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Summary 

Outdoor navigation services have established over the past decade and are ubiquitously available today. We have 

become accustomed to everyday mobile devices such as smartphones and car navigation systems that help us plan 

our routes or provide us with personalized and added value information about our current position. Localization 

technologies based on global navigation satellite systems as well as the acquisition and availability of geoinfor-

mation about navigable road networks for large parts of the world are two main drivers for this development. 

Systems for navigating people or vehicles in indoor spaces however are not as widely spread to date but consider-

ably lag behind existing outdoor solutions. The fact that GPS is not available indoors is often seen as a key reason, 

and substantial work in academia and industry has been done in developing alternative localization technologies. 

But there is also a need for a standardized model of  the navigation space providing rich, complete, and accurate 

geoinformation about the indoor environment in order to address the multitude of challenges in localization, path 

planning, tracking, and guidance facing indoor navigation. 

This thesis presents an approach to the spatio-semantic modelling of indoor space that aims at answering this need. 

Based on a comprehensive survey of related work, the multiple and different conceptual and technical challenges 

and requirements to indoor navigation are analysed and elaborated. Whereas existing approaches often tailor the 

complexity of the navigation task a priori to a specific and rigid navigation setting, the main research goal of this 

thesis is to define a generic framework for indoor navigation that satisfies the requirements and overcomes limita-

tions in related work. Against this background, a Multilayered Space-Event Model (MLSEM) is developed that 

allows for the modelling, integration and joint consideration of different and multiple representations of navigable 

and non-navigable indoor spaces for various modes of locomotion such as walking, driving or even flying. The 

notion of indoor space hereby goes beyond the built-up environment but also comprises logical and thematic spaces 

such as security or disaster zones as well as sensor spaces reflecting the diverse indoor localization technologies 

and methods. The MLSEM facilitates the ad-hoc selection and combination of available localization technologies 

supported by the mobile end-user device and of appropriate representations of navigable indoor spaces according 

to the context of individual navigation users as well as global and user-dependent navigation constraints.  

A second principal contribution of the research work is the embedding of the MLSEM in a sound mathematical 

framework. A correct, consistent, and complete mathematical formalization is to be seen as a key prerequisite for 

the definition of a universal view of indoor space that integrates existing approaches in literature at a foundational 

level. The formalization draws from fields such as algebraic topology, manifold theory, and graph theory in order 

to represent indoor space entities by their 2- or 3-dimensional real-world shape and their one-to-one mapping onto 

a graph-based conceptualization. A novel space layer algebra is proposed for the manipulation of complex indoor 

space models. Finally, the thesis develops a formal conceptual data model for the MLSEM in conformance with 

the ISO 19100 standards family for geographic information modelling. By this means, indoor space data can be 

exchanged according to the MLSEM between computer systems and applications in a standardized way in order 

to enable navigation and location-based services in indoor environments.  

The result of this thesis is a generic, flexible, and context-aware modelling framework for indoor space that sup-

ports the complementary navigation tasks of localization, path planning, tracking, and guidance. The sound defi-

nition of indoor space at a conceptual, mathematical, and data exchange level exceeds and explains alternative 

approaches to indoor space modelling. The MLSEM is currently at the core of an international standardization 

activity called IndoorGML carried out at the Open Geospatial Consortium, which aims at making indoor navigation 

services as available and successful as in outdoor environments.  
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Zusammenfassung 

Navigationsdienste im Freien sind seit vielen Jahren etabliert und heutzutage überall verfügbar. Alltägliche mobile 

Geräte wie Smartphones oder Autonavigationsgeräte unterstützen uns wie selbstverständlich bei der Wegeplanung 

oder stellen personalisierte Mehrwertinformationen über unseren aktuellen Standort bereit. Diese Entwicklung ist 

vor allem Lokalisierungstechnologien auf Basis von GNS-Systemen sowie der flächendeckenden Erfassung und 

Bereitstellung von Geoinformationen über navigierbare Straßen zu verdanken. Navigationssysteme für Personen 

oder Fahrzeuge im Innenraum sind hingegen nicht so weit verbreitet und bleiben hinter den Möglichkeiten beste-

hender Lösungen im Freien zurück. Als Hauptursache wird vielfach die Nichtverfügbarkeit von GPS in Gebäuden 

angeführt, weshalb insbesondere die Entwicklung von alternativen Lokalisierungstechnologien im Fokus von Ar-

beiten in Wissenschaft und Industrie steht. Ebenso wichtig ist jedoch ein standardisiertes Modell über den navi-

gierbaren Raum, das reichhaltige, vollständige und genaue Geoinformationen über den Innenraum bereitstellt, um  

so die vielfältigen Herausforderungen an die Innenraumnavigation auf dem Gebiet der Lokalisierung, Wegepla-

nung und -leitung, sowie Nachverfolgung von bewegten Objekten zu adressieren. 

Die vorliegende Doktorarbeit stellt ein räumlich-semantisches Modell für den Innenraum vor, das diesen Bedarf 

decken soll. Auf Grundlage einer umfassenden Studie verwandter Arbeiten werden die vielfältigen und unter-

schiedlichen konzeptuellen und technischen Anforderungen an die Innenraumnavigation analysiert und herausge-

arbeitet. Während bestehende Ansätze die Komplexität der Navigationsaufgabe oftmals a priori auf einen spezifi-

schen und starren Anwendungsfall reduzieren, besteht ein wesentliches Forschungsziel dieser Arbeit in der Defi-

nition eines generischen Rahmenwerks für die Innenraumnavigation, das den Anforderungen genügt und die 

Schwächen anderer Arbeiten überwindet. Vor diesem Hintergrund wird ein Multilayered Space-Event Modell 

(MLSEM) entwickelt, das sowohl die Modellierung, die Integration als auch die gemeinsame Betrachtung unter-

schiedlicher Repräsentationen navigierbarer und nicht-navigierbarer Innenräume für verschiedene Fortbewe-

gungsarten wie Laufen, Fahren oder sogar Fliegen ermöglicht. Der Begriff des Innenraums geht hierbei über den 

gebauten Raum hinaus und umfasst auch logische oder thematische Räume wie Sicherheits- und Unfallzonen und 

Sensorräume, welche die diversen Lokalisierungstechnologien und –methoden in Gebäuden abbilden. Das 

MLSEM ermöglicht die Ad-hoc-Auswahl und Kombination der verfügbaren und vom Endgerät des Nutzers un-

terstützen Lokalisierungstechnologien sowie derjenigen navigierbaren Innenräume, die den individuellen Nutzer-

kontext sowie globale und nutzerabhängige Navigationsbeschränkungen widerspiegeln.  

Ein zweiter wesentlicher Beitrag der Arbeit besteht in der korrekten, widerspruchsfreien und vollständigen mathe-

matischen Formalisierung des MLSEM. Eine solche Formalisierung stellt eine wichtige Voraussetzung für ein 

allgemeingültiges Verständnis des Innenraums dar, auf dessen Grundlage bestehende Ansätze in der Literatur zu-

sammengeführt werden können. Die Formalisierung bedient sich Teilgebiete wie der algebraischen Topologie, der 

Theorie der Mannigfaltigkeiten, und der Graphentheorie, um die Objekte des Innenraums sowohl gemäß ihrer 

realen Form in 2D oder 3D zu modellieren als auch eineindeutig auf eine graphbasierte Repräsentation abzubilden. 

Weiterhin wird erstmals eine Space-Layer Algebra zur Manipulation komplexer Innenräume vorgestellt. Schließ-

lich entwickelt die Arbeit ein formales konzeptuelles Datenmodell für das MLSEM in Übereinstimmung mit der 

ISO 19100 Normenreihe für die geographische Informationsmodellierung. Hierdurch können Innenraumdaten ge-

mäß dem MLSEM zwischen Computersystemen und Anwendungen standardisiert ausgetauscht werden, um Na-

vigations- und standortbezogene Dienste im Innenraum umzusetzen.  

Das Ergebnis dieser Arbeit ist ein generisches, flexibles und kontextbezogenes Rahmenwerk für die Modellieung 

von Innenräumen, das die sich ergänzenden Navigationsaufgaben der Lokalisierung, Wegeplanung und -leitung, 

sowie Nachverfolgung von bewegten Objekten unterstützt. Die Definition des Innenraums auf konzeptueller, ma-

thematischer und Datenaustauschebene erweitert und erklärt alternative Ansätze der Innenraummodellierung. Das 

MLSEM bildet derzeit den Kern der Standardisierungsaktivität zu IndoorGML im Open Geospatial Consortium, 

die zum Ziel hat, dass Navigationsdienste im Innenraum ebenso verfügbar und erfolgreich werden wie im Freien.    
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Chapter 1  

Introduction 

1.1 Motivation 

Outdoor navigation services have established over the past decade and are ubiquitously available today. We have 

become accustomed to everyday mobile devices such as smartphones and car navigation systems that help us find 

nearby shopping malls, restaurants, or museums and get us to airports, public transport and train stations, or further 

destinations. Despite apparent distinctions in technologies and techniques underlying current outdoor navigation 

systems and services, there are two main drivers for this development. First, global localization systems such as 

GPS have become publicly available and provide localization information with sufficient degree of accuracy. Sec-

ond, accurate and complete models of the outdoor space have been acquired which supply navigation data and 

content such as road networks for large parts of the world. Both aspects are accompanied by the evolution of 

mobile devices and navigation systems that, on the one hand, have become location-aware and, on the other hand, 

enable ubiquitous access to navigation space models and navigation-relevant information such as traffic jams or 

points of interest. This progress has also given rise to additional location-based services (LBS) for outdoor envi-

ronments besides navigation which exploit the current location of the mobile user in order to offer personalized 

and added value information about the user’s context. Typical examples include “Where am I?” and “Who or 

what is near me?” services that underpin a wide range of applications in different domains. Next-generation ser-

vices are enabled by the fact that mobile users nowadays not only reactively consume LBS applications but also 

proactively and collaboratively produce and share location-tagged information and content. 

We averagely spend 80% up to 90% of our time indoors (e.g., Jenkins et al. 1992, Brasche & Bischof 2005). It 

hence is natural to aim at extending the scope of location-based services to the indoor space which renders an area 

of intensive research in academia and industry. Promising applications for indoor environments such as navigation 

and emergency services, logistics, health care monitoring, and people or goods management are addressed. Se-

lected applications are presented in the following in order to highlight some of their information needs (cf. Lacroix 

2013).  

Indoor navigation. Indoor venues such as shopping malls and airports are continuously growing larger and more 

complex. Although humans are generally good at assigning meaning to spatial structures while moving through 

and interacting with the indoor environment and thus have cognitive abilities to locate themselves, we often get 

lost in indoor space especially in case of incomplete knowledge about the indoor environment. There is a need for 

the possibility of virtually exploring and querying complex venues in order to discover our desired destination 

(e.g., the nearest food store in a shopping mall, the location of a product within the food store, the check-in counters 

at airports, or the public toilets inside a train station), and of being guided to this destination according to our 

individual needs and preferences as well as movement restrictions. Similar to outdoor navigation, this requires the 

mobile device of the user to be capable of acquiring its location with sufficient accuracy as well as access to a rich 

indoor space model. Indoor navigation is the most commonly discussed indoor location-based service in literature. 

Emergency response. In emergency situations like fire incidents, immediate interventions such as guiding people 

to the nearest emergency exits as well as routing rescue personnel and fire fighter forces to injured people and to 

fire spots could save human lives. Although this actually renders a navigation task, the requirements and con-

straints in emergency situations are high and very specific. The indoor space model has to be up-to-date and has 

to support dynamic changes. For example, disaster areas have to be captured and continuously updated in the 

model in order to understand the demolition state of the building and to determine safe escape routes. Likewise, 

sections of the building that are inaccessible in normal situations may become available (e.g., emergency exits) 

but also movement restrictions may be imposed (e.g., to exclude elevators from routes or to control the flow of 

people). Rich information about obstacles (e.g., the location and material of walls) is required to assess whether 

obstacles can be removed or torn down in order to provide additional paths. The localization infrastructure needs 
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to report precise and accurate location information to avoid people getting lost and disoriented (e.g., due to smoke) 

and to keep track of the fire fighter forces.  

Services for elderly and disabled people. The world population of people over age of 65 is rapidly growing. 

Technology and LBS applications (e.g., health care monitoring) contribute to a “smart environment” that aids the 

elderly in being independent. Besides a smart home, also public venues such as train stations or public buildings 

need to offer corresponding services to avert the social exclusion of elderly people from public facilities and ser-

vices. For example, elderly people often suffer from physical limitations in mobility and thus must be guided 

through the indoor space along barrier-free and safe paths which may substantially differ from the shortest or 

fastest paths. This requires a fine-granular representation of the built environment that captures non-passable ob-

stacles and barriers at a small enough scale. Moreover, precise location and orientation information (e.g., based on 

special landmarks) has to be provided in order to assist elderly people along their route. Both the handling of the 

mobile device and the presentation of information have to conform to the needs of this user group. Similar obser-

vations can be made in the context of disabled people (e.g., wheelchair users). 

Tracking of people and goods. Location-based services are not only of interest for the consumer market but also 

for enterprises. For example, tracking services could support the operator of a shopping mall in understanding the 

movement patterns of customers and hence in optimizing the layout of the mall. Moreover, such services would 

facilitate to push personalized product advertisements to the mobile device of people as they travel past a store (or, 

alternatively, information about artefacts in a museum). Tracking services rely on precise location fixes as well as 

an accurate and complete mapping of the indoor space which allows the trajectories of people and goods to be 

analysed both spatially and semantically. 

Autonomous mobile robots. Mobile robotics is a highly active research area where a considerable body of theory 

has been developed to date. Since robots can be said to be blind and deaf per default, location-awareness is one of 

the crucial aspects for their autonomous capabilities. The focus of scientific works is therefore mostly put on the 

combination of different sensor technologies and the development of probabilistic methods that would allow the 

robot to self-locate itself with high accuracy. A second fundamental issue in mobile robotics is the indoor space 

model. Significant work has been undertaken to enable robots to deal with unknown environments by mounting 

sensors which continuously scan and interpret the environment in order to instantly map the indoor space while 

the robot is moving. Alternatively, robots can be provided with a complete model of the indoor space which, for 

instance, allows the robot to validate location estimates relative to the model and to more easily plan or follow 

predefined space trajectories. 

The industry has recognized the potential of indoor LBS and there is a quickly growing market for corresponding 

applications. To a great extent, these applications are realized as internal enterprise applications or target a niche 

market if publicly accessible at all. However, at least when Google entered the market in 2011 with its indoor 

maps and an accompanying indoor localization solution for a variety of public venues like airports, museums, 

shopping malls, or stadiums, indoor LBS became main stream. As of January 2013, Google claims to hold 10,000 

indoor maps across ten different countries.1 A similar world-wide and public service was launched by Microsoft 

in June 2012 based on indoor maps provided by Nokia. The maps cover similar venues and finding closest facilities 

and services (e.g., toilets, cash machines) inside the venues is also supported. As of July 2012, Nokia claims to 

have mapped 4,600 venues in 38 countries with a 2000% increase in just 16 months2 which nicely illustrates the 

rapid growth of the market. Also large data providers for outdoor maps such as NAVTEQ have released their first 

indoor contents.  

Nevertheless, although promising applications can be envisioned and proprietary systems become available, loca-

tion-based services for indoor space are still less well developed and considerably lag behind established outdoor 

services. Regarding the two identified drivers for outdoor LBS, the fact that GPS is not available inside buildings 

is most often cited in literature as being the main reason. Substantial work in academia and industry has therefore 

been done in developing alternative localization techniques and methods. However, and as shown above, an indoor 

space model that provides accurate, complete, and rich information about the complex interior environment like-

wise renders a fundamental prerequisite and even is said to be at the core of any indoor LBS system in literature 

                                                           
1 See http://maps.google.com/help/maps/indoormaps/. 

2 See http://conversations.nokia.com/2012/07/16/nokia-leads-the-way-with-indoor-mapping/. 
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(e.g., Worboys 2011, Liu & Zlatanova 2011b). In their well-received reference book on indoor LBS, (Kolodziej 

& Hjelm 2006) expose two main problems of indoor space models (referred to as world models) in current location-

based service solutions: 

1. “World models implicitly underlie the mapping infrastructure, yet they are rarely set in a proper 

theoretical framework by going back to the basics of what a location (space) can be in pure 

mathematics and, more importantly, symbolically (semantics).” (Kolodziej & Hjelm 2006, p. 

180),  

 

2. “One of the problems to date with attempting to solve the LBS computing problem is that every 

proposed solution has its own approach, data structures, processes, and the like. There is little 

if any standardization between the various approaches. Moreover, there is no one standardized 

view of the world that would unlock the potential of LBS computing. Standardization can be 

achieved at the foundational level by defining a universal view of the geographical space.” (Ko-

lodziej & Hjelm 2006, p. 221). 

(Kolodziej & Hjelm 2006) hence couple the success of indoor LBS with a formal and standardized representation 

of the spatial and semantic aspects of indoor space. However, the identified problems have not been sufficiently 

solved in literature up to now (cf. chapter 2). And the proprietary and non-standardized systems available on the 

market which have been presented above contribute to the problems rather than to their solution. 

The motivation for this thesis is therefore to fill the gap identified by (Kolodziej & Hjelm 2006) by defining a 

spatio-semantic model for describing and structuring indoor space. The conceptual design of the indoor space 

model shall be built on a solid and consistent mathematical basis, and its validity and applicability shall be argued 

in the context of indoor navigation. Moreover, the indoor space model shall be realized in conformance with ex-

isting international standards on the modelling and exchange of geographic information so that it can be imple-

mented by indoor navigation applications in a standardized way. 

The field of indoor navigation faces a large number of challenges which significantly differ from the outdoor 

world. In the following section, the most relevant challenges are reviewed in detail and their implications on the 

modelling of indoor space are discussed. Based on this discussion, the research goals and objectives of this thesis 

are elaborated in the chapters 1.3 and 1.4. 

1.2 Challenges to Indoor Navigation 

The task of navigation generally comprises 1) the localization of a person or object, 2) the planning of paths 

between locations, and 3) the tracking and guidance along the path (Becker et al. 2009a, Worboys 2011). Locali-

zation (or positioning) determines the actual location of a person or object with respect to a given spatial reference 

system and localization technology. Path planning deals with finding the best path (e.g., the fastest, the shortest, 

or the cheapest) from a start to an end location and requires geoinformation about the navigation space in order to 

derive suitable route sections. The naming of locations in path queries additionally involves an addressing or 

georeferencing schema which maps locations onto human-friendly names and textual descriptions or onto unique 

geometric coordinates. The process of tracking compares the actual position of a person or object travelling through 

the navigation space with its target position along the path, and employs strategies and actions for minimizing the 

deviations between both. The guidance of moving persons along the path is supported by visual aids and presen-

tations of the route as well as position communication and route instructions using appropriate media and channels 

(Nagel et al. 2010). It hence partly renders a human-device interaction task.  

Each of these navigation aspects depends to a great extent on the navigation context which means the setting and 

interrelated conditions in which the navigation takes place. This very general understanding can be refined by 

differentiating between user-centric and environmental contextual information being relevant to the task of navi-

gation (e.g., Abowd et al. 1999, Mokbel & Levandoski 2009). The user context comprises, for example, the state 

of the user (e.g., physical and perceptual capabilities), the user interface (e.g., capabilities of the mobile end-user 

device), as well as user-dependent navigation conditions (e.g., preferences or access rights). Whereas the user 

context is distinct for each individual or object, the environmental context determines the global navigation con-

ditions and hence defines a framework that is independent from the local user-centric view. Amongst others, en-

vironmental contextual information includes navigation constraints following from the physical surroundings (e.g., 
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architectural or geometric constraints) as well as from logical and thematic aspects (e.g., security zones or temporal 

access constraints), the available localization technologies, and the navigation scenario (e.g., navigation under 

normal conditions or in an evacuation situation). Both notions span a 2-dimensional context space with each di-

mension substantially affecting the task of navigation. In the field of context-aware computing and applications, 

even higher-dimensional context spaces are proposed which additionally consider, for example, the execution 

context of applications and resources (Schmidt et al. 1999, Mokbel & Levandoski 2009) or the time context (Chen 

& Kotz 2000).  

A navigation system has to implement suitable methods for all identified navigation aspects. In the following, 

solutions applied in outdoor navigation as well as challenging tasks in indoor navigation are discussed separately 

for each aspect. 

Localization. Most current outdoor navigation solutions employ absolute localization technologies based on 

global navigation satellite systems (GNSS) which provide location information by means of quantitative, measure-

able coordinates in a global spatial reference system (typically WGS 84), and hence identify absolute locations on 

the Earth’s surface. Alternative techniques measure the absolute position of a navigation user in cellular radio 

networks (e.g., mobile phone network) with respect to fixed reference points. Often such systems are combined 

with relative positioning methods such as dead reckoning (DR) which calculates the location of the navigation 

user relative to a previous position fix using measurements of the heading and distance travelled. However, and as 

stated in the previous section, GNSS based systems are generally not available indoors due to the absence of line 

of sight to satellites. Cellular network positioning methods commonly lack precision and accuracy in indoor envi-

ronments, and dead reckoning is subject to integration drifts and significant cumulative errors (Kolodziej & Hjelm 

2006). 

Alternative indoor localization solutions are therefore being developed based on technologies like pseudo-satel-

lites, Wi-Fi, Bluetooth, radio-frequency identification (RFID), infrared (IR), ultra-wideband (UWB), ultrasound, 

barcodes and quick response (QR) codes, or inertial navigation sensors as well as corresponding positioning algo-

rithms. However, there is no commonly agreed standard system available yet, and usually no single technology 

provides sufficient degree of accuracy and precision as well as a continuous coverage of indoor space. Current 

approaches thus often apply specialized solutions or vendor-driven rigid compositions of a limited subset of tech-

nologies tailored to specific application demands in order to meet these requirements (e.g., Hightower et al. 2002, 

Retscher 2007). Instead, a comprehensive support for different and multiple localization technologies and methods 

is required to exploit their complementary strengths, but this also poses challenges. First, each technology is based 

on different types of sensors and usually is associated with its own local spatial reference system. Their integration 

hence requires a common representation model which abstracts from individual technologies. For example, most 

sensor types show comparable spatial characteristics such as visibility area, coverage area, or signal propagation 

area, which are suitable to serve as a common abstraction. The absolute position of a navigation user can then be 

derived from the known locality of sensors or senders and their covered areas. Second, each technology not only 

requires different installations within an interior built environment but also corresponding capabilities of the mo-

bile end-user device. For example, even though both Wi-Fi and RFID infrastructures might be available in the 

same building and are supported by an indoor localization system, only Wi-Fi is feasible for localization and 

tracking if a specific end-user device is just Wi-Fi-enabled but not equipped with an RFID sensor. This renders a 

configuration problem whose degree of combinatorial complexity increases with the growing number of localiza-

tion technologies available in an indoor environment and their varying support from different types of end-user 

devices.  

A localization method benefits from an indoor space model in that only the latter is feasible to give both spatial 

context and semantic meaning to locations and hence to reason about location estimates. The positioning results 

thus need to be aligned with and communicated within the navigation space model. Positions are typically defined 

in the spatial reference system of the localization method (either a local or global coordinate system) which not 

necessarily coincides with the reference frame of the indoor space model. Moreover, the addressing schema for 

identifying locations is typically associated with its own spatial reference system which is often not a coordinate 

system but rather the natural reference system of the navigation user (e.g., in case of humans, mostly names, postal 

addresses, administrative areas, points of interest, etc.). Hence, multiple spatial reference systems may be involved 

in the navigation task and location information needs to be translated between these systems (Becker & Dürr 2005). 
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Path planning. Navigation relies on planning appropriate paths from a source to a destination location. This im-

plies algorithms for finding optimal routes through the navigation space. Often time-dependent or length-depend-

ent optimal search strategies are employed which deliver the fastest or shortest path between two locations. How-

ever, selecting the optimal path is subject to multiple criteria and factors which largely depend on both the user 

and the environmental navigation context, and thus may result in different paths even if the start and end locations 

are kept stable. For example, path searches for wheelchair users or mobile robots need to avoid impassable obsta-

cles such as stairs, whereas stairs have to receive high priority in the context of pedestrians who prefer walking 

over using elevators. Likewise, and as illustrated in the previous section, in emergency situations additional pas-

sages may be usable which are not available in normal situations but also parts of the usual navigation space may 

be blocked. Thus, context-sensitive and adaptive search strategies need to be available which additionally consider 

user preferences and constraints, environmental and logical constraints, situation types, travel costs, simplicity, 

etc. (Goetz & Zipf 2011, Worboys 2011). Moreover, aspects such as route changes triggered by the user or by 

environmental state changes require the dynamic re-calculation of paths and thus need to be considered by navi-

gation systems (Delling et al. 2009, Liu & Zlatanova 2011b).  

Most current outdoor navigation systems use digital geographic maps of the outdoor environment which are avail-

able from various sources such as aerial and satellite imagery or existing map data serving as traditional base for 

many GIS applications. The availability of GNSS has additionally promoted the acquisition of outdoor data, and 

the resulting space models usually share the same global spatial reference system which simplifies localization 

tasks. In car navigation systems the physical road network is abstracted by a linear network structure which feeds 

path finding algorithms, whereas a digital road map is used for the display and communication of position, orien-

tation, and route instructions. Modern car navigation solutions employ 3-dimensional road maps and models of 

urban spaces which facilitate the 3-dimensional presentation of the built environment or selected landmarks in 

order to support the visual recognition of places and the self-localization capabilities of humans. The space models 

generally support georeferencing of locations through lists of addresses and named places with their coordinates, 

and are capable of considering user preferences or environmental contextual information such as navigation con-

straints (e.g., speed limits, one-way roads, prohibited maneuver) or the current traffic situation (e.g., constructions 

sites, traffic jams) in path planning tasks.   

Indoor spaces decisively differ from road spaces. They have complex 3-dimensional spatial structures and nested 

configurations, and involve multiple floors and levels with the architectural layout being the most obvious navi-

gation constraint (e.g., rooms, corridors, doors, or walls). The possible movement is therefore richer, and users can 

travel more freely through the interior built environment than a linear network suggests. Models of indoor space 

for the purpose of navigation thus have to adequately represent the complex physical setting of the built-up space. 

In order to enable path finding, information about neighbouring places and the possibility of bodily movement 

between places needs to be available. Since most path finding algorithms generally presuppose some sort of net-

work structure, additional graph-based conceptualizations of the indoor space have to be provided. However, the 

distinction between navigable and non-navigable spaces and appropriate route sections not just follows from the 

built reality, and thus not necessarily coincides with the decomposition of the interior environment along architec-

tural constraints. In fact, whether indoor spaces are navigable also strongly depends on the type of locomotion of 

the moving person or object such as walking (e.g., pedestrians), driving (e.g., wheelchair users or mobile robots), 

and flying (e.g., autonomous flying vehicles such as quadrocopters). For example, obstacles or areas being insur-

mountable in the context of driving may be easily passable for pedestrians and flying vehicles. Thus, each mode 

of locomotion leads to a separate and distinct decomposition of indoor space into navigable spaces, which obvi-

ously affects the derivation of corresponding network representations (Khan & Kolbe 2012). This decomposition 

has to further consider navigation constraints imposed by the environmental context which result in non-navigable 

areas having their own spatial extent but which again may deviate from the architectural layout. For example, 

security zones possibly span several rooms or split a single room into accessible and non-accessible parts, and may 

even affect outdoor areas. Likewise, the decomposition of indoor space along the sensor characteristics of a local-

ization infrastructure into, for example, sensor coverage areas is also obviously independent from the architectural 

structure. It follows that indoor space models need to support complementary space decompositions following 

from arbitrary contextual criteria and have to provide a suitable level of granularity for each space representation. 

A rich knowledge about the structural building elements and the various types of spatial entities that inhabit the 

indoor space (e.g., fixed or movable obstacles) as well as their spatial and functional properties and relationships 

is a necessary prerequisite for this.  
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The referencing of indoor locations in path queries has to support unique identifiers such as room numbers, de-

scriptive names, or geometric coordinates, and has to be aligned with the spatial reference system and the granu-

larity of the indoor space model, for example, to be able to name individual places in large halls (e.g., check-in 

counters or coffee booths in airport halls) or to identify spatial subdivisions within a single room that may reflect 

navigable and non-navigable areas for wheelchair users. Besides path queries, further location-based tasks such as 

nearest neighbour queries or range queries play a role in navigating through indoor spaces and correspondingly 

have to be addressed by the indoor space model (Becker & Dürr 2005). A nearest neighbour query aims at finding 

the 𝑘 objects being closest to a given position (typically the current location of the user). To answer nearest neigh-

bour queries, a notion of distance as well as a corresponding distance function needs to be modelled. The same is 

true for realizing the planning of shortest and fastest paths between two locations. Range queries, on the other 

hand, result in all objects being spatially contained within a given region such as all rooms on a given building 

floor. They hence reveal the hierarchical and nested configuration of indoor places and build upon a notion of 

containment that has to be provided by the indoor space model. Range queries are also important for the generation 

of routing instructions that adhere to and reflect the building hierarchy such as “Enter the building, go to the fifth 

floor, and then to room 5126”.  

Similar to indoor localization, the task of path planning faces a high degree of combinatorial complexity in indoor 

environments due to different types of users and their mode of locomotion on the one side and the environmental 

context on the other side, and strongly depends on a rich model of indoor space.   

Tracking and guidance. The tracking of moving persons and objects aims at tracing the trajectory of the move-

ment or at determining deviations from a planned route. The process of tracking builds upon location estimates of 

the user from the available localization infrastructure and technology at given points in time and suitable algo-

rithms for best matching the current location against the underlying navigation space model. Lacking precision 

and accuracy of the localization method or the space model as well as the transformation of location information 

between the involved spatial reference systems are common potential sources of error in this process (e.g., Liao et 

al. 2003). For outdoor navigation, corresponding methods and sophisticated map matching techniques involving 

probabilistic matching strategies are well established and successfully employed in navigation systems. The abso-

lute position precision using publicly available GNSS based systems typically lies within the range of a few metres 

and thus suffices for applications such as car navigation. In micro-scale indoor environments, the required preci-

sion of the location determination may be higher depending on the spatial layout of the navigable indoor spaces 

and the user context, for example, to keep navigation users on track in open halls and narrow passages, or to safely 

navigate visually impaired persons or autonomous mobile robots through the interior environment. As mentioned 

in the previous section, the precise tracking of mobile robots based on highly specialized positioning technologies 

installed in the interior built environment or mounted on the robot has been a field of long study (e.g., Kruse & 

Wahl 1998, Fod et al. 2002). But also approaches for tracking people based on sparse and noisy sensor data (e.g., 

based on Wi-Fi, Bluetooth, or RFID) combined with probabilistic methods for deriving precise location estimates 

have been proposed, which then rely on an accurate indoor space model (e.g., Liao et al. 2003, Jensen et al. 2009). 

The tracking in indoor environments hence poses challenges to both the localization technology and the indoor 

space model, and a commonly accepted solution has not been presented to date. For navigation systems utilizing, 

for example, the self-localization capabilities of humans, also less precise indoor positioning methods may already 

be sufficient. 

Route guidance supports human wayfinding from a source to a destination location, and typically means the pro-

vision of route instructions through visual or textual aids and descriptors. The guidance may take any form of 

presentation using digital or print media as well as further communications channels, and may be static or dynamic. 

Modern devices for car navigation, for example, commonly display the route together with symbolized route in-

structions on top of a cartographic representation of the digital road map and optionally offer spoken commands 

both of which are dynamically generated and updated while travelling. The generation of route instructions for car 

navigation is hereby strongly supported by the linear and strictly constrained movement in road spaces as well as 

clearly determinable decision and action points (e.g., road intersections, motorway exits and ramps, etc.). The 

complex structure of the interior built environment as well as the possibility to move rather freely renders the 

appropriate presentation of an indoor path as well as the provision of instructions along that path a much more 

challenging task. This is also impeded by the fact that the human spatial perception and knowledge acquisition in 

indoor spaces differ from the outdoor world which is partly due to substantial environmental differences (Raubal 

et al. 1999, Gilliéron & Merminod 2003). For example, the role of landmarks is different indoors. Whereas outdoor 
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landmarks are typically visible from various places and hence provide a fixed reference frame independent from a 

travelled route, indoor landmarks are smaller in size and shape (e.g., fountains, lobbies, or walls painted in notice-

able colours) and suffer from limited lines of sight due to the architectural complexity. Moreover, street names or 

numbering conventions for houses along a street are salient cues in outdoor spaces which give a cognitive structure 

to the space and promote spatial reasoning, for example, by deducing the direction of movement from ascending 

or descending house numbers. Such cues or meaningful reference systems are usually rarely present in indoor 

spaces. People thus tend to learn a specific route or a given sequence of route commands, especially in case of 

unknown interior environments, rather than building a cognitive map of the indoor space (Giudice et al. 2010).  

Visual presentations of the layout topology of buildings are therefore important aids in guiding people indoors. 

Current research questions include the type and amount of salient building features and cues to be displayed, the 

definition of a common set of descriptors and symbols for route instructions, the proper cartographic representation 

of the interior environment using, for example, layered 2-dimensional floor plans up to 3-dimensional views, or 

the presentation technique which ranges from static paper-based maps to handheld displays facilitating real-time 

assistance or augmented reality solutions. Currently there is no consensus on these questions and the investigation 

and understanding of human spatial learning and wayfinding processes is commonly seen as a necessary prereq-

uisite for the acceptance of visual aids (Giudice et al. 2010, Lorenz et al. 2010). Further challenges of indoor route 

guidance address the automatic generation of human-understandable descriptive route instructions or the use of 

appropriate media according to the physical and perceptual capabilities of the navigation user (cf. Lorenz et al. 

2006, Anagnostopoulos et al. 2005). A key factor common to all these challenges is the underlying indoor space 

model that serves as basis for the derivation of guidance information and hence has to provide a rich semantic and 

spatial description of the interior built environment. 

Navigation context. The importance and impact of the navigation context on the individual aspects of indoor 

navigation is documented in the above discussion and has also been recognized in many research works (e.g., 

Gilliéron & Merminod 2003, Anagnostopoulos et al. 2005, Stoffel et al. 2007, Dudas et al. 2009, Goetz & Zipf 

2011, Afyouni et al. 2010, Yuan & Schneider 2011). An indoor navigation system has to cope with the many use 

cases and configurations which constitute the navigation context and mainly result from the different and varying 

localization techniques and infrastructures available in the indoor environment and their ad-hoc selection through 

end-user devices, as well as from complementary indoor space decompositions and navigation restrictions follow-

ing from environmental and user-dependent constraints and preferences (Becker et al. 2009b). The support for 

contextual information hence requires a formal model which captures the knowledge about the navigation context 

and facilitates reasoning and inference about this knowledge, and is further confronted with dynamic changes of 

the user or environmental state (Brown et al. 2012). For example, the access rights of a navigation user may change 

while travelling through the interior environment (e.g., when passing a security gate at an airport) which directly 

affects the navigable and restricted spaces that may be considered in subsequent path searches. Likewise, if a 

building is equipped with different localization systems and the sensors of one or more system (partly) break down 

then the positioning of moving persons or objects must still be possible with the remaining infrastructure. Or the 

navigation scenario may change from normal conditions to an evacuation situation which may require re-routing 

all persons to the nearest exists. The examples also demonstrate the need for a strong coupling of the contextual 

information with the indoor space model. 

1.3 Research Scope and Goals 

The research in this thesis concentrates on the modelling of indoor space for the purpose of indoor navigation. The 

crucial role of an indoor space model within the task of indoor navigation and its relevance in the context of the 

individual navigation aspects has been revealed in the previous section.  

The overall goal of this thesis is to design a spatio-semantic model of indoor space that meets the multiple chal-

lenges to indoor space modelling and thus can serve as solid foundation for the implementation of indoor naviga-

tion systems. This goal can be refined into three subgoals.  

Conceptual model of indoor space. The first subgoal is to define a conceptual model of indoor space which 

allows for structuring the indoor space along arbitrary notions of space and for consistently describing the semantic 

and spatial aspects of spaces. Commonly, indoor space is merely understood as the built environment in which 

people usually behave (cf. Afyouni et al. 2012). Although, of course, the built architectural reality sets the frame 

in which the bodily movement takes place, the discussion in the previous section clearly documents that indoor 
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space is also subject to alternative structuring and partitioning schemas in the context of indoor navigation which 

are not necessarily aligned with the spatial location and extent of the architectural entities. Thus, a main aim of 

this thesis is to define a generic notion of indoor space that abstracts from the built reality and thereby allows for 

different but complementary space partitionings. Based on this universal view, further concepts are to be developed 

for the integration of the different space representations in a common model that simultaneously supports route 

planning, multiple localization methods, navigation contexts and constraints, and different locomotion types. This 

development has to be preceded and supported by a review of previous and salient work on indoor space modelling 

in order to assess to which extent and by which means the identified challenges have already been addressed or 

possibly been solved in literature. From this review, essential requirements are to be deduced that set the outline 

for the conceptual definition of the spatio-semantic indoor space model in this thesis.  

Mathematical model of indoor space. As a second subgoal, a mathematical model is to be defined which for-

malizes the conceptual model and embeds its conceptual entities in a sound mathematical framework. A correct, 

consistent, and complete mathematical formalization is to be seen as a key prerequisite for the definition of a 

universal view of indoor space. A main focus is hereby on the formal definition of the geometric-topological 

aspects of indoor space and the deterministic derivation of graph-based conceptualizations which, for example, 

can be fed into path search algorithms.  

Computer representation. The third subgoal aims at designing a computer representation which maps the con-

ceptual and mathematical model onto a data model and data exchange format based on international standards 

from the geoinformation community. The adherence to international standards admits an open and vendor-neutral 

computer representation. By this means, the spatio-semantic indoor space model can be implemented by and ex-

changed between computer systems in a standardized way. The separate subgoals of this thesis hence address 

different aspects of the main problems of indoor space models in the field of indoor location-based services as 

motivated in chapter 1.1 and together aim at overcoming them. 

The research of this thesis builds upon results from previous research conducted at the Institute for Geodesy and 

Geoinformation Science of the Technische Universität Berlin. From 2007 to 2011, an ambitious multinational 

research project entitled “Indoor Spatial Awareness” (ISA) was carried out whose vision was to provide a basis 

for an indoor spatial theory and to develop data models and application systems for enabling indoor spatial aware-

ness in the context of location-based services. The ISA research initiative was supported and funded by the Min-

istry of Land, Transportation, and Maritime Affairs of the South Korean government, and both research institutions 

and companies from South Korea, the United States, Germany, and Denmark participated in this project (cf. Li & 

Lee 2010). The author was involved in the ISA project from its very beginning as member of a research team from 

the Technische Universität Berlin led by Prof. Dr. Thomas H. Kolbe and substantially contributed to the research 

work of this team. In the course of the ISA project, this team proposed a novel conceptual framework called 

Multilayered Space-Event Model (MLSEM) for the modelling of indoor space which considers the aspects of route 

planning for different modes of locomotion and navigation contexts on the one hand and of localization and track-

ing based on various localization techniques on the other hand. It hence addresses many of the challenges to indoor 

navigation identified in the previous section. The previous research on the MLSEM has been introduced to the 

scientific community in two subsequent peer-reviewed publications, namely (Becker et al. 2009a) and (Becker et 

al. 2009b), both of which served as basis and starting point for the research work presented in this thesis. The 

primary aim was hereby to realize the above mentioned research goals on top of the MLSEM. A detailed discussion 

and presentation of the MLSEM is provided in the subsequent chapters of this thesis and thus is omitted here. 

As a second deliverable of the ISA project, a candidate discussion paper on the MLSEM (Nagel et al. 2010) was 

submitted to the Open Geospatial Consortium (OGC) which is one of the most important open, non-proprietary, 

and consensus-based standardization bodies at an international level in the geoinformation community. The aim 

of this discussion paper was to generate momentum for the development of an international standard on indoor 

navigation with the MLSEM at its core. In December 2010, the OGC Technical and Planning Committee approved 

and released the discussion paper which started an on-going standardization process within OGC. A further non-

research goal of this thesis is therefore to contribute to this standardization process which relates back to the pos-

tulation put forward by (Kolodziej & Hjelm 2006) according to which standardization is a fundamental prerequisite 

for the success of the field of indoor navigation. 
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1.4 Research Hypotheses and Questions 

The research in this thesis evolved along the following research hypotheses and questions. 

Hypothesis 1.1. The conceptual model of the MLSEM as defined in the previous publications is complete. 

The previous work on the MLSEM already defines a generic conceptual model for the spatial and semantic de-

scription of indoor environments. But it is not clear whether the proposed conceptualization suffices the needs and 

challenges to indoor space modelling in the context of indoor navigation (cf. chapter 1.2). The hypothesis is there-

fore verified by testing the concepts against these challenges and against related work. For requirements that are 

not met by the MLSEM, extensions to the conceptual model are investigated and proposed in this thesis. The 

mathematical definition and computer representation of the MLSEM are targeted by the following hypothesis. 

Hypothesis 1.2. The MLSEM can be formalized in a mathematically sound manner and can be mapped onto a 

data model that conforms to existing modelling standards for geographic information. 

The mathematical formalization is not sufficiently addressed in the previous work on the MLSEM. Likewise, the 

MLSEM has not been completely realized as data model so far since important concepts of its conceptual model 

have been neglected. Both aspects therefore render a main research task of this thesis.  

Hypothesis 1.3. The MLSEM enables indoor navigation systems. It is a conceptual superset of many existing 

approaches to indoor space modelling for indoor navigation and can be used to explain these approaches. 

The first part of this hypothesis substantiates the main goal of this research. The second part is tested within the 

thesis along the following research questions which address the three fundamental aspects of indoor navigation 

(cf. chapter 1.2) as well as related tasks of an indoor space model. Since these questions are at least partially 

answered in alternative approaches to indoor space modelling, they must also be covered by the MLSEM in order 

for it to be considered as a conceptual superset of these approaches.  

Question 1.4. How are localization, route planning, as well as tracking and guidance in indoor environments sup-

ported by the MLSEM? 

Question 1.5. How is the modelling of navigable spaces as well as non-navigable areas and obstacles for different 

locomotion types and user contexts supported by the MLSEM? 

Question 1.6. How are multiple and different localization technologies and methods supported by the MLSEM? 

Question 1.7. How is the modelling of hierarchical and nested structures of the built environment supported by 

the MLSEM? 

Question 1.8. How is the context of navigation of a moving person or object represented in the MLSEM? How 

does the MLSEM support the ad-hoc selection of appropriate space representations according to the context of 

navigation? 

Question 1.9. How can user-dependent and environmental navigation constraints be conceptually modelled and 

included in the MLSEM? How to support dynamic aspects such as temporal navigation constraints? 

Geoinformation about the interior built environment of buildings and facilities becomes more readily available in 

the context of urban and building information modelling. Data about buildings is typically represented according 

to different building modelling standards and is stored and exchanged using different data formats. The resulting 

building models typically differ in the dimensionality of the geometric representation of the interior built environ-

ment (either 2-dimensional or 3-dimensional) and the spatio-semantic information. Nevertheless, they are to be 

seen as a valuable information source that feeds into an indoor space model for indoor navigation. The following 

hypothesis targets the need to support such input models.  

Hypothesis 1.10. The MLSEM is valid in both two and three dimensions and can be populated from existing (and 

even purely geometric) building models. 
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In the previous publications on the MLSEM, the spatial description of indoor space has been defined for three 

dimensions only, thus neglecting 2-dimensional representations of the interior built environment. Its extension to 

two dimensions is looked at in thesis in order to verify the above hypothesis. Moreover, the relation of the MLSEM 

to standards from the field of building modelling such as IFC, CityGML, and ESRI BISDM has to be investigated. 

Since indoor navigation is typically not the primary purpose of such building models, this involves the following 

research question.     

Question 1.11. What is the relation of the MLSEM to existing models providing geoinformation about the interior 

built environment such as 2-dimensional floor plans or 3-dimensional building models? How to link such models 

without duplicating or replacing their concepts? 

A complementary group of international standards addresses the specification and realization of location-based 

service architectures. These standards mainly aim at defining the distributed system architecture as well as the 

components and their interfaces that are required to build an LBS computing environment. Since the scope of this 

thesis is to develop an indoor space model that underlies indoor navigation services, the role of this model within 

a location-based service infrastructure as well as its implications on service interfaces has to be investigated. More-

over, some of these standards also define a navigation space model. The applicability of the MLSEM within these 

standards is therefore another issue. Both aspects are summarized in the following research question. 

Question 1.12. What is the relation of the MLSEM to existing international standards on location-based service 

architectures? 

1.5 Organization of the Thesis 

The thesis is organized into eight chapters whose contents are outlined in the following.  

Chapter 2 identifies fundamental requirements for the modelling of indoor environments for the purpose of indoor 

navigation and hence sets the basis for the definition of a spatio-semantic indoor space model in this thesis. The 

requirements are deduced from a comparative analysis and review of related work on indoor space modelling. 

Since the mathematical formalization of the spatio-semantic indoor space model is one of the main goals of this 

thesis, basic mathematical notions and concepts which serve as foundation for this purpose are presented after-

wards. 

Chapter 3 develops the spatio-semantic indoor space model based on the previous work on the Multilayered Space 

Event-Model and against the requirements formulated in chapter 2. In this core chapter of the thesis, both the 

conceptual definition and the sound mathematical formalization of the model are elaborated in depth. Two funda-

mental concepts, namely space cell and space layer, are defined and mathematically embedded which realize a 

generic model that allows for structuring the indoor space according to arbitrary notions of space and for describing 

its semantic and geometric-topological aspects as well as graph-based conceptualization. Based on this formal 

model, further concepts such as the integration and joint consideration of multiple space layers in a common model 

based on a combinatorial multilayered graph structure and the modelling of hierarchical space structures are de-

fined and formalized. A formal space layer algebra is developed which allows for applying well-defined binary 

operations on space layers. It is shown in detail how the concepts developed in this chapter relate to the challenges 

and requirements from chapter 2 and thus support the individual tasks in indoor navigation. 

Chapter 4 is dedicated to the mapping of the indoor space model onto a conceptual data model and physical data 

exchange format. General spatial representation schemes for the computer modelling of geometric objects are 

presented and discussed, and geometric-topological data models proposed in the field of GIS are reviewed against 

their capability to fully map the spatio-semantic aspects of the developed indoor space model. Focus is then put 

on the ISO 19100 series of international standards for the modelling of geographic information issued by ISO/TC 

211, and their feasibility in the context of the developed indoor space model is argued. Based on this, an ISO-

conformant and complete conceptual data model is designed, formally expressed in UML, and presented in detail. 

In a subsequent engineering step, a data encoding and exchange format is derived. The chapter concludes with a 

discussion on how the developed conceptual data model embeds into existing standards on location-based service 

architectures. 

Chapter 5 addresses the consideration of environmental and user-dependent navigation constraints within the de-

veloped indoor space model. Navigation constraints are a crucial aspect of indoor navigation and their relevance 
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is commonly agreed in literature. However, conceptual models for the representation and evaluation of navigation 

constraints rarely exist. Based on a literature review, different categories of navigation constraints (e.g., can, may, 

must, and should constraints) are identified and concepts for describing the preconditions under which the con-

straints apply are developed and classified into being temporal, physical, or logical. From this, a conceptual data 

model is designed that fits into the framework elaborated in chapter 4 and allows for explicitly expressing naviga-

tion constraints on single or multiple space entities and for algorithmically evaluating them against the context of 

individual navigation users. The feasibility of the developed model is then demonstrated along typical use cases 

for navigation constraints in indoor environments. 

Chapter 6 elaborates on the relation of the developed indoor space model to selected modelling approaches and 

standards for 2-dimensional floor plans and 3-dimensional building models. It is shown how the spatial and se-

mantic description of the architectural entities within such models can be used to populate a topographic view on 

indoor space that satisfies the conceptual and mathematical definition of the developed indoor space model. Focus 

is hereby put on the different spatial modelling paradigms that are applied in the building models and their conse-

quences in the mapping process. The mapping results are compared and proposals for minimizing their differences 

are presented. Moreover, elements of the conceptual model (if available) of the building modelling approaches are 

identified with conceptual model elements of the developed indoor space model.  

Chapter 7 illustrates the application of the developed indoor space model along two examples. The first example 

presents the XML encoding of an artificial 2-dimensional indoor scene according to the data model evolved in 

chapter 4. The XML structures capturing the most important concepts for the spatio-semantic description of indoor 

space from chapter 3 are discussed in detail in order to show the complete and consistent computer-based mapping 

of these concepts which is a prerequisite for their lossless exchange between computer systems (e.g., in an LBS 

computing environment). The second example deals with the acquisition of a 3-dimensional indoor space model 

that is suitable for indoor navigation for a real world building. Moreover, a database schema for a relational spatial 

database is presented that realizes the conceptual data model from chapter 4 and thus allows for the storage and 

management of indoor space models as defined in this thesis. 

Chapter 8 summarizes the research and draws conclusions with respect to the stated research goals as well as 

hypotheses and questions. It reviews and evaluates the results of the research, lists and discusses contributions to 

the field of indoor navigation as well as related fields, and identifies and outlines future research. 

In addition to these eight chapters of the thesis, five appendices with supplementary material are provided. Appen-

dix A introduces basic notions and concepts from point-set and algebraic topology as well as manifold theory which 

form the basis of the mathematical formalization in chapter 3. Although the content is assumed to be known, the 

terms, symbols, and definitions used in literature differ. The appendix hence provides a consistent and compre-

hensive presentation of the theory applied in this thesis. A brief summary overview of the theory is given in chapter 

2. Appendix B presents the GML application schema that was derived from the conceptual data model developed 

in chapter 4. Appendix C contains the formal SQL definition of the relational database schema introduced in chap-

ter 6. Appendix D illustrates the conceptual data model of the MLSEM as defined in previous publications (cf. 

Becker et al. 2009b, Nagel et al. 2010). Appendix E finally shows the initial conceptual data model for navigation 

constraints as proposed in (Brown et al. 2012). 
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Chapter 2  

Analysis of Related Work 

The modelling of indoor space for the purpose of indoor navigation is a field of intensive research in academia 

and industry. Numerous approaches have been proposed to date ranging from models that reflect the human spatial 

perception of indoor space in order to support human wayfinding to a representation of indoor space that is suitable 

for use with autonomous mobile robots and artificial intelligence systems. The approaches differ in the methods 

and techniques being applied for the spatial description of the interior environment as well as in the richness of the 

semantic information about the environment. 

This chapter is dedicated to a survey of related work which aims at clarifying the fundamental concepts and prin-

ciples as well as information needs for indoor space models. In a first step, a common classification scheme is 

introduced which identifies opposing methods for the modelling of the built environment and the spatial entities 

therein. Along this scheme, the role of quantitative, qualitative, and semantic facts about the spatial entities and 

their relationships in the context of indoor navigation is elaborated. In a second step, existing approaches to indoor 

space modelling are discussed and analysed with respect to their conceptualization of indoor space, their spatio-

semantic model expressivity, and their ability to support the general tasks in navigation, namely localization, route 

planning, tracking, and guidance. The review identifies shortcomings as well as strengths of related work in ad-

dressing the challenges to indoor navigation as presented in chapter 1.2. Besides navigation space models, also 

standards from the field of urban and building information modelling are presented and examined in this chapter. 

On the one hand, it is shown that building models typically lack the required concepts to directly support indoor 

navigation. On the other hand, spatio-semantic information about the built-up space and the spatial entities therein 

which is required in the context of indoor navigation can often be derived from these models to a large extent. 

Based on the findings, general requirements are postulated which need to be addressed in the development of an 

indoor space model in order to meet the identified challenges and to support a general view on indoor space. 

A second aim of this chapter is to give an overview of basic mathematical notions and concepts from topology, 

manifold theory, and graph theory which serve as foundation for the subsequent chapters of this thesis. 

2.1 Classification of Indoor Space Models 

Models of indoor space are commonly classified into symbolic and geometric space models (e.g., Leonhardt 1998, 

Becker & Dürr 2005, Ye et al. 2007, Li & Lee 2009b, Baras et al. 2010). This classification reflects two funda-

mental approaches to the representation of indoor environments. Symbolic space models represent physical places 

and indoor objects through sets of abstract symbols (e.g., human-friendly descriptive names), and express qualita-

tive spatial relationships between them. In geometric approaches, spatial locations and objects are rather modelled 

as 𝑛-dimensional geometric figures which are given by a set of coordinates within a well-defined coordinate ref-

erence system. The metric properties of the geometric figures allow for quantifying the spatial relationships be-

tween model elements. Both modelling approaches are orthogonal and show complementary strengths and weak-

nesses. A third class of indoor space models describes the indoor environment from a conceptual perspective that 

is inferred from the types of spatial entities and their spatial and non-spatial relationships (e.g., Hu & Lee 2004, 

Bhatt et al. 2009, Raubal et al. 1999, Yang & Worboys 2011). Models from this class are said to be semantic space 

models, as they aim at defining the meaning of the identified concepts. Finally, hybrid space models combine 

symbolic, geometric, and semantic representations to benefit from their respective advantages. The following sec-

tions give an overview of the different modelling paradigms.  

2.1.1 Symbolic Space Models 

Symbolic space models provide a qualitative description of the interior built environment. Indoor spaces are re-

ferred to by abstract symbols which are commonly given as descriptive labels or identifiers such as room numbers 

or names (e.g., “Room 5126” and “Living Room”). The spatial structure of an indoor environment is hence mapped 

onto a conceptual structure which employs a human-friendly naming system. Symbolic spaces typically identify 

the physical places and structural components of a building which enable the movement through space like, for 
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example, rooms, doors, corridors, floors, elevators, etc. Therefore, each space symbol has an implicit spatial extent 

but does not explicitly represent the size and shape of its associated space. Representative examples of symbolic 

space models have been proposed by (Brumitt & Shafer 2001), (Hoppenot et al. 2003), and (Baras et al. 2010).  

Space symbols can be organized into sets according to the architectural subdivision of the building interior. As a 

simple example, a building can be expressed as set of all its room symbols. A floor of the building is then given 

by a subset containing only room symbols on that floor. (Becker & Dürr 2005) and (Ye et al. 2007) show how this 

set-based modelling approach facilitates the formal evaluation of spatial relationships between symbolic spaces 

using basic set operations. The non-empty intersection of two sets of symbols, for example, determines a spatial 

overlap between the corresponding physical spaces, whereas set inclusion implies spatial containment. A set-based 

symbolic model can also be used to express connectedness relationships by modelling fine-grained neighbourhood 

sets containing the symbols of connected physical spaces. This introduces a qualitative notion of closeness between 

a symbol and a given set. Since a set of symbols denotes a physical space in its own right (e.g., the floor of a 

building) it can also be represented by its own space symbol (e.g., the floor number). The spatial containment 

relationship then imposes a partial order on the set of all space symbols. In case the symbolic spaces are constrained 

to be non-overlapping, the resulting partially ordered set forms a tree structure with the root node being the sym-

bolic space that spatially contains all others. In the more general case where overlapping symbolic spaces are 

allowed, the partially ordered set can be viewed as lattice in which any two space symbols have a least upper bound 

and a greatest lower bound. Both the tree and the lattice structure hence make the spatial containment hierarchy 

of physical spaces explicit. Hierarchical symbolic space models have been employed by, e.g., (Leonhardt 1998), 

(Ye et al. 2007), and (Li & Lee 2009a). Besides the spatial or structural organization of symbolic spaces, (Richter 

et al. 2009) propose functional and organizational hierarchies as additional dimensions.  

A second family of symbolic space models discussed in literature applies graph-based models for the encoding of 

space symbols and their spatial relationships instead of sets and subsets (e.g., Hu & Lee 2004, Baras et al. 2010). 

Graph-based conceptualizations of space have a long tradition in architectural analysis as well as in human cogni-

tive science and artificial intelligence (for a survey see Franz et al. 2005). In the context of navigation, place graphs 

and visibility graphs can be identified as two distinct concepts for the representation of space which underlie most 

research works. For both types of graphs, every symbolic space is mapped onto a separate node. The edges in place 

graphs then denote the connectedness between symbolic spaces, and hence implicitly between the associated phys-

ical spaces. Connectedness often is further differentiated into adjacency, connectivity, and accessibility, which 

induces different semantics for graph edges (Worboys 2011). The edges of an adjacency graph simply express that 

physical spaces are adjacent, e.g., that rooms share a common boundary wall. In connectivity graphs, every edge 

additionally implies the possibility to physically move between the spaces. If spaces are inaccessible or the move-

ment between spaces is not permitted, then the corresponding symbolic nodes are not linked by edges in accessi-

bility graphs. Access or movement restrictions may be the result of spatial facts but may also reflect logical con-

straints such as security or safety constraints. It obviously follows that accessibility graphs are subgraphs of con-

nectivity graphs which themselves are subgraphs of adjacency graphs.  

Visibility graphs, on the other hand, translate the mutual visibility relationship between physical spaces into edges 

between the symbolic space nodes (Franz et al. 2005). This visibility relationship naturally is close to the human 

perception of indoor space. Visibility graphs have thus been proposed in several approaches to indoor space mod-

elling (e.g., Stoffel et al. 2007, Yuan & Schneider 2010a, Liu & Zlatanova 2011a). In the architecture domain, 

(Hillier et al. 1983) and (Hillier & Hanson 1984) have proposed the space syntax analysis as a set of techniques 

for describing and quantifying the interrelationships between spatial organization patterns at urban or building 

scale and the underlying social structures in order to understand space from a functional perspective in terms of 

what humans do in it. The built environment is decomposed into a near minimal set of 2-dimensional convex 

subspaces such that all points are directly visible from all other points within a single space. The fewest and longest 

lines that pass through all the spaces then generate an axial map of the spatial configuration. Each axial map can 

be connected into a graph where the nodes describe the lines of sight or straight movement and the binary edges 

denote their mere intersections (e.g., Desyllas & Duxbury 2001). In this sense, axial maps capture the global con-

stituents of a spatial layout as perceived by humans while moving through the space. Based on obtained graph 

measures, space syntax theory and axial maps have been successfully applied in studying human movement pat-

terns but are also used in in other fields such as the analysis of traffic flows or crime distribution (e.g., Turner et 

al. 2005). 
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Graph-based symbolic space models are purely topological structures. Based on the explicit representation of con-

nectedness relationships between spaces, place graphs facilitate path queries in indoor environments. A path query 

results in a sequence of symbols, which corresponds to a traversal of the graph from a start to a goal symbol 

(Hoppenot et al. 2003). The descriptive place labels support the process of human wayfinding, and visibility graphs 

ensure the intervisibility of consecutive symbolic spaces along the path. Nodes and edges of graph-based repre-

sentations can be attributed to carry additional contextual information such as navigation rules or restrictions. 

Moreover, edge weights allow for introducing a qualitative notion of distance between symbols. Symbolic place 

graphs commonly imply a segmentation of indoor space into non-overlapping physical spaces. Spatial containment 

hierarchies between physical spaces are hence not reflected. However, the containment relationship enables range 

queries between symbolic indoor spaces. Set-based symbolic models naturally support range queries but require 

the modelling and evaluation of a potentially large number of neighbourhood sets to provide path planning capa-

bilities. For this reason, lattice- or tree-based hierarchical organizations of indoor space have been combined with 

graph-based symbolic representations (e.g., Becker & Dürr 2005, Ye et al. 2007). (Baras et al. 2010) demonstrate 

how symbolic place graphs can be annotated to also reflect spatial containment hierarchies.  

Purely name-based symbolic space models inherently address human indoor navigation. Descriptive labels for 

indoor spaces support human location-awareness, and provide a human-friendly reference frame for the naming 

and addressing of locations in path or range queries. The granularity of the space representation is however limited 

by the description level of indoor spaces. Symbolic space models express the qualitative fact of connectedness and 

containment of symbolic spaces, but lack metric information which is required for a quantitative notion of distance 

or orientation between symbols. Shortest distance queries as well as guidance along the path based on metric 

information are hence not supported. Moreover, most approaches applying symbolic space models do not present 

formal methods for the automatic derivation and spatial verification of space symbols. 

2.1.2 Geometric Space Models 

Geometric space models describe the interior built environment as 𝑛-dimensional metric space (typically Euclid-

ean 𝑛-space, cf. definition A.27) with one or more well-defined coordinate reference systems. The environment is 

decomposed into a finite number of non-overlapping cells which are given as 2-dimensional or 3-dimensional 

geometric figures. In contrast to purely name-based symbolic models, cells are represented by a set of coordinate 

tuples. Two general methods for the decomposition of space can be distinguished: regular cell decompositions 

map the indoor environment onto a regular array of predefined cells having equal size and shape, whereas irregular 

cell decompositions aim at computing cells whose union is exactly the free space. Cells participating in an irregular 

decomposition can be of different shape and size.  

Prominent examples for regular geometric space models are grid-based models which mostly decompose the in-

door space into rectangular (or cuboidal) cells. The grid is commonly chosen to be continuous, so that the entire 

indoor space is covered by cells. Each cell can then be marked whether it is occupied by an obstacle or free space. 

Obstacles comprise built structures and objects that obstruct movement such as walls or immovable furniture. A 

regular grid implicitly represents a graph structure where every grid cell is a node with rectilinear connections to 

its surrounding neighbours. The edges hence express adjacency relationships between cells. Due to its metric em-

beddedness, the resulting grid-based graph can be searched for shortest paths. Occupancy grids have been applied 

in the field of artificial intelligence as static or dynamically changing space representation for autonomous robots 

(e.g., Moravec & Elfes 1985, Thrun & Bü 1996, Biswas et al. 2002), as well as in human indoor navigation (e.g., 

Bandi & Thalmann 1998, Lyardet et al. 2006, Li et al. 2010, Afyouni et al. 2010, Yuan & Schneider 2011).  

The advantage of regular grid-based models is that they are considerably easy to build, represent, and maintain 

even in large-scale environments (Thrun & Bü 1996). However, the structural rigidity of grids only allows for an 

approximate representation of indoor space whose accuracy is determined a priori by the grid resolution. For ex-

ample, cells on the boundary of arbitrarily shaped obstacles suffer from partial membership if they cover the sur-

rounding free space as well, and thus their classification into either obstacle or free space results in jagged obstacle 

boundaries. Passages or obstacles being smaller than the predefined cell size are possibly not represented at all. 

Fine-resolution grids capture the details of the environment more accurately, but require an exponentially growing 

number of cells and thus suffer from their increasing computational space and time complexity. Hierarchical 2-

dimensional quadtrees address this conflict by recursively decomposing the grid into quadrants until all cells in 

one quadrant distinctively denote obstacle or free space (Ali & Abidi 1988, Lyardet et al. 2006). The resulting 
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multi-resolution grid implicitly expresses a containment hierarchy. Tree-based grid structures are more space ef-

ficient than fine-resolution grids, and path queries benefit from the pre-sorted cell organization. Octrees achieve a 

similar hierarchical structure in three dimensions, and much work has been done in investigating further variants 

and optimizations of hierarchical grid structures (e.g., Eppstein et al. 2005). 

Irregular geometric space models only partition the free indoor space and apply exact cell decomposition methods 

in order to overcome the approximate space representation of regular approaches. Often trapezoidal decomposi-

tions or triangulations are proposed, where the boundaries of built structures and obstacles are required to be 

boundaries of the resulting cells which thus differ in shape and size. Examples for triangulation-based approaches 

are presented by (Lamarche & Donikian 2004) and (Demyen & Buro 2006) who employ a constrained Delaunay 

triangulation of 2-dimensional floor plans to automatically compute the irregular subdivision of free space. In a 

subsequent step, (Lamarche & Donikian 2004) show how to simplify this subdivision and to minimize the number 

of cells by merging the triangles into convex cells. Similar to grid-based models, the irregular cell decomposition 

can be translated into a geometrically embedded adjacency graph which facilitates shortest path searches. Every 

cell is commonly mapped onto a node and an edge represents a free boundary segment shared by two adjacent 

cells. Alternatively, nodes are considered the midpoints of such segments which are connected by linear paths 

traversing each cell (Lamarche & Donikian 2004). A second type of irregular geometric space models decomposes 

the free space into a generalized Voronoi diagram. The boundaries of the Voronoi cells are exactly the locus of 

points equidistant to the two nearest obstacles, and form the edges of a graph whose nodes are the points where 

two or more cell boundaries meet. This graph is a 2-dimensional medial-axis transform of the free space and 

provides obstacle-free pathways through indoor space. It therefore underlies many approaches in the field of robot 

path and motion planning (e.g., Choset et al. 2000, Liao et al. 2003, Wallgrün 2010). A natural extension is the 

generalized Voronoi graph which is the 1-dimensional locus of points in an 𝑛-dimensional metric space equidis-

tant to 𝑛 obstacles (Choset et al. 2000). 

Unlike regular approaches, irregular geometric space models provide an accurate representation of the free space 

in complex indoor environments. Although obstacles and built structures are not explicitly represented as cells 

themselves, their exact boundaries as well as narrow passages between them are preserved. Since the resolution of 

irregular cell decompositions is only determined by the complexity of the indoor environment, usually fewer cells 

are required which results in more compact adjacency graphs compared to regular models. When merging adjacent 

irregular cells, containment hierarchies can be established. However, irregular approaches are more expensive to 

construct and maintain in large environments. In order to benefit from their complementary advantages, (Thrun & 

Bü 1996) propose an integrated approach that generates an irregular subdivision on top of a regular grid which 

classifies the free space. 

Geometric space models facilitate the precise quantification of position, distance, and orientation, and hence pro-

vide the means for shortest path computations as well as range and nearest neighbour queries. A key prerequisite 

is the unambiguous recognition of cells with respect to the given coordinate reference system. In case various 

coordinate reference systems are used (e.g., separate local reference frames for each floor of a building), unambi-

guity requires well-defined transformations between them, or otherwise distance measurements become meaning-

less. The geometric representation of the indoor environment can also be used for visualizations to efficiently 

guide humans along their path or to display the results of navigation queries. The discretization of indoor space 

into non-overlapping cells is well suited to evaluate and derive the connectedness between cells, and hierarchical 

containment relationships can be built on top. Since the space partitioning is strictly geometric, the resulting cells 

typically do not coincide with symbolic places such as rooms or corridors but have finer granularity. On the one 

hand, this is an advantage over symbolic space models, as it allows the explicit modelling of indoor areas for which 

there is no symbolic label. On the other hand, such areas can only be addressed and named through their coordi-

nates which are machine-understandable but non-intuitive for humans. For this reason, purely geometric space 

models are mostly adopted in mobile robot navigation. In contrast to most symbolic approaches, the decomposition 

of indoor space along geometric methods (e.g., regular grid, constrained Delaunay triangulation, generalized Vo-

ronoi diagram, etc.) has been mathematically formalized and thus can usually be derived in an automatic and 

deterministic way.  

2.1.3 Semantic Space Models 

Both symbolic and geometric space models describe the spatial configuration of a specific indoor environment. 

Whereas geometric models employ an explicit coordinate-based representation of a given indoor space, symbolic 
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models implicitly define the physical places within that space using qualitative labels. The labels provide an intu-

itive meaning to the associated spaces. For example, “Room 5126” implies a place in a building which typically 

is bounded by built borders and likely is located on the fifth floor. “Entrance hall” is intuitively distinct and rather 

associated with an open or semi-open space located on the ground floor. From the textual descriptions, we can 

even deduce action possibilities offered by the spaces. An entrance hall is a place where people enter the building 

and which commonly is open to the public, while access to a room may be restricted to authorized personnel.  

The exemplified spatial understanding of symbolic labels as well as the qualitative reasoning about meaning and 

location is based on common-sense geospatial knowledge. However, neither symbolic nor geometric approaches 

provide a formal representation of this knowledge. Semantic space models define space from a conceptual per-

spective in contrast to the qualitative respectively quantitative views of space in symbolic and geometric space 

models. They infer abstract concepts from the relevant types and aspects of spatial entities that inhabit indoor 

spaces and define their meaning as well as their properties and relationships (Worboys 2011). This conceptualiza-

tion of indoor space is not tailored to specific indoor settings but provides both an abstraction of the physical built 

reality and a semantic reference frame for the entities therein (e.g., symbolic labels may relate to this semantic 

frame). Thus, semantic approaches aim at making the implicit spatial knowledge explicit and enable knowledge 

to be shared and reused.  

Semantic space models classify the spatial and structural entities of indoor space and determine distinctions. This 

classification renders a taxonomy and arranges the types (or classes) of entities in a hierarchical structure along is-

a relationships. For example, a classification scheme for navigational purposes could organize the indoor space 

into built structures supporting movement (e.g., rooms, corridors, floors, etc.) or constraining movement (e.g., 

walls, obstacles, doors, etc.). Further semantic relationships commonly represented in conceptual views of space 

identify part-whole structures, referred to as part-of relationships, or general associations which denote member-

ship or has-a relationships. Part-whole structures allow for denoting semantic decomposition hierarchies (e.g., a 

room is part of a floor which itself is part of a building) and induce a partial ordering on the involved entity types. 

Qualitative spatial relationships are often introduced to express and constrain the spatial configuration of the indoor 

entities. Further association relationships as well as properties may account for terminological, geometrical, tem-

poral, functional, or further thematically different perspectives of indoor spaces.  

In computer science, two distinct approaches to the formal specification and representation of semantic knowledge 

are commonly applied: conceptual (data) models and ontologies3. Conceptual models have risen in the field of 

software engineering and information science as important technique to map the real world aspects (i.e., concepts 

with their properties and relationships) of a given domain of interest in an explicit, unambiguous, and machine-

readable way (cf. Booch 2007). Conceptual models are widely adopted in the GIS domain and provide the neces-

sary means to describe semantic knowledge about indoor environments. An alternative formal knowledge repre-

sentation is that of ontologies which have emerged from the field of artificial intelligence and underpin a large 

number of semantic models. Similar to a conceptual model, an ontology is an abstract and simplified but also 

commonly accepted view of some domain whose representational primitives are typically classes (or “things”), 

properties, and relationships (Bhatt et al. 2009, Giudice et al. 2010). The assumptions about the primitives are 

mostly described as unary and binary predicates in first-order logic. Besides representation, ontologies hence pro-

vide reasoning and inference capabilities about semantic makeups and spatial configurations (Worboys 2011). 

Although this is often cited as the main difference between both approaches, logic-based languages are also avail-

able for conceptual models in order to support reasoning (e.g., the Object Constraint Language OCL, cf. OMG 

2012). In a survey on the relation of conceptual models and ontologies, (Atkinson et al. 2006) thus conclude that 

ontologies are to be seen as subset of conceptual models, but with the distinctly different intention of having 

universal scope. Conceptual models are commonly notated using formal modelling languages and graphical rep-

resentations for the semantic artefacts. The Unified Modelling Language (UML, cf. Booch et al. 1999, OMG 2011) 

can be viewed as the de-facto industry standard for the description of conceptual models, but also Entity-Relation-

ship diagrams (ER, cf. Chen 2002) are still being frequently used for this purpose. In the context of authoring 

ontologies and sharing knowledge over the internet, the Web Ontology Language (OWL, cf. W3C 2004) has 

emerged as flagship language for the notation of ontologies.  

                                                           
3 The term “ontology” originates from philosophy, where it is the study of the nature and organization of being.  
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The discovery of entities and their relationships in a semantic space model is often aligned with the fixed structure 

that is visibly observable and supports the indoor space. In a much-cited conceptual model, (Hu & Lee 2004) 

classify indoor space into two types of entities, namely locations and exits. A location is defined as bounded 

geographic area and abstracts from rooms, corridors, floors, etc. Locations can have an arbitrary number of attrib-

utes and are related to one or more exists, where an exit denotes a point on the boundary of the location from which 

the location can be entered or left (e.g., doors, openings, etc.). Based on the definition of qualitative spatial rela-

tionships such as directly reachable between exists and directly under between locations, (Hu & Lee 2004) show 

how semantic hierarchies of locations and exits can be derived which facilitate range and path queries. For exam-

ple, the location hierarchy uses a tree structure to encode the knowledge that locations mapped onto inner nodes 

have to be passed in order to reach locations at leaf nodes. (Bittner 2001) identifies boundaries as the ontologically 

salient features in built environments, and distinguishes bona-fide boundaries that physically exist in real world 

and arise from physical discontinuities (e.g., surfaces of walls) from fiat boundaries that only exist virtually and 

result from human cognitive acts (e.g., the intangible boundaries between parking slots). The boundaries partition 

the built environment into regions along the main ontological axiom that distinct spatial objects of the same onto-

logical kind (i.e., bona-fide or fiat) cannot overlap. Regions reflect structural entities such as rooms and corridors 

as well as subdivisions thereof. Also (Bittner 2001) further constrains the configuration of spatial objects through 

a set of qualitative spatial relationships (full overlap, partial overlap, and no overlap) in order to support path 

analyses and region hierarchies.   

In addition to the structural components in indoor environments, the ontology proposed by (Bhatt et al. 2009) 

characterizes abstract spatial artefacts as virtual spaces that have a spatial extent and exhibit relationships with 

both strictly physical entities and other artefacts. Indoor space is classified into object space (i.e., the space occu-

pied by a physical entity), and into operational, functional, and range spaces which represent spatial artefacts. The 

operational space denotes the region of space needed to perform the intrinsic function of an object (e.g., the space 

needed for opening and closing a door), the functional space is where an agent must be located to physically 

interact with the object (e.g., to open or close the door), and the range space is the region of space within the 

vicinity or coverage of a sensor (e.g., motion detector or RFID sensor). With spatial artefacts it is possible to 

express complex constraints, for example, that the operational spaces of two objects may not overlap or that every 

region of space must be covered by the range space of at least one sensor, with the latter being especially important 

in indoor positioning tasks. Based on mereotopological relationships between spaces expressed in Region Con-

nection Calculus (RCC, cf. Randell et al. 1992), (Bhatt et al. 2009) perform reasoning about spatial constraints as 

well as semantic consistency and soundness checks. 

Another large area of research on the semantic representation of space builds upon the human perception, that is, 

how people assign meaning to spatial structures while moving through and interacting with the indoor environment 

(Raubal et al. 1999). In the field of cognitive science, (Johnson 1987) defines image schemas as experiential ab-

stractions of recurring cognitive patterns for the purpose of spatial understanding and qualitative reasoning. Ac-

cording to him, people apply image-schematic structures to understand (possibly unknown) spatial situations and 

to relate previous experience with current spatial perceptions. In this sense, people have cognitive abilities to locate 

themselves even with incomplete knowledge about the built environment. This qualitative reasoning process is 

mostly based on layout topology rather than precise metric information. For example, a basic physical schema is 

CONTAINER which embodies the idea of containment and spatially separates an inside from an outside through 

borders (built or by fiat). Typical examples for containers are rooms inside a building or the building itself. Con-

tainers are commonly associated with the SURFACE schema which corresponds to perceived boundaries such as 

the wall or floor surfaces of a room. The LINK schema captures a mutual connection between two entities including 

spatial, temporal, or functional relationships, and can be used to describe a motion pattern through PATH. In addi-

tion to image schemas, (Gibson 1986) states that the human interaction with the environment is triggered by af-

fordances that reflect actions or information offered by objects and things. Affordances contribute to the experi-

ential view of space as people apply them to the cognition of things based on past knowledge and experience.  

The theory of image schemas and affordances has been employed and expanded for human wayfinding and navi-

gation. For example, (Raubal et al. 1999) propose a wayfinding graph which encodes states of knowledge and 

views (i.e., pictures) at decision points, as well as action and information possibilities that trigger state transitions. 

(Rüetschi 2007) applies image schemas in the modelling of transfers in public transport within indoor environ-

ments. In addition to CONTAINER, he introduces REGION as an open space which is perceived as unit but is not 

completely bounded by built borders, and requires both containers and regions to be spatially disjoint. A GATEWAY 
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is defined as subtype of the LINK schema affording walk-through-ability, and is, for example, experienced when 

walking through a door. Groupings of spaces are facilitated through the AGGREGATE schema in order to express 

containment hierarchies. However, although image schemas are accepted in literature, there is no commonly 

agreed formalization to date (see Walton & Worboys 2009 for an overview). With focus on built environments, 

(Walton & Worboys 2009) introduce a mature method for representing and visualizing topological and physical 

image schemas based on bigraph algebra (cf. Milner 2008). This approach facilitates the integrated modelling of 

spatial containment (called place graph) and general linking relationships (called link graph) between physical 

schemas. However, the bigraphical model lacks the possibility to represent further topological relationships such 

as overlap or adjacency between places which hinders path queries. (Yang & Worboys 2011) have proposed a 

domain ontology for indoor space which formally maps image schemas and affordances onto ontological concepts 

and relationships (e.g., the ontology defines concepts such as Container, Surface, Passage, Connector, Link, Path, 

and Affordance). 

Semantic space models represent indoor environments on a conceptual level. They provide meaning to the obser-

vation of indoor space, and offer a classification of the diverse types of observed spatial entities. Both semantic 

and spatial properties, relationships, and constraints are defined at the conceptual level, and thus facilitate analyses 

and validations of real indoor settings which are to be seen as instantiations of the abstract concepts. However, the 

(semi-)automatic instantiation of conceptual models also poses a challenge as it may require sophisticated extrac-

tion and classification methods, for example, to derive the semantic information from legacy CAD-based building 

floor plans. Moreover, the identification of the relevant types of spatial entities and their spatial and non-spatial 

relationships is domain-driven and task-dependent. Conceptual views of the indoor environment therefore can 

differ with respect to the assessed and captured concepts, their meanings, and their level of granularity. This may 

lead to semantic impedance between conceptualizations (i.e., the degree of difficulty when translating a concept 

across domains and views), or even hinder semantic interoperability. (Giudice et al. 2010) and (Yang & Worboys 

2011) therefore suggest a hierarchy of interrelated ontologies with an upper ontology (containing only high-level 

space concepts), a set of domain ontologies or “microworlds” (i.e., limited ontologies focusing on the structure 

and artefacts of indoor space), and task ontologies (e.g., navigation, building planning). The authors expect such a 

hierarchy to create a common understanding and terminology of indoor space, and to serve as integration frame-

work for existing approaches to indoor navigation. 

2.1.4 Hybrid Space Models 

While many tasks in indoor navigation need precise metric information, the importance of an accurate geometric 

representation of the built environment and its interior structures is to be seen on par with its qualitative description. 

For example, shortest-length path computations depend on metric distances but the additional consideration of 

user preferences (e.g., to use stairs rather than elevators) or user constraints (e.g., to avoid stairs for wheelchair 

users or mobile robots) in path queries requires semantic knowledge about the environment (e.g., to distinguish 

stairs from elevators). On the other hand, pure semantics will not suffice to decide whether a wheelchair user can 

drive through narrow doors or passages along the path, what however can be measured in a geometric model. Since 

human perception of and interaction with indoor spaces is mainly based on qualitative understanding and reasoning 

(cf. chapter 2.1.3), indoor space models for human navigation consequently combine and link geometric, topolog-

ical, symbolic, and semantic information (see also Leonhardt 1998, Becker & Dürr 2005, Ye et al. 2007, Ruppel 

et al. 2008, Giudice et al. 2010). Approaches in mobile robot navigation long neglected the need for semantics and 

conceptual modelling but rather relied upon purely geometric and topological maps of the environment. Of course, 

precise geometric maps still play a pervasive role but the inclusion of semantics has come into focus, for example, 

in fields like human-robot interaction, autonomous spatial exploration and learning, but also in path planning and 

localization tasks (e.g., Anguelov et al. 2004, Stachniss et al. 2007). 

Hybrid space models accommodate aspects of geometric, symbolic, and semantic space models. A challenge 

hereby is to define a common denominator for integrating the different types of indoor space models. Most ap-

proaches discussed in the previous sections agree in structuring the built interior environment into spatial regions, 

and express connectedness and containment relationships between them. If understood as (partly or virtually) 

bounded portion of indoor space that inherently enables or obstructs movement, the notion of a spatial region 

provides an overarching spatial concept that abstracts from symbolic places in symbolic space models, cells in 

geometric approaches, and similar concepts defined in sematic models (e.g. “locations” in Hu & Lee 2004, or 

“regions” in Bittner 2001 and Bhatt et al. 2009). Moreover, it conforms to the human perception of indoor space 

as embodied through the physical CONTAINER schema. Symbolic and geometric space descriptions can be aligned 
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with a region by representing them as thematic and spatial properties. For the purpose of navigation, connectedness 

and containment are the two most elementary types of qualitative spatial relationships that need to be expressed 

between physical regions (see also Becker & Dürr 2005, Kolodziej & Hjelm 2006, Ye et al. 2007). Connectedness 

information is required for path searches and implies mutually non-overlapping regions. The containment rela-

tionship adds support for hierarchically nested regions and hence accounts for the structural complexity of the 

interior built environment. In contrast to connectedness, it builds upon overlapping regions. Human spatial cogni-

tion and wayfinding is known to be hierarchic (e.g., Richter et al. 2009, Stoffel et al. 2009), whereas containment 

hierarchies are mostly applied for scalability reasons in robot navigation. It follows that spatial regions as well as 

their connectedness and containment constitute a minimum conceptual overlap between geometric, symbolic, and 

semantic space models. 

Formal hybrid models not only integrate the different aspects of indoor space on a conceptual level, but also 

provide a sound formalization of this integration. However, this is often hindered by the fact that indoor space 

models lack a mathematical mapping between the geometric, topological, symbolic, and semantic dimensions of 

indoor space. A well elaborated example of a formal hybrid model is presented by (Bhatt et al. 2009) who propose 

a framework of modular ontologies for what they name as conceptual, quality, and quantity space. The conceptual 

space reflects the semantics of the indoor environment, namely the types of entities with their symbolic and non-

spatial properties and functional characteristics. The quality space is concerned with the qualitative spatial infor-

mation such as topological relationships between physical regions, which are defined independently from the con-

ceptual space. Finally, the quantity space is about the precise 2-dimensional respectively 3-dimensional geometry 

of the spatial entities. Corresponding instances in each space module are then formally linked in an integration 

view based on 𝜀-connection theory for ontologies (cf. Stuckenschmidt et al. 2009). The proposed ontology modules 

closely follow the classification scheme for indoor space models as introduced in this chapter. A benefit of keeping 

the different space representations separate is that spatio-semantic reasoning and validation can be performed for 

individual modules as well as their integrated view. However, functional dependencies between the decoupled 

modules are not considered. For example, changing the spatial configuration of entities directly affects their topo-

logical relationships. The framework of (Bhatt et al. 2009) lacks formal methods for mapping such spatial facts 

between the separate modules. 

2.2 Survey of Existing Hybrid Space Models for Indoor Navigation 

Most current modelling proposals for indoor environments in the field of indoor navigation fall into the category 

of hybrid space models. This is a logical consequence of combining the strengths of geometric, symbolic, and 

semantic space models in order to overcome their respective weaknesses. Nevertheless, most proposals substan-

tially differ in the emphasis they place on the separate aspects of space, in the semantic entities they define, and in 

the methods and the level of granularity they apply to their space representations. These differences are illustrated 

along a survey of existing hybrid modelling approaches in the following. However, due to the large number of 

proposals in both academia and industry, only selected approaches that are regularly referenced in related work 

are reviewed in this thesis. The approaches are arranged into four categories, namely grid-based, cell-based, dual-

graph-based, and conceptual-based approaches, and discussed in separate subsections. For each category, conclu-

sions about their shortcomings and strengths are drawn at the end of each subsection. 

2.2.1 Grid-based approaches 

A popular grid-based model is proposed by (Bandi & Thalmann 1998). In this model, the indoor space is discre-

tized into a continuous 3-dimensional grid of uniform cuboidal cells which are tagged as obstacle or non-obstacle. 

The grid is treated as graph structure with each cell (except those at the grid borders) having links to its 26 neigh-

bours. Based on this representation, obstacle-free shortest paths are computed by evaluating the possibility to move 

between neighbouring cells, which hence results in a discrete sequence of cells. In order to accelerate path searches, 

only surface cells on the upper surface of objects on which humans walk are considered. Obstacles are further 

classified into insurmountable and surmountable ones. Insurmountable obstacles obstruct movement and comprise 

objects that humans cannot step on or over (e.g., walls, pillars), gaps that cannot be crossed, or passages being too 

low or too narrow for humans to pass through. Surmountable obstacles, on the other hand, are accessible or pass-

able for humans (e.g., stairs, steps, small furniture). Whether an obstacle falls into one or the other category is 

determined by its reachability which depends on the horizontal respectively vertical foot span of the navigating 

person. Figure 1 illustrates the different obstacle types as well as a 3-dimensional setting of surface cells and 

insurmountable cells. The model of (Bandi & Thalmann 1998) is also applicable in two dimensions. 
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(a)  (b)  

Figure 1: Insurmountable and surmountable obstacles (a); 3-dimensional path based on surface and obstacle cells (b) (Bandi 

& Thalmann 1998). 

The 3-dimensional grid-based model presented in (Yuan & Schneider 2010b) and (Yuan & Schneider 2011) ap-

proximates the interior built structure as well as all contained obstacles using a LEGO-based representation in-

spired by the correspondent toy bricks. Similar to (Bandi & Thalmann 1998), the entire indoor space is mapped 

onto a continuous grid of LEGO cubes all of which have same-sized base areas. However, the cubes are not uni-

form but have their own heights depending on the space or object they represent as shown in the following figure. 

(a)   (b)   (c)  

Figure 2: LEGO cube in a cuboidal cell (a), cubes with different heights in a pyramid-shaped cell (b), and cubes representing 

stairs (c) (Yuan & Schneider 2011). 

(Yuan & Schneider 2010b) semantically differentiate three types of LEGO cubes: plane_cubes, stair_cubes, and 

obstacle_cubes. The free and navigable space between a floor and a ceiling is represented through plane_cubes 

whose height is the distance between the floor and the ceiling (cf. figure 2a and b). Stairs are modelled by a set of 

ascending or descending stair_cubes with differing heights (cf. figure 2c), and obstacle_cubes approximate objects 

whose occupied space is inaccessible for humans, such as walls, furniture, or objects suspended from the ceiling. 

In a subsequent step, cubes of the same type are merged into strictly rectangular blocks which are used to assess 

the maximum free space between obstacles. The resulting blocks can be spatially disjoint, adjacent, or overlapping. 

In the latter two cases, the maximum accessible width and height between two blocks is captured by a connector 

surface which is simply the common boundary in case the blocks are adjacent or the diagonal cross-section of their 

intersection volume otherwise. The connectivity information is translated into a graph in which nodes denote 

blocks and edges represent connectors. This connectivity graph is already feasible to derive discrete block-by-

block paths through the interior environment. In order to more efficiently support shortest path queries, (Yuan & 

Schneider 2010b) propose a second graph structure, called LEGO graph, which results from mapping the connect-

ors onto nodes. Two nodes are linked if the connectors are reachable from the same block. The distance between 

two connectors is encoded as edge attribute and is computed as Euclidean length of the straight line connecting 

the midpoints of the connectors. Figure 3 depicts the 2-dimensional LEGO representation of a simple building 

floor as well as the corresponding connectivity graph and LEGO graph. In (Yuan & Schneider 2011), the authors 

demonstrate how the LEGO model can be used to evaluate the accessibility of paths for arbitrarily shaped users 

(e.g., pedestrians, wheelchair users, mobile robots) based on the volumetric size of the user as well as the infor-

mation about connectors and maximum overlaps between blocks. 



34 Chapter 2.   Analysis of Related Work 

 

 

(a)   (b)   (c)  

Figure 3: Floor plan with obstacles, stairs, and connector surfaces (a), the graph reflecting the connectivity of the blocks (b), 

and the corresponding LEGO graph (c) (Yuan & Schneider 2010b). 

An alternative grid-based model supporting different levels of granularity is proposed by (Afyouni et al. 2010). At 

the finest level, the indoor space is modelled as 2-dimensional continuous grid of uniform cells. The grid is under-

stood as cell adjacency graph in which each cell has rectilinear connections to its eight neighbours (cf. Bandi & 

Thalmann 1998). From this micro level, a coarser meso level representation is obtained by merging grid cells 

belonging to the same spatial unit such as rooms or corridors to larger non-uniform and non-overlapping cells. The 

meso level is also mapped onto a graph structure that captures both cell adjacency and connectivity information. 

Finally, at the coarsest macro level, all cells are related to a building floor as shown in the following figure. 

 

Figure 4: Multi-level representation of indoor space according to (Afyouni et al. 2010).  

The approach of (Afyouni et al. 2010) exemplifies the derivation of a spatial containment hierarchy on top of a 

grid-based model, and thus is capable of supporting path queries at different scales. Besides the multi-granular 

organization of indoor space, (Afyouni et al. 2010) propose a complementary feature layer to integrate fixed ob-

stacles (e.g., walls, doors, furniture, sensors). The feature layer is however not restricted to obstacles but also 

accounts for mobile objects (e.g., users, mobile devices) as well as continuous phenomena (e.g., noise or fire 

diffusion) inside the indoor environment. The conceptual representation of features is inspired by the work of 

(Bhatt et al. 2009) (cf. chapter 2.1.3) and differs between a feature’s object, operational, functional, and range 

space each of which is spatially expressed as grid cells. An additional action layer is introduced to capture the 

action affordances offered by the features (cf. Gibson 1986, chapter 2.1.3). The proposed layer structure is meant 

to support context-dependent navigation. For example, mobile objects having different modes of locomotion are 

reflected with different operational and functional spaces. Moreover, action possibilities may change depending 

on the navigation scenario as well as the user context and preferences. However, (Afyouni et al. 2010) remain at a 

descriptive level and neither formalize the additional layers nor their interactions in order to evaluate the contextual 

information in a navigation task.  

The presented examples demonstrate the integration of semantics into a geometric grid-based representation of the 

indoor environment. The resulting hybrid models already address several challenges to indoor navigation as iden-

tified in chapter 1.2. Shortest path searches as well as nearest neighbour and range queries are facilitated through 

the implicit grid-based adjacency graph and its metric embeddedness. Based on the continuous mapping of indoor 

space onto cells, the spatial extents of navigable and non-navigable regions are explicitly represented which sup-
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ports the computation of obstacle-free paths. The non-overlapping grid cells also allow for the evaluation of geo-

metric navigation constraints such as the accessibility of spaces with respect to the width, length, and height of the 

navigating users and their mode of locomotion. The cell-based discretization of indoor space can be formalized 

mathematically and generated automatically in both two and three dimensions. However, a major drawback of 

grid-based models is their approximation of the indoor environment. First, the rigidity of the grid results in indoor 

spaces and objects not being captured accurately (cf. chapter 2.1.2). Second, the resolution of semantic and sym-

bolic aspects is coupled with the resolution of the grid. Semantic properties and relationships therefore cannot be 

assigned to a spatial entity directly but have to be expressed for the cells which represent the entity. This hinders 

unique symbolic labels (e.g., for naming places in path queries or route commands) as well as semantic queries 

(e.g., finding all fireproof doors or walls made of a certain material in evacuation scenarios). Moreover, if an entity 

is not mapped by a grid cell, it cannot be represented semantically at all. In order to overcome these issues, 

(Afyouni et al. 2010) introduce their feature layer and propose the merging of cells belonging to the same archi-

tectural unit, however facing the above mentioned drawbacks. The grid resolution also affects the computational 

efficiency of path searches. Fine-resolution grids exponentially increase the number of cells and adjacency rela-

tionships, and hence require strategies for reducing the search space. Whereas (Bandi & Thalmann 1998) only 

consider surface cells, (Yuan & Schneider 2010b) on the one hand reduce the number of cells by letting them span 

the entire height of indoor spaces, and on the other hand compactify the grid-based graph by creating larger cell 

blocks according to semantic and geometric criteria. Although both approaches apply a 3-dimensional grid, the 

path searches are hence restricted to two and a half dimensions and thus, for example, cannot account for flying 

objects. The 2-dimensional model of (Afyouni et al. 2010) is based on a multi-level granularity but lacks formal 

methods and algorithms to combine the different levels in path computations.  

Finally, most grid-based approaches model the built environment only and neglect the decomposition of indoor 

space according to complementary criteria such as sensor coverage or logical aspects. The need for an additional 

sensor space representation in order to support indoor positioning tasks is at least identified by (Afyouni et al. 

2010) who map the range spaces of fixed sensors onto the grid. However, consequential challenges like the inte-

gration of multiple and different position technologies or the context-dependent ad-hoc selection of positioning 

methods are not addressed in their proposal.    

2.2.2 Cell-based approaches 

An early approach to the subdivision of indoor space along the architectural structure rather than using geometric 

decomposition methods has been presented by (Gilliéron & Merminod 2003). In this model, architectural entities 

like corridors, rooms, stairs, elevators, or points of interest as well as their shapes and topological relationships are 

extracted from legacy 2-dimensional CAD floor plans. A connectivity graph, called node/link model, is established 

in which entities such as rooms or corridors are mapped onto nodes, and whose edges denote links which enable 

the movement between two nodes (e.g., doors, stairs, or elevators). As shown in figure 5, large corridors are de-

composed into more than one node to account for several links supported by the corridor.  

 

Figure 5: Transformation of a CAD floor plan (left) into a node/link model (right) (Gilliéron & Merminod 2003).  

The graph elements are semantically enriched with additional properties required for navigation purposes such as 

information about access rights or reachability for handicapped persons. Like with irregular geometric models 

(e.g., Lamarche & Donikian 2004, cf. chapter 2.1.2), the spatial entities are geometrically described by non-over-

lapping cells of irregular shape and size which decompose the free indoor space but neglect the contained obstacles. 

However, in contrast to purely geometric methods, the cell geometries reflect the real world shape of the architec-

tural entities which results in a more compact graph structure and more naturally follows the building layout. Based 

on a cost function which, for example, takes travel time, distance or access rights as parameters, shortest or best 

path searches are realized on top of the node/link model. 
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A similar approach is proposed by (Lorenz et al. 2006) and (Lorenz & Ohlbach 2006). Following the ontology of 

(Bittner 2001) (cf. chapter 2.1.3), the free indoor space is partitioned along bona-fide and fiat boundaries into 

disjoint 2-dimensional cells which represent navigable regions and mainly coincide with architectural entities such 

as rooms and corridors. A complementary graph structure is derived by mapping cells onto nodes, and by repre-

senting passages between cells (e.g., resulting from doors or elevators) as edges. The nodes are assigned the cell 

centres as spatial location in an underlying reference system in order to geometrically embed the graph and to 

facilitate the computation of distances. Similar to the approach of (Gilliéron & Merminod 2003), large corridors 

or rooms may be split into several cells. The following figure 6 illustrates the cell-based model of (Lorenz et al. 

2006). However, a formal method to fully automate the cell decomposition is not presented.  

 

Figure 6: Example floor plan and corresponding graph-based conceptualization. Dashed lines indicate edges between subdi-

visions of a room or corridor (Lorenz et al. 2006). 

In addition to the cell connectivity graph, (Lorenz et al. 2006) introduce a multi-level hierarchical graph structure 

to express spatial containment relationships. For example, rooms are aggregated to wings, wings to floors, and 

floors to the entire building at different levels of the hierarchy. Each hierarchy level is associated with its own 

graph, where nodes (edges) at a lower level are clustered into nodes (edges) of the upper level (cf. figure 7). The 

nodes are assigned semantic properties and symbolic labels in order to support semantic path queries and human-

understandable path descriptions. The graph model hence supports path planning at different scales and the gen-

eration of route commands such as “go to the fifth floor, and then navigate the left wing to the target room 5126”. 

A salient aspect of the model is that doors of rooms and corridors are organized in sorted sets according to their 

angular distribution around the cell centre. This information can be used to generate commands such as “take the 

second door to the right” along a path. Moreover, the authors propose fuzzy sets to mathematically represent 

several degrees of qualitative relationships in human language, for example, to express that a door is somewhat 

opposite, fairly opposite, or directly opposite another door.  

 

Figure 7: Hierarchical graph structure according to (Lorenz et al. 2006) for three levels (floors, wings, rooms). 

In a formally well-developed cell-based model, (Stoffel et al. 2007) decompose the indoor space into a mesh of 

spatial regions. A spatial region is mathematically defined as 2-dimensional simple polygon that is bounded by a 

closed polygonal chain of straight non-intersecting line segments, and which is embedded in a given coordinate 

reference system. Spatial regions may have arbitrary shapes and map architectural features such as rooms and 

corridors. They are forced to be non-overlapping and to jointly make up the entire indoor environment. However, 

similar to the above discussed models, the spatial regions only model the free space but do not explicitly represent 
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obstacles or non-navigable areas inside the interior environment. Inspired by the concepts of GATEWAYS (Rüetschi 

2007) and exits (Hu & Lee 2004, for both see chapter 2.1.3), (Stoffel et al. 2007) define boundary nodes as points 

on the shared boundary of two spatial regions which enable access or egress. A boundary node thus denotes the 

connectivity between two spatial regions and conceptually abstracts from doors and other openings. Both spatial 

regions and boundary nodes are augmented with symbolic identifiers as well as semantic or metric properties such 

as the door width. A flat connectivity graph facilitating shortest path searches is constituted with nodes indicating 

spatial regions and edges reflecting boundary points. Comparable to (Lorenz et al. 2006), the model supports 

containment hierarchies between spatial regions. The containment relationship is mathematically defined so that 

it renders a tree structure, called hierarchical region graph, and hence induces a partial ordering on the set of spatial 

regions. In a subsequent paper, (Stoffel et al. 2009) present an algorithm to automatically construct the hierarchy 

from 2-dimensional floor plans. The resulting indoor space representation is depicted in the following figure 8. 

 

Figure 8: A 2-dimensional setting of nested spatial regions with boundary nodes (left) and the corresponding region graph 

expressing spatial containment and connectivity relations (right) (Stoffel et al. 2007). 

According to (Stoffel et al. 2007), the derived graphs are still too coarse for human navigation, as concave spatial 

regions (e.g., an L-shaped corridor) cannot be perceived as a whole and thus need several path descriptions in 

textual route guidance. In order to automatically generate and provide such descriptions, (Stoffel et al. 2007) de-

compose concave spatial regions into non-overlapping convex sub-regions according to visibility criteria as shown 

in figure 9. Based on this partitioning, a complementary visibility graph linking boundary nodes is defined to guide 

persons through the interior of concave spatial regions. Intervisible boundary nodes (e.g., those in the same sub-

region) are simply connected by straight lines, whereas paths between non-intervisible boundary nodes in different 

sub-regions require intermediate nodes (e.g., midpoints of the cutting lines dividing the concave spatial region). In 

contrast to the approaches presented so far, (Stoffel et al. 2007) further formalize the accessibility of spatial regions 

as well as user preferences. Accessibility constraints such as access rights or time restrictions are expressed on 

boundary nodes or region graphs as Boolean (hard) constraints yielding true or false, based on which graph ele-

ments are filtered before applying path searches. Predicate logic is used to formulate user preferences (e.g., using 

staircases rather than elevators) as soft constraints which, for example, affect the cost of traversing edges but do 

not alter the graph itself. 

 

Figure 9: Decomposition of concave into convex spatial regions according to visibility criteria and derived visibility graph 

connecting the boundary nodes (Stoffel et al. 2007).  

The iNav model developed by (Yuan & Schneider 2010a) aims at eliminating the circuitous, non-optimal geomet-

ric routes which result from assigning the cell centres as spatial location of corresponding nodes in cell connectivity 

graphs like the one proposed by (Lorenz et al. 2006). For this purpose, the free indoor space is decomposed into 

2-dimensional non-overlapping spatial regions which are conceptually classified into simple cells, complex cells, 

open cells, and connectors. Both simple and complex cells are completely enclosed by built boundaries such as 
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walls, whereas open cells are partly surrounded by intangible boundaries (cf. Bittner 2001). Connectors are objects 

which connect floors in a building like elevators or stairs. The access to cells is enabled through access points 

which represent any type of opening such as doors or (parts of) intangible boundaries. In contrast to simple cells 

which only possess a single access point, complex and open cells as well as connectors may exhibit multiple access 

points. Direct path segments denote the shortest path between two access points associated with the same cell, and 

are constructed by connecting the locations of access points through straight line segments. However, for concave-

shaped cells, the straight line may intersect the cell boundary. In such cases, (Yuan & Schneider 2010a) propose 

the introduction of intermediate points on the concave cell boundary, and recursively partition the shortest path 

into segments between intermediate points until no segment intersects the cell boundary and the resulting shortest 

path lies completely inside the cell or on its boundaries. Figure 10 exemplifies this situation for a complex cell. 

 

Figure 10: Two access points (like b and c) cannot be linked through straight line segments (left) which requires their parti-

tioning along intermediate points on the concave cell boundary (right) (Yuan & Schneider 2010a). 

For shortest path computations, a direct path graph (DPG) is introduced whose node set comprises all access and 

intermediate points, and whose edges are determined by the set of path segments (cf. figure 11). The DPG captures 

the connectivity between access points and not between cells, and hence provides direct paths from one door to 

the next. Accessibility information is modelled as semantic attributes on nodes and edges, and is evaluated during 

path searches. The DPG actually encodes the mutual visibility between its nodes and only differs by the location 

of intermediate points from the visibility graph proposed by (Stoffel et al. 2007). Since the cells are not explicitly 

represented in the DPG, symbolic cell labels for naming the start and goal of path queries (e.g., “from the entrance 

hall to room 5126”) are not available, but have to be best matched with access points or intermediate points, which 

requires an extra computational step. The authors claim that the DPG offers length-optimal paths compared to 

paths involving the cell centre but fail to present a formal proof. Moreover, the process of decomposing the indoor 

space into cells is not further specified. In a follow-up work, (Yuan & Schneider 2010c) develop algorithms for 

supporting range queries based on the DPG. 

 

Figure 11: Example floor plan (left) and corresponding direct path graph (right) (Yuan & Schneider 2010a). 

Similar ideas are followed in (Liu & Zlatanova 2011a), (Liu & Zlatanova 2011b), and (Liu & Zlatanova 2012), 

who propose a two-level routing strategy through the indoor environment. The first level addresses the sequence 

of rooms and corridors that has to be traversed from a start to a goal location. This step utilizes a place graph 

encoding cell connectivity information. For this purpose, an Indoor Navigation Space Model (INSM) is proposed 

which defines the topographic spaces inside a building from a conceptual point of view and hereby builds upon 

the previous work on the MLSEM. The spaces are primarily classified into NavigableSpaceCell, Obstacle, and 
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Opening which denote the free respectively non-navigable areas inside a building as well as openings providing 

passage between the free areas such as doors. Navigable spaces are further subtyped into horizontal and vertical 

units with the latter representing ramps, stairs, or elevators. Moreover, vertical and horizontal connector spaces 

as well as end spaces are identified based on the number and types of neighbouring spaces. A salient aspect of the 

INSM is the provision of semantic rules for identifying and validating the corresponding types of spaces and for 

deriving them from building modelling standards such as CityGML or IFC (cf. chapter 2.3). Based on the semantic 

entities, a Logical Graph is then built with nodes representing NavigableSpaceCells and edges denoting their con-

nectivity based on Openings. This graph allows for determining purely symbolic paths through the environment. 

An example instance of the INSM is shown in the following figure. 

 

Figure 12: Example classification of indoor spaces according to the INSM (Liu & Zlatanova 2012). 

In a second step, routes inside navigable space cells are determined based on an optimised door-to-door path 

finding algorithm which reveals the closest openings between subsequent cells. Similar to (Stoffel et al. 2007) and 

(Yuan & Schneider 2010a), a visibility graph is constructed by mapping openings onto nodes and connecting them 

along intervisibility criteria, which involves adding intermediate nodes on the boundary of concave cells. In con-

trast to the DPG, the number of additional nodes is minimized. (Liu & Zlatanova 2011b) also apply a visibility 

partitioning to stairs in order to connect different building floors in their visibility graph. The resulting navigation 

structure is named Indoor Visibility Structure (IVS). Since the door-to-door path generally traverses along the 

closest openings between cells, it may result in different paths if the start and goal location are swapped (cf. figure 

13). The IVS is thus not feasible for shortest path computations between several cells. However, the authors assume 

that choosing the closest exit more naturally reflects human behaviour in escape situations. 

 

Figure 13: Door-to-door path according to (Liu & Zlatanova 2011a) from room A to room B (left) and vice versa (right). 

Although the IVS can be acquired a priori for an entire building as realized in (Stoffel et al. 2007) and (Yuan & 

Schneider 2010a), the authors put focus on the real-time derivation and dynamic modification of the graphs in 

order to support emergency and evacuation scenarios. For example, if rooms are impassable due to fire, the room 

sequence needs to be re-computed on the first coarse-grained level. The door-to-door path inside cells is computed 

upon entering the cells. Moreover, fixed and moving obstacles inside cells (e.g., smoke diffusion or even crowds 

of people) may require a dynamic update of the visibility relationships between exits which possibly produces new 

paths. While (Liu & Zlatanova 2011b) discuss requirements for dynamic routing strategies, an implementation on 

top of the IVS is not presented. 

(Goetz & Zipf 2011) propose a 2-dimensional cell-based approach to establish a context-dependent and length-

optimal indoor routing graph. The cell decomposition of the indoor environment closely follows the approach of 

(Yuan & Schneider 2010a), and only differs in the graph-based representation of corridors. Whereas (Yuan & 
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Schneider 2010a) also apply the DPG to corridors, (Goetz & Zipf 2011) approximate a corridor through its cen-

treline and orthogonally link access points to nodes along that centreline as shown in figure 14a (see already 

Gilliéron & Merminod 2003). For typical layouts of large corridors the authors mathematically prove that this 

representation requires less graph elements, and thus helps to increase the computational performance of path 

searches. In contrast to (Yuan & Schneider 2010a), also obstacles inside rooms are reflected in the graph by adding 

nodes to bypass the obstacles which however requires manual editing (cf. figure 14b). The authors present the 

hierarchical subdivision of rooms into smaller cells (e.g., to reflect check-in counters or smoking areas inside 

entrance halls at airports) as a new conceptual element while obviously neglecting the previous research on con-

tainment relationships between indoor spatial areas. A weighted indoor routing graph (WIRG) is proposed which 

maps access points as well as distinct areas inside rooms onto nodes, and whose edges express mutual visibility 

through straight line segments which enable shortest path computations (cf. figure 14c). However, unlike (Stoffel 

et al. 2007), (Yuan & Schneider 2010a), and (Liu & Zlatanova 2011a), the impact of concave cell boundaries on 

the intervisibility is not discussed.  

An interesting aspect of the WIRG is the organization of symbolic labels, traveling conditions or requirements, as 

well as additional semantic information into sets, and the formal definition of functional mappings between these 

sets and the graph elements. For example, the mapping 𝑔: 𝐸 × 𝑇𝐶 × 𝑅 → ℝ+ results in a non-negative weight 

given an edge 𝑒 ∈ 𝐸, a travel condition 𝑡𝑐 ∈ 𝑇𝐶 = {ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑒𝑙𝑑𝑒𝑟𝑙𝑦, 𝑤ℎ𝑒𝑒𝑙𝑐ℎ𝑎𝑖𝑟, … }, and a routing requirement 

𝑟 ∈ 𝑅 = {𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑟𝑜𝑢𝑡𝑒, 𝑞𝑢𝑖𝑐𝑘𝑒𝑠𝑡_𝑟𝑜𝑢𝑡𝑒,𝑚𝑜𝑠𝑡_𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑖𝑛𝑔_𝑟𝑜𝑢𝑡𝑒, … }. An edge 𝑒 representing a stair may 

hence receive 𝑔(𝑒, ℎ𝑒𝑎𝑙𝑡ℎ𝑦, 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑟𝑜𝑢𝑡𝑒) = 5.2 as well as 𝑔(𝑒, 𝑒𝑙𝑑𝑒𝑟𝑙𝑦, 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑟𝑜𝑢𝑡𝑒) = 19.9 as con-

text-dependent weights which can be considered by cost functions in path search algorithms. Although this ap-

proach provides a mathematical formalization of user-contextual aspects, the derivation of most interesting routes 

or alternative paths for wheelchair users and elderly people from the proposed indoor space model is left un-

addressed. Moreover, the approach of (Goetz & Zipf 2011) faces the same issues as identified in the discussion of 

the underlying iNav model.    

(a)     (b)     (c)  

Figure 14: Different layouts of corridors and corresponding graphs (a), additional nodes for bypassing obstacles (b), and 

visibility graph linking subdivisions of an airport entrance hall (c) (Goetz & Zipf 2011). 

(Meijers et al. 2005) present a cell-based indoor space model which provides a rich semantic classification of the 

building interior. The model builds upon a 3-dimensional geometric representation of indoor space through a mesh 

of polygons. The polygons form the boundaries of non-overlapping volumetric cells which occupy the free indoor 

space. The semantic classification takes polygons as smallest unit, and agrees with (Bittner 2001) who identifies 

boundaries as salient semantic entities, and also matches the human observation expressed through the SURFACE 

and CONTAINER image schemas. Polygons are classified according to their persistency, existence, accessibility, 

and direction of movement. Examples for persistent surfaces are built walls whereas walls that can be folded or 

temporarily removed are non-persistent. If the wall contains a door or window it is said to be access-granting with 

full, semi (e.g., door requires a key), and limited (e.g., only passable in rare situations such as emergency cases) 

representing different degrees of accessibility. If there is only an opening then this surface is classified as non-

existent or virtual. Finally, access-granting polygons are distinguished into uni- and bi-directional passages. The 

different types of semantic entities are illustrated in figure 15. Cells are defined as smallest amount of bounded 

space in a building that has a specific function, and need to be completely enclosed by polygons (if required 

through virtual polygons). They are further classified into end sections, connector sections, and non-accessible 

sections. An end section only has a single entrance point (i.e., access-granting polygon) and represents simple 
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rooms. Connector sections provide more than one entrance point such as corridors, elevators, or stairs. The con-

cepts show analogies with simple, complex, and connector cells as defined by the iNav model (Yuan & Schneider 

2010a). However, non-accessible sections additionally facilitate the representation of columns or fixed obstacles 

inside rooms, and sections can be aggregated to form complex sections (e.g., storeys). From the semantic entities, 

a connectivity graph is derived by mapping end sections onto nodes, granting polygons onto edges, and connector 

sections onto single nodes or, alternatively, onto subgraphs in case they exhibit complex shapes (cf. Gilliéron & 

Merminod 2003, Goetz & Zipf 2011). It follows that obstacles or non-granting polygons (i.e., walls) are not ex-

plicitly represented in the final graph structure, and thus are not considered in path searches. Since the graph is 

only derived from the conceptual model, it is a purely topological structure and lacks quantitative information. 

Therefore, a metric embedding is proposed by (Meijers et al. 2005) which assigns nodes the centre points of cells.  

 

Figure 15: From left to right: persistent polygon (door), virtual polygon (opening), granting polygon with full access (door), 

granting polygon with limited access (emergency door), non-accessible section (column), and end section (room) (Meijers et 

al. 2005). 

Another semantically enriched representation of the interior environment is proposed by (Gröger & Plümer 2010). 

The primary focus of their approach is put on the generation of geometric-topologically consistent 3-dimensional 

indoor models. The authors introduce an attributed grammar as mathematical formalism that governs the model 

generation. The grammar extends previous works on shape and split grammars that have been successfully applied 

in the field of procedural modelling of buildings (e.g., Wonka et al. 2003, Müller et al. 2006) by additionally 

representing topological relationships and ensuring their consistency throughout the generation process. The non-

terminal symbols of the grammar are 3-dimensional cells called Boxes which are geometrically described through 

prisms and Rectangles which represent the 2-dimensional rectangular boundary surfaces of the cells. The boxes 

are semantically classified into Building, BuildingPart, Storey, StoreyPart, Room, Hall, and Staircase, whereas 

rectangles are used to model Walls, Ceilings, Floors as well as openings such as Doors and Windows. In contrast 

to (Meijers et al. 2005), obstacle spaces cannot be expressed since boxes are restricted to free and navigable spaces. 

Based on a set of parameterized rules, the non-terminal symbols of the grammar are carried to terminal symbols. 

For example, the most essential rule splits a given box into two boxes. Thus, starting from a box representing the 

outer hull of the entire building, this split rule provides a pattern for the step-wise decomposition and refinement 

of the building into floors, wings, stairs, corridors, and rooms. Further rules are presented to semantically tag 

boundary surfaces or to place doors and windows into surfaces. The authors introduce a constraint store which 

facilitates the reasoning about topological relationships between symbols in order to avoid topologically incon-

sistent rule applications (e.g., to avoid penetrations of boxes or that a box is split at a door or window). This 

constraint store is constantly updated and differs from previous approaches using split grammars in that it is not 

locally restricted to a single rule but rather affects all rules globally. The following figure 16 shows an example 

for the step-wise generation of the interior structures of a building. On the right the corresponding derivation tree 

resulting from the rule applications is depicted. 

Once the building model has been constructed, a route graph for indoor navigation is built from the derivation 

tree. For this purpose, terminal boxes such as rooms, halls, and staircases are mapped onto nodes which are linked 

by an edge if they share a common rectangle that represents a wall and contains a door. Due to the geometric-

topological consistency of the model, graph edges can only occur between topologically adjacent boxes. Moreover, 

the semantics are used to finally derive a connectivity graph. Similar to the approach of (Meijers et al. 2005), the 

resulting route graph however lacks elements representing the non-navigable surfaces. A geometric embedding of 

the route graph in order to quantify the connectivity information is not addressed by (Gröger & Plümer 2010). And 

although the derivation tree partially encodes spatial containment in case a box is split into two boxes, this 

knowledge is not used in an explicit hierarchical graph structure of the interior environment. 
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Figure 16: Step-wise generation of a building with interior structures (left) and corresponding derivation tree (right) (Gröger 

& Plümer 2010) 

In summary, all of the presented cell-based hybrid approaches decompose the indoor environment along architec-

tural constraints and symbolic places. The resulting cells spatially represent the abstract types of entities that in-

habit indoor space (e.g., rooms, corridors, floors, elevators, or doors) and thus are much more aligned with the 

conceptual view of indoor space than grid-based approaches or irregular geometric models. Accordingly, the ap-

plied partitioning schemas facilitate the coherent integration of semantic, geometric, and symbolic representations. 

Place graphs and visibility graphs are explicitly constructed on top of the cell decomposition mostly in order to 

support shortest path searches. Hence, the graphs not only reflect the building topology qualitatively but are also 

metrically embedded to account for quantitative aspects. All approaches require the cells to be mutually non-

overlapping, but (Lorenz & Ohlbach 2006) and (Stoffel et al. 2007) give examples for additionally aggregating 

cells on different levels of containment hierarchies. Since the space partitioning aligns closely with the human 

perception of indoor space, cell-based approaches simplify the use of symbolic labels in path queries as well as 

the generation of human-understandable path descriptions compared to grid-based approaches. In case contextual 

navigation information is supported, it is commonly given as properties of graph elements (e.g., Stoffel et al. 2007, 

Yuan & Schneider 2010a, Goetz & Zipf 2011). Only few approaches explicitly model both the free indoor space 

which supports bodily movement as well as structural elements like walls or pillars as well as obstacles which 

obstruct the movement. However, if obstacles are only represented implicitly then the indoor space model lacks 

expressivity. For example, queries such as finding walls of a given material that could be torn down in emergency 

cases in order to create new passages cannot be performed as walls are neither described semantically, nor geo-

metrically, nor are they translated onto graph elements. 

Two major challenges to cell-based approaches are the level of granularity of the navigation graph as well as its 

consistent and formally defined derivation from the cell structure. The proposed place graphs essentially encode 

room-to-room connectivity. This granularity is commonly well-suited for pedestrians but different user groups 

(e.g., elderly or handicapped people) or types of locomotion (e.g., wheelchair, mobile robots) may require more 

fine-grained cell decompositions and graph representations in order to precisely denote navigable and non-navi-

gable sections within rooms or corridors. (Gilliéron & Merminod 2003) and (Goetz & Zipf 2011) map large cor-

ridors onto fine-grained subgraphs but only to better grasp their architectural layout, and fail to relate the elements 

of the subgraph to an underlying cell structure. The model of (Lorenz et al. 2006) generally foresees arbitrary 

subspacings of rooms and corridors into smaller disjoint cells but lacks the flexibility to support multiple and 

different cell decompositions and levels of granularity beyond containment hierarchies. Moreover, the graph con-

struction from subspace cells is not sufficiently formalized. Visibility graphs, on the other hand, as proposed by 

(Stoffel et al. 2007), (Yuan & Schneider 2010a), and (Liu & Zlatanova 2011b), provide fine-grained graphs inside 

rooms which however do not imply whether the resulting path is suitable for different types of users or locomotion. 

Moreover, visibility graphs cannot capture spatial containment hierarchies and hence lack support for multi-level 

path queries. The linkage of concave room corners as proposed by most approaches renders paths directly along 
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walls which are rather impractical and unnatural (e.g., for wheelchair users or mobile robots, but even for pedes-

trians). Only (Stoffel et al. 2007) formally base their visibility graph on a corresponding and consistent decompo-

sition of spatial regions into smaller cells. However, multiple cell decompositions reflecting different navigation 

contexts are also not supported in their model. 

The discussed cell-based hybrid space models have in common that they only provide a partitioning of the built 

environment. Mostly, the indoor space is captured by 2-dimensional cells only, and 3-dimensional aspects of in-

door space which may affect navigation such as low ceilings, suspended obstacles, or passages being too low to 

pass through are not considered. Moreover, the models neither account for complementary sensor spaces or logical 

spaces nor their integrated modelling, and challenges regarding the localization or tracking of moving persons or 

objects (cf. chapter 1.2) remain unanswered. 

2.2.3 Dual-graph-based approaches 

Dual-graph-based approaches can be viewed as subfamily of cell-based hybrid models. They are presented and 

discussed separately here because they explicitly address one of the main challenges to cell-based approaches, 

namely the formally defined derivation of graph structures from the cell decomposition of indoor space. All fol-

lowing approaches build upon the mathematical notion of Poincaré duality from algebraic topology which also 

underlies the previous work on the MLSEM (Becker et al. 2009a, Becker et al. 2009b, Nagel et al. 2010). In the 

following, the Poincaré duality is described informally and as applied in the related work whereas its formal defi-

nition is given in chapter 2.5.1.4. 

An important work in the dual representation of the interior built environment is presented by (Lee 2001) and 

further elaborated on in (Lee 2004b) and (Lee & Kwan 2005). The approach utilizes the Poincaré duality to trans-

late 3-dimensional spatial objects and their relationships into a dual graph structure. The indoor space is decom-

posed into 3-dimensional cells which, similar to other cell-based approaches, represent the free space and are 

aligned with architectural entities such as rooms and corridors. The cells are required to render a topological cell 

complex (cf. definition A.48), and thus need to be mutually non-overlapping and at most are allowed to touch at 

their boundaries which are described by lower dimensional cells. The cell complex is said to represent the primal 

space as it follows from the 3-dimensional volumetric shape of the physical built reality. Applying the Poincaré 

duality to this cell complex carries the primal space representation into dual space, intuitively by reversing the 

dimensions of cells, i.e., 3-dimensional primal cells are paired with 0-dimensional dual cells, primal 2-cells are 

mapped onto dual 1-cells, and so on. (Lee 2001) lets the dual 0-cells form the set of nodes of a graph structure, 

with the dual 1-cells constituting its set of edges. If two 3-cells share a common 2-cell on their boundaries in 

primal space, then their counterparts in the dual graph are linked by an edge. Thus, the dual graph encodes the 

topological adjacency relationships between the architectural entities in primal space, and the Poincaré duality 

provides the formal tool to derive this graph. The following figure 17 sketches the general idea of the Poincaré 

duality transformation as applied by (Lee 2001). 

 

Figure 17: Duality transformation between primal space (left) and dual space (right) (Lee 2004a). 

On top of this duality transformation, (Lee 2001) proposes a conceptual model called Node-Relation Structure 

(NRS). The NRS defines a combinatorial network model (CNM) of the indoor space that represents the qualitative 

adjacency relationships between spatial entities using the dual graph. In addition, a subgraph denoting connectivity 

is derived by pruning edges between nodes which cannot be accessed from each other through doors or openings. 

In order to support shortest path searches, the CNM is embedded in a complementary geometric network 

model (GNM). A key to this step is a straight medial axis transformation (S-MAT) of 2-dimensional polygons into 

1-dimensional linear features for approximating large and arbitrarily shaped corridors by their centreline. In (Lee 

2004b), a corresponding S-MAT algorithm is presented which simplifies alternative medial axis transforms (e.g., 
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the generalized Voronoi diagram) as it only produces straight line segments. Simple rooms are represented by their 

centre points and are connected to the centrelines of corridors through orthogonal line segments as well as addi-

tional nodes along the centrelines (cf. figure 18, see also Gilliéron & Merminod 2003, Goetz & Zipf 2011). Thus, 

a single node in the CNM may be reflected by a subgraph in the GNM. Such nodes are called master nodes and 

induce a hierarchical relationship between the CNM and the GNM. However, this hierarchy is not underpinned by 

a corresponding cell partitioning and thus is less expressive than the containment hierarchies proposed by (Lorenz 

& Ohlbach 2006) or (Stoffel et al. 2007). 

 

Figure 18: Example 3-dimensional setting (left), resulting CNM with two master nodes 𝑛6 and 𝑛12 (middle), and corresponding 

GNM (right) (Lee 2004b). 

The NRS has been applied in several research works in the field of indoor navigation and the spatial analysis of 

interior built environments. For example, (Lee 2004a) proposes a 3-dimensional indoor geocoding technique for 

the analysis of human activities through space and time which combines indoor positioning data with the building 

structure given as NRS (see also Park & Lee 2008 and Lee 2009). In (Lee & Zlatanova 2008), the NRS is embedded 

in a conceptual framework for an urban-scale emergency response system as essential component for the compu-

tation of shortest evacuation paths. The path search considers environmental factors such as the building damage 

status, toxicity status, and power status as well as traffic capacities of halls, corridors, or stairs, all of which are 

given as additional properties on graph elements. The authors demonstrate the coupling of the NRS with urban 

networks for outdoor navigation (e.g., street networks, underground transportation networks) in order to guide 

people away from disaster sites (cf. figure 19). (Li & He 2008) attempt to enrich the NRS with semantic infor-

mation by combining it with the conceptual model of (Meijers et al. 2005) in a common framework.   

 

Figure 19: NRS resulting for an example building and graph-based link to the street network (Lee & Zlatanova 2008).  

Another cell-based indoor space model relying on the Poincaré duality is proposed by (Jensen et al. 2009) and 

(Jensen et al. 2010). The authors apply the dual space transformation to 2-dimensional cells that represent spatial 

regions such as rooms, stairs, or corridors. Similar to (Lee 2001), the resulting dual adjacency graph is thinned to 

a connectivity graph. Moreover, the direction of movement permitted by doors and exits is translated onto a set of 

directed edges which results in an additional accessibility graph representation. Further access constraints such as 

security-based access restrictions or time-based access constraints are however not reflected. An example layout 

of a building floor together with the corresponding connectivity and accessibility graphs is depicted in figure 20. 

In contrast to all cell-based hybrid approaches discussed so far, (Jensen et al. 2009) propose a complementary cell 

decomposition of indoor space along sensor characteristics to facilitate positioning and tracking tasks in indoor 
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environments. The partitioning into sensor cells is done so that an indoor object cannot move from one sensor cell 

to another without being observed from a sensor of the localization technology. The shape and size of sensor cells 

hence depends on the localization technology and the deployment of sensors. (Jensen et al. 2009) exemplify their 

approach based on RFID readers that are mounted at doors. The resulting sensor cells mainly coincide with the 

layout of rooms and corridors but may also span several rooms. The partitioning is captured by a separate deploy-

ment graph which encodes the topological relationships between sensor cells and which can be explained through 

Poincaré duality. The graph edges are labelled with symbolic tags identifying the RFID readers which register the 

movement between two cells (cf. figure 21). Based on their structuring of indoor space into architectural cells and 

sensor cells, (Jensen et al. 2009) develop algorithms for the efficient and effective tracking of indoor objects. 

However, the integrated modelling of arbitrary sensor spaces as well as additional indoor navigation tasks such as 

path planning or guidance along a path are not addressed by (Jensen et al. 2009). 

(a)      (b)  

Figure 20: Example floor plan with corresponding connectivity graph (a) and accessibility graph (b) (Jensen et al. 2009). 

 

Figure 21: Deployment of RFID readers and corresponding deployment graph (Jensen et al. 2009). 

In a series of papers, (Boguslawski & Gold 2009), (Boguslawski & Gold 2010), and (Boguslawski & Gold 2011)) 

develop a dual-half edge (DHE) data structure for the simultaneous representation and storage of primal and dual 

3-dimensional cell decompositions of the interior built environment. The building interior is modelled in primal 

space as a set of non-overlapping polyhedral cells that are adjacent and connected, and geometrically describe the 

volumetric shape of free indoor spaces such as rooms and corridors. The dual representation of this cell complex 

is given by a dual graph whose nodes represent the centre points of the primal 3-cells and whose edges capture 

their topological adjacency relationships. The DHE structure is an extension of work done in the field of 2-dimen-

sional computational geometry, and has its roots in approaches for the representation of subdivisions of 2-mani-

folds such as the quad-edge structure of (Guibas & Stolfi 1985), the half-edge proposed by (Mäntylä 1988), and 

the augmented quad-edge approach of (Ledoux & Gold 2007). To represent a 3-cell of the cell complex in primal 

space, the DHE only stores its edges and vertices. A geometric edge is decomposed into a pair of half-edges each 

pointing to its associated vertex and its paired half-edge that forms the opposite of the edge. Two more pointers 
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are defined, one to the next half-edge around the associated vertex, and one to the next half-edge around the same 

face. The faces on the boundary of the 3-cell are hence implicitly represented through loops of edges which follow 

from navigating along this pointer structure. In the same way, the loop of faces implicitly bounds the 3-cell. The 

dual representation results from permanently pairing each half-edge with a dual counterpart that provides equiva-

lent pointers in dual space. (Boguslawski & Gold 2009) make this pairing the atom of the DHE data structure. It 

thus renders a primal and a dual graph structure which can be navigated separately but also facilitates the transition 

between both spaces at every graph element. The resulting indoor space representation is depicted in the following 

figure based on a spatial setting originally used by (Lee 2001). 

(a)        (b)  

(c)        (d)  

Figure 22: Example building interior after (Lee 2001) (a), volumetric model of rooms (b), corresponding dual graph (c), and 

connectivity graph (d) (Boguslawski & Gold 2009). 

(Boguslawski & Gold 2009) implement path planning algorithms on their data structure and also propose the 

translation of the dual adjacency graph into a connectivity graph (cf. figure 22d) for this purpose. However, since 

edges cannot be simply removed without affecting the intactness of the DHE structure, the authors introduce edge 

weights as additional attributes which account for strong connections (e.g., doors or other passages) and weak 

connections. The latter edges actually mean no passage, but could, for example, be evaluated in emergency situa-

tions to search for walls that can be torn down. A complementary geometric embedding of the dual graph similar 

to the GNM (cf. Lee 2001) or hierarchical containment relationships between cells are not foreseen by the DHE. 

Thus, if a corridor should be represented by several dual nodes it has to be split into accordingly many cells in 

primal space. (Boguslawski & Gold 2011) semantically classify the surfaces separating the single corridor sections 

as virtual doors. An interesting aspect of the DHE which goes beyond the model of (Lee 2001) is the formal 

definition of an extended set of Euler operators that allow for constructing and modifying the cell complex of the 

building interior while at the same time maintaining its sound dual-half edge representation (cf. Boguslawski & 

Gold 2010, figure 23). In (Boguslawski & Gold 2011), the authors apply their model to the representation of the 

surrounding terrain in order to facilitate indoor-outdoor path searches. This is achieved by representing the outdoor 

environment through additional thin 3-dimensional cells. 

          

Figure 23: Example Euler operators as defined by (Boguslawski & Gold 2011) on their DHE structure. 

It is important to emphasize that the dimension-reversing duality relation between the primal cell decomposition 

of a topological manifold and its dual is an elementary topological fact. Thus, the Poincaré duality also underlies 
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the work of (Boguslawski & Gold 2009). The key difference of the DHE approach compared to the NRS model 

of (Lee 2001) is that it incorporates both subdivisions in a single data structure. In contrast, the NRS has to be 

extracted from a given primal cell complex in a subsequent step which is also true for the model proposed by 

(Jensen et al. 2009) and the former publications on the MSLEM. 

The strength of the discussed dual-graph-based methods is that they are based on a consistent mathematical frame-

work. Since the knowledge about the primal cell decomposition implies the knowledge about its dual (and vice 

versa), it obviously follows that the derivation of the dual adjacency graph is deterministic and can be proven to 

be correct. However, the research for this thesis revealed issues in the presented dual-graph-based approaches 

which are discussed in detail in chapter 3. Whereas most cell-based approaches are restricted to two dimensions, 

the Poincaré duality generally holds in both two and three dimensions and thus supports the sound definition of 3-

dimensional indoor space models. The duality relation however is not feasible to express containment relationships 

between spatial entities as this requires overlapping cells in primal space which violates the notion of a topological 

cell complex. Thus, spatial containment hierarchies as well as the further challenges to cell-based approaches 

identified in the previous chapter need to be addressed explicitly by hybrid space models that build upon the 

Poincaré duality. For the presented dual-graph-based approaches it can be summarized that the integrated model-

ling of complementary space representations beyond the physical built reality is not sufficiently addressed, and 

neither are different levels of granularity of the cell partitioning in order to denote spatial containment or navigable 

and non-navigable spatial regions for different user groups and types of locomotion. 

2.2.4 Conceptual-based approaches 

The survey of existing hybrid approaches concludes with examples of research works putting strong focus on the 

conceptual and semantic modelling of indoor space and the definition of navigation ontologies rather than on 

geometric-topological space aspects and their mappings onto graph-based representations. Conceptual models are 

increasingly being developed in the field of indoor navigation and the key questions raised concern the knowledge 

about the indoor environment and its constituent elements that is required to support navigation tasks, the level of 

granularity of the knowledge representation as well as the reasoning and inference about this knowledge. 

(Anagnostopoulos et al. 2005), (Tsetsos et al. 2006), and (Kolomvatsos et al. 2009) develop an extensive frame-

work called OntoNav for the semantically enriched navigation in indoor environments. It employs a consequently 

user-centric view and aims at providing users with navigation paths and guiding descriptions according to their 

physical and perceptual capabilities (e.g., mode of locomotion, ability to see, familiarity with the environment) as 

well as their routing preferences (e.g., fastest or least-effort-based routes, points of interests). OntoNav defines an 

Indoor Navigation Ontology (INO) which captures the spatial and structural concepts of indoor space necessary 

to fulfil these goals. The taxonomy of this ontology is inspired by the semantic differentiation of locations and 

exits as proposed by (Hu & Lee 2004). The following figure 24 shows the INO of OntoNav formally notated in 

OWL. 

The basic INO concepts are Space, Path_Element and Obstacle. Spaces decompose the interior environment into 

rooms, corridors, floors, and buildings at different hierarchical levels. A path between two spaces is represented 

through a sequence of path elements whose representation is twofold. First, a Passage models a spatial path ele-

ment through or along a user may pass and is further classified into horizontal (e.g., doors, ramps, corridor seg-

ments) and vertical (e.g., stairs, escalator, elevator) passages both of which can be motor-driven. Second, a 

Path_Point provides a point-based abstraction of spaces, passages and their exits, as well as special waypoints 

(e.g., turning points) along the path. Obstacles preventing the movement of users are explicitly represented and 

comprise physical constraints (e.g., physical objects blocking the way) and logical constraints (e.g., security poli-

cies, non-functional elevator). Each class is further enriched with semantic properties and exhibits relationships to 

other concepts. 
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Figure 24: The Indoor Navigation Ontology of OntoNav (Tsetsos et al. 2006). 

The INO is accompanied by a User Navigation Ontology (UNO) that models the navigation-oriented user profile 

(cf. figure 25) which describes, amongst others, the mental and physical capabilities as well as the preferences of 

a particular user. Conditional statements are then used to establish a rule base which governs user-dependent path 

searches and reasoning processes (e.g., that stairs are excluded from path searches given that the user is handi-

capped). Guidance is realized through user-tailored path descriptions (e.g., audio messages for blind people) which 

are conceptually modelled as Description class in the INO. Although the authors propose the construction of nav-

igation graphs based on the conceptual point-based representation of path elements, they do not present formally 

sound methods for the instantiation of their semantic concepts or the derivation of graph structures from, for ex-

ample, building floor plans. Moreover, OntoNav neither conceptually nor practically addresses challenges in po-

sitioning and tracking of navigation users as identified in chapter 1.2.  

 

Figure 25: The User Navigation Ontology of OntoNav (Tsetsos et al. 2006). 

(Dudas et al. 2009) propose an ontology and algorithm for indoor routing (ONALIN) which are meant to provide 

indoor routes for individuals taking into consideration the needs and preferences of different user groups such as 

the physical, cognitive, or sensory impaired. The ontological description of the physical built environment incor-

porates concepts of the American Disability Act (ADA)4 standards which pose requirements on the layout of public 

buildings to ensure accessibility for disabled people. The resulting indoor space ontology is depicted in figure 26 

and shows considerable agreement with OntoNav. The key concept is similarly called PathElement and represents 

the types of navigable spatial elements that make up the navigation path such as horizontal and vertical Passages, 

                                                           
4 The ADA standards are issued by the U.S. Department of Justice and can be freely obtained from http://www.ada.gov/.  
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Exits, and Entrances, as well as their conceptual mapping onto a Network structure. Rooms are understood as 

points of interest and reflect the targets and goals of path searches (i.e., symbolic places). Moreover, the ontology 

includes separate classes for the modelling of Obstacles and Users with their route preferences. Based on the 

network representation, (Dudas et al. 2009) present a two-stage path search algorithm which first looks for feasible 

routes by pruning the network structure to match the user’s capabilities, and afterwards computes comfortable 

routes. However, like with OntoNav, ONALIN lacks details about instantiating the abstract types of semantic 

entities and the graph structure. Moreover, rules for pruning the network or for finding comfortable routes are not 

formally specified. 

 

Figure 26: Indoor space ontology as defined by ONALIN (Dudas et al. 2009). 

A surface-based conceptual model that integrates geometric, semantic, and navigational aspects of the interior 

environment is defined by (Slingsby & Raper 2008). The indoor space is geometrically described by a set of 

surfaces which represent the ground surfaces of 3-dimensional volumetric spatial entities (e.g., rooms, corridors, 

or stairs). The surfaces are layered on top of each other in three dimensions to account for the several floors in a 

building. The surface morphology is expressed through constraints such as breaklines in order to generate a topo-

logically consistent and connected representation (cf. figure 27a). The conceptual model distinguishes between 

spaces, barriers, portals, and teleports which semantically classify different parts of the surfaces. A space is a 

spatial region with a specific function and coincides with the notion of a cell in cell-based approaches, whereas 

portals denote the entry and exit points of spaces (e.g., doors and windows). Barriers represent obstacle objects 

such as walls or fences, and teleports abstract from elevators, ramps, or stairs. Following the model of (Meijers et 

al. 2005), each semantic feature is enriched with additional attributes providing information about its persistency, 

accessibility, direction of movement, or structure. Moreover, users are explicitly modelled as conceptual entity 

and carry attributes such as access rights or their negotiable height for steps (which, for example, tends to zero for 

wheelchair users). An example instance of the model considering both indoor and outdoor surfaces is shown in 

figure 27b. However, the conceptual model of (Slingsby & Raper 2008) is only given descriptively and has not 

been formalized. Although discrete and connected navigable spaces in indoor space are represented, aspects such 

as path planning, localization of navigation users, tracking, or guidance based on this representation are not dis-

cussed by the authors. 



50 Chapter 2.   Analysis of Related Work 

 

 

(a)  (b)  

Figure 27: Example surface-based representation of an indoor scene (a) and extension with outdoor surfaces and access re-

strictions (b) (Slingsby & Raper 2008). 

(Yang & Worboys 2011) have started work on developing a unified ontology for navigation in indoor and outdoor 

spaces. The proposed concepts are intentionally aligned with the theory of image schemas and affordances as 

introduced in chapter 2.1.3, and are based on the hypothesis that the human perception of indoor and outdoor space 

is essentially the same, and that so are the action possibilities offered by some of the entities therein. The authors 

thus regard image schemas and affordances as the proper instrument to bridge the gap between ontologies for 

either space. The indoor space is structured by (Yang & Worboys 2011) through the following ontology. 

 

Figure 28: Indoor space ontology as proposed by (Yang & Worboys 2011). 

The central concepts defined by (Yang & Worboys 2011) are Container, Surface, Portal, and Obstacle. A con-

tainer is a spatial region that is perceived as a unit and that has the affordance of containing things. It is further 

subtyped into Room and Passage with a passage being a way or channel supporting free movement (e.g., a corridor 

or a segment thereof). A Connector is a special type of a passage which connects two containers and assists in 

transitioning between them (e.g., stairs, elevators). Portals are openings affording the passage from one container 

to another such as doors or openings in walls. The Obstacle concept abstracts from all fixed or movable barriers 

that may impede or obstruct movement from one place to another. Whereas all these concepts are also defined in 

the approaches discussed above (either identically or in a similar way), the notion of a Surface as spatial boundary 

of a container that extends in two dimensions and supports other objects (e.g., floor surfaces of rooms) is only 

represented as such by (Slingsby & Raper 2008) and (Meijers et al. 2005). The ontology of (Yang & Worboys 

2011) further includes concepts which connect outdoor and indoor space such as an OIConnector (e.g., escape 

ladder) or OIPortal (e.g., windows or entrances and exits of buildings). The proposed concepts are also feasible to 

explain structural entities relevant to outdoor navigation. For example, a city or its buildings are containers. Roads 
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are conceptually to be seen as passages, and since their pavement supports vehicles it matches the surface schema. 

An example for an outdoor obstacle is a road construction which impedes traffic. The ontology hence suggests a 

common indoor-outdoor language.     

(Yang & Worboys 2011) distinguish between the structural conceptualization of space and the definition of con-

cepts which are only required for the task of navigation (cf. chapter 2.1.3). The indoor space ontology is seen as 

an upper-level domain ontology supporting several tasks, one of them being navigation. The proposed navigation 

task ontology is illustrated in the following figure 29. 

 

Figure 29: Navigation task ontology as proposed by (Yang & Worboys 2011). 

The navigation ontology maps the conceptual entities defined in the upper-level indoor space ontology onto a 

semantic Node/Link view represented by the NavStructure concept. A CellNode translates containers to nodes, 

which aligns with the graph-based representation of non-overlapping cells in most cell-based approaches. Inter-

ContainerLinks express connectedness relationships between containers realized through portals and connectors, 

whereas qualitative hierarchical containment relationships following from the decomposition of a container into 

smaller passages (e.g., segments of a corridor) are denoted by a distinct link type called IntraContainerLink. Sim-

ilar to (Tsetsos et al. 2006), additional waypoints such as turning points, decision points, landmarks, or terminal 

points are included in the navigation ontology as subtypes of Node. The node/link structure is proposed to serve 

as input for path search algorithms, and the resulting sequence of nodes and links along which a user travels or 

moves is explicitly represented through the Path class. In order to account for user-dependent contextual infor-

mation in navigation tasks, the group of users is conceptually mapped onto NavAgent and further classified into 

pedestrians and vehicles (e.g., wheelchair users, mobile robots). (Yang & Worboys 2011) also model objects af-

fording additional navigation information (e.g., signals or signs) as well as navigational events that occur while 

traveling through the interior environment such as turns in movement or the arrival at the destination based on 

which path descriptions and route instructions can be generated. The ontologies and their interrelationships are 

formally defined but the work of (Yang & Worboys 2011) does neither specify qualitative reasoning or inference 

strategies about the represented knowledge, nor methods for the coherent linkage of model elements in both on-

tologies. 
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In contrast to grid- and cell-based hybrid approaches, the illustrated conceptual-based approaches essentially apply 

logical criteria instead of geometric facts to both the conceptualization of indoor space and its ontological struc-

turing. The proposed conceptual models substantially overlap in the semantic definitions and taxonomies of their 

identified spatial entities, and hence contribute to a common understanding of the minimum information needs 

about the interior built environment for the purpose of indoor navigation. It is noteworthy that the explicit repre-

sentation of obstacles and non-navigable spaces resulting from spatial or user-contextual constraints is considered 

by all conceptual models and hence plays a more central role than in cell-based models which mainly capture the 

free indoor space only. Moreover, most approaches support arbitrary decompositions of spatial units into smaller 

parts at the conceptual level and do not restrict this partitioning to be aligned with architectural constraints. Thus, 

path elements and spatial regions can be described in a more fine-grained way than the room-to-room connectivity 

of most cell-based models. Accompanying point-based abstractions of spatial entities as well as links denoting 

transition possibilities are identified as fundamental spatial concepts, but lack a formal specification in terms of 

graph theory. The conceptual-based approaches introduce an extra level of model expressivity by representing 

knowledge about the different groups of users travelling through indoor space as well as their navigation context, 

which considerably goes beyond adding attributes on graph elements as proposed in other approaches. (Tsetsos et 

al. 2006) demonstrate a mathematical sound way for reasoning about this user knowledge in their OntoNav frame-

work.  

However, the quantitative dimension of indoor space is not sufficiently represented in either approach, and precise 

definitions of what semantic concepts such as spaces, containers, passages, path elements, or obstacles as well as 

their point- and link-based abstractions mean in a geometric-topological sense are missing. Path searches account-

ing for quantitative aspects are hence not supported and visual guidance along the path is, at least, hindered. Fur-

thermore, and alike almost all of the presented hybrid approaches, the formal integration of complementary indoor 

space conceptualizations that do not follow the physical built reality and how it is perceived by humans, but rather 

describe decompositions of indoor space along sensor characteristics or logical aspects, is neither approached nor 

solved. 

2.3 Building Models 

The modelling of the interior built environment is not only addressed in the context of indoor navigation but 

naturally also in fields such as urban and building information modelling. Models from these fields aim at repre-

senting the building as designed or observed, with varying spatial and semantic information about building parts, 

structural building elements, the building interior, and objects fixed to or contained inside the building down to 

the level of single power plugs. The expressivity of such building models with respect to the built reality is there-

fore usually greater than that of the presented indoor navigation models. Although building models are not primar-

ily designed for the task of indoor navigation, they nevertheless provide rich information about the indoor space 

which can serve as important source of information in the context of indoor navigation. For this reason, important 

representatives of building models are presented in the following sections and are classified according to the 

scheme from chapter 2.1. 

2.3.1 Building Information Models (BIM) 

Building information modelling refers to the collaborative process of generating and maintaining building data 

during the entire project life-cycle of buildings and construction facilities including all phases from earliest con-

ception and design, through construction, functional life and maintenance, to demolition and disposal (Eastman 

2008). This process results in and relies upon Building Information Models (BIM)5 which are commonly under-

stood as shared knowledge resource providing highly accurate and valuable information about the built environ-

ment and its structures as reliable basis for decision making in the different disciplines participating in the building 

life-cycle management such as architecture, engineering, construction, and facility management (AEC/FM) as well 

as computer-aided architectural design (CAD)6. A BIM model represents the physical and functional characteris-

tics of a facility within a computer and incorporates the spatial and thematic properties of all building components, 

their well-defined meaning, as well as their structural, spatial, and logical interrelationships. A multitude of appli-

                                                           
5 BIM is also used interchangeably as acronym for the process of Building Information Modelling in literature. 

6 The acronym CAD stands for computer-aided design in general which is the use of computer technology for the task of 

drafting and designing “things”, whereas the drafting of architectural drawings is often referred to by the acronym CAAD. In 

the course of this thesis, the acronym CAD is consistently being used for both notions. 
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cations for BIM models is quickly emerging in the field of building informatics which go beyond traditional engi-

neering and visualization needs of the AEC/FM industry and include applications domains such as environmental 

simulations and energy assessment, greenhouse planning, civil engineering, and disaster management. 

BIM models have evolved from traditional ways of documenting facilities with paper-based drawings or their 

digital counterparts in legacy 2-dimensional CAD software systems mainly because of two shortcomings. First, 

an adequate sketch of the 3-dimensional setting of the built environment based on 2-dimensional building plans 

requires multiple and layered views, resulting in highly redundant and hence error-prone data. Moreover, many 

simulations and analyses throughout the life-cycle phases of a building (e.g., structural stress analysis) require true 

3-dimensional data. Second, CAD drawings depict the building layout through graphical elements such as lines 

and arcs which are annotated with symbols and textual descriptions. Although this representation is understandable 

for human professionals, it impedes the automatic interpretation of building components and the spatial reasoning 

about the indoor space by machines. A BIM model involves the object-oriented description of a facility where 

each building component is mapped onto a semantic entity carrying attributes and relationships. The notion of a 

building component comprises solid-shape structural elements such as walls, beams, columns, or slabs as well as 

abstract void spaces such as the intangible volume of a room. The geometry of building components is usually 

given in three dimensions, for example, as volumetric object or through its projection onto a 2-dimensional foot-

print or profile. Current BIM tools also support the parametric description of objects, i.e. objects unfold at a given 

location in space according to a set of rules embedded in them. These rules may only concern the shape and size 

of the object, or additionally govern its physical and functional relationships to surrounding objects. Due to the 

consideration of the building life-time, BIM models are said to be living in four dimensions. The consideration of 

additional project processes and documentations even renders an 𝑛-dimensional model space (cf. Aouad et al. 

2007). This integrated 𝑛-dimensional knowledge representation about the interior built environment is to be seen 

as the main difference to recent object-oriented 3-dimensional CAD models of building designs. 

BIM models are typically created manually during the planning or construction phase by architects or civil engi-

neers and hence represent a facility as designed following a generative modelling approach (Nagel et al. 2009). 

Although they are maintained throughout the building life-cycle, they are mostly available only for newly planned 

or recently constructed buildings. However, the U.S. National BIM Standard (NBIMS) has made the provision of 

BIM models compulsory at early stages of building projects in the public sector. Similar initiatives can be observed 

on national or organizational levels (e.g., in Denmark and Finland), as well as in literature (e.g., Benner et al. 

2010). This development is expected to further boost the acceptance and availability of BIM models. 

Starting from 1995, the International Alliance for Interoperability (IAI) pioneered an international standardization 

attempt involving organizations from 19 countries to define a single building model as one authoritative semantic 

definition of building elements, their properties and interrelationships (Howell & Batcheler 2005). This effort 

succeeded with the release of the Industry Foundation Classes (IFC), a vendor-neutral open information model 

and commonly used format for capturing and sharing data in the BIM domain. IFC is based on the ISO STEP 

standards family (ISO 10303) for the representation and exchange of product model data between CAD systems, 

and is itself registered by ISO as ISO/PAS 16739 to be approved as international ISO standard. The IFC specifi-

cation is further developed and maintained by the non-profit and industry-led organization buildingSMART7, and 

is embedded in the Open BIM initiative which aims at developing open standards and workflows as basis for an 

universal approach to the collaborative design, realization, and operation of buildings. The latest official version 

of IFC has been released in 2007 as IFC2x Edition 3 Technical Corrigendum 1 (IFC2x3, cf. Liebich et al. 2007), 

whereas the next future release named IFC4 is currently under preparation. The IFC information model is given in 

the EXPRESS (ISO 10303-11:1994) data definition language which is a formal part of the STEP standard and 

which can be viewed as enhancement of the entity-relationship model. The data exchange between IFC compliant 

software applications uses clear text encodings based on the STEP physical file format (ISO 10303-21:1994). An 

XML-based encoding of IFC2x3 (ifcXML) is additionally available from buildingSMART.  

IFC defines several hundred entities arranged in a taxonomic hierarchy that render a rich semantic view on all 

aspects of a building design such as spatial and physical building elements as well as distribution and service 

elements (e.g., plumbing, heating, or electrical systems). The main components constituting the structure and ar-

                                                           
7 buildingSMART is the successor organization of IAI; see http://www.buildingsmart.org/ for more information. 
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chitectural layout of the built environment are grouped under the name shared building elements (Ifc-

SharedBldgElements) as they carry building information relevant to all application domains accessing the BIM 

model. This element group hence provides a conceptual model of indoor space which is depicted in the following 

figure 30 as informal UML-based representation. 

 

Figure 30: Informal UML diagram of the IFC shared building elements (excerpt) (after Benner et al. 2005). 

The indoor space is decomposed into spatial elements (IfcSpatialStructureElement) structuring an entire building 

(IfcBuilding) into floors (IfcBuildingStorey) which may contain several spaces (IfcSpace). This part-whole struc-

ture denotes a spatial containment hierarchy. A space is understood as bounded volume or area enclosed by built 

or virtual boundaries which provides a specific function (e.g., rooms, corridors). Spaces are allowed to span over 

several connected spaces in order to express containment relationships on a single building floor. Each spatial 

element can be populated with physical building elements (IfcBuildingElement) which represent the primary parts 

of the building construction and its space separating system. Examples for building elements are walls (IfcWall), 

slabs (IfcSlab), roofs (IfcRoof), columns (IfcColumn), or stairs (IfcStair), as well as openings such as doors 

(IfcDoor) and windows (IfcWindow). Intangible boundaries of building elements can be expressed through virtual 

elements (IfcVirtualElement). The building elements also account for fixed objects inside spaces, whereas movable 

objects are mainly captured by IfcFurniture and comprise tables, desks, or chairs. 

All spatial and physical elements are transitively derived from IfcProduct which serves as abstract root concept 

for any semantic object that exhibits a geometric or spatial context. Each such element can have an explicit geo-

metric and/or topological representation of its 3-dimensional volumetric shape (IfcShapeRepresentation via 

IfcProductRepresentation). For this reason, an IFC model is also referred to as volumetric elements model in liter-

ature (e.g., Nagel et al. 2009). The geometry is commonly placed in a local Cartesian engineering coordinate 

system (IfcLocalPlacement) which may be defined relative to the placement of another product or enclosing ele-

ment hierarchy. Every product has a unique identifier to distinguish it from other products in a world-wide context, 

and possesses thematic properties which further classify or characterize the element. For example, rooms may be 

identified by their number or name, and windows and doors may provide information about their opening direction, 

operation type (e.g. double swing), hinge location, thermal properties or whether they are fireproof. The construc-

tion material (IfcMaterial) of each building component can be specified as a whole or in layers (e.g., to depict the 

assembly of different materials), and also comprises visual appearances such as colours or textures. Relationships 

between entities are modelled explicitly through relationship classes. For example, IfcRelDecomposes denotes a 

part-whole relationship and expresses exclusive spatial or logical containment, whereas IfcRelConnects denotes 

the logical or physical connectedness between two building entities. 
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It obviously follows that the conceptual description of indoor space in IFC largely conforms to most of the concepts 

defined in cell-based and conceptual-based hybrid approaches presented in chapter 2.2, and if evaluated against 

the classification scheme developed in chapter 2.1, IFC could be easily assigned to the category of hybrid space 

models. The subdivision of the interior built environment into IfcSpaces essentially is a cell partitioning of the free 

space which includes hierarchical containment relationships. The ontological space representation explicitly mod-

els all objects required by most navigation approaches (e.g., rooms, corridors, floors, exists, stairs, physical and 

virtual boundaries, obstacles, etc.), and the rich semantics associated with the spatial entities covers most of the 

proposed symbolic and semantic properties and relationships. Since IFC is designed as comprehensive building 

model, it thus naturally exceeds the expressivity of many space models for indoor navigation regarding the repre-

sentation of the built-up space. However, and for the same reason, IFC lacks essential components required to 

answer the challenges to indoor navigation as enlisted in chapter 1.2. For example, a graph-based conceptualization 

of indoor spaces is not provided, and the space partitioning in IFC follows the architectural layout and hence does 

not account for complementary decomposition criteria such as the mode of locomotion, sensor characteristics, or 

logical aspects. The meaning of entity relationships is not always appropriate for navigation purposes. For instance, 

IfcRelConnects relationships facilitate to denote that two wall entities are connected. However, this connectivity 

information obviously does not imply the possibility of bodily movement between both entities. The representation 

of the navigation context including user-contextual information and constraints as well as environmental naviga-

tion constraints is also not foreseen in IFC.   

The thematic differentiation of indoor space provided by IFC-based BIM models is nevertheless already suitable 

for the symbolic naming and addressing of places as well as the generation of route descriptions and instructions 

in navigation tasks. The geometric description of spatial entities adds precise quantification to the indoor space 

and enables visual guidance. Although building elements are mostly represented as solid shapes, the derivation of 

consistent 2-dimensional building plans is still essential in the AEC/FM industry and hence supported by BIM 

models. Therefore, BIM models are to be seen as a rich source of information to populate and feed the presented 

approaches to the modelling of indoor space for indoor navigation, even if they are defined in a 2-dimensional 

setting. However, the relation to building models or the automatic derivation of spatio-semantic facts from building 

models is often neither discussed nor investigated in many current proposals.  

2.3.2 Urban Information Models (UIM) 

Urban Information Models (UIM) transfer the basic idea of BIM to the urban scale, and aim at establishing a 

shared digital knowledge resource providing geospatial information about natural and man-made real world ob-

jects in the urban context being relevant to decision making processes, sophisticated analyses, and display tasks in 

the field of geoinformatics and a variety of application domains such as environmental simulations, urban planning 

and data mining, city life-cycle and facility management, energy demand assessment, disaster management, and 

homeland security. Key components of UIM models include digital surface and terrain models, the built environ-

ment (e.g., buildings and sites, transportation infrastructures, underground facilities and utilities, artificial land-

scapes), and the natural environment and phenomena (e.g. water bodies, vegetation, weather). Due to the consid-

eration of transportation infrastructures at a large scale, UIM models already successfully contribute to the field of 

outdoor navigation (e.g., as information source for car and pedestrian navigation systems). 

The urban entities are described with respect to their spatial, semantic, and functional aspects as well as their 

ontological structure which adheres to taxonomies, logical decomposition hierarchies, and relationships that are 

given or can be observed in the real world (Kolbe 2009). The process of urban information modelling means the 

gathering, management, and continuation of this geospatial information at the urban level based on manual or 

(semi-)automatic processes. This involves manual design as well as methods for the observation and measurement 

of topographic features from fields such as photogrammetry, remote sensing, and engineering surveying. UIM 

models hence represent the urban context as observed (Nagel et al. 2009). The spatial representation of the shape 

and location of the urban artefacts is usually translated into a world coordinate reference system to reflect the real 

position of an object on the Earth’s surface. Since observation methods mostly capture the geometry and radiom-

etry of urban features, a challenge to the acquisition of UIM models is the semantic qualification of the registered 

data in subsequent steps which requires techniques for object recognition, interpretation, and refinement, and often 

refers to existing geospatial knowledge (e.g., cadastral information systems) (cf., Baltsavias 2004, Brenner 2005, 

Kolbe et al. 2009).  
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A subfamily of UIM models are semantic 3D city models. In contrast to traditional 2-dimensional geo-data models 

being used in the GIS domain, they represent the spatial aspects of topographic entities in three dimensions and 

account for the complex semantic structures of the urban fabric. Similar to BIM, semantic 3D city models hence 

enable applications which rely on 3-dimensional, semantically rich urban information. 3D city models have estab-

lished themselves as digital counterpart of real urban spaces and are constantly being acquired and set up world-

wide, supporting a general trend towards modelling not only (parts of) cities but also their regional or country-

wide context. For example, in the Netherlands, a national 3-dimensional information model for the country-wide 

large scale representation of buildings, roads, water, land use, land cover, bridges, and tunnels etc. has been im-

plemented (van den Brink et al. 2012, Stoter et al. 2010). The European INSPIRE8 initiative even aims at creating 

a continent-wide spatial data infrastructure for sharing environmental geospatial information about elevation, land 

cover, land use, transportation networks, cadastral information, buildings, etc. in two up to three dimensions. In 

literature, additional dimensions for UIM models such as time and scale (van Oosterom & Stoter 2010) as well as 

an 𝑛-dimensional model space analogous to BIM models are being discussed (Hamilton et al. 2005).  

