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Abstract

This dissertation investigates the problem of localising multiple persons in image sequences, while,

at the same time, establishing temporal correspondences between single-frame locations. The aim of

this work is the improvement of the reliability and precision of the generated trajectories, which is

addressed by the formulation and investigation of a joint probabilistic model for the recursive �ltering

of the estimated positions. The trajectories are estimated in a common 3D object coordinate system,

which was previously almost exclusively done in 2D.

Four principle scienti�c contributions are made in this work. Firstly, the location of persons in

single images, which is widely measured by independent single frame person detectors, is no longer

treated as observable, but is improved together with the 3D state parameters of each pedestrian. In

this way, the update step of the recursive �lter is performed using an improved image position of

the persons, which, in turn, receives feedback from the optimised solution of the state variables and,

thus, generates more accurate samples for the representation of the target appearance. Secondly, the

multitude of pedestrians in the approached scenarios is accounted for by the introduction of a new

generative model of the pedestrian dynamics. This new model takes account of the motion of every

pedestrian in a probabilistic framework and automatically detects interactions among the persons,

which assist at the prediction of future states and thereby improve the accuracy of the generated

trajectories. Thirdly, a new strategy for the modelling of the appearance used for the localisation and

recognition of persons in successive frames is developed on the basis of a classi�cation strategy that

is fed with samples that automatically derive from tracking. Finally, the assignment of image-based

observations from a generic person detector to existing trajectories is formulated as an optimisation

problem solved at each time step, using a new model for the similarity measures based on the new

model of appearance and the improved predictive model.

The new method is applied to image sequences from complex real-world scenarios in the context

of di�erent applications. Experimental results show that the method improves the state-of-the-art in

multi-person localisation and tracking in the context of visual surveillance, while the results lag behind

those of the related work in the context of autonomous driving. The proposed method and the insights

achieved by the experiments motivate future research in the direction of probabilistic modelling for

multi-person localisation and tracking.

Keywords: Detection, classi�cation, localisation, tracking, pedestrians, context, 3D, Dynamic Bayesian

Networks, Gaussian Process Regression, Linear Programming
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Zusammenfassung

Die vorliegende Dissertation erforscht das Problem der Positionsbestimmung von Fuÿgängern in Bild-

sequenzen, unter Berücksichtigung zeitlicher Korrespondenzen zwischen einzelnen Positionen. Das

Ziel dieser Arbeit ist die Verbesserung der Zuverlässigkeit und der geometrischen Genauigkeit der

erzeugten Trajektorien gegenüber dem Stand der Forschung. Dieses Ziel wird durch die Entwick-

lung eines neuartigen probabilistischen graphischen Modells zur rekursiven Zustandsbestimmung der

Fuÿgänger angegangen. Während bisherige Arbeiten fast ausschlieÿlich die Trajektorien im Bildraum

bestimmen, setzt das hier vorgestellte Verfahren auf die Auswertung im 3D Objektraum.

Vier wesentliche Beiträge werden in dieser Arbeit zur Erreichung des Forschungsziels geleistet. Er-

stens wird die Bildposition von Fuÿgängern, die gemeinhin als Beobachtung modelliert wird, zusammen

mit den Zustandsparametern in einem gemeinsamen Modell bestimmt. Auf diese Weise erfolgt die Kor-

rektur des rekursiven Filters mit einer verbesserten Bildposition, welche wiederum Rückschlüsse aus

dem verbesserten Systemzustand zieht. Daraus lässt sich ein zuverlässiges Modell für das Aussehen

der Personen erlernen. Zweitens wird der Vielzahl an Personen in einer Szene dadurch Rechnung

getragen, dass ein gemeinsames Bewegungsmodell für alle Personen entwickelt wird. Dieses Modell

erkennt mögliche Interaktionen zwischen Personen zur Laufzeit automatisch und berücksichtigt diese

bei der Prädiktion von neuen Systemzuständen. Drittens wird eine neue Strategie zum inkrementellen

Erlernen personenspezi�schen Aussehens auf Grundlage eines Klassi�kators vorgestellt, dessen Trai-

ningsbeispiele automatisch aus den Trackingergebnissen abgeleitet werden. Zuletzt wird das Zuord-

nungsproblem zwischen Detektionen und Trajektorien durch ein neues Modell für die Berechnung von

Zuordnungskosten, basierend auf dem verfeinerten Erscheinungs- und Bewegungsmodell, unterstützt.

Die Methode wird anhand realer Bildsequenzen, die für unterschiedliche Anwendungszwecke charak-

teristisch sind, evaluiert. Experimentelle Ergebnisse zeigen, dass der Stand der Forschung in Hinblick

auf die Lokalisierung und Verfolgung von Personen im Kontext der Videoüberwachung durch die neue

Methode übertro�en wird. Tests mit Datensätzen aus dem Bereich des autonomen Fahrens zeigen

hingegen, dass die erzielten Ergebnisse denen aus dem Stand der Forschung unterlegen sind. Die

Erkenntnisse, die aus den experimentellen Ergebnissen gezogen werden, motivieren die Weiterentwick-

lung dieses Verfahrens in Hinblick auf die Anwendbarkeit im Kontext des autonomen Fahrens.

Schlagworte: Detektion, Klassi�kation, Lokalisierung, Verfolgung, Fuÿgänger, Kontext, 3D,

Dynamische Bayes-Netze, Gauÿ-Prozesse, Lineare Programmierung
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Notation and symbols

General notation

a, b, α, β, x, y Scalars

a, b, α, β, x, y Vectors

A, B, X, Y, Σ Matrices

A, B, C, D, W Sets

N (·), GP(·) Probability distributions

Notational conventions

p(x) Marginal probability of x

p(x, y) Joint probability of x and y

p(x|y) Conditional probability of x given y

N (·) Normal distribution

GP (·) Gaussian Process

µx Mean of x

µx Mean vector of x

σx Standard-deviation of x

Σxx Covariance matrix of x

m(·) Mean function

k (·) Covariance function

E (·) Expected value

x̂ Estimate of x

x+ Predicted value of x

θx Threshold for the value of x

ηA Cardinality of a set A
ρp Coe�cient of a parameter p

[A] Set of indices of a set A
mv1→v2 Message sent from variable v1 to v2

Symbols

αij Angular displacement between two motion trajectories i and j

aki Association event of person i with detection k

ci,t Con�dence of the classi�er about the presence of person i at time t

Ct Camera orientation at time t



xii

Symbols

di,t Con�dence of the detector about the presence of person i at time t

dk Detection with unique index k

εnms Parameter of the non-maximum suppression

Hi Height of person i in object space

hk Hypothesis about a new tracking candidate based on a detection k

i System innovation

IP Interesting places, representing prior knowledge about the scene

i Index of the entities in a set of persons

j Index of the entities in a set of persons other than i

K Kalman gain matrix

Kij,t Covariance of two persons i and j at time t

l Characteristic length scale

M Measurement matrix

ni Uncertainty about the position of person i w.r.t. oi,t and IP

oi,t Occlusion of person i at time t

πt Ground plane

Ψ Transition matrix

ri Rectangle surrounding person i

σ2
f Signal variance

σ2
n Noise variance

Ti Trajectory of person i

θα Angular threshold

vi Horizontal velocity of person i

wki Weight of the association event aki
w (·) Angular function

wi,t State vector of person i at time t

xFi,t Image coordinates of the reference point of person i at time t

xHi,t Image coordinates of the top-most point of person i at time t

Xi, Yi, Zi World coordinates of the reference point of person i

Yπ Distance of ground plane from the camera
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1 Introduction

1.1 Motivation

In the twenty-�rst century, where cameras are omnipresent in many areas around the globe, and

decades of research in the �elds of photogrammetry and computer vision have brought progress in the

geometric reconstruction and semantic interpretation of a �lmed scene, the analysis of image sequences

is one of the most versatile technologies for many applications such as human-machine interaction and

autonomous driving. If one considers cameras as the resemblance of one of the human's most important

sensory organs, the potential applications of this technology are nearly limitless.

Today's consumer cameras and smartphones are equipped with software for face detection and game

consoles aim at the tracking of human bodies to enable the interaction with the �lmed persons. The

detection and tracking of persons in such situations over time allows for an understanding of their

actions. Bringing semantics into the �lmed scene also allows for the reduction of the human e�ort in

the inspection of surveillance footage. For autonomous vehicles and robots, interacting with persons

in a common space, the detection and tracking of persons from imaging sensors must be addressed

with the highest possible reliability and accuracy. Currently, the analysis of image sequences already

allows for the localisation and tracking of the scene content on an object level, but the required quality

of the generated trajectories is yet far from being achieved. Consequently, the improvement of the

reliability and accuracy of motion trajectories, obtained from tracking persons in image sequences, is

the envisaged goal of this research.

In the applications previously mentioned, the trajectories often need to be available in real time. To

this end, many available systems apply tracking-by-detection, i.e., object detection in single frames to

�nd an approximate position of persons in a single image, data association for linking the detections

to trajectories and recursive �ltering to �nd a synthesis between image-based measurements, given by

the object detection results, and a motion model. This approach is subjected to several challenges in

the addressed scenarios. The tracking of individual persons is a challenge in itself, as the person of

interest performs articulated movements, so that its appearance in the image changes, which needs to

be considered by the detection strategy. The surrounding conditions of illumination and the visible

background often change gradually, which must be accounted for by the association strategy. If

persons appear in crowds, a disambiguation in the assignment of single measurements to individual

targets must be performed. Furthermore, mutual occlusions are inherent in crowded scenes, so that

measurements in the image can often not be accomplished. Many approaches available in the tracking

literature focus on solving the tasks of a correct assignment of measurements to tracked objects, aiming

at a high completeness and correctness of the trajectories. By contrast, only few papers focus on the
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geometric accuracy of the generated trajectories. In the context of autonomous car navigation, the aim

of the tracking algorithms must be to generate trajectories as complete and accurate as possible, to

decide, for instance, whether a pedestrian actually enters a vehicle path or not (Gavrila and Munder,

2007).

Probabilistic models are widely used to guide the estimation of the dynamic state of a person, due to

their ability to produce estimates of the desired model variables, accompanied by measures of uncer-

tainty that enable the assessment of these variables. Models such as the recursive Bayes �lter perform

the estimation in a recursive way, predicting the system state based on previous measurements, and

correcting the prediction with new measurements. Due to the sequential processing, errors committed

in either of these steps can often not be corrected later and thus pose a severe reliability risk for appli-

cations using these models. If the detections are imprecise, the trajectories may be updated towards

wrong positions, a�ecting the accuracy of the estimated state and increasing the risk to take wrong

decisions.

As measured by current results on relevant tracking benchmarks, e.g. (Geiger et al., 2012) and

(Leal-Taixé et al., 2015), the automatic detection and tracking of persons with the intended quality is

far from being solved. This work applies tracking-by-detection by recursive Bayesian estimation and

tries to improve the quality of the trajectories of multiple persons by improving the state-of-the-art

in temporal modelling of the moving patterns and in the localisation of each individual in the single

frames. The new predictive model performs state estimation under consideration of motion context,

as re�ected by the state information about all tracked persons in a common scene. The geometric

accuracy of the trajectories is improved by modelling the image position of each object as a hidden

variable of the probabilistic model, enabling redundant information about the position to contribute

to the correction step of the estimation framework.

1.2 Research objectives and contributions

Against the background of the posed challenges for a tracking system and the desired properties

with respect to reliability and accuracy of the generated trajectories, the research objective of this

dissertation can be stated as follows: This work aims at the improvement of the geometric accuracy and

reliability of generated trajectories by integration of all available image-based observations and person-

speci�c models of motion and appearance, under consideration of their uncertainties in a recursive

estimation framework.

To achieve this research goal, the following scienti�c contributions are made within this dissertation:

• A new probabilistic model for the joint estimation of the state vectors of multiple persons in

object space and their locations in the image is proposed. Given three di�erent image-based

observations, this model allows the automatic detections to be geometrically corrected before

they are incorporated into the recursive �lter.

• A new model for the representation of the appearance of individual persons is proposed on the

basis of online adaptable Random Forest classi�ers. The new strategy can model a changing
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environment with varying appearance and changing numbers of tracked persons.

• A new temporal model for the predictive function of the recursive �lter is developed, which takes

into account information about the motion of all pedestrians in the scene. The proposed method

determines interactions between multiple persons at runtime and performs the prediction based

on this information.

• A new model for the assessment of similarities between single-frame detections and tracked

targets is developed that integrates the improved temporal model as well as the instance-speci�c

classi�cation. This model is used to compute similarity measures to solve the data association

problem.

1.3 Outline of the dissertation

The remainder of the dissertation is structured as follows. After this introduction, the theoretical

foundations of the central building blocks of the proposed method are given in Chapter 2. This

includes the fundamentals of probabilistic modelling with the focus on Bayesian Networks, recursive

Bayesian estimation, and Gaussian Process Regression. In Chapter 3, the literature related to the

topic of this dissertation is reviewed in three sections, with the focus on general tracking approaches,

pedestrian detection and localisation in single images and temporal modelling. The new probabilistic

approach for multi-person localisation and tracking is introduced in Chapter 4. This chapter is further

divided into six sections, related to the structure of the new probabilistic model for the recursive

�ltering, the observation model and the temporal model of the recursive estimation framework, the

data association, the inference procedure used to determine the hidden parameters of the system, and

the discussion of the new method. Experimental results are given in Chapter 5. Firstly, the datasets

and evaluation metrics are introduced and the free parameters are investigated, then the proposed

method is evaluated with respect to the importance of the individual model components, which is

followed by the evaluation of the reliability and geometric accuracy of the generated trajectories.

After that, the experiments show a comparison of the achieved results with results from related work.

In Chapter 6, the results are critically discussed. Finally, Chapter 7 concludes the dissertation and

gives an outlook on future work.
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2 Basics

This chapter presents the theoretical basis of the methods used to achieve the research goal of this

dissertation. First and foremost some fundamentals of probabilistic modelling will be explained in

Chapter 2.1, which constitute the basic principles for much of the methodology. Chapter 2.2 describes

the generalisation of the probabilistic models to the modelling of temporal phenomena. As part of

this chapter, the Kalman Filter is introduced as a special case of the general recursive estimation

framework. Finally, Chapter 2.3 presents the principles of Gaussian Process Regression, which is used

in this work for the prediction of pedestrian velocities.

2.1 Probabilistic modelling

Probabilistic modelling plays a central role in the �elds of geodesy, computer vision and machine

learning. In the �eld of geodesy, probabilistic modelling has been practised at the latest since the

publication of the "survey of heavenly bodies" by C.F. Gauss (Gauss, 1809), which accounts for the

inherent uncertainties about the correctness of measurements by assigning them probability distribu-

tions that are modelled from sets of redundant measurements. This way of dealing with probabilities

is related to today's frequentist view on probabilities (Bishop, 2006). In the more general case, how-

ever, frequent observations of an event are often not possible to make, but probability distributions

for the event may still be given as de�ned for instance by expert knowledge. Such problems often

occur in computer vision or remote sensing applications. Assuming one desires the susceptibility of

a geographic area to land slides and one is given information about land cover, surface elevation and

meteorological measurements, an expert has a belief in the occurrence of the land slide event, but his

belief is uncertain (e.g., due to possible errors in the input information). The Bayesian concept of

probabilities integrates arbitrary probability distributions that are related to prior information about

an event (e.g., the temporal frequency of previous land slides), the likelihood of the event given ob-

served data (e.g., a forecast for heavy rain) and evidence (i.e., the probability that the forecast is

correct). Both, the frequentist and the Bayesian concept of probability, model known or unknown

quantities as random variables, whose actual outcome depends on chance and cannot be explained

causally. Probabilistic modelling provides a framework to express the belief and the uncertainties

about an event and to draw conclusions from the observed data. Subsequently, the basic principles of

Bayesian probability theory are presented, followed by the framework of Bayesian networks to handle

more complex problems and by an explanation of a common inference strategy.
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2.1.1 Bayesian probabilities

Probabilistic modelling essentially enables to draw conclusions about unobserved variables from other

variables that are observed. Most probabilistic calculations are based on two fundamental rules of

probability, the sum rule of probability, Equation 2.1, and the product rule of probability, Equation

2.2,

p (x) =
∑
y

p (x, y), (2.1)

p (x, y) = p (y|x) p (x) . (2.2)

The sum rule states that the marginal probability p (x) of a random variable x can be expressed as

the sum over the joint probability p (x, y) for all possible values of another variable y. The product

rule states that the joint probability p (x, y) is identical to the product of the conditional probability

p (y|x) of y given x and the marginal probability of x. For discrete variables, such probability functions

are referred to as probability mass functions, whereas, for continuous variables, they are referred to as

probability density functions (pdfs). By application of the product rule and considering the symmetry

property p (x, y) = p (y, x), the theorem of Bayes,

p (x|y) =
p (y|x) p (x)

p (y)
, (2.3)

can be derived. In this context, the term p (y|x) is called likelihood and is the probability to observe the

variable y if the value of x is known. The probability p (x|y) is referred to as the posterior probability

of x given y. p (x) is also referred to as the prior probability of x and p (y) as the evidence, which

is often expressed as p (y) =
∑

x p (y|x) p (x) in case of discrete variables and in accordance with the

sum rule and the product rule.

2.1.2 Bayesian networks

For more complicated probabilistic models, probabilistic graphical models (Bishop, 2006) become ad-

vantageous for essentially two reasons. Firstly, probabilistic graphical models represent the factorisa-

tion of the joint probability of all random variables. Because the factors usually have fewer random

variables as arguments than the joint probability, fewer parameters need to be determined, so that the

amount of required training data is also reduced. Secondly, for certain graph types, inference can be

performed e�ciently using standard algorithms.

Generally, a probabilistic graphical model consists of nodes and edges, where the nodes represent

random variables or �xed variables and the edges represent relations between the variables. The edges

of the graph can be directed, pointing from a parent node to a child node, indicating that the value

of the random variable associated to the child node depends on the value of the random variable of

the parent node, or undirected. A directed graphical model without cycles is referred to as Bayesian

network. Bayesian networks can be applied to problems where only causal relationships between

variables exist. Random variables can be further categorised as observed or unknown. In accordance

with the convention of (Bishop, 2006), observed random variables are drawn as circles shaded in grey,
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unknown random variables as blank circles, and �xed variables are drawn as black solid circles in this

work. In Figure 2.1 an illustration of Bayesian networks involving two variables x and y is given.

x y x y x y
x

y

Figure 2.1: Simple Bayesian network: Graphical representation of two random variables. (a) the cause
is unknown and the e�ect is observed; (b) the cause is observed and the e�ect is unknown;
(c) both are unknown; (d) the cause is �xed and the e�ect is unknown.

