is at least 60%.
Overall, the MDL and BIC provide the best performance in our
case and are used in the following experiments.

VI. PARAMETRIC ESTIMATION

With prior knowledge np, the parameters associated with
individual scatterers, such as elevation, reflectivity, and LOS
velocity (for D-TomoSAR only), can be estimated by ei-
ther implementing a parametric estimation method, such as
NLS, or simply detecting np peaks of the nonparametric
estimates.
For the following, let us consider that the elevation reflec-

tivity profile is composed of np delta functions of complex
amplitudes xi

γ(s) =
np∑
i=1

xi · δ(s − si). (21)

NLS: The noise-corrupted SAR observations of the np scat-
terers is according to the observation equation (4) [39]

gn =
np∑
i=1

xi exp(j2πξnsi) + υn, n = 1, . . . , N (22)

where υn is the observation noise. As both the complex ampli-
tudes xi and the elevations si of the individual np scatterers
are unknown, the spectrum estimation problem is nonlinear.
Although the signal model is nonlinear, it is at least linear in
the amplitude

g = H(s)x + u (23)



4304 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 12, DECEMBER 2010

Fig. 12. (Top) TerraSAR-X radar intensity image of the Las Vegas Convention Center. The green dot is the reference point, and the blue lines are the positions
of the respective slices. (Bottom) The estimated reflectivity is shown in the azimuth–elevation plane [horizontal: azimuth; vertical: elevation, converted to height
(in meters)].

with

g =

⎡
⎢⎢⎢⎣

g1

.

.

.
gN

⎤
⎥⎥⎥⎦

N×1

H(s)=

⎡
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ej2πξ1s1 · · · ej2πξ1snp

. .

. .

. .
ej2πξN s1 · · · ej2πξN snp

⎤
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x1

.

.

.
xnp

⎤
⎥⎥⎥⎦

np×1

u=

⎡
⎢⎢⎢⎣

υ1

.

.

.
υN

⎤
⎥⎥⎥⎦

N×1

where the matrix H(s) depends on the unknown elevations
of the scatterers. As this model is linear in amplitude and
nonlinear in elevation, the least squares error may be mini-
mized with respect to x in a closed analytic form and thus be
reduced to a function of elevations only, which means that an
np-dimensional search is needed (for D-TomoSAR, an addi-
tional search for velocity is required). Since the object function
[40] x, which minimizes

J(s,x) = (g − H(s)x)T (g − H(s)x) (24)

for a given s, is

x̂ =
(
HT(s)H(s)

)−1
HT(s)g (25)

the resulting error is

J(s, x̂) = gT
(
I − H(s)

(
HT(s)H(s)

)−1
HT(s)

)
g. (26)

Fig. 13. (Top) Reconstructed reflectivity slice (azimuth–elevation plane).
(Bottom) Estimated elevation (converted to height) and model selection results
(green dots: single scatterer in an azimuth–range pixel; red dots: two scatterers).

The problem now reduces to a maximization of
gTH(s)(HT(s)H(s))−1HT(s) g over npvalues of s, and
a grid search can be used. With Gaussian white noise, NLS is
identical to MLE. It is therefore theoretically the best estimator
for our application if and only if the data closely agree with the
assumed model. However, multidimensional search leads to a
large computational effort.

Maxima detection (MD): As implied by the name, MD
detects np peaks in the nonparametric estimates. It is relatively
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fast. However, it may introduce estimation bias caused by
interference between multiple scatterers, i.e., the location of
the peaks may be shifted by the sidelobes of other scatterer
responses. In addition, it has the inherent elevation resolution
limit of nonparametric spectral estimation and is therefore not
capable of separating too close objects.
Two scatterers inside one resolution cell, among which one

changes the elevation gradually from −100 to 100 m and the
other stays at zero elevation, are simulated as an example for
evaluating the performance of both methods. Fig. 8 shows the
estimated elevation of the two scatterers by NLS [Fig. 8(a)]
and MD [Fig. 8(b)] with SNR = 20 dB. The x-axis refers to
the true elevation of the shifting scatterer. The y-axis refers to
the estimated elevation. The ideal image should be two straight
lines (one horizontal and one diagonal).
The red lines in the plots indicate ±3 times the CRLB

σŝ on elevation estimates for the single-scatterer case [(3)].
Fig. 8(c) shows the elevation PRF with elevation aperture
sampling shown in Fig. 2. As expected, NLS gives the better
performance. When the distance between the two scatterers is
large enough (low interference effect), NLS is able to locate
the scatterers quite well with localization accuracy within the
3σŝ band. Correspondingly, MD of nonparametric estimates is
limited by the elevation resolution. Moreover, even with the two
scatterers further apart than the resolution cell size, MD suffers
from the interference of the scatterers [Fig. 8(b)]. The elevation
estimate of one scatterer is systematically biased by the side-
lobes of the other and vice versa, even though the SNR is high.

VII. EXPERIMENTAL RESULTS

A. Las Vegas, Wynn Hotel

The Las Vegas Wynn hotel has been chosen as a test building
to demonstrate the potentials of layover object separation since
it is very high and has strong layover effect in the SAR image.
Fig. 9 (left) shows the Wynn hotel in Las Vegas with a height
close to 200 m, corresponding to an elevation range of 380 m.
The right image in Fig. 9 is the corresponding TerraSAR-X
intensity image.
Pixels containing multiple scatterers are mainly located at the

intersection of the bright texture of the building with structures
near the ground. To exemplify the potential of the TomoSAR
method, the two pixels marked by red stars have been selected
and will be analyzed in the following. As P1 is located outside
the region of the high-rise building, it is expected that it only
contains a single scatterer situated near the ground. P2 is
located at the intersection area; we expect two scatterers inside
this pixel, among them one from the ground and one from
the building facade. The corresponding reflectivity estimates
for those two pixels are shown in the right image of Fig. 10.
In this example, we can see the potential of the tomographic
approach with TerraSAR-X to separate multiple scatterers in
layover areas at a VHR.

B. Las Vegas Convention Center

The Las Vegas Convention Center is a very interesting test
building for 3-D focusing for two reasons. First, it is very big
and has a regular shape. Therefore, we are able to check the
plausibility of the results. Second, it has a height of about 20 m,

Fig. 14. (Top) Digital surface model of the Las Vegas convention center
generated from D-TomoSAR (in meters) (black cross: reference point) and
(Bottom) the estimated linear deformation velocity w.r.t. the reference point
(in centimeters per year).

the critical distinguishable distance between two scatterers (one
from the ground and the other from the building) for our
elevation aperture size. The presence of two scatterers within
azimuth–range pixels is expected in layover areas. The top
image in Fig. 11 shows the convention center visualized in
Google Earth. The bottom image is the TerraSAR-X intensity
map of the area. After preprocessing, we choose a reference
pixel according to [41], which most likely has only a single
scatterer inside.
SVD-Wiener, as described in Section IV, is applied to

each azimuth–range pixel in the area of interest. Fig. 12
shows an example of the reconstructed reflectivity map of the
azimuth–elevation slices with fixed range coordinates marked
by bright blue lines. The green dot on the TS-X intensity
map is the selected reference that is located on the roof of
the convention center. The lower images of Fig. 12 show the
reconstructed reflectivity slice (bright means high reflectivity;
the y-axis refers to the elevation relative to the reference
point). The structure of the building can be recognized, and
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Fig. 15. World at X-band: Tomographic surface reconstruction overlaid by the 3-D reflectivity map.

the reflectivity difference between individual parts can be seen.
For instance, from the left slice, it is obvious that the returns
from the roof of the building are generally stronger than the
returns from the ground and the building has a different height
for individual parts (which is not visible in the Google Earth
building model). At the range position of the slice on the right-
hand side, the lower part of the building marked by the red block
(left part in the reflectivity slice) is a layover area. From the
Google Earth image, we can see that there is a small triangular-
shaped plaza on the ground made of the same material as
the building. Thereby, multiple scatterers are expected. When
we check the estimated reflectivity slice, multiple scatterers
appear, even though the distance between two scatterers (one
from the building marked with a blue line, and the other
from the small structures on the ground marked with a yellow
line) is approximately at the minimal distinguishable distance.
This demonstrates the multiple-scatterer separation potential of
TomoSAR and the stability of our algorithm.
After model selection, the number of scatterers inside every

azimuth–range pixel is retrieved to provide the required prior
knowledge for parameter estimation. The top panel of Fig. 13
shows the reflectivity slice reconstructed by the estimated
elevation and reflectivity based on the nonparametric estimates
on the right image in Fig. 12. The bottom plot in Fig. 13
reveals the estimated elevations of azimuth–range pixels with
good signal. The green dots represent the elevation of a single
scatterer in an azimuth–range pixel. The red dots represent
the elevation estimates of the detected double scatterers. These
results seem plausible. The deformation term is ignored for
these results.
From the parametric elevation estimates, a digital surface

model of the building can be reconstructed. Even ambiguities
in layover areas are resolved. However, deformation has not
been considered so far. Therefore, when the deformation signal
is strong, the reflectivity reconstruction in the elevation will be
distorted, and the elevation estimates degrade. Therefore, we
implement D-TomoSAR to our data stack.

Fig. 14 shows the surface model generated from the ele-
vation estimates (converted to height relative to the reference
point). The full structure of the convention center has been
captured at a very detailed level. Other than the building, more
details, such as the roads surrounding the convention center,
as well as two bridges above the roads that have weak but
correlated returns, are well resolved. Compared to classical
interferometric surface reconstruction, TomoSAR overcomes
layover and phase-unwrapping problems. The height estimates
are very precise compared to the 40.5-m elevation resolution
due to the high SNR of TerraSAR-X data. There are still some
distortions in the middle of the image where a flat roof surface
is expected. It may be due to the incorrect linear deformation
model assumption. Since the deformation is presumably caused
by thermal dilation, it rather follows a periodic seasonal model.
The bottom image of Fig. 14 shows the estimated deformation
velocity relative to the reference point. Some areas exhibit a
significant uplift of up to 3 cm/year.
Fig. 15 shows the final surface model with deformation

correction overlaid by the reflectivity map. This, for the first
time, visualizes in detail how the convention center would look
like from the position of TerraSAR-X if our eyes could see
X-band radiation. This may lead to a better understanding of
the nature of scattering. For instance, an overview about the
multiple bounce can be acquired by looking at the very bright
structure in Fig. 15. Also, the very bright individual scatterers
that behave as corner reflectors can be precisely located. This
may help in finding natural corner reflectors.

VIII. CONCLUSION

This paper has demonstrated the potential of the new class
of VHR spaceborne SAR systems, like TerraSAR-X and
COSMO-Skymed, for TomoSAR in urban environment. A
stack of TerraSAR-X high-resolution spotlight data over the
city of Las Vegas has been used. Compared to the medium res-
olution SAR systems available so far, the information content
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and level of detail have increased dramatically. A full tomo-
graphic high-resolution reconstruction of a building complex
has been presented.
Depending on the application, nonparametric or parametric

estimation methods are preferred. Examples for both classes
of estimators have been demonstrated and compared to the
Cramér–Rao bound. Motivated by the ill-determinedness of the
problem, a MAP estimator has been proposed, which leads to a
Wiener-type regularization for the nonparametric SVD method
for both 3-D and 4-D (differential) tomographic reconstruc-
tions. Model selection, i.e., the estimation of the number of
discrete scatterers in a resolution cell, has been shown to be
a necessary prerequisite for parametric estimation.
One of the major error sources is unmodeled, e.g., non-

linear, motion. These phase errors are able to deteriorate the
elevation estimates. With the launch of TanDEM-X, single-
pass (motion-free) data pairs will be available. Mixed data
stacks from TerraSAR-X and TanDEM-X will be an attractive
option for mitigating motion errors and for retrieving profiles
of temporarily decorrelated scatterers.
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Abstract—Layover is frequent in imaging and monitoring with
synthetic aperture radar (SAR) areas characterized by a high
density of scatterers with steep topography, e.g., in urban environ-
ment. Using medium-resolution SAR data tomographic techniques
has been proven to be capable of separating multiple scatterers
interfering (in layover) in the same pixel. With the advent of the
new generation of high-resolution sensors, the layover effect on
buildings becomes more evident. In this letter, we exploit the po-
tential of the 4-D imaging applied to a set of TerraSAR-X spotlight
acquisitions. Results show that the combination of high-resolution
data and advanced coherent processing techniques can lead to
impressive reconstruction and monitoring capabilities of the whole
3-D structure of buildings.

Index Terms—Differential interferometric synthetic aperture
radar (DInSAR), multidimensional SAR processing, SAR tomog-
raphy, synthetic aperture radar (SAR), TerraSAR-X (TSX), 4-D
SAR imaging.

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (SAR)
(InSAR) and differential InSAR (DInSAR), particularly

multitemporal DInSAR, have been proven to be effective for
accurate scatterer localization and monitoring of displacements
[1], [2]. The high accuracy and spatial density of the mea-
surements make these techniques cost effective compared to
classical geodetic techniques, typically used in environmental
risk monitoring.
The increase of the spatial resolution provides a tangible

improvement in the monitoring capabilities: Most of the in-
ternational space agencies have hence hugely invested in the
launch of large bandwidth spaceborne SAR systems. The hard-
ware improvement must be complemented by the development
of processing techniques that are able to extract the highest
possible information content from the data. In this sense, SAR
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tomography, also known as multidimensional (3-D and 4-D)
imaging SAR (MDI-SAR), is recognized as a powerful tech-
nique that extends interferometry.
DInSAR and persistent scatterer interferometry (PSI) assume

the presence of only a single (dominant) scattering center in
each pixel. However, SAR images of complex scenarios are
affected by the interference between the responses of scat-
terers located at different elevations (slant heights). Standard
multipass interferometric techniques “look” for the matching
between the received signal and the “multipass signature” of
a scatterer: The interference of responses may hence lead to
misdetection of persistent scatterers and to height, velocity, and
time-series measurement inaccuracies.
The layover effect causes interference between the responses

of different scatterers. Layover is particularly critical in urban
areas which are characterized by a high density of scatterers
distributed on vertical structures.
As briefly explained next, MDI-SAR allows the overcoming

of the single scatterer assumption and has opened a new sce-
nario in the 3-D target reconstruction and monitoring with SAR
systems [3], [4]. On medium-resolution systems, MDI-SAR
imaging has already been proven to be effective in separating
and monitoring scatterers in layover [5], [6].
The new generation of high-resolution SAR sensors, such

as TerraSAR-X (TSX) and the COSMO-SkyMed constellation,
allows the systematic acquisition of data with spatial resolution
reaching metric/submetric values. The preliminary analysis of
these images in dense urban areas has indicated that the reso-
lution improvement brings layover of vertical structures to be
more pronounced. On high-resolution SAR data, the interfer-
ence between scatterers on the ground and on buildings is more
frequent, and it is distributed on more pixels than on data ac-
quired by medium-resolution satellites (e.g., European Remote
Sensing (ERS) satellite or ENVISAT): The tomographic ap-
proach is a tool that allows mitigating this problem [7]. More-
over, the higher the resolution, the higher are the expectations
for 3-D reconstruction on vertical structures.
In this letter, we investigate the application of SAR tomogra-

phy to a real data set of TSX spotlight images over the city of
Las Vegas, NV. The characteristics of this data set allow clear
demonstration of the potential and the advantages offered by
the SAR tomography technique.