From 2002 onwards, more than 70 international members from industry, academia, and public administration 

founded and joined the Special Interest Group 3D (SIG 3D)9 of the Spatial Data Infrastructure Germany (GDI-

DE) in order to achieve a common understanding and definition of the urban entities, properties, and relationships 

relevant to the multitude of applications across the different disciplines in the UIM domain. This work resulted in 

the City Geography Markup Language (CityGML), an application-independent open information model and 

XML-based data format enabling the representation, storage, and sharing of semantic 3D city and landscape mod-

els. Since 2004, CityGML is being jointly developed by the SIG 3D and the Open Geospatial Consortium (OGC)10, 

an international non-profit standards organization of more than 460 companies, government agencies, research 

organizations, and universities collaborating in the consensus-based development of publicly available and vendor-

neutral geospatial standards. CityGML was adopted by the OGC membership as international OGC standard in 

2008, and was released in its current version 2.0 in 2012 (Gröger et al. 2012, Gröger & Plümer 2012a).11  

CityGML is designed as a universal topographic information model describing the semantics, geometry, topology, 

and appearance of the most important urban and regional entities required for a broad range of UIM applications. 

The conceptual model of CityGML hereby employs the ISO/TC 211 19100 standards family for the conceptual 

modelling of geographic features. According to ISO 19109:2005 and the General Feature Model (GFM) specified 

therein, geographic features are abstractions of real world phenomena which are associated with a location relative 

to the Earth’s surface and which may have an arbitrary number of spatial and non-spatial properties. The GFM is 

a metamodel for the definition of conceptual feature models from a universe of discourse, and applies object-

oriented modelling principles in order to express taxonomies, aggregation hierarchies, and associations between 

features. The standard conceptual modelling language proposed by the GFM is UML. The value domain of spatial 

properties is defined by the ISO Spatial Schema (ISO 19107:2003) which facilitates the geometric-topological 

representation of features in up to three dimensions. The data exchange format of CityGML results from the rule-

based mapping of its conceptual model onto an application schema for the Geography Markup Language (GML 

version 3.1.1, Cox et al. 2012). GML provides an ISO 19118:2011 compliant XML encoding for the transport and 

storage of geographic information that adheres to the conceptual modelling framework of the ISO 19100 series, 

and is itself a joint development of ISO and OGC (ISO 19136:2007). A more detailed presentation of the mentioned 

ISO standards is given in chapter 4.3. 

CityGML is conceptually partitioned into modules whose architectural overview is given in figure 31. The vertical 

modules are dedicated to different thematic topics in semantic 3D city and landscape models, and thus define 

separate feature models for the representation of sites (i.e. buildings, tunnels, bridges), relief (i.e. digital terrain 

models), transportation, vegetation, land use and cover, water bodies, etc. The horizontal modules provide basic 

content and model structures common to all thematic modules such as the modelling of appearance information or 

extensions. A salient aspect of CityGML is its support for the multi-scale representation of urban features in five 

                                                           
8 See http://inspire.jrc.ec.europa.eu/ for more information. 

9 See http://www.sig3d.org/ for more information. 

10 See http://www.opengeospatial.org/ for more information. 

11 The author is actively involved in the CityGML development within OGC and the SIG 3D since 2007. Since 2008, the author 

is co-editor of the CityGML specification document. Moreover, since 2009, the author is vice chair of the CityGML Standards 

Working Group (SWG) in OGC which is in charge of future revisions of the standard.  
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consecutive levels of detail (LOD), which facilitates an increasing semantic differentiation and geometric granu-

larity of the feature representation from the coarsest LOD0 to the finest LOD4. The different LODs account for 

varying resolutions in existing data acquisition processes and, for example, allow for the efficient processing and 

visualization of features in different scales appropriate to an application in question (Kolbe 2009). 

 

Figure 31: Modularization of the CityGML data model. 

The modelling of buildings and facilities is provided through the Building module of CityGML. Semantic concepts 

as well as geometric representations of interior built structures and indoor spaces are only available in LOD4 of 

the conceptual building model, and hence this LOD implicitly underlies the following discussion. An excerpt of 

the building model in UML is shown below. The complete normative specification is given in (Gröger et al. 2012). 

 

Figure 32: Excerpt of the CityGML Building model (Gröger et al. 2012). 
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The central concept of the building model is _AbstractBuilding whose two subclasses are used to represent an 

entire building (Building) as well as its structural building parts (BuildingPart) that differ from the building in, for 

example, their number of floors or their roof type (e.g., wings of a building). Since _AbstractBuilding may have 

several building parts, recursive aggregation hierarchies of arbitrary depth are possible. The indoor space of an 

_AbstractBuilding is decomposed into non-overlapping free spaces (Room) which are defined as bounded volumes 

having a specific function (e.g., rooms, corridors). The boundary surfaces enclosing the Room volume are seman-

tically classified through the abstract BoundarySurface concept which differentiates between built boundaries 

(CeilingSurface, InteriorWallSurface, FloorSurface) and virtual ones (ClosureSurface). The same concept also 

identifies the boundary surfaces of the outer building shell but in this case is restricted to the use of RoofSurface, 

WallSurface, GroundSurface, OuterCeilingSurface, OuterFloorSurface, and ClosureSurface. Openings in bound-

ary surface are explicitly represented through the Window and Door feature types. A Room may have interior 

building installations (IntBuildingInstallation) which comprise, for example, beams, columns, and further fixed 

structural elements inside the free space, whereas movable objects such as furniture are captured by BuildingFur-

niture. Installations affecting the outer shell of a building (e.g., dormers, balconies) are modelled as BuildingIn-

stallation, and both outer and interior installations may be further decomposed into boundary surfaces. 

All semantic entities are transitively derived from _CityObject which is the top-level concept of the urban space 

taxonomy defined in CityGML. _CityObject itself is derived from the abstract GML superclass _Feature which 

implements the notion of a geographic feature in the sense of ISO 19109:2005 and hence classifies each city object 

as such. The 3-dimensional spatial representation of city objects is facilitated through a subset of the GML geom-

etry model in accordance with the ISO 19107:2003 standard. City objects are hereby described by their observable 

surface geometries which are composed to volumetric shapes applying an accumulative modelling principle. 

CityGML is thus said to be a surface-based model (cf. Nagel et al. 2009). Topological relationships between object 

geometries are limited to adjacency properties which are modelled by reusing the common surface geometries 

along which two city objects touch. Each city object can be assigned a unique identifier and provides thematic 

attributes which facilitate the modelling of symbolic information such as the name and description as well as the 

class, function, and usage of the object. Observable properties of surfaces that can be registered by specific sensors 

like RGB or infrared cameras can be represented as appearance information in addition to semantics and spatial 

properties. Appearances include texture images and material definitions (e.g., colours) but are not restricted to 

visual data. 

CityGML can be classified as hybrid space model, and the information about the interior built environment cap-

tured by the building model of CityGML obviously meets most of the conceptual requirements for indoor space 

models in the context of indoor navigation as discussed in chapter 2.2. The free space partitioning into Rooms 

conforms to cell-based hybrid approaches, and the surface-based representation of building entities agrees with 

the ontological structuring of indoor space along bona-fide and fiat boundaries as proposed by (Bittner 2001) and 

similar approaches (e.g.,Meijers et al. 2005, Slingsby & Raper 2008). Moreover, the space representation aligns 

with the human cognition of indoor space as embodied through the CONTAINER and SURFACE image schemas, and 

explicitly allows for modelling of architectural entities (e.g., rooms, corridors, doors, windows, stairs, etc.) as well 

as fixed and movable obstacles. However, and as stated above, CityGML is not specifically tailored to the purpose 

of indoor navigation and thus also neglects important navigational concepts. For example, the space representation 

follows from observations of built entities and hence does not include complementary space decompositions re-

flecting the mode of locomotion of the navigation user or alternative sensor spaces. Moreover, there is no explicit 

support for the qualitative modelling of connectedness and spatial containment relationships. Connectedness in-

formation between free spaces can only be implicitly deduced from the semantic associations relating rooms, 

boundary surfaces, and openings, or alternatively from their spatial configuration. In contrast to IFC, there is no 

concept for the representation of building floors, and spatial containment hierarchies can at most be expressed 

through CityGML’s notion of CityObjectGroups (cf. figure 31). A CityObjectGroup facilitates the grouping of 

city objects according to arbitrary spatial and non-spatial criteria, and may have its own defined spatial represen-

tation. Therefore it is suitable for denoting, for example, indoor spaces spanning several rooms and is in fact 

proposed by the CityGML specification for the modelling of floors (Gröger et al. 2012). Finally, CityGML does 

not include a graph-based conceptualization of indoor space, and lacks the consideration of user-contextual infor-

mation and navigation constraints.   

Nevertheless, and similar to BIM models, the spatio-semantic description of CityGML buildings may serve as 

input for symbolic, semantic, and spatial aspects of the presented indoor navigation models. CityGML-based UIM 
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models thus contribute as rich information source to the field of indoor navigation. Due to the large scale repre-

sentation of the urban and regional context and the use of a world coordinate reference system, they even provide 

the potential for a seamless combination of outdoor and indoor spatial information in navigation tasks (see also 

Lee & Zlatanova 2008).  

2.3.3 ESRI Building Interior Space Data Model (BISDM) 

The ESRI Building Interior Space Data Model (BISDM)12 is a conceptual data model for the representation of 2-

dimensional building floor plans which aims at supporting the planning and management of indoor spaces in the 

field of GIS on top of the proprietary ESRI software suite. The data model is meant as basic structure to support 

different perspectives on buildings such as architecture, construction, landscape-level planning, facility manage-

ment, environmental management, and security/emergency preparedness. The intention of the BISDM develop-

ment is hereby not to establish another international standard for building modelling but rather to provide a prac-

tical implementation for indoor space models which maps into existing standards such as CityGML or IFC wher-

ever applicable. In contrast to floor plans given in terms of purely geometric objects (e.g., legacy CAD models), 

the BISDM defines a conceptual framework that translates the elements of a floor plan to semantic entities with 

thematic and spatial properties as well as relationships.  

The BISDM is jointly developed by the company ESRI and the BISDM Group which is an independent and open 

committee with members from both the private and the public sectors. The work on the BISDM was launched in 

2007 and the latest version 3.0 of the conceptual data model was released in 2011. An excerpt of this conceptual 

data model is depicted in figure 33 as informal UML-based representation. Note that the BISDM is expressed in 

terms of ESRI objects and features, and thus does not employ the GIS standards from the ISO 19100 standards 

family.13  

 

Figure 33: Informal UML diagram of the ESRI BISDM (excerpt). 

The BISDM conceptually structures the interior of a Building along its contained Floor entities. Each floor is 

spatially described by a 2-dimensional polygon and may be assigned an elevation value through the property 

baseElevation in order to reliably stack several floors on top of each other. In case the elevation is not known, the 

verticalOrder attribute can be used instead. An instance of Floor can be decomposed into several sections (Floor-

Section) that represent logical or physical subdivisions such as wings, zones, or organizational units. A FloorSec-

tion is also represented as polygon which needs to be spatially contained within the Floor geometry. The Interior-

Space concept reflects the free spaces on a floor (or within a section) and therefore is used to model entities such 

as rooms, hallways, or staircases which are semantically differentiated through the properties type and category. 

Similar to Floor, every instance of InteriorSpace can be assigned a baseElevation. In addition, the most common 

                                                           
12 See http://www.bisdm.org/. 

13 A discussion of the ESRI feature model and its differences to the ISO 19100 standards family is out of scope of this thesis. 
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height of the space can be given as ceilingHeight property. By this means, a 3-dimensional view can be retrieved 

by simple extrusion operations. The material of both the ceiling and the floor can be encoded for the space as 

character strings through ceilingMaterial and floorMaterial. Further semantic information includes accessType 

restrictions (e.g., to denote public or private spaces), the total number of occupants allowed in this space (capacity), 

or the department and company division the space is associated with. All building elements on a floor such as 

walls, columns, doors, or windows use the concept FloorplanLine to describe their boundaries as a collection of 

straight line segments. FloorplanLine hence captures the lines that compose the floor plan. The BISDM does not 

impose a specific modelling paradigm for the representation of element boundaries. A wall, for instance, can be 

given by those lines that result from a projection of its visible or observable boundary surfaces. Alternatively, the 

boundary lines may completely enclose the footprint of the physical wall element or abstract from it using a cen-

treline representation. The type property of FloorplanLine is used to classify the boundary line. Moreover, every 

FloorplanLine can be assigned a baseElevation and a height value. Note that the boundary of a structural building 

element can be expressed by more than one FloorplanLine instance. A conceptual entity for representing the build-

ing element itself is however not provided.  

The proposed subdivision of the interior built environment along architectural entities captured by InteriorSpace 

obviously renders a partitioning of the free space into mutually non-overlapping cells with the FloorplanLine 

objects representing both their bona-fida and fiat boundaries. Spatial containment relationships can be expressed 

which may also denote logical groupings of interior spaces. The BISDM can hence be classified as cell-based 

hybrid indoor space model whose spatial and semantic expressiveness largely satisfies the information needs of 

most of the navigation space models from chapter 2.2. However, and similar to both IFC and CityGML, comple-

mentary decompositions of the interior environment which are not aligned with the architectural layout of the 

building are not foreseen.  

Starting from version 3.0, the BISDM includes a graph-based conceptualization of indoor space and additionally 

offers indoor routing capabilities based on the ESRI software suite. Precisely, corridors and hallways can be ab-

stracted by their centrelines (called FloorLines) which are combined to form a geometric network on each floor. 

The FloorLines are meant to connect the doors between different InteriorSpace objects such as rooms. However, 

the interior spaces themselves are not represented in the resulting geometric network. Thus, the network structure 

only allows for routing people or objects along the corridors from doors to doors but not within rooms, which lags 

behind the expressivity of the indoor space models discussed in chapter 2.2. Besides FloorLines, the BISDM 

network model defines FloorTransitions which connect FloorLines on different floors in order to enable multi-

level paths. The nested hierarchical structure of the interior environment is however not encoded in the navigation 

graph and thus not available for path planning or route guidance. The graph elements can be enriched with simple 

navigation constraints. For example, FloorLines can be marked with Boolean flags to encode whether or not they 

can be navigated by predefined user groups (e.g., wheelchair users). Likewise, restricted turns involving one up to 

three edges as well as time-based costs for individual edges can be modelled.  

The following figure 34 illustrates the BISDM navigation graph for an example indoor setting (taken from 

http://proceedings.esri.com/library/userconf/feduc11/papers/tech/bisdm_ver3_final_feduc_2011.pdf).  

 

Figure 34: BISDM navigation graph based on FloorLines (yellow edges on the left) and FloorTransitions (green edges on the 

right). 
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2.3.4 Geometric and Graphical Building Models 

Besides IFC, CityGML, and ESRI BISDM, also other standards and formats are being used for the representation 

of buildings and their interior built environment. With legacy 2-dimensional or 3-dimensional CAD models from 

the field of building design, architecture, and construction, an important group of geometric floor plan and building 

models has already been discussed in the context of BIM in chapter 2.3.1. Often, building models are also provided 

in computer graphics formats whose primary focus is on visualization and rendering. Examples are standardized 

formats such as X3D (ISO/IEC 19775-1:2008), VRML (ISO/IEC 14772-1:1997 and ISO/IEC 14772-2:2004) or 

COLLADA (ISO/PAS 17506:2012, Barnes & Finch 2008) but also include proprietary formats like 3D PDF or 

3D Studio Max. A third group is given by geovizualization standards and formats such as OGC KML (Wilson 

2008) which likewise aim at the visualization of (geographic) objects including buildings. 

Indoor space models represented according to one of these standards or formats can be classified as purely geo-

metric space models and thus lack the semantic and symbolic properties and structures which are required in the 

context of indoor navigation (cf. chapter 2.1.4). Moreover, visualization formats target at and are optimized for an 

efficient encoding of the geometric and graphical aspects of the visible objects within the interior built environ-

ment. In contrast to geometric space models for indoor navigation as discussed in chapter 2.1.2, they hence neglect 

the explicit representation of the spatial location and extent of architectural entities such as rooms, corridors, walls, 

and obstacles but merely describe the geometry and appearance of visible surfaces of the built structure (e.g., wall, 

floor, and ceiling surfaces that are visible from inside a room). The semantic qualification of visualization models 

thus requires techniques from object recognition and interpretation, and is often impeded by geometric-topological 

inconsistencies (e.g. overlaps, self-intersection, overshoots, undershoots) as well as inaccurate and incomplete 

geometric descriptions (cf. Nagel et al. 2009). Although geometric CAD models naturally represent the geometry 

of architectural entities, they likewise are subject to semantic interpretation in order to serve as input for indoor 

navigation. Due to these reasons, a more detailed description of the standards and formats for geometric and graph-

ical building models is beyond the scope of this thesis.  

2.4 Requirements for Indoor Navigation 

Following on from the presentation of challenges to indoor navigation in chapter 1.2 and the subsequent survey of 

existing approaches to indoor space modelling in the previous sections, this section elaborates on general require-

ments for indoor space models for indoor navigation. Obvious and commonly agreed needs such as rich hybrid 

information about the indoor space (e.g., quantitative, qualitative, and symbolic information) are not listed sepa-

rately.  

Notion of indoor space. Most approaches to indoor space modelling for the purpose of indoor navigation pre-

sented in chapter 2.2 built upon a notion of indoor space that only addresses the topographic space and thus the 

description of the interior built environment, its fixed physical structure and the spatial entities therein (Becker et 

al. 2009a, Worboys 2011). The indoor space models being used range from layered 2-dimensional building floor 

plans to 3-dimensional models of the interior built-up space with differing richness and expressivity in their geo-

metric, topological, semantic, and symbolic space representations. The subdivision of the topographic space is 

commonly aligned with the structural building elements and architectural constraints in order to derive physical 

regions of free space facilitating path planning and symbolic addressing.  

Often, the sensor characteristics of a given indoor positioning technology such as Wi-Fi, RFID, or Bluetooth are 

mixed within the topographic space representation (e.g., as attributes on topographic spaces or as decomposition 

criterion for topographic spaces) to enable the localization of persons or objects. Although both modelling aspects 

are essential to indoor navigation as they address two main navigation tasks, their mixed representation within a 

single topographic space model faces severe disadvantages (Nagel et al. 2010). First, changes to the building layout 

(e.g., closing a door permanently or subdividing a room into two parts through a new wall) obviously affect path 

searches but not necessarily have an impact on the deployment or the sensor characteristics of an available locali-

zation infrastructure. Likewise, changes to the localization infrastructure do not influence the building topology. 

However, such changes cannot be captured separately but rather affect the entire space model in case topographic 

and sensor-specific aspects are combined and aligned in a single representation. Second, the resulting indoor space 

models typically lack the flexibility that would allow a context-dependent ad-hoc selection of different localization 

technologies. A large number of the presented topographic space models even completely neglects the additional 

representation of sensor characteristics and hence fails to answer substantial challenges to indoor navigation as 

identified in chapter 1.2. 
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If the topographic space is understood as the built-up space constituted by the architectural entities, then the struc-

turing of indoor space along the sensor characteristics of a localization infrastructure consequently renders a com-

plementary sensor space. Thus, topographic space and sensor space are to be seen as alternative notions of indoor 

space which result in substantially different and independent space representations. In fact, every localization 

technology installed in an interior environment, and even each individual sensor or transmitter of such an infra-

structure defines a separate sensor space. The decoupled modelling of topographic space and possibly multiple 

sensor spaces is a prerequisite for overcoming the issues of their mixed representation, and may serve as basis for 

the support for different and multiple localizations technologies in an indoor navigation system. In their ontological 

classification of indoor space, (Bhatt et al. 2009) also name topographic object spaces and complementary sensor 

range spaces as distinct spatial concepts, and the approach of (Jensen et al. 2009) comes closest to the idea of their 

separate modelling.  

Both topographic and sensor spaces are subject to physical observations and measurements. An indoor space par-

titioning however may also result from additional thematic or logical criteria such as environmental contextual 

information or navigation constraints. Examples such as security zones, disaster areas, or fire detector zones are 

rather to be seen as virtual entities which can be assigned a spatial extent but need not follow the architectural 

layout or the partitioning schema of topographic space (cf. chapter 1.2). The spatial configurations of virtual enti-

ties following from logical space decompositions hence determine separate logical spaces which again are com-

plementary to the decomposition of indoor space along physical criteria (Becker et al. 2009b). However, if envi-

ronmental contextual information is considered at all, none of the presented approaches explicitly represents log-

ical spaces as such, but rather maps them onto properties of physical places or their equivalences in graph-based 

conceptualizations. This modelling approach generally faces the same weakness as the mixed representation of 

topographic and sensor space since logical space information and topographic space entities are enforced to be 

strictly coupled and aligned. For example, if a security zone only covers parts of a room, the room topography is 

commonly partitioned into correspondingly many subdivisions in order to attributively represent their access re-

strictions instead of representing both the room and the security zone as spatial entities in their own right. It obvi-

ously follows that any changes to the building layout or the complementary logical space partitioning may possible 

require a restructuring of the entire model. 

While path planning requires a model of the topographic indoor space as well as additional thematic or logical 

decompositions in order to obtain navigable route sections, localization methods require corresponding sensor 

space representations. An indoor space model for the purpose of indoor navigation hence must support alternative 

space representations for complementary notions of indoor space as well as their common evaluation in different 

navigation tasks.  

Multi-granular representation of indoor space. Besides alternative notions of indoor space, the space represen-

tation has to account for navigable and non-navigable areas within physical places and architectural units at an 

appropriate level of granularity in order to derive navigable route sections for different types of users and alterna-

tive modes of locomotion (e.g., walking, driving, or flying). Grid-based approaches naturally apply a fine-grained 

but rigid cell decomposition of the topographic space and (Yuan & Schneider 2011) demonstrate how to geomet-

rically evaluate the navigability of grid cells for arbitrarily shaped users in path queries. Cell-based and conceptual-

based hybrid approaches also recognize the need for subspacing the free topographic spaces into smaller regions 

at least in case of large halls or long corridors. In most cases, the subspacing follows purely spatial considerations 

though (e.g., medial axis transforms or straight lines of sight) and is commonly proposed in order to map complex-

shaped architectural entities onto several elements in a navigation graph. The resulting graph structures already 

facilitate the planning of more fine-grained paths and space trajectories as well as the generation of more precise 

route descriptions.  

However, complementary decompositions of indoor space for pedestrians, wheelchair users, driving or flying au-

tonomous robots, or along additional user-centric or environmental criteria result in multiple and different config-

urations of navigable and non-navigable spaces. A single and fixed granularity of the space representation together 

with attributes for topographic spaces denoting their navigability as proposed by most research works is hence not 

sufficient to account for the various configurations. In fact, none of the presented indoor space models supports 

multiple and complementary subdivisions of topographic space according to arbitrary criteria. Moreover, range 

queries as well as multi-level path queries and route descriptions rely on multiple levels of detail that additionally 

capture the hierarchical structuring of the interior built environment into, for example, floors and wings. The fine-
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grained representation of navigable and non-navigable spaces apparently needs to be related to spatial aggregates 

on coarser levels of the hierarchy along containment and overlap relationships. A large number of the presented 

grid-based and cell-based approaches however restrict their space decompositions to non-overlapping cells and 

thus are not capable of representing spatial hierarchies.  

The multi-granular representation of indoor space is to be seen as an essential requirement for indoor navigation, 

and renders a prerequisite for the challenge of context-dependent path planning. The identification of navigable 

spaces is hereby supported by rich spatial and semantic information about the interior environment including the 

explicit modelling of navigation obstacles. In order to detect low passages or obstacles suspended from ceilings 

both of which may obstruct movement in specific contexts (e.g., in case of flying objects) their accurate 3-dimen-

sional geometric description needs to be available.  

Mathematically sound graph-based conceptualization of indoor space. A graph-based conceptualization re-

flects the organization of indoor space through a combinatorial model which can be fed to a range of existing 

algorithms for answering navigation queries such as path queries, range queries, or nearest neighbour queries. The 

derivation of graph structures from the indoor space representation hence renders a core requirement in the context 

of indoor navigation, and corresponding mappings are proposed by almost all modelling approaches. 

The navigation graph primarily has to encode the possibility to move between topographic or logical (sub)spaces 

in order to enable path searches. The majority of approaches apply place graphs for this purpose. Although the 

relation between the physical places and the nodes in the place graph as well as the translation of connectedness 

relationships onto edges is intuitively understood in most cases, the mappings from 2-dimensional or 3-dimen-

sional models of the interior environment to graph-based conceptualizations are rarely defined in a formal mathe-

matical framework but often remain on a descriptive level. A single place is usually associated with a single graph 

node but this simple rule is already violated in case of complex corridors which are typically mapped onto several 

graph elements without providing corresponding subspaces (cf. previous requirement). Actually, most approaches 

already lack a formal definition of what places and their connectedness mean in a mathematical sense, and rather 

depend on a priori semantic and functional knowledge about the spatial entities. This often impedes a (semi-)au-

tomatic and deterministic derivation and verification of place graphs, and the same interior built environment may 

even be captured by different graph structures for the same approach in case a sound functional dependency be-

tween the representation of the building topography and the corresponding place graph is missing (Nagel et al. 

2010). Similar issues can be observed for approaches employing visibility criteria instead of connectedness to 

build their navigation graph, and in the context of mapping hierarchical space structures onto an appropriate graph-

based representation. The latter is often defined decoupled from a place graph of the indoor space although it 

encodes the same spatial entities at least on one level of its hierarchy. 

The most formally developed methods for the derivation of place graphs are presented in the dual-graph-based 

works of (Lee 2001) and (Boguslawski & Gold 2009). Both proposals though lack a sound framework for the 

hierarchical graph-based conceptualization of indoor space, for which a formal definition is given by (Stoffel et 

al. 2007). However, none of the presented approaches supports a mathematical sound derivation of an integrated 

graph structure that maps different and multiple space concepts and decompositions as postulated in the above 

requirements.  

Navigation context. Limited work has been undertaken in literature to formalize a conceptual model for user or 

environmental contextual information and navigation constraints. As mentioned above, the environmental context 

is mostly proposed to be mapped as attributes of corresponding topographic spaces or their graph representation 

which is disadvantageous in case the contextual information is not aligned with the physical places. Moreover, 

complex constraints involving more than one spatial entity as well as combined constraints applying more than 

one constraint to a single spatial entity are rarely discussed. Examples for complex constraints are prohibited ma-

neuvers which play an important role in outdoor car navigation systems as they declare an ordered sequence of 

connected road and junction elements to be non-navigable, which is also relevant to indoor navigation applications. 

Combined constraints, on the other hand, are required to express the combination of different types of constraints 

such as temporal constraints and access restrictions on architectural units. For example, a combined constraint on 

an office room could denote that the office is only accessible between 9am and 5pm and may only be entered by 

authorized personnel. Most approaches acknowledging the need for contextual information focus on the reasoning 
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about this knowledge (e.g., Anagnostopoulos et al. 2005, Stoffel et al. 2007) but do not address its formal presen-

tation or the ontological structuring and classification of navigation constraints. Moreover, dynamic aspects and 

changes of the navigation context are neglected in most research works. For example, areas monitored by fire 

detectors may temporarily affect the navigable space. In case of a fire incident, the monitored area (which is rather 

a logical than a topographic space) has to be avoided in planning escape routes for normal users, and additional 

navigation constraints such as security zones may need to be temporarily overruled in order to find the paths to the 

closest exits. In contrast, users with a different context such as fire fighter forces need to be directly navigated to 

the fire spot and corresponding paths may include obstacles such as closed doors or walls which can be easily torn 

down. 

Supporting the navigation context mainly requires an indoor space model to facilitate the ad-hoc selection and 

simultaneous consideration of the navigable and non-navigable topographic spaces matching the mode of locomo-

tion of the user, the logical spaces representing environmental contextual information affecting or constraining the 

movement of the user, the sensor spaces of the localization technologies supported both by the environment and 

the mobile end-user device, as well as additional spatial or thematic user constraints and preferences. However, in 

most approaches the navigation context is restricted to one or a limited subset of possible configurations in order 

to match a given use case and navigation scenario. By this means, the combinatorial complexity is a priori reduced 

to a single and rigid navigation setting. Localization and tracking methods as well as indoor space models and 

route planning strategies are then tailored to that specific navigation context. Although the approaches are naturally 

well suited for their specific setting, they lack the flexibility and methods to support additional configurations such 

as further modes of locomotion, additional localization technologies, or multiple navigation constraints. 

The minimum requirements for an indoor navigation systems and its underlying model of indoor space are sum-

marized in the following list: 

 Support for different and multiple localization methods and infrastructures based on arbitrary indoor sen-

sor technologies; 

 Support for different and multiple representations of navigable and non-navigable spaces according to 

various modes of locomotion and navigation contexts; 

 Support for different and multiple representations of logical and thematic spaces that are not necessarily 

aligned with the physical built structure or subject to physical observations; 

 Support for hierarchical and nested structures of space; 

 Support for the representation and evaluation of both environmental and user-contextual navigation con-

straints; 

 Support for the ad-hoc selection and combination of available localization technologies supported by the 

mobile end-user device and appropriate representations of (non-)navigable and logical spaces matching 

the individual navigation context of a moving person or object; and 

 Mathematical sound framework defining the fundamental notion of space and its deterministic graph-

based conceptualization.  

It can be concluded from the survey of existing approaches to indoor navigation that although the postulated chal-

lenges and requirements are often addressed and partially answered there is no one model of indoor space which 

fully facilitates localization and path planning in multiple navigation contexts. 

2.5 Mathematical Background 

A sound mathematical framework has been identified as an essential requirement to indoor space modelling for 

indoor navigation in the previous section and also renders a main goal of this thesis. The work undertaken in this 

thesis mainly draws from mathematical fields such as topology, manifold theory, and graph theory. In the follow-

ing sections, basic notions and concepts from these fields are recapped and important terms, symbols, and defini-

tions are fixed. The definitions and results presented here are mostly adapted from (Munkres 1984), (Hatcher 

2008), (Lee 2011), (Jänich 2012), and (Morris 2012). Since definitions and terminology differ in literature, a con-

sistent and comprehensive presentation of the applied theory is given in appendix A. The chapters 2.5.1.1 to 2.5.1.3 

provide a brief summary overview of this appendix. 
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2.5.1 Basic Notions and Concepts from Topology 

Topology is the branch of mathematics studying the characteristics of geometric figures that remain invariant under 

a given class of elastic deformations such as bending, stretching, twisting, and shrinking but not cutting or tearing 

apart. Whereas geometry mostly deals with the shape and metric properties of figures (e.g., length, distance, angle) 

and only considers two figures to be equivalent if they can be moved into each other by a rigid motion, topology 

can rather be viewed as qualitative geometry which considers two figures to be equivalent if they can be trans-

formed into one another by continuous deformations (hence, topology is also called “rubber sheet geometry” or 

“the mathematics of continuity”). The French mathematician Henri Poincaré (1854 – 1912) who fundamentally 

contributed to the field of topology gave the following graphical and intuitive explanation: 

“Imagine any sort of model and a copy of it done by an awkward artist: the proportions are 

altered, lines are drawn by a trembling hand and are subject to excessive deviation and go off 

in unexpected directions. From the point of view of metric or even projective geometry these 

figures are not equivalent, but they appear as such from the point of view of geometry of position 

[that is, topology].” (Monastyrsky 2008, p. 95). 

From the different branches of topology which have evolved over time and which are distinguished in literature, 

this thesis is mainly concerned with point-set topology and algebraic topology. Point-set topology is closely linked 

to set theory and deals with the definition of the abstract nature and characteristics of topological spaces in general 

(cf. chapter 2.5.1.1). It hence provides the basis for all other branches of topology. Algebraic topology associates 

algebraic structures with topological spaces in order to systematically study the properties of a narrower class of 

spaces called topological manifolds (cf. chapter 2.5.1.2). Combinatorial topology as subset of algebraic topology 

applies combinatorial methods to construct such spaces from simpler ones. The resulting combinatorial structure 

allows for reasoning about the invariant properties classifying the topological space itself and helps to accelerate 

their algorithmic computation (cf. chapter 2.5.1.3). One of the earliest theorems in algebraic topology is the Poin-

caré duality theorem on the duality of combinatorial structures on manifold spaces. Since this theorem is at the 

core of the mathematical formalization work in this thesis, it is presented in more detail in chapter 2.5.1.4. 

Especially in the field of geographic information science, the practical use of topology is twofold (Zlatanova 2000). 

First, topology provides the tool to define the intrinsic properties of spatial objects (e.g., points, curves, surfaces, 

solids) that form the primitives for describing the spatial aspects of real-world objects and phenomena. Second, 

topology is used as formalism for categorizing the invariant topological relationships between two such objects 

(e.g., overlap, adjacency) which are induced by their spatial configuration and categorized based on the intersection 

of their interiors, boundaries, and exteriors as defined in point-set topology.14 Mathematical models for classifying 

the topological relationships are the well-known 4-intersection model (4IM) as well as its extension to the (dimen-

sionally extended) 9-intersection model (DE-9IM) (cf. appendix A.6).  

In this thesis, both aspects play a role within the mathematical formalization of the spatio-semantic indoor space 

model. On the one hand, topological manifolds are used to model the partitioning of indoor space into smaller, 

well-behaved spaces reflecting, for example, the navigable free spaces and non-navigable obstacle spaces within 

the interior built environment or the coverage areas of sensors from a given localization technology. Based on 

methods from algebraic topology, a combinatorial structure, namely a CW complex, is imposed on the manifold 

spaces in order to describe them in a computationally efficient manner and to derive both a dual structure and a 

graph-based representation of indoor space based on the Poincaré duality. On the other hand, the notions of con-

nectedness and containment that are relevant in navigation tasks and that occur between the spaces are precisely 

defined based on classification schemes for topological relationships. 

2.5.1.1 Topological Spaces 

In point-set topology, a topological space is defined as pair (𝑋, 𝒯) where 𝑋 is a set and 𝒯 is a family of subsets of 

𝑋 such that 1) 𝑋 and the empty set ∅ belong to 𝒯, 2) the union of any (finite or infinite) collection of sets in 𝒯 

                                                           
14 Also alternative methods such as Region Connection Calculus (RCC) have been proposed for the classification of spatial 

relationships, not least because the concept of a space as defined in point-set topology is seen to be generalized far beyond an 

intuitive meaning (e.g., Gotts et al. 1996). However, the set-theoretic definition of topological relationships is largely accepted 

in literature and implemented in GIS systems. 
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belongs to 𝒯, and 3) the intersection of any finite collection of sets in 𝒯 belongs to 𝒯. 𝒯 is called the topology on 

𝑋. The elements of a topological space are said to be points regardless of their actual nature.  

The members of 𝒯 are called open sets. For every point 𝑥 ∈ 𝑋, an open subset 𝑂 ∈ 𝒯 containing 𝑥 is called an 

(open) neighbourhood of 𝑥. The complements to the open sets in 𝑋 are said to be closed sets. A point 𝑥 ∈ 𝑋 is said 

to be a limit point of a subset 𝑆 of 𝑋, if every open neighbourhood of 𝑥 contains a point of 𝑆 different from 𝑥. A 

subset 𝑆 of 𝑋 is closed iff (if and only if) it contains all its limit points.  

Given a subset 𝐴 of 𝑋, the closure of 𝐴, denoted �̅�, is the smallest closed set containing 𝐴. The interior 𝐼𝑛𝑡(𝐴) is 

the union of all open sets which lie entirely in 𝐴. The exterior 𝐸𝑥𝑡(𝐴) = 𝑋 ∖ �̅�  is the complement of the closure 

of 𝐴 in 𝑋. The boundary 𝜕𝐴 = �̅� ∖ 𝐼𝑛𝑡(𝐴) is the closure of 𝐴 without the interior of 𝐴. It follows that the interior, 

exterior, and boundary are disjoint sets. A subset 𝑌 of 𝑋 can be viewed as topological space in its own right. 

Precisely, if 𝑌 is a non-empty subset of a topological space (𝑋, 𝒯) then the topological space (𝑌, 𝒯𝑌) is said to be 

a subspace of (𝑋, 𝒯) with the subspace (or induced) topology 𝒯𝑌 whose open sets are of the form 𝒯𝑌 = {𝑂 ∩ 𝑌: 𝑂 ∈

𝒯}.    

The notion of neighbourhood is one of the most fundamental concepts in point-set topology and expresses a qual-

itative closeness relation between a point and a set. In order to measure the closeness between points or neighbour-

hoods in a quantitative way, a metric is required as additional structure on the topological space. A natural example 

is the Euclidean metric which is based on the standard inner product of a vector in the 𝑛-dimensional real vector 

space ℝ𝑛 and the derived Euclidean distance between any two vectors 𝑥, 𝑦 ∈ ℝ𝑛 given as 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ =

√(𝑥1 − 𝑦1)
2 + … + (𝑥𝑛 − 𝑦𝑛)

2. The Euclidean metric induces a topology 𝒯𝔼 on ℝ𝑛 as consequence of defining 

a neighbourhood of a point 𝑥 ∈ ℝ𝑛 to be a set of the form 𝐵𝑛(𝑥, 𝑟) = {𝑦 ∈ ℝ𝑛 | ‖𝑦 − 𝑥‖ < 𝑟} with 𝑟 ∈ ℝ+. The 

set 𝐵𝑛(𝑥, 𝑟) is called an open 𝑛-ball centred at 𝑥. Every open set 𝑂 ∈ 𝒯𝔼 can be generated as the union of open 𝑛-

balls which makes the collection of open 𝑛-balls a basis 𝔅 for the topology 𝒯𝔼. Conversely, the set �̅�𝑛(𝑥, 𝑟) =

{𝑦 ∈ ℝ𝑛 | ‖𝑦 − 𝑥‖ ≤ 𝑟} is said to be the closed 𝑛-ball about  𝑥 which is closed in 𝒯𝔼. The topology 𝒯𝔼 induced by 

the Euclidean metric is called the Euclidean or standard topology on ℝ𝑛. The topological space (ℝ𝑛, 𝒯𝔼) is referred 

to as 𝑛-dimensional Euclidean space and is commonly denoted as just ℝ𝑛 with the Euclidean structure being 

understood. 

Euclidean 𝑛-space ℝ𝑛 as well as subspaces thereof with the induced topology are second-countable Hausdorff 

topological spaces. The property of being second-countable requires both a countable basis 𝔅 and that any two 

distinct points in the space are separated by open neighbourhoods. A subset 𝐴 of ℝ𝑛 is said to be bounded if it can 

be covered by a single open 𝑛-ball, i.e. 𝐴 ⊆ 𝐵𝑛(𝑥, 𝑟) for 𝑥 ∈ 𝑋 and 𝑟 > 0. The boundedness property provides a 

measure of how far the set extends in space. In metric spaces, boundedness is implied by compactness which can 

be seen as the topological generalization of the notion of finiteness (Lee 2011). The Heine-Borel theorem states 

that a subspace 𝐴 ⊂ ℝ𝑛 is compact iff it is closed and bounded. Open 𝑛-balls in ℝ𝑛 as well as ℝ𝑛 itself are exam-

ples for non-compact spaces. A topological space (𝑋, 𝒯) is said to be disconnected iff there are non-empty disjoint 

open subsets 𝐴, 𝐵 ⊂ 𝑋 whose union represents 𝑋, and connected otherwise. 

Two topological spaces (𝑋, 𝒯) and (𝑌, 𝒯𝑌) are topologically equivalent if there exists a homeomorphism of one 

onto the other (written as 𝑋 ≅ 𝑌). Homeomorphism is the most fundamental relation in topology and requires a 

function 𝑓: 𝑋 → 𝑌 to be bijective and both 𝑓 and 𝑓−1 to be continuous. Continuity is expressed in terms of open 

sets such that for each open set 𝑈 in 𝑌 the inverse image 𝑓−1(𝑈) has to be open in 𝑋, and thus 𝑓−1(𝑈) ∈ 𝒯. A 

property of a topological space which is preserved under homeomorphisms is called topological property or top-

ological invariant. Examples for invariant properties are compactness and neighbourhoods. A both injective and 

continuous map 𝑓: 𝑋 → 𝑌 is called an embedding of the topological space (𝑋, 𝒯) into (𝑌, 𝒯𝑌) if it induces a home-

omorphism between 𝑋 and the subspace 𝑓(𝑋) ⊆ 𝑌. Since the image 𝑓(𝑋) is contained in 𝑌, the embedding 𝑓:𝑋 →

𝑌 allows 𝑋 to be treated as subspace of 𝑌 with the topology induced by 𝑌.   

2.5.1.2 Topological Manifolds 

An 𝑛-dimensional topological manifold 𝑀, or simply 𝑛-manifold, is a second-countable Hausdorff space in which 

each point has an open neighbourhood homeomorphic to either an open subset of ℝ𝑛 or to an open subset of the 

half-space ℝ+
𝑛 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ

𝑛 | 𝑥𝑛 ≥ 0}, for some non-negative integer 𝑛. The prototypical example of an 

𝑛-manifold is ℝ𝑛 itself with the standard topology. The set of points in 𝑀 which have an open neighbourhood 
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homeomorphic to an open 𝑛-ball is called the interior of 𝑀 denoted by Int(𝑀). The boundary 𝜕𝑀 of 𝑀 is the set 

𝜕𝑀 = 𝑀 ∖ 𝐼𝑛𝑡(𝑀). In case the set of boundary points is empty, 𝑀 is said to be an 𝑛-dimensional manifold without 

boundary. The boundary of an 𝑛-manifold with boundary is exactly an (𝑛 − 1)-manifold without boundary.  

The manifold interior and boundary are not to be confused with the notion of topological interior and boundary 

as defined in general point-set topology (cf. previous section). The latter notion is only applicable if the manifold 

is viewed as subset of a larger ambient topological space but not necessarily coincides with its manifold interior 

and boundary. A manifold without boundary is called closed if it is compact, and open if it is non-compact. Again, 

both terms must not be confused with the set-theoretic notion of open and closed subsets of a topological space. 

This thesis is concerned only with topological 𝑛-manifolds living in ℝ2 respectively ℝ3, with 0 ≤ 𝑛 ≤ 3, and with 

the induced standard topology. Examples are shown in figure 35. The circle (closed loop) is a 1-manifold and the 

open disk is a 2-manifold both of which have an empty boundary. The closed unit 3-ball �̅�3 about the origin is a 

3-manifold with boundary whose boundary is the unit 2-dimensional sphere 𝕊2.  

 

Figure 35: Examples of topological manifolds (from left to right: the 1-sphere 𝕊1, the open 2-disk 𝔹2, the 2-sphere 𝕊2, and 

the 3-ball �̅�3). 

Counterexamples of non-manifold spaces are the union of the 𝑥-axis and the 𝑦-axis in ℝ2, the conical surface in 

ℝ3, and the space described by two cuboids sharing a common edge in ℝ3, all with their Euclidean topology. 

 

Figure 36: Examples of non-manifold spaces which are not locally Euclidean at every point (depicted in red).  

2-dimensional topological manifolds are synonymously called surfaces in literature and play an important role in 

the context of spatial modelling. Fundamental examples are the sphere 𝕊2 and the torus 𝕋2 which belong to the 

family of compact, connected 2-manifolds without boundary whose members are equivalently called closed sur-

faces. Closed surfaces can be classified up to homeomorphism by their genus and their orientability which hence 

are topological invariants. The genus is equal to the maximum number of disjoint simple closed curves which can 

be cut from the closed surface without disconnecting it. For example, the sphere has genus 0 whereas the torus has 

genus 1. If a connected surface is orientable, it is possible to distinguish two sides that are commonly called front-

side and back-side. This is not possible in the non-orientable case and non-orientable closed surfaces cannot be 

embedded in ℝ3 without self-intersections (Gröger & Plümer 2011a). Famous examples for non-orientable sur-

faces are the Möbius strip and the Klein bottle. Members of the family of compact surfaces with boundary can be 

obtained from closed surfaces by cutting one or more holes (i.e., open disks) into the latter. This yields one or more 

disjoint circles as boundary components for the resulting compact surface. Examples are the closed disk �̅�2 (sphere 

with one hole) or the annulus (sphere with two holes). The number of boundary components is a topological prop-

erty. 

( )

(
)
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Figure 37: Examples of surfaces (from left to right: the torus 𝕋2 with one cutting curve drawn in red, the Möbius strip, the 

closed 2-disk �̅�2 having one boundary component, and the annulus having two boundary components). 

Compact, orientable surfaces with or without boundary can be classified based on their Euler characteristic (cf. 

theorem A.85 and theorem A.87). Precisely, for a member 𝑀 of the family of compact, orientable surfaces the 

Euler characteristic χ(𝑀) is given as χ(𝑀) = 2 − 2𝑔 − ℎ where 𝑔 denotes the genus and ℎ the number of holes 

of the surface. For example, the 2-sphere 𝕊2 has Euler characteristic χ(𝕊2) = 2 − 2 ∙ 0 − 0 = 2 whereas the closed 

disk has χ(�̅�2 ) = 2 − 2 ∙ 0 − 1 = 1. The Euler characteristic renders a topological invariant. 

3-manifolds are essential objects for mathematically describing 3-dimensional solid (volumetric) spatial objects 

embedded in ℝ3. In literature, a single-shell manifold solid (or simply manifold solid) is commonly defined to be 

a non-empty, connected, compact 3-manifold with boundary embedded in ℝ3 whose boundary is a closed, oriented 

2-manifold tamely embedded in ℝ3 (e.g., Mäntylä 1988 and appendix A). The orientation of the boundary induces 

an orientation on the manifold solid itself. It follows from the Jordan-Brouwer separation theorem that the bound-

ary surface separates ℝ3 into exactly two disjoint connected components. One component obviously is equal to 

the interior of the manifold solid whereas the other denotes the unbounded ambient space of the manifold solid in 

ℝ3 (commonly called the exterior). A tame embedding of the boundary surface ensures that the ambient space is 

simply connected, which rules out pathological cases that do not conform to an intuitive spatial understanding such 

as the Alexander horned sphere. A 𝑘-shell manifold solid is a non-empty compact 3-manifold embedded in ℝ3 

with 𝑘 ≥ 1 boundary components whose disjoint union is a compact, oriented 2-manifold without boundary 

tamely embedded in ℝ3. A single-shell manifold solid obviously is the special case of a 𝑘-shell manifold solid for 

𝑘 = 1. A connected 𝑘-shell manifold solid 𝑀 is a 𝑘-shell manifold solid whose interior 𝐼𝑛𝑡(𝑀) is restricted to be 

connected. In case 𝑘 > 1, 𝑀 is said to have 𝑘 − 1 internal voids. 

 

Figure 38: Examples of manifold solids (from left to right: a 1-shell manifold solid being homeomorphic to �̅�3, a 1-shell 

manifold solid with through hole, and a connected 2-shell manifold solid with one internal void). The Alexander horned sphere 

(right) is no manifold solid although it is likewise homeomorphic to �̅�3. 

The members of the family of 𝑘-shell manifold solids can be classified up to homeomorphism based on their first 

three Betti numbers (cf. theorem A.94). In general, the Betti numbers allow for counting the number of holes of 

different dimensions in an orientable, compact 𝑛-manifold 𝑀 with the first Betti number 𝛽0(𝑀) denoting the 

number of connected components, 𝛽1(𝑀) denoting the number of 2-dimensional holes, and 𝛽2(𝑀) denoting the 

number of 3-dimensional holes. It can be shown that the alternating sum of the Betti numbers equals the Euler 

characteristic of such spaces (cf. theorem A.95). For example, the Euler characteristic of a 1-shell manifold solid 

being homeomorphic to �̅�3 results in χ(�̅�3) = 𝛽0(𝑀) − 𝛽1(𝑀) + 𝛽2(𝑀) = 1 − 0 + 0 = 1. For a connected 2-

shell manifold solid 𝑀 with one internal void (cf. right of figure 38) the Euler characteristic evaluates to χ(𝑀) =

1 − 0 + 1 = 2. 

2.5.1.3 Cell complexes and CW complexes 

In algebraic topology, topological spaces are often constructed by gluing together subsets nicely along their bound-

ary. The primary building blocks are cells of dimension 𝑛. An open 𝑛-cell is any topological space homeomorphic 

to the open unit 𝑛-ball 𝔹𝑛. Analogously, a closed 𝑛-cell is homeomorphic to the closed unit 𝑛-ball �̅�𝑛.  
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A cell complex is given by a pair (𝑋, ℰ) where 𝑋 is a topological Hausdorff space together with a partition ℰ of 𝑋 

into subspaces that are open cells of various dimensions and whose disjoint union is 𝑋 (called cell decomposition 

of 𝑋). For each open 𝑛-cell 𝑒 ∈ ℰ and 𝑛 ≥ 0, there exists a continuous map 𝜙𝑒: �̅�
𝑛 → 𝑋 (called the characteristic 

map for 𝑒) that restricts to a homeomorphism from 𝐼𝑛𝑡(�̅�𝑛) onto 𝑒, and maps 𝜕�̅�𝑛 into the union of all cells of ℰ 

of dimension strictly less than 𝑛. More intuitively, cell complexes can be defined by an inductive construction 

process. Starting with the empty set ∅, a discrete space 𝑋0 is built from attaching one or more disjoint 0-cells. 𝑋1 

results from the union of 1-cells whose boundaries are identified to lie on these points. Attaching 2-cells forms a 

new space 𝑋2 by mapping the boundary of each 2-cell into the collection of cells of lower dimension, and so on. 

The subspace 𝑋𝑛 ⊆ 𝑋 consisting of the union of all cells in ℰ of dimension less or equal to 𝑛 is said to be the 𝑛-

skeleton of the cell complex.  

A CW complex is a cell complex for which the closure of each cell is contained in a union of finitely many lower 

dimensional cells and which has the weak topology, i.e. each closed subset has a closed intersection with every 

cell closure. Cell complexes having a finite number of cells are inherently CW complexes. A CW complex (𝑋, ℰ) 

is said to be regular if the image of the characteristic map 𝜙𝑒 of each open cell 𝑒 ∈ ℰ is equal to a closed cell and 

each open cell meets every 0-cell in ℰ at most once. It is said to be proper iff the non-empty intersection of any 

two closed cells in 𝑋 is also a closed cell. Different CW decompositions of the unit 2-sphere 𝕊2 are illustrated in 

the following figure. 

 

Figure 39: Different CW decompositions of the 2-sphere 𝕊2 (from left to right: minimal CW complex with one 0-cell and one 

2-cell, regular CW complex with two cells per dimension, and proper CW complex containing six 0-cells, twelve 1-cells, and 

eight 2-cells). 

Following from one of the earliest results in surface theory it can be shown that the Euler characteristic of the 

topological space underlying a finite CW complex is equal to the alternating sum of the numbers of cells in each 

dimension. Precisely, for a finite CW complex (𝑋, ℰ) of dimension 𝑛, the Euler characteristic of 𝑋 is given by 

χ(𝑋) = ∑ (−1)𝑘𝑐𝑘
𝑛
𝑘=0 , where 𝑐𝑘 denotes the number of 𝑘-cells in the CW decomposition of 𝑋. For example, for 

the minimal CW decomposition of the 2-sphere 𝕊2 as shown on the left of figure 39 we get χ(𝕊2) = 1 − 0 + 1 =

2 (which is also yielded for the further examples in figure 39). Since the Euler characteristic is a topological 

invariant, this result must, of course, agree with the result of the formula 2 − 2g − h respectively the alternating 

sum of the Betti numbers of the topological space as introduced in the previous section. Thus, there is simple and 

efficient validity check for the cell decomposition of a topological space. 

2.5.1.4 Poincaré Duality 

In general, the notion of duality takes numerous meanings and definitions in different contexts in mathematics. 

However, common to all of them is the idea of translating or pairing objects between two classes or domains in a 

bijective way. Precisely, given an object 𝐴 of a certain class 𝑋, one can identify an object 𝐴∗ from another class 𝑌 

and vice-versa. 𝐴∗ is the dual object of 𝐴 if 𝐴∗∗ = 𝐴, and ∗ is said to be an involution operation. The properties of 

an object with respect to its domain are completely determined by its dual counterpart. Put simply, both objects 

represent the same thing but from two different points of view (Ledoux & Gold 2007). In order to study certain 

properties of an object, the translation of the object into its dual may often be more suitable. One of the earliest 

geometric examples is the duality of the Platonic solids (e.g., the cube and the octahedron form a dual pair). A 

famous example from computational geometry with relevance in the field of GIS is the duality between the De-

launay triangulation of a set of points in the Euclidean plane and the Voronoi diagram for these points.   

The Poincaré duality establishes a duality between combinatorial structures on topological manifolds. In its mod-

ern form, it states an isomorphism between the homology and cohomology groups of manifolds as follows. 
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Theorem 2.1 (Poincaré duality theorem). For an orientable closed manifold 𝑀 of dimension 𝑛, the 𝑘th cohomol-

ogy group of 𝑀 is isomorphic to the (𝑛 –  𝑘)th homology group of 𝑀 for all integers 𝑘, i.e. 𝐻𝑘(𝑀;  ℤ) ≅

𝐻𝑛−𝑘(𝑀;  ℤ) (Munkres 1984, Hatcher 2008). 

In cellular homology, the Poincaré duality can be interpreted in terms of dual cell structures. This notion is also 

applied in this thesis. Precisely, given a CW decomposition ℰ of 𝑀, there exists a dual CW decomposition ℰ∗ of 

𝑀. Every 𝑘-cell 𝑒𝑘 of ℰ corresponds to an (𝑛 − 𝑘)-cell 𝑒𝑘
∗ in ℰ∗ and thus ℰ𝑘 = ℰ𝑛−𝑘

∗ . The cellular boundary map 

𝜕: ℰ𝑘 → ℰ𝑘−1 which maps the boundary of 𝑘-cells into the (𝑘 − 1)-skeleton of ℰ becomes the cellular coboundary 

map 𝛿: ℰ𝑛−𝑘
∗ → ℰ𝑛−𝑘+1

∗  in the dual CW decomposition ℰ∗ (cf. Hatcher 2008). The cells of the primal and dual CW 

decomposition of the manifold are in bijective correspondence. Since every 𝑘-cell of the primal decomposition is 

paired with an (𝑛 − 𝑘)-cell of the dual decomposition, the Poincaré duality intuitively reverses dimensions.  

An example for the proper CW decomposition of the 2-sphere consisting of eight 2-cells, twelve 1-cells, and six 

0-cells as well as its dual is shown in figure 40. Each 2-cell in ℰ is mapped to a dual 0-cell in ℰ∗, each 1-cell in ℰ 

crosses a dual 1-cell in ℰ∗, and each 0-cell of ℰ is contained in a dual 2-cell in ℰ∗.  

 

Figure 40: Primal cell decomposition (𝕊2, ℰ) of the 2-sphere (left) and Poincaré dual (𝕊2, ℰ∗) (right). The primal cell decom-

position is repeated on the right in dark grey.  

2.5.2 Graph Theory 

A graph-based conceptualization of indoor space is defined in almost all approaches to indoor space modelling 

(cf. chapter 2.2) in order to enable, for example, path searches based on existing graph traversal algorithms. Graph 

structures are also applied in this thesis, and thus a brief overview of those terms and concepts from graph theory 

which are relevant in the further course of the thesis is provided in the following. 

Based on the notion of CW complexes, a graph 𝐺 can be defined to be the 1-skeleton of an 𝑛-dimensional CW 

complex (Lee 2011). Each 0-cell of the complex is called a vertex, and each 1-cell is said to be an edge. A graph 

𝐺 is commonly denoted as pair (𝑉, 𝐸) where 𝑉 is the set of vertices and 𝐸 the set of edges. It follows from the 

definition of a CW complex that the boundary of each edge consists of one or two vertices which are said to be 

incident. An edge being incident to only one vertex is called a self-loop. Two edges are adjacent if they are incident 

to a common vertex. Likewise, two vertices are adjacent if they are on the boundary of a common edge. The 

degree of a vertex is the number of its incident edges. A graph is said to be finite if the associated CW complex is 

finite, and connected if the underlying topological space of the associated CW complex is connected. It is directed 

if all edges in 𝐸 have a direction associated with them (i.e., the incident vertices are ordered) and undirected 

otherwise. A path is a sequence of edges where two consecutive edges are incident to a common vertex. The first 

vertex of the path is called start vertex, whereas the last vertex (in case the sequence of edges is finite) is said to 

be the end vertex. If the start and end vertex are identical, then the path is called a cycle. A path with no repeated 

vertices is simple and consequently homeomorphic to �̅�1. 

A graph whose vertices can be partitioned into 𝑘 disjoint subsets, with 𝑘 ≥ 1, such that no two vertices within the 

same subset are adjacent is said to be a 𝑘-partite graph. Given an undirected graph, a clique is defined as subset 

of its vertices such that every two vertices in the subset are adjacent. Two graphs 𝐺 and 𝐻 are called isomorphic 

(written as 𝐺 ≃ 𝐻) if there exists a bijection 𝑓: 𝑉(𝐺) → 𝑉(𝐻) such that any two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺) are adjacent 

iff 𝑓(𝑢) and 𝑓(𝑣) are adjacent in 𝐻. 

An embedding of a graph 𝐺 into Euclidean 𝑛-space results from associating each vertex with a point in ℝ𝑛 and 

each edge with a simple space curve being homeomorphic to �̅�1 (Gröger & Plümer 2011a).The boundary points 

Poincaré

duality

(𝕊2, ℰ) (𝕊2, ℰ∗)

𝕊2, ℰ → 𝕊2, ℰ∗

6 0-cells → 6 2-cells

12 1-cells → 12 1-cells

8 2-cells → 8 0-cells
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of the space curve are the points in ℝ𝑛 associated with the vertices incident to the edge. Space curves are neither 

allowed to intersect at an interior point nor to include points that are associated with other vertices. A graph em-

bedded according to these rules into the plane ℝ2 is also called planar graph. Not every graph is planar but at least 

can be embedded in ℝ3.  
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Chapter 3  

Multilayered Space-Event Model (MLSEM) 

After having identified the multiple challenges to indoor navigation and motivated by the strengths and weaknesses 

of related work, this chapter develops a spatio-semantic indoor space model for indoor navigation that aims at 

addressing the challenges and at meeting the requirements postulated in chapter 2.4. The focus of the presentation 

in this chapter is hereby on the conceptual definition of the model elements and their complete, consistent, and 

correct mathematical formalization. As stated in the research scope of this thesis (cf. chapter 1.3), the work under-

taken here is based upon and continues the previous work on the Multilayered Space-Event Model (MLSEM) as 

introduced in (Becker et al. 2009a), (Becker et al. 2009b), and (Nagel et al. 2010), and thus is presented and 

discussed in the following under that same name. 

The presentation of the MLSEM follows three main consecutive steps. In a first step, two fundamental concepts 

for the modelling of indoor space, namely space cell and space layer, are defined that realize a generic model for 

structuring the indoor space according to arbitrary notions of space. The discussion of both concepts is organized 

into 1) the semantic conceptualization of space, 2) the geometric-topological representation of space, and 3) the 

sound embedding in a mathematical framework. A fundamental aspect is hereby the dual representation of indoor 

space that introduces a deterministic one-to-one relation between the 2-dimensional respectively 3-dimensional 

description of space and its graph-based conceptualization. Inspired by existing dual-graph-based approaches pre-

sented in chapter 2.2.3, the Poincaré duality is used as mathematical formalism for the dual representation which 

is developed in depth in the course of this chapter. Issues in related work applying the Poincaré duality as well as 

in the previous publications on the MLSEM are revealed in this discussion.  

The second step elaborates on the integration of complementary indoor space representations (i.e., space layers) 

in a common model in order to facilitate their joint consideration in navigation tasks. For this purpose, the concept 

of a multilayered graph is introduced and formalized which links the graph-based conceptualizations of the sepa-

rate space layers in a single combinatorial structure. It is shown in detail how this core concept of the MLSEM 

supports the tasks of path planning, localization, and tracking based on the derivation of valid and unique joint 

states of navigation. Moreover, the modelling of hierarchical space structures is presented carefully along the 

notions of subspace cells and subspace layers as well as their conceptual and mathematical definition.  

In a final step, a formal space layer algebra is defined which allows for algebraic expressions to be built up from 

space layers and well-defined binary operations in order to derive an integrated or mutually exclusive view on 

indoor space. It is then discussed how this space layer algebra in addition to the developed concepts can be used 

in supporting multiple and different navigation contexts. 

3.1 Structured Space Model 

The structuring of indoor space according to different notions of space and partitioning schemas has been identified 

as an essential requirement to indoor navigation models in chapter 2.4. The principal challenge posed by this 

requirement is that of integrating the multiple and distinct space representations that result from decomposing 

indoor space along arbitrary partitioning criteria. For example, an obvious choice for structuring indoor space 

reflects the topographic built-up space and is a consequence of applying the space separating system of the built 

structure as partitioning schema. The resulting space partitions hence follow the architectural constraints and de-

scribe the layout of the interior environment. Alternative partitioning schemas for topographic space yielding con-

trary space partitions include the decomposition of architectural entities such as rooms and corridors into navigable 

regions for different modes of locomotion or the representation of visibility areas of indoor landmarks. Comple-

mentary notions of indoor space such as sensor space or logical space render substantially different space repre-

sentations that may denote the subdivision of indoor space due to sensor characteristics of a given localization 

technology like signal coverage or signal strength, or the partitioning along contextual navigation constraints into 

security or emergency zones. Although the partitioning criteria as well as the semantics of the resulting space 

models differ in the examples, common to all is the fact that the resulting space partitions can be expressed through 
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individual geometric shapes embedded in indoor space. In this sense, indoor space can be understood as the com-

mon spatial reference frame for the distinct space models.  

The MLSEM builds upon this general notion of indoor space and employs a cell-based conceptualization of space 

in order to capture the spatial structuring along various partitioning schemas. Each partitioning schema is hereby 

mapped onto a separate configuration of cells which is modelled independently from further indoor space repre-

sentations. This modelling approach thus facilitates the decomposition of indoor space into smaller units along 

specific criteria without influencing complementary space partitionings. The two core concepts of this structured 

space model are called space cell and space layer. Whereas a space cell defines a generic model for a partition of 

indoor space and hence abstracts from a specific notion of space and partitioning schema, the collection of all 

space cells that follow from a given partitioning schema is said to form an individual space layer. The complete 

view on indoor space comprising topographic space, sensor space, logical space, and further space concepts is then 

built up inductively from the collection of space layers as they all reference and describe the same real world space. 

The structured space model represents the geometric-topological, symbolic, and semantic aspects of both space 

cells and layers in a well-defined way, and can therefore be classified as cell-based hybrid approach to indoor 

space modelling.  

The structured space model is a core component of the MLSEM in order to answer the requirement of supporting 

multi-granular space representations and different notions of indoor space, and is presented in detail in the follow-

ing subchapters. 

3.1.1 Space Cell 

A space cell is the central concept and smallest building block for modelling and representing indoor space within 

the structured space model, and describes space from a conceptual, quantitative, and qualitative perspective.  

3.1.1.1 Conceptualization of Space 

A space cell is a subset of indoor space along a given partitioning schema. Its semantic meaning depends on the 

underlying notion of space and the applied partitioning criteria. For example, a space cell in topographic space 

may represent a room, a corridor, or any other physical entity within the built skeleton of a building or facility, as 

well as any more fine-grained subspace thereof, whereas a space cell in the sensor space representation of a Wi-Fi 

based positioning system may reflect the region of indoor space within the propagation range or signal strength 

band of a given transmitter. Likewise, a space cell may express the proximity range of an RFID sensor belonging 

to an RFID-based localization infrastructure as well as arbitrary virtual space partitions following from logical 

considerations.  

As we travel through indoor space we intuitively move from one space cell to another. Since separate space con-

cepts yield alternative decompositions of indoor space, we even move through several space cells at the same time 

which cover the same spatial region but belong to different space representations. For example, a topographic 

space cell capturing the indoor space occupied by a room might overlap with, or be covered by, further space cells 

denoting the Wi-Fi radio signal coverage of the room or the fire detector zone monitoring the room. Moreover, 

and in contrast to other cell-based approaches, space cells are not restricted to the modelling of free or navigable 

space but may also represent non-navigable spaces. On the one hand, this comprises objects in topographic space 

which physically obstruct movement such as walls or obstacles. On the other hand, space cells may also denote 

areas which logically constrain navigation such as security zones. Each space cell has a conceptual boundary that 

limits its spatial coverage and semantic scope. This implies that entering or leaving a space cell while travelling 

through indoor space requires crossing its boundary. The boundary of a space cell therefore needs to be partly 

intangible so that it can be traversed by moving persons or objects, but may also be partly impassable, for example, 

in case it reflects physical discontinuities such as wall or floor surfaces. Tangible boundaries mostly occur for 

topographic space cells, whereas sensor space cells are inherently enclosed by virtual borders which do not impede 

the bodily movement. A space cell can be enriched with thematic properties to account for symbolic and semantic 

information associated with the portion of space covered by the space cell (e.g., room number, MAC address of a 

Wi-Fi transmitter, security level of a security zone, etc.). 

As elaborated in chapter 2.2, the idea of structuring indoor space into cells is common to most approaches to indoor 

space modelling but is also typically limited to the representation of the interior built environment along a single 

and rigid partitioning schema. The notion of a space cell can therefore be viewed as a higher-level abstraction 
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which subsumes the different cell-based approaches and also provides a common basis for the integration of dif-

ferent semantic classifications of indoor space as presented in chapter 2.1.3. For example, locations and regions 

as proposed by (Hu & Lee 2004) and (Bittner 2001) can obviously be mapped onto topographic space cells. (Bittner 

2001) also differentiates between bona-fide and fiat boundaries of spatial regions but only applies them as parti-

tioning schema to extract regions. Moreover, fiat boundaries are restricted to virtual borders that result from human 

cognitive acts, whereas the boundaries of space cells may even be imperceptible for humans (e.g., physical signal 

characteristics or logical facts not being aligned with the built reality). The structuring of indoor space along the 

human perception into CONTAINER and SURFACE image schemas as introduced by (Johnson 1987) can likewise be 

translated into topographic space cells and their boundaries, with the SURFACE schema again expressing only per-

ceivable boundaries of a CONTAINER. The modelling of physical and virtual spaces as spatial artefacts and their 

classification into object, operational, functional, and range spaces according to (Bhatt et al. 2009) conforms to 

the notion of physical indoor space (e.g., topographic and sensor space) and logical indoor space as well as the 

representation of corresponding spaces through different types of space cells.  

It is important to note that purely geometric partitioning schemas are already sufficient and explicitly supported 

by the structured space model as well. Thus, topographic space cells may be arranged in a continuous regular grid 

underpinning grid-based hybrid approaches (cf. chapter 2.2.1) or denote the irregular cell decomposition of indoor 

space following from geometric rather than semantic decomposition methods (cf. chapter 2.1.2).  

3.1.1.2 Geometric-topological Space Representation 

Each space cell is spatially modelled according to the geometric-topological model shown in figure 41. The model 

proposes four distinct representations depicted as quadrants I to IV in figure 41 which result from separate geo-

metric and topological descriptions of the space cell in both primal and dual space. The primal space representation 

is concerned with the real world shape and location of the space cell as subset of the indoor space, and is given by 

a 2-dimensional or 3-dimensional geometric figure (quadrant I) and its corresponding topological description 

(quadrant II). In dual space, the space cell is mapped onto a single 0-dimensional node whose representation is 

again split into a geometric (quadrant IV) and a topological (quadrant III) description. Several space cells can be 

linked through their dual node representation in order to establish geometric and topological graph structures.   

 

Figure 41: The geometric-topological representation model for space cells. The primal space representation (quadrants I and 

II) is depicted for a 3-dimensional space cell but likewise holds in two dimensions.  

The vertical subdivision of the geometric-topological model into geometry space (quadrants I and IV) and topology 

space (quadrants II and III) allows for the derivation of quantitative aspects of a space cell based on its geometric 

representation by a set of coordinate tuples as well as the separate but interrelated description of its qualitative or 

topological properties. Together with the semantic notion of a space cell as discussed above, this separation into 

geometry and topology space agrees with the idea of defining explicit models for conceptual, quantitative, and 

qualitative space as proposed by (Bhatt et al. 2009).  

The possibility of representing the shape and location of a space cell in two or three dimensions yields a high 

flexibility and goes beyond the expressivity of almost all presented approaches to indoor space modelling which 
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are limited to either a 2-dimensional or a 3-dimensional setting. This flexibility is however important, for example, 

with respect to existing building data which serves as input to populate the navigation space model. Most ap-

proaches implicitly built on 2-dimensional building floor plans and are defined in two dimensions only, thus ne-

glecting the support for 3-dimensional building models, or vice versa. The structured space model is not restricted 

to one alternative but supports both ways of representing indoor space.      

The horizontal partitioning into primal space (quadrants I and II) and dual space (quadrants III and IV) proposes a 

deterministic one-to-one relation between a space cell as spatial region in indoor space and its node representation 

in a corresponding graph-based conceptualization of space. In contrast to other cell-based approaches where the 

mapping of cells onto nodes is implicitly understood but rarely developed in a formal way (cf. chapter 2.4), the 

schema shown in figure 41 provides a consistent relation between both representations that is furthermore appli-

cable to arbitrary space concepts beyond topographic space due to the generic notion of space cells. The pairing 

of the primal and dual space representations of a space cell builds upon the Poincaré duality in topology space 

which thus provides its formal theoretical foundation (cf. chapter 3.1.2.4 for a detailed description). 

3.1.1.3 Mathematical Formalization 

The informal conceptual description of space cells presented above is used in the following to give space cells a 

mathematically formalized definition that provides a sound and consistent basis for the modelling of indoor space 

according to the structured space model.     

Definition 3.1 (Space cell). A space cell 𝑆 is a quintuple (𝐺𝑀, 𝑇𝑃, 𝑣𝑇𝑃 , 𝑣𝐺𝑀 , 𝐴) where 𝐺𝑀 and 𝑇𝑃 are the geo-

metric respectively topological descriptions of 𝑆 in primal space, 𝑣𝐺𝑀 and 𝑣𝑇𝑃 are the geometric respectively 

topological descriptions of 𝑆 in dual space, and 𝐴 is a set of symbolic or semantic attributes associated with 𝑆 

itself. 

It obviously follows that 𝐺𝑀, 𝑇𝑃, 𝑣𝑇𝑃, and 𝑣𝐺𝑀 correspond to the quadrants I, II, III, and IV of the geometric-

topological representation schema depicted in figure 41. Both the primal and dual space representation of a space 

cell is consistently embedded in an ambient 𝑛-dimensional Euclidean space ℝ𝑛 (cf. definition A.27) with 2 ≤ 𝑛 ≤

3. This ambient space is not to be confused with the indoor space in question. In the context of the structured space 

model, indoor space is rather to be understood as that space which is collectively made of the space cells, and thus 

is itself a subset of ℝ𝑛.  

The primal space geometry 𝐺𝑀 of a space cell is a 2-dimensional or 3-dimensional bounded regular semi-analytic 

subset of ℝ𝑛 (cf. Kresse & Danko 2012, Requicha 1980, and chapter 4.1). In order to ensure a geometric configu-

ration that conforms to an intuitive spatial understanding, it has to additionally render a topological manifold 𝑀 

with boundary of the same dimension. This leads to the following formal definition for the primal space geometry.  

Definition 3.2 (Primal space geometry of a space cell). The primal space geometry 𝐺𝑀(𝑆) of a space cell 𝑆 is a 

non-empty 𝑛-dimensional subset of Euclidean space ℝ𝑛, with 𝐺𝑀(𝑆) ⊂ ℝ𝑛 and 2 ≤ 𝑛 ≤ 3, and is required to 

form 

(i) a connected, orientable, compact surface with boundary in case 𝑛 = 2, and 

(ii) a connected 𝑘-shell manifold (cf. definition A.93) solid otherwise. 

A space cell is said to be 𝑛-dimensional. Since the dimension of 𝐺𝑀(𝑆) is equal to the dimension of the ambient 

space ℝ𝑛, the co-dimension of 𝐺𝑀(𝑆) is zero. According to the triangulation theorem for low-dimensional mani-

folds (cf. theorem A.74), every compact topological manifold of dimension 𝑛 ≤ 3 is a trianguable space and thus 

admits a finite CW decomposition. This fact is utilized in the definition of the primal topological description 𝑇𝑃 

of a space cell. 

Definition 3.3 (Primal space topology of a space cell). Let 𝑀 be the 𝑛-dimensional topological manifold described 

by 𝐺𝑀(𝑆) of a space cell 𝑆. Then the primal space topology 𝑇𝑃(𝑆) of 𝑆 is a finite CW complex (𝑀, ℰ) of dimen-

sion 𝑛 whose underlying topological space is 𝑀. The CW decomposition ℰ of 𝑀 is restricted to contain a single 

𝑛-cell which is attached to all lower dimensional cells in ℰ.  

It obviously follows that the primal space occupied by a space cell is a topological space in its own right but also 

a compact subset of the ambient space ℝ𝑛 rendering it a subspace endowed with the induced Euclidean topology. 

The cellular decomposition ℰ in primal topology space provides a combinatorial model of the space cell which 
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facilitates the efficient algorithmic computation of and reasoning about the topological properties of space cells. 

The above definition of 𝑇𝑃(𝑆) does not imply a particular choice of geometric realization for individual 𝑘-cells 

𝑒𝑘 ∈ ℰ as long as this realization preservers the boundary map 𝜕: ℰ𝑘 → ℰ𝑘−1 which sends the boundary 𝜕𝑒𝑘 into 

the union of finitely many lower dimensional cells. Specifically, a 𝑘-dimensional subset 𝐴 ⊂ 𝐺𝑀(𝑆) is a geometric 

realization of 𝑒𝑘 if it includes the realizations of all cells on the cell boundary 𝜕𝑒𝑘 = �̅�𝑘 \ 𝑒𝑘 in ℰ𝑘−1, and thus 𝐴 ≅

�̅�𝑘. The subset 𝐴 is said to be the geometric carrier of 𝑒𝑘 (cf. Farin et al. 2002), and it follows that 𝐺𝑀(𝑆) is the 

geometric carrier of 𝑇𝑃(𝑆). 

Independent of the dimension of the space cell in primal space, its dual space representations 𝑣𝑇𝑃 and 𝑣𝐺𝑀 describe 

discrete 0-dimensional subspaces of ℝ𝑛 whose definitions are as follows. 

Definition 3.4 (Dual space topology of a space cell). The dual space topology 𝑣𝑇𝑃(𝑆) of a space cell 𝑆 is a finite 

0-dimensional CW complex (𝑋, 𝛿) whose underlying space 𝑋 is a discrete and connected 0-dimensional manifold 

and whose CW decomposition 𝛿 is a singleton set of exactly one 0-cell. 

Definition 3.5 (Dual space geometry of a space cell). The dual space geometry 𝑣𝐺𝑀(𝑆) of a space cell 𝑆 is a 

discrete 0-dimensional point in Euclidean space ℝ𝑛, 2 ≤ 𝑛 ≤ 3, that is restricted to lie within the interior of the 

primal space geometry 𝐺𝑀(𝑆) and thus 𝑣𝐺𝑀(𝑆) ∈ 𝐼𝑛𝑡(𝐺𝑀(𝑆)) ⊂ ℝ
𝑛. 

Symbolic or semantic space information is modelled as set of attributes for each space cell. An attribute is hereby 

understood as name-value pair in order to be able to explicitly model the meaning of the attribute in addition to its 

value. Example attributes are symbolic identifiers such as room numbers, place names, or sensor IDs as well as 

physical or logical characteristics of the partition of indoor space occupied by the space cell. The same attribute 

can be shared by several space cells. For example, since space cells are allowed to cover (parts of) the same 

topographic room, several space cells may consequently carry the same room number as symbolic attribute.   

Definition 3.6 (Set of attributes of a space cell). The set of attributes 𝐴(𝑆) of a space cell 𝑆 is the set 𝐴(𝑆) =

{𝑎1, … , 𝑎𝑛} where each attribute 𝑎𝑖 ∈ 𝐴(𝑆) is given by a 2-tuple (𝑛𝑖 , 𝑣𝑖) which maps the name of the attribute onto 

𝑛𝑖 and its value onto 𝑣𝑖.  

The above definitions realize the mathematical embedding of the geometric-topological model of space cells as 

presented in figure 41. The generic understanding of a space cell as non-empty subset of Euclidean space is inde-

pendent from a particular choice of notion of the underlying indoor space, and thus provides a common abstraction 

schema for arbitrary space concepts. As stated above, the Poincaré duality shall be utilized to formally express the 

relation between the primal and dual space representations of a space cell. However, this first requires a mathe-

matical model for a set of space cells which is presented in the following section. 

3.1.2 Space Layer 

A space layer is a conceptual view on indoor space that reflects the decomposition of indoor space according to a 

given notion of space and partitioning schema, and describes space through a collection of space cells as well as 

their consistent graph-based representation.  

3.1.2.1 Conceptualization of Space 

A space layer is built from aggregating finitely many space cells resulting from a specific space partitioning to a 

larger space. The view on indoor space captured by a space layer therefore depends on the semantics of the aggre-

gated space cells. For example, a topographic space layer may describe the interior built-up space by assembling 

topographic space cells representing the decomposition of indoor space into structural elements and architectural 

units such as rooms, corridors, stairs, elevators, walls, columns, etc. Since alternative decompositions of topo-

graphic space follow distinct partitioning criteria (e.g., according to different types of locomotion), they have to 

be modelled on separate topographic space layers. Likewise, each subdivision of indoor space into signal propa-

gation areas of sensors belonging to individual localization technologies such as Wi-Fi and RFID is to be reflected 

on separate sensor space layers, whereas the spatial configuration of virtual security zones obviously has to be 

mapped by a logical space layer. It follows that space layers facilitate the conceptual separation of distinct notions 

of space and corresponding indoor space models, and changes to the layout of one space layer do not impact other 

space layers. For example, modifying the space cells on a Wi-Fi space layer in order to reflect a change to the Wi-

Fi infrastructure in a building neither influences a topographic space layer nor complementary sensor and logical 
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space layers. The concept of a space layer hence overcomes disadvantages of mixing different space concepts in a 

single space representation (cf. chapter 2.4). 

The aggregation of space cells on a space layer has to meet two main conditions. First, the space cells are required 

to be mutually non-overlapping, i.e. two space cells may be disjoint or are allowed to touch at their boundaries 

while their interiors may not intersect. This requirement agrees with the ontological axiom introduced by (Bittner 

2001) according to which distinct bona-fide or fiat spatial objects of the same ontological kind cannot overlap. The 

axiom is also applicable for a space layer since its space cells result from the same decomposition criteria and thus 

are of ontologically equal kind. Moreover, to be mutually non-overlapping is a prerequisite for evaluating qualita-

tive connectedness relationships between spatial regions (cf. chapter 2.1.4). Most of the presented indoor space 

models therefore implicitly or explicitly rely on this requirement. Whereas in topographic space mutually non-

overlapping space cells rather naturally follow from the architectural layout of the structural building elements and 

their space separating system, the propagation areas of, for example, Wi-Fi transmitters are usually meant to over-

lap in order to ensure full signal coverage within a building. Most approaches including the conceptual space 

model of (Bittner 2001) do not account for sensor spaces and hence do not address this issue. Within the structured 

space model, all space layers are equally required to represent non-overlapping space cells which generalizes the 

ontological axiom of (Bittner 2001) to arbitrary space concepts. In case of overlapping sensor propagation areas 

this means that the areas must be mapped onto non-overlapping space cells each having homogenous signal prop-

erties (cf. figure 46 in chapter 3.1.2.3). A second consequence is that spatial containment relationships cannot be 

expressed on a single space layer as they would require overlapping space cells. However, space cells on different 

space layers are allowed to spatially overlap as they reflect different partitioning schemas. This, again, is consistent 

with and generalizes the ontological axiom of (Bittner 2001) that spatial objects of ontologically different kind can 

be co-located.   

A second condition for the aggregation of space cells is that the aggregation needs to be jointly exhaustive so that 

every point in Euclidean space can be precisely identified to lie either within one space cell or on the common 

boundary of neighbouring space cells. This rule consequently forces the spatial configuration of space cells to 

render a complete tiling of Euclidean space. A similar condition is imposed by (Stoffel et al. 2007) who however 

restrict the tiling to the scope of a floor plan which is to be seen as a subspace of the Euclidean plane. The full 

coverage of Euclidean space requires the introduction of a further conceptual space cell which is called outer in 

the context of the structured space model. Outer can be informally defined as the complement of all primal space 

cell representations on a given space layer and therefore is unique per space layer. Thus, in contrast to all other 

space cells, the space occupied by outer is topologically unbounded. The semantic meaning of outer depends on 

the space layer in question. On a sensor space layer it may spatially represent regions without signal perception. 

On a topographic space layer, the entire building space is typically covered by space cells so that outer represents 

the outdoor space in such cases. The notion of an outer space is rarely mentioned in the presented proposals for 

indoor space models. In the further course of this chapter it will be shown that outer plays an important role in the 

context of the Poincaré duality. Although it hence needs to be addressed by all approaches building upon this 

theorem, none of the presented dual-graph-based models provides a formal definition (cf. chapter 2.2.3) which 

also holds for the previous publications on the MLSEM and the structured space model (Becker et al. 2009a, 

Becker et al. 2009b, Nagel et al. 2010).  

3.1.2.2 Geometric-topological Space Representation 

Since a space layer is the result of a union of space cells, its spatial representation follows the geometric-topolog-

ical model of a single space cell. Therefore, a space layer is systematically represented in both primal and dual 

space according to the four quadrants illustrated in figure 42. 
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Figure 42: The geometric-topological representation model for space layers (after Becker et al. 2009a). The primal space 

representation (quadrants I and II) is depicted for 3-dimensional space cells but likewise holds in two dimensions. The square 

node in dual space represents the dual node of the outer space cell. 

The primal space representation of a space layer is given by the union of all space cell geometries including outer 

(quadrant I) as well as the associated topological description (quadrant II). The space cells need to share the same 

dimension, and since they are requested to be mutually non-overlapping, their spatial configuration results in an 

algebraic cell complex in primal topology space. Applying the Poincaré duality to this structure yields a dual cell 

complex with the dimensions of topological cells being reversed. Thus, in dual topology space, every space cell is 

represented by a 0-cell and its boundary components are mapped onto 1-cells. Following the NRS model proposed 

by (Lee 2001) (cf. chapter 2.2.3), a topological dual graph is established with the 0-cells forming the set of nodes 

and the 1-cells denoting the edges linking the nodes (quadrant III). The Poincaré duality ensures that whenever 

two space cells touch and share an (𝑛 − 1)-dimensional part of their boundary in primal space then their node 

representations are linked by an edge. The dual geometry representation of a space layer (quadrant IV) is the 

Euclidean space embedding of the dual graph which associates each node with a point and each edge with a simple 

space curve joining the points of the incident nodes. The space curves may be the result of a skeletonization process 

of the primal space geometries but are not restricted to this.  

It follows that both the pairing of the primal space representation of a space cell with a node in dual space (cf. 

chapter 3.1.1) and the graph-based conceptualization of a space layer are inherent consequences of the Poincaré 

duality in topology space (quadrant II and III). The structured space model hence falls into the category of dual-

graph-based approaches (cf. chapter 2.2.3). Like with complementary proposals from (Lee 2001), (Jensen et al. 

2009), and (Boguslawski & Gold 2011), the dual graph is an adjacency graph that encodes the topological adja-

cency relationships between space cells in primal space. The Euclidean space embedding adds metric information 

to the purely topological graph and thus yields a metric graph or, equivalently, a geometric network (quadrant IV). 

Both graph structures (quadrant III and IV) are isomorphic due to the one-to-one correspondence between their 

node and edge sets. Both (Lee 2001) and (Jensen et al. 2009) also differ between the topological dimension of the 

dual graph and its metric embedding. However, (Lee 2001) obtains the geometric network from skeletonization 

processes only and allows additional nodes and edges rendering the topological and metric graph structures non-

isomorphic, whereas the geometric network as proposed by (Jensen et al. 2009) follows from semantic rules and 

thus does not preserve the dual graph structure either. In contrast, the approach of (Boguslawski & Gold 2011) 

neglects the topological graph representation and only models its metric embedding with the edges of the metric 

dual graph being limited to straight line segments. 

The dual space representation of a space layer is unique for a given configuration of space cells. Due to the space 

cells being mutually non-overlapping and jointly exhaustive, moving from one space cell to another on the same 

space layer requires crossing their shared boundary in primal space. Equivalently, each edge of the dual graph 

denotes such a movement and essentially describes the transition between the states of physically being in either 

space cell which are represented by the incident nodes. The dual graph is therefore also to be seen as a state 

diagram. A moving person or object is exactly in the spatial region covered by one space cell of the layer at a 
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given point in time. Thus, only the corresponding state within the state diagram is active at that point in time. The 

size of the active space cell in primal geometry space is a measure for the uncertainty of the absolute position 

within Euclidean space which obviously gains in precision with smaller cell sizes.  

The conceptual model of space layers provides a generic approach for the modelling of indoor space which is 

independent from the underlying notion of space and allows for the consistent derivation of adjacency relationships 

between space cells as well as the common interpretation of states and transitions. A purely geometric description 

of indoor space (quadrant I) already suffices to derive the further space representations in a deterministic way.      

3.1.2.3 Example Topographic and Sensor Space Layer 

Before elaborating on the mathematical formalization, the conceptual modelling of space layers is exemplified for 

a simple indoor space setting as sketched in figure 43. The indoor scene shows two rooms and a corridor as well 

as the generalized spherical signal coverage areas of two Wi-Fi transmitters equipped in the rooms. The propaga-

tion areas and architectural entities partly occupy the same indoor space, and thus their spatial representations 

overlap. 

 

Figure 43: Example 3-dimensional indoor scene in a slanted view (left) and from above (right).  

For the structured space model, each notion of space is modelled on a separate space layer. The topographic space 

layer reflecting the interior built environment is depicted in figure 44. The space partitioning along the architectural 

entities results in three topographic space cells each of which captures the 3-dimensional navigable space inside a 

room respectively the corridor in primal space. The room cells share a common boundary surface representing a 

door with the corridor cell but are not connected to each other. The space surrounding the architectural entities is 

the outer space of this topographic space layer. In dual space, the Poincaré duality carries each space cell as well 

as the outer space to a separate dual node. Since both rooms are adjacent to the corridor, their dual nodes are linked 

to the node representing the corridor. Likewise, the dual nodes of all space cells are linked to the outer node 

(depicted as dashed edges) as each space cell has a common boundary with the outer space. The resulting dual 

topological graph is shown in the middle of figure 44. The right part illustrates a possible Euclidean space embed-

ding of this graph. 

 

Figure 44: Primal space geometry of the topographic space layer (left), the resulting dual graph (middle), and a possible 

Euclidean space embedding (right). The formal derivation of the dual graph is elaborated in chapter 3.1.2.4.  

The dual graph of the topographic space layer provides a combinatorial model of the interior built environment 

which conforms to the intuitive understanding of the indoor scene. It is suitable for path planning based on its 
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encoding of topographic regions and their adjacency. Further addressing criteria such as room numbers may be 

introduced as thematic attributes on each space cell. The Euclidean space embedding results in a geometric net-

work of the topographic space. The metric information adds quantitative properties such as distance or angle and 

thus enables, for example, best path calculations. The space curves associated with the edges of the geometric 

network facilitate the provision of geometric trajectories which more naturally follow the layout of the building. 

For example, such space curves may denote precise traveling paths for mobile robots. The point geometry associ-

ated with a node has to lie within the 3-dimensional geometry of the space cell. Often centroid representations are 

proposed but this is not enforced by the structured space model. The primal space geometry of a topographic space 

layer facilitates the visualization of the interior built environment and thus supports the visual guidance of moving 

persons along their route.  

In figure 45, the different space representations of the topographic space layer are arranged in the four quadrants 

of the geometric-topological model shown in figure 42. Further partitioning schemas for this example indoor set-

ting are possible and lead to a separate topographic space layer each. 

 

Figure 45: The four distinct space representations of the example topographic space layer.   

The alternative view on indoor space resulting from its partitioning along the signal coverage of the two Wi-Fi 

transmitters (called 𝐴 and 𝐵 in the following) is illustrated in figure 46 and captured on a complementary sensor 

space layer. The overlapping coverage areas have to be mapped by three non-overlapping space cells each repre-

senting a region of homogeneous signal reception (only 𝐴, only 𝐵, both 𝐴 and 𝐵). The surrounding outer space 

denotes regions without Wi-Fi reception. The primal space representation of the sensor space layer is depicted in 

the left part of figure 46. The three separate space cells are shown in an exploded view in the middle of the figure, 

and the resulting dual graph is shown on the right. The geometric network is not represented separately. 

 

Figure 46: Primal space geometry of the Wi-Fi sensor space layer (left), exploded view of the three space cells in primal space 

(middle), and the resulting dual graph (right).  
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For this sensor space layer, the dual graph denotes the possible transitions between the signal coverage areas of 

both transmitters as well as the loss of signal reception. It hence enables the tracking of a moving person or object 

and the localization in the vicinity of a transmitter. Overlapping coverage areas generally help to increase the 

precision as they result in space cells of smaller size. The geometric network representation of a sensor space layer 

may account for the sensor deployment within indoor space by associating nodes with the fixed absolute location 

of sensors, and also adds quantification of distance to the adjacency information of the topological graph. The Wi-

Fi space cells are arranged according to the geometric-topological representation schema of space layers in figure 

47.  

 

Figure 47: The four distinct space representations of the example Wi-Fi sensor space layer. 

The combination of both space layers in an integrated view that simultaneously facilitates path planning and lo-

calization is the topic of chapter 3.2. 

3.1.2.4 Mathematical Formalization 

The conceptual model of space layers is set in a mathematical framework in this section. The formalization builds 

upon the definition of a space cell as provided in chapter 3.1.1.3, and additionally develops formal models for a 

space cell complex, for the outer space cell, and for boundary cells which are presented in the following.  

Space cell complex. A space cell complex aggregates a set of non-overlapping space cells to a larger space. It 

hence captures the spatial configuration of space cells according to a given notion of space and partitioning schema. 

Definition 3.7 (Space cell complex). A space cell complex 𝒞 = {𝑆𝛼}𝛼∈𝐼𝒞  is a set of finitely many, pairwise non-

overlapping 𝑛-dimensional space cells 𝑆𝛼 with 𝑆𝑖 , 𝑆𝑗 ∈ 𝒞: 𝐼𝑛𝑡(𝐺𝑀(𝑆𝑖)) ∩ 𝐼𝑛𝑡 (𝐺𝑀(𝑆𝑗)) = ∅, 𝑖 ≠ 𝑗 and 2 ≤ 𝑛 ≤

3. A space cell complex may be an empty set and thus |𝒞| ≥ 0.  

Since all space cells in 𝒞 share the same dimension 𝑛, the space cell complex itself is said to be 𝑛-dimensional. 

The geometric-topological representation of a space cell complex in primal space is derived from its contained 

space cells and is defined as follows. 

Definition 3.8 (Primal space geometry of a space cell complex). The primal space geometry 𝐺𝑀(𝒞) of an 𝑛-

dimensional space cell complex 𝒞 is the union 𝐺𝑀(𝒞) = ⋃ 𝐺𝑀(𝑆𝛼𝛼∈𝐼𝒞
) ⊂ ℝ𝑛. 

Definition 3.9 (Primal space topology of a space cell complex). Let 𝑋 be the topological space rendered by 𝐺𝑀(𝒞) 

of an 𝑛-dimensional space cell complex 𝒞, and equivalently 𝑋 = ⋃ 𝑇𝑃(𝑆𝛼)𝛼∈𝐼𝒞 . Then the primal space topology 

𝑇𝑃(𝒞) is a finite 𝑛-dimensional CW complex (𝑋, ℰ) topologically embedded in ℝ𝑛 with 𝐺𝑀(𝒞) being its geo-

metric carrier. The cell decomposition ℰ follows from inductively attaching the 𝑛-cells in the primal topology 

space description 𝑇𝑃 of all space cells in 𝒞 along their common boundaries. Thus, for each 𝑆 ∈ 𝒞 there exists a 

continuous cellular map 𝜑𝑆: 𝑇𝑃(𝑆) → 𝑇𝑃(𝒞) that, according to definition A.54, carries the 𝑘-skeleton of 𝑇𝑃(𝑆) 
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into the 𝑘-skeleton of 𝑇𝑃(𝒞), with 𝑇𝑃(𝑆)𝑘 ⊆ 𝑇𝑃(𝒞)𝑘, 0 ≤ 𝑘 ≤ 𝑛, and whose restriction to each open cell is a 

homeomorphism.  

The following figure 48 presents a simple example of a space cell complex. On the left of figure 48, a 2-dimen-

sional space cell in primal space is shown which is assumed to describe a room within a building. The aggregation 

of four such room cells (𝑅1 to 𝑅4) to a space cell complex representing an excerpt of a building floor plan is 

sketched on the right figure 48. 

 

Figure 48: A single 2-dimensional space cell representing a room (left) and an aggregation of four room cells to a space cell 

complex (right). 

In the above example, the primal space geometry 𝐺𝑀(𝑆) of each room cell 𝑆 is a rectangular region in the Euclid-

ean plane ℝ2. This geometric object is homeomorphic to a closed disk �̅�2 and thus satisfies condition (i) of defi-

nition 3.2. The primal space topology 𝑇𝑃(𝑆) is a CW pair (�̅�2, 𝛿) with 𝛿 decomposing �̅�2 into a single 2-cell, 

four 1-cells, and four 0-cells (cf. left part of figure 48). The primal space geometry 𝐺𝑀(𝒞) of the space cell 

complex 𝒞 on the right of figure 48 is the union of the primal geometries of the four space cells and again renders 

a rectangular region in ℝ2 being homeomorphic to �̅�2. Its primal space topology 𝑇𝑃(𝒞) decomposes �̅�2 into four 

2-cells, twelve 1-cells, and nine 0-cells and results from gluing the 2-cells in the CW decompositions of the single 

rooms along their common boundaries.  

For the remainder of this chapter, the geometric configuration of 𝐺𝑀(𝒞) of a space cell complex 𝒞 is assumed to 

be a topological 𝑛-manifold 𝑀 that is homeomorphic to an orientable compact surface with boundary for 𝑛 = 2, 

or to a 𝑘-shell manifold solid otherwise. At least for topographic space this restriction conforms to an intuitive 

understanding of the spatial configuration of space cells. In contrast to a single space cell, a space cell complex 

itself needs not be connected but may have 𝑘 disjoint connected components with 1 ≤ 𝑘 ≤ |𝒞|. This accounts for 

the fact that the space cells in 𝒞 only need to be mutually non-overlapping which includes spatially disjoint space 

cells. 𝑀 is orientable and can be oriented through a consistent choice of orientation for each of its components 

(e.g., Mäntylä 1988). The discussion of non-manifold configurations of space cells is postponed to chapter 3.1.3.3.  

If  𝜕𝑀 is connected then, according to the Jordan-Brouwer separation theorem (cf. theorem A.90), it separates ℝ𝑛 

into 𝐼𝑛𝑡(𝑀) and an unbounded component 𝐵 with ℝ𝑛\𝜕𝑀 = 𝐼𝑛𝑡(𝑀) ∪ 𝐵 and 𝐼𝑛𝑡(𝑀) ∩ 𝐵 = ∅. The component 

𝐵 itself can be viewed as a connected non-compact 𝑛-dimensional manifold 𝑈 with 𝐼𝑛𝑡(𝑈) = 𝐵 and 𝜕𝑀 being its 

manifold boundary. The same holds in case 𝑀 has 𝑘 connected components and only differs in the fact that 𝑈 has 

𝑘 boundary components but remains connected. Depending on whether 𝑈 is a 2-dimensional or 3-dimensional 

manifold, it is also called universal face or universal solid in literature (e.g., ISO 19107:2003). (Gröger & Plümer 

2011a) refer to 𝑈 as Out face in the context of 2-dimensional respectively 2.8-dimensional maps. Since 𝑈 repre-

sents the complement space of the space cell complex in ℝ𝑛, it obviously follows that each point in ℝ𝑛 can be 

identified to lie within one of the disjoint sets 𝐼𝑛𝑡(𝑀), 𝐼𝑛𝑡(𝑈), and 𝜕𝑀 (equivalently 𝜕𝑈), which thus are jointly 

exhaustive with respect to ℝ𝑛. 

The sets 𝐼𝑛𝑡(𝑀), 𝐼𝑛𝑡(𝑈), and 𝜕𝑀 = 𝜕𝑈 are exemplified below for the 2-dimensional space cell complex 𝒞 intro-

duced in figure 48. The unbounded universal face ℝ2 ∖ 𝐼𝑛𝑡(𝑀) with 𝑀 ≅ 𝐺𝑀(𝒞) is depicted as hatched area 

surrounding the four rooms. 
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Figure 49: The interior, boundary, and exterior sets of the 2-dimensional space cell complex from figure 48.   

A space cell complex is feasible to describe the configuration of space cells on a space layer in primal space 

(quadrants I and II in figure 42). The universal manifold complements the required tiling of Euclidean space ℝ𝑛. 

We wish to employ the Poincaré duality as formal tool from algebraic topology to derive the dual representation 

of space cells and the dual adjacency graph of the space layer in topology space (quadrant III in figure 41 and 

figure 42).  

Compactification of the ambient space ℝ . As stated in theorem 2.1, the Poincaré duality is defined for orienta-

ble closed 𝑛-manifolds. However, the primal topological space rendered by a single space cell or a space cell 

complex does not meet this requirement. A closed manifold per definition A.44 is a compact manifold without 

boundary. Although both a space cell and a space cell complex are closed and bounded subsets of ℝ𝑛 which makes 

them compact according to the Heine-Borel theorem (cf. theorem A.30), each has a manifold boundary (cf. figure 

48). Omitting the boundary yields bounded but open subsets of ℝ𝑛 which are non-compact. While the ambient 

Euclidean space ℝ𝑛 is an 𝑛-manifold without boundary, it is topologically unbounded and therefore also non-

compact. These boundaryless but non-compact examples are open manifolds and thus do not satisfy the Poincaré 

duality. It is important to note that the spatial configuration of primal cells in the models proposed by (Lee 2001), 

(Jensen et al. 2009), and (Boguslawski & Gold 2011) equivalently renders closed and bounded subsets of Euclid-

ean space which can be essentially mapped onto a 2-dimensional or 3-dimensional space cell complex. This con-

sequently means that the cell configurations do not admit a Poincaré duality transformation in the sense of theorem 

2.1 either. However, this issue is not explicitly addressed in any of these approaches. 

The spatial layout of space cells as well as their arrangement in a space cell complex reflects physical or logical 

facts about the indoor environment and thus cannot be changed without interfering with these facts. This only 

leaves the non-compact ambient space ℝ𝑛 of the space cell complex for resolution. In order to retrieve a closed 

manifold satisfying the Poincaré duality, ℝ𝑛 has to be compactified. In general point-set topology, a compactifi-

cation is the result of making a non-compact topological space 𝑋 compact by embedding it in a compact space (cf. 

definition A.31) which opens up the space for the additional properties and structures of compact spaces. The 

compactified space is commonly denoted �̂�. The smallest compactification is the Alexandroff or one-point com-

pactification (cf. definition A.32 and appendix A.1 for its formal discussion). Its idea is to adjoin a single point to 

the non-compact space such that the resulting space is compact. This extra single point is commonly called point 

at infinity and denoted {∞}. For example, the real line (−∞,+∞) = ℝ1 with the usual topology can be intuitively 

compactified by bending its opposite ends stretching to negative and positive infinity towards each other and add-

ing a point at (unsigned) infinity which results in a compact circle being homeomorphic to the 1-sphere 𝕊1 (cf. 

figure 265). The same procedure can be applied to ℝ2 and yields a compact space homeomorphic to 𝕊2 (cf. left 

part of figure 39).  

Embedding of 𝑻𝑷( ) in the one-point compactification of ℝ . In general, the one-point compactification of 

Euclidean 𝑛-space ℝ𝑛 is homeomorphic to the 𝑛-sphere 𝕊𝑛 (cf. proposition A.33). Since 𝕊𝑛 is an orientable, com-

pact and boundaryless manifold it meets the requirements of the Poincaré duality. In order to apply the Poincaré 

duality to an 𝑛-dimensional space cell complex 𝒞 it therefore has to be topologically embedded in the sphere 𝕊𝑛. 

Definition 3.10 (Topological embedding of a space cell complex in 𝕊𝑛). Let 𝑀 denote the underlying topological 

space of an 𝑛-dimensional space complex 𝒞 in ℝ𝑛. Then an embedding of 𝑀 in the 𝑛-sphere 𝕊𝑛 is given by the 

both injective and continuous map 𝑓𝐸:𝑀 → 𝕊
𝑛 with 𝑀 ≅ 𝑓𝐸(𝑀) ⊂ 𝕊

𝑛. 

𝐼𝑛𝑡 𝑈

𝐼𝑛𝑡 𝑀

𝜕𝑀 = 𝜕𝑈

Universal face
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Let (𝑀, ℰ) be the corresponding CW pair of the primal space topology 𝑇𝑃(𝒞) with its CW decomposition ℰ 

reflecting the configuration of space cells in 𝒞. This combinatorial structure of 𝑀 is preserved under 𝑓𝐸. The 

restriction 𝑓𝐸|𝑒: 𝑒 → 𝕊
𝑛 of 𝑓𝐸 to a single 𝑘-cell 𝑒 ∈ ℰ results in an equivalent CW decomposition ℰ′ of 𝑓𝐸(𝑀). The 

topological cells in either structure are in one-to-one correspondence and the image of 𝑓𝐸|𝑒 for 𝑒 is homeomorphic 

to 𝑒, i.e. 𝑓𝐸|𝑒(𝑒)  ≅ 𝑒. Thus, the topological properties of the CW complex (𝑀, ℰ) are invariant under 𝑓𝐸 and the 

resulting CW pair (𝑓𝐸(𝑀), ℰ
′) is topologically isomorphic to 𝑇𝑃(𝒞). 

The Jordan-Brouwer separation theorem has a natural extension by replacing ℝ𝑛 with its one-point compactifica-

tion 𝕊𝑛. Correspondingly, if 𝑓𝐸(𝜕𝑀) is connected it separates 𝕊𝑛 into two disjoint components 𝐵1 and 𝐵2 with 

𝕊𝑛\𝑓𝐸(𝜕𝑀) = 𝐵1 ∪ 𝐵2 and 𝐵1 ∩ 𝐵2 = ∅. Let 𝐵1 = 𝑓𝐸(𝐼𝑛𝑡(𝑀)), then the complement space of 𝑓𝐸(𝑀) is given by 

𝐵2. On the 𝑛-sphere, the complement space is a connected, compact 𝑛-manifold with boundary whose boundary 

is 𝑓𝐸(𝜕𝑀). It therefore is a compactification �̂� of the universal face respectively the universal solid depending on 

its dimension. 

The topological embedding 𝑓𝐸: 𝑀 → 𝕊
2 of the example 2-dimensional space cell complex 𝒞 from figure 48 in the 

one-point compactification of ℝ2 is shown in figure 50. For one 0-cell 𝑒0, one 1-cell 𝑒1, and one 2-cell 𝑒2 of the 

primal space topology 𝑇𝑃(𝒞) the homeomorphic images 𝑒0
′ = 𝑓𝐸|𝑒(𝑒0), 𝑒1

′ = 𝑓𝐸|𝑒(𝑒1), and 𝑒2
′ = 𝑓𝐸|𝑒(𝑒2) are 

highlighted in order to illustrate the structure-preserving nature of 𝑓𝐸. 

 

Figure 50: Topological embedding of the primal space topology 𝑇𝑃(𝒞) of the 2-dimensional space cell complex from figure 

48 on the 2-sphere 𝕊2. 

Outer space cell. Taking these facts as basis, the concept of outer as discussed in chapter 3.1.2.1 can now be 

formally defined for the structured space model.  

Definition 3.11 (Outer space cell). The outer space cell 𝑆𝑜𝑢𝑡 is an 𝑛-dimensional space cell 𝑆𝑜𝑢𝑡 =

(𝐺𝑀, 𝑇𝑃, 𝑣𝑇𝑃 , 𝑣𝐺𝑀 , 𝐴) where 𝐺𝑀 and 𝑇𝑃 are the geometric respectively topological descriptions of 𝑆𝑜𝑢𝑡 in primal 

space, 𝑣𝐺𝑀 and 𝑣𝑇𝑃 are the geometric respectively topological descriptions of 𝑆𝑜𝑢𝑡 in dual space, and 𝐴 is a set of 

symbolic or semantic attributes associated with 𝑆𝑜𝑢𝑡 itself. 

Definition 3.12 (Primal space geometry of the outer space cell). Let 𝒞 be an 𝑛-dimensional space cell complex. 

Then the primal space geometry 𝐺𝑀(𝑆𝑜𝑢𝑡) of the outer space cell 𝑆𝑜𝑢𝑡 is the complement in ℝ𝑛 of all primal space 

cell geometries contained in 𝒞, and thus 𝐺𝑀(𝑆𝑜𝑢𝑡) = ℝ
𝑛 ∖ 𝐼𝑛𝑡(⋃ 𝐺𝑀(𝑆𝛼𝛼∈𝐼𝒞 )) = ℝ𝑛 ∖ 𝐼𝑛𝑡(𝐺𝑀(𝒞)). The primal 

space geometry is required to form a connected space. 

Definition 3.13 (Primal space topology of the outer space cell). Let 𝒞 be an 𝑛-dimensional space cell complex and 

𝑓𝐸: 𝑀 → 𝕊
𝑛 an embedding of its underlying topological space 𝑀 in the 𝑛-sphere 𝕊𝑛 according to definition 3.10. 

Then the primal space topology 𝑇𝑃(𝑆𝑜𝑢𝑡) of the outer space cell 𝑆𝑜𝑢𝑡 is a finite 𝑛-dimensional CW complex (�̂�, 𝛿) 

of the compact space �̂� = 𝕊𝑛 ∖ 𝑓𝐸(𝐼𝑛𝑡(𝑀)) which is required to be connected and whose topological boundary is 

𝑓𝐸(𝜕𝑀). The CW decomposition 𝛿 of �̂� is restricted to contain a single 𝑛-cell which is attached to all lower 

dimensional cells in 𝛿. The subcomplex 𝐴 ⊂ 𝑇𝑃(𝑆𝑜𝑢𝑡) decomposing the boundary 𝑓𝐸(𝜕𝑀) has to be equal to the 

corresponding subcomplex 𝐵 ⊂ (𝑓𝐸(𝑀), ℰ
′). 

It follows that the primal space representation of the outer space cell 𝑆𝑜𝑢𝑡 depends on a given space layer complex 

𝒞. 𝑆𝑜𝑢𝑡 differs from the notion of a space cell in that 𝐺𝑀(𝑆𝑜𝑢𝑡) needs not be manifold (cf. conditions (i) and (ii) 

𝑓𝐸:𝑀 → 𝕊
2

𝑓𝐸 𝑀 , ℰ ′ ⊂ 𝕊2,
with 𝑓𝐸 𝑀 ≅ 𝑀

�̂�𝑈

𝑒0
′

𝑒1
′ 𝑒2

′

𝑒0

𝑒1

𝑒2

𝑇𝑃 𝒞 = 𝑀, ℰ ⊂ ℝ2,
with𝑀 ≅ �̅�2
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of definition 3.2). However, 𝑆𝑜𝑢𝑡 is likewise defined to be connected in primal space in order to ensure that it can 

be decomposed into a single 𝑛-cell by 𝑇𝑃(𝑆𝑜𝑢𝑡) and thus be mapped onto a single 0-cell in dual topology space.15 

Note that whereas 𝐺𝑀(𝑆𝑜𝑢𝑡) is a subset of ℝ𝑛, the ambient space of 𝑇𝑃(𝑆𝑜𝑢𝑡) is 𝕊𝑛. Nevertheless, 𝐺𝑀(𝑆𝑜𝑢𝑡) 

serves as geometric carrier for 𝑇𝑃(𝑆𝑜𝑢𝑡). The definitions of the dual space geometry and topology of 𝑆𝑜𝑢𝑡 as well 

as its set of attributes are identical to those of a space cell and hence are not repeated here. 

In figure 51, both 𝐺𝑀(𝑆𝑜𝑢𝑡) and 𝑇𝑃(𝑆𝑜𝑢𝑡) are depicted for the 2-dimensional space cell complex 𝒞 from figure 

48. Since the topological space 𝑀 underlying 𝑇𝑃(𝒞) is homeomorphic to �̅�2 in this example, the compactified 

universal face �̂� underlying 𝑇𝑃(𝑆𝑜𝑢𝑡) results from removing the interior 𝐼𝑛𝑡(𝑓𝐸(𝑀)) ≅ 𝔹
2 from 𝕊2 which is top-

ologically equivalent to cutting a hole in the 2-sphere. Thus, �̂� itself is homeomorphic to �̅�2 and 𝑇𝑃(𝑆𝑜𝑢𝑡) is a 

CW complex (�̅�2, 𝛿) with a single 2-cell as well as those eight 0-cells and eight 1-cells that lie on the common 

boundary 𝑓𝐸(𝜕𝑀) of �̂� and 𝑓𝐸(𝑀).  

 

Figure 51: Primal space geometry (left) and topology (right) of the outer space cell 𝑆𝑜𝑢𝑡 associated with the 2-dimensional 

space cell complex from figure 48. 

Duality transformation of a space cell complex. It follows from the above definitions that the union of �̂� with 

the topological embedding 𝑓𝐸(𝑀) of 𝒞 results in 𝕊𝑛. A finite CW decomposition ℰ̂ of 𝕊𝑛 which satisfies the 

Poincaré duality can therefore be obtained from gluing the cells in 𝑇𝑃(𝑆𝑜𝑢𝑡) to the cells in the image of 𝑇𝑃(𝒞) on 

the 𝑛-sphere. 

Definition 3.14 (CW decomposition ℰ̂ of 𝕊𝑛). Let (𝑓𝐸(𝑀), ℰ
′) be the CW pair denoting the cell decomposition of 

the topological embedding 𝑓𝐸(𝑀) of an 𝑛-dimensional space cell complex 𝒞 in 𝕊𝑛 with 𝑇𝑃(𝒞) ≅ (𝑓𝐸(𝑀), ℰ
′). 

Then a finite CW decomposition ℰ̂ of 𝕊n results from attaching the cells in 𝑇𝑃(𝑆𝑜𝑢𝑡) to ℰ′ by identifying cells on 

the common boundary 𝑓𝐸(𝜕𝑀) along the two cellular maps 𝜑: ℰ′ → ℰ̂ and 𝜎: 𝑇𝑃(𝑆𝑜𝑢𝑡) → ℰ̂ whose restrictions to 

each open cell are required to be homeomorphisms. 

This cell structure on 𝕊𝑛 can then be translated into a dual cell structure. 

Definition 3.15 (Duality transformation of the CW decomposition ℰ̂ of 𝕊𝑛). Let (𝕊𝑛 , ℰ̂) be the CW complex as 

given by definition 3.14. The bijective map 𝑓𝑃𝐷: ℰ̂ → ℰ̂
∗ takes ℰ̂ into the dual CW decomposition ℰ̂∗ of 𝕊𝑛 accord-

ing to the Poincaré duality theorem 2.1. 

As discussed in chapter 2.5.1.4, the image of 𝑓𝑃𝐷 for a 𝑘-cell 𝑒𝑘 in ℰ̂, with 0 ≤ 𝑘 ≤ 𝑛 and 𝑛 being the dimension 

of the space cell complex, is an (𝑛 − 𝑘)-cell 𝑒𝑘
∗ in the dual decomposition ℰ̂∗, and thus ℰ̂𝑘 = ℰ̂𝑛−𝑘

∗ . Consequently, 

the inverse image of 𝑒𝑘
∗ is given as 𝑓𝑃𝐷

−1(𝑒𝑘
∗) = 𝑒𝑘

∗∗ = 𝑒𝑘. The bijective map 𝑓𝑃𝐷 can hence be interpreted as switch 

operator pairing both cell structures on 𝕊𝑛 in primal and dual space.  

The following figure illustrates the duality transformation for the embedding of the example space cell complex 𝒞 

from figure 48 on the 2-sphere 𝕊2. On the left, the CW complex (𝕊2, ℰ̂) is shown which decomposes 𝕊2 into five 

2-cells, twelve 1-cells, and nine 0-cells. The right part of the figure shows the result of the Poincaré duality on 

                                                           
15 A more detailed discussion on the implications of the connectedness condition of 𝑆𝑜𝑢𝑡 together with supporting examples 

follows in chapter 3.1.3. 

𝑓𝐸:𝑀 → 𝕊
2

𝑓𝐸 𝐼𝑛𝑡 𝑀 ≅ 𝔹2

𝑇𝑃 𝑆𝑜𝑢𝑡 = �̂�, 𝛿 =

𝕊2 ∖ 𝑓𝐸 𝐼𝑛𝑡 𝑀 , 𝛿𝐺𝑀 𝑆𝑜𝑢𝑡 = ℝ
2 ∖ 𝐼𝑛𝑡 𝐺𝑀 𝒞

𝑇𝑃 𝒞 = 𝑀, ℰ ⊂ ℝ2,
with𝑀 ≅ �̅�2

𝜕𝑀 𝑓𝐸 𝜕𝑀 

2-cell ∈ 𝛿
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(𝕊2, ℰ̂). The five 2-cells in ℰ̂ are mapped to five dual 0-cells in ℰ̂∗, the twelve primal 1-cells result in twelve dual 

1-cells, and the nine primal 0-cells are carried to nine dual 2-cells.  

 

Figure 52: Poincaré duality transformation of the 2-dimensional space cell complex from figure 48 on the 2-sphere 𝕊2. The 

primal cell decomposition is repeated on the right in dark grey. The square node represents the dual node of the outer space 

cell. 

The duality map 𝑓𝑃𝐷 works for the embedding of the primal space topology 𝑇𝑃(𝒞) on 𝕊𝑛. When additionally 

considering the map 𝑓𝐸 and its restriction 𝑓𝐸|𝑒 then the pairing given by 𝑓𝑃𝐷 can be extended to 𝑇𝑃(𝒞) itself which 

lives in ℝ𝑛. 

Definition 3.16 (Duality transformation of a space cell complex). Let (𝑀, ℰ) be the CW pair of the primal space 

topology 𝑇𝑃(𝒞) of a space cell complex 𝒞, and let ℰ̂ and ℰ̂∗ denote the primal and dual cell decomposition of 𝕊𝑛 

paired by 𝑓𝑃𝐷 as given in definition 3.15. Then the composition 𝑔: 𝑓𝐸|𝑒 ∘ 𝑓𝑃𝐷 maps the cells in ℰ onto their dual 

counterparts in ℰ̂∗. Since 𝑓𝐸|𝑒 is a continuous injection from ℰ to ℰ̂, and 𝑓𝑃𝐷 is a continuous bijection between ℰ̂ 

and ℰ̂∗ the inverse 𝑔−1: (𝑓𝐸|𝑒 ∘ 𝑓𝑃𝐷)
−1 reverses this mapping.  

The map 𝑔 therefore pairs the cellular decompositions of a space cell complex in ℝ𝑛 and 𝕊𝑛. This result allows 

for formally defining the consistent one-to-one relation between the 𝑛-dimensional topological description of a 

space cell in primal space and its mapping onto a single dual node as proposed by the geometric-topological rep-

resentation schema for space cells introduced in chapter 3.1.1.2 (cf. quadrants II and III in figure 41). 

Precisely, for a given 𝑛-dimensional space cell complex 𝒞 and its associated outer space cell 𝑆𝑜𝑢𝑡(𝒞), we define a 

map 𝑓𝑇𝑃: {𝑇𝑃(𝒞), 𝑇𝑃(𝑆𝑜𝑢𝑡)} → ℰ̂
∗ which takes the 𝑘-cells in the primal space descriptions 𝑇𝑃(𝒞) respectively 

𝑇𝑃(𝑆𝑜𝑢𝑡) to distinct (𝑛 − 𝑘)-cells in the dual cell decomposition ℰ̂∗ of 𝕊𝑛, with 0 ≤ 𝑘 ≤ 𝑛. The restriction 

𝑓𝑇𝑃|𝑒𝑛 : 𝑒𝑛 → ℰ̂
∗ then takes the 𝑛-cell 𝑒𝑛 in the primal topological description 𝑇𝑃(𝑆) of a space cell 𝑆 ∈ {𝒞, 𝑆𝑜𝑢𝑡} 

to a distinct 0-cell in ℰ̂∗ constituting 𝑣𝑇𝑃(𝑆) as follows 

 𝑣𝑇𝑃(𝑆) = 𝑓𝑇𝑃|𝑒𝑛 (𝐼𝑛𝑡(𝑇𝑃(𝑆))) = {
𝑔 (𝐼𝑛𝑡(𝑇𝑃(𝑆))) ,  𝑆 ∈ 𝒞;

𝑓𝑃𝐷 (𝐼𝑛𝑡(𝑇𝑃(𝑆))) , 𝑆 = 𝑆𝑜𝑢𝑡 .
  (3.17) 

Since the 𝑛-cell in 𝑇𝑃(𝑆𝑜𝑢𝑡) is already contained in ℰ̂ it suffices to consider 𝑓𝑃𝐷 instead of 𝑔 for the outer space 

cell 𝑆𝑜𝑢𝑡. The reverse relation is denoted by 

 𝐼𝑛𝑡(𝑇𝑃(𝑆)) = 𝑓𝑇𝑃|𝑒𝑛
−1(𝑣𝑇𝑃(𝑆)) = {

𝑔−1(𝑣𝑇𝑃(𝑆)), 𝑆 ∈ 𝒞;

𝑓𝑃𝐷
−1(𝑣𝑇𝑃(𝑆)), 𝑆 = 𝑆𝑜𝑢𝑡 .

  (3.18) 

Figure 53 summarizes the results for the 2-dimensional building floor plan from figure 48. For the space cell 𝑅4 

as well as for the outer space cell 𝑆𝑜𝑢𝑡 the one-to-one mapping between their representations in primal and dual 

topology space is exemplified.  

 

𝕊2, ℰ̂

𝑓𝑃𝐷: ℰ̂ → ℰ̂
∗

𝕊2, ℰ̂∗

𝑇𝑃 𝑆𝑜𝑢𝑡 ⊂ 𝕊2, ℰ̂

𝕊2, ℰ̂    𝕊2, ℰ̂∗

9 0-cells → 9 2-cells

12 1-cells → 12 1-cells

5 2-cells → 5 0-cells𝑓𝐸 𝑀 , ℰ ′

⊂ 𝕊2, ℰ̂
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Figure 53: One-to-one mapping between the primal and dual space topology of a space cell complex and its associated outer 

space cell. 

The disjoint union ⋃ 𝑣𝑇𝑃(𝛼∈𝐼𝒞
𝑆𝛼) ∪ 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) is exactly the 0-skeleton ℰ̂0

∗ in dual space. Each (𝑛 − 1)-cell in the 

boundary 𝜕(𝑇𝑃(𝑆)) of a space cell is equivalently send to a distinct 1-cell in ℰ̂∗. As shown in chapter 2.5.1.4, the 

boundary map 𝜕: ℰ̂𝑛 → ℰ̂𝑛−1 in primal space becomes the coboundary map 𝛿: ℰ̂0
∗ → ℰ̂1

∗ in dual space. Thus, if two 

space cells share a common (𝑛 − 1)-cell 𝑒𝑛−1 on their boundary in ℰ̂ then their dual nodes are bounding the 

corresponding 1-cell 𝑒𝑛−1
∗  in ℰ̂∗. The dual 1-skeleton ℰ̂1

∗ hence captures the adjacency relations between space 

cells in primal space and realizes the dual adjacency graph of a space layer (cf. quadrant III in figure 42).  

Space layer. The machinery developed is used in the following to define a space layer of the structured space 

model. 

Definition 3.19 (Space layer). A space layer 𝐿 is a sextuple (𝒞, 𝑆𝑜𝑢𝑡 , 𝐺𝑇𝑃 , 𝐺𝐺𝑀, ℬ, 𝐴) where 𝒞 is an 𝑛-dimensional 

space cell complex in ℝ𝑛 with 2 ≤ 𝑛 ≤ 3 and 𝑆𝑜𝑢𝑡(𝒞) is the outer space cell associated with 𝒞. Both 𝒞 and 𝑆𝑜𝑢𝑡(𝒞) 

provide the primal representation of 𝐿 in geometry and topology space. 𝐺𝑇𝑃 and 𝐺𝐺𝑀 are the graph-based concep-

tualizations of 𝐿 in dual topology respectively geometry space. ℬ is a set of boundary cells  modelling the common 

boundary of space cells, and 𝐴 is a set of symbolic or semantic attributes associated with 𝐿 itself. 

A space layer shares the same dimension as 𝒞. Whereas both 𝒞 and 𝑆𝑜𝑢𝑡 populate the quadrants I and II of a space 

layer as depicted in figure 42, 𝐺𝑇𝑃 and 𝐺𝐺𝑀 correspond to quadrants III and IV respectively. The definition of the 

set of symbolic and semantic attributes 𝐴 is identical to that of the attribute set of a space cell (cf. definition 3.6). 

Reasonable semantic attributes for a space layer are, for example, the underlying notion of space (e.g., topographic 

space, sensor space, logical space, etc.) and the applied partitioning schema (e.g., topographic space for pedestri-

ans, sensor space representing Wi-Fi coverage, etc.).  

Definition 3.20 (Dual space topology of a space layer, intra-layer graph). Let (𝕊𝑛 , ℰ̂∗) be the duality transformation 

of the 𝑛-dimensional space complex 𝒞(𝐿) of the space layer 𝐿 according to definition 3.16. Then the dual space 

topology 𝐺𝑇𝑃(𝐿) = (𝑉, 𝐸) of 𝐿 is a dual graph, equivalently called intra-layer graph, given as subset of the 1-

skeleton ℰ̂1
∗ so that 

(i) 𝑉(𝐺𝑇𝑃) is constituted by the set of 0-cells 𝑒0
∗ in ℰ̂1

∗, and 

(ii) 𝐸(𝐺𝑇𝑃) is the set of all 1-cells 𝑒1
∗ in ℰ̂1

∗ being incident to two distinct nodes in 𝑉(𝐺𝑇𝑃), and thus 𝐸(𝐺𝑇𝑃) =

{𝑒1
∗ ∈ ℰ̂1

∗ | 𝜕𝑒1
∗ ≅ 𝕊0}. 

Obviously, the node set 𝑉(𝐺𝑇𝑃) can be equivalently rephrased to be the disjoint union of the dual topological 

representations of all space cells contained in the space cell complex 𝒞(𝐿) including 𝑆𝑜𝑢𝑡(𝐿), and thus 𝑉(𝐺𝑇𝑃) =

⋃ 𝑣𝑇𝑃(𝛼∈𝐼𝒞(𝐿)
𝑆𝛼) ∪ 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡(𝐿)).  

The intra-layer graph resulting for the 2-dimensional building floor plan discussed in the previous examples of 

this section is sketched in figure 54. In this case, the intra-layer graph is equal to the 1-skeleton ℰ̂1
∗ of the Poincaré 

transform of (𝕊𝑛 , ℰ̂) (cf. right of figure 53). Note that the intra-layer graph does not contain the dual cells from ℰ̂1
∗ 

having dimension greater than 1. Thus, the initial CW decomposition ℰ̂ of 𝕊𝑛 in primal space (cf. middle of figure 

53) cannot be reconstructed from the intra-layer graph anymore. This fact is however harmless in the context of 

𝑇𝑃 𝒞 = 𝑀, ℰ

𝑓𝐸:𝑀 → 𝕊
2

𝕊2, ℰ̂

𝑓𝑃𝐷: ℰ̂ → ℰ̂
∗

𝕊2, ℰ̂∗

𝑣𝑇𝑃 𝑆𝑜𝑢𝑡𝑇𝑃 𝑆𝑜𝑢𝑡𝐺𝑀 𝑆𝑜𝑢𝑡 𝑓𝑇𝑃

𝑓𝑇𝑃

𝑅1 𝑅2

𝑅3 𝑅4

𝑓𝐸 𝑀 , ℰ ′
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the structured space model since only the one-to-one pairing between the primal 𝑛-cells and (𝑛 − 1)-cells in ℰ̂ 

with the dual 0-cells respectively 1-cells in ℰ̂1
∗ is required. 

 

Figure 54: Intra-layer graph resulting for the 2-dimensional building floor plan from figure 48.    

According to definition A.51 of a CW complex (𝑋, ℰ), the cell boundary for each 1-cell 𝑒1 ∈ ℰ given by 𝜕𝑒1 =

�̅�1 \ 𝑒1 is defined to be a continuous image of 𝕊0. If the 1-skeleton 𝑋1 is understood as graph structure then this 

definition means that each edge can be incident to either one or two nodes. Condition (ii) of the above definition 

3.20 of the intra-layer graph 𝐺𝑇𝑃(𝐿) however restricts the boundary 𝜕𝑒1 to be a homeomorphic image of 𝕊0 and 

consequently requires all edges to link two different nodes 𝑣1, 𝑣2 ∈ 𝑉(𝐺𝑇𝑃(𝐿)). This restriction is introduced due 

to semantic considerations rather than for mathematical reasons. The dual graph of a space layer 𝐿 is meant to 

encode qualitative adjacency relationships between space cells in primal space which are to be evaluated in the 

context of navigation. A dual edge being incident to a single dual node would therefore carry the information that 

the corresponding space cell is adjacent to itself. This information is however implicitly true for every space cell, 

and thus cyclic edges can be omitted from 𝐺𝑇𝑃(𝐿) without loss of information. The discussion of different spatial 

configurations of space cells in chapter 3.1.3 illustrates examples for which the Poincaré duality transformation 

necessarily yields dual edges linking a single dual node with itself which therefore fall under condition (ii) of 

definition 3.20. 

Definition 3.21 (Dual space geometry of a space layer). The dual space geometry 𝐺𝐺𝑀(𝐿) of a space layer 𝐿 is the 

Euclidean space embedding of the dual graph 𝐺𝑇𝑃(𝐿) given by the both continuous and injective map 𝑓𝐺𝑀: 𝐺𝑇𝑃 →

ℝ𝑛 with 𝑛 being the dimension of 𝐿. Every node in 𝑉(𝐺𝑇𝑃) is assigned a distinct point in ℝ𝑛 and every edge in 

𝐸(𝐺𝑇𝑃) is associated with a space curve such that 

(i) there exists a continuous map 𝜙𝑒: �̅�
1 → ℝ𝑛 for each 𝑒 ∈ 𝐸(𝐺𝑇𝑃) that restricts to a homeomorphism from 

𝐼𝑛𝑡(�̅�1) onto 𝑒 and maps 𝜕�̅�1 onto �̅� \ 𝑒, 

(ii) no space curve contains points associated with nodes not being incident to the corresponding edge, and 

(iii) the intersection of the interior of two space curves is the empty set. 

It follows that the restriction 𝑓𝐺𝑀|𝑣: 𝑉(𝐺𝑇𝑃) → 𝑉(𝐺𝐺𝑀) to the nodes in 𝑉(𝐺𝑇𝑃) is a bijection with any two nodes 

𝑛,𝑚 ∈ 𝑉(𝐺𝑇𝑃) being adjacent if and only if 𝑓𝐺𝑀|𝑣(𝑛) and 𝑓𝐺𝑀|𝑣(𝑚) are adjacent in 𝐺𝐺𝑀. Therefore, the graphs 

𝐺𝑇𝑃 and 𝐺𝐺𝑀 are isomorphic, and 𝐺𝑇𝑃 ≃ 𝐺𝐺𝑀. As stated in chapter 3.1.1.1, a space curve may result from a medial-

axis transform of the primal space geometry of a space cell but arbitrary further embeddings are possible. 

The embedding 𝑓𝐺𝑀 formally links the dual node representation of a space cell with its geometric representation 

in dual space as follows 

  ∀𝑆 ∈ {𝒞(𝐿), 𝑆𝑜𝑢𝑡(𝐿)}: 𝑣𝐺𝑀(𝑆) = 𝑓𝐺𝑀|𝑣(𝑣𝑇𝑃(𝑆)). (3.22) 

Since 𝑓𝐺𝑀 is a continuous injection, the reverse mapping also holds: 

 ∀𝑆 ∈ {𝒞(𝐿), 𝑆𝑜𝑢𝑡(𝐿)}: 𝑣𝑇𝑃(𝑆) = 𝑓𝐺𝑀|𝑣
−1(𝑣𝐺𝑀(𝑆)). (3.23) 

Boundary cells. The developed formalism assures that space cells are mapped onto distinct nodes in the dual 

graph structure of a space layer 𝐿. Thus, graph traversal algorithms can access the spatial and semantic properties 

𝑣𝑇𝑃 𝑆𝑜𝑢𝑡

𝑓𝑇𝑃
𝑅1 𝑅2

𝑅3 𝑅4

𝑣𝑇𝑃 𝑅1

𝑣𝑇𝑃 𝑅2

𝑣𝑇𝑃 𝑅3
𝑣𝑇𝑃 𝑅4

𝑇𝑃 𝒞 = 𝑀, ℰ 𝐺𝑇𝑃 ⊆ ℰ̂1
∗

Primal space topology
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of space cell 𝑆 from its dual nodes in 𝐺𝑇𝑃(𝐿) respectively 𝐺𝐺𝑀(𝐿). In contrast, the dual edges as defined so far 

merely encode topological adjacency between space cells sharing a part of their boundary in primal space but are 

not associated with a formal model of this common boundary. However, the space cell boundary has been identi-

fied as an essential conceptual entity in its own right in chapter 3.1.1.1. For example, the bodily movement between 

topographic space cells requires that parts of the space cell boundary are intangible (e.g., the free space in walls 

due to doors or passages) whereas other parts might be tangible and hence constrain the movement (e.g., surfaces 

of walls). The transition between two places may additionally be hindered by geometric facts (e.g., a boundary 

being too narrow for wheelchair users) or logical restrictions (e.g., access constraints). Thus, the knowledge about 

navigable and non-navigable parts of the space cell boundary is a prerequisite for navigation queries and goes 

beyond pure topological adjacency. In order to make this spatial and semantic knowledge available within the 

structured space model, a formal model for a single boundary cell is introduced in the following. This model 

obviously needs to be strongly coupled with the definitions introduced so far in order to be consistent. 

Definition 3.24 (Boundary cell). A boundary cell 𝐵 is a quintuple (𝐺𝑀, 𝑇𝑃, 𝑒𝑇𝑃, 𝑒𝐺𝑀 , 𝐴) where 𝐺𝑀 and 𝑇𝑃 are 

the geometric respectively topological descriptions of 𝐵 in primal space, 𝑒𝑇𝑃 and 𝑒𝐺𝑀 are the topological respec-

tively geometric descriptions of 𝐵 in dual space, and 𝐴 is a set of symbolic or semantic attributes associated with 

𝐵 itself.  

Definition 3.25 (Primal space topology of a boundary cell). Let 𝐿 be an 𝑛-dimensional space layer and 𝒞(𝐿) its 

space cell complex. Further, let 𝑇𝑃(𝒞(𝐿)) = (𝑋, ℰ) be the finite CW complex of dimension 𝑛 that renders the 

primal space topology of 𝒞(𝐿) (cf. definition 3.9). Then the primal space topology 𝑇𝑃(𝐵) of a boundary cell 𝐵 is 

a finite subcomplex of the (𝑛 − 1)-skeleton ℰ𝑛−1 and contains a single (𝑛 − 1)-cell 𝑒𝑛−1 so that 𝑇𝑃(𝐵) = �̅�𝑛−1 ⊂

ℰ𝑛−1. Moreover, 𝑇𝑃(𝐵) has to satisfy one of the two following conditions: 

(i) The coboundary of 𝑒𝑛−1 contains precisely two 𝑛-cells 𝑒𝑛
1, 𝑒𝑛

2 ∈ ℰ with 𝑒𝑛
1 ≠ 𝑒𝑛

2, or 

(ii) 𝑇𝑃(𝐵) is a subset of the boundary of 𝑇𝑃(𝒞(𝐿)), and thus 𝑇𝑃(𝐵) ⊆ 𝜕𝑇𝑃(𝒞(𝐿)). 

Definition 3.26 (Primal space geometry of a boundary cell). Let 𝐿 be an 𝑛-dimensional space layer and 𝒞(𝐿) its 

space cell complex. Then the primal space geometry 𝐺𝑀(𝐵) of a boundary cell 𝐵 is the (𝑛 − 1)-dimensional 

geometric carrier of 𝑇𝑃(𝐵) in 𝐺𝑀(𝒞(𝐿)) with 𝐺𝑀(𝐵) ⊂ 𝐺𝑀(𝒞(𝐿)) ⊂ ℝ𝑛.  

A boundary cell 𝐵 on an 𝑛-dimensional space layer 𝐿 is said to be (𝑛 − 1)-dimensional. The conditions (i) and 

(ii) of definition 3.25 ensure that a boundary cell represents (a part of) the common boundary of precisely two 

space cells 𝑆1, 𝑆2 ∈ {𝒞(𝐿), 𝑆𝑜𝑢𝑡(𝐿)}. They hence formulate the primal space equivalence of the condition (ii) of 

definition 3.20 according to which each dual edge in the intra-layer graph 𝐺𝑇𝑃(𝐿) of 𝐿 has to be incident to two 

distinct dual nodes. The primal space geometry 𝐺𝑀(𝐵) necessarily is a subset of 𝜕𝐺𝑀(𝑆1) ∩ 𝜕𝐺𝑀(𝑆2) and pro-

vides a quantitative description for the common boundary of 𝑆1 and 𝑆2 which can be used, for example, to geo-

metrically evaluate whether arbitrarily shaped users having a geometric description can physically move through 

this boundary part. (Yuan & Schneider 2011) propose a similar concept called connector surface for their 3-di-

mensional grid-based LEGO model (cf. chapter 2.2.1) and introduce geometric methods for checking the accessi-

bility of connectors which can be equivalently transferred to the primal geometric description of boundary cells. 

However, a connector surface in the LEGO model is a purely geometric object and thus only carries the information 

provided by 𝐺𝑀(𝐵). 

Per definition 3.16, the (𝑛 − 1)-cell in 𝑇𝑃(𝐵) is send to a 1-cell in the dual CW complex (𝕊𝑛 , ℰ̂∗). This dual 1-

cell is exactly the dual topological space representation 𝑒𝑇𝑃(𝐵) of the boundary cell. Formally, a bijective pairing 

between 𝑇𝑃(𝐵) and 𝑒𝑇𝑃(𝐵) can be expressed by restricting the injective map 𝑓𝑇𝑃: {𝑇𝑃(𝒞), 𝑇𝑃(𝑆𝑜𝑢𝑡)} → ℰ̂
∗ intro-

duced above to the domain of (𝑛 − 1)-cells. Thus, 𝑓𝑇𝑃|𝑒𝑛−1: 𝑒𝑛−1 → ℰ̂
∗ yields 

 𝑒𝑇𝑃(𝐵) = 𝑓𝑇𝑃|𝑒𝑛−1 (𝐼𝑛𝑡(𝑇𝑃(𝐵))), and  (3.27) 

 𝐼𝑛𝑡(𝑇𝑃(𝐵)) = 𝑓𝑇𝑃|𝑒𝑛−1
−1(𝑒𝑇𝑃(𝐵)).  (3.28) 

Due to conditions (i) and (ii) of definition 3.25, 𝑒𝑇𝑃(𝐵) is a valid dual edge contained in the intra-layer graph 

𝐺𝑇𝑃(𝐿) of the corresponding space layer 𝐿. The dual space geometry 𝑒𝐺𝑀(𝐵) of 𝐵 then is the Euclidean space 
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embedding of 𝑒𝑇𝑃(𝐵) in 𝐺𝐺𝑀(𝐿) according to the map 𝑓𝐺𝑀: 𝐺𝑇𝑃 → ℝ
𝑛 given in definition 3.21 and its bijective 

restriction 𝑓𝐺𝑀|𝑒: 𝐸(𝐺𝑇𝑃) → 𝐸(𝐺𝐺𝑀) to the edges in 𝐸(𝐺𝑇𝑃). Formally,  

 𝑒𝐺𝑀(𝐵) = 𝑓𝐺𝑀|𝑒(𝑒𝑇𝑃(𝐵)), and (3.29) 

 𝑒𝑇𝑃(𝐵) = 𝑓𝐺𝑀|𝑒
−1(𝑒𝐺𝑀(𝐵)). (3.30) 

The set of symbolic and semantic attributes 𝐴(𝐵) of the boundary cell is identically defined as the attribute set of 

a space cell (cf. definition 3.6). Since the attributes are associated with the boundary cell which itself is mapped 

onto a dual edge in 𝐺𝑇𝑃(𝐿) respectively 𝐺𝐺𝑀(𝐿), they are available for graph traversal algorithms.  

In figure 55, the model for boundary cells is illustrated along the example building floor plan from figure 48. On 

the left, the primal topological representations of two boundary cells 𝐵1 and 𝐵2 are highlighted which are given as 

1-dimensional subcomplexes of the CW decomposition 𝑇𝑃(𝒞) of the space cell complex 𝒞. Whereas 𝐵1 separates 

the room 𝑅1 from the outer space and thus 𝑇𝑃(𝐵1) satisfies condition (ii) of definition 3.25, 𝐵2 describes the 

common boundary of the rooms 𝑅3 and 𝑅4. Correspondingly, the 2-cells in 𝑇𝑃(𝑅3) and 𝑇𝑃(𝑅4) are in the 

coboundary of the 1-cell contained in 𝑇𝑃(𝐵1) as required by condition (i) of definition 3.25. The dual edges re-

sulting for both boundary cells link the dual nodes of the corresponding space cells as shown in the dual graph 

depicted on the right. The boundary cells may be enriched with semantic information (e.g., whether they represent 

a wall or a passable boundary such as a door) which is then available from both space representations. 

 

Figure 55: Two boundary cells 𝐵1 and 𝐵2 in primal topology space (left) and dual topology space (right). Note that the re-

maining ten boundary cells for the 2-dimensional building floor plan from figure 48 are not illustrated for readability. 

Finally, a space layer is linked with the model of boundary cells in the following definition which concludes its 

mathematical formalization. 

Definition 3.31 (Set of boundary cells of a space layer). The set of boundary cells ℬ(𝐿) = {𝐵𝛼}𝛼∈𝐼𝒞  of a space 

layer 𝐿 is a set of finitely many boundary cells 𝐵𝛼 with 𝐵𝑖 , 𝐵𝑗 ∈ ℬ: 𝐼𝑛𝑡(𝑇𝑃(𝐵𝑖)) ≠ 𝐼𝑛𝑡 (𝑇𝑃(𝐵𝑗)) , 𝑖 ≠ 𝑗 and |ℬ| =

|𝐸(𝐺𝑇𝑃(𝐿))|.  

According to this definition, every (𝑛 − 1)-cell on the common boundary between two space cells 𝑆1, 𝑆2 ∈

{𝒞(𝐿), 𝑆𝑜𝑢𝑡(𝐿)} is described by exactly one boundary cell 𝐵 ∈ ℬ(𝐿). It necessarily follows that the number of 

boundary cells in ℬ(𝐿) is equal to the number of dual edges in 𝐺𝑇𝑃(𝐿).  

Minimal space layer. When assuming the space cell complex 𝒞 of a space layer to be the empty set, the minimal 

possible representation of a space layer is retrieved.  

Definition 3.32 (Minimal space layer). The minimal 𝑛-dimensional space layer 𝐿𝑚𝑖𝑛  is a space layer whose space 

cell complex 𝒞(𝐿𝑚𝑖𝑛) is the empty set, and thus 𝒞(𝐿𝑚𝑖𝑛) = 𝐺𝑀(𝒞(𝐿𝑚𝑖𝑛)) = 𝑇𝑃(𝒞(𝐿𝑚𝑖𝑛)) = ∅. The outer space 

cell 𝑆𝑜𝑢𝑡(𝐿𝑚𝑖𝑛) is then given in primal space by 𝐺𝑀(𝑆𝑜𝑢𝑡(𝐿𝑚𝑖𝑛)) = ℝ
𝑛 and 𝑇𝑃(𝑆𝑜𝑢𝑡(𝐿𝑚𝑖𝑛)) ≅ 𝕊

𝑛. By choosing 

a minimal CW decomposition of 𝕊𝑛 (one 0-cell and one 𝑛-cell), it follows that 𝑉(𝐺𝑇𝑃(𝐿𝑚𝑖𝑛)) = {𝑣𝑇𝑃(𝑆𝑜𝑢𝑡)} and 

𝐸(𝐺𝑇𝑃(𝐿𝑚𝑖𝑛)) = ∅. Consequently, ℬ(𝐿𝑚𝑖𝑛) = ∅. Finally, the minimal space layer does not carry semantic attrib-

utes, and thus 𝐴(𝐿𝑚𝑖𝑛) = ∅. 
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Intuitively, the minimal space layer 𝐿𝑚𝑖𝑛 of the structured space model is a representation of the boundaryless 

outer space in both primal and dual space. Any space layer reflecting an arbitrary indoor space partitioning can be 

built from 𝐿𝑚𝑖𝑛 by iteratively adding space cells to 𝒞(𝐿𝑚𝑖𝑛).  

This again emphasizes the need for an outer space complementing the spatial configuration of space cells in order 

to be able to apply the Poincaré duality transformation in the sense of theorem 2.1. From the alternative dual-

graph-based approaches presented, only (Jensen et al. 2009) identify an “exterior of the indoor space” and repre-

sent this exterior by a single node in their dual graph. This representation generally conforms to the dual topology 

space of 𝑆𝑜𝑢𝑡 within the structured space model given as 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) = 𝑓𝑃𝐷(𝐼𝑛𝑡(𝑇𝑃(𝑆𝑜𝑢𝑡))). However, (Jensen et 

al. 2009) neither present a formal definition for their notion of exterior nor for its node-based mapping. The model 

of (Boguslawski & Gold 2011) also introduces an “exterior shell” which encloses the cells representing the interior 

built environment. But the authors use this term to refer to the outer shell of a building which can be observed 

from outside the building. The outer building shell however can be described as bounded subset of Euclidean space 

and hence does not suffice to retrieve an orientable, closed manifold satisfying the Poincaré duality. Both in (Lee 

2001) and the previous publications on the MLSEM, a consistent notion of outer as well as its impact on the 

applicability of the Poincaré duality is not discussed.  

Weak intra-layer graph. If follows that the dual graphs presented by (Boguslawski & Gold 2011) and (Lee 2001) 

do not contain a dual node representing the outer space. In order to explain their results based on the mathematical 

realization of the structured space model, a weak intra-layer graph of a given space layer 𝐿 is defined as follows. 

Definition 3.33 (Weak intra-layer graph). Let 𝐺𝑇𝑃(𝐿) be the intra-layer graph of a space layer 𝐿, and 𝑆𝑜𝑢𝑡(𝐿) the 

outer space cell associated with 𝐿. Then the weak intra-layer graph 𝐺𝑇𝑃
′ (𝐿) = (𝑉, 𝐸) is a subgraph of 𝐺𝑇𝑃(𝐿) 

whose node set 𝑉(𝐺𝑇𝑃
′ ) is a subset of 𝑉(𝐺𝑇𝑃) excluding the dual node of 𝑆𝑜𝑢𝑡, and thus 𝑉(𝐺𝑇𝑃

′ ) =

𝑉(𝐺𝑇𝑃)\𝑣𝑇𝑃(𝑆𝑜𝑢𝑡). 

The weak version of the intra-layer graph for the example building floor plan discussed above (cf. figure 54) is 

shown below. Note that a further pruning of graph elements, e.g. based on semantic criteria (e.g., Lee 2001 and 

Boguslawski & Gold 2011), is possible but out of scope of this thesis. 

 

Figure 56: Weak intra-layer graph resulting for the 2-dimensional building floor plan from figure 48.    

Summary. In order to visually relate the developed mathematical model with the geometric-topological represen-

tation schema for space cells and space layers, the most important mathematical facts are arranged according to 

the four quadrants in figure 57. The figure nicely illustrates the formal linkage between the separate space repre-

sentations.  

𝑓𝑇𝑃
𝑅1 𝑅2

𝑅3 𝑅4

𝑇𝑃 𝒞 = 𝑀, ℰ ℰ̂1
∗

𝑅1 𝑅2

𝑅3 𝑅4
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Figure 57: Summary of the mathematical model arranged in the four quadrants of the geometric-topological representation 

schema for space cells and layers. The dashed lines indicate mappings that are not reversible. 

3.1.3 Discussion of Different Spatial Configurations of Space Cells 

According to definition 3.3, the manifold space underlying the primal geometry representation 𝐺𝑀(𝑆) of an 𝑛-

dimensional space cell 𝑆 must be decomposed by 𝑇𝑃(𝑆) into exactly one topological 𝑛-cell and finitely many 

lower dimensional cells in primal topology space. This restriction to the CW decomposition of 𝑇𝑃(𝑆) ensures that 

the Poincaré duality pairs each space cell with a single dual 0-cell captured by 𝑣𝑇𝑃(𝑆). For the same reason, an 

equivalent condition has been expressed for the outer space cell 𝑆𝑜𝑢𝑡 (cf. definition 3.13). In this chapter, different 

geometric layouts of space cells as well as different spatial configurations of space cells in a space cell complex 

are investigated with respect to their impact on the CW decompositions of the space cells including 𝑆𝑜𝑢𝑡 and on 

the structure of the resulting dual graph. The discussion is split in the following into 2-dimensional respectively 

3-dimensional manifold configurations of space cells as well as non-manifold settings. 

3.1.3.1 Two-dimensional Manifold Configurations 

In two dimensions, the primal space representation of space cells needs to be homeomorphic to a connected, ori-

entable, compact surface with boundary in ℝ2 (cf. condition (i) of definition 3.2). Geometrically, a space cell can 

be represented by a simple polygon with zero or more interior holes. In a topological sense, 2-dimensional space 

cells are the result of cutting 𝑘 ≥ 1 holes being open disks from the 2-sphere 𝕊2 and thus only differ in the number 

𝑘 of their boundary components.  

Space cells with one boundary component. Prototypical examples for 2-dimensional space cells having one 

boundary component are depicted in figure 58. The geometric layout of space cells may be convex as shown in 

figure 58a or concave as illustrated by the L-shaped and U-shaped space cells in figure 58b and c.  

(a)      (b)      (c)  

Figure 58: Examples of 2-dimensional space cells with their primal space topology and corresponding Euler characteristic.  
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A space cell 𝑆 with a single boundary component is homeomorphic to the closed 2-disk �̅�2. It is an obvious 

consequence that 𝑆 admits a finite CW complex 𝑇𝑃(𝑆) = (�̅�2, ℰ) that contains a single 2-cell covering the interior 

𝐼𝑛𝑡(𝑇𝑃(𝑆)) because a 2-cell per definition A.46 is homeomorphic to the open 2-disk 𝔹2 which itself is the interior 

of �̅�2. In order to combinatorially check whether ℰ is a valid cell decomposition of �̅�2 we simply compare the 

Euler characteristics of �̅�2 and ℰ. According to the classification of surfaces in appendix A.5.2, the Euler charac-

teristic χ of a compact orientable surface with boundary is given as χ = 2 − 2𝑔 − ℎ, where 𝑔 is the genus of the 

surface and ℎ the number of holes (cf. theorem A.87). Since �̅�2 is obtained from the sphere 𝕊2 by cutting one hole 

(i.e., removing an open disk), we get χ(�̅�2) = 2 − 0 − 1 = 1. The Euler characteristic of the cell decomposition 

ℰ is the alternating sum of the numbers of 𝑘-cells in ℰ and results in χ(ℰ) = ∑ (−1)𝑘𝑒𝑘
𝑛
𝑘=0  (cf. proposition A.83). 

Consider the space cell 𝑆 shown in figure 58a whose primal space topology 𝑇𝑃(𝑆) decomposes �̅�2 into four 0-

cells, four 1-cells, and one 2-cell. Thus, we get χ(ℰ) = 4 − 4 + 1 = 1 for the Euler characteristic. And since 

χ(ℰ) = χ(�̅�2) it follows that 𝑇𝑃(𝑆) is a valid cell decomposition of �̅�2. 

Suppose 𝑆 is the only space cell in a corresponding space cell complex. Then the compactified universal face 

captured by 𝑆𝑜𝑢𝑡 results from cutting 𝐼𝑛𝑡(𝑇𝑃(𝑆)) from 𝕊2 which likewise makes 𝑆𝑜𝑢𝑡 a space cell with a single 

boundary component. Thus 𝑇𝑃(𝑆𝑜𝑢𝑡) ≅ �̅�
2, and what has been said about the CW decomposition of 𝑇𝑃(𝑆) also 

holds for 𝑇𝑃(𝑆𝑜𝑢𝑡). The following figure 59 shows the Poincaré duality transformation for the L-shaped space cell 

from figure 58b and its associated outer space 𝑆𝑜𝑢𝑡.   

 

Figure 59: Embedding of the 2-dimensional L-shaped space cell on 𝕊2 and Poincaré duality transformation. 

Each of the six edges in the resulting dual graph encodes the fact that 𝑆 is topologically adjacent to 𝑆𝑜𝑢𝑡 which 

actually can be viewed as being redundant information. In fact, the same information is also transported by a dual 

graph which links the nodes of both space cells through a single edge. Since a dual edge is bijectively related to a 

primal 1-cell on the common boundary of 𝑇𝑃(𝑆) and 𝑇𝑃(𝑆𝑜𝑢𝑡), the number cells on the common boundary needs 

to be reduced in order to prune the dual graph. Figure 60 illustrates this for the above example by decomposing 

the L-shaped space cell into one 2-cell, one 1-cell, and one 0-cell which is the minimal CW decomposition for �̅�2 

and any homeomorphic topological space.  

 

Figure 60: Poincaré dual for a minimal CW decomposition of the 2-dimensional L-shaped space cell. 

It is important to note that in general the primal space topology 𝑇𝑃(𝑆) of an 𝑛-dimensional space cell 𝑆 may 

contain arbitrarily but finitely many lower dimensional cells as long as it remains homeomorphic to the manifold 

space realized by 𝐺𝑀(𝑆). This means that the space cell in the above example can be represented by 𝐺𝑀(𝑆) as L-

shaped figure in primal geometry space while it is decomposed by 𝑇𝑃(𝑆) into one 𝑘-cell per dimension which 

obviously does not match the number of corner points and straight line segments in 𝐺𝑀(𝑆). Only 𝑇𝑃(𝑆) is relevant 

for the Poincaré duality transformation and thus for the number of edges in the resulting dual graph. Moreover, 

topologically connected geometric objects on the common boundary of two 𝑛-dimensional space cells 𝑆1 and 𝑆2 
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∗
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can be described by arbitrarily but finitely many lower dimensional topological cells in 𝑇𝑃(𝑆1) and 𝑇𝑃(𝑆2). This 

is a direct consequence of the geometric-topological model for space cells and space layers as introduced in the 

previous chapters and its separate representation of the primal geometry and topology space. This modelling flex-

ibility and expressivity has to be seen as strength of the structured space model. For example, suppose the L-shaped 

space cell represents a topographic room and the line segments on its boundary the walls enclosing the room. Then 

its dual representation as depicted in figure 59 may be advantageous as it carries the individual walls to separate 

edges of the dual graph which makes their thematic attributes (e.g., material information) available in path queries. 

Likewise, connected line segments representing walls of the same material may also be mapped onto a single dual 

edge in order to prune the dual graph while maintaining its topological information. A dual representation follow-

ing figure 60 is typically more appropriate for sensor space cells as they are bounded by physical signal character-

istics rather than real word entities and hence a single edge representing this boundary often suffices. 

A counterexample to this flexibility is given by the dual-half edge model proposed by (Boguslawski & Gold 2011) 

that builds upon a single data structure which rigidly couples the geometric-topological representation of cells in 

both primal and dual space. Thus, in their model an edge in the dual graph always corresponds to a single geometric 

object in primal space, and the mapping of several topologically connected geometries onto a single topological 

cell that would be carried to a single edge in the dual graph is not supported. 

Space cells with more than one boundary component. Figure 61 sketches examples for space cells having more 

than one boundary component. In primal space, the space cells are geometrically described through simple poly-

gons with one or more disjoint interior holes with the number of holes being one less than the number of boundary 

components. The topological space described by two or more disjoint simple polygons (with or without interior 

holes) is also a compact surface having more than one boundary component. However, space cells are restricted 

to form connected topological spaces in primal space per definition 3.2, and thus disjoint simple polygons have to 

be mapped onto a separate space cell each.  

(a)      (b)      (c)  

Figure 61: Examples of 2-dimensional space cells with more than one boundary component (annulus (a), surface with two (b) 

and three (c) interior holes). 

The geometric figure shown on the left of figure 61 topologically can be thought of the space that results from 

cutting two open disks from 𝕊2 and also is referred to as annulus. It has genus zero and may not be confused with 

the torus 𝕋2 living in ℝ3. Due to the values 𝑔 = 0 and ℎ = 2, its Euler characteristics evaluates to zero. An intui-

tive CW complex (𝑋, ℰ) as sketched in figure 61 which decomposes the annulus into eight 0-cells, eight 1-cells, 

and one 2-cell however yields an Euler characteristic of one and hence is not feasible to describe the annulus. The 

reason is that the 1-skeleton 𝑋1 of this CW complex is not connected and thus its underlying space itself is not 

connected (cf. proposition A.58) which however is not true for the annulus. Therefore, an additional 1-cell has to 

be introduced in order to bridge the boundary components and to make the 1-skeleton 𝑋1 connected. In literature, 

this edge is often called bridge edge for this reason (e.g., Congli & Tsuzuki 2004, Boguslawski & Gold 2011). 

The following figure 62 illustrates the resulting CW complex whose Euler characteristic χ = 8 − 9 + 1 = 0 now 

is equal to that of the annulus. Also the minimal CW decomposition of the annulus containing two 0-cells, three 

1-cells, and a single 2-cell is shown. 

 

Figure 62: CW decomposition of the annulus involving a bridge edge 𝑒𝑏 (left) and minimal CW decomposition (right).  