For a Bayesian network, the joint probability distribution of the set of K random variables

x1, x2, ..., xk, ..., xK in the network can be factorised into a product of conditional probabilities p (xk|pak),
where pak is the set of random variables associated to all parent nodes of xk, so that

p (x1, x2, ..., xk, ..., xK) =
∏
k

p (xk|pak), (2.4)

with p (xk|pak) = p (xk) if xk has no parents.

Example. Given the example from the introduction to this section, the problem of predicting the

land slide susceptibility can be represented by a Bayesian network as shown in Figure 2.2. Consider

the variables precipitation P , slope S, land slide susceptibility L, land cover class C, and image data I.

The graphical model indicates that the image data, as well as the slope and precipitation, are observed,

and that the land cover class and the land slide susceptibility are unknown. The directed edges of

the graph model the causal relationship between the random variables: the slope of the terrain, the

amount of rain, as well as the land cover in�uence the susceptibility for land slides. The graphical model

indicates that the land cover a�ects the data observed in the image. Further dependencies between

the variables are neglected for simplicity. The joint probability of the involved random variables can

be factorised in accordance with Equation 2.4 and with the network structure in Figure 2.2:

p (P, S, L,C, I) = p (L|P, S,C) p (S) p (P ) p (I|C) p (C) . (2.5)

LP

S C

I

Figure 2.2: Bayesian network representation of the problem of land slide prediction. The variables
precipitation P , slope S and image data I are observed and the land slide susceptibility L
and land cover class C are unknown.

2.1.3 Marginalisation and inference

Previously, probabilistic graphical models were introduced as a tool to express the causal relations

between variables. The general aim of probabilistic modelling, however, is to draw conclusions about
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unknown variables based on observations. Two tasks in this context are to �nd the marginal probability

of single random variables (marginalisation), cf. Equation 2.1, and to �nd the values of all random

variables that maximise the joint probability of the unknowns and the observations (inference). If

the network can be arranged as a tree, i.e., the graph does not contain loops, these problems can be

solved exactly. Both marginalisation and inference can be conducted by so-called message passing

algorithms. Belief propagation (Pearl, 1988) is a message passing algorithm that is guaranteed to �nd

the optimal solution in tree-structured graphs, and can also be used for approximate inference on

general graphs. Belief propagation algorithms exploit the way in which a joint probability distribution

can be factorised, and perform inference by successive evaluation of local functions associated to the

factors, i.e., probability functions, of the joint distribution. A graphical representation of the structure

of the factorisation of a joint distribution is provided by factor graphs (Kschischang et al., 2001). By

de�nition, a factor graph is a bipartite undirected graphical model that comprises one node for every

variable and an additional factor node (generally represented by a black square) for every factor in the

representation of the joint probability according to Equation 2.4. Every factor node fs (xs) represents

a function of the subset xs of all variables x, whose members are connected to that node. The joint

probability of a set of variables can thus be factorised according to

p (x) =
∏
s

fs (xs). (2.6)

Both, marginalisation and inference can be conducted by passing messages through the graph twice:

�rstly, from the leaf nodes to the root node, and then from the root node to the leave nodes. When

all incoming messages of a node can be evaluated, the marginal distribution of the associated variable

can be computed. When the marginal probabilities of multiple variables are required, the same com-

putations, i.e. the local message passing along the edges of the factor graph, lead to the solution of

all marginals, which makes these algorithms e�cient also for more complex problems.

A factor graph representation of the example of land slide prediction is given in Figure 2.3. In

accordance with the factor graph representation, the joint distribution of the variables in that example

can be factorised as

p (P, S, L,C, I) = f1 (L, S, P,C) f2 (S) f3 (P ) f4 (C, I) f5 (C) . (2.7)

In Figure 2.3 the blue arrows represent messages sent from the leave nodes towards the root node, and

the green arrows represent messages sent from the root node towards the leave nodes. The variable

that is represented by the root node can be chosen arbitrarily. Formally, the marginal probabilities

of the individual variables are computed using the sum-product algorithm and the best agreement

of all variables with the observations can be computed using the max-sum algorithm. A schematic

description of these algorithms is given in the following paragraphs.

Sum-product algorithm. Generalising the sum-rule of probability (Equation 2.1) to the modelling

of multiple discrete variables, the marginal distribution of a desired variable can be found by summing

over all variables that are connected to the required variable. The sum-product algorithm (Kschischang
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L

f1

PS C

f4f2 f3 f5

I

Figure 2.3: Factor graph representation of the Bayesian Network in Figure 2.2. The variable nodes are
drawn as circles and the factor nodes as squares. Blue arrows represent messages in the
forward recursion and the green arrows represent messages in the backward recursion.

et al., 2001) computes marginal distributions by means of message passing. It takes account of the way

in which a joint distribution can be factorised by replacing the summands of the marginalisation step

with products of local functions, according to Equation 2.6. Marginalisation takes place recursively by

�rstly sending messages from the leave nodes towards the root node, and then in the reverse direction,

so that every variable is updated based on information about all other variables. Di�erent computation

rules for the messages sent from a variable node x to a factor node fs, denoted by mx→fs (x), and for

the messages sent from a factor node to a variable node, denoted by mfs→x (x), are de�ned. In the

�rst case, the message sent from a variable node x to a factor node fs is the product of all messages

sent to that variable node from all connected factor nodes, except the factor node the message is sent

to:

mxm→fs (xm) =
∏

fl∈ne(xm)\fs

mfl→xm (xm), (2.8)

where ne (xm) is the set of neighbouring nodes of xm. The messages sent from a factor node to a

variable node are evaluated as the product of all messages arriving at the factor node, multiplied by

the function associated to that factor node, and a marginalisation over all variables associated to the

incoming messages (Kschischang et al., 2001):

mfs→x (x) =
∑

x1...xM

fs (x, x1, ..., xM )
∏

xm∈ne(fs)\x

mxm→fs (xm). (2.9)

The outgoing messages from leaf nodes are set to 1 in case the leaf node is a variable node and equal

the function related to the factor node in case the leaf node is a factor node. After the messages have

been passed through every edge in the factor graph the marginal probability of each variable x can be

computed as the product of all messages arriving at the variable node:

p(x) =
∏

fs∈ne(x)

mfs→x. (2.10)
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The message passing steps and the computation of the marginal probabilities (referred to as belief

update in accordance with Pearl, 1988) of the toy example are given in Table 2.1.

Forward recursion

1: mI→f4 (I) = 1

2: mf2→S (S) = f2 (S)

3: mf3→P (P ) = f3 (P )

4: mf4→C (C) = mI→f4 (I)

5: mf5→C (C) = f5 (C)

6: mS→f1 (S) = mf2→S (S)

7: mP→f1 (P ) = mf3→P (P )

8: mC→f1 (C) = mf4→C (C) ·mf5→C (C)

9: mf1→L (L) =
∑

C

(
f1 (L, S, P,C)

∏
i∈{S,P,C}mi→f1(i)

)
Backward recursion

1: mL→f1 (L) = 1

2: mf1→C (C) =
∑

L

(
f1 (L, S, P,C)

∏
i∈{L,S,P}mi→f1(i)

)
Belief update

p(L) = mf1→L (L)

p(C) = mf1→C (C) ·mf4→C (C) ·mf5→C (C)

Table 2.1: Message passing and belief update steps for the sum-product algorithm in the toy example.

Max-sum algorithm. The set of variable values that maximise the joint probability of all variables

can be computed using the max-sum algorithm (Bishop, 2006). The procedure is similar to the message

update rules 2.8 and 2.9 of the sum-product algorithm, with the di�erence that the sum in Equation

2.9 is replaced by the max-operator. In practical applications, the product of the involved probability

functions is typically replaced by the sum of the logarithms of these functions to prevent the system

from numerical under�ow.

2.2 Recursive Bayesian estimation

This section describes the probabilistic reasoning about random variables that evolve over time. The

concept for the modelling of such temporally changing phenomena inherently integrates into the con-

text of Bayesian estimation. The values of the variables of a dynamic system that are related over

time are referred to as the system state. In the context of this work, the state describes the position

and velocity parameters of moving objects, i.e. pedestrians. Inference tasks in that context can be

categorised into prediction, �ltering and smoothing. Prediction aims at the estimation of future sys-

tem states given measurements up to the current time step. The task of �ltering is to compute the

posterior state of a system at a current time given all measurements up to that time step. Smooth-

ing is the task of computing the posterior state at past time steps given all measurements up to the
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w1

x1

w2

x2

w3

x3

w4

x4

Figure 2.4: Bayesian network representation of the recursive Bayes �lter for four time steps t = 1...4.
xt are the measurements and wt are the hidden system states.

current date. This work only focusses on prediction and �ltering, because these methods are suitable

for online applications. As opposed to the models previously described, the prediction and �ltering is

designed to compute optimal state parameters at every time step, rather than to �nd the parameters

that maximise the common posterior of all time steps. In the context of Bayesian probability theory,

prediction and �ltering of a system state can be performed in a recursive way, and is, thus, referred

to as recursive Bayesian estimation. Formally, recursive Bayesian estimation is a framework for the

estimation of state parameters at discrete moments in time from a sequence of noisy measurements.

The concept of recursive Bayesian estimation and, based on that concept, the Kalman Filter model

and Dynamic Bayesian Networks are described in this section based on the textbook of Prince (2012).

Figure 2.4 shows a directed graphical model representing a dynamic system, where the unknown

parameters w1...4 give rise to the measurements x1...4 and are connected over time, with all variables

having parent nodes only de�ned at the same or at the preceding time step. The joint probability of

the variables can be written as

p(w1...4,x1...4) = p(w1)

4∏
t=2

p(wt|wt−1)

4∏
t=1

p(xt|wt). (2.11)

In this model, inference about the posterior marginals can be performed using the forward-backward

algorithm, and the most likely sequence of variables can be found using the Viterbi algorithm (Rabiner,

1989). In online applications, one is primarily interested in the current system state rather than in a

repetitive estimation of the posterior marginals of all variables, including those from past time steps.

To this end, the so called Markov assumption is used to express that the current state only depends

on the preceding state parameter and current observations, i.e. p(wt|w1...t−1) = p(wt|wt−1). At every

time step t, the posterior distribution of state parameters wt, given all the data x1...t observed up to

this moment, is desired. At time t = 1 the posterior only depends on what is observed at that time

step and on a prior distribution (here, continuous variables are assumed):

p (w1|x1) =
p (x1|w1) p (w1)∫

w1
p (x1|w1) p (w1) dw1

. (2.12)

As the process evolves, new measurements arrive, so that, at an arbitrary time step t > 1, the posterior

must be evaluated based on all information from the �rst until the current time step:

p (wt|x1...t) =
p (xt|wt) p (wt|x1...t−1)∫

wt
p (xt|wt) p (wt|x1...t−1) dwt

. (2.13)
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According to the law of total probability the marginal probability can also be expressed by an integral

over conditional probabilities, so that the prior term in Equation 2.13 can be conditioned on the state

of the previous time step, wt−1:

p (wt|x1...t−1) =

∫
wt−1

p (wt|wt−1) p (wt−1|x1...t−1) dwt−1. (2.14)

The �rst term in the integrand in Equation 2.14 is referred to as the temporal model and re�ects the

belief about the system state given the previous state, and the second term re�ects the uncertainty

about the previous state. The Markov property enables the computation of the posterior probability of

the system state by only regarding the previous state. This keeps the computation e�ort constant and,

thus, allows for the application of this method in real-time systems. The estimation of the posterior

state by means of Equation 2.13 essentially depends on two steps: Firstly, the computation of the

prior probability of the state using Equation 2.14 and, secondly, the computation of the conditional

probability of the data given the state, which is de�ned via a measurement model. The �rst step

computes the belief about the current state given the state of the previous time step, which is referred

to as prediction. The second step relates the state parameters to the measurements and is hence

referred to as the measurement incorporation or update step.

2.2.1 The Kalman �lter model

The Kalman �lter model (Kalman, 1960) is a realisation of the recursive Bayesian estimation frame-

work, in which the temporal model and the measurement model are linear systems that are modelled

to be a�ected by Gaussian noise. Consequently, the belief about the system state at time t can be

expressed by a multivariate Gaussian distribution, p (wt) ∼ N
(
µw,t,Σww,t

)
, where µw,t is the mean

vector and Σww,t is the covariance matrix of state vector w at time t. The conditional probability of

the state given the observed data is expressed as posterior distribution using the theorem of Bayes.

Given the posterior state of the previous time step, p (wt−1|x1...t−1) = N
(
µw,t−1,Σww,t−1

)
, the prior

probability of the state parameters at the current time step t can be computed using Equation 2.14,

once the temporal model is de�ned. Given a measurement at the current time step, the posterior

probability of the current state can be computed via Equation 2.13, once the measurement model

is de�ned. The temporal model and the measurement model are de�ned exemplary in the following

paragraphs.

Temporal model. The temporal model translates the state from the previous time step t− 1 to the

current time step t, based on the assumption that the state wt evolves from the state wt−1 of the

previous time step, via a linear model

wt = Ψwt−1 + εt, (2.15)

where the matrix Ψ is referred to as the transition matrix and εt is referred to as the process noise

which is assumed to follow a zero-mean normal distribution with covariance matrix Σp. The covariance

matrix of the process noise accounts for deviations from the expected dynamic behaviour of the system
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expressed via the transition matrix. Given an exemplary state vector wt = [xt, yt, vx,t, vy,t]
> that

comprises the position [xt, yt]
> and the velocities [vx,t, vy,t]

> of a dynamic system in 2D, and assuming

that the velocity is constant, the predicted state variables w+
t are computed according to:

w+
t =


xt

yt

vx,t

vy,t

 =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 ·

xt−1

yt−1

vx,t−1

vy,t−1

 . (2.16)

In Equation 2.16, the predicted position is the sum of the previous position and the distance covered

within the time span ∆t between time t− 1 and t with constant velocity [vx,t−1, vy,t−1]>. The uncer-

tainty about the state vector w+
t is modelled by the covariance of the process noise, which results from

deviations from the constant velocity assumption due to unforeseen accelerations at = [ax,t, ay,t]
> with

expectation E(at) = 0 and covariance matrix Σa. The covariance matrix of the process noise thus

takes the form Σp = GΣaG
>, where the e�ect of the accelerations is related to the covariance of the

process noise via the matrix G, which is de�ned as

G =


∆t2

2 0

0 ∆t2

2

∆t 0

0 ∆t

 (2.17)

By application of the state transition model, the conditional pdf of the current state, given the previous

state, can be written as a normal distribution, whose mean is a linear function of the expected value

of the previous state with covariance Σp:

p (wt|wt−1) = N
(
Ψµw,t−1,Σp

)
. (2.18)

According to Equation 2.14, the belief about the system state, given the information from the past,

can be expressed via the integral over the product of the prior distribution p(wt−1|x1...t−1) and the

state transition model previously de�ned, which yields the probability p(wt|wt−1). The pdf of the

predicted state is thus found by application of Equation 2.14:

p (wt|x1...t−1) =

∫
wt−1

N
(
Ψµw,t−1,Σp

)
N
(
µw,t−1,Σww,t−1

)
dwt−1. (2.19)

By applying the calculation rules for marginal and conditional Gaussians (cf. (Bishop, 2006), Chapters

2.3.2 and 2.3.3) to Equation 2.19, the pdf of the predicted state can be reformulated as:

p (wt|x1...t−1) = N
(

Ψµw,t−1,ΨΣww,t−1Ψ> + Σp

)
= N

(
µ+
w,Σ

+
ww

)
,

(2.20)

where µ+
w denotes the mean of the predicted state at time t and Σ+

ww denotes its covariance matrix. In
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Equation 2.20, the probability of the state given all and only the information from the past is expressed

by a normal distribution, whose mean is a linear function of the mean of the preceding state, and the

covariance of the predicted state is the sum of the covariance matrix of the previous state propagated

in time using the state transition model and the covariance matrix of the process noise.

Measurement model. Given a measurement xt = [xt, yt]
> of the current position of the dynamic

system, the measurement model translates the predicted state to the posterior state by application of

Equation 2.13. The measurement is assumed to be drawn from the noisy measurement process

xt = Mwt + εm, (2.21)

where the matrix M is referred to as the measurement matrix that translates the state to the mea-

surements with additive zero-mean Gaussian noise εm ∼ N (0,Σxx,t). For the exemplary state vector

de�ned in the previous paragraphs and given that the measurements are de�ned in the same coordi-

nate system as the state variables, the measurement matrix takes the form M = [I 0], where I is the

identity matrix of size 2, and 0 is a matrix of the same size with all elements set to zero, because the

velocity components of the state vector are not observed. In probabilistic form, the term p(xt|wt) in

Equation 2.13 can be expressed as

p (xt|wt) = N
(
Mµw,t,Σxx,t

)
. (2.22)

The posterior probability of the state can be found by integrating Equations 2.20 and 2.22 into

Equation 2.13:

p (wt|x1...t) =
N
(
Mµw,t,Σxx,t

)
N (µ+

w,Σ
+
ww)∫

wt
N
(
Mµw,t,Σxx,t

)
N
(
µ+
w,Σ

+
ww

)
dwt

. (2.23)

As the product of two Gaussian distributions is proportional to another Gaussian distribution, Equa-

tion 2.23 can be rewritten as

p (wt|x1...t) ∝ N
((

M>Σ−1
xx,tM + Σ+

ww
−1
)−1 (

M>Σ−1
xx,tµw,t + Σ+

ww
−1

µ+

)
,
(
M>Σ−1

xx,tM + Σ+
ww
−1
)−1

)
.

(2.24)

By introducing the Kalman Gain matrix,

K = Σ+
wwM

>
(

Σxx,t + MΣ+
wwM

>
)−1

, (2.25)

Equation 2.24 can be simpli�ed to

p (wt|x1...t) = N
(
µ+
w + K

(
xt −Mµ+

w

)
,Σ+

ww −KMΣ+
ww

)
= N

(
µw,t,Σww,t

)
.