II. LAYOVER AND TOMOGRAPHY

The imaging mechanism of radar is measuring the distances
(range) of the scatterers from the sensor. If two scatterers are

1545-598X/$26.00 © 2011 IEEE
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Fig. 1. Temporal multilook image of the spotlight TSX data set over the city
of Las Vegas. The layover induced by the buildings is well recognizable.

located at different positions but share the same range, they are
imaged into the same pixel: This effect is known as layover.
In the presence of a vertical structure, such as a building,

the radar signal is affected by layover between the ground, the
façade, and possibly the roof. To have an idea of the effects of
layover, a data set of 25 TSX spotlight images from ascending
orbits over the city of Las Vegas, NV, has been considered.
This celebrated city, located over a flat area, includes a high
number of tall structures. The multitemporal averaged ampli-
tude image is shown in Fig. 1: Tall buildings are well visible,
although “folded” onto the ground toward the sensor; hence,
their responses interfere with those of the targets located below
the structures.
The tomography principle is simple: By using SAR data

acquired from different elevations, an antenna along the slant
height direction can be synthesized. The synthesized array
brings resolving capabilities on the backscattering distribution
along the elevation direction, orthogonal to the radar line of
sight, and hence, it leads to the possibility to separate contri-
butions coming from scatterers with different elevations and
interfering in the same pixel [5]. The tomographic technique
(3-D imaging) has been extended also to the time direction:
The differential-tomography technique (also known as 4-D, i.e.,
space-velocity imaging) allows the separation of interfering
scatterers and the measurement of their (possibly) different
velocities [3] and time series [4].
MDI-SAR exploits both amplitude and phase information

to reconstruct, for each pixel in the spatial (i.e., azimuth/
range) domain, the backscattering distribution along the slant
height/mean deformation velocity plane. This fact already al-
lows the improvement of performance in terms of dominant
persistent scatterer detection with respect to classical PSI that
uses only phase information [8]. In this letter, we limited the to-
mographic analysis to single (dominant) and double scatterers.

Fig. 2. Distribution of the acquisitions in the spatial/temporal baseline
domain.

To search for single and double scatterers, we used the detection
approach discussed in [9] and [10] based on the generalized
likelihood ratio test. It exploits the detector for single scatterers
in [9] in a sequential way and tests the energy contribution
of the (possible) second scatterer after the cancellation of the
dominant contribution: If this test declares the absence of the
second scatterer, a second test on the presence of only one
scatterer is carried out; see [10] for more details.

III. EXPERIMENTAL RESULTS

The TSX spotlight acquisition mode provides resolutions of
1.1 m in azimuth and 0.6 m in slant range. We applied the MDI
technique to the area of Boulevard South, also known as “The
Strip,” where many of the largest hotels, casinos, and resorts are
located. Almost all the images are acquired with the minimum
repeat cycle of 11 days, from February 2008 to April 2009:
Fig. 2 shows the baseline distribution. We note that, except for
two acquisitions, the orbital tube is rather strict: The baseline
span (B) is only approximately 207 m. This fact results in
a poor slant height resolution of about δs = λr/2B ∼= 47 m,
corresponding to a height resolution of δz = δs sin(ϑ) ∼= 27 m,
where λ, r, and ϑ are the wavelength, the distance from the
scene center, and the look angle, respectively. Superresolution
SAR tomography techniques could limit the effects of this poor
resolution [7], [12]: In this letter, however, we limited our
analysis to the classical linear tomographic approach [6].
The data set was calibrated for atmospheric phase com-

ponents estimated via the low-resolution multipass DInSAR
approach in [13] before the tomographic processing.
We focused our analysis on the block of theMirage Hotel and

Casino. It presents a tall (about 100 m) building surrounded by
a lower flat structure (entertainment attractions) about 15–20 m
over the street level.
Many features can be pointed out by comparing, in Fig. 3,

the amplitude image of the area with an orthophotograph:
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Fig. 3. (Top) Mirage Hotel image taken from Bing maps. (Bottom) TSX
amplitude image.

1) the folding of the building toward the sensor due to the
layover (the base of theMirage hotel is almost vertically aligned
in the Bing and TSX images); 2) the high range resolution
distributes the response of the building over a large number
of pixels; 3) the extremely high resolving capabilities of the
TSX spotlight imaging that allows distinguishing floors on the
southern façade.

A. Single-Scatterer Analysis

In Fig. 4 (top), we show the residual topography (i.e., the
topography estimated after the subtraction of the external dig-
ital elevation model—in our case, Shuttle Radar Topography
Mission) resulting from the MDI, followed by the single scat-
terer detection algorithm in [9], which tests the presence of a
persistent scatterer based on energy content along the direction
of the peak of the tomographic reconstruction. The building
rising toward the sensor is well recognizable in the detected
scatterers. As for previous analyses of TSX data [8], the density
of the detected points is also impressive.
Some considerations are now in order: First, on the southern

façade, many blue points corresponding to the ground are
detected and are mixed to scatterers colored from green to red,
corresponding to the vertical structure of the hotel. This fact
testifies that the interference in the façade and ground is very
likely. Second, in the upper right part of the image, two straight
black strips (almost aligned to the azimuth) appear clearly.
These areas correspond to two shadowing areas caused by small

Fig. 4. (Top) Residual topography and (bottom) mean deformation velocity
estimated by means of SAR tomography for the single-scatterer analysis.

Fig. 5. (Upper left image) Daily averaged temperature of the area. (Lower left
image) Residual phases after topography calibration for pixel A. (Right image)
Scatter plot.

steps (a few meters high) on the roof of the surrounding struc-
ture. One of these shadow strips falls in the radar image areas
under the layover of the north façade of the hotel. It is interest-
ing to notice in this area the presence of a high density of scat-
terers (green pixels) on the part of the façade that falls over the
shadowed strips (see the white box in Fig. 4): This high density
is the result of the absence of any interference with the ground.
The deformation map presented at the bottom of Fig. 4 also

shows an interesting phenomenon: While all the rest is stable,
the roof appears moving toward the sensor at about 2 cm/year.
For one of these apparently inflating scatterer (A in Fig. 4),

the phase signal obtained after the compensation of the topo-
graphic signature is shown in the lower left image in Fig. 5: This
plot highlights the presence of a seasonal motion, and hence, the
mean velocity is only in part able to explain this movement. The
average daily temperatures of the area, provided by the Univer-
sity of Dayton database [14], are shown in the upper left image
in Fig. 5. The high degree of correlation with the deformation
is evident; see also the scatter plot in the image on the right. As
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Fig. 6. (Upper row) Residual topography and (bottom row) mean deformation velocity estimated by means of the SAR tomography for (left column) single
scatterers, (middle column) lower layer of double scatterers, and (right column) the upper layer of double scatterers.

Fig. 7. Three-dimensional visualization of the single and double scatterers reconstructed with SAR tomography on Google Earth. The color is associated to the
estimated height.
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can be seen, thermal dilation provides contributions leading to a
mismatch with the linear displacement model that is commonly
adopted in the detection of scatterers [15]. This aspect is the
subject of future investigations.

B. Double-Scatterer Analysis

The assumption, made by the classical interferometric tech-
niques, of a single scatterer per pixel neglects the interference of
scatterers. We therefore applied the detection scheme described
in [10] which is able to test the presence of single and double
scatterers. In Fig. 6, the results of this detection algorithm are
presented with the colors coded accordingly to (upper row)
the estimated topography and (bottom row) mean deformation
velocity. These figures show the capability of the tomographic
approach to “separate” the interfering layers associated with
the ground and the façade of the building. The images on the
left column show the detected single scatterers, whereas in
the middle and right columns, the images are associated with
the ground and top layer extracted from double-scatter results,
respectively. The effectiveness of tomography in scatterer pair
separation on this layover (distributed over several range pixels)
is particularly evident in the topography reconstruction; see the
homogeneity of blue color of the ground scatterer layer and the
gradation of colors on the layer corresponding to the façade.
The high density of detected double scatterers that fills the lack
of the single scatterers analysis should be noticed.
A further confirmation of the results is provided by the

shadow stripe highlighted by the white box in Fig. 4: As
expected, no double scatterers were detected in this area.
For what concerns the deformation maps shown in the right

column in Fig. 6, by analyzing both the estimated mean de-
formation velocity and the previously estimated topography, it
is interesting to note the presence of few pixels showing an
estimated velocity that is fully congruent with that of the single
scatterers affected by strong thermal dilation.
Finally, the 3-D view of the building is shown in Fig. 7

to demonstrate the impressive potential of the new (high-
resolution) sensor generation and the potential of SAR tomog-
raphy for urban area analysis. It shows a 3-D view of the Mirage
Hotel in Google Earth obtained with the identified single and
double scatterers and without the use of the optical Google 3-D
model of the building as background: The different floors are
well visible in the left façade. The results show that these SAR
sensors orbiting hundreds of kilometers from the Earth can
provide accurate 3-D reconstruction and monitoring of single
buildings.

IV. CONCLUSION

High-resolution SAR systems, such as TSX and Cosmo-
SkyMed, provide an obvious improvement in the imaging

capabilities. However, specific problems associated with the
geometry of SAR become more evident: Layover is among
them, and it affects particularly the images of urban areas. By
processing spotlight TSX data, in this letter, we have shown that
SAR tomography can solve this problem and allow accurate
3-D reconstruction and monitoring. Layover associated to tall
buildings and distributed over several pixels was successfully
resolved.
Whereas layover is solvable by using, as shown, SAR to-

mography, no solutions are available for shadowing. Hence,
small incidence angles are preferred for imaging urban areas
to “pierce” areas with high density of buildings and reduce
shadowing.
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Abstract—Synthetic aperture radar (SAR) tomography
(TomoSAR) extends the synthetic aperture principle into the
elevation direction for 3-D imaging. The resolution in the elevation
direction depends on the size of the elevation aperture, i.e., on
the spread of orbit tracks. Since the orbits of modern meter-
resolution spaceborne SAR systems, like TerraSAR-X, are tightly
controlled, the tomographic elevation resolution is at least an
order of magnitude lower than in range and azimuth. Hence,
super-resolution reconstruction algorithms are desired. The
high anisotropy of the 3-D tomographic resolution element
renders the signals sparse in the elevation direction; only a few
pointlike reflections are expected per azimuth–range cell. This
property suggests using compressive sensing (CS) methods for
tomographic reconstruction. This paper presents the theory of 4-D
(differential, i.e., space–time) CS TomoSAR and compares it with
parametric (nonlinear least squares) and nonparametric (singular
value decomposition) reconstruction methods. Super-resolution
properties and point localization accuracies are demonstrated
using simulations and real data. A CS reconstruction of a building
complex from TerraSAR-X spotlight data is presented.

Index Terms—Compressive sensing (CS), differential syn-
thetic aperture radar tomography (D-TomoSAR), TerraSAR-X,
urban mapping.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR), SAR tomography
(TomoSAR) [1] extends the synthetic aperture principle

of SAR into the elevation direction for 3-D imaging. It uses
acquisitions from slightly different viewing angles (the eleva-
tion aperture) to reconstruct for every azimuth–range (x−r)
pixel the reflectivity function along the elevation direction s,
i.e., the third dimension perpendicular to x and r (Fig. 1).
It is essentially a spectral analysis problem. Differential SAR
tomography (TomoSAR) [2], also referred to as 4-D focusing,
obtains a 4-D (space–time) map of scatterers by estimating both
the elevation and the deformation velocity of multiple scatterers
inside an azimuth–range resolution cell.
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The first experiments in TomoSAR were carried out in
the laboratory [3] under ideal experimental conditions or by
using airborne systems [1]. Spaceborne TomoSAR tests were
reported in [4] and [5]. It has been applied to C-band ERS data
over extended scenes in [6] and to TerraSAR-X data in [7].
In [8], the single- and double-scatterer cases were separated.
The concept of 4-D SAR imaging (differential TomoSAR) was
proposed in [2] and first applied to ERS data in [9].
With the German TerraSAR-X and the Italian COSMO-

Skymed satellites, SAR data with a very high spatial resolution
(VHR) of up to 1 m are available. This resolution is particularly
helpful when it comes to interferometric and tomographic
imaging of buildings and urban infrastructure. The inherent
spatial scales of these objects are in the meter range (e.g.,
typical height between floors of 3–3.5 m).
We work with TerraSAR-X high-resolution spotlight data.

These VHR X-band spaceborne repeat-pass tomographic data
stacks of urban areas have some particular properties. A very
detailed view of individual buildings is possible. The density of
bright points, like persistent scatterers, is extremely high (up
to 100 000/km2). However, nonlinear (e.g., thermal-induced)
deformations of different building parts must also be expected
and will introduce additional phase errors, if not modeled. Due
to the tight orbit tube of TerraSAR-X, the elevation aperture is
small, i.e., the inherent resolution in elevation is about 50 times
worse than that in azimuth or range. This extreme anisotropy
calls for super-resolution algorithms in the elevation direction.
Finally, VHR data are expensive, and hence, data stacks should
be kept small. There are several super-resolving methods, such
as CAPON, MUSIC, etc. They are discussed in detail in
[10]–[12]. We concentrate on methods that do not require
averaging in azimuth and range in order to fully exploit the
potential of this class of VHR data.
Compressive sensing (CS) [13]–[16], as a favorable sparse

reconstruction technique, is a new and attractive method for
TomoSAR. It aims at minimizing the number of measurements
to be taken from signals while still retaining the informa-
tion necessary to approximate them well. It provides a good
compromise between classical parametric and nonparametric
spectral analysis methods. Compared to parametric spectral
analysis, CS is more robust to phase noise, has lower computa-
tional effort, and does not require model selection to provide the
prior knowledge about the number of scatterers in a resolution
cell. Compared to nonparametric spectral estimation, CS has
no interference problem and it overcomes the limitation of
elevation resolution caused by the extent of elevation aperture,
i.e., CS has super-resolution properties.