𝑒𝑏
𝑒𝑏

 ℰ = 8 − 9 + 1 = 0  ℰ = 2 − 3 + 1 = 0
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It follows that the annulus is a valid space cell 𝑆𝐴 of the structured space model. But it also has a deliberate impact 

on the topological representation 𝑇𝑃(𝑆𝑜𝑢𝑡) of the outer space cell. The compactified universal face 

𝕊2\𝐼𝑛𝑡(𝑇𝑃(𝑆𝐴)) as complement of the interior of the annulus on the 2-sphere is given by two disjoint closed 2-

disks. Although each closed 2-disk is a prototypical example of a 2-dimensional space cell (cf. previous section), 

the complement space itself cannot be represented by 𝑆𝑜𝑢𝑡 as it violates the connectedness condition in definition 

3.13 and thus cannot not be mapped onto a CW complex containing only a single 2-cell. Therefore, the interior 

void of the annulus has to be explicitly modelled as additional space cell 𝑆𝐵 which intuitively fills the hole. Then 

the union 𝑆𝐴 ∪ 𝑆𝐵 is homeomorphic to �̅�2 and the outer space 𝑇𝑃(𝑆𝑜𝑢𝑡) follows as described in the previous 

section.16 In topographic space, the interior void commonly corresponds to a semantic entity. For example, assume 

the annulus represents a room. Then the interior of the annulus could reflect the navigable area of the room whereas 

its hole could denote a non-navigable area due to an immovable obstacle such as a column. In this case the semantic 

meaning of the interior void differs from that of 𝑆𝑜𝑢𝑡 which also speaks in favour of their modelling as two separate 

space cells. The Poincaré duality transformation for 𝑆𝐴, 𝑆𝐵, and 𝑆𝑜𝑢𝑡 is illustrated in the following figure based on 

the minimal CW decomposition of the annulus. 

 

Figure 63: Poincaré duality transformation for the annulus. 

Since 𝑆𝐵 is completely enclosed by 𝑆𝐴, its dual node 𝑣𝑇𝑃(𝑆𝐵) is only linked to 𝑣𝑇𝑃(𝑆𝐴) but not to 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) in the 

resulting dual representation. An important consequence of the introduced bridge edge in 𝑇𝑃(𝑆𝐴) is that its dual 

counterpart connects 𝑣𝑇𝑃(𝑆𝐴) with itself in a cycle. From a topological point of view this is consistent since the 

bridge edge cuts into the interior of 𝑆𝐴 and thus forms a boundary of the 2-cell in 𝑇𝑃(𝑆𝐴) to itself. However, and 

as already mentioned in chapter 3.1.2.4, the information encoded by the dual bridge edge is that 𝑆𝐴 is connected 

to itself which holds for all space cells. Thus, dual bridge edges do not satisfy the condition (ii) of definition 3.20 

and correspondingly are omitted from the dual graph 𝐿(𝐺𝑇𝑃) of a space layer 𝐿. 

If a space cell 𝑆 has two interior holes then it intuitively takes two bridge edges to make the 1-skeleton of 𝑇𝑃(𝑆) 

connected. Thus, the minimum number of bridge edges in 𝑇𝑃(𝑆) corresponds to the number of 2-dimensional 

interior holes of its underlying topological space. In order to formally express this relation for surfaces having an 

arbitrary number of interior holes, the second Betti number of the surface can be utilized. According to theorem 

A.94 (cf. appendix A.5.3), the Betti numbers 𝛽𝑘(𝑋) of a topological space 𝑋 informally count the number of 

unconnected 𝑘-dimensional holes of a topological space. Based on the second Betti number 𝛽1(𝑋) denoting the 

number of of 2-dimensional holes, the number of additional bridge edges in 𝑇𝑃(𝑆) can be determined as follows. 

Proposition 3.34 (Bridge edges in 2-dimensional space cells). Let 𝑆 be a 2-dimensional space cell, and let 𝛽1(𝑋) 

be the second Betti number of the topological space 𝑋 underlying 𝐺𝑀(𝑆). Then it requires precisely 𝛽1(𝑋) addi-

tional 1-cells (bridge edges) to make the 1-skeleton of 𝑇𝑃(𝑆) connected. Each bridge edge 𝑒1 in 𝑇𝑃(𝑆) is carried 

to a dual 1-cell 𝑒1
∗ whose boundary 𝑒1

∗̅ \ 𝑒1
∗ is 𝑣𝑇𝑃(𝑆), and thus 𝑒1

∗̅ ≅ 𝕊1. It therefore connects 𝑣𝑇𝑃(𝑆) in a cycle.  

Complexes of  -dimensional space cells. Suppose the spatial configuration 𝐺𝑀(𝒞) of a 2-dimensional space cell 

complex 𝒞 realizes a topological 2-manifold, then this manifold space can be classified as orientable compact 

surface with 𝑘 boundary components, 𝑘 ≥ 1. The scenarios discussed in the context of single space cells can 

                                                           
16 An alternative solution is to relax the connectedness condition for the primal space representation of 𝑆𝑜𝑢𝑡 and correspondingly 

allow its CW decomposition 𝑇𝑃(𝑆𝑜𝑢𝑡) to contain more than one 2-cell. However, this is to be seen disadvantageous as 𝑆𝑜𝑢𝑡 in 

such cases not necessarily represents a semantically homogeneous partition of space any more. 
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consequently be transferred to the CW decomposition 𝑇𝑃(𝒞) of the space cell complex as well as the topological 

description 𝑇𝑃(𝑆𝑜𝑢𝑡) of its associated outer space cell as exemplified in figure 64. 

(a)  

(b)  

Figure 64: Examples of 2-dimensional space cell complexes (left) and the corresponding dual graphs (right).   

Figure 64a shows two adjacent space cells whose resulting space cell complex is homeomorphic to the closed disk 

�̅�2 and thus agrees with the case of a single space cell with one boundary component. Therefore, 𝑆𝑜𝑢𝑡 is also 

homeomorphic to �̅�2 which results in the Poincaré duality transformation illustrated on the right of figure 64a. 

Whereas both space cells share a single 1-cell with 𝑇𝑃(𝑆𝑜𝑢𝑡), their common boundary is decomposed into five 1-

cells. Assume the space cells represent two neighboured rooms with the common boundary being a paper-thin 

model of the separating wall which contains two doors. Then the representation of the two doors as individual 1-

cells 𝑑1 and 𝑑2 carries them onto distinct edges in the dual graph and allows for their separate evaluation in path 

queries. In figure 64a, the wall is split into the three 1-cells 𝑤1 to 𝑤3 enclosing the doors and is likewise translated 

into three dual edges. This cell decomposition possibly comes closest to the real world configuration. However, 

since the primal topological representation is decoupled from the geometric setting in the structured space model, 

also different topological descriptions are possible. For example, the 1-cells 𝑑1 and 𝑑2 could also make up the 

entire boundary between the rooms or, alternatively, the wall could be mapped onto just one additional 1-cell. As 

discussed in chapter 2.2, there are good reasons for explicitly representing wall entities in the final navigation 

graph in order to make them available for path search algorithms.  

The topological space described by the space cell complex depicted in figure 64b is an annulus. It thus follows 

that the inner hole needs to be filled by one (or more) separate space cell since otherwise the outer space would be 

disconnected. On a topographic space layer this extra space cell could, for example, semantically denote an inner 

courtyard embraced by the four space cell. Alternatively, the four space cell could also represent a more fine-

grained subdivision of a single room with the interior void reflecting a navigation obstacle (cf. above discussion). 

Additional bridge edges are not required in this example because the individual space cells themselves are obvi-

ously homeomorphic to �̅�2. 

In contrast to a single space cell, the topological space underlying the geometric configuration of a space cell 

complex needs not be connected. Figure 65 demonstrates this case along two disconnected space cells which might 

represent the signal coverage areas of two sensors on a sensor space layer. 

𝑤1 𝑑1 𝑤2 𝑤3𝑑2

𝑆𝑜𝑢𝑡

𝑆1

𝑆2

𝑆1

𝑆2

𝑤1
𝑤2

𝑤3

𝑑1 𝑑2

𝑆2

𝑆1

𝑆3

𝑆4

𝑆𝑜𝑢𝑡

𝑆1

𝑆 

𝑆4

𝑆2 𝑆3



98 Chapter 3.   Multilayered Space-Event Model (MLSEM) 

 

 

 

Figure 65: Poincaré duality transformation for two disconnected 2-dimensional space cells. 

Again, the topological representation 𝑇𝑃(𝑆) of each sensor space cell in figure 65 is homeomorphic to the closed 

disk �̅�2. Since the compactified universal face of the space cell complex 𝒞 results from removing 𝐼𝑛𝑡(𝑇𝑃(𝒞)) 

from 𝕊2, this means cutting the open disk 𝔹2 ≅ 𝐼𝑛𝑡(𝑇𝑃(𝑆)) twice from 𝕊2 in this example. This operation obvi-

ously yields the annulus as underlying topological space for 𝑆𝑜𝑢𝑡 with either of its two circular boundary compo-

nents corresponding to a boundary 𝜕𝑇𝑃(𝑆) of a sensor space cell. In a topological sense, both boundary compo-

nents cannot be distinguished into being exterior or interior. The CW decomposition 𝑇𝑃(𝑆𝑜𝑢𝑡) involves a bridge 

edge to make the boundary of the annulus connected. Assume that each sensor space cell is represented through 

one 𝑘-cell per dimension in 𝑇𝑃(𝒞). When attaching 𝑇𝑃(𝑆𝑜𝑢𝑡) to 𝑇𝑃(𝒞) in order to retrieve a single CW complex 

(𝕊2, ℰ̂) of the 2-sphere satisfying the Poincaré duality (cf. definition 3.14) then the bridge edge in 𝑇𝑃(𝑆𝑜𝑢𝑡) finally 

links the two 0-cells on the common boundary of 𝑇𝑃(𝑆𝑜𝑢𝑡) with the sensor space cells. We can verify this result 

by comparing the Euler characteristics of ℰ̂ and 𝕊2 which gives χ(ℰ̂) = 2 − 3 + 3 = 2 and χ(𝕊2) = 2 (cf. theorem 

A.85). So the bridge edge cannot be removed from (𝕊2, ℰ̂) without invalidating it. The resulting CW complex 

(𝕊2, ℰ̂) is shown in the middle of figure 65, whereas the Poincaré dual (𝕊2, ℰ̂∗) is illustrated on the right. In ac-

cordance with proposition 3.34, the dual counterpart of the bridge edge in ℰ̂∗ connects 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) in a cycle and is 

omitted from the resulting dual navigation graph of a space layer without losing adjacency information. In general, 

in case of 𝑘 disconnected space cells, 𝑆𝑜𝑢𝑡 will be an orientable compact surface with 𝑘 boundary components, 

and thus 𝑘 − 1 bridge edges are required for 𝑇𝑃(𝑆𝑜𝑢𝑡) according to proposition 3.34. 

Assume the signal coverage area of a sensor is reflected by separate sensor space cells that result from applying 

different signal strength bands as partitioning criteria. In figure 66, this is demonstrated for the circular reception 

area of a single Wi-Fi transmitter which is decomposed into three non-overlapping space cells 𝑆1, 𝑆2, and 𝑆3. The 

space cells are supposed to cover those indoor space regions where the received signal strength ranges from −90 

to −120 𝑑𝐵𝑚, from − 0 to −90 𝑑𝐵𝑚, and from −30 to − 0 𝑑𝐵𝑚 respectively.  

 

Figure 66:  A space cell complex representing three signal strengths bands of a Wi-Fi transmitter (left), its primal space 

topology involving two bridge edges (middle), and the corresponding Poincaré dual (right). 

Topologically, the space cell 𝑆1 renders an annulus whose inner hole is filled by both 𝑆2 and 𝑆3. Moreover, 𝑆2 

itself is an annulus whose inner hole is occupied by the closed disk 𝑆3. In this example, the inner holes of both 𝑆1 

and 𝑆2 obviously have a different semantic meaning than the outer space surrounding 𝑆1 which reflects the area 

without Wi-Fi signal reception. The resulting space cell complex 𝒞 is homeomorphic to �̅�2. Its minimal CW 

decomposition 𝑇𝑃(𝒞) into three 0-cells, five 1-cells including two bridge edges, and three 2-cells is shown in the 

middle of figure 66. It is an immediate consequence that 𝑣𝑇𝑃(𝑆1) and 𝑣𝑇𝑃(𝑆2) are linked to themselves in cycles 

in the corresponding Poincaré dual. Note that neither 𝑆2 nor 𝑆3 can be omitted from 𝒞 without violating the con-

nectedness condition of 𝑆𝑜𝑢𝑡. 

𝑆1 𝑆2
𝑓𝑃𝐷: ℰ̂ → ℰ̂

∗

𝕊2, ℰ̂ 𝕊2, ℰ̂∗

𝑓𝐸:𝑀 → 𝕊
2

𝑇𝑃 𝒞 = 𝑀, ℰ

𝕊2, ℰ̂    𝕊2, ℰ̂∗

2 0-cells → 2 2-cells

3 1-cells → 3 1-cells

3 2-cells → 3 0-cells

𝑒𝑏

 ℰ = 3 − 5 + 3 = 1

𝑆1−90 to −120 𝑑 𝑚

− 0 to −90 𝑑 𝑚

−30 to − 0 𝑑 𝑚

𝑒𝑏
1

𝑒𝑏
2

𝑆𝑜𝑢𝑡𝑆3 𝑆1𝑆2

𝑆2

𝑆3
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The discussion of spatial settings of 2-dimensional space cell complexes concludes with two examples dealing 

with overlaps as given in figure 67. 

(a)  

(b)  

Figure 67: Examples of overlapping space cells (a) and overlapping boundary cells (b). 

In figure 67a, two space cells 𝑆𝐴 and 𝑆𝐵 overlap in primal space which has been excluded for valid space cell 

complexes per definition 3.7. As shown in chapter 3.1.2.3, this setting has rather to be modelled using three non-

overlapping space cells 𝑆1, 𝑆2, and 𝑆3, with 𝑆1 = 𝑆𝐴\𝑆𝐵, 𝑆2 = 𝑆𝐵\𝑆𝐴, and 𝑆3 = 𝑆𝐴 ∩ 𝑆𝐵. First, this adheres to an 

intuitive semantic understanding as the overlapping region 𝑆3 shares the meaning and properties of both 𝑆𝐴 and 𝑆𝐵 

and hence is distinctly different from both 𝑆1 and 𝑆2. Second, there is also a strong reason from algebraic topology 

as topological cells in an algebraic cell complex are not allowed to share parts of their interiors (cf. definition 

A.48). Thus, 𝐼𝑛𝑡(𝑇𝑃(𝑆𝐴)) and 𝐼𝑛𝑡(𝑇𝑃(𝑆𝐵)) cannot be translated into overlapping 2-cells in 𝑇𝑃(𝒞) of the corre-

sponding space cell complex 𝒞. A valid CW decomposition 𝑇𝑃(𝒞) ≅ �̅�2 is depicted in the middle of figure 67a 

in which all space cells 𝑆1, 𝑆2, 𝑆3, and 𝑆𝑜𝑢𝑡 are given as regular subcomplexes of 𝑇𝑃(𝒞) each of which contains 

two 0-cells, two 1-cells and one 2-cell and is homeomorphic to �̅�2. In dual space (cf. right of figure 67a), the node 

𝑣𝑇𝑃(𝑆3) is the only one not being linked to 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) since 𝑆3 only shares two 0-cells on its common boundary 

with 𝑆𝑜𝑢𝑡. 

The second example illustrated in figure 67b also deals with non-overlapping but 1-dimensional topological cells. 

It shows two space cells which touch but are displaced so that their common boundary is a subset of a 1-dimen-

sional straight boundary segment in either space cell. In order to correctly capture this configuration by a CW 

decomposition 𝑇𝑃(𝒞) the common boundary has to be represented by a separate 1-cell as shown in the middle of 

figure 67b. Note that although both space cells represent a rectangular region in ℝ2, their description in primal 

topology space differs. Precisely, a minimum possible CW decomposition for this configuration has been applied 

to the space cell 𝑆1, whereas the topological cells in 𝑇𝑃(𝑆2) more closely follow the geometric description.  

3.1.3.2 Three-dimensional Manifold Configurations 

The primal space description of a 3-dimensional space cell needs to be homeomorphic to a connected 𝑘-shell 

manifold solid, with 𝑘 being the number of its boundary components and 𝑘 ≥ 1 (cf. condition (ii) of definition 

3.2). In the following examples, the primal space geometry is depicted using geometric polyhedra but more com-

plex geometric shapes (e.g., involving freeform surfaces or curves) are allowed. Similar to the illustration of 2-

dimensional settings, the following discussion considers the cases of 𝑘 = 1 and 𝑘 > 1 as well as space cell com-

plexes separately. 

Space cells with one boundary component. The prototypical example of a 3-dimensional space cell with one 

boundary component renders a single-shell manifold solid being homeomorphic to the closed 3-ball �̅�3 in primal 

space. Different geometric realizations of �̅�3 are depicted in the following figure 68.   

𝑆𝐴 𝑆𝐵 𝑆1 𝑆3 𝑆2

𝑆𝑜𝑢𝑡

𝑆1 𝑆2𝑆3

𝑆1

𝑆2

𝑆1

𝑆2

𝑆𝑜𝑢𝑡

𝑆1

𝑆2
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(a)    (b)    (c)    (d)  

Figure 68: Examples of single-shell manifold solids being homeomorphic to �̅�3. 

Similar to the 2-dimensional case, it easily follows that a space cell 𝑆 whose geometric layout is homeomorphic 

to �̅�3 can be decomposed by 𝑇𝑃(𝑆) into a single 3-cell 𝑒 ≅ 𝔹3 = 𝐼𝑛𝑡(�̅�3) and an arbitrary but finite number of 

lower dimensional cells denoting the cell boundary 𝜕𝑒. As elaborated in appendix A.5.3, the Euler characteristic 

of manifold solids can be computed as the alternating sum of their first three Betti numbers (cf. proposition A.96). 

Since �̅�3 has one connected component but neither a 2-dimensional hole nor a 3-dimensional interior void, its 

Euler characteristic is given by χ(�̅�3) = 𝛽0(�̅�
3) − 𝛽1(�̅�

3) + 𝛽2(�̅�
3) = 1 − 0 + 0 = 1. If 𝑆 is assumed to be the 

only space cell in a corresponding space cell complex, then the compactified universal solid captured by 𝑇𝑃(𝑆𝑜𝑢𝑡) 

follows from 𝕊3\𝐼𝑛𝑡(𝑇𝑃(𝑆)) ≅ 𝕊3\𝐼𝑛𝑡(�̅�3) and is itself homeomorphic to �̅�3.  

In figure 69a, the Poincaré duality transformation is demonstrated for a cuboidal space cell 𝑆. The illustrated CW 

complex 𝑇𝑃(𝑆) has Euler characteristic χ(𝑇𝑃(𝑆)) = 8 − 12 +  − 1 = 1 and thus agrees with χ(�̅�3). In order to 

retrieve a CW complex (𝕊3, ℰ̂) satisfying the Poincaré duality, the 3-cell in 𝑇𝑃(𝑆𝑜𝑢𝑡) is attached to the embedding 

of 𝑇𝑃(𝑆) on 𝕊3 which decreases the Euler characteristic by one and χ(ℰ̂) = 0. This result can be validated against 

the Euler characteristic of 𝕊3 itself based on its Betti numbers. In contrast to a manifold solid, the fourth Betti 

number has to be additionally considered in this computation since 𝕊3 is a 3-manifold topologically embedded in 

Euclidean 4-space ℝ4. From 𝕊3 being the manifold boundary of �̅�4 it follows that it is a single connected compo-

nent with one 4-dimensional interior void given by 𝐼𝑛𝑡(�̅�4) = 𝔹4. Thus, 𝛽0(𝕊
3) = 𝛽3(𝕊

3) = 1 and 𝛽1(𝕊
3) =

𝛽2(𝕊
3) = 0 which yields the Euler characteristic χ(𝕊3) = 1 − 0 + 0 − 1 = 0. Consequently, χ(ℰ̂) = χ(𝕊3).  In 

the dual graph, the six 2-cells on the boundary of the cube are translated into six dual edges linking the dual node 

of the cube with the dual node of the adjacent outer space cell.   

In order to illustrate the possibility of having decoupled geometric and topological descriptions in primal space, 

figure 69b shows the duality transformation based on the minimal CW complex (�̅�3, 𝛿) of polyhedra being home-

omorphic to �̅�3 which contains one 0-cell, one 2-cell, and one 3-cell with χ(𝛿) = 1 − 0 + 1 − 1 = 1 = χ(�̅�3). 

As expected, this allows for deriving a dual graph linking 𝑣𝑇𝑃(𝑆) and 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) in a single edge. 

(a)   

(b)  

Figure 69: Poincaré duality transformation for a cuboidal space cell (a) and its minimal CW decomposition (b). 

𝕊3, ℰ̂    𝕊3, ℰ̂∗

8 0-cells → 8 3-cells

12 1-cells → 12 2-cells

6 2-cells → 6 1-cells

2 3-cells → 2 0-cells

 ℰ = 8 − 12 +  − 1 = 1

𝑆𝑜𝑢𝑡

 -cell
 -cell

 -cell

 -cell

𝕊3, ℰ̂    𝕊3, ℰ̂∗

1 0-cell → 1 3-cell

0 1-cells → 0 2-cells

1 2-cell → 1 1-cell

2 3-cells → 2 0-cells

 ℰ = 1 − 0 + 1 − 1 = 1

 -cell
 -cell

 -cell

𝑆𝑜𝑢𝑡
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The space cell shown in figure 68b needs to be considered more carefully if it is not to be mapped by the minimal 

CW decomposition. Its underlying polyhedron is constructed from cutting an interior hole into one boundary face 

of a cuboid and closing this hole by attaching a second smaller cuboid with one of its boundary faces removed. 

The interior of the resulting polyhedron is topologically connected rendering it homeomorphic to �̅�3. However, 

the Euler characteristic of the CW decomposition 𝑇𝑃(𝑆) depicted in figure 70a is invalid as it results in 

χ(𝑇𝑃(𝑆)) = 1 − 24 + 11 − 1 = 2 ≠ χ(�̅�3). The reason is that the face with the interior hole topologically is an 

annulus. Accordingly, an additional bridge edge connecting its boundary components has to be introduced. The 

rectified CW decomposition with Euler characteristic χ(𝑇𝑃(𝑆)) = 1 − 25 + 11 − 1 = 1 = χ(�̅�3) is shown on 

the right. It is important to note that in three dimensions the bridge edge does not affect the resulting dual graph 

structure. The Poincaré duality takes the primal 1-dimensional bridge edge to a 2-dimensional counterpart, but 

only the dual 0-cells and 1-cells are relevant for the dual graph. For the same reasons, also the primal CW decom-

position of the polyhedron with non-through hole illustrated in figure 68c involves an additional bridge edge (cf. 

figure 70b). 

(a)  

(b)  

Figure 70: Examples of bridge edges in the primal space topology of 3-dimensional space cells.  

The boundaries of the polyhedra in the above examples are homeomorphic to the 2-sphere 𝕊2. However, and per 

definition A.91, the manifold boundary of a single-shell manifold solid is only limited to belong to the class of 

closed, orientable surfaces which includes surfaces with genus greater than zero and specifically the 𝑛-holed torus 

𝕋2, with 𝑛 ≥ 0 being the genus of the surface and the 0-holed torus being equivalent to 𝕊2 (cf. appendix A.5.2). 

A manifold solid enclosed by an 𝑛-holed torus is equivalently said to be an 𝑛-holed toroid and is denoted as 𝑇 in 

the following. Examples for space cells whose primal space geometry realizes an 𝑛-holed toroid are depicted 

below. 

(a)    (b)    (c)  

Figure 71: Examples of single-shell manifold solids being homeomorphic to an 𝑛-holed toroid. 

Assume the 1-holed toroid 𝑇 as shown in figure 71a. Similar to the 2-dimensional annulus, it may be used, for 

example, to model a topographic space cell such as a room whose navigable space surrounds a non-navigable 

region that extends over the entire height of the room (e.g., built obstacles like columns and pillars inside the 

room). It is to be characterized as a single connected component with one 2-dimensional hole so that χ(𝑇) = 1 −

1 + 0 = 0 according to its Betti numbers. Figure 72a illustrates a CW complex (𝑋, ℰ) which decomposes the toroid 

𝑒𝑏

 ℰ = 1 − 24 + 11 − 1 = 2 ≠  �̅�3  ℰ = 1 − 25 + 11 − 1 = 1

𝑒𝑏

 ℰ = 1 − 24 + 11 − 1 = 2 ≠  �̅�3  ℰ = 1 − 25 + 11 − 1 = 1



102 Chapter 3.   Multilayered Space-Event Model (MLSEM) 

 

 

into sixteen 0-cells, twenty-six 1-cells including two bridge edges, ten 2-cells and one 3-cell leaving 1 − 2 +

10 − 1 = −1 for its Euler characteristic and thus 𝑋 ≇ 𝑇. Although the bridge edges ensure the connectedness of 

the 1-skeleton 𝑋1, the interior of 𝑇 is not homeomorphic to 𝔹3 and can only be described by a single 3-cell 𝑒 when 

adding an additional bridge face to ℰ as depicted in figure 72b. Otherwise, the cell boundary 𝜕𝑒 formed by the 2-

skeleton 𝑋2 is not a continuous image of 𝕊2 which however is enforced by the characteristic map 𝜙𝑒: �̅�
3 → 𝑋 for 

𝑒 and its restriction 𝜑𝑒 = 𝜙𝑒|𝕊2 ∶ 𝕊
2 → 𝑋2 on the boundary (cf. definition A.48). Considering this additional bridge 

face, the Euler characteristic χ(ℰ) = 1 − 2 + 11 − 1 = 0 is equal to χ(𝑇). A toroid is hence a valid primal 

space representation for a space cell of the structured space model. 

(a)    (b)  

Figure 72: Incorrect CW decomposition of the toroid (a) and correct decomposition involving a bridge face (b). 

Let 𝑆 be a space cell with 𝑇𝑃(𝑆) ≅ 𝑇. The 1-holed toroid 𝑇 differs from the 2-dimensional annulus in that it only 

has a single boundary component and hence does not disconnect the compactified universal solid given by 

𝕊3\𝐼𝑛𝑡(𝑇). Nevertheless, it also affects the primal topological representation of 𝑆𝑜𝑢𝑡 due to 𝕊3\𝐼𝑛𝑡(𝑇) again 

yielding a solid torus 𝑇2. The 3-cell 𝑒2 in the corresponding CW decomposition 𝑇𝑃(𝑆𝑜𝑢𝑡) of 𝑇2 can be viewed as 

the space surrounding 𝑇 in figure 72. It again requires an additional bridge face in the CW complex of figure 72a 

to make its 2-skeleton a continuous image of 𝕊2 and a valid boundary for 𝑒2. This additional bridge face in 

𝑇𝑃(𝑆𝑜𝑢𝑡) is shown on the left of figure 73. The resulting CW complex (𝕊3, ℰ̂) satisfying the Poincaré duality can 

be easily validated through χ(ℰ̂) = 1 − 2 + 12 − 2 = 0 = χ(𝕊3).  

Each bridge face has an impact on the resulting dual graph as it is mapped onto a dual edge by the duality trans-

formation. Since the bridge face in 𝑇𝑃(𝑆) lies on the boundary of the contained 3-cell to itself, its dual counterpart 

connects 𝑣𝑇𝑃(𝑆) in a cycle which equivalently holds for 𝑆𝑜𝑢𝑡. So similar to bridge edges in two dimensions, the 

dual edge encodes the obvious information that 𝑆 is adjacent to itself and thus is finally filtered from the dual graph 

𝐿(𝐺𝑇𝑃) of a space layer 𝐿. The dual graph for 𝑆 and 𝑆𝑜𝑢𝑡 is illustrated on the right of figure 73. However, a minimal 

CW decomposition for each toroid into one 0-cell, two 1-cells, two 2-cells, and one 3-cell has been applied in 

order to retrieve a single dual edge linking 𝑣𝑇𝑃(𝑆) with 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡). 

 

Figure 73: Bridge face in 𝑓𝑏(𝑆𝑜𝑢𝑡) in 𝑇𝑃(𝑆𝑜𝑢𝑡) for a single toroid (left) and corresponding dual graph assuming a minimal 

CW decomposition (right). 

Although the hole of a toroidal space cell needs not be filled by an additional space cell in order to apply the 

mathematical formalization of the structured space model, this may be beneficial from a semantic point of view. 

For example, if the hole represents a navigation obstacle in topographic space then representing the obstacle by its 

𝑒𝑏

𝑒𝑏

 ℰ = 1 − 2 + 10 − 1 = −1 ≠  𝑇

𝑓𝑏

 ℰ = 1 − 2 + 11 − 1 = 0 =  𝑇

𝑓𝑏 𝑆

𝑓𝑏 𝑆𝑜𝑢𝑡

𝑆 𝑆𝑜𝑢𝑡

 𝕊3 = 1 − 2 + 12 − 2 = 0
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own space cell explicitly differentiates it from the outer space 𝑆𝑜𝑢𝑡. A corresponding space cell would be homeo-

morphic to �̅�3 in primal space rendering 𝑆𝑜𝑢𝑡 homeomorphic to 𝕊3\𝐼𝑛𝑡(𝑇 ∪ �̅�3) ≅ �̅�3. Thus, the primal topolog-

ical description 𝑇𝑃(𝑆𝑜𝑢𝑡) does not involve a bridge face in this case. 

Space cells with more than one boundary component. In three dimensions, space cells with more than one 

boundary component are topologically described by connected multi-shell manifold solids in primal space. Intui-

tively, a connected multi-shell manifold solid can be obtained from a single-shell manifold solid by cutting one or 

more 3-dimensional holes into its interior. Technically, a hole results from removing the interior of another single-

shell manifold solid. Geometric realizations of connected multi-shell manifold solids are presented in figure 74 by 

polyhedra with one or more interior holes each of which is homeomorphic to 𝔹3.  

(a)    (b)    (c)  

Figure 74: Examples of connected multi-shell manifold solids. 

The exemplified space cells may be used, for example, to precisely model the signal coverage area of a sensor in 

three dimensions with the interior voids denoting lack of signal reception possibly due to specific materials in 

walls surrounding these areas and absorbing the signal. But also in topographic space the modelling of space cells 

with interior voids is useful. For example, the exterior shell as proposed in the model of (Boguslawski & Gold 

2011) for the representation of the outer shell of a building is precisely the exterior shell of a 𝑘-shell manifold 

solid that at least has one more interior boundary component enclosing the spatial configuration of “void” areas 

within the building such as rooms, corridors, etc. This again illustrates that the notion of the exterior shell in 

(Boguslawski & Gold 2011) is not to be confused with the notion of outer space in the structured space model (see 

also chapter 3.1.2.4).  

The Euler characteristic of the connected multi-shell manifold solids shown in figure 74 is retrieved by adding the 

number of interior holes to 1 for its single connected component. For example, χ(𝑀) = 1 − 0 + 1 = 2 for the 

connected 2-shell manifold solid 𝑀 underlying the polyhedron with one interior hole. It obviously follows from 

the discussion so far that the CW complex (𝑋, ℰ) as shown on the left of figure 75a is not a valid decomposition 

of 𝑀 for two reasons. First, its 1-skeleton is not connected but 𝑀 is a connected topological space. Second, the 2-

skeleton is not a continuous image of 𝕊2 and thus not a valid boundary for a single 3-cell. The comparison of the 

Euler characteristics of 𝑀 and ℰ confirms this: χ(ℰ) = 1 − 24 + 12 − 1 = 3 ≠ χ(𝑀). Similar to toroidal space 

cells, an additional bridge face as presented in the middle of figure 75 is required which gives χ(ℰ) = 1 − 2 +

13 − 1 = 2 = χ(𝑀) for the rectified CW complex. 

Due to its disjoint boundary components, 𝑀 disconnects the compactified universal solid 𝕊3\𝐼𝑛𝑡(𝑀) into two 

disjoint connected components each being homeomorphic to �̅�3 which violates the connectedness condition of the 

outer space cell. Similar to the discussion of the 2-dimensional annulus, it thus requires two separate space cells 

𝑆𝐴 and 𝑆𝐵 with 𝑇𝑃(𝑆𝐴) ≅ 𝑀 and 𝑆𝐵 filling the interior void of 𝑆𝐴. Then 𝑆𝑜𝑢𝑡 follows from 𝕊3\𝐼𝑛𝑡(𝑆𝐴 ∪ 𝑆𝐵) and 

is connected. The corresponding dual graph based on a minimal CW decomposition of 𝑆𝐴, 𝑆𝐵, and 𝑆𝑜𝑢𝑡 is depicted 

on the right of figure 75 and is isomorphic to the dual graph for the annulus (cf. figure 63). Again, the bridge face 

links 𝑣𝑇𝑃(𝑆𝐴) to itself in a cycle. 
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Figure 75: Incorrect CW decomposition of a connected 2-shell manifold (left), corrected CW composition involving a bridge 

face (middle), and resulting dual graph assuming a minimal CW decomposition and an additional space cell filling the interior 

void (right). 

Intuitively, the number of bridge faces in three dimensions is related to the number of 2-dimensional holes and 

interior cavities of the space cell. This notion is stated in the following proposition for arbitrary 3-dimensional 

space cells. 

Proposition 3.35 (Bridge faces in 3-dimensional space cells). Let 𝑆 be a 3-dimensional space cell, and let 𝛽1(𝑋) 

and  𝛽2(𝑋) be the second respectively third Betti number of the topological space 𝑋 underlying 𝐺𝑀(𝑆). Then it 

requires precisely 𝛽1(𝑋) + 𝛽2(𝑋) additional 2-cells (bridge faces) as well as finitely many additional lower di-

mensional cells to make the 2-skeleton of 𝑇𝑃(𝑆) a continuous image of 𝕊2. Each bridge face 𝑒2 in 𝑇𝑃(𝑆) is carried 

to a dual 1-cell 𝑒2
∗ whose boundary 𝑒2

∗̅ \ 𝑒2
∗ is 𝑣𝑇𝑃(𝑆), and thus 𝑒2

∗̅ ≅ 𝕊1. It therefore connects 𝑣𝑇𝑃(𝑆) in a cycle. 

For example, consider the 3-dimensional space cell sketched in figure 76 which renders a toroid 𝑇 with an interior 

void being homeomorphic to 𝔹3. Equivalently, it is a manifold solid 𝑀 with a single connected component, one 

2-dimensional hole due to the 1-holed torus, and one 3-dimensional hole. Its Euler characteristic can thus be 

computed as χ(𝑀) = 𝛽0(𝑀) − 𝛽1(𝑀) + 𝛽2(𝑀) = 1 − 1 + 1 = 1, and the additional number of bridge faces in 

𝑇𝑃(𝑆) is given as 𝛽1(𝑀) + 𝛽2(𝑀) = 1 + 1 = 2. The right of figure 76a shows the corresponding CW complex 

(𝑀, ℰ) involving both bridge faces and with Euler characteristic χ(ℰ) = 28 − 4 + 20 − 1 = 1 which matches 

χ(𝑀). Finally, adding 𝑆𝑜𝑢𝑡 gives rise to the minimal dual graph as depicted in figure 76b with 𝑆𝑜𝑢𝑡 itself being a 

toroid having one additional bridge face in 𝑇𝑃(𝑆𝑜𝑢𝑡).  

(a)   

(b)  

Figure 76: CW decomposition of a toroid with internal void involving two bridge faces (a), and minimal dual graph after 

adding 𝑆𝑜𝑢𝑡 and an additional hole-filling space cell (b). 

The necessity of modelling bridge faces in a 3-dimensional topological cell complex of toroidal spaces and of 

spaces with interior cavities is also presented in (Boguslawski & Gold 2011). However, the impact of such spaces 

on their ambient space as well as the dual representation of bridge faces in the Poincaré transforms of the cell 
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complex and its ambient space are not illustrated. The duality-based works of (Lee 2001) and (Jensen et al. 2009) 

as well as the previous publications on the MLSEM lack a discussion of both bridge edges and bridge faces. 

Complexes of  -dimensional space cells. In case the spatial configuration 𝐺𝑀(𝒞) of a 3-dimensional space cell 

complex 𝒞 forms a topological 3-manifold, then this 3-manifold can be classified as 𝑘-shell manifold solid. Figure 

77 exemplifies corresponding space cell complexes each of which is built from a set of simple space cells being 

homeomorphic to �̅�3. From left to right, the space cell complexes themselves are homeomorphic to �̅�3, the 1-

holed toroid 𝑇, and a connected 2-shell manifold solid whose shells are 2-spheres. Thus, 𝑇𝑃(𝒞) is connected and 

the topological description 𝑇𝑃(𝑆𝑜𝑢𝑡(𝒞)) of the outer space follows the scenarios presented in the context of single 

space cells. 

(a)    (b)    (c)  

Figure 77: Examples of 3-dimensional space cell complexes. 

Figure 77a is the 3-dimensional equivalence of the scenario depicted in figure 64a. It generally exemplifies the 

modelling of more than one 2-cell on the common boundary of two 3-dimensional space cells. Suppose the space 

cells represent two neighboured rooms which share two doors 𝑑1 and 𝑑2 enclosed by a paper-thin model of the 

separating wall 𝑤. A possible CW decomposition of the common boundary into twelve 0-cells, fourteen 1-cells, 

and three 2-cells is shown in figure 78a, with one 2-cell per wall and door. Bridge edges are not introduced in this 

example since the doors are not modelled as interior holes of the 2-cell representing the wall. This yields 1 as 

Euler characteristic for the CW decomposition and thus matches the Euler characteristic of a closed 2-disk. A 

further partitioning of the wall as required in two dimensions (cf. figure 64a and related discussion) is not necessary 

in this 3-dimensional setting. The resulting dual graph for the space cell complex is sketched in figure 78b. Both 

doors and the wall are translated into separate dual edges linking the room nodes. And both room nodes are con-

nected to the dual node of the outer space cell through a single dual edge assuming that their common boundary 

with 𝑆𝑜𝑢𝑡 is captured by a single 2-cell. Alternative cell decompositions of the shared room boundary are possible. 

For example, it could also be described by only two 2-cells for the doors which would consequently prune the dual 

edge representing the wall from the dual graph.  

(a)      (b)  

Figure 78: CW decomposition of the shared boundary of two 3-dimensional space cells involving more than one 2-cell (a) and 

corresponding dual graph (b). 

The primal space representation of the space cell complexes in figure 77b and c illustrates the stacking of space 

cells on top of each other in ℝ3. For example, figure 77b could be viewed as topographic space layer with the 

space cells representing rooms on two floors being separated by paper-thin walls and slabs. The through hole of 

the toroid rendered by their spatial configuration could denote an inner courtyard or possibly an elevator shaft. In 

either case, the modelling of one or more space cells filling the hole would capture its semantics and make it 

available in the resulting dual graph. The entire space cell complex could likewise model a single room and its 

fine-grained 3-dimensional subdivision. For the space cell complex shown in figure 77c, the interior void must be 

explicitly filled by one or more individual space cells in order to ensure the connectedness of the outer space. 

Assume the common boundary of two space cells is captured by a single 2-cell in the CW decomposition 𝑇𝑃(𝒞) 

of either space cell complex then the dual graphs for both settings follow as shown in figure 79. Note that the 
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through hole in figure 77b is not filled by additional space cells in this example, and thus the outer space is a toroid 

in 𝕊3 whose CW decomposition requires an additional bridge face. 

(a)      (b)  

Figure 79: Dual graphs for the examples from figure 78b and c assuming a minimal CW decomposition.  

An example for a space cell complex 𝒞 whose primal space geometry 𝐺𝑀(𝒞) renders a 𝑘-shell manifold solid 𝑀 

with more than one connected component is shown in figure 80a. Similar to the 2-dimensional example depicted 

in figure 65, the illustrated spherical space cells might represent the disjoint coverage areas of two sensor space 

cells on a sensor space layer. Since the space cells result in two connected components for 𝑀, the first three Betti 

numbers are given as 𝛽0(𝑀) = 2 and 𝛽1(𝑀) = 𝛽2(𝑀) = 0, and correspondingly χ(𝑀) = 2. A minimal CW de-

composition of 𝑇𝑃(𝒞) into two 0-cells, two 2-cells, and two 3-cells agrees with this result. The compactified 

universal solid results from cutting the interior of each space cell from 𝕊3 which yields a connected 2-shell mani-

fold solid, and according to proposition 3.35 one additional bridge face has to be introduced in 𝑇𝑃(𝑆𝑜𝑢𝑡). The 

minimal CW complex (𝕊3, ℰ̂) for this setting satisfying the Poincaré duality is given in figure 80b and decomposes 

𝕊3 into four 0-cells, four 1-cells, three 2-cells, and three 3-cells with χ(ℰ̂) = 4 − 4 + 3 − 3 = 0 being equal to 

χ(𝕊3). The corresponding dual graph in figure 80c is isomorphic to the dual graph resulting for the equivalent 2-

dimensional model (cf. figure 65).  

(a)    (b)    (c)  

Figure 80: Two disjoint solid space cells (a), additional bridge face 𝑓𝑏(𝑆𝑜𝑢𝑡) for the outer space cell 𝑆𝑜𝑢𝑡 (b), and resulting 

dual graph. 

The above example can be generalized to arbitrarily shaped connected components in a 3-dimensional space cell 

complex. Suppose the primal space configuration of space cells results in two connected components with the first 

one being homeomorphic to �̅�3 and the second one rendering a 1-holed toroid 𝑇. Then removing their interiors 

from 𝕊3 retrieves a connected 2-shell manifold solid. Since topologically either shell may be exterior or interior, 

the manifold solid can be viewed as 1-holed toroid with a spherical inner void (cf. figure 76), or vice versa as 

closed 3-ball with a toroidal inner void. In both cases two additional bridge faces need to be modelled for 𝑇𝑃(𝑆𝑜𝑢𝑡) 

to correctly decompose the compactified outer space. 

For the same reasons as discussed in the context of 2-dimensional space cell complexes in chapter 3.1.3.1 (cf. 

figure 67), overlapping space cells as well as overlapping topological 𝑘-cells in CW decompositions of space cells 

and space cell complexes are neither allowed in three dimensions.  

3.1.3.3 Non-manifold Configurations 

The duality transformation of an 𝑛-dimensional space cell complex 𝒞 is independent from whether or not the 

topological space underlying 𝐺𝑀(𝒞) is a topological 𝑛-manifold. Although the Poincaré duality theorem presup-

poses an oriented closed manifold, this requirement is satisfied by the compact space 𝕊𝑛 in which 𝑇𝑃(𝒞) is topo-

logically embedded. Therefore, the only additional condition to be met is that the CW complex (𝕊𝑛 , ℰ̂) which 

𝑆𝑜𝑢𝑡𝑓𝑏 𝑆𝑜𝑢𝑡
𝑆𝑜𝑢𝑡
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results from attaching 𝑇𝑃(𝑆𝑜𝑢𝑡) to the embedding of 𝑇𝑃(𝒞) (cf. definition 3.14) be a valid CW decomposition of 

𝕊𝑛. The following figure 81 illustrates non-manifold configurations of space cells in two and three dimensions.  

(a)    (b)    (c)  

Figure 81: Examples of non-manifold space cell complexes in two (a) and three dimensions (b and c). 

All space cell complexes shown violate the definition of a topological 𝑛-manifold with boundary since the points 

where their contained space cells touch neither have an open neighbourhood homeomorphic to an open subset of 

ℝ𝑛 nor to an open subset of the half-space ℝ+
𝑛 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ

𝑛 | 𝑥𝑛 ≥ 0} (cf. definition A.40). Nevertheless, 

assume the 2-dimensional space cell complex 𝒞 illustrated on the left of figure 81 and its CW decomposition 

𝑇𝑃(𝒞) into one 0-cell, two 1-cells, and two 2-cells as depicted on the left of figure 82. Then gluing the 2-cell in 

𝑇𝑃(𝑆𝑜𝑢𝑡) to 𝑇𝑃(𝒞) yields a CW complex (𝕊2, ℰ̂) with Euler characteristic χ(ℰ̂) = 1 − 2 + 3 = 2 which equals 

the Euler characteristic of 𝕊2. Hence, ℰ̂ is obviously a valid CW decomposition of 𝕊2 and its Poincaré transform 

is sketched on the right of figure 82.  

 

Figure 82: Poincaré duality transformation for the non-manifold space cell complex from figure 81a. 

In the derived dual graph, the dual nodes of both space cells are linked to 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) but not to each other because 

in primal space the space cells only share a 0-cell on their common boundary which is carried to a dual 2-cell. 

This result is consistent with the illustrated examples for manifold space cell complexes in the previous chapters. 

Suppose the example is augmented with one more space cell as presented in figure 83 which makes the space cell 

complex a manifold space homeomorphic to �̅�2. Then in the dual graph based on a minimal CW decomposition 

of the space cells (cf. right of figure 83), the two dual nodes of the original space cells are neither linked to each 

other. It follows that the non-manifold setting of space cells is mapped onto a valid and consistent dual represen-

tation. The same result holds for arbitrary non-manifold space cell complexes in two and three dimensions.  

 

Figure 83: Adding a further space cell to retrieve a manifold space cell complex from figure 81a (left) and corresponding dual 

graph assuming a minimal CW decomposition (right). 

Observe that the dual representation of the non-manifold space cell complex in figure 82 is almost identical to that 

of the manifold configuration rendered by two disconnected space cells as discussed in chapter 3.1.3.1 (cf. figure 

65). The dual graph in that case only differs in its additional dual edge being incident to 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡) which results 

from the bridge edge in 𝑇𝑃(𝑆𝑜𝑢𝑡). Although the bridge edge and its dual counterpart do not carry relevant infor-

mation in the context of navigation, this example nicely demonstrates their relevance from a topological point of 

view. 
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The mathematical formalization of a space cell complex as presented in chapter 3.1.2.4 already supports non-

manifold configurations of space cells. Precisely, the primal space geometry 𝐺𝑀(𝒞) of a space cell complex 𝒞 is 

not restricted to form a topological 𝑛-manifold with boundary (cf. definition 3.8), and neither is its primal space 

topology 𝑇𝑃(𝒞) (cf. definition 3.9). However, it is important to note that although a space cell complex may be 

non-manifold, each of its contained space cells is required to render a topological 𝑛-manifold with boundary ac-

cording to definition 3.2 in order to ensure its one-to-one mapping onto a single node in the dual graph. The outer 

space cell 𝑆𝑜𝑢𝑡(𝒞) is an exception from this rule. Since 𝑇𝑃(𝑆𝑜𝑢𝑡) describes the complement space of the topolog-

ical embedding of 𝑇𝑃(𝒞) in 𝕊𝑛, it necessarily is non-manifold if 𝑇𝑃(𝒞) is non-manifold. The mathematical for-

malization of 𝑆𝑜𝑢𝑡 also accounts for this fact as both its primal space geometry 𝐺𝑀(𝑆𝑜𝑢𝑡) and its primal space 

topology 𝑇𝑃(𝑆𝑜𝑢𝑡) are defined differently from that of ordinary space cells (cf. definition 3.12 and definition 3.13).  

In summary, it follows that the structured space model and its mathematical foundation are flexible enough to 

capture spatial settings of space cells that render both manifold and non-manifold topological spaces. At least for 

the dual-half edge structure proposed by (Boguslawski & Gold 2011), non-manifold cases are explicitly excluded. 

And similar to the discussion about bridge edges and faces, the issue of non-manifold configurations of cells is 

neither addressed in (Lee 2001) and (Jensen et al. 2009), nor in the previous publications on the MLSEM.  

3.2 Combining Different and Multiple Space Representations 

The structured space model facilitates the separate and independent modelling of arbitrary notions of indoor space 

and their corresponding space partitioning on different space layers. Each space layer is useful in its own right for 

decoupled tasks in indoor navigation. For example, and as illustrated in chapter 3.1.2.3, topographic space layers 

allow for path planning and visual guidance, and hence suffice to derive navigation or escape routes within a 

building that may be communicated through a guidance system installed in the building (e.g., display panels for 

routing humans to the nearest or safest emergency exit) without the need for accompanying sensor or logical space 

models. Likewise, the dual graph of a sensor space layer already enables tracking and localization of moving 

persons or objects in relation to the modelled sensor space cells, and thus is not necessarily dependent on a com-

plementary topographic space representation. However, the tracking of persons or objects along a route as well as 

their localization with reference to topographic regions obviously requires an integrated, context-dependent view 

and the simultaneous evaluation of multiple space representations. In this chapter it is shown how different and 

multiple space layers are formally combined to a consistent multilayered space model of indoor space based on 

the common geometric-topological representation schema for space cells and space layers and its mathematical 

formalization. The abstract conceptualization of indoor space through the structured space model ensures that the 

multilayered space representation again is applicable to various notions of indoor space. The conceptual idea of 

modelling multiple representations of indoor space on different space layers is sketched in figure 84. The resulting 

stack of layers provides a complete view on an indoor space in question with each layer capturing a structuring of 

space along distinct semantics. 

 

Figure 84: Modelling of indoor space on different and multiple space layers.  
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The number and types of space layers in this multilayered space model is unbounded and certainly depends on the 

navigation application to be realized. For example, several topographic space layers may be required to model the 

interior built environment and its decomposition into navigable and non-navigable spaces for different modes of 

locomotion. In case pedestrian navigation should be supported only, a single topographic space layer however may 

already be adequate. Likewise, each positioning technology available in a building or facility is modelled as indi-

vidual sensor space layer which also holds for different partitionings into virtual space cells on logical or alterna-

tive space layers along non-physical criteria. So the number of layers also differs with respect to the available 

localization infrastructure and the logical facts to be mapped. Moreover, suppose that a logical layer represents 

disaster areas such as (parts of) rooms and corridors affected by a fire incident which prohibit access or movement, 

then apparently this space partitioning is only relevant during the emergency situation. Thus, space layers may 

also be dynamically added or removed from the multilayered space model.        

Although the space layers are depicted as thin slices in figure 84, it is important to remember that each space layer 

may provide a 3-dimensional covering of the entire indoor space. For example, a single topographic space layer is 

suitable for reflecting the rooms, corridors, doors, stairs, elevators, and further architectural entities on all floors 

of a building. A 2-dimensional space layer, on the other hand, is in fact typically limited to a single building floor 

which then accordingly restricts the modelling scope of additional layers in a multilayered representation. It fol-

lows that in this case a collection of 2-dimensional multilayered space models is required to describe the entire 

indoor space, with each multilayered representation covering a separate building floor. From this, a necessary 

condition to the combination of different and multiple space layers can be deduced that all space layers must share 

the same dimension. 

A collection of space layers is called a space layer complex and is defined in the following. 

Definition 3.36 (Space layer complex). A space layer complex ℒ = {𝐿𝛼}𝛼∈𝐼ℒ  is a set of finitely many space layers 

𝐿𝛼 of the same dimension 𝑛, with 2 ≤ 𝑛 ≤ 3 and |ℒ| ≥ 0. 

A space layer complex is said to have dimension 𝑛. It is an easy fact from the conceptualization of space underlying 

the structured space model that the space partitioning on each space layer 𝐿 ∈ ℒ may substantially vary due to 

differing numbers, shapes and spatial extents of space cells contained in 𝒞(𝐿). This implies that although the space 

cells in 𝒞(𝐿) are required to be mutually non-overlapping, this condition does not hold between the space cells on 

two different space layers in ℒ. However, all space cells in the collection of space layers have in common that they 

describe the same real world indoor space, and every space layer is a tiling of ℝ𝑛. Thus, it is also immediate that 

every space cell 𝑆𝛼 ∈ {𝒞(𝐿1), 𝑆𝑜𝑢𝑡(𝐿1)} has a non-empty intersection in primal space with at least one space cell 

𝑆𝛽 ∈ {𝒞(𝐿2), 𝑆𝑜𝑢𝑡(𝐿2)} for two distinct space layers 𝐿1, 𝐿2 ∈ ℒ. This relationship between the space cells on dif-

ferent space layers provides the conceptual basis for the coupling of space layers in the multilayered space model. 

In order to visually illustrate this relationship, the following figure 85 reuses the simple indoor setting as introduced 

in chapter 3.1.2.3. It shows a space layer complex consisting of two space layers. The first space layer represents 

the built-up space by three topographic space cells capturing two rooms each of which is connected to a corridor 

through a door surface, whereas the second space layer models three sensor space cells denoting the overlapping 

coverage areas of two Wi-Fi transmitters. In figure 85b and c, the top view of the primal geometric extent of the 

space cells as well as the corresponding Poincaré transform is sketched for either space layer (quadrants II and IV 

of the geometric-topological representation schema for space layers presented in figure 42 have been omitted for 

clarity). In both dual graphs, the dual nodes of two adjacent space cells are linked by a single dual edge assuming 

that the common boundary between the space cells is mapped onto a single 2-cell in primal topology space.17 

                                                           
17 Note that in a 2-dimensional setting the boundary part of the corridor between both doors would have to be modelled as 

separate 1-cell in primal topology space which would correspondingly yield at least two dual edges linking the dual node of 

the corridor with the dual node of the outer space (cf. figure 64 and related discussion in chapter 3.1.3.1). The dual graph of 

the sensor space layer would be identical in two dimensions. 
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(a)  

(b)   (c)  

Figure 85: Example 3-dimensional indoor scene from figure 18 (a), and dual graphs of the corresponding topographic space 

layer (b) and sensor space layer (c). 

A person or object travelling through indoor space moves through a distinct space cell on each layer at a given 

point in time (cf. chapter 3.1.1.1). For example, consider a person being located in room 𝑅1 in the above example. 

Then this person is necessarily simultaneously within the spatial region covered by either sensor space cell 𝐴, 𝐴𝐵, 

or the outer space cell of the sensor space layer, but not within space cell 𝐵. This knowledge is implicitly available 

from the geometric layout and the spatial configuration of the space cells between both space layers, and thus can 

be derived by geometric operations in two or three dimensions which however are computationally expensive. 

Therefore, a purely combinatorial model encoding the spatial configuration of space cells on different space layers 

is proposed that realizes the coupling between space layers in the multilayered space model and facilitates com-

putationally efficient reasoning.  

The linkage is formally expressed in terms of inter-layer edges connecting the dual nodes of space cells from 

different space representations. Precisely, an inter-layer edge between the dual nodes of two space cells on different 

space layers is established if and only if the intersection of the interiors of their primal space geometries is non-

empty. It follows that the space layers participating in a space layer complex are linked in dual topology space (cf. 

quadrant III in figure 42) based on the topological relationships between their space cells in primal geometry space 

(cf. quadrant I in figure 41). Given two space layers 𝐿1 and 𝐿2, the set of inter-layer edges is derived by pairwise 

intersecting the primal geometric description of every space cell on 𝐿1 with that of every space cell on 𝐿2. This 

constitutes a bipartite graph in dual space whose nodes are divided into the two disjoint sets 𝑉(𝐺𝑇𝑃(𝐿1)) and 

𝑉(𝐺𝑇𝑃(𝐿2)), and whose edges join two nodes from either set. When considering 𝑘 space layers then the pairwise 

intersection of space cells over all space layers obviously yields a 𝑘-partite graph with 𝑘 disjoint partitions of dual 

nodes. For a given space layer complex, this 𝑘-partite graph is called inter-layer graph. 

Definition 3.37 (Inter-layer graph, inter-layer edge). The inter-layer graph 𝐼𝐿𝐺(ℒ) of a space layer complex ℒ is 

a 𝑘-partite graph 𝐼𝐿𝐺 = (𝑉, 𝐸), with 𝑘 = |ℒ|, and where 

(i) the node set 𝑉(𝐼𝐿𝐺) is partitioned into 𝑘 disjoint subsets 𝑉1, … , 𝑉𝑘 with ∀𝑖 ∈ {1, … , 𝑘}: 𝐿𝑖 ∈ ℒ ∧ 𝑉𝑖 =

𝑉(𝐺𝑇𝑃(𝐿𝑖)), and 

(ii) the edge set 𝐸(𝐼𝐿𝐺) is given by 𝐸(𝐼𝐿𝐺) = {{𝑣𝑇𝑃(𝑆𝛼), 𝑣𝑇𝑃(𝑆𝛽)} | 𝐼𝑛𝑡(𝐺𝑀(𝑆𝛼)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑆𝛽)) ≠ ∅} 

with ∀𝑖 ≠ 𝑗 ∈ {1, … , 𝑘}: 𝑣𝑇𝑃(𝑆𝛼) ∈ 𝑉𝑖 ∧ 𝑣𝑇𝑃(𝑆𝛽) ∈ 𝑉𝑗. An edge 𝑒 ∈ 𝐸(𝐼𝐿𝐺) is said to be an inter-layer 

edge. 

Due to every space layer 𝐿 ∈ ℒ being a complete covering of ℝ𝑛, each node in a given partition 𝑉𝑖 ∈ 𝑉(𝐼𝐿𝐺) is 

adjacent to at least one node in every other partition 𝑉𝑗 ∈ 𝑉(𝐼𝐿𝐺), with 𝑖 ≠ 𝑗. Thus, each node in 𝑉(𝐼𝐿𝐺) is incident 

to at least 𝑘 − 1 inter-layer edges in 𝐸(𝐼𝐿𝐺), and therefore |𝐸(𝐼𝐿𝐺)| ≥
𝑘(𝑘−1)

2
. The lower limit |𝐸(𝐼𝐿𝐺)| =

𝑘(𝑘−1)

2
 

only occurs when ℒ contains 𝑘 copies of the minimal space layer 𝐿𝑚𝑖𝑛  (cf. definition 3.32). 
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The precise topological relationship between two space cells in primal space linked by an inter-layer edge in dual 

space can be categorized based on the 4-intersection model (cf. Egenhofer & Franzosa 1991 and appendix A.6). 

The 4-intersection model suffices for this purpose since the primal space geometry 𝐺𝑀(𝑆) of every space cell 𝑆 

realizes an 𝑛-dimensional object embedded in the ambient Euclidean space ℝ𝑛 yielding a co-dimension of zero 

for 𝐺𝑀(𝑆), with 2 ≤ 𝑛 ≤ 3 (cf. definition 3.2 and definition 3.12). Moreover, and as discussed in appendix A.6, 

the 4-intersection model can be applied in both two and three dimensions. 

Let 𝑒 = {𝑣𝑇𝑃(𝑆𝛼), 𝑣𝑇𝑃(𝑆𝛽)} ∈ 𝐸(𝐼𝐿𝐺) be an edge of an inter-layer graph 𝐼𝐿𝐺. Per condition (ii) of definition 3.37, 

the intersection 𝐼𝑛𝑡(𝐺𝑀(𝑆𝛼)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑆𝛽)) of the primal space geometries of the space cells 𝑆𝛼 and 𝑆𝛽 is non-

empty. Then, a 4-intersection matrix ℑ4(𝑆𝛼 , 𝑆𝛽) capturing the topological relationship between 𝑆𝛼 and 𝑆𝛽 is de-

fined as 

 ℑ4(𝑆𝛼 , 𝑆𝛽) = (
¬∅ 𝐼𝑛𝑡(𝐺𝑀(𝑆𝛼)) ∩ 𝜕𝐺𝑀(𝑆𝛽)

𝜕𝐺𝑀(𝑆𝛼) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑆𝛽)) 𝜕𝐺𝑀(𝑆𝛼) ∩ 𝜕𝐺𝑀(𝑆𝛽)
). (3.38) 

This 4-intersection matrix yields six possible topological relationships. In case (
¬∅ ¬∅
∅ ∅

), the space cell 𝑆𝛼 con-

tains the space cell 𝑆𝛽, whereas 𝑆𝛼 is inside 𝑆𝛽 for (
¬∅ ∅
¬∅ ∅

). Likewise, 𝑆𝛼 covers 𝑆𝛽 given the intersection matrix 

(
¬∅ ¬∅
∅ ¬∅

) and is coveredBy 𝑆𝛽 for (
¬∅ ∅
¬∅ ¬∅

). Two more possible relationships are identified through 

(
¬∅ ∅
∅ ¬∅

) and (
¬∅ ¬∅
¬∅ ¬∅

) which denote that 𝑆𝛼 and 𝑆𝛽 are equal respectively that both space cells overlap.  

In order to make the topological relationship between two space cells explicit in the combinatorial model, it is 

mapped onto a corresponding edge label assigned to the inter-layer edge, which renders the inter-layer graph an 

edge-labelled graph. 

Definition 3.39 (Inter-layer edge labelling). Let 𝐼𝐿𝐺(ℒ) be the inter-layer graph of a space layer complex ℒ. For 

each edge 𝑒 = {𝑣𝑇𝑃(𝑆𝛼), 𝑣𝑇𝑃(𝑆𝛽)} ∈ 𝐸(𝐼𝐿𝐺(ℒ)) there exists a continuous map 𝑙𝑒: 𝑒 → ℑ4(𝑆𝛼 , 𝑆𝛽) (called edge 

labelling for 𝑒) which associates 𝑒 with the binary topological relationship of its incident space cells 𝑆𝛼 and 𝑆𝛽. 

The following figure exemplifies the bipartite inter-layer graph for the indoor setting introduced in figure 84. On 

the left, the primal space representations of both space layers are shown in a 2-dimensional top view to better 

illustrate the overlaps between the topographic space cells and the sensor space cells. The right part depicts the 

resulting inter-layer graph in dual topology space which connects the dual nodes of space cells having a non-empty 

intersection of their interiors in primal space. For instance, since the coverage area of the Wi-Fi space cell 𝐴 

spatially overlaps with the primal space geometries of the space cells 𝑅1 and 𝐶 as well as the outer space cell of 

the topographic space layer, the corresponding dual nodes are linked by inter-layer edges. In this example, all 

inter-layer edges express overlap relationships between incident dual nodes and hence their edge labels are not 

illustrated separately.  

 

Figure 86: Bipartite inter-layer graph for the indoor setting from figure 84. 

The inter-layer graph 𝐼𝐿𝐺(ℒ) of a space layer complex ℒ is complementary to the Poincaré dual graphs on the 

separate space layers contained in ℒ. First, each Poincaré dual graph is restricted to a single space layer 𝐿 ∈ ℒ and 

is therefore equivalently referred to as intra-layer graph of 𝐿 (cf. definition 3.20). Second, whereas the edges of 

each Poincaré dual graph denote adjacency relationships between mutually non-overlapping space cells, the edges 
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of the inter-layer graph encode mutually overlapping space cells. It intuitively follows that the edges of the inter-

layer graph are orthogonally aligned with the edges of each intra-layer graph. And since the node sets of the 

Poincaré dual graphs in ℒ are just the disjoint partitions of 𝑉(𝐼𝐿𝐺(ℒ)), the separate graph representations can be 

integrated into a single graph structure. This graph structure is said to be a multilayered graph within the MLSEM 

and it is unique for a given space layer complex ℒ.  

Definition 3.40 (Multilayered graph). The multilayered graph 𝑀𝐿𝐺(ℒ) = (𝑉, 𝐸) of a space layer complex ℒ is 

the union of the inter-layer graph 𝐼𝐿𝐺(ℒ) associated with ℒ and every intra-layer graph 𝐺𝑇𝑃(𝐿) with 𝐿 ∈ ℒ, so that 

(i) the node set 𝑉(𝑀𝐿𝐺(ℒ)) = 𝑉(𝐼𝐿𝐺(ℒ)) is equal to the node set of the intra-layer graph, and 

(ii) the edge set 𝐸(𝑀𝐿𝐺(ℒ)) is given as disjoint union of the edge set of the inter-layer graph and the edge 

sets of all intra-layer graphs in ℒ, and thus 𝐸(𝑀𝐿𝐺(ℒ)) = 𝐸(𝐼𝐿𝐺(ℒ)) ∪ ⋃ 𝐸(𝐺𝑇𝑃(𝐿𝛼𝛼∈𝐼ℒ
)). 

The multilayered graph resulting for the above example is given in figure 87. The intra-layer edges of each Poin-

caré dual graph when applying a minimum CW decomposition are drawn as continuous lines, whereas the inter-

layer edges between the space layers are depicted as dashed lines.  

 

Figure 87: Multilayered graph for the indoor setting from figure 84 which spans a 2-dimensional space along cell overlaps 

and adjacencies. 

The coupling between both space layers in the multilayered graph as shown in figure 87 enables localization and 

tracking of moving persons and objects within the sketched topographic indoor scene. For example, if a navigation 

user carries a mobile device that is Wi-Fi-enabled and receives the signal from transmitter 𝐵 only, then according 

to the inter-layer edges between the dual node of sensor space cell 𝐵 and the dual nodes on the topographic space 

layer, the user must be located in either room 𝑅2 or in the corridor 𝐶. If the user moves and, assuming a continuous 

signal reception, the signal of Wi-Fi transmitter 𝐴 is received in addition, then the user must be located in 𝐶 but 

not in 𝑅1. The latter would require passing sensor space cell 𝐴 beforehand which spatially reflects the area where 

solely the signal of transmitter 𝐴 is received. However, this contradicts with the Poincaré dual graph of the sensor 

space layer according to which sensor space cell 𝐴 is not adjacent to 𝐵 and hence can only be reached from 𝐵 via 

space cell 𝐴𝐵 or the outer space cell reflecting areas without Wi-Fi signal reception. Thus, the tracking of the user 

movement on the intra-layer graph of the sensor space layer facilitates reasoning about alternative positioning 

estimates. This result is mathematically formalized in the next chapter 3.3.  

In figure 88, the example is enriched with a third space layer mapping two security zones 𝐻𝑖𝑔ℎ and 𝐿𝑜𝑤 by two 

corresponding space cells which together cover all topographic entities. Whereas 𝑅2 and 𝐶 are spatially enclosed 

by the space cell 𝐿𝑜𝑤, 𝑅1 is partly covered by 𝐿𝑜𝑤 and 𝐻𝑖𝑔ℎ (suppose a security gate within the room). The 

primal space representation as well as the corresponding dual graph of the security space layer is shown in figure 

88a. The left of figure 88b provides an integrated top view on all three layers and reveals overlapping space cells. 

The resulting multilayered graph is shown on the right of figure 88b. The topological relationships in primal space 

between the security space cell 𝐿𝑜𝑤 and the topographic space cells 𝑅2 and 𝐶 can be classified as contains rela-

tionships, which is reflected by labels for the corresponding inter-layer edges of the 3-partite inter-layer graph. All 

further inter-layer edges denote overlap relationships and hence are not labelled separately.  
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(a)  

(b)  

Figure 88: Adding an additional security space layer (a) to the indoor setting from figure 84 (b).  

The security zones demonstrate the modelling of a logical space layer. The layout and configuration of the security 

space cells are not aligned with the architectural constraints and entities of the topographic space layer but follow 

a separate partitioning schema. This decoupled modelling approach allows for changing the setting and spatial 

extent of individual security zones without affecting topographic or sensor space cells. The information about the 

membership of topographic space cells in security zones is combinatorially encoded in the multilayered graph and 

thus can be efficiently evaluated by graph traversal algorithms. 

The following figure 89 presents an alternative illustration of the three space layers and their related multilayered 

graph structure.  

 

Figure 89: Alternative illustration of the space layers and their multilayered graph (excerpt) from figure 88. 
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The primal and dual space representations of each space layer in figure 89 are arranged in the four quadrants of 

the geometric-topological model for space layers (cf. figure 42). The illustration clearly depicts the coupling of 

the space layers in dual topology space through the edges of the inter-layer graph and their orthogonal alignment 

with the edges of each intra-layer graph. Note that the contents of quadrants II and IV as well as the inter-layer 

edges between the topographic space layer and the sensor space layer are not shown in figure 89 for readability 

reasons. Arbitrary further space layers may be added to this stack of layers in order to capture a comprehensive 

model of indoor space and to cover the information needs of a specific navigation system. 

In summary, the multilayered graph as introduced in this chapter is a conceptual core element of the MLSEM. It 

formally maps the complex topological relationships between space cells associated with different semantics and 

partitioning schemas in two or three dimensions onto a single, purely combinatorial structure. Adjacencies or 

overlaps in primal space can be efficiently deduced from the simple information about how the dual nodes of the 

space cells are linked to each other in dual space. The multilayered graph can be traversed both within specific 

space layers by following intra-layer edges and between space layers by following inter-layer edges at the same 

time. This enables reasoning about all space layers or subsets thereof. Moreover, from every dual node in the 

multilayered graph the complementary primal and dual space representations of the corresponding space cell as 

well as its associated semantic and symbolic information can be accessed due to the consistent spatio-semantic 

model of space cells and its mathematical formalization. The same holds for the dual intra-layer edges and associ-

ated boundary cells. Therefore, the multilayered graph not only allows for traversing within and between space 

layers in dual space, but also for accessing and switching between the geometric-topological descriptions in primal 

and dual space as well as for their simultaneous evaluation.  

3.3 Space-Event Modelling and the Joint State of Navigation 

The multilayered graph not only encodes topological relationships between spaces but also is to be seen as a 

generic space-event model. As discussed in chapter 3.1.2.2, the intra-layer graph of a space layer equivalently 

describes a state diagram. An important prerequisite to this understanding is that the space cells on a space layer 

are enforced to be mutually non-overlapping and to render a jointly exhaustive tiling of Euclidean 𝑛-space. This 

space representation allows for the dual nodes of the space cells to be interpreted as mutually exclusive and jointly 

exhaustive states of a user travelling through the space with the dual edges denoting state transitions. Since a 

moving person or object physically can only be within a single space cell at a given point in time, there is only one 

active state possible at any given time. 

In a multilayered setting, there is one such state diagram for each space layer participating in a space layer complex. 

It follows that at any point in time there is one active state per state diagram. The overall state of the moving person 

or object is thus given by the joint consideration of all active states on all space layers. This overall state is called 

the joint state of navigation and it is necessarily unique at any given point in time. Since the moving person or 

object is physically located within all active space cells simultaneously, the joint state of navigation can be spatially 

interpreted as the intersection of all primal space geometries associated with the active space cells. It hence mutu-

ally constrains the possible locations on all space layers. The joint state of navigation changes whenever the move-

ment of the person or object through indoor space triggers a state transition on at least one space layer. 

A joint state is a subset of the multilayered graph structure of a space layer complex. Each dual node in the multi-

layered graph corresponds to a distinct state and hence the node set of the multilayered graph represents the entire 

state space of the space-event model. A joint state is then given by a clique of dual nodes so that the clique contains 

exactly one node from each space layer and all nodes in the clique are mutually linked by inter-layer edges. How-

ever, not every such clique necessarily denotes a joint state. Since inter-layer edges only reflect pairwise overlaps 

between space cell in primal space, it is further required that the intersection of all primal space geometries of the 

space cells contained in the clique be non-empty. Formally, a joint state for a given set of space layers is defined 

as follows. 
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Definition 3.41 (Joint state). Let ℒ be a space layer complex and 𝐼𝐿𝐺(ℒ) its inter-layer graph. Then a joint state 

𝐽𝑆 is a pair (𝑉, 𝐺𝑀), where 

(i) 𝑉(𝐽𝑆) is a subset of nodes in 𝑉(𝐼𝐿𝐺), with 𝑉(𝐽𝑆) ⊆ 𝑉(𝐼𝐿𝐺) and |𝑉(𝐽𝑆)| = |ℒ|, such that every two nodes 

in 𝑉(𝐽𝑆) are connected by an inter-layer edge in 𝐸(𝐼𝐿𝐺),  

(ii) 𝐺𝑀(𝐽𝑆) is the intersection geometry of the primal space geometries of the space cells whose dual nodes 

are contained in 𝑉(𝐽𝑆) given by 𝐺𝑀(𝐽𝑆) = ⋂ 𝐺𝑀(𝛼∈𝐼𝑉(𝐽𝑆)
𝑆𝛼), with 𝑣𝑇𝑃(𝑆𝛼) ∈ 𝑉(𝐽𝑆), and 

(iii) the interior of 𝐺𝑀(𝐽𝑆) is non-empty, and thus 𝐼𝑛𝑡(𝐺𝑀(𝐽𝑆)) ≠ ∅. 

The condition (i) implies that the subgraph of 𝐼𝐿𝐺(ℒ) induced by 𝑉(𝐽𝑆) is complete. The intersection geometry 

𝐺𝑀(𝐽𝑆) is an 𝑛-dimensional bounded but not necessarily connected subset of ℝ𝑛 in primal space with 𝑛 being the 

dimension of the space layer complex ℒ. Intuitively, 𝐺𝑀(𝐽𝑆) denotes the distinct partition of indoor space where 

a moving person or object must be physically located in when the joint state 𝐽𝑆 is triggered to be active. Since the 

absolute position of the person or object within the region covered by 𝐺𝑀(𝐽𝑆) cannot be determined more precisely 

without additional means, 𝐺𝑀(𝐽𝑆) is equivalently called uncertainty region. The size of 𝐺𝑀(𝐽𝑆) hereby provides 

a measure for the uncertainty of the absolute position of the person or object which has been equivalently stated 

for the size of the active space cell on each space layer in chapter 3.1.2.2. However, since the intersection geometry 

𝐺𝑀(𝐽𝑆) can at most be equal to the geometry of the smallest space cell participating in 𝐽𝑆, it typically represents 

a smaller partition of indoor space than each of the active space cells. Therefore, the remaining uncertainty region 

can be decreased by both smaller space cells on individual space layers and highly overlapping space cells between 

several space layers. The uncertainty of the absolute position is hence correlated with the granularity of the space 

partitioning. 

The following figure 90 shows an artificial space layer complex ℒ containing three space layers each of which 

contains a single space cell. As shown on the left, the space cells pairwise overlap which yields the multilayered 

graph depicted on the right. Although the dual nodes 𝑣𝑇𝑃(𝐴), 𝑣𝑇𝑃(𝐵), and 𝑣𝑇𝑃(𝐶) are a clique of 𝐼𝐿𝐺(ℒ) they do 

not constitute a valid joint state due to the intersection 𝐺𝑀(𝐴) ∩ 𝐺𝑀(𝐵) ∩ 𝐺𝑀(𝐶) being the empty set which 

violates condition (iii) of the above definition. This conforms to the obvious fact that a navigation user cannot be 

located in the space cells A, B, and C at the same time. All other cliques in 𝐼𝐿𝐺(ℒ) render valid joint states, for 

example, consider 𝑉(𝐽𝑆) = {𝑣𝑇𝑃(𝐴), 𝑣𝑇𝑃(𝐵)𝑣𝑇𝑃(𝑆𝑜𝑢𝑡
𝐶 )} whose uncertainty region 𝐺𝑀(𝐽𝑆) is drawn as hatched 

area on the left of figure 90. 

 

Figure 90: Example for a clique {𝑣𝑇𝑃(𝐴), 𝑣𝑇𝑃(𝐵), 𝑣𝑇𝑃(𝐶)} which does not render a valid joint state. 

The set of all joint states for a given space layer complex ℒ constitutes the joint space state of ℒ and is defined as 

follows. 

Definition 3.42 (Joint state space of a space layer complex). The collection 𝒥𝒮 = {𝐽𝑆𝛼}𝛼∈𝐼𝒥𝒮  of all joint states over 

the inter-layer graph 𝐼𝐿𝐺(ℒ) of a space layer complex ℒ with each joint state 𝐽𝑆𝛼 satisfying definition 3.41 is said 

to be the joint state space of ℒ. 

It is an immediate consequence of conditions (ii) and (iii) of definition 3.41 that the intersection geometries asso-

ciated with the joint states in the joint state space 𝒥𝒮(ℒ) are pairwise non-overlapping and at most touch at their 

boundaries, and that their spatial configuration yields a complete tiling of ℝ𝑛. Otherwise the joint states contained 

in 𝒥𝒮 would not be mutually exclusive and jointly exhaustive. 

In general, the number of joint states in 𝒥𝒮(ℒ) is unbounded but can be expressed exactly if ℒ contains less than 

three space layers. Precisely, let 𝑘 = |ℒ| be the number of space layers in ℒ. Then obviously |𝒥𝒮(ℒ)| = 0 if 𝑘 =
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0. In case 𝑘 = 1, the number of joint states is necessarily equal to the number of dual nodes in 𝑉(𝐼𝐿𝐺(ℒ)). If ℒ 

contains exactly two space layers, then condition (iii) of definition 3.41 is automatically satisfied for all pairs of 

dual nodes linked by an inter-layer edge, and the number of joint states is equal to the number of edges in 

𝐸(𝐼𝐿𝐺(ℒ)). However, for 𝑘 > 2, only a lower limit for the number of joint states can be stated. Due to the complete 

covering of ℝ𝑛 on each space layer in ℒ, every dual node in 𝑉(𝐼𝐿𝐺(ℒ)) participates in at least one joint state. Let 

𝑉1, … , 𝑉𝑘 be the disjoint partitions of nodes in the k-partite graph 𝐼𝐿𝐺(ℒ), then the minimal number of joint states 

is equal to the number of nodes in the smallest partition. Thus,   

 
|𝒥𝒮(ℒ)| = {

0,  𝑘 = 0;

|𝑉(𝐼𝐿𝐺(ℒ))|, 𝑘 = 1;

|𝐸(𝐼𝐿𝐺(ℒ))|, 𝑘 = 2;

 and

|𝒥𝒮(ℒ)| ≥ |𝑉𝑖|, w th ∀𝑖 ≠ 𝑗 ∈ {1, … , 𝑘}: |𝑉𝑖| ≤ |𝑉𝑗| ∧ 𝑉𝑖 , 𝑉𝑗 ∈ 𝑉(𝐼𝐿𝐺(ℒ)), 𝑘 > 2.

 (3.43) 

The lower limit |𝒥𝒮(ℒ)| = 1 only occurs when ℒ contains 𝑘 copies of the minimal space layer 𝐿𝑚𝑖𝑛  (cf. definition 

3.32) and 𝑘 > 0. 

If presupposing a continuous movement through space, then, for a given space layer in ℒ, a navigation user either 

remains within the same space cell or has moved to an adjacent space cell in two consecutive joint states. The set 

of possible joint state transitions therefore results from the joint consideration of the intra-layer edges on each 

space layer being incident to the dual nodes participating in the joint states. Formally, given two joint states 

𝐽𝑆1, 𝐽𝑆2 ∈ 𝒥𝒮(ℒ), a joint state transition between 𝐽𝑆1 and 𝐽𝑆2 implies that the dual nodes participating in 𝐽𝑆1 are 

either equal to or adjacent to the dual nodes in 𝐽𝑆2 on the same space layer. Moreover, it requires that the intersec-

tion geometries of both 𝐽𝑆1 and 𝐽𝑆2 be topologically adjacent in order to ensure a continuous movement. 

Definition 3.44 (Joint state transition). Let 𝒥𝒮(ℒ) be the joint state space of a space layer complex ℒ. Then, a joint 

state transition 𝐽𝑆𝑇 = {𝐽𝑆1, 𝐽𝑆2} is a 2-element subset of 𝒥𝒮(ℒ), with 𝐽𝑆𝑇 ⊆ 𝒥𝒮(ℒ) and 𝐽𝑆1 ≠ 𝐽𝑆2, for which the 

following two conditions hold: 

(i) Let 𝑉1(𝑀𝐿𝐺), … , 𝑉𝑘(𝑀𝐿𝐺) be the disjoint node partitions of the multilayered graph 𝑀𝐿𝐺(ℒ) of ℒ. Then, 

∀𝑣1 ∈ 𝑉(𝐽𝑆1), 𝑣2 ∈ 𝑉(𝐽𝑆2): 𝑣1, 𝑣2 ∈ 𝑉𝑖(𝑀𝐿𝐺) ⇒ 𝑣1 = 𝑣2 ∨ {𝑣1, 𝑣2} ∈ 𝐸(𝑀𝐿𝐺), with 1 ≤ 𝑖 ≤ 𝑘 = |ℒ|. 

(ii) The intersection of the boundaries of 𝐺𝑀(𝐽𝑆1) and 𝐺𝑀(𝐽𝑆2) is non-empty, and thus 𝜕𝐺𝑀(𝐽𝑆1) ∩

𝜕𝐺𝑀(𝐽𝑆2) ≠ ∅. 

Example 3.45. The conceptual idea of joint states is illustrated in the following along the 2-dimensional indoor 

setting presented in figure 91.18 Since the space layer complex ℒ contains two space layers in this example, the 

number of overall joint states on ℒ is given by |𝐸(𝐼𝐿𝐺(ℒ))| = 13. Suppose a navigation user is positioned in room 

𝑅1 and carries a Wi-Fi-enabled mobile device which only receives the signal of Wi-Fi transmitter 𝐴. Then the 

active joint state 𝐽𝑆0 ∈ 𝒥𝒮(ℒ) of the user can be spatially interpreted as being simultaneously in the topographic 

space cell 𝑅1 and the sensor space cell 𝐴, and is equivalently denoted as (𝑅1, 𝐴) in the following. Formally, the 

joint state is given by the clique 𝑉(𝐽𝑆0) = {𝑣𝑇𝑃(𝑅1), 𝑣𝑇𝑃(𝐴)} and the intersection geometry 𝐺𝑀(𝐽𝑆0) =

𝐺𝑀(𝑅1) ∩ 𝐺𝑀(𝐴). In figure 91, 𝐺𝑀(𝐽𝑆0) is depicted as hatched area on the left whereas the joint state clique 

𝑉(𝐽𝑆0) is highlighted in the multilayered graph on the right.  

As stated above, the intersection geometry 𝐺𝑀(𝐽𝑆0) represents the region of indoor space where the navigation 

user must be physically located in. Since the sensor space cell 𝐴 only covers a part of room 𝑅1, this region is 

obviously smaller than the space occupied by 𝑅1 itself. The joint consideration of both space cells thus reduces the 

uncertainty about the user’s absolute position within 𝑅1 to the uncertainty region 𝐺𝑀(𝐽𝑆0). The remaining parts 

of 𝑅1 are described by the two distinct joint states (𝑅1, 𝐴𝐵) and (𝑅1, 𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖).  

                                                           
18 Note that in two dimensions it takes at minimum two 1-cells to describe the common boundary of the space cell 𝐶 with 𝑆𝑜𝑢𝑡

𝑇𝑜𝑝𝑜
 

on the topographic space layer. Its dual node is hence linked to 𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 through two dual edges in this example in contrast to the 

dual graph shown in figure 87 (cf. chapter 3.2) for the equivalent 3-dimensional setting. 
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Figure 91: Uncertainty region (left) and graph representation (right) of the joint state (𝑅1, 𝐴). 

As soon as the navigation user leaves room 𝑅1 and enters the corridor 𝐶, this movement triggers a joint state 

transition 𝐽𝑆𝑇0 = {𝐽𝑆0, 𝐽𝑆1} that yields the new active joint state 𝐽𝑆1 given by the pair (𝐶, 𝐴). The dual nodes of 𝑅1 

and 𝐶 are linked by a dual edge in the intra-layer graph of the topographic space layer, whereas the user remains 

within space cell 𝐴 on the sensor space layer. Moreover, 𝐺𝑀(𝐽𝑆0) and 𝐺𝑀(𝐽𝑆1) share a part of their boundary 

where the primal space geometries of 𝑅1 and 𝐶 touch. It follows that both the combinatorial condition (i) and the 

geometric condition (ii) of definition 3.44 are obeyed and 𝐽𝑆𝑇0 is a valid joint state transition. On the left of figure 

92a, the movement of the navigation user as well as the primal space geometry 𝐺𝑀(𝐽𝑆1) of the new active joint 

state are illustrated. The right of figure 92a shows both the previous joint state 𝐽𝑆0 and the active joint state 𝐽𝑆1 as 

well as the transition between 𝑅1 and the 𝐶 in the multilayered graph. In figure 92b to d, consecutive joint states 

and their transitions are sketched that reflect a continuous movement of the navigation user to 𝑅2.  
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(d)  

Figure 92: Subsequent joint states and corresponding uncertainty areas (a to d) as the navigation users travels through indoor 

space. 

The entire movement of the navigation user along the depicted trajectory in the above example can be described 

as a chain of joint states (𝑅1, 𝐴) → (𝐶, 𝐴) → (𝐶, 𝐴𝐵) → (𝐶, 𝐵) → (𝑅2, 𝐵) with each arrow denoting a valid joint 

state transition between two consecutive joint states. Intuitively, a joint state transition is executed when an event 

on at least one of the space layers occurs that is induced by the movement of the user. Examples for topographic 

space events for the given chain are “Entering corridor from Room 1” or “Entering Room 2 from the corridor”, 

whereas events on the sensor space layer include “Receiving signal from Wi-Fi transmitters A and B” or “Receiv-

ing signal from Wi-Fi transmitter A only”. This event-driven chain of joint states can be mathematically described 

through a finite-state machine. 

Definition 3.46 (Finite-joint-state machine). Let ℒ be a space layer complex. Then a finite-joint-state machine 

𝐹𝐽𝑆𝑀(ℒ) for ℒ is a quintuple (Σ, 𝒥𝒮(ℒ), 𝒥𝒮0, 𝜙, 𝐹) where  

(i) Σ is a finite, non-empty set of events,  

(ii) 𝒥𝒮(ℒ) is the finite, non-empty joint state space of ℒ, 

(iii) 𝒥𝒮0 is a finite, non-empty set of initial states of 𝐹𝐽𝑆𝑀(ℒ), with 𝒥𝒮0 ⊆ 𝒥𝒮(ℒ), 

(iv) 𝜙 is a map 𝜙: 𝒥𝒮(ℒ) × 2Σ → 2𝒥𝒮(ℒ) (called the joint-state-transition map) which returns a set of possible 

next active joint states for 𝐹𝐽𝑆𝑀(ℒ) given its active joint state 𝑝 ∈ 𝒥𝒮(ℒ) and a finite subset of events 

𝐸 ⊆ Σ, so that 𝜙(𝑝, 𝐸) ⊆ 𝒥𝒮(ℒ) and the set {𝑝, 𝑞𝑖} is a valid joint state transition satisfying definition 

3.44 for each 𝑞𝑖 ∈ 𝜙(𝑝, 𝐸), and 

(v) 𝐹 is a set of final joint states with 𝐹 ⊆ 𝒥𝒮(ℒ) and |𝐹| ≥ 0. 

Given a finite-joint-state machine 𝐹𝐽𝑆𝑀(ℒ) for a space layer complex ℒ, an ordered set of 𝑛 consecutive joint 

states {𝐽𝑆0, 𝐽𝑆1, … , 𝐽𝑆𝑛} ∈ 𝒥𝒮(ℒ), with 𝐽𝑆0 being the initial state and 𝐽𝑆𝑛 being the final state, is then chained by 

the joint-state-transition map 𝜙 as shown in the following diagram: 

 𝐽𝑆0
𝜙(𝐽𝑆0,𝐸0)
→      𝐽𝑆1

𝜙(𝐽𝑆1,𝐸1)
→      … 𝐽𝑆𝑛−1

𝜙(𝐽𝑆𝑛−1,𝐸𝑛−1)
→          𝐽𝑆𝑛. (3.47) 

Every element in this chain represents the active joint state of 𝐹𝐽𝑆𝑀(ℒ) at a given point in time 𝑡. It follows that 

every active joint state 𝐽𝑆𝑛 at 𝑡𝑛 only depends on the previous joint state 𝐽𝑆𝑛−1 at 𝑡𝑛−1as well as the set of events 

𝐸𝑛−1 ∈ Σ that trigger the joint state transition.  

𝐹𝐽𝑆𝑀(ℒ) is said to be a non-deterministic automaton since the co-domain of the joint-state-transition map 𝜙 is 

defined to be the power set 2𝒥𝒮(ℒ) of the joint space state of ℒ instead of being 𝒥𝒮(ℒ) itself. Thus, 𝜙 may not only 

return a single next active joint state for 𝐹𝐽𝑆𝑀(ℒ) like in case of a deterministic automaton but rather a set of 

candidate states which includes the empty set. The reason for modelling 𝐹𝐽𝑆𝑀(ℒ) non-deterministic is that a 

deterministic automaton would require full knowledge about all events that simultaneously occur on every space 

layer in ℒ and together cause the joint state transition. However, in practice, typically a sparse subset of events is 

observable or available yielding more than one possible transition. For the same reason, the initial state 𝒥𝒮0 of 

𝐹𝐽𝑆𝑀(ℒ) is defined to be a non-empty set of candidate states instead of a single and deterministic initial state. In 

the following, the impact of sparse events is illustrated along a slight modification of the above example 3.45. 

Example 3.48. Let 𝐹𝐽𝑆𝑀(ℒ) be a finite-joint-state machine for the indoor setting illustrated in example 3.45. 

Further, let Σ = {"𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴 𝑜𝑛𝑙𝑦", "𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐵 𝑜𝑛𝑙𝑦", "𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴 𝑎𝑛𝑑 𝐵", "𝑁𝑜 𝑠𝑖𝑔𝑛𝑎𝑙"} denote the 

set of possible events for 𝐹𝐽𝑆𝑀(ℒ) with each event reflecting the currently received signals from both Wi-Fi 
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transmitters 𝐴 and 𝐵. Assume the Wi-Fi-enabled mobile device of a navigation user is within the vicinity of Wi-

Fi transmitter 𝐴 only. If we additionally suppose that we cannot tell whether the user is located in room 𝑅1, then 

there exist two possible initial joint states 𝐽𝑆0
𝛼 ← (𝑅1, 𝐴) and 𝐽𝑆0

𝛽
← (𝐶, 𝐴) due to the dual node of the sensor space 

cell 𝐴 being adjacent to the dual nodes of 𝑅1 and 𝐶 on the topographic space layer in the multilayered graph. Note 

that the dual node of 𝐴 is additionally linked to the dual node of the outer topographic space. However, being out 

of the topographic indoor space can usually be regarded an invalid state in the context of indoor navigation and 

thus the joint state (𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

, 𝐴) is not considered in this example. Without additional a priori knowledge or input 

(e.g., from the navigation user), the candidates 𝐽𝑆0
𝛼 and 𝐽𝑆0

𝛽
 are equally likely with 𝒥𝒮0 = {𝐽𝑆0

𝛼 , 𝐽𝑆0
𝛽
} denoting the 

initial state of 𝐹𝐽𝑆𝑀(ℒ) (cf. figure 93). The uncertainty region 𝐺𝑀(𝒥𝒮0) of the navigation user obviously follows 

as 𝐺𝑀(𝒥𝒮0) = 𝐺𝑀(𝐽𝑆0
𝛼) ∪ 𝐺𝑀𝐽𝑆0

𝛽
 and is depicted as hatched area on the left of figure 93. 

 

Figure 93: Example of a non-deterministic active joint state of the navigation user.  

Suppose the navigation user started in room 𝑅1 and continuously moves along the same trajectory as given in 

example 3.45. Then the corridor is entered next and the corresponding topographic space event “Entering corridor 

from Room 1” could trigger a joint state transition for 𝐹𝐽𝑆𝑀(ℒ). However, this event is not observed by a sensor 

and is typically neither reported by the user in a real navigation scenario. Thus, it is not contained in Σ in this 

example, and 𝐹𝐽𝑆𝑀(ℒ) remains in 𝒥𝒮0. The next observable event is rather fired by the mobile device on the 

sensor space layer which receives the signal of Wi-Fi transmitter 𝐵 in addition to that of 𝐴 when the user moves 

along the corridor. The two possible candidates 𝐽𝑆1
𝛼 ← (𝑅1, 𝐴𝐵) and 𝐽𝑆1

𝛽
← (𝐶, 𝐴𝐵) for the next active joint state 

of 𝐹𝐽𝑆𝑀(ℒ) can be deduced by simply evaluating the inter-layer edges between sensor space cell 𝐴𝐵 and the 

topographic space layer. However, both candidates must additionally satisfy the joint-state-transition map 𝜙. 

Let 𝑒0 = "𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴 𝑎𝑛𝑑 𝐵" denote the captured event. Then, 𝜙(𝐽𝑆0
𝛼 , 𝑒0) = {𝐽𝑆1

𝛼} only returns 𝐽𝑆1
𝛼 as possible 

next active joint state due to the alternative joint state transition {𝐽𝑆0
𝛼 , 𝐽𝑆1

𝛽
} violating the geometric condition (ii) 

of definition 3.44. Thus, if 𝐽𝑆0
𝛼 is supposed to be the initial active state of 𝐹𝐽𝑆𝑀(ℒ) then the joint state chain 𝐽𝑆0

𝛼

𝜙(𝐽𝑆0
𝛼,𝑒0)

→      𝐽𝑆1
𝛼 is yielded. Likewise, if 𝐽𝑆0

𝛽
 is taken as initial active state then 𝜙(𝐽𝑆0

𝛽
, 𝑒0) = {𝐽𝑆1

𝛽
} and 𝐽𝑆0

𝛽

𝜙(𝐽𝑆0
𝛽
,𝑒0)

→      𝐽𝑆1
𝛽

 since there is no valid transition between 𝐽𝑆0
𝛽

 and 𝐽𝑆1
𝛼. It obviously follows that a decision between 

both candidates cannot be made if 𝐽𝑆0
𝛼 and 𝐽𝑆0

𝛽
 remain equally likely. The situation is sketched in the following 

figure. 

 

Figure 94: A non-deterministic active joint state following from the non-deterministic predecessor in figure 93. 
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The active joint state can be deterministically derived if 𝑒1 = "𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐵 𝑜𝑛𝑙𝑦" is considered the next event. 

Possible candidates for this event taken from the multilayered graph are 𝐽𝑆2
𝛼 ← (𝑅2, 𝐵) and 𝐽𝑆2

𝛽
← (𝐶, 𝐵). How-

ever, 𝜙(𝐽𝑆1
𝛼 , 𝑒1) = ∅ since both the transitions {𝐽𝑆1

𝛼 , 𝐽𝑆2
𝛼} and {𝐽𝑆1

𝛼 , 𝐽𝑆2
𝛽
} already violate condition (i) of definition 

3.44. An empty set resulting from 𝜙 can be regarded an invalid state and thus can be announced as error by 

𝐹𝐽𝑆𝑀(ℒ). In contrast, 𝜙(𝐽𝑆1
𝛽
, 𝑒1) = {𝐽𝑆2

𝛽
} yields a valid result which thus becomes the active joint state of 

𝐹𝐽𝑆𝑀(ℒ) with the corresponding joint state chain 𝐽𝑆0
𝛽 𝜙(𝐽𝑆0

𝛽
,𝑒0)

→      𝐽𝑆1
𝛽 𝜙(𝐽𝑆1

𝛽
,𝑒1)

→      𝐽𝑆2
𝛽

. Note that this joint state chain 

does not reflect the initial state of the navigation user whom we assumed to start in 𝐽𝑆0
𝛼 ← (𝑅1, 𝐴). However, first, 

this is irrelevant for considering the next active joint state 𝐽𝑆3 as this only depends on 𝐽𝑆2
𝛽

. Second, 𝐽𝑆0
𝛼 is also 

contained in 𝒥𝒮0 and is a valid predecessor for 𝐽𝑆0
𝛽

. Thus, the joint state chain can be easily extended to 𝐽𝑆0
𝛼

𝜙(𝐽𝑆0
𝛼,∅)

→     𝐽𝑆0
𝛽 𝜙(𝐽𝑆0

𝛽
,𝑒0)

→      𝐽𝑆1
𝛽 𝜙(𝐽𝑆1

𝛽
,𝑒1)

→      𝐽𝑆2
𝛽

. 

Even if the active joint state 𝐽𝑆𝑛 of 𝐹𝐽𝑆𝑀(ℒ) is known, the finite-joint-state machine remains non-deterministic 

which means that 𝜙(𝐽𝑆𝑛 , 𝐸 ∈ Σ) may again return a set of candidates for the next active joint state 𝐽𝑆𝑛+1. Likewise, 

and in contrast to the above example, it cannot be guaranteed that for a given sequence of events the active joint 

state can be determined at any given point in time. For example, assume no overlap between sensor space cells 𝐴 

and 𝐵 in the above indoor setting as shown in figure 95. This consequently reduces the possible events to the set 

Σ = {"𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴 𝑜𝑛𝑙𝑦", "𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐵 𝑜𝑛𝑙𝑦", "𝑁𝑜 𝑠𝑖𝑔𝑛𝑎𝑙"}. Then, for any sequence of events, only candi-

date sets for the active joint state are derived.  

 

Figure 95: Example for a setting where no sequence of events on the Wi-Fi sensor space layer leads to a deterministic active 

joint state.  

The finite-joint-state machine can be used as simulation tool to analyse and detect non-deterministic active joint 

states and to minimize them in real navigation systems. Intuitively, the reduction of the number of non-determin-

istic outputs of 𝜙 requires further joint states and/or additional events in Σ. The following figure 96 demonstrates 

this by adding an RFID sensor space layer capturing four low range RFID sensors to the example space model.  

 

Figure 96: Adding an RFID sensor space layer to the example indoor scene. 
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The RFID sensors are mounted above each door within both rooms and the corridor. The corresponding sensor 

space cells reflect the signal reception areas of the RFID sensors, and the five events E𝑅𝐹𝐼𝐷 = {"𝑅𝐹𝐼 1", "𝑅𝐹𝐼 2",

"𝑅𝐹𝐼 3", "𝑅𝐹𝐼 4", "𝑁𝑜 𝑅𝐹𝐼  𝑟𝑒𝑐𝑒𝑝𝑡𝑖𝑜𝑛", } are added to the set of events Σ of 𝐹𝐽𝑆𝑀(ℒ). Assume that the mobile 

device of the navigation user is capable of processing both Wi-Fi and RFID signals. If the mobile device only 

receives the signal from Wi-Fi transmitter 𝐴, then again two possible initial joint states 𝐽𝑆0
𝛼 ← (𝑅1, 𝐴, 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷) and 

𝐽𝑆0
𝛽
← (𝐶, 𝐴, 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷) are yielded which are depicted in figure 97a. However, note that the uncertainty regions 

𝐺𝑀(𝐽𝑆0
𝛼) and 𝐺𝑀(𝐽𝑆0

𝛽
) are smaller than in the setting without the additional RFID space layer, and consequently 

the user cannot be located in front of the door between room 𝑅1 and the corridor as this would mean that an RFID 

signal is received. If 𝑒0 = "𝑅𝐹𝐼 1" is fired as next event, the active joint state can already be uniquely identified 

as 𝐽𝑆1 ← (𝑅1, 𝐴, 𝑅𝐹𝐼 1) with 𝐽𝑆0
𝛼 being its predecessor. Moreover, the uncertainty about the absolute position of 

the user is further reduced due to the small spatial extent of 𝐺𝑀(𝐽𝑆1). Although it conforms to an intuitive under-

standing that the localization precision increases within the reception area of low range RFID sensors, the multi-

layered graph as well as the notion of joint states defined on top of this graph provides the means to quantitatively 

describe this increase based on a mathematically consistent formal model.  

(a)  

(b)  

Figure 97: Whereas the initial joint state remains non-deterministic (a), it becomes deterministic in the next step based on the 

additional consideration of the RFID sensor layer (b). 

A similar result can be, for example, achieved by alternatively (or additionally) placing barcodes (QR-codes, etc.) 

next to each door which could be scanned by the moving person or object using an RGB sensor of the mobile 

device. In a corresponding sensor space layer, the space cells would then denote that portion of space where the 

user must be physically located in order to interact with the barcode. According to the conceptual model of (Bhatt 

et al. 2009) (cf. chapter 2.1.3), this space can be classified as functional space of the barcode. Since barcodes are 

a passive localization method, the interaction of the user is required. A navigation system detecting a sequence or 
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loop of non-deterministic candidates for its active joint state could thus ask the user to scan a nearby barcode in 

order to be able to pick one of the candidates and to derive a deterministic active joint state. 

This example again demonstrates the strengths and benefits of the proposed multilayered approach to indoor space 

modelling. First, the space layers are modelled independently from each other, and thus adding a new space layer 

or changing the layout or configuration of space cells on one space layer does not interfere with the other space 

layers. Second, multiple and different localization methods can be represented in order to enhance the localization 

precision but also to support different capabilities of the end-user device. 

Example 3.49. In addition to non-deterministic joint states also contradictory consecutive joint states are possible 

in a real navigation scenario. Suppose for the above example 3.48 that two consecutive events 𝑒0 =

"𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐴 𝑜𝑛𝑙𝑦" and 𝑒1 = "𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝐵 𝑜𝑛𝑙𝑦" occur at subsequent points in time 𝑡0 and 𝑡1 with no event 

being fired in between. Then there are no two joint states 𝐽𝑆1 and 𝐽𝑆2 in the entire joint state space 𝒥𝒮(ℒ) so that 

𝐽𝑆1 contains the dual node of sensor space cell 𝐴, 𝐽𝑆2 contains the dual node of sensor space cell 𝐵, and {𝐽𝑆1, 𝐽𝑆2} 

is a valid joint state transition. This simply follows from the fact that the dual nodes of 𝐴 and 𝐵 are not linked in 

the Poincaré dual graph of the sensor space layer and any pair {𝐽𝑆1, 𝐽𝑆2} necessarily disobeys condition (i) of 

definition 3.44, and thus 𝜙(𝐽𝑆1 , 𝑒1) = ∅. Figure 98 visually supports this result. However, the sequence of events 

may nevertheless occur, for example, in case the navigation user temporarily switches off the mobile device whilst 

moving from room 𝑅1 to room 𝑅2.  

 

Figure 98: Example of contradictory consecutive joint states. 

The result 𝜙(𝐽𝑆1 , 𝑒1) = ∅ of the joint-state-transition map is consistent. The main assumption underlying the def-

inition of joint state transitions (cf. definition 3.44) and thus implicitly of the finite-joint-state machine (cf. defini-

tion 3.46) is a continuous movement through indoor space. In topographic space, this refers to the continuous 

bodily movement of a person or object through the built reality (e.g., a user physically cannot enter 𝑅1 from 𝑅2 

without moving along the corridor 𝐶 beforehand). On a sensor space layer, this requires a continuous mapping of 

the physical sensor characteristics captured by the sensor space cells. Whereas the latter is violated in the illustrated 

scenario, invalid consecutive states on a topographic space layer are, for example, discussed as kidnapped robot 

problem (e.g., Engelson & McDermott 1992) in the field of mobile robotics.  

For the finite-joint-state machine 𝐹𝐽𝑆𝑀(ℒ), an empty set returned by 𝜙 represents an invalid state because 

𝐹𝐽𝑆𝑀(ℒ) must be in an active joint state at any given point in time even if this state cannot be uniquely determined 

through 𝜙. To solve this problem for the illustrated scenario, 𝐹𝐽𝑆𝑀(ℒ) can simply be re-initialized using the set 

of joint states containing the dual node of sensor space cell 𝐵 as new initial joint state 𝒥𝒮0 since 𝑒1 reflects a valid 

event triggered on the sensor space layer according to which the user must be somewhere in 𝐺𝑀(𝒥𝒮0). And since 

the next active joint state only depends on the new initial state 𝒥𝒮0, the lack of signal reception before 𝒥𝒮0 has no 

further impact. 

3.4 Subspacing and Hierarchical Structures 

In chapter 2.4, the multi-granular representation of indoor space has been identified as an essential requirement to 

indoor space modelling in the context of indoor navigation. Whereas the previous chapters on the MLSEM rather 

focused on the modelling of different notions of space on separate space layers, a multi-granular space represen-

tation addresses the same notion of space but different decompositions thereof following from alternative parti-

tioning schemas. Examples are complementary decompositions of topographic space in order to reflect navigable 

and non-navigable spaces for different modes of locomotion such as pedestrians, wheelchair users, driving or 
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flying autonomous robots, or along additional user-centric or environmental criteria. Likewise, topographic space 

may be organized hierarchically on multiple levels of detail so that fine-grained entities such as (parts of) rooms 

and corridors are related to spatial aggregates on coarser levels like building floors and wings. Such hierarchical 

structures are prerequisites for range queries or multi-level path queries and rely upon containment relationships 

between the entities. As discussed in chapter 2.2, many hybrid indoor space models implicitly employ or at least 

recognize the need for multi-granular and hierarchical space structures but only few proposals provide formal 

definitions and algorithms. 

The decomposition of a space cell 𝐴 into smaller, more fine-grained parts in primal space is called subspacing 

within the MLSEM. If a part 𝐵, which results from a subspacing of 𝐴, itself fulfils the requirements of a space cell 

as given in chapter 3.1.1.3, then 𝐵 is called a subspace cell of 𝐴, and 𝐴 is said to be the superspace cell of 𝐵. 

Intuitively, a subspace cell is spatially contained inside its superspace cell. In order to make this containment 

relationship explicit in the dual space representation, both space cells need to be modelled on different space layers 

in a space layer complex since the Poincaré dual graph on a single space layer can only express the connectedness 

between space cells in terms of topological adjacency. In fact, the inter-layer edges of the multilayered graph as 

defined in chapter 3.2 already capture general overlap relationships between space cells including spatial contain-

ment (cf. definition 3.37). The modelling of subspace cells on a separate space layer is also consistent with the 

core concept of the structured space model according to which different partitionings of indoor space are reflected 

by different space layers. A space layer all of whose space cells have superspace cells on a second space layer is 

equivalently said to be a subspace layer. It follows that different subspacings along different contextual criteria 

like those illustrated above necessarily have to be mapped by separate subspace layers. 

The following figure sketches the conceptual idea of a multi-granular space representation within the MLSEM 

based on the modelling of subspace layers. The different decompositions of indoor space shown in this figure are 

arranged in a tree diagram with each tree node representing a separate space layer. The space representation be-

comes more fine-grained towards the leaves of the tree at the bottom of the diagram. The edges between space 

layers denote subspace relationships based on the spatial containment between space cells, whereas the space cells 

on space layers on the same hierarchical level of the diagram only exhibit general overlap relationships. The figure 

illustrates that subspacing is mostly relevant for topographic space but is not restricted to that in the context of the 

MLSEM. The example subspace hierarchy of the topographic space assumes a decomposition of the interior built 

environment into building floors and overlapping building wings. Further subdivisions of the building floors then 

account for the navigable spaces for different modes of locomotion as well as for arbitrary groups of space entities 

(e.g., functional, organizational, and logical groups). Of course, the modelled space views and their hierarchical 

structuring depend on the navigation system to be implemented and thus may, of course, differ from this example. 

 

Figure 99: Example of subspace hierarchies based on spatail containment relationships. 

Although the MLSEM as introduced so far already supports subspace cells and subspace layers implicitly, both 

concepts as well as related properties are formally defined and presented in the following.  

Indoor Space

Topographic Space Sensor Space Logical Space

Alternative 

Space Views

Wi-Fi RFIDBuilding

Wings

Bluetooth

QR

Pedestrian

Building

Floors

Wheelchair

Flying

Driving

Robot

Security 

Zones

Fire

Detector

Areas

Disaster

Areas

…

…

…

Functional

Groups

S
p

a
ti

a
l

C
o

n
ta

in
m

e
n

t

Spatial Overlap



124 Chapter 3.   Multilayered Space-Event Model (MLSEM) 

 

 

Definition 3.50 (Subspace cell, superspace cell). If 𝐴 and 𝐵 are two 𝑛-dimensional space cells with 𝐺𝑀(𝐴) ⊆

𝐺𝑀(𝐵), then 𝐴 is called a subspace cell of 𝐵, denoted by 𝐴 ≤ 𝐵. Equivalently, 𝐵 is said to be a superspace cell 

of 𝐴, denoted by 𝐵 ≥ 𝐴.  

The binary relation ≤ induces an inclusion relation between 𝐴 and 𝐵 which is a consequence of the primal space 

geometry 𝐺𝑀(𝐴) being a subset of 𝐺𝑀(𝐵) in Euclidean space ℝ𝑛.  

Definition 3.51 (Subspace layer, superspace layer). Let 𝐾, 𝐿 ∈ ℒ be two space layers participating in an 𝑛-dimen-

sional space layer complex ℒ. Further, let 𝒞(𝐾) and 𝒞(𝐿) be the space cell complexes of 𝐾 respectively 𝐿. Then 

𝐾 is called a subspace layer of 𝐿, denoted by 𝐾 ≤ 𝐿, iff ∀𝑆𝐾 ∈ 𝒞(𝐾) ∃ 𝑆𝐿 ∈ 𝒞(𝐿): 𝑆𝐾 ≤ 𝑆𝐿. Equivalently, 𝐿 is said 

to be a superspace layer of 𝐾, denoted by 𝐿 ≥ 𝐾.  

Similar to subspace cells, the binary relation ≤ denotes an inclusion relation between the space layers 𝐾 and 𝐿 

which follows from the fact that the primal space geometry of each space cell on 𝐾 is a subset of the primal space 

geometry of a space cell on 𝐿 in ℝ𝑛. Note that 𝐾 ≤ 𝐿 implies that the primal space geometry of the space cell 

complex of 𝐾 is a subset of that of 𝐿, so that 𝐾 ≤ 𝐿 ⇒ 𝐺𝑀(𝒞(𝐾)) ⊆ 𝐺𝑀(𝒞(𝐿)). But in contrast, 𝐺𝑀(𝒞(𝐾)) ⊆

𝐺𝑀(𝒞(𝐿)) is not a sufficient condition for 𝐾 ≤ 𝐿. 

Proposition 3.52 (Poset of space cells over different space layers). Let ℒ be a space layer complex and ℭ(ℒ) =

⋃ 𝒞(𝐿𝛼𝛼∈𝐼ℒ ) be the set of all space cells contained in ℒ (excluding the outer space cells). Then the pair 𝒫 =

(ℭ(ℒ), ≤) renders a partially ordered set (also called poset) with ℭ(ℒ) being its ground set and the inclusion 

relation ≤ imposing a partial order on the set of space cells ℭ(ℒ) so that for all 𝑆1, 𝑆2, 𝑆3 in 𝒫 it holds that 

(i) 𝑆1 ≤ 𝑆1 (reflexivity), 

(ii) 𝑆1 ≤ 𝑆2 ∧ 𝑆2 ≤ 𝑆1 ⇒ 𝑆1 = 𝑆2 (antisymmetry), and 

(iii) 𝑆1 ≤ 𝑆2 ∧ 𝑆2 ≤ 𝑆3 ⇒ 𝑆1 ≤ 𝑆3 (transitivity). 

It follows that the space cells in a set of space layers can be partially ordered by inclusion or, equivalently, by their 

spatial containment. Two space cells 𝑆1, 𝑆2 ∈ 𝒫 are obviously only comparable, i.e. 𝑆1 ≤ 𝑆2 or 𝑆2 ≤ 𝑆1, if they 

belong to different space layers since the space cells on the same space layer are not allowed to spatially overlap 

and thus only 𝑆1 = 𝑆2 may occur. For two space layers 𝐿1, 𝐿2 ∈ ℒ with 𝐿1 ≤ 𝐿2 it is immediate that all space cells 

in 𝒞(𝐿1) are comparable to the space cells in 𝒞(𝐿2).  

Due to the inclusion relation between subspace layers, also a set of space layers can be arranged along the spatial 

containment of its elements. 

Proposition 3.53 (Poset of space layers). Let ℒ be a space layer complex. Then the pair 𝒬 = (ℒ,≤) renders a 

partially ordered set with ℒ being its ground set and the inclusion relation ≤ imposing a partial order on the set 

of space layers ℒ so that for all 𝐿1, 𝐿2, 𝐿3 in 𝒬 it holds that 

(i) 𝐿1 ≤ 𝐿1 (reflexivity), 

(ii) 𝐿1 ≤ 𝐿2 ∧ 𝐿2 ≤ 𝐿1 ⇒ 𝐿1 = 𝐿2 (antisymmetry), and 

(iii) 𝐿1 ≤ 𝐿2 ∧ 𝐿2 ≤ 𝐿3 ⇒ 𝐿1 ≤ 𝐿3 (transitivity). 

Based on the spatial ordering of space cells and space layers, hierarchical structures between them can be defined 

as follows. 

Definition 3.54 (Greatest space cell, hierarchy of a space cell). Let ℒ be a space layer complex and let 𝒫 =

(ℭ(ℒ), ≤) be the poset of the space cells in ℒ. Then a space cell 𝑆 contained in a subset ℋ ⊆ 𝒫 is said to be the 

greatest space cell in ℋ if any space cell in ℋ is transitively included in 𝑆, and thus ∀𝑆𝑖 ∈ ℋ: 𝑆𝑖 ≤ 𝑆. The subset 

ℋ is said to be a hierarchy of the space cell 𝑆.  

Definition 3.55 (Strict hierarchy of a space cell, sub-hierarchy). Let ℋ(𝑆) be a hierarchy of a space cell 𝑆. ℋ(𝑆) 

is called a strict hierarchy of 𝑆 if any subset 𝒜 ⊆ ℋ(𝑆) with 𝑆 ∉ 𝒜 is also a hierarchy of a space cell 𝑋 ∈ 𝒜. 

Then, 𝒜(𝑋) is called a sub-hierarchy of 𝑆. 

Let 𝒦 = {𝐿1, 𝐿2, … , 𝐿𝑘} be a set of space layers with 𝐿1 ≥ 𝐿2 ≥ ⋯ ≥ 𝐿𝑘. Then any hierarchy ℋ(𝑆) of a space cell 

𝑆 ∈ 𝒞(𝐿1) necessarily is a strict hierarchy.  
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The hierarchical structure of space cells also has an obvious impact on the joint state space of the underlying space 

layer complex ℒ. Precisely, given a hierarchy ℋ(𝑆) a space cell 𝑆, it follows that the dual node 𝑣𝑇𝑃(𝑆) of 𝑆 

participates in any joint state 𝐽𝑆 ∈ 𝒥𝒮(ℒ) that contains the dual node 𝑣𝑇𝑃(𝑋) of a space cell 𝑋 ∈ ℋ(𝑆). In case of 

ℋ(𝑆) being a strict hierarchy the same also holds for any sub-hierarchy 𝒜(𝑋) ⊆ ℋ(𝑆). 

The arrangement of space layers in a hierarchy is defined in the same way as for space cells but using a poset of 

space layers instead. 

Definition 3.56 (Greatest space layer, hierarchy of a space layer). Let ℒ be a space layer complex and let 𝒬 =

(ℒ,≤) be the poset of the space layers in ℒ. Then a space layer 𝐿 contained in a subset 𝒦 ⊆ 𝒬 is said to be the 

greatest space layer in 𝒦 if any space layer in 𝒦 is transitively included in 𝐿, and thus ∀𝐿𝑖 ∈ 𝒦: 𝐿𝑖 ≤ 𝐿. The 

subset 𝒦 is said to be a hierarchy of the space layer 𝐿. 

Definition 3.57 (Strict hierarchy of space layers, sub-hierarchy). Let 𝒦(𝐿) be a hierarchy of a space layer 𝐿. 𝒦(𝐿) 

is called a strict hierarchy of 𝐿 if any subset 𝒜 ⊆ 𝐾(𝐿) with 𝐿 ∉ 𝒜 is also a hierarchy of a space layer 𝑋 ∈ 𝒜. 

Then, 𝒜(𝑋) is called a sub-hierarchy of 𝐿. 

Whereas the inclusion relation between space cells in a space layer complex ℒ has been defined based on their 

spatial containment in primal geometry space so far, it also induces characteristic graph structures in the dual space 

representation of ℒ. A space cell 𝑆1 can be identified to be a subspace cell of 𝑆2 in the multilayered graph 𝑀𝐿𝐺(ℒ) 

of ℒ, if the dual node of 𝑆1 is linked by exactly one inter-layer edge to the dual node of 𝑆2 but to no other dual 

node on the space layer containing 𝑆2. The following proposition formally states this fact.  

Proposition 3.58. Let 𝐿1, 𝐿2 ∈ ℒ be two space layers participating in a space layer complex ℒ, with 𝑆1 ∈ 𝒞(𝐿1) 

and 𝑆2 ∈ 𝒞(𝐿2) being two space cells from either space layer. Then 𝑆1 ≤ 𝑆2 implies that there exists an inter-layer 

edge 𝑒 = {𝑣𝑇𝑃(𝑆1), 𝑣𝑇𝑃(𝑆2)} ∈ 𝐸(𝑀𝐿𝐺(ℒ)) but no further inter-layer edges linking 𝑣𝑇𝑃(𝑆1) to the dual node of 

any other space cell on 𝐿2, and thus {{𝑣𝑇𝑃(𝑆1), 𝑣𝑇𝑃(𝑆∝)} | 𝑆∝ ∈ {𝒞(𝐿2), 𝑆𝑜𝑢𝑡(𝐿2)} \ 𝑆2} ∉ 𝐸(𝑀𝐿𝐺(ℒ)).  

This proposition immediately follows from the fact that 𝐺𝑀(𝑆1) ⊆ 𝐺𝑀(𝑆2) in case 𝑆1 ≤ 𝑆2 per definition 3.50. 

The topological relationship between 𝑆1 and 𝑆2 according to the 4-intersection matrix ℑ4(𝑆1, 𝑆2) (cf. formula 3.38) 

must therefore be classifiable as either inside, coveredBy, or equal. Nevertheless, the above proposition also 

demonstrates that reasoning about subspace relationships between both space cells and entire space layers can be 

performed in a purely combinatorial and computationally efficient way as soon as the multilayered graph has been 

established for a given space layer complex. Based on the single inter-layer edge between a superspace cell and 

its subspace cell, the graph representation of a space cell hierarchy can also be deduced. 

Proposition 3.59 (Star graph structure of a space cell hierarchy). Let ℋ(𝐴) be a hierarchy of a space cell 𝐴 con-

tained in a space layer complex ℒ. Then a subgraph 𝑇𝑘 ⊆ 𝑀𝐿𝐺(ℒ) containing the dual nodes of all space cells in 

ℋ(𝐴) as well as all inter-layer edges linking 𝑣𝑇𝑃(𝐴) to the dual nodes of all its lower space cells renders a star 

structure. Formally, the star 𝑇𝑘 induced by ℋ(𝐴), with 𝑘 = |ℋ(𝐴)| − 1, is given by 

(i) 𝑉(𝑇𝑘) = {𝑣𝑇𝑃(𝑆𝛼)}𝛼∈𝐼ℋ(𝐴) , with |𝑉(𝑇𝑘)| = 𝑘 + 1, and 

(ii) 𝐸(𝑇𝑘) = {{𝑣𝑇𝑃(𝐴), 𝑣𝑇𝑃(𝑆𝑖)} | 𝑆𝑖 ∈ ℋ(𝐴) ∧ 𝑆𝑖 ≠ 𝐴}, with |𝐸(𝑇𝑘)| = 𝑘. 

A star 𝑇𝑘 is a special case of a tree structure and hence of a connected acyclic graph. It can be equivalently clas-

sified as complete bipartite graph with the size of one of its two node partitions being one. In case 𝑘 > 1, the dual 

node 𝑣𝑇𝑃(𝐴) of the greatest space cell 𝐴 in ℋ(𝐴) is said to be the internal node of the star 𝑇𝑘(ℋ(𝐴)) with 𝑘 

additional leaf nodes, and it is the only node having a degree greater than one. In case 𝑘 ≤ 1, 𝑇𝑘(ℋ(𝐴)) is said to 

have no internal node but rather 𝑘 + 1 leaves.  

However, not every star 𝑇𝑘 contained in 𝑀𝐿𝐺(ℒ) means that the space cells whose dual nodes constitute the node 

set 𝑉(𝑇𝑘) automatically render a space cell hierarchy for the space cell 𝐴 when 𝑣𝑇𝑃(𝐴) is assumed to be the internal 

node of 𝑇𝑘. Thus, without knowing a priori whether or not a star 𝑇𝑘 ⊆ 𝑀𝐿𝐺(ℒ) encodes a space cell hierarchy 

ℋ(𝐴) of the space cell 𝐴, a purely combinatorially check involves two more conditions. First, the edge set 𝐸(𝑇𝑘) 

may only contain inter-layer edges so that 𝐸(𝑇𝑘) ⊆ 𝐸(𝐼𝐿𝐺(ℒ)) ⊆ 𝐸(𝑀𝐿𝐺(ℒ)). Second, let 𝐿𝐴 be the space layer 

containing the space cell 𝐴 whose dual node is the internal node of 𝑇𝑘, with 𝐴 ∈ 𝒞(𝐿𝐴) and 𝐿𝐴 ∈ ℒ. Then none of 

the leaf nodes of 𝑇𝑘 may be additionally linked to a dual node of another space cell on 𝐿𝐴, and hence 
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{{𝑣𝑇𝑃(𝑆𝛼), 𝑣} | 𝑆𝛼 ∈ {𝒞(𝐿𝐴), 𝑆𝑜𝑢𝑡(𝐿𝐴)} \ 𝐴 ∧ 𝑣 ∈ 𝑉(𝑇𝑘)} ∉ 𝐸(𝑀𝐿𝐺(ℒ)). Obviously, the second condition follows 

from proposition 3.58. In case 𝑘 = 1, this second condition has to be met by at least one of the two leaf nodes.  

The illustrated combinatorial check also allows for identifying subspace layers. Let 𝐿1, 𝐿2 ∈ ℒ be two space layers 

of a space layer complex ℒ, with 𝐿1 ≥ 𝐿2. Then there exists a space cell hierarchy ℋ(𝑆) for every space cell 𝑆 ∈

𝒞(𝐿1) which contains a (possibly empty) subset of space cells in 𝒞(𝐿2). Correspondingly, the inter-layer graph 

between 𝐿1 and 𝐿2 contains 𝑛 stars where 𝑛 equals the number of space cells in 𝒞(𝐿1). 

Two disjoint space cell hierarchies on the space layer complex ℒ are said to be adjacent if their stars are linked by 

at least one intra-layer edge in 𝑀𝐿𝐺(ℒ). They are additionally said to be connected if there exists at least one 

simple path between both stars in the intra-layer graph on at least one of the involved space layer 𝐿 ∈ ℒ. Spatially, 

this path describes a passage between both hierarchies.    

Definition 3.60 (Adjacent and connected space cell hierarchies, connector, passage). Let ℒ be a space layer com-

plex and 𝒜(𝑋), ℬ(𝑌) be two space cell hierarchies of the space cell 𝑋 respectively 𝑌 with 𝒜(𝑋) ∩ ℬ(𝑌) = ∅. 

Further, let 𝐴 and 𝐵 be two space cells from either hierarchy on the same layer 𝐿 ∈ ℒ, with 𝐴 ∈ 𝒜(𝑋), 𝐵 ∈ ℬ(𝑌), 

and 𝐴, 𝐵 ∈ 𝒞(𝐿). If there exists a simple path 𝑃 ⊆ 𝐺𝑇𝑃(𝐿) of the intra-layer graph 𝐺𝑇𝑃(𝐿) of 𝐿 so that 

𝑣𝑇𝑃(𝐴), 𝑣𝑇𝑃(𝐵) ∈ 𝑉(𝑃) and ∀𝑆𝑖 ∈ 𝒜(𝑋) ∪ ℬ(𝑌)\{𝐴, 𝐵}: 𝑣𝑇𝑃(𝑆𝑖) ∉ 𝑉(𝑃) as well as 𝑃 ≅ �̅�1 then 

(i) 𝒜(𝑋) and ℬ(𝑌) are said to be adjacent on 𝐿, 

(ii) 𝒜(𝑋) and ℬ(𝑌) are said to be connected on 𝐿 if |𝑉(𝑃)| > 2,  

(iii) a space cell 𝑆 is said to be a connector between 𝒜(𝑋) and ℬ(𝑌) on 𝐿 if |𝑉(𝑃)| = 3 and 𝑣𝑇𝑃(𝑆) ∈ 𝑉(𝑃), 

(iv) 𝑃 is said to be a passage between 𝒜(𝑋) and ℬ(𝑌). 

In the following, the modelling of subspace layers and multi-granular space decompositions is exemplified for 

different scenarios. 

Example 3.61. The first example demonstrates the modelling of spatial containment hierarchies between topo-

graphic space layers in order to reflect the nested hierarchical structure of a building or site. Consider the 3-di-

mensional setting as shown in the following figure 100. It consists of three space layers representing the built 

environment of a two floored building on three different levels of details.  

 

Figure 100: Example of subspace layers capturing the nested hierarchical structure of topographic space. 

The first and coarsest level of detail is given by the layer 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 which contains a single space cell 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

representing the entire space occupied by the building. In this example, the geometry of the 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 space cell 

reflects the minimum bounding volume of the exterior shell of the building. The second layer 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 subspaces 

the building into the space cells 𝐹𝑙𝑜𝑜𝑟1 and 𝐹𝑙𝑜𝑜𝑟2 that represent its two floors and whose primal space geometries 

are subsets of the 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 geometry. The finest topographic space representation is captured by the third layer 

𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 which models the architectural entities contained in the building. In order to keep the example simple, the 
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first floor is supposed to only contain two rooms being accessible from a corridor, and this configuration is mapped 

by the three space cells 𝐴1, 𝐵1, and 𝐶1. The similar setting is given for the second floor and reflected by the space 

cells 𝐴2, 𝐵2, and 𝐶2. Moreover, the space cell 𝐸 represents an elevator shaft which connects the corridors 𝐶1 and 

𝐶2 on both floors. Note that whereas 𝐴1, 𝐵1, and 𝐶1 are spatially contained in 𝐹𝑙𝑜𝑜𝑟1 which equivalently holds for 

𝐴2, 𝐵2, 𝐶2, and 𝐹𝑙𝑜𝑜𝑟2, the primal space geometry of 𝐸 necessarily overlaps with 𝐹𝑙𝑜𝑜𝑟1 and 𝐹𝑙𝑜𝑜𝑟2 but, of course, 

is contained inside 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. The resulting multilayered graph encoding the hierarchical structure of the building 

is shown on the right of figure 100. 

The multilayered graph can be queried for the inclusion relations between space cells and thus allows for reasoning 

about the building hierarchy. For example, it easily follows from proposition 3.58 that 𝐴1 is a subspace cell of 

𝐹𝑙𝑜𝑜𝑟1 since the dual node of 𝐴1 is only adjacent to that of 𝐹𝑙𝑜𝑜𝑟1 on 𝐿𝐹𝑙𝑜𝑜𝑟𝑠, and therefore 𝐴1 ≤ 𝐹𝑙𝑜𝑜𝑟1. For the 

same reason it can be deduced that 𝐵1 ≤ 𝐹𝑙𝑜𝑜𝑟1 and 𝐶1 ≤ 𝐹𝑙𝑜𝑜𝑟1 as well as 𝐹𝑙𝑜𝑜𝑟1 ≤ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. Due to the tran-

sitivity of the inclusion relation (cf. condition (iii) of proposition 3.52) we immediately get 𝐴1 ≤ 𝐹𝑙𝑜𝑜𝑟1 ∧

𝐹𝑙𝑜𝑜𝑟1 ≤ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 ⇒ 𝐴1 ≤ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. Similar inclusion relations can be observed between 𝐴2, 𝐵2, 𝐶2 and 

𝐹𝑙𝑜𝑜𝑟2 as well as 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. However, the situation of the elevator cell 𝐸 is different as it is linked to both 𝐹𝑙𝑜𝑜𝑟1 

and 𝐹𝑙𝑜𝑜𝑟2 in the multilayered graph which violates proposition 3.58 and automatically yields 𝐸 ≰ 𝐹𝑙𝑜𝑜𝑟1 ∧ 𝐸 ≰

𝐹𝑙𝑜𝑜𝑟2. Only when compared to 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 it follows that 𝐸 ≤ 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔.  

The ordering of space cells implies that the poset ℋ = {𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝐹𝑙𝑜𝑜𝑟1, 𝐹𝑙𝑜𝑜𝑟2, 𝐴1, 𝐵1 , 𝐶1, 𝐴2, 𝐵2, 𝐶2, 𝐸} is a 

hierarchy of 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 which, of course, conforms to the intuitive spatial understanding of the indoor setting. As 

of proposition 3.59, ℋ(𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) renders a 𝑇9 star being a subgraph of the multilayered graph. This star structure 

is illustrated separately in figure 101.  

 

Figure 101: The 𝑇9 star of the hierarchy ℋ(𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) from figure 100. 

The hierarchy ℋ(𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) is non-strict since the subset 𝒜 ⊂ ℋ with 𝒜 = {𝐹𝑙𝑜𝑜𝑟1, 𝐴1, 𝐵1, 𝐶1, 𝐸} is not a hier-

archy of 𝐹𝑙𝑜𝑜𝑟1 due to 𝐸 ≰ 𝐹𝑙𝑜𝑜𝑟1. However, if we consider the subset ℬ = ℋ\{𝐸} then ℬ is a strict hierarchy of 

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. Moreover, the two subsets ℱ1 = {𝐹𝑙𝑜𝑜𝑟1, 𝐴1, 𝐵1, 𝐶1} and ℱ2 = {𝐹𝑙𝑜𝑜𝑟2, 𝐴2, 𝐵2 , 𝐶2} of ℬ are hierarchies 

of 𝐹𝑙𝑜𝑜𝑟1 respectively 𝐹𝑙𝑜𝑜𝑟2. Due to {𝑣𝑇𝑃(𝐹𝑙𝑜𝑜𝑟1), 𝑣𝑇𝑃(𝐹𝑙𝑜𝑜𝑟2)} ∈ 𝐺𝑇𝑃(𝐿𝐹𝑙𝑜𝑜𝑟𝑠), the hierarchies ℱ1(𝐹𝑙𝑜𝑜𝑟1) 

and ℱ2(𝐹𝑙𝑜𝑜𝑟2) are adjacent on 𝐿𝐹𝑙𝑜𝑜𝑟𝑠. They are even connected on 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 since 𝐸 is linked to both 𝐶1 and 𝐶2 

in the intra-layer graph of 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 . Correspondingly, 𝐸 is a connector for both hierarchies and the path from 𝐶1 

to 𝐶2 via 𝐸 describes a passage between them on 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (cf. definition 3.60). 

The inclusion relations between space cells also induce a partial order on the set of space layers. First, due to ℬ =

{𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝐹𝑙𝑜𝑜𝑟1, 𝐹𝑙𝑜𝑜𝑟2}  being a hierarchy of 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 that contains all space cells on 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 and 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 it 

follows that 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 is a subspace layer of 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 with 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 ≤ 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. In a similar way it can be argued that 

𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ≤ 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. But the condition for subspace layers postulated in definition 3.51 is not fulfilled between 

𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 and 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 since 𝐸 ≰ 𝐹𝑙𝑜𝑜𝑟1 ∧ 𝐸 ≰ 𝐹𝑙𝑜𝑜𝑟2 and thus 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ≰ 𝐿𝐹𝑙𝑜𝑜𝑟𝑠. This might be contrary to a first 

spatial intuition because the union of the primal space geometries of all space cells on 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 is obviously a 

subset of 𝐺𝑀(𝐹𝑙𝑜𝑜𝑟1) ∪ 𝐺𝑀(𝐹𝑙𝑜𝑜𝑟2) in ℝ3. However, and as stated above, the fact that 𝐺𝑀(𝒞(𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠)) ⊆

𝐺𝑀(𝒞(𝐿𝐹𝑙𝑜𝑜𝑟𝑠)) is only a necessary but not a sufficient condition for an inclusion relation between 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 and 

𝐿𝐹𝑙𝑜𝑜𝑟𝑠. Finally, the spatial ordering of the space layers lets us deduce that 𝒦 = {𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 , 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 , 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠} is a 

non-strict hierarchy of 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔. Obviously, 𝒦(𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) cannot be made strict by omitting the space cell 𝐸 as 

done for the space cell hierarchy ℋ(𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) simply because 𝐸 ∉ 𝒦(𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔). 

𝐴1

𝐵1

𝐶1

𝐴2

𝐵2

𝐶2

𝐸

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔

𝐹𝑙𝑜𝑜𝑟1 𝐹𝑙𝑜𝑜𝑟2



128 Chapter 3.   Multilayered Space-Event Model (MLSEM) 

 

 

It is important to note that the illustrated reasoning about the hierarchical structure of the building can be performed 

purely based on the simple information how the dual nodes of the space cells are linked by inter-layer edges in the 

multilayered graph. This spatial knowledge enables multi-level path planning. For example, assume a navigation 

user wants to be routed from room 𝐴1 to room 𝐴2. This path query can be fully answered and presented with fine-

grained routing commands by only considering the intra-layer graph on 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠. However, the containment rela-

tionships between space cells additionally support the generation of intermediate and coarser routing instructions 

which reflect the hierarchical organization of the indoor space and thus especially assist human wayfinding (e.g., 

Richter et al. 2009, Stoffel et al. 2009). For instance, due to 𝐴1 ≤ 𝐹𝑙𝑜𝑜𝑟1 and 𝐴2 ≤ 𝐹𝑙𝑜𝑜𝑟2, a first routing instruc-

tion could simply state that “𝐴1 is on the first floor. The target room 𝐴2 is located on the second floor”. Moreover, 

since 𝐴1 and 𝐴2 belong to disjoint space cell hierarchies of 𝐹𝑙𝑜𝑜𝑟1 and 𝐹𝑙𝑜𝑜𝑟2 connected by 𝐸, the navigation 

system may presented a subsequent instruction like “Take the elevator to go to the second floor”. The hierarchical 

information also allows for providing partial visualizations of the planned route. In the above example, the way 

through either floor or, more generally, the way through each space cell hierarchy along the path may be illustrated 

separately. Finally, suppose the navigation user instead asks for a path between rooms 𝐴1 and 𝐵1, then according 

to 𝐴1 ≤ 𝐹𝑙𝑜𝑜𝑟1 ∧ 𝐵1 ≤ 𝐹𝑙𝑜𝑜𝑟1, this path must be entirely located on the first floor. A path search algorithm may 

thus discard any space cell 𝑋 with 𝑋 ≤ 𝐹𝑙𝑜𝑜𝑟2 when planning the path. It follows that space cell hierarchies are 

also feasible to narrow down the search space for path queries. 

Additional hierarchical facts of the indoor space can be simply added to the stack of space layers. For example, if 

the building in figure 100 can also be structurally subdivided into wings then this vertical decomposition of the 

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 space cell can be captured by space cells on a separate space layer. The MLSEM is however not re-

stricted to structural hierarchies between topographic space layers but, in contrast, the space cells participating in 

a space cell hierarchy may belong to different notions of space. Assume for the above example that rooms 𝐴1 and 

𝐴2 are spatially enclosed by another space cell 𝐿 on a logical space layer. Then this spatial containment could 

express the membership of 𝐴1 and 𝐴2 in an organizational unit (e.g., departments in an office building) represented 

by the space cell hierarchy ℋ(𝐿) = {𝐿, 𝐴1, 𝐴2}. A navigation user could hence not only be presented with the 

information “You are in room 𝐴1” but additionally with “𝐴1 belongs to department 𝐿”. Likewise, a user could 

choose the entire department 𝐿 as target in a path query instead of a specific room. A path search algorithm then 

simply needs to pick a space cell from ℋ(𝐿) as suitable target, e.g. the nearest space cell in ℋ(𝐿) with respect to 

the current position of the user. Alternatively, the space cell 𝐿 might represent a hierarchy resulting from the 

function of the contained space cells (e.g., offices in a building, check-in counters at airports, etc.) or denoting 

associated access constraints. For example, suppose the space cell 𝐿 reflects a security zone or a disaster area. If 

the navigation user is not granted access to 𝐿 then the space cells contained in the space cell hierarchy ℋ(𝐿) need 

to be avoided by path search algorithms in order to generate a valid route.  

From the approaches to indoor space modelling discussed in chapter 2.2, the most formally developed models for 

the representation of hierarchical structures in built indoor environments are proposed by (Lorenz et al. 2006), 

(Stoffel et al. 2007), and (Stoffel et al. 2009). In all approaches, the hierarchy is similarly built from the spatial 

containment of 2-dimensional regions and is mapped onto a tree graph structure. The regions on coarser levels of 

the hierarchy hereby result from the spatial union of neighboured regions on the next more fine-grained level. Only 

the finest resolution of the space representation is explicitly represented in these models whereas spatial aggregates 

on coarser levels are only derived implicitly and thus cannot possess arbitrary shapes. The resulting tree contains 

a single node per region with one root node representing the entire indoor environment. An edge between two 

nodes from subsequent hierarchical levels denotes a containment relationship. Edges between nodes on the same 

level are also allowed and reflect the connectedness of both regions. It follows that the MLSEM fully covers the 

expressivity of these models. A slight difference, however, results from the fact that the rooted trees applied in 

these models only provide containment edges between subsequent levels of the hierarchy. In contrast, the dual 

nodes of the space cells participating in a space cell hierarchy are linked by inter-layer edges over all space layers 

involved in the hierarchy (cf. figure 100). Thus, the resulting multilayered graph contains a rooted tree as subgraph 

but itself can be classified as lattice. Also note that using a rooted tree prohibits modelling of what has been defined 

as non-strict space cell hierarchies in this chapter. This means that the hierarchical structure encoded by the mul-

tilayered graph in the above example cannot be expressed with any of the alternative approaches. Moreover, all 

models have in common that they are restricted to structural hierarchies in topographic space. 
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The dual-graph-based approaches proposed by (Lee 2001), (Jensen et al. 2009), and (Boguslawski & Gold 2011) 

lack the means for expressing the hierarchical organization of the built environment. Only the Node-Relation 

Structure (NRS) of (Lee 2001) supports a hierarchical relationship between the nodes of the dual graph (combina-

torial network model, CNM) and its spatial embedding (geometric network model, GNM). This hierarchy results 

from the fact that complex architectural entities such as long or concave-shaped corridors are mapped by straight 

medial axis transforms in the GNM whereas they are represented by a single dual node in the CNM. Thus, the dual 

node in the CNM (called master node) is hierarchically related to a set of graph elements in the GNM. However, 

the two graph representations in dual space are not underpinned by a corresponding subspacing of the architectural 

entity in primal space and therefore do not encode a spatial containment hierarchy between different cells.  

Example 3.62. The decomposition of complex topographic regions into more fine-grained parts in order to map 

the region onto several elements in the navigation graph instead of just one single node is not only applied by (Lee 

2001) but in fact (implicitly or explicitly) by most cell-based approaches to indoor space modelling (cf. chapter 

2.2.2). The resulting graph structure typically follows the layout of the region more naturally and hence is better 

suited to provide precise geometric trajectories through indoor space, e.g. for humans and autonomous robots. The 

following examples illustrate how the subspacing model of the MLSEM is used for this purpose and demonstrate 

that it provides a formal framework which can be used to explain the results from other works. 

Figure 102 shows a corridor with three adjacent rooms on either side in a 2-dimensional setting. Every room as 

well as the corridor itself are modelled as separate space cells on a topographic space layer which yields the weak 

Poincaré dual graph (cf. definition 3.33) depicted on the right. The dual edges to the dual node of the outer space 

are omitted in the following for readability.19 

 

Figure 102: Example of a 2-dimensional corridor with adjacent rooms (left) and the resulting weak dual graph (right).  

The intra-layer graph shown above captures the building topology correctly and is suitable for path planning pur-

poses without any further modification. Since it is a purely topological graph structure, it may have an additional 

isomorphic spatial embedding (cf. quadrants III and IV of figure 42). The following figure 103a illustrates a pos-

sible embedding in which each space curve associated with a dual edge is chosen so that it entirely lies in navigable 

space.  

(a)    (b)  

Figure 103: Possible Euclidean space embedding of the dual graph from figure 102 (a) and the resulting weak dual graph 

when representing doors as individual space cells (b). 

                                                           
19 Note that if a minimal CW decomposition of the space cell configuration in primal topology space is assumed, then it requires 

a minimum of eight 1-cells to describe the disconnected boundary parts of the corridor between the rooms, and thus the dual 

node of the corridor exhibits eight dual edges to the outer node. In three dimensions, the boundary of the corridor could instead 

be represented by a single 2-cell yielding a single dual edge to the dual node of the outer space (cf. related discussion in chapter 

3.1.3). 
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Remember that a space curve needs not be a straight line segment but only a homeomorphic image of �̅�1 (cf. 

condition (i) of definition 3.21). The space curves sketched in figure 103 thus already describe geometric space 

trajectories that could be followed by autonomous robots without the need for subspacing the corridor. A similar 

result can be obtained when the door spaces are modelled as space cells themselves and hence are represented as 

individual dual nodes as shown in figure 103b. In this case, straight line segments between the nodes may already 

suffice to ensure an embedding in navigable space.  

In literature, the most frequent argument against mapping large places onto just one node within the navigation 

graph is that this representation leads to circuitous geometric trajectories (e.g., Stoffel et al. 2007, Yuan & Schnei-

der 2010a, Liu & Zlatanova 2011b, Goetz & Zipf 2011). In fact, following the space curves shown in figure 103a 

and b from room 𝑅1 to room 𝑅4 or, equivalently, from the adjacent corridor 𝐶2 to 𝑅4 would involve passing the 

spatial embedding of the dual node of 𝐶1 and thus render a detour. This argument however mostly holds for mobile 

robots that move along a predefined geometric path. For human navigation, routing instructions such as “Go to 

the opposite room” or “Take the first door on the right of corridor 𝐶1” more efficiently support the wayfinding to 

room 𝑅4 than a precise geometric trajectory in most scenarios since humans typically move freely inside the built 

environment and are not bound to follow a given space curve. (Lorenz & Ohlbach 2006) and (Lorenz et al. 2006) 

have shown how to generate such guidance for human wayfinding based on the quantitative information provided 

by their indoor space model (e.g., the angular distribution of doors around the centre of the corridor, cf. chapter 

2.2.2). This information is also available from the primal space geometries of space cells and their spatial config-

uration in a space cell complex. A second argument against circuitous spatial embeddings is that they yield non-

optimal routes and hence impact the derivation of shortest paths between two places. A possible decomposition of 

the corridor as employed by most approaches in order to derive a place graph that avoids detours is depicted in the 

following figure. The corridor is split along three subspace cells placed in front of the doors in this example. The 

MLSEM does however not presuppose a specific choice of subspacing. 

 

Figure 104: Decomposition of the corridor from figure 102 into seven subspace cells 𝐶1.1 to 𝐶1.7.  

The following figure 105 shows three alternatives for capturing the above space cell configuration on separate 

space layers of the MLSEM. In the first alternative, a single topographic space layer is used to reflect the subspac-

ing of the corridor. The resulting weak dual graph shown on the right of figure 105a agrees with most proposals 

for mapping large corridors in literature (e.g., Gilliéron & Merminod 2003, Meijers et al. 2005, Lorenz & Ohlbach 

2006, Stoffel et al. 2007, Goetz & Zipf 2011, Boguslawski & Gold 2011). However, the information that the space 

cells 𝐶1.1 to 𝐶1.7 form a single corridor is lost in this space representation. A routing instruction like “Take the first 

door on the left of corridor 𝐶1” cannot be easily generated any more since the dual edges representing the doors 

are no longer linked to a single dual node of the corridor (cf. Lorenz & Ohlbach 2006). 
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(b)  

(c)  

Figure 105: Three possible alternatives for representing subspace cells on different space layers (left) and their corresponding 

multilayered graph structures (right). 

The second alternative presented in figure 105b consists of two separate topographic space layers 𝐿𝑇𝑜𝑝𝑜 and 𝐿𝑆𝑢𝑏. 

Whereas the former layer carries each architectural entity to a single topographic space cell (cf. figure 102), the 

latter provides the subspacing of the corridor and additionally contains copies of all non-subspaced space cells 

from 𝐿𝑇𝑜𝑝𝑜. In contrast to most other approaches to indoor space modelling, the MLSEM is hence capable of 

providing both the real world shape of an architectural entity and its subdivision into smaller parts within an inte-

grated model. Obviously, 𝐿𝑇𝑜𝑝𝑜 ≥ 𝐿𝑆𝑢𝑏 and 𝐺𝑀(𝒞(𝐿𝑇𝑜𝑝𝑜)) = 𝐺𝑀(𝒞(𝐿𝑆𝑢𝑏)). Moreover, the poset ℋ =

{𝐶1, 𝐶1.1, 𝐶1.2, … , 𝐶1.7} is a hierarchy of the corridor space cell 𝐶1 on 𝐿𝑇𝑜𝑝𝑜 which keeps the information that the 

space cells 𝐶1.1 to 𝐶1.7 make up a single corridor. The multilayered graph shown on the right of figure 105b thus 

facilitates the generation of routing instructions as proposed by (Lorenz & Ohlbach 2006) as well as the derivation 

of precise space trajectories and the computation of shortest paths without detours. Note that the topological rela-

tionship between the space cells on 𝐿𝑇𝑜𝑝𝑜 and their non-subspaced counterparts on 𝐿𝑆𝑢𝑏 necessarily is equals. 

The dual node of 𝐶1 in figure 105b conforms to the conceptual idea of a master node in the NRS model of (Lee 

2001) since it corresponds to a subgraph on 𝐿𝑆𝑢𝑏 constituted by the dual nodes of the subspace cells 𝐶1.1 to 𝐶1.7 

and their intra-layer edges. However, (Lee 2001) introduces this hierarchical relationship between the dual topo-

logical graph and its spatial embedding for one and the same primal space representation, whereas in the MLSEM 

the hierarchy is established between alternative primal space representations and their topological graphs in dual 

space. The NRS model of (Lee 2001) can thus be explained 1) by using the primal space representation of 𝐿𝑇𝑜𝑝𝑜, 

2) by representing the CNM through the intra-layer graph 𝐺𝑇𝑃(𝐿𝑇𝑜𝑝𝑜) on 𝐿𝑇𝑜𝑝𝑜, and 3) by choosing the spatial 

embedding 𝐺𝐺𝑀(𝐿𝑆𝑢𝑏) of the intra-layer graph on 𝐿𝑆𝑢𝑏 for representing the GNM. The primal space representation 

of 𝐿𝑆𝑢𝑏 then provides the subspacing of primal cells which is not explicitly given in the NRS. 
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The third alternative configuration of space layers illustrated in figure 105c differs from the second one in that it 

only contains the subspace cells of the corridor but does not redundantly repeat non-subspaced space cells from 

𝐿𝑇𝑜𝑝𝑜, and thus 𝐿𝑇𝑜𝑝𝑜 ≥ 𝐿𝑆𝑢𝑏 but 𝐺𝑀(𝒞(𝐿𝑇𝑜𝑝𝑜)) ⊃ 𝐺𝑀(𝒞(𝐿𝑆𝑢𝑏)). The hierarchy ℋ(𝐶1) is still observable in the 

resulting multilayered graph which however does not explicitly encode the relation between the rooms and the 

corridor parts any more. A more detailed discussion of this space representation as well as its strengths and weak-

nesses follows in chapter 3.5.  

An example for subspacing a concave-shaped topographic region is given in figure 106. For the same reasons as 

stated above, a mapping of the U-shaped corridor onto a single space cell (cf. figure 106a) is already feasible for 

path planning and guidance of humans but is rather insufficient for precise space trajectories and shortest path 

computations. A graph representation that more naturally follows the layout of the corridor again requires sub-

spacing. In figure 106b, an example decomposition of the corridor is shown. It conforms to the results of the 2-

dimensional subspacing algorithm introduced by (Stoffel et al. 2007) which utilizes visibility criteria in order to 

partition concave-shaped regions (cf. chapter 2.2.2). For the mapping of the indoor scene and the decomposition 

of the corridor onto separate space layers of the MLSEM, the same considerations as discussed above apply. 

(a)            (b)  

Figure 106: U-shaped corridor (a) and a possible subspacing (b) with overlaid multilayered graphs. 

Example 3.63. Another reason for subspacing topographic regions and architectural entities is to explicitly tag 

navigable and non-navigable sections therein. For example, non-navigable sections may reflect fixed obstacles 

inside rooms or corridors, or may be related to the mode of locomotion of the navigation user. Although most 

conceptual-based approaches agree in the need for explicitly representing obstacles, cell-based approaches are 

commonly limited to the representation of the free indoor space (cf. chapter 2.2.2). In contrast, regular grid-based 

approaches typically indicate whether or not grid cells are navigable (e.g., Bandi & Thalmann 1998, Yuan & 

Schneider 2010b, Afyouni et al. 2010).    

A simple 3-dimensional example for modelling obstacles within the MLSEM is presented in the following figure. 

It shows a sequence of three rooms one of which contains a column that spans the entire height of the room. 

Suppose that each room as well as the space occupied by the column is mapped onto a separate space cell on a 

topographic space layer.20 The corresponding weak dual graph for a minimal CW decomposition of this setting is 

shown on the right.  

 

Figure 107: Three rooms with a column (left) and the corresponding weak dual graph (right). The dual node of the column 𝐶 

is depicted as square node in order to indicate that it is non-navigable.   

The mathematical model of a space cell 𝑆 as introduced in chapter 3.1.1.3 formally describes a partition of indoor 

space but does not assume its navigability. This information rather needs to be modelled as semantic attribute 𝑎 ∈

                                                           
20 Cutting the column from the room cell leaves a space being homeomorphic to a toroid. The CW decomposition of the room 

cell therefore involves an additional bridge face (cf. proposition 3.35) which however is not mapped onto a dual edge in the 

Poincaré dual graph 𝐺𝑇𝑃(𝐿) of the space layer 𝐿. The column itself is simply mapped by a space cell being homeomorphic to 

�̅�3 which fills the hole of the toroid.  
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𝐴(𝑆). According to definition 3.6, an attribute 𝑎 = (𝑛, 𝑣) is given as name-value pair. Assume an attribute whose 

name 𝑛 is "𝑖𝑠𝑁𝑎𝑣𝑖𝑔𝑎 𝑙𝑒" and whose value 𝑣 is Boolean so that 𝑣 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}. This attribute can be used to 

indicate the navigability of space cells and can be easily evaluated by path search algorithms. In the above example, 

this attribute is only set to 𝑓𝑎𝑙𝑠𝑒 for the space cell 𝐶 representing the column. The dual node of 𝐶 is depicted as 

square in the dual graph to visually illustrate this fact.  

The dual space representation provides a valid view on the building topology. Since the column is contained inside 

room 𝑅2, it only exhibits a single dual edge to 𝑅2 but neither to 𝑅1 nor 𝑅3. Moreover, 𝑅1, 𝑅2, and 𝑅3 are connected 

by dual edges indicating a navigable path from 𝑅1 to 𝑅3. However, one cannot tell that the column is surrounded 

by free space at either side based on this graph structure. A possible subspacing of room 𝑅2 into four subspace 

cells as shown below enriches the model with this knowledge. The resulting dual graph captures the spatial setting 

more accurately and hence is feasible, for example, to provide precise space trajectories leading a navigation user 

around the column.  

 

Figure 108: Possible subspacing of the room cell containing the column into four subspace cells. 

A valid mapping of the indoor setting onto a topographic space layer and an additional subspace layer is illustrated 

in figure 109. Note that the hierarchy ℋ(𝑅2) given by the poset ℋ(𝑅2) = {𝑅2, 𝑅2.1, 𝑅2.2, 𝑅2.3, 𝑅2.4} does not con-

tain the space cells 𝐶 and 𝐶𝑆𝑢𝑏 representing the column since 𝑅2 and 𝐶 are modelled as non-overlapping space 

cells on the same space layer. Consequently, 𝐶𝑆𝑢𝑏 and 𝑅2 are not linked by an inter-layer edge. In order to make 

ℋ(𝑅2) contain 𝐶𝑆𝑢𝑏 and hence to encode the spatial containment relationship between the room and the column 

in the multilayered graph, the column may only be modelled on the subspace layer, and thus the space cell 𝐶 must 

be removed on the superspace layer. Also note that alternative configurations of space layers as presented in the 

previous example 3.62 are again possible. 

 

Figure 109: Modelling of the examples from figure 107 and figure 108 as topographic space layer and subspace layer (left) 

and their resulting multilayered graph (right) (the outer space cells are omitted for readability).  

Figure 110 shows a slight modification of the above setting. Suppose a small step instead of a column inside room 

𝑅2. The step as well as each room is again mapped by a separate space cell. Applying a minimal CW decomposition 

in primal topology space yields the weak dual graph as shown on the right which is identical to that in figure 107.  
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Figure 110: Three rooms with a step (left) and the corresponding weak dual graph (right). 

The space occupied by the step itself is obviously non-navigable and cannot be entered by any navigation user. 

The dual node of the step is thus marked as being non-navigable in the above dual graph. Further, assume that 

pedestrians can easily pass the step but that it renders a non-passable obstacle for wheelchair users. Thus, wheel-

chair users cannot enter the free space above the step as well. In order to model this situation, the space above the 

step needs to be represented as a separate subspace cell and tagged as obstacle. The resulting configuration of 

space cells is shown below. The weak dual graph on the right does not provide a valid path from 𝑅2.1 to 𝑅2.3 any 

longer since the dual nodes of 𝑅2.1 and 𝑅2.3 are only linked via obstacle nodes. However, 𝑅2.1 and 𝑅2.3 themselves 

are still reachable from the neighboured rooms.  

 

Figure 111: Possible subspacing of the room cell containing the step into three subspace cells. 

Alternatively, both obstacle spaces may be entirely cut from the room cell 𝑅2 and thus become a part of the outer 

topographic space. This modelling approach conforms with the examples in the previous publications on the 

MLSEM (cf. Nagel et al. 2010). In chapter 3.5, a binary algebraic operation on space layers realizing the subtrac-

tion of space cells is formally developed. The corresponding primal and dual space representations are depicted in 

figure 112. In the dual graph, a path between 𝑅2.1 and 𝑅2.2 now necessarily involves the dual node of the outer 

space. This, however, can be regarded an invalid path on a topographic space layer. Although the space represen-

tation requires less graph elements to encode the same spatial fact, the obstacles are only modelled implicitly and 

hence are not available, for example, for visual guidance purposes. Moreover, as will be shown below, obstacle 

spaces cannot always be cut from the navigable space without losing information.  

 

Figure 112: Cutting the step and the free space above it from the topographic space model. 

Since the indoor space models for pedestrians and wheelchair users are contradictious, they are placed on two 

separate space layers 𝐿𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 and 𝐿𝑊ℎ𝑒𝑒𝑙𝐶ℎ𝑎𝑖𝑟 . In figure 113, this is illustrated for the models from figure 110 

and figure 111. The space layer for wheelchair users is obviously a subspace layer, and thus 𝐿𝑊ℎ𝑒𝑒𝑙𝐶ℎ𝑎𝑖𝑟 ≤

𝐿𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 . The space cell hierarchy ℋ(𝑅2) = {𝑅2, 𝑅2.1, 𝑅2.2, 𝑅2.3} again does not contain the space cells repre-

senting the step on either space layer for the same reasons as given in the previous example. However, the step 

cell could be easily removed from 𝐿𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛  as it does not render an obstacle on this layer, which would add 

𝑆𝑊ℎ𝑒𝑒𝑙𝐶ℎ𝑎𝑖𝑟  to ℋ(𝑅2).  
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In this example, the modelling of both space layers 𝐿𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛  and 𝐿𝑊ℎ𝑒𝑒𝑙𝐶ℎ𝑎𝑖𝑟  not only captures a multi-granular 

space representation but also provides different views on indoor space for different contexts of navigation. It fol-

lows that depending on the mode of locomotion of a specific navigation user, a navigation system must either 

choose 𝐿𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 or 𝐿𝑊ℎ𝑒𝑒𝑙𝐶ℎ𝑎𝑖𝑟  for path planning and guidance purposes (cf. chapter 3.6). In order to provide a 

complete space model for wheelchair users, additional (sub)space cells on the layer 𝐿𝑊ℎ𝑒𝑒𝑙𝐶ℎ𝑎𝑖𝑟  may be marked 

non-navigable (e.g., space cells representing stairs or narrow passages).  