(2.26)

For a derivation of Equation 2.25 see, e.g., (Prince, 2012). Using the Kalman gain matrix, a trade-o�

between the measured state and the predicted state is found, which is in�uenced by the covariance

matrices of the prediction and the measurement. The term in brackets in the expression for the mean
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in Equation 2.26 is called innovation i = xt −Mµ+
w with covariance

Σii = Σxx + MΣ+
wwM

>. (2.27)

Summary. The recursive prediction and update steps in a Kalman �ltering model can be summarised

as follows:

Prediction:

µ+
w = Ψµw,t−1 (2.28)

Σ+
ww = ΨΣww,t−1Ψ> + Σp (2.29)

Update:

µw,t = µ+
w + K

(
xt −Mµ+

w

)
(2.30)

Σww,t = Σ+
ww −KMΣ+

ww (2.31)

Intuitively, the prediction propagates the previous state according to the temporal model, and

the variance of the predicted state depends on the variance of the previous state and an additional

covariance matrix that models deviations from the assumed motion model. The updated state then

equals the predicted state plus a trade-o� between the measurements and the predicted state weighted

by the covariances of the respective entities. Note that Kalman �ltering is equivalent to message

passing in the forward direction, whereas the posterior marginals can be found by application of the

so-called Kalman smoother equations (Kschischang et al., 2001).

The Kalman �lter model assumes linear models for the measurement generation and for the predic-

tion. If one or both of these models involve non-linear, yet di�erentiable, functions, Ψ and/or M are

replaced by local linear approximations of these functions for the prediction and update of the covari-

ance matrices. Such a model is referred to as Extended Kalman �lter (EKF, Gelb, 1974). Another

variant of the Kalman �lter model is the Unscented Kalman �lter (Julier and Uhlmann, 1997), which

approximates isolines of the Gaussian distributions by particles. These particles are propagated by

the possibly non-linear measurement and/or update equations and the transformed particles resemble

the new distributions. The aforementioned models all assume Gaussian distributions for the noise

models. In contrast to these models, particle �ltering models (Deutscher et al., 2000) circumvent the

assumption of a uni-modal state by representing the distribution of the state by a set of independent

particles. In this way, arbitrary multi-modal distributions can be handled.

2.2.2 Dynamic Bayesian Networks

A key limitation of Kalman Filter models (KFM) is that these models only handle (vectors of) single

random variables to represent a dynamic system state. A Dynamic Bayesian Network (DBN) can be

understood as an extension of a Bayesian network to the state-space domain (Murphy, 2002; Russell

et al., 2003). According to the properties of Bayesian networks, a DBN allows for the representation
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of a system state in a factorised form. Because DBNs are nothing more than Bayesian Networks

set into a temporal context, inference algorithms such as Belief propagation can be used readily for

reasoning about hidden variables in such models (Russell et al., 2003). In contrast to Kalman Filter

models, DBNs alleviate the need for linear models for the conditional probabilities with Gaussian noise

and allow for arbitrary conditional probability functions, and the variables may be either discrete,

continuous or both. This allows for the modelling of more complex connections of random variables

while maintaining the computational e�ciency of inference algorithms available for Bayesian networks.

This way of modelling can also be applied to the example of land slide prediction given in the earlier

sections of this chapter. In this example, the land cover class was modelled as hidden variable. The

land cover class can be expected to depend on its value at the previous time step, so that the probability

distribution for the land cover class Ct at time t = 2 can be written as conditional probability of C2

given C1, p(C2|C1). Such a DBN is depicted in Figure 2.5, where the index refers the variables to

the time step. Again, inference in this Dynamic Bayesian Network can be performed using Belief

Propagation, e.g., in order to �nd the most likely sequence of land cover class labels and land slide

susceptibilities, or to reason about the current system state given the estimates from the past and

current measurements.

C1

L1

P1S1

I1

C2

L2

P2S2

I2

Figure 2.5: Dynamic Bayesian network representation of the problem of land slide prediction (cf. Fig-
ure 2.2) for two successive time steps, indicated by the indices of the variables. The directed
edge between C1 and C2 represents the conditional probability of the land cover class C2

at time t = 2, given the land cover class C1 of the preceding time step.

2.3 Gaussian Process Regression

This section addresses the class of stochastic processes, which provide a mathematical description of

(time) ordered events, whose outcome at every step (in time) depends on chance. A Gaussian Process

(GP) is a realisation of a stochastic process, in which each point in input space is associated with a

target variable that is normally distributed, and in which every �nite subset of random variables has

a multivariate normal distribution (Rasmussen, 2006). By analogy with a Gaussian distribution over

scalar (or vectorial) random variables, which are de�ned by a mean (vector) and a (co)variance(matrix),

a Gaussian Process can be thought of as a distribution over functions, uniquely de�ned by a mean

function m (x) and a covariance function k (x, x′) of two points x and x′ in a common input space.
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The probability distribution over a function f (x) can, thus, be denoted by

f (x) ∼ GP
(
m (x) , k

(
x, x′

))
. (2.32)

Gaussian Processes can be used for the estimation of continuous target variables from a given set of

observed target variables (i.e., for regression), and for classi�cation, given that the target variables are

discrete (Rasmussen, 2006). Generally, regression aims at the determination of function values of a

target variable at arbitrary positions in an input space by modelling deterministic functions that best

approximate a set of observed variables, e.g., in terms of least squares. Gaussian Process Regression

re�nes this approach by modelling stochastic relations between the variables. In this respect, Gaussian

Process Regression is related to kriging, as referred to in the �eld of geo-statistics (Krige, 1951), and

collocation, as referred to in the �eld of geodesy (Moritz, 1973). Here, the terminology of GP is used for

consistency with the related work in the �elds of computer vision and machine learning (Rasmussen,

2006; Urtasun et al., 2006). Formally, it is assumed that the function values of a target variable y,

evaluated for an input variable x, are drawn from a noisy process,

y = f (x) + n = m (x) + s+ n, (2.33)

with Gaussian white noise n with variance σ2
n. The regression function f (x) = m (x) + s is composed

of a deterministic part m (x), also referred to as the trend, and a stochastic part s ∼ N (0,K), which

is referred to as the signal and which follows a zero-mean normal distribution with covariance K. It

is further assumed that the signals at close positions are correlated, and that these correlations are

described by the covariance function. Gaussian Process Regression enables the joint estimation of the

parameters of the trend and the function values at new input points. The trend is de�ned by the mean

function, which can be formulated, e.g., by polynomial regression or by non-parametric approaches

for regression using kernel functions (Jaakkola and Haussler, 1999). The covariance function quantises

the expected correlations between signals as a function of distance in input space. One of the most

prominent realisations of the covariance function is the squared exponential or Gaussian function

(Rasmussen, 2006):

k (xi, xj) = σ2
f · exp

(
−(xi − xj)2

2l2

)
+ σ2

n · δ (i = j) . (2.34)

Equation 2.34 is a Gaussian function in which the covariance of two input points xi and xj depends

on their distance with decreasing covariance at growing distances. In Equation 2.34, σ2
n is the noise

variance accounted for in the diagonal elements of K, and δ (i = j) is the Kronecker delta function,

which is 1 for i = j and 0 otherwise. Depending on the noise variance of an input variable, the target

variable is more or less a�ected by input points near its position in input space. The characteristic

length-scale l basically controls the range of correlations in input space. The signal variance σ2
f controls

the uncertainty of predictions at input points far from observed data.

An illustration of a Gaussian Process Regression model is given in Figure 2.6. The dashed line

resembles the trend (in the �gure, it is assumed to be zero) and the green line the signal. Three

observed input points are shown in the �gure. The black solid lines show the expected 1σ interval

over the target variables at each position in input.
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Figure 2.6: Illustration of a Gaussian Process with a zero-mean function and three pairs of observed
input and target variables, marked by '×' symbols.

Given a set of observed input and target variables D = {(x1, y1) , ..., (xn, yn)}, the aim is to predict

the target variable y∗ for a new input point x∗. Since any �nite subset of the random variables in a

GP has a Gaussian joint distribution, the joint distribution of an unknown target variable y∗ and the

observed data y = {y1, ..., yn} is also Gaussian and can be modelled according to Equation 2.35,[
y

y∗

]
∼ N

([
E (y)

E (y∗)

]
,

[
K K>∗

K∗ K∗∗

])
(2.35)

where E (y) and E (y∗) are the expected values of the observed and the unknown target variables that

correspond to the trend. The covariance matrix is computed using the covariance function k (xi, xj).

The matrix K is the covariance matrix of the observed target variables, such that K (i, j) = k (xi, xj),

K∗ is the vector of covariances of the observed and the unknown target variables, such that K∗ (i) =

k (x∗, xi), and K∗∗ = k (x∗, x∗) is the variance of the unknown target variable.

The prediction of a new target variable for the input point x∗ is realised by constructing the condi-

tional distribution of the desired target variable y∗ based on Equation 2.35. Since the distribution in

Equation 2.35 is Gaussian, the same holds true for the conditional probability of the unknown target

variable. In a Gaussian Process Regression model, the distribution over the predicted target variable

can be written as Equation 2.36,

P (y∗|y) ∼ N (GPµ (x∗,D) ,GPΣ (x∗,D)) , (2.36)

with mean

ŷ∗ = GPµ (x∗,D) = m (x∗) +K∗K
−1 (y −m (x)) , (2.37)

and covariance

σ̂2
y∗ = GPΣ (x∗,D) = K∗∗ −K∗K−1K>∗ . (2.38)

The estimated value ŷ∗ is the sum of the trend and the signal and corresponds to the mean of Equation

2.36 and σ̂2
y∗ is the variance of the estimated target variable.
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3 Related work

This chapter gives an overview over related work on the topic of multi-person detection and tracking

from monocular image sequences. Following Smeulders et al. (2014), visual object tracking can be

categorised according to the way in which the object position in image space is acquired. Matching-

based approaches used for instance in (Shi and Tomasi, 1994; Isard and Blake, 1996; Comaniciu et al.,

2003) generally continue the trajectory towards positions that best coincide with target representations

of previous time steps, regardless of whether or not the target is actually visible in the current frame.

Detection-based approaches, also referred to as tracking-by-detection (Andriluka et al., 2008), typically

use classi�ers to discriminate the regarded object class(es), and only update a trajectory when an object

is actually detected. In the context of multi-person tracking, where mutual occlusions are inherent,

the trajectories are easily distracted from the actual target when using matching-based approaches.

In this respect, and with the progress of automatic pedestrian detection in the last decade (Dollár

et al., 2011), detection-based approaches for tracking have moved into the focus of interest in most

of the related work on multi-person tracking. In the context of single object tracking, pedestrian

detection provides measurements of the desired object positions in individual frames, which can be

readily evaluated, e.g. by �ltering or smoothing techniques. Because the detections do not carry

information about the identity of the detected objects, the application to multi-object tracking is not

straightforward. The possible assignment of detections to di�erent object trajectories gives rise to an

ambiguity problem, often referred to as the problem of data association.

The remainder of this chapter begins with an overview over general tracking approaches available in

the literature (Section 3.1). The subsequent sections provide a description of methods for single-frame

detection and localisation (Section 3.2), and temporal modelling strategies for state prediction (Section

3.3). Section 3.4 describes common approaches for data association on a frame-by-frame basis. Finally,

in Section 3.5, the strengths and weaknesses of the related work are discussed and the research gaps,

which motivate the further work on this topic, are identi�ed.

3.1 Tracking approaches

The general aim of tracking is to establish a target's position over time. This can be either achieved

by successive continuation of trajectories at every time step, or by regarding multiple time steps

simultaneously. This section provides a review of common approaches for generating the trajectories

in the literature and is separated into three parts, associated to state space models and �ltering

techniques, tracklet-based approaches and o�ine tracking.
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State space models and �ltering techniques

In the context of recursive estimation of the trajectories, tracking-by-detection requires the detection

of persons in individual frames, the association to trajectories, i.e. data association, and the �ltering

to �nd a synthesis between the position measured by the detector and a motion model. Approaches

designed for applications that run in real time only obtain information from the current and the

previous frames, having to decide for the detection-to-trajectory assignments instantaneously. In

recursive estimation frameworks, the dynamic state of a tracked pedestrian is often modelled by

its position and derivatives of the position w.r.t. time in a common state space. In this context,

trajectories can be seen as the connecting lines between the �ltered positions in state space. Available

approaches for �ltering generally make use of variants of the recursive Bayesian estimation framework,

and model the pedestrian position and its velocity as state variables. If the predictive function is linear

and if the noise is normally distributed, the system is often referred to as linear dynamical system

(Bishop, 2006). For the recursive state estimation of a linear dynamical system from a sequence of

measurements a�ected by Gaussian noise, the Kalman �lter model (Kalman, 1960) yields optimal

solutions and is applied in a wide range of tracking applications (Zhao and Nevatia, 2004a; Luber et

al., 2010; Shu et al., 2012; Yoon et al., 2015). The authors of these papers model the state variables in

the image domain, which has the advantage of being independent of the camera orientation as long as

the orientation does not change, thus being more generic in terms of the potential application scenarios.

The drawback of these methods is the missing scale information, which can be exploited when modelling

the pedestrian state in a common 3D object coordinate system. However, the recursive state estimation

in Euclidean 3D coordinates, based on measurements obtained in the projected 2D space of the image,

requires a non-linear transformation. To this end, methods that model the system state in 3D make

use of Extended Kalman �lter models (Schindler et al., 2010), linearising the measurement equations

using a Taylor expansion, or Unscented Kalman Filter models (Meuter et al., 2008). Particle �lters are

used in (Okuma et al., 2004; Zhao and Nevatia, 2004b; Breitenstein et al., 2011; Tran and Manzanera,

2015) and (Zhang et al., 2015). Kalman Filter models facilitate the parametric modelling of con�dences

and, therefore, also the application of hypothesis testing. For instance, the parametric modelling of

probability densities in Kalman �lter models allows for the detection of outliers in the measurements

by looking at the system innovations. Particle �ltering techniques avoid the need for uni-modal

expressions of the belief about the system state, but, on the other hand, lack the ability of performing

statistical tests on the basis of a parametric expression of the uncertainties.

An alternative view on the state space model is to formulate the state vector as target variable

in a Gaussian Process Regression model. Ko and Fox (2009) formulate the dynamic system of a

robotic platform as a Gaussian Process, and model the predictive function, as well as the measurement

functions, of a recursive Bayes �lter as a Gaussian Process Regression problem. It is emphasised that

the new prediction and observation models do not require an explicit parametric model of the functional

relationship, and only require a model for the mean and covariance function.
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Tracklet-based approaches

Tracklet-based approaches for tracking decompose the task into smaller problems and �rst generate

trajectory fragments for which the association can be done reliably, and then associate the generated

tracklets over time. Multiple Hypothesis Tracking was proposed by Reid (1979) and revisited only

recently (Hinz and Schmidt, 2015; Kim et al., 2015) for multi-person tracking. This method builds

a tree of potential trajectory candidates originating from each single-frame detection with branches

growing through detections of successive frames in a way that no detection is assigned to more than

one trajectory at a time. Each path through the tree corresponds to a trajectory candidate and the set

of candidates is reduced (or pruned) based on a tracking score function prior to the processing of the

next frame to keep the computation time tractable. A similar approach is pursued by Ess et al. (2008)

and Schindler et al. (2010), generating multiple trajectory hypotheses and optimising the combination

of successive hypotheses in a separate step. Yang and Nevatia (2012) and Choi (2015) propose the use

of Conditional Random Fields (CRF) to estimate correspondences between tracklets. Similarly to the

work on frame-wise association, methods based on the Hungarian algorithm (Perera et al., 2006) and

on linear programming (Jiang et al., 2007) are also used for the tracklet-to-track assignment. Such

approaches delay the trajectory generation, because a set of images must be available before a decision

is made, but operate in near-real time if the time window is only small.

O�ine tracking

To �nd a globally optimal solution for the entire image sequence, available approaches commonly

formulate the association task as a maximum a posteriori problem, which can be represented by a

min-cost �ow network (Zhang et al., 2008a). This method uses representations based on graphical

models, where temporally ordered nodes correspond to successive detections (Leal-Taixé et al., 2011),

or tracklets (Wang et al., 2015a; Ben Shitrit et al., 2014). Directed edges between these nodes represent

correspondences. The optimal path through the graph indicates the �nal trajectories and can be

found using linear programming (Berclaz et al., 2009; Leal-Taixé et al., 2011), dynamic programming

(Pirsiavash et al., 2011; Wang and Fowlkes, 2015), or other optimisation methods. Because the methods

aforementioned require the �rst and last frame of an image sequence for the optimisation, the processing

is restricted to o�ine applications.

Recent developments investigate deep learning architectures (LeCun et al., 2015) for solving the

assignment task in a model-free fashion. Milan et al. (2016) approach the task of data association

by training a recurrent neural network that enables a model-free representation of the optimisation

procedure. Despite the great success in deep learning architectures in recent years, the network requires

vast amounts of training data, which are typically not available for multi-object tracking yet. Siamese

convolutional neural networks (CNN) are used for data association of tracklets (Wang et al., 2016) in

an o�ine fashion, and of individual detections (Leal-Taixé et al., 2016). In (Leal-Taixé et al., 2016),

associations predicted by the CNN are further optimised in a linear programming approach, which is

applied over all frames and, thus, restricts the method to o�ine processing as well.
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3.2 Observations

This section describes the related work on generating observations of pedestrians in single images,

which build the basis for detection-based approaches for tracking. The term detection involves the

decision that an object of a speci�c object class is present, and at least a coarse localisation of the

object. Both these aspects are provided by pedestrian detectors, which are commonly based on

classi�ers that are either trained o�ine for the purpose of generic object detection, or at runtime, to

specialise on a speci�c target appearance. Both approaches, their limitations and possible remedies

are discussed in the following paragraphs.

Detection based on classi�ers trained o�ine

State-of-the-art pedestrian detection is commonly guided by classi�ers trained o�ine on large sets

of pedestrian images to generalise well across a wide range of di�erent pedestrian characteristics.

Available approaches di�er in the way in which the evidence about the presence of a pedestrian in

an image is generated, and can be roughly categorised into top-down and bottom-up approaches.

Top-down or sliding-window -based approaches typically train a holistic model of pedestrians (Viola

and Jones, 2001; Dalal and Triggs, 2005; Dollár et al., 2014) and directly classify all feasible regions

in the scale-space representation of an image either as person or as background. One of the most

prominent representatives of sliding-window-based detectors is the approach by Dalal and Triggs (2005)

that classi�es features derived from Histograms of Oriented Gradients (HOG) using Support Vector

Machines (SVM). Basically, a HOG is a frequency distribution of edge gradient orientations, with the

votes being weighted by the magnitudes of the gradients and accumulated within local spatial regions.