0196-2892/$26.00 © 2010 IEEE
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Fig. 1. TomoSAR imaging geometry. The coordinate s is referred to as
elevation, and b (parallel to s) is regarded as aperture position.

Fig. 2. Possible signal contributions in a single SAR image azimuth–range
pixel. ρr and ρs: range and elevation resolutions, respectively (size of resolu-
tion cells not to scale).

Motivated by recent work on inverse SAR [17] and first
TomoSAR simulations [18], the CS approach to TomoSAR
is outlined in this paper. Its extension to differential (4-D)
TomoSAR is introduced. Numerical simulations for realistic
acquisition and noise scenarios will be presented to evaluate
the potential and limits of the technique. The first CS TomoSAR
results with TerraSAR-X spotlight data over urban areas will be
presented.

II. SIGNAL AND NOISE MODEL

In VHR X-band data, we expect the following signal contri-
butions (see Fig. 2) [19].
1) Weak diffuse scattering from—mostly horizontal or

vertical—rough surfaces (roads and building walls).
These objects have an elevation extent of ρr/ tan(θ − α),
where ρr is the (slant)-range resolution, θ is the local
incidence angle, and α is the slope of the surface relative
to horizontal. Except from large surfaces accidentally
oriented along elevation, these responses are of much
smaller extent than the elevation resolution ρs, and hence,
they can be treated as discrete scatterers in the elevation
direction (delta functions).

2) Strong returns from metallic structures or specular and
dihedral or trihedral reflections. These are points that
would also be used in persistent scatterer interferometry.
They are the dominating signal contributions. With VHR
SAR data, the density of these points can be very high.

3) Returns from volumetric scatterers, e.g., from vegeta-
tion. These result in a continuous-signal background in
elevation. These ensembles of scatterers, however, often
decorrelate in time, and their response is therefore treated
as noise.

The noise sources are the following.
1) Gaussian noise, which is caused by thermal noise and

temporal decorrelation, as mentioned earlier.
2) Calibration errors in amplitude. The radiometric stability

of TerraSAR-X, i.e., the amplitude variations within one
stack, is 0.14 dB and is therefore negligible compared to
our typical signal-to-noise ratio (SNR).

3) Phase errors caused by atmospheric delay and unmodeled
motion. They require robust and phase-error-tolerant es-
timation methods.

These considerations suggest that the elevation signal to be
reconstructed is sparse in the object domain, i.e., it can be de-
scribed by a few (typically one to three) pointlike contributions
of unknown positions and unknown amplitudes and phases.
Sparsity is the central concept of and a prerequisite for CS.

III. TOMOSAR IMAGING MODEL

For a single SAR acquisition, the focused complex-valued
measurement gn(x0, r0) of an azimuth–range pixel (x0, r0) for
the nth acquisition at aperture position bn and at time tn is the
integral (tomographic projection) of the reflected signal along
the elevation direction [20], as shown in Fig. 1 (the deformation
term is ignored here for simplicity) [9]

gn =
∫
Δs

γ(s) exp(−j2πξns) ds, n = 1, . . . , N (1)

where γ(s) represents the reflectivity function along elevation
s. ξn = −2bn/(λr) is the spatial (elevation) frequency. The
continuous-space system model of (1) can be approximated
by discretizing the continuous-reflectivity function along s
(ignoring an inconsequential constant)

g = Rγ (2)

where g is the measurement vector with N elements gn, R is
an N × L mapping matrix with Rnl = exp(−j2πξnsl), and
γ is the discrete reflectivity vector with L elements γl =
γ(sl). sl (l = 1, . . . , L) denotes the discrete elevation positions.
Equation (1) is an irregularly sampled discrete Fourier trans-
form of the elevation profile γ(s). The objective of TomoSAR is
to retrieve the reflectivity profile for each azimuth–range pixel.
The extension to the 4-D (space-time) case is straightforward

[2], [19]. Taking the motion term into account, the system
model (1) can be extended to

gn =
∫
Δs

γ(s) exp(−j2π (ξns + ηnV(s))) ds, n = 1, . . . , N

(3)
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where V (s) is the deformation line-of-sight (LOS) velocity
profile along elevation, and ηn = 2tn/λ may, in analogy, be
called a “velocity frequency.” Formally, (3) can be rewritten as

gn =
∫
Δv

∫
Δs

γ(s)δ (v − V (s)) exp (−j2π(ξns + ηnv)) ds dv,

n = 1, . . . , N (4)

where Δv is the range of possible velocities. Equation (4) is
a 2-D Fourier transform of γ(s)δ(v − V (s)), which is a delta
line in the elevation–velocity (s−v) plane along v = V (s).
Its projection onto the elevation axis γ(s)δ(v − V (s)) is the
reflectivity profile γ(s). If we accept γ(s)δ(v − V (s)) as the
object to be reconstructed, the discretized system model of (2)
is easily adopted and simply becomes a 2-D Fourier transform
[2], [9]. Its inversion provides retrieval of the elevation and
deformation information even of multiple scatterers inside an
azimuth–range resolution cell and thus obtains a 4-D map of
scatterers. It is required for reliable 3- and 4-D city mapping
from repeat-pass acquisitions.

IV. TOMOSAR VIA CS

A. CS

CS is a new and popular approach for sparse signal recon-
struction. A signal of interest x with a length of L is said to be
K-sparse in an orthogonal basis Ψ if the projection coefficient
vector s = Ψx has only K nonzero or significant elements. x
is represented by ΨHs. N measurements y can be obtained
by projecting the signal onto N random basis functions Φ (the
sensing matrix)

y = Φx. (5)

The measurement vector can be rewritten as

y = ΦΨHs = Θs. (6)

Within the CS framework, s can be reconstructed by L0-
norm minimization, i.e., by finding the solution of (6) employ-
ing the least number of coefficients

min
s

‖s‖0 s.t. y = Θs. (7)

For N = O(K log(L/K)), it can be shown that L1-norm
minimization leads to the same result as L0-norm mini-
mization [21]

min
s

‖s‖1 s.t. y = Θs. (8)

However, the following conditions must hold in order to find
the unique sparse solution.
First, the sensing matrix Φ and the orthogonal basis Ψ must

be mutually incoherent. Incoherence means that the orthogonal
projection by Ψ will spread out information of sparse (highly
localized) signals in the entire projection space and thus makes
them insensitive to “undersampling.” Otherwise, the recon-
struction of nonzero coefficients will be biased toward certain
positions. For instance, let us randomly choose N columns

from Ψ as our sensing matrix Φ. Then, what we are actually
sensing with Θ is only the N elements of s located at the posi-
tions of the N randomly chosen columns. As a consequence of
this counterexample, the sparse reconstruction would only be
possible if the K nonzero coefficients were located within the
N chosen positions.

Second, the mapping matrix Θ must follow the restricted
isometry property (RIP) to guarantee the sufficiently sparse
reconstruction in the presence of noise. The RIP requires that

(1 − δs)‖v‖2
2 ≤ ‖Θv‖2

2 ≤ (1 + δs)‖v‖2
2 (9)

where v is any vector having K nonzero coefficiencs at the
same positions as s and δs is a small number. The smaller
the δs is, the better the sparse signal can be reconstructed in
the presence of noise. Equation (9) essentially says that all
submatrices of Θ composed of K significant columns should
be nearly orthogonal and hence preserve the length of the
vectors sharing the same K nonzero coefficients as s. There are
some well-known pairs of incoherent bases, such as randomly
selected Fourier samples as the sensing matrix and the identity
matrix as the orthogonal basis, as well as the Gaussian sensing
matrix and any other basis.
Therefore, in order to understand whether CS is applicable

for a specific problem or not, one should check first the sparsity
of signal, the required minimum number of measurements, the
incoherence, and the RIP.

B. TomoSAR via CS

As described in Section II, for VHR spaceborne X-band
TomoSAR, the elevation signal γ to be reconstructed is sparse
in the object domain with typically one to three pointlike
contributions of unknown positions and unknown amplitudes
and phases, i.e., γ is sparse in the identity orthogonal basis
(Ψ = I). According to (1) and (2), the sensing matrix Φ = R
is a randomly distributed Fourier sampling matrix that has the
best incoherence property with our identity orthogonal basis I.
Due to the small K, N = O(K log(L/K)) can be very easily
fulfilled; hence, the K-sparse signal γ can be exactly recovered
in the absence of noise by L1 minimization

min
γ

‖γ‖1 s.t. g = Rγ. (10)

In case there is no prior knowledge about K and in the
presence of measurement noise, it can be approximated by

γ̂ = arg min
γ

{‖g − Rγ‖2
2 + λK‖γ‖1

}
(11)

where λK is a factor adjusted according to the noise level.
The choice of λK is described in great detail in [22]. This
equation can be solved by basis pursuit methods [23]. Instead of
detecting K most significant coefficients, it tries to minimize
the residual by employing an L1-norm regularization. By pro-
viding the overcompleteness of γ (i.e., several close spectral
lines for one scatterer instead of single spectral line), it can
provide more robust solutions.
With the given elevation aperture positions, the RIP proper-

ties can be checked.
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Fig. 3. Elevation aperture positions (in meters).

V. EXPERIMENTS

A. Data Set

For the purpose of this paper, we work with TerraSAR-X
spotlight data with a slant-range resolution of 0.6 m and an
azimuth resolution of 1 m [24]. Our test site is Las Vegas,
NV, U.S. The acquisition repeat cycle is 11 days. The orbit
of TerraSAR-X is controlled in a predefined tube of 500-m
diameter throughout the entire mission [25]. A data stack of
25 scenes is used for our experiment. The elevation aperture
sampling positions are shown in Fig. 3. The elevation aperture
size Δb is about 269.5 m.
For nonparametric linear spectral analysis, the expected el-

evation resolution ρs, i.e., the width of the elevation point
response function, depends on the elevation aperture length Δb
and is approximately (sufficiently dense and regular sampling
of the elevation aperture provided)

ρs =
λr

2Δb
= 40.5 m (12)

or about 20 m in height (z) at an incidence angle of 31.8◦

[19]. This, however, does not mean that individual scatterers
can only be located to within this poor elevation resolution. The
Cramér–Rao lower bound (CRLB) on elevation estimates can
be shown to be asymptotically (high-SNR approximation) [26]

σŝ =
λr

4π
√

NOA · √2SNR · σb

(13)

where NOA is the number of acquisitions, SNR is the signal-
to-noise ratio of the individual scatterer, and σb is the standard
deviation of the elevation aperture sampling distribution. The
stack used in this example has σb = 70.9 m. For many bright
points, we can assume a SNR of 10 dB; then, the CRLB on
elevation estimation is 1.1 m, i.e., almost 1/40 of the elevation
resolution.
With our elevation aperture position distribution, the RIP re-

quirement of (9) is perfectly met in the case of a single scatterer.
That is trivial. For two scatterers of equal reflectivity and phase,
the quantity δs of (9) is a function of the scatterers’ distance
(Fig. 4). It increases once the scatterers come closer than the
resolution ρs. In other words, the closer the two scatterers
are, the more sensitive the reconstruction becomes to noise,
which leads to a lower probability of separating close scatterers.
Distinguishing closer scatterers robustly requires higher SNR,
which will be discussed in more detail later.

B. Simulated Data

In this section, the CS approach is compared to conven-
tional nonparametric and parametric methods using simulated
data. The data are simulated using the elevation aperture dis-
tribution of Fig. 3 (elevation resolution ρs = 40.5 m). The
decorrelation effect is introduced by adding Gaussian noise

Fig. 4. RIP property of two scatterers with the same reflectivity (i.e., ampli-
tude and phase). δs refers to (9).

Fig. 5. Comparison of the reconstructed reflectivity profiles along the eleva-
tion direction between SVD-Wiener and CS. (Red solid lines) SVD-Wiener.
(Blue solid lines) CS. (Green dashed lines)±3 times CRLB. (a) Two scatterers
with s1 = −20 m and s2 = 25 m (total SNR = 3 dB). (b) Two scatterers with
s1 = 0 m and s2 = 25 m (SNR = 5 dB). (c) Two scatterers with s1 = 0 m
and s2 = 20 m (SNR = 10 dB). (d) Two scatterers with s1 = 0 m and
s2 = 5 m (SNR = 20 dB).

with different SNR. Phase noise due to unmodeled deformation
and atmospheric effects are simulated by adding a uniformly
distributed phase.
Fig. 5 shows the comparison of the reconstructed reflectiv-

ity profiles along the elevation direction between a singular
value decomposition (SVD) reconstruction with Wiener-type
regularization (SVD-Wiener) [19] and CS. The red lines repre-
sent the reconstruction using the nonparametric method SVD-
Wiener. The blue lines show the same result using CS. We start
with two scatterers with elevations of −25 and 20 m [Fig. 5(a)]
with total SNR = 3 dB (i.e., for each of the two scatterers:
SNR = 0 dB). CS reconstructs spectral lines instead of sinclike
point response functions. Both methods can distinguish the
two scatterers well. However, once they move close into one
elevation resolution cell with elevations of 0 and 25 m, SVD-
Wiener is no longer able to distinguish them. CS detects very
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Fig. 6. Estimated elevations (in meters) of two scatterers of equal phase of increasing elevation distance. Shown are the results of (a) and (d) MD, (b) and
(e) NLS estimation, and (c) and (f) CS, with total SNR = 10 dB under different reflectivity ratio. (Upper plots) The two scatterers have the same reflectivity.
(Lower plots) The reflectivity of the scatterer on the building facade is 0.5 times of the one on the ground. The true positions are a horizontal line referring to
the ground and a diagonal line referring to the scatterer at variable elevation. The green dashed lines show ±3 times the CRLB of elevation estimates for single
scatterers (blue: detected single scatterer; red: detected two scatterers).