 

Figure 113: Capturing the examples from figure 110 and figure 111 as separate space layers for pedestrians and wheelchair 

users (left) and their resulting multilayered graph (right). 

The following example shows a landing inside room 𝑅2 in front of the door to room 𝑅1 instead of a step. The weak 

dual graph for this setting once more agrees with that from figure 110 and figure 107.  

 

Figure 114: Three rooms with a landing (left) and the corresponding weak dual graph (right). 

Assume the landing is too high to be entered by a wheelchair user. It therefore denotes an obstacle for wheelchair 

users when moving from 𝑅3 to 𝑅1. However, and in contrast to the example of figure 111, the landing may be 

entered from room 𝑅1, and thus the free space above the landing is not only navigable for pedestrians. In order to 

model a space layer for wheelchair users, this free space again needs to be captured by a separate subspace cell. 

But instead of marking the entire space cell as non-navigable, only a part of its cell boundary must be tagged as 

such. The corresponding space layer is sketched in figure 115. As per definition 3.24, the cell boundary is available 

through boundary cells. Let 𝐵 be the boundary cell representing the common boundary between 𝑅2.1 and 𝑅2.2 as 

shown below. Its primal space geometry is given as 𝐺𝑀(𝐵) = 𝐺𝑀(𝑅2.1) ∩ 𝐺𝑀(𝑅2.2). The dual space topology 

𝑒𝑇𝑃(𝐵) is exactly the dual edge linking the dual nodes of 𝑅2.1 and 𝑅2.2. When associating 𝐵 with the 𝑖𝑠𝑁𝑎𝑣𝑖𝑔𝑎 𝑙𝑒 

attribute and setting its value to 𝑓𝑎𝑙𝑠𝑒, then this information is accessible from 𝑒𝑇𝑃(𝐵) for path search algorithms. 

The dual edge is drawn as dashed line to visually illustrate that it is non-navigable. The resulting dual graph now 

encodes the fact that both 𝑅2.1 and 𝑅2.2 are navigable spaces for wheelchair users but that there is no obstacle-free 

path joining them. In this example, cutting both the landing and the space above it from the original room cell 𝑅2 

is not an option since the information that the landing can be entered by wheelchair users would be lost.  
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Figure 115: Possible subspacing of the room cell containing the landing into two subspace cells and marking the boundary 

cell 𝐵 non-navigable for wheelchair users (depicted as dashed edge in the weak dual graph). 

The example illustrated in figure 116 shows the wheelchair space layer when mounting a ramp into room 𝑅2 which 

enables access to the landing. A possible subspacing of room 𝑅2 into four subspace cells is shown on the left (𝑅2 

is shown in a top view and the space cells for both rooms 𝑅1 and 𝑅3 are omitted for readability). In addition to the 

two obstacle spaces occupied by the landing and the ramp, also the boundary cell between the subspaces 𝑅2.1 and 

𝑅2.3 needs to be marked as non-navigable like in the above example. The same holds for the boundary cell sepa-

rating the subspaces 𝑅2.2 and 𝑅2.3 since a path between both would involve falling off the edge of the ramp. The 

final dual graph is shown on the right, and by adding the ramp and a corresponding subspace model it now provides 

a valid route for wheelchair users from 𝑅1 to 𝑅3 along the path 𝑅1 → 𝑅2.1 → 𝑅2.2 → 𝑅2.4 → 𝑅3 and vice versa. All 

other paths however involve one or more non-navigable dual nodes or non-navigable dual edges.    

 

Figure 116:  Adding a ramp to the example from figure 115 and corresponding subspacing. The boundary cells 𝐵1 and 𝐵2 are 

marked non-navigable for wheelchair users. 

Finally, obstacles suspended from the ceiling are modelled in the same way as obstacles on the floor. Consider the 

setting shown in figure 117a. It yields the same weak dual graph as in the above examples of the column, the step, 

and the landing. In order to make the free spaces below the obstacle and at either side of the obstacle accessible in 

the dual graph, a subspacing as exemplified in figure 117b is required which results in the depicted weak dual 

graph. Suppose that an arbitrarily shaped navigation user wants to move from room 𝑅1 to 𝑅3. Whether the free 

space below the obstacle is passable for that user can be tested by evaluating the geometric shape of the user 

against the transition surface between the subspace cells 𝑅2.1 and 𝑅2.3. Let 𝐵 be the corresponding boundary cell. 

Then the transition surface is given by its primal space geometry 𝐺𝑀(𝐵) = 𝐺𝑀(𝑅2.1) ∩ 𝐺𝑀(𝑅2.3) and denotes 

the vertical profile of the passage. If the free space below the obstacle is not modelled as cuboidal space cell as in 

the example but also by an arbitrarily shaped geometric object, then obviously its entire primal space geometry 

𝐺𝑀(𝑅2.3) has to be evaluated instead. Similar geometric tests allow for verifying whether a navigation user can 
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pass the suspended obstacle at either side. Sophisticated geometric algorithms facilitating path planning for arbi-

trarily shaped objects in a 3-dimensional obstacle space have been presented in (Yuan & Schneider 2010b) and 

(Yuan & Schneider 2011), and can be transferred in the context of the MLSEM.  

(a)  

(b)  

Figure 117: Three rooms with a suspended obstacle (a), possible subspacing of the room cell containing the obstacle into five 

subspace cells (b) and the corresponding weak dual graphs (right). 

In summary, the exemplified scenarios in this chapter illustrate that the MLSEM provides a flexible support for 

multi-granular and hierarchical space representations which covers the capabilities of comparable grid-based and 

cell-based approaches. The conceptual separation of different views on indoor space by means of space layers 

facilitates to preserve the real world shape of an architectural entity while at the same time providing more gener-

alized representations on superspace layers as well as more fine-grained decompositions on subspace layers. The 

number and type of subspace layers is unbounded and each subspace layer may follow its own partitioning schema. 

As demonstrated above, subspacing the topographic space is suitable for deriving fine-grained navigation graphs 

and space trajectories at different levels of detail as well as for denoting navigable and non-navigable subspaces, 

for example, due to navigation obstacles or the mode of locomotion. Since its mathematical formalization abstracts 

from a given notion of space, subspacing can also be applied to alternative space representations such as sensor or 

logical spaces (e.g., to denote a hierarchy of security zones). 

The fine-grained representation of large rooms or corridors through complementary visibility graphs as proposed 

by a variety of research works (e.g., Stoffel et al. 2007, Yuan & Schneider 2010a, Liu & Zlatanova 2011a, Liu & 

Zlatanova 2011b, Goetz & Zipf 2011) cannot directly be mapped by the MLSEM since the multilayered graph is 

derived from topological relationships rather than from intervisibility criteria. However, mutual visibility is not 

feasible to express both connectedness and containment relationships between spatial regions. (Stoffel et al. 2007) 

and (Liu & Zlatanova 2011b) therefore recognize the need for building visibility graphs on top of an underlying 

space model providing connectivity information and hierarchical structures, which can be answered by the 

MLSEM.  

3.5 Space Layer Algebra 

In this chapter, a formal algebra for space layers facilitating the derivation of a new space layer from two input 

space layers is introduced. For this purpose, three operations on space layers are developed, namely a merge op-

eration, a difference operation, and an intersection operation.  

3.5.1 Merge Operation 

In order to motivate the introduction of a merge operation, the discussion about two basic alternatives for the 

modelling of subspace layers as presented in the previous chapter 3.4 (cf. figure 105b and c) is resumed. The 

following 2-dimensional example recaps both alternatives. It shows a topographic space layer 𝐿𝑠𝑢𝑝𝑒𝑟  containing 

three space cells that represent two rooms 𝑅1 and 𝑅2 being connected to a corridor 𝐶 (cf. figure 43). The corridor 
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cell is decomposed into three subspace cells 𝑆𝑢 1, 𝑆𝑢 2, and 𝑆𝑢 3 on a subspace layer 𝐿𝑠𝑢𝑏. Whereas in the first 

modelling alternative presented in figure 118a the non-subspaced room cells are mirrored on the subspace layer, 

the second alternative in figure 118b differs in that the subspace layer only reflects the partitioning of the corridor.  

(a)  

(b)  

Figure 118: Two different possibilities to capture the subspacing of space cells on a subspace layer. 

Both representations show similarities. Precisely, the inclusion relation 𝐿𝑠𝑢𝑝𝑒𝑟 ≥ 𝐿𝑠𝑢𝑏 as well as the fact that the 

poset ℋ = {𝐶, 𝑆𝑢 1, 𝑆𝑢 2, 𝑆𝑢 3} forms a space cell hierarchy of the corridor 𝐶 on 𝐿𝑠𝑢𝑝𝑒𝑟  holds in either case. 

However, the multilayered graph resulting for the second alternative is less expressive. Although it encodes the 

information that the space cells on 𝐿𝑠𝑢𝑏 entirely occupy the space covered by 𝐶 (since the dual node of 𝐶 is not 

linked to 𝑆𝑜𝑢𝑡
𝑠𝑢𝑏), it cannot be queried whether a navigation user entering the corridor from room 𝑅1 will be located 

in 𝑆𝑢 1, 𝑆𝑢 2, or 𝑆𝑢 3. The reason is that the inter-layer edges of the multilayered graph only capture overlap and 

containment relationships between space cells from different layers but not their topological adjacency. Answering 

this question for the second alternative requires the additional consideration of the joint state space of the space 

layer complex. For example, consider the four joint states given by 𝐽𝑆1 ← (𝑅1, 𝑆𝑜𝑢𝑡
𝑠𝑢𝑏), 𝐽𝑆2 ← (𝐶, 𝑆𝑢 1), 𝐽𝑆3 ←

(𝐶, 𝑆𝑢 2), and 𝐽𝑆4 ← (𝐶, 𝑆𝑢 3). Then a valid joint state transition only exists between 𝐽𝑆1 and 𝐽𝑆2 since 

𝐺𝑀(𝐽𝑆1) ∩ 𝐺𝑀(𝐽𝑆2) ≠ ∅ which is not true for 𝐽𝑆1 and 𝐽𝑆3 as well as for 𝐽𝑆1 and 𝐽𝑆4. In the first modelling alter-

native, this knowledge is already available for path search algorithms from the purely combinatorial model of the 

intra-layer graph of 𝐿𝑆𝑢𝑏.  

As a consequence, the planning of paths containing the subspace cells on 𝐿𝑠𝑢𝑏 involves additional geometric tests 

in the second alternative (which may, of course, be precomputed). While this can be viewed as disadvantage, a 

strong benefit of the second model is that it avoids redundancy. One motivation for the modelling of indoor space 

on different space layers is that changes on one layer should not interfere with the space representation on a second 

layer. However, if the spatial layout or configuration of room 𝑅1 or room 𝑅2 is altered on 𝐿𝑠𝑢𝑝𝑒𝑟  in the first mod-

elling alternative (e.g., a door is installed between both rooms) this change has to be reflected on 𝐿𝑠𝑢𝑏 since it 

contains copies of both rooms. Otherwise, it alone will not be suitable for path planning any more. Moreover, the 

redundant representation of both 𝑅1 and 𝑅2 is less efficient with respect to the storage and management of the 

entire indoor space model. For example, suppose a topographic space layer that contains a large number of rooms 
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and corridors but a subspace layer that provides subdivisions for only a small subset thereof. Then the number of 

redundant space cells required on the subspace layer clearly outweighs the number of subspace cells whereas only 

the latter enrich the information about the topographic space and hence add value to the indoor space model.  

It can be observed that the subspace layer 𝐿𝑠𝑢𝑏 from the first alternative shown in figure 118a in fact provides an 

integrated representation of both space layers as modelled in the second alternative. So the question is whether a 

formal operation can be defined which merges two space layers so that this integrated representation is obtained. 

A first step towards the development of a merge operation for space layers is to define a map that carries two 

overlapping space cells to a set of mutually non-overlapping space cells covering the same partition of indoor 

space. Let 𝑋 and 𝑌 be the two overlapping space cells as shown in figure 119a. Then three non-overlapping space 

cells 𝑆𝑋\𝑌, 𝑆𝑌\𝑋, and 𝑆𝑋∩𝑌 suffice to describe the same space as shown in figure 119b. Their primal space geome-

tries result from regularized Boolean set operations applied to 𝐺𝑀(𝑋) and 𝐺𝑀(𝑌). Regularized Boolean set op-

erations ensure that the result of every operation on two 𝑛-dimensional subsets of ℝ𝑛 is again 𝑛-dimensional (Farin 

et al. 2002). Hence, pathological cases such as isolated lower-dimensional elements or open boundaries are ex-

cluded which may be produced by an ordinary Boolean set operation but which do not conform to the notion of 

the primal space geometry of space cells (cf. definition 3.2).  

Definition 3.64 (Regularized Boolean set operations). Let 𝑃 and 𝑄 be two 𝑛-dimensional point sets in ℝ𝑛. A 

regularized Boolean set operation denoted by 𝑜𝑝∗ is realized by first taking the interior of the point set obtained 

by the ordinary Boolean set operation 𝑃 𝑜𝑝 𝑄 and then by taking the closure, and thus 𝑃 𝑜𝑝∗ 𝑄 = 𝐼𝑛𝑡(𝑃 𝑜𝑝 𝑄)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

with 𝑜𝑝 ∈ {∪,∩,\} (e.g., Gold 2004, Foley 2010). 

For example, the regularized difference denoted by \∗ between 𝐺𝑀(𝑋) and 𝐺𝑀(𝑌) is given as 

𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌) = 𝐼𝑛𝑡(𝐺𝑀(𝑋)\𝐺𝑀(𝑌))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Likewise, their regularized intersection ∩∗ is expressed through 

𝐺𝑀(𝑋) ∩∗ 𝐺𝑀(𝑌) = 𝐼𝑛𝑡(𝐺𝑀(𝑋) ∩ 𝐺𝑀(𝑌))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .21 

Remember that per definition 3.2, the primal space geometry of a space cell needs to render a non-empty, con-

nected, and compact 𝑛-manifold with boundary. This condition is fulfilled for all three space cells 𝑆𝑋\𝑌, 𝑆𝑌\𝑋, and 

𝑆𝑋∩𝑌 in figure 119b when setting 𝐺𝑀(𝑆𝑋\𝑌) = 𝐺𝑀(𝑋) \
∗ 𝐺𝑀(𝑌), 𝐺𝑀(𝑆𝑌\𝑋) = 𝐺𝑀(𝑌) \

∗ 𝐺𝑀(𝑋), and 

𝐺𝑀(𝑆𝑋∩𝑌) = 𝐺𝑀(𝑋) ∩
∗ 𝐺𝑀(𝑌). 

(a)           (b)  

Figure 119: Two overlapping space cells (a) and three non-overlapping space cells covering the same space (b).  

Although 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌), and 𝐺𝑀(𝑌) \∗ 𝐺𝑀(𝑋), and 𝐺𝑀(𝑋) ∩∗ 𝐺𝑀(𝑌) are always closed and bounded sub-

sets of ℝ𝑛 per definition 3.64 and hence compact according to the Heine-Borel theorem (cf. theorem A.30), they 

not necessarily satisfy the connectedness condition of definition 3.2. Moreover, both 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌) and 

𝐺𝑀(𝑌) \∗ 𝐺𝑀(𝑋) may be empty sets. Supporting examples are presented in figure 120a to c. For instance, con-

sider 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌) in figure 120a which results in two non-empty but disconnected subsets of ℝ𝑛 and thus 

cannot be captured by a single space cell but rather has to be carried to two space cells instead. In contrast, 

𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌) yields the empty set in figure 120c which is not allowed for the primal space geometry of a 

space cell.  

                                                           
21 For example, consider two manifold solids 𝑀1and 𝑀2 living in ℝ3 which touch at their boundary. Then the intersection 𝑀1 ∩
𝑀2 is of dimension less than three. Thus, the topological interior 𝐼𝑛𝑡(𝑀1 ∩𝑀2) is necessarily the empty set since no point in 

𝑀1 ∩𝑀2 has an open neighbourhood homeomorphic to the open unit 3-ball. It follows that 𝑀1 ∩
∗ 𝑀2 = 𝐼𝑛𝑡(𝑀1 ∩𝑀2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is also 

the empty set. The same consideration holds in case of the regularized difference and union operation. Note that the topological 

interior may not be confused with the manifold interior which needs not be empty. 

𝑋

𝑌

𝑆𝑋∖𝑌

𝑆𝑌∖𝑋

𝑆𝑋∩𝑌
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 (a)  

 (b)  

 (c)  

Figure 120: Examples of different intersection results between two space cells. 

Even if a regularized Boolean set operation produces a non-empty, connected, and compact subset of ℝ𝑛 it may 

still be non-manifold. Precisely, the class of topological manifolds is not closed under regularized Boolean set 

operations (Farin et al. 2002). This is demonstrated in figure 121a for the operation 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌). Conse-

quently, 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌) is also not suitable as primal space geometry of a single space cell. In order to resolve 

this issue, 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌) has to be partitioned into finitely many non-overlapping manifold subsets each of 

which is then described by a separate space cell. A possible resolution following this schema is shown in figure 

121b where 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌) is completely covered by two valid space cells. Algorithms for detecting non-man-

ifold structures as well as for carrying them to manifold representations are, for example, presented by (Mäntylä 

1988) or (Farin et al. 2002). 

(a)              (b)  

Figure 121: Mapping a non-manifold intersection result (a) onto a set of space cells (b).  

It follows from the examples that in the general case it takes three sets 𝒮𝑋\𝑌, 𝒮𝑌\𝑋, and 𝒮𝑋∩𝑌 of mutually non-

overlapping space cells instead of just three space cells as in figure 119 to describe the space occupied by 𝑋 and 

𝑌, and both 𝒮𝑋\𝑌 and 𝒮𝑌\𝑋 may be the empty set.  

Definition 3.65 (Make disjoint map for two space cells). Let 𝑋 and 𝑌 be two 𝑛-dimensional overlapping space 

cells with 𝐼𝑛𝑡(𝐺𝑀(𝑋)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑌)) ≠ ∅. Then the continuous and surjective map 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇: {𝑋, 𝑌} → 𝒞𝑋𝑌 car-

ries 𝑋 and 𝑌 to a space cell complex 𝒞𝑋𝑌 that is the union of three disjoint sets 𝒮𝑋\𝑌, 𝒮𝑌\𝑋, and 𝒮𝑋∩𝑌 so that 

(i) ∀𝑆𝑋\𝑌 ∈ 𝒮𝑋\𝑌: 𝐺𝑀(𝑆𝑋\𝑌) ⊆ 𝐺𝑀(𝑋) \
∗ 𝐺𝑀(𝑌) ∧ 𝐴(𝑆𝑋\𝑌) = 𝐴(𝑋), with |𝒮𝑋\𝑌| ≥ 0 and 

⋃ 𝐺𝑀(𝑆𝑋\𝑌
𝛼

𝛼∈𝐼𝒮𝑋\𝑌
) = 𝐺𝑀(𝑋) \∗ 𝐺𝑀(𝑌), 

(ii) ∀𝑆𝑌\𝑋 ∈ 𝒮𝑌\𝑋: 𝐺𝑀(𝑆𝑌\𝑋) ⊆ 𝐺𝑀(𝑌) \
∗ 𝐺𝑀(𝑋) ∧ 𝐴(𝑆𝑌\𝑋) = 𝐴(𝑌), with |𝒮𝑌\𝑋| ≥ 0 and 

⋃ 𝐺𝑀(𝑆𝑌\𝑋
𝛽

𝛽∈𝐼𝒮𝑌\𝑋
) = 𝐺𝑀(𝑌) \∗ 𝐺𝑀(𝑋), and 

(iii) ∀𝑆𝑋∩𝑌 ∈ 𝒮𝑋∩𝑌: 𝐺𝑀(𝑆𝑋∩𝑌) ⊆ 𝐺𝑀(𝑋) ∩
∗ 𝐺𝑀(𝑌) ∧ 𝐴(𝑆𝑋∩𝑌) = 𝐴(𝑋) ∪ 𝐴(𝑌), with |𝒮𝑋∩𝑌| ≥ 1 and 

⋃ 𝐺𝑀(𝑆𝑋∩𝑌
𝛾

𝛾∈𝐼𝒮𝑋∩𝑌
) = 𝐺𝑀(𝑋) ∩∗ 𝐺𝑀(𝑌). 

𝐺𝑀 𝑋 ∖∗ 𝐺𝑀 𝑌

𝐺𝑀 𝑌 ∖∗ 𝐺𝑀 𝑋

𝐺𝑀 𝑋 ∩∗ 𝐺𝑀 𝑌

𝑋

𝑌

𝑋 𝑌

𝐺𝑀 𝑌 ∖∗ 𝐺𝑀 𝑋𝐺𝑀 𝑋 ∖∗ 𝐺𝑀 𝑌

𝐺𝑀 𝑋 ∩∗ 𝐺𝑀 𝑌

𝑌 𝑋

𝐺𝑀 𝑌 ∖∗ 𝐺𝑀 𝑋

𝐺𝑀 𝑋 ∩∗ 𝐺𝑀 𝑌

𝐺𝑀 𝑋 ∖∗ 𝐺𝑀 𝑌 = ∅

𝑌

𝑋

𝐺𝑀 𝑋 ∖∗ 𝐺𝑀 𝑌

𝑆𝑋∖𝑌
1 𝑆𝑋∖𝑌

2

𝐺𝑀 𝑋 ∩∗ 𝐺𝑀 𝑌

𝐺𝑀 𝑌 ∖∗ 𝐺𝑀 𝑋 = ∅

𝐺𝑀 𝑋 ∖∗ 𝐺𝑀 𝑌
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The operation of applying 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 to two space cells 𝑋 and 𝑌 is called make disjoint. The number of space cells 

in every subset of 𝒞𝑋𝑌 has to be equal to the number of connected components resulting from the regularized 

Boolean operation given that each component is manifold. This condition can be expressed using the first Betti 

number 𝛽0 of the corresponding topological spaces so that |𝒮𝑋\𝑌| = 𝛽0(𝐺𝑀(𝑋) \
∗ 𝐺𝑀(𝑌)), |𝒮𝑌\𝑋| =

𝛽0(𝐺𝑀(𝑌) \
∗ 𝐺𝑀(𝑋)), and |𝒮𝑋∩𝑌| = 𝛽0(𝐺𝑀(𝑋) ∩

∗ 𝐺𝑀(𝑌)) (cf. theorem A.94). 

The above definition ensures that the primal space geometry 𝐺𝑀(𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌)) is equal to 𝐺𝑀(𝑋) ∪∗ 𝐺𝑀(𝑌) 

and is described by a set of valid space cells. Additionally, it addresses the transition of symbolic and semantic 

attributes from 𝑋 and 𝑌 to each space cell in 𝒞𝑋𝑌 = 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌). Since every 𝑆𝑋\𝑌 ∈ 𝒮𝑋\𝑌 represents a partition 

of space occupied merely by 𝑋, it is assigned the attribute set 𝐴(𝑋). For the similar reason, every 𝑆𝑌\𝑋 ∈ 𝒮𝑌\𝑋 is 

assigned the attribute set 𝐴(𝑌). The space cells in 𝒮𝑋∩𝑌 cover both 𝑋 and 𝑌 and hence retrieve the union 𝐴(𝑋) ∪

𝐴(𝑌) of both attribute sets. 

The map 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 also has to yield the primal space topologies of every space cell participating in 𝒞𝑋𝑌 as well as 

of 𝒞𝑋𝑌 itself in a deterministic way. The following definition utilizes the geometric carriers of the topological (𝑛 −

1)-cells in both 𝑇𝑃(𝑋) and 𝑇𝑃(𝑌) for this purpose (cf. definition 3.3 and the related discussion in chapter 3.1.1.3). 

The approach is to intersect each of these carriers with the boundary 𝜕𝐺𝑀(𝑆𝑖) of a space cell 𝑆𝑖 ∈ 𝒞𝑋𝑌 in primal 

geometry space in order to retrieve the set of geometric carriers for the (𝑛 − 1)-cells in the primal topological 

description 𝑇𝑃(𝑆𝑖). Since the resulting geometric carriers need to be in one-to-one correspondence with the (𝑛 −

1)-cells, the (𝑛 − 1)-skeleton of 𝑇𝑃(𝑆𝑖) can be constructed based on the carriers and their inclusion relations. This 

approach guarantees that the cell decomposition of the boundary of 𝑆𝑖 has at least the same granularity as the cell 

decomposition of the corresponding boundary part of 𝑋 and 𝑌, and thus no information is lost in primal topology 

space when applying 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 to 𝑋 and 𝑌. Note that the dual topology space representation of all space cells in 

𝒞𝑋𝑌 automatically follows when embedding 𝒞𝑋𝑌 in a space layer. 

Definition 3.66 (Primal space topology of 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌)). Let 𝒞𝑋𝑌 = 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌) be the space cell complex 

obtained for two 𝑛-dimensional overlapping space cells 𝑋 and 𝑌. Further, let 𝐺𝑛−1 be the set of all (𝑛 − 1)-dimen-

sional geometric carriers in bijective correspondence with the (𝑛 − 1)-cells in both 𝑇𝑃(𝑋) and 𝑇𝑃(𝑌).  

(i) For all 𝑆𝑖 ∈ 𝒞𝑋𝑌, 𝑇𝑃(𝑆𝑖) is derived as follows: 

a. Let 𝐾𝑛−1 be the set of (𝑛 − 1)-dimensional geometrics carriers for 𝑇𝑃(𝑆𝑖) so that ∀𝑔 ∈

𝐺𝑛−1: 𝑔 ∩
∗ 𝜕𝐺𝑀(𝑆𝑖) ≠ ∅ ⇒ 𝑔 ∩

∗ 𝜕𝐺𝑀(𝑆𝑖) ∈ 𝐾𝑛−1 and ∀𝑘, 𝑙 ∈ 𝐾𝑛−1: 𝐼𝑛𝑡(𝑘) ∩ 𝐼𝑛𝑡(𝑙) = ∅. 

b. 𝜕𝐺𝑀(𝑆𝑖) ∖
∗ ⋃ 𝑘𝛼𝛼∈𝐼𝐾𝑛−1

≠ ∅ ⇒ 𝜕𝐺𝑀(𝑆𝑖) ∖
∗ ⋃ 𝑘𝛼𝛼∈𝐼𝐾𝑛−1

∈ 𝐾𝑛−1 (e.g., required in figure 121). 

c. For every 𝑘 ∈ 𝐾𝑛−1 an (𝑛 − 1)-cell 𝑒𝑛−1 is added to 𝑇𝑃(𝑆𝑖) whose geometric carrier is 𝑘. The lower 

dimensional cells as well as their geometric carriers are induced by the inclusion relations between 

the carries in 𝐾𝑛−1.  

d. 𝑇𝑃(𝑆𝑖) is obtained by attaching a single 𝑛-cell 𝑒𝑛 to the (𝑛 − 1)-skeleton 𝑇𝑃(𝑆𝑖)𝑛−1. Depending on 

the dimension 𝑛, additional bridge edges or bridge faces might be necessary (cf. proposition 3.34 and 

proposition 3.35). The geometric carrier of 𝑒𝑛 is 𝐺𝑀(𝑆𝑖). 

(ii) 𝑇𝑃(𝒞𝑋𝑌) results from identifying the (𝑛 − 1)-cells on the common boundaries of all space cells partici-

pating in 𝒞𝑋𝑌.  

The following figure 122 exemplifies the result of 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 in primal topology space for two 2-dimensional space 

cells 𝑋 and 𝑌. In figure 122a, the space cells as well as their associated CW decompositions provided by 𝑇𝑃(𝑋) 

and 𝑇𝑃(𝑌) are illustrated. Note that both primal space geometries 𝐺𝑀(𝑋) and 𝐺𝑀(𝑌) describe rectangular shapes 

in ℝ2. Whereas the topological surface underlying 𝐺𝑀(𝑋) is decomposed into four 0-cells, four 1-cells and one 

2-cell by 𝑇𝑃(𝑋), a minimal cell decomposition into one 0-cell, one 1-cell and one 2-cell is assumed for 𝑇𝑃(𝑌). 

Correspondingly, the 1-dimensional geometric carrier of the 1-cell in 𝑇𝑃(𝑌) is the entire boundary 𝜕𝐺𝑀(𝑌) of 

the primal space geometry of 𝑌 being homeomorphic to the 1-sphere 𝕊1. In case of the space cell 𝑋, the four 

straight line segments on the boundary 𝜕𝐺𝑀(𝑋) can be chosen as 1-dimensional geometric carriers for the 1-cells 

in 𝑇𝑃(𝑋) instead with each being homeomorphic to �̅�1. 

Figure 122b shows the overlap of the primal space geometries of 𝑋 and 𝑌 in ℝ2. When applying 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌) 

to this configuration, the three space cells 𝑆𝑋\𝑌, 𝑆𝑌\𝑋, and 𝑆𝑋∩𝑌 are retrieved. They are depicted in an exploded 

view in figure 122c to better visualize their individual primal space topologies. For example, 𝑇𝑃(𝑆𝑋∩𝑌) consists 
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of three 0-cells, three 1-cells and one 2-cell. Consider the 1-cell 𝑒1 ∈ 𝑇𝑃(𝑆𝑋∩𝑌). Its geometric carrier follows from 

the regularized Boolean intersection of the boundary 𝜕𝐺𝑀(𝑆𝑋∩𝑌) with the only 1-dimensional geometric carrier 

𝜕𝐺𝑀(𝑌) associated with 𝑇𝑃(𝑌) (cf. (i) a of definition 3.66). The resulting subset of ℝ2 is homeomorphic to �̅�1 

whose interior 𝐼𝑛𝑡(�̅�1) = 𝔹1 is captured by 𝑒1 and whose boundary 𝜕�̅�1 is carried to two 0-cells (cf. (i) c of 

definition 3.66). Likewise, the geometric carriers of 𝑒2 and 𝑒3 result from intersecting 𝜕𝐺𝑀(𝑆𝑋∩𝑌) with the straight 

line segments on the boundary 𝜕𝐺𝑀(𝑋) of the space cell 𝑋. The CW decompositions of 𝑇𝑃(𝑆𝑋\𝑌) and 𝑇𝑃(𝑆𝑌\𝑋) 

can be explained in a similar way.  

Finally, figure 122d illustrates that the CW decomposition of the resulting primal space topology 

𝑇𝑃(𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌)) has finer granularity than both 𝑇𝑃(𝑋) and 𝑇𝑃(𝑌).  

(a)        (b)  

(c)       (d)  

Figure 122: Two rectangular space cells with different representations in primal topology space (a), their overlap in primal 

space (b), and the result of the 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 map as exploded (c) and non-exploded view (d). 

The formal definition of 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 allows for realizing a merge operation for two space layers sharing the same 

dimension. The main idea of this operation is to make the overlapping space cells on both space layers disjoint. 

The MergeSpaceLayers algorithm presented below (cf. algorithm 3.67) illustrates the sequence of steps to imple-

ment the merge operation. Its input are two space layers 𝐿1 and 𝐿2, and it yields their merged representation as 

another space layer 𝐿𝑚𝑒𝑟𝑔𝑒 . The algorithm works on copies of the space cell complexes 𝒞(𝐿1) and 𝒞(𝐿2) which 

are called 𝒞𝑡𝑚𝑝
1  respectively 𝒞𝑡𝑚𝑝

2  so that neither 𝐿1 nor 𝐿2 are affected by the algorithm. Moreover, the output 

space layer 𝐿𝑚𝑒𝑟𝑔𝑒  is initialized with the minimal space layer 𝐿𝑚𝑖𝑛  to guarantee a non-empty result (cf. lines 1-3). 

In a main iteration loop (cf. lines 4-19), first every space cell 𝑋 ∈ 𝒞𝑡𝑚𝑝
1  which does not spatially overlap with any 

other space cell in 𝒞𝑡𝑚𝑝
2  is directly put in the resulting space cell complex 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) of 𝐿𝑚𝑒𝑟𝑔𝑒 . Since 𝑋 however 

is necessarily covered by 𝑆𝑜𝑢𝑡(𝐿2), it receives the semantic attributes modelled for 𝑆𝑜𝑢𝑡(𝐿2). The space cell 𝑋 is 

then removed from 𝒞𝑡𝑚𝑝
1  (cf. lines 5-9). In a second step, equivalent actions are performed on all 𝑌 ∈ 𝒞𝑡𝑚𝑝

2  for 

which there is no overlapping space cell in 𝒞𝑡𝑚𝑝
1  (cf. lines 10-14). Third, a pair {𝑋, 𝑌} of overlapping space cells, 

with 𝑋 ∈ 𝒞𝑡𝑚𝑝
1  and 𝑌 ∈ 𝒞𝑡𝑚𝑝

2 , is taken as input for the map 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 which results in 𝒞𝑋𝑌 = 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌). The 

space cells contained in 𝒮𝑋∩𝑌(𝒞𝑋𝑌) cannot possibly overlap with any other space cell on 𝐿1 or 𝐿2 and thus are 

added to 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒). However, this needs not be true for the space cells in both 𝒮𝑋\𝑌(𝒞𝑋𝑌) and 𝒮𝑌\𝑋(𝒞𝑋𝑌) which 

are therefore pushed back into 𝒞𝑡𝑚𝑝
1  respectively 𝒞𝑡𝑚𝑝

2  while at the same time removing 𝑋 and 𝑌 from these sets 

(cf. lines 15-19). The execution of the main loop continues until both 𝒞𝑡𝑚𝑝
1  and 𝒞𝑡𝑚𝑝

2  are empty sets.  

As soon as the main loop ends, the space cell complex 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) of the output space layer is complete. Note that 

the primal space representation of 𝑆𝑜𝑢𝑡(𝐿𝑚𝑒𝑟𝑔𝑒) implicitly follows from 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) (cf. definition 3.12 and defi-

nition 3.13). Likewise, the dual topological space representation of all space cells on 𝐿𝑚𝑒𝑟𝑔𝑒  as well as of 𝐿𝑚𝑒𝑟𝑔𝑒  

itself is a consequence of applying the Poincaré duality to 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) according to definition 3.16. If the geometric-

topological configuration of the space cells in 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) is identical to that of either 𝒞(𝐿1) or 𝒞(𝐿2), then the dual 

𝑋 𝑌

𝑆𝑋∖𝑌

𝑆𝑌∖𝑋

𝑆𝑋∩𝑌
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𝑆𝑋∩𝑌
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geometric representation of the corresponding space layer is taken for 𝐺𝐺𝑀(𝐿𝑚𝑒𝑟𝑔𝑒) (cf. lines 20-25). Otherwise, 

a deterministic GetDefaultEmbedding algorithm for the derivation of 𝐺𝐺𝑀(𝐿𝑚𝑒𝑟𝑔𝑒) is assumed (e.g., assigning the 

centroids of space cells to their dual nodes and embedding the dual edges using straight line segments). In the final 

part of the algorithm (cf. lines 26-32), symbolic and semantic attributes from boundary cells in both ℬ(𝐿1) and 

ℬ(𝐿2) are carried to overlapping ones in ℬ(𝐿𝑚𝑒𝑟𝑔𝑒). Further actions on boundary cells are not necessary since 

their primal and dual space representations are again derived from the space cell complex 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒). The outer 

space cell 𝑆𝑜𝑢𝑡(𝐿𝑚𝑒𝑟𝑔𝑒) is assigned the attributes from both 𝑆𝑜𝑢𝑡(𝐿1) and 𝑆𝑜𝑢𝑡(𝐿2), and the resulting space layer 

𝐿𝑚𝑒𝑟𝑔𝑒  itself receives the union of attributes from 𝐿1 and 𝐿2. 

Algorithm 3.67. MergeSpaceLayers(𝐿1,𝐿2) 

Input: 𝐿1, 𝐿2, with 𝑑𝑖𝑚(𝐿1) = 𝑑𝑖𝑚(𝐿2) 

Output: 𝐿𝑚𝑒𝑟𝑔𝑒  

1: 𝒞𝑡𝑚𝑝
1 ← 𝒞(𝐿1) 

2: 𝒞𝑡𝑚𝑝
2 ← 𝒞(𝐿2) 

3: 𝐿𝑚𝑒𝑟𝑔𝑒 ← 𝐿𝑚𝑖𝑛  

4: while 𝒞𝑡𝑚𝑝
1 ≠ ∅ ∧ 𝒞𝑡𝑚𝑝

2 ≠ ∅ do 

5:  𝑄 ← {𝑋 ∈ 𝒞𝑡𝑚𝑝
1  | 𝐼𝑛𝑡(𝐺𝑀(𝑋)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑌)) = ∅, ∀𝑌 ∈ 𝒞𝑡𝑚𝑝

2 } 

6:  for each 𝑋 ∈ 𝑄 do 

7:   𝐴(𝑋) ← 𝐴(𝑋) ∪ 𝑆𝑜𝑢𝑡(𝐿2) 

8:   𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) ← 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) ∪ 𝑋 

9:   𝒞𝑡𝑚𝑝
1 ← 𝒞𝑡𝑚𝑝

1 \𝑋 

10:  𝑄 ← {𝑌 ∈ 𝒞𝑡𝑚𝑝
2  | 𝐼𝑛𝑡(𝐺𝑀(𝑌)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑋)) = ∅, ∀𝑋 ∈ 𝒞𝑡𝑚𝑝

1 } 

11:  for each 𝑌 ∈ 𝑄 do 

12:   𝐴(𝑌) ← 𝐴(𝑌) ∪ 𝑆𝑜𝑢𝑡(𝐿1) 

13:   𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) ← 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) ∪ 𝑌 

14:   𝒞𝑡𝑚𝑝
2 ← 𝒞𝑡𝑚𝑝

2 \𝑌 

15:  if ∃{𝑋, 𝑌}: 𝐼𝑛𝑡(𝐺𝑀(𝑋)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑌)) ≠ ∅ ∧ 𝑋 ∈ 𝒞𝑡𝑚𝑝
1 ∧ 𝑌 ∈ 𝒞𝑡𝑚𝑝

2  then 

16:   𝒞𝑋𝑌 ← 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌) 

17:   𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) ← 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) ∪ 𝒮𝑋∩𝑌(𝒞𝑋𝑌) 

18:   𝒞𝑡𝑚𝑝
1 ← 𝒞𝑡𝑚𝑝

1 \𝑋 ∪ 𝒮𝑋\𝑌(𝒞𝑋𝑌) 

19:   𝒞𝑡𝑚𝑝
2 ← 𝒞𝑡𝑚𝑝

2 \𝑌 ∪ 𝒮𝑌\𝑋(𝒞𝑋𝑌) 

20: if 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) = 𝒞(𝐿1) then 

21:  𝐺𝐺𝑀(𝐿𝑚𝑒𝑟𝑔𝑒) ← 𝐺𝐺𝑀(𝐿1) 

22: else if 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) = 𝒞(𝐿2) then 

23:  𝐺𝐺𝑀(𝐿𝑚𝑒𝑟𝑔𝑒) ← 𝐺𝐺𝑀(𝐿2) 

24: else 

25:  𝐺𝐺𝑀(𝐿𝑚𝑒𝑟𝑔𝑒) ← 𝐺𝑒𝑡 𝑒𝑓𝑎𝑢𝑙𝑡𝐸𝑚 𝑒𝑑𝑑𝑖𝑛𝑔(𝐺𝑇𝑃(𝐿𝑚𝑒𝑟𝑔𝑒)) 

26: for each 𝐵 ∈ ℬ(𝐿𝑚𝑒𝑟𝑔𝑒) do 

27:  𝑄 ← {𝐶 ∈ ℬ(𝐿1) | 𝐼𝑛𝑡(𝐺𝑀(𝐵)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝐶)) ≠ ∅} 

28:  𝑄 ← 𝑄 ∪ {𝐶 ∈ ℬ(𝐿2) | 𝐼𝑛𝑡(𝐺𝑀(𝐵)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝐶)) ≠ ∅} 

29:  for each 𝐶 ∈ 𝑄 do 

30:   𝐴(𝐵) ← 𝐴(𝐵) ∪ 𝐴(𝐶) 

31: 𝐴 (𝑆𝑜𝑢𝑡(𝐿𝑚𝑒𝑟𝑔𝑒)) ← 𝐴(𝑆𝑜𝑢𝑡(𝐿1)) ∪ 𝐴(𝑆𝑜𝑢𝑡(𝐿2)) 

32: 𝐴(𝐿𝑚𝑒𝑟𝑔𝑒) ← 𝐴(𝐿1) ∪ 𝐴(𝐿2) 

 

Based on the MergeSpaceLayers algorithm, the merge operation is formally defined as follows. 

Definition 3.68 (Merge operation on two space layers). Let 𝕃𝑛 be the non-empty set of all 𝑛-dimensional space 

layers, with 2 ≤ 𝑛 ≤ 3. Then the map ⊕:𝕃𝑛 × 𝕃𝑛 → 𝕃𝑛 uniquely associates each pair of space layers {𝐿1, 𝐿2} in 
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𝕃𝑛 with another space layer 𝐿𝑚𝑒𝑟𝑔𝑒  of 𝕃𝑛 as defined by algorithm 3.67. It thus yields a closed binary operation on 

𝕃𝑛 called merge operation which is denoted by 𝐿1⊕𝐿2 = 𝐿𝑚𝑒𝑟𝑔𝑒 .  

The result of the merge operation does not depend on the ordering of its two operands 𝐿1, 𝐿2 ∈ 𝕃
𝑛. This is due to 

the fact that for every pair {𝑋, 𝑌} of overlapping space cells, with 𝑋 ∈ 𝒞(𝐿1) and 𝑌 ∈ 𝒞(𝐿2), the resulting primal 

space representation 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) of 𝐿𝑚𝑒𝑟𝑔𝑒  contains both the intersection and the difference of their primal space 

geometries (cf. lines 17-19 of algorithm 3.67). The merge operation is therefore commutative, and thus 𝐿1⊕𝐿2 =

𝐿2⊕𝐿1. For the same reason, ⊕ also has the associative property and it holds that (𝐿1⊕ 𝐿2) ⊕ 𝐿3 = 𝐿1⊕

(𝐿2⊕𝐿3) for all elements 𝐿1, 𝐿2, and 𝐿3 of 𝕃𝑛. In mathematics, especially in the field of abstract algebra, the pair 

(𝕃𝑛,⊕) is thus said to be a commutative or Abelian semigroup (cf. Jacobson 2009).  

We can even identify more characteristics of (𝕃𝑛 ,⊕). First, the merge operation is idempotent since when applied 

to the same space layer 𝐿 ∈ 𝕃𝑛, it gives 𝐿 as result. Precisely, in case 𝐿 ⊕ 𝐿, the space cells in every pair {𝑋, 𝑌} of 

overlapping space cells necessarily occupy the same indoor space, and thus 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌) = {𝑋} = {𝑌}. Conse-

quently, 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) equals 𝒞(𝐿) and according to line 21 of algorithm 3.67 𝐺𝐺𝑀(𝐿𝑚𝑒𝑟𝑔𝑒) = 𝐺𝐺𝑀(𝐿). And since 

all semantic attributes of 𝐿 and its elements are carried to 𝐿𝑚𝑒𝑟𝑔𝑒  it follows that 𝐿 ⊕ 𝐿 = 𝐿𝑚𝑒𝑟𝑔𝑒 = 𝐿. Second, 

𝐿𝑚𝑖𝑛  is the identity element for ⊕. Consider the merge operation 𝐿 ⊕ 𝐿𝑚𝑖𝑛 . Due to 𝒞(𝐿𝑚𝑖𝑛) = ∅ per definition 

3.32, all space cells on 𝐿 are carried to 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) in a single iteration of the main loop in algorithm 3.67 (cf. lines 

5-9). Thus, again 𝒞(𝐿𝑚𝑒𝑟𝑔𝑒) = 𝒞(𝐿) and 𝐺𝐺𝑀(𝐿𝑚𝑒𝑟𝑔𝑒) = 𝐺𝐺𝑀(𝐿) which yields 𝐿 ⊕ 𝐿𝑚𝑖𝑛 = 𝐿, and through the 

commutative property 𝐿𝑚𝑖𝑛⊕ 𝐿 = 𝐿. The existence of an identity element renders the algebraic structure (𝕃𝑛,⊕) 

not only an Abelian semigroup but also an Abelian monoid (cf. Jacobson 2009). 

The space partitioning of the resulting space layer 𝐿𝑚𝑒𝑟𝑔𝑒  necessarily has equal or finer granularity than that of 

both operands of the merge operation. This excludes the existence of inverse elements in (𝕃𝑛 ,⊕). The idea of an 

inverse element is that it cancels the action of its original element. Formally, an inverse element 𝐿−1 ∈ 𝕃𝑛 for a 

given space layer 𝐿 ∈ 𝕃𝑛 with 𝐿 ≠ 𝐿𝑚𝑖𝑛 requires that 𝐿 ⊕ 𝐿−1 = 𝐿−1⊕ 𝐿 = 𝐿𝑚𝑖𝑛. However, since 𝒞(𝐿) ≠ ∅ it 

follows that 𝒞(𝐿 ⊕ 𝐿−1) ≠ ∅ and thus 𝒞(𝐿 ⊕ 𝐿−1) ≠ 𝒞(𝐿𝑚𝑖𝑛) which contradicts 𝐿 ⊕ 𝐿−1 = 𝐿𝑚𝑖𝑛. All space lay-

ers in 𝕃𝑛 are hence non-invertible regarding the merge operation and do not possess an inverse element which 

would cancel the merge with another space layer. The only obvious exception from this rule is the identity element 

𝐿𝑚𝑖𝑛  itself which is thus said to be a self-inverse element of the monoid (𝕃𝑛 ,⊕) with 𝐿𝑚𝑖𝑛⊕𝐿𝑚𝑖𝑛 = 𝐿𝑚𝑖𝑛.  

The merge operation is applicable to any number of space layers so that 𝐿𝑚𝑒𝑟𝑔𝑒 = 𝐿1⊕𝐿2⊕…⊕ 𝐿𝑘, with 

𝐿1, 𝐿2, … , 𝐿𝑘 ∈ 𝕃
𝑛. Due to ⊕ being commutative, 𝐿𝑚𝑒𝑟𝑔𝑒  is independent of the order in which the space layers 

occur in the sequence. Moreover, the merge operation abstracts from the choice of notion of indoor space under-

lying its input space layers. It can therefore be used to merge arbitrary space layers reflecting topographic space, 

sensor space, logical space, or any alternative notion of space. The merge operation intuitively resolves the ambi-

guity between space layers. Before merging, the same partition of indoor space is occupied by 𝑘 space cells having 

heterogeneous semantics. After merging, the space cells on 𝐿𝑚𝑒𝑟𝑔𝑒  are mutually non-overlapping and thus render 

a homogeneous and unambiguous representation of indoor space. 

Example 3.69. The following figure 123 illustrates the merge operation for the space layers 𝐿𝑠𝑢𝑝𝑒𝑟  and 𝐿𝑠𝑢𝑏 from 

the second alternative of the introductory example (cf. figure 118b).  

 

Figure 123: Applying the merge operation to the space layers from figure 118b. The table on the right documents the input 

space cells and the applied operations that lead to the space cells on the merge space layer. 

𝑀3 𝑀4 𝑀 

𝐶

𝑅1 𝑅2

𝐿𝑠𝑢𝑝𝑒𝑟

𝐿𝑠𝑢𝑏

𝑆𝑢 2𝑆𝑢 1 𝑆𝑢 3

𝐿𝑚𝑒𝑟𝑔𝑒 =  𝐿𝑠𝑢𝑝𝑒𝑟⊕ 𝐿𝑠𝑢𝑏

𝑀1 𝑀2
𝑆𝑜𝑢𝑡
𝑚𝑒𝑟𝑔𝑒

⊕

𝑀1 𝑅1 ∩ 𝑆𝑜𝑢𝑡
𝑠𝑢𝑏

𝑀2 𝑅2 ∩ 𝑆𝑜𝑢𝑡
𝑠𝑢𝑏

𝑀3 𝐶 ∩ 𝑆𝑢 1

𝑀4 𝐶 ∩ 𝑆𝑢 2

𝑀 𝐶 ∩ 𝑆𝑢 3

𝑆𝑜𝑢𝑡
𝑚𝑒𝑟𝑔𝑒

𝑆𝑜𝑢𝑡
𝑠𝑢𝑝𝑒𝑟

∩ 𝑆𝑜𝑢𝑡
𝑠𝑢𝑏

𝑀1 𝑀2

𝑀3 𝑀4 𝑀 
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The resulting space layer 𝐿𝑚𝑒𝑟𝑔𝑒 = 𝐿𝑠𝑢𝑝𝑒𝑟 ⊕𝐿𝑠𝑢𝑏  captures the same space representation as the subspace layer in 

the first alternative of figure 118a. Thus, the merge operation allows for combining the advantages of both alter-

natives. On the one hand, every subspace layer only has to provide subspacings of superspace cells which are 

relevant to its own notion of space and partitioning schema (e.g., non-navigable spaces for wheelchair users, spaces 

affected by a fire incident, etc.) without the need for redundantly repeating all non-subspaced space cells from the 

superspace layer. This reduces modelling efforts and storage requirements, and changes to non-subspaced space 

cells on the superspace layer need not be reflected on the subspace layer. On the other hand, topological adjacency 

information between subspace cells and superspace cells which are not encoded in the multilayered graph can be 

derived by merging both layers. This, for example, supports path planning as corresponding algorithms only have 

to process the intra-layer graph of the merged space layer instead of simultaneously evaluating the intra-layer 

graphs from both 𝐿𝑠𝑢𝑝𝑒𝑟  and 𝐿𝑠𝑢𝑏 as well as joint state transitions. Typically, many path finding algorithms such 

as Dijkstra’s algorithm (Dijkstra 1959), its more efficient 𝐴∗ extension (cf. Russell & Norvig 2010), or the Bell-

man-Ford algorithm (Bellman 1958, Ford 1956) are not designed for multilayered graph structures.   

Suppose that the space layer 𝐿𝑠𝑢𝑝𝑒𝑟  in figure 123 represents the navigable topographic space for pedestrians, which 

is expressed through an attribute 𝑎 = (" sNa  gabl ", 𝑡𝑟𝑢𝑒) (cf. example 3.63 in chapter 3.4) modelled for each 

of its space cells, i.e. ∀𝑆 ∈ 𝒞(𝐿𝑠𝑢𝑝𝑒𝑟): 𝑎 ∈ 𝐴(𝑆). Moreover, assume that 𝐿𝑠𝑢𝑏 provides a more fine-grained de-

composition of the corridor for wheelchair users, and let 𝑆𝑢 2 ∈ 𝐿𝑠𝑢𝑏  represent a non-navigable space with  =

(" sNa  gabl ", 𝑓𝑎𝑙𝑠𝑒) and  ∈ 𝐴(𝑆𝑢 2). Merging both space layers then provides an integrated space represen-

tation for wheelchair users. The space cell 𝑀4 ∈ 𝐿𝑚𝑒𝑟𝑔𝑒 resulting from 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝐶, 𝑆𝑢 2) is assigned the attributes 

from both 𝐶 and 𝑆𝑢 2 due to 𝐴(𝑀4) = 𝐴(𝐶) ∪ 𝐴(𝑆𝑢 2) (cf. condition (iii) of definition 3.65) which yields 

𝐴(𝑀4) = {(" sNa  gabl ", 𝑡𝑟𝑢𝑒), (" sNa  gabl ", 𝑓𝑎𝑙𝑠𝑒), … }. In general, attributes of a merged space cell sharing 

the same name need to be jointly evaluated since each attribute is a valid thematic characterization of the partition 

of indoor space covered by the space cell. The joint evaluation depends on the type of the attribute value and the 

query to be answered. In the given example, answering whether 𝑀4 is navigable for wheelchair users within a path 

query requires a logical conjunction of the Boolean values of the attributes named " sNa  gabl " which results in 

𝑡𝑟𝑢𝑒 ∧ 𝑓𝑎𝑙𝑠𝑒 = 𝑓𝑎𝑙𝑠𝑒. The example illustrates that the merge operation preserves and integrates the semantic and 

symbolic attributes of both space cells and boundary cells from either operands. Note that a more powerful and 

expressive model for navigation constraints is introduced in chapter 5. However, the presented rules are also ap-

plicable to this model (cf. chapter 5.4). 

Although it is an immediate consequence of algorithm 3.67 that 𝐺𝑀(𝒞(𝐿𝑠𝑢𝑝𝑒𝑟)) ⊆ 𝐺𝑀(𝒞(𝐿𝑚𝑒𝑟𝑔𝑒)) as well as 

𝐺𝑀(𝒞(𝐿𝑠𝑢𝑏)) ⊆ 𝐺𝑀(𝒞(𝐿𝑚𝑒𝑟𝑔𝑒)), figure 123 clearly shows that 𝐿𝑚𝑒𝑟𝑔𝑒  is only a superspace layer of 𝐿𝑠𝑢𝑏 but not 

of 𝐿𝑠𝑢𝑝𝑒𝑟 . The inclusion relation 𝐿𝑠𝑢𝑏 ≤ 𝐿𝑠𝑢𝑝𝑒𝑟  implies that the space cells on 𝐿𝑠𝑢𝑝𝑒𝑟  are greater than the space 

cells on 𝐿𝑠𝑢𝑏. Consequently, the space partitioning on 𝐿𝑚𝑒𝑟𝑔𝑒  cannot be more fine-grained than that of 𝐿𝑠𝑢𝑏 and it 

follows that 𝐿𝑠𝑢𝑏 ≤ 𝐿𝑚𝑒𝑟𝑔𝑒 . However, in the general case that the operands of the merge operation are not related 

by inclusion the resulting space layer 𝐿𝑚𝑒𝑟𝑔𝑒  is not a superspace layer of either operand.  

Proposition 3.70. Let 𝐿1, 𝐿2 ∈ 𝕃
𝑛 bet two space layers from the non-empty set 𝕃𝑛 of all 𝑛-dimensional space 

layers. Then 𝐺𝑀(𝒞(𝐿1)) ⊆ 𝐺𝑀(𝒞(𝐿1⊕ 𝐿2)) and 𝐺𝑀(𝒞(𝐿2)) ⊆ 𝐺𝑀(𝒞(𝐿1⊕ 𝐿2)). Moreover, it holds that  

(i) 𝐿1 ≤ 𝐿2 ⇒ 𝐿1 ≤ 𝐿1⊕𝐿2, 

(ii) 𝐿2 ≤ 𝐿1 ⇒ 𝐿2 ≤ 𝐿1⊕𝐿2, and 

(iii) 𝐿1 ≰ 𝐿2 ∧ 𝐿2 ≰ 𝐿1 ⇒ 𝐿1 ≰ 𝐿1⊕𝐿2 ∧ 𝐿2 ≰ 𝐿1⊕𝐿2. 

Example 3.71. An example for merging two space layers with different notions of space is depicted in figure 124a. 

Whereas 𝐿𝑇𝑜𝑝𝑜 represents the same topographic setting as in the previous example, 𝐿𝑆𝑒𝑐  provides two security 

zones modelled by two separate space cells 𝑆𝑒𝑐1 and 𝑆𝑒𝑐2 which together cover all space cells on 𝐿𝑇𝑜𝑝𝑜 (cf. figure 

124b). Suppose that the security level is low for 𝑆𝑒𝑐1 but high for 𝑆𝑒𝑐2. Note that both space layers are not related 

by inclusion in this example, and hence 𝐿𝑇𝑜𝑝𝑜 ≰ 𝐿𝑆𝑒𝑐 ∧ 𝐿𝑆𝑒𝑐 ≰ 𝐿𝑇𝑜𝑝𝑜. Moreover, a minimal CW decomposition is 

assumed for all space cells. 
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(a)       (b)  

Figure 124: A topographic space layer and a security space layer (left) and their multilayered graph (right). 

From the multilayered graph shown on the right of figure 124a the two distinct space cell hierarchies 𝒜(𝑆𝑒𝑐1) =

{𝑆𝑒𝑐1, 𝑅1} and ℬ(𝑆𝑒𝑐2) = {𝑆𝑒𝑐2, 𝑅2} can be deduced which reflect the space cells contained in the security zones. 

However, the corridor space cell 𝐶 is not participating in either hierarchy since it spatially overlaps with both 𝑆𝑒𝑐1 

and 𝑆𝑒𝑐2. Similar to the above example 3.69, it is thus not decidable based on the multilayered graph structure 

whether a navigation user having permission only for areas with low security level is allowed to enter the corridor 

𝐶 from room 𝑅1. The merge operation 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑆𝑒𝑐 helps to resolve this ambiguity as illustrated in the following 

figure. 

 

Figure 125: Applying the merge operation to the space layers from figure 124. 

Let 𝑙𝑙𝑜𝑤 = ("𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙", "𝑙𝑜𝑤") and 𝑙ℎ𝑖𝑔ℎ = ("𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙", "ℎ𝑖𝑔ℎ") be the two semantic attributes cap-

turing the information about the security level associated with the security zones, and thus 𝑙𝑙𝑜𝑤 ∈ 𝐴(𝑆𝑒𝑐1) and 

𝑙ℎ𝑖𝑔ℎ ∈ 𝐴(𝑆𝑒𝑐2). Further, let 𝑠𝑅1 = ("𝑃𝑙𝑎𝑐𝑒𝐿𝑎 𝑒𝑙", "𝑅𝑜𝑜𝑚1") ∈ 𝐴(𝑅1), 𝑠𝑅2 = ("𝑃𝑙𝑎𝑐𝑒𝐿𝑎 𝑒𝑙", "𝑅𝑜𝑜𝑚2") ∈

𝐴(𝑅2), and 𝑠𝐶 = ("𝑃𝑙𝑎𝑐𝑒𝐿𝑎 𝑒𝑙", "𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟") ∈ 𝐴(𝐶) be the symbolic place labels of the architectural entities 

each of which is modelled as semantic attribute of a topographic space cell. After having merged both space layers, 

the semantics of overlapping space cells are combined and the attributes are available from the resulting space 

cells on 𝐿𝑚𝑒𝑟𝑔𝑒 . In order to answer whether a navigation user can move from 𝑅1 to 𝐶 without leaving the low 

security zone, we need to consider the space cells 𝑀1, 𝑀3 ∈ 𝐿𝑚𝑒𝑟𝑔𝑒  because 𝑠𝑅1 , 𝑙𝑙𝑜𝑤 ∈ 𝐴(𝑀1) and 𝑠𝐶 , 𝑙𝑙𝑜𝑤 ∈

𝐴(𝑀3). Since the dual nodes of 𝑀1 and 𝑀3 are directly linked in the intra-layer graph of 𝐿𝑚𝑒𝑟𝑔𝑒 , there exists a 

valid path for the navigation user.  

One important conclusion of the survey of existing approaches to indoor space modelling presented in chapter 2.2 

was that most of the discussed proposals agree in only representing topographic regions and in mapping semantic 

information such as symbolic place labels or security levels onto attributes associated with the regions or their 

corresponding elements in the navigation graph (cf. chapter 2.4). The above example demonstrates that the 

MLSEM is capable of providing an equivalent space representation based on the merge operation. But even more 

importantly, it shows that the MLSEM is to be seen as a general framework that goes beyond the presented ap-

proaches and rather can be used to explain and derive attributively enriched topographic indoor space models 

which therefore can be understood as being more specific models. 
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Example 3.72. The merge operation is also feasible to obtain a single space layer for a given notion of space and 

partitioning schema. This is especially important in case the partitioning schema itself does not generate mutually 

non-overlapping space cells. In topographic space, non-overlapping space cells inherently follow from decompos-

ing the interior built environment according to the architectural constraints. However, the following example 

shows a Wi-Fi space layer whose sensor space cells reflect the partitioning of indoor space along the signal cov-

erage areas of two Wi-Fi transmitters (cf. figure 46 in chapter 3.1.2.3). Since Wi-Fi coverage areas are typically 

meant to overlap in order to ensure full signal coverage within a building or site, the sensor space cells conse-

quently overlap in primal space. When modelling this space partitioning on a single Wi-Fi space layer, the sensor 

space cells need to be made disjoint beforehand as sketched below (cf. chapter 3.1.3).  

 

Figure 126: Three non-overlapping Wi-Fi space cells representing the overlapping coverage areas of two Wi-Fi transmitters 

on a sensor space layer (left) and the weak dual graph (right). 

Obviously, the same configuration of space cells can be realized by merging two separate sensor space layers with 

each layer representing the signal coverage of a single Wi-Fi transmitter (cf. figure 127). This way of modelling 

has a number of benefits. First, the partitioning of indoor space along the characteristics of individual sensors 

necessarily results in non-overlapping space cells as shown on the left of figure 127 for both Wi-Fi space layers. 

Second, suppose the building is equipped with further Wi-Fi transmitters. Then the indoor space model can be 

simply augmented with additional sensor space layers capturing the signal coverage areas of each new Wi-Fi 

transmitter without interfering with the space representation on existing Wi-Fi layers. Likewise, if existing Wi-Fi 

transmitters are dismounted or temporarily break down then only their corresponding space layers need to be 

removed from the MLSEM. Third, the merge operation as illustrated in figure 127 can be performed on the fly in 

order to retrieve mutually non-overlapping coverage areas involving all Wi-Fi transmitters. This integrated space 

representation is advantageous for localization and tracking purposes as it results in smaller space cells and hence 

reduces the uncertainty about the absolute position of moving persons or objects (cf. chapter 3.3). Since the output 

of the merge operation is again a space layer, it can be processed and stored like any other space layer within the 

MLSEM.  

  

Figure 127: Modelling of the two Wi-Fi space cells from figure 126 on two sensor separate space layers (left) and the result 

of a corresponding merge operation (right) which yields the space layer from figure 126.   

What has been demonstrated for Wi-Fi space cells in the above example is equivalently applicable to any other 

sensor space representation or notion of space. For example, instead of modelling both the low and high security 

zones on a single space layer in figure 124, individual logical space layers for each security level may be provided. 
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3.5.2 Difference Operation 

Based on the 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 map introduced in the previous chapter, a second operation on the non-empty set of 𝑛-

dimensional space layers 𝕃𝑛 can be defined which returns the difference between two input space layers. Intui-

tively, given two operands 𝐿1, 𝐿2 ∈ 𝕃
𝑛, their difference results from spatially subtracting the space cells on 𝐿2 

from those on 𝐿1. The following SubstractSpaceLayers algorithm formally solves the difference operation.  

Algorithm 3.73. SubstractSpaceLayers(𝐿1,𝐿2) 

Input: 𝐿1, 𝐿2, with 𝑑𝑖𝑚(𝐿1) = 𝑑𝑖𝑚(𝐿2) 

Output: 𝐿𝑑𝑖   

1: 𝒞𝑡𝑚𝑝
1 ← 𝒞(𝐿1) 

2: 𝒞𝑡𝑚𝑝
2 ← 𝒞(𝐿2)  

3: 𝐿𝑑𝑖  ← 𝐿𝑚𝑖𝑛 

4: 𝑄 ← {𝑋 ∈ 𝒞𝑡𝑚𝑝
1  | 𝐼𝑛𝑡(𝐺𝑀(𝑋)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑌)) = ∅, ∀𝑌 ∈ 𝒞𝑡𝑚𝑝

2 } 

5: for each 𝑋 ∈ 𝑄 do 

6:  𝒞(𝐿𝑑𝑖  ) ← 𝒞(𝐿𝑑𝑖  ) ∪ 𝑋 

7:  𝒞𝑡𝑚𝑝
1 ← 𝒞𝑡𝑚𝑝

1 \𝑋 

8: while ∃{𝑋, 𝑌}: 𝐼𝑛𝑡(𝐺𝑀(𝑋)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑌)) ≠ ∅ ∧ 𝑋 ∈ 𝒞𝑡𝑚𝑝
1 ∧ 𝑌 ∈ 𝒞𝑡𝑚𝑝

2  do 

9:  𝒞𝑋𝑌 ← 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌) 

10:  𝒞(𝐿𝑑𝑖  ) ← 𝒞(𝐿𝑑𝑖  ) ∪ 𝒮𝑋\𝑌(𝒞𝑋𝑌) 

11:  𝒞𝑡𝑚𝑝
2 ← 𝒞𝑡𝑚𝑝

2 \𝑌 ∪ 𝒮𝑌\𝑋(𝒞𝑋𝑌) 

12: if 𝛽𝑛−1 (𝐺𝑀 (𝒞(𝐿𝑑𝑖  ))) > 0 then  

13:  𝒞𝑡𝑚𝑝
2 ← 𝒞(𝐿2) 

14:  for each 𝑌 ∈ 𝒞𝑡𝑚𝑝
2  do 

15:   if 𝐼𝑛𝑡(𝐺𝑀(𝑌)) ∩ 𝐼𝑛𝑡(𝑆𝑜𝑢𝑡(𝐿1)) = ∅ then 

16:    𝐴(𝑌) ← ∅ 

17:    𝒞(𝐿𝑑𝑖  ) ← 𝒞(𝐿𝑑𝑖  ) ∪ 𝑌 

18: if 𝒞(𝐿𝑑𝑖  ) = 𝒞(𝐿1) then  

19:  𝐺𝐺𝑀(𝐿𝑑𝑖  ) ← 𝐺𝐺𝑀(𝐿1) 

20:  𝐴 (𝑆𝑜𝑢𝑡(𝐿𝑑𝑖  )) ← 𝐴(𝑆𝑜𝑢𝑡(𝐿1)) 

21:  𝐴(𝐿𝑑𝑖  ) ← 𝐴(𝐿1) 

22: else 

23:  𝐺𝐺𝑀(𝐿𝑑𝑖  ) ← 𝐺𝑒𝑡 𝑒𝑓𝑎𝑢𝑙𝑡𝐸𝑚 𝑒𝑑𝑑𝑖𝑛𝑔(𝐺𝑇𝑃(𝐿𝑑𝑖  )) 

24: for each B ∈ ℬ(Ldiff) do 

25:  𝑄 ← {𝐶 ∈ ℬ(𝐿1) | 𝐼𝑛𝑡(𝐺𝑀(𝐵)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝐶)) ≠ ∅} 

26:  for each 𝐶 ∈ 𝑄 do 

27:   𝐴(𝐵) ← 𝐴(𝐵) ∪ 𝐴(𝐶) 

 

The SubstractSpaceLayers algorithm takes two 𝑛-dimensional space layers 𝐿1 and 𝐿2 as input. Similar to Merg-

eSpaceLayers (cf. algorithm 3.67), the space cell complexes of 𝐿1 and 𝐿2 are copied to 𝒞𝑡𝑚𝑝
1  respectively 𝒞𝑡𝑚𝑝

2  

and the output space layer 𝐿𝑑𝑖   is initialized with the minimal space layer 𝐿𝑚𝑖𝑛  (cf. lines 1-3).  

In a first step, all space cells in 𝒞𝑡𝑚𝑝
1  which do not spatially overlap with any space cell in 𝒞𝑡𝑚𝑝

2  are removed from 

𝒞𝑡𝑚𝑝
1  and carried to the resulting space cell complex 𝒞(𝐿𝑑𝑖  )  of 𝐿𝑑𝑖   without modification (cf. lines 4-7). Sec-

ond, if there exists a pair {𝑋, 𝑌} of space cells so that 𝑋 ∈ 𝒞𝑡𝑚𝑝
1 ∧ 𝑌 ∈ 𝒞𝑡𝑚𝑝

2  and the intersection of the interiors of 

their primal space geometries is non-empty, then 𝑌 has to be subtracted from 𝑋. For this purpose, both space cells 

are passed as arguments to the map 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 which yields the space cell complex 𝒞𝑋𝑌 = 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌). Since 

the space cells contained in the set 𝒮𝑋\𝑌(𝒞𝑋𝑌) occupy the space covered by 𝐺𝑀(𝑋) but not by 𝐺𝑀(𝑌), they reflect 

the result of the subtraction and thus are taken to 𝒞(𝐿𝑑𝑖  ). Only the space cells remaining in 𝒮𝑌\𝑋(𝒞𝑋𝑌) can 

possibly overlap with further space cells in 𝒞𝑡𝑚𝑝
1  and hence are kept in 𝒞𝑡𝑚𝑝

2  whereas 𝑌 is removed from 𝒞𝑡𝑚𝑝
2 . 
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This second step of the algorithm is iteratively executed until there is no more pair of overlapping space cells in 

𝒞𝑡𝑚𝑝
1  and 𝒞𝑡𝑚𝑝

2  (cf. lines 8-11).  

In contrast to the merge operation, the space cell complex 𝒞(𝐿𝑑𝑖  ) is not necessarily complete after the main 

iteration loop is left. The reason is that 𝐺𝑀(𝒞(𝐿𝑑𝑖  )) may have (𝑛 − 1)-dimensional interior holes after the space 

cells on 𝐿2 have been subtracted from 𝐿1. These holes need to be explicitly filled by additional space cells in order 

to ensure that the universal solid respectively the universal face occupied by 𝑆𝑜𝑢𝑡(𝐿𝑑𝑖  ) is a connected space (cf. 

definition 3.13 and the related discussion in chapter 3.1.3). In line 12 of algorithm 3.73, the (𝑛 − 1)th Betti number 

𝛽𝑛−1 of the topological space rendered by 𝐺𝑀(𝒞(𝐿𝑑𝑖  )) is used to decide whether there exist (𝑛 − 1)-dimen-

sional holes (cf. theorem A.94). The hole filling is then realized by copying those space cells from 𝐿2 into 𝒞(𝐿𝑑𝑖  ) 

which are completely enclosed by 𝐺𝑀(𝒞(𝐿𝑑𝑖  )) or, put differently, whose interiors in primal geometry space do 

not overlap with the interior of the outer space cell on 𝐿1 (cf. lines 13-17). The attribute sets of these space cells is 

replaced with the empty set since their meaning changes when being added to 𝒞(𝐿𝑑𝑖  ) (cf. line 16). 

Having added the hole-filling space cells from 𝐿2, both the primal space representation of 𝐿𝑑𝑖   and its intra-layer 

graph follow in a deterministic way. If the spatial configuration of space cells in 𝒞(𝐿𝑑𝑖  ) is equal to that of 𝒞(𝐿1) 

after line 17, then none of the space cells on the input space layer 𝐿1 has been affected by the subtraction. In this 

case, the spatial embedding of the intra-layer graph as well as the semantic attributes of 𝑆𝑜𝑢𝑡(𝐿1) and 𝐿1 itself are 

carried to 𝐿𝑑𝑖   (cf. lines 19-21). Otherwise, the spatial embedding of the intra-layer graph is determined by the 

GetDefaultEmbedding algorithm and no attributes are adopted for 𝑆𝑜𝑢𝑡(𝐿𝑑𝑖  ) and 𝐿𝑑𝑖   since both their spatial 

extent and their semantics differ from 𝑆𝑜𝑢𝑡(𝐿1) and 𝐿1 (cf. line 23). Finally, the semantic attributes from boundary 

cells in ℬ(𝐿1) are transferred to overlapping ones in ℬ(𝐿𝑑𝑖  ) (cf. lines 24-27). Note that, unlike the merge oper-

ation, there is no transition of semantic attributes from elements of 𝐿2 at any step of the algorithm.  

The SubstractSpaceLayers algorithm is utilized in the following definition of the difference operation on two space 

layers.  

Definition 3.74 (Difference operation on two space layers). Let 𝕃𝑛 be the non-empty set of all 𝑛-dimensional 

space layers, with 2 ≤ 𝑛 ≤ 3. Then the map ⊝:𝕃𝑛 × 𝕃𝑛 → 𝕃𝑛 uniquely associates each pair of space layers 

{𝐿1, 𝐿2} in 𝕃𝑛 with another space layer 𝐿𝑑𝑖   of 𝕃𝑛 as defined by algorithm 3.73. It thus yields a closed binary 

operation on 𝕃𝑛 called difference operation which is denoted by 𝐿1⊝𝐿2 = 𝐿𝑑𝑖  .  

The spatial layout of the output space layer 𝐿𝑑𝑖   obviously depends on whether 𝐿2 is subtracted from 𝐿1 or vice 

versa. Moreover, (𝐿1⊝𝐿2) ⊝ 𝐿3 = 𝐿1⊝ (𝐿2⊝ 𝐿3) only holds in special cases, e.g. if the space cells in 𝒞(𝐿1), 

𝒞(𝐿2), and 𝒞(𝐿3) do not overlap at all. It thus follows that the difference operation is neither commutative nor 

associative. For this reason, the pair (𝕃𝑛,⊝) only forms a more general type of algebraic structure than the Abelian 

monoid associated with the merge operation, namely a magma (cf. Jacobson 2009). 

The minimal space layer 𝐿𝑚𝑖𝑛 is a right identity element for the difference operation so that 𝐿 ⊝ 𝐿𝑚𝑖𝑛 = 𝐿𝑑𝑖  =

𝐿 for all 𝐿 ∈ 𝕃𝑛. Since 𝒞(𝐿𝑚𝑖𝑛) = ∅, the resulting space cell complex 𝒞(𝐿𝑑𝑖  ) contains all space cells from 𝒞(𝐿) 

after line 7 of algorithm 3.73 and is not changed in any subsequent step. Consequently, 𝐺𝐺𝑀(𝐿𝑑𝑖  ) = 𝐺𝐺𝑀(𝐿) and 

all semantic attributes of 𝐿 and its elements are preserved in 𝐿𝑑𝑖   (cf. line 18-21, 24-27). Therefore, 𝐿𝑑𝑖  = 𝐿. 

However, due to the lacking commutative property, 𝐿𝑚𝑖𝑛  is not a left identity but it rather holds that 𝐿𝑚𝑖𝑛⊝𝐿 =

𝐿𝑚𝑖𝑛  which also reflects the fact that space layers cannot model negative indoor space. 

Conforming to an intuitive spatial understanding, subtracting a space layer from itself yields 𝐿𝑚𝑖𝑛. In algorithm 

3.73, 𝐿𝑑𝑖   is first initialized with 𝐿𝑚𝑖𝑛  which implies that 𝒞(𝐿𝑑𝑖  ) = ∅. If we consider 𝐿 ⊝ 𝐿 then for every pair 

{𝑋, 𝑌} of overlapping space cells it holds that 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌) = {𝑋} = {𝑌}. But since 𝒮𝑋∩𝑌(𝒞𝑋𝑌) is not considered 

for the difference operation (cf. lines 8-11), the space cell complex 𝒞(𝐿𝑑𝑖  ) remains the empty set, and thus 𝐿 ⊝

𝐿 = 𝐿𝑑𝑖  = 𝐿𝑚𝑖𝑛. It immediately follows that in contrast to the merge operation every space layer 𝐿 ∈ 𝕃𝑛 is self-

invertible in (𝕃𝑛 ,⊝). The difference action of 𝐿 can therefore be cancelled by 𝐿 itself. However, due to the lacking 

associativity property, this requires that 𝐿 meets itself face to face in a difference operation. For example, the action 

of 𝐿 in the difference 𝑋 ⊝ 𝐿 can be cancelled through 𝑋 ⊝ (𝐿 ⊝ 𝐿) because 𝑋 ⊝ (𝐿 ⊝ 𝐿) = 𝑋 ⊝ 𝐿𝑚𝑖𝑛 = 𝑋. 
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Note that this result does not hold for (𝐿 ⊝ 𝐿)⊝ 𝑋 since the difference operation is not commutative and 𝐿𝑚𝑖𝑛  is 

only a right identity. 

A space layer possesses even more inverse elements in the magma (𝕃𝑛 ,⊝). Let 𝐿𝑟𝑖𝑔ℎ𝑡
−1 ∈ 𝕃𝑛 be a space layer with 

𝐺𝑀(𝒞(𝐿𝑟𝑖𝑔ℎ𝑡
−1 )) ⊇ 𝐺𝑀(𝒞(𝐿)). Then 𝐿 ⊝ 𝐿𝑟𝑖𝑔ℎ𝑡

−1 = 𝐿𝑚𝑖𝑛 also holds and 𝐿𝑟𝑖𝑔ℎ𝑡
−1  is called a right inverse of 𝐿. Like-

wise, 𝐿𝑙𝑒 𝑡
−1 ∈ 𝕃𝑛 solves 𝐿𝑙𝑒 𝑡

−1 ⊝ 𝐿 = 𝐿𝑚𝑖𝑛 if 𝐺𝑀(𝒞(𝐿𝑙𝑒 𝑡
−1 )) ⊆ 𝐺𝑀(𝒞(𝐿)). Correspondingly, 𝐿𝑙𝑒 𝑡

−1  is a left inverse 

of 𝐿, and 𝐿 is said to be both left-invertible and right-invertible regarding the difference operation. The expression 

𝑋 ⊝ (𝐿 ⊝ 𝐿) = 𝑋 can therefore be rewritten as 𝑋 ⊝ (𝐿 ⊝ 𝐿𝑟𝑖𝑔ℎ𝑡
−1 ) = 𝑋 or, equivalently, as 𝑋 ⊝ (𝐿𝑙𝑒 𝑡

−1 ⊝ 𝐿) =

𝑋. 

Similar to the merge operation, the difference operation may also operate on a sequence of space layers given by 

𝐿𝑑𝑖  = 𝐿1⊝𝐿2⊝…⊝ 𝐿𝑘, with 𝐿1, 𝐿2, … , 𝐿𝑘 ∈ 𝕃
𝑛. Note that again the order of space layers is significant for 

the output space layer 𝐿𝑑𝑖  . Let 𝐿𝑖 be a space layer in this sequence, with 1 < 𝑖 < 𝑘. In case 𝐿𝑖−1⊝𝐿𝑖 = 𝐿𝑚𝑖𝑛, 

the computation of the difference can be aborted directly since the result 𝐿𝑑𝑖  = 𝐿𝑚𝑖𝑛 will not change for any 

space layer succeeding 𝐿𝑖. 

Example 3.75. If the merge operation is understood to integrate two different conceptual views on indoor space 

(i.e., two different space layers) then the difference operation can be said to provide a view on indoor space without 

another view. For example, the difference operation may be used to create a view of topographic space without 

security zones. Consider the following figure 128 which is a slight modification of the indoor setting presented in 

figure 124 as the security layer 𝐿𝑆𝑒𝑐  only contains one space cell 𝑆𝑒𝑐 representing a single security zone. 

 

Figure 128:  Applying the difference operation to the space layers from figure 124. 

The difference 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑆𝑒𝑐  results in the two space cells  1 and  2 which represent all those topographic areas 

not requiring access permission to the security zone. The intra-layer graph of 𝐿𝑑𝑖   is hence feasible for planning 

routes for navigation users without corresponding security status. The difference operation thus allows for pruning 

the intra-layer graph of its first operand according to specific semantics provided by its second operand. But it not 

only yields a subset of the intra-layer graph, it also curtails the primal space representation accordingly. This 

distinguishes the difference operation from alternative graph pruning approaches as proposed in several indoor 

space models for indoor navigation. Moreover, these approaches are mostly restricted to removing graph elements 

based on specific values of associated attributes but not due to spatial facts (cf. chapter 2.2).  

Since the space cell on 𝐿𝑆𝑒𝑐  is spatially subtracted from the topographic space cells on 𝐿𝑇𝑜𝑝𝑜, it follows that the 

space cells  1 and  2 on the resulting difference layer 𝐿𝑑𝑖   are necessarily subspaces of the topographic space 

cells 𝑅2 respectively 𝐶 which renders 𝐿𝑑𝑖   a subspace layer of 𝐿𝑇𝑜𝑝𝑜. This fact can be generalized for arbitrary 

space layers as stated in the following proposition.   

Proposition 3.76. Let 𝐿1, 𝐿2 ∈ 𝕃
𝑛 bet two space layers from the non-empty set 𝕃𝑛 of all 𝑛-dimensional space 

layers. Then the difference operation 𝐿1⊝𝐿2 yields a subspace layer of the first operand 𝐿1, and thus 𝐿1⊝𝐿2 ≤

𝐿1.  

 2

𝐶
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In case 𝐿1 is a left inverse of 𝐿2, the inclusion relation 𝐿1⊝𝐿2 ≤ 𝐿2 additionally holds since then 𝐿1⊝ 𝐿2 = 𝐿𝑚𝑖𝑛 

and obviously 𝐿𝑚𝑖𝑛 ≤ 𝐿2. In all other cases, the subtraction result is not a subspace layer of the second operand 

𝐿2. 

Assume the topographic space view is enriched with a subspace layer 𝐿𝑠𝑢𝑏 which contains a single space cell 

denoting a non-passable obstacle for wheelchair users within the room cell 𝑅2. The difference operation 𝐿𝑇𝑜𝑝𝑜⊝

𝐿𝑠𝑢𝑏 then provides the navigable topographic space for this mode of locomotion as shown in the following figure. 

Without the obstacle space, the space cells 𝐸2 and 𝐸3 reflecting the navigable space within 𝑅2 respectively 𝐶 are 

not connected any more. The resulting intra-layer graph correspondingly lacks a dual edge linking their dual nodes. 

It is again a subgraph of the intra-layer graph of 𝐿𝑇𝑜𝑝𝑜 and is suitable for planning paths for wheelchair users.22  

 

Figure 129: Subtracting a subspace cell representing an obstacle from a topographic space layer. 

In example 3.69, the merge operation has been used to integrate a superspace layer with its subspace layer. This 

approach is also feasible in this example and the outcome of 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑠𝑢𝑏 is illustrated below.  

 

Figure 130: Applying the merge operation to the space layers from figure 129. 

The space layers resulting from both 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑠𝑢𝑏 and 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑠𝑢𝑏 are themselves subspace layers of 𝐿𝑇𝑜𝑝𝑜 (cf. 

proposition 3.70 and proposition 3.76). Moreover, it is immediate that 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑠𝑢𝑏 ≤ 𝐿𝑇𝑜𝑝𝑜⊕𝐿𝑠𝑢𝑏 . The output 

of the merge operation is therefore spatially richer as it contains more space cells describing the indoor space than 

the difference of both space layers. And it is also richer regarding its semantics since it incorporates the attributes 

from either input space layer. The intra-layer graph of the merged space layer depicted on the right of figure 130 

also supports path finding for wheelchair users given that the non-navigable obstacle space cell 𝑀3 is tagged as 

such (e.g., through a corresponding semantic attribute for 𝑂 as illustrated in example 3.63 and example 3.69). 

Instead, when applying the difference operation, the dual nodes reflecting non-navigable spaces are removed from 

the navigation graph. The navigation graph contains lesser elements and a path finding algorithm needs not eval-

uate additional attributes. Thus, both operations show complementary advantages. The MLSEM is flexible and 

expressive enough to derive and support both alternative space representations.  

Finally, if a wheelchair user is not granted access to the security zone modelled on 𝐿𝑆𝑒𝑐 , then figure 131 presents 

the remaining navigable space for this navigation context which is expressed through 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑠𝑢𝑏⊝ 𝐿𝑆𝑒𝑐.  

                                                           
22 The subtraction of obstacle subspaces has also been demonstrated in example 3.63 (cf. figure 112). Note that subtracting 

obstacle subspaces is however not always sufficient in order to derive navigable spaces (cf. related discussion in example 3.63).  
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Figure 131: Applying the difference operation subsequently to derive 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑠𝑢𝑏⊝ 𝐿𝑆𝑒𝑐.  

3.5.3 Intersection Operation 

In addition to the merge and difference of two space layers, a third operation for intersecting two space layers is 

presented in this chapter which complements the space layer algebra of the MLSEM. The result of the intersection 

operation is a space layer whose space cells only cover those partitions of indoor space which are occupied by a 

space cell from either input space layer. Conceptually, the intersection can be thought of as a restriction of two 

given views on indoor space to their common subspace.  

The IntersectSpaceLayers algorithm for implementing the intersection operation is presented below. In fact, it is 

a subset of the MergeSpaceLayers algorithm realizing the merge operation (cf. algorithm 3.67). The most im-

portant difference between both is that non-overlapping space cells are not carried to the resulting space cell com-

plex 𝒞(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) of the output space layer 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  within the main iteration loop. The corresponding lines 7-8 

and 12-13 from algorithm 3.67 have been removed without replacement for the IntersectSpaceLayers algorithm. 

The reader is referred to chapter 3.5.1 for an illustration of the remaining steps. 

Algorithm 3.77. IntersectSpaceLayers(𝐿1,𝐿2) 

Input: 𝐿1, 𝐿2, with 𝑑𝑖𝑚(𝐿1) = 𝑑𝑖𝑚(𝐿2) 

Output: 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  

1: 𝒞𝑡𝑚𝑝
1 ← 𝒞(𝐿1) 

2: 𝒞𝑡𝑚𝑝
2 ← 𝒞(𝐿2) 

3: 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 ← 𝐿𝑚𝑖𝑛 

4: while 𝒞𝑡𝑚𝑝
1 ≠ ∅ ∧ 𝒞𝑡𝑚𝑝

2 ≠ ∅ do 

5:  𝑄 ← {𝑋 ∈ 𝒞𝑡𝑚𝑝
1  | 𝐼𝑛𝑡(𝐺𝑀(𝑋)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑌)) = ∅, ∀𝑌 ∈ 𝒞𝑡𝑚𝑝

2 } 

6:  for each 𝑋 ∈ 𝑄 do 

7:   𝒞𝑡𝑚𝑝
1 ← 𝒞𝑡𝑚𝑝

1 \𝑋 

8:  𝑄 ← {𝑌 ∈ 𝒞𝑡𝑚𝑝
2  | 𝐼𝑛𝑡(𝐺𝑀(𝑌)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑋)) = ∅, ∀𝑋 ∈ 𝒞𝑡𝑚𝑝

1 } 

9:  for each 𝑌 ∈ 𝑄 do 

10:   𝒞𝑡𝑚𝑝
2 ← 𝒞𝑡𝑚𝑝

2 \𝑌 

11:  if ∃{𝑋, 𝑌}: 𝐼𝑛𝑡(𝐺𝑀(𝑋)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝑌)) ≠ ∅ ∧ 𝑋 ∈ 𝒞𝑡𝑚𝑝
1 ∧ 𝑌 ∈ 𝒞𝑡𝑚𝑝

2  then 

12:   𝒞𝑋𝑌 ← 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇(𝑋, 𝑌) 

13:   𝒞(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) ← 𝒞(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) ∪ 𝒮𝑋∩𝑌(𝒞𝑋𝑌) 

14:   𝒞𝑡𝑚𝑝
1 ← 𝒞𝑡𝑚𝑝

1 \𝑋 ∪ 𝒮𝑋\𝑌(𝒞𝑋𝑌) 

15:   𝒞𝑡𝑚𝑝
2 ← 𝒞𝑡𝑚𝑝

2 \𝑌 ∪ 𝒮𝑌\𝑋(𝒞𝑋𝑌) 

16: if 𝒞(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) = 𝒞(𝐿1) then 

17:  𝐺𝐺𝑀(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) ← 𝐺𝐺𝑀(𝐿1) 

18: else 

19:  𝐺𝐺𝑀(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) ← 𝐺𝑒𝑡 𝑒𝑓𝑎𝑢𝑙𝑡𝐸𝑚 𝑒𝑑𝑑𝑖𝑛𝑔(𝐺𝑇𝑃(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡)) 

20: for each 𝐵 ∈ ℬ(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) do  

21:  𝑄 ← {𝐶 ∈ ℬ(𝐿1) | 𝐼𝑛𝑡(𝐺𝑀(𝐵)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝐶)) ≠ ∅} 

22:  𝑄 ← 𝑄 ∪ {𝐶 ∈ ℬ(𝐿2) | 𝐼𝑛𝑡(𝐺𝑀(𝐵)) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝐶)) ≠ ∅} 

𝐶
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23:  for each 𝐶 ∈ 𝑄 do 

24:   𝐴(𝐵) ← 𝐴(𝐵) ∪ 𝐴(𝐶) 

25: 𝐴(𝑆𝑜𝑢𝑡(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡)) ← 𝐴(𝑆𝑜𝑢𝑡(𝐿1)) ∪ 𝐴(𝑆𝑜𝑢𝑡(𝐿2)) 

26: 𝐴(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) ← 𝐴(𝐿1) ∪ 𝐴(𝐿2) 

 

Formally, the intersection operation can be stated as follows.  

Definition 3.78 (Intersection operation on two space layers). Let 𝕃𝑛 be the non-empty set of all 𝑛-dimensional 

space layers, with 2 ≤ 𝑛 ≤ 3. Then the map ⊙:𝕃𝑛 × 𝕃𝑛 → 𝕃𝑛 uniquely associates each pair of space layers 

{𝐿1, 𝐿2} in 𝕃𝑛 with another space layer 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  of 𝕃𝑛 as defined by algorithm 3.77. It thus yields a closed binary 

operation on 𝕃𝑛 called intersection operation which is denoted by 𝐿1⊙𝐿2 = 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 .  

The order of operands 𝐿1, 𝐿2 ∈ 𝕃
𝑛 for ⊙ is not significant for 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  since the resulting primal space represen-

tation 𝒞(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡) reflects the space occupied by both input layers in either case (cf. line 13 of algorithm 3.77). 

Moreover, ⊙ is associative so that the order of intersection operations in a sequence of operands does not matter 

either. For the same reasons as for the merge operation, the intersection operation is idempotent and the minimal 

space layer 𝐿𝑚𝑖𝑛 is both its unique identity element and self-invertible with all other space layers 𝐿 ∈ 𝕃𝑛 and 𝐿 ≠

𝐿𝑚𝑖𝑛  being non-invertible regarding ⊙. Due to the associative property and the existence of an identity element, 

the algebraic structure (𝕃𝑛,⊙) can likewise be classified as an Abelian monoid.  

Example 3.79. The difference between the merge and the intersection operation is demonstrated along the two 

space layers 𝐿𝑇𝑜𝑝𝑜 and 𝐿𝑆𝑒𝑐  as introduced in figure 124. Whereas example 3.71 discussed the result of merging 

both space layers (cf. figure 125), their intersection is presented below. 

 

Figure 132: Applying the intersection operation to the space layers from figure 124. 

The example clearly shows that the intersection operation also integrates both input space layers in a common 

view which resolves their ambiguity similar to the merge operation. But at the same time it restricts the extent of 

the resulting space layer to the indoor space inhabited by space cells from both layers. The intra-layer graph de-

picted on the right of figure 132 is a pruned subgraph of the intra-layer graph yielded by the merge operation since 

the shared partitions of indoor space involving either 𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 or 𝑆𝑜𝑢𝑡
𝑆𝑒𝑐 are not captured by separate space cells. Every 

space cell on the intersection space layer carries the semantic attributes of its related space cells on 𝐿𝑇𝑜𝑝𝑜 and 𝐿𝑆𝑒𝑐 . 

The intra-layer graph thus facilitates path planning in the same way as illustrated for the merge operation in exam-

ple 3.71 but within the restricted spatial scope of the intersection space layer. 

In contrast to the merge operation, there is a clear spatial hierarchy between the operands 𝐿1 and 𝐿2 of the inter-

section operation and its outcome 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 . Since the primal space geometry of every space cell 𝑆 on 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  

reflects the regularized Boolean intersection of two input space cells 𝑋 and 𝑌, with 𝑋 ∈ 𝒞(𝐿1) and 𝑌 ∈ 𝒞(𝐿2) (cf. 

line 13 of algorithm 3.77), the space cell 𝑆 must be spatially contained in both 𝑋 and 𝑌, and thus 𝑆 ≤ 𝑋 ∧ 𝑆 ≤ 𝑌. 

The inclusion relation between the space cells induces a spatial ordering of the involved space layers according to 

definition 3.51 and it follows that 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 ≤ 𝐿1 and 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 ≤ 𝐿2. This fact can be visually validated in figure 

132 and is formally stated in the following proposition. The result of the intersection operation always renders a 

subspace layer of the result of the merge operation when applied to the same operands, and thus 𝐿1⊙𝐿2 ≤ 𝐿1⊕

𝐿2. 
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Proposition 3.80. Let 𝐿1, 𝐿2 ∈ 𝕃
𝑛 bet two space layers from the non-empty set 𝕃𝑛 of all 𝑛-dimensional space 

layers. Then the intersection operation 𝐿1⊙𝐿2 yields a subspace layer of both 𝐿1 and 𝐿2, and thus 𝐿1⊙ 𝐿2 ≤

𝐿1 ∧ 𝐿1⊙𝐿2 ≤ 𝐿2. 

Example 3.81. When omitting the space cell 𝑆𝑒𝑐2 from the security space layer 𝐿𝑆𝑒𝑐  in the previous example, the 

complementary results of the intersection and difference operation become obvious. The following figure 133 

captures the result of 𝐿𝑇𝑜𝑝𝑜⊙𝐿𝑆𝑒𝑐  for this modified setting. 

 

Figure 133: Applying the intersection operation to the space layers from figure 128 which demonstrates the complementary 

results of the difference and the intersection operations. 

Whereas the difference operation 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑆𝑒𝑐  reveals the regions in topographic space that are outside the secu-

rity zone 𝑆𝑒𝑐 (cf. figure 128 of example 3.75), the intersection of both space layers returns the converse view on 

topographic space, namely all those regions that are covered by the security zone. The resulting intra-layer graph 

shown on the right of figure 133 hence enables the planning of paths being entirely inside the security zone without 

the need for evaluating additional semantic attributes as, for example, required in the previous example. 

It follows that the intersection operation 𝐿1⊙ 𝐿2 returns the spatial complement of the difference operation 𝐿1⊝

𝐿2 with respect to 𝐿1. The union of the primal space geometries of 𝐿1⊙ 𝐿2 and 𝐿1⊝ 𝐿2 is therefore equal to the 

primal space geometry of 𝐿1 itself which can be formally expressed through 𝐺𝑀(𝒞(𝐿1⊙ 𝐿2)) ∪ 𝐺𝑀(𝒞(𝐿1⊝

𝐿2)) = 𝐺𝑀(𝒞(𝐿1)). Likewise, due to the commutative property of ⊙, the intersection result is also the spatial 

complement of 𝐿2⊝𝐿1 with respect to 𝐿2. One could therefore expect that the merge of the complements 𝐿1⊙

𝐿2 and 𝐿1⊝𝐿2 again yields 𝐿1. This in fact holds for the primal space geometry. Precisely, let 𝐿𝑚𝑒𝑟𝑔𝑒 =

(𝐿1⊙𝐿2) ⊕ (𝐿1⊝ 𝐿2) be the result of the merge operation. Then the primal space geometry of the space cell 

complex of 𝐿𝑚𝑒𝑟𝑔𝑒  is equal to that of 𝐿1, and thus 𝐺𝑀(𝒞(𝐿𝑚𝑒𝑟𝑔𝑒)) = 𝐺𝑀(𝒞(𝐿1)). However, it is important to 

note that in general 𝐿𝑚𝑒𝑟𝑔𝑒 ≠ 𝐿1 given that 𝐿1 ≠ 𝐿2. First, since 𝐿1⊙𝐿2 ≤ 𝐿1 and 𝐿1⊝𝐿2 ≤ 𝐿1 (cf. proposition 

3.80 and proposition 3.76), the merge operation results in a finer space partitioning than 𝐿1. Second, 𝐿1⊙ 𝐿2 

integrates the semantics of both 𝐿1 and 𝐿2. Thus, the outcome of (𝐿1⊙𝐿2) ⊕ (𝐿1⊝𝐿2) is also semantically 

richer than 𝐿1. It can be deduced that (𝐿1⊙𝐿2) ⊕ (𝐿1⊝𝐿2) = 𝐿1 only holds in the trivial case 𝐿1 = 𝐿2 and 

additionally if 𝐿2 = 𝐿𝑚𝑖𝑛  or if the space cells in 𝒞(𝐿2) do not spatially overlap with the space cells in 𝒞(𝐿1) so 

that 𝐼𝑛𝑡(𝐺𝑀(𝒞(𝐿2))) ∩ 𝐼𝑛𝑡(𝐺𝑀(𝒞(𝐿1))) = ∅.   

The fact that (𝐿1⊙𝐿2) ⊕ (𝐿1⊝𝐿2) = 𝐿1 is only true in special cases illustrates that the results of the binary 

operations of the developed space layer algebra not necessarily agree with an intuitive spatial understanding as 

this understanding relates to the primal geometry space only. All binary operations, however, simultaneously op-

erate on the geometric-topological representation of space cells and space layers in both primal and dual space as 

well as on their semantic dimension.  

Example 3.82. The intersection operation can also be used to ensure that the space cells on two space layers are 

related by inclusion. Reconsider the indoor setting from figure 100 (cf. example 3.61) which consists of three 

topographic space layers 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔, 𝐿𝐹𝑙𝑜𝑜𝑟𝑠, and 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 reflecting the hierarchical structuring of a building. As 

discussed in example 3.61, an elevator shaft connecting the building floors is modelled as a single space cell on 

𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 which overlaps with the space cells 𝐹𝑙𝑜𝑜𝑟1 and 𝐹𝑙𝑜𝑜𝑟2 on 𝐿𝐹𝑙𝑜𝑜𝑟𝑠. Consequently, 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠  is not a sub-

space layer of 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 and the hierarchy ℋ(𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) = {𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 , 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 , 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠} is non-strict. 
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In order to create a subspace relationship between 𝐿𝐹𝑙𝑜𝑜𝑟𝑠 and 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠, the elevator space cell obviously needs to 

be cut along the boundaries of the space cells on 𝐿𝐹𝑙𝑜𝑜𝑟𝑠. This can be realized through the intersection operation 

𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = 𝐿𝐹𝑙𝑜𝑜𝑟𝑠⊙𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠. The result is a subspace layer of both 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 and  𝐿𝐹𝑙𝑜𝑜𝑟𝑠 according to proposi-

tion 3.80, and the elevator space cell is split into two subspace cells 𝐼4 ≤ 𝐹𝑙𝑜𝑜𝑟1 and 𝐼 ≤ 𝐹𝑙𝑜𝑜𝑟2 as can be seen 

in figure 134. Moreover, since 𝐺𝑀(𝒞(𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠)) ⊆ 𝐺𝑀(𝒞(𝐿𝐹𝑙𝑜𝑜𝑟𝑠)) in this example, it consequently follows that 

𝐺𝑀(𝒞(𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡)) = 𝐺𝑀(𝒞(𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠)). The space layer 𝐿𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 can thus be replaced with 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  without los-

ing spatial or semantic information. This renders ℋ(𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) strict and, in contrast to example 3.61, the space 

cell hierarchies 𝒜(𝐹𝑙𝑜𝑜𝑟1) and ℬ(𝐹𝑙𝑜𝑜𝑟2) now include a representation of the elevator. The subspace cells 𝐼4 and 

𝐼  of the elevator form a passage between 𝒜(𝐹𝑙𝑜𝑜𝑟1) and ℬ(𝐹𝑙𝑜𝑜𝑟2) on 𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡  (cf. definition 3.60).  

 

Figure 134: Using the intersection operation to create subspace relationships between the space layers from figure 100. 

In the more general case that for two given space layers 𝐿1, 𝐿2 ∈ 𝕃
𝑛 the primal space geometry of 𝐿1 is not a subset 

of the primal space geometry of 𝐿2 or vice versa, subsequent merge operations are required. Precisely, the two 

merge space layers 𝐿𝑚𝑒𝑟𝑔𝑒
1 = 𝐿1⊙ 𝐿2⊕𝐿1 and 𝐿𝑚𝑒𝑟𝑔𝑒

2 = 𝐿1⊙ 𝐿2⊕𝐿2 need to be derived from the original 

space layers 𝐿1 and 𝐿2. The intersection 𝐿1⊙𝐿2 first realizes the inclusion relations between the space cells on 

both input space layers inhabiting the common subspace. The following merge operation with 𝐿1 respectively 𝐿2 

then guarantees that the non-shared partitions of indoor space are not lost. The space cells on the resulting space 

layers 𝐿𝑚𝑒𝑟𝑔𝑒
1  and 𝐿𝑚𝑒𝑟𝑔𝑒

2  are therefore comparable but note that this does not imply an inclusion relation between 

𝐿𝑚𝑒𝑟𝑔𝑒
1  and 𝐿𝑚𝑒𝑟𝑔𝑒

2  themselves (cf. proposition 3.70). 

3.6 Supporting Different and Multiple Contexts of Navigation 

The MLSEM provides the means to describe the indoor space from complementary conceptual views and to com-

bine arbitrary conceptualizations of space within an integrated model. In this chapter, the support for different and 

multiple contexts of navigation based on this space representation is addressed and illustrated. The navigation 

context has been defined in chapter 1.2 as the setting and interrelated conditions in which the navigation takes 

place (cf. Abowd et al. 1999, Mokbel & Levandoski 2009). It can be differentiated into the user context (e.g., mode 

of locomotion, preferences, access rights, capabilities of the mobile device, etc.) which may differ for different 

navigation users and into the environmental context (e.g., physical built-up space, localization technologies, logical 

navigation constraints such as security zones or temporal access constraints) which is independent from individual 

users and thus provides a global navigation framework (cf. chapter 1.2).  

If the user-centric or environmental contextual information can be expressed spatially (e.g., through assigning a 

spatial extent or by deriving a spatial partitioning schema), it can be reflected on or related to one or more space 

layers of the MLSEM. For example, and as demonstrated in the previous chapters, logical spatial facts such as 

security zones or disaster areas can be mapped onto separate space layers. Likewise, navigable and non-navigable 

spaces associated with a specific mode of locomotion can be captured by subspace layers of the topographic space, 

and localization technologies can be described through separate sensor space layers. The individual indoor setting 
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required for navigating a given person or object then results from selecting those space layers that match the user 

context. The user context can hence be understood as selection criterion on a given space layer complex which 

yields a user-specific subset of the modelled space layers (cf. Becker et al. 2009b, Nagel et al. 2010). Moreover, 

the selection may involve binary operations on space layers in order to integrate, subtract, or restrict specific 

views on indoor space to the user requirements or a given navigation use case or scenario. 

Example 3.83. The general idea of the context-dependent selection process is exemplified in the following along 

the 2-dimensional space layer complex ℒ illustrated in figure 135. The built-up space is described through a topo-

graphic space layer 𝐿𝑇𝑜𝑝𝑜 and its subspace layer 𝐿𝑆𝑢𝑏 which provides a single obstacle space being non-navigable 

for wheelchair users. The two logical space layers 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 and 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ denote the spatial extent of two disjoint 

security zones associated with a low and a high security level. Finally, the indoor environment is equipped with 

two positioning systems based on Wi-Fi respectively RFID whose sensor coverage is captured by the sensor space 

layers 𝐿𝑊𝑖−𝐹𝑖  and 𝐿𝑅𝐹𝐼𝐷 .23 The separate space layers have already been discussed in examples of previous chapters. 

Their respective intra-layer graphs are shown on the right of figure 135, whereas the overall multilayered graph 

structure 𝑀𝐿𝐺(ℒ) is omitted for readability.   

 

Figure 135: Several 2-dimensional space layers describing different views on indoor space (left) and their spatial overlay 

(right).  

Now, consider a pedestrian navigation user 𝐴 who has access rights to the low security zone only, and who carries 

a mobile device that is capable of receiving RFID but not Wi-Fi signals. The context-dependent selection of space 

layers from ℒ for navigating 𝐴 then obviously results in the user-specific space layer complex ℒ𝐴 =

{𝐿𝑇𝑜𝑝𝑜, 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 , 𝐿𝑅𝐹𝐼𝐷} which is a subcomplex of ℒ. The remaining space layers 𝐿𝑆𝑢𝑏, 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ, and 𝐿𝑊𝑖−𝐹𝑖 in ℒ 

do not match the user context and thus need not be considered. The multilayered graph 𝑀𝐿𝐺(ℒ𝐴) combining the 

selected space layers in the subcomplex ℒ𝐴 renders a subgraph of 𝑀𝐿𝐺(ℒ). Since the spatial configuration of space 

cells on each space layer in ℒ𝐴 is unaffected from the selection process, their intra-layer graphs remain the same 

                                                           
23 Note that the sensor space layer 𝐿𝑊𝑖−𝐹𝑖 integrates the coverage areas of the separate Wi-Fi transmitters in a single space 

view. In contrast, and as demonstrated in example 3.72, the Wi-Fi transmitters could be represented on separate sensor space 

layers which then might be merged upon selection. The same situation can be observed for the RFID sensors on 𝐿𝑅𝐹𝐼𝐷. 
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which also holds for the topological inter-layer relationships between their space cells. Therefore, the node set 

𝑉(𝑀𝐿𝐺(ℒ𝐴)) is simply a subset of 𝑉(𝑀𝐿𝐺(ℒ)) and only contains the dual nodes from the selected space layers. 

The edge set 𝐸(𝑀𝐿𝐺(ℒ𝐴)) then results from pruning all those edges in 𝐸(𝑀𝐿𝐺(ℒ)) which are incident to dual 

nodes of space cells on non-selected space layers. The derivation of 𝑀𝐿𝐺(ℒ𝐴) consequently does not involve any 

further spatial operations in primal space. The outcome of the selection process for the navigation user 𝐴 is shown 

in the following figure. 

 

Figure 136: Context-dependent selection of space layers (left) and corresponding multilayered graph (right). 

In order to facilitate the localization and tracking of 𝐴 within the user context, the joint state space 𝒥𝒮(ℒ𝐴) for the 

space layer complex ℒ𝐴 needs to be established which then can be used to build a user-specific finite-joint-state 

machine 𝐹𝐽𝑆𝑀(ℒ𝐴) (cf. definition 3.42 and definition 3.46 in chapter 3.3). Due to 𝑀𝐿𝐺(ℒ𝐴) ⊂ 𝑀𝐿𝐺(ℒ), the joint 

states in 𝒥𝒮(ℒ𝐴) are not independent from the joint states in 𝒥𝒮(ℒ) but rather can be inferred from the latter in a 

deterministic way. In a first step, the dual nodes associated with space cells from non-selected space layers in ℒ 

are removed from the clique 𝑉(𝐽𝑆) of every joint state 𝐽𝑆 ∈ 𝒥𝒮(ℒ) yielding a new joint state 𝐽𝑆′ with 𝑉(𝐽𝑆′) ⊂

𝑉(𝐽𝑆) and 𝐺𝑀(𝐽𝑆′) = 𝐺𝑀(𝐽𝑆). Since 𝐺𝑀(𝐽𝑆′) is obviously non-empty, 𝐽𝑆′ is a candidate for 𝒥𝒮(ℒ𝐴). The re-

moval of dual nodes may however result in two or more joint states {𝐽𝑆1
′ , … , 𝐽𝑆𝑘

′ } having identical cliques with 

∀𝑖, 𝑗 ∈ {1, … , 𝑘}: 𝑉(𝐽𝑆𝑖
′) = 𝑉(𝐽𝑆𝑗

′), which violates the uniqueness condition for joint states within the same joint 

state space. Therefore, in a second step, duplicate joint state candidates need to be substituted by a single joint 

state 𝐽𝑆′′ that is assigned the identical clique and whose primal space geometry 𝐺𝑀(𝐽𝑆′′) follows from the union 

of the primal space geometries of the duplicate joint states, so that 𝑉(𝐽𝑆′′) = 𝑉(𝐽𝑆1
′) and 𝐺𝑀(𝐽𝑆′′) =

⋃ 𝐺𝑀(𝐽𝑆𝑖
′)𝑘

𝑖=1 . Due to the union operation, the uncertainty region reflected by 𝐺𝑀(𝐽𝑆′′) necessarily grows which 

conforms to the fact that the uncertainty about the absolute position of a navigating person or object increases with 

lesser overlaps between space cells and thus with lesser space layers (cf. chapter 3.3). 

The derivation of the user-specific joint state space is illustrated in the following example. In order to reduce the 

complexity of the example and to visually support both steps, a subcomplex ℒ𝐵 = {𝐿𝑇𝑜𝑝𝑜, 𝐿𝑅𝐹𝐼𝐷} of the space layer 

complex ℒ𝐴 is assumed whose joint state space 𝒥𝒮(ℒ𝐵) is deduced from 𝒥𝒮(ℒ𝐴). Figure 137 shows the overlay 

of the space layers 𝐿𝑇𝑜𝑝𝑜, 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤, and 𝐿𝑅𝐹𝐼𝐷  in ℒ𝐴 in primal geometry space as well as the spatial extent of the 

corresponding ten joint states 𝐽𝑆1, … , 𝐽𝑆10 ∈ 𝒥𝒮(ℒ𝐴) which are additionally presented in tabular form on the right 

of figure 137. Each row of the table corresponds to a separate joint state 𝐽𝑆𝑖 ∈ 𝒥𝒮(ℒ𝐴) and enumerates the dual 

nodes of the space cells participating in 𝑉(𝐽𝑆𝑖) ordered by the space layers contained in ℒ𝐴. Moreover, the last 

column of each row depicts the Boolean expression yielding the primal space geometry 𝐺𝑀(𝐽𝑆𝑖).  
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Figure 137: The spatial extent of the joint states between the space layers 𝐿𝑇𝑜𝑝𝑜, 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤, and 𝐿𝑅𝐹𝐼𝐷 (left) and their presenta-

tion in tabular form (right).    

Since the security space layer 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 is not part of the navigation context represented by ℒ𝐵, the dual nodes of 

its space cells 𝑆𝑒𝑐1 and 𝑆𝑜𝑢𝑡
𝑆𝑒𝑐_𝑙𝑜𝑤

 have to be deleted from the joint states in 𝒥𝒮(ℒ𝐴) to obtain the joint state candi-

dates for 𝒥𝒮(ℒ𝐵). This can be realized by striking out the respective table column as shown on the left of figure 

138. In the resulting projection, the pairs {𝐽𝑆1
′ , 𝐽𝑆10

′ } and {𝐽𝑆6
′ , 𝐽𝑆 

′} represent identical joint states due to 𝑉(𝐽𝑆1
′) =

𝑉(𝐽𝑆10
′ ) = {𝑣𝑇𝑃(𝑆𝑜𝑢𝑡

𝑇𝑜𝑝𝑜
), 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷)} and 𝑉(𝐽𝑆6
′) = 𝑉(𝐽𝑆 

′) = {𝑣𝑇𝑃(𝐶), 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡
𝑅𝐹𝐼𝐷)}. Whereas the remaining can-

didates are unique and thus can be carried to 𝒥𝒮(ℒ𝐵) without changes, the duplicate candidates need to be merged 

into unique joint states as described above. The final joint state space 𝒥𝒮(ℒ𝐵) then contains eight unique joint 

states which are depicted on the right of in figure 138. 

 

Figure 138: Derivation of the joint states for a subset of the space layers from figure 137. 

Following the same procedure, the joint space state 𝒥𝒮(ℒ𝐴) can be derived from 𝒥𝒮(ℒ). 

The user-dependent subsetting of a given space layer complex may additionally require binary operations on the 

selected space layers (e.g., to integrate subspace layers with their superspace layer or to map all space layers 

affecting the navigable and non-navigable spaces for a given user context to a single space layer and intra-layer 

graph for path planning). Since the navigation user 𝐴 of the above example is only allowed to move inside the 

          

𝐿𝑇𝑜𝑝𝑜 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 𝐿𝑅𝐹𝐼𝐷

1 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜 𝑣𝑇𝑃 𝑆𝑒𝑐1 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷
𝐺𝑀 𝑆𝑜𝑢𝑡

𝑇𝑜𝑝𝑜
∩ 𝐺𝑀 𝑆𝑒𝑐1 ∩ 𝐺𝑀 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷

2 𝑣𝑇𝑃 𝑅1 𝑣𝑇𝑃 𝑆𝑒𝑐1 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡
𝑅𝐹𝐼𝐷 𝐺𝑀 𝑅1 ∩ 𝐺𝑀 𝑆𝑒𝑐1 ∩ 𝐺𝑀 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷

3 𝑣𝑇𝑃 𝑅1 𝑣𝑇𝑃 𝑆𝑒𝑐1 𝑣𝑇𝑃 𝑅𝐹𝐼 1 𝐺𝑀 𝑅1 ∩ 𝐺𝑀 𝑆𝑒𝑐1 ∩ 𝐺𝑀 𝑅𝐹𝐼 1

4 𝑣𝑇𝑃 𝑅2 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡
𝑆𝑒𝑐_𝑙𝑜𝑤 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷 𝐺𝑀 𝑅2 ∩ 𝐺𝑀 𝑆𝑜𝑢𝑡
𝑆𝑒𝑐_𝑙𝑜𝑤 ∩ 𝐺𝑀 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷

5 𝑣𝑇𝑃 𝑅2 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡
𝑆𝑒𝑐_𝑙𝑜𝑤 𝑣𝑇𝑃 𝑅𝐹𝐼 2 𝐺𝑀 𝑅2 ∩ 𝐺𝑀 𝑆𝑜𝑢𝑡

𝑆𝑒𝑐_𝑙𝑜𝑤 ∩ 𝐺𝑀 𝑅𝐹𝐼 2

6 𝑣𝑇𝑃 𝐶 𝑣𝑇𝑃 𝑆𝑒𝑐1 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡
𝑅𝐹𝐼𝐷 𝐺𝑀 𝐶 ∩ 𝐺𝑀 𝑆𝑒𝑐1 ∩ 𝐺𝑀 𝑆𝑜𝑢𝑡

𝑅𝐹𝐼𝐷

7 𝑣𝑇𝑃 𝐶 𝑣𝑇𝑃 𝑆𝑒𝑐1 𝑣𝑇𝑃 𝑅𝐹𝐼 3 𝐺𝑀 𝐶 ∩ 𝐺𝑀 𝑆𝑒𝑐1 ∩ 𝐺𝑀 𝑅𝐹𝐼 3

8 𝑣𝑇𝑃 𝐶 𝑣𝑇𝑃 𝑆𝑜𝑢𝑡
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8  𝑻𝑷   𝑻𝑷     
         

9 𝑣𝑇𝑃 𝐶 𝑣𝑇𝑃 𝑅𝐹𝐼 4 𝐺𝑀 𝐽𝑆9

10  𝑻𝑷     
𝑻    𝑻𝑷     

          

𝐽𝑆2
′′ 𝐽𝑆4

′′

𝐽𝑆3
′′ 𝐽𝑆 

′′

𝐽𝑆 
′′𝐽𝑆7

′′

𝐽𝑆6
′′

𝐽𝑆1
′′

𝒥𝒮 ℒ𝐵Joint state candidates for 𝒥𝒮 ℒ𝐵



3.6.   Supporting Different and Multiple Contexts of Navigation 159 

 

security zone, the view on topographic space could be restricted accordingly by intersecting 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 and 𝐿𝑇𝑜𝑝𝑜 

which yields the navigable spaces for 𝐴 on a single space layer.24 The space layer complex ℒ𝐴 is then given by the 

set ℒ𝐴 = {𝐿𝑇𝑜𝑝𝑜⊙𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 , 𝐿𝑅𝐹𝐼𝐷} instead.  

 

Figure 139: Example of context-dependent selection of space layers involving binary operations on the selected space layers 

(left) and corresponding multilayered graph (right). 

It is immediate that the multilayered graph 𝑀𝐿𝐺(ℒ𝐴) shown on the right of figure 139 is not a subset of 𝑀𝐿𝐺(ℒ) 

anymore because the space partitioning on 𝐿𝑇𝑜𝑝𝑜⊙𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 differs from 𝐿𝑇𝑜𝑝𝑜 as well as 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤. Thus, the inter-

layer edges between the dual nodes of 𝐿𝑇𝑜𝑝𝑜⊙𝐿𝑆𝑒𝑐_𝑙𝑜𝑤  and 𝐿𝑅𝐹𝐼𝐷 as well as the joint states between both space 

layers cannot be derived according to the above procedure but have to be computed anew. This generally holds if 

the user-specific selection contains a space layer that results from binary operations and hence is not identical to 

the space layers in the original space layer complex. For example, consider a wheelchair user 𝐶 who may travel 

between the security zones (e.g., after passing a security gate) and who can be localized using both Wi-Fi and 

RFID sensors. Then a possible selection of space layers matching the user context of 𝐶 is given by ℒ𝐶 = {(𝐿𝑇𝑜𝑝𝑜⊝

𝐿𝑆𝑢𝑏) ⊙ (𝐿𝑆𝑒𝑐_𝑙𝑜𝑤⊕ 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ), 𝐿𝑊𝑖−𝐹𝑖 , 𝐿𝑅𝐹𝐼𝐷}.
25 In this scenario, only the intra-layer edges and joint states be-

tween the sensor space layers 𝐿𝑊𝑖−𝐹𝑖  and 𝐿𝑅𝐹𝐼𝐷  can be deduced from 𝑀𝐿𝐺(ℒ) and 𝒥𝒮(ℒ) since both space layers 

are carried unchanged from ℒ to ℒ𝐶 .  

                                                           
24 The merge operation 𝐿𝑇𝑜𝑝𝑜⊕𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 is also feasible in this example to reflect the navigable spaces for the user 𝐴. In fact, 

due to 𝐺𝑀(𝒞(𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ)) ∩
∗ 𝐺𝑀(𝒞(𝐿𝑆𝑒𝑐_𝑙𝑜𝑤)) = ∅ and 𝐺𝑀(𝒞(𝐿𝑆𝑒𝑐_𝑙𝑜𝑤)) ∪ 𝐺𝑀(𝒞(𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ)) ⊃ 𝐺𝑀(𝒞(𝐿𝑇𝑜𝑝𝑜)), even 

𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ yields the navigable spaces for 𝐴. 

25 Observe that the subtraction 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑆𝑢𝑏 removes the non-passable obstacles for wheelchair users from the view on topo-

graphic space, whereas the subsequent intersection with 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤⊕𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ integrates the information about security zones 

into this view. 
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Figure 140: Example of a context-dependent selection of space layers involving binary operations on the selected space layers 

(left) and corresponding multilayered graph (right). 

Let 𝐿𝑁𝑎𝑣 denote the navigable space layer for 𝐶 resulting from (𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑆𝑢𝑏) ⊙ (𝐿𝑆𝑒𝑐_𝑙𝑜𝑤⊕ 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ). Both 

the merge and the intersection operation in this expression ensure that semantic attributes modelled for the security 

space cells 𝑆𝑒𝑐1 and 𝑆𝑒𝑐2 are available for path planning from the space cells on the resulting space layer 𝐿𝑁𝑎𝑣 

(cf. example 3.71 and example 3.81). Alternatively, 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 and 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ may themselves be added to ℒ𝐶  yielding 

the user-specific selection ℒ𝐶 = {𝐿𝑁𝑎𝑣 , 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 , 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ , 𝐿𝑊𝑖−𝐹𝑖 , 𝐿𝑅𝐹𝐼𝐷}. Since, according to proposition 3.80, 

𝐿𝑁𝑎𝑣 is a subspace layer of 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤⊕ 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ, it follows that the space cells on 𝐿𝑁𝑎𝑣 are related by inclusion to 

those on 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 and 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ. The two space cell hierarchies ℋ(𝑆𝑒𝑐1) = {𝑆𝑒𝑐1, 𝑀1, 𝑀3} and ℋ(𝑆𝑒𝑐2) =

{𝑆𝑒𝑐2, 𝑀2, 𝑀4} then equivalently provide the information which space cell on 𝐿𝑁𝑎𝑣 is associated with which secu-

rity zone (cf. the related discussion in example 3.61). So, in this case, additional semantic attributes for 𝑆𝑒𝑐1 and 

𝑆𝑒𝑐2 are not required, but instead a path search algorithm needs to be capable of evaluating the resulting hierar-

chical graph structure spanned between 𝐿𝑁𝑎𝑣, 𝐿𝑆𝑒𝑐_𝑙𝑜𝑤, and 𝐿𝑆𝑒𝑐_ℎ𝑖𝑔ℎ as shown in the following figure 141.  

 

Figure 141: Example of a context-dependent selection of space layers involving binary operations on the selected space layers 

(left) and corresponding multilayered graph (right). 
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The last example nicely illustrates the 2-dimensional navigation space spanned by each multilayered graph. 

Whereas the inter-layer edges linking dual nodes from different space layers enable localization, tracking, and 

reasoning about hierarchical containment relationships, the orthogonally aligned intra-layer edges facilitate path 

planning. The selection and algebraic combination of space layers for navigating a specific user hence needs to 

consider both dimensions appropriately.  

The number of space layers contained in a space layer complex determines the number of complementary views 

on a given indoor space. Obviously, the more space layers are provided the richer is the space description and the 

more navigation contexts can be supported through subsets and algebraic combinations of the space layers as 

demonstrated in the above examples. The MLSEM thus enables the ad-hoc selection and simultaneous considera-

tion of those spatial and logical facts being relevant for individual navigation users. As discussed in chapter 2.2, 

most existing proposals to indoor navigation reduce the combinatorial complexity a priori through restricting the 

indoor space representation to a rigid setting that only supports a single or a limited number of predefined naviga-

tion contexts. In contrast, the multilayered modelling approach of the MLSEM allows adding further space layers 

to a given indoor setting at any time in order to capture even previously unknown navigation configurations with-

out interfering with existing space layers. Since the number of space layers in a space layer complex is unbounded, 

so is the number of potentially supported navigation contexts. This flexible support for arbitrary navigation con-

texts has been postulated as essential requirement for indoor navigation systems in chapter 2.4 and is hence an-

swered by the MLSEM. 

The possibility to add and also remove space layers from a given space layer complex also facilitates to react on 

dynamic changes in the indoor environment. Suppose for the simple indoor setting introduced in figure 135 that a 

fire incident affects the room 𝑅1 and thus makes it non-accessible for all navigation users. A corresponding sub-

space layer 𝐿𝐹𝑖𝑟𝑒 of the topographic space layer 𝐿𝑇𝑜𝑝𝑜 could be added to the space layer complex ℒ whose space 

cells reflect the spatial extent of the disaster areas. Of course, this space layer would have to be updated in short 

intervals in a real world scenario in order to capture the expansion as well as the stagnation of the fire incident 

(e.g., the areas could be reported by fire detectors monitoring parts of the topographic space).26 In order to consider 

the disaster areas in navigation contexts, it could, for example, be subtracted from the context-dependent view on 

navigable and non-navigable spaces of a specific navigation user. For instance, reconsider navigation user 𝐴 with 

the individual space layer complex ℒ𝐴 = {𝐿𝑇𝑜𝑝𝑜⊙𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 , 𝐿𝑅𝐹𝐼𝐷} (cf. figure 139). The update for 𝐴 could then 

be expressed as 𝐿𝑇𝑜𝑝𝑜⊙𝐿𝑆𝑒𝑐_𝑙𝑜𝑤⊝ 𝐿𝐹𝑖𝑟𝑒  which deletes the dual node representing 𝑅1 from the user-specific nav-

igation graph and thus avoids paths involving 𝑅1. Moreover, if we assume that in case of a fire emergency the 

movement restrictions enforced by security zones are overruled to allow users to get to the nearest exit, then 

𝐿𝑆𝑒𝑐_𝑙𝑜𝑤 could be additionally removed from ℒ𝐴. Thus, ℒ𝐴 would finally be given by the set {𝐿𝑇𝑜𝑝𝑜⊝ 𝐿𝐹𝑖𝑟𝑒 , 𝐿𝑅𝐹𝐼𝐷}. 

                                                           
26 Likewise, the monitored areas themselves could be represented as space cells on a logical space layer similar to the coverage 

areas on a sensor space layer. Whether a specific area is navigable or not could then be expressed through semantic attributes 

associated with the space cells. 
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Figure 142: Example of a context-dependent selection of space layers involving binary operations on the selected space layers 

(left) and corresponding multilayered graph (right). 

The space representation for fire fighter forces necessarily involves both 𝐿𝑇𝑜𝑝𝑜 and 𝐿𝐹𝑖𝑟𝑒 to enable finding shortest 

paths to the fire spots. This can be realized by adding both layers unchanged to the corresponding context-depend-

ent space layer complex, e.g. ℒ𝐹 = {𝐿𝑇𝑜𝑝𝑜, 𝐿𝐹𝑖𝑟𝑒 , … }. In this case, a path search algorithm would have to evaluate 

the inter-layer edges in 𝑀𝐿𝐺(ℒ𝐹) between the space cells from either layer in order to identify the topographic 

regions affected by fire. Alternatively, the merge operation 𝐿𝑇𝑜𝑝𝑜⊕𝐿𝐹𝑖𝑟𝑒 would integrate both views in a single 

space layer yielding ℒ𝐹 = {𝐿𝑇𝑜𝑝𝑜⊕𝐿𝐹𝑖𝑟𝑒 , … } instead. As soon as the fire has been successfully fought, the space 

layer 𝐿𝐹𝑖𝑟𝑒 can be removed from ℒ in order to retrieve the state of the indoor space model before the fire incident.  

As can be seen from the examples of this chapter, the MLSEM provides a strong framework for expressing user-

related and environmental contextual information on separate space layers and for deriving configurations tailored 

to a given user context. If the contextual information however needs to be expressed in terms of individual space 

cells or boundary cells (cf. example 3.63) rather than entire space layers and involves non-spatial aspects (e.g., 

access restrictions or temporal constraints), then a complementary and more fine-grained modelling approach is 

advisable which is discussed in detail in chapter 5 of this thesis.  

3.7 Spatio-semantic Analyses beyond Indoor Navigation 

The MLSEM is not per se restricted to the task of indoor navigation. Due to the abstraction of arbitrary notions of 

indoor space through space cells and space layers as well as the explicit encoding of topological adjacency and 

overlap relationships between space cells in the multilayered graph, the MLSEM can rather be viewed as a generic 

space-relation model that facilitates spatio-semantic analyses even beyond navigation purposes. Although the fo-

cus of this thesis is put on indoor navigation, the spatio-semantic reasoning capabilities of the MLSEM are briefly 

illustrated in this chapter along a simple example which at least is implicitly related to the context of navigation. 

Example 3.84. Consider the 2-dimensional indoor setting shown in figure 143 which again is based on a topo-

graphic space layer 𝐿𝑇𝑜𝑝𝑜 consisting of two rooms 𝑅1 and 𝑅2 being connected to a corridor 𝐶, and a Wi-Fi sensor 

space layer 𝐿𝑊𝑖−𝐹𝑖 capturing the coverage areas of two Wi-Fi transmitters 𝐴 and 𝐵 (cf. figure 87 in chapter 3.2). 

Whereas figure 143a sketches the spatial overlay of both space layers, their individual view on indoor space is 

depicted in figure 143b. 
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(a)  (b)  

Figure 143: Spatial overlay of two 2-dimensional space layers (a) and their separate representation as well as the correspond-

ing multilayered graph (b). 

Let 𝑀𝐿𝐺 be the multilayered graph of the space layer complex ℒ = {𝐿𝑇𝑜𝑝𝑜 , 𝐿𝑊𝑖−𝐹𝑖} as shown on the right of figure 

143b. From the fact that the dual node of 𝑅1 is linked to the dual node of the outer space cell 𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖  on 𝐿𝑊𝑖−𝐹𝑖 , 

which is formally expressed through {𝑣𝑇𝑃(𝑅1), 𝑣𝑇𝑃(𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖)} ∈ 𝐸(𝑀𝐿𝐺), it immediately follows that the topo-

graphic space region described by the space cell 𝑅1 is not fully covered by sensor space cells from 𝐿𝑊𝑖−𝐹𝑖  and thus 

there is a lack of Wi-Fi signal reception in parts of 𝑅1. The same can be observed for the space cells 𝑅2 and 𝐶. 

This implies that moving persons or objects cannot be localized at every place in this example setting when merely 

using Wi-Fi as positioning technology. On the contrary, from {𝑣𝑇𝑃(𝑅1), 𝑣𝑇𝑃(𝐴)} ∈ 𝐸(𝑀𝐿𝐺) and 

{𝑣𝑇𝑃(𝑅1), 𝑣𝑇𝑃(𝐴𝐵)} ∈ 𝐸(𝑀𝐿𝐺) it can be likewise deduced that parts of the room 𝑅1 are covered by Wi-Fi signals 

and they can even be associated with the respective Wi-Fi transmitters. 

The places in topographic space with and without Wi-Fi signal reception can be made explicit spatially. For in-

stance, the region in 𝑅1 covered by the Wi-Fi space cell 𝐴 simply follows from the regularized Boolean intersection 

between their geometries in primal space. Let 𝐺𝑀𝐴(𝑅1) denote this subset of indoor space then it is given as 

𝐺𝑀𝐴(𝑅1) = 𝐺𝑀(𝑅1) ∩
∗ 𝐺𝑀(𝐴). Likewise, the region 𝐺𝑀¬𝐴(𝑅1) in 𝑅1 not being covered by 𝐴 is yielded by the 

corresponding regularized Boolean difference so that 𝐺𝑀¬𝐴(𝑅1) = 𝐺𝑀(𝑅1)\
∗𝐺𝑀(𝐴). Clearly, 𝐺𝑀(𝑅1) =

𝐺𝑀𝐴(𝑅1) ∪
∗ 𝐺𝑀¬𝐴(𝑅1). What has been demonstrated for the space cells 𝑅1 and 𝐴 equivalently holds for any other 

pair of space cells from either space layer. If the dual nodes of two space cells are not linked in the multilayered 

graph, then it is a necessary consequence that there is no common subset in primal geometry space. For example, 

{𝑣𝑇𝑃(𝑅1), 𝑣𝑇𝑃(𝐵)} ∉ 𝐸(𝑀𝐿𝐺) ⇔ 𝐺𝑀𝐵(𝑅1) = ∅ (cf. definition 3.37). Since the space cell 𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖 conceptually 

represents that partition of indoor space not being covered by Wi-Fi signals, it can be chosen to detect the subset 

of a topographic space cell with or without Wi-Fi signal reception independent of specific Wi-Fi space cells. Ac-

cordingly, 𝐺𝑀
¬𝑆𝑜𝑢𝑡

𝑊𝑖−𝐹𝑖(𝑅1) = 𝐺𝑀(𝑅1)\
∗𝐺𝑀(𝑆𝑜𝑢𝑡

𝑊𝑖−𝐹𝑖) reveals those places inside 𝑅1 where moving persons or ob-

jects are localizable using Wi-Fi. In the multilayered graph, the dual node of  𝑅1 is only linked to the dual nodes 

of 𝐴 and 𝐴𝐵 in addition to 𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖 . Thus, it is obvious that 𝐺𝑀

¬𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖(𝑅1) = 𝐺𝑀𝐴(𝑅1) ∪

∗ 𝐺𝑀𝐴𝐵(𝑅1).   

In general, let 𝐿1, 𝐿2 ∈ ℒ be two 𝑛-dimensional space layers participating in a space layer complex ℒ. Further, let 

𝑆1 and 𝑆2 be two space cells from either space layer, with 𝑆1 ∈ {𝒞(𝐿1), 𝑆𝑜𝑢𝑡(𝐿1)} and 𝑆2 ∈ {𝒞(𝐿2), 𝑆𝑜𝑢𝑡(𝐿2)}. Then 

the 𝑛-dimensional subsets 𝐺𝑀𝑆2(𝑆1) and 𝐺𝑀¬𝑆2(𝑆1) of ℝ𝑛 denoting that part of the primal space geometry of 𝑆1 

covered by 𝑆2 respectively not covered by 𝑆2 are given as 

 𝐺𝑀𝑆2(𝑆1) = 𝐺𝑀(𝑆1) ∩
∗ 𝐺𝑀(𝑆2)  and 𝐺𝑀¬𝑆2(𝑆1) = 𝐺𝑀(𝑆1)\

∗𝐺𝑀(𝑆2). (3.85) 

Let 𝐺𝑀 be an 𝑛-dimensional subset of ℝ𝑛 and 𝑉(𝐺𝑀) its volume respectively area (depending on the dimension 

𝑛), with 2 ≤ 𝑛 ≤ 3. Then the ratio 𝑟𝑆2(𝑆1) to which 𝑆1 is covered by 𝑆2 as well as the non-coverage ratio 𝑟¬𝑆2(𝑆1) 

are expressed through the fractions 

 𝑟𝑆2(𝑆1) =
𝑉(𝐺𝑀(𝑆1)∩

∗𝐺𝑀(𝑆2))

𝑉(𝐺𝑀(𝑆1))
  and 𝑟¬𝑆2(𝑆1) =

𝑉(𝐺𝑀(𝑆1)\
∗𝐺𝑀(𝑆2))

𝑉(𝐺𝑀(𝑆1))
. (3.86) 
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Both ratios provide a quantitative measure for the coverage between two space cells. Note that the primal space 

geometry 𝐺𝑀(𝑆1) per definition 3.2 is non-empty which gives 𝑉(𝐺𝑀(𝑆1)) > 0. In order to acquire the spatial 

coverage on the level of the two space layers 𝐿1 and 𝐿2, the primal space geometries of the respective space cell 

complexes need to be considered so that 

 𝐺𝑀𝐿2(𝐿1) = 𝐺𝑀(𝒞(𝐿1)) ∩
∗ 𝐺𝑀(𝒞(𝐿2))  and 𝐺𝑀¬𝐿2(𝐿1) = 𝐺𝑀(𝒞(𝐿1))\

∗𝐺𝑀(𝒞(𝐿2)). (3.87) 

Likewise, the corresponding coverage ratios can be easily derived as  

 𝑟𝐿2(𝐿1) =
𝐺𝑀(𝒞(𝐿1))∩

∗𝐺𝑀(𝒞(𝐿2))

𝐺𝑀(𝒞(𝐿1))
  and 𝑟¬𝐿2(𝐿1) =

𝐺𝑀(𝒞(𝐿1))\
∗𝐺𝑀(𝒞(𝐿2))

𝐺𝑀(𝒞(𝐿1))
. (3.88) 

The analysis of common spatial regions between two space layers is further supported by the difference and the 

intersection operation. The following figure illustrates the results of 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑊𝑖−𝐹𝑖 as well as 𝐿𝑇𝑜𝑝𝑜⊙ 𝐿𝑊𝑖−𝐹𝑖  

for the above example. 

(a)  

(b)  

Figure 144: Result of the difference (a) and intersection (b) of the space layers from figure 143. 

Let 𝐿𝑑𝑖  = 𝐿𝑇𝑜𝑝𝑜⊝ 𝐿𝑊𝑖−𝐹𝑖  be the space layer that results from subtracting 𝐿𝑊𝑖−𝐹𝑖  from 𝐿𝑇𝑜𝑝𝑜 as shown in figure 

144a. It is obvious that the primal space geometry 𝐺𝑀(𝒞(𝐿𝑑𝑖  )) is equal to the subset yielded by 

𝐺𝑀¬𝐿𝑊𝑖−𝐹𝑖(𝐿𝑇𝑜𝑝𝑜). However, the space description of 𝐿𝑑𝑖   is more expressive since it also provides a dual space 

representation as well as a semantic dimension. For example, the intra-layer graph of 𝐿𝑑𝑖   facilitates additional 

reasoning about the Wi-Fi signal coverage area (cf. right of figure 144a). Precisely, since the dual nodes are not 

linked by dual edges in the intra-layer graph of 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑊𝑖−𝐹𝑖, it can be deduced that a navigation user travelling 

from one topographic space cell to another must cross a Wi-Fi sensor space cell on the way. This fact can be 

visually validated in figure 143a but is also confirmed by the intra-layer graph of the space layer 𝐿𝑇𝑜𝑝𝑜⊙ 𝐿𝑊𝑖−𝐹𝑖  

as shown on the right of figure 144b since it is isomorphic to the intra-layer graph of 𝐿𝑇𝑜𝑝𝑜 itself (cf. figure 143b) 

and the space cells on both layers are in one-to-one correspondence.  

It follows that the MLSEM helps to spatially analyse the as-is state of the sensor coverage for a given indoor 

environment and localization technology in detail. The retrieved information can be used, for example, to support 

the planning of new positions for additional sensors and transmitters so that regions without sensor coverage are 

minimized or avoided. The presented formulas for computing the spatial coverage and ratios between two space 

layers clearly hold for arbitrary notions of indoor space. For example, they can be used to detect whether there are 

topographic regions not being covered by a security zone which might be an important query in security sensitive 

environments such as airports. Likewise, if in case of an emergency situation disaster areas are provided on an 

additional temporary space layer, then the coverage ratio between topographic space and the disaster areas can be 

used to understand the degree of demolition of a building or site even on the level of single space cells or their 

hierarchical aggregations. Although such queries are not directly related to navigation tasks they nevertheless im-

pact indoor navigation.  
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Chapter 4  

Conceptual Data Model 

Almost all approaches to the modelling of indoor space for indoor navigation as discussed in chapter 2.2 stop at 

the level of the conceptual definition of indoor space and its spatial and semantic aspects or (if considered at all) 

at the mathematical formalization of these concepts. A mapping of the conceptual entities and their mathematical 

embedding onto a complete and consistent computer representation is seldom addressed. However, a computer 

representation is a natural prerequisite for the computer-based processing and storage of indoor space models as 

well as their exchange between computer systems, and thus renders a key issue in establishing an indoor navigation 

system or an LBS computing environment. This chapter is therefore dedicated to the derivation of a computer 

representation for the MLSEM which provides a complete mapping for all its conceptual entities as well as their 

spatio-semantic aspects in conformance with the sound mathematical framework developed in chapter 3.  

The chapter is structured into three main parts. Since the geometric-topological modelling of space cells in both 

primal and dual space is at the core of the MLSEM, the first part reviews important spatial representation schemes 

for the computer modelling of spatial objects as well as geometric-topological data models proposed in the field 

of GIS. The review clarifies mathematical foundations and discusses existing data models against their suitability 

to fully express both the semantic and the geometric-topological aspects of the MLSEM as defined in chapter 3. 

Motivated by the goal to set the MLSEM in a standardized framework, focus is put on the ISO 19100 series of 

international standards for the modelling of geographic information issued by ISO/TC 211. The general concepts 

for the modelling of geographic features and their spatial representation as defined by the General Feature Model 

(ISO 19109) and the Spatial Schema (ISO 19107) are presented in detail and their feasibility in the context of the 

MLSEM is demonstrated.  

In the second part, a conceptual data model for the MLSEM is designed and formally expressed in UML in con-

formance with the ISO standards. The complete and consistent mapping of the spatio-semantic representation of 

indoor space as developed in the previous chapter is argued in detail against the UML model. Moreover, further 

data requirements in the context of indoor navigation are identified and corresponding elements are added to the 

conceptual data model of the MLSEM. In a subsequent engineering step, a data encoding and exchange format is 

derived. The third part of the chapter then elaborates on the relation of the developed conceptual data model to 

existing international standards in the field of location-based service architectures.  

4.1 Spatial Representation Schemes 

The computer modelling of low dimensional geometric objects has been a field of intensive research over the last 

decades. In the early 1970’s, the term solid modelling was coined to refer to the emerging body of theory dealing 

with the informationally complete representation of rigid solids in order to enable and advance computer-aided 

design, manufacturing, construction, and architecture systems (Rossignac & Requicha 1999, Farin et al. 2002). 

Solid modelling is conceived as discipline in its own right nowadays and encompasses the theoretical foundations 

of geometric-topological modelling of solid objects and lower dimensional geometric shapes as well as the con-

sistent set of associated techniques and computerized systems (also called solid modellers). The concept of infor-

mational completeness postulates that the computer representation of any physically existing or envisioned object 

shall (at least in principle) permit the automatic calculation of any well-defined geometric or topological property 

of the object (Requicha & Voelcker 1982), which differentiates solid modelling from other branches in computa-

tional geometry and computer graphics. On the one hand, this requires a common understanding of what a solid 

means mathematically. On the other hand, a relation between mathematical solids and their computer-based rep-

resentation has to be defined that ideally captures the object in an unambiguous and unique way. A representation 

is unambiguous (or complete) if it corresponds to one and only one solid. It is unique if a given solid can only be 

encoded in a single way (Foley 2010). A formal mapping between an element of the mathematical model space 

and its computer representation is called a representation scheme (Requicha 1980).   
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Various representation schemes and hybrid combinations thereof have evolved in many different domains over 

time and underlie a range of complementary data structures, algorithms, and solid modellers. The following figure 

145 illustrates the general modelling paradigm which shapes the notion of solid modelling by defining the relation 

between physical objects, mathematical models of solidity, and related classes of representations schemes (cf. 

Requicha 1980, Farin et al. 2002). 

 

Figure 145: Solid modelling paradigm after (Requicha 1980) and (Farin et al. 2002). 

Intuitively speaking, a solid is a closed volume containing its boundary. As shown in the above figure, the field of 

solid modelling is typically restricted to the domain of rigid solids (e.g., Gröger & Plümer 2011a). The rigidity 

condition refers to the invariant configuration or shape of the solid which needs to be independent of the solid’s 

location and orientation. Moreover, it is commonly requested that rigid solids be homogenous in dimension, com-

pact subsets of ℝ3, closed under rigid motions and certain Boolean set operations, and that their boundary clearly 

determines what is the inside and the exterior of the solid (cf. Requicha 1980). The two main mathematical models 

of solidity discussed in literature and shown in shown in figure 145 have their roots in point-set respectively alge-

braic topology. Both models are summarized briefly in the following as they can be associated with complementary 

classes of computer representations. 

Point-set topological model of solidity. The first model utilizes the class of semi-analytical sets to define the 

notion of physical solidity by a continuum of points in ℝ3. A set is semi-analytic if it can be represented through 

a finite Boolean combination of half-spaces each defined as set of the form {(𝑥, 𝑦, 𝑧) | 𝑓𝑖(𝑥, 𝑦, 𝑧) ≤ 0}, where every 

function 𝑓𝑖 is analytic (i.e., for every point 𝑝 in the domain of 𝑓𝑖 there is an open neighbourhood of 𝑝 in which 𝑓𝑖 

can be equivalently expressed as Taylor series about 𝑝, e.g., in particular polynomials) (Requicha 1980). The 

homogeneity of dimension is ensured by enforcing the semi-analytical set describing the solid to be regular. Reg-

ularity implies that a semi-analytical set 𝑋 is equal to the closure of its interior, and thus 𝑋 = 𝐼𝑛𝑡(𝑋)̅̅ ̅̅ ̅̅ ̅̅ ̅. If the set 𝑋 

is regular in ℝ3 then each of its interior points has an open neighbourhood homeomorphic to the open unit 3-ball 

𝔹3. Therefore, interior points having lower dimensional neighbourhoods are excluded which prevents physical 

artefacts of the solid such as dangling faces or edges as well as open boundaries. In order to meet the compactness 

condition of solids, the semi-analytical set additionally needs to be bounded in ℝ3. Since regularity involves 

closedness, the boundedness property makes the set compact according to the Heine-Borel theorem (cf. theorem 

A.30). 

In summary, rigid solids are given by bounded regular semi-analytical subsets of ℝ3 which are also referred to as 

r-sets (Requicha 1980). Since this definition of solidity relies upon fundamental concepts of point-set topology 

(e.g., the interior, exterior, closure, and boundary of sets as well as the concept of neighbourhoods, cf. definition 

A.3 and definition A.5), the first mathematical model is equivalently called point-set topological model of solidity. 

It can be shown that the class of r-sets is closed under regularized Boolean set operations (cf. definition 3.64). R-

sets are not restricted to the modelling of 3-dimensional solid objects but can also be applied to model surfaces 
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and curves. However, the dimension of the ambient Euclidean or reference space needs to be adapted correspond-

ingly in order to have the same meaning of the topological properties. For example, consider an r-set describing a 

surface being homeomorphic to the closed 2-disk  ̅2. If this surface lives in ℝ2 then the topological boundary of 

the r-set is a circle and its interior is an open 2-disk as expected. If, however, the surface is embedded in ℝ3 then 

the topological boundary is the entire disk itself whereas its interior is the empty set (cf. appendix A.2) which 

breaks the presented formalism.27 

The domain of manifold solids as comprehensively developed in appendix A.5 renders a subclass of rigid solids 

as defined above. Precisely, r-sets allow for representing non-manifold solid spaces which is illustrated in figure 

146. It shows two L-shaped solids on the left as well as the result of their regularized Boolean union on the right. 

Whereas each L-shaped solid is homeomorphic to �̅�3 and thus is a topological 3-manifold, the union is non-

manifold due to the self-tangency of the boundary but it can be legally represented as r-set. 

 

Figure 146: Two L-shaped manifold solids (left) and their non-manifold union (right) (Rossignac & Requicha 1999).  

It is an easy consequence that manifold solids are not closed under regularized Boolean operations and are limited 

in expressivity which is seen as their main disadvantage when compared to rigid solids. This has also been demon-

strated and discussed in chapter 3.5 in the context of the make disjoint map 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 (cf. definition 3.65) which 

underpins the developed space layer algebra. However, manifold solids also face advantages (cf. Farin et al. 2002). 

First, solids described by non-manifold r-sets are often considered non-physical since 3-dimensional real world 

objects do rather not touch at exactly a curve (cf. figure 146) or a point. Second, and more importantly, the 2-

dimensional closed surface bounding a manifold solid can be classified up to homeomorphism based on its Euler-

Poincaré characteristic (cf. theorem A.85). Likewise, 𝑘-shell manifold solids can be characterized by the alternat-

ing sum of their first three Betti numbers as illustrated in appendix A.5.3 (cf. proposition A.96). Both facts provide 

a strong but simple validity check for manifold solids (see also examples in chapter 3.1.3). Moreover, the set of 

Euler operators (cf. Mäntylä 1988) is closed on the domain of manifold solids. Thus, every topologically valid 

manifold solid can be constructed from an initial manifold solid by a finite sequence of Euler operators (cf. Mäntylä 

1988). Finally, the Jordan-Brouwer Separation theorem (cf. theorem A.90) ensures the boundary determinism of 

manifold solids. Mostly due to these nice properties, many data models and structures for solid objects proposed 

in literature are based upon the more restricted manifold model of solidity (Foley 2010). Also note that non-man-

ifold r-sets can be decomposed into and thus described by a finite set of manifold spaces which is utilized in the 

definition of 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 but also is the basis for the second mathematical model of solidity. 

Algebraic (combinatorial) model of solidity. The algebraic or combinatorial model of solidity describes a solid 

object as 3-dimensional subset 𝑆 of ℝ3 that is decomposed into disjoint pieces each of which is a topological 

manifold (not necessarily of the same dimension) and whose union is 𝑆. The partition of the subspace 𝑆 into a 

collection of disjoint submanifolds is called a stratification, whereas each of the submanifolds contained in the 

partition is said to be a stratum. A stratification thus provides a structure for point sets which are not necessarily 

manifold themselves. In literature, different types of stratifications with different topological properties are dis-

cussed. An often cited example is the Whitney stratification (Whitney 1965), and it has been shown that any r-set 

set admits a Whitney stratification (Thom 1969). Commonly, the way strata are combined and fit together is re-

stricted to satisfy the frontier condition according to which a stratum 𝑀1 that intersects the manifold boundary of 

a stratum 𝑀2 has to lie entirely in the manifold boundary of 𝑀2. Strata can be viewed to provide “finite ‘spatial 

                                                           
27 Note that this consistently follows from the notion of interior, exterior, closure, and boundary of subsets of topological spaces 

as defined in appendix A. In literature, also different and non-equivalent definitions exist according to which the dimension of 

the ambient space not necessarily has to be adapted. However, in the context of the MLSEM, the differences are harmless 

because 𝑛-dimensional space cells are embedded in Euclidean 𝑛-space per definition 3.2. Thus, the dimension of the spatial 

object always agrees with the dimension of its ambient space leaving a co-dimension of zero. 

𝐴 𝐵

𝐴 ∪∗ 𝐵
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addresses’ for points in an otherwise innumerable continuum” (Farin et al. 2002, p. 478). The idea of the combi-

natorial model of solidity is to offer a computationally efficient way for deriving geometric and topological prop-

erties of the solid object from (simpler) properties of the strata and the information how they are combined.28 

Similar to r-sets, the combinatorial model of solidity is general enough to also include the modelling of lower-

dimensional objects such as surfaces and curves. 

It obviously follows that CW complexes as elaborated on in appendix A.3 are topological spaces which are strati-

fied into open 𝑛-cells of various dimensions each of which being homeomorphic to the open unit 𝑛-ball 𝔹𝑛 (cf. 

definition A.46 and definition A.51).29 Strata differ from open 𝑛-cells in that they are not required to be connected, 

bounded, or globally homeomorphic to 𝔹𝑛. For example, the unit 2-sphere 𝕊2 admits a Whitney stratification of a 

single stratum, whereas its minimal CW decomposition requires two cells, namely a 2-cell and a 0-cell. Similar to 

the general notion of stratification, also CW complexes are not required to form topological manifolds. A strong 

advantage of CW complexes over general stratifications is that the Euler characteristic is applicable to finite CW 

complexes and in fact is a topological invariant (cf. proposition A.83). Hence, finite CW complexes can be used 

to ensure and check the topological validity of the underlying solid object (in case the solid adheres to the notion 

of manifold solidity). This again explains why many data structures employing the algebraic model of solidity rely 

upon finite CW complexes or restrictions thereof.  

The models of point-set topological solidity and algebraic solidity are consistent and interchangeable (cf. Farin et 

al. 2002), which is illustrated for the case of manifold solids and CW complexes in appendix A.5. This fact however 

does not imply that representation schemes based on either model are also interchangeable, i.e. that solid objects 

represented by a specific scheme can be translated into another scheme. In the following, important representation 

schemes in solid modelling are discussed and evaluated against their capability to express the geometric-topolog-

ical description of both 2-dimensional and 3-dimensional space cells, boundary cells, and space cell complexes as 

defined in chapter 3. In his landmark paper, (Requicha 1980) has classified six distinct families of unambiguous 

representation schemes which are called Pure Primitive Instancing, Spatial Occupancy Enumeration, Cell Decom-

position, Constructive Solid Geometry (CSG), Sweep Representation, and Boundary Representation (B-Rep). This 

classification is still commonly accepted in literature although both new and hybrid schemes have been introduced 

since then. An interesting alternative classification is proposed by (Farin et al. 2002) who distinguish implicit and 

constructive schemes from enumerative and combinatorial schemes which more closely follows the two mathe-

matical models of solidity and also underlies the illustration in figure 145.  

Constructive Solid Geometry (CSG). For the family of representation schemes referred to as Constructive Solid 

Geometry (CSG), a rigid solid object is built from a given set of standard primitive objects by applying regularized 

Boolean set operations and transformations. The modelling primitives are parameterized solids given by r-sets 

which typically reflect simple shapes such as blocks, cylinders, cones, triangular prisms, toroids, and balls. These 

primitives are instantiated using appropriate shape parameters controlling their spatial extent, position, and orien-

tation (e.g., a block can be simply obtained by specifying its edge lengths). The placement in space depends on 

convention but typically each primitive is associated with its own local coordinate reference frame all of which 

have to be related to a common global reference frame. The CSG representation is expressed as ordered binary 

tree whose leaf nodes are the primitive instances and whose internal nodes either represent a regularized union, 

intersection, or difference, or a transformation which includes rigid body motions (rotation, translation) and scal-

ing. It follows that each internal node produces an intermediate solid object with the root node denoting the result-

ing CSG solid. The following figure illustrates a simple CSG tree as well as the final solid object.  

                                                           
28 Note that, in general, a purely geometric representation in addition to computational geometry algorithms suffices to derive 

properties such as containment respectively inclusion, adjacency, or boundary (e.g., from intersection operations or point-in-

polygon checks). However, a combinatorial topological structure helps to accelerate computational geometry (cf. ISO 

19107:2003) and to ensure the consistency and validity of complex geometric configurations (e.g., Gröger & Plümer 2011a). 

29 Likewise, a (Euclidean) simplicial complex is a stratification of its underlying polyhedron (cf. definition A.68). 
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Figure 147: Example of a simple CSG tree (Rossignac & Requicha 1999). 

The CSG scheme is the prototypical representative of the class of implicit and constructive schemes since the rigid 

solid is not given explicitly but only through a hierarchical sequence of construction operations which have to be 

satisfied by the final point set. It hence naturally corresponds to the point-set topological view of solidity. Due to 

the fact that the primitives are r-sets which are closed under regularized Boolean set operations, any CSG tree is a 

valid and unambiguous solid representation and itself evaluates to an r-set. CSG representations are concise and 

efficient with respect to storage space, but are non-unique because different sets of operations may yield the same 

object. A range of extensions to the presented notion of CSG have been presented in literature including the mod-

elling of nonstandard primitives and unbounded CSG solids by relaxing the requirement for primitives to render 

r-sets as well as additional operations such as bending, twisting, Minkowski sums, and free-form deformations 

(see Rossignac & Requicha 1999 for references).  

The CSG scheme is obviously suitable for describing the primal space geometry of arbitrary 2-dimensional and 

3-dimensional space cells in conformance with definition 3.2. Since non-manifold and even unbounded solids are 

supported, it also facilitates the geometric description of space cell complexes as well as the corresponding outer 

space cell in primal space. The nice properties of CSG representations are however confronted with their limited 

expressivity regarding topological properties of (intermediate) CSG solids such as the connectedness of r-sets or 

the neighbourhood of points contained in the r-sets. As a direct consequence, CSG trees do not carry any infor-

mation or representation of the solid’s interior and boundary, and also lack the means to parameterize them. Thus, 

changing the spatial properties of the resulting CSG solid requires changing the parametric description of the leaf 

primitives and the re-computation of all intermediate representations. Moreover, since the configuration of the 

CSG solid is not known a priori, subsets of the represented solid point set are not spatially addressable and thus 

cannot be consistently referenced (cf. Farin et al. 2002). This precludes the explicit modelling of space cell bound-

aries which however are an important conceptual element of the MLSEM and a necessary prerequisite for the 

primal topological space representation of space cells according to definition 3.3. Computations of topological 

relationships between CSG solids are also non-trivial and commonly have to be solved through purely geometric 

checks or involve translations of the CSG solid into complementary schemes such as the Boundary Representation.  

Sweep Representation. A second implicit and constructive representation scheme is the Sweep Representation. 

The basic idea of sweeping is to represent a solid object through a base set and a predefined space curve. The solid 

volume then is swept by the base set moving through space along the trajectory given by the space curve. Although 

this idea is straightforward and concise, general sweep representations typically fail to guarantee the solidity of 

the swept volume, and algorithms for computing geometric and topological properties of the represented solids 

are rarely available and non-trivial. Therefore, restrictions are often applied to the base set and/or the space trajec-

tory. For example, translational sweeping enforces the base set to render a planar 2-dimensional r-set and defines 

the trajectory as straight line segment perpendicular to the base set, which results in simple extrusion solids. Ro-

tational sweeping schemes define the base set similarly but provide a rotation axis instead. Both translational and 

rotational sweeping schemes produce rigid solids in an unambiguous and non-unique manner, but are obviously 

limited to express objects with translational or rotational symmetry. In fact, elements of the interior built environ-

ment such as rooms, corridors, or walls can mostly be idealized through translational sweeps which hence suffice 

to describe the primal space geometry of 3-dimensional topographic space cell. However, space cells on sensor or 

logical space layers may exhibit more complex shapes and hence require general sweeping methods. Moreover, 

sweep representations face the same drawbacks regarding the representation of the solid’s interior and boundary 

as well as the derivation of topological relationships between solids as discussed for the family of CSG schemes. 
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Cell Decomposition. Enumerative and combinatorial representation schemes describe the space occupied by a 

solid object through a collection of smaller spatial chunks commonly called cells and a set of rules that generate 

the points belonging to the solid (cf. Farin et al. 2002). They hence correspond to the algebraic view on solidity 

and represent the solid point set explicitly. Two main families of Cell Decomposition schemes can be distin-

guished. The first family is called Spatial Occupancy Enumeration whose underlying principle is that the solid 

object is assembled from primitive rigid solids of uniform size and shape which admit a simple implicit or para-

metric description such as cubes (also called voxels in this context) or tetrahedrons. The primitives are enforced 

to be disjoint and to touch at most at faces, edges, or vertices which leads to their arrangement in rigid structures 

called spatial arrays. This assembly is guaranteed to be a valid, unambiguous, and unique solid representation and 

facilitates simple and efficient algorithms since every primitive can be spatially addressed. Spatial Occupancy 

Enumeration schemes are applicable to both 2-dimensional and 3-dimensional solid objects and underlie many 

geometric indoor space models (cf. chapters 2.1.2 and 2.2.1). Their main deficiencies are that complex shapes can 

only be approximated and that spatial inclusion relations between the primitive cells are not available explicitly. 