The person descriptor in (Dalal and Triggs, 2005) consists of HOG features from multiple sub-regions

arranged inside a search window, contrast-normalised within overlapping blocks, and concatenated to

a feature vector. For detection, the search window is placed at every feasible position in the image

at di�erent scales and the feature vectors computed inside these windows are classi�ed into person

or background using an SVM. The location and size of a search window classi�ed as person are the

parameters that describe a detection geometrically. In the approaches mentioned above, the decision

if a pedestrian is present takes place by classi�cation of image regions that are expected to depict the

entire persons. If a person is occluded, the detection generally fails, leading to an error of omission

or a false negative detection. When the detection is applied permissively, i.e. if no threshold w.r.t.

the con�dence of the SVM is applied, the detection typically yields very high recall rates at the cost

of many false-positive detections (errors of commission), due to the classi�cation of objects in the

background with shapes similar to that of a person.

In contrast to the sliding-window-based approaches, part-based models decompose the model of a

pedestrian into a set of patches in the vicinity of interest points or body parts whose relative positions

from the object centre are known (Leibe et al., 2008; Felzenszwalb et al., 2010). The detection itself

takes place in a bottom-up fashion by �rst �nding the individual patches or parts and then generating

votes for the object position based on the relative displacements stored in the model. Maxima in the

accumulation of the generated votes are taken as detections. Felzenszwalb et al. (2010) build upon
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the idea of using HOG features, but represent an object as a deformable part-model, training di�erent

HOG descriptors for every single part. In this way, the approach accounts for the non-rigidity of

human bodies or other object classes in a better way and is more robust against partial occlusions,

so that the risk of omission errors decreases. Models based on interest points and parts mitigate the

need for a holistic visibility of the persons, but the visible features of partly occluded objects often do

not provide as much information as needed for the re-identi�cation of an object in a crowded scenario.

Although the available approaches for detection provide a solution to the detection and localisation

problem at the same time, the results are often not particularly reliable and geometrically accurate.

In the scienti�c community a detection is generally evaluated based on the relative overlap � i.e.,

the intersection over union score � of a detection and a reference annotation, both represented by a

surrounding rectangle (Everingham et al., 2010). In a comprehensive study, Dollár et al. (2011) point

out that the recall rates of 16 di�erent pedestrian detectors decrease rapidly if the intersection-over-

union score threshold is increased. In fact, the resulting surrounding rectangles used in such approaches

may easily be misaligned due to partial occlusions, non-rigid body motion, changing illumination and

other disturbing e�ects. Established challenges on object detection (Everingham et al., 2010), single

object tracking (�ehovin et al., 2015) and multi object tracking (PETS, 2009; Geiger et al., 2012;

Leal-Taixé et al., 2015), only require an intersection-over-union score of 50% for a detection to be

counted as correct. However, for many realistic applications that geometric accuracy is not su�cient,

and the improvement of this accuracy is discussed later in this section.

Detection based on classi�ers trained online

Classi�ers trained at runtime are capable of specialising on a speci�c target's appearance and allow

for the renewed detection of a previously tracked object in successive frames. Available approaches

for learning models of appearance for individual persons from image sequences make use of variants

of Random Forests (Breiman, 2001; Sa�ari et al., 2009), Hough Forests (Gall and Lempitsky, 2013),

boosting (Okuma et al., 2004; Breitenstein et al., 2011; Godec et al., 2011) and Convolutional Neural

Networks (Ma et al., 2015; Wang et al., 2015b). These approaches have the advantage of being

adaptive to appearance changes, which makes these approaches more applicable to complex scenes

with a wide range of depth, temporary occlusions, and changing lighting conditions. Breitenstein et

al. (2011) train one binary classi�er based on boosting for every tracked pedestrian against all other

persons and complement the results of a generic object detector with the additional instance-speci�c

information to �nd an improved location of the desired object in the image. In a multi-object tracking

environment, every binary classi�er is trained with positive samples from a desired object and with

negative samples from all other objects and from the background. Because the classi�er is expected

to discriminate against a potentially high number of di�erent objects, the number of samples for

the desired object class is typically much larger than the number of samples for the negative class.

Consequently, if all samples from the negative classes are represented by only one class, the con�dences

given by the classi�er upon evaluation of a sample may be delusive. As opposed to boosting-based

methods for tracking, methods based on ensembles of decision trees, i.e. Random Forests (Breiman,

2001), are also used for tracking. Random Forests are trained in a breadth-�rst manner and aggregate
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many rather shallow decision trees, each of which represents the frequency distribution of any number

of classes (depending on the depth of the trees). Upon evaluation, the average class-frequency of the

leave nodes, where a sample propagates to, is taken as con�dence about the class-membership of the

sample. Random forests are inherently applicable to multi-class problems and are more robust against

label noise than boosting-based approaches, which is due to the principle of learning independent

ensembles of decision trees. Sa�ari et al. (2009) propose an online growing procedure for decision

trees based on online bagging and boosting (Oza, 2005). Because samples for training are rare from

scratch in online applications, Sa�ari et al. (2009) propose a strategy for incremental training of a

Random Forest. Beginning with binary decision stumps with a depth of one (i.e. one root node

and two leave nodes), a node is only allowed to split if enough training data have become available

and if the split function (selected from a set of randomly generated candidates) separates the classes

su�ciently well. To account for potentially changing appearance features of the tracked objects, entire

decision trees may be discarded based on the misclassi�cation rate of samples held back from training

(out-of-bag-error). These so-called Online Random Forests by (Sa�ari et al., 2009) are not applied to

the multi-class domain, where the number of classes changes over time.

Although multi-object tracking is a multi-class problem by nature, the available work on instance-

speci�c classi�cation only uses single binary classi�ers for every tracked object. None of the existing

methods uses Random Forest classi�ers for the tracking of multiple persons.

Non-maximum suppression and false positive reduction

Sliding-window-based approaches for detection typically deliver many positive classi�cations near the

true position of a person in the image. To yield only one detection per object, non-maximum sup-

pression (NMS) is usually applied, keeping only track of detections with con�dences (measured, e.g.,

by the distance of a detection from the hyper-plane of the SVM in feature space) above a pre-de�ned

threshold and grouping these detections based on their similarity in terms of size and position. This

way of performing NMS comes along with two drawbacks: Firstly, rejecting detections by a constant

threshold leads to a decision about the validity of a detection that is not guaranteed to be optimal,

because not all persons are detected with the same con�dence. Secondly, using the classi�cation con-

�dence for NMS, all detections are validated irrespectively of their positions relative to the scene.

To this end, Hoiem et al. (2008) re�ne the NMS strategy of available object detectors by taking 3D

information about the expected objects and the scene into account. The authors keep track of the

distribution of the non-maximum detections, developing a more sophisticated measure of uncertainties

of the �nal detections. This work aims at the recognition of objects in single frames and, therefore,

neglects temporal correlations between successive frames in an image sequences.

To decrease the false positive rate while preserving the true positive detections, the detector may

be applied permissively, validating the detections with additional clues like foreground-background-

separation (Stau�er and Grimson, 2000; Elgammal et al., 2000; Zhao and Nevatia, 2004a), or shape

(Leibe et al., 2005; Ramanan, 2007; Gavrila and Munder, 2007) prior to further processing. By pre-

processing the images, hard decisions are made sequentially and errors committed in that early stage

of processing cannot be corrected later. To overcome this problem, Hoiem et al. (2008), Wojek et
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al. (2009), Enzweiler et al. (2010), Schindler et al. (2010) and Choi et al. (2013) integrate di�erent

sources of information related to depth, texture, shape, appearance and motion. Wojek et al. (2009)

and Enzweiler et al. (2010) use classi�ers to jointly evaluate di�erent sources of information related to

the recognition of pedestrians. Schindler et al. (2010) apply Bayesian Networks for the joint inference

of unknown parameters that are related to the correctness of a detection, the object position, to the

parameters of the camera orientation and the scene, and other variables. By modelling the correctness

of a detection as a hidden variable, the decision whether to use a detection result for the update of a

trajectory is made on the basis of the joint probability of the hidden variables and several observations.

Every detection is validated by estimating the correctness of that detection based on probabilistic

reasoning in the graphical model. Joint inference of the parameters is performed by means of Belief

Propagation, but the global optimum is not guaranteed to be found due to the loopy nature of the

underlying graphical model. Choi et al. (2013) combine di�erent cues about the presence of pedestrians

based on full pedestrian and part-based models, and achieve robustness against outliers in individual

system components by the redundancy of observations. These observations are combined in a graphical

model, but only approximate inference is applied to reason about the �nal detections.

Re�ned localisation

A better alignment of a detection result to the real object boundaries is, for instance, achieved when the

location of the detection window is used as initial location from which a re�ned segmentation proceeds.

This segmentation can be carried out on the basis of pixels (Godec et al., 2011; Dai and Hoiem, 2012),

superpixels (Shu et al., 2013; Milan et al., 2015), interest points (Leibe et al., 2008; Ommer et al.,

2009; Gall and Lempitsky, 2013; Choi, 2015), object parts (Andriluka et al., 2008; Felzenszwalb et al.,

2010), contour models (Leibe et al., 2005; Gavrila and Munder, 2007) or, in the context of rigid object

detection, full 3D models (Zia et al., 2013). Ommer et al. (2009) cluster interest points based on their

motion and classify these groups to jointly determine and localise the underlying object category. In

(Klinger et al., 2014) and Choi (2015), the localisation accuracy of a pedestrian detector is improved

using additional cues from the tracking of interest points (Shi and Tomasi, 1994). While being robust

to single outliers in the generated interest point correspondences, these approaches are easily distracted

from the desired object when the object is occluded. Segmentation-based re�nement of a detection on

a pixel-basis generally tries to �nd a trade-o� between an alignment of the detection to edges in the

image and an internal energy constraint keeping the generated contour smooth. Due to such internal

energies, limbs are often not segmented well, so that additional shape models may be required to keep

the segmentation close to plausible silhouettes of persons (Leibe et al., 2005; Gavrila and Munder,

2007; Milan et al., 2015). Such models require a massive amount of training data to consider the

possible articulations of the body parts. Furthermore, such models assume a holistic visibility of the

persons and, thus, fail in case of occlusions, so that additional models may be required (Ouyang and

Wang, 2013; Rujikietgumjorn and Collins, 2013; Possegger et al., 2014). In (Schindler et al., 2010), the

positions of pedestrians are modelled as hidden variables in a Bayesian network, which are evaluated

at every time step together with observations stemming from automatic object detection and from a

pair of stereo cameras, which are not further considered in this work.
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3.3 Temporal modelling

The aim of temporal modelling in the context of recursive �ltering is to �nd an expression of the

belief about a system state at a current time step given only the information from the past. The

temporal model supports the trajectory estimation in di�erent respects: It keeps the generated tra-

jectory smooth, it supports data association (detection-based tracking) and preserves spatio-temporal

consistency in the absence of detections or in case of an occlusion, i.e. if no measurements can be

obtained. In a recursive Bayesian estimation framework, a temporal model consists of a predictive

function, mapping the previous state to the current state, and a stochastic model, representing the

uncertainties about the predicted state. Available approaches di�er in the way of representing the be-

lief and in the expectation of the dynamic behaviour of the system. In online applications, conditional

independence between a current state and states further than one step in the past, given the previous

state, is often assumed. Higher order motion models are considered, for instance, in (Pellegrini et

al., 2009) and (Schindler et al., 2010), and are more commonly found in o�ine applications (Collins,

2012; Arora and Globerson, 2013; Milan et al., 2014). Di�erent motion models are de�ned for di�erent

action categories in (Keller et al., 2011). In the addressed application scenarios, only walking persons

are expected so that di�erent action categories do not promise any improvement of the prediction.

In the context of multi-person tracking, the assumption that pedestrians move in rather straight

lines independent of other pedestrians is often not valid in much frequented scenarios. In such situa-

tions, people react to their environment due to social forces (Helbing and Molnár, 1995) and physical

constraints.

Motion context

The term motion context is used ambiguously in the literature either for the joint consideration of body

part motion for the understanding of activities (Zhang et al., 2008b), or for the joint consideration of

interacting pedestrian motion (Yoon et al., 2015). Here, it is meant to be understood in the latter

meaning of the term. The social force model by Helbing and Molnár (1995) re�ects the observation that

people exhibit mutual patterns of behaviour like walking in groups towards common destinations in a

scene. Physical constraints are often considered in the literature to model the fact that people cannot

share the same location in space (Scovanner and Tappen, 2009), (Pellegrini et al., 2009), (Leal-Taixé

et al., 2011), (Yamaguchi et al., 2011), (Choi et al., 2013), (Milan et al., 2014).

In (Scovanner and Tappen, 2009) and (Milan et al., 2014), trajectory estimation is formulated as

an energy minimisation problem, where the energy is the sum of various terms penalising a deviation

from an expected behaviour, such as collision avoidance, moving towards a prede�ned destination in

a rather straight line with constant velocity. By being aware of other people's positions in the scene,

motion context is incorporated in a way that collisions can be avoided, but possible correlations of

the trajectories that indicate mutual patterns of motion are not further evaluated. Ge et al. (2009),

Pellegrini et al. (2010), Yamaguchi et al. (2011) and Zhang and van der Maaten (2013) incorporate

group models which enable a smooth motion of pedestrians of the same group. Although contextual

information w.r.t. the motion of interacting pedestrians is considered in this way, a binary decision
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about the group memberships must be made, which neglects potential correlations between subjects

of di�erent groups. Pellegrini et al. (2009), Choi et al. (2013), Leal-Taixé et al. (2014) and Yoon et

al. (2015) do not apply an explicit grouping. They predict the position of each subject based on the

history of all pedestrians. Pellegrini et al. (2009) directly incorporate interactions as well as expected

destinations in the scene into the dynamic model of a recursive �lter. The degree of interaction

between two pedestrians is evaluated by their current distance and by the angular displacement of

their trajectories. Choi et al. (2013) use a Markov Random Field, where the current state estimate is

conditioned on the previous one and undirected edges are established between neighbouring subjects,

modelling the social forces caused by interactions. However, due to the Markov property, interactions

of pedestrians which are not direct neighbours in object space are suppressed. As a consequence,

potential correlations between subjects that are further apart are neglected. Yoon et al. (2015) and

Yoon et al. (2016) also consider the relative motion between subjects by conditioning the current state

estimate on the previous state estimate of the same subject and on those of the nearby subjects. In this

way, the motion of di�erent interrelated persons is taken into account, but uncertainty estimates are

not considered in the estimation of the relative motion. Furthermore, tracking is applied in the image

domain, and the non-linear relative motion between two persons is approximated by a linear model,

therefore, the approach must rely on a smooth camera motion. The works previously described apply

tracking and motion prediction based on single-frame detections. As a consequence, if people are not

detected in a frame, the motion context can be computed based on extrapolations of the trajectories

only. Leal-Taixé et al. (2014) circumvent the evaluation of context on an object level and estimate

context based on optical �ow features. The features are used to train a Random Forest classi�er prior

to the actual processing, so that the application is restricted to o�ine applications.

Ellis et al. (2009) applied Gaussian Process (GP)-Bayes Filters to the tracking of pedestrians, where

the input data are trajectories of di�erent persons observed in the past. The problem is formulated as

a regression task, where velocities are estimated on the basis of the previously observed trajectories.

For a predictive model which is representative for a complete scene, a high amount of training data

may be required (depending on the complexity of the scene). As the trajectories are required a priori,

the application is restricted to o�ine processing. Kim et al. (2011) apply GP based regression for the

prediction of motion trajectories of vehicles. Individual trajectories are assigned to clusters and outliers

are detected when the trajectories deviate from a so-called mean �ow �eld. By the explicit association

of the trajectories to clusters, possible correlations between trajectories from di�erent clusters are

not considered further. Later, the same authors applied GP Regression to detect regions of interest

for camera orientation, when acquiring images of a football match, by looking at the means of the

regression model, which re�ect the expected destinations of the involved subjects (football players, Kim

et al., 2012). Here, the motion trajectories are not regarded further and the trajectories of persons

are correlated based on the spatial distances between their current positions only. In these works,

the input data are the 2D locations of the subjects and the target variables are their velocities. In

(Trautman et al., 2015), a robot's path through scenarios crowded by humans is estimated by applying

inference in a joint probabilistic model of the robot's and the people's trajectories. The motion model

is realised by a mixture of Gaussian Processes, each of which is de�ned similarly to the way in (Brau et

al., 2013), with di�erent covariance functions for every Gaussian Process. Motion context is accounted



28 3 Related work

for by introducing an interaction potential that considers the Euclidean distance between the robot

and the persons, penalising small distances with respect to a Gaussian function.

3.4 Data association

The data association is commonly approached by optimising the assignment of detections to trajecto-

ries with respect to an objective function that takes account of the similarity between the detections

and the trajectories. In the context of multi-object tracking, generic object detection based on o�ine

classi�ers requires the data association step to be solved, whereas detection based on instance-speci�c

classi�ers circumvent that step, because every class is associated with an individual target inherently.

The data association is commonly guided by measures of similarity in terms of spatial distance between

detections and expected target positions and appearance. Appearance is often modelled by features of

texture and colour, represented by histograms (Okuma et al., 2004; Andriluka et al., 2008; Schindler

et al., 2010), or classi�ers (Breitenstein et al., 2011; Wang et al., 2015a; Xiang et al., 2015). In the

histogram-based approaches, the similarity is measured by the Bhattacharyya distance between the

histograms of a detection and the tracked object. In this way, only the (co)occurrence of features is

measured and their geometric alignment is not regarded further. Especially in ambiguous situations,

e.g. when tracking players in a football match, it is often not su�cient to represent the appearance

only using histograms, as these representations do not take account of the geometric alignment of

the features. In most real-world applications, the appearance gradually changes over time, which can

be accounted for by adaptive learning of target-speci�c models of appearance. Wang et al. (2015a)

apply distance metric learning to �nd metrics that assess the similarity of tracklets in the way that the

distance metric is only small for tracklets that stem from the same person. Discriminative classi�ers

based on boosting (Breitenstein et al., 2011) or on Random Forests (Sa�ari et al., 2009) learn char-

acteristic models of appearance at runtime. Because reference data for the supervision of the training

procedure is generally not available, training samples are derived from results of previous time steps.