Fig. 7. Single scatterer elevation estimation accuracy of NLS and CS compared to the Cramér–Rao Lower Bound as a function of SNR (left) and as a function
of different phase noise levels [−φn, φn) (SNR = 20 dB) (right).

clearly two spectral lines with an accuracy within ±3 times
the CRLB under total SNR = 5 dB [Fig. 5(b)]. With higher
SNR, CS is even able to separate closer scatterers. For instance,
with SNR = 10 dB, two scatterers with elevations of 0 and
20 m can be well separated [Fig. 5(c)], and with SNR = 20 dB,
two scatterers even with elevations of 0 and 5 m can be well
separated [Fig. 5(d)].

As multiple scatterers inside one resolution cell most likely
occur in high-rise urban areas, the situation in which there are
two scatterers inside one resolution cell (one from the building
facade and another from the ground) is simulated as an another
example to evaluate the performance of the spectral estimation
methods. The building is assumed to have an elevation of 80 m,
where ground is at zero elevation.
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Fig. 8. (Left) Las Vegas Convention Center (Google Earth). (Right)
TerraSAR-X intensity map.

Fig. 9. Estimated reflectivity with SVD-Wiener shown in the azimuth–
elevation plane [horizontal: azimuth; vertical: elevation, converted to height (in
meters)].

Fig. 10. Same slice as Fig. 9 but estimated by CS.

Fig. 6 shows the estimated elevation values of the two scat-
terers with maximum detection (MD) [22] (left), nonlinear least
squares (NLS) [25] (middle), and CS with different reflectivity
ratio (i.e., for the upper plots, the two scatterers have the
same reflectivity, while for the lower plots, the (amplitude)
reflectivity of the scatterer on the building facade is 0.5 times
of the one on the ground). MD simply uses the maxima of the
nonparametric SVD-Wiener reconstruction as estimates. The
x-axis refers to the true elevation of scatterers on the building
facade. The y-axis shows their estimated elevations. The ideal
image would be two straight lines (one horizontal and another
one diagonal). The green dashed lines in the plots show again
±3 times the CRLB on elevation estimates for single scatterers.
From Fig. 6, MD shows the resolution limit of classical

nonparametric methods. Once the two scatterers are closer than
the elevation resolution, only a single maximum in-between
the two true positions is detected. Even if the scatterers are
farther apart, their sidelobes mutually distort the location of
their maxima [e.g., Fig. 6(a)]. The elevation estimates are
biased and follow the sidelobe structure of the elevation point
response function. NLS is identical to a maximum-likelihood
estimator (MLE) and is the theoretically best solution under
Gaussian noise and for single scatterers. NLS requires high

Fig. 11. Four-dimensional reconstruction example. CS versus SVD-Wiener.
(Top) TS-X intensity map and analysis point P. (Middle) SVD-Wiener recon-
struction results. (Bottom) CS result.

computational effort due to the multidimensional search in
elevation. As a parametric method (model-based), we need the
a priori information about the number of scatterers, i.e., we
require model selection and multiple runs of the algorithm for
different model orders. This will further increase the computa-
tional effort for different hypothesis tests. Compared to MD, CS
dramatically improves the elevation resolution under low noise
level. For instance, CS is able to reach an elevation separability
of about 10 m with SNR = 10 dB. In addition, CS shows no
sidelobe interference problem, even in the case where one of
the two scatterers has a large reflectivity while the other one
is much weaker [e.g., Fig. 6(f)]. Compared to NLS, CS is
relatively fast and does not require the number of scatterers as
a priori knowledge. From visual comparison, CS shows similar
elevation estimation accuracy as NLS. The estimates of NLS
and CS agree well with the CRLB.
In Fig. 7, the left plot shows the elevation estimation accuracy

of a single scatterer in the phase-noise-free case using NLS
and CS compared to the CRLB under different SNR levels.
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NLS as the MLE with Gaussian noise shows an accuracy that
is consistent to the CRLB. Moreover, the elevation estimation
accuracy of CS for single scatterers is almost identical to that
of NLS. The right plot shows the elevation estimation accuracy
of a single scatterer using NLS and CS by adding a phase
noise uniformly distributed in [−φn, φn) under SNR = 20 dB.
The estimation accuracy obviously highly depends on the phase
noise, and CS is more robust against this type of non-Gaussian
noise.
Taking all those aspects into account, CS provides the best of

both worlds of nonparametric and parametric spectral estima-
tion methods and is hence proven very attractive for TomoSAR.

C. Real Data

a) CS TomoSAR: The Las Vegas Convention Center is a
very interesting test building for 3-D focusing for two reasons.
First, it is very big and has a regular shape. Therefore, we
are able to check the plausibility of the results. Second, it has
a height of about 20 m, the critical distinguishable distance
between two scatterers (one from the ground and the other from
the building) by using SVD-Wiener for our elevation aperture
size. The presence of two scatterers within azimuth–range
pixels is expected in layover areas and has been validated by us-
ing SVD-Wiener in [22]. Thus, we are able to compare the per-
formance of CS at the layover areas to that of the SVD-Wiener
method. The left image in Fig. 8 shows the convention center
visualized in Google Earth. The right image is the TerraSAR-
X intensity map of the area. We choose a reference pixel
according to Adam et al. [28], which has most likely only a
single scatterer inside. The bright blue line shows the position
of the analysis slice, and the area marked by the red block is
a layover area. From the Google Earth image, we can see that
there is a small triangular-shaped plaza on the ground made of
the same material as the building. Thereby, multiple scatterers
are expected.
Fig. 9 shows the estimated reflectivity with SVD-Wiener

in the azimuth–elevation plane [horizontal: azimuth; vertical:
elevation (converted to height)]. Multiple scatterers with mar-
ginally distinguishable distance appear (one from the building
marked with blue line, and the other from the small structures
on the ground marked with yellow line). Even though it demon-
strates the stability of SVD-Wiener, the resolution limitation
blurs the reflectivity profile for each pixel. In contrast, Fig. 10
shows the same plot as Fig. 9 estimated by the CS approach.
Compared to Fig. 9, not only the layover area can be separated
but also the elevation positions can be easily located in the
reflectivity slice.

b) Differential CS TomoSAR: We have implemented the CS
approach to differential TomoSAR as well. The top image in
Fig. 11 shows again the TerraSAR-X intensity map of the
convention center. The pixel P marked by the red dot that
locates at the layover area and a reference point (green) on the
roof of the building have been taken as an example. Again, two
scatterers with slightly different linear deformation in LOS (one
from the ground and one from the roof) have been detected in
the elevation–velocity plane by SVD-Wiener (middle image).
However, the scatterer on the ground appears much brighter and

wider. It is very likely to have two scatterers together that are
not separable. The bottom image of Fig. 11 shows the result
using the CS approach. Two very close scatterers with slightly
different heights and velocities (about 2 m in height and 1 cm/y
in velocity) have been detected. This signal may be caused by
the semicircular structure of the convention center overlaid with
the plaza, which can be seen from the Google Earth image.

VI. CONCLUSION

TomoSARwith very high-resolution spaceborne systems like
TerraSAR-X and COSMO-Skymed requires robust inversion
algorithms with super-resolution capabilities. Since the eleva-
tion profiles to be reconstructed can often be assumed sparse,
i.e., they consist only of a small number of pointlike scatterers,
the CS framework is applicable. These algorithms use L1-norm
minimization and regularization. Compared to nonparametric
and fully parametric L2-norm methods, they have the following
several advantages.

1) CS is more robust than NLS parametric methods with
respect to unmodeled phase errors. It does not suffer from
self-cancellation artifacts, like CAPON [10].

2) In the single-scatterer case and under Gaussian noise, CS
approaches the accuracy of NLS, i.e., the CRLB.

3) CS is computationally more efficient than NLS.
4) For multiple scatterers, CS exhibits a much better resolu-

tion than linear nonparametric methods.
5) CS does not need model selection, i.e., it “automatically”

chooses the number of scatterers that can be resolved.
6) CS can achieve super resolution in elevation while main-

taining the full azimuth–range resolution.

Further work will focus on evaluating the super-resolution
power and robustness of this technique, i.e., trying to find its
limit.
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Abstract—We address the problem of resolving two closely
spaced complex-valued points from N irregular Fourier do-
main samples. Although this is a generic super-resolution (SR)
problem, our target application is SAR tomography (TomoSAR),
where typically the number of acquisitions is N = 10−100 and
SNR = 0−10 dB. As the TomoSAR algorithm, we introduce
“Scale-down by L1 norm Minimization, Model selection, and
Estimation Reconstruction” (SL1MMER), which is a spectral
estimation algorithm based on compressive sensing, model order
selection, and final maximum likelihood parameter estimation.
We investigate the limits of SL1MMER concerning the following
questions. How accurately can the positions of two closely spaced
scatterers be estimated? What is the closest distance of two scat-
terers such that they can be separated with a detection rate of
50% by assuming a uniformly distributed phase difference? How
many acquisitions N are required for a robust estimation (i.e.,
for separating two scatterers spaced by one Rayleigh resolution
unit with a probability of 90%)? For all of these questions, we
provide numerical results, simulations, and analytical approxima-
tions. Although we take TomoSAR as the preferred application,
the SL1MMER algorithm and our results on SR are generally
applicable to sparse spectral estimation, including SR SAR focus-
ing of point-like objects. Our results are approximately applicable
to nonlinear least-squares estimation, and hence, although it is
derived experimentally, they can be considered as a fundamental
bound for SR of spectral estimators. We show that SR factors are
in the range of 1.5–25 for the aforementioned parameter ranges of
N and SNR.

Index Terms—Compressive sensing (CS), SAR tomography
(TomoSAR), SL1MMER, spectral estimation, super-resolution
(SR), synthetic aperture radar (SAR).

I. INTRODUCTION

SAR TOMOGRAPHY (TomoSAR) uses stacks of repeat-
pass SAR acquisitions to reconstruct the reflectivity of the

scattering objects along elevation s by means of spectral anal-
ysis for every azimuth–range (x− r) pixel [1]–[3]. With the
German TerraSAR-X (TS-X) and the Italian COSMO-Skymed
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satellites, SAR data with a very high spatial resolution (VHR)
of up to 1 m are available. This resolution is particularly helpful
when it comes to interferometric and tomographic imaging of
buildings and urban infrastructure. The inherent spatial scales
of these objects are in the meter range, e.g., typical height
between floors of 3–3.5 m [4].

There are several challenges in fully exploiting the potential
of this class of VHR data. First, compared to the airborne case,
spaceborne data are collected over a longer time period. Tempo-
ral decorrelation thus reduces the signal-to-noise ratio (SNR) of
coherent objects—for TS-X, the SNR caused by decorrelation
is typically 0–10 dB [5]—calling for a larger number of acquisi-
tions for accurate reconstruction. On the other hand, VHR data
are expensive, and hence, the data stacks should be kept small.
Second, nonlinear, e.g., thermal induced, deformations of dif-
ferent building parts must be expected, and this will introduce
additional phase errors if not modeled. In this case, differential
TomoSAR (D-TomoSAR) provides a solution [1], [3], [6].
Finally, in TomoSAR imaging, it would be favorable to have an
isotropic tomographic spatial resolution element, i.e., an eleva-
tion resolution on the order of that in azimuth and range. This
would require a huge elevation aperture of several kilometers.
However, the tight orbit control of modern meter-resolution
satellites leads to a tomographic elevation resolution ρs of about
10–50 times less than that in azimuth ρx or range ρr [3]. Those
particular challenges call for robust super-resolution (SR)
TomoSAR algorithms. In order to maintain the azimuth–range
resolution for urban infrastructure imaging, these algorithms
should not require averaging in azimuth and range.

The high anisotropy of the 3-D tomographic resolution ele-
ment, together with the fact that thick volumetric scatterers tend
to temporarily decorrelate in X-band, renders the signals sparse
in the elevation direction, i.e., only a few point-like reflections
along the elevation are expected per azimuth–range cell. For in-
stance, TS-X in its high-resolution spotlight mode has a typical
resolution of 1.1 m in azimuth, 0.6 m in range, and 30 m in ele-
vation. Possible signal contributions in a single azimuth–range
pixel could be point scatterers and rough surfaces. Their pro-
jections onto the elevation direction have a size of about 1/30
of the elevation resolution and, hence, can be treated as a few
individual delta functions (typically 1–4) [10]. These kinds of
signals are referred to as sparse. Considering the sparsity of
the signals in the elevation direction, compressive sensing (CS)
[7]–[9], as a favorable sparse reconstruction technique, has been
recently introduced to radar [10]–[13] and TomoSAR recon-
struction: the first CS TomoSAR simulations were presented in

0196-2892/$26.00 © 2011 IEEE
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[14], and the SR capability of CS for TomoSAR reconstruction
and its robustness on elevation estimation against phase noise
was proven in [15] using TS-X high-resolution spotlight data.
However, the better performance of CS for elevation estimates
over nonlinear least-squares (NLS) estimation is paid by the
generation of occasional outliers, which leads to a reduced
accuracy in complex-valued reflectivity estimation. Also, CS
is known to slightly underestimate the amplitudes of scatterers.
Therefore, we combine CS reconstruction with model selection
and a final linear estimation of the complex amplitudes. Note
that the CS TomoSAR algorithm has been recently introduced
by the authors in [15], but it is presented here in more detail
because the different algorithm steps are essential for the SR
power. We name our CS-based TomoSAR spectral estimation
algorithm as “Scale-down by L1 norm Minimization, Model
selection, and Estimation Reconstruction” (SL1MMER, pro-
nounced as “slimmer”). It combines the advantages of CS with
the amplitude and phase accuracy of linear estimators.

In this paper, we investigate the limits of the technique by
addressing the following three questions.

1) How accurately can the positions of two closely spaced
scatterers be estimated? We give both numerical results
and analytical approximation.

2) What is the closest distance of two scatterers such that
they can be separated with a detection rate of 50% at
given N · SNR and amplitude ratio with a uniformly
distributed phase difference? We find the SR factors by
extensive simulations and provide an easy-to-use polyno-
mial approximation.

3) How many acquisitions N are required for a robust
estimation (i.e., for separating two scatterers spaced by
one Rayleigh resolution unit with a probability of 90%)?

Although we take TomoSAR as the preferred application,
the SL1MMER algorithm and our results on SR are generally
applicable to sparse spectral estimation, including SAR focus-
ing of point-like objects. We will also show that our proposed
SL1MMER algorithm provides an aesthetic approximation of
the NP-hard L0 norm regularization, which is equivalent to
an NLS plus model selection (see Section III), and hence,
our results are approximately applicable to NLS estimation.
They are asymptotically optimal, with an estimation accuracy
approaching the Cramér–Rao lower bound (CRLB). As a con-
sequence, although it is derived experimentally, our results can
be considered as the fundamental bounds for the SR capability
of spectral estimators.