Whereas the former can be healed by allowing primitives of irregular shape and size (called Irregular Cell De-

composition schemes, cf. chapter 2.1.2), the latter hinders the immediate derivation of the solid’s boundary and 

the referencing of subsets thereof which however is a prerequisite in the context of the MLSEM. 

The second family of cell decomposition methods addresses the latter drawback by using Cell Complexes as rep-

resentation scheme whose primitives are solid cells of different dimensions and which implement the algebraic 

model of solidity directly. The prototypical examples of this family are Euclidean simplicial complexes (cf. defi-

nition A.68) which are presented in detail in appendix A.4. Due to the facial structure of simplices inducing their 

spatial ordering and the strict rules for gluing 𝑛-simplices to an 𝑛-dimensional simplicial complex, all topological 

properties of the resulting complex such as its interior and boundary are available explicitly, exactly, and in a 

combinatorial way. Note that whereas simplicial complexes are discussed in appendix A.4 as purely topological 

structure on topological spaces, they also need to provide the geometry of the represented solid object in the context 

of solid modelling. Instead of defining the geometry separately for each simplex, often only the 0-simplices are 

associated with point coordinates. The geometric carriers of higher-dimensional simplices then result from (usu-

ally) linear interpolations based on inclusion relations between the simplices. Alternatively, only higher-dimen-

sional simplices receive a geometric representation (e.g., 2-simplicies are assigned planar polygons) which allows 

for deriving the geometry of lower-dimensional simplices through intersection operations. Either way, the topo-

logical and geometric descriptions are not independent and thus need to be kept consistent (e.g., it must be ensured 

that 0-simplices are assigned distinct points in ℝ𝑛, that curves associated with 1-simplices do not intersect, etc.). 

This renders Cell Complex schemes verbose and maintaining the validity and consistency of the solid object a 

non-trivial task.  

Similar to enumeration schemes, the triangulation of a solid object based on simplicial complexes is typically 

limited to an approximation of the real object shape. Therefore, CW complexes are commonly utilized to relax the 

strict restrictions of simplicial complexes (cf. appendix A.4) and to admit arbitrary shapes for cells which allow 

for spatially exact representations (e.g., the geometric description of a 2-cell may involve curved and freeform 

surfaces as long as the geometric configuration remains homeomorphic to a 2-cell). Since the facial structure of 

simplicial complexes is not inherent to general CW decompositions, the CW complexes are often enforced to be 

regular or proper (cf. definition A.57) and to render manifold solid objects. Like with simplicial complexes, the 

consistency between topological cells and geometric carriers needs to be carefully ensured.  

Cell Complex schemes are unambiguous but non-unique solid representations. At least for schemes based on CW 

complexes it is an easy consequence that they are suitable for describing arbitrary 2-dimensional and 3-dimen-

sional space cells in both primal geometry and topology space. Since the space cell boundaries are explicitly avail-

able in these schemes, topological relationships between space cells can be efficiently computed. Moreover, non-

manifold and unbounded solids can be described which facilitates the representation of space cell complexes and 

the outer space.  

Boundary Representation. The Boundary Representation (B-Rep) is one of the earliest methods for describing 

solid objects in computer graphics and solid modelling. The term Boundary Representation refers to a family of 

representation schemes that describe shapes merely by their boundaries. The theoretical foundation of B-Rep is 

the Jordan-Brouwer separation theorem according to which a closed (𝑛 − 1)-dimensional manifold 𝑀 separates 

ℝ𝑛 into a bounded and an unbounded component whose common topological boundary is 𝑀. If the bounded 
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component is viewed as the solid object to be modelled then the representation of the boundary 𝑀 already suffices 

to describe the solid in an unambiguous way. This original notion of a B-Rep solid is closely linked to the manifold 

view of solidity (cf. Mäntylä 1988). Although, in general, there is no assumption on the representation of the 

manifold boundary which may thus involve parametric, constructive, or combinatorial methods, most approaches 

to B-Rep modelling implement its cellular decomposition. Further restrictions are commonly applied to the man-

ifold solid itself. For example, the solid object is often required to admit a polyhedral embedding in ℝ𝑛 which 

rules out pathological cases such as the Alexander horned sphere (cf. appendix A.5). However, it is important to 

note that the B-Rep scheme is also feasible to describe non-manifold solids adhering to the more general point-set 

topological model of solidity (cf. Farin et al. 2002).  

B-Reps show characteristics of both implicit and enumerative representation schemes. They share with implicit 

schemes such as CSG that the interior point set of the resulting solid object is only given implicitly. However, and 

similar to enumerative cell decompositions, the solid’s boundary is represented explicitly and provided with spatial 

addresses. The topological primitives of combinatorial B-Rep models are commonly called nodes (0-dimensional), 

edges (1-dimensional), and faces (2-dimensional) which are combined to form the closed boundary surface of the 

solid object. The primitives are typically not restricted to render triangulations such as with simplicial complexes. 

However, there are also subtle differences between combinatorial B-Rep models and algebraic cell complexes 

when it comes to the representation of interior holes within faces and voids within the solid volume. As shown in 

chapter 3.1.3, the cell decomposition of compact surfaces and manifold solids with more than one boundary com-

ponent involves additional 1-cells (bridge edges) respectively 2-cells (bridge faces) in algebraic cell complexes. 

In contrast, most B-Rep schemes avoid the modelling of additional edges and faces by introducing 1-dimensional 

loops as well as 2-dimensional shells as further primitives (cf. Mäntylä 1988).30 Whereas loops are commonly 

defined to be homeomorphic to the 1-sphere 𝕊1, a shell is mostly understood to be a closed manifold surface being 

homeomorphic to the 𝑛-holed torus 𝕋2.31 The boundary of each face is then given by loops which themselves are 

cycles of edges that only intersect in their bounding nodes. Likewise, the boundary of the solid volume is made up 

by shells being sets of connected faces that only intersect in common edges or nodes. In figure 148, the differences 

between B-Rep models and algebraic cell complexes are illustrated for a surface with hole respectively a solid 

with cavity.  

(a)  

(b)  

Figure 148: Differences between B-Rep models and algebraic cell complexes in two dimensions (a) and three dimensions (b). 

The B-Rep face shown on the left of figure 148a has two bounding loops each of which is a topological circle 

decomposed into four edges and four nodes. Note that the face itself is not a closed 2-cell since its interior is not 

homeomorphic to the open unit 2-ball 𝔹2. From this it immediately follows that the cellular structure of the face 

                                                           
30 The names of the additional primitives differ for different B-Rep schemes. For example, loops are likewise called rings, 

whereas shells are often referred to as bodies or volumes. 

31 More restrictive B-Rep schemes limit shells to be homeomorphic to the 2-sphere 𝕊2. 
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violates condition (ii) of definition A.48 and therefore is not a valid algebraic cell complex. Topologically, the 

face is homeomorphic to the annulus for which a valid CW decomposition consisting of eight 0-cells, nine 1-cells, 

and one 2-cell is shown on the right of figure 148b (cf. discussion in chapter 3.1.3.1). This result can also be 

validated using the Euler characteristic. For the annulus, it is given by χ = 2 − 2g − h = 2 − 0 − 2 = 0. The same 

Euler characteristic follows for the CW decomposition due to χ = 8 − 9 + 1 = 0, but not for the alternating sum 

of the number of primitives in the B-Rep model. A similar observation can be made for the 3-dimensional solid 

with cavity shown in figure 148b. 

Consequently, the Euler characteristic as defined for finite CW complexes in proposition A.83 is not applicable 

for combinatorial B-Rep models which include loops and shells. It has therefore been extended in literature to 

account for these primitives. Precisely, let 𝑁, 𝐸, 𝐹, 𝐿, and 𝑆 denote the number of nodes, edges, faces, loops, 

respectively shells in a B-Rep model and let 𝐺 be the sum of each shell’s genus. Then the so-called extended Euler-

Poincaré formula is given by  

 𝑁 − 𝐸 + 𝐹 − (𝐿 − 𝐹) − 2(𝑆 − 𝐺) = 0  (Mäntylä 1988). (4.1) 

Applied to the above B-Rep face we get 8 − 8 + 1 − (2 − 1) − 0 = 0 which satisfies the formula. The same holds 

for the B-Rep solid in figure 148b due to 1 − 24 + 12 − (12 − 12) − 2(2 − 0) = 0. The extended Euler-Poin-

caré formula thus is suitable for checking the validity of the cellular structure of the boundary representation. 

Like with general cell decomposition schemes, B-Reps have to ensure the consistency of the topological primitives 

and their geometric carriers which is supported by the inclusion relations between the primitives and their induced 

spatial order. Current B-Rep schemes often admit curved and freeform surfaces as geometric embeddings for faces 

and hence allow for spatially exact solid representations. They share the drawback with cell decompositions that 

they are non-trivial to construct and to maintain in a valid way (e.g., Gröger & Plümer 2012a), but are usually less 

verbose due to the reduction of the modelling dimension. Regarding the geometric-topological representation of 

2-dimensional and 3-dimensional space cells of the MLSEM in primal space, B-Reps are an alternative to general 

Cell Complex schemes. Although B-Reps are not necessarily valid CW complexes as shown above, the missing 

bridge edges and faces can be easily derived (cf. proposition 3.34 and proposition 3.35) in order to satisfy the 

mathematical model of the primal space topology of space cells. Moreover, they provide the necessary combina-

torial information to deduce topological properties and relationships between space cells and generally support 

both unbounded and non-manifold structures. A further advantage of the B-Rep scheme is that solid objects rep-

resented in one of the complementary schemes discussed in this chapter can be unambiguously translated into the 

B-Rep scheme which is not true vice versa for all combinations (cf. Requicha 1980). 

4.2 Geometric-Topological Data Models in GIS 

Based on the presented classification of computer-based representation schemes for 3-dimensional and lower di-

mensional spatial objects, this chapter reviews geometric-topological data models and data structures that have 

been proposed for the modelling, storage, and exchange of spatial objects in the field of GIS, and which rely upon 

the discussed representation schemes and their theoretical foundations.  

Early approaches to the description of the spatial characteristics of geographic real world objects in up to three 

dimensions have been presented more than two decades ago. Most of the data models that have emerged since 

then rely upon Cell Decomposition schemes and in particular favour the Boundary Representation approach 

(Gröger & Plümer 2011a). Besides the advantages offered by this family of representation schemes as illustrated 

in the previous chapter, this can also be explained by the way spatial data is acquired in the GIS domain. Typically, 

spatial information about geographic objects is derived from measurements and surface observations based on 

(sensor-specific) extraction methods from fields such as photogrammetry or engineering surveying (Nagel et al. 

2009). Geographic objects are hence spatially described by their observable boundary surfaces applying an accu-

mulative modelling principle which is naturally supported by the B-Rep model (Kolbe & Plümer 2004). Never-

theless, existing GIS data models vary in the primitives they use and the rules for combining them, in their geo-

metric and topological expressivity, and the restrictions they apply to the represented solid objects (e.g., manifold 

vs. non-manifold, bounded vs. unbounded, etc.). A further distinction can be made as to which extent conceptual 

and semantic data modelling (cf. 2.1.3) is supported in addition to the spatial representation of the geographic 

objects. A comprehensive survey of prominent 3-dimensional topological models in GIS is given in (Zlatanova 

2000) and (Zlatanova et al. 2004). 
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The Formal Data Structure (FDS) proposed by (Molenaar 1990) is often cited as being the first 3-dimensional 

geometric-topological data model in the context of GIS (e.g., Zlatanova et al. 2004, Gröger & Plümer 2011a). As 

shown in figure 149, it introduces nodes, arcs/edges, and faces as the topological primitives with faces being 

bounded by edges that are decomposed into arcs having exactly two nodes as limit. Based on these primitives, 0-

dimensional to 3-dimensional geometric objects, namely points, lines, surfaces, and bodies, can be realized. Bodies 

are restricted to render connected, compact manifold solids which are described by their bounding faces. Both 

interior holes in surfaces as well as cavities in bodies are supported. The general notion of Cell Decomposition 

schemes is relaxed in such that singularities can be modelled through nodes or arcs that are lying inside faces or 

bodies. Only the nodes are associated with point coordinates. The geometry of arcs then results from linear inter-

polations whereas faces are enforced to be planar. Bodies are consequently given by geometric polyhedra. The 

geometric information is hereby strictly coupled with the topological primitives. For example, although it is pos-

sible to represent a complex non-planar surface object as composition of several face patches, a single face prim-

itive cannot be used to topologically describe a non-planar surface. Thus, the same geometric object does not admit 

different decompositions into separate configurations of topological primitives. This flexibility however has been 

introduced as strength of the MLSEM (cf. chapter 3.1.3) which would be lost when applying the FDS as data 

model for the representation of space cells. An advantage of the FDS is the support for semantic classes which can 

be associated with the geometric objects and which allow for modelling semantic aspects of the real world object 

in addition to their spatial characteristics.  

 

Figure 149: The Formal Data Structure (FDS) from (Molenaar 1990) (taken from Zlatanova et al. 2004). 

The FDS has been used and modified in several subsequent research works. Whereas (Flick 1999) adds a dedicated 

3-dimensional topological primitive, the Simplified Spatial Model (SSM) proposed by (Zlatanova 2000) even de-

creases the number of topological primitives by omitting arcs and edges from the data model. This makes the SSM 

more concise and optimizes storage space. Faces are defined to have planar and convex geometric embeddings 

and are given by an ordered set of nodes carrying the point coordinates, with each pair of subsequent nodes im-

plicitly representing an arc. Similar to the FDS, the 3-dimensional body objects render geometric polyhedra and 

singularities in faces and bodies are allowed (cf. figure 150a). The Urban Data Model (UDM) of (Coors 2003) 

follows a similar approach and also neglects 1-dimensional topological primitives (cf. figure 150b). However, the 

UDM is more restrictive than the SSM since faces need to be triangular and singularities are excluded mainly in 

order to facilitate efficient visualizations. Both the SSM and the UDM establish a strong coupling between topo-

logical and geometric entities. Moreover, the lack of 1-dimensional primitives hinders the modelling of boundary 

cells in case of 2-dimensional space cells which however is a necessary prerequisite of the MLSEM.  The Tetra-

hedral Network (TEN) structure presented by (Pilouk 1996) realizes a data model and database schema for repre-

senting spatial objects by means of simplicial complexes. It introduces the topological primitives node, arc, trian-

gle, and tetrahedron, which are combined to form complex geometric shapes following the strict rules established 

by the mathematical notion of simplicial complexes. The TEN structure consequently provides a topological prim-

itive for each dimension (cf. figure 150c). Likewise, the object-oriented data model for complex 3-dimensional 

geographic objects (OO3D) developed by (Shi et al. 2003) relies upon a decomposition of spatial objects into 

simplicial complexes and facilitates the attributive modelling of semantic information (cf. figure 150d). Both the 

TEN and the OO3D model require triangulations respectively tetrahedralizations of complex shapes. Although 

corresponding algorithms are available, this is to be seen disadvantageous in the context of the MLSEM since 

arbitrarily-shaped space cells need to be artificially subdivided which impacts the coherence between spatial and 

semantic entities. 
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(a)  (b)  

(c)  

Figure 150: SSM (a), UDM (b), and OO3D (c) (taken from Zlatanova et al. 2004). 

In contrast to the above data models, (Kim et al. 2009) present a geometric-topological data model called the Prism 

Model which uses Sweeping in addition to B-Rep. The primitives of the Prism Model are points, curves, surfaces, 

and solids. Whereas these primitives can be constructed according to the cellular decomposition rules of the B-

Rep scheme (e.g., surfaces are bounded by curves which are bounded by points), they can also be used as base sets 

to express 1-dimensional up to 3-dimensional extrusive geometries, namely extrusive points, extrusive curves, and 

extrusive surfaces as shown in figure 151.  

 

Figure 151: The Prism Model (after Kim et al. 2009). 

Each extrusive geometry entity is bounded by a lower and an upper primitive of the same dimension. The point 

set of the extrusive geometry is then swept out by moving the lower primitive along a straight space curve to the 

upper primitive, which basically realizes a translational sweeping. For example, an extrusive point is given by a 

lower and an upper point primitive and the straight line segment in between, and thus renders a curve primitive. 

Likewise, an extrusive surface is given by two surface primitives that sweep out a solid primitive (polygonal 

prism). Since the resulting swept solid is necessarily bounded by six surfaces, the polyhedron primitive (being a 

subtype of solid) allows for describing more complex solid configurations. A polyhedron is constructed from a set 

of extrusive polygons, with both the upper and lower geometry given by a collection of polygons that must be 
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isomorphic to a single surface. However, both the solid and the polyhedron primitive are restricted to be homeo-

morphic to a connected, compact 1-shell manifold solid. Obviously, neither extrusive surfaces nor extrusive solids 

hence support interior voids. 

The Prism Model is more restrictive than general translational sweeping. First, the sweeping direction is enforced 

to be parallel to the z-axis (encoding height information). Second, the lower and upper primitives need to have the 

same footprint when projected onto the x-y-plane, and each of the vertices of the upper geometry must have higher 

z-values than its corresponding vertex in the lower geometry (Kim et al. 2009). These restrictions ensure that the 

resulting extrusive geometry is always valid and even allow that the upper geometry can have a different shape 

than the lower geometry, which provides more flexibility than general translational sweeping. An example of an 

extrusive polygon set describing a saddle-roof building and an adjacent garage is shown in the following figure. 

 

Figure 152: A saddle-roof building described using the Prism Model (Kim et al. 2009). 

The Prism Model facilitates a compact representation of spatial objects which is less verbose than comparable B-

Rep descriptions. Although the geometric expressivity of the applied translational sweeping is limited, it suffices, 

for example, to describe the regular shapes of entities of the interior built environment such as rooms, corridors, 

or elevator shafts. Based on the strict representation and construction rules for extrusive geometries, (Kim et al. 

2009) develop a formal model and corresponding algorithms for efficiently computing the topological relation-

ships upperDisjoint, upperMeet, equal, overlap, contains, inside, covers, coveredBy, lowerDisjoint, and lowerMeet 

between two extruded objects. Thus, the topological expressivity of the Prism Model is stronger than that of usual 

implicit and constructive representation schemes. The Prism Model is hence feasible to model the primal space 

geometry of topographic space cells in two and three dimensions, and to derive intra-layer and inter-layer relation-

ships between them. However, due to the implicit representation of parts of the boundary of extruded objects, the 

explicit modelling of boundary cells is hindered. Moreover, arbitrarily-shaped space cells (e.g., sensor space cells) 

can only be coarsely approximated based on extrusive geometries.  

In a series of paper, (Gröger & Plümer 2011a), (Gröger & Plümer 2011b), and (Gröger & Plümer 2012b) introduce 

a formally well-developed combinatorial B-Rep model whose topological primitives are called vertex, edge, face, 

and solid (cf. figure 153). The vertices, edges, and faces correspond to closed 𝑛-cells of the corresponding dimen-

sion and are enforced to constitute a proper CW complex, i.e. the non-empty intersection of any two primitives 

must be a lower dimensional primitive which is part of the boundaries of both primitives. From faces being closed 

2-cells it follows that interior holes are not supported. Solids are given implicitly by the enumeration of their 

bounding faces and are further distinguished into bounded and partially bounded solids. A bounded solid is defined 

to be topologically equivalent to a connected, compact 1-shell manifold solid, and thus admits a boundary being 

homeomorphic to an 𝑛-holed torus (cf. definition A.93). However, this also implies that interior cavities are ruled 

out. The geometric representation follows from point coordinates associated with the vertices with the restriction 

that edges need to be straight line segments and faces have to be planar. On top of the solid primitives, features 

are defined which allow for specifying the semantics of the spatial objects. The data model supports hierarchical 

aggregations of features to form complex features as long as the spatial aggregate associated with a complex feature 

remains homeomorphic to a bounded solid. 
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Figure 153: The geometric-topological model of (Gröger & Plümer 2011a). 

The main motivation for the development of the data model is the representation of 3-dimensional city models. A 

city model is hereby understood as collection of non-overlapping solid features (e.g., buildings, vegetation and 

transportation objects, etc.). Moreover, (Gröger & Plümer 2011a) assume a full tessellation of 3-dimensional Eu-

clidean space ℝ3 and therefore foresee the possibility to model non-compact manifold solids with boundary which 

are referred to as partially bounded solids. Two partially bounded solids are introduced: an air solid representing 

the free space above terrain (air space), and an earth solid modelling the earth’s mass. The partial boundary of the 

air solid is defined to be the visible surface when looking onto the city model from above, and thus includes the 

terrain surface as well as the those boundary faces of bounded solids being adjacent to the air space. Likewise, the 

partial boundary of the earth solid is the surface seen from below. Note that in both cases the partial boundary is 

itself an open 2-manifold (i.e., non-compact and without boundary), and is given by a 2.8-dimensional map which 

has been proposed by (Gröger & Plümer 2005) as mathematically sound data structure for the representation of 

open 2-manifolds based on a proper CW decomposition. A 2.8-dimensional map includes a single face called Out 

which is topologically unbounded and hence non-compact. The entire tessellation of ℝ3 is then given by a con-

nected, proper CW complex which contains the 2.8-dimensional map as subcomplex. In figure 154a, a simple 

setting of two buildings modelled as aggregation of bounded solids as well as the partial boundary of the air and 

the earth solid is depicted, whereas figure 154b shows a cross profile. 

(a)  

(b)  

Figure 154: Two buildings described by six respectively seven bounded solids (a) and sketch of a cross profile showing the 

partially bounded air and earth solid (b) (Gröger & Plümer 2012b). 

(Gröger & Plümer 2011a) also put a strong focus on the geometric-topological consistency and validity of data 

which is structured according to their data model. Therefore, axioms are introduced which on the one hand are 

proven to be equivalent to the underlying mathematical model as described above, but on the other hand allow for 
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computationally effective and efficient implementations of routines for detecting errors such as pairwise penetra-

tions or intersections of solids. Although consistency is a global property, global consistency checks are expensive 

and thus the axioms and algorithms are restricted locally to faces and edges in the boundary of a solid. In order to 

maintain the consistency of the data throughout changes and dynamic updates, a complete set of transaction rules 

for operations such as splitting and merging of faces or solids is presented in (Gröger & Plümer 2012b). The rules 

exceed commonly applied Euler operators in such that they explicitly address 3-dimensional objects and guarantee 

both their geometric and topological consistency. 

The data model presented by (Gröger & Plümer 2011a) is generally feasible to represent both 2-dimensional and 

3-dimensional space cells of the MLSEM in both primal geometry and topology space. Although the model is 

intended to describe entire city models, the modelling of the building interior along disjoint solid primitives is not 

excluded (cf. Gröger & Plümer 2012b). The aggregation of non-overlapping solids conforms to the notion of a 

space cell complex (cf. definition 3.7) and facilitates its consistent representation which is not supported by the 

models presented above. Moreover, the full tessellation of space agrees with the equivalent condition expressed 

for the primal space representation of space layers, and the notion of the air and earth solid corresponds to the 

concept of the outer space cell which has already been introduced in early publications on the MLSEM (cf. Becker 

et al. 2009a). However, the data model of (Gröger & Plümer 2011a) also lacks expressivity compared to the math-

ematical model underlying the MLSEM. First, interior voids are allowed for space cells but are neither supported 

by face nor by solid primitives. Second, due to the restriction to proper CW decompositions the number of cells 

required to represent a topological space is higher than for general CW decompositions. Thus, the dual graph 

representation will consequently contain a higher number of nodes and edges. Third, both bounded and partially 

bounded solids are restricted to manifold spaces which excludes non-manifold configurations of space cell com-

plexes as discussed in chapter 3.1.3.3. Fourth, the notion of outer in the MLSEM is more general and actually can 

be viewed as the space occupied by both the air and the earth solid, and thus makes the explicit modelling of 

unbounded 2.8-dimensional maps obsolete. And finally, the geometry is strongly coupled with the topological 

primitives and disallows curved or freeform surfaces, which requires the approximation of complex shapes.  

Another B-Rep model called cell-tuple structure has been proposed by (Brisson 1989) and further refined by (Pigot 

1996). It extends classical data structures for B-Reps from computational geometry such as the quad-edge data 

structure of (Guibas & Stolfi 1985) or the facet-edge data structure of (Dobkin & Laszlo 1987) by utilizing 𝑛-

dimensional subdivided manifolds to describe the boundary of an (𝑛 + 1)-dimensional spatial object. A subdivided 

manifold is simply given by an 𝑛-dimensional, finite, regular CW complex whose underlying space is a closed 

orientable 𝑛-manifold. The modelling primitives of the cell-tuple structure are hence closed 𝑘-cells, with 0 ≤ 𝑘 ≤

𝑛. In contrast to the data model of (Gröger & Plümer 2011a), the CW complex is not restricted to meet the inter-

section property. Based on the 𝑘-cells, a cell-tuple is defined as (𝑛 + 1)-tuple containing a 𝑘-cell from each di-

mension which need to be related by inclusion. A switch operator is introduced that allows for navigating between 

adjacent cell tuples and thus to iteratively visit all cells of the subdivided manifold. Similar to the model of (Gröger 

& Plümer 2011a), the geometric embedding of 1-cells has to be a straight line segment whereas 2-cells need to be 

planar. An interesting aspect of the cell-tuple structure is that it supports the simultaneous representation of the 

corresponding dual CW complex, and the authors describe the need of an outside space in case of representing 

manifolds with boundary. However, a precise definition of this outside space is not provided. In general, the cell-

tuple structure and especially their underlying subdivided manifolds are suited to model both the primal and dual 

geometric-topological representation of 2-dimensional and 3-dimensional space cell complexes. A major draw-

back is the lack of semantic modelling elements (like with almost all B-Rep structures from computational geom-

etry). Moreover, internal voids as well as non-manifold structures are not supported, and neither is a decoupled 

modelling of geometry and topology. 

The dual-half edge (DHE) structure of (Boguslawski & Gold 2009) is obviously a further geometric-topological 

B-Rep data model and important related work in the context of the MLSEM. Since it has already been introduced 

in chapter 2.2.3 and has been comprehensively discussed and compared to the MLSEM in the course of the previ-

ous chapters, a redundant presentation is omitted here.   

4.3 ISO 19100 Standards Family 

The ISO 19100 standards family is a series of international standards for the definition, description, and manage-

ment of geographic information developed and published by the Technical Committee 211 (ISO/TC 211) of the 

International Organization for Standardization (ISO). Geographic information is broadly understood to comprise 
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any knowledge and information about real world objects and phenomena that can be directly or indirectly given a 

location relative to the Earth’s surface. The ISO 19100 standards series aims at enabling a common notion of 

geographic information as well as at establishing a common language for describing and structuring geospatial 

objects along their spatial and non-spatial aspects. A main goal of the standardization activity is to facilitate in-

teroperability between heterogeneous geographic information systems. On the one hand, this addresses syntactic 

interoperability which refers to the capability of two or more (distributed) computing systems to communicate and 

exchange geographic information and data independent of software components, system borders, and data provid-

ers based on standardized data formats, interfaces, and protocols. On the other hand, semantic interoperability 

shall be accomplished in order to allow a computing system to automatically interpret the meaning and the logical 

structures of the exchanged content according to a shared and unambiguous reference information model. In order 

to reach this goal, the ISO 19100 series includes the specification of standardized methods, tools, and services that 

support the acquisition, analysis, access, presentation, and transfer of geographic data between users, systems, and 

locations (cf. ISO 19101:2002). In this sense, the ISO 19100 standards family can be viewed as a collection of 

independent abstract standards which cover different aspects of geographic information (e.g., spatial, semantic, 

temporal, or qualitative aspects) from different viewpoints (e.g., data capturing, modelling, processing, providing), 

but which do not intend to provide a complete model for the whole universe of geographic information (Kresse & 

Fadaie 2004).  

In the context of spatio-semantic data modelling, two core ISO specifications are of relevance and are discussed 

in more detail in the following subchapters. First, the ISO 19107:2003 “Geographic information – Spatial 

schema” provides a general conceptual schema for describing the geometric-topological characteristics of spatial 

objects in up to three dimensions, and defines standard spatial operations on spatial objects. Second, the ISO 

19109:2005 “Geographic information – Rules for application schemas” defines the concept of a feature as the 

basic unit for geoinformation modelling and processing, and introduces rules and principles for the conceptual 

modelling of features and their properties (amongst them spatial ones) in a given application context. The abstract 

concepts presented in both standards form the theoretical foundation for concrete implementations and support the 

semantic interoperability between geographic information systems. Further standards in the context of geographic 

information modelling deal with related topics such as spatial referencing based on coordinates (ISO 19111:2007) 

or geographic identifiers (ISO 19112:2003), the description of temporal characteristics (ISO 19108:2005) and 

quality aspects (ISO 19113:2002) of features as well as the modelling and provision of corresponding metadata 

(ISO 19115:2003). A detailed presentation of these topics is however outside the scope of this thesis, and the 

reader is referred to corresponding literature (e.g., Kresse & Fadaie 2004).  

In addition to ISO/TC 211, the Open Geospatial Consortium (OGC) is one of the most important bodies to develop 

and release standards in the field of GIS at an international level. Whereas ISO is to be seen as an umbrella organ-

ization composed of representatives of national standardization bodies from its various member countries, the 

OGC is a non-profit industry consortium with members from industry, academia, and government agencies. OGC 

standards are commonly said to be de-facto standards as they are enforced through the broad acceptance of the 

GIS community rather than through some formal or legal act as with de-jure standards issued by standards setting 

bodies such as ISO. Similar to the ISO 19100 volumes, the OGC differentiates between Abstract Specifications 

(organized into Topics) that provide the conceptual foundation and general architecture for most of the OGC stand-

ardization activities, and platform-specific Implementation Standards that built upon the abstract concepts and 

focus on open interfaces, data encodings, and application schemas in order to enable both syntactic and semantic 

interoperability between different kinds of spatial processing systems mostly over the internet. Since 1998, both 

organizations closely cooperate in harmonizing the conceptual basis for geographic information and in the joint 

development and mutual approval of geospatial standards. For example, the Spatial Schema of ISO 19107:2003 

has replaced the OGC Abstract Specification Topic 1 – Feature Geometry, and the notion of a geographic feature 

as well as the conceptual modelling of features (Topics 5, 8, and 10) has been aligned with the definitions, rules 

and principles from ISO 19109:2005.32 Hence, both ISO 19107:2003 and ISO 19109:2005 provide a standardized 

and commonly accepted framework for spatio-semantic data modelling in the field of GIS. 

                                                           
32 Likewise, OGC standards such as the OGC Web Map Service (WMS), the OGC Web Feature Service (WFS), or the OGC 

Geography Markup Language (GML) have been incorporated in the ISO 19100 standards family (cf. ISO 19128:2005, ISO 

19142:2010, and ISO 19136:2007). 
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4.3.1 ISO 19107 – Spatial Data Modelling 

The ISO 19107 Spatial Schema organizes the spatial characteristics of geographic features into two separate con-

ceptual models, namely a geometry model and a topology model. The geometry model offers 0-dimensional up to 

3-dimensional geometric objects that facilitate the quantitative description of the spatial characteristics of features 

including their shape, size, and location by means of coordinates and mathematical functions. The topology model, 

on the other hand, defines corresponding topological primitives which allow for constructing combinatorial struc-

tures that encode qualitative and invariant spatial characteristics such as the connectivity of geometric primitives 

and the topological relationships between features. The Spatial Schema employs the B-Rep scheme for the repre-

sentation of geometric and topological objects. The Unified Modelling Language (UML) is consistently being used 

as conceptual modelling language to describe the spatial concepts in each model as well as their properties, oper-

ations, and associations in object-oriented terms. 

The following figure 155 illustrates the most important conceptual entities of the ISO 19107 geometry model 

arranged in UML class hierarchy.  

 

Figure 155: The most important conceptual entities of the ISO 19107:2003 geometry model. 

GM_Object33 is the abstract root class of the geometric taxonomy and represents a geographically referenced ge-

ometry object. It is defined to be the combination of a coordinate geometry and a coordinate reference system with 

the latter being represented by an instance of the class SC_CRS specified in ISO 19111:2007. A geometry object 

can either be a primitive geometry (GM_Primitive), a structured complex of primitives (GM_Complex) or an un-

structured collection of geometry objects (GM_Aggregate). Any geometric object that is used to describe a geo-

graphic feature is hence a single primitive or a (structured) collection thereof which makes the primitives the basic 

building blocks of the geometry model. 

Geometric primitives are distinguished into points (GM_Point), curves (GM_Curve), surfaces (GM_Surface), and 

volumetric objects (GM_Solid) (cf. figure 156). Conceptually, a geometric primitive is a single, connected, homo-

geneous element of a metric space that is not further decomposed into other primitives and that presents infor-

mation about a geometric configuration.34 The ambient space is usually assumed to be 2-dimensional or 3-dimen-

sional Euclidean space. The 0-dimensional point primitives are simply given by a coordinate tuple. Curves are 

continuous images of the open unit 1-ball 𝔹1 and are composed of one or more 1-dimensional continuous curve 

segments each of which results from a set of control points and an associated interpolation method. The control 

points need not be contained in the point set covered by the curve and are not described through GM_Point objects. 

Supported interpolation methods include linear, geodesic, circular, clothoid, and splines, which facilitates the de-

scription of straight lines up to freeform curves. Surfaces are the basis for 2-dimensional geometry, and are defined 

to locally represent a continuous image of 𝔹2. Similar to curves, they are composed of one or more connected 

surface patches which may differ in the applied interpolation and definition methods. Besides planar and curved 

surface patches, again freeform patches are supported. Finally, the 3-dimensional solid primitives are given by 

continuous images of the interior of an 𝑛-holed toroid and are enforced to live in three dimensions. 

                                                           
33 By convention, the names of classes belonging to the geometry model are prefixed with “GM_”, whereas classes from the 

topology model receive the prefix “TP_”. 

34 Note that in ISO 19107 the concept of a geometric primitive does not imply that it is not decomposable. A geometric primitive 

is rather a behavioural label. It is such by its use and behaviour, not by its structure. Whereas “not decomposable” is a structural 

imperative, primitives are simply “not decomposed” which represents a choice. In fact, most geometric primitives are decom-

posable infinitely many times (ISO 19107:2003). 
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Figure 156: The geometric primitives of ISO 19107:2003. 

Curves and surfaces are oriented geometries, i.e. they have an orientation. For curves, the orientation reflects the 

direction in which the curve is traversed. The positive orientation is defined to be the direction following from the 

curve parameterization (i.e., from its start to its end), and the negative orientation denotes the reverse direction. 

Surfaces are orientable if two opposite sides (a “top” side and a “back” side) can be distinguished, with the positive 

orientation in the direction of its upward normal. In order to give a primitive an orientation, the abstract class 

GM_OrientablePrimitive provides an orientation flag. GM_OrientablePrimitive instances reference an orientable 

base primitive and denote through a “+” or “-” sign whether the oriented primitive agrees or disagrees with the 

orientation of the referenced object. In the latter case, the orientation of the referenced primitive has to be reversed. 

The classes GM_Curve and GM_Surface are transitive subclasses of GM_OrientablePrimitive and per definition 

reflect the positive orientation (e.g., a GM_Curve “is a” positive oriented GM_OrientableCurve). A direct conse-

quence of oriented primitives is that non-orientable surfaces such as the Möbius strip or the Klein bottle (cf. ap-

pendix A.5.2) are not covered by ISO 19107.  

Every instance of GM_Object can be simple or non-simple. Being simple implies that the geometric object does 

not have self-intersections or self-tangencies. Formally, each interior point of the geometric object must have an 

open neighbourhood whose intersection with the object is homeomorphic to the open unit 𝑛-ball 𝔹𝑛, with 𝑛 being 

the dimension of the object.35 A GM_Object is said to be a cycle if its boundary is the empty set. It follows that 

the geometric primitives of the Spatial Schema are more expressive compared to the geometric-topological models 

discussed in chapter 4.2. For example, non-manifold geometric configurations such as self-intersecting and self-

tangent (and thus non-simple) curves are supported. Likewise, closed curves (i.e., circles) as well as closed surfaces 

(i.e., 𝑛-holed tori) can be represented through a single instance of GM_Curve and GM_Surface being cycles.  

The boundaries of geometric objects are represented through subtypes of the abstract class GM_Boundary as il-

lustrated in the following figure 157. Since a boundary may consist of more than one primitive, GM_Boundary 

itself is a subtype of GM_Complex. Boundary objects are necessarily cycles. Whilst point primitives have no 

boundary, instances of GM_CurveBoundary, GM_SurfaceBoundary, and GM_SolidBoundary provide the bound-

ary of the respective primitive. It is important to note that, per definition, the point set described by a geometric 

primitive does not contain its boundary points. In contrast, each subtype of GM_Primitive provides a boundary() 

operator that returns the boundary through a corresponding subtype of GM_Boundary (cf. figure 158). 

                                                           
35 Note that the ISO 19107 specification uses the notion of an 𝑛-sphere in the definition of simple geometric objects instead 

(cf. 19107:2003, chapter 6.2.2.6, p. 27), however without properly stating what a sphere topologically means. In order to be 

consistent with the definition of an 𝑛-sphere as boundary of a closed (𝑛 + 1)-ball as given in appendix A.2, the 𝑛-sphere has 

been replaced with the open 𝑛-ball here. 
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Figure 157: The hierarchy of the boundary classes. 

 

Figure 158: The boundary() operator of the geometric primitives returns an instance of a specific boundary class. 

The boundary of a curve consists of two GM_Point primitives that denote the start and the end point of the curve 

and that may be coincident. For the description of the boundary of surfaces and solid objects, two more geometric 

primitives are introduced, namely GM_Ring and GM_Shell (cf. figure 159 and chapter 4.1). A GM_Ring is defined 

to be a sequence of consistently oriented curve primitives connected in a cycle, and each ring needs to be simple. 

The boundary of a surface may have various components each of which is reflected by a separate ring. Typically, 

one of these rings can be identified to be the exterior boundary of the surface (i.e., the closed manifold that sepa-

rates the bounded surface from the unbounded component according to the Jordan-Brouwer separation theorem). 

In this case, further interior boundary rings separate the surface from interior holes. In case no exterior boundary 

can be identified, all boundaries are listed as interior boundaries. Examples for this are the 2-dimensional cylinder 

surface or the universal face which thus is supported by the Spatial Schema. The orientation of the curve primitives 

contained in a ring needs to be consistently chosen so that the interior of the surface is on the left of the curve with 

respect to its direction. Thus, when looking from the direction of its positive orientation, the exterior boundary of 

a GM_Surface appears counterclockwise and interior boundaries necessarily clockwise. Although each GM_Ring 

is required to be simple, the entire boundary of the surface represented by GM_SurfaceBoundary needs not be 

simple (e.g., boundary rings are allowed to be tangent). 
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Figure 159: The description of the boundaries of the geometric primitives.  

Similar to the boundary of surfaces, the GM_SolidBoundary of a solid object consists of one or more GM_Shell 

instances with each GM_Shell being a set of consistently oriented surface primitives connected in a cycle. The 

orientation of each surface contained in a shell needs to be chosen so that its upward normal points away from the 

solid’s interior (i.e., the solid volume is below the surface). In case the solid is bounded, one GM_Shell can be 

identified to be the exterior boundary with zero or more interior boundaries enclosing interior voids of the solid. 

The Spatial Schema also supports the representation of the unbounded universal solid which only has interior 

shells. Like with rings, each boundary shell needs to be simple. This however does not imply that the GM_Solid-

Boundary itself is simple. Moreover, note that the modelling of exterior and interior shells respectively rings su-

persedes the need to have bridge faces and edges.   

Geometric objects can be gathered in finite sets represented through GM_Aggregate and GM_Complex (cf. figure 

155). A GM_Aggregate is an unstructured set of GM_Object instances which does not impose any constraints on 

the geometric configuration. Thus, the contained geometric objects may be of any dimension and may geometri-

cally intersect, overlap, or even be equal to each other. Aggregate geometries hence allow the modelling of singu-

larities. The subtype GM_MultiPrimitive and its specializations further restrict the elements of the aggregate to be 

geometric primitives of the same dimension as shown in the following figure. 

 

Figure 160: The subtypes of GM_Aggregate and their relation to the geometric primitives. 

A GM_Complex is a structured set of geometric primitives (sharing the same coordinate reference system) that are 

enforced to be simple and geometrically disjoint. Moreover, a GM_Complex must also contain the elements form-

ing the boundary of every primitive in the geometric complex.36 The simplest 𝑛-dimensional complex contains a 

single GM_Primitive of dimension 𝑛 as well as all lower dimensional primitives in its boundary. Thus, there is a 

subtle but important difference in the semantics of a GM_Primitive and a GM_Complex. For example, whereas a 

                                                           
36 The boundary of a primitive in a geometric complex is said to be a subcomplex of that complex. 
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GM_Curve primitive has to reference its boundary points but does not contain them, a curve represented as 1-

dimensional GM_Complex also references its boundary points but additionally contains them.37  

A more restrictive subtype of GM_Complex is given by the abstract class GM_Composite. A geometric composite 

is a complex whose underlying core geometry must be isomorphic to a single geometric primitive. It is generated 

from a homogeneous collection of primitives having the same dimension and includes their boundaries. The Spatial 

Schema introduces an instantiable subtype of GM_Composite for each dimension. Since composite geometries are 

built from primitives but at the same time act as a single primitive, these subtypes are also derived from the corre-

sponding geometric primitive classes as depicted in figure 161. This multiple inheritance increases the semantic 

ambiguity. The primary semantics of a GM_Composite is that of a geometric complex and hence includes the 

boundary. When used in interfaces inherited from GM_Primitive, it may also be used as a primitive object which 

shall not contain its boundary. It is obvious that both representations are topologically different. 

 

Figure 161: The subtypes of GM_Complex and their relation to the geometric primitives.  

The topology model of ISO 19107 parallels the presented geometry model. It facilitates the representation of top-

ological complexes as purely combinatorial structures built from topological primitives. The topological primitives 

are called TP_Node, TP_Edge, TP_Face, and TP_Solid and are equivalent to the geometric primitives of the re-

spective dimension. They are subtypes of TP_Primitive and represent the non-decomposed building blocks of the 

topology model. TP_Primitive itself is derived from the abstract class TP_Object being the root of the topological 

taxonomy and whose only other subtype is TP_Complex. A TP_Complex is a structured set of primitives and 

corresponds to a geometric complex.38 

The relation between the topology and the geometry model is sketched in the following figure 162. Normally, a 

topological complex is constructed from and geometrically realized through a geometric complex (cf. Realization 

association). In this case, each topological primitive contained in the topological complex is in a dimension-pre-

serving, one-to-one correspondence with a geometric primitive of the same geometric complex, and thus is like-

wise geometrically realized through this geometric primitive. The geometric primitives including their boundary 

thus fulfil the requirements of geometric carriers for the topological primitives as introduced in chapter 3.1.1.3 

(cf. definition 3.3 and the related discussion). And similarly, the geometric complex is to be seen as the geometric 

carrier of the topological complex. However, the Spatial Schema also allows a topological complex to be modelled 

independently from a geometric realization and to be assigned to a geographic feature as its spatial representation. 

Then this topological complex may ignore geometric constraints but relate features independently of their coordi-

nate geometry. Conversely, a geometric configuration need not be equipped with a topological structure which 

then, however, requires purely computational geometry algorithms to answer topological queries (e.g., to retrieve 

                                                           
37 According to ISO 19107, complexes are to be used if the sharing of geometry is important (cf. ISO 19107:2003, chapter 

6.6.2.1, p. 93). Since primitives only return their boundary upon request through their boundary() operator, the returned 

GM_Boundary is always geometrically equivalent, but not necessarily contains the identical instances of GM_Primitive from 

a computational point of view. Thus, persistently referencing the boundary (e.g., if it is shared by two primitives) is not possible. 

This is different for geometric complexes since the boundaries are explicitly contained in the complex. 

38 Both logically and structurally, topological and geometric objects could even share the same subclass structure (cf. ISO 

19107:2003, p. 101). It is handled differently in ISO 19107 in order to be able to define different properties and operators for 

both type hierarchies.  
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the boundary or topological relationships). This modelling flexibility of the Spatial Schema exceeds the expres-

sivity of all geometric-topological models presented in chapter 4.2.  

 

Figure 162: The relation between geometric and topological objects. 

As shown in the above UML diagram, each TP_Primitive must belong to at least one TP_Complex.39 This differs 

from the geometry model where a GM_Primitive may more loosely exist without a GM_Complex. Thus, the to-

pology model of ISO 19107 always requires the modelling of topological complexes because a TP_Complex not 

only contains the topological primitive in question but also the elements on its boundary. A topological complex 

may only be realized geometrically by exactly one geometric complex. If it is realized, then all of its primitives 

must be associated with precisely one GM_Primitive from the complex geometry. If a single topological primitive 

shall not be realized, then the entire TP_Complex it belongs to as well as all of its contained primitives may not 

have a geometric realization. In contrast, since a geometric primitive may belong to different and decoupled geo-

metric complexes, it may be the realization of different topological primitives. This allows for defining multiple 

and different topological structures on the same geometric configuration. 

Equivalent to the semantics of GM_OrientablePrimitive, every TP_Primitive has a positive and a negative orien-

tation. The abstract class TP_DirectedTopo and its subtypes are used to model directed primitives by denoting 

their orientation attributively through a “+” respectively a “-” sign. The following figure shows the relation be-

tween the topological primitives and their counterparts derived from TP_DirectedTopo. Note that every primitive 

is associated to two directed proxies representing its positive and negative orientation. Moreover, and similar to 

the geometry model, it is at the same time a subtype of the corresponding directed topological primitive and se-

mantically represents the positive orientation. For example, a TP_Face is a subtype of TP_DirectedFace and 

equivalent to a positive directed TP_DirectedFace. The orientation of a TP_Primitive is further required to be 

consistent with the orientation of the GM_Primitive that realizes it. 

 

Figure 163: The topological primitives and their directed counterparts. 

                                                           
39 In fact, it may only belong to precisely one maximal topological complex. A complex is said to be maximal if it is not a 

subcomplex of a larger complex. 
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The orientation is relevant for properly describing the boundary and coboundary of the topological primitives. The 

boundary() operator of each primitive returns an instance of TP_EdgeBoundary, TP_FaceBoundary, or TP_Solid-

Boundary, respectively an empty set for TP_Node. The definition of the boundaries as well as the orientation of 

the contained topological primitives follows the same semantics as in the geometry model. For example, TP_Ring 

and TP_Shell are used to represent the exterior and interior boundary components of faces and solids. In addition, 

the coBoundary() operator returns a set of those TP_DirectedTopo instances which have the primitive on their 

boundary. For example, the coboundary of a TP_Face returns a set of directed solids representing the solids whose 

boundary contains the face. Whereas the boundary of a topological primitive has to be of dimension one less than 

that of the primitive, the dimension of the coboundary needs to be one dimension higher (but is undefined for 

solids). The coboundary information is especially useful to evaluate topological adjacency relationships between 

primitives. Figure 164 presents the corresponding UML representation. 

 

Figure 164: The boundary() operator of the topological primitives returns an instance of a specific boundary class. The 

coBoundary() operator returns an unstructured set of directed topological primitives. 

A topological complex in the sense of the ISO 19107 Spatial Schema may not be confused with a cell complex as 

defined in algebraic topology (cf. definition A.48). Most importantly, the 𝑛-cells participating in an algebraic cell 

decomposition are required to be homeomorphic to the open unit 𝑛-ball 𝔹𝑛 (cf. definition A.46) whereas the 

topological primitives in ISO 19107 may also be homeomorphic to multiply-punctured open 𝑛-balls without the 

need for additional bridge edges or faces, and even may be non-compact. While these aspects exceed the expres-

sivity of algebraic cell complexes, the fact that an 𝑛-dimensional topological primitive has to go in (𝑛 − 1) di-

mensions on its boundary is a restriction of the mathematical notion which implies one consequence with respect 

to the MLSEM. Precisely, consider a single 3-dimensional space cell being homeomorphic to the closed 3-ball 

�̅�3. Then the minimal cell decomposition of the boundary 2-sphere is given by one 2-cell and one 0-cell (cf. figure 

69b in chapter 3.1.3). However, in ISO 19107, it takes a minimum of two TP_Face instances (hemispheres) which 

meet at a common TP_Edge whose boundary is a single TP_Node in order to describe the 2-sphere. Note that this 

restriction also holds for the alternative approaches to geometric-topological data modelling presented in chapter 

4.2 most of which are even further limited to regular cell decompositions. 

There is also another important difference between the Spatial Schema and the alternative data models which 

strongly supports the ideas of the MLSEM. Remember that a single TP_Primitive is geometrically realized through 

a single GM_Primitive. Since composite geometries are universally subtyped (transitively) from GM_Primitive, 

every TP_Primitive may likewise be realized through a GM_Composite. For example, a single TP_Face suffices 

to represent a structured set of geometric surfaces if this set renders a GM_CompositeSurface. Put more generally, 
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a connected sequence of (𝑛 − 1)-dimensional geometric primitives on the boundary of an 𝑛-dimensional spatial 

object may be topologically captured by a single (𝑛 − 1)-dimensional TP_Primitive object. Since, within the 

MLSEM, the number of (𝑛 − 1)-dimensional boundary elements is correlated with the number of dual edges in 

the resulting Poincaré dual graph, this flexibility of the Spatial Schema allows for reducing the number of dual 

edges without affecting the geometric configuration of the spatial object (cf. related discussion in chapter 3.1.3). 

None of the presented alternative geometric-topological data models provides this expressivity.  

Based on the discussions in this chapter, it follows that the ISO 19107 Spatial Schema facilitates the modelling of 

the primal space geometry of 2-dimensional and 3-dimensional space cells through simple GM_Surface respec-

tively GM_Solid primitives by restricting them to render connected, compact manifolds with boundary as required 

by conditions (i) and (ii) of definition 3.2. In order to describe the space cell complex associated with a space layer, 

the geometric primitives can be combined in a GM_Complex structure which also supports non-manifold geomet-

ric configurations of space cells. The definition of a GM_Complex hereby naturally conforms to definition 3.7 

according to which the space cells participating in a space cell complex must be mutually non-overlapping. More-

over, the Spatial Schema is strong enough to also represent the non-compact geometry of the outer space cell 

complementing a space cell complex through a single geometric primitive by simply listing the boundary compo-

nents of the space cell complex as interior GM_Ring respectively GM_Shell objects in the boundary of the outer 

space cell. Since only single GM_Ring and GM_Shell objects need to be simple but not the boundary of the prim-

itive itself, non-manifold spaces underlying the outer space cell can also be described. The primal space topology 

of the space cells is then provided in a decoupled way using topological primitives (TP_Face respectively 

TP_Solid) being arranged in a possibly non-manifold TP_Complex that topologically represents the space cell 

complex on a given space layer. Hence, this TP_Complex is geometrically realized through the corresponding 

GM_Complex that also provides the geometric carriers for each individual topological primitive.  

When restricting the dimension of geometric and topological complexes to one, the Spatial Schema can likewise 

be used to represent graph structures in geometry and topology space. Thus, a 1-dimensional TP_Complex is fea-

sible to model the dual space topology of a space layer as given in definition 3.20. The topological primitives in 

the primal and dual TP_Complex of a space layer are then in a dimension-reversing, one-to-one correspondence 

reflecting the Poincaré duality. The TP_Node primitives contained in the dual complex hence represent the dual 

space topology of the single space cells, whereas each TP_Edge reflects a space cell boundary. Note that the 

missing bridge edges and faces in primal space do not impact this bijective pairing since their dual counterparts 

are excluded from the dual space representation according to condition (ii) of definition 3.20. The TP_Complex 

capturing the intra-layer graph of a space layer can then be geometrically embedded through a decoupled 1-di-

mensional GM_Complex which satisfies the requirements for the dual geometry space representation of a space 

layer as imposed by definition 3.21. Each TP_Edge primitive in the dual TP_Complex may again be realized 

through a composite collection of space curves being isomorphic to a single curve primitive. This facilitates the 

modelling of fine-grained and precise geometric space trajectories and travelling paths in dual geometry space 

based on GM_CompositeCurve objects (cf. 3.1.2.3) whilst the purely topological adjacency information is captured 

by a single TP_Edge. 

In summary, the spatial data model introduced in ISO 19107 provides the necessary means to model the geometric-

topological representation of space cells and space layers in both primal and dual space. Moreover, its spatial 

expressiveness covers the whole range of geometric-topological configurations of space cells and space cell com-

plexes presented in chapter 3.1.3. In the following figure, the four quadrants of the conceptual geometric-topolog-

ical space representation of space cells and space layers as introduced in figure 41 and figure 42 are augmented 

with corresponding spatial model elements from the ISO 19107 Spatial Schema.  
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Figure 165: Using ISO 19107 concepts to model the four quadrants of the geometric-topological representation schema of 

space cells (left) and space layers (right). 

4.3.2 ISO 19109 – Semantic Data Modelling 

Within the ISO 19100 standards family, the fundamental unit of geographic information are features. The ISO 

19101:2002 specification defines a feature as abstraction of a real world phenomenon. A feature is said to be a 

geographic feature if it is associated with a location relative to the Earth. Features are conceptual entities that 

represent a real world object together with its semantics and spatial characteristics, its relationships to other fea-

tures, and its behaviour. This notion is in contrast to earlier approaches to GIS data modelling that simplified 

geographic information through purely geometric objects being equipped with a set of thematic attributes. The 

ISO 19100 series thus represents a paradigm shift towards the conceptual modelling (cf. chapter 2.1.3) of geo-data 

by semantically classifying a view of the real world through well-defined objects (i.e., features) that may or may 

not be expressed spatially.  

The rules and principles for defining and organizing features in a conceptual data model are provided by the Gen-

eral Feature Model (GFM) which is specified in ISO 19109:2005. The GFM is to be seen as a metamodel that sets 

the standard framework for the description and modelling of features as derived from a universe of discourse but 

which itself does not provide any classification of concrete real word objects. In contrast, any view of the real 

world is always understood to be a partial abstraction that depends on and satisfies a given application field but 

which does not have universal scope. A feature and its properties thus describe how a real world phenomenon is 

perceived in the context of a specific geographic application, but this perception may differ for different applica-

tions. A conceptual data model that adheres to the rules and principles of the GFM is therefore said to be an 

application schema.40  

Figure 166 shows the main conceptual elements of the GFM for defining features in application schemas. The ISO 

19109 uses UML as conceptual schema language for specifying the GFM itself.  

                                                           
40 Besides the definition of the GFM, ISO 19109 provides standard rules regarding the derivation of application schemas. These 

rules address topics such as the step-wise refinement of feature definitions according to the application needs, the transition 

from the GFM concepts to an appropriate representation in application schemas using a standardized conceptual schema lan-

guage such as UML or EXPRESS (ISO 10303-11:1994), or the integration of further standardized ISO 19100 schemas with 

the application schema. The detailed presentation and discussion of these rules is however outside the scope of this thesis. The 

reader is referred to ISO 19109:2005. 
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Figure 166: The main concepts of the General Feature Model as defined in ISO 19109:2005. 

The central concept of the GFM is called GF_FeatureType.41 A GF_FeatureType is a metaclass whose instances 

represent semantically homogeneous groups of real world phenomena. The GFM is based on object-oriented mod-

elling principles according to which an individual feature type (i.e., an instance of GF_FeatureType) is to be seen 

equivalent to the concept of a class. The objects of feature classes are said to be feature instances with each feature 

instance representing a concrete real world object being a member of its feature type. Note that in ISO 19109 the 

term “feature” is used interchangeably to either reference an abstraction of a real world phenomenon independent 

of types and instances (meta meta level), the abstract GFM concept of a feature type (meta level), an individual 

feature type (application level), or a concrete feature instance (data level). Besides grouping features into types, 

the GFM addresses the description of attributes associated with each type (GF_AttributeType), the relationships 

among the types (GF_InheritanceRelation and GF_AssociationType), and the behaviour of features modelled as 

operations (GF_Operation). In order to ensure the integrity of data being exchanged according to an application 

schema, both feature types (including associations) and the properties of feature types may be subject to constraints 

(GF_Constraint) which can be expressed in terms of a constraint language such as the Object Constraint Language 

(OCL). 

The attributes of a feature carry the relevant information about its characteristics. The GF_AttributeType class is 

a metaclass for defining a feature attribute through specifying its name, its value type or domain as well as its 

cardinality. The GFM distinguishes five kinds of attribute types being subtypes of GF_AttributeType as shown in 

figure 167. Temporal attributes (GF_TemporalAttributeType) are used to provide a time reference for a feature as 

either point in time or time interval according to the temporal schema specified in ISO 19108:2005. The spatial 

characteristics of features are described through spatial attributes (GF_SpatialAttributeType) whose value domain 

is restricted to GM_Object and TP_Object from ISO 19107:2003. Non-geometric location information about fea-

tures (e.g., identifiers such as names or addresses) can be expressed through location attributes (GF_LocationAt-

tributeType) being specified in ISO 19112:2003. The provision of metadata about features or their attributes is 

facilitated through metadata attributes (GF_MetadataAttributeType) in accordance with ISO 19115:2003. Finally, 

any other descriptive characteristic information about features is called a thematic attribute (GF_ThematicAttribu-

teType) and can be defined according to user or application needs independent of an existing specification from 

the ISO 19000 standards series.  

                                                           
41 The prefix “GF_” is consistently being used within ISO 19109 to mark the classes from the General Feature Model. 
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Figure 167: The subtypes of GF_AttributeType (excerpt).  

Relationships between feature types include semantic classification hierarchies (GF_InheritanceRelation) that ren-

der taxonomies by structuring feature types into supertypes and subtypes. General semantic associations between 

feature types such as has-a and part-of relationships are modelled through instances of the metaclass GF_Associ-

ationType which itself is a subtype of GF_FeatureType and hence may carry additional attributes. The role a 

feature takes in an association is specified as feature property by means of the metaclass GF_AssociationRole. 

Associations allow for modelling semantic decomposition hierarchies between features. Thus, the whole feature 

(e.g., a building) but also its semantic parts (e.g., storeys, floors, room, corridors, etc.) can be expressed as indi-

vidual feature types and put in appropriate associations. The resulting semantic structure can even be paralleled by 

a corresponding spatial structuring of the features. This dual structure is inherently implied by ISO 19109. For 

example, a building feature type can be assigned a GM_Complex (or TP_Complex) as spatial representation, 

whereas its (nested) semantic parts are spatially described through (nested) subcomplexes of that GM_Complex 

(or TP_Complex). In literature, the correspondence between the semantic and the spatial decomposition of features 

and spatial objects is discussed under the term spatio-semantic coherence (cf. Stadler & Kolbe 2007, Kolbe 2009). 

Often, existing data models in GIS focus on a sound geometric-topological representation of spatial objects but 

neglect the coherent representation of semantics. This is especially true when applying spatial representation 

schemes such as the spatial occupancy enumeration or triangulations respectively tetrahedralizations of geometric 

objects. In such cases, a semantic feature is spatially decomposed into smaller parts which however do not reflect 

its structuring into individual semantic parts. However, and as discussed by (Stadler & Kolbe 2007), a coherent 

structuring is beneficial in terms of knowledge inference and reasoning because every semantic entity “knows” its 

spatial location and extent, whereas every spatial object “knows” its semantic meaning.  

The GFM offers a comprehensive framework for the spatio-semantic description of real world entities which ex-

ceeds the semantic modelling capabilities of the alternative data models discussed in chapter 4.2. In the context of 

the MLSEM, space cells, boundary cells, and space layers have been introduced as the core conceptual entities for 

the representation of interior spaces, and their semantic dimension is an essential aspect of their mathematical 

definitions (cf. definition 3.1, definition 3.24, and definition 3.19). Whereas the spatial characteristics of the 

MLSEM are fully expressible through the Spatial Schema as illustrated in the previous chapter, the concepts in-

troduced by the GFM provide the necessary means to also capture and model its semantic dimension. The ISO 

19100 standards family is hence a natural choice for defining a conceptual data model for the MLSEM. 

4.4 Conceptual Data Model of the Multilayered Space-Event Model 

The ISO 19100 compliant realization of a conceptual data model for the MLSEM is presented in the following 

sections. The data model proposed here is based on a first draft presented by (Becker et al. 2009b) and (Nagel et 

al. 2010) (cf. appendix D). In the course of this thesis, this draft has been substantially reworked and augmented 

by additional model elements in order to fully cover the spatio-semantic expressivity of the MLSEM. For example, 

the initial data model did not foresee the geometric-topological representation of space cells and space layers in 

both two and three dimensions but is rather restricted to the latter case. This restriction not only limits the possible 

applications of the MLSEM but, more importantly, is not justified from its mathematical definition as developed 

in this thesis and thus has been resolved. Moreover, missing conceptual entities (e.g., regarding the modelling of 
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space layer complexes as well as joint states and their transitions) have been added as well as the possibility to 

link instances of the MLSEM to their original data sources (e.g., entities in IFC or CityGML models) and to 

represent individual navigation routes enriched with guidance information. A further fundamental extension ad-

dressing the modelling of navigation constraints is discussed and presented in its own chapter 5.  

4.4.1 MLSEM Application Schema 

The conceptual data model of the MLSEM is specified as application schema in the sense of ISO 19109 and is 

formally described using UML as conceptual modelling language. Figure 168 shows the organization of the 

MLSEM schema in terms of UML packages. The overall data model is split into seven leaf packages which cover 

separate conceptual aspects of the MLSEM schema and which are called Space Representation, Joint States, 

Source Object, External Reference, Groups and Sequences, Route, and Model Linkage. The package Space Rep-

resentation renders a dependency for the other leaf packages of the MLSEM schema (except External Reference). 

A package is said to be dependent on another package if it uses structures and definitions from that package. In 

the UML diagram in figure 168, dependency relations are expressed as dashed arrows classified with the stereotype 

«uses» and with the arrowhead denoting the direction of the dependency (i.e., from the user to the provider). 

Additionally, the contents of the MLSEM schema reference elements from the ISO 19107:2003 Spatial Schema 

and the ISO 19108:2005 Temporal Schema. The integration with both standard schemas from the ISO 19100 series 

thus results in additional schema dependencies. The discussion and presentation of the MLSEM schema in the 

subsequent sections follows the illustrated package structure. 

 

Figure 168: The packages of the MLSEM application schema and their dependencies. 

4.4.1.1 Space Representation Package 

The Space Representation package defines the basic classes for the spatio-semantic description of indoor space on 

different space layers in both primal and dual space. The semantic concepts of this package as well as their rela-

tionships are depicted in the UML class diagram shown in figure 169. 
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Figure 169: The semantic concepts of the Space Representation package. 

Semantic concepts. The MLSEM application schema structures the semantic view on indoor space along the two 

main conceptual entities SpaceCell and BoundaryCell. Both classes are realizations of the GFM metaclass 

GF_FeatureType which is consistently indicated through the stereotype «FeatureType» in all leaf packages of the 
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MLSEM schema. The SpaceCell feature type carries the notions of a space cell (cf. definition 3.1) and the outer 

space cell (cf. definition 3.11) from the formal mathematical model of the MLSM into the conceptual data model. 

Likewise, the BoundaryCell feature type is the equivalent of the formal notion of a boundary cell (cf. definition 

3.24) within the data model. Both SpaceCell and BoundaryCell are subtypes of the abstract feature type SpaceEl-

ement which provides their common abstraction. 

The SpaceCell entity is related to the feature types Space and State through the PrimalSpace and DualSpace asso-

ciations. Whereas a Space feature represents the 2-dimensional or 3-dimensional partition of indoor space occu-

pied by the space cell in primal space, the State feature type conceptually captures the state of physically being 

within the space cell and thus corresponds to its dual node representation. Both associations realize a one-to-one 

correspondence between the SpaceCell and its space representations. Space and State are themselves linked by the 

Duality association which allows for navigating between the primal and dual space description of a space cell and 

thus translates the formulas 3.17 and 3.18 from the mathematical model. The conceptualization of boundary cells 

within the data model follows the same approach. The 2-dimensional respectively 1-dimensional subset of primal 

space inhabited by a boundary cell is reflected through an instance of the feature type SpaceBoundary which at 

the same time semantically classifies a part of the boundary of a Space. The Transition feature type, on the other 

hand, captures the dual edge representation of a boundary cell and therefore expresses a topological adjacency 

relationship as well as the transition between two State features which is triggered by the movement from one 

space cell to another. Both space representations are similarly linked to the BoundaryCell via the PrimalSpace and 

DualSpace association, whereas the Duality relation between SpaceBoundary and Transition realizes their formal 

pairing according to the formulas 3.27 and 3.28. Hence, it likewise can be viewed as switch between primal and 

dual space.  

The conceptual data model of the MLSEM differs from its mathematical formalization in that it introduces a loose 

coupling between the presented model elements. Precisely, a SpaceCell feature may exist with or without associ-

ated instances of Space and State as specified by the multiplicities on the PrimalSpace, DualSpace, and Duality 

relations. It follows that a SpaceCell may be represented in both primal and dual space but may likewise possess 

only one or even none of both space representations. The same holds for the representation of a BoundaryCell 

through SpaceBoundary and Transition features. In contrast, the mathematical notion of space cells and boundary 

cells builds upon the bijective pairing of both primal and dual space according to the Poincaré duality and thus 

renders a strict coupling. The rationale for introducing a loose coupling between the space representations is to 

allow the decoupled acquisition, storage, and exchange of data from either aspect of space. For example, the primal 

space representation of the interior built environment may be acquired from initial measurements and capturing 

methods or from existing building data. Either way, the dual space representation is most likely not addressed at 

the same time but has to be derived in a consecutive step which itself is possibly preceded by further data qualifi-

cation and refinement steps (e.g., in order to ensure the geometric-topological consistency of the primal space 

data). The loose coupling of the model elements hence facilitates to first represent, store, and subsequently refine 

the primal space data using the MLSEM data model, and to add the dual space data afterwards (or vice versa). 

Moreover, for a given navigation application it might be sufficient to only populate the dual space dimension of 

space cells and boundary cells while completely neglecting an accompanying primal space model (or vice versa). 

And even if both space representations are fully populated, it might be beneficial to only exchange data from one 

or the other. For example, a mobile device may only be fed with (a subset of) the dual graph-based representation 

in order to meet storage and computation limits. Due to the loose coupling approach, the conceptual data model of 

the MLSEM offers the flexibility to support these scenarios. A navigation application applying the MLSEM 

schema may however be more restrictive in that it imposes a strict coupling. 

The SpaceCell feature type inherits the thematic attributes symbolicId, class, function, usage, and genericAttribute 

from SpaceElement to characterize concrete feature instances.42 For example, a topographic space region repre-

sented as SpaceCell entity can be classified as room, corridor, stair, elevator, or obstacle using its class attribute. 

The intended purpose of the SpaceCell may additionally be denoted through its function attribute (e.g., the function 

of a room might be office, laboratory, or storage), whereas a deviating real usage can be captured by the usage 

                                                           
42 The value domain of the thematic attributes is GenericName which is a type defined in ISO/TS 19103:2005 that represents 

a name associated with a globally unique namespace. This allows for providing predefined lists of possible values for each 

attribute which can be referenced but also distinguished through their namespace value.   
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attribute.43 The symbolicId property then allows for attaching one or more human-friendly descriptive location 

names or identifiers (e.g., the room number) and hence supports the realization of a symbolic addressing or georef-

erencing schema suitable for navigation queries. Since various further characteristics might be required in a navi-

gation application, a SpaceCell can be augmented with an unbounded number of additional generic attributes. The 

value domain of generic attributes is specified by GenericAttributeType which essentially defines a name-value 

pair. The set of generic attributes thus directly realizes the set 𝐴(𝑆) of semantic attributes associated with a space 

cell 𝑆 according to definition 3.6. The type of a generic attribute is constrained to be a realization of a GF_Attribu-

teType and therefore comprises spatial, temporal, and thematic characteristics as well as metadata (cf. figure 167). 

The name of the type needs to be consistently referenced through the typeName attribute which enables querying 

generic data types without having to evaluate their class definition. Optionally, a human-readable definition can 

be provided for generic attributes. The same set of thematic attributes is also inherited by the BoundaryCell feature 

type and can be used in this context, for instance, to classify the tangible boundaries of rooms into walls, floors, 

and ceilings, or to mark parts of the boundary as being intangible or traversable (e.g., doors or virtual boundaries). 

In addition to thematic properties, the SubSpace association of SpaceCell links a space cell to its zero or more 

subspace cells and hence allows for mapping (transitive) inclusion relationships (cf. definition 3.50). Moreover, 

the SpaceCell feature type defines a makeDisjoint operation which implements the 𝑓𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇 map as developed in 

chapter 3.5.1 (cf. definition 3.65).  

It is important to note that SpaceCell and BoundaryCell are not restricted to the description of topographic space 

but are used to model space partitionings following from arbitrary notions of space (e.g., sensor space or logical 

space). Possible classifications of SpaceCell and BoundaryCell features as well as reasonable thematic attributes 

obviously vary for each notion of space. For this reason, the conceptual data model of the MLSEM as presented 

in this thesis neither provides in-depth ontologies for space cells and boundary cells, nor predefined lists of attribute 

values. Although the proposed data model thus remains on a rather abstract level, it nevertheless offers the expres-

sivity to describe arbitrary types of space cells and boundary cells (through symbolicId, class, function, and usage) 

as well as their semantic properties (through generic attributes). If required, the introduced concepts may be further 

subtyped according to the information needs of navigation applications. For example, (Brown et al. 2012) present 

an ontology for topographic space which classifies the interior built environment against indoor navigation criteria. 

The authors differentiate topographic regions into IndoorSpace (navigable end-spaces and connector spaces such 

as rooms and corridors), IndoorObstacleSpace (fixed or movable obstacles restricting movement), and Transi-

tionSpace (openings providing passage between IndoorSpace entities such as doors, windows, or virtual entities), 

and define further subtypes and relationships.44 This ontology builds upon the previous data model of the MLSEM 

(Becker et al. 2009b, Nagel et al. 2010) and thus can be easily hooked under the concepts of SpaceCell and Bound-

aryCell. On the contrary, the high degree of abstraction also allows for connecting the entities of the MLSEM data 

model to conceptual elements from existing information models (e.g., navigational and non-navigational indoor 

space models as presented in chapter 2.2) while at the same time keeping the semantic impedance low. For exam-

ple, chapter 6 demonstrates how SpaceCell and BoundaryCell can be associated with entities from existing build-

ing models in order to populate topographic space data. 

The SpaceCell and BoundaryCell feature types are implicitly related on the level of their primal respectively dual 

space representations. In primal space, this relation is expressed through the Boundary and CoBoundary associa-

tions between Space and SpaceBoundary. The Boundary relation enforces every SpaceBoundary to be on the 

boundary of precisely two Space entities. On the one hand, this constraint ensures the complete tiling of Euclidean 

space as formally required by the definition of space layers (cf. definition 3.19). On the other hand, it means that 

a BoundaryCell cannot exist in primal space without at least two corresponding SpaceCell instances. The boundary 

of a Space may be decomposed into zero or more SpaceBoundary instances. Typically, a Space has at least one 

boundary component. The only case for modelling a Space without boundary component is the representation of 

the unbounded and boundaryless outer space cell 𝑆𝑜𝑢𝑡 on the minimal space layer 𝐿𝑚𝑖𝑛 (cf. definition 3.32). The 

CoBoundary association allows for querying the Space instances sharing a given SpaceBoundary, and hence for 

evaluating topological adjacency relationships between Space entities (and thus implicitly between SpaceCell fea-

tures). In dual space, State and Transition are also linked by Boundary and CoBoundary associations. However, 

                                                           
43 The attribute triplet class, function, and usage is inspired from the conceptual data model of CityGML (cf. Gröger et al. 

2012) and is specified identically to ease data mappings. 

44 This work was carried out in a Master’s thesis conducted at the Institute for Geodesy and Geoinformation Science, Tech-

nische Universität, Berlin, under the supervision of the author.   
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and conformant to the Poincaré duality, the directions of the associations are reversed. Every Transition needs to 

be bounded be exactly two State instances and expresses the topological adjacency of the associated SpaceCell 

features. The CoBoundary relation enumerates the Transition features being incident to a single State. Consistent 

with the associations between the primal space feature types, the modelling of a BoundaryCell requires two Space-

Cell features, and a State with empty coboundary necessarily represents 𝑆𝑜𝑢𝑡 on 𝐿𝑚𝑖𝑛 . 

In order to ensure data consistency, OCL constraints are associated with SpaceCell and BoundaryCell. Precisely, 

in the context of SpaceCell, the following OCL invariant needs to be fulfilled.45 

 context SpaceCell inv:  

  (primal->notEmpty() and dual->notEmpty()) implies primal.dual = dual 

The OCL expression states that if a SpaceCell has both Space and State representations, then the State instance 

accessible through primal.dual (i.e., following the PrimalSpace and Duality association) equals the State instance 

linked by the DualSpace association. Since the constraint is marked as invariant, the expression must be true for 

every SpaceCell to be valid. The identical OCL constraint is expressed on the BoundaryCell feature type. The 

MLSEM data model hence guarantees the consistent navigation between primal and dual space instances as well 

as their associated SpaceCell and BoundaryCell features that carry the semantic information. 

The SpaceLayer feature type realizes the notion of a space layer as given in definition 3.19 and thus aggregates 

SpaceCell and BoundaryCell features. According to the minimal possible representation 𝐿𝑚𝑖𝑛  of a space layer (cf. 

definition 3.32), every SpaceLayer needs to contain at least one SpaceCell representing the outer space. Each 

SpaceLayer instance can be characterized through a symbolicId as well as a name and a description. The mandatory 

type attribute denotes the notion of space reflected by the space layer. Its value is taken from the extensible code 

list SpaceLayerType which predefines the values topographic, sensor, and logical. Further semantic information 

can be provided as generic attributes which hence correspond to the set of semantic attributes 𝐴(𝐿) of a space 

layer 𝐿 as given in definition 3.19. Similar to the SpaceCell feature type, (transitive) inclusion relationships be-

tween SpaceLayer features (cf. definition 3.51) can be expressed through the SubSpace association. The binary 

operations of the space layer algebra developed in chapter 3.5 are implemented by the merge, difference, and 

intersection methods which take a SpaceLayer feature as input and return a SpaceLayer as result.  

The intra-layer graph of a space layer is semantically represented by the IntraLayerGraph type. Its node set results 

from the aggregation of one or more State features, whereas its edge set is a collection of corresponding Transition 

features. The following OCL constraint on IntraLayerGraph ensures that the State and Transition instances par-

ticipating in an IntraLayerGraph are dual space representations of SpaceCell and BoundaryCell features contained 

in the SpaceLayer to which the IntraLayerGraph is associated through the Graph association. 

 context IntraLayerGraph inv:  

  layer.spaceCell.dual->includesAll(node) and  

  layer.boundaryCell.dual->includesAll(edge) 

The IntraLayerGraph constitutes an undirected graph due to the Boundary and CoBoundary associations between 

State and Transition being unordered. This agrees with the mathematical model of the MLSEM according to which 

the edges of the intra-layer graph are 1-cells in the dual space topology of the space layer and thus are undirected 

per definition. It also conforms to an intuitive spatial understanding since the direction of movement is generally 

much less restricted in indoor spaces than, for example, in road networks. The cost attributes modelled for both 

State and Transition allow for applying measures to single graph elements rendering the IntraLayerGraph a 

weighted graph. The cost values can be fed, for example, to cost functions for finding the shortest or best paths. 

The data type of cost is GenericAttributeType which admits arbitrary units of costs including distance, monetary, 

and time-based measures. For the most common navigation algorithms, the cost value is typically restricted to be 

non-negative. This requirement may be imposed by applications but is not enforced by the MLSEM data model 

itself. The normal mechanism of cost functions is to define the total cost as the sum of the costs applied to the 

graph elements. However, the MLSEM schema does not presuppose a choice of cost function but is kept generic 

                                                           
45 Note that in the UML diagrams only the expression part of the OCL constraint is depicted. All expressions are assumed to 

be invariants. The contextual information (i.e., to which type the constraint applies) is implicitly provided through attaching 

the UML note in which the OCL expression is embedded to a UML model element.  
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so that different types of cost functions (e.g., static, predictive, or dynamic functions) that rely on different types 

and values of cost measures (possibly including negative values expressing penalties on graph elements) can be 

supported.  

SpaceLayer features are assembled to form a space layer complex (cf. definition 3.36) through the feature type 

SpaceLayerComplex. A SpaceLayerComplex can be given a name and a description and consists of zero or more 

SpaceLayer instances. A given SpaceLayer may likewise participate in zero or more SpaceLayerComplex features 

each of which can be used, for example, to represent a different context of navigation from a base set of space 

layers (cf. chapter 3.6). Every SpaceLayerComplex can be assigned an instance of MultilayeredGraph that carries 

the notion of the multilayered graph into the MLSEM data model. In conformance with definition 3.40, a Multi-

layeredGraph is required to contain the set of IntraLayerGraph subgraphs associated with the SpaceLayer features 

participating in the SpaceLayerComplex. The subgraphs are linked through InterLayerEdge features so that every 

InterLayerEdge connects two State instances from different IntraLayerGraph entities. The feature type InterLay-

erEdge hence corresponds to the notion of inter-layer edges as given in definition 3.37 (ii). Both consistency 

requirements are ensured by the following OCL invariants. 

 context MultilayeredGraph inv:  

  subGraph.layer = layerComplex.layer 

 context InterLayerEdge inv:  

  boundary->first().graph <> boundary->last().graph 

The Boundary and CoBoundary associations between State and InterLayerEdge are defined in the same way as 

between State and Transition. Thus, every InterLayerEdge is bounded by precisely two dual nodes and cannot be 

instantiated without its boundary. Similar to the mathematical model, an InterLayerEdge feature is labelled with 

the binary topological relationship of its incident space cells in primal space (cf. definition 3.39). For this purpose, 

the InterLayerEdge feature type provides the attribute topoRelation. Allowed values for topoRelation are specified 

in TopoRelationEnum which enumerates the possible topological relationships between space cells according to 

the 4-intersection matrix given in formula 3.38. Since InterLayerEdge instances are undirected the relationships 

contains and inside as well as covers and coveredBy are mapped onto a joint representation, namely containsOrIn-

side respectively coversOrCoveredBy. Note that the inter-layer graph of a space layer complex as defined in the 

mathematical model (cf. definition 3.37) is not represented by a separate semantic model element of the MLSEM 

schema since it is contained in and can be easily derived from the MultilayeredGraph. 

Spatial characteristics of the semantic concepts. In the UML diagram in figure 170, the geometric-topological 

description of the introduced semantic concepts is presented. The specification of the spatial characteristics em-

ploys the ISO 19107 Spatial Schema. 
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Figure 170: The geometric-topological model of the Space Representation package. 

The primal space geometry 𝐺𝑀(𝑆) of a space cell 𝑆 is translated into the two associations 2DGeometry and 3DGe-

ometry linking the Space feature type to the geometric primitive GM_Surface respectively GM_Solid from the 

Spatial Schema. Since per definition 3.2 a space cell is either represented in two or three dimensions, a Boolean 

xor constraint is applied to both associations. This exclusive disjunction postulates that Space instances may par-

ticipate in at most one of the associations at a time, and thus may be spatially described through an instance of 

either GM_Surface or GM_Solid but not both. The geometric primitives are restricted to meet conditions (i) and 

(ii) of definition 3.2 when used in the context of bounded space cells, but are likewise used to model the non-

compact and possibly non-manifold space occupied by the outer space cell (cf. definition 3.12) as discussed in 

chapter 4.3.1. Thus, and similar to the semantic view, the MLSEM schema does not introduce separate model 

elements for the spatial description of the outer space cell. Following the same modelling approach, the primal 

space topology 𝑇𝑃(𝑆) of a space cell is mapped onto the two associations 2DTopology and 3DTopology which 

relate Space to the topological primitives TP_Face and TP_Solid. The Boolean xor constraint on both associations 
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again guarantees that every instance of Space is topologically represented exclusively in either two or three di-

mensions. Both the primal space geometry 𝐺𝑀(𝐵) (cf. definition 3.26) and topology 𝑇𝑃(𝐵) (cf. definition 3.25) 

of a boundary cell 𝐵 are realized correspondingly through constrained pairs of associations between SpaceBound-

ary and geometric respectively topological primitives in two and one dimensions.  

The spatial data model is more flexible than the mathematical definitions in that both Space and SpaceBoundary 

may have neither a geometric nor a topological representation. Thus, the spatial description of primal space may 

be given purely geometrically, purely topologically, or in a geometric-topologically consistent manner. This re-

laxation of the mathematical model is mostly introduced for practical reasons since many software systems (in-

cluding GIS applications and spatial databases) still nowadays are limited to the modelling and storage of geomet-

ric aspects of features whereas topology is often only supported in terms of topological relationships between 

features which are derived (possibly on the fly) from the geometric configuration using computational geometry 

algorithms. Due to the flexibility in the spatial representation of space cells and boundary cells, the MLSEM data 

model can thus be used to feed such systems and to carry their output. Moreover, neglecting either the geometric 

or the topological dimension also reduces the storage space required for indoor settings modelled according to the 

MLSEM schema. However, it is important to remember that the number of geometric elements describing the 

primal space not necessarily equals the number of topological entities as discussed in chapter 3.1.3. Therefore, 

omitting a given topological decomposition of primal space may lead to information loss since it might not be 

automatically recoverable in the same way from the geometric configuration (and vice versa). 

Based on the Realization association between TP_Primitive and GM_Primitive, the following OCL constraint 

makes sure that the geometric primitive associated with a Space feature actually realizes the topological primitive. 

It implicitly follows from this constraint that the dimensions of both primitives agree. The identical OCL constraint 

is also modelled for SpaceBoundary. 

 context Space inv:  

  topology.geometry = geometry 

Since the Boundary and CoBoundary associations between Space and SpaceBoundary only address the semantic 

level, further OCL constraints are required in order to consistently map these relations into geometry and topology 

space. Precisely, if a SpaceBoundary is on the boundary of a Space then its geometric respectively topological 

primitive needs to be on the boundary of the corresponding primitive associated with the Space.46 The OCL ex-

pression uses of the boundary() operation defined for GM_Object and TP_Object for this purpose. 

 context Space inv:  

  topology.boundary()->includesAll(boundary.topology) and  

  geometry.boundary()->includesAll(boundary.geometry) 

As shown in chapter 4.3.1, a TP_Primitive cannot exist without a TP_Complex. Since a Space (SpaceBoundary) 

is uniquely associated to a SpaceCell (BoundaryCell) which itself is uniquely associated to a SpaceLayer, the 

TP_Complex is modelled as spatial attribute topology of the SpaceLayer feature type. Similarly, SpaceLayer pro-

vides a GM_Complex through its geometry attribute which captures the geometric configuration of the space cells 

in primal space. The below OCL constraint is attached to SpaceLayer in order to assert that the geometric complex 

is the realization of the topological complex and that all topological and geometric primitives modelled for the 

SpaceCell and BoundaryCell instances contained in a SpaceLayer feature participate in the TP_Complex respec-

tively GM_Complex. Moreover, from the definition of TP_Complex and GM_Complex it implicitly follows that 

the spatial primitives are required to be non-overlapping which satisfies the identical requirement imposed for the 

primal space representation of space layers (cf. definition 3.7 and chapter 3.1.2.1). 

 context SpaceLayer inv:  

  topology.geometry = geometry and  

                                                           
46 The boundary and coboundary relations between both geometric primitives and topological primitives as defined in ISO 

19107:2003 have been omitted from the UML diagram in figure 170 for readability (see chapter 4.3.1 instead). Note that the 

Boundary and CoBoundary associations on the semantic level are more restrictive than the ones put in place by the Spatial 

Schema due to the fact that the MLSEM assumes a complete tiling of Euclidean space.  
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  topology.element->includesAll(spaceCell.primal.topology->union(boundaryCell.primal.topology)) and 

  geometry.element->includesAll(spaceCell.primal.geometry->union(boundaryCell.primal.geometry)) 

The spatial representation of the semantic entities in dual space follows a similar approach. The dual space geom-

etry 𝑣𝐺𝑀(𝑆) of a space cell 𝑆 (cf. definition 3.5) is given by a GM_Point that is associated with the State feature 

type. This GM_Point is the geometric carrier for a TP_Node that represents the dual space topology 𝑣𝑇𝑃(𝑆) of 𝑆 

(cf. definition 3.4) and hence is also related to State. Likewise, the dual space geometry 𝑒𝐺𝑀(𝐵) and topology 

𝑒𝑇𝑃(𝐵) of a boundary cell 𝐵 (cf. definition 3.24) are mapped onto a GM_Curve realizing a TP_Edge both of which 

are spatial characteristics of the Transition feature type. The geometric and topological primitives form complexes 

which are modelled as spatial attributes on the level of the IntraLayerGraph feature type. Thus, the topology 

attribute of type TP_Complex realizes the dual graph 𝐺𝑇𝑃(𝐿) of a space layer 𝐿 (cf. definition 3.20) whose spatial 

embedding 𝐺𝐺𝑀(𝐿) (cf. definition 3.21) is available as GM_Complex through the geometry attribute. The con-

sistency of the spatio-semantic description in dual space is enforced by OCL constraints which are identically 

specified as discussed above for the primal space representation. It is important to note that the strict mathematical 

definition is again relaxed in order to facilitate purely geometric, purely topological, as well as geometric-topo-

logical descriptions of dual space. 

According to ISO 19107, all geometric objects participating in the same GM_Complex must be associated with 

the same coordinate reference system. Thus, the space cells and boundary cells on a given SpaceLayer feature 

have to share the same reference system for their primal space geometry. The same holds true for their dual space 

geometries which are elements of the GM_Complex modelled for the IntraLayerGraph feature type. However, 

since the primal and dual space geometries are aggregated in separate GM_Complex objects, they may conse-

quently be associated with the same or a different reference system. Likewise, two space layers (e.g., a topographic 

space layer and a sensor space layer) not necessarily have to share the same reference system. The possibility to 

support multiple and different coordinate reference systems has been identified as an important requirement to 

indoor space modelling in chapter 1.2 and thus is met by the MLSEM and the underlying Spatial Schema. 

The Spatial Schema also supports the derivation of a default Euclidean space embedding of the dual graph. Pre-

cisely, each GM_Object provides a representativePoint() operation which is defined to return a point value that is 

guaranteed to be inside this GM_Object (which may be the centroid of the geometric object).47 The representative 

point of the geometric primitive of a Space feature can thus be used to instantiate the GM_Point object representing 

the geometry of the dual State feature. Using OCL notation, this can be expressed for a State instance as follows 

based on the Duality association linking the State and the Space feature types. 

 State::geometry : GM_Point = GM_Point(State::primal.geometry.representativePoint()) 

Then, the curve geometry of Transition features can be defined as straight line segment (GM_LineString) connect-

ing the two incident points in the Boundary association. 

 Transition::geometry : GM_Curve = GM_Curve(GM_LineString(Transition::boundary.first().position, 

  Transition::boundary.second().position)) 

The same way, the GetDefaultEmbedding algorithm as used in the definition of the operations of the space layer 

algebra in chapter 3.5 can be implemented. 

4.4.1.2 Joint States Package 

The Joint States package augments the space representation of the MLSEM schema with a conceptual data model 

for joint states and joint state transitions as introduced in chapter 3.3. The UML class diagram defining the contents 

of the Joint States package is shown in the following figure 171. 

                                                           
47 Per definition 3.5, for every space cell 𝑆 it is mandated that 𝑣𝐺𝑀(𝑆) ∈ 𝐼𝑛𝑡(𝐺𝑀(𝑆)). 
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Figure 171: The contents of the Joint State package. 

A joint state as given in definition 3.41 is translated into the JointState feature type which consists of a set of State 

features that are related through the Clique association. In accordance with condition (i) of definition 3.41, the 

State instances need to belong to different IntraLayerGraph entities which themselves have to be part of the same 

MultilayeredGraph. Every JointState participates in precisely one JointStateSpace which maps the notion of a 

joint state space from the mathematical model (cf. definition 3.42) and which hence is linked to exactly one Space-

LayerComplex via its StateSpace association. The MultilayeredGraph containing the State features of all JointState 

features within a JointStateSpace needs to be associated with the same SpaceLayerComplex as the JointStateSpace 

itself. Moreover, the number of State features participating in the Clique of a JointState has to be equal to the 

number of SpaceLayer features aggregated by this SpaceLayerComplex. Both requirements are also a consequence 
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of condition (i) of definition 3.41. The following OCL constraint on JointState captures these consistency invari-

ants. 

 context JointState inv:  

  node->forAll(n1, n2 | n1 <> n2 implies n1.graph <> n2.graph) and 

  node->forAll(n | n.graph.graph.layerComplex = space.layerComplex) and 

  node->size() = space.layerComplex.layer->size() 

In addition to the clique of dual nodes, a joint state 𝐽𝑆 is also characterized by its intersection geometry 𝐺𝑀(𝐽𝑆) 

that results from the intersection of the primal space geometries of the corresponding space cells (cf. condition (ii) 

of definition 3.41). Since this intersection geometry equivalently reflects the region of indoor space in which a 

moving person or object must be located when the joint state is triggered to be active, it is modelled as spatial 

attribute named uncertaintyRegion of the JointState feature type. The type of uncertaintyRegion is chosen to be 

GM_Complex as the intersection geometry cannot be guaranteed to be connected. According to condition (iii) of 

definition 3.41, the interior of this GM_Complex may not be the empty set which is ensured by an additional OCL 

constraint. 

 context JointState inv:  

  (uncertaintyRegion.closure() - uncertaintyRegion.boundary())->notEmpty() 

Transitions between joint states (cf. definition 3.44) are modelled as instances of the JointStateTransition feature 

type. JointState and JointStateTransition are linked by Boundary and CoBoundary associations which are identi-

cally defined as the equivalent associations between State and Transition as introduced in the previous chapter. It 

hence follows that every JointStateTransition has precisely two JointState features on its boundary, whereas the 

coboundary of a JointState may be the empty set. An empty coboundary however only occurs if a SpaceLayerCom-

plex merely contains copies of the minimal space layer 𝐿𝑚𝑖𝑛  (cf. formula 3.43). In order to satisfy condition (ii) of 

definition 3.44, the uncertaintyRegion geometries of the JointState instances on the boundary of a JointStateTran-

sition need to have a non-empty intersection which is expressed as OCL invariant on JointStateTransition using 

the intersects(GM_Object) operation of GM_Object. 

 context JointStateTransition inv:  

  boundary->first().uncertaintyRegion.intersects(boundary->second().uncertaintyRegion) 

The JointStateMachine type realizes the notion of a finite-joint-state machine as developed in definition 3.46. An 

instance of JointStateMachine is linked to a single SpaceLayerComplex via the StateMachine association. Its finite, 

non-empty state space is accessible through the thematic attribute stateSpace of type JointStateSpace. This attrib-

ute is marked as derived and read-only since its value necessarily must match the JointStateSpace of the related 

SpaceLayerComplex feature. The stateSpace thus conforms to condition (ii) of definition 3.46, and its derivation 

rule is expressed by the following OCL constraint.  

 context JointStateMachine inv:  

  stateSpace = layerComplex.stateSpace 

The attributes initialState and finalState likewise correspond to conditions (iii) and (v) of definition 3.46. Whereas 

initialState denotes the non-empty set of candidate JointState features describing competing initial states of the 

automaton, the value of the finalState attribute provides its (possibly empty) set of final states. The joint state of 

navigation, i.e. the currently active state of the automaton, is described through the activeState attribute. Its value 

is also given by a set of JointState features since the finite-joint-state machine per definition is non-deterministic. 

The OCL constraint below guarantees that initialState, finalState, as well as activeState are subsets of the 

stateSpace of the JointStateMachine, and that the initialState is non-empty. 

 context JointStateMachine inv:  

  initialState->notEmpty() and  

  stateSpace.state->includesAll(initialState->union(finalState)->union(activeState)) 

A further essential component of the JointStateMachine is its pool of events that may trigger a joint state transition 

when dispatched (cf. condition (i) of definition 3.46). Events are conceptualized by the Event class which defines 
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the mandatory attributes type and source. The event type classifies the cause of the event and is taken from the 

extensible code list EventType which predefines the values enteredCell, leftCell, insideCell, and outsideCell. Each 

of these values is to be interpreted in the context of a given space cell which thus is referenced through its dual 

State representation using the source attribute. The dispatching of an event is typically induced by the movement 

of a navigation user. For example, assume a space cell 𝑆 that represents the signal reception area of a Wi-Fi trans-

mitter. The event of receiving the previously non-available signal of 𝑆 can be expressed as instance of Event with 

type = enteredCell and source =  (S). The event of continuously receiving the signal of 𝑆 (i.e., the user keeps 

travelling inside 𝐺𝑀(𝑆)) is modelled as separate Event with type = insideCell. Likewise, the event of leaving the 

signal reception area 𝐺𝑀(𝑆) is captured by an Event with type = leftCell. Every Event instance can be assigned an 

optional description (e.g., to attach a human-readable message). The event pool of the JointStateMachine is real-

ized through the EventPool association. 

The nextCandidateStates operation of JointStateMachine implements the joint-state-transition map 𝜙 as defined 

in condition (iv) of definition 3.46. Similar to 𝜙, it takes a JointState feature reflecting the (assumed) active state 

of the automaton as well as a set of received events as input. Its output is a (possibly empty) set of JointState 

instances which represent the non-deterministic next active state of the machine and thus can be assigned to its 

activeState attribute. Without further knowledge or assumptions, the candidates are equally likely (cf. example 

3.48 in chapter 3.3). Note that both the nextCandidateStates operation as well as the JointStateMachine itself are 

only provided as interfaces which have to be implemented by a navigation application. Such implementations may 

introduce, for example, additional dynamic aspects and probabilistic methods for the derivation of the next active 

state (e.g., a maximum speed constraint to reduce the uncertainty region as proposed in the cell-based positioning 

approach of Jensen et al. 2010). 

In order to track location sequences of a navigation user, the TransitionTrigger type has been added to the data 

model. An instance of TransitionTrigger represents a series of events at a given point in time which triggered the 

transition between two consecutive active joint states of the navigation user. A list of transition triggers ordered 

by time positions hence captures the trajectory through indoor space travelled by the user on all space layers 

contained in the SpaceLayerComplex. Thus, for a navigation system implementing the MLSEM schema, the 

JointStateMachine supports the task of localization, whereas the concept of the TransitionTrigger addresses the 

tracking of users. A TransitionTrigger has a mandatory previousState of type JointState which represents the active 

joint state of the user at a previous point in time. The set of events linked through the Cause relation changes the 

previousState to the new activeState following the associated JointStateTransition. The timeStamp attribute cap-

tures the point in time when the dispatched events triggered the transition. Its value domain is given by the TM_In-

stant type which is defined in the ISO 19108:2005 Temporal Schema for the modelling of time positions. It obvi-

ously follows that the JointState features denoted by previousState and activeState have to render the boundary of 

the triggered JointStateTransition. A TransitionTrigger may further point to its predecessor respectively successor 

in time in order to establish a time-ordered sequence of locations. Therefore, the previous (next) trigger needs to 

be recorded at a previous (later) point in time. The OCL constraint shown below enforces both conditions. The 

time-based expressions rely upon the partial order of time positions as defined in ISO 19108:2005 for the position 

attribute of TM_Instant. 

 context TransitionTrigger inv:  

  transition.boundary->contains(previousState) and transition.boundary->contains(activeState) and 

  (previous->notEmpty() implies previous.timeStamp.position <= timeStamp.position) and 

  (next->notEmpty() implies next.timeStamp.position >= timeStamp.position) 

Each TransitionTrigger is uniquely related to a JointStateMachine through the TriggerList association. When 

feeding both the previousState and the set of events of a TransitionTrigger to the nextCandidateStates operation 

of the JointStateMachine, then the activeState shall be contained in the resulting output. Since the joint-state ma-

chine is non-deterministic, zero or more TransitionTrigger instances may exist for the same point in time capturing 

competing active joint states. Also contradictory TransitionTrigger instances at consecutive points in times are 

possible and allowed as discussed in example 3.49 (cf. chapter 3.3). They may be filtered online (i.e., in real time 

while the user is travelling through indoor space) based on additional input or methods (see above), or offline using 

a posteriori knowledge since both the JointStateMachine and the list of TransitionTrigger can be stored based on 

the MLSEM data model and hence be evaluated at a later point in time. 
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In order to apply the nextCandidateStates operation to the information carried by a TransitionTrigger, it must be 

guaranteed that the set of events as well as the previousState and activeState are subsets of the event pool respec-

tively the joint state space of the associated JointStateMachine.  

 context TransitionTrigger inv:  

  machine.event->includesAll(event) and 

  machine.stateSpace->contains(previousState) and machine.stateSpace->contains(activeState) and 

  machine.nextCandidateStates(previousState, event)->contains(activeState) 

4.4.1.3 Source Object and External Reference Packages 

The data for populating single SpaceCell and BoundaryCell features as well as entire SpaceLayer instances may 

be derived from existing data sets. For example, especially in case of topographic space, existing 2-dimensional 

or 3-dimensional building models are a rich data source (e.g., models in formats such as IFC, CityGML, X3D, 

KML, COLLADA, ESRI BISDM, or legacy CAD). The Source Object package allows for providing a reference 

to original data sources and even for storing an entire source object inline the MLSEM data. This is especially 

useful since external datasets may provide information beyond the scope and expressivity of the MLSEM schema, 

and thus this information remains accessible. The following UML diagram depicts the contents of the Source 

Object package. 

 

Figure 172: The contents of the Source Object and External Reference packages.  

The central class of the package is SourceObject. An instance of SourceObject represents an identifiable object 

from an external data source that corresponds to either a single SpaceElement (i.e., a SpaceCell or BoundaryCell) 

or SpaceLayer, each of which takes the role of a proxy for the source object according to the Realization associa-

tions. Every SpaceElement and SpaceLayer feature may on the contrary be linked to zero or arbitrarily many data 

sources. A SourceObject can be given a name and a description, but at least has to provide the data media type 

(formerly referred to as MIME type) in which the source object is encoded through the mediaType attribute. A 

digital copy of the source object itself may then be provided as binary array using the content attribute. The binary 

data explicitly includes text-based representations such as XML data documents. The source object may alterna-

tively be given by a reference to an external data source via the Reference association to ExternalReference.  

Both ExternalReference and ExternalObjectReference are classes defined in the External Reference package of 

the MLSEM schema.48 An ExternalReference provides a link pointing to the source object within an external 

information system. The information system is given by a URI, whereas the object itself is identified through an 

instance of ExternalObjectReference that may either carry the object’s name or another URI as unique identifier. 

If the informationSystem attribute of ExternalReference is not set, then the ExternalObjectReference must be given 

as URI. An ExternalReference may point to arbitrary data resources including databases and file-based datasets, 

and even allows for encoding preformatted requests to web services that deliver the source object (e.g., standard-

ized web services such as the OGC Web Feature Service). 

                                                           
48 The concepts of ExternalReference and ExternalObjectReference are inspired from the conceptual data model of CityGML 

(cf. Gröger et al. 2012) and are specified identically to ease data mappings. 

 class Source Object

«DataType»

ExternalReference

+ informationSystem  :URI [0..1]

«Union»

ExternalObjectReference

+ name  :CharacterString [0..1]

+ uri  :URI [0..1]

«FeatureType»

SpaceLayer

«FeatureType»

SourceObject

+ name  :GenericName [0..1]

+ description  :CharacterString [0..1]

+ mediaType  :CharacterString

+ content  :byte[] [0..1]

«FeatureType»

SpaceElement

+model 0..*

Realization

+proxy 0..1

+model

1 Reference

+reference

0..1

+proxy 0..1

Realization

+model 0..*

+reference 1

ObjectReference

+externalObject 1
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4.4.1.4 Groups and Sequences Package 

SpaceCell and BoundaryCell features may be aggregated in groups and sequences based on application-specific 

and non-spatial criteria. The grouping concept of the MLSEM schema is provided by the Groups and Sequences 

package and is depicted in the UML diagram in figure 173. 

 

Figure 173: The SpaceElementGroup feature type. 

Space element groups. A group is realized by an instance of the feature type SpaceElementGroup and may contain 

an arbitrary number of SpaceElement features as group members. It may optionally be characterized through a 

name and a description, and can be further classified using the attribute triplet class, function, and usage which 

have the same semantics as in the context of SpaceElement (cf. chapter 4.4.1.1). Further semantic information 

about the group itself are modelled as generic attributes. Groups can be recursively contained in other groups 

based on the SubGroup association linking SpaceElementGroup to itself. This subgrouping mechanism facilitates 

arbitrarily nested structures and is not restricted to tree-like hierarchies. Moreover, each group can be assigned a 

spatial representation expressed as GM_Complex which, for example, may follow from the geometric descriptions 

of its group members. 

The grouping concept of the MLSEM schema is to be seen complementary to the multi-granular representation of 

indoor space based on subspacings of space cells and space layers and the induced spatial hierarchies. Subspacing, 

as comprehensively developed in chapter 3.4, builds upon spatial containment relationships which impose a partial 

ordering of space cells and space layers. Whereas spatial containment is especially feasible to represent the nested 

hierarchical structure of the interior built environment (cf. example 3.61), it may not always be suitable to express 

groups of entities that rather follow from semantic criteria. Examples are groupings of rooms inside a building 

according to functional, organizational, or logical aspects as proposed by (Richter et al. 2009) (cf. chapter 2.1.1). 

A SpaceElementGroup is intended to represent such aggregations and semantic hierarchies of SpaceCell and 

BoundaryCell features which are not primarily based on spatial containment. There are no restrictions on the group 

members which may even belong to different SpaceLayer features and thus may spatially overlap. Members of 

subgroups may likewise spatially overlap with members of their parent groups and may also occupy a larger region 

of space (in contrast to subspaces). For this reason, SpaceElementGroup features obviously cannot participate in 

the spatial description of space layers and hence have no impact on the dual graph representation of indoor space 

event if they carry their own geometry.   

Nevertheless, groups are useful in path queries as they allow for addressing aggregates of space cells. For example, 

suppose a navigation user wants to be routed to a given department within an office building but has no further 

information about a specific room number. Then a SpaceElementGroup embracing all entities belonging to the 

department could be used in answering the query. A group could also cover the restrooms within a facility (e.g., 

at airports, museums, etc.) or similar shops in a large shopping malls (e.g., bookshops, food stores, etc.) in order 

to quickly respond to corresponding path queries. Likewise, a group might contain all emergency exists within a 

building or all walls made of a specific material that can be easily torn down by rescue personnel in evacuation 

scenarios. Another related purpose of groups is to represent the results of (frequent) semantic or spatial queries to 

an instance of the MLSEM in order to store the results and make them easily accessible at later points in time.  

Space element sequences. In addition the aggregation of SpaceElement features in groups, the MLSEM schema 

also supports the definition of sequences of SpaceElement features by means of the SpaceElementSequence feature 

type. The corresponding UML diagram is presented below. 

 class Space Element Group

«FeatureType»

SpaceElementGroup

+ name  :GenericName [0..1]

+ description  :CharacterString [0..1]

+ class  :GenericName [0..1]

+ function  :GenericName [0..*]

+ usage  :GenericName [0..*]

+ genericAttribute  :GenericAttributeType [0..*]

+ geometry  :GM_Complex [0..1]

«FeatureType»

SpaceElement

+element

1..*
GroupMember

+group

0..*

+super

0..*

SubGroup

+sub 0..*
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Figure 174: The SpaceElementSequence feature type. 

A SpaceElementSequence is defined as an ordered set of space cells and boundary cells that can be linked in a path 

from the first SpaceElement feature in the set to the last so that all intermediate SpaceElement features are visited 

in the given order. In figure 174, the aggregation association between a SpaceElementSequence and its participat-

ing SpaceElement features is modelled as both an unqualified and a qualified association. The unqualified associ-

ation specifies that in total there are at least two SpaceElement features in every sequence. The qualified association 

is used to distinguish the separate SpaceElement members participating in a specific SpaceElementSequence in-

stance by a positive integer based on the sequenceNo qualifier. Since this qualified association is in fact the same 

association as the unqualified one, both are linked by the same constraint and share the identical association and 

role names. The sequenceNo qualifier provides a unique index that determines the ascending order of the sequence 

members. Thus, the sequence starts with that element having the lowest value for sequenceNo. 

All elements participating in a SpaceElementSequence are restricted to be associated with the same SpaceLayer 

feature. Thus, and in contrast to groups, sequences cannot be expressed between space cells and boundary cells 

from different space layers. This constraint is enforced by the following OCL invariant. 

 context SpaceElementSequence inv:  

  element->forAll(s1: SpaceCell, s2: SpaceCell | s1 <> s2 implies s1.layer = s2.layer) and 

  element->forAll(b1: BoundaryCell, b2: BoundaryCell | b1 <> b2 implies b1.layer = b2.layer) 

The simplest example for a sequence is an alternating series of SpaceCell and BoundaryCell features with every 

member being incident to its successor (predecessor) when traversing along the Boundary and CoBoundary asso-

ciations between their primal respectively dual space representations. A SpaceElementSequence may however also 

be generated from a sparse set of elements, in which case the validation of the sequence involves corresponding 

path finding algorithms. For example, consider a sequence given by a set of three non-adjacent space cells 

{𝑆1, 𝑆2, 𝑆3}. For this sequence to be valid requires that there exists a path linking 𝑆1 with 𝑆3 via 𝑆2. In case of 

multiple and different paths fulfilling this requirement, the sequence is to be seen as a proxy representing all of 

them. The problem of finding a path between the elements can be performed on the intra-layer graph of that space 

layer the sequence members belong to. A sequence may contain duplicate SpaceElement features in order to ex-

press cyclic paths.  

Note that according to the qualified SequenceMember association each unique value of the sequenceNo qualifier 

may designate zero or more SpaceElement features. Thus, the ordered set of associated instances is partitioned into 

subsets each of which may contain more than one SpaceElement instance being linked by a given qualifier value. 

This modelling approach allows, for example, for specifying a set of space cells or boundary cells as possible start 

or end points of a sequence by simply assigning the same sequenceNo qualifier. Likewise, a set of space cells or 

boundary cells can be used in the midst of a sequence to denote alternative intermediate elements along the path. 

Validating such a sequence requires that there exists a path from the predecessor to the successor in the Sequence-

Member association which involves at least one SpaceElement from the intermediate set. Or, put differently, a path 

satisfying a sequence must contain at least one SpaceElement feature from the set of features associated with each 

unique sequence number in that order. The sequence then represents all possible paths satisfying this requirement. 

For example, assume a sequence is given by a single space cell 𝑆1 with the sequence number 1, a set {𝑆2, 𝑆3, 𝑆4} 

of space cells sharing the sequence number 2, and a final space cell 𝑆  with the sequence number 3. Assume there 

 class Space Element Sequence

«FeatureType»

SpaceElementSequence

+ name  :GenericName [0..1]

+ description  :CharacterString [0..1]

+ class  :GenericName [0..1]

+ function  :GenericName [0..*]

+ usage  :GenericName [0..*]

+ direction  :Sign [0..1]

+ mayInvolveOuterSpace  :Boolean = false

+ genericAttribute  :GenericAttributeType [0..*]

+ geometry  :GM_Complex [0..1]

«FeatureType»

SpaceElement

{same}

{element->forAll(s1: SpaceCell, s2: SpaceCell | s1 <> s2 implies s1.layer = s2.layer)}

{element->forAll(b1: BoundaryCell, b2: BoundaryCell | b1 <> b2 implies b1.layer = b2.layer)}

+element 2..* {ordered}

SequenceMember

+sequence

0..*

sequenceNo: PositiveInteger

+element

0..*
SequenceMember

+sequence

0..*
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exists a path from 𝑆1 to 𝑆  involving 𝑆2, then this sequence is valid. If there is another path from 𝑆1 to 𝑆  via both 

𝑆3 and 𝑆4, then this path is also captured by the sequence. Since subsequent members in the SequenceMember 

association can be given as set of SpaceElement features, finding a path between such sets may render a complex 

task. 

The SpaceElementSequence feature type carries the same semantic attributes as SpaceElementGroup. Moreover, 

every sequence may optionally denote its direction using a ‘+’ or a ‘–’ sign as value. The positive direction is from 

the first to the last member in the ordered set, whereas the ‘–’ sign specifies the reverse direction. If the direction 

attribute is not present, the sequence is undirected. The Boolean attribute mayInvolveOuterSpace indicates whether 

or not a path validation for a sparse set may consider paths involving the outer space cell of the space layer (set to 

false per default). If the path validation fails for a given set of SpaceElement features then the sequence is deemed 

invalid. 

Sequences can be used, for example, to express movement patterns in indoor space that can be given a direction 

in contrast to the undirected intra-layer graph of a SpaceLayer. In chapter 5 it is shown how navigation constraints 

such as prohibited and restricted maneuvers (e.g., security gates or doors which may only be passed in one direc-

tion) that have to be excluded from routes for navigation users are modelled based on sequences. Note that since 

sequences are defined for SpaceElement features, the modelling of movement patterns and maneuvers does not 

presuppose a dual space representation of the involved space cells and boundary cells, and hence is independent 

from an instance of IntraLayerGraph.    

Relation to the developed space layer algebra. In the following, the impact of the operations of the developed 

space layer algebra (cf. chapter 3.5) on groups and sequences is discussed. 

Example 4.2. Consider the 2-dimensional indoor scene depicted in figure 175. It shows a topographic space layer 

𝐿𝑇𝑜𝑝𝑜 which contains two room cells 𝑅1 and 𝑅2 being connected to a corridor. A second space layer 𝐿𝑆𝑒𝑐  describes 

a single security zone captured by the space cell 𝑆𝑒𝑐 that partly affects the room 𝑅1. In order to represent the fact 

that the two rooms belong to the same organizational unit (e.g., a research department), a SpaceElementGroup is 

modelled containing the space cells 𝑅1 and 𝑅2 as group members.  

(a)  

(b)  

Figure 175: Impact of the merge operation on a SpaceElementGroup feature. 

Suppose that both space layers need to be selected for the context of a given navigation user and are input to the 

merge operation 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑆𝑒𝑐  to retrieve an integrated view. According to its definition provided in chapter 3.5, 
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𝐶
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the merge operation results in the space layer 𝐿𝑚𝑒𝑟𝑔𝑒  shown in figure 175b which contains the space cells 𝑀1 to 

𝑀 . In order to not lose the information about the grouping of the rooms on 𝐿𝑚𝑒𝑟𝑔𝑒 , a new instance of SpaceEl-

ementGroup has to be created that carries the same semantic information and comprises all those space cells on 

𝐿𝑚𝑒𝑟𝑔𝑒  which are spatially contained in or covered by the space cells 𝑅1 and 𝑅2 on 𝐿𝑇𝑜𝑝𝑜. Thus, the space cells 

𝑀1, 𝑀2, and 𝑀3 need to belong to this group. For example, path queries involving the organizational unit as target 

can then directly be answered on 𝐿𝑚𝑒𝑟𝑔𝑒  based on this new group. Since the information which space cells on 

𝐿𝑚𝑒𝑟𝑔𝑒  result from which group members is available during the merge operation (cf. algorithm 3.67), populating 

a new instance of SpaceElementGroup can be realized fully automatically. The same mechanism also applies to 

the creation of new groups on space layers resulting from difference or intersection operations. Note that a 

SpaceElement feature may only be mapped onto SpaceElement features of the same type (i.e., SpaceCell or Bound-

aryCell) in the newly created group.  

It can be seen in the above example that subspace cells of a space cell being contained in a SpaceElementGroup 

implicitly belong to that same group as well. This also conforms to an intuitive spatial understanding. For example, 

assume the room cell 𝑅1 is decomposed into four subspace cells on a separate subspace layer. Then these subspace 

cells obviously belong to the same organizational unit. This already follows from the inclusion relations between 

𝑅1 and its subspace cells which can be queried from the multilayered graph. A further explicit modelling of the 

subspace cells as group members using the GroupMember association is redundant and can be omitted. The crea-

tion of a new SpaceElementGroup as illustrated above is hence only required if the space layers are combined 

using the space layer algebra and the resulting layer is not participating in the same space layer complex. 

Similar considerations apply to sequences. In figure 176, the same topographic space layer 𝐿𝑇𝑜𝑝𝑜 is depicted again. 

Further space cells are added on either side of the corridor to indicate subsequent corridor segments. Assume a 

directed SpaceElementSequence is defined on the corridor cells using the ordered set {𝐶1, 𝐶2, 𝐶3} with each element 

receiving its index in the ordered set as sequence number. This sequence could be used, for example, to denote 

that the corridor may only be traversed in the direction from 𝐶1 to 𝐶3  in emergency situations (cf. chapter 5 for 

details on how to express such a movement restriction). An additional subspace layer 𝐿𝑆𝑢𝑏 provides three subspace 

cells 𝑆𝑢 1 to 𝑆𝑢 3 which decompose the corridor cell 𝐶2 intro three parts.  

(a)  

(b)  

Figure 176: Impact of the merge operation on a SpaceElementSequence feature. 
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Let us again suppose that 𝐿𝑇𝑜𝑝𝑜 and 𝐿𝑆𝑢𝑏 shall be integrated into a single space layer using a merge operation 

whose result is sketched in figure 176b. If the merge space layer 𝐿𝑚𝑒𝑟𝑔𝑒  is to be used in path searches, then the 

information about the directed sequence must be maintained on this layer. Like with groups this requires the in-

stantiation of a new SpaceElementSequence that first carries the same semantic information. Second, every 

SpaceElement feature participating in the original sequence has to be replaced for the newly created sequence with 

all those SpaceElement features on 𝐿𝑚𝑒𝑟𝑔𝑒  that are of the same type and that are spatially inside or covered by the 

original sequence member. The corresponding SpaceElement features also need to receive the same sequence 

number as the original sequence member. In the above example, the new SpaceElementSequence is therefore given 

by the ordered set {𝑀3, 𝑀4, 𝑀 , 𝑀6, 𝑀7}. Since the space cells 𝑀4 to 𝑀6 are spatially contained in 𝐶2 they are 

assigned the sequence number 2 which is identical to the sequence number of 𝐶2 in the original sequence. For the 

same reason, 𝑀3 is assigned the sequence number 1 and 𝑀7 carries the sequence number 3. The resulting sequence 

is valid since there exists a path from 𝑀3 to 𝑀7 which involves a SpaceElement feature from every unique sequence 

number. In fact, in this simple example, there exits only one path which visits all space cells contained in the new 

sequence.    

The illustrated mechanism for creating a new SpaceElementSequence can again be realized fully automatically. 

The information about sequences is hence not lost when applying the operations of the space layer algebra. How-

ever, the fact that a sequence is valid on a given space layer does not imply that the sequence remains valid under 

those operations. This is exemplified along the modified setting shown in figure 177. Assume the subspace layer 

𝐿𝑆𝑢𝑏 only contains 𝑆𝑢 2 which denotes an obstacle for wheelchair users (e.g., a step). Consequently, 𝐿𝑆𝑢𝑏 can be 

subtracted from 𝐿𝑇𝑜𝑝𝑜 using the difference operation in order to retrieve a view on the topographic space without 

the obstacle which is suitable for a wheelchair user. The resulting space layer 𝐿𝑑𝑖   is shown below. 

 

Figure 177: Invalid SpaceElementSequence feature after difference operation.  

According to the illustrated procedure, the sequence {𝐶1, 𝐶2, 𝐶3} on 𝐿𝑇𝑜𝑝𝑜 can be translated into a new sequence 

{ 3,  4,   ,  6} on 𝐿𝑑𝑖   with  4 and    sharing the same sequence number 2. Obviously, there is a path from  3 

to  4 and from    to  6. However,  4 and    are not topologically adjacent and thus are not connected directly. 

A path between both therefore involves the outer space cell in this example. If we assume that traversing the outer 

space cell is to be avoided (and thus the attribute mayInvolveOuterSpace is set to false on the sequence), then there 

is no path from  3 to  6 via  4 or    and the sequence on 𝐿𝑑𝑖   is invalid. 

If a SpaceElement feature of the original sequence is not carried to the resulting space layer at all, then its associated 

sequence number is not linked to a SpaceElement feature in the newly created sequence. For instance, suppose that 

the subspace layer 𝐿𝑆𝑢𝑏 provides a single space cell having the same spatial extent as 𝐶2 itself. Then after a differ-

ence operation there are no space cells on 𝐿𝑑𝑖   which are contained in or covered by 𝐶2. Hence, the new sequence 

will not contain a space cell for the sequence number 2.  

4.4.1.5 Route Package 

The Route package supplies classes and types to describe routes and supporting guidance data based on the con-

ceptual entities introduced in the Spatial Representation package of the MLSEM schema. A route represents a 

possible path for a navigation user to travel from a start to a destination location along some portion of the graph-

based conceptualization of indoor space, and commonly renders the response to a user-triggered path query. From 

𝐿𝑑𝑖  = 𝐿𝑇𝑜𝑝𝑜⊝𝐿𝑆𝑢𝑏

 1  2

 6 3  4   
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the approaches to indoor space modelling discussed in chapter 2.2, most works solely focus on the spatial and 

conceptual description of the interior built environment and its mapping onto a navigation graph structure which 

captures the entire indoor space and hence is meant to support the process of path planning. Only few approaches 

additionally address the conceptual modelling of routes and guidance information as well as the exchange of route 

data decoupled from the entire indoor space model. However, the route presentation as well as the provision of 

route instructions as well as visual or textual aids and descriptors has been identified a major challenge to indoor 

navigation (cf. chapter 1.2). Moreover, the decoupled exchange of route data is especially important in case the 

tasks of path planning and route presentation are to be distributed on different systems, e.g. on a routing service 

and a mobile end-user device. Whereas traditional car navigation systems are mostly self-contained, distributed 

systems architectures are typically assumed in indoor navigation scenarios.  

Conceptual entities for the modelling of user-specific routes or paths are mainly discussed in conceptual-based 

approaches to indoor space modelling (cf. chapter 2.2.4) such as OntoNav (Anagnostopoulos et al. 2005, Tsetsos 

et al. 2006), ONALIN (Dudas et al. 2009), or the unified ontology for navigation in indoor and outdoor space 

proposed by (Yang & Worboys 2011). An abstract model for route and route guidance is also presented in 

(Gilliéron & Merminod 2003). The Route package of the MLSEM has been designed to comprise the concepts 

introduced by these approaches. The UML data model is depicted in figure 178. 

 

Figure 178: The contents of the Route package.  

 class Route

«FeatureType»

RouteSegment

+ /topology  :TP_Complex [0..1] {readOnly}

+ /geometry  :GM_CompositeCurve [0..1] {readOnly}

+ travelDistance  :Length [0..1]

+ travelTime  :TM_Duration [0..1]

+ travelCost  :Measure [0..*]

+ startPoint  :RoutePoint

+ endPoint  :RoutePoint

+ viaPoint  :OrderedSet<RoutePoint> [0..1]

«FeatureType»

Route

+ /topology  :TP_Complex [0..1] {readOnly}

+ /geometry  :GM_CompositeCurve [0..1] {readOnly}

+ /totalTravelDistance  :Length [0..1] {readOnly}

+ /totalTravelTime  :TM_Duration [0..1] {readOnly}

+ /totalTravelCost  :Measure [0..*] {readOnly}

+ /startPoint  :RoutePoint {readOnly}

+ /endPoint  :RoutePoint {readOnly}

+ /viaPoint  :OrderedSet<RoutePoint> [0..1] {readOnly}

«FeatureType»

RoutePoint

+ type  :RoutePointType

+ travelTime  :TM_Duration [0..1]

+ travelCost  :Measure [0..*]

+ genericAttribute  :GenericAttributeType [0..*]

{node->forAll(n1, n2 | n1 <> n2 implies n1.graph = n2.graph)}

{topology.isSimple() and topology.isConnected() and topology.isCycle() = false}

{topology.element->includesAll(state.topology->union(transition.topology))}

{geometry.element->includesAll(state.geometry->union(state.geometry))}

{startPoint.state = node.first() and endPoint.state = node.last()}

{next->notEmpty() implies next.startPoint = endPoint}

{previous->notEmpty() implies previous.endPoint = startPoint}

«FeatureType»

State

+ cost  :GenericAttributeType [0..*]

«DataType»

RouteGuidance

«DataType»

RouteInstruction

+ action  :CharacterString

+ distance  :Length

+ duration  :TM_Duration

+ description  :CharacterString [0..*]

«DataType»

RoutePresentation

+ mediaType  :CharacterString

+ content  :byte[] [0..1]

+ reference  :ExternalReference [0..1]

«DataType»

TextualDescription

«DataType»

AudioDescription

«DataType»

VisualDescription

«CodeList»

RoutePointType

+ WayPoint

+ Turn

+ DecisionPoint

+ PointOfInterest

+ ...

«FeatureType»

Transition

+ cost  :GenericAttributeType [0..*]

{Set{1..segment->size()-1}->forAll(i | segment->at(i).endPoint = segment->at(i+1).startPoint)}

{topology.isSimple() and topology.isConnected() and topology.isCycle() = false}

{segment->forAll(s | topology.contains(s.topology))}

{segment->forAll(s | geometry.contains(s.geometry))}
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In the context of the MLSEM schema, a Route is expressed in terms of one or more RouteSegment features as well 

as a number of RoutePoint features. A RoutePoint represents an important point along the route such as a waypoint 

that has to be traversed, a turn or decision point which involves an action of the user, or a point of interest that may 

also serve as landmark supporting self-localization. The RoutePoint feature type is realized as wrapper for the 

State feature type and decorates it with additional thematic properties. Thus, a route point is associated with pre-

cisely one dual node in the IntraLayerGraph of a given SpaceLayer and by this provides access to the correspond-

ing SpaceCell, its thematic attributes, and its primal space representation. The type of a RoutePoint feature is given 

by a value from the extensible code list RoutePointType which predefines WayPoint, Turn, DecisionPoint, and 

PointOfInterest. Every RoutePoint can provide a travelTime which denotes the time required for a navigation user 

to pass this part of the route. The value domain of travelTime is TM_Duration from the Temporal Schema which 

allows describing a length or distance in the temporal dimension. Additional travel costs for a route point including 

time-base, distance, or monetary costs can be provided through the travelCost attribute. Its value is meant to be 

the output of a cost function that takes one or more cost values (taken from the wrapped State feature, cf. chapter 

4.4.1.1) as input. For each travelCost, the Measure data type from ISO/TS 19103:2005 facilitates to provide a 

reference to the definition of the cost unit. Moreover, further semantic characteristics can be attached to a Route-

Point feature using generic attributes. 

A RouteSegment is a simply connected, non-cyclic, directed subset of an IntraLayerGraph consisting of an ordered 

set of one or more State features being linked in sequence by Transition features. The State features are said to be 

the Generator of the RouteSegment from which the Transition instances implicitly follow. In contrast to the more 

general notion of a SpaceElementSequence, a RouteSegment is hence expressed as path on the intra-layer graph 

and must contain all graph elements constituting the path. The spatial description of a RouteSegment is realized 

through the spatial attributes topology and geometry whose values are instances of TP_Complex and GM_Com-

positeCurve (acting as complex geometry) that contain the topological respectively geometric primitives of the 

associated State and Transition features and thus are necessarily subcomplexes of the spatial representation of the 

entire IntraLayerGraph. For this reason, both topology and geometry are marked as derived and read-only. More-

over, either attribute is optional like with the spatial characteristics of the IntraLayerGraph. The described con-

straints for RouteSegment are mapped onto the following OCL invariant. 

 context RouteSegment inv:  

  node->forAll(n1, n2 | n1 <> n2 implies n1.graph = n2.graph) and 

  topology.isSimple() and topology.isConnected() and topology.isCycle() = false and 

  topology.element->includesAll(state.topology->union(transition.topology)) and 

  geometry.element->includesAll(state.geometry->union(state.geometry)) 

As for semantic information, the RouteSegment feature types defines the optional attributes travelDistance, trav-

elTime, and travelCost. The travelDistance captures the distance or, more precisely, the length of the route segment 

which, for example, can be derived as sum of the lengths of the GM_Curve primitives associated with the contained 

Transition features. The travelDistance may have zero length in case the RouteSegment only contains a single 

State instance. Both the travelTime and travelCost attributes are identically defined as for the RoutePoint feature 

type. In addition to these cost-based values, each RouteSegment has to announce its start and end point as instance 

of RoutePoint using the mandatory startPoint and endPoint attributes. Precisely, the start point has to wrap the 

first node within the ordered Generator association, whereas the end point corresponds to the last node. If the 

RouteSegment only consists of a single State feature, then both points are obviously identical. The provision of an 

start and an end point induces a natural direction of the route segment. Optionally, arbitrarily many State features 

in-between the start and end point can be classified as further route points and provided as ordered set of Route-

Point instances through the viaPoint attribute. RouteSegment features can be linked to each other in order to point 

to the next or the previous segment in a sequence. Additional constraints are applied to these relations in order to 

enforce that the endPoint of a given route segment is the startPoint of its successor (and vice versa). 

 context RouteSegment inv:  

  startPoint.state = node.first() and endPoint.state = node.last() and  

  (next->notEmpty() implies next.startPoint = endPoint) and 

  (previous->notEmpty() implies previous.endPoint = startPoint) 
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Finally, a Route is built from a set of RouteSegment features ordered by their start and end points so that the 

endPoint of a given segment in the set agrees with the startPoint of its consecutive segment and the entire Route 

itself renders a simply connected, non-cyclic, directed subset of an IntraLayerGraph. Similar to RouteSegment, 

the topology and geometry of a Route feature are described by a topological respectively geometric complex (in 

the form of a GM_CompositeCurve) both of which are derived from the spatial union of the route segments. The 

OCL constraint shown below expresses the corresponding consistency requirements. 

 context Route inv:  

  Set{1..segment->size()-1}->forAll(i | segment->at(i).endPoint = segment->at(i+1).startPoint) and 

  topology.isSimple() and topology.isConnected() and topology.isCycle() = false and 

  segment->forAll(s | topology.contains(s.topology)) and  

  segment->forAll(s | geometry.contains(s.geometry)) 

The totalTravelDistance, totalTravelTime, and totalTravelCost attributes of Route represent the total values of the 

travel distance, time, and costs associated with the individual route segments. The basic assumption is that the total 

route values can be computed as the sum of the values of the segments or by applying a further cost function. In 

either case, the attributes can be marked as derived and read-only. The same holds for the attributes startPoint, 

endPoint, and viaPoint. Whereas the start point (end point) of the route obviously is the start point (end point) of 

the first (last) route segment, the ordered viaPoint set contains all route points in-between without duplicates. 

Every element of a route, i.e. every individual RoutePoint and RouteSegment feature as well as the Route itself, 

can be enriched with guidance information by assigning one or more instances of the abstract data type RouteGuid-

ance to the feature instance. Guidance information is further distinguished into route instructions and presentations 

of the route modelled as the subtypes RouteInstruction and RoutePresentation.  

A RouteInstruction provides information needed while travelling along a route that allows that route to be trav-

ersed. Route instructions should be given so that the route can be navigated by executing a list of consecutive 

instructions. The action attribute of RouteInstruction describes the actual action to be taken by the navigation user 

and thus represents a navigation command. For example, at a single RoutePoint, an action might be to “turn left” 

or to “take the elevator to the fifth floor”. For a RouteSegment, the action might cover multiple commands such 

as “turn left, follow the corridor, and turn right at its end”, or it might represent a high-level command such as 

“enter the building and take the main elevator to the fifth floor” while more detailed instructions (e.g., on how to 

find the main elevator) are provided as actions on individual route points. Likewise, a Route might be assigned 

individual high-level instructions, whereas a detailed instruction list along the entire route simply follows from the 

instructions assigned to its ordered set of route segments and route points. Each RouteInstruction can additionally 

provide information about the distance and duration required to execute the action. Moreover, the instruction can 

be further augmented with one or more textual descriptions providing advisory that might be useful in understand-

ing the action to be taken. 

A RoutePresentation reflects the rendering of a (part of a) route as audio description (e.g., spoken commands), 

visual description (e.g., 2-dimensional maps or images as well as 3-dimensional visualization models), or textual 

description (e.g., textual commands provided as web page or in printed form). The appropriate media type depends 

on the physical and perceptual capabilities of the navigation user as well as the presentation capabilities of the end-

user device. A route presentation may support one or more route instructions but may also be provided inde-

pendently. Moreover, multiple presentations of different media types may be associated with a single (part of a) 

route. The  possibility to assign descriptions to single RoutePoint features, RouteSegment features, and the Route 

feature itself again yields a high flexibility in providing route presentations with different scope and detail level. 

For example, for a single RoutePoint, a 3-dimensional graphics model including the route geometry, navigation 

symbols, and further visual aids may be rendered that lets the user virtually explore the ambient indoor space at 

the spot. On the level of a RouteSegment, a more generalized view on the path embedded in a 2-dimensional floor 

plan might suffice. For the entire Route, a video might be attached showing a fly-through of the indoor environment 

along the route. The geometric information for visual presentations may hereby be taken from the primal space 

representations of the SpaceCell instances associated with the route elements and possibly from associated 

SourceObject data (cf. chapter 4.4.1.3). The abstract RoutePresentation class is subtyped into AudioDescription, 

VisualDescription, and TextualDescription. The encoding of the presentation data has to be specified through the 

mediaType attribute. Similar to the SourceObject feature, the actual data can then be given either inline as binary 
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array or by pointing to an external data source using an ExternalReference. The latter allows for preformatted 

requests to web-based portrayal services such as the OGC Web Map Service (WMS), Web 3D Service (W3DS), 

or Web View Service (WVS).       

It is important to note that the Route package of the MLSEM schema only provides an interface that addresses the 

description, storage, and exchange of route and guidance information and that needs to be implemented by a nav-

igation system. Therefore, algorithms and mechanisms for the (automatic) generation of route instructions as well 

as presentations are not included but are outside the scope of this thesis. In chapter 2.2.2, the approach of (Lorenz 

et al. 2006) for the automatic derivation of route commands from a cell-based indoor space model has been pre-

sented which can be adopted for the domain of the MLSEM. The proper presentation of routes is still being re-

searched (e.g., Giudice et al. 2010, Lorenz et al. 2010). The MLSEM data model does not anticipate a choice of 

presentation but rather is flexible enough to link a route with any type of guidance information available. 

4.4.1.6 Model Linkage Package 

The Model Linkage package defines a general mechanism for connecting an instance of the MLSEM with a navi-

gation network from another MLSEM model or even from different sources. This is required in cases where the 

spatial scope and extent of a single MLSEM instance is limited to a subset of the entire navigation space. For 

example, assume a navigation system shall support the movement between the indoor spaces of two adjacent 

buildings on the same site. If the indoor space of each building is mapped by its own 3-dimensional space layer 

complex, then the corresponding multilayered graphs are disconnected and hence are not suitable for finding paths 

between two places from either building. Second, in two dimensions, a single space layer complex is even re-

stricted to the mapping of a single floor within the same building. If, in contrast, each floor of that facility is carried 

to a topographic space layer within the same 2-dimensional space layer complex, then the interior spaces on the 

separate space layers would necessarily overlap and thus be connected by inter-layer edges. Since most of the 

spatial entities on different building floors however have no spatial overlaps in the real world, this graph represen-

tation would obviously provide a false conceptualization of the indoor space. It easily follows that a further con-

ceptual entity is required to express the linkage between the separate building floors. A third example for the Model 

Linkage package is to connect an MLSEM representation to an existing navigation structure that follows a different 

modelling and space representation paradigm. For instance, the indoor space of a building given as instance of the 

MLSEM may be linked to a representation of the outdoor transportation network (e.g., the road network given 

according to a standard such as GDF) in order to connect the indoor space with the outdoor world and to enable 

the determination of outdoor routes to and from the building.  

A summary of the Model Linkage package is presented as UML diagram in figure 179. The central concept for 

linking two navigation networks is TransferTransition. A TransferTransition denotes a transition between two 

elements from either network structure which themselves are wrapped by the feature type TransferState. When 

applied to an instance of the MLSEM, TransferState simply acts as a proxy for a State feature and thus for a dual 

node in the corresponding multilayered graph. In all other cases, a TransferState shall reference a node within the 

navigation graph to be linked through its externalNode property using an ExternalReference. A TransferTransition 

then establishes an edge between the two TransferState nodes in order to connect the separate graph representa-

tions. Put differently, a TransferState marks an interface within a navigation graph that can be connected to a 

TransferState interface within another navigation graph through a TransferTransition. It follows that, in terms of 

the MLSEM, the linkage between two navigation models is realized in dual space. In case TransferState wraps an 

instance of the State feature type, then this State feature provides access to both the primal space representation 

and the semantic properties of the associated SpaceCell feature. Otherwise, it depends on the modelling approach 

being applied to the navigation model to be linked whether this additional information is available. Note that 

TransferTransition semantically coincides with the Transition feature type, and thus is meant to expresses a topo-

logical adjacency relationship between the spaces represented by the TransferState feature instances.  
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Figure 179: The contents of the Model Linkage package. 

TransferState and TransferTransition are derived by specialization from the feature type TransferSpaceElement 

which is implemented as subtype of SpaceElement. They hence inherit the properties of SpaceElement that allow 

for semantically classifying the involved transfer spaces and their transitions. TransferSpaceElement further adds 

the possibility to model the cost for travelling between the connected navigation structures. The value domain of 

this cost value is given as GenericAttributeType in order to support arbitrary units of cost such as distance, mone-

tary, or time-based measures. Similar to State and Transition, also TransferState and TransferTransition are related 

by Boundary and CoBoundary associations that enforce every TransferTransition to be bounded by exactly two 

TransferState features, and every TransferState to have a non-empty coboundary. Likewise, both TransferState 

and TransferTransition may have a geometric-topological representation based on 0-dimensional respectively 1-

dimensional primitives from the Spatial Schema. The spatial description of a TransferState feature may hereby 

reference or repeat the spatial description of the related entity from the original navigation structure. It obviously 

follows that the TransferState and TransferTransition features constitute an undirected, weighted graph which is 

conceptually mapped by the InterModelGraph type. This inter-model graph needs to be evaluated in path searches 

in order to find routes between the linked navigation structures. An instance of InterModelGraph at minimum 

consists of a single TransferTransition feature and its boundary nodes. Its spatial characteristics are available 

through the attributes geometry and topology both of which realize a complex spatial object (GM_Complex re-

spectively TP_Complex) being formed by the spatial primitives of the graph elements. The spatio-semantic con-

sistency of the inter-model graph is ensured by means of OCL constraints that are identically defined as for the 

IntraLayerGraph feature type and its components (cf. chapter 4.4.1.1 for the discussion of the OCL constraints). 

Finally, every TransferState, TransferTransition, and InterModelGraph feature can be assigned RouteGuidance 

information in order to support navigation users in traveling between the separate navigation networks. 

 class Model Linkage

«FeatureType»

SpaceElement

«FeatureType»

TransferSpaceElement

+ cost  :GenericAttributeType [0..*]

«FeatureType»

TransferTransition

+ geometry  :GM_Curve [0..1]

+ topology  :TP_Edge [0..1]

«FeatureType»

TransferState

+ externalNode  :ExternalReference [0..1]

+ geometry  :GM_Point [0..1]

+ topology  :TP_Node [0..1]

«FeatureType»

State

«Type»

InterModelGraph

+ topology  :TP_Complex [0..1]

+ geometry  :GM_Complex [0..1]

«DataType»

RouteGuidance

{topology.geometry = geometry}

{topology.element->includesAll(edge.topology->union(node.topology))}

{geometry.element->includesAll(edge.geometry->union(node.geometry))}

{topology.geometry = geometry} {topology.geometry = geometry}

{topology.boundary()->includesAll(boundary.topology)}

{geometry.boundary()->includesAll(boundary.geometry)}
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The usage of the Model Linkage package is exemplified in figure 180. It shows two 2-dimensional instances of 

the MLSEM capturing subsequent floors of the same building. In order to keep the example simple, the space layer 

complex of each MLSEM only contains a single topographic space layer. The floors are connected by a staircase 

which is represented by the space cell 𝑆 on both space layers. On the ground floor shown on the left of figure 180, 

the staircase is adjacent to a corridor 𝐶 which is linked through doors to two rooms 𝑅1 and 𝑅2. The first floor on 

the right of figure 180 differs in that the corridor gives passage to a single room only. At the bottom of figure 180, 

the corresponding multilayered graph representations of the MLSEM instances are depicted.49 The dual nodes of 

the stair cells in either multilayered graph are referenced by two instances 𝑇𝑆1 and 𝑇𝑆2 of TransferState which are 

linked by a TransferTransition. The resulting InterModelGraph hence creates a linkage between both MLSEM 

instances and encodes the fact that the building floors can be reached from each other using the stairs.50 

(a)  

(b)  

Figure 180: Two 2-dimensional instances of the MLSEM linked by an InterModelGraph. 

A second example is provided in the following figure 181. On the left of figure 181, the same ground floor as 

above is shown and realized as 2-dimensional instance of the MLSEM. It however is extended by an additional 

space cell 𝐸 representing the entrance hall of the building. The multilayered graph in dual space is depicted at the 

bottom of figure 181. Assume the road network around the building is additionally available as graph-based con-

ceptualization in a model other than the MLSEM (cf. right of figure 181). Two instances of TransferState can then 

be used to identify the interfaces between both models, i.e. the dual node of the entrance hall 𝐸 and a node entity 

𝑁 within the road network. A TransferTransition connecting the transfer states then links the multilayered graph 

of the MLSEM instance with the road network and denotes that navigation users will enter the road network at 𝑁 

when leaving the building via 𝐸. Note that the fact that the MLSEM instance is given in two dimensions does not 

imply that the navigation structure linked by a TransferTransition also has to be modelled in two dimensions (or 

vice versa). 

                                                           
49 Note that in either multilayered graph the dual node of the corridor is linked to the dual node of the outer space by more than 

one dual edge. The reason for this is that, in two dimensions, the boundary of the corridor space cell has to be described by 

more than one 1-dimensional boundary cell. See chapter 3.1.3.1 for a comprehensive discussion. 

50 Obviously, if the indoor space was represented by a 3-dimensional MLSEM instance, then the staircase could either be 

represented by one or two space cells on the same topographic space layer without additional TransferTransition edges.  
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(a)  

(b)  

Figure 181: A 2-dimensional instance of the MLSEM linked to a road network using the InterModelGraph. 

4.4.2 MLSEM Data Exchange Format 

In order to facilitate the processing, transport, and storage of indoor space information according to the MLSEM 

schema, the conceptual data model has to be transformed into a platform-specific model which realizes the con-

ceptual and thus platform-independent model elements for a given technological platform or technology stack such 

as specific programming languages, database systems, or file-based encodings. 

In the context of the ISO 19100 family of international standards, the Geography Markup Language (GML) pro-

vides the means to express an ISO 19109 conformant application schema in XML Schema and, as such, to realize 

an XML encoding for data that implements the logical structure of the geographic features as well as both their 

spatial and non-spatial properties as described in the ISO 19109 application schema. GML is an ISO 19118:2011 

compliant XML grammar written in XML Schema that, on the one hand, specifies XML encodings for several of 

the conceptual classes defined in the ISO 19100 series including the conceptual models from ISO/TS 19103, ISO 

19107, ISO 19108, and ISO 19109. On the other hand, GML itself serves as modelling language for geographic 

systems and thus introduces its own concepts and a rich set of modelling primitives for the description of open and 

vendor-neutral geospatial application schemas as well as for the transport and storage of geographic information 

in XML, and moreover defines the corresponding XML Schema syntax, mechanisms, and conventions. The GML 

concepts are mostly drawn from and identically defined as the concepts specified in the ISO 19100 series (e.g., the 

notion of a geographic feature and its geometric and topological description) but also comprise conceptual entities 

not yet being captured by ISO 19100 specifications (e.g., the notion of feature collections and dynamic features). 

Following ISO 19109, also GML refers to an application schema as set of feature types being essential in the 

context of an application or application domain. An application schema specified in XML Schema based on the 

modelling language and rules defined by GML is said to be a GML application schema. It follows that GML 

application schemas are platform-specific encoding models with XML Schema providing the technology stack. 

As with other XML based grammars, two parts of the grammar can be distinguished: the GML application schema 

that describes the GML document, and the GML document (or instance document) that contains the actual data. 

GML was initially developed within the Open Geospatial Consortium and was first published as OGC Recom-

mendation Paper in May 2000.51 In 2001, the OGC membership adopted GML version 2.0 as official OGC stand-

ard. With this and its later follow-up versions, GML became increasingly accepted and implemented in the GIS 

community. The early versions of GML were completely based on the OGC Abstract Specification suite. However, 

                                                           
51 GML version 1.0 was presented in form of three profiles, two of which were implemented using Document Type Definitions 

(DTD) whereas the third profile was based on the Resource Description Framework (RDF) as XML technology. The approach 

of using static schemas specified in XML Schema was first introduced in GML 2.0.   
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the significant intersection of the work of OGC and ISO/TC 211 soon became apparent but only few encodings in 

GML were conformant with the abstract specifications of the ISO 19100 series. Hence, both OGC and ISO/TC 

211 joined forces in the further alignment of their standards work and in the development of GML. With the release 

of GML 3.0 in 2002 and its minor update to GML 3.1.1 in 2004 (Cox et al. 2012), the OGC achieved major steps 

towards the consistency of GML with ISO specifications. In 2007, the revision of GML to version 3.2.1 (Portele 

2007) was mutually approved by both organisations and thus has been incorporated into the ISO 19100 family as 

ISO 19136:2007 standard. The latest release of GML 3.3 has been issued by the OGC in 2012 (Portele 2012) and 

will lead to a future revision of ISO 19136:2007.  

The GML specification recognizes two alternative approaches for exposing geographic data with GML and hence 

for constructing a GML application schema. First, the GML application schema is directly specified in XML 

Schema by adhering to the modelling principles and rules provided by GML. An underlying conceptual and plat-

form-independent model is not presupposed for this alternative. Second, an ISO 19109 conformant application 

schema described in UML is mapped onto a corresponding GML application schema. GML specifies normative 

rules for this UML-to-GML mapping which need to be obeyed by conformant systems and implementations. This 

second approach more closely follows the idea of transforming a platform-independent model into a platform-

specific representation as envisioned by the Model-Driven Architecture (MDA) approach in software and systems 

engineering.52 In fact, both commercial and free software tools are available that enable the (semi-)automatic con-

version from UML to GML.53 

In (Nagel et al. 2010), a first mapping of the former data model of the MLSEM to GML 3.1.1 has been presented 

under the name IndoorGML. In the context of this thesis, this GML mapping has been comprehensively reworked 

in order to capture the redesign of the MLSEM application schema and its various extensions as developed in the 

previous chapter 4.4.1. A major goal of the work undertaken in this thesis was both to ensure the conformance of 

the conceptual MLSEM data model with the ISO abstract specifications and to realize its rule-based UML-to-

GML mapping in accordance with GML/ISO 19136. The translation of the conceptual MLSEM classes and their 

relations into corresponding XML Schema components was hereby carried out by applying the normative GML 

mapping rules in a straightforward manner. A detailed description of these normative rules goes beyond the scope 

of this thesis but is provided as part of the GML 3.2.1 specification (cf. annex E in Portele 2007). The reader is 

thus referred to this document. The resulting GML 3.3 application schema is presented in appendix B and an 

example instance document is presented in chapter 7.1. It finally realizes a data encoding format that allows for 

structuring, storing and transporting indoor space and navigation data between multiple and different computer 

systems according to the mathematical and conceptual framework of the MLSEM as well as in compliance with 

international standards. Moreover, and due to the GML based implementation, the suite of standardized OGC Web 

Services for geographic information is applicable to the MLSEM schema and corresponding instance documents. 

For example, clients and servers with interfaces that implement the OGC Web Feature Service can be used to read 

and write MLSEM data over the internet and to even execute transactions on the data. Likewise a range of portrayal 

services is available for data presentation and styling both in two and three dimensions, or for the distributed 

processing of data.  

4.5 Integration with Existing GIS Standards for Location-Based Services 

In this chapter, the relation of the MLSEM application schema to existing standards for the description of location-

based services (LBS) in the field of GIS is illustrated. Location-based services are distributed services meant to 

support applications for which the location and/or time data of a user equipped with a mobile device render control 

features for the behaviour of the application. Location-based services exploit the position of the mobile user in 

order to offer added value information. Typical examples include simple “Where am I?” services, more complex 

discovery and directory services providing information about the location context of the user (e.g., in order to find 

nearby places, products, or services), and (reverse) geocoding services for translating the location into an address-

ing schema and vice versa. If the location information shall support the determination of an optimal path to a 

destination location then the service is commonly called navigation service. Services that render geographic infor-

mation for display on a mobile device are said to be presentation or rendering services. Location-based information 

                                                           
52 MDA was first introduced by the Object Management Group (OMG). See http://www.omg.org/mda/ for more information. 

53 ShapeChange is an example for a freely available mapping tool. See http://shapechange.net/ for more information. 
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can also be collected about the mobile user. For example, a service providing data about location changes is usually 

said to be a tracking service. 

The MLSEM is a spatio-semantic information model for describing indoor spaces for indoor navigation. It com-

prises feature and data types, as well as attributes, relationships, and operations associated with those types, which 

allow for realizing rich indoor space models that underpin location-based services. However, the MLSEM schema 

is not intended to address the definition and implementation of the services themselves which includes, amongst 

others, the description of service capabilities and interfaces, communication and messaging protocols between 

servers and mobile clients, or the distributed service architecture. These complementary topics are covered by two 

existing international GIS standards, namely the ISO 19133:2005 specification “Geographic information – Loca-

tion-based services – Tracking and navigation” from the ISO 19100 standards series as well as the OGC standard 

OpenGIS Location Services (OpenLS) (Mabrouk 2008). Both standards and the integration of the MLSEM are 

presented in the following. 

4.5.1 ISO 19133 – Location-based services 

The scope of ISO 19133 is illustrated along its proposed conceptual architecture for location-based services as 

depicted in the following figure 182. It defines four core LBSs that are called Navigation Service, Tracking Service, 

Location Transformation Service, and Navigation Rendering Service. The basic assumption of ISO 19133 is that 

these services are made available on the web to be accessed by mobile devices. ISO 19133 does not presuppose 

any specific requirements on the underlying network platform or protocols. Moreover, services not specifically 

marked as being part of ISO 19133 are assumed to provide required functionality but are not specified in detail.  

 

Figure 182: Conceptual architecture for location-based services as specified by ISO 19133. 

The LBSs provide external interfaces to a navigation application in order to trigger the tasks of path planning, 

localization, tracking, and presentation, and to return the result of corresponding queries to the mobile device (e.g., 

a specific route, location change, or route presentation). According to ISO 19133, the services may implement the 

functionality needed to perform these tasks based on the underlying Data repository, or may delegate them to 

appropriate internal services. Hence, ISO 19133 does not specify algorithms or techniques for answering naviga-

tion queries (e.g. for finding or rendering a route), but leaves these topics to a concrete implementation. However, 

it defines the data types for delivering the content in responses to navigation queries which results in an overlap 

of the Navigation (Rendering) Service with the MLSEM, and in particular with its Route package as defined in 

chapter 4.4.1.5. 

The conceptual data model of the ISO 19133 Navigation Service is shown in figure 183. NS_NavigationService54 

is the main interface for the communication between a mobile client and a Navigation Service. The functionality 

                                                           
54 By convention, the names of classes from the Navigation Service are prefixed with “NS_”, whereas classes from the network 

model of ISO 19133 receive the prefix “NT_”. 
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of the service is offered by the route operation which takes an NS_RouteRequest as input and returns an 

NS_RouteResponse that contains the user-specific route. Route requests are differentiated into the types basic, 

predictive, dynamic, and complex as defined by the NS_RouteRequestType code list. A navigation service needs 

to announce the supported request types through its capabilities() operation and has to properly handle requests 

by using appropriate path finding algorithms.  

 

Figure 183: NS_NavigationService interface of ISO 19133:2005. 

An excerpt of the UML diagram for NS_RouteRequest is shown below. It represents the actual request of a navi-

gation user and specifies the start and end location of the requested route as well as additional waypoints that shall 

be traversed or avoided. Further attributes depend on the type of the route request and include the planned departure 

and arrival times, a cost function that chooses amongst route candidates, the route preferences of the user, or 

requested route renderings. Note that again only interfaces but no implementations are provided, for example, for 

specifying a cost function that evaluates distance, monetary, or time-based cost values using the NS_CostFunction 

type.55 The resulting route is then encapsulated in an NS_RouteResponse and given by the type NT_Route.  

 

Figure 184: NS_RouteRequest and NS_RouteResponse. 

ISO 19133 defines its own simple network model that builds on the topology model of the ISO 19107 Spatial 

Schema and that shall be used for spatially expressing the route (cf. figure 185). This network model is also seen 

as universe of discourse for the navigation problem and hence may be used to encode the navigation space data 

within the Data repository. The entire NT_Network is defined as subtype of TP_Complex. It consists of NT_Junc-

tion elements being subtypes of TP_Node as well as NT_Link elements being subtypes of TP_DirectedEgde. The 

boundary and coboundary relationships between NT_Junction and NT_Link are hence inherited from the Spatial 

Schema (cf. figure 164) and induce a directed graph. Likewise, the network structure may be embedded geomet-

rically through the Realization association of the topological objects. Nevertheless, and similar to the MLSEM 

data model, the ISO 19133 network model also defines connectivity from a semantic point of view. Precisely, an 

NT_Junction representing a single node of the navigation graph is described by one or more NT_Turn instances 

which denote their own entry and exit links. The reason for this microtopology is that ISO 19133 mainly (but not 

exclusively) addresses road networks for car navigation. For example, if an NT_Junction represents a cross-road 

with several incoming links, then NT_Turn elements can be used to model possible traffic patterns. Like with State 

                                                           
55 The full presentation of the modelling of cost functions based NS_CostFunction is outside the scope of this thesis. The reader 

is referred to the ISO 19133:2005 specification document instead. 

 class NS_Nav igationServ ice

«interface»

NS_Nav igationServ ice

«readonly»

+ capabil ities  :NS_RouteRequestType [0..*]

+ route(NS_RouteRequest)  :NS_RouteResponse

«get»

+ capabil ities()  :Sequence<NS_RouteRequestType>

«CodeList»

NS_RouteRequestType

+ basic

+ predictive

+ dynamic

+ complex

 class NS_RouteRequest

«DataType»

NS_RouteRequest

+ routeRequestType  :NS_RouteRequestType [1..*]

+ wayPointList  :NS_WayPointList [1..*]

+ departureTime  :TM_Period [0..1]

+ arrivalTime  :TM_Period [0..1]

+ costFunction  :NS_CodeFunctionCode [0..1] = distance

+ preferences  :NS_RoutePreferences [0..*]

+ returnRouteInstructions  :boolean

+ returnRouteMaps  :boolean

+ returnRouteGeometry  :boolean

«CodeList»

NS_CodeFunctionCode

+ distance

+ time

+ numberTurns

«CodeList»

NS_RoutePreferences

+ scenic

+ easiest

«Type»

NS_CodeFunction

«DataType»

NS_RouteResponse

+ request  :NS_RouteRequest [0..1]

+ route  :NT_Route [0..*]

«CodeList»

NS_RouteRequestType

+ basic

+ predictive

+ dynamic

+ complex

«DataType»

NS_RenderingResponse

+rendering

0..*

+costFunction

0..*CostFunction

+routeRequest
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and Transition features of the MLSEM, the nodes and edges in the network can carry cost values which are acces-

sible through a cost operation that takes a cost function and a time position as input. A single route is modelled as 

subtype of NT_Network and is further presented in figure 186. 

 

Figure 185: NT_Network type from ISO 19133:2005 for modelling the navigation space. 

Similar to the MLSEM Route feature, an NT_Route is a simply connected, non-cyclic, directed subset of an 

NT_Network and hence must be geometrically realizable through a GM_CompositeCurve primitive. Further meta 

information about the route are provided as NT_RouteSummary which comprises the time and distance of the route 

as well as its start point, end point, and possible intermediate stops. Parts of the route can be classified as NT_Ma-

neuver which represents a legal sequence of navigation actions expressed as ordered set of turns and corresponding 

links. The NT_Maneuver type is comparable to a RouteSegment of the MLSEM schema with the difference that a 

Route is entirely (and not just partly) made of a RouteSegment features. Every NT_Maneuver can be assigned free 

text using NT_Advisory elements in order to provide useful information for executing the maneuver. Cost values 

for the maneuver as well as its start and end points respectively links are accessible by invoking operations of 

NT_Maneuver.  

 class NT_Network

«Type»

NT_Network

«Type»

NT_Junction

«Type»

NT_Link

+ cost(NS_CostFunction, TM_DateAndTime)  :Measure

«Type»

NT_Turn

+ cost(NS_CostFunction, TM_DateAndTime)  :Measure

«Type»

TP_Node

«Type»

TP_DirectedEdge

«Type»

NT_Route

«Type»

TP_Complex

+endTurn

0..*

From

+fromLink 1

+startTurn

0..*

To

+toLink 1

+turn

1..*

+junction 1

+turn 0..*

+link

0..*

+element

1..* Complex

+complex

1..*
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Figure 186:  NT_Route type for describing a route and answering an NS_RouteRequest.  

Route guidance is provided through NS_Instruction which captures a single route instruction associated with an 

NT_Maneuver. The NS_Instruction data type defines the attributes cost, action, and advisory. Whereas action 

textually describes the action to be taken to navigate through the maneuver, cost represents its associated and pre-

calculated cost value. Further advisory may be provided as NT_Advisory descriptions. An ordered sequence of 

NS_Instruction entities can be assembled to an instruction list represented as NS_InstructionList that provides 

guidance for the entire route. Every route instruction as well as instruction list may be rendered in different media 

types. ISO 19133 supports portrayals as 2-dimensional map (typically as raster image), voice stream, textual de-

scription, and as sequence of raster images providing ground level views. The rendering is available through cor-

responding operations which may be internally delegated to a rendering service. Similar to the MLSEM, the data 

types Map, VoiceStream, and Image are simply defined as binary arrays.    