Xiang et al. (2015) train a supervised binary classi�er to evaluate the similarity of detections in suc-

cessive frames using reinforcement learning, by which training is conducted recursively with training

sets augmented by wrong assignments of a previous round. Yang and Jia (2016) model the temporal

evolution of appearance features by a Hidden Markov Model to anticipate changes in the appearance

before classi�cation yields the similarity measures for data association.

Online approaches for tracking need to solve the data association problem in every frame. Available

approaches include greedy schemes, as, e.g., used in (Breitenstein et al., 2011; Pirsiavash et al., 2011)

and (Shu et al., 2012), which sequentially decide for correspondences, leaving a globally best �tting

solution out of consideration. In (Oh et al., 2004; Khan et al., 2005; Benfold and Reid, 2011) and

(Brau et al., 2013) sampling-based approaches to the data association problem are given, which are

not guaranteed to reach the global optimum. If a weight is assigned to every possible correspondence

between detections and trajectories (typically based on cues of position and appearance), a globally

optimal solution can be found using the Hungarian algorithm (Kuhn, 1955) or probabilistic approaches

such as the joint probabilistic data association (JPDA) strategy proposed by Fortmann et al. (1983).
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The Hungarian algorithm solves this combinatorial problem in polynomial time (O(n3)). This method

requires a square matrix with association costs, which can be guaranteed using dummy variables if

the number of detections does not equal the number of trajectories. This method is applicable for

multi-person tracking (Wu and Nevatia, 2007; Solera et al., 2015), but constraints (e.g. regarding

the association in case of an occlusion) cannot be considered without using workarounds. Another

solution to the JPDA problem can be found by Linear Programming (Dantzig, 1951), which, despite

of its computational complexity, is often applied in the tracking literature, where the number of

objects typically only lies in the order of tens, keeping the computation feasible (Storms and Spieksma,

2003; Jiang et al., 2007; Rezato�ghi et al., 2015). Linear programming inherently provides a way to

incorporate constraints to the optimisation. In recursive estimation frameworks, decisions must be

made on a per-frame-level, so that errors made in one step propagate to the �nal solution and cannot

be corrected later. This motivates the use of sophisticated models of motion and appearance, in order

to derive optimal similarity measures.

3.5 Discussion

This section summarises the key limitations of the related work with respect to the aspired research

goal. For each building block of the general multi-object tracking framework previously discussed,

the conclusions and motivations for the advancement of the existing work pursued in the remaining

chapters of this dissertation are given.

General approaches to multi-person tracking

The available approaches to multi-person tracking can be categorised into recursive �ltering techniques,

tracklet-based methods and approaches for o�ine tracking. Tracklet-based methods lead to a delayed

trajectory generation and are, thus, not suitable for time-critical applications such as collision avoid-

ance in driver assistance systems. Approaches for o�ine tracking require a closed system of images,

which is typically not given, e.g. in the context of the continuous generation of visual surveillance

footage. This work, thus, sticks to the recursive estimation of motion trajectories in favour of real time

capability. In this context, available methods largely model the position of a detected person in the

image as observed variable in a recursive Bayesian estimation framework, which leads to inaccurate

posterior positions in case of misaligned detections, or perform localisation and tracking in separate

steps (Schindler et al., 2010). To improve the geometric accuracy of the generated trajectories, this

work models both the state vector of a pedestrian in object space and its position in the image as

unknowns and combines the inference of these variables in a Dynamic Bayesian Network.

Observation models

In detection-based approaches for tracking, the image position of a person is typically obtained by clas-

si�cation, where the classi�er is trained either o�ine or at runtime. O�ine classi�cation frameworks

such as the HOG/SVM (Dalal and Triggs, 2005) enable generic object detection and thus the detection
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of persons not seen before. In turn, the recall and precision and the geometric accuracy of such meth-

ods is typically not su�cient for many realistic applications (Dollár et al., 2011). Classi�ers trained

online have the advantage of adapting to a target appearance at runtime, which enables a re�ned

localisation and more reliable data association, but the detection easily is distracted from the target

when the training data were derived from misaligned samples. Similar to (Breitenstein et al., 2011),

the presented research combines the advantages of both, generic and instance-speci�c classi�cation, in

a single tracking framework. Di�erent from that work, the presented approach trains a Random Forest

classi�er, which inherently suits for multi-class problems and can be trained incrementally (Sa�ari et

al., 2009). The proposed method uses the update equations of an Extended Kalman �lter model in-

stead of particle �lter (Breitenstein et al., 2011; Choi et al., 2013), so that the posterior state estimates

are described by Gaussian distributions, which allows for self-assessment of the tracking results. To

reduce the risk of false positive detections, this work improves the non-maximum suppression strategy

by accounting for the geometry of the scene and for prior knowledge about interesting places that is

learnt from training data.

Temporal modelling

Most of the cited papers dealing with motion context are either explicit about the grouping of pedes-

trians, so that possible correlations among members of di�erent groups are ignored, or they limit the

range of related objects by the de�nition of neighbourhoods. Gaussian Process Regression was used

successfully for the interpolation of velocities in the related work (Ellis et al., 2009; Kim and Davis,

2011), leveraging the need for parametric models of the regression function. The related work on

Gaussian Process Regression in the context of tracking does not include any approach for the track-

ing of pedestrians in which the interactions, which are relevant for the interpolation of velocities, are

computed together with the trajectories at runtime. This work follows the related work that models

the velocities as target variables in Gaussian Process Regression models. Di�erent from the existing

approaches, the correlations of trajectories are evaluated at runtime, taking into account the spatial

distance of the current positions as well as the directions of motion in a common object coordinate

system. This work exploits the strengths of Gaussian Process Regression for the temporal modelling

of interacting pedestrian states, and integrates the new temporal model into the Dynamic Bayesian

Network. Like Pellegrini et al. (2009) and Leal-Taixé et al. (2011), the new method models the state

parameters in 3D, which allows for a geometric interpretation of the estimated positions in SI units

(metres and seconds) in favour of a joint motion model for all pedestrians. This work develops a new

probabilistic approach for modelling interactions without the need for explicit grouping. The new

model can be integrated into the probabilistic framework in order to derive optimal predictions of

future states and to anticipate tracking errors such as identity switches.

Data association

Methods for the optimal assignment of detections to trajectories have been identi�ed by the related

work, but the available approaches for the de�nition of similarity measures leave scope for improve-

ments, because the modelling of appearance and target dynamics in multi-person scenarios is often
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approached by simplistic models such as histograms (Schindler et al., 2010) and constant-velocity

motion models (Breitenstein et al., 2011). Using these models, the risk of committing tracking errors,

such as identity switches, is high, especially if the constant velocity assumption is not ful�lled and the

appearance of some persons is similar. The presented work de�nes measures of similarity, using models

of appearance and motion, that account for the multitude of persons present in a scene, computing

measures of similarity based on class-conditional probabilities of an Online Random Forest classi�er

in combination with geometric cues measured by a Mahalanobis distance between a predicted position

and a detection. In this way, the number of tracking errors, such as identity switches, is expected to be

reduced compared to methods using simpler models to express the similarity. Following Storms and

Spieksma (2003), the optimisation is carried out using linear programming for its ability of �nding the

globally best �tting solution in every frame.
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4 A new probabilistic approach for

multi-person localisation and tracking

This chapter introduces a new probabilistic approach for the tracking of multiple persons from mono-

cular image sequences in a recursive fashion and for their exact localisation in the image and object

space. Motivated by the research goal of this dissertation and by the available literature, the trajectory

generation is carried out by recursive Bayesian estimation in a Dynamic Bayesian Network (DBN),

which models the state vectors of the tracked persons and their positions in the images using hidden

variables. This is in contrast to the commonly practised tracking-by-detection approach, which �rst

determines the image position by detection and then updates a recursive �lter using these positions.

By modelling the image positions of the persons using hidden variables, the update step of the recursive

�lter is carried out with a geometrically improved image position, which is expected to lead to a more

accurate posterior position in state space. The temporal model of the DBN considers the motion of

all pedestrians via a new model of interactions, referred to as Implicit Motion Context. It is expected

that an improved prediction lowers the risk of false positive detections and of identity switches, which

leads to a more reliable assignment of detections to trajectories and of training samples for the online

classi�er.

Several observations contribute to the determination of the state and image position of a person.

These observations are derived from prior knowledge about the observed scene, generic pedestrian

detection and a new model for instance-speci�c classi�cation of multiple persons. To be aware of the

presence of multiple persons, this work further describes a new model for the similarity measures in a

joint probabilistic data association strategy and for the handling of mutual occlusions.

The core of the new method is a recursive Bayesian estimation framework, which predicts and

updates a pedestrian state using a temporal model and various observations at every time step. The

general work �ow is depicted in Figure 4.1. At every epoch, a set of trajectories is given, where each

trajectory is assigned to one person being tracked. Starting from a prior estimate of the pedestrian

positions and given one image from an image sequence at a time, the current positions are determined

using an instance-speci�c classi�cation near the prior position and also by generic pedestrian detection.

Data association is applied based on the prior position and the instance-speci�c classi�er. Furthermore,

the system estimates the degree to which each person is occluded by other persons based on the

predicted positions of the persons. Prior information about interesting places in the scene is modelled

as observation and is either valid for the entire scene, if the camera orientation is static, or is modelled

in every frame, if the camera orientation changes over time. These observations are incorporated into

the update step of the recursive �lter, from which the posterior state is derived. From the posterior

state, the corrected image position of the tracked person is found by back-projection of the posterior
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Figure 4.1: Work �ow of the proposed method for multi-person localisation and tracking. The core of
this method is a recursive estimation framework, which predicts and updates the state of
all tracked persons at every point in time. For the update, four di�erent observations are
made: The classi�cation near the prior position of each person and the detection and data

association, which are obtained from every image, mutual occlusions and prior knowledge

about the scene. The classi�cation and data association depend on the online classi�er,
which is updated based on the posterior positions of all persons. The prior position is
required for classi�cation, data association and the estimation of mutual occlusions, and
is predicted based on the posterior states of all persons.

state to the image. From the corrected image positions of all persons, new training samples are derived

in order to update the instance-speci�c classi�er. The prior position of each person in the next image

is computed by the predictive model, which takes account of the posterior states of all tracked persons.

The remainder of this chapter is organised as follows. In Section 4.1, the Dynamic Bayesian Network

used as recursive estimation framework is described. In Section 4.2, the single observations and their

probability densities are described. Section 4.3 explains the proposed temporal model of the recursive

estimation framework. This includes the new strategy for modelling motion context. In Section 4.4,

the new strategy for data association is presented. The inference strategy for the determination of the

hidden state variables and the hidden image position is described in Section 4.5. Finally, Section 4.6

closes this chapter with a discussion of the expected strengths and weaknesses of the proposed method

and of the free parameters of the model.
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4.1 Problem statement via Dynamic Bayesian Networks

This work aims at the joint estimation of pedestrian states in 3D object space and their exact locations

in the images. In terms of Bayesian inference, an optimal reasoning about the unknown variables can

only be achieved by modelling these variables in a joint probabilistic model. After describing the

functional relationships between the desired variables, this section describes the Dynamic Bayesian

Network for the joint inference of the pedestrians' states and their positions in the images.

To leverage the e�ect of perspective distortions of the trajectories and to model interactions between

persons, it is essential to obtain viewpoint-independent results for the positions of pedestrians. To this

end, tracking is carried out in a common 3D object coordinate system, see Figure 4.2. The coordinate

system is centred at the projection centre of the camera (at time t0 in case of a moving platform)

with the X and Z axes pointing in horizontal directions and Y in the vertical downward direction

(right-handed system). To enable the conversion of 2D image coordinates to 3D world coordinates

from monocular image sequences, the terrain is assumed to be horizontal and the position of the

pedestrians is projected onto the ground plane πt, which lies at a distance Yπ below the camera. For

each person i, a six-dimensional state vector wi,t = [Xi,t, Yi,t, Zi,t, Hi,t, vX,i,t, vZ,i,t]
> that consists of

the 3D position Xi,t=[Xi,t, Yi,t, Zi,t]
>, the body height Hi,t and the velocity components vX,i,t and

vZ,i,t in the directions X and Z parallel to the ground plane, is modelled at each time step t. For ease

of readability the indices t and i are not speci�ed wherever they are obvious. The image position of

each person is described by its position of the feet xF=[xF , yF ]>, referred to as the reference point of

the person, and the position of its head xH=[xH , yH ]>. These two points jointly de�ne a rectangle

ri,t = [xF , yF , xH , yH ]> surrounding the person in the image, where the height of the rectangle is

the vertical distance between the reference point and the position of the head, and the width of the

rectangle is half of its height.
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Figure 4.2: Illustration of the functional relationships between image-positions xF=[xF , yF ]> and
xH=[xH , yH ]> and state parameters. Furthermore, the ground plane π and the object
coordinate system are depicted (for the �rst frame, in cases where the camera orientation
is dynamic). The ellipses illustrate the con�dences about the variables. The surrounding
rectangle r is not shown for clarity.
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The functional relationship between image and world coordinates is given by the collinearity equa-

tions:

xF = xo − c ·
r11(X −X0) + r12(Y − Y0) + r13(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
(4.1)

yF = yo − c ·
r21(X −X0) + r22(Y − Y0) + r23(Z − Z0)

r31(X −X0) + r32(Y − Y0) + r33(Z − Z0)
(4.2)

xH = xo − c ·
r11(X −X0) + r12((Y −H)− Y0) + r13(Z − Z0)

r31(X −X0) + r32((Y −H)− Y0) + r33(Z − Z0)
(4.3)

yH = yo − c ·
r21(X −X0) + r22((Y −H)− Y0) + r23(Z − Z0)

r31(X −X0) + r32((Y −H)− Y0) + r33(Z − Z0)
(4.4)

where x0 and y0 are the coordinates of the principal point and c is the focal length of the camera,

rij are the elements of the rotation matrix Rt between image and reference frame, and [X0, Y0, Z0]>

is the perspective centre of the camera. Equations 4.1-4.4 de�ne the measurement model used in the

recursive �lter of this method. An additional �ctitious observation

Yπ = Y (4.5)

takes account of the assumption that pedestrians stand on the ground plane, i.e., that the Y component

of the pedestrian's location corresponds to the distance of the ground plane from the camera, and that

the terrain is horizontal. The condition that persons stand on the ground plane basically enables the

conversion from 2D image coordinates to 3D object coordinates.

To derive optimal decisions about the state variables and the image positions of pedestrians, the

DBN models the state vector wi,t, the rectangle ri,t = [xFi,t,x
H
i,t]
>, as well as the reference point xFi,t

of each person in the image as unknown variables, see Figure 4.3. An additional hidden variable ni,t
accounts for uncertainties in the correctness of the image position ri,t due to mutual occlusions oi,t
and prior knowledge about interesting places in the scene IP , which are modelled as observables. The

position of the reference point of a person is observed via generic person detection and instance speci�c

classi�cation, and the position of the head is only observed via generic person detection. The detector

con�dence di,t, the classi�er con�dence ci,t, the image position of the head xHi,t, observed via the person

detector, and the distance of the ground plane from the camera Yπ are modelled as observables. The

camera orientation and calibration Ct are introduced as constants. One such model is de�ned for every

pedestrian being tracked. Interactions with other persons are accounted for by the temporal model,

de�ned in Section 4.3.

The aim is to �nd the parameters of the unknown variables that maximise the joint probability of

all variables at every time step, given the observed and �xed values, so that

p
(
wj=1...n,t−1,wi,t, ri,t, ni,t,x

F
i,t,x

H
i,t, di,t, ci,t, Ct, Yπ, oi,t, IPt

)
→ max (4.6)

The parameters of the camera orientation Ct and the prior knowledge about the scene IPt are de�ned

in image space and are valid for an entire image sequence, if the camera is static, or for every image,

if the camera is dynamic, as denoted by the subscript t indicating the time step. All other variables
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Figure 4.3: Dynamic Bayesian Network for multi-person tracking, shown for two successive time steps
t− 1 and t. The variables w (state vector), r (rectangle around a person), xF (position of
the feet) and σn (uncertainty about the position of the rectangle) are modelled by hidden
variables. The variables IP , o, xH , d, c and Yπ are observed. The camera parameters C
are constants. The state vector at time t depends on the state vectors of all n persons
tracked at time t− 1. See text for further details.

are de�ned individually for single persons or for all persons, as indicated by the subscripts i and j,

respectively. According to the network structure of the DBN, the joint pdf of the involved variables

can be factorised as follows:

p
(
wj=1...n,t−1,wi,t, ri,t, ni,t,x

F
i,t,x

H
i,t, di,t, ci,t, Ct, Yπ, oi,t, IPt

)
∼p (wi,t|wj=1...n,t−1) · p (wi,t|Yπ) · p (ri,t|wi,t, ni,t, Ct) · p (Yπ) · p

(
xFi,t|ri,t

)
·p
(
xHi,t|ri,t

)
· p (ni,t|oi,t, IPt) · p

(
di,t|xFi,t

)
· p
(
ci,t|xFi,t

)
· p (IPt) · p (oi,t) ,

(4.7)

where wj=1...n,t−1 denotes the set of state vectors of all n persons being tracked in epoch t − 1. In

accordance with the network structure and with Equation 4.7 the joint probability can be written as the

product of eleven probability distributions, which are explained in Table 4.1. The state vector of every

person is conditioned on the previous state vector of the same person and on the state vectors of all

other persons, as well as on the parameter of the ground plane. In this way, the state vector represents

a �rst-order Markov-process, so that it temporally depends only on the preceding time step. The

image position of the head and the reference point of the feet are conditioned on the parameters of the

rectangle r, which depends on the state vector, the camera orientation and the additional uncertainty

about the position due to occlusions and prior knowledge about interesting places. The detector and

classi�er con�dences are dependent on the reference point. To �nd a solution to the maximisation

problem stated by Equation 4.6, message passing in form of Belief Propagation is applied as described

in Section 4.5.