This paper is organized as follows. Section II gives a brief
introduction to TomoSAR imaging model. Section III provides
an overview on inversion methods and regularizers. The basic
idea of the SL1MMER algorithm is presented in Section IV.
Section V derives the CRLB of elevation estimation for two
interfering scatterers with a uniformly distributed phase differ-
ence and further analyzes the elevation estimation accuracy of
the algorithm. Sections VI and VII investigate the SR power
and robustness of the proposed algorithm for TomoSAR, and
the conclusion is drawn in the last section. For all of our
simulations, we assume a range of N = 10−100 and SNR =
0−10 dB, i.e., N · SNR = 10−30 dB.

II. TOMOGRAPHIC SAR IMAGING MODEL

TomoSAR inversion starts from a stack of N complex
SAR data sets of the same area taken at different times and
slightly different orbit positions (the elevation aperture). Let
the elevation aperture positions, i.e., the perpendicular baselines
with respect to a master track, be bn. After some trivial phase
corrections, the focused complex value gn of an azimuth–range
pixel (x0, r0) of the nth acquisition is [2], [16]

gn =

∫
∆s

γ(s) exp(−j2πξns)ds (1)

where γ(s) represents the reflectivity function along elevation
s and ∆s describes the range of possible elevations. ξn =
−2bn/(λr0) is the spatial (elevation) frequency depending
on the (more or less random) elevation aperture position bn,
where λ stands for the wavelength. Equation (1) is a randomly
sampled Fourier transform of γ(s). From this, we expect an
inherent Rayleigh resolution in elevation of ρs = λr/(2∆b),
where ∆b is the elevation aperture size. The system model (1)
can be approximated by discretizing the object along s, and in
the presence of the noise ε, it can be written as (ignoring an
inconsequential constant)

g = Rγ + ε (2)

where g is the measurement vector of length N ; R, with
Rn×l = exp(−j2πξnsl), is an N × L mapping (Fourier trans-
form) matrix; and γ is γ(s) uniformly sampled in elevation at
sl(l = 1, . . . , L).

Taking the motion terms into account, the system model (1)
can be extended to D-TomoSAR [1]. Its 2-D inversion provides
retrieval of the elevation and deformation information even of
multiple scatterers inside an azimuth–range resolution cell, thus
obtaining a 4-D map of scatterers. Extensions to multimodal
motion models are possible, but they require an even higher
dimensional spectral estimation inversion [6]. For the sake of
simplicity, we restrict ourselves to the 1-D spectral estimation
case here.

III. INVERSION METHODS AND REGULARIZERS

Since L � N , the system model (2) is severely underdeter-
mined. Hence, there are infinitely many solutions. Depending
on the type of prior (i.e., regularizer), different solutions can be
obtained.

A. L2 Norm Regularization

The conventional TomoSAR algorithms are based on the L2

norm regularization, also referred to as Tikhonov regularization

γ̂ = argmin
γ

{‖g −Rγ‖22 + ‖Γγ‖22
}

(3)

for some suitably chosen Tikhonov matrix Γ. For Gaussian
stationary white measurement noise, i.e., Cεε = σ2

εI, and
Gaussian prior with covariance matrix Γ−(1/2), this is the
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standard MAP estimator. The special case of white prior, i.e.,
Γ = I, renders (3) to

γ̂ = argmin
γ

{‖g −Rγ‖22 + σ2
ε‖γ‖22

}
. (4)

This estimator was named “SVD Wiener” in [3]. Another
choice of Γ leads to the well-known truncated SVD estimator
[16].

As a nonparametric estimator, (4) is computationally efficient
and does not require any assumption about the number of
scatterers. However, it suffers from the sidelobe problem and
does not provide super resolving capability.

B. L0 Norm Regularization

As described in the introduction and as outlined in detail
in [15], γ is sparse in the object (elevation) domain for VHR
spaceborne X-band TomoSAR with typically 1–4 point-like
contributions of unknown positions, amplitudes, and phases,
i.e., γ is assumed to contain only K = 1−4 nonzero elements.

This sparsity property of γ suggests the use of the CS
approach. It says that, if the mapping matrix fulfills certain
requirements, i.e., the restricted isometry property (RIP) and
the incoherence property [9], with the number of measurements
depending on the sparsity K instead of the length of the signal
L, γ can be very well approximated by the solution with the
least number of scatterers (nonzero elements of γ), i.e., the
minimal L0 norm, which satisfies the measurements with noise

min
γ

‖γ‖0 s.t. g = Rγ. (5)

In the presence of measurement noise, the estimator can be
written as

γ̂ = argmin
γ

{‖g −Rγ‖22 + λMS‖γ‖0
}
. (6)

This is an NLS parametric estimator, i.e., a maximum like-
lihood estimator (MLE) under Gaussian noise, plus a model
complexity penalty term. By choosing λMS = 3σ2

ε lnN , the
penalty term is equivalent to the Bayesian information criterion
(BIC) model selection scheme, which will be addressed in the
next section.

Due to the sparse nature of the signal in elevation direction,
the minimization of the L0 norm should be the correct way to
find the exact solution, even with two scatterers closer than a
resolution cell. However, it is an N-P hard problem. Therefore,
except if we limit ourselves to the cases with only one or
two scatterers and in a single dimension—elevation—(i.e., no
extension to D-TomoSAR), we need a more efficient algorithm.

C. L1 Norm Regularization (CS)

The CS theory tells us that, if the mapping matrix R fulfills
the RIP and incoherence properties and N = O(K log(L/K)),
the convex L1 norm minimization gives the same solution
as the N-P hard L0 norm minimization. In case if there is no
prior knowledge about K and in the presence of measurement

Fig. 1. Violation of RIP and incoherence properties may cause artifacts in the
reconstruction. (a) True reflectivity profile. (b) Reconstruction of a scatterer by
several adjacent lines instead of a single peak. (c) Reconstruction with noise-
like outliers.

noise, it can be approximated by the following L1−L2 norm
minimization [15]:

γ̂ = argmin
γ

{‖g −Rγ‖22 + λK‖γ‖1
}

(7)

where λK is the Lagrange multiplier as a function of N and
ε [22], [27]. The CS estimator of (7) has approximately the
same SR capability as (6), but it is more robust to phase noise,
needs less computational effort, and does not require model
selection to provide the prior knowledge about the number of
scatterers K.

D. Drawbacks of the CS Estimator

The simple CS estimator (7) has two drawbacks, which
will be discussed in the following. Both are corrected in the
proposed SL1MMER algorithm.

RIP and Incoherence: RIP guarantees the sufficiently sparse
reconstruction in the presence of noise. It essentially says that
all submatrices of R composed of K columns should be nearly
orthogonal, and hence, they preserve the energy of all vectors
having only nonzero elements at the same K positions as γ.
Incoherence means that the mapping operator R will spread
out information of sparse (highly localized) signals in the
entire measurement space (like a Fourier transform does), thus
making them insensitive to random undersampling.

However, for many applications, like TomoSAR, RIP and
incoherence are violated for several reasons. First, the map-
ping matrix R is predetermined by the measurement sys-
tem (the elevation aperture sampling pattern) and may not
be optimum. Second, the profile γ(s) to be reconstructed is
often sampled much more densely than the elevation reso-
lution unit in order to allow good resolution and scatterer
positioning accuracy. This small sampling distance renders R
overcomplete, reduces RIP [15], and increases coherence. As
a consequence, the CS estimator (7) will not always give the
solution with the correct number of scatterer K. It may produce
spurious artifacts. There are two classes of artifacts shown
schematically in Fig. 1. If the sampling raster is very dense,
single scatterers may be broadened to a few adjacent lines
[Fig. 1(b)]; however, they are well within a Rayleigh resolution
unit. With a certain probability, small spurious impulses may
show up [Fig. 1(c)].

Amplitude Bias: Although the CS estimator (7) is radiomet-
rically much more reliable than MUSIC, CAPON, AR, etc., it
will slightly, yet systematically, underestimate the amplitudes
of the scatterers because the L1 prior favors smaller amplitudes.
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Fig. 2. Flow chart of the SL1MMER algorithm. Note that, in the final
estimation step, a motion parameter v̂ shows up since the SL1MMER algorithm
has originally been implemented for D-TomoSAR. However, to keep the
mathematics of this paper simpler, we neglect motion for our study.

IV. SL1MMER ALGORITHM

The artifacts described in the last section are not critical when
the aim is only to reconstruct a reasonable reflectivity profile.
However, high-quality sparse tomographic SAR inversion re-
quires the estimation of the number of scatterers, as well as
the amplitude, phase, and elevation of each scatterer. Hence,
special care must be taken to those nuisance artifacts. As will
be shown, the SL1MMER algorithm improves the CS algorithm
and estimates these parameters in a very accurate and robust
way. It consists of three main steps: 1) dimensionality scale-
down by L1 norm minimization; 2) model selection; and 3)
parameter estimation (see Fig. 2).

A. Scale-Down by L1 Norm Minimization

For dimensionality reduction, the L1−L2 norm minimization
from (7) has been implemented at the first stage, which gives
a robust estimate of the plausible positions of the scatterers,
among which there might be a few outliers contributed by noise.
By only selecting its columns corresponding to the nonzero ele-
ments of γ̂, the mapping matrix R is scaled down significantly.
It renders the severely underdetermined system model finally
overdetermined.

B. Model Selection

The L1−L2 norm minimization step shrinks R dramatically
and gives a first sparse estimate of γ. This estimate, though,
may still contain the aforementioned outliers (Fig. 1), and
hence, the sparsity K (i.e., the number of the scatterers) is often
overestimated. Model selection is used to clean the γ estimate
of spurious nonsignificant scatterers and to finally obtain the

most likely number K̂ of scatterers inside an azimuth–range
cell [17]. It provides a tradeoff between the model complexity
and the model fit.

The model complexity can be described by the number of
parameters k. In our case, k = 3K since each scatterer is char-
acterized by three parameters (amplitude, phase, and elevation).
Let θ(K) further be the vector of the unknown amplitudes,
phases, and elevations for all of the K scatterers. The goodness
of model fit can be described by the likelihood p(g|θ̂(K),K).
A more complex model always fits the observations better, and
hence, for the purpose of selecting the true model, the com-
plexity of the model must be penalized to avoid overfitting of
the data. This reveals the main concept of penalized likelihood
criteria. The general form of the penalized likelihood criteria
is [18]

K̂ = argmin
K

{
−2 ln p

(
g|θ̂(K),K

)
+ 2C(K)

}
(8)

where C(K) is the complexity penalty. Note that, for station-
ary white Gaussian measurement noise, −2 ln p(g|θ̂(K),K) =
σ2
ε‖g −Rγ̂‖22. Many types of penalty terms are proposed

in the literature, e.g., the BIC [19], the Akaike information
criterion [20], and the minimum description length [21]. As
shown in Fig. 2, for each model assumption K = 0, . . . , 4, the
elevations are given by the previous scale-down step, and thus,
the amplitudes and phases can be easily obtained by linear
least-squares estimation. The preferred number of scatterers K̂
inside an azimuth–range cell is finally the one with the low-
est penalized likelihood criterion value according to (8). The
implementation details of different model selection schemes
for VHR TomoSAR are addressed in [3]. We use the BIC
penalized likelihood criterion with a penalty term C(K) =
0.5k lnN = 1.5K lnN throughout this paper with the same
parameter setting, i.e., the subsequent comparison between
different algorithms is independent from the model selection
schemes.

C. Parameter Estimation

As a last refinement, a much slimmer mapping matrix R(ŝ),
i.e., the N × K̂ matrix with Rn,k̂(ŝ) = exp(−j2πξnŝk), is
built up, and the final complex-valued reflectivity γ(ŝ) for the
K̂ scatterer is obtained by solving the following overdeter-
mined linear system equation:

g = R(ŝ)γ(ŝ) + e (9)

where e combines the measurement noise and the model error,
i.e., the deviation from sparsity or unmodeled motion-induced
phase terms (in the D-TomoSAR case). The sparse reflectivity
profile γ̂(ŝ) is finally found by

γ̂(ŝ) =
(
RH(ŝ)R(ŝ)

)−1
RH(ŝ)g. (10)

By introducing model selection (8) and refinement of the
parameter estimation (10), SL1MMER improves the result of
CS by means of removing possible outliers and providing more
accurate amplitude and phase estimates.
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V. ESTIMATION ACCURACY

A. CRLB for Two Scatterers

Assuming two scatterers at elevation positions s1 and s2 with
amplitudes a1 and a2 and phases ϕ1 and ϕ2, the (noise-free)
measurements according to the system model (2) are

g(θ) = [g1(θ), g2(θ), . . . , gN (θ)]T

where

gn(θ) =
2∑

q=1

aq exp (j(2πξnsq + ϕq)) (11)

and the parameter vector

θ = [θ1, θ2, . . . , θ6]
T = [a1, ϕ1, s1, a2, ϕ2, s2]

T. (12)

Then, the data vector according to (2), including the zero-
mean circular Gaussian noise, is

g = [g1, . . . , gN ]T (13)

with mean

g(θ)=E{g}

=



exp(j2πξ1s1) exp(j2πξ1s2)

...
...

exp(j2πξNs1) exp(j2πξNs2)



[
a1 exp(jϕ1)
a2 exp(jϕ2)

]
(14)

and covariance matrix

Cεε = σ2
εI. (15)

The likelihood function is given by

p(g|θ) = 1

(2π)N |Cεε| exp
(
− (g − g(θ))H C−1

εε (g − g(θ))
)
.

(16)

From the Fisher information matrix

J = −E

{
∂2 ln p(g|θ)
∂θ∂θT

}
(17)

we derive the CRLB PCR = J−1. For our idealized data statis-
tics (12)–(14)[22]

Jij = 2Re
[
g′H
i C−1

εε g
′
j

]
(18)

where g′
i denotes the derivative of g with respect to the ith

element of θ

g′n =

[
∂gn
∂θ1

, . . . ,
∂gn
∂θ6

]T
= [exp (j(2πξns1 + ϕ1)) [1 ja1 j2πξna1],

exp (j(2πξns2 + ϕ2)) [1 ja2 j2πξna2]]
T . (19)

The Fisher information matrix for our two-scatterer case can
be written as

J =

[
J11 J12

JT
12 J22

]
(20)

where J11 and J22 describe the Fisher information matrices of
the individual isolated scatterers (i.e., in the absence of the other
one)

Jqq =
2

σ2
ε

·



N 0 0
0 a2qN 2πa2q

∑
N

ξn

0 2πa2q
∑
N

ξn 4π2a2q
∑
N

ξ2n


 , q = 1 or 2.