The ISO 19133 Navigation Rendering Service specifies a portrayal service for calculated routes which can be 

invoked from mobile clients through the external interface NS_RenderingService (cf. figure 187). It offers a render 

operation in order to translate routes into a visualization form suitable for the end-user device. The NS_Render-

ingRequest expects an instance of NT_Route as well as one or more types of target portrayals as specified by the 

NS_RenderingType code list, and is forwarded as input to the render operation. The resulting portrayal is then 

provided as NS_RenderingResponse which contains the corresponding binary data. Note that if a route is rendered 

as instruction list, then the list and its contained instructions may in turn provide their own rendering as described 

above. 

 class NT_Route

«Type»

NT_Route

+ geometry  :GM_CompositeCurve

«Type»

NT_Maneuv er

+ advisory  :NT_Advisory [0..*]

+ cost(NS_CostFunction, TM_DateAndTime)  :Measure

+ startTurn()  :NT_Turn

+ endTurn()  :NT_Turn

+ startLink()  :NT_Link

+ endLink()  :NT_Link

«DataType»

NT_RouteSummary

+ time  :TM_Duration

+ distance  :Length

+ extent  :EX_GeographicExtent

+ begin  :NT_NetworkPosition

+ stops  :NT_WayPointList [0..1]

+ end  :NT_NetworkPosition

«Type»

NT_Link

«Type»

NT_Turn

«DataType»

NS_Instruction

+ cost  :Measure

+ action  :CharacterString [0..1]

+ advisory  :NT_Advisory [0..*]

+ renderAsMap(Scale)  :Map

+ renderAsVoice()  :VoiceStream

+ renderAsText()  :CharacterString

+ renderAsGroundLevelView()  :Sequence<Image>

«DataType»

NS_InstructionList

+ renderAsMap(Scale)  :Map

+ renderAsVoice()  :VoiceStream

+ renderAsText()  :CharacterString

+ renderAsGroundLevelView()  :Sequence<Image>

+/link 0..*
Links

+maneuver

+instruction 1..*

Instruction List

+list

+turn 1..* {ordered}

Turns

+maneuver

+endTurn

0..*

From +fromLink

1

+startTurn

0..*

To +toLink

1

+maneuver

0..*

+maneuver 1..*

+route

1

+instructions

0..1

1

+summary 1
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Figure 187: NS_RenderingService interface for requesting route portrayals.  

The conceptual data model of the MLSEM Route package substantially agrees with the data types defined for 

describing routes as well as guidance information and portrayals within the ISO 19133 navigation services, but 

there are also subtle but important differences. First, and most importantly, ISO 19133 is primarily designed for 

outdoor navigation and especially for enabling car navigation applications. This follows from the semantics asso-

ciated with the core components such as the NT_Network model. For example, an NT_Link may be classified, 

amongst others, as road, ferry, rail, tunnel, or bridge. Likewise, predefined types for NT_Junction include inter-

section, roundabout, enclosedTrafficArea, or station. Classifications for entities of the interior built environment 

are not provided, not to mention alternative space concepts. Second, the graph structure realized by NT_Network 

is neither expressive enough to capture the multilayered and hierarchical approach of the MLSEM nor the simul-

taneous description of indoor space entities in both primal and dual space. For these reasons, the Route feature 

type of the MLSEM schema is not modelled as subtype of NT_Route (and hence transitively as subtype of 

TP_Complex) but is defined on the spatio-semantic graph representation of the MLSEM. Third, route guidance 

within the MLSEM explicitly includes 3-dimensional visualization models which are not comprised by the prede-

fined portrayal types of ISO 19133.  

Besides those differences, the Route package of the MLSEM schema has been designed so that its contents can be 

mapped onto the conceptual data model of ISO 19133, which enables different scenarios for the integration of the 

MLSEM in the ISO 19133 service architecture. At first, an MLSEM indoor space model takes the role of a Data 

repository within this architecture (cf. figure 182), and thus provides the backing data structure underneath the 

services that allows answering service requests based on its rich spatio-semantic information model. This includes 

support for hierarchical and context-dependent path planning as well as localization and tracking based on the 

multilayered graph structure, but also comprises the derivation of route instructions and route presentations (e.g., 

using standardized OGC web portrayal services). The results can then be directly encoded as ISO 19133 compliant 

data content in order to be transported to the mobile clients via the service interfaces. Additionally, the results can 

also be expressed and stored as MLSEM Route feature in the data repository. By this means, the data repository 

not only serves the indoor space model itself but also provides routing information including route guidance and 

portrayals. This enables speeding up service responses as typical routes inside a facility can be pre-calculated and 

directly answered from the repository. Likewise, complex routes may be cached inside the repository and only be 

transported in smaller chunks to the mobile client in order to meet storage or computation restrictions of the client. 

The advantage of using the MLSEM Route feature instead of NT_Route for this purpose is that it is consistently 

embedded in the MLSEM schema and thus provides access to the entire indoor space model which, for example, 

is important in case of dynamic rerouting. Moreover, an MLSEM Route captures all the information required to 

construct an NT_Route and thus can be translated upon request into an ISO 19133 compliant representation to be 

delivered to the navigation application.  

However, and as indicated above, the LBS framework of ISO 19133 requires extensions in order to be suitable for 

indoor navigation. Besides missing classifications for indoor entities, also the addressing schema for the identifi-

cation and naming of locations as specified by ISO 19133 is not appropriate for indoor environments. It can only 

be used to represent postal street addresses with additional large-scale information about countries, cities, and 

administrative areas. A (symbolic) referencing schema for locations and places inside a facility is not yet sup-

ported. Moreover, 3-dimensional route presentations need to be included to support the generation of effective 

indoor route visualizations comprising multiple generalization levels (cf. Hagedorn et al. 2009). 

 class NS_RenderingServ ice

«DataType»

NS_RenderingRequest

+ route  :NT_Route

+ type  :NS_RenderingType [1..*]

«CodeList»

NS_RenderingType

+ map

+ voice

+ text

+ groundLevelView

+ maneuverInstructions

«DataType»

NS_RenderingResponse

+ map  :Sequence<Map> [0..1]

+ voice  :Sequence<VoiceStream> [0..1]

+ text  :Sequence<CharacterString> [0..1]

+ goundLevelView  :Sequence<Image> [0..1]

+ instructionList  :Sequence<NS_InstructionList> [0..1]

«interface»

NS_RenderingServ ice

+ render(NS_RenderingRequest)  :NS_RenderingResponse
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4.5.2 OpenGIS Location Services (OpenLS) 

Similar to ISO 19133, the OGC OpenLS specification also has the primary objective to define access to standard-

ized services and content required for establishing an open location services platform on which web-based LBS 

applications targeting at mobile devices can be built. The top-level service architecture as specified by the current 

version 1.2 of OpenLS (Mabrouk 2008) is depicted in the following figure. 

 

Figure 188: Conceptual architecture for location-based services as specified by OpenLS (Mabrouk 2008). 

The core component of this architecture is called GeoMobility Server which is structured as a set of five Core 

Services. OpenLS defines both the interfaces to communicate with these services as well as an information  model 

(Abstract Data Types, ADT) to represent the data payload of service requests and responses. Further content such 

as local LBS-aware applications accessing the services or data such as maps, points of interests, or routes being 

used and delivered by the services may be additionally contained in the GeoMobility Server or be accessed over 

the internet. The OpenLS specification makes no assumptions regarding the underlying network platform and 

protocols.  

The OpenLS core services are called Directory Service, Gateway Service, Location Utility Service, Presentation 

Service, and Route Service. Whereas the directory service allows for finding nearby places, products, or services, 

the gateway service is meant to fetch the current location of a mobile device from the underlying mobile network 

structure. The location utility service facilitates to translate this location into the OpenLS addressing schema for 

locations and vice versa based on geocoding and reverse geocoding mechanisms. Both the route and the presenta-

tion service are illustrated in more detail in the following. Two extensions of the OpenLS service stack are de-

scribed under separate cover in accompanying official OGC standards. First, a Navigation Service as extension of 

the route service is introduced in (Fuchs et al. 2008) which however is strongly tailored to car navigation applica-

tions and thus not further discussed in this thesis. Second, (Smyth 2008) defines a Tracking Service interface for 

recording location changes of a mobile client. 

The OpenLS services are specified in XML Schema in order to realize a physical XML messaging format intended 

for network data transfer, e.g. based on protocols such HTTP or by embedding OpenLS messages into standards 

from the field of service-oriented architectures (SOA) such as SOAP. In figure 189, the main interface of the route 

service for requesting a route for a given navigation user is illustrated as UML diagram.56  

                                                           
56 The OpenLS XML Schema components have been translated into UML model elements for this thesis. The resulting UML 

diagrams are informal as they are not included in the normative part of the OpenLS specification. 
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Figure 189: DetermineRouteRequest type for querying routes. The namespace “gml” is associated with elements from OGC 

GML whereas “xs” is used for elements specified by the XML Schema Definition Language.  

The DetermineRouteRequest lets a navigation application trigger the determination of an appropriate route for a 

given RoutePlan. The route plan comprises at least the start and end location of the route as well as optionally 

further waypoints along the route (provided as WayPointList) or locations that shall be avoided (denoted as 

AvoidList). A Location in the sense of OpenLS can be given as address, as points or areas of interest (POI, AOI) 

that are possibly acquired through the directory service, or simply as position based on a coordinate tuple (in both 

two and three dimensions) equipped with a spatial reference system. Further attributes of a RoutePlan include the 

route preference (fastest, shortest, or pedestrian routes) as well as optionally the expected start and end time of the 

travel. OpenLS also supports storing a route for a mobile subscriber and hence offers the means to reference a 

stored route in a route request through a RouteHandle. A stored route is identified through a serviceID that points 

to the service which holds the route (typically by means of a URI) and a routeID that denotes the route store at the 

service.  

The route has to be requested in one or more of the following three forms. First, as preformatted list of route 

instructions (RouteInstructionRequest) which are per default returned as textual descriptions and may possibly 

include the route geometry. Second, as a purely geometric representation (RouteGeometryRequest) which may be 

restricted to a given geographic bounding box (encoded as GML Envelope) or to a maximum number of contained 

points. Or third, as map view (RouteMapRequest) with different outputs as further described by the RouteMapOut-

put type. The map can be restricted to a given bounding box context. It is assumed to be returned as raster image 

of a given width and height, and encoded in the media type (MIME type) requested by the format attribute. The 

map may show the entire route in an Overview or just a single route Maneuver (RouteMapStyle). 

 class DetermineRouteRequest

«DataType»

DetermineRouteRequest

+ routeHandle  :RouteHandle [0..1]

+ routePlan  :RoutePlan [0..1]

+ provideRouteHandle  :xs:boolean [0..1]

+ distanceUnit  :DistanceUnit [0..1]

«DataType»

RouteHandle

+ serviceID  :xs:string [0..1]

+ routeID  :xs:string

«DataType»

RoutePlan

+ routePreference  :RoutePreference

+ wayPointList  :WayPointList

+ avoidList  :AvoidList [0..1]

+ useRealTimeTraffic  :xs:boolean [0..1]

+ expectedStartTime  :xs:dateTime [0..1]

+ expectedEndTime  :xs:dateTime [0..1]

«DataType»

RouteInstructionRequest

+ format  :xs:string [0..1] = "text/plain"

+ provideGeometry  :xs:boolean [0..1]

+ provideBoundingBox  :xs:boolean [0..1]

«DataType»

RouteGeometryRequest
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The response of the route service is encoded as DetermineRouteResponse whose UML diagram is presented below. 

A route response comprises a summary of the route as well as the requested route forms for display on the mobile 

device.  

 

Figure 190: DetermineRouteResponse type for answering a route request. 

As described above, the content of a DetermineRouteResponse message is specified in OpenLS in terms of Ab-

stract Data Types. The RouteSummary ADT provides meta information about the route which is limited to the 

description of the total time and distance as well as the geographic region. The route summary is thus less expres-

sive than both the NT_RouteSummary entity of ISO 19133 and the MLSEM Route feature. The RouteGeometry 

ADT is a geometric description of the route using a LineString primitive from the GML schema. A GML Lin-

eString is an XML encoding of a GM_LineString from ISO 19107 and thus represents a 2-dimensional or 3-

dimensional sequence of straight line segments. Unlike ISO 19133 or the MLSEM schema, the route topology is 

not expressed explicitly but has to be derived from the geometry. Moreover, the geometric description using a 

GM_CompositeCurve as applied in both ISO 19133 and the MLSEM schema is more generic as it also comprises 

freeform curves. The RouteInstructionList ADT represents an ordered list of textual turn-by-turn instructions and 

travel advisories associated with single route segments or maneuvers, which is preformatted for presentation on 

the mobile device in the media type specified by the format attribute. Each RouteInstruction consists of the actual 

instruction to be taken as well as an optional description. Moreover, the distance and duration for executing the 

instruction can be stated as cost values, and both the route geometry and bounding box associated with the instruc-

tion can be provided. Each RouteInstructionList may denote the language in which it is given through the lang 

attribute. Finally, the route response may contain a set of RouteMap views. The RouteMap data type is a subtype 

of the Map ADT. The Content object associated with a Map describes the map data which may either be embedded 

in the XML message (as binary encoded string through the data attribute) or given as URL pointer to a remote 

service where the data can be found (e.g., as preformatted request to an OGC Web Map Service). The description 

attribute of RouteMap allows for connecting a route instruction with the map provided that the description of the 

instruction matches. 

As for presentation tasks, the OpenLS framework only offers map portrayals via its presentation service. The 

response to a corresponding PotrayMapRequest is hence a set of Map ADT objects. The request itself contains 

one or more Output descriptions for the maps whose parameters are similarly defined as in RouteMapOutput. 

Again, the maps may be requested to be encoded inline the response or to be given as pointers to another map 

service. Moreover, different map layers can be specified that shall be included in or excluded from the returned 
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base map.57 In addition, map overlays can be defined which includes the rendering of points of interests, route 

geometries (as returned from a route service), coordinate positions, or further maps on top of the base map. For 

each map layer and overlay, a corresponding presentation style can be announced which provides user-defined 

symbolization and colouring of geographic feature. This style may be, for example, encoded using the OGC Sym-

bology Encoding (SE) language or the OGC Styled Layer Descriptor (SLD) profile of the WMS. The following 

figure contains the UML representation of the OpenLS presentation service. 

 

Figure 191: OpenLS Presentation Service based on the PotrayMapRequest type. 

Like with the ISO 19133 service architecture, the role of the MLSEM within the OpenLS framework is primarily 

that of providing the rich base data in the implementation underneath the core services. Hence, an instance of the 

MLSEM serves the required input for answering requests from the discovery, location utility, route, presentation, 

or tracking service, which may be realized inside or outside the GeoMobility Server using standardized interfaces 

for accessing the MLSEM data such as the OGC WFS. In contrast to ISO 19133, the OpenLS platform much more 

implies such a backing data structure since the ADTs are rather to be understood as high-level abstractions of the 

route object. For example, OpenLS neither defines nor assumes a geometric-topological network structure such as 

NT_Network for the description of routes or even of the entire navigation data.58 The geometric, topological, and 

semantic view on the navigation problem has instead to be provided by the base data. This not only increases the 

flexibility of the OpenLS platform but also the requirements on the underlying information model which are how-

ever fully met by the MLSEM. OpenLS also implements the idea of a distributed systems architecture more con-

sequently since, for example, both routes and maps can be delivered to the mobile client in form of handles to 

remote services. This strongly supports the idea of using the MLSEM Route feature for the pre-calculation and 

caching of routes, and to translate the stored routes on demand into corresponding ADTs. It follows from the 

presentation of the selected OpenLS ADTs (cf. figure 190) that they can be easily populated from the information 

kept with a Route feature, which was also an important design goal of the MLSEM Route package. A client being 

capable of consuming MLSEM data may even be fed with handles to the Route feature itself (or likewise to its 

associated RouteInstruction and RoutePresentation information) via the OpenLS interfaces. 

However, there are also restrictions of OpenLS especially in the context of indoor navigation. First, map portrayals 

are assumed to be 2-dimensional representations delivered as raster images. The display of the route in its 3-

dimensional context using arbitrary visualization models (or even further media types such as videos) is not fore-

seen by the route and presentation services, although proposals for corresponding portrayal services and styling 

descriptors exist in the OGC Web Services suite (e.g., W3DS, WVS, and 3D-SLD). Moreover, additional presen-

tations of the route such as audio descriptions cannot be delivered which however may be required for navigating 

visually impaired users. Second, and similar to ISO 19133, OpenLS uses an addressing schema for locations that 

                                                           
57 As with any OGC Web Service, a presentation service has to provide a capabilities document which, amongst others, lists 

the available layers. 

58 In fact, version 0.5.0 of the OpenLS Navigation Service (cf. Bychowski et al. 2003) still contained the specification a network 

structure for expressing manoeuvres which showed considerable overlap with the NT_Network of ISO 19133. However, with 

the release of version 1.0.0 of the Navigation Service, this specification was omitted without substitution in favour of a more 

flexible OpenLS platform. 
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only supports postal street addresses but that is not generic enough to also name locations and places in indoor 

environments based on symbolic identifiers. Thus, the identification of indoor locations is only possible through 

3-dimensional coordinate positions based on the current OpenLS specification. 

Since its first release in 2003, OpenLS has received much attention not only from software vendors but also in 

scientific research. Several works have proposed extensions to the core services in order to bring OpenLS to the 

third dimension (e.g., Verbree & Zlatanova 2007, Papataxiarhis et al. 2007, Neis & Zipf 2008, Ogawa et al. 2011). 

Most of the work done focuses on the determination and presentation of routes in the context of 3-dimensional 

city models in order to enable outdoor navigation applications. In (Schilling & Goetz 2010), strategies and exten-

sions for seamless indoor-outdoor applications are discussed and prototypically implemented on top of OpenLS 

as part of the OGC OWS Phase 6 testbed.59 According to (Goetz & Zipf 2010), both a proper 3-dimensional 

visualization as well as a rich spatio-semantic indoor space model providing the underlying base data for routing 

and presentation still remain the major open issues of LBSs in the context of indoor navigation. The MLSEM 

provides the information model for describing this rich base data which can be integrated with ISO 19133 respec-

tively OpenLS as shown in this chapter in order to overcome these issues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
59 OGC Web Services (OWS) testbeds are part of the OGC interoperability initiative and are global, collaborative prototyping 

programs conducted annually with partners from industry, public administration, and academia. One major goal is to test and 

validate candidate specifications in order to deliver them into the OGC specification process. 
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Chapter 5  

Consideration of Navigation Constraints 

This chapter proposes a formal conceptual model for the representation of navigation constraints that captures the 

knowledge about environmental and user-dependent movement restrictions in an indoor environment and facili-

tates reasoning and inference about this knowledge when navigating a user through the environment. Everyday 

examples of navigation constraints are movement limitations enforced on road networks such as prohibited or 

restricted turns at junctions, directional restrictions such as one-way roads, or limitations addressing speed, time, 

or allowed vehicle types. Navigation constraints also play an essential role in indoor navigation and many of the 

constraints applied to road networks have similar counterparts in the indoor domain (Worboys 2011). Examples 

for movement restrictions in indoor space include corridors or gates that may only be passed in one direction, 

restricted movement patterns, and places that are inaccessible due to physical limitations of the user, lack of per-

mission, or time restrictions.   

In the course of the previous chapters, a Boolean attribute 𝑖𝑠𝑁𝑎𝑣𝑖𝑔𝑎 𝑙𝑒 has been introduced as example for mod-

elling a movement restriction on space cells and boundary cells (cf. example 3.63), which however is obviously 

limited in expressivity. The scope of this chapter is therefore to develop a conceptual model and taxonomy for 

navigation constraints that goes beyond simple and static Boolean flags and that is expressive enough to formulate 

a multitude of possible movement restrictions in indoor environments. Moreover, this model has to be accompa-

nied by a rule base governing the evaluation of navigation constraints in order to algorithmically (and dynamically) 

answer whether a specific portion of the indoor environment is traversable for a given navigation user. In a first 

step, a classification scheme for navigation constraints is proposed and related work is reviewed against their 

support for the identified categories. Based on this, a navigation constraint model is developed which addresses 

the different types of movement restrictions as well as their temporal, physical, and logical preconditions. Since 

movement restrictions are strongly related to the elements of the indoor space model, the constraint model is de-

fined as integral part of the MLSEM application schema as presented in chapter 4. By this means, navigation 

constraints can directly be stored and exchanged with the indoor space data. The feasibility of the developed model 

is then demonstrated along typical use cases for navigation constraints in indoor environments. The topic of navi-

gation constraints has not been included in former publications of the MLSEM (cf. Becker et al. 2009a, Becker et 

al. 2009b, Nagel et al. 2010) and thus renders a novel extension to this previous work.  

5.1 Classification of Navigation Constraints 

In the context of this thesis, navigation constraints are understood to account for the traversability of the space 

entities in a navigation space by a navigation user. Traversability can hereby be viewed as a function of physical, 

logical, or temporal conditions on a space entity that characterizes the entity to be navigable by the user in case it 

evaluates to true, and non-navigable otherwise. Navigation constraints hence determine under which conditions 

movement is physically possible or admitted in the environment and enable corresponding reasoning processes 

(Stoffel et al. 2007).60 

According to (Hendricks et al. 2003), the different types of movement constraints in a spatio-temporal navigation 

space can be classified into four categories that are described using the modal verbs can, may, must, and should. 

A can constraint refers to the physical ability of the navigation user to navigate a space entity. For example, pe-

destrians typically can take the stairs whereas wheelchair users, mobility impaired persons, or driving robots can-

not. Likewise, wheelchair users and mobile robots cannot travel through doors being too narrow or along ramps 

whose slope is too steep. The category of may constraints, on the other hand, is associated with a permission 

following from rules or laws. Typical examples include access rights that require authorization of the user (e.g., 

through keys, biometric scans, screening), a certain user state (e.g., holding a boarding pass), or the membership 

                                                           
60 Navigation constraints in this sense are not to be confused with cost values provided for the elements of a navigation graph. 

Whereas cost values determine the (physical, semantic, or temporal) cost for traversing a space entity and hence are typically 

used in finding the shortest, fastest, or best path, navigation constraints denote whether the space entity is traversable at all. 
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to a group (e.g., access allowed for staff members only). Access restrictions may also be related to time (e.g., 

opening hours) or to the state of an object (e.g., high-security laboratory). May constraints obviously can overrule 

the physical ability to move. For instance, although a navigation user can walk through a door, this movement may 

not be allowed. On the contrary, if the navigation user physically cannot pass through the door, then a positive 

permission will not change this compelling physical restriction. Movement obligations (e.g., predefined routes for 

visitors) are classified as must constraints, whereas should denotes a weaker form of must that implies a choice of 

the navigation user (e.g., the preference to take the stairs instead of elevators).  

When considering the number of spatial entities involved in the movement restriction, a complementary classifi-

cation to that of (Hendricks et al. 2003) can be made into simple and complex navigation constraints. Whereas a 

simple constraint is associated with a single space entity such as a door or a room, a complex constraint is applied 

to a set of entities that may follow from semantic or spatial criteria. For example, a complex constraint can be used 

to denote that the set of all elevators within a facility may not be used in case of an emergency situation or that all 

rooms belonging to a given organizational unit may only be entered by staff members of that unit. Further im-

portant representatives of complex constraints are prohibited maneuvers that are expressed on an ordered sequence 

of spatially connected (but possibly semantically different) entities. Prohibited maneuvers are typically may con-

straints that disallow physically possible movements such as specific turns or movement directions when travelling 

along the architectural entities within a building. If a prohibited maneuver is enforced physically (e.g., two places 

are connected through a one-way door) then it renders a complex can constraint.   

A navigation constraint is said to be a combined constraint if it demands multiple and different physical, logical, 

or temporal conditions to be fulfilled either partially or completely in order for the constraint to apply. For example, 

assume that access to a specific room such as an office or a shop depends on both a temporal condition (e.g., office 

or opening hours) and an additional user authorization (e.g., holding a key or having a certain age). A combined 

constraint is also required to express that windows on the ground floor of a facility may serve as exits given an 

emergency situation (logical condition) and provided that the navigation user physically can step on the window 

ledge (physical condition). Obviously, a combined constraint can be both simple and complex. Moreover, it may 

be the result of expressing more than one navigation constraint on a single space entity. For instance, a door can 

be associated with two separate navigation constraints providing access rules for weekdays and the weekend. De-

pending on the time of navigation, only one or the other has to be satisfied. If the door further restricts the move-

ment in one direction, it may also participate in a complex prohibited maneuver that has to be obeyed in addition 

to the access rule. The examples demonstrate that the combination of navigation constraints causes a high degree 

of combinatorial complexity. A conceptual model for navigation constraints must hence be expressive enough to 

support arbitrary combinations of constraints and has to establish the rules for their evaluation (e.g., in case of 

competing combinations).  

Navigation constraints mostly affect the task of path finding. Candidate routes for a given navigation user are only 

those routes that satisfy all constraints applied to the space entities making up the route. A route is hence the result 

of considering and evaluating navigation constraints but itself represents an unconstrained path that can be trav-

elled by the user. But there are also navigation constraints which are non-effective in path searches in the sense 

that they do not exclude space entities from the route and which thus cannot be enforced by the navigation system. 

Examples from the domain of car navigation are speed limits. Although a specific road is assigned a speed limit 

(and thus a legal permission constraint), this road is not a priori excluded from path searches even if the navigation 

user violates the constraint. However, a speed limit constraint may become effective in path searches, for example, 

if it expresses a minimum speed (e.g., on motorways) which has to be met by the vehicle of the navigation user or 

if the user prefers to avoid roads with specific speed limits. An example navigation constraint in indoor environ-

ments may disallow certain movement types such as running and jumping within laboratories being equipped with 

sensitive measuring devices. Again, this constraint will typically not prevent the navigation system from routing a 

user through the laboratory, and it is left at the discretion of the user to obey the movement type restriction. This 

may be different in cases where a navigation user physically cannot observe the constraint such as a mobile robot 

causing too much vibration when driving through the laboratory. A navigation constraint along a route that has not 

been considered in the underlying path finding process should at least be communicated to the user as route advi-

sory. For example, modern car navigation systems typically display a speed limit constraint on top of the digital 

road map. 



5.2.   Navigation Constraints in Related Work 229 

 

It follows from the discussed types of navigation constraints and the illustrated examples that in most cases navi-

gation constraints need to be evaluated against the context of a specific navigation user since obviously both ca-

pabilities and permissions differ for different users. It thus commonly involves environmental as well as user-

related contextual information in order to answer whether or not a movement restriction applies to a given user. 

From this a further distinction into global and user-dependent navigation constraints can be deduced. Constraints 

having global scope are independent of the user context and thus equally limit the movement of all navigation 

users. Examples in this category include architectural constraints (e.g., walls or fixed obstacles) as well as temporal 

constraints that are not combined with further user-related conditions. In contrast, the evaluation of user-dependent 

navigation constraints requires access to the user profile which thus needs to capture information about the physical 

and perceptual capabilities of the user, permissions and access rights, memberships to user groups, etc. (cf. chapter 

1.2). For example, assume a navigation constraint announces that a corridor can only be passed by users weighing 

less than a maximum value and being capable of navigating a specific floor material (e.g., a glass surface or a floor 

grating). Whether this corridor is traversable for a given navigation user requires knowledge about the user’s actual 

weight and motor capabilities (possibly including capabilities of assistive devices such as wheelchairs or crutches). 

Moreover, rules or methods need to be defined for handling incomplete knowledge about the user in reasoning 

processes (e.g., falling back on default assumptions or using predefined values from user group profiles).  

5.2 Navigation Constraints in Related Work 

Limited work has been undertaken in literature to formalize a conceptual model that, on the one hand, supports 

the various types of constraints as discussed in the previous section and, on the other hand, facilitates their rule-

based evaluation in reasoning processes. The explicit representation of navigation constraints as essential part of 

the indoor space model is acknowledged and addressed in the works of (Meijers et al. 2005), (Tsetsos et al. 2006), 

(Stoffel et al. 2007), (Slingsby & Raper 2008), (Yuan & Schneider 2010a), (Goetz & Zipf 2011), and (Worboys 

2011) (cf. chapter 2.2). In (Meijers et al. 2005), navigation constraints are mapped onto surface classifications. For 

example, non-granting polygons are used to represent a physical cannot constraint, whereas granting surfaces 

denote access restrictions such as doors requiring authorization or emergency exists. Also directional movement 

constraints are represented by separate surface types. However, additional logical or temporal movement re-

strictions as well as combined or complex constraints cannot be expressed, and rules for the evaluation of con-

straints are not presented. (Slingsby & Raper 2008) discuss extensions to the model of (Meijers et al. 2005) in 

order to model temporal constraints and the user context but do not present a conceptual or formalized model. 

Both (Yuan & Schneider 2010a) and (Goetz & Zipf 2011) propose to control the accessibility of space entities by 

means of semantic attributes associated with the elements of the navigation graph. However, also their approaches 

lack a formal model for expressing knowledge about navigation constraints and for reasoning about this 

knowledge.   

(Stoffel et al. 2007) propose the encoding of can and may constraints as Boolean expressions of the form 

⋀ (𝑎𝑡𝑡𝑟 = 𝑣𝑎𝑙𝑢𝑒 ∨ 𝑎𝑡𝑡𝑟 ∈ 𝑣𝑎𝑙𝑢𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛)∗  on boundary nodes as well as regions graphs of their indoor space 

model. Each constraint refers to a semantic attribute 𝑎𝑡𝑡𝑟 associated with a graph element and enforces its value 

to either match a predefined 𝑣𝑎𝑙𝑢𝑒 or to be within an allowed set of values denoted by 𝑣𝑎𝑙𝑢𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛. The 

constraints are said to be hard constraints since they act as a filter that only admits those graph elements to be 

considered in path searches for which the Boolean expression evaluates to true. Combined constraints are sup-

ported in that more than one semantic attribute of an individual graph element may be restricted. A combined 

constraint is evaluated as Boolean intersection of all attribute restrictions so that the violation of a single restriction 

already suffices for the constraint to apply. (Stoffel et al. 2007) remain on an abstract level and do not present a 

conceptual model for physical, logical, or temporal constraints. Moreover, neither complex constraints nor the 

evaluation of constraints against the user context are discussed.  

Within the OntoNav framework (cf. chapter 2.2.4), (Tsetsos et al. 2006) suggest the use of first-order logic for 

explicitly expressing and reasoning about user-dependent navigation constraints. Precisely, constraints are given 

as conditional statements that denote both a hypothesis and a conclusion in terms of predicates over arguments. 

For example, the formula 𝑈𝑁𝑂:𝐻𝑎𝑛𝑑𝑖𝑐𝑎𝑝𝑝𝑒𝑑𝑈𝑠𝑒𝑟(𝑢) ∧ 𝐼𝑁𝑂: 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦(𝑠) → 𝐼𝑁𝑂: 𝑖𝑠𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝐹𝑜𝑟(𝑠, 𝑢) as-

serts that if the object 𝑢 is a handicapped user and 𝑠 is a stair then 𝑠 may not be a path element for 𝑢. The concepts 

𝐻𝑎𝑛𝑑𝑖𝑐𝑎𝑝𝑝𝑒𝑑𝑈𝑠𝑒𝑟 and 𝑆𝑡𝑎𝑖𝑟𝑤𝑎𝑦 are given semantic meaning in the underlying user respectively indoor navi-

gation ontology (UNO, INO) of OntoNav. Likewise, the conclusion 𝑖𝑠𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝐹𝑜𝑟 is a predefined binary relation 

between the ontological concepts and marks a path element to be excluded from routes for a given navigation user. 
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(Tsetsos et al. 2006) emphasize the role of the user context in navigation constraints and propose a user model for 

capturing user-related information (cf. figure 25). However, the authors merely focus on the physical traversability 

by the user while neglecting movement limitations following from logical or temporal facts such as access re-

strictions. Furthermore, rules for evaluating combined constraints are not presented, and complex constraints are 

unaddressed.   

Navigation constraints in ISO 19133. A conceptual data model for navigation constraints is specified within the 

location-based services framework of ISO 19133:2005 (cf. chapter 4.5.1). The UML notation for this constraint 

model is shown in figure 192. 

 

Figure 192: The conceptual navigation constraint model of ISO 19133:2005. 

In ISO 19133:2005, navigation constraints are given as subtypes of the abstract data type NT_Constraint which is 

used to denote turn and link restrictions on the elements of a navigation graph. NT_Constraint is specialized into 

the predefined types NT_VehicleConstraint, NT_LaneConstraint, and NT_TemporalConstraint. The class names 

clearly indicate that the constraint model of ISO 19133 primarily targets the domain of car navigation. Each navi-

gation constraint carries a temporalValidity attribute to specify the time at which the constraint is valid and thus 

has to be obeyed by a navigation user. Textual guidance on the constraint may be provided to the user using the 

description attribute.  

An NT_VehicleConstraint restricts the types of vehicles that are allowed to navigate a turn or link. It thus renders 

a may constraint. Since both the allowed and disallowed vehicle types (including pedestrians) can be explicitly 

listed through corresponding attributes, the constraint facilitates to express both permission and denial. If the value 

of allowedVehicle is left empty, the default assumption is that all vehicle types except those provided by disal-

lowedVehicle are allowed. The converse holds if disallowedVehicle is blank. In case both attributes are not pro-

vided, all vehicle types are allowed. The representation and evaluation of both may and may not conditions is a 

general pattern that is also applied to NT_LaneConstraint and NT_TemporalConstraint. The vehicle constraint is 

further characterized by the attributes turnRadius, grade, maxWeight, and maxClearance. Whereas turnRadius 

specifies the minimum radius of curvature of the restricted network entity, grade denotes its maximum slope. A 

vehicle cannot traverse the entity if is incapable of negotiating the turn radius or slope. Moreover, maxWeight and 

maxClearance define the maximum weight and height of an allowed vehicle. It easily follows that answering these 

conditions presupposes a model of the vehicle that holds the corresponding information. However, ISO 19133 

specifies neither this model nor methods for its evaluation. NT_LaneConstraint enumerates the allowed and disal-

lowed lanes from which a turn can be made legally. An optional turn radius can be provided which follows the 

same semantics as for NT_VehicleConstraint. Per default, the lane constraint applies to all vehicle types, which 

may be restricted to specific vehicles through the attribute applicableVehicleTypes. Finally, an NT_TemporalCon-

straint is used to denote the time when a network entity is open or closed to traffic. 

 class NT_Constraint

«DataType»
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An instance of NT_Constraint is only considered if all its conditions are met. Moreover, every constraint can be 

combined with various other constraints through the coConstraint association in order to further specify its scope.61 

For example, a temporal constraint may be limited to specific vehicle types listed in a vehicle constraint. ISO 

19133 defines a Boolean conjunction for the evaluation of co-constraints, i.e. all conditions need to be satisfied 

for the combined constraint to hold. Navigation constraints are expressed on NT_Turn, NT_Link, and NT_Maneu-

ver entities (cf. figure 185 and figure 186). Each entity may receive zero or more constraints. In contrast to co-

constraints, the interpretation of multiple constraints assigned to a single entity is a Boolean disjunction of their 

separate conditions. Since NT_Maneuver is a directed sequence of turns and links and thus involves more than one 

entity, ISO 19133 also supports the modelling of complex constraints such as prohibited maneuvers.  

The ISO 19133 constraint model is only used to mark those network entities which are non-traversable under some 

conditions but not in others. Whether an entity physically cannot be traversed in any circumstances is instead 

modelled through the Boolean attribute isTraversable on NT_Turn, NT_Link, and NT_Maneuver. Similar to both 

(Stoffel et al. 2007) and (Tsetsos et al. 2006), the constraints are meant to be evaluated in path searches and thus 

affect the route of a navigation user. Navigation constraints not influencing the route such as speed limits are hence 

not covered by separate constraint types. In contrast, speed limits are only regarded as possible input to cost func-

tions in order to derive the expected travel time for a route, and may additionally be reflected in route guidance 

information.  

The expressivity of the ISO 19133 constraint model partially exceeds the proposals of (Stoffel et al. 2007) and 

(Tsetsos et al. 2006) in that both combined and complex constraints are supported. The predefined constraint types 

as well as their physical and temporal conditions are however tailored to vehicle navigation on road networks. 

Although the model could be used in similar contexts in indoor environments (e.g., automative mobile robots used 

in production lines or for the transportation of goods), its support for expressing movement limitations for addi-

tional modes of locomotion or logical constraint conditions such as access permissions is limited. Unlike ISO 

19133, the OGC OpenLS framework for location-based services does not cover navigation constraints. This can 

be explained from the fact that OpenLS is focused on the definition of service interfaces and therefore does not 

include a separate model of the navigation graph and its entities (cf. chapter 4.5.2). 

Navigation constraints in the Geographic Data Files (GDF) standard. The international ISO standard Geo-

graphic Data Files (GDF, ISO/DIS 14825:2011) issued by the Technical Committee ISO/TC 204 is used to model, 

describe and interchange digital road map data. The rationale of the GDF development is to establish interopera-

bility for exchanging digital road networks between map manufacturers and navigation system integrators in the 

Intelligent Transport Systems (ITS) and in-vehicle navigation market. Since its first release in 1996, major road 

map vendors and producers of automotive navigation systems such as NAVTEQ and TomTom have quickly 

adopted GDF. GDF has nowadays evolved to a mature outdoor navigation standard covering a wide range of ITS 

applications and services such as car (and portable) navigation systems or road traffic analysis and management. 

The GDF standard specifies a conceptual data model for describing road information based on the representation 

of real world objects (referred to as features), the characteristics of features, and the topological and non-topolog-

ical interrelations between features.62 Navigation constraints are understood as an integral part of road information 

and hence are addressed and supported by GDF.   

In GDF, navigation constraints on features such as roads or junctions are modelled as attributes of the features or 

as attributes of the relationships between two or more features. Figure 193 shows an excerpt of the GDF attribute 

and relationship model that is part of the overall conceptual data model of GDF. 

                                                           
61 Note that the NT_LaneConstraint is conceptually inconsistent with this modelling principle. Instead of using the attribute 

applicableVehicleTypes, the allowed or disallowed vehicle types should rather be denoted through co-constraints of type 

NT_VehicleConstraint. 

62 Note that, although road map data essentially captures geographic information, GDF does not employ the General Feature 

Model for the modelling of geographic features and their spatial and non-spatial characteristics as defined in the ISO 19100 

standards family (cf. chapter 4.3). During the revision of GDF to its current version 5.0, major activities towards the harmoni-

zation with ISO/TC 211 standards were undertaken. An in-depth discussion of the GDF feature model and its differences to 

the ISO 19100 standards family is however out of scope of this thesis. 
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Figure 193: Excerpt of the GDF attribute and relationship model (after ISO/DIS 14825:2011). 

The GDF attribute model distinguishes between simple and composite attribute types. In contrast to a simple at-

tribute, a composite attribute is an aggregation of a number of attributes called sub-attributes. The value of a 

composite attribute is hence composed of the values of its sub-attributes which themselves only represent a part 

of the complete attribute information. A sub-attribute may in turn be simple or composite allowing for recursively 

building a hierarchical tree of sub-attribute sets. Attributes (simple or composite) are used to represent thematic 

information about a feature as well as navigation constraints associated with the feature. For instance, a simple 

attribute can model the name of the road or its number of lanes (thematic information) but can also denote the 

minimum speed or the maximum height allowed for vehicles that may use the road (legal may constraints). By 

attaching more than one attribute to the same feature, combined constraints can be expressed. In this case, all 

individual attributes have to be obeyed in order for the feature to be traversable (Boolean conjunction).  

The validity of attributes can be further restricted to the value of a so-called restrictive sub-attribute. As opposed 

to normal (simple or composite) sub-attributes, the value specified in a restrictive sub-attribute may thus not be 

interpreted independently. If attached to a feature, restrictive sub-attributes always appear in combination with the 

attribute they restrict. However, they may appear alone on relationships and in these cases restrict the validity of 

the relationship. The GDF standard predefines the following restrictive sub-attributes: lane dependent validity, 

linear segmentation, pedestrian type, scope, side of line, validity direction, validity period, and vehicle type. For 

example, the speed limit attribute of a road element can be combined with a vehicle type sub-attribute. The resulting 

composite attribute limits the specific vehicle types for which the speed limit applies. If multiple restrictive sub-

attributes are related to the same simple, composite or sub-attribute of a composite attribute, then they simultane-

ously restrict the attribute value and are interpreted in a Boolean conjunction. If multiple restrictive sub-attributes 

are related to different levels (logical groups) of a hierarchical attribute tree, then they are applied sequentially to 

the different logical groups which comes down to an intersection in set theory terms.  

In addition to simple or combined constraints, GDF also supports complex constraints involving more than one 

feature instance. Conceptually, combined constraints are specialized relationship classes. Figure 194 illustrates the 

model of a prohibited manoeuvre constraint at road junctions. A prohibited manoeuvre legally restricts a physically 

possible movement at a junction from an incoming (firstRoadElement) to an outgoing (secondRoadElement) road 

element. A corresponding traffic sign as well as subsequent road elements and route guidance information (attrib-

ute multimediaFileAttachment) can be provided in addition. Note that due to its definition, a prohibited manoeuvre 

relationship is always uni-directional with the reverse manoeuvre direction not being prohibited (unless stated by 

a separate relationship instance). Relationships can carry attributes as well as individual restrictive sub-attributes 

(cf. figure 193). For example, a prohibited manoeuvre may be assigned a validity period to define that it is only 

valid during specific hours of the day (e.g., 9am-5pm). Besides manoeuvre, GDF predefines further relationship 

classes (e.g., fork, toll route, divided junction, through route, give way regulation) which can be used to express 

complex navigation constraints. 
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Figure 194: The GDF Manoeuvre relationship class allowing for the modelling of complex navigation constraints. 

Similar to ISO 19133, GDF provides the possibility to define navigation constraints on road elements in a com-

prehensive way that exceeds simple constraints. However, and in contrast to ISO 19133, navigation constraints 

are not specified in a separate conceptual model but are expressed as normal attributes and relationships. Conse-

quently, there is no categorization or differentiation into physical, logical, and temporal conditions or global and 

user-dependent constraints. Moreover, whether an attribute carries thematic information or denotes a navigation 

constraint cannot be answered from the data model and thus is not machine-understandable. The meaning of an 

attribute or relationship rather follows from the attribute and relationship catalogues as predefined by the GDF 

standard. Although many of the constraints are relevant in indoor environments as well (e.g., prohibited maneu-

vers), both catalogues target the domain of outdoor car navigation and hence lack important constraint types for 

indoor navigation (e.g., mode of locomotion or logical constraints such as access permissions). 

5.3 Conceptual Data Model for Navigation Constraints 

In the following, a conceptual model for expressing and evaluating navigation constraints as part of the MLSEM 

is proposed which addresses the various types of constraints as identified in section 5.1 and aims at overcoming 

the limitations of existing approaches as discussed in the previous section. The work undertaken in this thesis 

continues and comprehensively refines first ideas for a conceptualization of navigation constraints for indoor nav-

igation in the context of the MLSEM as presented in (Brown et al. 2012)63 (cf. appendix E). 

Figure 195 shows the central concepts of the developed constraint model and their relations to the elements of the 

MLSEM schema. The model employs the rules and principles for defining application schemas as specified in ISO 

19109 and is formally described using UML as conceptual modelling language. 

                                                           
63 This work was carried out in a Master’s thesis conducted at the Institute for Geodesy and Geoinformation Science, Tech-

nische Universität, Berlin, under the supervision of the author. A UML diagram representing the initial classification of navi-

gation constraints as proposed in this former work is depicted in appendix E. 
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Figure 195: The MLSEM navigation constraint model. 

5.3.1 Navigation Constraints 

Navigation constraints are conceptually mapped to the abstract type NavigationConstraint which is further spe-

cialized into separate types for modelling can and may constraints according to the classification of (Hendricks et 

al. 2003). The category of physical can constraints is translated into the two concepts PassableConstraint and 

NonPassableConstraint. Whereas a PassableConstraint is used to define the conditions under which movement is 

physically possible for a navigation user, a NonPassableConstraint reflects the contrary concept and hence is used 

to mark space entities that are physically non-navigable. The physical ability to traverse a space entity can thus be 

expressed either in a positive (can) or in a negative (cannot) way. The similar approach also underlies the model-

ling of logical and legal movement limitations which can either be represented as permission (may) through the 

PermissibleConstraint concept or as denial (may not) using a NonPermissibleConstraint. A denial intuitively ren-

ders a navigation constraint since it defines the conditions under which movement is disallowed for a user. But 

also a permission can be viewed as a constraint in the sense that it restricts movement in case the conditions of the 

permission are not met by the user. In practice, it is often simpler to express a permission that implies a denial 

(e.g., “access for staff members only”) than explicitly formulating all conditions for that denial (e.g., naming all 

user groups other than staff members for which access is disallowed) or vice versa. For this reason, the proposed 

constraint model contains both positive and negative concepts for physical and legal movement restrictions alt-

hough one or the other would already be sufficient from a theoretical point of view. Must constraints are not 

reflected by separate concepts since they can also be represented using either a PermissibleConstraint or a Non-

PermissibleConstraint. However, user preferences (i.e., should constraints) are not covered by the MLSEM con-

straint model but are rather seen as input to cost functions that need to be considered in path finding algorithms. 

This conforms to the understanding of user preferences in other approaches to the modelling of navigation con-

straints (e.g., Tsetsos et al. 2006, Stoffel et al. 2007, ISO 19133:2005). 

A NavigationConstraint can be applied to one or more SpaceElement features, SpaceElementGroup features, or 

instances of SpaceElementSequence (cf. chapter 4.4.1) through their Constraint associations. This flexibility al-

lows for modelling simple constraints on single space cells and boundary cells as well as complex constraints on 

groups and sequences thereof. Attaching a navigation constraint to a SpaceElementSequence explicitly includes 

the possibility to express directed and undirected prohibited maneuvers. If a single SpaceElement is the target of 
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«FeatureType»

SpaceElementSequence

«FeatureType»

SpaceElement

«Type»

ConstraintCondition

+ isSatisfied(UserContext, TM_DateAndTime)  :Boolean

«FeatureType»

SpaceElementGroup

«Type»
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multiple navigation constraints (either alone or as member of a group or sequence) then this set of constrains 

obviously renders a combined constraint on that SpaceElement feature. Note that since the feature types Transfer-

Transition and TransferState of the MLSEM Model Linkage package (cf. chapter 4.4.1.6) are also defined as 

(transitive) subtypes of SpaceElement, navigation constraints can likewise be modelled for the linkage between 

two separate navigation networks (e.g., between an instance of the MLSEM and a road network). 

Every instance of NavigationConstraint can be further characterized based on optional semantic attributes. Similar 

to ISO 19133, the attribute temporalValidity is used to specify a time frame within which the constraint is deemed 

valid and thus has to be considered by a navigation system when routing a user. The temporal validity is not to be 

confused with a temporal access constraint such as opening hours of a shop or office, but rather defines when these 

opening hours are effective. For example, a temporal constraint may denote “Monday-Friday, 9am-5pm” as open-

ing hours, whereas the temporal validity “July-August” restricts these opening hours to a specific season. The 

temporal validity attribute also allows for providing dynamic constraints that modify a navigation system within a 

predefined time frame in order to react on a current situation or scenario (e.g., adding prohibited maneuvers to 

control the flow of navigation which are only valid in heavy traffic times or within evacuation scenarios). Further 

semantic information about the navigation constraint can be provided by means of generic attributes (cf. chapter 

4.4.1.1). Moreover, each navigation constraint can be enriched with RouteGuidance information as defined in the 

MLSEM Route package (cf. chapter 4.4.1.5). This is especially important in case of movement restrictions that do 

not affect the route itself but nevertheless need to be communicated to the navigation user. In contrast to ISO 

19133, the guidance is not restricted to textual descriptions but also comprises visual and audio presentations.    

5.3.2 Constraint Conditions 

Whereas the instances of NavigationConstraint and their relations to the space entities of the MLSEM schema 

classify the type of the navigation constraint, the preconditions under which the constraint applies are modelled 

through the abstract concept ConstraintCondition. A ConstraintCondition is thus to be understood as guard which 

prevents the application of the navigation constraint in case the precondition is not satisfied. Each NavigationCon-

straint may be controlled by zero or more guards as denoted by the Guard association. Obviously, the relevant 

conditions for different movement restrictions will substantially vary for different indoor environments, types of 

navigation users, and navigation scenarios. The aim of the MLSEM constraint model is hence to provide a common 

abstraction that is expressive enough to represent typical constraint conditions that are required in the context of 

indoor navigation. The UML diagram in the following figure 196 illustrates the proposed conceptualization and 

taxonomy for constraint conditions. 
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Figure 196: Conceptualization of constraint conditions guarding the application of navigation constraints. 

Following the terminology of the previous sections, constraint conditions are classified into three categories, 

namely temporal, physical, and logical conditions, which are represented by the corresponding conceptual entities 

TemporalCondition, PhysicalCondition, and LogicalCondition. Each condition type inherits the attribute classifier 

from the root class ConstraintCondition which optionally can be used to define the meaning and function of the 

constraint condition. The classifier shall be taken from a predefined list of unique values that are maintained and 

given semantic meaning by either the navigation application or a global authority. Two or more instances of Con-

straintCondition that share the same classifier must be of the same type in order to be comparable for a navigation 

system. Examples for the usage of the classifier attribute are given in the further course of this chapter. In addition, 

constraint conditions can carry a textual description that may be presented to the navigation user (e.g., as route 

guidance). Semantic information required by a navigation application but not foreseen by the generic MLSEM 

constraint model can be added as generic attributes.  
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The category of temporal conditions is populated by the two concrete types TimeInstant and TimePeriod. A 

TimeInstant is used to specify a point in time at which the navigation constraint holds. In accordance with the ISO 

19108:2005 Temporal Schema, this specific point in time is provided as time attribute whose value domain is 

TM_Instant. The optional attribute period allows for specifying whether the time instant recurs on a regular basis 

and identifies the duration of the interval between two successive occurrences. The TimePeriod condition denotes 

an extent in time using TM_Period (i.e., a duration in the temporal dimension defined by a beginning and an end 

point given as TM_Instant) during which the constraint applies and may likewise be augmented with a periodic 

time. Both temporal conditions suffice to express diverse time values such as precise calendar dates (e.g., 

“Wednesday, September 26,  2012”) or abstract time intervals (e.g., “every first Monday of the month”, “Monday-

Friday, 9am-5pm”).64  

Physical conditions are modelled through the data types SpatialProfile, SpatialManeuver, PhysicalQuantity, Ma-

terial, and ModeOfLocomotion. A SpatialProfile specifies a profile the navigation user must be able to physically 

fit through in order to traverse the space entity. The description of the profile can either be provided as geometric 

object in up to three dimensions or as parametric representation using one or more of the attributes width, length, 

and height whose value domain Length (from ISO/TS 19103:2005) facilitates to define a unit for each parameter. 

For example, a SpatialProfile can be used to express that a door has a width of 90𝑐𝑚 and thus renders a physical 

obstruction to movement if the navigation user exceeds this width restriction. If the profile is additionally enriched 

with a height value then the navigation user must also be able to observe that height. A parametric description of 

the spatial profile can obviously be easily checked by a navigation system. However, more complex shapes of the 

spatial profile are also supported and are given as instance of GM_Primitive. For instance, the free space for pass-

ing through a door can be modelled as 2-dimensional vertical surface or even as 3-dimensional volumetric geom-

etry. Likewise, a geometric object may describe a narrowing corridor whose width changes along its length. The 

geometry of the spatial profile needs not be identical to the primal space representation of the space entity associ-

ated with the navigation constraint but may, for example, be a generalized representation that simplifies geometric 

checks. If the application needs more precise information, then the primal space geometry of the space entity 

should be queried directly.   

Often travelling along space entities or overcoming obstacles requires the physical ability to perform a specific 

movement or maneuver. For example, a navigation user must be able to manage steps of a given height in order to 

climb a stair or to enter the ledge of a window that serves as emergency exit. Similarly, ramps can only be navigated 

if the user is able to cope with the slope and acute angles in corridors might require a minimum turn radius espe-

cially for driving users such as wheelchair users or mobile robots. The SpatialManeuver condition allows for 

defining the spatial characteristics of such movements that need to be met by the navigation user in order to traverse 

the space entity. The type of the maneuver has to be specified through the mandatory type attribute whose values 

are taken from the extensible code list ManeuverType that contains predefined values such as VerticalDisplace-

ment, Turn, and Gap. The parameters width, length, and height are used for spatially describing the movement. 

Their data type ValueRange allows for defining intervals of values associated with a unit of measure. The endpoints 

of the interval are encoded through the attributes lowerLimit and upperLimit. If one of both attributes is not set, 

then an infinite endpoint is assumed rendering the interval half-bounded. The Boolean attributes includeLower-

Limit and includeUpperLimit denote whether the respective endpoint should be included in the interval and hence 

allow for modelling (semi-)open intervals when set to false. The unit of measure for the amount is encoded through 

the uom attribute (e.g., as conventional identifier65 such as “𝑚” or “𝑘𝑔”, or as reference to a definition). The slope 

of the required movement can be characterized using the attribute verticalGradient, whereas the radius of curvature 

to be met by the user can be given as horizontalTurnRadius. Both attributes are also of type ValueRange. If the 

movement has to be performed inside a specific spatial area, then this area can be expressed as either 2-dimensional 

or 3-dimensional geometry using a GM_Primitive. Finally, the numberOfSteps attribute facilitates to announce the 

number of steps involved in the movement. For example, a SpatialManeuver condition of type VerticalDisplace-

ment participating in a navigation constraint associated with a stair can be used to express that the navigation user 

must be able to cope with a vertical height difference of at least 20𝑐𝑚 in order to take the steps. Additionally, the 

minimum requirements to negotiate the step treads can be announced using the width and length attributes or by 

                                                           
64 The proper provision of time values using the conceptual classes TM_Instant, TM_Period, and TM_Duration is specified in 

ISO 19108:2005 and thus out of scope of this thesis. Corresponding XML encodings are defined by GML (ISO 19136:2007). 

65 For example, according to the Unified Code of Units of Measure (UCUM) specification which is freely available at http://au-

rora.regenstrief.org/~ucum/ucum.html. 
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providing a 2-dimensional horizontal geometry. In order for the navigation application to correctly interpret the 

provided parameters, the SpatialManeuver should be identified through a unique classifier that is accompanied by 

an unambiguous definition.  

The PhysicalQuantity condition is used to model a measure of some quantifiable aspect of a space entity that needs 

to be observed when navigating the entity. The name attribute identifies the physical phenomenon to be modelled 

(e.g., “Weight” or “Speed”), whereas the value and its unit of measure are given as instance of the Valu-

eRange data type. The semantic meaning of the physical quantity is specified by the classifier attribute. For exam-

ple, a PhysicalQuantity condition might announce a maximum weight of 80𝑘𝑔. A possible classifier “Us-

erWeight” then indicates that only navigation user not exceeding this weight limit are allowed to traverse the space 

entity, whereas a classifier “SupportedLoad” might refer to the load supported by the space entity itself (e.g., the 

maximum load of a glass floor surface or an elevator).  

Since specific materials of surfaces cannot be crossed by certain navigation users (e.g., by wheelchair users, visu-

ally impaired persons, or mobile robots), the Material condition enables to describe the surface material in a cor-

responding navigation constraint. The surface in question is identified through a value from the extensible code 

list SurfaceType. Its material is encoded as character string whose possible values should be predefined for a 

navigation system. Finally, the physical condition type ModeOfLocomotion restricts a navigation constraint to a 

specific mode of locomotion of the navigation user. Predefined locomotion types include Walking, Driving, Flying, 

AssistedWalking, and WheelChair. If necessary, this list can be extended to also represent more specific modes of 

locomotion such as WalkingWithCrutches. 

The subtypes of LogicalCondition provide the possibility to model legal or logical constraint conditions. At first, 

the NavigationScenario type defines the scenario for which the navigation constraint is valid. For example, per-

mission to use an emergency door may be restricted in normal navigation situations but granted in case of an 

evacuation. The type of the NavigationScenario is taken from the extensible code list ScenarioType. In order to 

assign a navigation constraint to a specific group of navigation users, a UserGroup condition can be modelled. 

The user group is textually described through the name attribute (e.g., “staff member”, “visitors”, “visually im-

paired persons”, “transportation robots”, etc.) whose values may come from a predefined code list. User groups 

may be hierarchically organized based on the SubGroup association linking UserGroup with itself (e.g., “staff 

member” can be refined into “facility staff”, “scientific staff”, etc.). Navigation constraints modelled for a parent 

group also hold for all its subgroups, whereas each subgroup may receive more fine-grained permissions or re-

strictions than its (transitive) parent groups. The UserState condition expresses an actual state of the navigation 

user that must be met for the constraint to apply. At airports, for instance, users should only be routed to the 

security gates after having checked in their luggage and if they carry a boarding pass. In most cases, the user state 

can be given as Boolean value with the classifier attribute providing an identifier for the user state in question. For 

the given example, possible classifiers are “hasCheckedInLuggage” or “hasBoardingPass” which can be marked 

for every user as being true or false. If a Boolean value is not sufficient then the user state can be encoded as 

character string using the state attribute (e.g., expressed in natural or formal language). Similarly, the ObjectState 

condition requires an object of the indoor environment to be in a certain state. It follows the same semantics as 

UserState but carries an additional id attribute of type ExternalReference that specifies the object itself. Obviously, 

a navigation system must be capable of setting, querying, and tracking user and object states when using these 

conditions. 

The last logical condition AccessControl is used to represent the various types of access restrictions on space 

entities that require some sort of authorization of the navigation user in order to be allowed to traverse the entity. 

The type of credential that enables access is announced through the credential attribute whose values are taken 

from the extensible code list CredentialType. A credential may be a physical object (e.g., a mechanical key or a 

key card), something the user knows (e.g., a password or a PIN), or a biometric feature of the user (e.g., a finger-

print or iris recognition). Likewise, access may require a screening or a personal search of the user (e.g., at security 

gates) or may depend on payment (e.g., fares checked by a ticket controller). The accompanying objectId attribute 

optionally identifies the actual physical item or virtual credential to be used in the authorization process. For ex-

ample, a possible value for objectId is the unique number of the mechanical key or key card that unlocks a specific 

door. Alternative or complementary permission rights required for accessing the space entity can be denoted using 

the permission attribute.   
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Combined Constraint Conditions. In many use cases, a navigation constraint involves multiple preconditions. 

For example, access to a room may be restricted to predefined opening hours for specific user groups, whereas 

holders of a corresponding key might be allowed to enter the room at any time except weekends. Expressing this 

access constraint obviously requires a combination of TimePeriod, UserGroup, and AccessControl conditions. The 

CombinedConstraintCondition type facilitates the modelling of such combinations. Precisely, a combined con-

straint condition is a Boolean operation on a set of one or more instances of ConstraintCondition being the oper-

ands. Each combined condition has to announce the Boolean operator that is applied to its operands and which is 

taken from the BooleanOperator enumeration. The supported operations are logical conjunction (AND), disjunc-

tion (OR), and negation (NOT). While both AND and OR can take more than one operand, NOT is an unary operator 

and thus is restricted to take a single ConstraintCondition. This restriction is enforced by the following OCL 

invariant on CombinedConstraintCondition. 

 context CombinedConstraintCondition inv:  

  operator = NOT implies operand->size() = 1 

CombinedConstraintCondition itself is a subtype of ConstraintCondition. Therefore, each combined condition 

may take the form of an operand within another combined condition. By this means, arbitrarily complex and nested 

Boolean expressions can be formulated, which also allows for deriving further Boolean operations such as impli-

cation from the predefined AND, OR, and NOT operations by composition. As stated above and shown in figure 

195, a NavigationConstraint can be linked with multiple constraint conditions. The ConstraintCondition instances 

participating in the corresponding Guard association are combined in a conjunction per definition. According to 

the classification of navigation constraints elaborated in chapter 5.1, the combination of several conditions renders 

the constraint itself a combined constraint. 

5.3.3 User Context 

Since user-dependent navigation constraints need to be evaluated against the capabilities of the user, the MLSEM 

constraint model foresees the possibility to provide user-related contextual information through the data type Us-

erContext. As shown in the UML diagram in figure 195, a UserContext essentially is an aggregation of constraint 

conditions. Thus, the same conceptual entities used for describing the preconditions for navigation constraints are 

also used for classifying the physical, logical, or temporal preconditions of a navigation user. 

This mechanism allows for answering constraint conditions by querying the UserContext for a matching instance 

of the same condition type. The classifier attribute can hereby be used to explicitly relate constraint conditions 

with corresponding information from the user context. For example, assume a NonPassableConstraint denotes 

that a space entity cannot be traversed if the user weighs more than 80𝑘𝑔 using a PhysicalQuantity condition that 

carries the classifier “UserWeight” (see example above). Further suppose that the UserContext of a navigation 

user also contains an instance of PhysicalQuantity being classified as “UserWeight” which provides the actual 

weight of that user. Then testing whether the constraint condition is satisfied simply requires comparing both 

measures. A UserContext may provide more than one instance of the same condition type such as several groups 

the user belongs to (UserGroup), a set of access credentials such as keys the user possesses (AccessControl), or 

multiple user states (UserState). The mode of locomotion of the user can be expressed using an instance of 

ModeOfLocomotion, and a SpatialProfile facilitates to provide a parametric or geometric description of the user’s 

spatial extent. More than one spatial profile is useful in order to check a physical navigation constraint against 

different possible extents of the user (e.g., whether the user fits through a door when walking upright, when crouch-

ing, or when walking sideways). Maneuver capabilities of the user can be expressed through instances of Spatial-

Maneuver (e.g., the maximum height difference for taking steps, the maximum turn radius, or the maximum slope 

supported by the user or the assistive device). Also temporal conditions might be part of the UserContext. For 

instance, assume a user plans a future trip. A temporal condition could then denote the time frame (TimePeriod) 

within which the user wants to travel. This time frame could be tested against temporal navigation constraints such 

as opening hours. Likewise, the user context may contain a NavigationScenario in order to plan or simulate a route 

for a specific scenario. 

The examples demonstrate the expressivity of the proposed constraint model. However, it is important to note that 

the presented UserContext is intentionally tailored to the information needed for evaluating navigation constraints. 

The task of navigation typically requires more information about the navigation user such as the capabilities of the 
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mobile device in order to choose proper sensor space layers for localization and tracking (cf. chapter 1.2). A con-

ceptual model for such a comprehensive user profile is however out of scope of this thesis. If existent, navigation 

constraints may likewise be checked against that profile rather than relying on UserContext. Alternatively, the 

profile may be used to populate the UserContext instance for a given navigation user. The MLSEM constraint 

model is flexible enough to support either alternative.  

5.3.4 Evaluation of navigation constraints 

The conceptual constraint model discussed so far allows for representing knowledge about various types of navi-

gation constraints. In the following, the fundamental rules for reasoning and inference about this knowledge are 

presented. 

The default assumption of the MLSEM constraint model is that any space cell or boundary cell is traversable. If, 

however, a space cell or boundary cell is the target of at least one navigation constraint (may it be simple or 

complex), then the opposite holds true and the space cell or boundary cell is assumed to be non-traversable. In this 

case, traversability needs to be answered from the evaluation of the associated constraints.  

The operation isTraversable inherited from NavigationConstraint is used to decide whether a given navigation 

constraint restricts the movement of a specific navigation user along the associated space entity. It expects both a 

UserContext and the time of navigation (e.g., the current time or a future time) encoded as TM_DateAndTime from 

ISO 19108 as input, and returns a Boolean value as output. Obviously, if isTraversable evaluates to true then the 

navigation constraint does not impede the movement of the user and vice versa. The outcome of isTraversable de-

pends on 1) the temporal validity of the navigation constraint, 2) the evaluation of the guarding constraint condi-

tions, and 3) the type of the navigation constraint.  

The temporal validity is checked against the provided time of navigation. Only in case a temporal validity period 

is modelled for the navigation constraint and the time of navigation is outside that period, the navigation constraint 

can be considered ineffective and isTraversable returns true without further checks. In all other cases, the con-

straint conditions determine the application of the navigation constraint. Whether or not a constraint condition is 

met is denoted through its isSatisfied operation inherited from the root class ConstraintCondition. Similar to isTra-

versable, the UserContext and the time of navigation have to be passed to this operation. A condition is deemed 

to be satisfied if it can be answered from the user context. For example, if a SpatialProfile denotes a door width 

of 90𝑐𝑚 and the user has a width of 80𝑐𝑚, then the isSatisfied operation shall return true. Likewise, if the user 

group “staff members” is expected but the navigation user does not belong to this group, then the isSatisfied op-

eration for this UserGroup condition has to yield false. User-independent conditions are examined in the same 

way. For instance, assume the time of navigation is outside the opening hours given by an instance of TimePeriod, 

then obviously isSatisfied renders false for this condition. If the navigation system lacks the information to evaluate 

the constraint condition (e.g., the user profile does not contain the user width or group), the default assumption is 

that the condition is not satisfied.66 In case of a CombinedConstraintCondition, the output of isSatisfied is the 

result of applying the modelled Boolean operation to the outcomes of the isSatisfied operations of the operands. 

The application of a NavigationConstraint requires that all of its guards (i.e., all conditions participating in the 

Guard association, cf. figure 195) are fulfilled and hence their isSatisfied operations yield true. Consequently, a 

single guard not being met already suffices to prevent the application of the constraint. If the navigation constraint 

is not controlled by guards, then it always applies. As stated above, the result of the isTraversable operation finally 

depends on the type of the constraint. For the group of positively formulated navigation constraints (i.e., Passa-

bleConstraint and PermissibleConstraint), isTraversable must return true if the constraint applies, and false oth-

erwise. The reverse holds for the negative counterparts NonPassableConstraint and NonPermissibleConstraint. 

Thus, if a negatively formulated navigation constraint applies, then the isTraversable operation has to return false.  

In order to illustrate the separate steps involved in the evaluation of a navigation constraint, the isTraversable 

operation of the NavigationConstraint class is translated into the algorithm 5.1 as shown below. The algorithm 

takes a single instance 𝑐 of one of the subtypes of NavigationConstraint, a representation 𝑈𝑠𝑒𝑟 of the user context, 

as well as the time 𝑡 of navigation as input parameters. The output is a Boolean flag 𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒. The algorithm 

                                                           
66 Of course, the navigation system may first query the navigation user for lacking information or make use of predefined group 

profiles before applying the default assumption. 
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presupposes an implementation of the isSatisfied operation of ConstraintCondition (cf. line 5). Since this imple-

mentation depends on the representation of the user context which may vary for different navigation systems, it is 

not further specified here but subject to future research67. Likewise, functions for checking the temporal validity 

of 𝑐 (cf. line 2), for getting all guards associated with 𝑐 (cf. line 3), and for checking the type of 𝑐 (cf. line 8) need 

to be provided by the navigation system.  

Algorithm 5.1. IsTraversable(𝑐, 𝑈𝑠𝑒𝑟, 𝑡) 

Input: 𝑐, 𝑈𝑠𝑒𝑟, 𝑡 

Output: 𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

1: 𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 ← 𝑡𝑟𝑢𝑒 

2: if 𝐼𝑠𝑊𝑖𝑡ℎ𝑖𝑛𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦(𝑐, 𝑡) = 𝑡𝑟𝑢𝑒 then 

3:  𝐺 ← 𝐺𝑒𝑡𝐺𝑢𝑎𝑟𝑑𝑠(𝑐) 

4:  for each 𝑔 ∈ 𝐺 do 

5:   if 𝐼𝑠𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑(𝑔, 𝑈𝑠𝑒𝑟, 𝑡) = 𝑓𝑎𝑙𝑠𝑒 then 

6:    𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 ← 𝑓𝑎𝑙𝑠𝑒 

7:    break  

8: if 𝐼𝑠𝑁𝑜𝑛𝑃𝑎𝑠𝑠𝑎 𝑙𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑐) = 𝑡𝑟𝑢𝑒 ∨ 𝐼𝑠𝑁𝑜𝑛𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖 𝑙𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑐) = 𝑡𝑟𝑢𝑒 then 

9:  𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 ← ¬𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 

 

A space entity can only be traversed by a given navigation user if the isTraversable operations of all navigation 

constraints associated with that space entity evaluate to true. Thus, multiple navigation constraints on a single 

space entity are combined in a logical conjunction, and a single constraint returning false for its isTraversable 

operation renders the space entity non-traversable. This rule conforms to an intuitive understanding for the group 

of can constraints since a physical movement restriction cannot be overruled by a complementary can or may 

constraint. However, one (or a subset) of a set of may constraints being satisfied might already suffice for a navi-

gation user to be allowed to navigate the space entity (e.g., suppose an office may be entered during office hours 

or by staff members holding a key). Such alternative legal or logical permissions cannot be expressed in terms of 

a logical conjunction and hence are not to be mapped onto separate may constraints on the space entity, but rather 

need to be captured by a single PermissibleConstraint or NonPermissibleConstraint that has separate guards for 

the alternative permissions combined in a logical disjunction (using a CombinedConstraintCondition).  

Based on algorithm 5.1, the following simple 𝐼𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 algorithm determines the traversability of a space 

entity 𝑆 (i.e., a space cell or a boundary cell) according to the presented rule base. It also expects a user context 

𝑈𝑠𝑒𝑟 and the time of navigation 𝑡 as input and returns a Boolean flag 𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒. The 𝐺𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

function in line 2 of the algorithm is assumed to return the set of (simple or complex) navigation constraints that 

address the space entity 𝑆.  

Algorithm 5.2. IsTraversable(𝑆, 𝑈𝑠𝑒𝑟, 𝑡) 

Input: 𝑆, 𝑈𝑠𝑒𝑟, 𝑡 

Output: 𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 ∈ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} 

1: 𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 ← 𝑡𝑟𝑢𝑒 

2: 𝐶 ← 𝐺𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠(𝑆) 

3: for each 𝑐 ∈ 𝐶 do 

4:  if 𝐼𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒(𝑐, 𝑈𝑠𝑒𝑟, 𝑡) = 𝑓𝑎𝑙𝑠𝑒 then 

5:   𝑖𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎 𝑙𝑒 ← 𝑓𝑎𝑙𝑠𝑒 

6:   break 

 

Space cells and boundary cells, which are non-traversable according to algorithm 5.2, shall not be part of the route 

of the navigation user. First, this means that constraint conditions that shall not affect the route of the user such as 

speed limits or movement type restrictions must always return true for their isSatisfied operation. This has to be 

                                                           
67 At the time of writing this thesis, methods for defining and evaluating the user context based on the proposed conceptual 

model for navigation constraints are worked on in a Master’s thesis conducted at the Institute for Geodesy and Geoinformation 

Science, Technische Universität, Berlin. Results will be published as soon as the work will have been completed. 
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ensured by the navigation system (e.g., such conditions could by identified through a unique value of their classi-

fier attribute). Second, there might be situations in which a navigation system has to deviate from this rule. For 

example, assume a navigation user is actually localized within an area for which she lacks access permission. Then 

adhering to may constraints associated with the surrounding space entities may prevent the system from finding a 

path that guides the user outside the prohibited area. Thus, certain may constraints could be temporarily suspended 

for this user. On the contrary, the navigation system could likewise trigger an alarm in this situation and refuse to 

route the user. Since a multitude of possible behaviours is possible, such exceptional situations are out of scope of 

the MLSEM constraint model but have to be solved for a specific navigation system. 

5.3.5 Integration with the MLSEM Application Schema 

The conceptual integration of the proposed constraint model with the MLSEM schema presented in chapter 4.4.1 

is illustrated by means of a UML package diagram in the following figure 197. The constraint model is captured 

by the package Constraints whose dependencies to further MLSEM packages as well as schemas from the ISO 

19100 standards family is depicted through dashed arrows. The mapping of the constraint model to a GML appli-

cation schema is documented in appendix B.7. 

 

Figure 197: The integration of the Constraints package with the MLSEM application schema. 

5.4 Example Usage of the MLSEM Constraint Model 

The usage of the MLSEM constraint model is illustrated in this section with selected examples of navigation 

constraints in indoor environments. The examples are meant to demonstrate the modelling of various types of 

constraints based on the conceptual entities introduced in the previous chapter. For this reason, UML object dia-

grams are presented for each example that capture the view on the instances as well as their attributes and associ-

ations that are required to express the individual constraints.  

Example 5.3. The first example shows how to explicitly mark space cells and boundary cells representing obsta-

cles or tangible boundaries as being physically non-passable. In figure 198a, a simple setting of two 3-dimensional 

space cells modelling a room and a contained column is sketched. One boundary surface of the room cell is as-

sumed to be a wall. Both the SpaceCell feature representing the column and the BoundaryCell capturing the wall 

are associated with a separate instance of NonPassableConstraint. The constraints have no further conditions and 

thus render global constraints that restrict movement for all navigation users. Figure 198b depicts the scene from 

a top view and includes an excerpt of the corresponding intra-layer graph in dual space. Note that the same in-

stances of NonPassableConstraint are also available from to the dual node and dual edge representing the column 

respectively the wall due to the one-to-one correspondence between the primal and dual space representation of 

space cells and boundary cells.  
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(a)  

(b)  

Figure 198: Modelling of non-passable constraints and their availability in primal space (a) and dual space (b).     

Using a navigation constraint without further preconditions is equivalent to the modelling of a simple and static 

Boolean flag 𝑖𝑠𝑁𝑎𝑣𝑖𝑔𝑎 𝑙𝑒 as discussed in example 3.63 (cf. chapter 3.4). In fact, example 3.63 can be easily 

realized without information loss by using a NonPassableConstraint instead. 

The NonPassableConstraint instances in figure 198 are simple constraints since they target a single space entity. 

Alternatively, the column cell and the wall cell could be modelled as members of a SpaceElementGroup feature 

that receives the navigation constraint. Likewise, separate groups for different types of obstacles (e.g., one group 

for all walls contained in an indoor space model, one group for all columns, etc.) can be defined and associated 

with individual navigation constraints. The MLSEM constraint model supports this flexibility. Although all alter-

natives have the same effect (i.e., the space entities are regarded non-passable), one or the other may be preferred 

from a modelling or data management point of view. 

Example 5.4. Figure 199 illustrates the usage of a SpatialProfile condition to denote that a navigation user has to 

observe a maximum width of 70𝑐𝑚 and a maximum height of 2.3𝑚 in order to fit through a door connecting two 

rooms. The scene is depicted in two dimensions with each room represented as space cell. The door itself is mod-

elled as 1-dimensional boundary cell shared by both rooms.68 The navigation constraint is given as instance of 

PassableConstraint on the door cell. This positive constraint implies that the door physically obstructs movement 

for all navigation users who exceed the width and height restriction. Note that whereas the width of the door could 

also be implicitly deduced from the primal space geometry of the door cell, the height parameter is obviously not 

available from the geometry.  

 

Figure 199: Using a SpatialProfile condition to constrain the movement through a door modelled as boundary cell. 

Assume two navigation users Alice and Bob whose navigation contexts are depicted as instances of UserContext 

in figure 200. Both contexts contain a SpatialProfile which can be used to check whether the door restrictions are 

met. Whereas Alice obviously fits through the door based on her provided width and height, Bob is assumed to be 

a wheelchair user whose wheelchair is wider than the door. Thus, the SpatialProfile condition of the door is not 

                                                           
68 The door may also be represented as 2-dimensional space cell instead. Although this would affect the layout of the intra-

layer graph, it has no impact on the modelling of the navigation constraint. 
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met by Bob, and the isTraversable operation of PassableConstraint will yield false. The navigation system there-

fore has to search for another path for Bob. 

 

Figure 200: Two possible user contexts for evaluating the navigation constraint from figure 199. 

Example 5.5. The scene in figure 201 shows four space cells mapping a staircase with two connected places at the 

bottom and at the top of the stair. The space cell representing the free space above the stair body is associated with 

a NonPassableConstraint stating that it is physically non-traversable for wheelchair users and for users who can 

at most negotiate steps of a height of 20cm. Whereas the former condition is expressed using an instance of 

ModeOfLocomotion, the latter condition is given by a SpatialManeuver entity of type VerticalDisplacement. Note 

that the SpatialManeuver does not model the steps themselves but rather imposes a requirement on the physical 

capability of the user. It additionally announces the number of steps of the stair. Although a navigation user might 

generally be capable of taking a single step of that height, the stair might nevertheless render an obstacle if it 

involves too many steps (e.g., for elderly people). Both constraint conditions participate in a CombinedCon-

straintCondition. The stair body itself renders an obstacle for all navigation users and is hence assigned an uncon-

ditioned NonPassableConstraint. 

 

Figure 201: Constraining a stair for wheelchair users and users not capable of negotiating a given step height. 

In the above example, a single space cell is used to capture the free space above the stair body. In contrast, the free 

space above each individual step may be modelled through distinct (sub)space cells. This fine-grained representa-

tion then even allows for associating different navigation constraints with each step. A similar step-wise represen-

tation of stairs is proposed in the grid-based LEGO approach of (Yuan & Schneider 2010b) (cf. figure 2c). 

Another example for SpatialManeuver is illustrated in figure 202. It shows a room containing a landing in front of 

a door and a ramp that allows entering the landing. This setting recaps the same configuration as discussed in 

example 3.63 of chapter 3.4 (cf. figure 116). The free space inside the room is decomposed into four space cells 

𝑆1 to 𝑆4. Additional space cells for representing the ramp and the landing themselves are omitted for readability. 

The free space 𝑆2 above the ramp is associated with a PassableConstraint whose SpatialManeuver requires a user 

to be capable of coping with a slope of at least 10 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 over a length of 2.5𝑚 in order to navigate 𝑆2. In 

addition, a SpatialProfile expresses that the user must meet a maximum width of 2𝑚 to use the ramp. The boundary 

cell shared by 𝑆2 and 𝑆3 is assigned an unconditioned NonPassableConstraint in order to avoid routing a user off 

the edge of the ramp. A final NonPassableConstraint marks the boundary cell between 𝑆3 and the free space 𝑆4 

above the landing non-navigable if the navigation user cannot negotiate a vertical height difference of 30𝑐𝑚. 

 object Example 2 - User Context

:UserContext :UserContext

:SpatialProfile

width = 50cm

height = 1.7m

length = 40cm

:SpatialProfile

width = 80cm

height = 1.4m

length = 1.2m

:ModeOfLocomotion

type = WheelChair

Alice Bob

 object Example 1

:NonPassableConstraint

 object Example 3-1

:CombinedConstraintCondition

operator = OR

:ModeOfLocomotion

type = WheelChair

:SpatialManeuv er

type = VerticalDisplacement

height <= 20cm

numberOfSteps = 6

:NonPassableConstraint

Free space

Stair body
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Figure 202: Fine-grained representation of navigation constraints for the scenario from figure 116. 

In figure 203, a T-shaped section of two corridors is shown in two dimensions. The corridors are carried to four 

subspace cells 𝐶1 to 𝐶4. An undirected SpaceElementSequence generated from the space cells 𝐶4, 𝐶2, and 𝐶3 de-

notes a possible turn at this section. The value of the sequenceNo qualifier (cf. chapter 4.4.1.4) for each element 

associated with the sequence is depicted in curly brackets in the UML object diagram. The sequence is the target 

of a PassableConstraint that marks the turn to be passable only if the navigation user (or its assistive device) has 

a minimum turn radius of less than 90 𝑑𝑒𝑔𝑟𝑒𝑒𝑠. The corresponding SpatialManeuver condition further denotes 

the 2-dimensional area in which the turn has to be executed (depicted as dashed area in figure 203). This geometry 

is generally not required to coincide with the spatial extent of a space cell involved in the constraint. A similar turn 

restriction could be expressed for the undirected sequence {𝐶4, 𝐶2, 𝐶1}. Note that a candidate path must contain a 

subpath which entirely (and not just partly) satisfies the SpaceElementSequence in order for the associated navi-

gation constraint to be considered. Thus, the PassableConstraint in the above example is only evaluated if a can-

didate path for a navigation user contains the dual nodes of 𝐶4, 𝐶2, and 𝐶3 one after another (or vice versa). In 

contrast, the constraint is not applied if the navigation user is only routed from 𝐶4 to 𝐶2 but not to 𝐶3.  

 

Figure 203: A spatial maneuver restriction associated with a T-shaped corridor. 

Example 5.6. Assume the floor surface of a corridor is made of glass. Then only navigation users being capable 

of travelling along glass surfaces can pass the corridor. Further assume that a weight restriction is imposed on 

users entering the corridor. Both movement restrictions are captured by separate PassableConstraint instances in 

the following figure 204. 

𝑆1

𝑆4

𝑆2 𝑆3
Ramp

Landing

 object Example 3-2

:SpatialManeuv er

classifier = Ramp

type = VerticalDisplacement

length = 2.5m

verticalGradient => 10 degree

:NonPassableConstraint

:NonPassableConstraint

:SpatialManeuv er

classifier = Step

type = VerticalDisplacement

height < 30cm

:SpatialProfile

width = 2m

:PassableConstraint

 object Example 1

:NonPassableConstraint

 object Example 3-2

:SpatialManeuv er

classifier = Ramp

type = VerticalDisplacement

length = 2.5m

verticalGradient => 10 degree

:NonPassableConstraint

:NonPassableConstraint

:SpatialManeuv er

classifier = Step

type = VerticalDisplacement

height < 30cm

:SpatialProfile

width = 2m

:PassableConstraint

𝐶1 𝐶3
𝐶2

 object Example 3-3

:PassableConstraint:SpaceElementSequence

C4 :SpaceCell C2 :SpaceCell C3 :SpaceCell :SpatialManeuv er

type = Turn

geometry = GM_Surface

horizontalTurnRadius <= 90 degree

{sequenceNo=3}{sequenceNo=2}{sequenceNo=1}

𝐶4
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Figure 204: Example of a Material and a PhysicalQuantity condition denoting a glass floor surface of a corridor with a 

maximum user weight constraint. 

The first PassableConstraint carries a Material condition that denotes the material of the floor surface. The con-

dition is further classified as “SupportedSurfaceMaterial” in order to express that it is only satisfied in case the 

navigation user is capable of moving on the given surface material.69 The weight restriction is modelled as Physi-

calQuantity condition that enforces an upper limit of 120𝑘𝑔 for the “UserWeight”. If either of the two constraints 

is not met, then the corridor is non-passable. Instead of having two instances of PassableConstraint, both condi-

tions may also be linked to a single PassableConstraint since the guards of navigation constraints are AND com-

bined per default. 

Example 5.7. An example of a legal movement restriction is presented in figure 205. It shows an emergency door 

which may only be used in case of an evacuation or by security staff members who have the key to open the door. 

This may constraint is modelled as PermissibleConstraint with a nested CombinedConstraintCondition as shown 

in figure 205. The scenario restriction is stated as instance of NavigationScenario of type Evacuation. Either this 

condition is satisfied or the navigation user both belongs to the UserGroup “SecurityStaff” and meets the Ac-

cessControl condition in order to be allowed to pass the door. The latter requires the user to carry a key with the 

identifier “Door_001” as credential. The PermissibleConstraint implies that the door may not be traversed if the 

combined condition is not satisfied (e.g., in normal navigation conditions). 

 

Figure 205: Combined legal constraint associated with an emergency door modelled as boundary cell. 

The scenario condition is also feasible to restrict the usage of elevators in case of an evacuation situation. For 

instance, a NonPermissibleConstraint controlled by a NavigationScenario of type Evacuation could be modelled 

for a SpaceElementGroup that contains all space cells representing affected elevators.  

Also the object state may be used as trigger to control access to space cells. Consider the example in figure 206 

which shows two rooms being connected to a corridor. Assume that both rooms are equipped with fire detectors 

                                                           
69 As stated in chapter 5.3.2, both the meaning and interpretation of values of the classifier attribute have to be predefined by 

the navigation system or a global authority. 

 object Example 4

:PhysicalQuantity

classifier = UserWeight

name = Weight

value <= 120kg

:Material

classifier = SupportedSurfaceMaterial

surface = Floor

material = Glass

:PassableConstraint :PassableConstraint

 object Example 4

:PhysicalQuantity

classifier = UserWeight

name = Weight

value <= 120kg

:Material

classifier = SupportedSurfaceMaterial

surface = Floor

material = Glass

:PassableConstraint :PassableConstraint
𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟

Glass 

floor

 object Example 5-1

:PermissibleConstraint

:CombinedConstraintCondition

operator = OR

:CombinedConstraintCondition

operator = AND

:Nav igationScenario

type = Evacuation

:UserGroup

name = SecurityStaff

:AccessControl

credential = Key

objectId = Door_001
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whose states can be accessed online. In case a fire detector is active, only fire fighter forces shall be allowed to 

enter the room. This fact is modelled as NonPermissibleConstraint. The ObjectState condition is classified as 

“isActive” and provides the unique id of the object in question. Obviously, it must be possible for the navigation 

system to query the current state using this id value (e.g., from a database). The condition is satisfied if “isActive” 

evaluates to true as required by the value attribute. Moreover, the navigation user may not belong to the UserGroup 

“FireFighter” in order for the NonPermissibleConstraint to apply and thus to restrict movement for that user.  

 

Figure 206: Example of restricting access to a room based on the state of an object. 

The combination of can and may constraints is illustrated in the figure below for a window serving as emergency 

exit. The window can only be traversed if the navigation user is able to perform vertical steps with a minimum 

height difference of 80𝑐𝑚 in order to enter the window ledge, and if the user fits through the window frame. 

However, the window may only be traversed in an evacuation scenario. According to algorithm 5.2, this user-

independent legal condition overrules the physical capability of a navigation user to use the window.  

 

Figure 207: Physical and legal navigation constraints associated with an emergency window. 

A possible user context of a navigation user Alice is shown in figure 208. Alice is a pedestrian and provides two 

spatial profiles. One profile denotes the spatial extent of Alice when walking upright, while the second profile 

captures the spatial extent in case Alice crouches. The different meaning of either profile is indicated through their 

classifier attributes. Obviously, the SpatialProfile condition on the window can only be satisfied if Alice crouches 

through the window. The user context of Alice also contains a SpatialManeuver stating that Alice can manage 

vertical displacements up to 1m height difference. Therefore, Alice physically can use the window in case of an 

emergency situation.   

𝑅1

𝐶

𝑅2
 object Example 5-2

:NonPermissibleConstraint

:NonPermissibleConstraint

:ObjectState

classifier = isActive

id = FireDetector_001

value = true

:CombinedConstraintCondition

operator = NOT

:UserGroup

name = FireFighter

:ObjectState

classifier = isActive

id = FireDetector_002

value = true

:CombinedConstraintCondition

operator = NOT

:UserGroup

name = FireFighter

 object Example 5-2

:NonPermissibleConstraint

:NonPermissibleConstraint

:ObjectState

classifier = isActive

id = FireDetector_001

value = true

:CombinedConstraintCondition

operator = NOT

:UserGroup

name = FireFighter

:ObjectState

classifier = isActive

id = FireDetector_002

value = true

:CombinedConstraintCondition

operator = NOT

:UserGroup

name = FireFighter

 object Example 5-3

:PermissibleConstraint

:Nav igationScenario

type = Evacuation

:SpatialManeuv er

type = VerticalDisplacement

height >= 80cm

:SpatialProfile

width = 80cm

height = 1.2m

:PassableConstraint

 object Example 5-3

:PermissibleConstraint

:Nav igationScenario

type = Evacuation

:SpatialManeuv er

type = VerticalDisplacement

height >= 80cm

:SpatialProfile

width = 80cm

height = 1.2m

:PassableConstraint

1.2𝑚

80𝑐𝑚
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Figure 208: Example of a user context providing separate spatial profiles for walking upright and for crouching. 

Example 5.8. The indoor scene sketched in figure 209 is based on an example for navigation constraints discussed 

in (Worboys 2011)).70 Assume a room 𝑅 is connected through doors to opposite sides of a U-shaped corridor. The 

corridor itself is mapped onto five space cells 𝐶1, to 𝐶 . The shortest path from 𝐶1 to 𝐶  obviously leads through 

the room 𝑅. However, if we suppose 𝑅 to be a non-public office, then navigation users without access permission 

should rather be routed via 𝐶2 − 𝐶3 − 𝐶4. Thus, the path 𝐶1 − 𝑅 − 𝐶  renders a prohibited maneuver for these 

users. In order to model this constraint, the ordered set {𝐶1, 𝑅, 𝐶 } can be captured by a SpaceElementSequence 

being associated with a permission constraint. A PermissibleConstraint is used to mark the sequence as being 

traversable for staff members only. Note that the sequence is undirected in order to prohibit the movement from 

either side of the corridor.  

 

Figure 209: Example of a prohibited maneuver (after Worboys 2011). 

Suppose that access to room 𝑅 is further controlled by keypads at either door that require entering a password for 

the door to open. To capture this knowledge, two additional instances of PermissibleConstraint guarded by Ac-

cessControl conditions are associated with the doors or, more precisely, with the boundary cells shared by 𝐶1 and 

𝑅 as well as 𝐶  and 𝑅 as shown in the following figure 210. Note that in this simple example, the access constraint 

on each door applies when traversing the door in either direction. If the password is only required in one direction 

(e.g., when entering the room from the corridor), then the PersmissibleConstraint has to be related to a directed 

SpaceElementSequence instead. 

                                                           
70 A conceptual model for the representation and evaluation of navigation constraints is however not presented by Worboys 

2011. 

 object Example 5-3 - User Context

Alice

:UserContext

:SpatialProfile

classifier = WalkingUpright

width = 50cm

height = 1.7m

length = 40cm

:SpatialProfile

classifier = Crouching

width = 50cm

height = 1m

length = 40cm

:ModeOfLocomotion

type = Walking

:SpatialManeuv er

type = VerticalDisplacement

height <= 1m

𝑅

𝐶1 𝐶2

𝐶3

𝐶4𝐶 

 object Example 6-1

:SpaceElementSequence

C1 :SpaceCell R :SpaceCell C5 :SpaceCell

:PermissibleConstraint

:UserGroup

name = StaffMember

{sequenceNo=3}{sequenceNo=2}{sequenceNo=1}
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Figure 210: Augmenting the example from figure 209 with access restrictions on the doors. 

In the above example, the values “PIN_001” and “PIN_002” of objectId are not meant to encode the required 

password itself but are rather used as identifier for the credential. For example, suppose the two navigation users 

Alice and Bob as shown below. Both Alice and Bob are staff members and thus are allowed to traverse room 𝑅. 

However, the user context of Bob does not contain instances of AccessControl. A navigation system thus cannot 

answer from the user context whether Bob knows the password to open the doors. Per default (cf. chapter 5.3.4), 

a constrained condition is assumed to be unsatisfied in case of incomplete knowledge and hence Bob may not be 

routed along room 𝑅. Alternatively, the system could ask Bob (e.g., via his end-user device) for this information. 

In contrast, the user context of Alice contains an AccessControl entity to denote that she knows the password 

credential identified by “PIN_001”. Thus, Alice at least can open one door of the room, whereas also her context 

lacks information about the second door.     



Figure 211: Possible user contexts to evaluate the access restrictions in figure 210. 

Another example for a prohibited maneuver is presented in figure 212. The 2-dimensional setting consists of two 

space cells 𝐶1 and 𝐶2 representing two adjacent corridors, four room cells 𝑅1 to 𝑅4 being connect to 𝐶2, and a 

staircase captured by the space cell 𝑆. In case of an evacuation, all persons shall be routed to the stairs but not to 

the opposite direction in order to control the flow of navigation. For this purpose, a NonPermissibleConstraint is 

expressed on the directed sequence {𝐶2, 𝐶1} and is associated with a NavigationScenario condition of type Evacu-

ation. Due to the ‘+’ sign used as value of the direction attribute of the SpaceElementSequence, the direction of 

the sequence is positive and hence from 𝐶2 to 𝐶1.  

 object Example 6-2

:PermissibleConstraint

:AccessControl

credential = PIN

objectId = PIN_001

:PermissibleConstraint

:AccessControl

credential = PIN

objectId = PIN_002

 object Example 6-2

:PermissibleConstraint

:AccessControl

credential = PIN

objectId = PIN_001

:PermissibleConstraint

:AccessControl

credential = PIN

objectId = PIN_002

𝑅

𝐶1 𝐶2

𝐶3

𝐶4𝐶 

 object Example 6-1

:SpaceElementSequence

C1 :SpaceCell R :SpaceCell C5 :SpaceCell

:PermissibleConstraint

:UserGroup

name = StaffMember

{sequenceNo=3}{sequenceNo=2}{sequenceNo=1}

 object Example 6-2 - User Context

Alice

:UserContext

:UserGroup

name = StaffMember

:AccessControl

credential = PIN

objectId = PIN_001

Bob

:UserContext

:UserGroup

name = StaffMember
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Figure 212: A prohibited maneuver denoting a one-way corridor. 

Suppose the NavigationScenario condition is fulfilled. Then the prohibited maneuver restricts a route from 𝑅2 via 

𝐶2 to 𝐶1. In contrast, the movement from 𝑅2 via 𝐶2 to 𝑆 is not affected by the NonPermissibleConstraint and hence 

allowed. 

A directed maneuver may also be enforced physically. For example, assume a one-way ticket control gate inside 

a station. This gate can only be passed in one direction and hence physically obstructs movement into the other 

direction. A simplified scene is depicted in figure 213. The ticket gate 𝑇 as well as the two places 𝑆1 and 𝑆2 

separated by 𝑇 are modelled as individual space cells. If the ticket gate only enables access from 𝑆1 to 𝑆2, then 

obviously the directed sequence {𝑆2, 𝑇, 𝑆1} needs to be marked as non-passable. Moreover, suppose that access to 

𝑆2 also requires the user to have a ticket. This can be modelled as PermissibleConstraint on 𝑇 with an associated 

AccessControl condition.   

 

Figure 213: Example of a physically enforced directed maneuver at a one-way ticket control gate. 

Example 5.9. Temporal conditions are used in the same way as physical and logical conditions. For example, 

assume a shop within a shopping mall that is open every weekday between 10𝑎𝑚 and 5𝑝𝑚. Staff members are 

further allowed to enter the shop between 8𝑎𝑚 and 7𝑝𝑚. Cleaning personnel may additionally enter the shop on 

Saturdays, whereas no time restrictions apply to users having the main key. In figure 214, the shop is represented 

by a single space cell and the illustrated restrictions are applied to the space cell representing the main entry door 

of the shop. 

 object Example 7-1

:NonPermissibleConstraint

:Nav igationScenario

type = Evacuation

:SpaceElementSequence

direction = +

C2 :SpaceCell C1 :SpaceCell

{sequenceNo=2}{sequenceNo=1}

𝑅1

𝐶1

𝑅2

𝑅3 𝑅4

𝐶2
𝑆

 object Example 7-2

S2 :SpaceCell S1 :SpaceCellT :SpaceCell

:NonPassableConstraint
:SpaceElementSequence

direction = +

:PermissibleConstraint

:AccessControl

credential = Ticket

{sequenceNo=3}{sequenceNo=2}{sequenceNo=1}

 object Example 7-2

S2 :SpaceCell S1 :SpaceCellT :SpaceCell

:NonPassableConstraint
:SpaceElementSequence

direction = +

:PermissibleConstraint

:AccessControl

credential = Ticket

{sequenceNo=3}{sequenceNo=2}{sequenceNo=1}

𝑆1
𝑆2

𝑇
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Figure 214: Combined legal and temporal conditions governing access to a shop. 

The illustrated access permissions are mapped onto separate conditions of a single PermissibleConstraint which 

are combined by an OR operator. Thus, only one of them needs to be satisfied for a navigation user to be allowed 

to traverse the door. Note that an alternative representation using a separate PermissibleConstraint instance for 

each access permission would not yield the same result since multiple navigation constraints associated with a 

single space entity are combined in a logical conjunction per definition (cf. algorithm 5.2). Also note that the 

UserGroup named “CleaningPersonnel” is given as subgroup of the UserGroup “StaffMember”. Thus, the Time-

Period condition being effective for staff members also holds for members of the cleaning personnel, and only the 

additional access permission on Saturdays is explicitly stated for the latter user group.  

Example 5.10. Figure 215 shows a simplified view of a security checkpoint at an airport. Passengers are required 

to move from space cell 𝑆1 to 𝑆3, whereas the reverse direction from 𝑆3 to 𝑆1 is prohibited. The space cell 𝑆2 

represents a metal detector at which the passengers are screened. A personal search may follow at space cell 𝑆3. 

Moreover, a passenger shall only be routed to 𝑆1 between 4𝑎𝑚 and 23𝑝𝑚 and if the passenger carries a boarding 

pass and has checked in the luggage. Members of the security staff or the border control forces are allowed to 

traverse the space cells 𝑆1, 𝑆2, and 𝑆3 in either direction and may additionally access space cell 𝑆4 in order to 

control the security check. The set of navigation constraints expressing this scenario is depicted below. 

𝑆  
Entrance

door

Shop object Example 8

:TimePeriod

extent = Monday-Friday, 10am-5pm

period = weekly

:PermissibleConstraint

:AccessControl

credential = Key

objectId = MainKey_Shop_001

:TimePeriod

extent = Monday-Friday, 8am-7pm

period = weekly

:CombinedConstraintCondition

operator = OR

:CombinedConstraintCondition

operator = AND

:UserGroup

name = StaffMember

:CombinedConstraintCondition

operator = AND

:TimePeriod

extent = Saturday, 8am-7pm

period = weekly

:UserGroup

name = CleaningPersonnel

SubGroup
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Figure 215: Possible navigation constraints for a security checkpoint at an airport. 

The PermissibleConstraint associated with the directed sequence {𝑆3, 𝑆2, 𝑆1} allows this path only for members of 

the UserGroup “SecurityStaff” or “BorderControl”, and thus implicitly renders a prohibited maneuver for all 

other navigation users. Likewise, the space cell 𝑆4 is only accessible for members of either group. UserState con-

ditions are used to control the access to space cell 𝑆1 for passengers. The classifiers “hasBoardingPass” and 

“hasCheckedInLuggage” need to be understood by the navigation system, and both conditions have to be true for 

a given navigation user in order for 𝑆1 to be included in a route. The required information about the user state may, 

for example, be queried from the passenger. Note that the space cells 𝑆2 and 𝑆3 are target of a PermissibleCon-

straint being associated with an AccessControl condition that models the screening and the personal search at the 

checkpoint. Whether a passenger is rejected can however only be decided at the time she is screened or searched. 

Thus, both constraints shall not prevent the navigation system from routing the passenger to the checkpoint but 

instead need to be non-effective in path searches. As discussed above, the isSatisfied operation of both AccessCon-

trol conditions should therefore return true per default. Nevertheless, a navigation system can use the represented 

knowledge about the AccessControl in order to generate appropriate route guidance information. 

Navigation constraints on separate space layers. The following two examples demonstrate the modelling and 

evaluation of both simple and complex navigation constraints on separate space layers. In general, the explicit 

representation of navigation constraints is to be seen complementary to the modelling of environmental and user-

related contextual information by means of (sub)space layers as discussed in the previous chapters of this thesis. 

Whereas space layers decompose the indoor space according to multiple and different notions of space and parti-

tioning schemas, navigation constraints provide meta information about the possibility to move along the space 

cells and boundary cells on a given space layer. 

Example 5.11. The first scenario in figure 216 shows a 2-dimensional space layer complex that contains a topo-

graphic space layer 𝐿𝑇𝑜𝑝𝑜 and a security space layer 𝐿𝑆𝑒𝑐 . The corresponding multilayered graph is depicted on 

 object Example 9b

:PermissibleConstraint

:UserGroup

name = Passenger

:UserState

classifier = hasBoardingPass

value = true

:UserState

classifier = hasCheckedInLuggage

value = true

:TimePeriod

extent = 4am-23pm

period = daily

:CombinedConstraintCondition

operator = OR

:CombinedConstraintCondition

operator = AND

:UserGroup

name = BorderControl

:UserGroup

name = SecurityStaff

:PermissibleConstraint

:PermissibleConstraint

«DataType»

:AccessControl

credential = Screening

«DataType»

:AccessControl

credential = PersonalSearch

𝑆3

𝑆4

𝑆1

𝑆2

 object Example 9

:PermissibleConstraint :SpaceElementSequence

S3 :SpaceCell S2 :SpaceCell S1 :SpaceCell:CombinedConstraintCondition

operator = OR

:UserGroup

name = SecurityStaff

:UserGroup

name = BorderControl

:PermissibleConstraint

:UserGroup

name = Passenger

:UserState

classifier = hasBoardingPass

value = true

:UserState

classifier = hasCheckedInLuggage

value = true

:TimePeriod

extent = 4am-23pm

period = daily

:PermissibleConstraint

:PermissibleConstraint

«DataType»

:AccessControl

credential = Screening

«DataType»

:AccessControl

credential = PersonalSearch

{sequenceNo=3}{sequenceNo=2}{sequenceNo=1}

 object Example 9

:PermissibleConstraint:SpaceElementSequence

direction = +

S3 :SpaceCell S2 :SpaceCell S1 :SpaceCell :CombinedConstraintCondition

operator = OR

:UserGroup

name = SecurityStaff

:UserGroup

name = BorderControl

:PermissibleConstraint

:UserGroup

name = Passenger

:UserState

classifier = hasBoardingPass

value = true

:UserState

classifier = hasCheckedInLuggage

value = true

:TimePeriod

extent = 4am-23pm

period = daily

:PermissibleConstraint

:PermissibleConstraint

«DataType»

:AccessControl

credential = Screening

«DataType»

:AccessControl

credential = PersonalSearch

{sequenceNo=3}{sequenceNo=2}{sequenceNo=1}
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the right of figure 216. The security space layer captures a single security zone 𝑆𝑒𝑐 whose spatial extent is not 

aligned with the architectural layout of the built-up space. Assume that only navigation users having a high security 

status are allowed to traverse the security zone. This fact is expressed as UserState condition being associated with 

𝑆𝑒𝑐 through a PermissibleConstraint. A second constraint is modelled for the room 𝑅1 on the topographic space 

layer in order to restrict the access to given office hours.  

 

Figure 216: Navigation constraints associated with space cells on different space layers. 

The security zone obviously affects the movement of navigation users through the topographic space. As can be 

deduced from the multilayered graph, the space cell 𝑆𝑒𝑐 spatially contains 𝑅1. Thus, the space described by 𝑅1 is 

in fact addressed by both constraints. According to the rule base governing the evaluation of multiple navigation 

constraints associated with a single space entity (cf. algorithm 5.2), the isTraversable operation of either Permis-

sibleConstraint instance therefore needs to evaluate to true in order for a navigation user to be allowed to enter 𝑅1. 

This also conforms to an intuitive understanding since the security zone (and thus all spaces inside this zone) may 

only be accessed by authorized users. If both constraints would be OR combined instead, then the simple fact that 

the user travels within the office hours would grant access to 𝑅1 and thus overrule the security constraint. It im-

mediately follows from this example that a navigation constraint modelled for a given space cell also holds for all 

its subspace cells on further space layers. Put differently, a path finding algorithm not only has to evaluate the 

navigation constraints related to the space cell itself but also those constraints being associated with its (transitive) 

superspace cells. The superspace cells can be easily queried from the multilayered graph, and the 𝐺𝑒𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

function used in algorithm 5.2 has to be implemented in this sense.  

Regarding the corridor cell 𝐶, the multilayered graph only contains the information that 𝐶 is partially within the 

security zone. Due to 𝐶 ≰ 𝑆𝑒𝑐, the security constraint obviously does not involve the entire corridor according to 

the above rule. In order to precisely reveal which parts of 𝐶 are affected by the constraint, the views on indoor 

space provided by both 𝐿𝑇𝑜𝑝𝑜 and 𝐿𝑆𝑒𝑐  need to be integrated using the merge operation 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑆𝑒𝑐  as defined 

in chapter 3.5. In terms of the mathematical model of the MLSEM, simple navigation constraints are considered 

as semantic attributes of a space cell and thus participate in the set 𝐴(𝑆) of a space cell 𝑆 (cf. definition 3.6). The 

same holds true for navigation constraints modelled for boundary cells. This notion is important since it ensures 

the consideration of navigation constraints within the operations of the developed space layer algebra. Precisely, 

in the context of the merge operation, all semantic attributes are carried from the input space layers to the merged 

space layer as union of the attribute sets of overlapping space cells (cf. algorithm 3.67). The result of 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑆𝑒𝑐  

is presented in figure 217.  
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Figure 217: Applying the merge operation 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑆𝑒𝑐 to the example from figure 216. 

For example, consider the space cell 𝑀1 in the resulting space layer. Its attribute set 𝐴(𝑀1) results from the union 

𝐴(𝑅1) ∪ 𝐴(𝑆𝑒𝑐) and thus contains both PermissibleConstraint instances. Again, and conformant with the result 

discussed above, both constraints need to be evaluated in a logical conjunction since they render a combined con-

straint on 𝑀1 (cf. algorithm 5.2). Thus, 𝑀1 can only be traversed within the specified office hours and if the user 

has the required security status. The space cells 𝑀3 and 𝑀  only receive the security access restriction from the 

space cell 𝑆𝑒𝑐, with 𝑀3 consequently denoting the part of the corridor 𝐶 affected by the security zone. It is im-

portant to note that the presented consideration of simple navigation constraints within the operations of the space 

layer algebra is consistent with the usage of the static Boolean flag 𝑖𝑠𝑁𝑎𝑣𝑖𝑔𝑎 𝑙𝑒 in the examples of the previous 

chapters of this thesis (e.g., example 3.69 in chapter 3.5.1). Consequently, in all those examples, this flag can be 

replaced with a corresponding instance of NavigationConstraint. 

Example 5.12. Similar considerations apply to complex navigation constraints. Since a complex constraint affects 

a set of space cells which themselves may be decomposed into subspace cells on separate space layers, the con-

straint also has to be evaluated in the context of those subspace cells. With respect to the operations of the space 

layer algebra, a difference to simple navigation constraints results from the fact that a complex constraint is not to 

be seen as semantic attribute of a single space cell or boundary cell. In contrast, complex navigation constraints 

can be understood as semantic information about their associated SpaceElementGroup or SpaceElementSequence. 

In chapter 4.4.1.4 it has been demonstrated how groups and sequences are to be mapped onto new instances of 

SpaceElementGroup respectively SpaceElementSequence that address the space cells on the space layer resulting 

from a merge, difference, or intersection operation. A complex navigation constraint simply has to be carried to 

this new group or sequence in order to be available on the resulting space layer. 

For example, reconsider the scenario illustrated in figure 212. Assume the topographic space layer 𝐿𝑇𝑜𝑝𝑜 is ac-

companied by a subspace layer 𝐿𝑆𝑢𝑏 which decomposes the corridor cell 𝐶2 into three subspace cells 𝑆𝑢 1 to 𝑆𝑢 3 

as shown below. In addition to the prohibited maneuver that restricts the movement from 𝐶2 to 𝐶1 on 𝐿𝑇𝑜𝑝𝑜, the 

space cell 𝑆𝑢 2 is assumed to represent a step within the corridor that can only be traversed in case the navigation 

user can negotiate a minimum height difference of 30𝑐𝑚. 
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Figure 218: Denoting a prohibited maneuver on a topographic space layer and a spatial maneuver restriction on a subspace 

layer. 

In order to route a wheelchair user through this indoor setting, both space layers need to be selected and might be 

integrated into a single view using the merge operation 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑆𝑢𝑏. The resulting space layer 𝐿𝑚𝑒𝑟𝑔𝑒  is depicted 

in figure 219. The directed sequence {𝐶2, 𝐶1} on 𝐿𝑇𝑜𝑝𝑜 is translated into a new instance of SpaceElementSequence 

on 𝐿𝑚𝑒𝑟𝑔𝑒  generated by the ordered set {𝑀 , 𝑀7, 𝑀6, 𝑀 }. Note that the space cells 𝑀6 to 𝑀  share the same value 

for their sequenceNo qualifier since all of them are spatially contained in 𝐶2. The complex NonPermissibleCon-

straint on the original sequence is transferred to this new sequence in order to not lose the information about the 

prohibited maneuver constraint. Likewise, the NonPassableConstraint associated with the space cell 𝑆𝑢 2 is car-

ried to the equivalent space cell 𝑀7 on 𝐿𝑚𝑒𝑟𝑔𝑒  according to the rules for simple navigation constraints presented 

above. Thus, all navigation constraints are preserved under the merge operation. 

 

Figure 219: Applying the merge operation 𝐿𝑇𝑜𝑝𝑜⊕ 𝐿𝑆𝑢𝑏 to the example from figure 218. 

An obvious advantage of the modelling of navigation constraints on separate space layers is that the constraints on 

a space layer that is not part of the user-dependent layer selection need not be considered in path queries. For 

example, assume that the space layer 𝐿𝑆𝑢𝑏 from figure 218 is not part of the selection for a pedestrian user. Then 

the constraint on 𝑆𝑢 2 has not to be evaluated when routing this user, which might speed up path searches. How-

ever, this consequence also must be considered when modelling the indoor space and its navigation constraints. 
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5.5 Implicit Knowledge about Navigation Constraints 

The proposed MLSEM constraint model aims at an explicit representation of knowledge about navigation con-

straints. Therefore, constraints are represented by their own conceptual entities which are associated with the ele-

ments of the indoor space in order to provide additional information about movement restrictions.  

However, movement restrictions are often also available implicitly from the underlying indoor space model. This 

especially holds for geometric constraints that affect the physical traversability of indoor spaces. For example, 

whether a navigation user fits through a door or can travel along a narrow passage can generally be answered from 

the geometric shape and extent of topographic space entities on the one hand, and a suitable geometric description 

of the user’s extent on the other hand. In the field of robot motion and path planning, the notion of configuration 

space (C-space) has been proposed to simplify the evaluation of physical traversability in 2-dimensional and 3-

dimensional settings (cf. Lozano-Perez 1983). The general idea of C-space is to reduce the robot to a point repre-

sentation while at the same time growing obstacles in the environment such as walls or furniture by the generalized 

shape of the robot, its orientation, and its possible configurations (e.g., translational or rotational motions of the 

robot’s body and end effectors). Physical traversability can then be determined by continuously moving the point-

based abstraction of the robot (or more generally of a navigation user) through the resulting free C-space. Thus, 

this free C-space implicitly denotes the physically unconstrained navigation space. An additional explicit repre-

sentation of navigation constraints (e.g., maneuver capabilities of the navigation user) is thus not required. 

The calculation of the free C-space is computationally expensive and especially demanding for high-detailed, 3-

dimensional space models. Moreover, the C-space is necessarily tailored to a specific (type of) navigation user and 

thus, for example, cannot account for multiple and different types of locomotion simultaneously. Most grid-based 

approaches to indoor space modelling as discussed in chapter 2.2.1 address the computational efforts by discretiz-

ing the space into regular grid cells and evaluating their physical accessibility with respect to a parametric geo-

metric description of the navigation user (e.g., Bandi & Thalmann 1998) or a rigid volumetric abstraction (e.g., 

Yuan & Schneider 2011). In addition to spatial facts, also semantic information available from the indoor space 

model can be used to implicitly deduce simple navigation constraints. For instance, if space entities are identified 

as stairs then a navigation system can conclude from common knowledge and experience that these entities are 

typically non-traversable for wheelchair users and driving mobile robots. Likewise, entities classified as walls can 

be assumed to render obstacles. All hybrid modelling approaches presented in chapter 2.2 semantically classify 

the spatial and structural entities of indoor space and hence enable implicit knowledge about navigation constraints 

to be retrieved. In most cases, this will however not suffice to derive complex or combined constraints that also 

include logical or temporal conditions.  

The scope of the MLSEM constraint model is neither to replace existing approaches to the implicit derivation of 

navigation constraints nor to render them unnecessary. In contrast, the MLSEM fully supports the representation 

of implicit knowledge about navigation constraints by means of (sub)space layers and semantic information. For 

example, and as discussed in chapter 3.4, consider a subspace layer of the topographic space that only contains 

areas which are navigable for a given mode of locomotion. Then the subspace cells implicitly represent the physical 

traversability of the topographic space for that mode of locomotion. An additional explicit modelling of can con-

straints can thus be omitted since the subspace layer itself denotes the physically unconstrained space for a corre-

sponding navigation user. Likewise, the subspace layer may reflect those spaces which are non-navigable. In this 

case, each subspace cell implicitly renders a physical movement restriction (i.e., a cannot constraint). Again, there 

is no need for additional explicit physical navigation constraints since the navigable space can be deduced from 

the topographic superspace layer using appropriate operations of the space layer algebra. In both cases, the navi-

gable or non-navigable areas may be identified using existing implicit approaches such as C-space methods. 

In a recent work that parallels this thesis, (Khan & Kolbe 2012) present an approach for the derivation of the 

physically unconstrained navigation space which uses the subspacing concept of the MLSEM and thus nicely 

integrates with the MLSEM framework. The authors define and formalize the physical movement requirements 

for different types of locomotion (walking, driving, and flying) by identifying common physical constraints such 

as the average width, length, and height of a wheelchair. The approach goes beyond existing methods in that further 

restrictions such as topological constraints (e.g., pedestrians typically walk on the floor surface whereas flying 

objects should always be above the floor surface), weight restrictions, maneuver restrictions (e.g., the maximum 

height of steps that can be taken), or maximum speed restrictions are considered. Similar to the idea of C-space in 

the field of robotics, these requirements are then used to compute those areas in topographic space in which a 
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navigation user of that locomotion type can freely move. The result of this analysis is represented as a separate 

topographic subspace layer. Put differently, the physical traversability of a given mode of locomotion is used as 

partitioning schema in order to derive a separate view on indoor space. When routing a navigation user through 

the environment, only the appropriate subspace layer matching the user’s mode of locomotion has to be selected 

while neglecting the topographic superspace layer. Any path on that subspace layer can then be assumed to be 

traversable. This conforms to the default assumption of the proposed MLSEM constraint model according to which 

space cells and boundary cells not being explicitly addressed by navigation constraints are deemed navigable (cf. 

chapter 5.3.4). The work of (Khan & Kolbe 2012) however merely addresses physical navigation constraints, 

whereas logical and temporal movement restrictions as well as complex or combined constraints are not addressed 

by the authors. 

The implicit representation of navigation constraints simplifies path findings as the traversability of spaces is de-

termined a priori and thus directly available from the space representation. A main drawback is rendered by the 

fact that this precomputation is expensive and always requires a 2-dimensional or 3-dimensional indoor space 

model. Although most works focus on physical constraints, this restriction is not compulsory. For example, sepa-

rate subspace layers could likewise be introduced for denoting those topographic areas that are only accessible by 

specific user groups such as staff members or within a given time frame. However, this modelling approach may 

quickly result in a large number of space layers depending on the types and combinations of navigation constraints 

to be expressed. In contrast, a benefit of the explicit modelling of navigation constraints is that it allows for ex-

pressing knowledge about constraints independent of a specific representation of the indoor space. For example, a 

physical navigation constraint such as that a door can only be traversed if the width of the user is less than 1𝑚 can 

obviously be expressed on the door entity and evaluated against a user profile without the need for an accompa-

nying 2-dimensional or 3-dimensional geometric description of the door. Hence, a simple graph-based represen-

tation of the indoor environment enriched with a set of explicit navigation constraints applied to the graph elements 

is already sufficient to realize constraint-aware path searches for different navigation users. If a geometric descrip-

tion of the indoor space is available though, it can be additionally used to evaluate the navigation constraints 

possibly based on existing methods and algorithms from implicit approaches. Moreover, it helps to populate the 

constraint model, for example, by extracting the door width from the geometry in order to formulate a correspond-

ing navigation constraint. Another advantage of the explicit representation of navigation constraints is the flexi-

bility in supporting multiple and different user contexts. For instance, the work of (Khan & Kolbe 2012) is based 

on generalized and static assumptions about the physical movement requirements of different types of locomotion 

such as that pedestrians typically can negotiate a vertical height difference of 1𝑚. However, a given pedestrian 

may deviate from these assumptions (e.g., elderly pedestrians). In this case it is preferable to model the require-

ments for performing a spatial maneuver directly on the space entity as proposed in this chapter, and to dynamically 

evaluate this maneuver restriction against a given user context during path searches. Since both alternatives are 

valid and fully supported by the MLSEM, a navigation system has to choose a proper balance between the implicit 

and explicit representation of navigation constraints. 
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Chapter 6  

Relation to Existing Building Modelling Standards 

Geospatial information about the interior built environment becomes increasingly available in the context of urban 

and building information modelling. Although building models from these fields aim at representing the building 

topography as designed or observed and hence are not primarily intended to meet the challenges and requirements 

to indoor space models for indoor navigation, it has been shown in chapter 2.3 that they provide a rich and valuable 

source of spatio-semantic information about the built-up space and the architectural entities therein. Most ap-

proaches to the modelling of indoor space for indoor navigation as discussed in chapter 2.2 implicitly presuppose 

the availability of such building data in two or three dimensions. However, the relation to building models from 

existing standards such as CityGML and IFC is seldom discussed.    

The MLSEM framework has deliberately been defined in the previous chapters to be independent of the different 

approaches to building modelling. A topographic space layer can thus be populated without the need for existing 

building data. The spatial and semantic information required to describe the space cells making up the topographic 

indoor space may instead be acquired by initial measurements and observations. On the other hand, the MLSEM 

is also meant to be complementary to existing building modelling standards, and in this neither aims at replacing 

these standards nor at duplicating their concepts for the representation of the interior built environment. In contrast, 

if building data is available according to one of these standardized models, it may serve as input to populate a 

topographic space view within the MLSEM framework. 

In this chapter, the mapping from selected building modelling standards to the MLSEM is investigated. Focus is 

put on the differences in the geometric-topological description of the architectural entities within these standards 

and on how these differences affect the resulting primal and dual space representations of the resulting topographic 

space layer. The different spatial modelling paradigms mainly arise from different model scopes and the way the 

spatial characteristics of features are acquired in different domains such as GIS and BIM (cf. Kolbe & Plümer 

2004, Nagel et al. 2009). As illustrated in chapter 2.3, the geometry of features in the field of GIS is typically 

derived from surveying and photogrammetric extraction methods. As a consequence, features are spatially repre-

sented by their visible respectively observable surfaces which are accumulated to form more complex structures 

such as closed volumes. BIM models, on the other hand, aim at representing architectural designs and construc-

tions, and thus apply a generative modelling approach in order to describe how facilities are composed of structural 

building elements that are commonly represented as volumetric primitives. From this, a general classification of 

building models into surface-based models and volumetric elements models can be drawn. In academic approaches, 

the model complexity is often further reduced by employing surface-based models which reflect the entire building 

as paper model, i.e. representations of walls are paper-thin and thus neglect the wall thickness. Both surface-based 

and volumetric elements models are understood to be inherently 3-dimensional in the context of this chapter. A 

further important class of building models are 2-dimensional floor plans providing a projected view on the archi-

tectural and physical building features from above on a per floor basis.  

The discussion in this chapter is structured along these four categories of building models. In addition to the spatial 

characteristics, the conceptual elements from the building modelling standards are identified with respective ele-

ments from the conceptual data model of the MLSEM. On the one hand, this allows for the transition of semantic 

information in the mapping process. On the other hand, it demonstrates that the developed indoor space model is 

to be seen complementary to existing building models and that it provides generic conceptual interfaces to connect 

such models. The mapping results for different building modelling standards are compared and proposals for min-

imizing their differences are presented. 

6.1 Surface-Based Models 

The mapping of surface-based models onto the MLSEM is exemplified along the international OGC standard 

CityGML which has been comprehensively introduced in chapter 2.3.2. In figure 220, a 3-dimensional CityGML 

LOD4 representation of the simple indoor scene introduced in chapter 3.1.2.3 is shown. In addition to the two 
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rooms being connected to a corridor through doors, a column and the exterior building shell have been added to 

the model. Moreover, a window and a door exemplify openings connecting the interior environment to the sur-

rounding outer space. The spatial entities are labelled with the names of the conceptual entities from the CityGML 

building model (cf. UML diagram in figure 32) which are used in representing this scene. In figure 220b, a top 

view of the model is presented.  

(a)  

(b)  

Figure 220: Example indoor scene as 3-dimensional CityGML LOD4 model (a) and as 2-dimensional top view (b). 

In CityGML, the rooms and the corridor are semantically captured by instances of the conceptual feature type 

Room which represents a portion of free space inside a facility and spatially is described as bounded volume. 

According to the surface-based modelling approach, the Room volume is enclosed by the surfaces which are ob-

servable from inside the Room and which hence represent parts of the embracing structural elements (e.g., walls 

and slabs). The boundary surfaces are semantically classified into InteriorWallSurface, CeilingSurface, and Floor-

Surface. Note that the thickness of walls is maintained in the CityGML model. Therefore, the Room geometries 

only touch at those surfaces which represent the doors between the rooms and the corridors. In a similar way, the 

volume of the Building feature itself is bounded by the exterior shell which is observable from outside the building. 

The surfaces of the exterior shell are represented by the feature types WallSurface, RoofSurface, and GroundSur-

face. Again, the exterior shell touches the interior Room geometries only at surface-based openings such as win-

dows and doors. Finally, the column is modelled as IntBuildingInstallation feature whose tangible surfaces are 

mapped onto InteriorWallSurface instances. 

The space enclosed by the exterior and interior boundary surfaces of the building represents the non-navigable 

space occupied by walls and slabs (depicted as hatched area in figure 220b). This wall space is typically non-

observable and hence is not further partitioned along the wall and slab elements. It follows that neither the wall 

space nor the structural building components occupying it are explicitly modelled in CityGML. For example, 

consider the wall separating the two rooms. It is only implicitly represented through the two InteriorWallSurface 

instances on the boundary of each room. However, the fact that both InteriorWallSurface features belong to the 

same wall element is not available from the semantic CityGML entities, but rather has to be derived from their 

spatial configuration. Moreover, a single InteriorWallSurface feature may even be spatially described by multiple 
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geometric surfaces belonging to different wall elements (e.g., all wall surfaces of a single room may be semanti-

cally captured by a single instance of InteriorWallSurface). Thus, CityGML does not enforce a one-to-one map-

ping between the semantic surface-based features and the structural components of the building skeleton (cf. Nagel 

et al. 2009). 

The mapping of the CityGML model to a topographic space layer of the MLSEM is shown below. The resulting 

space representation mainly coincides with the original example in chapter 3.1.2.3. The Room entities are simply 

mapped onto SpaceCell features, and the boundary surfaces of the rooms and the corridor are translated into 

BoundaryCell instances. The boundary surfaces are thus explicitly represented as dual edges in the intra-layer 

graph and their semantics (e.g., material information) is available for path searches. Alternatively, surfaces being 

topologically connected can be captured by a single BoundaryCell in order to reduce the number of dual edges. 

The wall space can likewise be described by a single SpaceCell, and the boundary surfaces of the exterior building 

shell are also mapped onto BoundaryCell features. The Door and Window surfaces within the model are carried to 

separate instances of BoundaryCell. A final SpaceCell is used to translate the IntBuildingInstallation representing 

the column. The resulting intra-layer graph depicted on the right of figure 221 assumes a minimum number of 

boundary cells. Since the space cell representing the wall space cannot be traversed, it might receive an uncondi-

tioned NonPassableConstraint automatically. The same holds for the space cell resulting from the IntBuildingIn-

stallation. 

  

Figure 221: Corresponding topographic space layer of the MLSEM for the CityGML model from figure 220. The intra-layer 

graph on the right assumes a minimal CW decomposition. 

In general, the primal space geometry of SpaceCell and BoundaryCell features can be directly taken or derived 

from the corresponding CityGML features since both CityGML and the MLSEM employ the Boundary Represen-

tation (B-Rep) scheme and are based on the ISO 19107:2003 Spatial Schema. However, there are also exceptions 

from this assumption which result from the fact that space cells on the same topographic space layer are enforced 

to be mutually non-overlapping, whereas volumetric shapes in a CityGML model are allowed to spatially overlap 

and to permeate each other. For example, consider the room and the column in the above example. In CityGML, 

the geometry of the room is given as single-shell manifold solid being a homeomorphic image of �̅�3 and hence 

covers the space occupied by the column.71 In contrast, for the MLSEM, the primal space geometry of the room 

cell has to be given as 1-holed toroid whose trough hole is filled by the column cell being homeomorphic to �̅�3 

(cf. chapter 3.1.3.2). Put differently, a regularized Boolean subtraction of the volume of the column from the room 

geometry in CityGML is required in order to retrieve the primal space geometry of the room cell for the MLSEM. 

The same holds for the building volume enclosed by the exterior building shell. The spatial representation of the 

CityGML Building feature is also homeomorphic to �̅�3 in this example. However, the room geometries are not 

modelled as interior voids of this volume in CityGML but rather as separate solids permeating the building volume. 

In the context of the MLSEM, the solid geometries of the rooms therefore also need to be subtracted from the 

building volume, which results in the wall space as shown in figure 221. 

                                                           
71 Note that the boundary surfaces of a Room feature are not enforced to render a closed surface (GM_CompositeSurface). In 

contrast, they may also be given as a GM_MultiSurface which is an aggregate geometry and thus not necessarily ensures a 

bounded volume. This flexibility in the spatial representation is also applied to all other CityGML feature types. It therefore 

might require additional algorithms from computational geometry in order to retrieve a solid geometry.    
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An alternative mapping of the CityGML model is depicted in figure 222. In this example, the building volume is 

carried to a space cell on a separate topographic space layer 𝐿𝑠𝑢𝑝𝑒𝑟 , whereas the rooms, the corridor, and the 

column are translated to space cells on the subspace layer 𝐿𝑠𝑢𝑏 as illustrated above. The resulting multilayered 

graph is shown on the right of figure 222. In contrast to the first alternative, the space cell on 𝐿𝑠𝑢𝑝𝑒𝑟  now shares 

the same geometry as the Building feature in the CityGML model. Based on the spatial inclusion relationships 

between the space cells on 𝐿𝑠𝑢𝑝𝑒𝑟  and 𝐿𝑠𝑢𝑏, the multilayered graph encodes the nested hierarchical structure of the 

built environment (cf. example 3.61).72 The non-navigable wall space is not explicitly mapped by a space cell 

anymore. If required, it can be deduced, for example, from applying the merge operation 𝐿𝑠𝑢𝑝𝑒𝑟⊕ 𝐿𝑠𝑢𝑏. Note that 

the dual nodes of the room cell 𝑅1 and the corridor cell 𝐶 are linked to the dual node of the outer space 𝑆𝑜𝑢𝑡
𝑠𝑢𝑏 via 

two dual edges since the window and the door are again represented by individual boundary cells.  

 

Figure 222: Alternative mapping of the CityGML model capturing the hierarchical structure of the built space. 

CityGML does not impose the spatial representation of Door and Window features as single surfaces. In contrast, 

doors and windows may likewise be described by solid objects. Figure 223 shows the impact of this modelling 

approach on the space layer 𝐿𝑠𝑢𝑏. The Door and Window features are mapped onto instances of SpaceCell rather 

than BoundaryCell, and thus are available as separate dual nodes in the intra-layer graph.   

 

Figure 223: Impact of modelling CityGML doors and windows as solid objects. 

The linkage between the conceptual model elements of CityGML and the MLSEM is summarized in figure 224 

based on excerpts of their UML diagrams. The identification of semantic concepts in either model also allows for 

carrying thematic attributes from the CityGML features to their counterparts in the MLSEM. For example, sym-

bolic information of Room features such as room names or numbers can be kept for the equivalent SpaceCell 

instances in the MLSEM (e.g., using generic attributes). Likewise, material information assigned to an Interior-

WallSurface feature can be carried to the corresponding BoundaryCell. The rich semantics about the interior built 

                                                           
72 Further hierarchical subspace layers (e.g., for representing the separate building floors) may be introduced in the same way. 

In general, CityGML lacks a specific concept for modeling floors. In order to overcome this issue, the current specification 

recommends the usage of CityObjectGroup features for aggregating all features on the same floor (cf. chapter 2.3.2). A CityOb-

jectGroup can be assigned its own solid geometry and thus can be mapped onto a SpaceCell representation. 
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environment provided by a CityGML model is thus not lost in a model translation. Moreover, and due to the primal 

and dual space representation of space cells and boundary cells, the semantic information is directly available from 

the navigation graph (e.g., for path finding algorithms).  

 

Figure 224: Linkage between the conceptual UML model elements of CityGML and the MLSEM. 

6.2 Volumetric Elements Models 

The derivation of a topographic space layer from volumetric elements models is illustrated in the following along 

the international standard IFC from the field of BIM (cf. chapter 2.3.1). The IFC representation of the example 

indoor scene used in the previous section is sketched in figure 225. The conceptual IFC entities for describing the 

elements of the built structure have been introduced in the UML diagram presented in figure 30.  

(a)  

(b)  

Figure 225: Example indoor scene as 3-dimensional IFC building model (a) and as 2-dimensional top view (b). 

 class MLSEM Mapping

«FeatureType»

BoundaryCell

«FeatureType»

_BoundarySurface

«FeatureType»

_Opening

«FeatureType»

Room

«FeatureType»

IntBuildingInstallation

«FeatureType»

_AbstractBuilding

«FeatureType»

BuildingInstallation

«FeatureType»

BuildingFurniture

{xor}

«FeatureType»

SpaceCell

::SpaceElement

+ symbolicId  :GenericName [0..*]

+ class  :GenericName [0..1]

+ function  :GenericName [0..*]

+ usage  :GenericName [0..*]

+ genericAttribute  :GenericAttributeType [0..*]

«maps»

«maps» «maps» «maps»

«maps» «maps» «maps» «maps»

IfcSpace

IfcSlab

IfcWindow

(IfcOpeningElement)

IfcWallIfcColumn

IfcDoor

(IfcOpeningElement)

IfcBuilding

IfcBuildingStorey

WallSurface IfcSpace IfcColumn

IfcWindow

(IfcOpeningElement)

IfcDoor

(IfcOpeningElement)

IfcWall



264 Chapter 6.   Relation to Existing Building Modelling Standards 

 

 

A substantial difference between the IFC model and the surface-based description of the indoor setting is the 

explicit representation of the main structural components that constitute the building carcass. Precisely, the IFC 

model contains those elements that occupy the wall space (e.g., walls, slabs, columns, beams) and that represent 

the building structure as designed but not necessarily as observed (cf. Nagel et al. 2009). The wall elements are 

modelled as instances of IfcWall. As can be seen from figure 225, an IfcWall may contribute to either or both the 

exterior building shell and the boundary of rooms and corridors. IfcSlab elements enclose the interior spaces hor-

izontally and thus describe their lower support (floor) as well as their upper construction (ceiling, roof). Both walls 

and slabs may have voids which are represented as conceptual entities in their own right through the class 

IfcOpeningElement. Doors (IfcDoor) and windows (IfcWindow) are normally inserted into these openings in order 

to fill the void. A further vertical member of the building structure in the above example is the column inside one 

of the rooms which is modelled as IfcColumn. Similar to CityGML, the free spaces inside a facility such as rooms 

and corridors are described as bounded volume and captured by IfcSpace entities.  

In IFC, the spatial representation of building elements is typically given as 3-dimensional solid object (Benner et 

al. 2005). In most cases, the geometry of a single building element hereby renders a single-shell manifold solid. 

The IFC elements can thus be mapped to individual SpaceCell features when translating an IFC model to the 

MLSEM. A possible topographic space layer following from the above setting is shown in figure 226. The intra-

layer graph resulting from applying the mathematical model of the MLSEM consequently contains a dual node for 

every building element. Due to the wall space being partitioned into several space cells, the intra-layer graph 

contains more graph elements and hence is more complex compared to the surface-based representation shown in 

figure 221. This might be seen as disadvantageous since the dual nodes of building elements are typically non-

traversable and hence need to be neglected in path searches anyways. However, it also allows for attaching valu-

able information such as the material of the building elements to the corresponding space cells which makes this 

information accessible from the dual nodes. Especially in emergency situations the material might become essen-

tial since fire fighter forces or rescue personnel equipped with appropriate tools might be able to tear down specific 

walls (e.g., a combined navigation constraint can be used to express this fact). In the mapping of a surface-based 

model, the entire wall space is captured by a single space cell which obviously does not suffice to denote the 

different materials of different structural elements. In contrast, the material information has to be kept with the 

BoundaryCell features instead. This representation also faces drawbacks. First, material information needs to be 

stored redundantly for all boundary cells belonging to the same building element. Second, the information that two 

or more boundary cells represent parts of the same building element is only available implicitly (cf. discussion in 

chapter 6.1). From this perspective, the greater number of dual nodes resulting from an IFC model might also be 

seen as advantage.  

 

Figure 226: Corresponding topographic space layer of the MLSEM for the IFC model from figure 225. The intra-layer graph 

on the right assumes a minimal CW decomposition. 

IFC supports various spatial representation schemes for describing the volumetric shape of building elements and 

free spaces. Amongst others, this comprises CSG, B-Rep, translational and rotational sweep representations, and 

parametric descriptions. It immediately follows that representations other than B-Rep need to be translated into 

the B-Rep scheme in order to serve as primal space representation of SpaceCell features in the context of the 

MLSEM. This translation involves additional algorithms from computational geometry but can be realized in an 

unambiguous way (cf. chapter 4.1). In contrast to surface-based models, the boundary of the volumetric elements 
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is not represented by separate conceptual entities that can be mapped to BoundaryCell features. Nevertheless, IFC 

foresees the possibility to denote the 2-dimensional surface geometry where two adjacent building entities touch, 

which can be used to populate the primal space representation of boundary cells. Topological adjacency is gener-

ally expressed on a logical level through the relationship class IfcRelConnects (cf. chapter 2.3.1). The subtype 

IfcRelConnectsElements allows for additionally capturing the physical connection geometry (IfcConnectionGe-

ometry) between two elements of the building structure that are given as subtypes of IfcElement (e.g., between 

walls, slabs, windows, doors). These boundary surfaces are typically non-observable and thus are not represented 

in surface-based models. Since IfcSpace is not derived from IfcElement, the relationship class IfcRelSpaceBound-

ary is provided for the representation of the surfaces delimiting a free space. IfcRelSpaceBoundary is similarly 

subtyped from IfcRelConnects and defines the relationship of a space to its surrounding building elements. It may 

have a connection geometry attached which can be classified to be intangible or tangible. Intangible space bound-

aries occur at adjacent physical IfcElement entities, whereas tangible boundaries can be used, for example, to 

express a virtual and hence navigable connection between two IfcSpace instances. It follows that a connection 

geometry of an IfcRelSpaceBoundary coincides with an observable (or virtual) interior surface in surface-based 

models. Further semantic information about the space boundary can be drawn from the building element associated 

with the IfcRelSpaceBoundary. Space boundaries being topologically connected can be carried to a single Bound-

aryCell feature. If relationship classes or connection geometries are not provided by an IFC model, then the primal 

space representation of boundary cells has to be derived from the intersection of the volumetric building elements. 

Similar to CityGML, also IFC allows spatial overlaps and permeations between the spatial entities of the built 

environment. For example, openings and their filling elements at least partly occupy the same portion of space per 

definition. Consequently, they cannot be mapped to separate space cells on the same topographic space layer. In 

figure 226, the spatial description of the IfcOpeningElement has been used for the space cells representing the 

doors and windows. This might be sufficient in many cases since the more detailed real world geometry of the 

IfcDoor and IfcWindow elements can still be queried on demand when being related to the SpaceCell using an 

instance of SourceObject (e.g., for visualization purposes or for evaluating navigation constraints). Likewise, the 

solid manifold describing the IfcColumn is spatially contained inside the IfcSpace representing the room. The 

primal space geometry of the room cell for the MLSEM hence has to be derived from a regularized Boolean 

subtraction as illustrated in the context of CityGML.  

When neglecting the physical wall and slab elements by simply omitting the instances of the corresponding con-

ceptual entities from the IFC model, then the topographic space layer as depicted in the following figure 227 can 

be derived from the remaining IfcSpace entities, their space boundaries, as well as additional elements such as 

doors and windows. Both the primal and dual space representation agrees with the space layer derived from the 

CityGML model as shown in figure 223. It thus follows that, despite their different modelling paradigms, IFC and 

CityGML building models can lead to similar MLSEM representations. Note that in this alternative, the transition 

of semantic attributes from the omitted building elements to the BoundaryCell features representing the corre-

sponding space boundaries of IfcSpace entities is essential in order to not loose information. 

 

Figure 227: Omitting the physical wall and slab elements from the IFC model from figure 225. 

IFC models inherently represent the hierarchical structure of facilities (cf. chapter 2.3.1). An IfcBuilding is decom-

posed into building floors which are defined as IfcBuildingStorey. Moreover, IfcSpace entities may span over 
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several connected spaces which can be used, for example, to model sub-hierarchies on the floor level such as wings 

or organizational units. Since each of these hierarchical structure elements may also carry a geometric representa-

tion, topographic subspace layers capturing the spatial containment relationships can be easily derived. 

 

Figure 228: Subspace layer hierarchy derived from the IFC model from figure 225. 

Finally, the conceptual mapping between IFC and the MLSEM is shown along excerpts of their UML models in 

figure 229. All IFC model elements are subsumed under the notion of the SpaceCell feature type and there is no 

direct conceptual counterpart for BoundaryCell. However, the primal space geometry of BoundaryCell features 

may be populated from IfcConnectionGeometry elements as discussed above. 

 

Figure 229: Linkage between the conceptual UML model elements of IFC and the MLSEM. 

6.3 Paper Models 

Paper models of buildings can be viewed as subtypes of surface-based building models which are characterized 

by the fact that the volumetric shape of the structural building elements such as walls and slabs is abstracted by 2-

dimensional surfaces. This abstraction results in a skeleton representation of the wall space whose inherent dimen-

sional reduction decreases the overall model complexity. Various methods for deriving the skeleton of solid objects 

are discussed in literature, amongst which medial axis transforms are one of the most widely studied. Skeletons 

are commonly requested to be homotopy equivalent to the solid object, and thus the number of holes and interior 
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voids has to remain the same. Likewise, relative dimensions of the object’s shape as well as topological relation-

ships to other objects need to be preserved in the skeletal abstraction.  

A paper model of the example indoor scene that observes these rules is sketched in figure 230. The walls and slabs 

are represented through their mid surfaces. The rooms and the corridor are enclosed by these mid surfaces and thus 

render bounded volumes. Since the wall thickness is abstracted, it follows that the modelled free space is actually 

greater than the available free space. This fact needs to be considered when using paper models in the context of 

indoor navigation. Similar to the CityGML representation, the column is described by its tangible boundary sur-

faces and not idealized by a single mid surface. This ensures that the topological information about the column 

rendering a through hole of the room space is kept within the model. The doors and windows are given as 2-

dimensional surfaces on the boundary of the rooms and the corridor, which again corresponds to the CityGML 

model in figure 220.  

(a)  

(b)  

Figure 230: Example indoor scene as 3-dimensional paper model (a) and as 2-dimensional top view (b). 

The identification of space cells and boundary cells in the presented paper model is shown below. The resulting 

dual graph assumes a minimum number of boundary cells and is similar to the graph derived from the surface-

based model in figure 221. Nevertheless, there are also distinct differences between both. First, the wall space is 

not mapped to a separate dual node anymore. Therefore, the dual nodes of the rooms 𝑅1 and 𝑅2 are directly con-

nected through a dual edge. Second, two dual edges link 𝑅1 with the corridor 𝐶 since the door and its surrounding 

wall render separate 2-cells on the common boundary of both space cells in primal topology space (cf. figure 77a 

and the related discussion). For the same reason, there are also two dual edges connecting 𝑅2 and 𝐶 as well as both 

𝑅1 and 𝐶 with 𝑆𝑜𝑢𝑡. In order to avoid paths involving the dual edges of the wall surfaces, the BoundaryCell features 

may be assigned NonPassableConstraint entities. 
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Figure 231: Corresponding topographic space layer of the MLSEM for the paper model from figure 230. The intra-layer graph 

on the right assumes a minimal CW decomposition. 

A further level of abstraction is often applied in paper models by omitting the representations of windows and 

doors in wall surfaces. The impact of this modelling approach on the dual space representation is illustrated in 

figure 232. Obviously, the number of dual edges is reduced since the rooms are connected to the corridor through 

a single dual edge. Although this graph representation is closer to the surface-based model in figure 221, a differ-

entiation between the wall and its enclosed openings is not possible which hinders the modelling of semantic 

information about the separate space entities (e.g., material information about the wall and access control associ-

ated with the doors). Moreover, assume there are two or more openings within the same wall surface. Then this 

fact cannot be reflected in the dual graph. Nevertheless, the MLSEM is flexible enough to also express this mod-

elling approach. 

 

Figure 232: Further abstraction model of the paper model from figure 230. 

From the approaches to indoor space modelling for indoor navigation as presented in chapter 2.2, the proposal of 

(Boguslawski & Gold 2009) utilizes a paper-based representation of the interior built environment. A conceptual 

model of the indoor entities that could be related with the SpaceCell and BoundaryCell concepts of the MLSEM 

is however not presented by the authors. Alternatively, also CityGML is capable of capturing paper-thin represen-

tations of the interior built environment, in which case the translation of semantics to the entities of the MLSEM 

follows the rules presented in chapter 6.1.  

6.4 Floor Plan Models 

The group of 2-dimensional floor plan models is discussed along the ESRI Building Interior Space Data Model 

(BISDM) (cf. chapter 2.3.3). A possible BISDM representation of the example indoor setting is presented in the 

following figure 233. The rooms and the corridor are mapped onto instances of InteriorSpace and are spatially 

described by 2-dimensional polygons. The 1-dimensional FloorplanLine geometries representing the boundaries 

of walls are chosen so that they reflect the projected shape of the separate wall components and thus also include 

non-visible boundaries. The boundary lines of the doors and the window are given in a similar way and hence 

preserve the thickness of the corresponding spatial entities. 
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Figure 233: Example indoor scene as 2-dimensional ESRI BISDM model. 

The figure below depicts the mapping of the BISDM model to a 2-dimensional topographic space layer of the 

MLSEM. It is an easy consequence that InteriorSpace entities are translated into SpaceCell features, whereas the 

FloorplanLine instances are carried to BoundaryCell features. Additional space cells are required to capture those 

spaces occupied by wall, door, and window elements. Since these spaces are not available from the BISDM model 

as 2-dimensional objects directly, they need to be derived from the spatial configuration of the boundary lines. 

The resulting intra-layer graph in figure 234 assumes a minimum number of boundary cells. It agrees to a great 

extent to the intra-layer graph derived from the IFC model of the indoor scene as shown in figure 226 which is due 

to the fact that the structural building elements are at least described implicitly in the above BISDM model. Since 

in two dimensions, openings necessarily disconnect a wall into spatially disjoint components which have to be 

mapped to individual space cells, the intra-layer graph in figure 234 even contains a greater number of graph 

elements. 

 

Figure 234: Corresponding topographic space layer of the MLSEM for the ESRI BISDM model from figure 233. The intra-

layer graph assumes a minimal CW decomposition. 

The ESRI feature model generally employs the B-Rep scheme for the description of spatial characteristics. The 

geometric representation of the BISDM floor plan elements can thus be taken for the primal space geometry of the 

respective SpaceCell and BoundaryCell features. However, ESRI polygons and polylines are allowed to have dis-

connected parts (so-called multipart features), and polylines may branch. In contrast, both space cells and boundary 

cells are required to form connected manifold spaces (cf. definition 3.2 and definition 3.26). Therefore, it may 

involve multiple space cells respectively boundary cells to represent the space covered by a single ESRI polygon 

or polyline. Moreover, and similar to CityGML and IFC, the floor plan elements are not constrained to be spatially 

non-overlapping. FloorplanLine instances, for example, may rather lie within the geometry of Floor and Interior-

Space entities (e.g., the border lines of the column in figure 233). Likewise, the geometries of interior spaces are 

obviously inside the geometry of floors and floor sections. The mapping to the primal space geometry of MLSEM 
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features may thus require regularized Boolean operations. If a BISDM model only contains Floor and Interior-

Space features but no FloorplanLine instances, then the primal space representation of boundary cells has to be 

derived from the intersection of the non-overlapping polygon geometries. 

Figure 235 illustrates alternative BISDM representations of the indoor scene. In figure 235a, only the visible 

boundaries of the building elements are captured by FloorplanLine objects, whereas the wall openings are repre-

sented through a centreline. When translated to a topographic space layer of the MLSEM following the above rules 

(cf. right of figure 235a), the resulting intra-layer graph is mostly consistent with the one derived from the 

CityGML model in figure 221. Note that topologically connected FloorplanLine entities have been carried to a 

single boundary cell in order to reduce the number of dual edges. Similar to the above example, the differences in 

the dual topology space compared to figure 221 again arise from the reduction of the dimension. For example, in 

two dimensions, the wall space is disconnected and hence needs to be described by two space cells. The BISDM 

model in figure 235b uses centrelines for all element boundaries. The dual graph of the MLSEM mapping on the 

right of figure 235b therefore corresponds to the 3-dimensional representation derived from a paper model as 

depicted in figure 231. Again, observe the greater number of graph elements (e.g., each room is linked to the 

corridor through three dual edges in two dimensions).    

(a)  

(b)  

Figure 235: Alternative ESRI BISDM models of the example indoor scene based on the visible boundaries of building elements 

(a) and their centreline representation (b). 

Since the BISDM foresees spatial representations for the footprint of the Building as well as for the extent of the 

separate Floor entities and FloorSection parts therein, this information can be used to populate a corresponding 

hierarchy of subspace layers for the topographic space in order to make the nested hierarchical structure of the 

facility as well as the spatial containment relationships between the interior entities available in the MLSEM rep-

resentation. 

Similar to the discussion of CityGML and IFC in the previous sections, the mapping between the conceptual model 

elements of the BISDM and the MLSEM is illustrated based on their UML diagrams in figure 236. 
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Figure 236: Linkage between the conceptual UML model elements of the ESRI BISDM and the MLSEM. 

Although the conceptual model of the BISDM allows a Building object to aggregate a collection of Floor entities 

that are differentiated by their baseElevation property, it is important to note that each of these Floor entities needs 

to be captured by a separate 2-dimensional space layer complex when mapping the BISDM representation to the 

MLSEM (cf. discussion in chapter 4.4.1.6). The concept of TransferTransition as introduced in chapter 4.4.1.6 

then allows for linking the separate multilayered graphs representing the different floor plans. Precisely, a Trans-

ferTransition allows for establishing a link between the dual nodes of space cells representing the same vertical 

transition space on different floors (e.g., an elevator, staircase, or escalator). This information can be evaluated by 

path search algorithms in order to determine routes between the different floors. Note that the notion of FloorTran-

sition as defined for the graph-based conceptualization of indoor space within the BISDM (cf. chapter 2.3.3) di-

rectly corresponds to TransferTransition and thus facilitates the automatic creation of corresponding instances. 

Likewise, the centreline representations of corridors and hallways modelled by BISDM FloorLines are feasible to 

populate the dual space geometry of a topographic space layer. Navigation constraints provided for the elements 

of the BISDM navigation graph can also be translated to the MLSEM without information loss. For example, 

Boolean flags denoting the navigability of graph edges can be carried to instances of NonPassableConstraint as-

sociated with the corresponding MLSEM features. Moreover, restricted turns as well as time-based costs can be 

mapped to prohibited maneuver constraints (cf. chapter 5) respectively cost values associated with the dual edges 

of the intra-layer graph (cf. chapter 4.4.1.1).            

Summary. It follows from the discussion in this chapter that the feature types SpaceCell and BoundaryCell from 

the MLSEM application schema provide suitable conceptual interfaces which connect the MLSEM to semantic 

building modelling standards such as CityGML, IFC, and ESRI BISDM without the need for duplicating or re-

placing these standards. The generic notion of space and the high abstraction level of the conceptual interfaces 

allow for keeping the semantic impedance low in this mapping. Semantic information can then be translated along 

identified elements from either conceptual model. Likewise, it has been shown that the primal space geometry can 

be populated from the connected elements of the building modelling standards even if they follow different spatial 

modelling paradigms. Purely geometric or graphical building models (cf. chapter 2.3.4) have not been explicitly 

considered in this chapter. Nevertheless, such models at least suffice to derive the primal space geometries of space 

cells and boundary cells on a topographic space layer (from which the dual space representations follow in a 

deterministic manner). However, and discussed in chapter 2.3.4, visualization models rather focus on the geometry 

and appearance of those surfaces which are required for rendering an indoor scene. Whether these surfaces are 

geometric-topologically consistent or form a solid object is commonly of small importance. Thus, populating the 

primal space geometry of space cells and boundary requires the reconstruction of well-behaved spatial objects in 

the sense of definition 3.2. Moreover, since geometric and graphical building models lack semantics, further object 

recognition and interpretation procedures might become necessary to semantically classify the derived spatial ob-

jects (cf., Baltsavias 2004, Brenner 2005, Kolbe et al. 2009). 
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Chapter 7  

Example Applications of the MLSEM 

This chapter provides two “proof of concept” demonstrations for the applicability and feasibility of the MLSEM 

and the concepts developed in this thesis. First, the XML representation of an indoor scene according to the GML 

application schema discussed in chapter 4.4.2 and provided in appendix B is illustrated. The example thus nicely 

concludes a main thread and goal of this thesis: from the definition of a spatio-semantic indoor space model for 

indoor navigation at a conceptual and mathematical level (cf. chapter 3) via its complete and consistent mapping 

onto a conceptual data model (cf. chapter 4 and chapter 5) to the actual encoding of indoor space data according 

to the MLSEM framework in a standardized way. The XML structures for the most important concepts of the 

MLSEM are discussed in detail in order to demonstrate the possibility for the lossless exchange of MLSEM indoor 

space models between computer systems. 

The second example is about the acquisition of a 3-dimensional MLSEM indoor space model for a real world 

building, namely the Main Building of the Technische Universität Berlin. The example presents the results of a 

Master students’ project conducted at the Institute for Geodesy and Geoinformation Science of the Technische 

Universität Berlin which was co-supervised and intensely supported by the author. The students were expected to 

model a topographic space layer mapping the interior built environment of the TU Main Building in both primal 

and dual space and to augment this space view with a sensor space layer capturing the signal reception areas of 

Wi-Fi transmitters equipped in the building. In addition, the multilayered graph structure linking both space layers 

in dual space had to be established. A second deliverable of the students’ project was the specification of a database 

schema allowing for the storage and management of MLSEM indoor space models within a spatial database in 

accordance with the conceptual data model developed in chapter 4.  

Note that the realization of a (prototypical) indoor navigation system is out of scope of this thesis since this nec-

essarily involves implementations for the tasks of localization, path planning, as well as guidance and tracking. 

The focus of this thesis is however on the spatio-semantic modelling of indoor environments as mandatory pre-

requisite for these navigation tasks but not on their practical implementation. 

7.1 XML Encoding of an MLSEM Indoor Space Model 

The MLSEM conformant XML encoding of indoor space data is demonstrated for the indoor scene shown in figure 

237. It recaps the example from chapter 3.1.2.3 which has been discussed at several places throughout this thesis. 

The scene consists of two space layers, namely a topographic space layer and a Wi-Fi space layer, whose spatial 

configuration and overlap in primal space is sketched on the left of figure 237. The resulting multilayered graph 

integrating the corresponding dual space representations is depicted on the right. In order to reduce the XML 

encoding of the spatial representations of space cells and boundary cells in XML excerpts presented in the subse-

quent sections, the indoor space is described in two dimensions only. 

 

Figure 237: Example 2-dimensional space layer complex (left) and corresponding multilayered graph (right). 
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The general XML skeleton of any MLSEM instance document is presented in the listing 1 shown below. The root 

element <SpaceLayerComplex> encodes the SpaceLayerComplex feature type of the conceptual data model. It 

hence realizes a container for the SpaceLayer features describing the separate views on indoor space each of which 

is realized as nested <SpaceLayer> element. The SpaceCell and BoundaryCell features on a space layer as well as 

the resulting IntraLayerGraph representation are captured inside the <SpaceLayer> element. Further subelements 

of <SpaceLayerComplex> facilitate the encoding of both the multilayered graph and the joint states associated 

with the space layer complex itself. 

<?xml version="1.0" encoding="UTF-8"?> 

<SpaceLayerComplex xmlns="http://www.tu-berlin.de/igg/mlsem/1.0"  

 xmlns:gml="http://www.opengis.net/gml/3.2" 

 xmlns:xlink="http://www.w3.org/1999/xlink"  

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

 xsi:schemaLocation="http://www.tu-berlin.de/igg/mlsem/1.0 mlsem.xsd"> 

 

 <!-- space layers --> 

 <layer> 

  <SpaceLayer> 

   <spaceCell> … </spaceCell> 

   <boundaryCell> … </boundaryCell> 

   <graph> … </graph> 

  </SpaceLayer> 

 </layer> 

 

 <!-- multilayered graph --> 

 <graph> 

  <MultilayeredGraph> 

   <subGraph> … </subGraph> 

   <edge> … </edge> 

  </MultilayeredGraph> 

 </graph> 

 

 <!-- joint states --> 

 <stateSpace> 

  <JointStateSpace> 

   <state> … </state> 

   <transition> … </transition> 

  </JointStateSpace> 

 </stateSpace> 

</SpaceLayerComplex> 

Listing 1: General XML skeleton of an MLSEM instance document. 

XML encoding of space layers, space cells, and boundary cells. The XML encoding of a SpaceLayer feature is 

discussed for the topographic space view in the following. Figure 238 shows the two rooms 𝑅1 and 𝑅2 as well as 

the corridor 𝐶 inhabiting the indoor space along with their dimensions in metres. In order to describe the geometry 

of the corresponding space cells in both primal and dual space, a local 2-dimensional Cartesian coordinate system 

is assumed for this example whose origin is defined to be located at the lower left corner of the corridor. In general, 

GML supports both local (engineering) and global spatial reference systems to be associated with the geometries 

in an instance document. Whereas the latter are typically predefined by an authority organization such as the Eu-

ropean Petroleum Survey Group (EPSG) and hence can be given by a reference to this definition, a spatial reference 

system can also be self-defined within the same or an external GML document (cf. Portele 2012). The GML 

encoding of the local coordinate system used in this example is however omitted for brevity. In accordance with 

ISO 19107, GML provides the flexibility to apply multiple and different reference systems within the same 

MLSEM instance document which has been identified as essential requirement for indoor space models in chapter 

1.2. 
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Figure 238: Local engineering coordinate system applied to the topographic space layer. 

A <SpaceLayer> is characterized by its mandatory <type> property. In listing 2, this property receives the value 

topographic which is taken from a predefined but extensible code list. The nested <SpaceCell> element maps the 

space cell representing the room 𝑅1 from the above figure. The room number 5126 is encoded as symbolic infor-

mation through the <symbolicId> property, whereas the <class> property is used to classify the space cell as office. 

Further semantic information about the office room such as its usage and function as well as a name, description, 

or arbitrary further generic attributes may be added but have been omitted in this example for brevity. The same 

holds for the semantic attributes of the <SpaceLayer> element. 