38 4 A new probabilistic approach for multi-person localisation and tracking

pdf Description

p (wi,t|wj=1...n,t−1)
Probability thatwi,t is the state of person i given the states of all persons
being tracked in the previous epoch

p (wi,t|Yπ)
Probability that wi,t is the state of person i given the parameter of the
ground plane

p (ri,t|wi,t, ni,t, Ct)
Probability that ri,t is the rectangle surrounding person i given that wi,t

is the state vector, variable ni,t, and the orientation of the camera

p(Yπ) Probability that Yπ is the distance of the ground plane from the camera

p
(
xFi,t|ri,t

) Probability that xFi,t is the reference point given that ri,t is the surround-
ing rectangle

p
(
xHi,t|ri,t

) Probability that xHi,t is the image position of the head given that ri,t is
the surrounding rectangle

p (ni,t|oi,t, IPt) Probability that ni,t is the uncertainty about the image position given
the occlusion of person i and the prior knowledge about the scene

p
(
di,t|xFi,t

) Probability that the detector delivers di,t given that xFi,t is the position
of the reference point

p
(
ci,t|xFi,t

) Probability that the classi�er delivers ci,t given that xFi,t is the position
of the reference point

p(IPt) Prior probability that a person is observed in the image

p(oi,t) Probability that person i is occluded

Table 4.1: Probability distributions according to the factorisation represented by the DBN.

4.2 Observations

The observations are derived from three di�erent sources of information, namely information valid

for the entire scene (scene-speci�c knowledge), information valid for a single image that indicates the

presence of any pedestrian (category-speci�c), and information valid for a speci�c person (instance-

speci�c). The di�erent observations are illustrated in Figure 4.4.

These observations complement each other in the determination of the desired state parameters:

• The scene-speci�c information describes regions in the scene that are likely to be passed by

persons and thereby helps to suppress automatic pedestrian detections that are unlikely to be

caused by persons. It is modelled in di�erent ways for image sequences captured by static

cameras and sequences captured by moving cameras.

• The category-speci�c information, which is given by the outcome of a generic person detector,

highlights all regions in an image that are similar to a generic object model characteristic for

persons. This information essentially contains information about the desired locations of persons

that need to be incorporated into the �ltering framework and is used to automatically initialise

new trajectories. As the detector is designed to generalise over the entire class pedestrian, the

resulting detections need to be associated to single instances of the pedestrian class based on

additional information.

• The instance-speci�c information is based on a supervised classi�er with one class for every
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(a) Scene-speci�c know-
ledge indicating
feasible regions for the
occurrence of persons.

(b) Category-speci�c
information about the
presence of persons
w.r.t. their heads.

(c) Category-speci�c in-
formation about the
presence of persons
w.r.t. their feet.

(d) Instance-speci�c
knowledge about per-
sons, here: localisation
of the foremost person.

Figure 4.4: Illustration of the image-based observations and prior knowledge about the scene. Warmer
colours represent higher con�dences about about possible areas of occurrence (a) and actual
presences of a person (b)�(d).

person that is tracked, and it is integrated into the proposed method in two ways: Firstly,

the classi�er computes similarity measures for the data association of detections to existing

trajectories, and secondly, by classi�cation in a sliding-window-based fashion, the classi�er gives

rise to an additional observation of the image position of individual pedestrians.

To derive geometrically accurate measurements of a person's location in an image is a challenging

task due to the articulated motion of pedestrians and potential occlusions. The position of the head

can typically be detected more reliably than the position of the feet, because the head undergoes

less articulated motion and, thus, its observed projection in the image does not vary as much as

that of the feet. Therefore, the position of the head is modelled as an observable variable, whereas

the intersection point of the person with the ground plane is modelled as a hidden variable. Two

complementary observations are related to the image-position of the feet: The con�dence of a generic

person detector about the presence of a person and the con�dence of an instance-speci�c classi�er

about the presence of an individual person. The pdfs of the observations are depicted in Figure

4.4. The generation of these pdfs is described in the remainder of this section: The scene-speci�c

information is explained in Section 4.2.1, the pedestrian detection is explained in Section 4.2.2, and

the instance-speci�c classi�er is described in Section 4.2.3.

4.2.1 Prior knowledge about the scene

Prior knowledge about a scene is expected to help with the reduction of false positive detections, which

are inherent in detection-based approaches for tracking. With respect to the potential application sce-

narios for this method, two di�erent camera set-ups must be considered: Static cameras with constant

exterior orientation (w.r.t. six degrees of freedom), and cameras mounted on moving platforms with

variable exterior orientation. The �rst scenario can be found in surveillance applications, where the

viewing angle is typically inclined towards the ground plane and the same area is observed all the time.

As the orientation does not change, information about previous occurrences at certain image positions

can be regarded as prior knowledge about future occurrences. The second scenario involves dynamic

cameras, as given in the context of driver assistance systems and �eld robotics. To reduce the risk
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of false positive detections in these scenarios, the position of the horizon in the image is modelled, so

that detections can be validated by testing if the reference point of a detection lies below the horizon.

Static cameras. For the static camera set-up, prior knowledge about the scene is acquired from the

distribution of frequently visited places in a supervised approach. To this end, a binary Random Forest

classi�er is trained with the image coordinates of the reference point as features and class assignments

according to true and false positive detections obtained by a HOG/SVM detector (Dalal and Triggs,

2005) in a supervised training strategy. The training samples are split into positive and negative

samples by validation with reference data, using an intersection-over-union score (IOU) threshold of

50%. By convention, the IOU of two rectangles r1 and r2 is computed as the ratio of the intersection

area of these rectangles and the area of their union area, cf. Equation 4.8.

IOU (r1, r2) =
area (r1 ∩ r2)

area (r1 ∪ r2)
(4.8)

For the assignment of probabilities to the image, every pixel is classi�ed by the Random Forest using

the image coordinates as features. Classi�cation then delivers the probability for an image position

to be occupied by a person. The probability distribution over IP is denoted p(IP ). If no training

data are available for a speci�c scene, this pdf is set to be the uniform distribution. The distribution

of frequently visited places learnt from a training sequence is shown in Figure 4.5(a), where reddish

values indicate high, and blueish values low probabilities for the occurrence of persons.

(a) Static camera set-up: In-
teresting places learnt from
pedestrian occurrences in a
training stage.
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q1

q2

q3

q4

xhor

(b) Dynamic camera set-up: Interesting places are de�ned as the region below
the horizon, which is indicated by the red line. See text for details.

Figure 4.5: Prior knowledge about scenes with di�erent camera set-ups.

Moving cameras. If the camera orientation changes, no constant values can be assigned to the pdf

over the variable IP . In this context, the image row coordinate yhor of the horizon is computed in

every image, and every image position (x, y) is assigned a probability of the occurrence of pedestrians

using the following rule:

p(IP ) =

1, if y > yhor

0, if y ≤ yhor
. (4.9)

The horizon is computed as the vanishing line of the ground plane, i.e., the line, on which two parallel

lines on the ground plane intersect (Hartley and Zisserman, 2000). In practice, the vanishing line in the

image is approximated as the horizontal line through the image point xhor, which is computed as the



4.2 Observations 41

intersection point of two parallel lines Q1Q2 and Q3Q4 on the ground plane, whose image projections

q1q2 and q3q4 are depicted in Figure 4.5(b). When the roll angle of the camera is zero, as expected in

the addressed scenarios, the estimated line corresponds to the real horizon.

4.2.2 Generic person detection

In this work, generic person detection is applied based on the sliding-window approach by Dalal

and Triggs (2005) to �nd evidence about the presence of any pedestrian in an image. Therefore, an

implementation of the HOG/SVM detector that is trained on the INRIA person dataset1 is used. The

results of detection are typically used as measurements for the update step of a recursive �lter, which

is done in the related work based on two assumptions: The �rst assumption considers the detection

as representative for the object position in the image; the second assumption is that all measurements

are equally accurate. In this work, it is argued that both assumptions are prone to be wrong. Firstly,

a detection is easily misaligned due to mutual occlusions, articulated motion and other disturbing

e�ects. In the presence of such e�ects, a detection cannot be relied on as an indicator of the object

position. This is accounted for by modelling the reference point of a person as a hidden variable in the

Dynamic Bayesian Network. Secondly, the accuracy of a measured position depends on the presence

of these disturbing e�ects and assigning the same uncertainty to all detections ignores these e�ects.

The di�erent accuracies of person detections are accounted for by modelling the probability densities

of the detector by kernel density estimation (kde). These steps are described in the remainder of this

section in further detail.

As discussed in the related work chapter, sliding-window approaches typically deliver many positive

detections near the true location of an object in the scale-space-representation of the image. To detect

persons at di�erent scales, the detection window is increased successively by a factor ρdet. These

detections are usually grouped to yield ideally one detection per object, which is also referred to as

non-maximum suppression. To account for possible false positive detections, this work applies an

additional validation step before the single-scale detections are grouped.

False positive reduction. To reduce the number of false-positive detection, a validation step is exe-

cuted prior to the non-maximum suppression. The general work �ow for the proposed strategy of false

positive reduction and non-maximum suppression is illustrated in Figure 4.6. Given an input image

(Figure 4.6(a)), primary detections are obtained by application of the HOG/SVM (cf. Figure 4.6(b)),

which are then separated into validated and falsi�ed detections (cf. Figure 4.6(c)) and grouped (cf.

Figure 4.6(d)). The validation is carried out based on a comparison of the detections with an expected

body height in 3D space, and the developed strategy is referred to as 3D false positive reduction

(3DFPR).

To �nd an optimal decision about the validity or invalidity of a detection, hypotheses tests are

applied. Each detection is associated with the size and position of the rectangular detection window,

de�ned as rd = [xd, yd, wd, hd]
>, where (xd,yd) is the bottom centre point of the detection window,

which is referred to as the reference point xd of a detection. wd and hd are the width and height of the
1http://pascal.inrialpes.fr/data/human/ (accessed on September 2016)
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detection window, respectively. The reference point of the detection is related to a unique position in

space, which can be computed via the inverse collinearity equations with a �xed height component,

i.e. the Y coordinate of the ground plane. The ratio dst
c of the horizontal distance dst between the

detection and the camera over the focal length c of the camera yields a scale factor s by which the

observed height hd of a detection is transformed to a metric scale:

Hd = hd · s. (4.10)

Assuming a �xed standard deviation σd of a height in the image, the standard deviation σD of the

corresponding height in metres is found using the scale factor s:

σD = σd · s. (4.11)

The height of a detection is represented by a normal distribution: HD ∼ N
(
µD, σ

2
D

)
. It is further

assumed that the body height of all persons is normally distributed via HP ∼ N
(
µP , σ

2
P

)
. Every

detection is evaluated using a statistical test of di�erences between two mean values of the form:

H0 : µD = µP ⇔ µD − µP = 0, (4.12)

HA : µD − µP 6= 0. (4.13)

The null-hypothesis H0 states that the means of the detector's body height and the expected body

height are equal, whereas the alternative hypothesis HA assumes that they are di�erent. The test

statistic yd is de�ned as:

yd =
|µD − µP |√
σ2
D + σ2

P

. (4.14)

The limits ±y1−α
2
of the acceptance area for the null-hypothesis are given by the cumulative distribu-

tion function of the standard normal distribution. The actual test is carried out under the following

rules:

yd ≤ y1−α ⇒ accept H0, (4.15)

yd > y1−α ⇒ accept HA. (4.16)

Note that, di�erent from most of the related work that applies detection and tracking in the 2D

image domain, the method takes advantage of the 3D geometry of the scene that is supposed to be

known, and it is assumed that the number of false positives can be reduced in this way, as only

detections with a plausible height survive.

Non-maximum suppression. The validated detections are grouped into disjoint sets of detections

based on an equivalence criteria in terms of size and relative overlap based on an implementation

available in OpenCV (Bradski and Kaehler, 2008). An equivalence threshold δd1d2 of two detections
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(a) Input image to be clas-
si�ed by the detector.

(b) Primary detections
achieved in the image
scale-space.

(c) Detections validated
by the false positive
reduction step.

(d) Validated and grouped
detections after non-
maximum suppression.

Figure 4.6: Detection, false positive reduction and non-maximum suppression. In (c), green rectangles
indicate accepted detections, red rectangles detections that are rejected.

d1 = [x1, y1, w1, h1]> and d2 = [x2, y2, w2, h2]> is determined using Equation 4.17,

δd1d2 = εnms ·
min(w1, w2) +min(h1, h2)

2
, (4.17)

where the function min(w1, w2) returns the width of the smaller rectangle and min(h1, h2) its height,

and εnms is a free parameter. Using smaller values of εnms, it is more likely that two detections are

associated to di�erent groups. Using a value of εnms = 0, no grouping is applied at all. Two rectangles

are assigned to the same group if all of the following conditions hold:

|x1 − x2| ≤ δd1d2

|y1 − y2| ≤ δd1d2

|(x1 + w1)− (x2 + w2)| ≤ δd1d2

|(y1 + h1)− (y2 + h2)| ≤ δd1d2 .

(4.18)

If less than a pre-de�ned number ηnms of single-scale detections is associated with a group, the group

is discarded entirely. Otherwise, a �nal detection is generated from each group by computing the

average position and size of the detections associated to that group. Each �nal detection is assigned a

probability density, which is estimated by kernel density estimation based on the associated single-scale

detections, as described in the following paragraph.

Detector con�dences. To estimate the probability densities p(xHi,t|ri,t) and p(di,t|xFi,t), the detector
con�dences of the generic person detector about the presence of persons in an image are modelled

to be proportional to the number of the single-scale detections found by the sliding-window person

detector that were validated in the non-maximum suppression step. Each single-scale detection is

assumed to be found with a positional accuracy of σkde, which is assumed to be equal for the standard

deviations in the image coordinates x and y, respectively. The distribution of the detector con�dences

is computed from the single-scale detections using a kernel density estimator with a constant Gaussian

kernel with σkde, centred at every top centre position (to vote for the head) and bottom centre position

(to vote for the feet) of all rectangles associated with the detection by the non-maximum suppression

step.
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(a) p(xHi,t|ri,t)∀i ∈ [T]
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30px σx/y = 10px

31px

31px

2σkde

(b) Gaussian kernels of 31× 31px relative to a single-
scale detection, illustrated by the green rectangle.

(c) p(di,t|xFi,t)∀i ∈ [T]

Figure 4.7: Estimation of the probability densities p(xHi,t|ri,t) and p(di,t|xFi,t). Here, [T] is the index set
of all existing and potentially new trajectories.

In Figure 4.7, the probability densities of all persons detected in an exemplary image are depicted.

Every local maximum of the detector con�dence corresponds to a grouped detection. To disambiguate

these detections, a data association step must be applied, so that every detection is either associated

with a person that is already tracked, or to a new trajectory. The �nal set of m grouped rectangles

is denoted D = {d1, ...,dk, ...,dm}, with dk = [xk, yk, wk, hk]
>, and is considered as the input to the

data association strategy of this method described in Section 4.4.

4.2.3 Instance-speci�c classi�cation

In this section, the state-of-the-art in multi-person tracking-by-detection is extended by formulating

a new classi�cation approach capable of representing a variable set of tracked persons by a single

classi�er. This method accounts for the appearance of the pedestrians by training a Random Forest

classi�er based on the algorithm of Sa�ari et al. (2009), who made the classi�er capable of being

trained incrementally so that new training samples can be incorporated at runtime (cf. section 3.2).

Despite of the multi-class nature of Random Forests, Sa�ari et al. (2009) only applied the classi�er

to single-class problems in the context of object tracking. Using a multi-class classi�er in an object

tracking application with a variable number of objects causes the necessity to change the number of

classes at runtime and, thus, the need to update the class-statistics. In this chapter, a strategy for

the application of the Online Random Forest (ORF) classi�er to the multi-person tracking domain

is described. In this application, every tracked person as well as the background is represented by a

single class in the ORF.

Multi-person classi�cation with variable number of classes. In this section, the multi-person clas-

si�er, that learns the appearance of multiple tracked persons, is described. Because the number of

persons typically varies and training data are generally not available for speci�c persons, a new strat-

egy for the extraction of training samples is required. To this end, the strategy applied here takes

advantage of the recursive estimation results and generates training samples from the inferred pedes-

trian positions r̂i,t in the image, which are estimated in the way described in Section 4.5. Because

training samples are rare, further positive training samples are taken from positions shifted by one

pixel up, down, left and right from the reference point of r̂i,t. Samples for the background class are

taken from positions translated by half of the size of r̂i,t in the same four directions, as shown by the
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(a) Training regions for ne-
gative samples (red rect-
angles) and a positive
sample (green rectangle)
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(b) Online Random Forest shown symbolically
for two trees. Every leaf node in the trees
stores the class labels of the training sam-
ples.

(c) Classi�er con�dence
found by classi�cation of
every feasible position in
the image.

Figure 4.8: Illustration of the classi�cation model.

green and red rectangles indicating the training regions in Figure 4.8(a).

The appearance of pedestrians in an image sequence varies due to changing lighting conditions,

viewing directions, and other e�ects. To leverage these e�ects, the adaptive learning strategy of Sa�ari

et al. (2009) is applied. Because people may enter or leave a scene, the number of classes changes over

time and the classi�er needs to be re-initialised. Because the training samples are rare and in order to

have an equal number of training samples for each class, the most recent samples obtained for every

pedestrian and for the background are stored for a number of ηque time steps, where ηque is a free

parameter. When the classi�er is re-initialised, the Random Forest is trained using these samples, as

illustrated in Figure 4.8(b). If new samples arrive, the oldest samples are discarded. In this way and

by using the strategy for online training, the classi�er adapts to the possibly changing appearance of

a person over time.

Feature extraction. The way in which features are extracted from the training regions is described

next. Because persons perform articulated movements, the actual area within a training region covered

by a pedestrian varies. To extract features that only represent the person and not the background,

the training regions are divided into regions from which features are extracted and background. Three

di�erent strategies for the subdivision of the training regions are investigated. To obtain feature

representations of equal dimension for every sample, the training regions are normalised to a constant

height of 48 pixels and width of 24 pixels. Figure 4.9 illustrates the proposed models.

The �rst model (Ellipse, ELL) takes all pixel values from an elliptic region de�ned on the basis

of the training region. This way of dividing the training region into foreground and background is

often found in the tracking literature, as, e.g., in (Schindler et al., 2010) and (Klinger et al., 2015).

The semi-major axis of the ellipse corresponds to half of the height of the bounding rectangle and

the semi-minor axis to half of the width of the rectangle. This model results in about 2700 features

according to the number of pixels within the elliptic region and the number of input channels (three

in this case).

The second model (Stripes, STR) divides the rectangle into horizontal stripes (the number of stripes

ηstr is a free parameter) and concatenates the weighted means and standard-deviations of each input

channel and each row into the feature vector. Because the pixels along the central vertical line in
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(c) SYM

Figure 4.9: Di�erent models for feature extraction from a surrounding rectangle: Ellipse (ELL), Stripes
(STR) with Gaussian weighting function and Symmetry axes (SYM). Green areas indicate
the expected position of persons within the rectangle, grey areas indicate background. The
arrows in (c) indicate that the positions of the sub-regions in the SYM model are variable.

the training region are more likely to correspond to the foreground (person), weighting is applied to

emphasise features close to this line. To this end, a Gaussian weighting function with the mean value

according to the central pixel of each stripe and a constant standard-deviation of 4 pixels is applied.