J12 contributes to the interference between them. Let us define
∆ =: 2πξnδs +∆ϕ, where δs = s2 − s1 and ∆ϕ = ϕ2 − ϕ1

are, respectively, the distance and phase difference between the
two scatterers, and J12 is given by the equation shown at the
bottom of the page.

Note that the elevation aperture positions ξn show up in
the Fisher information matrix only in the form of moments of
their distribution. Hence, for sufficiently large N , there will
be no difference between a regularly sampled aperture and a
uniformly randomly sampled one.

Since the analytical inversion of J—although
possible—leads to a complicated and lengthy expression,
we retrieve the relevant elements of the CRLB matrix by
solving the inversion numerically. From the CRLB matrix
PCR = J−1, the elements PCR,3,3 = σ2

s1 and PCR,6,6 = σ2
s2

are most of interest, i.e., the CRLBs of the location estimation
errors for the two scatterers.

For the sequel, we split the elevation estimation error into
two contributions

σsq = c0 · σsq,0 (21)

where

σsq,0 =
λr0

4π
√
2 ·√N · SNRq · σb

(22)

J12 =
2

σ2
ε

·




∑
N

cos∆ −a2
∑
N

sin∆ −2πa2
∑
N

ξn sin∆

a1
∑
N

sin∆ a1a2
∑
N

cos∆ 2πa1a2
∑
N

ξn cos∆

2πa1
∑
N

ξn sin∆ 2πa1a2
∑
N

ξn cos∆ 4π2a1a2
∑
N

ξ2n cos∆
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Fig. 3. CRLB σs,0 of the elevation estimation accuracy of a single scatterer,
normalized to the elevation resolution, as a function of N · SNR.

is the CRLB of the elevation estimates of the qth scatterer in the
absence of the other one. σb is the standard deviation of the el-
evation aperture sample positions bn. For uniformly distributed
baselines (randomly or equidistantly spaced), σb = ρs/

√
12

and σsq,0 can be related to the elevation resolution ρs by [4]

σsq,0 =

√
3/2

π

ρs√
N · SNRq

≈ 0.39√
N · SNRq

ρs (23)

and c0 is the essential interference correction factor for closely
spaced scatterers. It is almost independent from N and SNR.
As a reference, in Fig. 3, we plot σsq,0, normalized to the
Rayleigh resolution unit ρs, as a function of N · SNRq to
explore its impact on estimation accuracy, where σsq,0 follows
exactly a −0.5 power law. In the parameter range that we
consider here, i.e., N = 10−100 and SNR = 0−10 dB, the
elevation estimation accuracy of a single scatterer is on the
order of roughly 1/100–1/10 of the resolution unit.

For the subsequent discussion, we only consider the impact
of the normalized CRLB c0 = σs/σs,0.

If one wants to avoid the numerical inversion of the Fisher
information matrix, an experimental approximation of c0 with
a relative error within 2% was proposed in [23].

Modified after [23], (24) can be derived, shown at the bottom
of the page, where α = δs/ρs is the distance between the two
scatterers, normalized to the Rayleigh resolution unit, and δb is
the center position of the elevation aperture ∆b. Without loss
of generality, the elevation aperture is set to be [−∆b,∆b]/2,
i.e., δb = 0. Equation (24) says that, for a fixed elevation
aperture (i.e., ∆b and δb), σsq depends asymptotically on the
normalized distance α, N · SNRq (for sufficiently large N ), and
phase difference ∆ϕ. Figs. 4–6 show the normalized CRLB
standard deviation c0 = σs/σs,0 of the elevation estimation
error obtained by the numerical inversion of (20).

Fig. 4. Normalized CRLB c0 = σs/σs,0 of the elevation estimation accuracy
of two close scatterers, normalized to the one of a single scatterer, as a function
of normalized distance α between two scatterers of the same amplitude and
with different values of the phase difference ∆ϕ.

Fig. 5. Normalized CRLB c0 as function of N with different values of ∆ϕ
(α = 0.5 and SNR = 6 dB).

Fig. 6. Normalized CRLB c0 as a function of the phase difference ∆ϕ
between two scatterers with different values of α.

c0 =

√√√√max

{
40α−2(1− α/3)

9− 6(3− 2α) cos
(
2∆ϕ+ 2πα

(
2δb
∆b − 1

N

))
+ (3− 2α)2

, 1

}
(24)
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Fig. 4 shows c0 as a function of α, with different values of
∆ϕ. If the two scatterers are separated by much more than one
Rayleigh resolution unit, i.e., α � 1, their elevation estimation
accuracy is the one of individual scatterers, i.e., c0 approaches
one. The closer they move, the more they interfere, and the
larger their elevation estimation error becomes, i.e., c0 > 1. The
worst case is ∆ϕ = 0 or π, where c0 follows approximately
a −2 power law. The least interference between the scatterers
occurs at ∆ϕ = π/2, with a c0 power law of approximately −1.
For our SR study, the case of α < 1 is of interest.

Besides the N · SNRq term in σs,0, 1/N appears in the
argument of the cosine of (24), i.e., for small N , c0 has a
nonnegligible additional dependence on N . Fig. 5 shows c0 as
a function of N under different ∆ϕ, with α = 0.5 and SNR =
6 dB. Except for the most unfavorable phase differences ∆ϕ =
0 and π, the effect of N is negligible once N > 15. Hereafter,
we will neglect this effect, and all experiments are based on
sufficiently large N . The situation of small N will be discussed
in Section VII.

The phase difference ∆ϕ appears multiplied by two in the
argument of the cosine of (24). Therefore, in Figs. 4 and 5,
the cases ∆ϕ = 0 and ∆ϕ = π are identical. Fig. 6 analyzes
c0 as a function of ∆ϕ, with different values of α. Intuitively,
this phase behavior can be understood as follows: two scatterers
with orthogonal complex-valued reflectivities (i.e., ∆ϕ = π/2)
use the two “channels” of complex measurements most effi-
ciently, and hence, they can be better localized and identified
than those with nonorthogonal ones. In particular, ∆ϕ = 0 and
∆ϕ = π are the worst cases, i.e., the reflectivities of the two
scatterers are collinear in the complex plane. Not surprisingly,
the closer the two scatterers are, i.e., the smaller α, the more
pronounced is the dependence on their phase difference. Since,
for our SR study, the case of small α is particularly of interest,
the impact of ∆ϕ must be considered. For TomoSAR, the phase
difference ∆ϕ is a random variable because it depends on the
unknown geometric configuration [24]. Hence, we calculate the
CRLB for the elevation estimation error by integrating the vari-
ances over ∆ϕ. The resulting dependence can be approximated
by the following analytical expression:

c20 =
σ2
s

σ2
s,0

≈ max
{
2.57(α−1.5 − 0.11)

2
+ 0.62, 1

}
. (25)

It fits the CRLB in this range of α better than the approxima-
tion derived in [23](c20 = max{(15/π2)

2.5
α−3, 1}). The square

root of the normalized CRLB variance integrated over ∆ϕ as a
function of α is shown in Fig. 7 together with our approxima-
tion. The dependence on α−1.5 can be clearly observed.

B. Elevation Estimation Accuracy

The normalized standard deviation of the elevation estimates
for two interfering scatterers using NLS and SL1MMER as a
function of α is shown in Fig. 7. These have been obtained
by simulations with randomly distributed phase differences.
The elevation estimation accuracy of SL1MMER approaches
the CRLB and is comparable to NLS. It is worth mentioning
that, for the leftmost experiment point, i.e., for α = 0.47, the

Fig. 7. Theory versus approximation versus experiments. Normalized CRLB
c0 integrated over ∆ϕ as a function of α.

NLS and SL1MMER pretend to have a better accuracy than the
CRLB. This is caused by the fact that we always assume that
the two closely spaced scatterers never exchange their positions,
which is not valid while moving the two scatterers closer such
that the standard deviation increases and reaches the order of
the distance between them.

VI. SR POWER

Nonlinear and parametric spectral estimation methods yield
reconstructions with much sharper point responses than tradi-
tional nonparametric linear algorithms. One might be tempted
to infer a very high resolution power from this narrow point
response width. However, the needle-like responses tell us nei-
ther the location accuracy of the individual points nor the ability
of the algorithm to resolve two close scatterers. In this paper,
the (elevation) resolution is defined by the minimum distance
ρPD

between two δ functions (scatterers) that are separable at a
given SNR with a certain number of measurements N and at a
prespecified probability of detection PD. As in the preceding
sections, we normalize resolution to the Rayleigh resolution
unit ρs. The SR factor κPD

is defined by

κPd
=

ρs
ρPD

. (26)

It depends on the required detection rate PD and is larger
than unity for SR. In this section, the SR power for different
Ns, SNRs, amplitude ratios, and phase differences of the two
scatterers will be investigated.

A. Detection Rate Study

The problem of resolution can be regarded as a hypothesis
test:

H0: null or only one scatterer inside the given azimuth–range
cell;

H1: two scatterers inside the given azimuth–range cell.

In [25], the detection probability of two real-valued sinusoids
with closely spaced frequencies is studied, and a sophisticated
detector is proposed. Our goal, however, is to derive the SR
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Fig. 8. Detection rate as a function of α using SL1MMER (dashed star), NLS
(dashed circle), and MD (solid), with SNR = 0/0 and 6/6 dB, N = 25, and
∆ϕ = 0 (worst case).

power of an estimator that also provides location, amplitude,
and phase of each scatterer.

Since it is very complicated to find a theory supporting all
possible situations, we approach the problem experimentally.
We start with an example of detecting two scatterers with
the same amplitudes and phases by using N = 25 regularly
sampled acquisitions. Fig. 8 shows the detection rate PD as a
function of normalized distance α at different SNR levels using
SL1MMER, NLS, and linear reconstruction, followed by the
detection of the maxima (MD) [3]. The phase difference in this
simulation is ∆ϕ = 0, i.e., the worst case. The SNR of each
scatterer for the two sets of curves is 0 and 6 dB, respectively.
This plot gives us several perspectives of the problem.

1) The detection curve of conventional MD tells us that
the Rayleigh resolution unit is rather a definition in the
absence of noise since the detection rate of MD increases
with SNR. Moreover, at SNR = 0/0 dB, even at distances
larger than the resolution unit, e.g., α = 1.2, the detection
rate is still unsatisfactory.

2) The NLS, as a parametric spectral analysis method, is
identical to an MLE under Gaussian noise with large
N and high SNR. Hence, it should result in the highest
detection rate if there is no prior knowledge about the true
hypothesis. In Fig. 8, NLS gives a significantly improved
probability of detection compared to MD. It is trivial,
but important, to observe that the detection rate depends
strongly on N · SNR.

3) The SR power of SL1MMER is slightly better than NLS.
The reason for the “better” performance of SL1MMER is
that the L1 minimization gives us, for example, two possi-
ble positions of scatterers. The following model selection
only decides between taking 0, 1, or 2 of those. NLS,
on the other hand, estimates a new position for the one-
scatterer case (probably located between the positions of
the two-scatterer case). This renders the likelihood a little
bit higher in NLS and makes NLS accept the one-scatterer
case a little bit more often.

Fig. 9. Detection rate as a function of α with fixed N · SNR (aperture is
regularly sampled) and ∆ϕ = 0.

Due to the similarity between NLS and SL1MMER, all of
the following results are approximately applicable to NLS as
well, which is asymptotically optimal (see Fig. 7), and hence,
they establish the absolute limit for SR.

B. Dependence on N · SNR

We expect the SR power of SL1MMER to depend asymptot-
ically on the product N · SNR, i.e., the number of acquisitions
can be traded off against SNR. Fig. 9 shows the detection rates
for different N versus SNR combinations for N · SNR fixed to
400. As expected, the detection rate curves are consistent with
each other in most cases. Only when N is very small, e.g., N =
10, will the detection rate decrease slightly. In Section VII,
we will show that the limit for N · SNR to be invariant is at
N ≈ 15. Of course, besides N · SNR, the detection rate would
also depend on the phase difference of the two scatterers ∆ϕ,
which is assumed to be zero here.

C. Dependence on Irregular Sampling

To give an impression about the impact of irregular sampling
on detection rate, Fig. 10 shows an example of several simu-
lations with N = 50 uniformly distributed randomly sampled
acquisitions at SNR = 6/6 dB. The solid circle curve is the
detection rate with regular samples, and it can be regarded
as a reference. The solid square curve shows the same result
using the particular irregularly distributed sample positions of
the real data stack used in [15]. The solid black curve corre-
sponds to irregular sampling, where the sampling distribution
is uniform. From this plot, we get two important messages:
first, the curves do not differ much from each other, and hence,
irregular sampling does not have a large impact on SR (we
have tried other sampling distributions, and they show very
little effect.). Second, irregular sampling does not act as an
additional difficulty; on the contrary, it can give a slightly better
detection rate compared to regular sampling. Based on these
observations, without loss of generality, we will use regular
sampling in the range [−∆b,∆b]/2 for the following examples.
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Fig. 10. Detection rate as a function of α at N = 50, SNR = 6/6 dB, and
∆ϕ = 0 with regular sampling, uniformly distributed random sampling, and
particular real-world aperture sample distribution from a TS-X data stack.

Fig. 11. Detection rate for α = 0.15 as a function of ∆ϕ under different
N · SNR.

D. Dependence on Phase Difference

For α < 1, the elevation estimation accuracy depends
strongly on the phase difference ∆ϕ, as shown in the last
section. Fig. 11 shows an example of the detection rate as a
function of ∆ϕ under different N · SNR, with α = 0.15. It is
not surprising that the detection rate varies dramatically with
∆ϕ, and the worst case is ∆ϕ = 0.