<SpaceLayer gml:id="TopographicSpace"> 

 <type>topographic</type> 

 <spaceCell> 

  <SpaceCell gml:id="R1"> 

   <symbolicId codeSpace="roomNo">5126</symbolicId> 

   <class>office</class> 

   <primalSpace> 

    <Space gml:id="R1_PS"> 

     <geometry> 

      <gml:Polygon gml:id="R1_PS_Geometry" srsDimension="2"> 

       <gml:exterior> 

        <gml:Ring> 

         <gml:curveMember> 

          <gml:LineString gml:id="R1_PS_Geometry_Wall"> 

           <gml:posList>3 2.65 3 2.8 5 2.8 5 6.8 0 6.8 0 2.8 2 2.8 2 2.65</gml:posList> 

          </gml:LineString> 

         </gml:curveMember> 

         <gml:curveMember> 

          <gml:LineString gml:id="R1_PS_Geometry_Door"> 

           <gml:posList>2 2.65 3 2.65</gml:posList> 

          </gml:LineString> 

         </gml:curveMember> 

        </gml:Ring> 

       </gml:exterior> 

      </gml:Polygon> 

     </geometry> 

     <topology> 

      <gml:Face gml:id="R1_PS_Topology"> 

       <gml:directedEdge> 

        <gml:Edge gml:id="R1_PS_Topology_Wall"> 

         <gml:directedNode> 

          <gml:Node gml:id="R1_PS_Topology_N1"/> <!-- cf. N1 in figure 238--> 

         </gml:directedNode> 

         <gml:directedNode> 

          <gml:Node gml:id="R1_PS_Topology_N2"/> <!-- cf. N2 in figure 238--> 

         </gml:directedNode> 

         <gml:curveProperty xlink:href="#R1_PS_Geometry_Wall"/> 

        </gml:Edge> 

       </gml:directedEdge> 

       <gml:directedEdge> 

        <gml:Edge gml:id="R1_PS_Topology_Door"> 

         <gml:directedNode xlink:href="#R1_PS_Topology_N2"/> <!-- cf. N2 in figure 238--> 
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         <gml:directedNode xlink:href="#R1_PS_Topology_N1"/> <!-- cf. N1 in figure 238--> 

         <gml:curveProperty xlink:href="#R1_PS_Geometry_Door"/> 

        </gml:Edge> 

       </gml:directedEdge> 

       <gml:surfaceProperty xlink:href="#R1_PS_Geometry"/> 

      </gml:Face> 

     </topology> 

    </Space> 

   </primalSpace> 

  </SpaceCell> 

 </spaceCell> 

 … 

</SpaceLayer> 

Listing 2: XML encoding of the primal space topology and geometry of the topographic space cells. 

The primal space geometry and topology of a SpaceCell feature is mapped by a <Space> element inside the cor-

responding <SpaceCell> node. XML constructs from GML (identified by the namespace prefix gml) are used to 

specify both space representations. In listing 2, the primal space <geometry> of the room cell 𝑅1 is given by a 2-

dimensional <gml:Polygon> whose exterior boundary component is described by two separate 1-dimensional curve 

primitives. The first boundary curve denotes the walls enclosing the room and separating it from the outer space, 

whereas the second curve represents the door between 𝑅1 and 𝐶. The curve geometries are implemented as 

<gml:LineString> which enforces a linear interpolation between the provided coordinate tuples. Together both 

curve geometries form a closed ring being homeomorphic to 𝕊1. The primal space <topology> is then provided as 

<gml:Face> which realizes the TP_Face primitive from ISO 19107. Similar to the geometric representation, its 

boundary is also defined by two <gml:Edge> elements. The first edge uses the node primitives 𝑁1 and 𝑁2 (cf. 

figure 238) as its start respectively end node. Its geometric realization is specified by referencing the curve geom-

etry representing the walls from the primal space geometry using the XLink mechanism of GML. This reference 

not only ensures data consistency between both space representations but also compacts the XML encoding. The 

second edge reuses both <gml:Node> instances in a reversed order to express the topological 1-cell representing 

the door, and thus references the corresponding curve geometry for its Euclidean space embedding. The entire 2-

dimensional face primitive itself is finally realized by the <gml:Polygon> geometry object.  

The <Space> element is deliberately chosen so that it demonstrates a fully populated geometric-topological de-

scription of 𝑅1 in primal space. Although this well reflects the mathematical notion of a space cell, either of both 

representations might already be sufficient for a navigation system to be stored and exchanged in an MLSEM 

instance document. For this reason, both the conceptual data model as well as the derived GML application schema 

of the MLSEM foresees the possibility to merely encode the primal space geometry, topology, or even neither of 

them (cf. related discussion in chapter 4.4.1.1). For example, in listing 2, the <topology> property could be deleted 

from the <Space> element without invalidating the instance document. 

The fact that the boundary of 𝑅1 is topologically described by two 1-cells in the above example implies that the 

dual node of 𝑅1 is incident to two dual edges according to the Poincaré duality theorem. Note that the illustrated 

example reflects a minimum decomposition of the boundary of 𝑅1 into 1-cells. An alternative cell decomposition 

could capture each wall component by a separate 1-cell in order to make the walls available as individual dual 

edges in the intra-layer graph. The encoding of the dual space representation of 𝑅1 is depicted in the following 

XML excerpt. 

<SpaceCell gml:id="R1"> 

 <symbolicId codeSpace="roomNo">5126</symbolicId> 

 <class>office</class> 

 <primalSpace> <!-- cf. listing 2 --> </primalSpace> 

 <dualSpace> 

  <State gml:id="R1_DS"> 

   <geometry> 

    <gml:Point gml:id="R1_DS_Geometry" srsDimension="2"> 

     <gml:pos>2.5 4.8</gml:pos> 

    </gml:Point> 

   </geometry> 

   <topology> 

    <gml:Node gml:id="R1_DS_Topology"> 
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     <gml:pointProperty xlink:href="#R1_DS_Geometry"/> 

    </gml:Node> 

   </topology> 

  </State> 

 </dualSpace> 

</SpaceCell> 

Listing 3: XML encoding of the dual space representation of the room 𝑅1.  

The <State> element allows for the geometric-topological description of a space cell in dual space. In the above 

listing 3, the dual <topology> node of 𝑅1 (cf. right of figure 238) is given by a <gml:Node> element that implements 

a 0-dimensional TP_Node primitive. Its geometric realization references the additional dual space <geometry> 

implemented as <gml:Point> object. The spatial encoding in dual space hence follows the layout of the encoding 

of the primal space representation as shown in listing 2. In this example, the coordinate tuple of the <gml:Point> 

geometry denotes the centre point of the polygon that describes the shape of 𝑅1. 

The <SpaceCell> encoding of the room cell 𝑅2 can be realized in the same way as illustrated for 𝑅1. The following 

listing 4 therefore shows the XML representation of the corridor cell 𝐶. The primal <Space> occupied by 𝐶 is also 

geometrically expressed by a <gml:Polygon>. Note that the exterior boundary of the polygon is described by four 

curve geometries two of which reuse those <gml:LineString> objects from the room geometries that spatially de-

scribe the door entities. Since the orientation of those curve segments needs to be reversed in the context of 𝐶, the 

corresponding XLink references are embedded in <gml:OrientableCurve> elements. Two more curve primitives 

are (at minimum) required to model the remaining disconnected walls bounding the corridor against the outer 

space. Only these additional curves require explicit coordinates. The primal space <topology> of the corridor cell 

is then defined by a 2-dimensional <gml:Face> primitive having four 1-cells on its boundary. Their start and end 

points obviously coincide with the node primitives 𝑁1 to 𝑁4 (cf. figure 238) being used in the topological descrip-

tion of the room cells. For this reason, the nodes are not defined anew but referenced per XLink. Since the 1-cells 

representing the door entities are on the common boundary of 𝑅1 and 𝐶 respectively 𝑅2 and 𝐶, the corresponding 

<gml:Edge> elements are also reused. Again, their orientation has to be flipped in the context of 𝐶. Finally, the 

<State> description of 𝐶 in dual space is defined similar to the dual space representations of the room cells (cf. 

listing 3).  

<SpaceCell gml:id="C"> 

 <class>corridor</class> 

 <primalSpace> 

  <Space gml:id="C_PS"> 

   <geometry> 

    <gml:Polygon gml:id="C_PS_Geometry" srsDimension="2"> 

     <gml:exterior> 

      <gml:Ring> 

       <gml:curveMember> 

        <gml:LineString gml:id="C_PS_Geometry_Wall1"> 

         <gml:posList>2 2.65 2 2.5 0 2.5 0 0 10.3 0 10.3 2.5 8.3 2.5 8.3 2.65</gml:posList> 

        </gml:LineString> 

       </gml:curveMember> 

       <gml:curveMember> 

        <gml:OrientableCurve gml:id="C_PS_Geometry_Door_R2" orientation="-"> 

         <gml:baseCurve xlink:href="#R2_PS_Geometry_Door"/> 

        </gml:OrientableCurve> 

       </gml:curveMember> 

       <gml:curveMember> 

        <gml:LineString gml:id="C_PS_Geometry_Wall2"> 

         <gml:posList>7.3 2.65 7.3 2.5 3 2.5 3 2.65</gml:posList> 

        </gml:LineString> 

       </gml:curveMember> 

       <gml:curveMember> 

        <gml:OrientableCurve gml:id="C_PS_Geometry_Door_R1" orientation="-"> 

         <gml:baseCurve xlink:href="#R1_PS_Geometry_Door"/> 

        </gml:OrientableCurve> 

       </gml:curveMember> 

      </gml:Ring> 

     </gml:exterior> 

    </gml:Polygon> 
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   </geometry> 

   <topology> 

    <gml:Face gml:id="C_PS_Topology"> 

     <gml:directedEdge> 

      <gml:Edge gml:id="C_PS_Topology_Wall1"> 

       <gml:directedNode xlink:href="#R1_PS_Topology_N2"/> <!-- cf. N2 in figure 238--> 

       <gml:directedNode xlink:href="#R2_PS_Topology_N3"/> <!-- cf. N3 in figure 238--> 

       <gml:curveProperty xlink:href="#C_PS_Geometry_Wall1"/> 

      </gml:Edge> 

     </gml:directedEdge> 

     <gml:directedEdge xlink:href="#R2_PS_Topology_Door" orientation="-"/> 

     <gml:directedEdge> 

      <gml:Edge gml:id="C_PS_Topology_Wall2"> 

       <gml:directedNode xlink:href="#R2_PS_Topology_N4"/> <!-- cf. N4 in figure 238--> 

       <gml:directedNode xlink:href="#R1_PS_Topology_N1"/> <!-- cf. N1 in figure 238--> 

       <gml:curveProperty xlink:href="#C_PS_Geometry_Wall2"/> 

      </gml:Edge> 

     </gml:directedEdge> 

     <gml:directedEdge xlink:href="#R1_PS_Topology_Door" orientation="-"/> 

     <gml:surfaceProperty xlink:href="#C_PS_Geometry"/> 

    </gml:Face> 

   </topology> 

  </Space> 

 </primalSpace> 

 <dualSpace> 

  <State gml:id="C_DS"> 

   <geometry> 

    <gml:Point gml:id="C_DS_Geometry" srsDimension="2"> 

     <gml:pos>5.15 1.25</gml:pos> 

    </gml:Point> 

   </geometry> 

   <topology> 

    <gml:Node gml:id="C_DS_Topology"> 

     <gml:pointProperty xlink:href="#C_DS_Geometry"/> 

    </gml:Node> 

   </topology> 

  </State> 

 </dualSpace> 

</SpaceCell> 

Listing 4: XML encoding of the corridor space cell in primal and dual space. 

The outer space cell on the topographic space layer is captured by a further <SpaceCell> whose XML mapping is 

presented in listing 5. In contrast to the space cells discussed above, the spatial encoding has to account for the 

fact that the outer space is topologically unbounded and hence non-compact. Conceptually, the ISO 19107 Spatial 

Schema supports the modelling of non-compact manifolds in both two and three dimensions by listing their bound-

ary components as interior rings respectively interior shells of a corresponding primitive geometry object (cf. 

chapter 4.3.1). This mechanism also applies to the GML encoding of the conceptual classes from ISO 19107. On 

the topographic space layer, the boundary of the outer space cell corresponds to the boundary of the space cell 

complex being constituted by the room and the corridor cells. The <gml:Polygon> describing its primal space 

geometry therefore has a single interior <gml:Ring> which contains orientation-reversing references to the corre-

sponding curve elements on the boundary of the primal space geometries of 𝑅1, 𝑅2, and 𝐶. Since exterior and 

interior boundary components are not distinguished in topology, the <gml:Face> representing the primal space 

topology of the outer space cell is characterized as being the universal and hence unbounded face by setting its 

XML attribute universal to true (this attribute is also available for a 3-dimensional <gml:TopoSolid>). Moreover, 

the <gml:Face> receives the unbounded <gml:Polygon> as geometric realization. Observe that the <gml:Face> 

likewise uses XLink references to the 1-cells on the common boundary with 𝑅1, 𝑅2, and 𝐶, and changes the sense 

of their orientation. 

The dual <State> element of the outer space cell is populated by a <gml:Node> which implements the dual node 

𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 as shown on the right of figure 238. In contrast to the dual nodes of 𝑅1, 𝑅2, and 𝐶, the <gml:Node> lacks a 

geometric embedding. The dual space representation of the outer space cell is hence only expressed in topology 

space in this example. On the one hand, this encoding has been chosen to illustrate the flexibility of the MLSEM 
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application schema. On the other hand, the outer space cell on a topographic space layer will likely represent non-

navigable space in many scenarios and therefore not necessarily has to receive a Euclidean space embedding in 

such cases. 

<SpaceCell gml:id="Topo_Outer"> 

 <gml:description>Outer space on topographic space layer</gml:description> 

 <class>outer</class> 

 <primalSpace> 

  <Space gml:id="Topo_Outer_PS"> 

   <geometry> 

    <gml:Polygon gml:id="Topo_Outer_PS_Geometry" srsDimension="2"> 

     <gml:interior> 

      <gml:Ring> 

       <gml:curveMember> 

        <gml:OrientableCurve gml:id="Topo_Outer_PS_Geometry_Wall_R1" orientation="-"> 

         <gml:baseCurve xlink:href="#R1_PS_Geometry_Wall"/> 

        </gml:OrientableCurve> 

       </gml:curveMember> 

       <gml:curveMember> 

        <gml:OrientableCurve gml:id="Topo_Outer_PS_Geometry_Wall2_C" orientation="-"> 

         <gml:baseCurve xlink:href="#C_PS_Geometry_Wall2"/> 

        </gml:OrientableCurve> 

       </gml:curveMember> 

       <gml:curveMember> 

        <gml:OrientableCurve gml:id="Topo_Outer_PS_Geometry_Wall_R2" orientation="-"> 

         <gml:baseCurve xlink:href="#R2_PS_Geometry_Wall"/> 

        </gml:OrientableCurve> 

       </gml:curveMember> 

       <gml:curveMember> 

        <gml:OrientableCurve gml:id="Topo_Outer_PS_Geometry_Wall1_C" orientation="-"> 

         <gml:baseCurve xlink:href="#C_PS_Geometry_Wall1"/> 

        </gml:OrientableCurve> 

       </gml:curveMember> 

      </gml:Ring> 

     </gml:interior> 

    </gml:Polygon> 

   </geometry> 

   <topology> 

    <gml:Face gml:id="Topo_Outer_PS_Topology" universal="true"> 

     <gml:directedEdge xlink:href="#R1_PS_Topology_Wall" orientation="-"/> 

     <gml:directedEdge xlink:href="#C_PS_Topology_Wall2" orientation="-"/> 

     <gml:directedEdge xlink:href="#R2_PS_Topology_Wall" orientation="-"/> 

     <gml:directedEdge xlink:href="#C_PS_Topology_Wall1" orientation="-"/> 

     <gml:surfaceProperty xlink:href="#Topo_Outer_PS_Geometry"/> 

    </gml:Face> 

   </topology> 

  </Space> 

 </primalSpace> 

 <dualSpace> 

  <State gml:id="Topo_Outer_DS"> 

   <topology> 

    <gml:Node gml:id="Topo_Outer_DS_Topology"/> 

   </topology> 

  </State> 

 </dualSpace> 

</SpaceCell> 

Listing 5: XML encoding of the outer space cell on the topographic space layer in primal and dual space. 

In addition to SpaceCell features, a <SpaceLayer> element also aggregates the BoundaryCell features on the space 

layer which are mapped onto <BoundaryCell> elements within an MLSEM instance document. Since the spatial 

description of each space cell already involves the representation of its boundary elements as illustrated in the 

previous listings, a <BoundaryCell> element simply has to provide XLink references to these descriptions for the 

encoding of its primal and dual space representation. The following listing 6 illustrates this for the boundary cell 

between the room cell 𝑅1 and the outer space cell. 
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<SpaceLayer gml:id="TopographicSpace"> 

 <type>topographic</type> 

 <spaceCell> <!-- cf. previous listings -->  </spaceCell> 

 … 

 <boundaryCell> 

  <BoundaryCell gml:id="R1-Topo_Outer"> 

   <gml:description>Wall between R1 and Outer</gml:description> 

   <class>wall</class> 

   <primalSpace> 

    <SpaceBoundary gml:id="R1-Topo_Outer_PS"> 

     <geometry xlink:href="#R1_PS_Geometry_Wall"/> 

     <topology xlink:href="#R1_PS_Topology_Wall"/> 

    </SpaceBoundary> 

   </primalSpace> 

   <dualSpace> 

    <Transition gml:id="R1-Topo_Outer_DS"> 

     <topology> 

      <gml:Edge gml:id="R1-Topo_Outer_DS_Topology"> 

       <gml:directedNode xlink:href="#R1_DS_Topology"/> 

       <gml:directedNode xlink:href="#Topo_Outer_DS_Topology"/> 

      </gml:Edge> 

     </topology> 

    </Transition> 

   </dualSpace> 

  </BoundaryCell> 

 </boundaryCell> 

 … 

</SpaceLayer> 

Listing 6: XML encoding of the primal space topology and geometry of a topographic boundary cell. 

The <BoundaryCell> element in listing 6 is semantically classified as wall entity through its <class> property. The 

primal space representation is encoded using a <SpaceBoundary> whose nested <geometry> and <topology> ele-

ments reuse the corresponding curve geometry respectively 1-cell defined in the context of 𝑅1 (cf. listing 2). In 

dual topology space, the <Transition> element then connects the dual nodes of 𝑅1 and 𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 through a <gml:Edge>. 

An additional Euclidean space embedding is not provided for this dual edge. However, assume the dual edges 

between 𝑅1 and 𝐶 as well as between 𝑅2 and 𝐶 shall be associated with space curves in order to create a geometric 

network which, for example, facilitates shortest path searches or allows for providing precise traveling paths for 

mobile robots. A possible geometric embedding of both dual edges is illustrated in figure 239 (cf. chapter 3.1.2.3). 

Listing 7 illustrates the corresponding XML encoding. Note that the <gml:LineString> primitives consistently ref-

erence the geometric embedding of the dual nodes being incident to the dual edges. 

 

Figure 239: Possible Euclidean space embedding of dual edges between 𝑅1 and 𝐶 as well as between 𝑅2 and 𝐶. 

<BoundaryCell gml:id="R1-C"> 

 <gml:description>Door between R1 and C</gml:description> 

 <class>door</class> 

 <primalSpace> …  </primalSpace> 

 <dualSpace> 

  <Transition gml:id="R1-C_DS"> 

   <geometry> 

𝐶

𝑅1 𝑅2

𝑦 𝑚

2.5

(0,0)

 .8

2.0

2.8

3.0 5.05.3 7.3 8.3 10.3

𝑥 𝑚
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    <gml:LineString gml:id="R1-C_DS_Geometry" srsDimension="2"> 

     <gml:pointProperty xlink:href="#R1_DS_Geometry"/> 

     <gml:pos>2.5 2.65</gml:pos> 

     <gml:pointProperty xlink:href="#C_DS_Geometry"/> 

    </gml:LineString> 

   </geometry> 

   <topology> 

    <gml:Edge gml:id="R1-C_DS_Topology"> 

     <gml:directedNode xlink:href="#R1_DS_Topology"/> 

     <gml:directedNode xlink:href="#C_DS_Topology"/> 

     <gml:curveProperty xlink:href="#R1-C_DS_Geometry"/> 

    </gml:Edge> 

   </topology> 

  </Transition> 

 </dualSpace> 

</BoundaryCell> 

… 

<BoundaryCell gml:id="R2-C"> 

 <gml:description>Door between R2 and C</gml:description> 

 <class>door</class> 

 <primalSpace> … </primalSpace> 

 <dualSpace> 

  <Transition gml:id="R2-C_DS"> 

   <geometry> 

    <gml:LineString gml:id="R2-C_DS_Geometry" srsDimension="2"> 

     <gml:pointProperty xlink:href="R2_DS_Geometry"/> 

     <gml:pos>7.8 2.65</gml:pos> 

     <gml:pointProperty xlink:href="#C_DS_Geometry"/> 

    </gml:LineString> 

   </geometry> 

   <topology> 

    <gml:Edge gml:id="R2-C_DS_Topology"> 

     <gml:directedNode xlink:href="#R2_DS_Topology"/> 

     <gml:directedNode xlink:href="#C_DS_Topology"/> 

     <gml:curveProperty xlink:href="#R2-C_DS_Geometry"/> 

    </gml:Edge> 

   </topology> 

  </Transition> 

 </dualSpace> 

</BoundaryCell> 

Listing 7: XML encoding of the dual space representation of two boundary cells. 

In the above listings, the relationship between a SpaceCell and its BoundaryCell features can be deduced from the 

geometric-topological descriptions of their associated Space and SpaceBoundary entities in primal space. This 

relationship can however also be expressed explicitly on the level of the semantic entities using the <boundary> 

and <coBoundary> properties of <Space> respectively <SpaceBoundary>. The following listing 8 demonstrates 

this for the space cell 𝑅1 and the boundary cell between 𝑅1 and 𝐶. Note that the boundary and coBoundary asso-

ciations can even be used independently of an accompanying spatial representation (cf. chapter 4.4.1.1). An 

MLSEM instance document may therefore only contain semantic links between space cells and boundary cells 

(e.g., in case the spatial characteristics of the indoor features are not available or have not been acquired yet). In 

dual space, the <State> and <Transition> elements of space cells and boundary cells can equally denote their top-

ological relationships using the semantic <boundary> and <coBoundary> properties.  

<SpaceCell gml:id="R1"> 

 <primalSpace> 

  <Space gml:id="R1_PS"> 

   <geometry> <!-- cf. listing 2 --> </geometry> 

   <topology> <!-- cf. listing 2 -->  </topology> 

   <boundary xlink:href="#R1-Topo_Outer_PS"/> 

   <boundary xlink:href="#R1-C_PS"/> 

  </Space> 

 </primalSpace> 

 <dualSpace> 

  <State gml:id="R1_DS"> 

   <geometry> <!-- cf. listing 3--> </geometry> 
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   <topology> <!-- cf. listing 3--> </topology> 

   <coBoundary xlink:href="#R1-C_DS"/> 

   <coBoundary xlink:href="#R1-Topo_Outer_DS"/> 

  </State> 

 </dualSpace> 

</SpaceCell> 

… 

<BoundaryCell gml:id="R1-C"> 

 <primalSpace> 

  <SpaceBoundary gml:id="R1-C_PS"> 

   <geometry> <!-- cf. listing 7 --> </geometry> 

   <topology> <!-- cf. listing 7 --> </topology> 

   <coBoundary xlink:href="#R1_PS"/> 

   <coBoundary xlink:href="#C_PS"/> 

  </SpaceBoundary> 

 </primalSpace> 

 <dualSpace> 

  <Transition gml:id="R1-C_DS"> 

   <geometry> <!-- cf. listing 7 --> </geometry> 

   <topology> <!-- cf. listing 7 --> </topology> 

   <boundary xlink:href="#R1_DS"/> 

   <boundary xlink:href="#C_DS"/> 

  </Transition> 

 </dualSpace> 

</BoundaryCell> 

Listing 8: XML encoding of boundary and coboundary relations. 

XML encoding of the intra-layer graph. The intra-layer graph of a space layer is encoded using the nested 

element <IntraLayerGraph>. For the topographic space layer elaborated in the above sections, it suffices to simply 

put XLink pointers to the <State> and <Transition> elements defined for its space cells and boundary cells in order 

to realize the graph structure presented in figure 238 and figure 239. The 1-dimensional geometric respectively 

topological complex constituted by the intra-layer graph can either be implicitly queried from the dual space rep-

resentations of the State and Transition features being referenced through the <node> and <edge> properties or 

explicitly provided using the <geometry> and <topology> properties. The latter is exemplified in listing 9 for the 

dual space topology. The TP_Complex of ISO 19107 is translated into the GML construct <gml:TopoComplex>. 

Since, in this example, the topological primitives in dual space have already been defined in the context of the 

<State> and <Transition> elements, the members of the <gml:TopoComplex> are again denoted using XLink ref-

erences. In an alternative structuring of an MLSEM instance document, the topological nodes and edges may be 

encoded within the <gml:TopoComplex> of the intra-layer graph instead and then be referenced from within the 

<State> and <Transition> elements.73 

<SpaceLayer gml:id="TopographicSpace"> 

 <type>topographic</type> 

 <spaceCell> <!-- cf. previous listings -->  </spaceCell> 

 … 

 <boundaryCell>  <!-- cf. previous listings --> </boundaryCell> 

 … 

 <graph> 

  <IntraLayerGraph gml:id="ILG_Topo"> 

   <topology> 

    <gml:TopoComplex gml:id="ILG_Topo_Topology"> 

     <gml:maximalComplex xlink:href="#ILG_Topo_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#R1_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#R2_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#C_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#Topo_Outer_DS_Topology"/> 

                                                           
73 Remember from the conceptual data model of the MLSEM that the SpaceLayer feature type also provides the spatial prop-

erties geometry and topology in order to capture the geometric respectively topological configuration of primitives in primal 

space (cf. figure 170 in chapter 4.4.1.1). The encoding of the corresponding GM_Complex and TP_Complex objects for the 

example topographic space layer has however been omitted in the provided XML listings for brevity. It nevertheless follows 

the same principles as discussed for the dual space complexes of the IntraLayerGraph feature. Thus, either the <gml:Geometric-

Complex> and <gml:TopoComplex> populating the <geometry> and <topology> properties of a <SpaceLayer> provide XLink 

references to the primal space descriptions of the <Space> and <SpaceBoundary> elements or vice versa.  
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     <gml:topoPrimitiveMember xlink:href="#R1-Topo_Outer_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#R2-Topo_Outer_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#C-Topo_Outer1_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#C-Topo_Outer2_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#R1-C_DS_Topology"/> 

     <gml:topoPrimitiveMember xlink:href="#R2-C_DS_Topology"/> 

    </gml:TopoComplex> 

   </topology> 

   <node xlink:href="#R1_DS"/> 

   <node xlink:href="#R2_DS"/> 

   <node xlink:href="#C_DS"/> 

   <node xlink:href="#Topo_Outer_DS"/> 

   <edge xlink:href="#R1-Topo_Outer_DS"/> 

   <edge xlink:href="#R2-Topo_Outer_DS"/> 

   <edge xlink:href="#C-Topo_Outer1_DS"/> 

   <edge xlink:href="#C-Topo_Outer2_DS"/> 

   <edge xlink:href="#R1-C_DS"/> 

   <edge xlink:href="#R2-C_DS"/> 

  </IntraLayerGraph> 

 </graph> 

</SpaceLayer> 

Listing 9: XML encoding of the intra-layer graph of the topographic space layer. The <gml:TopoComplex> references itself as 

maximal complex. 

The XML representation of the Wi-Fi sensor space layer (cf. figure 237) applies the same schema as discussed for 

the topographic space view and hence is not presented in detail in the following. The listing 10 only shows an 

excerpt containing the encoding of the Wi-Fi space cell 𝐴, its boundary cell separating 𝐴 from the outer space, and 

the resulting intra-layer graph. Note that the extent of the Wi-Fi space cell is approximated by a polygon geometry 

with straight line segments and that the geometry is encoded in the same local coordinate system as the topographic 

space cells in this example (cf. figure 238). As discussed above, this is however not mandatory but a different 

spatial reference system could be used instead. In this case, coordinate transformations between the involved ref-

erence systems are required (e.g., to derive inter-layer edges).  

<SpaceLayer gml:id="WiFi-SensorSpace"> 

 <type>sensor</type> 

 <spaceCell> 

  <SpaceCell gml:id="A"> 

   <symbolicId>WiFi access point A</symbolicId> 

   <symbolicId codeSpace="MAC">00-24-E8-33-61-F1</symbolicId> 

   <class>WiFi signal coverage area</class> 

   <primalSpace> 

    <Space gml:id="A_PS"> 

     <geometry> 

      <gml:Polygon gml:id="A_PS_Geometry" srsDimension="2"> 

       <gml:exterior> 

        <gml:Ring> 

         <gml:curveMember> 

          <gml:LineString gml:id="A_PS_Geometry_1"> <!-- common boundary with the outer space --> 

           <gml:posList>4.90604614654405 4.46202627848359 4.86284695553131 4.62324785418903 

            4.18844815527895 5.42696504723101 3.27983310965741 5.95155418841035  

            2.24659420289855 6.13374208518965 1.2133552961397 5.95155418841035  

            0.304740250518156 5.42696504723101 -0.369658549734208 4.62324785418903 

            -0.774394259102692 3.11275362318841 -0.369658549734206 1.60225939218778  

            0.304740250518158 0.798542199145804 1.21335529613969 0.273953057966467  

            2.24659420289855 0.091765161187163 3.75708843389917 0.496500870555649  

            4.24371757974206 0.904831207352533</gml:posList> 

          </gml:LineString> 

         </gml:curveMember> 

         <gml:curveMember> 

          <gml:LineString gml:id="A_PS_Geometry_2"> <!-- common boundary with the space cell AB --> 

           <gml:posList>4.24371757974206 0.904831207352533 3.92318130156336  

            2.16384990991809 4.38026406197645 3.76369410784373 4.90604614654405  

            4.46202627848359</gml:posList> 

          </gml:LineString> 

         </gml:curveMember> 
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        </gml:Ring> 

       </gml:exterior> 

      </gml:Polygon> 

     </geometry> 

     <topology> 

      <gml:Face gml:id="A_PS_Topology"> 

       <gml:directedEdge> 

        <gml:Edge gml:id="A_PS_Topology_1"> 

         <gml:directedNode> 

          <gml:Node gml:id="A_PS_Topology_N1"/> 

         </gml:directedNode> 

         <gml:directedNode> 

          <gml:Node gml:id="A_PS_Topology_N2"/> 

         </gml:directedNode> 

         <gml:curveProperty xlink:href="#A_PS_Geometry_2"/> 

        </gml:Edge> 

       </gml:directedEdge> 

       <gml:directedEdge> 

        <gml:Edge gml:id="A_PS_Topology_2"> 

         <gml:directedNode xlink:href="#A_PS_Topology_N2"/> 

         <gml:directedNode xlink:href="#A_PS_Topology_N1"/> 

         <gml:curveProperty xlink:href="#A_PS_Geometry_1"/> 

        </gml:Edge> 

       </gml:directedEdge> 

       <gml:surfaceProperty xlink:href="#A_PS_Geometry"/> 

      </gml:Face> 

     </topology> 

     <boundary xlink:href="#A-WiFi_Outer_PS"/> 

     <boundary xlink:href="#A-AB_PS"/> 

    </Space> 

   </primalSpace> 

   <dualSpace> 

    <State gml:id="A_DS"> 

     <topology> 

      <gml:Node gml:id="A_DS_Topology"/> 

     </topology> 

    </State> 

   </dualSpace> 

  </SpaceCell> 

 </spaceCell> 

 … 

 <boundaryCell> 

  <BoundaryCell gml:id="A-WiFi_Outer"> 

   <primalSpace> 

    <SpaceBoundary gml:id="A-WiFi_Outer_PS"> 

     <geometry xlink:href="#A_PS_Geometry_1"/> 

     <topology xlink:href="#A_PS_Topology_2"/> 

    </SpaceBoundary> 

   </primalSpace> 

   <dualSpace> 

    <Transition gml:id="A-WiFi_Outer_DS"> 

     <topology> 

      <gml:Edge gml:id="A-WiFi_Outer_DS_Topology"> 

       <gml:directedNode xlink:href="#A_DS_Topology"/> 

       <gml:directedNode xlink:href="#WiFi_Outer_DS_Topology"/> 

      </gml:Edge> 

     </topology> 

     <boundary xlink:href="#A_DS"/> 

     <boundary xlink:href="#WiFi_Outer_DS"/> 

    </Transition> 

   </dualSpace> 

  </BoundaryCell> 

 </boundaryCell> 

 … 

 <graph> 

  <IntraLayerGraph gml:id="ILG_WiFi"> 

   <topology> … </topology> 

   <node xlink:href="#A_DS"/> 

   <node xlink:href="#B_DS"/> 
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   <node xlink:href="#AB_DS"/> 

   <node xlink:href="#WiFi_Outer_DS"/> 

   <edge xlink:href="#A-WiFi_Outer_DS"/> 

   <edge xlink:href="#B-WiFi_Outer_DS"/> 

   <edge xlink:href="#A-AB_DS"/> 

   <edge xlink:href="#B-AB_DS"/> 

  </IntraLayerGraph> 

 </graph> 

</SpaceLayer> 

Listing 10: Excerpt of the XML encoding of the Wi-Fi sensor space layer. 

XML encoding of the multilayered graph. The multilayered graph of a space layer complex is captured by the 

<MultilayeredGraph> subelement of <SpaceLayerComplex> within an MLSEM instance document. Extracts of its 

encoding for the above example (cf. right of figure 237) are presented in listing 11. Note that the <Multi-

layeredGraph> embeds the intra-layer graphs of the space layers participating in the space layer complex through 

the <subGraph> property by using XLink references. The inter-layer edges between two dual nodes from different 

space layers are then listed as <edge> properties of the <MultilayeredGraph> element and are encoded through 

<InterLayerEdge> elements. A mandatory attribute of every inter-layer edge is <topoRelation> which encodes the 

topological relationship between the primal space representations of the linked space cells. The <boundary> prop-

erty then provides XLink references to the <State> elements implementing the dual space representation of the 

space cells being connected through the inter-layer edge. 

Listing 11 exemplifies the XML encoding of the inter-layer edges between the space cells 𝑅1 and 𝐴, 𝐶 and 𝐴 as 

well as 𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 and 𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖 . In all cases, the topological relationship between the space cells from topographic and 

sensor space is overlap. 

<MultilayeredGraph gml:id="MLG"> 

 <subGraph xlink:href="ILG_Topo"/> 

 <subGraph xlink:href="ILG_WiFi"/> 

 <edge> 

  <InterLayerEdge gml:id="ILE_R1-A"> 

   <topoRelation>overlap</topoRelation> 

   <boundary xlink:href="#R1_DS"/> 

   <boundary xlink:href="#A_DS"/> 

  </InterLayerEdge> 

 </edge> 

 <edge> 

  <InterLayerEdge gml:id="ILE_C-A"> 

   <topoRelation>overlap</topoRelation> 

   <boundary xlink:href="#C_DS"/> 

   <boundary xlink:href="#A_DS"/> 

  </InterLayerEdge> 

 </edge> 

 … 

 <edge> 

  <InterLayerEdge gml:id="ILE_WiFi_Outer-Topo_Outer"> 

   <topoRelation>overlap</topoRelation> 

   <boundary xlink:href="#WiFi_Outer_DS"/> 

   <boundary xlink:href="#Topo_Outer_DS"/> 

  </InterLayerEdge> 

 </edge> 

</MultilayeredGraph> 

Listing 11: XML encoding of the resulting multilayered graph structure.  

XML encoding of joint states and joint state transitions. For localization purposes, the joint states within a 

space layer complex as well as their transitions have to be reflected in the MLSEM instance document. As illus-

trated in listing 1, the <stateSpace> property of a <SpaceLayerComplex> is used to associate a space layer complex 

with a <JointStateSpace> element that carries this information. The joint states themselves are hereby mapped by 

<JointState> subelements. The clique of dual nodes from the multilayered graph which forms a single joint state 

is provided through <node> properties of <JointState> with each <node> pointing to a <State> element from a 

different space layer participating in the space layer complex. The non-empty intersection of the primal space 
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geometries of the associated space cells is denoted using the mandatory <uncertaintyRegion> property of 

<JointState>. Since the intersection geometry is not guaranteed to be a connected space, it is encoded as geometric 

complex. The following figure 240 illustrates two joint states given by the pairs (𝑅1, 𝐴) and (𝐶, 𝐴) as hatched 

areas within the example indoor setting. The corresponding XML encoding is presented in listing 12. 

 

Figure 240: Two example joint states (𝑅1, 𝐴) and (𝐶, 𝐴). 

<SpaceLayerComplex>  

 <layer> <!-- cf. previous listings --> </layer> 

 … 

 <graph> <!-- cf. listing 11 --> </graph> 

 … 

 <stateSpace> 

  <JointStateSpace gml:id="JointStateSpace"> 

   <state> 

    <JointState gml:id="JS_R1-A"> 

     <node xlink:href="#R1_DS"/> 

     <node xlink:href="#A_DS"/> 

     <uncertaintyRegion> 

      <gml:GeometricComplex gml:id="JS_R1-A_Geometry" srsDimension="2"> 

       <gml:element> 

        <gml:Polygon gml:id="JS_R1-A_Geometry_1"> 

         <gml:exterior> 

          <gml:LinearRing> 

           <gml:posList>0 5.06378975886794 0.304740250518156 5.42696504723101 1.2133552961397  

            5.95155418841035 2.24659420289855 6.13374208518965 3.27983310965741  

            5.95155418841035 4.18844815527895 5.42696504723101 4.86284695553131   

            4.62324785418903 4.90604614654405 4.46202627848359 4.38026406197645  

            3.76369410784373 4.10493227430726 2.8 3 2.8 3 2.65 2 2.65 2 2.8 0 2.8 0  

            5.06378975886794</gml:posList> 

          </gml:LinearRing> 

         </gml:exterior> 

        </gml:Polygon> 

       </gml:element> 

      </gml:GeometricComplex> 

     </uncertaintyRegion> 

    </JointState> 

   </state> 

   <state> 

    <JointState gml:id="JS_C-A"> 

     <node xlink:href="#C_DS"/> 

     <node xlink:href="#A_DS"/> 

     <uncertaintyRegion> 

      <gml:GeometricComplex gml:id="JS_C-A_Geometry" srsDimension="2"> 

       <gml:element> 

        <gml:Polygon gml:id="JS_C-A_Geometry_1"> 

         <gml:exterior> 

          <gml:LinearRing> 

           <gml:posList>3 2.65 3 2.5 4.01922091047463 2.5 3.92318130156336 2.16384990991809  

            4.24371757974206 0.904831207352533 3.75708843389917 0.496500870555649  

            2.24659420289855 0.091765161187163 1.21335529613969 0.273953057966467  

            0.304740250518158 0.798542199145804 0 1.16171748750888 0 2.5 2 2.5 2 2.65 3 2.65 

           </gml:posList> 

          </gml:LinearRing> 

𝑅1

𝐶

𝑅2 𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

𝐴 𝐴𝐵 𝐵 𝑆𝑜𝑢𝑡
𝑊𝑖−𝐹𝑖

𝐶

𝑅1

𝐴
𝑅2

𝐵

𝑅1, 𝐴

𝐴𝐵

𝐶, 𝐴
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         </gml:exterior> 

        </gml:Polygon> 

       </gml:element> 

      </gml:GeometricComplex> 

     </uncertaintyRegion> 

    </JointState> 

   </state> 

  </JointStateSpace> 

 </stateSpace> 

</SpaceLayerComplex> 

Listing 12: XML encoding of the two joint states from figure 240 including their uncertainty region. 

Since the intersection geometries of the illustrated joint states (𝑅1, 𝐴) and (𝐶, 𝐴) are topologically adjacent, there 

exists a joint state transition between both. This transition is represented as <JointStateTransition> element which 

is attached to a <JointStateSpace> through the <transition> property. A <JointStateTransition> merely denotes the 

pair of joint states on its <boundary> and utilizes XLink references for this purpose. The XML encoding of the 

transition between (𝑅1, 𝐴) and (𝐶, 𝐴) is shown below. Note that the modelling of a finite-joint-state machine is 

optional. Although the GML application schema of the MLSEM supports the storage and exchange of finite-joint-

state machines, the corresponding XML representation is not further discussed in this example. 

<JointStateSpace gml:id="JointStateSpace"> 

 <state> <!-- cf. listing 12 --> </state> 

 … 

 <transition> 

  <JointStateTransition gml:id="JST_1"> 

   <boundary xlink:href="#JS_R1-A"/> 

   <boundary xlink:href="#JS_C-A"/> 

  </JointStateTransition> 

 </transition> 

</JointStateSpace> 

Listing 13: XML encoding of the joint state transition between (𝑅1, 𝐴) and (𝐶, 𝐴). 

XML encoding of navigation constraints. Assume the topographic space entities of the example indoor setting 

shall be enriched with navigation constraints. For example, the BoundaryCell features representing the doors be-

tween 𝑅1 and 𝐶 as well as 𝑅2 and 𝐶 may be assigned a PassableConstraint with a SpatialProfile condition provid-

ing a geometric profile the navigation user must be able to physically fit through in order to traverse the doors. All 

remaining boundary cells could receive an unconditioned NonPassableConstraint in order to rule out paths along 

their dual edges. Whereas the UML instance diagrams expressing these simple navigation constraints are shown 

in figure 241, the XML mapping is exemplified in listing 14 for the constraints on the wall separating 𝑅1 from the 

outer space and on the door between 𝑅1 and 𝐶. 

 

Figure 241: Passable and non-passable navigation constraints associated with the walls and doors. 

𝐶

𝑅1 𝑅2

 object Example 12 - 1

:NonPassableConstraint

:PassableConstraint

:SpatialProfile

width = 1m

height = 2.3m

 object Example 12 - 1

:NonPassableConstraint

:PassableConstraint

:SpatialProfile

width = 1m

height = 2.3m

 object Example 12 - 1

:NonPassableConstraint

:PassableConstraint

:SpatialProfile

width = 1m

height = 2.3m

𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 object Example 12 - 1

:NonPassableConstraint

:PassableConstraint

:SpatialProfile

width = 1m

height = 2.3m

 object Example 12 - 1

:NonPassableConstraint

:PassableConstraint

:SpatialProfile

width = 1m

height = 2.3m

 object Example 12 - 1

:NonPassableConstraint

:PassableConstraint

:SpatialProfile

width = 1m

height = 2.3m
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<BoundaryCell gml:id="R1-Topo_Outer"> 

 <gml:description>Wall between R1 and Outer</gml:description> 

 <class>wall</class> 

 <constraint> 

  <NonPassableConstraint gml:id="R1-Topo_Outer_NonPassableConstraint"/> 

 </constraint> 

 <primalSpace> <!-- cf. listing 6 --> </primalSpace> 

 <dualSpace> <!-- cf. listing 6 --> </dualSpace> 

</BoundaryCell> 

… 

<BoundaryCell gml:id="R1-C"> 

 <gml:description>Door between R1 and C</gml:description> 

 <class>door</class> 

 <constraint> 

  <PassableConstraint gml:id="R1-C_PassableConstraint"> 

   <condition> 

    <SpatialProfile gml:id="R1-C_SpatialProfile"> 

     <width uom="m">1</width> 

     <height uom="m">2.3</height> 

    </SpatialProfile> 

   </condition> 

  </PassableConstraint> 

 </constraint> 

 <primalSpace> <!-- cf. listing 7 --> </primalSpace> 

 <dualSpace> <!-- cf. listing 7 --> </dualSpace> 

</BoundaryCell> 

Listing 14: XML encoding of the simple navigation constraints from figure 241. 

As can be seen from the above listing, the navigation constraints are given as subelements of <BoundaryCell>. The 

unconditioned <NonPassableConstraint> is simply realized as empty XML element. The <SpatialProfile> condi-

tion of the <PassableConstraint> is provided as nested element through the <condition> property. In this example, 

the <SpatialProfile> denotes the <width> and <height> of the door using metres as unit of measure. If a navigation 

user exceeds these restrictions then the door renders a movement obstruction for this user. 

In order to illustrate a combined navigation constraint, suppose that the room 𝑅1 shall only be accessible by staff 

members or in case of an evacuation (cf. figure 242). In the following XML excerpt of the <SpaceCell> represent-

ing 𝑅1, the required UserGroup and NavigationScenario conditions are captured by corresponding XML elements 

and are given as <operand>s of a <CombinedConstraintCondition> which expresses the logical disjunction through 

its <operator> property. The <PermissibleConstraint> embracing the combined constraint condition is necessarily 

provided as subelement of the <SpaceCell>.  

 

Figure 242: Example of a combined navigation constraint associated with the room cell 𝑅1. 

<SpaceCell gml:id="R1"> 

 <symbolicId codeSpace="roomNo">5126</symbolicId> 

 <class>office</class> 

 <constraint> 

  <PermissibleConstraint gml:id="R1_PermissibleConstraint"> 

   <condition> 

    <CombinedConstraintCondition gml:id="R1_StaffMember_Or_Evacuation"> 

     <operator>OR</operator> 

𝐶

𝑅1 𝑅2

𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 object Example 12 - 2

:PermissibleConstraint

:CombinedConstraintCondition

operator = OR

:UserGroup

name = staff member

:Nav igationScenario

type = Evacuation
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     <operand> 

      <UserGroup gml:id="R1_UserGroup"> 

       <name>staff member</name> 

      </UserGroup> 

     </operand> 

     <operand> 

      <NavigationScenario gml:id="R1_Scenario"> 

       <type>Evacuation</type> 

      </NavigationScenario> 

     </operand> 

    </CombinedConstraintCondition>        

   </condition> 

  </PermissibleConstraint> 

 </constraint> 

 <primalSpace> <!-- cf. listing 2 --> </primalSpace> 

 <dualSpace> <!-- cf. listing 3 --> </dualSpace> 

</SpaceCell> 

Listing 15: XML encoding of the combined navigation constraint from figure 242. 

A final example for the encoding of navigation constraints is shown in listing 16 and demonstrates the XML 

representation of a SpatialManeuver restriction associated with a SpaceElementSequence (cf. figure 243). A Pass-

ableConstraint is used to state that only those navigation users can traverse between the rooms 𝑅1 and 𝑅2 who are 

capable of performing a horizontal 180 degree turn on the corridor 𝐶 within the spatial area between both doors 

(e.g., driving users such as wheelchair user or mobile robots). This PassableConstraint is attached to the undirected 

sequence {𝑅1, 𝐶, 𝑅2}. Note that this set is sparse in that it only contains the space cells but not the intermediate 

boundary cells. 

 

Figure 243: Example spatial maneuver restriction associated with a sequence of topographic space cells. 

<SpaceLayer gml:id="TopographicSpace"> 

 <type>topographic</type> 

 <spaceCell> <!-- cf. previous listings -->  </spaceCell> 

 … 

 <boundaryCell>  <!-- cf. previous listings --> </boundaryCell> 

 … 

 <graph> <!-- cf. listing 9 --> </graph> 

 … 

 <sequence> 

  <SpaceElementSequence gml:id="Seq_R1-C-R2"> 

   <mayInvolveOuterSpace>false</mayInvolveOuterSpace> 

   <element sequenceNo="1" xlink:href="#R1"/> 

   <element sequenceNo="2" xlink:href="#C"/> 

   <element sequenceNo="3" xlink:href="#R2"/> 

   <constraint> 

𝑅1 𝑅2

𝑆𝑜𝑢𝑡
𝑇𝑜𝑝𝑜

 object Example 12 - 3

:PassableConstraint:SpaceElementSequence

mayInvolveOuterSpace = false

R1 :SpaceCell C :SpaceCell R2 :SpaceCell

:SpatialManeuver

type = Turn

geometry = GM_Surface

horizontalTurnRadius => 180 degree

{sequenceNo=1} {sequenceNo=2} {sequenceNo=3}

𝐶
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    <PassableConstraint gml:id="Seq_R1-C-R2_PassableConstraint"> 

     <condition> 

      <SpatialManeuver gml:id="Seq_R1-C-R2_Maneuver"> 

       <type>Turn</type> 

       <geometry> 

        <gml:Polygon gml:id="eq_R1-C-R2_Maneuver_Geometry"> 

         <gml:exterior> 

          <gml:LinearRing> 

           <gml:posList>2 2.5 2 0 8.3 0 8.3 2.5 2 2.5</gml:posList> 

          </gml:LinearRing> 

         </gml:exterior> 

        </gml:Polygon> 

       </geometry> 

       <horizontalTurnRadius> 

        <uom>degree</uom> 

        <lowerLimit>180</lowerLimit> 

        <includeLowerLimit>true</includeLowerLimit> 

       </horizontalTurnRadius> 

      </SpatialManeuver> 

     </condition> 

    </PassableConstraint> 

   </constraint> 

  </SpaceElementSequence> 

 </sequence> 

 … 

</SpaceLayer> 

Listing 16: XML encoding of the spatial maneuver restriction from figure 243. 

Since every SpaceElementSequence is restricted to contain SpaceElement features from the same space layer (cf. 

chapter 4.4.1.4), its XML counterpart <SpaceElementSequence> is modelled inline the corresponding <Space-

Layer> (in contrast, <SpaceElementGroup>s are encoded as child elements of a <SpaceLayerComplex>). The el-

ements of the set generating the sequence are provided through the <element> property. In the above example, 

XLink references to the <SpaceCell> encodings of 𝑅1, 𝐶, and 𝑅2 are used for this purpose. Moreover, each <ele-

ment> has a mandatory sequenceNo attribute to denote the order of the elements within the sequence. Note that 

paths involving the outer space cell do not satisfy this sequence due to the <mayInvolveOuterSpace> property 

being set to false. Similar to the above examples, the navigation constraint is then attached to the sequence via the 

<constraint> property. The <SpatialManeuver> condition of the <PassableConstraint> provides the <geometry> 

within which the movement has to be executed as 2-dimensional <gml:Polygon>. The <horizontalTurnRadius> then 

encodes the minimum turn radius required for traversing the sequence. 

XML encoding of source objects. The final example in this chapter illustrates the encoding of references from 

<SpaceCell> and <BoundaryCell> elements to their equivalences in an external building model (e.g., given in 

CityGML or IFC) using a SourceObject entity. Suppose there exists a 3-dimensional CityGML representation of 

the example interior built environment stored in the CityGML instance document CityGML_Building.gml. The 

following listing 17 shows a reference for the room 𝑅1 to a corresponding CityGML feature in this document. For 

this purpose, a <SourceObject> element is associated with the <SpaceCell> of 𝑅1 which contains an <ExternalRef-

erence> that points to a CityGML Room. The Room is identified through its <gml:id> of value Room_5126 which 

must be available in the CityGML dataset. A software consuming the MLSEM instance document can hence switch 

between the 2-dimensional MLSEM representation and the 3-dimensional CityGML representation of 𝑅1. 

<SpaceCell gml:id="R1"> 

 <symbolicId codeSpace="roomNo">5126</symbolicId> 

 <class>office</class> 

 <model> 

  <SourceObject gml:id="R1_Source"> 

   <reference> 

    <ExternalReference> 

     <externalObject> 

      <ExternalObjectReference> 

       <uri>file://CityGML_Building.gml#Room_5126</uri> 

      </ExternalObjectReference> 

     </externalObject> 
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    </ExternalReference> 

   </reference> 

  </SourceObject> 

 </model> 

 <constraint> <!-- cf. listing 15 --> </constraint> 

 <primalSpace> <!-- cf. listing 2 --> </primalSpace> 

 <dualSpace> <!-- cf. listing 3 --> </dualSpace> 

</SpaceCell> 

Listing 17: XML encoding of references to external source objects. 

7.2 Modelling and Database Storage of an MLSEM Indoor Space Model 

The following sections are dedicated to the presentation of the separate process steps involved in the creation of 

an indoor space model for the TU Main Building (cf. figure 244) that were carried out within the Master students’ 

project mentioned in the introduction to this chapter. The process was entirely realized using standard software 

tools from the GIS domain (e.g., ArcGIS 10.0 and FME 2012). However, the focus of the subsequent discussion 

is put on the description of the input data and its transformation into an MLSEM conformant representation rather 

than on the realization of the process steps in software.74 Note that the depicted process is not meant as a best 

practice recommendation or guideline for the realization of an MLSEM indoor space model for use in a real nav-

igation system but is to be understood as proof of concept for the applicability of the spatio-semantic modelling 

concepts of the MLSEM framework. In chapter 7.2.3, the database schema for the storage and management of 

MLSEM indoor space models within a spatial database is presented in detail.  

 

Figure 244: Main building of the Technische Universität Berlin (front) shown in a 3-dimensional scene of the official city 

model of the City of Berlin. 

7.2.1 Topographic Space Layer 

The starting point for the derivation of a 3-dimensional topographic space layer of the interior built-up space of 

the TU Main Building were official 2-dimensional CAD drawings of the separate building floors. The CAD draw-

ings only contained geometric descriptions of the architectural entities. Symbolic and semantic information such 

as room numbers or the classification of spaces were merely provided as text labels. Figure 245 depicts the CAD 

model of a single building floor to illustrate the input data.  

                                                           
74 In fact, after completion of the students’ project and whilst writing this thesis, GIS software tools such as ArcGIS and FME 

have significantly enhanced their capabilities for processing 3-dimensional geo-data. For example, both the latest releases of 

ArcGIS and FME (ArcGIS 10.1 respectively FME 2013) now offer sophisticated geometric operations as well as topological 

analyses in up to three dimensions. Although this functionality strongly supports the creation of a 3-dimensional indoor space 

model that conforms to the MLSEM framework, it could not be considered within the students’ project.   
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(a)  

(b)  

Figure 245: A single CAD floor plan of the TU Main Building (a) and an excerpt of that floor plan illustrating the modelled 

spatial entities (b). 

In a first step, a set of simplified 2-dimensional floor plans was extracted from the CAD input models. Each floor 

plan was reduced to a representation of the free spaces on the building floor (e.g., rooms, corridors, staircases, and 

elevator shafts) as well as the doors connecting these spaces. Particular focus was put on the spatial description of 

the entities in order to ensure geometric shapes to be mutually non-overlapping and doors to touch adjacent rooms 

at a common 1-dimensional boundary segment. The text labels were translated from the CAD models into semantic 

attributes of the respective spatial entities of the floor plan. The result of this extraction procedure for the portion 

of the building floor shown in figure 245b is presented below. Observe that the entities representing the free topo-

graphic spaces are disjoint and displaced by the thickness of the separating wall elements. The non-navigable wall 

space constituting the building skeleton is hence only captured implicitly on the simplified floor plans. The win-

dows were likewise omitted from the topographic space view. Afterwards, the resulting floor plans of the TU Main 

Building were assigned proper height values and stacked on top of each other as depicted in figure 246b.  

 

Elevator

Stairs

Door

Room

Wall

Corridor

Window
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(a)  

(b)  

Figure 246: Simplified version of the floor plan excerpt from figure 245b with thematic attributes (a) and all nine simplified 

floor plans of the TU Main Building stacked on top of each other. 

The entities on the floor plans were extruded in a subsequent step according to their real world dimensions which 

were taken from the CAD input models. This produced 3-dimensional solid geometries for both the free spaces 

and the doors as sketched in figure 247.75  

 

Figure 247: Extrusion of the free spaces and doors on the simplified floor plan from figure 246a. 

A CityGML LOD4 model of the TU Main Building was created from the extruded floor plans as an intermediate 

result by mapping the free spaces and doors onto CityGML Room respectively Door features. Moreover, the 3-

                                                           
75 It is immediate that the resulting extrusion geometries are only idealized generalizations of the real world shape of the spatial 

entities. For the course of the students’ project this limitation was however acceptable.   
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dimensional boundary surfaces of the Room features were classified into InteriorWallSurface, CeilingSurface, 

FloorSurface, and ClosureSurface based on simple heuristics. Symbolic and semantic properties of the spatial 

entities were again preserved in this model transformation and carried to either predefined properties of the 

CityGML features or to generic CityGML attributes. On the left of figure 248, the resulting LOD4 representation 

is shown for a small excerpt of a single floor, whereas the entire CityGML building model is presented on the 

right.  

   

Figure 248: CityGML LOD4 model created from the extruded simplified floor plans.  

By choosing CityGML as an intermediate representation of the topographic indoor space, the subsequent steps 

could be realized using its standardized information model as well-defined interface. This allows the process to be 

decoupled from the input data of the TU Main Building. In contrast, any CityGML LOD4 building model may 

serve as input for the further steps instead. Moreover, the rules for mapping building models given in CityGML 

onto a corresponding MLSEM representation as elaborated in chapter 6.1 become applicable.76 According to these 

mapping rules, the Room and Door features were carried to 3-dimensional space cells in order to populate the 

topographic space layer. Every boundary surface shared by two topologically adjacent space cells (e.g., the surface 

shared by a room and a door) was correspondingly captured by a 2-dimensional boundary cell. In order to achieve 

a minimum total number of boundary cells, the remaining boundary part of each space cell against the outer space 

was described by a single boundary cell.77 In an alternative mapping, the boundary cells could, for example, also 

be aligned with the InteriorWallSurface, CeilingSurface, FloorSurface, and ClosureSurface features within the 

CityGML model (cf. chapter 6.1).  

As a result, the topographic space layer for the TU Main Building was finally inhabited by 3528 space cells (1657 

space cells representing free spaces, 1870 door cells, and one outer space cell) with their boundaries being decom-

posed into 5671 boundary cells. The space layer was stored in a spatial database according to the database schema 

developed in the students’ project (cf. chapter 7.2.3). By this means, the space cells and boundary cells could be 

easily accessed and further processed using various GIS software tools. Figure 249 shows the resulting topographic 

space layer and its space cells in primal space. Moreover, space cells representing the doors (figure 249b), stair-

cases and elevator shafts (153 space cells, figure 249c), and offices (892 space cells, figure 249d), are highlighted 

in separate parts of this figure in order to illustrate different classifications of topographic space cells that were 

included in the indoor space model as semantic attributes. 

                                                           
76 Obviously, also IFC is a suitable candidate for specifying this well-defined interface. In case the topographic space layer is 

to be described in two dimensions only, the ESRI BISDM model renders a further alternative. 

77 In the context of the students’ project, every boundary surface shared by two adjacent topographic space cells could be 

guaranteed to be homeomorphic to �̅�2 in primal space due to the applied extrusion operation. From this it follows that the 

remaining boundary part of a space cell shared with the outer space could be described by precisely one boundary cell (cf. 

chapter 3.1.3 for a comprehensive discussion). In a more general case, it has to be evaluated whether the intersection geometry 

of two adjacent space cells in primal space admits a mapping onto a single boundary cell.  
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(a) (b)  

(c) (d)  

Figure 249: 3-dimensional topographic space layer of the TU Main Building (a), space cells representing doors (b), space 

cells representing stairs and elevator shafts (c), and space cells representing offices (d). 

Since the building skeleton was only implicitly represented on the derived topographic space layer as discussed 

above, the space cells representing rooms or corridors are not only displaced by the thickness of walls on a single 

building floor but also by the thickness of slab elements on subsequent floors. In contrast, vertical transition spaces 

(e.g., staircases and elevator shafts) may obviously not be disconnected between floors. For example, figure 250 

shows a part of a staircase joining the nine floors of the TU Main Building. Within the students’ project, the vertical 

transition spaces were decomposed into a separate space cell on each floor. The space cells on neighbouring floors 

were hence ensured to touch at a common (but virtual) boundary. Alternatively, and as discussed in example 3.61, 

the entire transition space could also be captured by a single space cell. 

 

Figure 250: Space cells representing stairs and elevators were ensured to touch over subsequent building floors. 

The intra-layer graph structure of the topographic space layer simply followed from pairing the primal space rep-

resentation of every space cell and boundary cell with a node respectively edge in dual space as defined by the 

mathematical model of the MLSEM. The Euclidean space embedding of the intra-layer graph was realized by 

connecting the centroids of the primal space geometries of space cells through straight line segments. The weak 

intra-layer graph neglecting the dual node of the outer space cell and its incident dual edges is depicted in figure 

251. Due to the one-to-one correspondence between the primal and dual space representations, the intra-layer 

graph was constituted by 3528 dual nodes and 5671 dual edges, whereas its weak form shown below only con-

tained 3527 dual nodes and 4014 dual edges.  

Slab spaceStair cells
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(a)  

(b)  

Figure 251: Resulting weak intra-layer graph shown from a front view (a) and a rear view (b). 

In figure 252, an excerpt of the weak intra-layer graph for a single building floor is sketched in a 3-dimensional 

scene and a 2-dimensional top view. As can be seen on the right, the simple approach followed in the students’ 

project results in circuitous spatial embeddings of the intra-layer graph at long corridors and large rooms. Although 

the topological connectivity information between the space cells is correctly represented, the resulting detours may 

negatively impact the derivation of shortest paths between two places. In order to derive a geometric network 

without circuitous embeddings and detours, the space cells have to be subspaced in an appropriate way (cf. exam-

ple 3.62). This, however, was beyond the scope of the students’ project. 

   

Figure 252: 3-dimensional (left) and 2-dimensional (right) view on an excerpt of the intra-layer graph. 

The representation of the vertical transition spaces in dual space is illustrated figure 253. Note that the dual nodes 

of the transition space cells are vertically linked by dual edges. These edges hence join the horizontally aligned 

dual subgraphs of the separate building floors. 
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Figure 253: Vertical transition spaces and the linkage of their dual nodes in the intra-layer graph. 

Finally, figure 254 shows the result of a simple path search executed on the intra-layer graph in order to find a 

route from the main entrance of the TU Main Building to the lecture room of the Institute for Geodesy and Geoin-

formation Science.   

 

Figure 254: Result of a simple path search on the topographic space layer using ArcGIS 10.1.  

7.2.2 Sensor Space Layer 

A first step in modelling a sensor space layer mapping the Wi-Fi signal reception areas within the TU Main Build-

ing was to create a radio map based on Received Signal Strength Indication (RSSI) readings from the Wi-Fi access 

points installed in the building. RSSI provides a measurement of the amount of radio energy present in a radio 

signal that is received by the wireless networking interface of a Wi-Fi-enabled device. The power level of the 

signal being received is typically measured in 𝑑𝐵𝑚 or 𝑚𝑊. Starting from a list of all publicly available Wi-Fi 

access points within the TU Main Building, the received signal strengths of these access points were measured at 

discrete locations on the separate building floors. The resulting RSSI values were identified with both the 3-di-

mensional coordinates of the point where the measurement took place and the unique MAC address identifier 

associated with the Wi-Fi access point sending the signal. The set of RSSI values measured at the same point in 

space with each RSSI value being associated with a different Wi-Fi transmitter is commonly said to be a Wi-Fi 

fingerprint. The resulting fingerprint measurements then served as input data for building a separate radio map for 

each building floor capturing the spatial distribution of the radio reception conditions. In literature, radio maps like 

the one realized within the students’ project are commonly discussed in the context of Wi-Fi based indoor locali-

zation using fingerprinting methods (for an overview see Kolodziej & Hjelm 2006). 

In order to specify the locations for the fingerprint measurements, a 1 × 1 𝑚 grid was applied to each floor plan. 

However, the grid had to be pruned afterwards by removing those locations which were inaccessible for the stu-

dents due to physical (e.g., furniture) or legal (e.g., lacking access rights) restrictions. For each remaining grid 
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point fingerprint data was acquired. A laptop equipped with a standard network adapter78 and running a wireless 

network monitoring tool79 was used as measuring device and delivered the RSSI values of the Wi-Fi access points 

in 𝑑𝐵𝑚. The measurements were recorded in a fixed height of 1.2𝑚 which was assumed to be the average height 

for holding a mobile end-user device. The correct height was ensured by placing the laptop onto a tripod. At every 

grid point, ten measurements were taken with a time interval of 3𝑠, and the mean RSSI value for each MAC 

address was used for the fingerprint at this location. In figure 255, an excerpt of the resulting radio map for the 

sixth floor of the TU Main Building containing fingerprints from nine Wi-Fi access points at 715 sample points is 

shown as example. 

 

Figure 255: Grid points for the sixth floor (top) and example fingerprint measured at a single grid point (bottom). 

In a second step, sensor space cells were obtained from the raw data of the radio map. Since the fingerprint samples 

were only available at discrete locations, a spatially continuous surface predicting the Wi-Fi reception conditions 

for the unsampled locations on the basis of information from the nearest available measured points had to be 

produced using spatial interpolation techniques. This process was carried out for each MAC address identifier 

separately in order to estimate the signal reception areas of the individual Wi-Fi access points. Inverse distance 

weighting (IDW) was used as interpolation method. IDW relies on the assumption that sample points that are closer 

to an unsampled point are more similar to it and hence have a greater influence on its predicted value than those 

further away (Li & Heap 2008). An unsampled location receives a distance-weighted average of the RSSI values 

from its surrounding samples with the weight attached to each sample being an inverse function of its distance 

from the unsampled location. Each measured point therefore has a local influence that diminishes with distance. 

IDW is an exact interpolator since prediction values for sample points are equal to their measured value which 

implies that minima and maxima in the interpolated surface can only occur at sample points.  

The resulting interpolated surfaces were partitioned into reception areas using three signal strength bands as par-

titioning criteria. Whereas the best signal strength received for the entire radio map was −30 𝑑𝐵𝑚, the lowest 

power level reported was −120 𝑑𝐵𝑚. However, the signal reception already became unreliable starting from 

−90 𝑑𝐵𝑚. Therefore, three signal strength bands were chosen to cover the ranges from 1) −30 to − 0 𝑑𝐵𝑚 

indicating a very good signal reception, 2) − 0 to −90 𝑑𝐵𝑚 indicating a good or fair signal reception, and 3) 

−90 to −120 𝑑𝐵𝑚 indicating no (reliable) signal reception. An example interpolation map for the Wi-Fi trans-

mitter associated with the MAC address 00:1E:BD:64:E9:62 is shown below.  

                                                           
78 An ASUS notebook K52JK/K52JB series equipped with an Atheros AR9285 wireless network adapter was used. 

79 The commercial product WirelessMon 4.0 was used. See http://www.passmark.com/products/wirelessmonitor.htm for more 

information. 
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Figure 256: The resulting interpolation surfaces for the signal strength bands −30 to − 0 𝑑𝐵𝑚 (green), − 0 to −90 𝑑𝐵𝑚 

(yellow), and −90 to −120 𝑑𝐵𝑚 (red) derived for the MAC address 00:1E:BD:64:E9:62.  

Another interpolation map denoting the signal reception areas for the MAC address A0:CF:5B:3F:9F:52 is pre-

sented in figure 257. Note that the corresponding Wi-Fi access point is not installed on the sixth floor of the TU 

Main Building but on the fifth floor which explains the islands with good signal strength within areas of no signal 

reception. Moreover, the map nicely demonstrates the impact of walls on the signal propagation. Whereas the 

signal can be received in some rooms in the upper left part of the map, it is not available within the adjacent 

corridor. In general, radio waves are subject to different propagation anomalies such as multipath fading or time 

delay as well as diffraction, reflection, scattering, and absorption at physical objects of the built environment. The 

IDW interpolation as applied in the students’ project does not account for these anomalies when predicting the 

signal strength values for unsampled locations. In both figure 256 and figure 257 it can therefore be observed that 

the borders of the derived reception areas are less influenced by the built-up space at locations where no measure-

ments took place. The interpolation maps would hence gain in precision by increasing the number of sample points 

and fingerprint measurements. As shown by (Muttitanon et al. 2007), IDW can even produce better results for Wi-

Fi maps than, for example, geostatistical interpolation methods such as Kriging in case the sample points are dense 

enough to capture the local extent of the interpolation surface. However, the approach followed in the students’ 

project and presented here is only meant as example. The MLSEM framework itself is independent of any method 

or technique for deriving the spatial extent of sensor space cells. 

 

Figure 257: The resulting interpolation surfaces for the signal strength bands −30 to − 0 𝑑𝐵𝑚 (green), − 0 to −90 𝑑𝐵𝑚 

(yellow), and −90 to −120 𝑑𝐵𝑚 (red) derived for the MAC address A0:CF:5B:3F:9F:52. 
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The signal reception areas of a given interpolation map were finally extruded by the maximum room height on the 

respective building floor in order to receive 3-dimensional Wi-Fi sensor space cells and their separating 2-dimen-

sional boundary cells. A separate Wi-Fi sensor space layer was populated for each MAC address identifier. The 

following figure shows the 3-dimensional representations of the interpolation maps from figure 256 and figure 

257. The separate sensor space layers were then loaded into the MLSEM database (cf. chapter 7.2.3) in addition 

to the topographic space layer. 

(a)  

(b)  

Figure 258: 3-dimensional sensor space layers derived based on the interpolation results from figure 256 (a) and figure 257 

(b).  

The intra-layer graphs were constituted in the similar way as for the topographic space layer. An additional outer 

space cell was introduced on each layer whose dual node representation was linked to the dual node of every sensor 

space cell through one or more dual edges. For the sensor space layer associated with the MAC address 

00:1E:BD:64:E9:62 the resulting intra-layer graph consisted of seven dual nodes and eleven dual edges. Its weak 

form is sketched in figure 259. Note that the geometric embedding again was realized using centroids and straight 

line segments. 

 

Figure 259: Resulting weak intra-layer graph for the MAC address 00:1E:BD:64:E9:62 (cf. figure 258a). 

Based on the description of the topographic space and the Wi-Fi sensor spaces, the linkage between both space 

views in dual space could be established in a subsequent step. Precisely, inter-layer edges connecting the dual 

nodes of two space cells from either space representation were introduced if the intersection of the primal space 

geometries was non-empty. The primal space overlaps between the space cells from the topographic space layer 

and the Wi-Fi sensor space layer shown in figure 259 is presented below. Note that only the rooms and doors 

located on the sixth floor of the TU Main Building are visualized due to the fact that the Wi-Fi signal reception 

areas were acquired separately for each building floor. Thus, the topographic space cells on the remaining building 

floors are necessarily covered by the outer space cell of the depicted Wi-Fi sensor space layer. The corresponding 

bipartite inter-layer graph linking the dual nodes from either space layer is shown in figure 260b. The outer space 

cells as well as their incident dual edges have been omitted for readability. Also note that both space layers are 

visualized on top of each other in order to better illustrate the inter-layer edges. The entire inter-layer graph for 

both space layers was built from 3535 dual nodes and 3566 inter-layer edges. The excerpt shown below contains 

250 dual nodes (244 from the topographic space and 6 from the Wi-Fi sensor space) as well as 276 inter-layer 

edges. 
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(a)   

(b)  

Figure 260: Primal space overlaps between the space cells from the topographic space layer and the Wi-Fi sensor space layer 

from figure 259 (a) and the corresponding inter-layer edges (b). 

In a final step, the signal reception areas of the separate Wi-Fi transmitters were integrated in a common space 

view by applying the merge operation to the set of derived Wi-Fi sensor space layers. For the sixth floor of the TU 

Main Building, the merge operation yielded the space layer as presented in figure 261a. The sensor space cells on 

the merged space layer represent the non-overlapping intersection of the signal reception areas of all nine Wi-Fi 

access points available on the sixth floor. Merged space cells capturing the same combination of input space cells 

have been assigned the same colour. The corresponding weak intra-layer graph depicted in figure 261b consists of 

68 dual nodes and 144 dual edges.  

(a)  

(b)  

Figure 261: Single Wi-Fi sensor space layer resulting from a merge operation applied to the sensor space layers associated 

with the separate MAC addresses (a) and corresponding weak intra-layer graph (b). 

The overlaps in primal space between the space cells on the merged Wi-Fi sensor space layer and those on the 

topographic space layer are captured in figure 262a. Similar to the above example, only the topographic space cells 

located on the sixth floor are presented for readability. The excerpt of the inter-layer graph linking both space 

representations is made of 308 dual nodes (244 from the topographic space and 68 from the merged Wi-Fi sensor 

space) and 473 inter-layer edges. The corresponding portion of the multilayered graph is finally retrieved by simply 

adding the intra-layer edges from either space layer (261 from the topographic space and 144 from the merged Wi-

Fi sensor space) to the inter-layer graph and is depicted in figure 262b. The figure nicely illustrates that intra-layer 

edges and inter-layer edges are orthogonally aligned in the multilayered graph. Moreover, each Wi-Fi space cell 
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on the merged space layer is associated with less room cells compared to figure 260b which decreases the uncer-

tainty areas of joint states and hence increases the localization accuracy.  

(a)  

(b)  

Figure 262: Primal space overlaps between the space cells from the topographic space layer and the Wi-Fi sensor space layer 

from figure 261 (a) and the corresponding excerpt of the multilayered graph (b). 

7.2.3 MLSEM Database Schema 

As part of the students’ project, the conceptual and platform-independent data model of the MLSEM (cf. chapter 

4.4) has been transformed to a database schema which facilitates the storage and management of indoor space 

representations by means of a spatial database according to the conceptual framework of the MLSEM. Whereas 

the GML application schema presented in chapter 4.4.2 and appendix B realizes a complete mapping of the con-

ceptual data model onto an XML based implementation model, the engineering step carried out during the stu-

dents’ project aimed at providing a simple but conformant translation of the most important core concepts into 

relational database tables as well as corresponding fields and relationships. The Oracle Database 11g Release 2 

Enterprise Edition and its Oracle Spatial and Graph extension have been chosen as target implementation platform 

due to the native and rich support for 3-dimensional spatial data types and functions.80 The database schema was 

successfully deployed and tested within the students’ project in order to manage the 3-dimensional indoor space 

model of the TU Main Building as described in the previous sections.  

A graphical depiction of the database structure imposed by the developed MLSEM database schema is presented 

in figure 263. The diagram uses an informal UML extension for the modelling of relational database structures. 

Database tables are represented as UML classes with the table name given as class name associated with a «table» 

stereotype being displayed as table icon in the top right corner. Database fields are modelled as attributes of the 

table class and are assigned the stereotype «column». Primary key columns carry a PK flag, whereas FK indicates 

a foreign key. A field which renders both a primary and a foreign key is labelled with pfK. The asterisk symbol 

(‘*’) is used on fields that cannot be NULL. The behaviour associated with the database fields (e.g., indexes, con-

straints, triggers, procedures) is modelled as stereotyped operations of the table class. For example, the stereotypes 

«PK» and «FK» are applied to primary respectively foreign key constraints. In addition, foreign key/primary key 

dependencies between two tables are represented as UML associations stereotyped as «FK». This relationship 

implies a parent and a child table with the parent defining the primary key and the child implementing a referencing 

foreign key. The arrowhead of the association points from the child to the parent. The fields involved in the rela-

tionship as well as their dependency are given in parentheses as association label. Note that the formal text-based 

definition of the database schema is expressed in SQL and provided in appendix C. It was automatically generated 

from the UML model.  

                                                           
80 The developed database schema could also be easily adapted for alternative spatial databases such as PostgreSQL/PostGIS. 

This however involves specifying extra table structures for managing 3-dimensional spatial objects unless natively supported 

by the database system in question. 
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Figure 263: Graphical UML notation of the MLSEM database schema. 

The central tables of the database schema are SPACE_CELL and BOUNDARY_CELL which map the feature types 

SpaceCell respectively BoundaryCell from the conceptual data model. The OID field of SPACE_CELL serves as 

primary key for space cell tuples. Whereas the primal and dual space representation of a SpaceCell feature are 
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captured by the feature types Space and State in the conceptual schema, the database schema reduces both repre-

sentations to the fields SPACE and STATE which only hold the geometric characteristics of the space cell in either 

space. Hence, SPACE stores the primal space geometry of a space cell in two or three dimensions and STATE 

denotes the geometric embedding of the dual node. The object-relational data type SDO_GEOMETRY is used for 

this purpose. Both SPACE and STATE can be NULL if a corresponding geometric representation is not available.  

The SDO_GEOMETRY data type as defined by Oracle follows the ISO 19107 Spatial Schema specification and 

supports most of the conceptual entities defined therein as well as their counterparts from GML/ISO 19136. How-

ever, SDO_GEOMETRY is per definition restricted to the representation of topologically compact geometric objects 

in Euclidean 2-space or 3-space. Thus, and in contrast to both ISO 19107 and GML/ISO 19136, the non-compact 

primal space geometries of outer space cells cannot be expressed. In this, the database schema also differs from 

the mapping of the conceptual data model of the MLSEM to a GML application schema (cf. the XML encoding 

of an outer space cell as exemplified in chapter 7.1). As a workaround, the following two-step procedure is pro-

posed to derive a feasible substitute geometry for the outer space cell on a given space layer: 1) determine the 

buffered bounding box respectively bounding volume of all space cells on the space layer in question and 2) 

subtract the primal space geometries of these space cells from the intermediate geometry using a regularized Bool-

ean subtraction operation.81 The buffer applied to the bounding box/volume in the first step should be chosen so 

that the primal space geometry of the outer space cell encloses the space cells on every other space layer partici-

pating in the indoor space model. Although this is not a mandatory requirement, it nevertheless simplifies the 

detection of inter-layer edges in subsequent steps.  

Further thematic attributes of SPACE_CELL tuples are stored in fields of the table SPACE_ELEMENT which 

translates the abstract supertype SpaceElement of SpaceCell. The specialization relationship between SpaceCell 

and SpaceElement is modelled as foreign key relationship between both tables. The columns SYMBOLIC_ID, 

CLASS, FUNCTION, and USAGE defined for SPACE_ELEMENT hereby correspond to the thematic properties of 

the SpaceElement feature type.  

The database realization of the BoundaryCell feature type follows a similar approach. The 2-dimensional respec-

tively 1-dimensional primal space geometry of a boundary cell is stored in the SPACE_BOUNDARY field of the 

BOUNDARY_CELL table, whereas the geometric embedding of its dual edge representation is captured by the 

column TRANSITION. Again, the entities SpaceBoundary and Transition from the conceptual data model are 

simplified by this mapping. Two compulsory foreign key associations between BOUNDARY_CELL and 

SPACE_CELL model the topological relationships between space cells and boundary cells. If interpreted in primal 

topology space, then the relationships denote the two space cells on the coboundary of a boundary cell. In dual 

topology space, the two dual nodes on the boundary of a dual edge are referenced. Note that both notions are in 

one-to-one correspondence due to the applied Poincaré duality. Since BoundaryCell is also derived from the su-

pertype SpaceElement, a further foreign key relationship is established to the SPACE_ELEMENT table and allows 

for providing additional thematic properties on the related tuple of SPACE_ELEMENT. 

Both SPACE_CELL and BOUNDARY_CELL provide foreign key references to the table SPACE_LAYER which 

translates the SpaceLayer feature type. Based on the topological relationships between those SPACE_CELL and 

BOUNDARY_CELL tuples being associated with the same entry in SPACE_LAYER, the intra-layer graph of this 

space layer can be built. In Oracle, a separate data model called Network Data Model (NDM) is available for the 

storage and analysis of network structures. It has not been chosen as essential part of the MLSEM database schema 

since it can be easily populated automatically and on-demand from the foreign key relationships between 

SPACE_CELL and BOUNDARY_CELL as well as their STATE and TRANSITION fields. Since Oracle 11g, ad-

vanced analysis and modelling features such as path arithmetic support and the consideration of user and applica-

tion attributes are available for NDM structures which thus strongly support the task of path planning. A compre-

hensive discussion of the NDM is however beyond the scope of this thesis. SPACE_LAYER has a mandatory TYPE 

field which classifies a space layer entity and hence realizes the type property of SpaceLayer. The ROOT_ID and 

PARENT_ID columns are foreign keys both of which reference another tuple of SPACE_LAYER. They are used 

to model arbitrarily nested subspace layer hierarchies in a tree-like graph structure. Whereas PARENT_ID points 

                                                           
81 Both steps are supported in both two and three dimensions by current GIS software tools such as ArcGIS 10.1 or FME 2013. 
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to the direct parent (if any) of a SPACE_LAYER tuple within a given tree, ROOT_ID always has to reference the 

root node of this tree. The latter is a self-reference in case the space layer is the root node. In order to retrieve a 

whole subspace layer hierarchy, simply all tuples sharing the same ROOT_ID have to be selected.82  

The inter-layer edges linking space cells from different space layers in dual space are stored in the database table 

INTER_LAYER_EDGE which thus agrees with the conceptual feature type InterLayerEdge. Like with the 

BOUNDARY_CELL table, INTER_LAYER_EDGE is related to SPACE_CELL by two foreign key associations in 

order to reference the dual nodes on the boundary of every inter-layer edge. The topological relationship between 

the primal space geometries of the involved space cells has to be provided through the mandatory TOPO_RELA-

TION field. In contrast to the conceptual data model, a separate table for the resulting multilayered graph is not 

provided since it can be implicitly derived from the tables SPACE_CELL, BOUNDARY_CELL, and IN-

TER_LAYER_EDGE as well as their relationships. 

In addition to this, the proposed MLSEM database schema also supports the explicit storage of joint states and 

their transitions. A single joint state is represented as tuple of the table JOINT_STATE. Similar to its conceptual 

counterpart JointState, the uncertainty region associated with the joint state can be provided as SDO_GEOMETRY 

object. Note that disconnected geometric objects can be represented by a single instance of SDO_GEOMETRY 

which is a mandatory prerequisite to the spatial modelling of uncertainty regions (cf. definition 3.41). The clique 

of dual nodes constituting a joint state is provided through the JOINT_STATE_CLIQUE table which simply 

realizes an n:m relationship between JOINT_STATE and SPACE_CELL by a foreign key association to either 

table. Finally, the tuples in the JOINT_STATE_TRANSITION table express the transitions between pairs of joint 

states. Since every joint state transition has precisely two joint states on its boundary (cf. the definition of the 

JointStateTransition feature type), two foreign key associations with the JOINT_STATE table have been mod-

elled for JOINT_STATE_TRANSITION. The JointStateSpace associated with a set of space layers simply fol-

lows from all tuples in JOINT_STATE and thus is not addressed by a separate database table. 

The SOURCE_OBJECT table is a direct realization of the SourceObject feature type and thus allows for storing or 

linking representations of indoor space entities from external data sources in different data formats. The table 

offers fields for the NAME, the DESCRIPTION, and the MEDIA_TYPE of the source object with the latter being 

mandatory. The external object itself can be stored explicitly as binary data (BLOB) or as XML fragment 

(XMLTYPE) using the columns CONTENT respectively XML_CONTENT. Alternatively, a reference pointing to the 

source object in the external data source can be provided. For this purpose, the thematic attributes of the feature 

types ExternalReference and ExternalObjectReference from the conceptual data model have been added to 

SOURCE_OBJECT and are to be used in the same way as defined for these conceptual entities. Each tuple of 

SOURCE_OBJECT can be either related to a SPACE_ELEMENT or a SPACE_LAYER entry. 

The final table GENERIC_ATTRIBUTE of the MLSEM database schema maps the GenericAttributeType data 

type and thus enables the modelling of generic attributes for both SPACE_ELEMENT and SPACE_LAYER tuples. 

Besides a mandatory NAME, each generic attribute has to express its value through precisely one of the fields 

STR_VAL, INT_VAL, DOUBLE_VAL, URI_VAL, DATE_VAL, GEOM_VAL, BLOB_VAL, or XML_VAL. In con-

trast to the conceptual entity GenericAttributeType, the database schema hence predefines a list of simple data 

types for the value of the generic attribute. The flexibility of the conceptual data model is nevertheless maintained, 

on the one hand, through the possibility of providing arbitrary binary or XML data. On the other hand, the GE-

NERIC_ATTRIBUTE table supports attributes of attributes in order to also capture complex data types. This is 

realized by allowing generic attributes to be arranged in a tree-like graph structure based on the fields ROOT_ID 

and PARENT_ID (cf. table SPACE_LAYER). For example, assume a space cell shall be assigned a generic attrib-

ute capturing its height of 1.7 metres. Then, a first generic attribute of name height could provide a value of 1.7 

using the DOUBLE_VAL field. A second generic attribute of name uom referencing the first as its parent could 

denote the unit for this measure (e.g., as STR_VAL representation or as URI pointer to some formal definition 

using URI_VAL). Moreover, this modelling approach also allows for providing a named collection of generic 

                                                           
82 Oracle also supports hierarchical queries for traversing tree-like structures using the CONNECT BY clause to be used in 

SELECT statements whose condition can be expressed based on the ROOT_ID and PARENT_ID fields. Alternative spatial 

databases (e.g., PostgreSQL/PostGIS) typically also provide the means to formulate hierarchical queries. 
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attributes (e.g., a collection of simple generic attributes referencing the same root attribute through ROOT_ID 

which only provides the NAME for this collection). Named collections are useful, for example, in mapping the 

concepts of GenericAttributeSet and IfcPropertySet as defined in the standards CityGML respectively IFC.  

The conceptual entities from the packages Groups and Sequences, Route, Model Linkage, and Constraints from 

the MLSEM application schema have not been considered in this first draft of the MLSEM database schema. Their 

mapping has to be addressed in future work.  
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Chapter 8  

Conclusions and Outlook 

This chapter presents and evaluates the main results of the thesis and summarizes methods, strategies, and ap-

proaches applied during the research. Moreover, contributions to the field of indoor navigation as well as related 

fields are discussed and future research is identified and outlined. 

8.1 Review and Evaluation 

At the outset of this thesis, a fundamental issue of existing indoor space models for indoor navigation has been 

identified, namely the lack of a consistent semantic and mathematical definition of indoor space and of an accom-

panying standardized computer representation. Taking this as motivation, the definition of an indoor space model 

at the level of 1) a conceptual model, 2) a mathematical model, and 3) a computer representation that conforms to 

international standards from the geoinformation community has been formulated as goal for this thesis. The review 

of results is structured along these three levels.  

Conceptual model of indoor space. A comprehensive study of related work in the field of indoor space modelling 

has provided knowledge about existing concepts for the semantic, spatial, and mathematical representation of 

indoor space. Relevant approaches were evaluated against the identified challenges to indoor navigation, and their 

strengths and weaknesses in answering these challenges were argued. From these findings, mandatory require-

ments were deduced that served as basis for the design of a conceptual model for the spatio-semantic description 

of indoor space. 

An important objective of the research was to define a generic notion of space that would allow for modelling the 

interior built environment in which the bodily movement takes place but also for describing complementary phys-

ical or logical decompositions of indoor space. This is realized through the concepts space cell, boundary cell, and 

space layer. A space cell is defined as partition of indoor space whose semantic meaning follows from the applied 

partitioning schema. It enables the modelling of navigable and non-navigable topographic spaces (e.g., rooms, 

corridors, walls), sensor spaces (e.g., signal coverage areas), or logical spaces (e.g., security zones) and in that 

provides a common abstraction to indoor space that goes beyond alternative approaches. A salient aspect of space 

cells is their geometric-topological representation in both primal and dual space. Based on this dual representation 

schema, a one-to-one pairing between a 2-dimensional respectively 3-dimensional partition of indoor space in 

primal space and its dual node representation within a graph-based conceptualization is realized. The spatial and 

semantic scope of space cells is limited by boundary cells which are defined to describe both tangible and virtual 

boundaries of space cells. Boundary cells follow the similar generic representation schema but are of one dimen-

sion less in primal space and are mapped onto an edge in dual space.  

The aggregation of mutually non-overlapping space cells to a larger view on indoor space is then captured by a 

space layer. The dual representation schema is consistently extended to space layers. Whereas the primal space 

representation captures the spatial configuration of space cells and boundary cells in either two or three dimen-

sions, the dual space representation provides a deterministic mapping onto a corresponding navigation graph. In 

contrast to many alternative approaches which (if at all) define a graph-based conceptualization of indoor space 

purely at the level of semantic entities, the dual graph structure as proposed in this thesis directly follows from the 

spatial configuration of space cells and their qualitative connectedness relationships. It can hence be derived for 

arbitrary space representations and notions of space. In order to add quantitative and metric information, the dual 

graph can be embedded into Euclidean space.  

It follows that the concept of space layers allows for the modelling of multiple and different indoor space repre-

sentations including navigable and non-navigable topographic spaces for different modes of locomotion, sensor 

spaces for different localization technologies and methods, and multiple logical spaces. It thus answers both the 

research question 1.5 and question 1.6 (cf. chapter 1.3). The notions of space cell and space layer were further 
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extended to subspace cells and subspace layers in order to express hierarchical and nested structures as well as 

containment relationships within the built environment or alternative notions of space (cf. question 1.7).  

An important advantage of the developed modelling approach over related work is that the space views are inde-

pendent in that changes to the configuration of space cells on one space layer do not affect the structure of other 

space layers. Their joint consideration within the separate tasks of navigation is enabled through a multilayered 

graph which renders a core element of the conceptual model. The multilayered graph integrates the dual graphs of 

the participating space layers and links their dual nodes based on topological overlap relationships between the 

space cells in primal space. It hence spans a 2-dimensional space along the connectedness of space cells on each 

space layer and their overlap/containment between different space layers, and thus can be said to be a generic 

space-relation model. The resulting graph structure enables hierarchical and multi-level path searches (cf. ques-

tion 1.4). Due to the bijective pairing between space cells (boundary cells) and the dual nodes (dual edges) of the 

graph, the primal space geometry of space cells (boundary cells) as well as their semantic and symbolic properties 

are accessible from the graph elements which allows for spatio-semantic path searches beyond the fastest or the 

shortest path. Moreover, this information can be used, for example, to derive (hierarchical) route instructions and 

visual aids for route guidance, or to dynamically evaluate accessibility constraints (e.g., whether a user physically 

fits through an opening or narrow passage) (cf. question 1.4). Corresponding methods have been proposed in 

literature (e.g., Lorenz et al. 2006, Yuan & Schneider 2011) and can be transferred in the context of the developed 

indoor space model.  

The dual nodes of the multilayered graph further define a state space of possible navigation states of a person or 

object travelling through indoor space. At every point in time, the person or object can only be located within the 

spatial scope of precisely one space cell per space layer whose dual node thus denotes the active navigation state 

on that space layer. The joint consideration of the active joint states over all space layers then renders the joint 

state of navigation of the person or object, and the primal space geometries of the involved space cells mutually 

constraint the absolute position. The multilayered graph is therefore also to be seen as generic space-event model 

and it has been shown in this thesis how this notion facilitates the localization and tracking of navigation users (cf. 

question 1.4). 

The indoor space model supports an unbounded number of space layers. Thus, arbitrary views and aspects of 

indoor space can be (dynamically) added or removed. For navigating a given user through the indoor space, only 

those space layers have to be considered that match the navigation context of the user (e.g., a topographic space 

layer matching the mode of locomotion and one or more sensor space layers reflecting the localization capabilities 

of the mobile device). Supporting multiple and different navigation contexts is hence realized by the ad-hoc selec-

tion of a corresponding subset of space layers and by establishing a user-dependent multilayered graph on that 

subset (cf. question 1.8).  

The conceptual model comprises the representation of environmental and user-dependent navigation constraints 

(cf. question 1.9). A classification of navigation constraints into 1) physical movement obstructions (can con-

straints) and 2) legal access restrictions (may constraints) is proposed. Moreover, constraint conditions are defined 

which act as guards and thus determine the physical, temporal, or logical conditions under which a navigation 

constraint applies. Navigation constraints can be associated with a single space cell or boundary cell (simple con-

straint) as well as with groups or (un)directed sequences thereof (complex constraint such as a prohibited maneu-

ver). Moreover, constraint conditions can be combined in logical expressions (combined constraint). This renders 

a flexible framework which goes beyond existing approaches in literature. The same concepts can also be used to 

model the user context (e.g., user-related movement restrictions). Rules and algorithms for evaluating the naviga-

tion constraints against the user context in path searches are developed and presented in this thesis. The expressiv-

ity of the constraint model was demonstrated along typical scenarios and uses cases for navigation constraints in 

indoor environments. 

Mathematical model of indoor space. A correct, consistent, and complete mathematical formalization was de-

veloped for the elements of the conceptual model. The formalization work mainly drew from fields such as topol-

ogy, manifold theory, and graph theory, and was impeded by the fact that presentations of these fields in literature 

often differ with respect to terms, symbols, and definitions. This was taken as motivation to provide a comprehen-

sive and consistent overview of the applied theory which is presented in a supplementary appendix of this thesis. 
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A main focus of the mathematical model was on the sound mathematical embedding of the dual representation of 

space cells, boundary cells, and space layers. The primal space geometry of a space cell is defined as bounded 

regular semi-analytic subset of Euclidean space and is required to render a topological manifold with boundary to 

ensure its well-behavedness. In contrast to alternative approaches to indoor space modelling, this foundational 

definition for a partition of indoor space is valid in both two and three dimensions and explicitly includes free-

form surfaces and curves. The primal space topology then captures a CW decomposition of the manifold. This 

implies a consistent relation between the geometric and topological description in primal space. The CW complex 

allows for the reasoning about key topological properties of the space cell in a computationally efficient manner. 

Moreover, and based on methods from algebraic topology, the CW complexes of separate space cells can be glued 

together along their boundaries in order to express their mutually non-overlapping configuration on a space layer. 

This again results in a CW complex that forms the primal space topology of the space layer, whereas the primal 

space geometry simply follows from the union of the space cell geometries. The spatial configuration of space 

cells needs not be manifold which is especially important with respect to the modelling of sensor spaces or logical 

spaces and again renders the proposed modelling approach more flexible than those of related work.   

The one-to-one correspondence between the primal and dual space representation is formalized based on the Poin-

caré duality theorem from algebraic topology. This theorem is also utilized in alternative approaches in literature. 

However, problems in these approaches are identified and elaborated in depth in this thesis. The sound application 

of the Poincaré duality within the context of indoor space modelling has therefore been a main research task. As a 

result, the concept of an outer space cell was introduced and defined mathematically. The outer space cell com-

pletes the tiling of Euclidean space on a given space layer in primal geometry space. Since it is topologically 

unbounded and possibly non-manifold, it distinctively differs from the notion of a space cell. Moreover, the CW 

complex of a space layer has to be embedded in a closed manifold in order to apply the Poincaré duality, which 

was realized through a one-point compactification of its ambient space. Both aspects are not sufficiently addressed 

in related work. The Poincaré dual of the CW complex then allows for consistently defining both the dual adja-

cency graph in dual topology space and its isomorphic embedding in dual geometry space. Moreover, the deter-

ministic one-to-one pairing between the primal space representation of space cells (boundary cells) and elements 

of the dual graph has been elaborated based on these results. Finally, it is shown that the dual-graph-based con-

ceptualizations of alternative approaches can be explained through a weak dual graph and its additional pruning 

based on semantic criteria. 

The sound mathematical definition of a multilayered graph structure which consists of the Poincaré dual graphs 

from multiple space layers and additional inter-layer edges expressing topological overlap and containment rela-

tionships also substantially exceeds the results of previous work applying the Poincaré duality. Based on this 

structure, a non-deterministic finite-state machine is developed which supports the tasks of localization and track-

ing. For this purpose, the concept of a state machine was extended to consider joint states, i.e., multiple active 

states on separate space layers, as well as joint state transitions. In contrast to alternative proposals, and due to the 

generic notion of space underlying the proposed indoor space model, arbitrary representations and combinations 

of topographic, sensor, and logical spaces can be fed to the state machine. Although a continuous movement 

through indoor space is assumed on all space layers, the active joint state at a point in time 𝑡𝑛 only depends on its 

successor at 𝑡𝑛−1 and the set of events that fired the transition. This renders the state machine robust and simplifies 

implementations.   

In order to formalize the notion of subspace cells and subspace layers, a partial order has been defined for space 

cells and space layers based on their geometric inclusion. Hierarchical structures are then expressed as partially 

ordered sets of space cells or space layers. Whereas hierarchies are mostly restricted to render tree-like graph 

structures in alternative approaches, they additionally result in star structures within the proposed multilayered 

graph which makes the approach followed in this thesis more flexible and more expressive. Moreover, hierarchical 

structures are not limited to the interior built environment but may also be applied to further notions of space and 

between different notions of space. 

A further novel and salient aspect of the mathematical model developed in this thesis is the definition of a space 

layer algebra that allows for algebraic expressions to be built up from space layers and three well-defined binary 

operations, namely the merge, intersection, and difference operation. The operations simultaneously address the 

separate geometric and topological description of space layers in both primal and dual space as well as their se-

mantic dimension, and hence substantially go beyond purely geometric set operations. The space layer algebra can 
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be used to integrate two different space layers (e.g., different partitionings of the same or different notions of 

space) in a common view or to subtract one space layer from another. It is shown in detail how the space layer 

algebra supports the (dynamic) selection and combination of space layers according to a given context of naviga-

tion. Moreover, it allows for the modelling of subspace layers without having to redundantly copy non-subspaced 

space cells from the superspace layer, which reduces modelling efforts and storage requirements. A concept similar 

to the developed space layer algebra has not been presented in any of the investigated approaches to indoor space 

modelling. 

Computer representation. A review of geometric-topological data models proposed in the field of GIS has pro-

vided knowledge about existing approaches to the computer representation of spatial objects and revealed their 

limitations in expressing the spatial aspects of space cells, boundary cells, and space layers in both primal and dual 

space. Focus was then put on the ISO 19100 standards series for the modelling of geographic features and their 

spatio-semantic characteristics. The feasibility of mapping the conceptual and mathematical model based on this 

standards series was argued in depth. Following on from these results, UML was used as formal language to design 

an ISO-conformant, complete computer representation of the developed indoor space model. In order to ensure 

consistency, invariants reflecting conceptual or mathematical constraints were introduced into this data model 

using OCL as formal declarative language. By applying the formal rule set provided in ISO 19136, an XML-based 

data exchange format was derived from the data model. Moreover, the mapping to a relational spatial database 

schema was demonstrated for its most important elements.  

The resulting data model is more flexible than the conceptual model and its mathematical formalization. For ex-

ample, it allows the dual space representation of a space layer to be populated without an accompanying primal 

space representation (or vice versa) in case the latter is not available or required by the navigation application. 

Likewise, it facilitates to represent, store, and exchange intermediate steps in the acquisition and refinement of 

indoor data (e.g., starting from a pure geometric description of primal space to a full geometric-topological de-

scription in both primal and dual space). Even a purely semantic and symbolic description of indoor space is 

already sufficient. This flexibility thus increases the practical applicability of the indoor space model without vio-

lating its conceptual or mathematical consistency. In contrast, the one-to-one correspondence between the primal 

and dual space representations of space cells, boundary cells, and space layers is still ensured by the data model 

even if it is not fully populated. 

The data model defines the following additional concepts which address data needs in indoor navigation: 

 Cost values for graph elements (e.g., distance, monetary, and time-based measures); 

 Groupings of space cells and boundary cells to express functional or logical aggregations of spatial enti-

ties (e.g., all rooms belonging to the same department or all toilets in a public building) which may be 

addressed in path searches; 

 Sequences of (sparse sets of) space cells and boundary cells to express (un)directed paths on the undi-

rected Poincaré dual graph of a space layer (e.g., to model prohibited maneuvers); 

 Embedding or referencing of complementary representations of space cells, boundary cells, or space lay-

ers in different formats or external repositories (e.g., a CityGML representation of a room cell); 

 Representation and exchange of routes that result from path searches including waypoints, cost values 

(e.g., travel time, travel distance), and route guidance matching the needs of the navigation user (e.g., 

textual, visual, or audio); and 

 Linkage of elements of the multilayered graph with elements from another navigation graph (e.g., outdoor 

road network) or from another multilayered graph (e.g., between 2-dimensional representations of sub-

sequent building floors) to enable seamless transitions. 

A discussion against existing standards from the field of urban and building information modelling revealed that 

geoinformation about the interior built environment provided in one of these standards can be used to populate a 

topographic space layer of the indoor space model. It was shown that the semantic entities SpaceCell and Bound-

aryCell of the developed data model serve as conceptual interfaces to link concepts from existing semantic build-

ing models (IFC, CityGML, and ESRI BISDM) without duplicating them. The generic notion of space helps to 

keep the semantic impedance low in this mapping. Moreover, it was argued that purely geometric building models 

already suffice to derive a valid space layer (cf. question 1.11). The impact of the different spatial modelling 
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paradigms applied in the field of GIS and BIM on the resulting primal and dual space representation were discussed 

and proposals for minimizing their differences were presented.  

The relation of the conceptual data model to existing international standards on location-based services and archi-

tectures (OGC OpenLS and ISO 19133) was investigated. On the one hand, it was demonstrated that the expres-

sivity of the developed concepts exceeds these standards regarding the representation of the navigation space, 

navigation constraints, or route information and guidance. On the other hand, these standards also address the 

design of system interfaces and operations for an LBS computing environment, which was out of scope of this 

thesis. However, it was shown that indoor space and route information modelled according to the developed con-

ceptual data model can be mapped onto and exchanged via these interfaces (cf. question 1.12).  

Finally, the feasibility and applicability of the developed conceptual data model was illustrated along two “proof 

of concept” demonstrations. 

Conclusions. Based on the research for this thesis and the presented findings and results, conclusions are drawn 

in the following with respect to the research hypotheses stated in chapter 1.4.  

This thesis builds upon the previous work on the Multilayered Space-Event Model (MLSEM) as presented in 

(Becker et al. 2009a), (Becker et al. 2009b), and (Nagel et al. 2010). Hypothesis 1.1 posits that the conceptual 

model of indoor space as defined in these publications is already complete. However, results show that this is false. 

In contrast, the MLSEM has been substantially further developed in this thesis to address the needs and challenges 

to indoor space modelling in the context of indoor navigation. The most salient extensions to the MLSEM as 

proposed in this thesis are listed below: 

 Sound definition of space cells and boundary cells as smallest building blocks for structuring the indoor 

space; 

 Explicit modelling of non-navigable spaces (e.g., obstacles) in addition to free spaces; 

 Consistent extension of the 3-dimensional geometric-topological representation schema for space cells, 

boundary cells, and space layers to two dimensions (e.g., to model floor plans); 

 Sound definition of the outer space cell and its spatio-semantic aspects; proof of its relevance for the 

application of the Poincaré duality and for the notion of a complete state-event model; 

 Sound definition of joint states, joint state transitions, and a finite-joint-state machine supporting local-

ization and tracking; 

 Sound definition of subspace cells and subspace layers as well as hierarchical space structures; 

 Design of a space layer algebra to combine several space layers in a single view on indoor space and to 

derive a single graph-based conceptualization (e.g., for path planning); 

 Modelling and evaluation of navigation constraints; 

 Sound definition of additional concepts as listed in the above section on the computer representation; 

 Correct, consistent, and complete mathematical formalization; and 

 Design of an ISO-conformant and complete conceptual data model and data exchange format. 

The last two points on this list also provide a positive answer to hypothesis 1.2 which claims that the MLSEM can 

be formalized in a mathematically sound manner and can be mapped onto a data model that conforms to existing 

modelling standards for geographic information. 

Based on the presented results and their evaluation against research question 1.4 to question 1.9 as well as the 

comprehensive review of related work it can be deduced that the concepts of the MLSEM are feasible to explain 

and realize most of the indoor space models for indoor navigation from alternative approaches independent of 

whether they utilize a regular grid-based or irregular cell-based structuring of the interior environment. The 

MLSEM hence renders a generic framework and conceptual superset of these approaches (cf. hypothesis 1.3). 

Since the multilayered graph structure of the MLSEM relies on topological adjacency and overlap relationships, 

it allows for explaining place graphs from other approaches that encode the connectivity or accessibility between 

places or their hierarchical structures. However, visibility graphs encoding the mutual visibility between places 

are in fact beyond the expressivity of the MLSEM. Approaches applying visibility graphs often recognize the need 
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for building visibility graphs on top of an underlying space model providing connectivity information and hierar-

chical structures (e.g., Stoffel et al. 2007, Liu & Zlatanova 2011a, Goetz & Zipf 2011). This need can therefore be 

answered by the MLSEM.     

Hypothesis 1.10 asserts that the MLSEM is valid in both two and three dimensions and can be populated from 

existing (and even purely geometric) building models. Both aspects can be affirmed from the research results.  

It can be concluded that the MLSEM as presented in this thesis answers the requirements for indoor space models 

for the purpose of indoor navigation which have been postulated in chapter 2.4 in order to address the challenges 

to indoor navigation as identified in chapter 1.2. The main goal of this thesis to design a spatio-semantic model of 

indoor space that meets the multiple challenges and thus can serve as solid foundation for the implementation of 

indoor navigation systems (cf. hypothesis 1.3) has therefore been reached.  

8.2 Contributions 

The research of this thesis mainly contributes to the field of indoor navigation. The application of the developed 

concepts can further be envisioned in the field of building information modelling. 

Indoor navigation. The principal contribution of this thesis is a mathematical sound approach to the spatio-se-

mantic modelling of indoor space that allows for the integration and joint consideration of 1) different and multiple 

representations of the physical built environment that reveal its hierarchical and nested structure as well as navi-

gable and non-navigable spaces for various modes of locomotion, 2) different and multiple sensor spaces that 

reflect diverse indoor localization technologies and methods, 3) different and multiple logical and thematic spaces 

(e.g., security zones) that are not necessarily aligned with the physical built structure or subject to physical obser-

vations, and 4) different and multiple environmental and user-contextual navigation constraints. The indoor space 

model moreover facilitates the ad-hoc selection and combination of available localization technologies supported 

by the mobile end-user device and of appropriate representations of navigable, non-navigable, and logical spaces 

according to the context of individual navigation users. Based on this context-dependent space representation, the 

complementary tasks of localization, path planning, tracking, and guidance can be realized.  

The thesis thus develops a generic, flexible, and context-aware framework for indoor navigation which, to the best 

knowledge of the author, exceeds the expressivity of alternative approaches to indoor space modelling in literature. 

The mathematical formalization of the MLSEM defines indoor space at a foundational level and also provides a 

deterministic graph-based conceptualization. In contrast to most alternative approaches, a complete, consistent, 

and standardized computer representation of the MLSEM is presented. The MLSEM hence provides a solution to 

the main problems of existing indoor space models in the field of indoor navigation which have been identified by 

(Kolodziej & Hjelm 2006) and which have motivated this research.  

Building Information Modelling. The modelling of buildings and their interior built reality is subject to the field 

of building information modelling. Although modelling standards as well as spatial representation paradigms are 

well established, the MLSEM can contribute to this field by providing a generic space-relation model that facili-

tates spatio-semantic analyses and simulations beyond indoor navigation. This is illustrated along two examples 

in the following. 

First, logical spaces and their relations to topographic spaces of the interior built environment provide important 

information about buildings. The MLSEM provides a framework that allows for integrating both views on indoor 

space in a common model and for reasoning about their spatial relationships based on the multilayered graph and 

the operations of the space layer algebra (cf. chapter 3.7). For example, the design and spatial configuration of 

security zones is relevant for security sensitive environments such as airports. Based on the MLSEM, places can 

be evaluated to which extent they are covered by security zones or, alternatively, the layout of security zones can 

be planned such that vulnerable places are covered. This can obviously be transferred to arbitrary notions of space. 

Thus, the MLSEM similarly allows for planning the sensor deployment inside a building to ensure full signal 

coverage. Likewise, the modelling of dynamically changing disaster areas may help disaster managers to under-

stand the demolition status of a building and to plan evacuation scenarios.  

Second, the MLSEM can also be applied to understand the structure of the building itself. For example, the dual 

graph can be input to network analyses in order to identify the relative importance or influence of a particular 

space within a building (e.g., by means of degree or closeness centrality). Due to the one-to-one correspondence 
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between dual and primal space, the corresponding primal space geometry of important places can be additionally 

evaluated to reveal possible bottlenecks, for example, in emergency situations. When applied in the planning phase 

of a building, the MLSEM can thus help in avoiding such bottlenecks. Moreover, since the layout of the dual graph 

only depends on the spatial configuration of the space cells in primal space (but not on further semantic aspects), 

it can be viewed as being a fingerprint for a given spatial configuration. Using methods from subgraph matching, 

the fingerprint of a spatial configuration (e.g., of a building floor or a corridor and its adjacent rooms) can thus be 

used to identify the same or similar configurations within the same or a different building which then allows for 

transferring knowledge about spatial settings. 

Existing building modelling standards such as IFC or CityGML fail to support these examples since they cannot 

account for logical spaces and lack a graph-based space representation. Whereas this thesis has demonstrated that 

the MLSEM can be populated with building data given in such standards, the MLSEM may additionally serve as 

pattern for extending the standards with a sound graph-based conceptualization of space.  

8.3 Outlook and Future Research 

The last section of this chapter outlines open issues and recommends directions for future research. 

Extension of the semantic conceptualization of indoor space. The MLSEM offers a rich spatial description for 

space cells and boundary cells in both primal and dual space as well as for their (hierarchical) configuration on 

one or more space layers. As for the semantic description of the spatial entities inhabiting indoor space, the two 

feature types SpaceCell and BoundaryCell are proposed. Although both feature types provide thematic attributes 

for refining the semantic scope of space cells and boundary cells (e.g., using the class, usage, and function attrib-

utes), a further classification of navigation spaces and their semantics may be desirable in order to extend the 

semantic expressivity of the MLSEM. For example, in topographic space, a general distinction into non-navigable 

obstacle spaces and navigable spaces could be introduced. A path search algorithm could then simply identify 

obstacles on the semantic level in order to filter them in candidate routes. Navigable spaces could be further clas-

sified into vertical or horizontal transition spaces (e.g. elevators, corridors), end spaces (e.g., rooms), or openings 

(e.g., doors, windows). From this classification scheme, semantic validation rules could be derived. For example, 

a transition space could be enforced to connect at least two end spaces on the same or subsequent building floors, 

whereas end spaces could be required to offer at least one opening in order to be valid. The conceptual data model 

of the MLSEM as proposed in this thesis lacks a similar semantic expressivity.  

Proposals for semantically rich indoor space models have been presented in chapter 2.2.4. They could hence serve 

as starting point for extending the semantic conceptualization of indoor space within the MLSEM in future re-

search. In (Brown et al. 2012)83 and (Liu & Zlatanova 2012), two separate semantic models of the indoor naviga-

tion space are proposed both of which are already based on the concepts of the MLSEM and thus can be viewed 

as first steps to extend its semantic expressivity. Whereas (Brown et al. 2012) mainly put focus on the taxonomy 

of navigation spaces, (Liu & Zlatanova 2012) additionally model relationships between semantic entities and pre-

sent formal validation rules. However, all of the mentioned approaches merely address the topographic space and 

neglect the ontology of complementary notions of space. Moreover, a detailed semantic topographic space model 

may impede the interoperability with existing standards from the field of building information modelling. In con-

trast, and as shown in chapter 6, the semantic impedance between the MLSEM as proposed in this thesis and 

standards such as CityGML or IFC is rather low not at least because the concepts SpaceCell and BoundaryCell 

remain at a high abstraction level and thus provide suitable conceptual interfaces to these standards.  

Implementation of a (prototypical) navigation system. The feasibility of the MLSEM has been illustrated in a 

large number of examples in this thesis. The two “proof of concept” demonstrations in chapter 7 further have 

shown that the MLSEM can be instantiated for a real world building and that a corresponding indoor space model 

can be stored and exchanged between computer systems in a consistent and lossless manner. However, the imple-

mentation of a (prototypical) navigation system based on the MLSEM that simultaneously addresses the tasks of 

localization, path planning, tracking, and guidance was out of scope of this thesis not at least because of the limited 

time frame. This open challenge therefore needs to be addressed as next step. For this reason, the Institute for 

Geodesy and Geoinformation Science of the Technische Universität Berlin has defined a research and development 

                                                           
83 The author has been involved in this research work which is currently refined within a Master’s thesis conducted at the 

Institute for Geodesy and Geoinformation Science, Technische Universität, Berlin, under the supervision of the author.   
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project called mobi.free which aims at realizing a navigation system for guiding passengers inside connecting 

stations of the public transportation system. The project scope explicitly includes support for different groups of 

navigation users and types of locomotion (especially elderly and disabled people) as well as multi-sensor locali-

zation. The project thus is meant to serve as lighthouse project for the research work of this thesis but still needs 

to complete the approval phase.    

The practical implementation of concepts developed in this thesis is also addressed in complementary, ongoing 

research works. For example, a dissertation that parallels this research investigates and implements geometric-

topological operations for automatically subspacing the topographic space according to different types of locomo-

tion. First results have been presented in (Khan & Kolbe 2012) (cf. chapter 5.5). Two Master’s theses conducted 

at the Institute for Geodesy and Geoinformation Science are dedicated to the planning of context-dependent best 

paths through the interior environment based on the MLSEM with focus on 1) multi-level paths and the derivation 

of human-friendly, hierarchical route instructions using fuzzy methods (cf. Lorenz et al. 2006, chapter 2.2.2) and 

2) the evaluation of navigation constraints against various user profiles. However, at the time of writing this thesis, 

results have not been available yet. Additional work has to be carried out to practically realize further conceptual 

and mathematical aspects of the MLSEM such as the proposed space layer algebra or the finite-joint-state machine.  

Cell-based and non-cell-based localization. The MLSEM follows a cell-based hybrid approach to indoor space 

modelling. The description of indoor space hence requires knowledge about the shape, size, and location of the 

space cells on a space layer. As shown in this thesis, the cell-based approach is feasible to model topographic 

spaces and subspaces thereof but also to represent logical and sensor spaces due to the generic notion of space 

underlying the MLSEM. Regarding sensor spaces, the partitioning of indoor space according to, for example, the 

reception areas or signal strength bands of sensors or transmitters can be used to obtain suitable space cells. Like-

wise, space cells can denote functional spaces such as the partition of space where the user must be physically 

located in order to interact with an object/sensor (e.g., when using QR-codes for localization) (cf. chapter 3.3). 

Although this yields a high flexibility, not all existing localization techniques and methods admit a cell-based 

mapping. For example, techniques such as Time of Arrival (TOA), Time Difference of Arrival (TDOA), or Angle 

of Arrival (AOA) rather rely on measuring the propagation time of signals or the direction of propagation (e.g., 

using technologies such as UWB or Wi-Fi). Based on obtained distances and angles, often geometric functions 

(e.g., triangulation, trilateration) are then applied to derive absolute or relative position estimates. Likewise, tech-

niques such as dead reckoning or photogrammetric localization can neither be expressed in terms of space cells. 

Since sophisticated non-cell-based localization approaches have been, and are being, proposed in literature, an 

important field of future research is therefore their integration with the MLSEM and the proposed cell-based lo-

calization. A minimum requirement for all localization techniques is a rich navigation space model for the evalu-

ation and communication of position estimates, which is at least answered by the MLSEM.    

A challenge to the cell-based mapping of signal propagation characteristics are the hard boundaries of space cells. 

For example, Wi-Fi radio wave propagation is subject to signal attenuation not only when passing through mate-

rials of the built structure (e.g., wood, reinforced concrete) but also severely when passing through people. The 

latter will cause the signal reception area of a Wi-Fi transmitter to dynamically shrink with an increasing number 

of people in the vicinity of the transmitter. However, the boundaries of space cells are defined to be fixed within 

the MLSEM which hinders the support for dynamically shrinking or growing space cells. It thus is recommended 

that the maximum measurable reception area is chosen as shape for a corresponding sensor space cell since the 

size of the space cell correlates to the uncertainty about the absolute position of a navigation user within the cell 

(cf. chapter 3.3). Future research should explore the modelling of uncertain and hence soft space cell boundaries. 

For example, the difference between the maximum and minimum measureable reception area could conceptually 

be modelled as uncertainty band and mapped onto one or more space cells associated with differing likelihoods of 

sensor observations. It is important to note that the MLSEM makes no assumption on the determination of the 

reception area (and thus the shape of the sensor space cell). Possible methods include fingerprinting (cf. chapter 

7.2.2) or radio propagation models which face separate advantages and disadvantages. For example, radio propa-

gation models have to account for further signal propagation characteristics such as noise, interference, or multi-

path effects which affect the shape and size of the space cell. 

The precision of the absolute position determination of navigation users based on the finite-joint-state machine 

presented in chapter 3.3 is limited by the uncertainty area of the active joint state of navigation. Besides adding 

further sensor space layers in order to yield highly overlapping space cells that reduce the spatial extent of the 
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uncertainty area, further methods for increasing the precision were out of scope of this thesis but render a task for 

future research. This work can draw from already existing proposals in literature. For example, (Jensen et al. 2009) 

and (Jensen et al. 2010) (cf. chapter 2.2.3) present a cell-based localization method using RFID sensors which 

applies the maximum speed of the moving person or object to constrain the absolute location at a finer granularity 

than that of RFID cells. Moreover, the authors use the same criterion to predict the possible location of a navigation 

user who cannot be associated with an RFID cell in a deterministic manner. This approach can be directly utilized 

for the MLSEM which also supports deterministic and non-deterministic active states of a navigation user. In (Liao 

et al. 2003), Bayesian inference is used to increase the precision of localization based on noisy and sparse sensor 

information (e.g., RFID or Bluetooth). A general particle filter is applied to produce position estimates based on 

1) likelihoods of sensor observations that are averaged over mutually non-overlapping location patches and 2) a 

Gaussian motion model of the user dynamics taking into account the velocity of the user as well as transition 

probabilities on the edges of the navigation graph which are derived from motion pattern learning. A salient aspect 

of the approach is that the position estimates are projected onto the navigation graph which is realized as Voronoi 

diagram of the environment (cf. chapter 2.1.2) in order to increase the efficiency and robustness of the approach 

(e.g., in case sensors frequently fail to detect the navigation user). The Voronoi tracking approach of (Liao et al. 

2003) can also be translated into the domain of the MLSEM. Since the MLSEM does not apply Voronoi diagrams, 

the Poincaré dual graph of topographic space has to be spatially embedded in free space in order to create equal 

conditions. The location patches for averaging the likelihoods of sensor observations can then be modelled as 

sensor space cells. Whereas the approach of (Liao et al. 2003) uses a more powerful motion model than the ap-

proach of (Jensen et al. 2010), the latter better accounts for the unconstrained movement possibilities in indoor 

spaces. Nevertheless, both approaches are strong starting points for future research and rely on a precise model of 

the navigation space which can answered by the MLSEM. 

Outdoor navigation. The scope of this thesis was intentionally limited to the modelling of indoor space for the 

purpose of indoor navigation. Nevertheless, supporting the seamless transition between indoor and outdoor in a 

common framework is a field of intensive research (e.g., see Lee & Zlatanova 2008, Ruppel et al. 2008, Giudice 

et al. 2010, Yang & Worboys 2011, Vanclooster & Maeyer 2012) and also renders a future research topic in the 

context of the MLSEM. The conceptual data model proposed in this thesis already foresees the modelling of trans-

fers between the elements of two navigation graphs in a separate InterModelGraph (cf. chapter 4.4.1.6). This graph 

structure hence represents the linkage between two navigation spaces and can be used to define hand-over points 

between corresponding navigation systems. The InterModelGraph is feasible to connect two instances of the 

MLSEM but likewise can be used to link the MLSEM with an outdoor navigation graph. One aspect of future 

work is therefore the evaluation of the InterModelGraph concept in an indoor/outdoor context. 

The MLSEM is a generic space-relation model. The notion of space cells and space layers is thus not restricted to 

the interior environment but also allows for structuring the outdoor space. (Boguslawski & Gold 2011) have al-

ready shown how their dual-graph-based approach can be used to model the surroundings of buildings based on 

thin 3-dimensional cells in order to derive an integrated representation of indoor and outdoor spaces (cf. chapter 

2.2.3). Since the model of (Boguslawski & Gold 2011) can be explained based on the research of this thesis (cf. 

chapter 3), a similar approach can be applied in the context of the MLSEM. The MLSEM is even more expressive 

because it facilitates both a 2-dimensional and 3-dimensional space representation. For example, it can be used to 

model a 2-dimensional digital road map with space cells representing the roads and junctions. Based on the spatial 

configuration of the space cells and the formalism developed in this thesis, a corresponding road network can be 

derived in a deterministic manner. Likewise, roads and junctions can be represented as 3-dimensional space cells 

which not necessarily have to be thin but rather can be extruded to the (actual or virtual) vertical clearance above 

the road which again results in a deterministic road network. Further concepts of the MLSEM are also applicable. 

For example, roads can be subspaced into separate lanes and toll sections may be denoted as logical spaces. More-

over, constraints such as speed limits or prohibited maneuvers can be expressed using the proposed navigation 

constraint model (possibly involving additional constraint conditions). Due to the generic notion of space, space 

cells representing pedestrian pathways or indoor spaces can be integrated into the same MLSEM instance which 

would result in a single navigation graph seamlessly connecting the indoor and outdoor world. Likewise, and in 

contrast to (Boguslawski & Gold 2011), indoor and outdoor spaces can be modelled in separate MLSEM instances 

(possibly with different dimensions) and then be linked through the InterModelGraph concept. A second aspect 

of future research in this context is therefore the evaluation of the feasibility of modelling outdoor spaces with the 

MLSEM.   
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A third important aspect is the relation of the MLSEM to existing standards for outdoor navigation such as the 

Geographic Data Files (GDF, ISO/DIS 14825:2011) and their representation of outdoor spaces. According to 

(Rüetschi 2007), two fundamental types of spaces can be generally distinguished, namely network space and scene 

space. Whereas environments that exhibit a clear network structure are subsumed under the notion of network 

space, environments without an obvious network structure are called scene spaces. Models for outdoor navigation 

mostly follow the idea of network space. For example, GDF differs between point-like and line-like features in 

transportation systems and builds the navigation network upon their connectivity. Roads are identified as linear 

spatial features and mapped onto graph edges, whereas junctions are seen as point objects and carried to graph 

nodes. This differentiation is only applied on a conceptual level and corresponds to an intuitive human perception 

and understanding of road spaces. In contrast, the space representation of the MLSEM (and of most of the pre-

sented indoor space models) falls into the category of scene space since it describes regions of space (called scenes 

by Rüetschi 2007) which may be hierarchically grouped and connected with one another. The concept of scene 

space is therefore closer to the human cognitive model of indoor space. When applying the MLSEM to road spaces, 

both roads and junctions would consequently be carried to graph nodes with the edges denoting their transitions 

but not linear spatial features. The fundamentally different notions of space underlying GDF and the MLSEM 

hence also lead to different graph representations of the road space. Although both graph structures are obviously 

suitable to perform path planning, a comprehensive understanding of the implications of these differences requires 

more investigations in future research.  

International standard for indoor navigation. At the time of writing this thesis, the OGC is in the process of 

developing an international standard for indoor navigation. A corresponding Standards Working Group (SWG) 

called IndoorGML SWG84 was formed within OGC in March 2012 whose main goal, as stated in the charter doc-

ument of this SWG, is cited in the following: 

 “The purpose of this IndoorGML Standard Working Group is to develop an application schema 

of OGC GML and progress the document to the state of an adopted OGC standard. The goal of 

this candidate standard is to establish a common schema framework for indoor navigation appli-

cations. This SWG will start from the discussion paper (OGC 10-191r1, Requirements and Space-

Event Modeling for Indoor Navigation [that is, (Nagel et al. 2010)]), which summarizes the re-

quirements and basic idea of a standard for indoor navigation.” (OGC Doc. No. 12-005, p. 2)85. 

This excerpt of the SWG charter nicely documents the relevance and impact of the previous research on the 

MLSEM. Since standardization has been motivated in chapter 1 as a fundamental prerequisite for the success of 

the field of indoor navigation, the author would like to conclude this thesis with the hope that the substantial further 

development of the MLSEM as carried out in this thesis as well as the presented findings and results will be 

beneficial in and contribute to this standardization process.  

                                                           
84 See http://www.opengeospatial.org/projects/groups/indoorgmlswg for more information. The term IndoorGML is adopted 

from Becker et al. 2009b where it is used as name for the initial GML application schema of the MLSEM. 

85 See https://portal.opengeospatial.org/files/?artifact_id=47562. 
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Appendix A  

Basic Notions and Concepts from Topology 

This appendix recaps basic notions and concepts from the mathematical field of topology as applied in the context 

of this thesis and fixes important terms, symbols, and definitions. The definitions and results presented here are 

mostly adapted from (Munkres 1984), (Hatcher 2008), (Lee 2011), (Jänich 2012), and (Morris 2012). 

A.1 Point-set Topology 

Point-set topology is closely linked to set theory and deals with the definition of the abstract nature and character-

istics of topological spaces. The notion of topological space is defined in the following by means of rather simple 

and abstract axioms. On the one hand, this abstract notion provides a useful “umbrella” concept which serves as 

foundation for vastly different branches of topology. On the other hand, because of its simplicity and elasticity, 

the set-theoretic notion of topological space is often seen to be generalized far beyond an intuitive meaning. Thus, 

additional restrictions will be imposed on topological spaces in the course of this appendix. 

Definition A.1 (Topological space, open set). A topological space is a pair (𝑋, 𝒯) where 𝑋 is a set and 𝒯 is a 

family of subsets of 𝑋, called open sets, such that 

(i) 𝑋 and the empty set, ∅, belong to 𝒯, 

(ii) the union of any (finite or infinite) collection of sets in 𝒯 belongs to 𝒯, and 

(iii) the intersection of any finite collection of sets in 𝒯 belongs to 𝒯. 

𝒯 is called the topology on 𝑋. If the topology on 𝑋 is understood, it is said that 𝑋 is a topological space and 𝒯 is 

conventionally omitted from the notation. The elements of a topological space are called points regardless of their 

actual nature. The members of 𝒯 are called open sets. The complements to the open sets are said to be closed sets 

and are defined as follows. 

Definition A.2 (Closed set). A subset 𝐴 ⊂ 𝑋 of a topological space (𝑋, 𝒯) is closed if its complement 𝑋 \ 𝐴 is 

open in (𝑋, 𝒯).   

This definition implies that the union of a finite collection of closed sets and intersections of an arbitrary number 

of closed sets are closed. In contrast, both the intersection of infinitely many open sets and the union of infinitely 

many closed sets may be open or closed. 

A fundamental concept of topological spaces is the notion of neighbourhood which expresses a closeness relation 

between a point and a set without the need for a quantitative measure such as a distance function.  

Definition A.3 (Neighbourhood, open neighbourhood). A subset 𝑁 of 𝑋 is defined as neighbourhood of a point 𝑥 

in 𝑁 if there exists an open set 𝑂 ∈ 𝒯such that 𝑥 ∈ 𝑂 ⊆ 𝑁.  

If 𝑁 ∈ 𝒯, then 𝑁 is called an open neighbourhood of every point 𝑥 in 𝑁 which is more restricted in such that every 

neighbourhood contains an open neighbourhood. The open neighbourhoods determine the family of open sets 𝑂, 

and hence the topology 𝒯. 

Definition A.4 (Limit point). A point 𝑥 ∈ 𝑋 is said to be a limit point of a subset 𝐴 of 𝑋, if every open neighbour-

hood of 𝑥 contains a point of 𝐴 different from 𝑥. 

A limit point of the subset 𝐴 is said to be arbitrarily close to 𝐴. The concepts of neighbourhood and limit point 

allow for rephrasing the conditions for open and closed sets. A subset 𝐴 ⊂ 𝑋 is open, iff (if and only if) it contains 

an open neighbourhood of every point 𝑥 ∈ 𝐴. The subset 𝐴 ⊂ 𝑋 is said to be closed iff it contains the set 𝐿(𝐴) of 

all its limit points, 𝐴 ∪ 𝐿(𝐴). If 𝐴 is both open and closed in (𝑋, 𝒯), then it is said to be clopen. In every topological 

space, both 𝑋 and the empty set, ∅, are clopen. 
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Definition A.5 (Closure, interior, exterior, boundary). Based on the notions of neighbourhood as well as open and 

closed sets, the closure, interior, exterior and boundary of any subset 𝐴 ⊂ 𝑋 can be given as follows: 

(i) The closure �̅� is the set �̅� = ⋂{𝐶|𝐴 ⊂ 𝐶 and 𝐶  s clos d  n 𝑋} (the smallest closed set containing 𝐴). 

Equivalently, �̅� = 𝐴 ∪ 𝐿(𝐴). From this it follows that all points in the closure are said to be arbitrarily 

close to 𝐴. 

(ii) The interior 𝐼𝑛𝑡(𝐴) is the set 𝐼𝑛𝑡(𝐴) = ⋃{𝑂|𝑂 ⊂ 𝐴 and 𝑂  s op n  n 𝑋} (the union of all open sets 

which lie entirely in 𝐴).  

(iii) The exterior 𝐸𝑥𝑡(𝐴) is the set 𝐸𝑥𝑡(𝐴) = 𝑋 \ �̅�  (the complement of the closure of 𝐴 in 𝑋). 

(iv) The boundary 𝜕𝐴 is the set 𝜕𝐴 = �̅� \ 𝐼𝑛𝑡(𝐴) (the closure of 𝐴 without the interior of 𝐴). It follows that 

a closed set contains its boundary. 

It obviously follows from definition A.5 that the closure of a subset 𝐴 ⊂ 𝑋 is always a closed subset, and both the 

interior and the exterior of 𝐴 are always open. The boundary can equivalently be defined as the intersection of the 

closure of 𝐴 with the closure of its complement in 𝑋, i.e., 𝜕𝐴 = �̅�  ∩  (𝑋\𝐴)̅̅ ̅̅ ̅̅ ̅̅ . Since the intersection of two closed 

sets is closed itself, the boundary is also closed. 

The interior, exterior, and boundary of the set 𝐴 are disjoint sets. Thus the set 𝐴 divides 𝑋 into three disjoint 

partitions, and equivalently 𝑋 = 𝐼𝑛𝑡(𝐴) ∪ 𝐸𝑥𝑡(𝐴) ∪ 𝜕𝐴 where all unions are disjoint. The interior points are al-

ways contained in 𝐴, whereas exterior points never lie in 𝐴.  

Instead of enumerating all contained open sets, the topology 𝒯 can also be defined by describing a smaller collec-

tion 𝔅 of open subsets which is said to generate the topology. 

Definition A.6 (Basis, neighbourhood basis). A collection 𝔅 of open subsets of 𝑋 is called a basis for the topology 

𝒯 if every open set 𝑂 ∈ 𝒯 is a union of members of 𝔅. A neighbourhood basis 𝒰𝑥 for 𝑥 ∈ 𝑋 is a set of open 

neighbourhoods such that every open neighbourhood of 𝑥 contains a neighbourhood from 𝒰𝑥. A neighbourhood 

basis is also said to be a local basis. 

The countability properties of topological spaces provide a notion for the limitation on size of the space. In a sense, 

they restrict the number of open sets the space can have. A topological space can be separable, first-countable or 

second-countable. The first property of a topological space being separable is based on the definition of a dense 

subset which is given first. 

Definition A.7 (Dense subset). A subset 𝐴 of a topological space (𝑋, 𝒯) is said to be dense in 𝑋 or everywhere 

dense in 𝑋 if every point 𝑥 ∈ 𝑋 is a point or a limit point of 𝐴, and thus 𝑋 = �̅�. 

Definition A.8 (Separable, first-countable, second-countable). A topological space (𝑋, 𝒯) is called 

(i) separable if it has a countable dense subset, 

(ii) first-countable if at each point 𝑥 ∈ 𝑋 there is a countable local basis, i.e., the number of sets in the neigh-

bourhood basis 𝒰𝑥 is countable, and 

(iii) second-countable if it has a countable basis 𝔅. 

All second-countable spaces are both first-countable and separable. But a separable space need not be even first-

countable (Steen & Seebach 1995). 

Definition A.9 (Subspace, subspace topology). If 𝑌 is a non-empty subset of a topological space (𝑋, 𝒯), then the 

topological space (𝑌, 𝒯𝑌) is said to be a subspace of (𝑋, 𝒯) with the subspace topology 𝒯𝑌 whose open sets are of 

the form 𝒯𝑌 = {𝑂 ∩ 𝑌: 𝑂 ∈ 𝒯}. The subspace topology is also called the induced topology. 

If a property of a topological space is also possessed by all its subspaces, then this property is said to be hereditary. 

For example, a subspace of a first-countable (second-countable) space is first-countable (second-countable). 

Two topological spaces are topologically equivalent if there exists a homeomorphism of one onto the other. Ho-

meomorphism is the most fundamental relation in topology and builds upon the notion of continuity of topological 

spaces which is expressed in terms of open sets. 
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Definition A.10 (Continuous map). A function 𝑓: 𝑋 → 𝑌 between two topological spaces (𝑋, 𝒯) and (𝑌, 𝒯1) is 

continuous iff for each open set 𝑈 in 𝑌, the inverse image 𝑓−1(𝑈) is open in 𝑋, and thus 𝑓−1(𝑈) ∈ 𝒯. Continuous 

functions are also called maps or mappings. 

Definition A.11 (Homeomorphism). A function 𝑓: 𝑋 → 𝑌 between two topological spaces (𝑋, 𝒯) and (𝑌, 𝒯1) is 

called homeomorphism if 𝑓 is a bijection and both 𝑓 and 𝑓−1 are continuous. If such a map 𝑓 exists, the topological 

spaces are said to be homeomorphic which is denoted (𝑋, 𝒯) ≅ (𝑌, 𝒯1).   

A property of a topological space which is preserved under homeomorphisms is called topological property or 

topological invariant. Invariant properties are, e.g., neighbourhoods, connectedness, separation, compactness, and 

embedding. 

Definition A.12 (Connectedness, path-connectedness). A topological space (𝑋, 𝒯) is said to be disconnected iff 

there are non-empty disjoint open subsets 𝐴, 𝐵 ⊂ 𝑋 whose union represents 𝑋, i.e., 𝐴 ∩ 𝐵 = ∅ and 𝑋 = 𝐴 ∪ 𝐵. It 

is called connected iff it cannot be decomposed as the union of two such sets. Equivalently, it is connected if the 

only clopen subsets of 𝑋 are 𝑋 and ∅ (Morris 2012). 

A topological space is called path-connected if for any two points 𝑥0, 𝑥1 ∈ 𝑋 there exists a path joining 𝑥0 to 𝑥1, 

i.e., a continuous map 𝑓: [0,1] → 𝑋 with 𝑓(0) = 𝑥0 and 𝑓(1) = 𝑥1. The notion of path-connectedness is stronger 

in such that every path-connected topological space is also connected. 

Separation properties (also called separation axioms) provide a measure of how rich a given topology is by clas-

sifying topological spaces according to the degree to which distinct points or closed sets may be separated by open 

sets. Whereas the countability properties restrict the number of open sets, the separation properties ensure that a 

topological space has enough open subsets, for example, to ensure that closeness expressed through neighbour-

hoods does have the same intuitive meaning as provided by a quantitative measure. The following list only pro-

vides a subset of common separation properties ordered by decreasing generality.  

Definition A.13 (Separation properties). A topological space (𝑋, 𝒯) is said to be 

(i) a 𝑇1 or Frechét space if any two distinct points 𝑥, 𝑦 ∈ 𝑋 are separated, i.e. there exist open sets 𝑈𝑥 , 𝑉𝑦 ∈

𝒯 containing 𝑥, 𝑦 respectively such that 𝑥 ∉ 𝑉𝑦, and 𝑦 ∉ 𝑈𝑥,  

(ii) a 𝑇2 or Hausdorff space if any two distinct points 𝑥, 𝑦 ∈ 𝑋 are separated by open neighbourhoods, i.e. 

there exist disjoint open sets 𝑈𝑥 , 𝑉𝑦 ∈ 𝒯 containing 𝑥, 𝑦 respectively, 

(iii) a 𝑇4 or normal space if it is Hausdorff and any two closed disjoint subsets possess disjoint open neigh-

bourhoods. 

Definition A.14 (Open covering, compactness). A family of open sets {𝑂𝑖}, 𝑖 ∈ 𝐼 in a topological space (𝑋, 𝒯) is 

called an open covering of 𝑋 if 𝑋 = ⋃ 𝑂𝑖𝑖∈𝐼 . For a finite subfamily 𝑂𝑖1 , 𝑂𝑖2 , … , 𝑂𝑖𝑛, of {𝑂𝑖}, 𝑖 ∈ 𝐼 is called a finite 

subcovering if 𝑋 = 𝑂𝑖1 ∪ 𝑂𝑖2 ∪ …∪ 𝑂𝑖𝑛 . The topological space (𝑋, 𝒯) is called compact if every open covering of 

𝑋 has a finite subcovering. 

Compactness can be thought of as a topological generalization of finiteness (Morris 2012). For example, spaces 

with finitely many points or whose topology only has finitely many open sets are obviously compact according to 

the above definition. A counterexample for an infinitely large space is the half-open interval [0,∞) which corre-

spondingly is non-compact. However, the property of being compact is only defined in terms of open sets, and 

thus only depends on the topology on a space.  

The main theorem on compactness says that the image of a continuous map of a compact space is compact (for a 

proof see Lee 2011). 

Theorem A.15 (Main theorem on compactness). Let (𝑋, 𝒯) and (𝑌, 𝒯𝑌) be topological spaces, and let 𝑓: 𝑋 → 𝑌 

be a continuous map. If 𝑋 is compact, then 𝑓(𝑋) is compact (Lee 2011). 

A subset 𝐴 of the topological space (𝑋, 𝒯) is said to be compact if every open covering of 𝐴 by open subsets of 𝑋 

has a finite subcovering. If 𝐴 is considered as subspace of (𝑋, 𝒯) with the induced topology 𝒯𝐴, then the topological 

space (𝐴, 𝒯𝐴) is compact. 
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Although many topological spaces are not compact as whole space, they may look like a compact space at a small 

enough scale. Spaces satisfying this property are called locally compact. 

Definition A.16 (Locally compact). A topological space (𝑋, 𝒯) is said to be locally compact if for every point 𝑥 ∈

𝑋 there exists a compact subset of 𝑋 containing a neighbourhood of 𝑥. 

An important set of topological spaces discussed in literature is the class of locally compact Hausdorff spaces. 

Prominent instances of locally compact Hausdorff spaces are Euclidean spaces which are introduced in the further 

course of this chapter and for which the property of being locally compact will be revisited. 

Definition A.17 (Embedding). A both injective and continuous map 𝑓: 𝑋 → 𝑌 is called an embedding of the topo-

logical space (𝑋, 𝒯) into (𝑌, 𝒯𝑌) if it induces a homeomorphism between 𝑋 and the subspace 𝑓(𝑋) ⊆ 𝑌. Since the 

image 𝑓(𝑋) is contained in 𝑌, the embedding 𝑓: 𝑋 → 𝑌 allows 𝑋 to be treated as subspace of 𝑌 with the topology 

induced by 𝑌.   

Metric spaces. An important subclass of topological spaces is the class of metric spaces which were first intro-

duced in 1906 by Maurice Fréchet and further elaborated by Felix Hausdorff in 1914 (Morris 2012). In general 

topological spaces, the notion of closeness allows to express whether a point 𝑥 ∈ 𝑋 is infinitely near to a set 𝐴 ⊂

𝑋 (i.e., in the closure of 𝐴), or whether the set 𝐴 is a smaller neighbourhood for 𝑥 than the set 𝐵. The comparison 

of neighbourhoods of different points as well as the notion of closeness between points requires an additional 

structure on the topological space. This additional structure is called uniform structure and a topological space 

having a uniform structure is said to be a uniform space. A natural way to describe the closeness between points 

is in terms of a distance function. The notion of distance is inherent to metric spaces.  

Definition A.18 (Metric, metric space). A metric on a set 𝑋 is a function 𝑑: 𝑋 × 𝑋 → ℝ such that for 𝑥, 𝑦 ∈ 𝑋 

(i) 𝑑(𝑥, 𝑦) ≥ 0 and 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦 (positivity), 

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry), and 

(iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 (triangle inequality). 

If 𝑑 is a metric on 𝑋, then (𝑋, 𝑑) is called a metric space and 𝑑(𝑥, 𝑦) is said to be the distance between the points 

𝑥 and 𝑦. 

Definition A.19 (Open and closed ball). If (𝑋, 𝑑) is a metric space and 𝑟 any positive real number, then the set 

𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋 | 𝑑(𝑥, 𝑦) < 𝑟} is called the open ball centred at 𝑥 of radius 𝑟. The set �̅�(𝑥, 𝑟) =

{𝑦 ∈ 𝑋 | 𝑑(𝑥, 𝑦) ≤ 𝑟} is said to be the closed ball about 𝑥. 

A subset 𝑂 ⊂ 𝑋 is called open iff for every 𝑥 ∈ 𝑂 there exists an 𝑟 > 0 such that an open ball 𝐵(𝑥, 𝑟) is contained 

in 𝑂. Thus, each open ball in a metric space (𝑋, 𝑑) is an open set, and conversely, each closed ball is a closed set.  

From this and definition A.3 immediately follows that a neighbourhood of a point 𝑥 ∈ 𝑋 is any subset 𝑁 of 𝑋 that 

contains an open ball about 𝑥 as subset. Any open ball 𝐵(𝑥, 𝑟) about 𝑥 is an open neighbourhood of 𝑥. Since the 

open sets of a metric space can be defined using the notion of open balls, the following proposition holds. 

Proposition A.20. The collection of open balls 𝐵(𝑥, 𝑟) in (𝑋, 𝑑) for 𝑟 > 0 and 𝑥 ∈ 𝑋 forms a basis for a topology 

𝒯 on 𝑋. 

The topology 𝒯 is said to be the topology induced by the metric 𝑑, or alternatively the metric topology. Different 

metrics on the same set 𝑋 which induce the same topology are called equivalent.  

In general, the approach of point-set topology is to avoid the notion of distance and to only focus on the open sets, 

and thus the topology 𝒯 itself, in order to describe properties of a topological space. However, due to this additional 

structure, metric spaces have certain nice properties which are important in this thesis and discussed in the follow-

ing. 

Proposition A.21. Every metric space is first countable. Every separable metric space is second-countable. Thus, 

for metric spaces the properties of being separable and second-countable are equivalent. 

Proposition A.22. Every metric space is both Hausdorff (𝑇2) and normal (𝑇4). 
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Proposition A.23. Let (𝑋, 𝑑) be any metric space and 𝒯 the topology induced on 𝑋 by 𝑑. For any subset 𝑌 of 𝑋, 

a metric 𝑑1 on 𝑌 can be obtained by restricting 𝑑, i.e., 𝑑1(𝑥, 𝑦) = 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑌. Then, the topology 𝒯1 

induced on 𝑌 by the metric 𝑑1 is the same as the subspace topology 𝒯2 on 𝑌 (which is induced by 𝒯 on 𝑋), i.e., 

𝒯1 = 𝒯2 . 

Definition A.24 (Bounded and totally bounded subset). A subset 𝐴 of a metric space (𝑋, 𝑑) is said to be bounded 

if 𝐴 can be covered by a single open ball such that 𝐴 ⊆ 𝐵(𝑥, 𝑟) for 𝑥 ∈ 𝑋 and 𝑟 > 0. The subset 𝐴 is called totally 

bounded if 𝐴 can be covered by a finite number of open balls, that is 𝐴 ⊆ ⋃ 𝐵(𝑥𝑖 , 𝑟)
𝑛
𝑖=1  for 𝑥1, … , 𝑥𝑛 ∈ 𝑋 and 𝑟 >

0. 

Every totally bounded metric space is also bounded. Every subspace of a totally bounded metric space is totally 

bounded which makes it a hereditary property. But the property of being totally bounded is not a topological 

property, and thus not preserved under homeomorphisms. 

The boundedness of a subset 𝐴 of a metric space (𝑋, 𝑑) denotes a measure for how far the subset extends in (𝑋, 𝑑). 

Boundedness depends on the metric and is not to be confused with finiteness. The compactness of a subset, which 

was introduced as topological counterpart of finiteness, is only expressed on the topology and hence on the open 

subsets of a topological space (cf. definition A.14). Finiteness implies boundedness, but not conversely. This re-

lation is expressed in the following proposition. 

Proposition A.25. Let 𝐴 be a compact subset of a metric space (𝑋, 𝑑). Then 𝐴 is closed and bounded (Morris 

2012). 

Omitting the metric structure, this implies more generally that a compact subset of a Hausdorff topological space 

is closed. Furthermore, a closed subset of a compact space is compact in the subspace topology. For Euclidean 

space with its richer topological structure, the Heine-Borel theorem allows for rephrasing the proposition A.25 to 

determine compact subsets (cf. theorem A.30). 

Euclidean space and Euclidean topology. An essential set of metric spaces is the family of normed vector spaces. 

Definition A.26 (Norm, normed vector space). For a vector space 𝑉 over the field of real numbers, a norm is a 

map 𝑝: 𝑉 → ℝ such that for all 𝑥, 𝑦 ∈ 𝑉 and k in the field 

(i) 𝑝(𝑥) ≥ 0 and 𝑝(𝑥) = 0 iff 𝑥 = 0 (positivity), 

(ii) 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) (triangle inequality), and 

(iii) 𝑝(k𝑥) = |k|𝑝(𝑥) (positive scalability) with |∙| being the absolute value of a member in the field. 

The norm is usually denoted ‖∙‖. A normed vector space is a pair (𝑉, ‖∙‖) where 𝑉 is a vector space with a norm 

‖∙‖. It easily follows from definition A.18 that for each normed vector space, the norm induces a corresponding 

metric 𝑑 on the set 𝑉 which is given by 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, for 𝑥, 𝑦 ∈ 𝑉 (Morris 2012). 

There are several natural ways to introduce a norm on the 𝑛-dimensional real vector space ℝ𝑛. For example, for 

any real number 𝑝 ≥ 1, the 𝑝-norm of a vector 𝑥 ∈ ℝ𝑛 is given by  

‖𝑥‖𝑝 = (∑|𝑥𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

. 

For 𝑝 = 1, the resulting 1-norm is called Manhattan norm and yields the Manhattan distance. The usual norm on 

ℝ𝑛 is the 2-norm or Euclidean norm which is based on the standard inner product of a vector 𝑥 ∈ ℝ𝑛 with itself, 

also called the (Euclidean) length of the vector, and defined as 

‖𝑥‖2 = √〈𝑥, 𝑥〉 = √∑(𝑥𝑖)
2

𝑛

𝑖=1

.  

The metric induced by the Euclidean norm is called the Euclidean metric which defines a distance function for 

any two vectors 𝑥, 𝑦 ∈ ℝ𝑛 as  
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𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2 = √(𝑥1 − 𝑦1)
2 + … + (𝑥𝑛 − 𝑦𝑛)

2 = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

. 

The 𝑛-dimensional real vector space ℝ𝑛 becomes a metric space by applying this Euclidean structure. This thesis 

is concerned only with the Euclidean structure on ℝ𝑛 which is used in the following to define Euclidean 𝑛-space.  

Definition A.27 (Euclidean 𝑛-space). The 𝑛-dimensional real vector space ℝ𝑛 with the Euclidean structure is 

called Euclidean 𝑛-space for all non-negative integers 𝑛. 

In literature, Euclidean 𝑛-space is sometimes denoted 𝔼𝑛. This thesis follows the common notation to use the 

symbol ℝ𝑛 itself to refer to Euclidean 𝑛-space with the Euclidean structure being understood. By convention, ℝ0 

is the singleton set {0}. 

Based on the Euclidean norm and definition A.19, the 𝑛-dimensional open balls of the Euclidean 𝑛-space can be 

defined as follows. 

Definition A.28 (Open 𝑛-ball, open unit 𝑛-ball). An open 𝑛-ball centred at a point 𝑥 ∈ ℝ𝑛 is the set of points 

𝐵𝑛(𝑥, 𝑟) = {𝑦 ∈ ℝ𝑛 | ‖𝑦 − 𝑥‖ < 𝑟} for some 𝑟 ∈ ℝ+. The open unit 𝑛-ball about the origin is the set 𝔹𝑛 =

{𝑥 ∈ ℝ𝑛 | ‖𝑥‖ < 1}. 

The closed 𝑛-ball �̅�𝑛(𝑥, 𝑟) ⊂ ℝ𝑛 is given by �̅�𝑛(𝑥, 𝑟) = {𝑦 ∈ ℝ𝑛 | ‖𝑦 − 𝑥‖ ≤ 𝑟} and the closed unit 𝑛-ball is 

defined as �̅�𝑛 = {𝑥 ∈ ℝ𝑛 | ‖𝑥‖ ≤ 1}. Intuitively, the concept of the open and closed 𝑛-ball is analogous to the 

open and closed interval in ℝ𝑛 respectively.  

The metric topology on ℝ𝑛 which is induced by the Euclidean metric and whose basis is given by the set of open 

𝑛-balls (cf. proposition A.20) is called the Euclidean topology. The Euclidean topology is also referred to as the 

standard topology or usual topology on the Euclidean space. Since Euclidean space is a normed vector space and 

hence a metric space, it is also a topological space. Thus, it fulfils the axioms provided by definition A.1 and 

possesses all properties of metric spaces. Due to its rich topological structure, Euclidean space is even a stronger 

form of a metric space. 

The usual topology on ℝ𝑛 induces a topology on every subset as well which becomes a subspace in its own right 

(cf. proposition A.23). Unless explicitly stated otherwise, in this thesis the usual topology is assumed for subsets 

of ℝ𝑛.  

 

Figure 264: The unit 1-ball �̅�1, the unit 2-ball �̅�2 (also called closed disk), and the unit 3-ball �̅�3 (top). In ℝ𝑛, the boundary 

of a unit 𝑛-ball is an (𝑛 − 1)-dimensional sphere (bottom). Note that balls may have different shapes in different metric spaces. 

Any open 𝑛-ball in ℝ𝑛 is homeomorphic to any other open 𝑛-ball. Analogously, all closed 𝑛-balls in ℝ𝑛 are 

homeomorphic. Moreover, an open 𝑛-ball with the usual topology is homeomorphic to ℝ𝑛 itself. 

0-sphere 𝕊0 1-sphere 𝕊1 2-sphere 𝕊2

1-ball �̅�1 2-ball �̅�2 3-ball �̅�3
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Proposition A.29. Euclidean 𝑛-space ℝ𝑛 with the standard topology is second-countable.  

This proposition is easily verified by restricting the uncountable basis of all open 𝑛-balls to the set of open 𝑛-balls 

of rational centre and radius. The rational numbers form a countable dense subset of ℝ, and so does the set of 

vectors {(𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛 | 𝑥𝑖 ∈ ℚ, 𝑖 = 1, . . , 𝑛} for ℝ𝑛. Thus, Euclidean 𝑛-space is separable. Since the restricted 

set of open 𝑛-balls is countable and still forms a basis, Euclidean 𝑛-space is second-countable, which also follows 

from proposition A.21. 

An important theorem for determining compact subsets of ℝ𝑛 is the Heine-Borel theorem. 

Theorem A.30 (Heine-Borel theorem). A subspace 𝐴 ⊂ ℝ𝑛 is compact iff it is closed and bounded. 

All closed intervals [𝑎,  ], for 𝑎,   ∈ ℝ with 𝑎 <   are closed and bounded subsets of ℝ and, thus, compact spaces 

according to the Heine-Borel theorem (Morris 2012). This illustrates that the topological notion of compactness is 

more general than finiteness as [𝑎,  ] are infinite sets.  

Any open or closed 𝑛-ball in ℝ𝑛 is contained inside an open 𝑛-ball 𝐵𝑛(𝑥, 𝑟) with 𝑥 ∈ ℝ𝑛 and finite radius 𝑟 < ∞ 

(also follows from proposition A.22) and hence is a bounded subset of ℝ𝑛. Each closed 𝑛-ball is also a closed 

subset of ℝ𝑛, and it follows from the Heine-Borel theorem that all closed 𝑛-balls in ℝ𝑛 are compact spaces with 

the induced usual topology but the open 𝑛-balls are not. Any closed subset of a closed 𝑛-ball in ℝ𝑛 is compact in 

the usual topology too (cf. discussion of proposition A.25). For example, the (𝑛 − 1)-sphere as boundary of a 

closed 𝑛-ball is compact in ℝ𝑛.    

As the open unit 𝑛-ball 𝔹𝑛 is non-compact and ℝ𝑛 ≅ 𝔹𝑛, it follows that ℝ𝑛 is non-compact too because compact-

ness is invariant under homeomorphism. Non-compact topological spaces can be made compact by embedding 

them in compact spaces. Such a compactification of a non-compact space is often useful to open up the space for 

the additional properties and structures of compact spaces.  

Definition A.31 (Compactification). An embedding 𝑓: 𝑋 → 𝑌 of the topological space (𝑋, 𝒯) into the compact 

space (𝑌, 𝒯𝑌) is called a compactification of 𝑋 iff 𝑓(𝑋) ⊂ 𝑌 is a dense subset of 𝑌.  

There are different sorts of compactifications of non-compact topological spaces. The smallest compactification 

is the Alexandroff or one-point compactification on the class of locally compact Hausdorff spaces. The idea of the 

Alexandroff compactification is to adjoin a single point to the non-compact space such that the resulting space is 

compact. This extra single point is often called point at infinity and denoted {∞}. 

Definition A.32 (Alexandroff compactification). The Alexandroff or one-point compactification of a locally com-

pact, non-compact Hausdorff space (𝑋, 𝒯) is given by �̂� = (𝑋 ∪ {∞}, 𝒯1), where ∞ ∉ 𝑋, and 𝒯1 = 𝒯 ∪

{(𝑋 \ 𝐶) ∪ {∞} | 𝐶 ⊂ 𝑋  s compact}. 

The topology 𝒯1 on the set 𝑋 ∪ {∞} results from the union of the open sets 𝒯 in 𝑋 and the sets of the form (𝑋 \ 𝐶) ∪

{∞}. Since 𝑋 is required to be Hausdorff, it easily follows from proposition A.25 that any compact subset 𝐶 ⊂ 𝑋  

is closed in 𝑋 and hence 𝑋 \ 𝐶 is an open subset in 𝑋. For any open covering of �̂�, one set contains {∞} and such 

is of the form (𝑋 \ 𝐶) ∪ {∞}. In order to show that �̂� is compact, only finitely many more open sets are needed to 

cover 𝐶 in order to have a finite subcover of �̂�. Since 𝐶 is compact by definition, such a finite subfamily exists. 

Thus the Hausdorff property of 𝑋 ensures that the one-point compactification (𝑋,̂ 𝒯1) is a compact space. 

Moreover, the compactification (𝑋,̂ 𝒯1) remains Hausdorff due to the locally compact condition of (𝑋, 𝒯). First, 

since 𝑋 is Hausdorff, all 𝑥, 𝑦 ∈ �̂� possess disjoint open neighbourhoods if 𝑥, 𝑦 ∈ 𝑋. Thus, �̂� being Hausdorff only 

requires that any point 𝑥 ∈ 𝑋 can be separated from ∞. Since 𝑋 is locally compact, it follows from definition A.16 

that there exists on open neighbourhood 𝐾 around 𝑥 such that the closure 𝐾 in 𝑋 is compact. Then (𝑋 \ 𝐾) ∪ {∞} 

is an open neighbourhood of ∞ in �̂� which is disjoint from 𝐾.  

The Alexandroff compactification can be applied to Euclidean 𝑛-space ℝ𝑛 and to non-compact subsets thereof (cf. 

discussion of definition A.16). For example, the real line (−∞,+∞) = ℝ1 with the usual topology can be com-

pactified by bending its opposite ends stretching to negative and positive infinity towards each other and adding a 

point at infinity (can be intuitively thought of as unsigned infinity) which results in a compact circle. 
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The similar procedure can be applied to any open subset (𝑎,  ), with 𝑎,   ∈ ℝ1 and 𝑎 <  . In either case, the 

resulting compactified space is homeomorphic to the unit 1-sphere 𝕊1 which is compact as a closed and bounded 

subset of ℝ2. This can be generalized as follows.  

Proposition A.33. The one-point compactification of Euclidean 𝑛-space ℝ𝑛 is homeomorphic to the 𝑛-sphere 𝕊𝑛. 