In this model the feature vector comprises 6 features for each stripe (mean and standard deviation for

each input channel).

The third model (Symmetry axes, SYM) accumulates features around the body axes associated to

the torso and lower body based on the Symmetry-Driven Accumulation of Local Features (Farenzena et

al., 2010) as used for person re-identi�cation. In this method, the bounding box of a person is divided

into three parts associated to the head, torso and lower body, and the horizontal axes separating

these regions as well as the vertical symmetry axes in each region are found automatically. For this

application, the model by Farenzena et al. (2010) is simpli�ed and only the regions associated to the

torso and lower body are considered, while the horizontal axes are �xed, cf. Figure 4.9. In this model,

the features are computed from windows within the bounding box having a �xed width of 12 pixels

centred on the symmetry axes. The mean and standard deviation of each input channel within these

regions are taken as features, resulting in a total number of 12 features.

The proposed models are alternative approaches for the de�nition of features. These alternatives

will be compared in the experiments.

Classi�er con�dence. For the estimation of the probability density p(ci|xFi ) of a tracked person i in a

current frame, the ORF classi�es every possible position near the predicted feet position back-projected

into the image and assigns it a con�dence value of being the reference point of the regarded person.

The result is modelled as the probability density p(ci|xFi ) and is shown for an example image for one

tracked person (the foremost person in that scene) in Figure 4.8(c). In this context the classi�cation

is only applied within the image region inside the 3σ con�dence ellipse of the predicted state. To

account for low incidence angles of the image rays with the ground plane (which may lead to very

narrow search spaces due to high aspect-ratios of the con�dence ellipses), the actual search region is

de�ned as a circular region around the predicted state with the radius equal to the semi-major axis of

the 3σ con�dence ellipse of the predicted state. This pdf will be used for the inference of the image

position of the feet in combination with the detector con�dence.
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4.3 Temporal model

Traditionally, temporal models used for tracking in multi-person environments are realised by stand-

alone �lters applied to all persons independently. More recent work on temporal modelling is concerned

with more complex motion models that predict a pedestrian state w.r.t. its own preceding state and

that of other members of the scene. Modelling this so called motion context is motivated by the fact

that, in a crowded scene, persons need to react to their environment when planning their motion and

do not move in a way completely independent from other persons (Helbing and Molnár, 1995).

None of the papers described in the related work predicts the state with respect to all scene members

under consideration of their uncertainties and estimates their interactions in a joint probabilistic

model. In this chapter, a temporal model that comprises all of the desired properties is formulated.

The goal will be met using Gaussian Process Regression (GPR). A new covariance function will be

introduced that takes two trajectories as input and computes a covariance for the associated persons.

The covariance is updated at every time step, which makes the model adaptive to the potentially

changing degrees to which persons interact. As GPR models inherently account for noise of the input

data and compute variances of the predicted variables, the model can be integrated without further

adjustment into the recursive Bayesian estimation framework. Similar to Ellis et al. (2009) and Kim

et al. (2011), this method models the velocity vi of a person as the target variable of a GPR model. As

opposed to the related work, the method takes the trajectories and velocities of all currently tracked

pedestrians as input and estimates the interactions between all persons based on a new formulation

of the covariance function at runtime. In this way, an explicit grouping of people is avoided and the

proposed model will, thus, be referred to as Implicit Motion Context (IMC).

The IMC will be used for the prediction of the velocities as part of the state vector in the Dy-

namic Bayesian Network (cf. Section 4.1). Based on these velocities, the predictive distribution

p(wt,i|wt−1,j=1...n) will be formulated in Section 4.5.

4.3.1 Implicit Motion Context

The proposed Implicit Motion Context model takes account of the idea that persons, moving in

similar directions and being close to each other, mutually in�uence each other's movements. This idea

is illustrated in Figure 4.10, where the person represented by the green trajectory interacts with the

person represented by the blue trajectory, but not with the person represented by the grey trajectory.

Two separate Gaussian Process Regression models are de�ned for the prediction of the velocities

vX and vZ in the directions parallel to the ground plane in object space. Because the models for the

prediction of vX and vZ are equivalent, the model is only described for the general case of predicting

the function value of a target variable vi associated to person i. The velocities v = {v1, ..., vn} of all
persons, including i, from the posterior states of the previous time step and the trajectories {T1, ..., Tn}
of these persons are used as input variables. Each trajectory Ti is modelled as a time-ordered set of

positions in input space with cardinality ηh. For the prediction of the state variables, the approach is to

�rst predict the velocities for all persons at their input positions Xi,t−1 by means of Gaussian Process

Regression and then to append the distance covered in the time ∆t with the estimated velocities to
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Figure 4.10: Sketch of the principles of Implicit Motion Context. The solid lines represent the tra-
jectories of three persons in object space. The circles represent the current epoch. The
dashed arrows indicate the posterior velocities at the previous time.

the posterior states of time t− 1 in order to obtain the predicted positions at time t.

In accordance with the GPR model and as proposed in (Klinger et al., 2016), the velocity of a

pedestrian is decomposed into a trend and a signal, and it is assumed that the signals of two pedestrians

are correlated in case of interactions. By analogy to Equation 2.36, the predictive model for the velocity

can be written in probabilistic form as a Gaussian distribution over the predicted velocity:

p(vi|v) ∼ N (GPµ(Ti,T),GPΣ(Ti,T)) , (4.19)

where the input variables T = {(T1, v1), ..., (Tn, vn)} are given by the set of time-ordered tuples that

consists of the trajectories and current velocity estimates of all n currently tracked pedestrians. The

predicted velocity and covariance of a person i can be found using Equations 2.37 and 2.38. To de�ne

the Gaussian Process, the mean function and the covariance function need to be de�ned.

Mean function. Generally, the mean function of a Gaussian Process Regression model re�ects the

trend of the regression function. In terms of pedestrian tracking, a new mean function, which computes

the average velocity v̄i for each input trajectory Ti, is de�ned as:

v̄i = E(vi) =

 ∑
j=1...n

w (Ti, Tj)

−1 ∑
j=1...n

w (Ti, Tj) vj . (4.20)

The function w(Ti, Tj) is referred to as the angular function in this work. It takes into account the

angular displacement αij of two trajectories. The angular function returns the cosine of the angular

displacement if this displacement is smaller than a threshold θα, and otherwise zero:

w(Ti, Tj) = cos (αij) · δ (αij ≤ θα) (4.21)

Figure 4.11 shows the principle of the mean function for one person (associated to trajectory Ta):
The trend yields the weighted average (shown by the black solid arrow) computed from all velocities for

which the angular displacement is smaller than the angular threshold θα. The area in which velocities

of other persons are considered for the prediction of the velocity of person a is depicted in green. In

this example, only the velocity of person b (represented by the blue trajectory) contributes to the
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Figure 4.11: Mean function illustrated for trajectory Ta, in the presence of two further trajectories Tb
and Tc. Due to the respective angular displacements (see red arrows), Tb contributes and
Tc does not contribute to the estimated velocity of Ta.

trend at the position of person a.

In this work, the distance between two persons is not accounted for by the mean function. This

leads to a smoothing of trajectories even if no other persons are close to the regarded person. When

a pedestrian is occluded in such situations and no measurements can be obtained, it is assumed

that using the average motion, depending on the angular displacements only, leads to more realistic

predictions.

Covariance function. The role of the covariance function is to express the similarity of two input

variables. In the context of tracking, this work de�nes a new covariance function whose values are

high for interacting persons. The covariance function is evaluated for every pair of pedestrians and the

computed values are contained in the covariance matrix K, as illustrated by Figure 4.12. The function

takes as input two trajectories Ti = [Xi,t−ηh , ...,Xi,t−1]> and Tj = [Xj,t−ηh , ...,Xj,t−1]> w.r.t. their

current and ηh most recent positions in object space. The parameter ηh is the size of the temporal

window that is regarded for computing the covariance; ηh is one free parameter of the system. It is

assumed that the motion direction and the spatial distance of two pedestrians are representative for

their interactions. Therefore, the function takes into account the angular displacement of the motion

directions αij and the spatial distance dij between the current positions. The covariance function is

de�ned as follows:

k(Ti, Tj) = w(Ti, Tj) · σ2
f · exp

(
−
d2
ij

2l2

)
+ σ2

n,i · δ(i = j), (4.22)

where dij = |Xi,t−1−Xj,t−1| is evaluated as the 2D distance between the current positions of persons i

and j w.r.t. the posterior states at the previous epoch. The noise variance σ2
n,i re�ects the uncertainty

about the input velocities and is added to the diagonal elements of K. The input velocities are

the posterior velocities from the previous time step and, thus, the noise variances are the posterior

variances from the previous time step. αij is computed as the angle between the connecting straight

lines of the �rst and last points of Ti and Tj , respectively.

In Figure 4.12, the principle of the proposed covariance function is visualised based on an exemplary

scene with three persons. The covariance function k(Ti, Tj) is based on an exponential term that

depends on the length scale parameter l and computes high covariances for two trajectories for which

the spatial distance dij and the angular displacement αij are small. Depending on the outcome of the
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Figure 4.12: Illustration of the covariance function. On the left, an image with three persons a, b and c
is shown. The red arrows indicate their motion directions and dab is the distance between
persons a and b. In the middle, the covariance function for di�erent angular displacements
αij is shown. The covariance is computed based on the angular displacement and on the
distance and is recorded in the covariance matrix, which referred to as K in the text and
shown on the right. Brighter colours indicate higher covariances.

covariance function, every pair of trajectories is assigned a value in the covariance matrix K, as shown

on the right side of the �gure.

Having de�ned the covariance function in Equation 4.22, the covariance is computed for every pair

of currently tracked pedestrians, whose covariances are expressed by the matrix K. The covariances

between the observed and the unknown target variables are expressed by the vector Ki, and Kii =

k(Ti, Ti) is the variance of the unknown target variable. Given the observed input data T, the predicted
values of the velocities, v̂i, and their variances σ̂2

vi, are found in accordance with Equations 2.37 and

2.38, respectively:

v̂i = v̄i +KiK
−1(v − E(v)), (4.23)

σ̂2
vi = Kii −KiK

−1K>i . (4.24)

The Implicit Motion Context depends on four free parameters, the signal variance σ2
f , the length-

scale l, the length of the history ηh, and on θα, whose optimal values are determined by training in

the experiments.

4.3.2 Mutual occlusions

In this section, the strategy for estimating mutual occlusions is explained. For every person, the

occlusion oi is computed from the overlap of the predicted surrounding rectangles of all persons tracked

at time t−1. Based on the predicted velocities, the expected image reference point (xF+
i , yF+

i ) and head

position (xH+
i , yH+

i ) of every person is computed via the measurement equations 4.1�4.4. The predicted

surrounding rectangle of a person is de�ned as r+
i = [xF+

i , yF+
i , w+

i , h
+
i ]>, where h+

i = yF+
i − yH+

i

is the height of the rectangle and w+
i is computed from h+

i based on the assumption that the aspect

ratio of the surrounding rectangle is constant, i.e., equal to the aspect ratio of the initial detection.



4.4 Data association 51

The probability p(oi,t) that person i is occluded at time t is de�ned as the degree to which person

i is occluded by other persons:

p(oi,t) =
area

(
r+
i ∩

(
union

(
{r+
j }∀{j ∈ [T \ Ti]|yj > yi}

)))
area(r+

i )
. (4.25)

In Equation 4.25, the function union(·) computes the union of all predicted rectangles that are

assumed to occlude person i, i.e. whose image row coordinates yj are larger than that of person i.

The function area(·) returns the size of a region in pixels. In this work, the occlusions are modelled

as independent variables. A more detailed description of the joint probabilities would model the

relationship between the occlusions and the state vector, whose values actually cause the presence or

absence of the occlusions. This modelling would lead to loops in the graph structure, so that only

approximate inference, e.g. by loopy belief propagation (Frey and MacKay, 1998), could be applied.

Here, it is assumed that the feedback obtained from loopy belief propagation would not have a larger

impact on the results, because the exact degree of occlusion is not as important as the vague estimation

of whether or not a person is occluded at all and an approximate value for the occlusion.

4.4 Data association

To associate the veri�ed and grouped detections given by the generic person detector (cf. chapter

4.2.2) to individual persons, a joint probabilistic data association strategy is used. To �nd the globally

optimal solution to the association problem, linear programming is applied. This strategy leads to an

optimal solution w.r.t. to the association weights computed by the a�nity measures. In this section,

a new strategy for the computation of the a�nity measures is introduced, which is based on the

prediction using the proposed motion model, as well as on the instance-speci�c classi�cation strategy

using the Online Random Forests.

Problem statement

At every time step, a set D = {d1, ...,dm} of m detections dk = [xFk , y
F
k , wk, hk]

>, each characterised

by the image coordinates of the reference point and the width wk and height hk of the surrounding

rectangle in the image, and a set T = {T1, ..., Tn, T∗} of n existing trajectories and a potential new

trajectory T∗ is given. Under the constraint that each detection may only be assigned to zero or to

one trajectory and that every existing trajectory may only be associated with zero or one detection,

the data association problem can be formulated as an integer linear program with binary variables
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T1

T2

T∗
d1

d2

Figure 4.13: Bipartite association graph for two detections d1 and d2 and two trajectories T1 and T2.
T∗ represents a potential new trajectory.

(Dantzig, 1951):

maximise
∑
k∈[D]

wki a
k
i subject to the constraints∑

i∈[T]

aki ≤ 1 ∀k ∈ [D],

∑
k∈[D]

aki ≤ 1 ∀i ∈ [T \ T∗],

(4.26)

where aki is a binary indicator variable for the event that detection k is associated to trajectory i and

wki is the weight of that association. [D] denotes the set of detection indices and [T] denotes the set of

trajectory indices. It is further required that the variable aki has a lower bound of 0, which need not be

stated explicitly since the aki is de�ned as binary variable. For a toy example of an association problem

with two detections and two trajectories, all feasible association events are visualised in Figure 4.13.

The system of inequality constraints from Equation 4.26 for the situation depicted in Figure 4.13 is

given in Equation 4.27.


1 1 0 0 1 0

0 0 1 1 0 1

1 0 1 0 0 0

0 1 0 1 0 0

 ·



a1
1

a2
1

a1
2

a2
2

a1
∗

a2
∗


≤


1

1

1

1

 . (4.27)

Similarity measures

The weights wki account for the spatial distance, as well as for the similarity in terms of appearance

of the tracked objects and the detections. A high weight wki favours the association of detection k to

trajectory i. Let r+
i =[xF+

i , yF+
i , w+

i , h
+
i ]> denote the expected (predicted) reference point, width and

height of object i in the image, the probability of the event that detection k is associated to object i

w.r.t. the location and size of the detection is

pd(a
k
i = 1) = N (dk; r

+
i ,Σ

+
rr,i), (4.28)
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where N (dk; r
+
i ,Σ

+
rr,i) is a normal distribution evaluated for the distance between the image coordi-

nates of the reference point and height of dk and r+
i , respectively. Σ+

rr,i is the covariance matrix of the

reference point and height of r+
i , given by variance propagation of the predicted position and height of

person i into the image, using the Jacobian of the measurement equations 4.1�4.5. The similarity of a

detection and the trajectories in terms of appearance is evaluated by using the Online Random Forest

classi�er. The classi�er, which represents every person and the background by a class Ci, delivers a
posterior probability over all class labels. The probability of the event that detection k is associated

to object i according to the classi�er is modelled as the class-conditional probability of class Ci:

pc(a
k
i = 1) = p(idk = Ci|dk), (4.29)

where p(idk = Ci|dk) is the posterior probability that detection k belongs to object i, i.e. that the

identity idk of the detection is the class label Ci, given the detection window dk that is classi�ed. The

weights wki are de�ned as the product of the probabilities in Equations 4.28 and 4.29:

wki = pd(a
k
i = 1) · pc(aki = 1). (4.30)

The weight for the event of an association to T∗, i.e., that a detection is not associated to any existing

trajectory, is de�ned as the product of a constant term and the class-conditional probability of the

background class pc(ak∗ = 1) found by classi�cation of the detection window:

wk∗ = p(ak∗ = 1) = N ([xFk , y
F
k ]>; [xFk , y

F
k ]>,Σ0) · pc(ak∗ = 1), (4.31)

where N ([xFk , y
F
k ]>; [xFk , y

F
k ]>,Σ0) is a normal distribution over the reference point of the detection

with covariance matrix Σ0 = diag(σ2
xF , σ

2
yF ), which accounts for the uncertainty of an initial position

of a trajectory. Because the initialisation of a trajectory is carried out based on the results of pedestrian

detection, a �xed value of σkde (cf. Section 4.2.2) is assigned to σxF and σyF , respectively.

Optimisation

The optimisation is carried out using the revised simplex method which is part of the Mixed Integer

Linear Programming solver (Berkelaar et al., 2004). All associations, whose corresponding indicator

variables have a value of 1 after the optimisation, are established. In case that a detection is associated

to T∗, the detection serves as initialisation of a new trajectory. If a trajectory is not associated with

any detection after the optimisation, the trajectory is only continued by the temporal model at that

time step.

Once a solution to the data association problem has been found, the single-frame detections can

be combined with the results from the classi�er to compute a position of the pedestrian's reference

point in the image, which is then used for the determination of the pedestrian's position in object

coordinates.
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4.5 Recursive estimation

To �nd the optimal con�guration of unknown variables, the Bayesian Network is transformed into a

factor graph representation (Kschischang et al., 2001), as depicted in Figure 4.14, and message passing

is applied. According to the factorisation shown by the factor graph, the joint pdf (cf. Equation 4.7)

of all variables can be formulated as the product of all functions associated to the factor nodes:

p
(
wj=1...n,t−1,wi,t, ri,t, ni,t,x

F
i,t,x

H
i,t, di,t, ci,t, Ct, Yπ, oi,t, IPt

)
∝f1 (wi,t,wj=1...n,t−1) · f2 (wi,tYπ) · f3 (ri,t,wi,t, ni,t) · f4 (Yπ) · f5

(
xFi,t, ri,t

)
·

·f6

(
xHi,t, ri,t

)
· f7 (ni,t, oi,t, IPt, ) · f8

(
di,t,x

F
i,t

)
· f9

(
ci,t,x

F
i,t

)
· f10 (IPt) · f11 (oi,t) .