E. Fundamental Bound for SR

Followed by the aforementioned dependency analysis, in
this section, we analyze the SR factor κ50% = ρs/ρ50%, which
indicates the center point of the detection curve. Since the
phase difference ∆ϕ is a random variable and has a significant
impact on detection rate, we average the detecting curves
and then find the 50% point. The markers in Fig. 12 stand
for κ50% from the simulations for varying N · SNR within
the range of interest (10–30 dB) under different amplitude
ratios. It says that the achievable SR factors in this range

Fig. 12. SR factor averaged over ∆ϕ as a function of N · SNR under different
amplitude ratios a1/a2. Experimental results (markers) versus polynomial
fitting (solid lines).

typical for TomoSAR are promising and are on the order of
1.5–25. For the readers’ convenience to further use our findings,
we fit the experimental results to the following polynomial
expansion:

κ50%(N · SNR) =

5∑
i=0

cSR,i(N · SNR)i (27)

where cSR,i is the coefficient for the ith order term of N · SNR.
Table I summarizes the coefficients for different amplitude
ratios a1/a2, and the solid lines in Fig. 12 present the results
of polynomial fitting. Although it is derived experimentally,
the results in this section can be considered as the general
fundamental bounds for SR of the imaging system.

VII. MINIMUM NUMBER OF ACQUISITIONS

The previously shown examples demonstrate that the per-
formance of tomographic reconstruction deviates from the N ·
SNR dependence for small N . However, the required minimal
number of acquisitions for robust reconstruction at a given SNR
is of great interest since each SAR acquisition is expensive. In
[29], the minimal number of tracks for the subspace methods
for TomoSAR is proposed by assuming a sufficient SNR,
which is rarely true for the spaceborne case. In this section,
the robustness of the algorithm is defined by the minimal
required number of acquisitions Nmin,90% at a given SNR,
which still allows detecting two scatterers with a distance of
one Rayleigh resolution unit with ∆ϕ = 0 (the worst case) at a
high probability (PD ≥ 90%). At a given SNR, we will provide
an explicit expression for Nmin,90%.

In the preceding section, we have seen that the detection
rate has the same dependent factors as the CRLB. There is a
correction 1/N term in c0 to compensate the small N case. In-
troducing the same compensation factor which is N dependent
as in (24), inserting α = 1, and making some trivial normaliza-
tion, we find that a 90% detection rate of two scatterers with
a distance of ρs(α = 1) can be achieved when the condition
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TABLE I
POLYNOMIAL APPROXIMATION OF THE SR FACTOR AS A FUNCTION OF N · SNR. COEFFICIENTS FOR DIFFERENT AMPLITUDE RATIOS a1/a2

Fig. 13. Required minimal number of acquisitions Nmin,90% for robust reconstruction (i.e., well detecting two scatterers (PD ≥ 90%) with a distance of one
Rayleigh resolution unit) at a given SNR. Theory [dashed (N < 15) and solid lines (N ≥ 15)] versus experiment (circles). (Left) a1 = a2. (Right) a1 = 2a2.
The worst case ∆ϕ = 0 is assumed.

shown in (28) holds (see equation at the bottom of the page).
c1 and c2 are constants which depend on the amplitude ratio
and phase difference between two scatterers.

In Fig. 13, the required minimal number of acquisitions
Nmin,90 for different amplitude ratios [a1 = a2 (left) and a1 =
2a2 (right)] and for ∆ϕ = 0 is presented. The circles show the
90% detection rate positions with N ∈ [8, 20]. For example,
for a total SNR of 6 dB, only 11 acquisitions are required
for a1=a2 (SNR=3/3 db, respectively), while 17 acquisitions
are needed for a1=2a2 (SNR=5/− 1 dB, respectively). From
the aforementioned experimental results, according to (28),
we get c1=54.2 and c2=33.1 for a1=a2 and ∆ϕ=0, and
c1=107.3 and c2=65.9 for a1=2a2 and ∆ϕ = 0. The dashed
(N<15) and solid lines (N≥15) in Fig. 13 show the estimated
Nmin,90% from (28) with the aforementioned estimated c1 and
c2. For N≥15, N and SNR can be traded for N · SNR=const.

VIII. CONCLUSION AND FINAL STATEMENTS

In this paper, we have investigated the elevation estimation
accuracy, SR power, and robustness of sparse signal recon-
struction from random and regular spectral samples for the
application of TomoSAR. The results are obtained by the CS-

based algorithm SL1MMER and are compared to NLS. They
thus establish absolute bounds for SR. In particular, with (25)
and (27), we have provided easy-to-use analytical expressions
for location accuracy and SR factors.

A few additional remarks might be helpful for further use of
our results.

1) The minimal separable distance between two interfering
scatterers depends significantly on the phase difference
∆ϕ, which is random. Hence, we investigated the SR
power in a more general way, i.e., assuming that ∆ϕ
is uniformly distributed in [−π, π] instead of given a
specific value. The theoretically achievable SR factors
in the low-N and low-SNR situations of TomoSAR are
promising and are on the order of 1.5–25.

2) We have shown that regular and irregular aperture sample
distributions yield approximately the same results. This is
only true for the SR problem, i.e., when two scatterers are
close. The irregular distribution, though, has an additional
advantage when it comes to imaging of reflectivity pro-
files of large support in elevation s. Compared to regular
aperture sampling, it does not suffer from strong and
discrete ambiguities.

{
Nmin,90% · SNR ·

(
2.5− 1.5 cos

(
2∆ϕ+ 2π

(
1− 1

Nmin,90%

)))2

= c1, Nmin,90% < 15

Nmin,90% · SNR = c2, Nmin,90% ≥ 15
(28)
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3) If the sample distribution is not rectangular with width
∆b but, for example, Gaussian, then similar results apply
as if a rectangular distribution with the same standard
deviation σb was used. In our equations, only ∆b has to
be replaced with

√
12σb.

4) We have restricted ourselves to 1-D spectral estimation.
Although the results are easily extendable to the 2-D
case, i.e., motion retrieval by D-TomoSAR, there are a
few subtleties to be considered. For example, a possible
correlation between the temporal and spatial coordinates
of the 2-D aperture sampling pattern has some influence
on the 2-D SR power. This will be addressed in a further
study.

5) Sparsity is the prerequisite of CS-based algorithms such
as SL1MMER. This property is always ensured for point-
like scatterers, independent of the SAR system’s range
or elevation resolutions. Rough surfaces, assumed to
be mostly either horizontal or vertical, require ρr �
min{ρs tan θ, ρs/ sin θ} for appearing sparse in eleva-
tion, where θ is the incidence angle. The experimental
results [13], [30], however, have shown that the CS-based
estimators degrade gracefully with the loss of sparsity.
Even in the case of ERS with an almost isotropic resolu-
tion cell, a moderate improvement over linear estimators
can be achieved.
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Let’s Do the Time Warp: Multicomponent Nonlinear
Motion Estimation in Differential

SAR Tomography
Xiao Xiang Zhu, Student Member, IEEE, and Richard Bamler, Fellow, IEEE

Abstract—In the differential synthetic aperture radar tomogra-
phy (D-TomoSAR) system model, the motion history appears as
a phase term. In the case of nonlinear motion, this phase term
is no longer linear and, hence, cannot be retrieved by spectral
estimation. We propose the “time warp” method that rearranges
the acquisition dates such that a linear motion is pretended.
The multicomponent generalization of time warp rewrites the
D-TomoSAR system model to an (M + 1)-dimensional standard
spectral estimation problem, where M indicates the user-defined
motion model order and, hence, enables the motion estimation
for all possible complex motion models. Both simulations and
real data (from TerraSAR-X spotlight) examples demonstrate the
applicability of the method and show that linear and periodic
(seasonal) motion components can be separated and retrieved.

Index Terms—Differential synthetic aperture radar
tomography (D-TomoSAR), multicomponent nonlinear motion,
TerraSAR-X (TS-X), synthetic aperture radar (SAR), time warp.

I. INTRODUCTION

D IFFERENTIAL synthetic aperture radar tomography
(D-TomoSAR) uses multibaseline multitemporal SAR ac-

quisitions for reconstructing the 3-D distribution of scatterers
and their motion [1]–[3]. For each azimuth–range (x–r) pixel,
a scattering profile along the third dimension, elevation (s), is
estimated. Ideally, a motion history (e.g., subsidence or building
deformation) can be assigned to each elevation position. In
many cases, e.g., in urban environment, these scattering profiles
are dominated by a few individual scatterers only, typically,
zero, one, or two.
The elevation estimation of a scatterer exploits the linear

relationship between the measured phase and the product of
baseline and elevation, and hence, the full arsenal of spectral
estimation methods can be applied. Motion, however, is often
nonlinear (periodic, accelerating, stepwise, etc.) and, hence,
does not fit well into the spectral analysis framework. This
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is particularly true if very high-resolution mapping of urban
infrastructure is to be performed. In this letter, we introduce
nonlinear warping of the time axis to accommodate nonlinear
motion models. The method is extended to multicomponent
motion.

II. IMAGING MODEL

A. General (3 +M )-Dimensional SAR Imaging Model

The focused complex-valued measurement gn at an
azimuth–range pixel for the nth acquisition at time tn (n =
1, . . . , N) is [2]

gn =

∫
Δs

γ(s) exp (−j2π (ξns+ 2d(s, tn)/λ)) ds (1)

where γ(s) represents the reflectivity function along elevation s
with an extent ofΔs and ξn = −2bn/(λr) is the spatial (eleva-
tion) frequency proportional to the respective aperture position
(baseline) bn. d(s, tn) is the line-of-sight (LOS) motion as a
function of elevation and time. The motion relative to the master
acquisition may be modeled using a linear combination of
M base functions τm(tn)

d(s, tn) =

M∑
m=1

pm(s)τm(tn) (2)

where pm(s) is the corresponding motion coefficient to be
estimated. In Section III, we will show that τm(tn) can be
interpreted as a warped time variable if we choose the units of
the coefficients appropriately. The choice of the base functions
depends on the underlying physical motion processes.

B. Special Case I: PSI System Model

Persistent scatterer (PS) interferometry (PSI) assumes the
presence of only a single dominant scatterer in each pixel, and
only the phase of each acquisition is used

arg(gn) = 2π (ξns0 + 2d(tn)/λ) . (3)

This restriction means that the motion depends only on tn,
i.e., d(tn) =

∑M
m=1 pmτm(tn), and the motion parameters and

the elevation of each scatterer can be estimated by model fitting
and phase unwrapping, e.g., by the LAMBDA algorithm [4].

1545-598X/$26.00 © 2011 IEEE
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C. Special Case II: D-TomoSAR With Linear Motion

By assuming a linear motion with (elevation-dependent)
velocity V (s) (but possibly several scatterers per pixel), (1)
simplifies to

gn =

∫
Δs

γ(s) exp (−j2π (ξns+ ηnV (s))) ds (4)

where ηn = 2tn/λ is the so-called “velocity frequency.”
Equation (4) can be rewritten as [5]

gn =

∫
Δs

∫
Δv

γ(s)δ (v − V (s)) exp(−j2π(ξns+ ηnv)) dv ds,

n = 1, . . . , N (5)

where Δv is the range of possible velocities. Equation (5) is
a 2-D Fourier transform of γ(s)δ(v − V (s)) which is a delta
line in the elevation–velocity (s–v) plane along v = V (s).
Its projection onto the elevation axis γ(s)δ(v − V (s)) is the
reflectivity profile γ(s).

If only K discrete scatterers are present, γ(s)δ(v − V (s))
consists of K δ-points in the 2-D (s–v) plane at the respective
elevations and velocities. The tomographic reconstruction will
be a blurred and noisy version of these peaks from which
elevations and velocities are estimated.

D. Velocity Spectrum

In the original D-TomoSAR paper [2], the concept of the
velocity spectrum has been introduced. It generalizes the sys-
tem model (5) by replacing δ(v − V (s)) by an arbitrary motion
term a(s, v)

gn =

∫
Δs

∫
Δv

γ(s)a(s, v) exp(−j2π(ξns+ ηnv)) dv ds (6)

where∫
Δv

a(s, v) exp(−j2πηnv)dv = exp

(
−j

4π

λ
d(s, tn)

)
. (7)

Estimates of γ(s)a(s, v) are derived from the measurements
gn by 2-D spectral analysis. Individual scatterers with linear
motion will show up as peaks in the (s–v) plane at their
respective elevations and velocities. In the case of moderately
nonlinear motion and sufficient SNR, these peaks are blurred
in the v-direction, but their elevations are still detectable [2].
Then, for each of these elevations, a Fourier transform in the
v-direction leads to an estimate of exp(−j4πd(s, tn)/λ) and,
hence, of the motion d(s, tn) [2], [6].
This method works well with single scatterers and for mul-

tiple scatterers as long as they can be separated in the (s, v)
plane. There are, however, situations where it fails.
1) If the motion is too nonlinear, e.g., periodic, and the

signal-to-noise ratio (SNR) is not high enough, the scat-
terer cannot be detected in the (s, v) plane.

2) If two scatterers are closer in elevation and mean velocity
than the respective resolution elements, their velocity
spectra will influence each other with an unpredictable
effect on the reconstruction of d(s, tn).

Fig. 1. Time warp converts seasonal periodic motions with different ampli-
tudes (red and blue) into linear functions of different slopes.

From this discussion, it is evident that we need a transforma-
tion that is able to generate peaks of high SNR in some motion
coefficient space just like spectral estimation works for linear
motion.

III. GENERALIZED TIME WARP METHOD

We have briefly introduced an approach in [7] to cope
with the problem of D-TomoSAR reconstruction with single-
component nonlinear motion by rearranging the acquisitions
on the time axis (the so-called “time warp”). In this letter, we
generalize it to the multicomponent model.

A. Time Warp for M = 1

In the case ofM = 1, by introducing the temporal frequency
η1,n = 2τ1,n(tn)/λ as a function of a motion base function
τ1,n(tn), and the motion coefficient p1(s), the proposed time
warp method leads to a generalized system description which
can be adapted for different nonlinear motion models

gn=

∫
Δp1

∫
Δs

γ(s)δ (p1−p1(s)) exp (−j2π(ξns+η1,np1)) ds dp1,

n = 1, . . . , N. (8)

The time warp rewrites the D-TomoSAR model with single-
component motion (linear or nonlinear) to a standard 2-D
spectral estimation problem which makes all spectral estimators
applicable. This principle is shown for a periodic motion model
in Fig. 1. The most common motion base functions are as
follows.

1) Linear motion: η1,n = 2tn/λ, and the coefficient p1(s)
stands for the LOS velocity (v) as a function of s.

2) Seasonal motion: τ1(tn) = sin(2π(tn − t0)), and p1(s)
stands for the amplitude (a) of the periodic motion; t0 is
the initial phase offset.