(a)     (b)  

Figure 265: One-point compactification of ℝ1 (left) and ℝ2 (right).  

Proposition A.34. Euclidean 𝑛-space ℝ𝑛 is path-connected.  

The open and closed 𝑛-balls are path-connected as well. The unit 𝑛-sphere 𝕊𝑛 is path-connected for 𝑛 > 1. The 

0-sphere 𝕊0 is not connected and thus not path-connected, whereas 𝕊−1 = ∅ is connected (Lee 2011). More gen-

erally, a subspace 𝐴 ⊂ ℝ𝑛 is path-connected if it is convex in the sense that every point on the line segment con-

necting two points 𝑥, 𝑦 ∈ 𝐴 also lies in 𝐴. 

A basic foundation of Euclidean 𝑛-space is the invariance of dimension which was first proved by L. E. J. Brouwer 

in 1911 based on his theorem on the invariance of domain.  

Theorem A.35 (Invariance of dimension). If non-empty open sets 𝑈 ⊂ ℝ𝑚 and 𝑉 ⊂ ℝ𝑛 are homeomorphic, then 

𝑚 = 𝑛. 

A consequence of this theorem is that ℝ𝑚 ≇ ℝ𝑛 if 𝑚 ≠ 𝑛 (Hatcher 2008).  

A.2 Topological Manifolds 

The basic structure and nice properties of Euclidean 𝑛-space ℝ𝑛 are intuitively understood and restrict the sim-

plicity and elasticity of the set-theoretic notion of topological space as given by definition A.1. The most important 

objects in the field of algebraic topology are therefore spaces which locally look like Euclidean space. Such spaces 

are called topological manifolds and are elaborated in the following. 

Lemma A.36. A topological space (𝑋, 𝒯) is locally Euclidean of dimension 𝑛 iff there exists a non-negative integer 

𝑛 such that each point 𝑥 ∈ 𝑋 has an open neighbourhood homeomorphic to the open unit 𝑛-ball in ℝ𝑛. 

The property of being locally Euclidean requires the topological space to resemble Euclidean 𝑛-space at a small 

enough scale. However, the global structure of the space may be more complex and, thus, need not be homeo-

morphic to ℝ𝑛.  

Definition A.37 (Topological manifold). An 𝑛-dimensional topological manifold 𝑀 is a second-countable 

Hausdorff space that is locally Euclidean of dimension 𝑛. 

In literature, the term topological manifold is used to differentiate manifolds satisfying the above definition from 

manifolds having an additional structure such as differentiable, smooth, or complex manifolds. The latter types of 

manifolds are outside the scope of this thesis, and thus the terms 𝑛-manifold or just manifold (in case the dimension 

is understood or irrelevant) are equivalently used throughout this thesis to refer to a topological manifold. 

Obviously, the prototypical example of an 𝑛-manifold is ℝ𝑛 itself with the usual topology. In fact, any open subset 

of ℝ𝑛 with the induced usual topology also satisfies definition A.37 because the properties of being Hausdorff and 

second-countable are hereditary. This can even be generalized to open subsets of an 𝑛-manifold (cf. Lee 2011). 

Proposition A.38. Every open subset of an 𝑛-manifold is an 𝑛-manifold. 

𝑋 ≅ ℝ1

−∞ +∞

�̂� ≅ 𝕊1

−∞ +∞
∞

( )

𝑋 ≅ ℝ2 �̂� ≅ 𝕊2

∞
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A manifold is a topological space in its own right, irrespective of whether or not it is a subset of another space. 

Examples for topological 𝑛-manifolds according to definition A.37 are the open line and the circle (closed loop) 

which are both 1-manifolds. The plane and any open disk are 2-manifolds. The interior of a solid ball is a 3-

manifold whereas its boundary, the 2-sphere, is a 2-manifold as is the open cylinder surface. 

 

Figure 266: Examples of topological manifolds of different dimensions. 

The definition A.37 given above allows a topological manifold to be either a connected or a disconnected topo-

logical space. In the connected case, the dimension 𝑛 of the manifold is constant and an intrinsic property of the 

manifold. For a disconnected manifold the components are required to be of the same dimension in the context of 

this thesis, although more general definitions can be found in literature (cf. Morris 2012 with further references). 

This allows imposing the invariance of dimension theorem (cf. theorem A.35) on topological manifolds which 

makes their dimension a topological property. 

Proposition A.39. If 𝑚 ≠ 𝑛, a non-empty topological space cannot be an 𝑚-manifold and an 𝑛-manifold (Lee 

2011). 

An example for a disconnected 2-manifold in ℝ3 is the 2-sphere with a contained circle removed. 

Counterexamples for non-manifold spaces are the union of the 𝑥-axis and the 𝑦-axis in ℝ2, the conical surface in 

ℝ3, and the space described by two cuboids sharing a common edge in ℝ3, all with their Euclidean topology. 

 

Figure 267: Examples of non-manifold spaces which are not locally Euclidean at every point (depicted in red). 

It follows from definition A.37 that closed 𝑛-balls in ℝ𝑛 with the usual topology do not satisfy the requirements 

of a topological 𝑛-manifold as given above, because they are not locally Euclidean at their boundary points. How-

ever, closed 𝑛-balls as well as subsets of ℝ𝑛 homeomorphic to a closed 𝑛-ball are important objects in geometric 

and solid modelling. Thus, a more generalized definition of a topological manifold is given in the following. 

Definition A.40 (Topological manifold with boundary). An 𝑛-dimensional topological manifold 𝑀 with boundary 

is a second-countable Hausdorff space in which each point has an open neighbourhood homeomorphic to either 

an open subset of ℝ𝑛 or to an open subset of the half-space ℝ+
𝑛 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ

𝑛 | 𝑥𝑛 ≥ 0}, for some non-

negative integer 𝑛. 

This definition of an 𝑛-manifold with boundary is broader than definition A.37 because the boundary can be the 

empty set ∅, and thus a topological manifold in the sense of definition A.37 can be described as 𝑛-manifold with 

Open line 𝔹1 1-sphere 𝕊1

2-sphere 𝕊2

Open 2-disk 𝔹2 Open 2-cylinder

Open 3-ball 𝔹3

( )

(
)
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empty boundary or without boundary. This thesis employs the generalized meaning of topological manifolds as 

given in definition A.40. 

The simplest example for an 𝑛-manifold with boundary is ℝ+
𝑛  itself with the usual topology. Further examples are 

the closed disk (circle plus interior) in ℝ2 and a solid 3-ball (2-sphere plus interior) in ℝ3. 

 

Figure 268: Examples of topological manifolds with boundary in two and three dimensions. On the left, the 2-dimensional 

neighbourhood of an interior point and a boundary point are depicted in red. 

Definition A.41 (Interior and boundary of an 𝑛-manifold with boundary). An 𝑛-dimensional topological manifold 

M with boundary decomposes into two disjoint subsets called the interior and the boundary of 𝑀 which are defined 

as follows: 

(i) The interior points are exactly those points in 𝑀 which have an open neighbourhood homeomorphic to 

an open subset of ℝ𝑛. The set of interior points is said to be the interior of 𝑀 and is denoted Int(𝑀).  

(ii) The boundary of 𝑀 is the set of points contained in the complement of Int(𝑀) in 𝑀 and is denoted 𝜕𝑀.  

Int(𝑀) is an open subset of 𝑀, and thus 𝜕𝑀 = 𝑀 \ 𝐼𝑛𝑡(𝑀) is closed in 𝑀. Since Int(𝑀) and 𝜕𝑀 are disjoint 

subsets whose union is 𝑀, the following theorem for the invariance of the boundary can be deduced (Lee 2011). 

Theorem A.42 (Invariance of the boundary). Let 𝑀 be an 𝑛-manifold with boundary, then a point 𝑥 ∈ 𝑀 is either 

an interior point or a boundary point, but neither both nor none.  

From this and the invariance of dimension (cf. proposition A.39) it follows that a homeomorphism between two 

manifolds with boundary carries boundary points to boundary points. 

Both the set of boundary points and interior points describe manifold spaces themselves. For example, the closed 

unit 𝑛-ball �̅�𝑛 is an 𝑛-manifold with boundary for which 𝜕�̅�𝑛 = 𝕊𝑛−1 and 𝕊𝑛−1 is an (𝑛 − 1)-manifold without 

boundary. The interior 𝐼𝑛𝑡(�̅�𝑛) is the open unit 𝑛-ball 𝔹𝑛, which itself is an 𝑛-manifold without boundary. This 

correlation generally holds for any 𝑛-manifold.  

Proposition A.43. Let 𝑀 be an 𝑛-manifold with boundary, then Int(𝑀) is an 𝑛-dimensional manifold without 

boundary, and 𝜕𝑀 is an (𝑛 − 1)-dimensional manifold without boundary. 

If 𝑀 is a 0-dimensional manifold with boundary, then it is a discrete space which is made up of one or more 

isolated points. In this case, each point in 𝑀 has an open neighbourhood homeomorphic to ℝ0, and thus 𝐼𝑛𝑡(𝑀) =

𝑀. Correspondingly, 𝜕𝑀 = ∅, as it should be for a (−1)-dimensional manifold.  

The meaning of interior and boundary of a topological manifold is distinctively different from the meaning of 

both terms in general point-set topology as introduced in definition A.5 which refers to subsets of topological 

spaces. In order to distinguish both meanings, in literature the terms topological interior and topological boundary 

are sometimes used in reference to definition A.5, whereas manifold interior and manifold boundary represent the 

meaning as given in definition A.41.  

The topological boundary of a manifold must not necessarily coincide with its manifold boundary. For example, 

the closed disk  ̅2 is a 2-manifold with boundary whose manifold boundary 𝛿 ̅2 = 𝑆1 is the 1-dimensional circle. 

2-ball �̅�2 3-ball �̅�3
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If  ̅2 is regarded as topological space on its own, then its topological boundary is empty. In contrast, the topolog-

ical boundary is also the circle if  ̅2 is considered as subset of ℝ2. As subset of ℝ3, the topological boundary is 

even the entire disk itself (cf. Lee 2011). 

Definition A.44 (Open and closed manifold). A manifold without boundary is called closed if it is compact, and 

open if it is non-compact.  

Again, both terms must not be confused with the notion of open and closed subsets of a topological space as 

defined in general point-set topology and introduced in definition A.1 and definition A.2.  

The following example easily follows from the machinery developed so far: The closed unit 𝑛-ball �̅�𝑛 as subspace 

of ℝ𝑛 with the induced usual topology is compact according to the Heine-Borel theorem (cf. theorem A.30). It is 

also a compact 𝑛-manifold in ℝ𝑛 but not a closed manifold because it has the unit (𝑛 − 1)-sphere 𝕊𝑛−1 as (mani-

fold) boundary. For 𝑛 > 1, 𝕊𝑛−1 itself is a compact and boundaryless manifold in ℝ𝑛, and thus a prototypical 

example of a closed manifold. The open unit 𝑛-ball 𝔹𝑛 as (manifold) interior of �̅�𝑛 is an open manifold because 

it is boundaryless but non-compact in ℝ𝑛.  

Proposition A.45. Every topological manifold with or without boundary is locally compact (Lee 2011). 

From this proposition and definition A.40 it follows that a topological manifold is a locally compact Hausdorff 

space and hence the one-point compactification can be applied to non-compact topological manifolds.  

Some more general definitions of topological manifolds in literature do not require the manifold to be Hausdorff 

or second-countable as stated in definition A.40. However, such manifold spaces are often considered pathological 

in the sense that they not conform to an intuitive spatial understanding, and thus are ruled out for the course of this 

thesis. Since Euclidean 𝑛-space is both Hausdorff and second-countable, an 𝑚-manifold not satisfying one or both 

requirements would not be realizable as locally Euclidean subset in ℝ𝑛. In fact, according to the Whitney embed-

ding theorem both properties ensure that any 𝑚-manifold embeds in some finite-dimensional Euclidean 𝑛-space 

with 𝑚 ≤ 𝑛 (Skopenkov 2008), and it can be shown that every topological 𝑚-manifold following the definition 

A.40 is homeomorphic to some subset of a Euclidean 𝑛-space (e.g., Lee 2011, Munkres 1984).  

This thesis is concerned only with 𝑚-dimensional manifolds 𝑀 which are themselves subsets of Euclidean 𝑛-space 

ℝ𝑛 for some finite 𝑛 and 𝑚, with 0 ≤ 𝑚 ≤ 𝑛, and which have the topology induced by the usual topology on ℝ𝑛. 

Although the manifold definition given in this chapter aims at describing a manifold as a topological space on its 

own independent of its surrounding space, the focus of this thesis is restricted to 𝑚-manifolds living in ℝ𝑛. If 𝑀 ⊂

ℝ𝑛, then ℝ𝑛 is said to be the ambient space of 𝑀. Since the properties of being Hausdorff and second-countable 

are hereditary as shown above, both properties can be taken for granted for subsets of Euclidean space, and thus 

for any topological 𝑚-manifold of interest in this thesis. 

A.3 Cell Complexes and CW Complexes 

Many topological spaces can be constructed by attaching or “gluing” together subsets, each with a simple topology, 

“nicely” along their boundaries. Such subsets are commonly called cells and topological spaces which result from 

an aggregation of cells and hence have a cellular topology are said to be cell complexes. The decomposition of the 

topological space into cells results in a combinatorial structure which makes such spaces especially interesting 

because important invariant properties classifying the topological space itself can be deduced from the simple 

information about how the cells are attached to each other. Thus, the combinatorial structure also helps to accel-

erate the algorithmic computation of topological properties (Lee 2011). Cell complexes are a rich field of study 

and a main tool in algebraic topology (Hatcher 2008), and many authors have proposed cell complexes for the 

spatial modelling of shapes and solid objects. 

The primary building blocks of cellular spaces are cells of dimension 𝑛. A cell is a topological space in its own 

right but it is also a subspace of the larger topological space which is built up inductively from a collection of cells.  

Definition A.46 (Open and closed 𝑛-cell). An open 𝑛-cell is any topological space homeomorphic to the open unit 

𝑛-ball 𝔹𝑛. A closed 𝑛-cell is any space homeomorphic to the closed unit 𝑛-ball �̅�𝑛. The non-negative integer 𝑛 is 

called the dimension of the 𝑛-cell. 
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More concisely, an open 𝑛-cell is the image of the open unit 𝑛-ball 𝔹𝑛 under a homeomorphism of its closure into 

ℝ𝑛. This emphasises the fact that an 𝑛-cell itself not necessarily is a subspace of Euclidean space in which the 

open unit 𝑛-ball 𝔹𝑛 has been defined (cf. definition A.28). In literature, sometimes the notion of an open (closed) 

topological 𝑛-ball as subset of some topological space 𝑋 (whose topology need not be induced by a metric) is 

introduced which is defined to be homeomorphic to an open (closed) Euclidean 𝑛-ball. In this general sense, an 

open (closed) 𝑛-cell is an open (closed) topological 𝑛-ball. 

Similar to the terminology used for topological manifolds, the terms 𝑛-dimensional cell or just cell (in case the 

dimension is understood or irrelevant) are equivalently used for 𝑛-cells throughout this thesis. 

From the discussion of topological 𝑛-manifolds, the notion of the interior and boundary of a closed 𝑛-cell as 

topological space on its own can be deduced. 

Definition A.47 (Interior and boundary of a closed 𝑛-cell). Let 𝑒 be a closed 𝑛-cell. Since per definition 𝑒 ≅ �̅�𝑛, 

and �̅�𝑛 is a compact 𝑛-manifold with boundary, so is 𝑒. From definition A.41 and proposition A.43 it follows that 

𝐼𝑛𝑡(�̅�𝑛) = 𝔹𝑛 and 𝜕�̅�𝑛 = 𝕊𝑛−1. Under some homeomorphism 𝑓: �̅�𝑛 → 𝑒, the image of 𝔹𝑛 is the interior of 𝑒 

denoted 𝐼𝑛𝑡(𝑒), and equivalently the image of 𝕊𝑛−1 is the boundary of 𝑒 denoted 𝜕𝑒. 

It easily follows that 𝜕𝑒 ≅ 𝕊𝑛−1, and that 𝐼𝑛𝑡(𝑒) ≅ 𝔹𝑛 is an open 𝑛-cell. Due to the invariance of boundary (cf. 

theorem A.42), the boundary and interior are well defined and disjoint subsets of closed 𝑛-cells (Lee 2011). Alt-

hough 𝑛-cells are topological 𝑛-manifolds with or without boundary, the converse obviously need not be true. The 

definition of an 𝑛-cell is much stricter in such the entire topological space described by the cell has to be homeo-

morphic to an open or closed Euclidean 𝑛-ball whereas topological manifolds are only required to have open 

neighbourhoods for each point that are homeomorphic to the open or half-closed 𝑛-ball. 

In literature, cell complexes are often defined by describing the procedure of how to inductively form a topological 

space 𝑋 from cells of increasing dimensions (e.g., Hatcher 2008). Starting with the empty set ∅, a discrete space 

𝑋0 is built from attaching disjoint 0-cells to the empty set which are basically singleton sets. 𝑋1 results from 

unioning 1-cells whose boundaries are identified to lie on these points. Attaching 2-cells forms a new space 𝑋2 by 

identifying the boundary of each 2-cell into the collection of cells of lower dimension, and so on. A more technical 

definition of a cell complex is given as follows (Lee 2011). 

Definition A.48 (Cell complex). A cell complex is a pair (𝑋, ℰ) where 𝑋 is a topological space together with a 

partition ℰ of 𝑋 into subspaces that are open cells of various dimensions and whose disjoint union is 𝑋 (called cell 

decomposition of 𝑋), such that the following conditions are satisfied: 

(i) 𝑋 is Hausdorff,  

(ii) for each open 𝑛-cell 𝑒 ∈ ℰ and 𝑛 ≥ 0, there exists a continuous map 𝜙𝑒: �̅�
𝑛 → 𝑋 (called the characteristic 

map for 𝑒) that restricts to a homeomorphism from 𝐼𝑛𝑡(�̅�𝑛) onto 𝑒, and maps 𝜕�̅�𝑛 into the union of all 

cells of ℰ of dimension strictly less than 𝑛. 

The space 𝑋 is said to be the underlying space of the cell complex. The open cells contained in ℰ are often simply 

called the “cells of 𝑋” (Lee 2011). Although 𝑋 is partitioned by open cells, this does not imply that each open cell 

𝑒 ∈ ℰ is also an open subset of 𝑋 in the sense of general point-set topology.  

The cell complex (𝑋, ℰ) is said to be finite-dimensional if there is a non-negative integer 𝑛 such that all cells in 𝑋 

are at most of dimension 𝑛. In case of a cell complex being finite-dimensional, the largest 𝑛 is called the dimension 

of the cell complex.  

Definition A.49 (𝑛-skeleton 𝑋𝑛). The 𝑛-skeleton 𝑋𝑛 of a cell complex (𝑋, ℰ) is the subspace 𝑋𝑛 ⊆ 𝑋 consisting 

of the union of all cells in ℰ of dimension less or equal to 𝑛. 

The Hausdorff property is imposed on cell complexes in order to rule out pathological cases which are not con-

formant with the inductive construction of cell complexes. Due to the main theorem on compactness (cf. theorem 

A.15), 𝜙𝑒 takes the compact set �̅�𝑛 to a compact set in 𝑋. Since 𝑋 is Hausdorff, the image 𝜙𝑒(�̅�
𝑛) is closed in 𝑋 

(cf. generalization of proposition A.25). Thus, the image of a characteristic map for 𝑒 is equal to the closure of 𝑒 

in 𝑋, such that 𝜙𝑒(�̅�
𝑛) = �̅� (cf. Lee 2011). 
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The restriction of the characteristic map to its boundary 𝜕�̅�𝑛 (= 𝕊𝑛−1) is called the attaching map and is denoted 

𝜑𝑒 = 𝜙𝑒|𝕊𝑛−1 ∶ 𝕊
𝑛−1 → 𝑋𝑛−1. Intuitively, the attaching map defines how an open 𝑛-cell is glued to the open cells 

contained in the (𝑛 − 1)-skeleton. From condition (ii) of definition A.48 it follows that 𝜙𝑒(𝐼𝑛𝑡(�̅�
𝑛)) = 𝑒 and 

𝜑𝑒(𝕊
𝑛−1) ∩ 𝑒 = ∅. Thus, the image of 𝜑𝑒 for 𝑒 can be given as 𝜑𝑒(𝕊

𝑛−1) = �̅� \ 𝑒. The image �̅� \ 𝑒 of the attaching 

map is said to be the cell boundary of 𝑒 and it is a closed subset which lies in 𝑋𝑛−1 (Jänich 2012). 

It is important to note that the terminology, although well established in literature, can be confusing. The cell 

boundary of an open cell 𝑒 ∈ ℰ as defined above need not be equal to the topological boundary of 𝑒 as subset of 

the topological space (𝑋, ℰ). This follows from the fact that 𝑒 is not necessarily an open subset in 𝑋. Moreover, 

𝜙𝑒 is not required to be injective on the cell boundary per definition. This means that the cell boundary is not 

required to be a homeomorphic image of 𝕊𝑛−1 but just a continuous image, and thus the closure 𝑒̅ need not be a 

closed cell (Lee 2011). Hence the notion of the cell boundary of an open cell is distinct from the boundary of a 

closed cell as introduced in definition A.47. 

For example, assume the attaching map 𝜑𝑒 for an open 1-cell 𝑒 maps 𝜕�̅�1 (= 𝕊0) onto a single 0-cell which 

intuitively results in a closed circle. Then obviously the cell boundary of 𝑒 is not homeomorphic to 𝕊0, and the 

closure �̅� is not a closed cell. This also immediately follows from the definition of closed cells (cf. definition A.46) 

because �̅� ≅ 𝕊1 ≇ �̅�1.  

 

Figure 269: Two attaching maps for an open 1-cell 𝑒. On the left, 𝜑𝑒 carries 𝜕�̅�1 onto a single 0-cell and thus �̅� ≅ 𝕊1. On the 

right, 𝜑𝑒 carries 𝜕�̅�1 onto a homeomorphic image of 𝕊0 and thus the closure �̅� is a closed cell. 

Definition A.50 (Finite and locally finite cell complex). A cell complex (𝑋, ℰ) is said to be finite if its cell decom-

position ℰ only contains finitely many open cells. It is said to be locally finite if each point 𝑥 ∈ 𝑋 is contained in 

a finite number of cell closures. 

In order to ensure that infinite cell complexes are well-behaved, two more restrictions called closure finiteness and 

weak topology are introduced. A cell complex satisfying both properties is said to be a CW complex. CW com-

plexes were first introduced by J. H. C. Whitehead in 1949 (Whitehead 1949) and can be defined as follows based 

on the notion of cell complexes. 

Definition A.51 (CW complex). A CW complex is a cell complex (𝑋, ℰ) which additionally satisfies the following 

properties: 

(i) (Closure finiteness). The closure �̅� of each cell 𝑒 ∈ ℰ is contained in a union of finitely many cells. 

(ii) (Weak topology). A subset 𝐴 ⊂ 𝑋 is closed iff every intersection 𝐴 ∩ �̅� is closed in 𝑋 for every 𝑒 ∈ ℰ. 

Condition (i) can be equivalently rephrased by stating that the cell boundary �̅� \ 𝑒 of every open cell 𝑒 ∈ ℰ is 

contained in the union of finitely many cells of lower dimension. For every locally finite and hence finite cell 

complex, both properties are automatically satisfied (Jänich 2012). 

For an 𝑛-dimensional CW complex the following proposition on the correlation between open cells and open 

subsets holds. 

Proposition A.52. Let 𝑋 be an 𝑛-dimensional CW complex. Then every 𝑛-cell of 𝑋 is an open subset of 𝑋. 

In any CW complex, subspaces can be easily derived based on the cellular structure of the entire space. Such 

subspaces are called subcomplexes and are defined as follows. 

 -cell

 -cell  

�̅� ≅ 𝕊1 ≇ �̅�1

 -cell  

 -cell

�̅� ≅ �̅�1
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Definition A.53 (Subcomplex). A subcomplex of a CW complex 𝑋 is a subspace 𝐴 ⊆ 𝑋 which is a union of cells 

of 𝑋, such that the closure of each cell in 𝐴 is contained in 𝐴. 

For each cell in 𝐴, the image of its attaching map is also contained in the subcomplex 𝐴. It follows that a subcom-

plex is a union of closed sets of 𝑋 and hence is closed in 𝑋 itself. Together with the induced subspace topology 

and the cell decomposition inherited from 𝑋, the subcomplex 𝐴 is itself a CW complex (Lee 2011, Hatcher 2008). 

Both the union and the intersection of any collection of subcomplexes result in subcomplexes.  

Due to the closure finiteness property of CW complexes, the closure �̅� of each open cell is contained in a finite 

subcomplex. The 𝑛-skeleta of a CW complex as given by definition A.49 are prototypical examples of subcom-

plexes. It follows from proposition A.52, that the open 𝑛-cells contained in the 𝑛-skeleton are open subsets in 𝑋𝑛.  

A map between two CW complexes 𝑋 and 𝑌 identifying cells in either 𝑛-skeleton is said to be cellular and defined 

as follows. 

Definition A.54 (Cellular map). Let 𝑋 and 𝑌 be two CW complexes. Then the continuous map 𝑓: 𝑋 → 𝑌 is said to 

be cellular iff it takes the 𝑛-skeleton of 𝑋 to the 𝑛-skeleton of 𝑌, i.e. 𝑓(𝑋𝑛) ⊆ 𝑌𝑛, for all non-negative integers 𝑛.   

Proposition A.55. Let 𝑋 be a CW complex. Then 𝑋 is compact iff it is finite. A subset of 𝐴 ⊆ 𝑋 is compact iff it 

is closed and contained in a finite subcomplex. 

The proposition implies that compactness is preserved under attaching finitely many cells. Every finite subcomplex 

of a CW complex is obviously compact because it is built from the union of finitely many compact sets of the form 

�̅� (Lee 2011). 

Instead of studying whether a given topological space 𝑋 together with some cell decomposition ℰ is a CW com-

plex, the following theorem provides a formalisation for an inductive approach to build up CW complexes based 

on the machinery developed so far (cf. Lee 2011). 

Theorem A.56 (Construction theorem for CW complexes). Let 𝑋0 ⊆ 𝑋1 ⊆ ⋯ ⊆ 𝑋𝑛−1 ⊆ 𝑋𝑛 ⊆ ⋯ be a sequence 

of topological spaces. Then 𝑋 = ⋃ 𝑋𝑛𝑛  is a CW complex whose 𝑛-skeleton is 𝑋𝑛 for each 𝑛, iff the following 

conditions hold: 

(i) 𝑋0 is a non-empty discrete space (thus containing at least one 0-cell). 

(ii) For each 𝑛 ≥ 1, 𝑋𝑛 is obtained from 𝑋𝑛−1 by attaching a (possibly empty) collection of 𝑛-cells.  

The way cells are glued together in a CW complex can be further restricted by requiring the characteristic map 𝜙𝑒 

of each open 𝑛-cell 𝑒 ∈ ℰ to be a homeomorphism onto its image �̅� (and thus an embedding). Since the character-

istic map homeomorphically maps the interior of �̅�𝑛 onto 𝑒 per definition (cf. definition A.48), this especially 

requires the image of the attaching map 𝜑𝑒 to be homeomorphic to the (𝑛 − 1)-sphere, and thus 𝜑𝑒(𝕊
𝑛−1) =

(�̅� \ 𝑒) ≅ 𝕊𝑛−1. In this case, the closure �̅� is homeomorphic to the closed 𝑛-ball �̅�𝑛 which makes it a closed cell. 

An open cell which admits such an attaching map is called a regular cell. 

Definition A.57 (Regular CW complex). A CW complex is said to be a regular CW complex if each of its open 

cells 𝑒 is regular, and the closure of each open cell �̅� is a finite subcomplex. 

In a regular CW complex (𝑋, ℰ), the image of the characteristic map 𝜙𝑒 of each open cell 𝑒 ∈ ℰ is equal to a closed 

cell and each open cell meets every 0-cell in ℰ at most once. A regular CW complex is said to have the intersection 

property iff the non-empty intersection of any two closed cells in 𝑋 is also a closed cell. Such CW complexes are 

also called proper. 

The example below shows different CW decompositions for the 2-sphere. 
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Figure 270: Different CW decompositions of the 2-sphere 𝕊2 (from left to right: minimal CW complex with one 0-cell and one 

2-cell, regular CW complex with two cells per dimension, and proper CW complex containing six 0-cells, twelve 1-cells, and 

eight 2-cells). 

Proposition A.58. Let 𝑋 be a CW complex. Then the following are equivalent. 

(i) The 1-skeleton is connected. 

(ii) 𝑋 is connected. 

(iii) 𝑋 is path-connected. 

As stated at the beginning of this chapter, the closed and open 𝑛-cells can be characterized as topological 𝑛-

manifolds with or without boundary. However, the topological space derived by a CW decomposition need not be 

manifold itself. This fact is independent from whether the CW complex itself is regular or even proper. The fol-

lowing proposition restricts a CW complex to have a manifold as underlying space. 

Proposition A.59. A finite, locally Euclidean CW complex is a topological manifold. 

Every CW complex is Hausdorff by definition. If a CW complex is finite, then it only has countably many open 

cells and thus is separable. Moreover, due to the finiteness property there are only finitely many open sets, and this 

implies that the CW complex is second-countable. Given that the CW complex is locally Euclidean, it satisfies the 

requirements of a topological manifold as provided by definition A.37. It follows from the theorem on invariance 

of dimension (cf. theorem A.35), that the dimension of the underlying topological manifold is equal to the dimen-

sion of the CW complex. 

 

Figure 271: Manifold CW complex homeomorphic to �̅�2 (left), and non-manifold CW complex (right). 

Proposition A.59 provides a check whether a CW complex is also a topological manifold. However, the converse 

question whether a topological 𝑛-manifold (with or without boundary) admits a cell decomposition is more diffi-

cult. The next chapter introduces the notion of simplicial complexes which have been used in literature to answer 

this question. 

A.4 Simplicial Complexes 

Simplicial complexes are a specialized class of complexes and were first introduced by Henri Poincaré in 1899 

(Poincaré 1899). A simplicial complex is a structure on a topological space which is constructed by gluing 𝑛-

dimensional simplices together along their boundaries. This follows the general idea of cell complexes to induc-

tively form a topological space from a collection of disjoint building blocks. However, simplicial complexes pos-

tulate more restrictive requirements than general cell complexes on the building blocks and the way the building 

blocks are attached to each other. This ensures that all topological information is encoded in terms of purely com-

binatorial data which is to be seen the main advantage of simplicial complexes (Lee 2011). From this viewpoint, 

simplicial complexes are special types of CW complexes although they preceded the work on CW complexes by 

several decades. 
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The primary building block of a simplicial complex is the 𝑛-dimensional simplex or 𝑛-simplex. Intuitively, a 0-

simplex corresponds to a single point, a 1-simplex to a straight line segment, a 2-simplex to a filled triangle, and 

a 3-simplex to a solid tetrahedron (Mäntylä 1988). An 𝑛-simplex is the generalized analog of these examples in 

any dimension. 

 

Figure 272: 0- to 3-dimensional simplices. 

Definition A.60 (𝑛-simplex). For any non-negative integer 𝑛, let {𝑣0, … , 𝑣𝑛} be a set of 𝑛 + 1 points in Euclidean 

space ℝ𝑚, 𝑚 ≥ 𝑛, whose difference vectors 𝑣1 − 𝑣0, … , 𝑣𝑛 − 𝑣0 are linearly independent. Then the smallest con-

vex set in ℝ𝑚 containing the points 𝑣0, … , 𝑣𝑛 is called 𝑛-dimensional simplex or 𝑛-simplex, and is given by the set 

[𝑣0, … , 𝑣𝑛] = {𝜆0𝑣0 +⋯+ 𝜆𝑛𝑣𝑛 ∈ ℝ
𝑚 |  ∑ 𝜆𝑖 = 1𝑖  and 𝜆𝑖 ≥ 0 fo  all 𝑖}.  

Each of the points 𝑣𝑖 is called a vertex of the 𝑛-simplex. The integer 𝑛 denotes the dimension of the simplex and 

is always one less than the number of its vertices. The coefficients 𝜆𝑖 are the barycentric coordinates of a point 

𝑥 = ∑ 𝜆𝑖𝑣𝑖𝑖  in [𝑣0, … , 𝑣𝑛] (Hatcher 2008). The empty set ∅ is defined as simplex of dimension −1 having 0 ver-

tices. As subset of the ambient space ℝ𝑚, any 𝑛-simplex is equipped with the induced usual topology. 

An important example for an 𝑛-simplex is the standard 𝑛-simplex △𝑛 which is defined as follows. 

Definition A.61 (Standard 𝑛-simplex △𝑛). The standard 𝑛-simplex △𝑛= {(𝜆0, … , 𝜆𝑛) ∈ ℝ
𝑛+1 |  ∑ 𝜆𝑖 =𝑖

1  and 𝜆𝑖 ≥ 0 fo  all 𝑖} is the convex hull of the positive unit coordinate vectors in ℝ𝑛+1. 

Any 𝑛-simplex can be realized as the image of △𝑛 under a homeomorphism, and, consequently, any two 𝑛-sim-

plices are homeomorphic. Similar to the cells in a cell complex, every 𝑛-simplex is a topological space in its own 

right. It immediately follows from the above definition that the standard 𝑛-simplex as topological space is home-

omorphic to the closed unit 𝑛-ball, i.e. △𝑛≅ �̅�𝑛. Consequently, an 𝑛-simplex is a compact 𝑛-manifold with bound-

ary and the following proposition on the relation between 𝑛-simplices and 𝑛-cells holds. 

Proposition A.62. Every 𝑛-simplex is a closed 𝑛-cell (Lee 2011). 

It is important to note that the 𝑛-simplex as building block of a simplicial complex distinctively differs from the 

building blocks of general cell decompositions which are open cells per definition A.48. 𝑛-simplices are always 

understood to be closed simplices respectively closed cells (Lee 2011). Moreover, an inherent property of an 𝑛-

simplex is its facial structure which is defined in the following and which is irrelevant for general cell decompo-

sitions. 

Definition A.63 (Face, proper face). Each non-empty subset of the 𝑛 + 1 vertices of △𝑛 spans a 𝑘-simplex △𝑘 

with 0 ≤ 𝑘 ≤ 𝑛 which is called a face of △𝑛. Any face not equal to △𝑛 itself is called a proper face of △𝑛. 

The 0-dimensional faces of △𝑛 are just the set of its vertices. The 1-dimensional faces are called the edges of △𝑛, 

whereas the (𝑛 − 1)-dimensional faces of △𝑛 are said to be its boundary faces. Based on the notion of faces, the 

boundary and interior of △𝑛 as well as an open 𝑛-simplex can be specified. 

Definition A.64 (Boundary and interior of △𝑛, open 𝑛-simplex). The union of all boundary faces of △𝑛 (equiva-

lently, the union of all its proper faces) is called the boundary of △𝑛 and is denoted 𝜕 △𝑛. The interior 𝐼𝑛𝑡(△𝑛) is 

the set △𝑛− 𝜕 △𝑛. An open 𝑛-simplex is exactly the interior of an 𝑛-simplex.  

The boundary of △𝑛 as defined above is equal to its manifold boundary. For example, the boundary of a 1-simplex 

consists of its two vertices, and thus an open 1-simplex is a line segment minus its vertices. Since the boundary of 

a 0-simplex is the empty set ∅, the open 0-simplex is the same as the (closed) 0-simplex. 

 -simplex  -simplex  -simplex  -simplex
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Analogous to the discussion of cells, the introduced terms and concepts may not be confused. Unless 𝑛 = 𝑚, an 

open 𝑛-simplex is not an open subset of its ambient topological space ℝ𝑚, neither are the boundary and the interior 

of an 𝑛-simplex equal to its topological boundary and interior as subset of ℝ𝑚 in the sense of general point-set 

topology (Lee 2011). 

Definition A.65 (Orientation of an 𝑛-simplex, natural orientation). Two linear orderings of the vertex set 

{𝑣0, … , 𝑣𝑛} of an 𝑛-simplex are called equivalent, if they differ by an even permutation. The equivalence classes 

are said to be the orientations of the 𝑛-simplex (Hatcher 2008). 

Obviously, for 𝑛 > 0 exactly two orientations are constituted on every 𝑛-simplex by the ordering of its vertices. 

The natural orientation of an n-simplex given by 𝑣0 < ⋯ < 𝑣𝑛 is denoted [𝑣0, … , 𝑣𝑛], whereas a minus sign is 

commonly used as prefix to denote the reversed orientation, i.e. −[𝑣0, … , 𝑣𝑛]. For example, for a 2-simplex this 

means that [𝑣1, 𝑣2, 𝑣0] = [𝑣0, 𝑣1, 𝑣2] but [𝑣0, 𝑣1, 𝑣2] = −[𝑣0, 𝑣2, 𝑣1]. So, generally, swapping two vertices as well 

as applying an on odd number of two-vertex swaps reverses the orientation. 

The natural orientation of an 𝑛-simplex also induces an orientation on all of its boundary faces. 

Definition A.66 (Induced orientation). Given an oriented 𝑛-simplex [𝑣0, … , 𝑣𝑛], the induced orientation on the 𝑖-

th boundary face 𝜏𝑖 spanned by the vertex set {𝑣0, … , �̂�𝑖 , … , 𝑣𝑛} (where the hat sign “   ̂” marks the missing vertex 

𝑣𝑖) is defined to be (−1)𝑖[𝑣0, … , �̂�𝑖 , … , 𝑣𝑛]. 

When applied to an oriented 2-simplex [𝑣0, 𝑣1, 𝑣2], the induced orientations on its edges are [𝑣0, 𝑣1], [𝑣1, 𝑣2], and 

−[𝑣0, 𝑣2] = [𝑣2, 𝑣0]. Also note that an oriented 1-simplex [𝑣0, 𝑣1] induces the orientation −[𝑣0] onto its first ver-

tex and [𝑣1] onto its terminal vertex, and, thus, also a 0-simplex receives two distinct induced orientations. The 

following figure sketches both examples.  

 

Figure 273: Induced orientations for an oriented 1-simplex (left) and an oriented 2-simplex (right). 

Definition A.67 (Oriented boundary). Let 𝜎𝑛 be an oriented 𝑛-simplex. Then the oriented boundary 𝜕𝜎𝑛  is the 

set of all boundary faces with the induced orientation, given by 𝜕𝜎𝑛 = ∑ (−1)𝑖[𝑣0, … , �̂�𝑖, … , 𝑣𝑛]
𝑛
𝑖=0 . 

Finally, a simplicial complex is defined as collection of disjoint 𝑛-simplices. 

Definition A.68 (Euclidean simplicial complex). A (Euclidean) simplicial complex is a collection 𝒦 of simplices 

in some Euclidean space ℝ𝑚, with 𝑚 ≥ 0, such that 

(i) for any face 𝜎 ∈ 𝒦 also all faces 𝜏 ⊆ 𝜎 are in 𝒦,  

(ii) for any two faces 𝜎, 𝜎′ ∈ 𝒦 the non-empty intersection 𝜎 ∩ 𝜎′ is a face of 𝜎 and 𝜎′ (intersection property), 

and 

(iii) 𝒦 is a locally finite collection. 

A simplicial complex containing only finitely many simplices is called finite simplicial complex and condition (iii) 

is redundant in such cases. The dimension of 𝒦 is the largest dimension of a simplex in 𝒦 and obviously is no 

greater than 𝑚. A subcomplex 𝒦′ ⊆ 𝒦 is defined as non-empty subset of 𝒦 for which (i) holds and, thus, which 

is a simplicial complex on its own. The 𝑛-skeleton of 𝒦 is the subcomplex which consists of all simplices of 𝒦 of 

dimension at most 𝑛, with 𝑛 ≤ 𝑚. 

To give an 𝑛-dimensional simplicial complex 𝒦 an orientation requires two 𝑛-simplices 𝜎, 𝜎′ ∈ 𝒦 sharing a com-

mon boundary face 𝜏 to induce opposite orientations on 𝜏, i.e. to be consistently oriented. 

𝑣0 𝑣1

𝑣2

𝑣0, 𝑣1

𝑣1, 𝑣2− 𝑣0, 𝑣2−𝑣0 +𝑣1
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Definition A.69 (Orientation, orientable). Let 𝒦 be an 𝑛-dimensional Euclidean simplicial complex. An orienta-

tion of 𝒦 is a consistent choice of orientation on each 𝑛-simplex. If 𝒦 admits an orientation, it is said to be 

orientable. 

Each simplicial complex 𝒦 is completely determined up to homeomorphism by its face poset (partially ordered 

set) which is the set of all faces of 𝒦 ordered by inclusion. Thus, simplicial complexes can be described by the 

purely combinatorial data of how 𝑛-simplices are inductively attached to (𝑛 − 1)-simplices starting from a discrete 

set of vertices.  

Definition A.70 (Polyhedron of a simplicial complex). Let 𝒦 be a Euclidean simplicial complex in ℝ𝑚. Then the 

union of all simplices in 𝒦 together with the subspace topology induced from ℝ𝑚 is a topological space called the 

polyhedron of 𝒦 and denoted by |𝒦|.  

 

Figure 274: 2-dimensional simplicial complex in ℝ2 with non-manifold polyhedron (left), and no simplicial complex (right).  

It can be deduced from the above definitions that each simplicial complex can be realized as a regular CW decom-

position and, thus, each polyhedron |𝒦| is homeomorphic to a proper CW complex. This correlation is formalized 

by the following proposition. 

Proposition A.71. Let 𝒦 be a Euclidean simplicial complex. Then the collection of the interiors of the simplicies 

in 𝒦 is a regular CW decomposition of |𝒦| (Lee 2011). 

There is a subtle but important difference in the terminology of simplicial complexes and CW complexes. The 

term “CW complex” is used to reference a topological space together with its particular CW decomposition (cf. 

definition A.48). In contrast, the term “simplicial complex” only refers to the collection of disjoint simplices 

(which are its cells) whereas the underlying topological space is said to be its “polyhedron”. In literature, the 

polyhedron is often equivalently called the carrier or underlying space of a simplicial complex. 

Proposition A.71 allows for applying all properties of CW complexes to the polyhedron of a simplicial complex. 

For example: 

Lemma A.72. Let 𝒦 be a Euclidean simplicial complex. Then its polyhedron |𝒦| is  

(i) Hausdorff,  

(ii) compact iff 𝒦 is finite, 

(iii) connected iff the polyhedron of its 1-skeleton is path-connected. 

The Hausdorff property easily follows from the fact that being Hausdorff is hereditary in metric spaces (cf. prop-

osition A.22). If 𝒦 is finite then |𝒦| is the finite union of 𝑛-simplices being closed subsets in ℝ𝑚, and, thus, |𝒦| 

is itself closed. Since in this case |𝒦| is also bounded in ℝ𝑚, it follows from the Heine-Borel theorem (cf. theorem 

A.30) that |𝒦| is compact. 

Definition A.73 (Triangulation, trianguable). A topological space 𝑋 is said to be trianguable if it is homeomorphic 

to the polyhedron of a simplicial complex 𝒦, i.e. 𝑋 ≅ |𝒦|. Such a homeomorphism is called a triangulation of 𝑋. 

For example, both the closed unit ball �̅�𝑛 and the unit sphere 𝕊𝑛−1 are trianguable. A triangulation for the non-

compact space ℝ1 can be realized by constructing an infinite, locally finite simplicial complex in ℝ1 whose 1-

simplicies are the closed intervals [𝑛, 𝑛 + 1], 𝑛 ∈ ℤ and whose vertex set is the set of integers. This approach can 

be generalized to ℝ𝑛. 

An obvious consequence based on the theory developed is that every regular CW complex (with or without inter-

section property) is trianguable. Similar to simplicial complexes, a regular CW decomposition provides a partial 
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order which is determined by its closed cells and their inclusion relations. Thus, also regular CW complexes are 

determined up to homeomorphism by their face poset which is purely combinatorial (Hatcher 2008). The main 

difference between a regular CW decomposition on a space 𝑋 and a triangulation of 𝑋 is that the first typically 

requires much fewer cells and that the cells have a flexible number of faces and need not to be straight (Agoston 

2005). 

 

Figure 275: Regular CW decomposition of the 2-sphere 𝕊2 with two cells per dimension (cf. figure 270) (left) and a 2-dimen-

sional simplicial complex consisting of three 2-simplices, six 1-simplices, and four 0-simplices whose underlying polyhedron 

is homeomorphic to 𝕊2 (right). 

However, not every non-regular CW complex admits a triangulation (Agoston 2005). The facial structure of sim-

plicial complexes is not inherent to general CW decompositions. In fact, CW complexes are a strong generalization 

of polyhedra because of removing the requirement that all attaching maps are embeddings.  

In literature, different levels of generality ranging between simplicial complexes and CW complexes are discussed. 

The reason is that a Euclidean simplicial complex as given in definition A.68 has some strict restrictions. First, it 

is required to live in Euclidean space ℝ𝑚 and, consequently, its polyhedron is a subspace of ℝ𝑚. Second, each 𝑛-

simplex is required to have 𝑛 + 1 distinct vertices and, third, each set of 𝑛 + 1 vertices may only define at most 

one 𝑛-simplex (Edelsbrunner & Harer 2010). 

A natural generalization of simplicial complexes admits more general shapes for cells such as cubes or convex 

polytops from which cube complexes or polytopal complexes (also called polyhedral complexes) can be obtained 

(e.g., Poincaré 1895). By allowing structures built from homeomorphic images of △𝑛, the requirement of an am-

bient Euclidean space for the underlying topological space is removed and systems of loops of simplices become 

possible. Such structures were introduced by Eilenberg and Ziller (Eilenberg & Zilber 1950) under the name sem-

isimplicial complex but are nowadays discussed as △-complex (Hatcher 2008) which are an important tool in mod-

ern simplicial homology theory in algebraic topology. 

This thesis is concerned only with trianguable (but not necessarily regular) CW complexes and their polyhedral 

triangulations. A more detailed discussion of the sketched types of generalized simplicial complexes is therefore 

beyond the scope of this thesis, and the reader is directed to the provided literature. 

A.5 Topological Classification of Low-Dimensional Manifolds 

The developed theory of CW complexes and simplicial complexes is used in this section to present a classification 

of topological manifolds in up to three dimensions. Classification aims at providing a list of standard 𝑛-dimen-

sional manifolds together with a theorem stating that every 𝑛-manifold is homeomorphic to exactly one standard 

𝑛-manifold on that list. Technically speaking, classification lists the topological equivalence classes on the set of 

all 𝑛-manifolds induced by homeomorphism.  

In 1908, Ernst Steinitz and Heinrich Tietze originally formulated what became known as the Hauptvermutung 

(German for main conjecture) in combinatorial and nowadays algebraic topology. The Hauptvermutung states that 

if two simplicial complexes have homeomorphic polyhedra then they are combinatorially equivalent, i.e. there is 

a single triangulation that is a subdivision of both of them. The combinatorial topology of a simplicial complex 𝒦 

is thus be determined by the topology of the polyhedron |𝒦|. One hope associated with this conjecture was thus 

to apply the combinatorial model of simplicial complexes to the domain of topological manifolds which would 

allow reducing topological questions about manifolds to both purely combinatorial and computationally efficient 

ones about simplicial complexes. 
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Obviously, this requires topological manifolds to be trianguable spaces. It can be deduced from the previous sec-

tions that manifolds generally are a stronger form of polyhedra and their generalized representation as regular CW 

complexes. However, this does not imply that every manifold in any dimension admits a triangulation or, equiva-

lently, can be realized as regular CW complex. Although simplices as well as cells in CW decompositions are 

defined to be topological manifolds in their own right, the space constructed from gluing a collection of cells 

together need not be a manifold space itself (cf. proposition A.59).  

Triangulation is to be seen a necessary but not sufficient condition for the Hauptvermutung. In 1961, John Milnor 

(Milnor 1961) presented high-dimensional pairs of compact non-manifold polyhedra with combinatorially in-

equivalent triangulations which disproved the Hauptvermutung in general. It was further obstructed for the mani-

fold version by examples of 4-manifolds that are not trianguable (Jänich 2012). In high-dimensional topology with 

dimension 𝑛 > 4 the question whether there are non-trianguable manifolds is still open in literature and a topic of 

current research. However, the Hauptvermutung holds for topological manifolds in the low dimensions 𝑛 ≤ 3. It 

was proved in the 1920s for all manifolds of dimension 𝑛 ≤ 2 by Christos Papakyriakopoulos and Tibor Radó (cf. 

Radó 1925, Ranicki 1996) and by Edwin Moise (Moise 1977) for 3-dimensional manifolds in the early 1950s. The 

proofs are highly technical and beyond the scope of this thesis. A complete discussion is presented in (Ranicki 

1996).   

An important result of the work on the Hauptvermutung is the following triangulation theorem for topological 

manifolds of dimension strictly less than 4. 

Theorem A.74 (Triangulation theorem for manifolds). Every compact topological manifold of dimension 𝑛 ≤ 3 

is trianguable (Ranicki 1996). 

The theorem implies that every compact topological manifold of dimension 𝑛 ≤ 3 admits a regular CW decom-

position. The Hauptvermutung has been rephrased for low-dimensional topological manifolds in the following 

weaker manner. 

Proposition A.75 (Manifold Hauptvermutung). Triangulations of homeomorphic topological manifolds of dimen-

sion 𝑛 ≤ 3 are combinatorially equivalent, i.e. they become isomorphic after subdivision (Ranicki 1996). 

The weak manifold version of the Hauptvermutung and the combinatorial triangulation theorem provide the nec-

essary and sufficient algebraic topology to constitute classification theorems for low-dimensional topological man-

ifolds based on homeomorphic cell decompositions. However, the hope to use simplicial complexes as tool for the 

topological analysis of manifolds in arbitrary dimensions could not be realized. The following sections elaborate 

on the classification of 0-dimensional up to 3-dimensional manifolds insofar as required for this thesis.  

A.5.1 Zero-dimensional and One-dimensional Manifolds 

The classification of 0-manifolds is trivial but nevertheless given for the sake of completeness. A connected 0-

manifold is simply a discrete space and is commonly called point. Disconnected 0-manifolds are discrete sets of 

points classified by their cardinality.   

In literature, 1-manifolds are often synonymously called curves. This term conforms to an intuitive spatial under-

standing of 1-manifolds, although in a technical sense it is less specific than the term 1-manifold. A complete 

classification of connected 1-manifolds with or without boundary is presented in (Lee 2011). The two main theo-

rems resulting from this work are given in the following. Their proofs build upon the elementary theory developed 

in the previous sections and can also be reviewed in (Lee 2011). 

Theorem A.76 (Classification of 1-manifolds without boundary). Every non-empty connected 1-manifold is ho-

meomorphic to 𝕊1 if it is compact, and to ℝ1 if it is not (Lee 2011). 

Theorem A.77 (Classification of 1-manifolds with boundary). A connected 1-manifold with non-empty boundary 

is homeomorphic to [0,1] if it is compact, and to [0,∞) if it is not (Lee 2011). 

The classification of connected 1-manifolds is hence based on the two topological invariants of compactness and 

presence of boundary. Non-connected 1-manifolds result from the disjoint union of connected components each 

of which is again a 1-manifold that can be characterized according to the above theorems.  
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This thesis is mainly concerned with compact 1-manifolds. The only type of a closed 1-manifold (i.e. connected, 

compact, and without boundary; cf. definition A.44) is the circle which is an homeomorphic image of the unit 1-

sphere 𝕊1. A connected compact 1-manifold with boundary is said to be a line segment and is homeomorphic to 

the closed unit 1-ball �̅�1. 

 

Figure 276:  Examples of 1-manifolds (from left to right: a line segment, a circle, and a non-connected 1-manifold). 

Proposition A.78. Every 1-manifold is orientable.  

This proposition follows from the fact that every 1-manifold admits a triangulation and, thus, is homeomorphic to 

the polyhedron of a 1-dimensional simplicial complex. It is easily conceivable that for all four types of 1-manifolds 

characterized by theorem A.76 and theorem A.77 a consistent choice of orientation on each 1-simplex which 

participates in the corresponding simplicial complex can be made. 

A famous theorem based on closed 1-manifolds is the Jordan curve theorem named after Camille Jordan who was 

the first to prove it in 1887. The Jordan curve theorem is an important tool used in complex analysis and low-

dimensional topology. 

Theorem A.79 (Jordan curve theorem). Let 𝐶 be a closed 1-manifold topologically embedded in ℝ2. Then 𝐶 is 

called Jordan Curve and separates ℝ2 into two connected components. 

Precisely, the complement ℝ2\𝐶 consists of exactly two connected components, i.e. ℝ2\𝐶 = 𝒟1 ∪ 𝒟2 with 𝒟1 ∩

𝒟2 = ∅. One of the components is bounded (commonly called the interior) whereas the other is unbounded (com-

monly called the exterior). Both components share 𝐶 as their topological boundary. 

 

Figure 277: Example of a Jordan curve 𝐶 in ℝ2 and the resulting interior component 𝒟1 (blue) and exterior component 𝒟2 

(green). 

The Jordan-Schoenflies theorem is an addition to the Jordan curve theorem and asserts that under the conditions 

of theorem A.79 there is a homeomorphism 𝑓:ℝ2 → ℝ2 of  ℝ2 onto itself such that 𝑓(𝐶) is the unit circle in the 

plane. Then the interior component with bounded closure is homeomorphic to the closed unit disk (i.e., the closed 

unit 2-ball) and thus ℝ2\𝐶 = 𝒟1 ∪ 𝒟2 with 𝒟1 ∩ 𝒟2 = ∅ and �̅�1 ≅ �̅�
2.  

Both 𝒟1 and 𝒟2 as well as ℝ2 are 2-manifolds and subject to classification in the next section. 

1-sphere 𝕊11-ball �̅�1
non-connected

1-manifold

ℝ2

𝐶 ≅ 𝕊1

𝒟1 ≅ 𝔹
2

interior

𝒟2
exterior
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A.5.2 Two-dimensional Manifolds 

The classification of topological 2-manifolds has been a field of detailed study for a long time and is to be seen an 

important driver of modern topology. As a result, 2-manifolds are nowadays well understood mathematically and 

characterized up to homeomorphism. The term surface is commonly used in literature as synonym to reference a 

2-manifold.  

Examples of non-compact 2-manifolds without boundary are ℝ2 itself as well as open subsets thereof such as open 

disks homeomorphic to the open unit 2-ball. The unbounded component which results from embedding a Jordan 

Curve in ℝ2 is an example of a non-compact 2-manifold with boundary. Important compact surfaces are illustrated 

in the following figure. The sphere 𝕊2 and the torus 𝕋2 (= 𝕊1 × 𝕊1) are compact 2-manifolds without boundary. 

Examples of compact 2-manifolds with boundary are the closed disk, the cylinder surface including both boundary 

circles, as well as the Möbius strip.  

 

Figure 278: Examples of compact surfaces. 

Similar to the 1-manifold case, the topological properties of compactness and number of boundary components 

are two determining factors for the characterization of 2-manifolds. But they obviously do not suffice for a com-

plete classification up to topological equivalence. For example, although both the sphere 𝕊2 and the torus 𝕋2 are 

compact 2-manifolds without boundary there is no continuous deformation between them. And even though both 

the closed disk  ̅2 and the Möbius strip are compact and have a single circle as manifold boundary there is no 

homeomorphism taking one into the other.  

Closed surfaces. In the following, the classification of 2-manifolds is first developed for the class of compact, 

connected 2-manifolds without boundary which are equivalently called closed surfaces86. The most fundamental 

examples for closed surfaces are the sphere 𝕊2, the torus 𝕋2, and the projective plane ℝ𝑃2. From these, further 

closed surfaces can be constructed using the connected sum construction. The connected sum of two closed sur-

faces is obtained by removing an open disk from each and gluing the surfaces along the boundaries of the resulting 

holes. Formally, the connected sum is not restricted to closed surfaces but is generally defined for 𝑛-dimensional 

manifolds as follows. 

Definition A.80 (Connected sum). Let 𝑀1 and 𝑀2 be two connected 𝑛-manifolds. The subspaces 𝑀′𝑖 = 𝑀𝑖  \ 𝐵𝑖
𝑛 

which are formed by deleting open 𝑛-balls 𝐵𝑖
𝑛 ⊆ 𝑀𝑖 are 𝑛-manifolds with boundary whose boundaries are home-

omorphic to 𝕊𝑛−1 (cf. proposition A.43). If 𝑓: 𝜕𝑀′2 → 𝜕𝑀′1 is any homeomorphism, the adjunction space 

𝑀′1 ∪ 𝑀′2 is called a connected sum of 𝑀1 and 𝑀2 and is denoted by 𝑀1#𝑀2 (Lee 2011). 

                                                           
86 The reader’s attention is again drawn to the fact that the meaning of the term closed in the context of manifold theory differs 

from its meaning in general point-set topology. For example, in literature the term closed disk is used to name a closed subset 

of ℝ2 which is homeomorphic to the closed unit 2-ball. But a closed disk is not a closed surface because it has a manifold 

boundary. 

Sphere 𝕊2 Torus 𝕋2 Closed 2-disk 𝔹2 Closed 2-cylinder

Möbius strip
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The connected sum 𝑀1#𝑀2 is itself a connected 𝑛-manifold. It can be shown that the connected sums of a given 

pair 𝑀1#𝑀2 can at most result in two non-homeomorphic manifolds for one of which 𝑓 is orientation-preserving 

and for the other orientation-reversing (Lee 2011). 

When removing an open 𝑛-ball from the 𝑛-sphere 𝕊𝑛, the resulting manifold space is homeomorphic to a closed 

𝑛-ball. Thus, forming the connected sum 𝑀#𝕊𝑛 with the 𝑛-sphere is equivalent to cutting out an open 𝑛-ball from 

𝑀 and gluing back a closed 𝑛-ball along the resulting boundary sphere. This does not change the manifold 𝑀 and 

correspondingly 𝕊𝑛 is an identity element of the connected sum construction. 

 

Figure 279: The connected sum 𝕋2#𝕊𝑛 which results in 𝕋2 (taken from Lee 2011). 

The connected sum 𝑀#𝕋2 of a 2-dimensional manifold 𝑀 with the torus 𝕋2 is equivalent to removing two open 

disks from 𝑀 and attaching a cylinder at both boundary circles. As illustrated in the following figure, this operation 

is often called “attaching a handle” to 𝑀, and the torus is sometimes referred to as a sphere with one handle. 

 

Figure 280: Example of attaching a handle by the operation 𝑀#𝕋2 (taken from Lee 2011). 

In literature, the connected sum of 𝑚 2-dimensional tori 𝕋2#𝕋2#…#𝕋2 is commonly said to be an 𝑚-holed torus 

or, equivalently, a sphere with 𝑚 handles. It easily follows that the 0-holed torus is exactly the 2-dimensional 

sphere 𝕊2 and that the 1-holed torus is simply 𝕋2 itself. When relating to its dimensionality, the term 𝑛-dimensional 

torus or just 𝑛-torus is used and denoted by 𝕋𝑛. This terminology is consistently applied throughout this thesis, 

although other sources interchangeably use the term 𝑛-torus to reference an 𝑛-holed torus or to denote its dimen-

sion 𝑛.  

 

Figure 281: A 3-holed torus (left) or, equivalently, a 2-sphere with three handles (taken from Lee 2011). 

The connected sum of two projective planes ℝ𝑃2#ℝ𝑃2 yields the famous Klein bottle. It is important to note that 

both the projective plane and the Klein bottle cannot be embedded in ℝ3 without self-intersections. This is illus-

trated in the following figure for the Klein bottle. 

# =

≅≅
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Figure 282: The Klein bottle. 

The following lemma on the connected sum of the torus and the projective plane completes the enumeration of 

connected sums of the fundamental closed surfaces. 

Lemma A.81. The connected sum 𝕋2#ℝ𝑃2 is homeomorphic to ℝ𝑃2#ℝ𝑃2#ℝ𝑃2 (Lee 2011) 

It follows from theorem A.74 that every compact surface admits a triangulation. However, in contrast to 1-mani-

folds, not every compact surface is orientable. The best-known example of a non-orientable compact surface with 

boundary is the Möbius strip. It can be obtained by identifying the opposite sides of the unit square [0,1] × [0,1] 

after a half-twist, i.e. via (0, 𝑡) ~ (1,1 − 𝑡). The Möbius strip does not allow a consistent choice of orientation on 

each of its 2-simplices after triangulation. Put differently, a small, oriented circle put inside the Möbius strip will 

have its orientation reversed after moving it once around the strip even though the orientation is not altered while 

moving. The path on which the circle has been moved along the Möbius strip is called an orientation-reversing 

closed curve. If the circle follows the path twice its orientation will be flipped once more into its original state and 

such a path is called an orientation-preserving closed curve. If for a 2-manifold all closed curves are orientation-

preserving then the 2-manifold is orientable, otherwise it is not (Edelsbrunner & Harer 2010). 

If a 2-manifold is orientable then all its triangulations are orientable. Orientability is hence independent of a par-

ticular choice of triangulation. It can be shown that the converse also holds: if a 2-manifold admits an orientable 

triangulation then the 2-manifold is itself orientable (Mäntylä 1988). Each connected orientable 2-manifold has 

exactly two different consistent choices of orientation which conform to both orientations that are constituted on 

every 2-simplex by the ordering of its vertices (cf. definition A.65). For example, for a connected oriented surface 

it is possible to distinguish two sides that are commonly called front-side and back-side. This is not possible for 

the Möbius strip. It is important to point out that this notion of orientability can be generalized to manifolds in 

arbitrary dimensions. As shown by proposition A.78, the 1-dimensional case is trivial because all 1-manifolds are 

orientable. 

The boundary of the Möbius strip is a single circle. After removing an open disk from a closed surface a homeo-

morphism identifying its boundary circle with the boundary of the Möbius strip can be chosen. This operation 

yields a new closed surface and is also known as “adding a cross-cap” (Edelsbrunner & Harer 2010). Adding a 

cross-cap to the sphere 𝕊2 results in the projective plane ℝ𝑃2, which is therefore also said to be a sphere with one 

cross-cap. The Klein bottle results from adding two cross-caps to the sphere which conforms to its construction as 

connected sum of two projective planes. 

 

Figure 283: The projective plane ℝ𝑃2 (left) and the Klein bottle (right) (taken from Edelsbrunner & Harer 2010). 
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It can be shown that the sphere together with the connected sum of one or more tori exhaust the family of orientable 

closed surfaces, whereas the connected sum of one or more projective planes exhausts the family of non-orientable 

closed surfaces. Based on these results the main theorem for the classification of closed surfaces can be given. 

Theorem A.82 (Classification of closed surfaces). Every non-empty, compact, connected 2-manifold without 

boundary is homeomorphic to some member of one of the following three families: 

(i) The sphere 𝕊2,  

(ii) the connected sum of one or more copies of the torus 𝕋2, or 

(iii) the connected sum of one or more copies of the projective plane ℝ𝑃2. 

Any two closed surfaces in the list are not homeomorphic. 

One of the earliest results in surface theory is the Euler’s formula named after Leonhard Euler. In its classical 

form, the Euler’s formula relates the numbers of vertices 𝑉, edges 𝐸, and faces 𝐹 of a compact polyhedral surface 

to their alternating sum  = 𝑉 − 𝐸 + 𝐹 where χ is called the Euler characteristic of the surface. In case of any 

simply connected convex polyhedron the Euler’s formula states that 𝑉 − 𝐸 + 𝐹 = 2. It is important to mention 

that the classical Euler’s formula refers to a “polyhedron” as an elementary 3-dimensional geometric solid. This 

may not be confused with the notion of “polyhedron” in algebraic topology where the term refers to the underlying 

space of a simplicial complex (cf. definition A.70). However, the fact that the formula 𝑉 − 𝐸 + 𝐹 = 2 holds for 

any surface bounding a convex geometric polyhedron independent of its triangulation (i.e., the number of vertices, 

edges, and triangles) indicates that the Euler characteristic is truly a topological property and not just a geometric 

one.  

Correspondingly, the Euler characteristic has been generalized in literature to the much wider class of arbitrary 𝑛-

dimensional finite CW complexes for which it is defined as the alternating sum of the numbers of cells in each 

dimension (Lee 2011).  

Proposition A.83 (Euler characteristic of a finite CW complex). Let 𝑋 be a finite CW complex of dimension 𝑛. 

Then the Euler characteristic of 𝑋 is defined by χ(𝑋) = ∑ (−1)𝑘𝑐𝑘
𝑛
𝑘=0 , where 𝑐𝑘 denotes the number of 𝑘-cells in 

the CW decomposition of 𝑋. 

For example, the minimal CW decomposition of 𝕊2 consists of one 0-cell and one 2-cell (cf. figure 270). The 

Euler characteristic of the corresponding CW complex 𝑋 is χ(𝑋) = 1 ∙ 1 + (−1) ∙ 0 + 1 ∙ 1 = 2 which conforms 

to the result of the classical Euler’s formula. An important theorem in topology based on the above proposition 

states that the Euler characteristic is in fact a topological invariant for finite CW complexes, and thus is preserved 

under homeomorphism. The proof can be found in (Lee 2011) but requires techniques from homology theory 

which are beyond the scope of this thesis. 

Theorem A.84 (Invariance of the Euler characteristic).  Let 𝑋 and 𝑌 be two finite CW complexes whose underlying 

topological spaces are homeomorphic. Then χ(𝑋) = χ(𝑌). 

The above can be rephrased such that 𝑋 and 𝑌 are topologically non-equivalent if their Euler characteristic differs. 

This allows a purely combinatorial and hence efficient check.  

The Euler characteristic can be related to the number of handles and the number of cross-caps of a closed surface 

respectively. The fundamental theory enabling this relation was given by Poincaré, and thus it is commonly de-

noted as Euler-Poincaré characteristic. 

Theorem A.85 (Euler-Poincaré characteristic of a closed surface). For any closed surface 𝑀 and a positive integer 

𝑔, the Euler characteristic χ(𝑀) is equal to 

(i) 2 for the sphere,  

(ii) 2 − 2𝑔 for the connected sum of 𝑔 tori, or 

(iii) 2 − 𝑔 for the connected sum of 𝑔 projective planes. 

The integer 𝑔 is called the genus of the closed surface. The genus is equal to the number of handles for the family 

of orientable closed surfaces. The connected sum of 𝑔 tori is therefore synonymously called orientable closed 

surface of genus 𝑔. Equivalently, the connected sum of 𝑔 projective planes is said to be the non-orientable closed 



342 Appendix A.   Basic Notions and Concepts from Topology 

 

 

surface of genus 𝑔, and in this case the genus is equal to the number of cross-caps. The sphere itself is the closed 

surface of genus 0 (Lee 2011). It easily follows that attaching a handle to a closed surface decreases the Euler 

characteristic by 2 and that adding a cross-cap decreases it by 1.  

Although the Euler characteristic is an important topological invariant, it is not sufficient by itself to completely 

classify closed surfaces. For example, both the torus and the Klein bottle have Euler characteristic 0 but obviously 

are not homeomorphic. This example can be generalized to a connected sum of 𝑛 tori which cannot be distin-

guished from the connected sum of 2𝑛 projective planes based on their Euler characteristic. The additional topo-

logical property required for distinguishing both is their orientability. As an intermediate result it can be deduced 

that any closed surface is completely classified up to homeomorphism by its Euler characteristic and its orienta-

bility. 

In the context of closed surfaces, the Jordan-Schoenflies theorem has a natural extension by replacing the plane 

ℝ2 with the sphere 𝕊2 such that a simple closed curve 𝐶 on the sphere 𝕊2 separates the sphere into two connected 

components each of which has a closure homeomorphic to the closed disk. This extension does not hold for any 

closed surface though. For example, it takes two disjoint simple closed curves two disconnect the torus 𝕋2. When 

related to the genus of a closed surface, the extension can be appropriately rephrased for arbitrary closed surfaces. 

Theorem A.86 (Jordan curve theorem for closed surfaces). The maximum number of disjoint simple closed curves 

which can be cut from a closed surface of genus 𝑔 without disconnecting it is equal to 

(i) 𝑔 for an orientable surface,  

(ii) 𝑔 + 1 for a non-orientable surface. 

Compact surfaces with boundary, non-compact surfaces. A compact 2-manifold with boundary can be ob-

tained from a closed surface by cutting one or more holes into the latter. Examples for compact surfaces with 

boundary are the closed disk (sphere with one hole), the Möbius strip (projective plane with one hole), the cylinder 

(sphere with two holes), and the annulus (sphere with two holes) which is homeomorphic to the cylinder. 

Technically, a hole results from removing an open disk from a closed surface which yields a circle as boundary 

component. Removing 𝑛 disjoint open disks correspondingly yields 𝑛 disjoint circles as boundary components. 

This conforms with proposition A.43 which states that the manifold boundary of a 2-manifold with boundary is a 

1-manifold without boundary. According to the classification of 1-manifolds, the only type of a connected, com-

pact 1-manifold without boundary is the circle. In case of more than one hole, the manifold boundary is a non-

connected, compact 1-manifold without boundary that is a union of disjoint connected components all of which 

are circles. Since compact surfaces with boundary can be constructed from closed surfaces, their classification is 

related to theorem A.82 for closed surfaces.  

Theorem A.87 (Classification of compact surfaces with boundary). Every compact surface with boundary is com-

pletely classified up to homeomorphism by its number of boundary components and the class of the corresponding 

closed surface. 

The Euler characteristic of a closed surface decreases by 1 for each removed open disk. In general, a compact 

surface of genus 𝑔 and with ℎ holes has Euler characteristic  χ(𝑀) = 2 − 2𝑔 − ℎ for the family of orientable 

surfaces and  χ(𝑀) = 2 − 𝑔 − ℎ in the non-orientable case. Thus, each compact surface with boundary is fully 

determined by its genus 𝑔, its number of holes ℎ, and its orientability. 

Most literature sources credit the first profound proof of the classification theorem for compact surfaces to Dehn 

and Heegaard in 1907 (Dehn & Heegaard 1907) who applied the assumption that every compact surface admits a 

triangulation. This triangulation assumption however was first proved almost two decades later by Radó in 1925 

(Radó 1925) (cf. section A.5), whose results thus complete the proof of Dehn and Heegaard. It requires much more 

theory though to classify non-compact surfaces and, surprisingly, it took a century from the work of Dehn and 

Heegaard to a complete classification of 2-manifolds including the non-compact case in 2007 (Prishlyak & 

Mischenko 2007).  

A general classification theorem for non-compact surfaces with or without boundary is beyond the scope of this 

thesis and the reader is redirected to (Prishlyak & Mischenko 2007) for a detailed overview. The only type of non-

compact 2-manifold that plays an important role in the course of this thesis is ℝ2 itself from which zero or more 
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open disks have been removed. In literature, this surface is commonly called universal face and represents un-

bounded Euclidean 2-space. The universal face is exactly the unbounded exterior component which results from 

embedding zero or more Jordan Curves in ℝ2 whose disjoint union forms the topological boundary of the universal 

face. 

A.5.3 Three-dimensional Manifolds 

A high hope associated with the complete classification of compact 2-manifolds at the beginning of the 20th cen-

tury was to carry the results and facts to the third dimension. However, this hope has not been realized until now 

and the classification of 3-manifolds remains an on-going work in current research. In fact, 3-manifolds pose much 

more complicated problems than 2-manifolds.87 The objective of this section is therefore to provide a classification 

of a manifold solid as the topological foundation for the spatial modelling of 3-dimensional physical objects.  

As a preliminary definition, a manifold solid is characterized as connected, compact, orientable 3-manifold with 

boundary that lives in an ambient space ℝ3 and whose boundary is a compact surface. The prototypical example 

of a manifold solid is the closed unit 3-ball �̅�3 having the unit 2-sphere 𝕊2 as boundary.  

The orientability property is again best viewed in terms of triangulation. Since per theorem A.74 all compact 3-

manifolds are homeomorphic to the polyhedron of some simplicial complex, orientability of a 3-manifold requires 

the simplicial complex to admit a consistent choice of orientation on all its 3-simplices. If such an orientation 

exists, it also induces an orientation on all boundary faces of each 3-simplex (cf. definition A.67). It hence follows 

that the orientability of a manifold solid has a direct impact on the class of its boundary surface. Precisely, if a 

connected compact 3-manifold is oriented then its boundary surface is oriented and thus must be a member of the 

family of orientable closed surfaces.  

Theorem A.88. Let 𝑀 be a connected 3-manifold with boundary embedded in ℝ3. Then the boundary of 𝑀 is an 

embedded orientable closed surface (Mäntylä 1988). 

Non-orientable closed surfaces are consequently ruled out as the boundary of a manifold solid which implies the 

Euler characteristic of the boundary surface to be 2 − 2𝑔. This intuitively conforms to our spatial understanding 

because non-orientable closed surfaces cannot be immersed in Euclidean 3-space without self-intersections. The 

following proposition records this fact which follows from the Whitney embedding theorem. 

Proposition A.89. Every closed surface with a penetration-free embedding in ℝ3 is orientable (Gröger & Plümer 

2011a).  

It is however not sufficient to only examine the relation of a manifold solid to its boundary surface in order to 

avoid pathological cases. There are also 3-manifolds which are homeomorphic to a closed 3-ball but which nev-

ertheless yield unreasonable physical objects when embedded in ℝ3. Examples are 3-manifolds having a fractal-

like surface. Thus, the embedding of the 3-manifold in its ambient 3-dimensional Euclidean space has to be addi-

tionally considered in order to obtain well-behaved manifold solids (Mäntylä 1988). 

In two dimensions, the Jordan curve theorem constitutes the relation between ℝ2 and an embedded closed 1-

manifold. Its generalization to higher dimensions was presented in 1912 by L. E. J. Brouwer who showed that 

Euclidean space of dimension 𝑛 separates into two connected domains by the insertion of a closed (𝑛 − 1)-mani-

fold. This fact is known as the Jordan-Brouwer separation theorem. 

Theorem A.90 (Jordan-Brouwer separation theorem). Let 𝑀 be a closed (𝑛 − 1)-dimensional manifold topolog-

ically embedded in ℝ𝑛. Then the complement ℝ𝑛\𝑀 consists of exactly two connected components whose com-

mon topological boundary is 𝑀. 

Equivalently to the Jordan curve theorem, the bounded component is called the interior whereas the unbounded 

one is called the exterior. However, the Schoenflies addition in its literal form was disproved for dimension 𝑛 ≥

                                                           
87 One of the most famous problems became known as the Poincaré conjecture. In 1904, Poincaré asked whether every simply 

connected closed 3-manifold is homeomorphic to the 3-sphere but not enough machinery was developed to prove an answer. 

It became one of the greatest challenges in topology for nearly one century before Grigori Perelman finally presented a proof 

in 2003. For dimensions 𝑛 ≥ 4, Markov showed in 1958 that there is no general algorithm for distinguishing two arbitrary 

topological manifolds (Lee 2011). 
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3. In 1924, J. W. Alexander (Alexander 1924) presented a counterexample named the Alexander horned sphere 

which is a particular embedding of the 2-sphere in ℝ3 that results in an infinitely convoluted, intertwined surface. 

Although the horned sphere together with its interior is homeomorphic to a closed 3-ball, there is no homeo-

morphism of ℝ3 onto itself that takes the horned sphere to the unit 2-sphere 𝕊2. As a result, the exterior component 

of the horned sphere is not simply connected and thus not topologically equivalent to the complementary domain 

of 𝕊2 in ℝ3. 

 

Figure 284: The Alexander horned sphere. 

Embeddings in ℝ3 like the one of the horned sphere are called wild embeddings and result in non-well-behaved 

manifold solids. For dimension 𝑛 = 3 it can be shown that the Schoenflies addition holds if 𝑀 is embedded poly-

hedrally in ℝ3, i.e. the embedding is homeomorphic to the polyhedron of a finite simplicial complex (J. W. Alex-

ander 1924). Polyhedral embeddings are also called tame embeddings. For example, if a 2-sphere 𝑆 is tamely 

embedded in ℝ3, then the unbounded exterior component is simply connected and the closure of the bounded 

component is homeomorphic to the closed unit 3-ball, i.e. ℝ3\𝑆 = 𝐵1 ∪ 𝐵2 with 𝐵1 ∩ 𝐵2 = ∅ and �̅�1 ≅ �̅�
3. Then 

the union 𝑆 ∪ 𝐵1 = �̅�1 is a well-behaved manifold solid. 

For the sake of completeness, it is pointed out that the Jordan-Brouwer separation theorem also has a natural 

extension by replacing ℝ𝑛 with the 𝑛-dimensional sphere 𝕊𝑛. It easily follows that a closed 2-manifold 𝑀2 tamely 

embedded in 𝕊3 separates 𝕊3 into two connected components both of which are topologically equivalent to �̅�3 and 

thus well-behaved manifold solids. In case of a wild embedding, the union of 𝑀2 with the non-simply connected 

component results in a crumpled cube which is topologically different from a closed 3-ball. Crumpled cubes are 

further examples of non-well-behaved manifold solids. 

Finally, this leads to the definition of a manifold solid as stated in the following. 

Definition A.91 (Manifold solid). A manifold solid is a non-empty, connected, compact 3-manifold with boundary 

embedded in ℝ3 whose boundary is a closed, oriented 2-manifold tamely embedded in ℝ3. 

A manifold solid is also called single-shell manifold solid in literature (Mäntylä 1988). This corresponds to the 

fact that the manifold solid is embraced by a connected 2-manifold which is also said to be the shell of the solid. 

Relaxing the connectedness property of the shell gives rise to multi-shell manifold solids.  

Definition A.92 (𝑘-shell manifold solid). A 𝑘-shell manifold solid is a non-empty compact 3-manifold embedded 

in ℝ3 with 𝑘 ≥ 1 boundary components whose disjoint union is a compact, oriented 2-manifold without boundary 

tamely embedded in ℝ3.  

A single-shell manifold solid obviously is the special case of a 𝑘-shell manifold solid for 𝑘 = 1. In case 𝑘 > 1, 

the solid object is equivalently said to be a multi-shell manifold solid. The 𝑘 connected components of the boundary 

are the shells of the manifold solid and are required to share the same dimension 2 to ensure the invariance of 

dimension of the boundary (as postulated for disconnected manifolds in general in section A.2). Although the 

boundary components of a multi-shell manifold solid 𝑀 are disconnected, its interior 𝐼𝑛𝑡(𝑀) need not be discon-

nected. Suppose 𝐼𝑛𝑡(𝑀) is a connected topological space then 𝑀 intuitively can be understood to have 𝑘 − 1 

internal voids or cavities (Mäntylä 1988).  

Definition A.93 (Connected 𝑘-shell manifold solid). A connected 𝑘-shell manifold solid 𝑀 is a 𝑘-shell manifold 

solid whose interior 𝐼𝑛𝑡(𝑀) is restricted to be connected. In case 𝑘 > 1, 𝑀 is said to have 𝑘 − 1 internal voids.  
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Figure 285: Examples of manifold solids (from left to right: a 1-shell manifold solid being homeomorphic to �̅�3, a 1-shell 

manifold solid with through hole, and a connected 2-shell manifold solid with one internal void). 

Analogous to the concept of a universal face in two dimensions, a 3-dimensional universal solid can be defined as 

the exterior component which results from tamely embedding zero or more closed 2-manifolds into ℝ3 following 

the Jordan-Brouwer separation theorem. The universal solid itself is unbounded and has the disjoint union of all 

tamely embedded closed 2-manifolds as topological boundary. Equivalently, it can be obtained from ℝ3 by re-

moving the set of interior points of one or more manifold solids. The universal solid is a non-compact 3-manifold 

with or without boundary and is used in the course of this thesis for the representation of unbounded Euclidean 3-

space. 

As introduced in the previous chapter, an important topological property for the classification of the closed, ori-

ented surface 𝑆 bounding a connected component of a manifold solid is its Euler characteristic χ(𝑆) = 2 − 2𝑔 (cf. 

theorem A.85) which can be equivalently computed as alternating sum of the numbers of cells in a CW decompo-

sition of 𝑆. Obviously, the Euler characteristic can also be computed for a finite CW complex of the manifold solid 

itself. For example, the minimal CW decomposition of �̅�3 is achieved by attaching a single 3-cell to the minimal 

CW decomposition of its boundary 𝕊2 consisting of one 0-cell and one 2-cell. The Euler characteristic χ(𝑋) of the 

corresponding CW complex 𝑋 thus is χ(𝑋) = 1 − 0 + 1 − 1 = 1. Since the Euler characteristic is invariant under 

homeomorphism, the same result is obtained for any single-shell manifold solid being homeomorphic to �̅�3. For 

example, the solid 3-cube can be decomposed into eight 0-cells, twelve 1-cells, six 2-cells, and one 3-cell yielding 

χ(𝑋) = 8 − 12 +  − 1 = 1.  

In order to completely characterize 𝑛-manifolds beyond 2-dimensional surfaces, Henri Poincaré proved the exist-

ence as well as the topological invariance of a set of positive integers 𝑃1, 𝑃2, … , 𝑃𝑛−1 representing global properties 

of a topological space which he derived from certain suitably chosen matrices describing the 𝑛-manifold (cf. Veb-

len & Alexander 1912). Poincaré called these integers Betti numbers after the Italian mathematician Enrico Betti. 

Nowadays, the Betti numbers are formally stated in terms of homology theory. 

Theorem A.94 (Betti numbers of a topological space). The integer 𝛽𝑘(𝑋) =  ank 𝐻𝑘(𝑋) denoting the rank of the 

𝑘th homology group 𝐻𝑘(𝑋) of a topological space 𝑋 is called the 𝑘th Betti number of 𝑋 (Lee 2011). 

As homology theory is beyond the scope of this thesis, we follow the more general understanding that the Betti 

numbers allow for counting the number of holes of different dimensions in an orientable, compact 𝑛-manifold 𝑀. 

This allows for an informal but intuitive definition of the first three Betti numbers so that 

(i) 𝛽0(𝑀) is the number of connected components, 

(ii) 𝛽1(𝑀) is the number of 2-dimensional holes, and 

(iii) 𝛽2(𝑀) is the number of 3-dimensional holes (equivalently, voids or cavities). 

For example, for a closed, orientable surface 𝑆 of genus 𝑔 its Betti numbers take the values 𝛽0(𝑆) = 1, 𝛽1(𝑆) =

2𝑔, and 𝛽2(𝑆) = 1. The alternating sum 𝛽0(𝑆) − 𝛽1(𝑆) + 𝛽2(𝑆) equals the Euler characteristic χ(𝑆) = 2 − 2𝑔 of 

the surface. In fact, the definition of the Euler characteristic can be rephrased and generalized to arbitrary topolog-

ical spaces based on Betti numbers. 

Theorem A.95 (Euler characteristic of a topological space). The Euler characteristic χ(𝑋) of a topological space 

𝑋 is defined as alternating sum χ(𝑋) = ∑ (−1)𝑘𝑘 𝛽𝑘(𝑋) where 𝛽𝑘(𝑋) is the 𝑘th Betti number of 𝑋 provided that 

each 𝛽𝑘(𝑋) is finite and 𝛽𝑘(𝑋) = 0 for sufficiently large 𝑘 (Lee 2011). 

For a compact 𝑛-manifold 𝑀 it holds that all Betti numbers are finite and that 𝛽𝑘(𝑀) = 0 as soon as 𝑘 exceeds 

the dimension 𝑛 (Early 1999). This allows for restricting theorem A.95 so that the Euler characteristic χ(𝑀) is 
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given by ∑ (−1)𝑘𝛽𝑘(𝑀)
𝑛
𝑘=0  for the class of compact 𝑛-manifolds. Moreover, if 𝑀 is limited to be a 𝑘-shell mani-

fold solid whose ambient space is ℝ3 per definition, then it obviously follows that 𝛽3(𝑀) = 0 in this case. The 

sequence of the first three Betti numbers therefore suffices to characterize a 𝑘-shell manifold solid. A formal proof 

of this fact along manifold solids being homeomorphic to the 3-dimensional closed ball with ℎ solid handles is 

provided by (Aleksandrov 1998). 

Proposition A.96 (Euler characteristic of 𝑘-shell manifold solid). For any 𝑘-shell manifold solid 𝑀, the Euler 

characteristic χ(𝑀) is equal to the alternating sum 𝛽0(𝑀) − 𝛽1(𝑀) + 𝛽2(𝑀) of its first three Betti numbers. 

For example, since the single-shell manifold solid �̅�3 has one connected component but neither a circular hole nor 

an internal void, its Euler characteristic is χ(�̅�3) = 1 − 0 + 0 = 1 which agrees with the Euler characteristic of 

the CW decompositions of �̅�3 and the solid 3-cube as presented above. 

A.6 Topological Relationships between Spatial Objects 

Especially in the field of geographic information science, the practical use of topology is twofold (Zlatanova 2000). 

First, topology provides the tool to define the intrinsic properties of spatial objects (e.g., points, curves, surfaces, 

solids) that form the primitives for describing the spatial aspects of real-world objects and phenomena. Second, 

topology is used as formalism for categorizing the invariant topological relationships between two such objects 

which are induced by their spatial configuration. 

An early work in the categorization of the topological relationships is the well-known 4-intersection model (4IM) 

developed by (Egenhofer & Franzosa 1991). It is defined in terms of four intersections of the topological bounda-

ries (𝜕𝐴, 𝜕𝐵) and interiors (𝐼𝑛𝑡(𝐴), 𝐼𝑛𝑡(𝐵)) of two objects 𝐴 and 𝐵 embedded in Euclidean space. The topological 

relationship is classified based on the content of each intersection (i.e., emptiness and non-emptiness) and hence 

renders a topological invariant. The model is formally expressed using the following 2 × 2 operation matrix: 

 ℑ4(𝐴, 𝐵) = (
𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐵) 𝐼𝑛𝑡(𝐴) ∩ 𝜕𝐵

𝜕𝐴 ∩ 𝐼𝑛𝑡(𝐵) 𝜕𝐴 ∩ 𝜕𝐵
). (A.97) 

The classification scheme of the 4IM was initially defined for the topological relationships of 2-dimensional man-

ifolds with a single boundary component embedded in ℝ2. However, it can be generalized to connected 𝑛-dimen-

sional manifolds with one or more boundary components in ℝ𝑛 (Egenhofer & Sharma 1993, Egenhofer et al. 1994, 

Zlatanova 2000). For such objects, only eight of the 24 = 1  relationship classes that are expressible with ℑ4(𝐴, 𝐵) 

can be spatially realized and are commonly named disjoint, contains, inside, equal, meet, covers, coveredBy, and 

overlap. The following figure 286 illustrates the 2-dimensional case.  

 

Figure 286: The eight topological relationships according to the 4IM (Egenhofer & Sharma 1993). 

Two important extensions of the 4IM have been proposed in literature. First, the 9-intersection model (9IM, 

Egenhofer & Herring 1991) additionally considers the location of the interiors and boundaries of both objects with 

respect to their exteriors (𝐸𝑥𝑡(𝐴), 𝐸𝑥𝑡(𝐵)) which yields a 3 × 3 operation matrix with 29 = 512 possible rela-

tionship classes (not all of them can be spatially realized though). Second, the dimensionally extended 9-intersec-

tion model (DE-9IM, Eliseo Clementini & Paolino Di Felice 1995) also observes the dimension of the intersection 

content in addition to its emptiness. Both extensions obviously allow for a more fine-grained differentiation of the 

spatial configurations and the corresponding topological relationships between two objects. The additional expres-

sivity of the 9IM is however only required if the co-dimension of one or both objects with respect to its ambient 

space is greater than zero. Put differently, for connected 𝑛-dimensional manifolds with one or more boundary 
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components embedded in ℝ𝑛 (and thus with co-dimension of zero) both the 4IM and the 9IM yield identical results 

(Egenhofer & Sharma 1993). Note that the notion of interior, boundary, and exterior again might be confusing 

especially when considering spatial objects with co-dimension greater than zero. For example, consider a surface 

being homeomorphic to the closed disk as the ones shown in figure 286 but assume that it is embedded in Euclidean 

3-space ℝ3 with co-dimension one. Then the topological boundary of the disk according to definition A.5 is the 

entire disk itself (cf. appendix A.2 and Lee 2011). As a consequence, the 4IM as illustrated in figure 286 (as well 

as the 9IM) would yield different results when choosing ℝ3 as ambient space. The 4IM as well as the 9IM therefore 

implicitly apply the notion of manifold interior and boundary although this fact is not explicitly mentioned in the 

papers of (Egenhofer & Franzosa 1991) and (Egenhofer & Herring 1991). 

This thesis is only concerned with the classification of topological relationships between spatial objects having co-

dimension zero. Although the DE-9IM generally identifies more detailed relationships than both the 4IM and the 

9IM in this case, it is argued in chapter 3.2 that only a subset of all possible relationships is actually required for 

this thesis which can be expressed based on the 4IM. For this reason, a more detailed discussion of the (DE-)9IM 

or alternative extensions is omitted here. The reader is referred to (Zlatanova 2000) for a comprehensive overview 

and further references. 
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Appendix B  

GML Application Schema of the MLSEM 

This appendix documents the GML application schema of the Multilayered Space-Event Model that has been 

derived from the ISO 19109 conformant conceptual data model as defined in chapter 4 of this thesis. Each UML 

package of the conceptual data model has been translated to a separate XML Schema definition according to the 

normative UML-to-GML mapping rules provided as part of the GML 3.2.1 specification (cf. annex E in Portele 

2007 and chapter 4.4.2). The results of this mapping process are presented in the following sections.    

The XML Schema definition shown below is the root schema document of the generated GML application schema. 

It merely includes all further MLSEM schema files but does not specify any further content. An XML instance 

document shall validate against this root schema in order to be deemed MLSEM conformant.   

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="spaceRepresentation.xsd"/> 

 <xs:include schemaLocation="externalReference.xsd"/> 

 <xs:include schemaLocation="jointStates.xsd"/> 

 <xs:include schemaLocation="sourceObject.xsd"/> 

 <xs:include schemaLocation="groupsAndSequences.xsd"/> 

 <xs:include schemaLocation="route.xsd"/> 

 <xs:include schemaLocation="modelLinkage.xsd"/> 

 <xs:include schemaLocation="constraints.xsd"/> 

</xs:schema> 

Listing 18: Root XML Schema document of the MLSEM application schema. 

B.1 Space Representation Package 

The following XML Schema definition has been generated from the MLSEM Space Representation package (cf. 

chapter 4.4.1.1). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:include schemaLocation="jointStates.xsd"/> 

 <xs:include schemaLocation="sourceObject.xsd"/> 

 <xs:include schemaLocation="groupsAndSequences.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

 

 <!-- AbstractSpaceElement ====================================================================== --> 

 <xs:complexType name="AbstractSpaceElementType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element ref="symbolicId" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element ref="class" minOccurs="0"/> 

     <xs:element ref="function" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element ref="usage" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="model" type="SourceObjectMemberType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="constraint" type="AbstractNavigationConstraintPropertyType" minOccurs="0"  

           maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 
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 </xs:complexType> 

 <xs:element name="AbstractSpaceElement" type="AbstractSpaceElementType" abstract="true"  

       substitutionGroup="gml:AbstractFeature"/> 

 

 <!-- SpaceLayerComplex ======================================================================= --> 

 <xs:complexType name="SpaceLayerComplexType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="layer" type="SpaceLayerMemberType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="graph" type="MultilayeredGraphPropertyType" minOccurs="0"/> 

     <xs:element name="stateSpace" type="JointStateSpacePropertyType" minOccurs="0"/>  

    

     <xs:element name="machine" type="JointStateMachinePropertyType" minOccurs="0"/> 

     <xs:element name="model" type="SourceObjectMemberType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="group" type="SpaceElementGroupMemberType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="interModelGraph" type="InterModelGraphPropertyType" minOccurs="0"  

           maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="SpaceLayerComplex" type="SpaceLayerComplexType" substitutionGroup="gml:AbstractFeature"/> 

  

 <!-- SpaceLayer ============================================================================== --> 

 <xs:complexType name="SpaceLayerType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element ref="symbolicId" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="type" type="SpaceLayerTypeType"/> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="geometry" type="gml:GeometricComplexPropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:TopoComplexPropertyType" minOccurs="0"/> 

     <xs:element name="spaceCell" type="SpaceCellMemberType" minOccurs="1" maxOccurs="unbounded"/> 

     <xs:element name="boundaryCell" type="BoundaryCellMemberType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="graph" type="IntraLayerGraphPropertyType" minOccurs="0"/> 

     <xs:element name="subSpace" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="sequence" type="SpaceElementSequenceMemberType" minOccurs="0"  

           maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="SpaceLayer" type="SpaceLayerType" substitutionGroup="gml:AbstractFeature"/> 

 

 <xs:complexType name="SpaceLayerMemberType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureMemberType"> 

    <xs:sequence minOccurs="0"> 

     <xs:element ref="SpaceLayer"/> 

    </xs:sequence> 

    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

  

 <xs:simpleType name="SpaceLayerTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="topographic"/> 

     <xs:enumeration value="sensor"/> 

     <xs:enumeration value="logical"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 
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     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType> 

 

 <!-- SpaceCell ================================================================================ --> 

 <xs:complexType name="SpaceCellType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractSpaceElementType"> 

    <xs:sequence> 

     <xs:element name="primalSpace" type="SpacePropertyType" minOccurs="0"/> 

     <xs:element name="dualSpace" type="StatePropertyType" minOccurs="0"/> 

     <xs:element name="subSpace" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="SpaceCell" type="SpaceCellType" substitutionGroup="AbstractSpaceElement"/> 

 

 <xs:complexType name="SpaceCellMemberType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureMemberType"> 

    <xs:sequence minOccurs="0"> 

     <xs:element ref="SpaceCell"/> 

    </xs:sequence> 

    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 

 <!-- BoundaryCell ============================================================================= --> 

 <xs:complexType name="BoundaryCellType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractSpaceElementType"> 

    <xs:sequence> 

     <xs:element name="primalSpace" type="SpaceBoundaryPropertyType" minOccurs="0"/> 

     <xs:element name="dualSpace" type="TransitionPropertyType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="BoundaryCell" type="BoundaryCellType" substitutionGroup="AbstractSpaceElement"/> 

 

 <xs:complexType name="BoundaryCellMemberType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureMemberType"> 

    <xs:sequence minOccurs="0"> 

     <xs:element ref="BoundaryCell"/> 

    </xs:sequence> 

    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 

 <!-- Space =================================================================================== --> 

 <xs:complexType name="SpaceType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="geometry" type="SolidOrSurfacePropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="DirectedTopoSolidOrFacePropertyType" minOccurs="0"/> 

     <xs:element name="cell" type="gml:ReferenceType" minOccurs="0"/> 

     <xs:element name="boundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="dual" type="gml:ReferenceType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 
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 <xs:element name="Space" type="SpaceType" substitutionGroup="gml:AbstractFeature"/> 

 

 <xs:complexType name="SpacePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="Space"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <xs:complexType name="SolidOrSurfacePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:choice> 

    <xs:element ref="gml:AbstractSolid"/> 

    <xs:element ref="gml:AbstractSurface"/> 

   </xs:choice> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <xs:complexType name="DirectedTopoSolidOrFacePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:choice> 

    <xs:element ref="gml:TopoSolid"/> 

    <xs:element ref="gml:Face"/> 

   </xs:choice> 

  </xs:sequence> 

  <xs:attribute name="orientation" type="gml:SignType" default="+"/> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- SpaceBoundary =========================================================================== --> 

 <xs:complexType name="SpaceBoundaryType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="geometry" type="SurfaceOrCurvePropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="DirectedFaceOrEdgePropertyType" minOccurs="0"/> 

     <xs:element name="cell" type="gml:ReferenceType" minOccurs="0"/> 

     <xs:element name="coBoundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="2"/> 

     <xs:element name="dual" type="gml:ReferenceType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="SpaceBoundary" type="SpaceBoundaryType" substitutionGroup="gml:AbstractFeature"/> 

 

 <xs:complexType name="SpaceBoundaryPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="SpaceBoundary"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <xs:complexType name="SurfaceOrCurvePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:choice> 

    <xs:element ref="gml:AbstractSurface"/> 

    <xs:element ref="gml:AbstractCurve"/> 

   </xs:choice> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <xs:complexType name="DirectedFaceOrEdgePropertyType"> 
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  <xs:sequence minOccurs="0"> 

   <xs:choice> 

    <xs:element ref="gml:Face"/> 

    <xs:element ref="gml:Edge"/> 

   </xs:choice> 

  </xs:sequence> 

  <xs:attribute name="orientation" type="gml:SignType" default="+"/> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- State =================================================================================== --> 

 <xs:complexType name="StateType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="cost" type="GenericAttributeType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="geometry" type="gml:PointPropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:DirectedNodePropertyType" minOccurs="0"/> 

     <xs:element name="cell" type="gml:ReferenceType" minOccurs="0"/> 

     <xs:element name="coBoundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="interLayerCoBoundary" type="gml:ReferenceType" minOccurs="0"  

           maxOccurs="unbounded"/> 

     <xs:element name="primal" type="gml:ReferenceType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="State" type="StateType" substitutionGroup="gml:AbstractFeature"/> 

 

 <xs:complexType name="StatePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="State"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- Transition ================================================================================ --> 

 <xs:complexType name="TransitionType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="cost" type="GenericAttributeType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="geometry" type="gml:CurvePropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:DirectedEdgePropertyType" minOccurs="0"/> 

     <xs:element name="cell" type="gml:ReferenceType" minOccurs="0"/> 

     <xs:element name="boundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="2"/> 

     <xs:element name="primal" type="gml:ReferenceType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="Transition" type="TransitionType" substitutionGroup="gml:AbstractFeature"/> 

 

 <xs:complexType name="TransitionPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="Transition"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- IntraLayerGraph =========================================================================== --> 

 <xs:complexType name="IntraLayerGraphType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="geometry" type="gml:GeometricComplexPropertyType" minOccurs="0"/> 
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     <xs:element name="topology" type="gml:TopoComplexPropertyType" minOccurs="0"/> 

     <xs:element name="node" type="gml:ReferenceType" minOccurs="1" maxOccurs="unbounded"/> 

     <xs:element name="edge" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="IntraLayerGraph" type="IntraLayerGraphType" substitutionGroup="gml:AbstractGML"/> 

 

 <xs:complexType name="IntraLayerGraphPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="IntraLayerGraph"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- InterLayerEdge ============================================================================ --> 

 <xs:complexType name="InterLayerEdgeType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="topoRelation" type="TopoRelationEnum"/> 

     <xs:element name="boundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="2"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="InterLayerEdge" type="InterLayerEdgeType" substitutionGroup="gml:AbstractFeature"/> 

 

 <xs:complexType name="InterLayerEdgePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="InterLayerEdge"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <xs:simpleType name="TopoRelationEnum"> 

  <xs:restriction base="xs:string"> 

   <xs:enumeration value="containsOrInside"/> 

   <xs:enumeration value="coversOrCoveredBy"/> 

   <xs:enumeration value="equal"/> 

   <xs:enumeration value="overlap"/> 

  </xs:restriction> 

 </xs:simpleType> 

  

 <!-- MultilayeredGraph ========================================================================= --> 

 <xs:complexType name="MultilayeredGraphType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="subGraph" type="gml:ReferenceType" minOccurs="1" maxOccurs="unbounded"/> 

     <xs:element name="edge" type="InterLayerEdgePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="MultilayeredGraph" type="MultilayeredGraphType" substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="MultilayeredGraphPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="MultilayeredGraph"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- common attributes ========================================================================= --> 
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 <xs:element name="symbolicId" type="gml:CodeType"/> 

 <xs:element name="class" type="gml:CodeType"/> 

 <xs:element name="function" type="gml:CodeType"/> 

 <xs:element name="usage" type="gml:CodeType"/> 

 <xs:element name="name" type="gml:CodeType"/> 

 <xs:element name="description" type="xs:string"/> 

 <xs:element name="genericAttribute" type="GenericAttributeType"/> 

 

 <!-- GenericAttributeType ======================================================================= --> 

 <xs:complexType name="GenericAttributeType"> 

  <xs:sequence> 

   <xs:element ref="name"/> 

   <xs:element name="value" type="AnyPropertyType"/> 

   <xs:element name="typeName" type="gml:CodeType"/> 

   <xs:element name="definition" type="xs:string" minOccurs="0"/> 

  </xs:sequence> 

 </xs:complexType> 

 

 <xs:complexType name="AnyPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:any processContents="lax"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

</xs:schema> 

Listing 19: XML Schema definition of the MLSEM Space Representation package. 
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B.2 External Reference Package 

The following XML Schema definition has been generated from the MLSEM External Reference package (cf. 

chapter 4.4.1.3). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

 

 <!-- ExternalReference ========================================================================= --> 

 <xs:complexType name="ExternalReferenceType"> 

  <xs:sequence> 

   <xs:element name="informationSystem" type="xs:anyURI" minOccurs="0"/> 

   <xs:element name="externalObject" type="ExternalObjectReferencePropertyType" minOccurs="0"/> 

  </xs:sequence> 

 </xs:complexType>  

 <xs:element name="ExternalReference" type="ExternalReferenceType"/> 

  

 <xs:complexType name="ExternalReferencePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="ExternalReference"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- ExternalObjectReference ==================================================================== --> 

 <xs:complexType name="ExternalObjectReferenceType"> 

  <xs:sequence> 

   <xs:element name="name" type="xs:string" minOccurs="0"/> 

   <xs:element name="uri" type="xs:anyURI" minOccurs="0"/> 

  </xs:sequence> 

 </xs:complexType> 

 <xs:element name="ExternalObjectReference" type="ExternalObjectReferenceType"/> 

  

 <xs:complexType name="ExternalObjectReferencePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="ExternalObjectReference"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

</xs:schema> 

Listing 20: XML Schema definition of the MLSEM External Reference package. 
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B.3 Joint States Package 

The following XML Schema definition has been generated from the MLSEM Joint States package (cf. chapter 

4.4.1.2). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:include schemaLocation="spaceRepresentation.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

  

 <!-- JointStateSpace =========================================================================== --> 

 <xs:complexType name="JointStateSpaceType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="state" type="JointStatePropertyType" maxOccurs="unbounded"/> 

     <xs:element name="transition" type="JointStateTransitionPropertyType" minOccurs="0"  

           maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="JointStateSpace" type="JointStateSpaceType" substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="JointStateSpacePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="JointStateSpace"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- JointState ================================================================================ --> 

 <xs:complexType name="JointStateType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="node" type="gml:ReferenceType" maxOccurs="unbounded"/> 

     <xs:element name="uncertaintyRegion" type="gml:GeometricComplexPropertyType"/> 

     <xs:element name="coBoundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="JointState" type="JointStateType" substitutionGroup="gml:AbstractFeature"/> 

  

 <xs:complexType name="JointStatePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="JointState"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- JointStateTransition ======================================================================== --> 

 <xs:complexType name="JointStateTransitionType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="boundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="2"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="JointStateTransition" type="JointStateTransitionType" substitutionGroup="gml:AbstractFeature"/> 
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 <xs:complexType name="JointStateTransitionPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="JointStateTransition"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- Event =================================================================================== --> 

 <xs:complexType name="EventType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="type" type="EventTypeType"/> 

     <xs:element name="source" type="gml:ReferenceType"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="Event" type="EventType" substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="EventPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="Event"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <xs:simpleType name="EventTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="enteredCell"/> 

     <xs:enumeration value="leftCell"/> 

     <xs:enumeration value="insideCell"/> 

     <xs:enumeration value="outsideCell"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType> 

  

 <!-- TransitionTrigger ========================================================================== --> 

 <xs:complexType name="TransitionTriggerType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="previousState" type="gml:ReferenceType"/> 

     <xs:element name="activeState" type="gml:ReferenceType"/> 

     <xs:element name="timeStamp" type="gml:TimeInstantPropertyType"/> 

     <xs:element name="transition" type="gml:ReferenceType"/> 

     <xs:element name="event" type="gml:ReferenceType" maxOccurs="unbounded"/> 

     <xs:element name="previousTransitionTrigger" type="gml:ReferenceType" minOccurs="0"/> 

     <xs:element name="nextTransitionTrigger" type="gml:ReferenceType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="TransitionTrigger" type="TransitionTriggerType" substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="TransitionTriggerPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="TransitionTrigger"/> 

  </xs:sequence> 
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  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- JointStateMachine ========================================================================= --> 

 <xs:complexType name="JointStateMachineType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="stateSpace" type="gml:ReferenceType"/> 

     <xs:element name="event" type="EventPropertyType" maxOccurs="unbounded"/> 

     <xs:element name="initialState" type="JointStateSetPropertyType"/> 

     <xs:element name="finalState" type="JointStateSetPropertyType" minOccurs="0"/> 

     <xs:element name="activeState" type="JointStateSetPropertyType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="JointStateMachine" type="JointStateMachineType" substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="JointStateMachinePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="JointStateMachine"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- JointStateSet ============================================================================= --> 

 <xs:complexType name="JointStateSetType"> 

  <xs:sequence> 

   <xs:element name="state" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/>  

    

  </xs:sequence> 

 </xs:complexType> 

 <xs:element name="JointStateSet" type="JointStateSetType"/> 

  

 <xs:complexType name="JointStateSetPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="JointStateSet"/> 

  </xs:sequence> 

 </xs:complexType>  

</xs:schema> 

Listing 21: XML Schema definition of the MLSEM Joint States package. 
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B.4 Source Object Package 

The following XML Schema definition has been generated from the MLSEM Source Object package (cf. chapter 

4.4.1.3). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

  

 <!-- SourceObject ============================================================================= --> 

 <xs:complexType name="SourceObjectType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="mediaType" type="xs:anyURI" minOccurs="0"/> 

     <xs:choice> 

      <xs:element name="content" type="xs:base64Binary"/> 

      <xs:element name="reference" type="ExternalReferencePropertyType"/> 

     </xs:choice> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="SourceObject" type="SourceObjectType" substitutionGroup="gml:AbstractFeature"/> 

  

 <xs:complexType name="SourceObjectMemberType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureMemberType"> 

    <xs:sequence minOccurs="0"> 

     <xs:element ref="SourceObject"/> 

    </xs:sequence> 

    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType>  

</xs:schema> 

Listing 22: XML Schema definition of the MLSEM Source Object package. 
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B.5 Groups and Sequences Package 

The following XML Schema definition has been generated from the MLSEM Groups and Sequences package (cf. 

chapter 4.4.1.4). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

 

 <!-- SpaceElementGroup ======================================================================= --> 

 <xs:complexType name="SpaceElementGroupType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element ref="class" minOccurs="0"/> 

     <xs:element ref="function" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element ref="usage" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="element" type="gml:ReferenceType" maxOccurs="unbounded"/> 

     <xs:element name="subGroup" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="geometry" type="gml:GeometricComplexPropertyType" minOccurs="0"/> 

     <xs:element name="constraint" type="AbstractNavigationConstraintPropertyType" minOccurs="0"  

           maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType>  

 <xs:element name="SpaceElementGroup" type="SpaceElementGroupType" substitutionGroup="gml:AbstractFeature"/> 

  

 <xs:complexType name="SpaceElementGroupMemberType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureMemberType"> 

    <xs:sequence minOccurs="0"> 

     <xs:element ref="SpaceElementGroup"/> 

    </xs:sequence> 

    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

  

 <!-- SpaceElementSequence ===================================================================== --> 

 <xs:complexType name="SpaceElementSequenceType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element ref="class" minOccurs="0"/> 

     <xs:element ref="function" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element ref="usage" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="direction" type="gml:SignType" minOccurs="0"/> 

     <xs:element name="mayInvolveOuterSpace" type="xs:boolean" default="true" minOccurs="0"/> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="element" type="SequenceElementReferenceType" minOccurs="2"  

           maxOccurs="unbounded"/> 

     <xs:element name="geometry" type="gml:GeometricComplexPropertyType" minOccurs="0"/> 

     <xs:element name="constraint" type="AbstractNavigationConstraintPropertyType" minOccurs="0"  

           maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType>  

 <xs:element name="SpaceElementSequence" type="SpaceElementSequenceType"  

       substitutionGroup="gml:AbstractFeature"/> 

  

 <xs:complexType name="SequenceElementReferenceType"> 

  <xs:complexContent> 

   <xs:extension base="gml:ReferenceType"> 
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    <xs:attribute name="sequenceNo" type="xs:positiveInteger" use="required"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

  

 <xs:complexType name="SpaceElementSequenceMemberType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureMemberType"> 

    <xs:sequence minOccurs="0"> 

     <xs:element ref="SpaceElementSequence"/> 

    </xs:sequence> 

    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType>  

</xs:schema> 

Listing 23: XML Schema definition of the MLSEM Groups and Sequences package. 
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B.6 Route Package 

The following XML Schema definition has been generated from the MLSEM Route package (cf. chapter 4.4.1.5). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

  

 <!-- Route =================================================================================== --> 

 <xs:complexType name="RouteType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="totalTravelDistance" type="gml:LengthType" minOccurs="0"/> 

     <xs:element name="totalTravelTime" type="xs:duration" minOccurs="0"/> 

     <xs:element name="totalTravelCost" type="gml:MeasureType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="geometry" type="gml:CurvePropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:TopoComplexPropertyType" minOccurs="0"/> 

     <xs:element name="segment" type="RouteSegmentMemberType" maxOccurs="unbounded"/> 

     <xs:element name="startPoint" type="gml:ReferenceType"/> 

     <xs:element name="endPoint" type="gml:ReferenceType"/> 

     <xs:element name="viaPoint" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="guidance" type="RouteGuidancePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="Route" type="RouteType" substitutionGroup="gml:AbstractFeature"/> 

  

 <xs:complexType name="RoutePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="Route"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- RoutePoint =============================================================================== --> 

 <xs:complexType name="RoutePointType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="type" type="RoutePointTypeType"/> 

     <xs:element name="state" type="gml:ReferenceType"/> 

     <xs:element name="travelTime" type="xs:duration" minOccurs="0"/> 

     <xs:element name="travelCost" type="gml:MeasureType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="guidance" type="RouteGuidancePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="RoutePoint" type="RoutePointType" substitutionGroup="gml:AbstractFeature"/> 

  

 <xs:simpleType name="RoutePointTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="WayPoint"/> 

     <xs:enumeration value="Turn"/> 

     <xs:enumeration value="DecisionPoint"/> 

     <xs:enumeration value="PointOfInterest"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 
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     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType>  

 <xs:complexType name="RoutePointPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="RoutePoint"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- RouteSegment ============================================================================ --> 

 <xs:complexType name="RouteSegmentType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureType"> 

    <xs:sequence> 

     <xs:element name="travelDistance" type="gml:LengthType" minOccurs="0"/> 

     <xs:element name="travelTime" type="xs:duration" minOccurs="0"/> 

     <xs:element name="travelCost" type="gml:MeasureType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="geometry" type="gml:CurvePropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:TopoComplexPropertyType" minOccurs="0"/> 

     <xs:element name="node" type="gml:ReferenceType" maxOccurs="unbounded"/> 

     <xs:element name="edge" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="startPoint" type="RoutePointPropertyType"/> 

     <xs:element name="endPoint" type="RoutePointPropertyType"/> 

     <xs:element name="viaPoint" type="RoutePointPropertyType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="previousRouteSegment" type="gml:ReferenceType" minOccurs="0"/> 

     <xs:element name="nextRouteSegment" type="gml:ReferenceType" minOccurs="0"/> 

     <xs:element name="guidance" type="RouteGuidancePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="RouteSegment" type="RouteSegmentType" substitutionGroup="gml:AbstractFeature"/> 

  

 <xs:complexType name="RouteSegmentMemberType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractFeatureMemberType"> 

    <xs:sequence minOccurs="0"> 

     <xs:element ref="RouteSegment"/> 

    </xs:sequence> 

    <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

  

 <!-- AbstractRouteGuidance ===================================================================== --> 

 <xs:complexType name="AbstractRouteGuidanceType" abstract="true"> 

  <xs:sequence/> 

 </xs:complexType> 

 <xs:element name="AbstractRouteGuidance" type="AbstractRouteGuidanceType" abstract="true"/>  

 <xs:complexType name="RouteGuidancePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="AbstractRouteGuidance"/> 

  </xs:sequence> 

 </xs:complexType> 

  

 <!-- AbstractRoutePresentation =================================================================== --> 

 <xs:complexType name="AbstractRoutePresentationType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="AbstractRouteGuidanceType"> 

    <xs:sequence> 

     <xs:element name="mediaType" type="xs:string"/> 

     <xs:choice> 

      <xs:element name="content" type="xs:base64Binary"/> 

      <xs:element name="reference" type="ExternalReferencePropertyType"/> 

     </xs:choice> 
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    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="AbstractRoutePresentation" type="AbstractRoutePresentationType" abstract="true"  

       substitutionGroup="AbstractRouteGuidance"/> 

  

 <xs:complexType name="RoutePresentationPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="AbstractRoutePresentation"/> 

  </xs:sequence> 

 </xs:complexType> 

  

 <!-- AudioDescription ========================================================================== --> 

 <xs:complexType name="AudioDescriptionType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractRoutePresentationType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="AudioDescription" type="AudioDescriptionType" substitutionGroup="AbstractRoutePresentation"/> 

  

 <!-- VisualDescription ========================================================================== --> 

 <xs:complexType name="VisualDescriptionType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractRoutePresentationType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="VisualDescription" type="VisualDescriptionType" substitutionGroup="AbstractRoutePresentation"/> 

  

 <!-- TextualDescription ========================================================================= --> 

 <xs:complexType name="TextualDescriptionType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractRoutePresentationType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="TextualDescription" type="TextualDescriptionType" substitutionGroup="AbstractRoutePresentation"/> 

  

 <!-- RouteInstruction =========================================================================== --> 

 <xs:complexType name="RouteInstructionType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractRouteGuidanceType"> 

    <xs:sequence> 

     <xs:element name="action" type="xs:string"/> 

     <xs:element name="distance" type="gml:LengthType"/> 

     <xs:element name="duration" type="xs:duration"/> 

     <xs:element ref="description" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="presentation" type="RoutePresentationPropertyType" minOccurs="0"  

           maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="RouteInstruction" type="RouteInstructionType" substitutionGroup="AbstractRouteGuidance"/> 

  

 <xs:complexType name="RouteInstructionPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="RouteInstruction"/> 

  </xs:sequence> 

 </xs:complexType>  

</xs:schema> 

Listing 24: XML Schema definition of the MLSEM Route package. 



366 Appendix B.   GML Application Schema of the MLSEM 

 

 

B.7 Model Linkage Package 

The following XML Schema definition has been generated from the MLSEM Model Linkage package (cf. chapter 

4.4.1.6). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

 

 <!-- AbstractTransferSpaceElement ================================================================ --> 

 <xs:complexType name="AbstractTransferSpaceElementType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="AbstractSpaceElementType"> 

    <xs:sequence> 

     <xs:element name="cost" type="GenericAttributeType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="AbstractTransferSpaceElement" type="AbstractTransferSpaceElementType" abstract="true"  

       substitutionGroup="AbstractSpaceElement"/> 

 

 <!-- TransferState ============================================================================= --> 

 <xs:complexType name="TransferStateType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractTransferSpaceElementType"> 

    <xs:sequence> 

     <xs:element name="geometry" type="gml:PointPropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:DirectedNodePropertyType" minOccurs="0"/> 

     <xs:choice> 

      <xs:element name="state" type="gml:ReferenceType"/> 

      <xs:element name="externalNode" type="ExternalReferenceType"/> 

     </xs:choice>      

     <xs:element name="coBoundary" type="gml:ReferenceType" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="guidance" type="RouteGuidancePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="TransferState" type="TransferStateType" substitutionGroup="AbstractTransferSpaceElement"/> 

 

 <xs:complexType name="TransferStatePropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="TransferState"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- TransferTransition ========================================================================= --> 

 <xs:complexType name="TransferTransitionType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractTransferSpaceElementType"> 

    <xs:sequence> 

     <xs:element name="geometry" type="gml:CurvePropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:DirectedEdgePropertyType" minOccurs="0"/> 

     <xs:element name="boundary" type="gml:ReferenceType" minOccurs="2" maxOccurs="2"/> 

     <xs:element name="guidance" type="RouteGuidancePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="TransferTransition" type="TransferTransitionType"  

       substitutionGroup="AbstractTransferSpaceElement"/> 

  

 <xs:complexType name="TransferTransitionPropertyType"> 
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  <xs:sequence minOccurs="0"> 

   <xs:element ref="TransferTransition"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- InterModelGraph =========================================================================== --> 

 <xs:complexType name="InterModelGraphType"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="geometry" type="gml:GeometricComplexPropertyType" minOccurs="0"/> 

     <xs:element name="topology" type="gml:TopoComplexPropertyType" minOccurs="0"/> 

     <xs:element name="node" type="TransferStatePropertyType" minOccurs="2" maxOccurs="unbounded"/> 

     <xs:element name="edge" type="TransferTransitionPropertyType" minOccurs="1" maxOccurs="unbounded"/> 

     <xs:element name="guidance" type="RouteGuidancePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="InterModelGraph" type="InterModelGraphType" substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="InterModelGraphPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="InterModelGraph"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

</xs:schema> 

Listing 25: XML Schema definition of the MLSEM Model Linkage package. 
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B.8 Constraints Package 

The following XML Schema definition has been generated from the MLSEM Constraints package (cf. chapter 

5.3). 

<?xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns="http://www.tu-berlin.de/igg/mlsem/1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" 

 xmlns:gml="http://www.opengis.net/gml/3.2" targetNamespace="http://www.tu-berlin.de/igg/mlsem/1.0" 

 elementFormDefault="qualified" version="1.0.0"> 

 <xs:include schemaLocation="mlsem.xsd"/> 

 <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="../external/gml/3.2.1/gml.xsd"/> 

  

 <!-- AbstractNavigationConstraint ================================================================= --> 

 <xs:complexType name="AbstractNavigationConstraintType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="temporalValidity" type="gml:TimePrimitivePropertyType" minOccurs="0"/> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

     <xs:element name="condition" type="AbstractConstraintConditionPropertyType" minOccurs="0"  

           maxOccurs="unbounded"/> 

     <xs:element name="guidance" type="RouteGuidancePropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType>  

 <xs:element name="AbstractNavigationConstraint" type="AbstractNavigationConstraintType" abstract="true"  

       substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="AbstractNavigationConstraintPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="AbstractNavigationConstraint"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

 

 <!-- PassableConstraint ========================================================================= --> 

 <xs:complexType name="PassableConstraintType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractNavigationConstraintType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="PassableConstraint" type="PassableConstraintType"  

       substitutionGroup="AbstractNavigationConstraint"/> 

  

 <!-- NonPassableConstraint ===================================================================== --> 

 <xs:complexType name="NonPassableConstraintType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractNavigationConstraintType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="NonPassableConstraint" type="NonPassableConstraintType"  

       substitutionGroup="AbstractNavigationConstraint"/> 

  

 <!-- PermissibleConstraint ======================================================================= --> 

 <xs:complexType name="PermissibleConstraintType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractNavigationConstraintType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="PermissibleConstraint" type="PermissibleConstraintType"  

       substitutionGroup="AbstractNavigationConstraint"/> 
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 <!-- NonPermissibleConstraint ==================================================================== --> 

 <xs:complexType name="NonPermissibleConstraintType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractNavigationConstraintType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="NonPermissibleConstraint" type="NonPermissibleConstraintType"  

       substitutionGroup="AbstractNavigationConstraint"/> 

  

 <!-- AbstractConstraintCondition ================================================================== --> 

 <xs:complexType name="AbstractConstraintConditionType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="gml:AbstractGMLType"> 

    <xs:sequence> 

     <xs:element name="classifier" type="xs:string" minOccurs="0"/> 

     <xs:element ref="description" minOccurs="0"/> 

     <xs:element ref="genericAttribute" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="AbstractConstraintCondition" type="AbstractConstraintConditionType" abstract="true"  

       substitutionGroup="gml:AbstractGML"/> 

  

 <xs:complexType name="AbstractConstraintConditionPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="AbstractConstraintCondition"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- CombinedConstraintCondition ================================================================= --> 

 <xs:complexType name="CombinedConstraintConditionType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractConstraintConditionType"> 

    <xs:sequence> 

     <xs:element name="operator" type="BooleanOperator"/> 

     <xs:element name="operand" type="AbstractConstraintConditionPropertyType" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="CombinedConstraintCondition" type="CombinedConstraintConditionType"  

       substitutionGroup="AbstractConstraintCondition"/> 

  

 <xs:simpleType name="BooleanOperator"> 

  <xs:restriction base="xs:string"> 

   <xs:enumeration value="AND"/> 

   <xs:enumeration value="OR"/> 

   <xs:enumeration value="NOT"/> 

  </xs:restriction> 

 </xs:simpleType> 

  

 <!-- AbstractTemporalCondition =================================================================== --> 

 <xs:complexType name="AbstractTemporalConditionType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="AbstractConstraintConditionType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType>  

 <xs:element name="AbstractTemporalCondition" type="AbstractConstraintConditionType" abstract="true"  

       substitutionGroup="AbstractConstraintCondition"/> 

 

 <!-- TimeInstant ============================================================================== --> 
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 <xs:complexType name="TimeInstantType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractTemporalConditionType"> 

    <xs:sequence> 

     <xs:element name="time" type="gml:TimeInstantPropertyType"/> 

     <xs:element name="period" type="xs:duration" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="TimeInstant" type="TimeInstantType" substitutionGroup="AbstractTemporalCondition"/> 

  

 <!-- TimePeriod =============================================================================== --> 

 <xs:complexType name="TimePeriodType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractTemporalConditionType"> 

    <xs:sequence> 

     <xs:element name="extent" type="gml:TimePeriodPropertyType"/> 

     <xs:element name="period" type="xs:duration" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="TimePeriod" type="TimePeriodType" substitutionGroup="AbstractTemporalCondition"/> 

  

 <!-- AbstractPhysicalCondition =================================================================== --> 

 <xs:complexType name="AbstractPhysicalConditionType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="AbstractConstraintConditionType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="AbstractPhysicalCondition" type="AbstractPhysicalConditionType" abstract="true"  

       substitutionGroup="AbstractConstraintCondition"/> 

 

 <!-- SpatialProfile ============================================================================= --> 

 <xs:complexType name="SpatialProfileType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractPhysicalConditionType"> 

    <xs:sequence> 

     <xs:element name="profile" type="gml:GeometricPrimitivePropertyType" minOccurs="0"/> 

     <xs:element name="width" type="gml:LengthType" minOccurs="0"/> 

     <xs:element name="length" type="gml:LengthType" minOccurs="0"/> 

     <xs:element name="height" type="gml:LengthType" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="SpatialProfile" type="SpatialProfileType" substitutionGroup="AbstractPhysicalCondition"/> 

 

 <!-- PhysicalQuantity =========================================================================== --> 

 <xs:complexType name="PhysicalQuantityType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractPhysicalConditionType"> 

    <xs:sequence> 

     <xs:element ref="name"/> 

     <xs:element name="value" type="ValueRangeType"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="PhysicalQuantity" type="PhysicalQuantityType" substitutionGroup="AbstractPhysicalCondition"/> 

  

 <!-- ModeOfLocomotion ======================================================================== --> 

 <xs:complexType name="ModeOfLocomotionType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractPhysicalConditionType"> 

    <xs:sequence> 
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     <xs:element name="type" type="LocomotionTypeType"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="ModeOfLocomotion" type="ModeOfLocomotionType" substitutionGroup="AbstractPhysicalCondition"/> 

  

 <xs:simpleType name="LocomotionTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="Walking"/> 

     <xs:enumeration value="Driving"/> 

     <xs:enumeration value="Flying"/> 

     <xs:enumeration value="AssistedWalking"/> 

     <xs:enumeration value="WheelChair"/> 

     <xs:enumeration value="PoweredWheelChair"/> 

     <xs:enumeration value="UnmannedAerialVehicle"/> 

     <xs:enumeration value="UnmannedGroundVehicle"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType> 

  

 <!-- Material ================================================================================= --> 

 <xs:complexType name="MaterialType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractPhysicalConditionType"> 

    <xs:sequence> 

     <xs:element name="surface" type="SurfaceTypeType"/> 

     <xs:element name="material" type="gml:CodeType"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="Material" type="MaterialType" substitutionGroup="AbstractPhysicalCondition"/> 

  

 <xs:simpleType name="SurfaceTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="Wall"/> 

     <xs:enumeration value="Floor"/> 

     <xs:enumeration value="Ceiling"/> 

     <xs:enumeration value="Ramp"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType> 

  

 <!-- SpatialManeuver =========================================================================== --> 

 <xs:complexType name="SpatialManeuverType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractPhysicalConditionType"> 

    <xs:sequence> 

     <xs:element name="type" type="ManeuverTypeType"/> 

     <xs:element name="geometry" type="gml:GeometricPrimitivePropertyType" minOccurs="0"/> 

     <xs:element name="width" type="ValueRangeType" minOccurs="0"/> 

     <xs:element name="length" type="ValueRangeType" minOccurs="0"/> 
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     <xs:element name="height" type="ValueRangeType" minOccurs="0"/> 

     <xs:element name="verticalGradient" type="ValueRangeType" minOccurs="0"/> 

     <xs:element name="horizontalTurnRadius" type="ValueRangeType" minOccurs="0"/> 

     <xs:element name="numberOfSteps" type="xs:positiveInteger" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="SpatialManeuver" type="SpatialManeuverType" substitutionGroup="AbstractPhysicalCondition"/> 

  

 <xs:simpleType name="ManeuverTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="VerticalDisplacement"/> 

     <xs:enumeration value="HorizontalDisplacement"/> 

     <xs:enumeration value="VerticalAscent"/> 

     <xs:enumeration value="VerticalDescent"/> 

     <xs:enumeration value="Turn"/> 

     <xs:enumeration value="Gap"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType> 

  

 <!-- ValueRange ============================================================================== --> 

 <xs:complexType name="ValueRangeType"> 

  <xs:sequence> 

   <xs:element name="uom" type="gml:UomIdentifier"/> 

   <xs:element name="lowerLimit" type="xs:double" minOccurs="0"/> 

   <xs:element name="upperLimit" type="xs:double" minOccurs="0"/> 

   <xs:element name="includeLowerLimit" type="xs:boolean" default="true" minOccurs="0"/> 

   <xs:element name="includeUpperLimit" type="xs:boolean" default="true" minOccurs="0"/> 

  </xs:sequence> 

 </xs:complexType> 

 <xs:element name="valueRange" type="ValueRangeType"/> 

  

 <!-- AbstractLogicalCondition ==================================================================== --> 

 <xs:complexType name="AbstractLogicalConditionType" abstract="true"> 

  <xs:complexContent> 

   <xs:extension base="AbstractConstraintConditionType"> 

    <xs:sequence/> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="AbstractLogicalCondition" type="AbstractLogicalConditionType" abstract="true"  

       substitutionGroup="AbstractConstraintCondition"/> 

  

 <!-- NavigationScenario ========================================================================= --> 

 <xs:complexType name="NavigationScenarioType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractLogicalConditionType"> 

    <xs:sequence> 

     <xs:element name="type" type="ScenarioTypeType"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="NavigationScenario" type="NavigationScenarioType" substitutionGroup="AbstractLogicalCondition"/> 

  

 <xs:simpleType name="ScenarioTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 
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     <xs:enumeration value="Normal"/> 

     <xs:enumeration value="PeakTime"/> 

     <xs:enumeration value="OffPeakTime"/> 

     <xs:enumeration value="LowSecurityLevel"/> 

     <xs:enumeration value="MediumSecurityLevel"/> 

     <xs:enumeration value="HighSecurityLevel"/> 

     <xs:enumeration value="Evacuation"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType> 

  

 <!-- UserGroup =============================================================================== --> 

 <xs:complexType name="UserGroupType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractLogicalConditionType"> 

    <xs:sequence> 

     <xs:element ref="name"/> 

     <xs:element name="subGroup" type="UserGroupPropertyType" minOccurs="0" maxOccurs="unbounded"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="UserGroup" type="UserGroupType" substitutionGroup="AbstractLogicalCondition"/> 

  

 <xs:complexType name="UserGroupPropertyType"> 

  <xs:sequence minOccurs="0"> 

   <xs:element ref="UserGroup"/> 

  </xs:sequence> 

  <xs:attributeGroup ref="gml:AssociationAttributeGroup"/> 

  <xs:attributeGroup ref="gml:OwnershipAttributeGroup"/> 

 </xs:complexType> 

  

 <!-- UserState ================================================================================ --> 

 <xs:complexType name="UserStateType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractLogicalConditionType"> 

    <xs:sequence> 

     <xs:element name="value" type="xs:boolean" minOccurs="0"/> 

     <xs:element name="state" type="xs:string" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType>  

 <xs:element name="UserState" type="UserStateType" substitutionGroup="AbstractLogicalCondition"/> 

 

 <!-- ObjectState ============================================================================== --> 

 <xs:complexType name="ObjectStateType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractLogicalConditionType"> 

    <xs:sequence> 

     <xs:element name="id" type="ExternalReferenceType"/> 

     <xs:element name="value" type="xs:boolean" minOccurs="0"/> 

     <xs:element name="state" type="xs:string" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="ObjectState" type="ObjectStateType" substitutionGroup="AbstractLogicalCondition"/> 

 

 <!-- AccessControl ============================================================================ --> 

 <xs:complexType name="AccessControlType"> 

  <xs:complexContent> 

   <xs:extension base="AbstractLogicalConditionType"> 
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    <xs:sequence> 

     <xs:element name="credential" type="CredentialTypeType" minOccurs="0"/> 

     <xs:element name="objectId" type="xs:string" minOccurs="0"/> 

     <xs:element name="permission" type="xs:string" minOccurs="0"/> 

    </xs:sequence> 

   </xs:extension> 

  </xs:complexContent> 

 </xs:complexType> 

 <xs:element name="AccessControl" type="AccessControlType" substitutionGroup="AbstractLogicalCondition"/> 

  

 <xs:simpleType name="CredentialTypeType"> 

  <xs:union> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:enumeration value="Key"/> 

     <xs:enumeration value="PIN"/> 

     <xs:enumeration value="Biometric"/> 

     <xs:enumeration value="Screening"/> 

     <xs:enumeration value="PersonalSearch"/> 

     <xs:enumeration value="ManualCheck"/> 

     <xs:enumeration value="Ticket"/> 

    </xs:restriction> 

   </xs:simpleType> 

   <xs:simpleType> 

    <xs:restriction base="xs:string"> 

     <xs:pattern value="other: \w{2,}"/> 

    </xs:restriction> 

   </xs:simpleType> 

  </xs:union> 

 </xs:simpleType> 

</xs:schema> 

Listing 26: XML Schema definition of the MLSEM Constraints package. 
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Appendix C  

SQL Definition of the MLSEM Database Schema 

This appendix provides the formal definition of the developed MLSEM database schema expressed in statements 

of the SQL Data Definition Language (DDL). The DDL statements are presented in the following listing 27 and 

have been automatically derived from the UML diagram of the database schema (cf. figure 263 in chapter 7.2.3) 

using the UML software tool Enterprise Architect.88 The SQL script can be directly executed (and has been tested) 

on an Oracle Database 11g Release 2 with Oracle Spatial and Graph extension in order to create an MLSEM 

database instance. A second SQL script is provided in listing 28 which allows for the creation of 3-dimensional 

indexes on the spatial table columns. Most of the functions and operations on spatial objects offered by the Oracle 

Spatial database require spatial indexes to be enabled. This second script can also be easily adapted for 2-dimen-

sional spatial indexes in case a 2-dimensional instance of the MLSEM shall be stored and managed. 

--   -------------------------------------------------- 

--   Generated by Enterprise Architect Version 9.3.934 

--   Created On : Monday, 04 March, 2013  

--   DBMS       : Oracle  

--   --------------------------------------------------  

--  Drop Tables, Stored Procedures and Views 

DROP TABLE BOUNDARY_CELL CASCADE CONSTRAINTS 

; 

DROP TRIGGER TRG_GENERIC_ATTRIBUTE_OID 

; 

DROP SEQUENCE SEQ_GENERIC_ATTRIBUTE_OID 

; 

DROP TABLE GENERIC_ATTRIBUTE CASCADE CONSTRAINTS 

; 

DROP TABLE INTER_LAYER_EDGE CASCADE CONSTRAINTS 

; 

DROP TRIGGER TRG_JOINT_STATE_OID 

; 

DROP SEQUENCE SEQ_JOINT_STATE_OID 

; 

DROP TABLE JOINT_STATE CASCADE CONSTRAINTS 

; 

DROP TABLE JOINT_STATE_CLIQUE CASCADE CONSTRAINTS 

; 

DROP TABLE JOINT_STATE_TRANSITION CASCADE CONSTRAINTS 

; 

DROP TRIGGER TRG_SOURCE_OBJECT_OID 

; 

DROP SEQUENCE SEQ_SOURCE_OBJECT_OID 

; 

DROP TABLE SOURCE_OBJECT CASCADE CONSTRAINTS 

; 

DROP TABLE SPACE_CELL CASCADE CONSTRAINTS 

; 

DROP TRIGGER TRG_SPACE_ELEMENT_OID 

; 

DROP SEQUENCE SEQ_SPACE_ELEMENT_OID 

; 

DROP TABLE SPACE_ELEMENT CASCADE CONSTRAINTS 

; 

DROP TRIGGER TRG_SPACE_LAYER_OID 

; 

DROP SEQUENCE SEQ_SPACE_LAYER_OID 

                                                           
88 Enterprise Architect is a commercial UML modelling tool developed by the company Sparx Systems Pty Ltd. See 

http://www.sparxsystems.com.au/ for more information. 
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; 

DROP TABLE SPACE_LAYER CASCADE CONSTRAINTS 

; 

--  Create Tables 

CREATE TABLE BOUNDARY_CELL 

( 

 OID             NUMBER NOT NULL, 

 LAYER_ID        NUMBER NOT NULL, 

 SPACE_CELL_ID1  NUMBER NOT NULL, 

 SPACE_CELL_ID2  NUMBER NOT NULL, 

 SPACE_BOUNDARY  SDO_GEOMETRY, 

 TRANSITION      SDO_GEOMETRY 

) 

; 

CREATE TABLE GENERIC_ATTRIBUTE 

( 

 OID         NUMBER NOT NULL, 

 ELEMENT_ID  NUMBER, 

 LAYER_ID    NUMBER, 

 ROOT_ID     NUMBER NOT NULL, 

 PARENT_ID   NUMBER, 

 NAME        VARCHAR(256) NOT NULL, 

 STR_VAL     VARCHAR2(4000), 

 INT_VAL     LONG, 

 DOUBLE_VAL  NUMBER, 

 URI_VAL     VARCHAR2(4000), 

 DATE_VAL    DATE, 

 GEOM_VAL    SDO_GEOMETRY, 

 BLOB_VAL    BLOB, 

 XML_VAL     XMLTYPE 

) 

; 

CREATE TABLE INTER_LAYER_EDGE 

( 

 STATE_ID1      NUMBER NOT NULL, 

 STATE_ID2      NUMBER NOT NULL, 

 TOPO_RELATION  VARCHAR2(100) NOT NULL 

) 

; 

CREATE TABLE JOINT_STATE 

( 

 OID                 NUMBER NOT NULL, 

 UNCERTAINTY_REGION  SDO_GEOMETRY 

) 

; 

CREATE TABLE JOINT_STATE_CLIQUE 

( 

 JOINT_STATE_ID  NUMBER NOT NULL, 

 SPACE_CELL_ID   NUMBER NOT NULL 

) 

; 

CREATE TABLE JOINT_STATE_TRANSITION 

( 

 STATE_ID1  NUMBER NOT NULL, 

 STATE_ID2  NUMBER NOT NULL 

) 

; 

CREATE TABLE SOURCE_OBJECT 

( 

 OID            NUMBER NOT NULL, 

 ELEMENT_ID     NUMBER, 

 LAYER_ID       NUMBER, 

 NAME           VARCHAR2(1000), 
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 DESCRIPTION    VARCHAR2(1000), 

 MEDIA_TYPE     VARCHAR2(100) NOT NULL, 

 CONTENT        BLOB, 

 XML_CONTENT    XMLTYPE, 

 INFOSYS        VARCHAR2(4000), 

 EXTERNAL_NAME  VARCHAR2(4000), 

 URI            VARCHAR2(4000) 

) 

; 

CREATE TABLE SPACE_CELL 

( 

 OID       NUMBER NOT NULL, 

 LAYER_ID  NUMBER NOT NULL, 

 SPACE     SDO_GEOMETRY, 

 STATE     SDO_GEOMETRY 

) 

; 

CREATE TABLE SPACE_ELEMENT 

( 

 OID          NUMBER NOT NULL, 

 SYMBOLIC_ID  VARCHAR2(4000), 

 CLASS        VARCHAR2(256), 

 FUNCTION     VARCHAR2(1000), 

 USAGE        VARCHAR2(1000) 

) 

; 

CREATE TABLE SPACE_LAYER 

( 

 OID        NUMBER NOT NULL, 

 TYPE       VARCHAR2(256) NOT NULL, 

 ROOT_ID    NUMBER NOT NULL, 

 PARENT_ID  NUMBER 

) 

; 

--  Create Primary Key Constraints 

ALTER TABLE BOUNDARY_CELL ADD CONSTRAINT PK_BOUNDARY_CELL  

 PRIMARY KEY (OID) 

; 

ALTER TABLE GENERIC_ATTRIBUTE ADD CONSTRAINT PK_GENERIC_ATTRIBUTE  

 PRIMARY KEY (OID) 

; 

ALTER TABLE INTER_LAYER_EDGE ADD CONSTRAINT PK_LAYER_EDGE  

 PRIMARY KEY (STATE_ID1, STATE_ID2) 

; 

ALTER TABLE JOINT_STATE ADD CONSTRAINT PK_JOINT_STATE  

 PRIMARY KEY (OID) 

; 

ALTER TABLE JOINT_STATE_CLIQUE ADD CONSTRAINT PK_JOINT_STATE_CLIQUE  

 PRIMARY KEY (JOINT_STATE_ID, SPACE_CELL_ID) 

; 

ALTER TABLE JOINT_STATE_TRANSITION ADD CONSTRAINT PK_STATE_TRANSITION  

 PRIMARY KEY (STATE_ID1, STATE_ID2) 

; 

ALTER TABLE SOURCE_OBJECT ADD CONSTRAINT PK_SOURCE_OBJECT  

 PRIMARY KEY (OID) 

; 

ALTER TABLE SPACE_CELL ADD CONSTRAINT PK_SPACE_CELL  

 PRIMARY KEY (OID) 

; 
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ALTER TABLE SPACE_ELEMENT ADD CONSTRAINT PK_SPACE_ELEMENT  

 PRIMARY KEY (OID) 

; 

ALTER TABLE SPACE_LAYER ADD CONSTRAINT PK_SPACE_LAYER  

 PRIMARY KEY (OID) 

; 

--  Create Foreign Key Constraints 

ALTER TABLE BOUNDARY_CELL ADD CONSTRAINT FK_BC_SPACE_ELEMENT 

 FOREIGN KEY (OID) REFERENCES SPACE_ELEMENT (OID) 

; 

ALTER TABLE BOUNDARY_CELL ADD CONSTRAINT FK_BC_SPACE_LAYER 

 FOREIGN KEY (LAYER_ID) REFERENCES SPACE_LAYER (OID) 

; 

ALTER TABLE BOUNDARY_CELL ADD CONSTRAINT FK_BC_SPACE_CELL_1 

 FOREIGN KEY (SPACE_CELL_ID1) REFERENCES SPACE_CELL (OID) 

; 

ALTER TABLE BOUNDARY_CELL ADD CONSTRAINT FK_BC_SPACE_CELL_2 

 FOREIGN KEY (SPACE_CELL_ID2) REFERENCES SPACE_CELL (OID) 

; 

ALTER TABLE GENERIC_ATTRIBUTE ADD CONSTRAINT FK_GA_SPACE_ELEMENT 

 FOREIGN KEY (ELEMENT_ID) REFERENCES SPACE_ELEMENT (OID) 

; 

ALTER TABLE GENERIC_ATTRIBUTE ADD CONSTRAINT FK_GA_SPACE_LAYER 

 FOREIGN KEY (LAYER_ID) REFERENCES SPACE_LAYER (OID) 

; 

ALTER TABLE GENERIC_ATTRIBUTE ADD CONSTRAINT FK_GA_ROOT 

 FOREIGN KEY (ROOT_ID) REFERENCES GENERIC_ATTRIBUTE (OID) 

; 

ALTER TABLE GENERIC_ATTRIBUTE ADD CONSTRAINT FK_GA_PARENT 

 FOREIGN KEY (PARENT_ID) REFERENCES GENERIC_ATTRIBUTE (OID) 

; 

ALTER TABLE INTER_LAYER_EDGE ADD CONSTRAINT FK_ILE_SPACE_CELL_1 

 FOREIGN KEY (STATE_ID1) REFERENCES SPACE_CELL (OID) 

; 

ALTER TABLE INTER_LAYER_EDGE ADD CONSTRAINT FK_ILE_SPACE_CELL_2 

 FOREIGN KEY (STATE_ID2) REFERENCES SPACE_CELL (OID) 

; 

ALTER TABLE JOINT_STATE_CLIQUE ADD CONSTRAINT FK_JSC_SPACE_CELL 

 FOREIGN KEY (SPACE_CELL_ID) REFERENCES SPACE_CELL (OID) 

; 

ALTER TABLE JOINT_STATE_CLIQUE ADD CONSTRAINT FK_JSC_JOINT_STATE 

 FOREIGN KEY (JOINT_STATE_ID) REFERENCES JOINT_STATE (OID) 

; 

ALTER TABLE JOINT_STATE_TRANSITION ADD CONSTRAINT FK_JST_JOINT_STATE_1 

 FOREIGN KEY (STATE_ID1) REFERENCES JOINT_STATE (OID) 

; 

ALTER TABLE JOINT_STATE_TRANSITION ADD CONSTRAINT FK_JST_JOINT_STATE_2 

 FOREIGN KEY (STATE_ID2) REFERENCES JOINT_STATE (OID) 

; 

ALTER TABLE SOURCE_OBJECT ADD CONSTRAINT FK_SO_SPACE_ELEMENT 

 FOREIGN KEY (ELEMENT_ID) REFERENCES SPACE_ELEMENT (OID) 

; 
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ALTER TABLE SOURCE_OBJECT ADD CONSTRAINT FK_SO_SPACE_LAYER 

 FOREIGN KEY (LAYER_ID) REFERENCES SPACE_LAYER (OID) 

; 

ALTER TABLE SPACE_CELL ADD CONSTRAINT FK_SC_SPACE_ELEMENT 

 FOREIGN KEY (OID) REFERENCES SPACE_ELEMENT (OID) 

; 

ALTER TABLE SPACE_CELL ADD CONSTRAINT FK_SC_SPACE_LAYER 

 FOREIGN KEY (LAYER_ID) REFERENCES SPACE_LAYER (OID) 

; 

ALTER TABLE SPACE_LAYER ADD CONSTRAINT FK_SL_ROOT 

 FOREIGN KEY (ROOT_ID) REFERENCES SPACE_LAYER (OID) 

; 

ALTER TABLE SPACE_LAYER ADD CONSTRAINT FK_SL_PARENT 

 FOREIGN KEY (PARENT_ID) REFERENCES SPACE_LAYER (OID) 

; 

--  Create Triggers  

CREATE SEQUENCE SEQ_GENERIC_ATTRIBUTE_OID  

 INCREMENT BY 1  

 START WITH 1  

 NOMAXVALUE  

 MINVALUE 1  

 NOCYCLE  

 NOCACHE  

 NOORDER 

; 

CREATE OR REPLACE TRIGGER TRG_GENERIC_ATTRIBUTE_OID  

 BEFORE INSERT  

 ON GENERIC_ATTRIBUTE  

 FOR EACH ROW  

 BEGIN  

  SELECT SEQ_GENERIC_ATTRIBUTE_OID.NEXTVAL  

  INTO :NEW.OID  

  FROM DUAL;  

 END; 

/ 

CREATE SEQUENCE SEQ_JOINT_STATE_OID  

 INCREMENT BY 1  

 START WITH 1  

 NOMAXVALUE  

 MINVALUE 1  

 NOCYCLE  

 NOCACHE  

 NOORDER 

; 

CREATE OR REPLACE TRIGGER TRG_JOINT_STATE_OID  

 BEFORE INSERT  

 ON JOINT_STATE  

 FOR EACH ROW  

 BEGIN  

  SELECT SEQ_JOINT_STATE_OID.NEXTVAL  

  INTO :NEW.OID  

  FROM DUAL;  

 END; 

/ 

CREATE SEQUENCE SEQ_SOURCE_OBJECT_OID  

 INCREMENT BY 1  

 START WITH 1  

 NOMAXVALUE  

 MINVALUE 1  

 NOCYCLE  

 NOCACHE  
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 NOORDER 

; 

CREATE OR REPLACE TRIGGER TRG_SOURCE_OBJECT_OID  

 BEFORE INSERT  

 ON SOURCE_OBJECT  

 FOR EACH ROW  

 BEGIN  

  SELECT SEQ_SOURCE_OBJECT_OID.NEXTVAL  

  INTO :NEW.OID  

  FROM DUAL;  

 END; 

/ 

CREATE SEQUENCE SEQ_SPACE_ELEMENT_OID  

 INCREMENT BY 1  

 START WITH 1  

 NOMAXVALUE  

 MINVALUE 1  

 NOCYCLE  

 NOCACHE  

 NOORDER 

; 

CREATE OR REPLACE TRIGGER TRG_SPACE_ELEMENT_OID  

 BEFORE INSERT  

 ON SPACE_ELEMENT  

 FOR EACH ROW  

 BEGIN  

  SELECT SEQ_SPACE_ELEMENT_OID.NEXTVAL  

  INTO :NEW.OID  

  FROM DUAL;  

 END; 

/ 

CREATE SEQUENCE SEQ_SPACE_LAYER_OID  

 INCREMENT BY 1  

 START WITH 1  

 NOMAXVALUE  

 MINVALUE 1  

 NOCYCLE  

 NOCACHE  

 NOORDER 

; 

CREATE OR REPLACE TRIGGER TRG_SPACE_LAYER_OID  

 BEFORE INSERT  

 ON SPACE_LAYER  

 FOR EACH ROW  

 BEGIN  

  SELECT SEQ_SPACE_LAYER_OID.NEXTVAL  

  INTO :NEW.OID  

  FROM DUAL;  

 END; 

/ 

Listing 27: The MLSEM database schema formally expressed in SQL. 

As mentioned above, the following SQL script creates 3-dimensional indexes on the spatial columns of the 

MLSEM database tables. In Oracle Spatial, this first requires metadata about the spatial objects to be stored. For 

each spatial column, the metadata has to be entered in the table USER_SDO_GEOM_METADATA and includes 

information about the lower and upper boundary and the tolerance for each dimension (axis) as well as the spatial 

reference system associated with the spatial objects (given as SRID identifier). In the below listing, default bounds 

and tolerances are used which need to be adapted for a specific database instance. Likewise, the SRID is set to 

NULL which has to be changed if a specific reference system shall be used. The spatial indexes are then created 

with the parameter 'SDO_INDX_DIMS=3' which is mandatory in order to be able to apply the 3-dimensional 

spatial functions and operations offered by Oracle Spatial to the spatial objects. The script can also be used for the 
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creation of 2-dimensional spatial indexes by simply omitting the third dimension from the spatial metadata and by 

deleting the parameter from the CREATE INDEX statements. 

--  Delete Spatial Metadata and drop Spatial Indexes 

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='BOUNDARY_CELL' AND 

COLUMN_NAME='SPACE_BOUNDARY' 

; 

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='BOUNDARY_CELL' AND 

COLUMN_NAME='TRANSITION' 

; 

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='GENERIC_ATTRIBUTE' AND 

COLUMN_NAME='GEOM_VAL' 

; 

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='JOINT_STATE' AND 

COLUMN_NAME='UNCERTAINTY_REGION' 

; 

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='SPACE_CELL' AND COLUMN_NAME='SPACE' 

; 

DELETE FROM USER_SDO_GEOM_METADATA WHERE TABLE_NAME='SPACE_CELL' AND COLUMN_NAME='STATE' 

; 

DROP INDEX BC_SPACE_BOUNDARY_SPX 

; 

DROP INDEX BC_TRANSITION_SPX 

; 

DROP INDEX GA_GEOM_VAL_SPX 

; 

DROP INDEX JS_UNCERTAINTY_REGION_SPX 

; 

DROP INDEX SC_SPACE_SPX 

; 

DROP INDEX SC_STATE_SPX 

; 

--  Create Spatial Metadata 

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID) 

 VALUES ('BOUNDARY_CELL', 'SPACE_BOUNDARY',  

  MDSYS.SDO_DIM_ARRAY  

  ( 

   MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),  

   MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005), 

   MDSYS.SDO_DIM_ELEMENT('Z', -1000, 10000, 0.0005) 

  ),   

  NULL –- SRID 

 ) 

; 

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)  

 VALUES ('BOUNDARY_CELL', 'TRANSITION',  

  MDSYS.SDO_DIM_ARRAY  

  ( 

   MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),  

   MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005), 

   MDSYS.SDO_DIM_ELEMENT('Z', -1000, 10000, 0.0005) 

  ),   

  NULL –- SRID 

 ) 

; 

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)  

 VALUES ('GENERIC_ATTRIBUTE', 'GEOM_VAL',  

  MDSYS.SDO_DIM_ARRAY  

  ( 

   MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),  

   MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005), 

   MDSYS.SDO_DIM_ELEMENT('Z', -1000, 10000, 0.0005) 

  ),   

  NULL –- SRID 

 ) 

; 
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INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)  

 VALUES ('JOINT_STATE', 'UNCERTAINTY_REGION',  

  MDSYS.SDO_DIM_ARRAY  

  ( 

   MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),  

   MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005), 

   MDSYS.SDO_DIM_ELEMENT('Z', -1000, 10000, 0.0005) 

  ),   

  NULL –- SRID 

 ) 

; 

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)  

 VALUES ('SPACE_CELL', 'SPACE',  

  MDSYS.SDO_DIM_ARRAY  

  ( 

   MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),  

   MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005), 

   MDSYS.SDO_DIM_ELEMENT('Z', -1000, 10000, 0.0005) 

  ),   

  NULL –- SRID 

 ) 

; 

INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME, COLUMN_NAME, DIMINFO, SRID)  

 VALUES ('SPACE_CELL', 'STATE',  

  MDSYS.SDO_DIM_ARRAY  

  ( 

   MDSYS.SDO_DIM_ELEMENT('X', 0.000, 10000000.000, 0.0005),  

   MDSYS.SDO_DIM_ELEMENT('Y', 0.000, 10000000.000, 0.0005), 

   MDSYS.SDO_DIM_ELEMENT('Z', -1000, 10000, 0.0005) 

  ),   

  NULL –- SRID 

 ) 

; 

--  Create Spatial Indexes 

CREATE INDEX BC_SPACE_BOUNDARY_SPX ON BOUNDARY_CELL (SPACE_BOUNDARY)  

 INDEXTYPE IS MDSYS.SPATIAL_INDEX  

 PARAMETERS ('sdo_indx_dims=3') -- for 3D capabilities 

; 

CREATE INDEX BC_TRANSITION_SPX ON BOUNDARY_CELL (TRANSITION)  

 INDEXTYPE IS MDSYS.SPATIAL_INDEX  

 PARAMETERS ('sdo_indx_dims=3') -- for 3D capabilities 

; 

CREATE INDEX GA_GEOM_VAL_SPX ON GENERIC_ATTRIBUTE (GEOM_VAL)  

 INDEXTYPE IS MDSYS.SPATIAL_INDEX  

 PARAMETERS ('sdo_indx_dims=3') -- for 3D capabilities 

; 

CREATE INDEX JS_UNCERTAINTY_REGION_SPX ON JOINT_STATE (UNCERTAINTY_REGION)  

 INDEXTYPE IS MDSYS.SPATIAL_INDEX  

 PARAMETERS ('sdo_indx_dims=3') -- for 3D capabilities 

; 

CREATE INDEX SC_SPACE_SPX ON SPACE_CELL (SPACE)  

 INDEXTYPE IS MDSYS.SPATIAL_INDEX  

 PARAMETERS ('sdo_indx_dims=3') -- for 3D capabilities 

; 

CREATE INDEX SC_STATE_SPX ON SPACE_CELL (STATE)  

 INDEXTYPE IS MDSYS.SPATIAL_INDEX  

 PARAMETERS ('sdo_indx_dims=3') -- for 3D capabilities 

; 

Listing 28: SQL statements for the creation of 3-dimensional indexes on spatial table columns. 
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Appendix D  

Previous Conceptual Data Model of the MLSEM 

Figure 287 presents the conceptual UML data model of the MLSEM as proposed in the previous publications on 

the MLSEM (cf. Becker et al. 2009b and Nagel et al. 2010).  

 

Figure 287: The conceptual UML data model of the former MLSEM as proposed in (Becker et al. 2009b) and (Nagel et al. 

2010). 
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A discussion of the conceptual model elements in figure 287 is beyond the scope of this thesis and the reader is 

referred to (Becker et al. 2009b) and (Nagel et al. 2010). Nevertheless, the data model nicely documents the sub-

stantial rework and extension of the MLSEM data model as carried out in this thesis (cf. chapter 4.4). For example, 

and as mentioned in chapter 4.4, the previous data model does not foresee the geometric-topological representation 

of space cells, boundary cells, and space layers in both two and three dimensions but is rather restricted to the latter 

case. Moreover, the MLSEM has been augmented in this thesis, amongst others, with essential conceptual entities 

for the modelling of space layer complexes, joint states and their transitions, groups and sequences of space ele-

ments, links to original data sources such as IFC or CityGML models, navigation routes and guidance information, 

navigation constraints, and the connection to complementary navigation graphs. 
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Appendix E  

Initial Conceptual Data Model for Navigation Constraints 

Figure 288 shows the draft conceptualization of navigation constraints as proposed by (Brown et al. 2012) in the 

context of the MLSEM. The reader is referred to this publication for a presentation and discussion of the model 

and its conceptual entities.  

 

Figure 288: Initial draft for a navigation constraint model for the MLSEM as proposed in (Brown et al. 2012). 

The navigation constraint model proposed by (Brown et al. 2012) has been substantially reworked and refined in 

this thesis (cf. chapter 5). For example, the initial draft does not distinguish between navigation constraints (as 

well as between different types thereof such as can and may constraints) and constraint conditions that guard the 

application of navigation constraints. In fact, the data model depicted in figure 288 only deals with the definition 

and taxonomy of constraint conditions but neglects conceptual elements for describing navigation constraints. 

Moreover, thematic and spatial characteristics of the constraint conditions are neither presented and the proposed 

model lacks rules and algorithms for the evaluation of navigation constraints in the context of a given navigation 

user.      
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