3) Thermal dilation: τ1(tn) = T (tn), i.e., the temperature,
and p1(s) is the scaling factor of the thermal dilation
along s.
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Fig. 2. Multicomponent motion reconstruction example with linear and sea-
sonal periodic motion. Single scatterer with an elevation of 0 m, a linear
motion of 10 mm/year, and a seasonal motion with an amplitude of 4 mm
(SNR = 3 dB). (Left) Projection of the 3-D spectral estimates to elevation
direction (black line shows the true elevation position). (Right) Projection to
the a–v motion plane (asterisk marks the true position).

Fig. 3. Similar simulation as in Fig. 2 but with two scatterers inside the cell
with elevations of −20/50 m, linear motion of 10/− 5 mm/year, and seasonal
motion amplitudes of 2/7 mm.

B. Let’s Do the Time Warp Again

The generalization of the time warp method for M > 1
is straightforward. Let us define the mth temporal frequency
component at tn as ηm,n = 2τm(tn)/λ.

Then, (1) can be rewritten as an M + 1-dimensional Fourier
transform of γ(s)δ(p1 − p1(s), . . . , pM − pM (s)) which is a
delta line in theM + 1 elevation–motion parameter space

gn =

∫
ΔpM

. . .

∫
Δp1

∫
Δs

γ(s)δ (p1 − p1(s), . . . , pM − pM (s))

· exp (−j2π(ξns+ η1,np1 + · · ·
+ ηM,npM ))

× dsdp1 . . . dpM , n = 1, . . . , N. (9)

This extension is a general solution to the multicomponent
nonlinear motion estimation problem for D-TomoSAR and,
hence, completes the time warp concept for complex motion
models.
Multicomponent motion reconstruction examples, i.e., com-

bined linear and seasonal motion, with single (see Fig. 2)
and double scatterers (see Fig. 3) inside a resolution cell,
respectively, are presented here to illustrate this concept. A
realistic SNR of 3 dB and a baseline configuration of the
TS-X “asterisk” stack with 30 acquisitions used in Section IV
(see Fig. 5) are simulated in both examples. We start with a
single scatterer located at zero elevation undergoing a linear
motion of 10 mm/year and a seasonal motion whose amplitude
is 4 mm. In this case, M = 2; therefore, we are dealing with
a 3-D spectral estimation problem. The left plot in Fig. 2
shows a projection of the 3-D spectral estimates to the eleva-
tion direction, i.e., a sum over the linear and periodic motion

Fig. 4. Mean intensity map of the TS-X spotlight data stack over the test site
in Las Vegas, Nevada. White box indicates the investigation area in Fig. 8.

Fig. 5. Spatial–temporal baseline distribution. (Asterisks) Substack with sea-
sonal motion only and (diamonds) substack with seasonal and linear motion.

plane. The right plot shows the corresponding projection in
the amplitude–velocity (a–v) plane, and the white asterisk
indicates the true amplitude and velocity. Fig. 3 uses the same
configuration as Fig. 2 but with two scatterers, located at
−20 and 50 m (ca. 2× Rayleigh elevation resolution), with a
linear motion of 10 and −5 mm/year and a seasonal motion
with amplitudes of 2 and 7 mm, respectively. Comparing the
estimates to the simulation truth, it demonstrates that the gen-
eralized time warp method can give a robust estimation of the
multicomponent nonlinear motion even under a moderate SNR.

IV. EXPERIMENTS WITH REAL DATA

A. Test Site

The proposed method has been applied to TerraSAR-X high-
resolution spotlight data with a slant-range resolution of 0.6 m
and an azimuth resolution of 1.1 m, over the city of Las Vegas.
A stack of 60 SAR images covering a time period of more
than two years, from February 2008 to June 2010, is used. The
preprocessing, including atmospheric phase screen correction,
is performed by the German Aerospace Center’s PSI-GENESIS
system on a sparse PS network of high-SNR pixels containing
only single scatterers. Fig. 4 shows a temporally averaged
intensity map of the whole stack over the test area centered at
the convention center in Las Vegas. Fig. 5 shows the elevation
aperture positions and temporal baselines relative to the master
image acquired on April 17, 2009.
This stack is particularly interesting for our purpose: No

long-term motion has been observed in the test area over the
first year of acquisition (the “asterisk” substack in Fig. 5),
i.e., the motion-induced phase is only contributed by thermal
dilation. Since July 2009, however, this area has suddenly been
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Fig. 6. Differential interferogram of the test site showing a pronounced
circular subsidence pattern. The interferogram has been generated by two TS-X
images taken from the “diamond” substack in Fig. 5. White box indicates the
investigation area in Fig. 9.

Fig. 7. (Asterisk) Monthly average temperature of Las Vegas, Nevada, in the
years of 2008–2010 versus (solid line) modeled seasonal motion with initial
offset t0 = 0.013 years.

undergoing a pronounced subsidence centered at the convention
center which can be seen from the differential interferogram
in Fig. 6 generated by two images taken on April 17, 2009
(master), and April 4, 2010 (slave). Hence, the second-half ac-
quisitions (the “diamond” substack in Fig. 5) are characterized
by a multicomponent nonlinear motion, i.e., a combined linear
and thermal-dilation-induced seasonal motion. We will use
these favorable motion properties to validate the generalized
time warp method for single-component and multicomponent
nonlinear motion estimation, respectively.

B. Thermal-Dilation-Induced Seasonal Motion Estimation

In this section, the “asterisk” substack is used to estimate
the thermal-dilation-induced motion. Theoretically speaking,
we should use the temperature history at the acquisition times
as the motion base function and find out the scaling factor.
However, due to the lack of ground truth, we use a simple sine
function with a period of one year. The initial offset is estimated
by fitting the sine model to the monthly average temperature of

the test site in the years of 2008–2010 as shown in Fig. 7. The
asterisks mark the monthly average temperatures [8], and the
solid line drafts the modeled seasonal motion with initial offset
t0 = 0.013 years. Likewise, the initial offset can be obtained
from the PSI-based preprocessing mentioned in Section IV-A.
The surface model and amplitude map of seasonal motion

have been obtained by the proposed time warp method for the
whole building complex of the convention center (marked by a
box in Fig. 4). Fig. 8 shows the surface model generated from
the elevation estimates (converted to height). The shapes of
the building and the surrounding infrastructure, e.g., roads and
bridges, have been captured at a very detailed level. The right
image in Fig. 8 shows the amplitude map of the seasonal motion
caused by thermal dilation. Since the building has a metallic
structure, it has been more severely affected by the thermal
dilation than the surrounding infrastructure. The building shows
a smooth amplitude variation for individual structural blocks.
There are sudden changes of the seasonal motion amplitude
between the adjacent blocks of up to 8 mm. The surrounding
area shows almost no seasonal motion.

C. Linear Motion + Seasonal Motion Estimation

The generalized time warp method for M = 2 has been
applied to the “diamond” substack in Fig. 5 by choosing linear
and seasonal motion as the base functions. The left image in
Fig. 9 shows the TS-X intensity map of the region of interest
(marked by a box in Fig. 6). According to Fig. 6, the center of
the subsidence pattern, i.e., the “epicenter,” is located on the
right upper part of the intensity map. Therefore, together with
the seasonal motion results shown in Fig. 8, we can expect the
following: 1) only the building structures suffer from thermal
dilation, and 2) the closer to the “epicenter” the point is, the
bigger is the linear subsidence.
To validate the proposed generalized time warp method,

the two pixels P1 and P2 marked by red points have been
selected and will be analyzed hereinafter (see the left image
in Fig. 9; P is the reference point). As P1 is located outside
the region of the convention center, it is expected to contain
only a single-component linear motion. P2 is located on the
roof and is closer to the “epicenter.” Hence, we expect a
combined seasonal and more significant linear motion. The
middle and right image pairs in Fig. 9 shows the corresponding
estimated reflectivity profiles (upper) and scatterer distributions
in the (a–v) motion plane (bottom) of the analyzed ground
pixel P1 and roof pixel P2, respectively. The estimates re-
veal a single scatterer in the pixel P1 with an elevation of
−12 m (≈ −6.3 m in height relative to reference pixel), al-
most no seasonal motion, and a subsidence of −5 mm/year.
Also, P2 is estimated to be a single scatterer, with an elevation
of 32 m (≈16.9 m in height), a seasonal motion with an absolute
amplitude of 4.5 mm, and a subsidence of−10 mm/year. These
results are consistent with our expectation and, hence, validate
the capability of the time warp method for multicomponent
nonlinear motion estimation.

V. CONCLUSION

The proposed time warp method for D-TomoSAR converts
any nonlinear multiple (M ) component motion history into a
linear one. It renders D-TomoSAR an (M + 1)-dimensional
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Fig. 8. (Left) Reconstructed digital surface model from differential TomoSAR (unit: meters) and (right) estimated amplitude of seasonal motion (unit:
millimeters).

Fig. 9. Validation examples of the generalized time warp approach. (Left) TS-X intensity map. (Middle) (Upper) Reflectivity profile and (bottom) scatterer
distribution in (a–v) motion plane of analyzed ground pixel P1. (Right) Same plots of analyzed roof pixel P2. P is the reference point. Dashed lines mark the
location of the maxima in the spectral estimates.

spectral estimation problem. The choice of the motion base
functions reflects our prior knowledge about the underlying mo-
tion process. An interesting option is to use GPS measurements
in the vicinity of the objects of interest for constructing the base
functions. These measurements can provide important features
of the motion process, e.g., start time and acceleration rate of a
subsidence.
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List of abbreviations

2-D two-dimensional
3-D three-dimensional
AIC Akaike information criterion
APS atmospheric phase screen
BIC Bayesian information criterion
CAT computed axial tomography
COSMO-SkyMed COnstellation of small Satellites for the Mediterranean

basin Observation
CRLB Cramér-Rao lower bound
CS compressive sensing
D-InSAR differential interferometric SAR
D-TomoSAR differential SAR tomography
DEM digital elevation model
DLR German Aerospace Center
E-SAR Experimental SAR of DLR
ERS Earth Resources Satellite
GENESIS generic system for interferometric SAR
GLRT generalized likelihood ratio test
InSAR interferometric SAR
LASSO least absolute shrinkage and selection operator
LiDAR light detection and ranging
LOS line-of-sight
MAP maximum a posteriori
MB multi-baseline
MD maxima detection
MDL minimum description length
MLE maximum likelihood estimator
MUSIC multiple signal classification
NLS nonlinear least squares
PCT polarization coherence tomography
PS persistent scatterer
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PSI persistent scatterer interferometry
RIP restricted isometry property
SAR synthetic aperture radar
SNR signal-to-noise ratio
SR super-resolution
SV singular value
SVD singular value decomposition
TanDEM-X TerraSAR-X add-on for Digital Elevation Measurement
TDBP time-domain back-projection
TomoSAR SAR tomography
TSVD truncated singular value decomposition
VHR very high resolution
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List of Symbols

(·)H transpose conjugate
(·)† pseudoinverse
C(K) complexity penalty
K sparsity (number of scatterers inside an azimuth-range

pixel)
M order of the motion model
N number of measurements
NL number of looks
Nmin,90% minimal required number of acquisitions at a probability

of detection of 90%
PD probability of detection
SNRq SNR of the qth scatterer
V (s) LOS linear deformation velocity profile along elevation s
W chirp bandwidth
∆ϕ phase difference between two scatterers
∆b elevation aperture size
∆s extent of scattering objects in elevation
∆v range of possible velocities
∆x azimuth synthetic aperture length
α normalized distance between two scatterers (distance de-

vided by ρs)
J Fisher information matrix
Φ N possibly random basis functions (the sensing matrix)
Ψ orthogonal basis
γ discrete reflectivity vector with L elements (sparse sig-

nal)
ν any vector having K non-zero coefficients at the same

positions as γ
θ unknown parameter vecotor, including elevation posi-

tions s1 and s2, amplitudes a1 and a2 and phases ϕ1 and
ϕ2

ε measurement noise
δs a small positive number
δr range migration caused by the different viewing angles
ηn velocity frequency
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ηm,n mth temporal frequency component at tn
γ(s) continuous reflectivity function along elevation
K̂ estimated sparsity (number of scatterers)
Ĉgg estimated covariance matrix from multi-looking measure-

ments, also called data or sample covariance matrix
γ̂ estimated discrete reflectivity
γ̂ (̂s) estimated sparse reflectivity profile, i.e. estimated

complex-valued reflectivity of discrete scatterers
κPD

super-resolution factor at a probability of detection of
PD

λ wavelength
λK Lagrange multiplier
µ coherence
ρr range resolution
ρs elevation resolution
ρx azimuth resolution
ρPD

minimal separable distance at a probability of detection
of PD

σε noise level
σn nth non-negative singular value of R
σsq ,0 CRLB of the elevation estimates of the qth scatterer in

the absence of other scatterers
σsq CRLB of the elevation estimates of the qth scatterer in

the presence of a second scatterer
τm(tn) mth motion base function
θ elevation angle (incidence angle)
ϕq phase of qth scatterer
ξn spatial (elevation) frequency
a amplitude of the periodic motion
aq amplitude of qth scatterer
bn nth elevation aperture position
c speed of light
c0 σsq normalized to σsq ,0

cSR,i coefficient for the ith order term of N · SNR
gn focused complex-valued measurement of an azimuth-

range pixel for the nth acquisition
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k number of parameters of a model, describing the model
complexity

pm(s) mth motion coefficient
r range coordinate
s elevation coordinate
sq elevation of qth scatterer
t0 initial time offset of a seasonal motion
tn nth acquisition time
v LOS linear deformation velocity
x azimuth coordinate
y ground range coordinate
z height coordinate
Cgg covariance matrix
R mapping matrix (sparse mapping operator)
e combined measurement noise and the model error
g measurement vector
gnl

measurement vector of the nlth look (nl = 1, . . . , NL)
rl lth column of R
un and vn nth left and right singular vector of R, respectively
x signal of interest with a length of L
Cγγ covariance matrix of the prior
Cεε noise covariance matrix
ŝ estimated elevation positions
θ(K) vector of the unknown amplitudes, phases, and elevations

for K scatterers
Ĝ noise subspace of Cgg

d(s, tn) LOS displacement as a function of elevation and time
f(·) frequency, corresponding subscripts represents the direc-

tions
p(g|θ(K), K) likelihood of parameter vector θ(K) given measurements

g

|γ̂l|2 estimated reflected power at elevation position sl(l =
1, . . . , L)

|γ̂l|2MU estimated "pseudospectrum" at elevation position sl(l =
1, . . . , L)
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