(4.32)

In Equation 4.32, each factor corresponds to a pdf in the Dynamic Bayesian Network representation

of the joint probability of all variables. Based on the factor graph representation, the procedure for

performing inference can be derived, as described in the following paragraphs.

4.5.1 Inference

Because the graph does not contain cycles, inference on the graph is exact and is conducted using

a message passing strategy in a way similar to the sum-product algorithm, see (Kschischang et al.,

2001). Note, that inference using Belief Propagation with continuous variables usually requires a

prior discretisation of the pdfs. In the presented work, the variables are either binary or Gaussian.

The inference corresponds to the Kalman �ltering strategy: Kalman �ltering resembles the forward

propagation over time of the Belief Propagation algorithm, whereas the Kalman smoothing equations

realise the backward propagation of messages towards the leaf nodes. In this work, smoothing is not

carried out, because it requires a closed system, which is not available when processing video streams

online. This method sticks to the �ltering strategy in the way that all messages are propagated to

the root node variable, which is the system state, and that a full backward propagation is omitted.

Backward propagation is only conducted down to the hidden variables de�ned in the observation

space of time t, so that the image regions used for updating the classi�er can be de�ned w.r.t. the

best possible agreement of the state variables with all measurements and the temporal model.

The factor graph comprises ten factor nodes. Factor f1 represents the predictive function of the

recursive estimation framework. Factor f2 represents the �ctitious observation that pedestrians stand

on the ground plane. Factor f3 represents the update step of a Kalman Filter model, where the

Extended Kalman Filter equations (Gelb, 1974) are used to linearise the measurement equations.

Factor node f4 represents the prior probability of the parameter describing the ground plane. In

the forward propagation, the factor nodes f5, f6, f8 and f9 propagate messages in the observation

space to de�ne the belief about the image position of a person. Factors f7, f10 and f11 propagate

the belief about the accuracy of the image position to the variable n. The image position r and the

additive measurement noise n are considered in the update step of the �lter. Initially at every time

step, all observed variables are assigned their pdfs as described in Sections 4.2 and 4.3.2. The Belief

Propagation starts by passing messages from the leaf nodes of the factor graph in the upward direction.

All message passing and belief update steps are given in Table 4.2.
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wi,t

f1 f3

w 1,
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w n,
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f8 f9 f10 f11

di,t ci,t

...

Figure 4.14: Factor graph representation of the model for multi-person tracking. The variable nodes
represent the variables of the Dynamic Bayesian Network representation (cf. Figure 4.3).
The factor nodes are represented by squares.

The backward recursion is only carried out down to the hidden variable representing the rectangle

r around the corresponding person in the image. For visual support, the message passing steps are

categorised into four blocks, according to their purpose in the model. These blocks are related to the

temporal model, i.e. the prediction step of the recursive �lter, the analysis of the measurements, the

analysis of the measurement uncertainty w.r.t. to the occlusions and interesting places in the scene

and the update step of the recursive �lter. Details on the application of the message passing steps

are given in the following paragraphs for each of the four sections, for the backward recursion and for

the belief update. Because messages going out from nodes with only one neighbour, except for the

receiving node, are equivalent to the incoming messages, the related steps are not discussed further.

Prediction. For the prediction, message passing steps 1 and 2 in Table 4.2 are carried out, based on

the belief about the state vectors wj=1...n,t−1 of all persons tracked at the previous epoch. For every

person i, the pdf of the state vector wi,t is modelled as a normal distribution

p(wi,t|wj=1...n,t−1) = N (µ+
w,t,Σ

+
ww,t), (4.33)

where the mean vector µ+
w,t is the expected state at time step t, Σ+

ww,t is its covariance matrix, and

the predicted state w+
t corresponds to the mean vector. The Implicit Motion Context is incorporated

into the recursive �lter by modelling the velocity components v+
X,i and v

+
Z,i as target variables in two

independent Gaussian Process Regression models.
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Forward recursion Comment

1: mwj,t−1→f1(wj,t−1) = 1 ∀j ∈ [T]

2: mf1→w(w) = p (wi,t|wj=1...n,t−1) Prediction of the state vector

3: md→f8(d) = 1

4: mc→f9(c) = 1

5: mf8→xF (xF ) = p(d|xF ) Observation, cf. Sec. 4.2.2

6: mf9→xF (xF ) = p(c|xF ) Observation, cf. Sec. 4.2.3

7: mxF→f5(xF ) = p(d|xF ) · p(c|xF )

8: mxH→f6(xH) = 1

9: mf5→r(r) = p(xF |r) = N (µxF ,ΣxF )

10: mf6→r(r) = p(xH |r) = N (µxH ,ΣxH ) Observation, cf. Sec. 4.2.2

11: mr→f3(r) = mf5→r(r) ·mf6→r(r) := N (µr,Σrr)

12: mf10→IP (IP ) = p(IP ) Observation, cf. Sec. 4.2.1

13: mf11→o(o) = p(o) Observation, cf. Sec. 4.3.2

14: mIP→f7(IP ) = p(IP )

15: mo→f7(o) = p(o)

16: mf7→n(n) = p(n|IP, o) · p(IP ) · p(o) := N (0,Σnn)

17: mn→f3(n) = mf7→n(n)

18: mf4→Yπ(Yπ) = p(Yπ)

19: mYπ→f2(Yπ) = p(Yπ)

20: mf2→w(w) = p(w|Yπ)

21: mf3→w(w) = p(r|w, n) := N (µr,Σrr + Σnn) Update of the state vector

Backward recursion Comment

1: mw→f3(w) = 1

2: mf3→r(r) = p(r|ŵ, n) Update of the image position

Belief update Comment

p(w) = mf1→w(w) ·mf2→w(w) ·mf3→w(w)

p(r) = mf3→r(r) ·mf5→r(r) ·mf6→r(r)

Table 4.2: Message passing and belief update steps for the inference of the variables wi,t and ri,t.

The prediction of the velocities is accomplished by computing the means of the Gaussian distribu-

tions associated to the velocities in accordance with Equation 4.23. The expected state vector w+
t

can then be written as w+
t = [X+

t , Y
+
t , Z

+
t , H

+
t , v

+
X,t, v

+
Z,t]
>. The predicted positions X+

t and Z+
t are

derived from the velocities and are computed relatively to the previous positions and the height Y +
t
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of the feet and H+
t of the head are assumed to be constant over time:

X+
t = Xt−1 + v+

X,t ·∆t (4.34)

Y +
t = Yt−1 (4.35)

Z+
t = Zt−1 + v+

Z,t ·∆t (4.36)

H+
t = Ht−1 (4.37)

v+
X,i,t = v̄X,i,t +Ki,tK

−1
t (v − E(v)) (4.38)

v+
Z,i,t = v̄Z,i,t +Ki,tK

−1
t (v − E(v)). (4.39)

The covariance matrix of the predicted state vector Σ+
ww,t is computed from the covariance matrix

of the previous time step with the additive process noise Σp:

Σ+
ww,t = ΨΣww,t−1Ψ> + Σp, (4.40)

where Ψ is the transition matrix that transforms the state vector from the previous time step to the

current time step. Here, zero acceleration in the directions of X and Z and zero velocity in vertical

direction is assumed for the parameters Y and H, so that the transition matrix is expressed via

Ψ =



1 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (4.41)

Deviations from the assumption of constant velocity in vX and vZ and zero velocity for the param-

eters Y and H likely occur due to unforeseen accelerations (aX ,aZ), e.g. a pedestrian stops at a

tra�c light, and velocities (vY ,vH), e.g. due to the changing gait of a person. It is assumed that

the vector u = [aX , vY , aZ , vH ]> is normally distributed with expectation E(u) = 0 and covariance

Σuu = diag(σ2
aX , σ

2
vY , σ

2
aZ , σ

2
vH). The uncertainty about these accelerations and velocities a�ects

the uncertainty about the predicted state and is accounted for via the process noise covariance Σp,

computed as

Σp = GΣuuG
> =



σ2
aX

∆t4

4 0 0 0
σ2
aX

∆t3

2 0

0 σ2
vY

∆t2 0 0 0 0

0 0
σ2
aZ

∆t4

4 0 0
σ2
aZ

∆t3

2

0 0 0 σ2
vH

∆t2 0 0
σ2
aX

∆t3

2 0 0 0 σ2
aX

∆t2 0

0 0
σ2
aZ

∆t3

2 0 0 σ2
aZ

∆t2


. (4.42)
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The matrix G translates the covariance Σuu to the system state space and is de�ned as:

G =



∆t2

2 0 0 0

0 ∆t 0 0

0 0 ∆t2

2 0

0 0 0 ∆t

∆t 0 0 0

0 0 ∆t 0


. (4.43)

In this model, the accelerations aX and aZ are partly induced by interactions with other pedestrians,

so that the variances

σ2
vX,i,t

= Kii,t −Ki,tK
−1
t K>i,t and (4.44)

σ2
vZ,i,t

= Kii,t −Ki,tK
−1
t K>i,t, (4.45)

computed by the Gaussian Process Regression in accordance with Equation 4.24 re�ect the uncertain-

ties about the process noise, i.e., σ2
aX=σ

2
vX,i,t

∆t−2 and σ2
aZ=σ

2
vZ,i,t

∆t−2, where ∆t is one frame.

Analysis of the measurements. In this step, the con�dences p(di,t|xFi,t) and p(xHi,t|ri,t) of the detector
and the con�dence p(ci,t|xFi,t) of the classi�er are computed for the current image frame using the

methods proposed in Sections 4.2.2 and 4.2.3. After applying data association to the detections, the

pdf p(di,t|xFi,t) is modelled as the density computed by kernel density estimation based on all single-

scale detections associated to the grouped detection that is assigned to trajectory i. According to

the message passing step 7 in Table 4.2, the pdfs p(di,t|xFi,t) and p(ci,t|xFi,t) are multiplied and the

product is approximated by a Gaussian pdf, N (µxF ,ΣxF ), whose mean µxF and covariance ΣxF

are computed as the weighted sample mean and covariance from the product of these distributions.

The pdf N (µxF ,ΣxF ) represents the current belief about the reference point. The belief about the

position of the head xHi,t is represented by the Gaussian pdf N (µxH ,ΣxH ), whose parameters are

determined as the weighted sample mean µxH and covariance ΣxH from the kernel density estimation

of the head position. The belief about variable ri,t is modelled by the Gaussian pdf N (µr,Σrr) with

µr = [µxF ,µxH ]> and

Σrr =

[
ΣxF 0

0 ΣxH

]
=


σ2
xF

σxF yF 0 0

σxF yF σ2
yF

0 0

0 0 σ2
xH

σxHyH

0 0 σxHyH σ2
yH

 . (4.46)

Analysis of the variable n. The message passing steps 12�17 are straight-forward. The variables IPt
and oi,t are set to their observed values, where IPt is evaluated at the predicted reference point and

the occlusion is evaluated using Equation 4.25. The conditional probability p(ni,t|IPt, oi,t) is de�ned
as zero-mean Gaussian pdf p(ni,t|IPt, oi,t):=N (0,Σnn), where Σnn=IPt · oi,t · ρn · I44 and ρn is the

measurement noise coe�cient, which is a free parameter. I44 is the 4× 4 identity matrix.
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Update. The probability p(Yπ) is evaluated using the message passing steps 18 and 19, cf. Table 4.2.

This probability is modelled as a normal distribution p(Yπ) ∼ N (µπ, σ
2
π). The mean value µπ of this

distribution is the given distance of the ground plane from the camera and σ2
π is the variance of that

distance. The assignment of an uncertainty σ2
π to the distance Yπ accounts for potential deviations

from the assumption of a horizontal terrain. The message sent from factor node f2 to the state vector,

step 20 in Table 4.2, is the probability p(w|Yπ) of the state vector given Yπ. The relationship between

these variables is introduced via the �ctitious observation that pedestrians stand on the ground plane,

cf. Equation 4.5.

The message sent from factor node f3 to the state vector according to step 21 in Table 4.2 is the pdf

p(r|w, n) := N (µr,Σrr + Σnn). It is assumed that the measurement noise is additive and Gaussian

distributed. The belief update for the variable representing the state vector involves the multiplication

of the messages mf2→w(w) = p(w|Yπ) and mf3→w(w) = p(ri,t|wi,t, n). In this work, the product of

these messages is modelled as a normal distribution:

p(ri,t|wi,t, n) · p(w|Yπ) = N (r̄,Σxx) = N
([
xF ,yF ,xH ,yH ,Yπ

]>
,

[
Σrr 0

0 σ2
π

]
+

[
Σnn0

0 0

])
, (4.47)

whose mean vector r̄ includes the parameters of the surrounding rectangle and the ground plane,

and whose covariance matrix Σxx accounts for the uncertainties about these parameters and for the

additive measurement noise.

Finally, all incoming messages to the state variable wi,t, mf1→w(w), mf2→w(w) and mf3→w(w)

can be evaluated. Because these messages are Gaussian pdfs, the update step for the state vector can

be performed using the Extended Kalman Filter update equations. The update of the state vector is

carried out by evaluating Equations 2.23 � 2.26:

ŵi,t = w+ +K(r̄i,t − r+
i ), (4.48)

where r+
i =[xF (w+), yF (w+), xH(w+), yH(w+), Yπ(w+)]> is the predicted state transformed to obser-

vation space by the (non-linear) measurement equations 4.1-4.5 and K is the Kalman Gain matrix,

K = Σ+
wwM

>(Σxx,t +MΣ+
wwM

>)−1, (4.49)

whereas M is the Jacobian of the measurement equations,

M =



∂xF
∂X

∂xF
∂Y

∂xF
∂Z 0 0 0

∂yF
∂X

∂yF
∂Y

∂yF
∂Z 0 0 0

∂xH
∂X

∂xH
∂Y

∂xH
∂Z

∂xH
∂H 0 0

∂yH
∂X

∂yH
∂Y

∂yH
∂Z

∂yH
∂H 0 0

0 1 0 0 0 0

 , (4.50)

and Σww,t = Σ+
ww −KMΣ+

ww is the covariance of the predicted state. Note that the last two columns

with zeros in M indicate that no measurements for the velocities can be taken, because the measure-

ments stem from single images. The estimation of velocities only derives from the temporal model.
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In Equation 4.48, the term in brackets re�ects the correspondence of the measurements with the

predicted state, which is referred to as the innovation. When the predicted state coincides well with

the measurements, the di�erence between these two entities is small. High values of the innovation

indicate possible outliers in the measurements, given that the prediction is correct, or indicate wrong

predictions, given that the measurements are correct. Either way, the source of the disagreement

cannot be revealed, because no reference data are available at processing time. If the innovation is

too high, it is decided to rely on the temporal model and to neglect the measurements. To this end,

a hypothesis test is applied, were the null-hypothesis is formulated as

H0 : it = 0 (4.51)

which is tested against the alternative hypothesis

HA : it 6= 0. (4.52)

Given the predicted state and the measurement vector, the innovation r̄i,t−r+
i and its covariance Σii,t

can be computed according to Equation 2.27. The test statistic is de�ned as:

X 2
n = i>t · Σ−1

ii,t · it (4.53)

H0 is accepted according to the following rule:

X 2
n ≤ γ1−α ⇒ accept H0, (4.54)

X 2
n > γ1−α ⇒ accept HA, (4.55)

where γ1−α is the 1 − α quantile of the X 2 distribution. If H0 is rejected, the predicted state is not

updated.

Backward propagation. If the update step has been executed, the mean vector and covariance matrix

of the corrected state are transformed back to the image domain using the measurement equations

and the corresponding Jacobian according to the message passing step 2 in the backward iteration, cf.

Table 4.2:

p(ri|ŵi, ni, Ct) = N (µr,MΣwwM
>). (4.56)

µr denotes the mean of the corrected image position [xF (ŵi), y
F (ŵi), x

H(ŵi), y
H(ŵi), Yπ(ŵi)]

>, and

Σww its covariance matrix. Because the pdf in Equation 4.56 is Gaussian, its mean vector is the

argument maximum of the distribution and its values xF (ŵi), yF (ŵi), xH(ŵi) and yH(ŵi) de�ne the

corrected image position of person i.

Finally, the Online Random Forest classi�er is updated using new training samples taken from the

new bounding rectangle. As described in section 4.2.3, additional training samples are taken from

shifted positions of the rectangle and samples for the negative class are taken from background regions

around the rectangle. If the null-hypothesis is rejected in favour of the alternative hypothesis 4.52,

backtracking and updating of the classi�er is omitted.
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4.5.2 Initialisation and termination

New trajectories are initialised based on single-frame detections that are not associated with any exist-

ing trajectory yet. Every detection dk that is not associated with an existing trajectory is considered

as a hypothesis hk = [true, false] about the presence of a new object with image position dk. Each

hypothesis is validated based on the detector con�dence dF,t and prior scene knowledge IP , using a

likelihood ratio test of the form

hk =

true, if p(hk=true|dk)·p(hk=true|dF,t)
p(hk=false|dk)·p(hk=false|dF,t) > θini

false, otherwise
. (4.57)

In Equation 4.57, p(hk = true|dF,t) is the probability that the hypothesis is true given the detector

con�dence at that reference point and p(hk = true|dk) is the probability of the detection given the

prior knowledge about the scene, evaluated at the position of the reference point of the detection. A

new trajectory is initialised if the threshold θini, which is a free parameter, is exceeded.

Tracking of a person is stopped if the predicted position of that person transformed to the image

domain lies outside of the image, or if the trajectory is not updated for more than a prede�ned number

θabs of frames, where θabs is a free parameter and is referred to as the absence count threshold. When

a trajectory is terminated, the class of the Random Forest classi�er that represents the corresponding

person is eliminated from the queue of samples, and the classi�er is trained anew with the remaining

classes.

4.6 Discussion

In this section, the theoretical strengths and weaknesses of the proposed method are discussed to

anticipate the results to be expected in the experimental section of this work.

Strengths and weaknesses

The expected strength of the approach lies in the joint evaluation of the di�erent complementary

observations and �xed entities in a probabilistic framework. Scene-speci�c knowledge is expected to

reduce the number of false detections, category-speci�c object detection restricts the processing to areas

in which the desired object class most likely appears and instance-speci�c classi�ers highlight regions

in the image that re�ect appearance features associated to individuals. The multitude of observations

that in�uence the estimated state variables satis�es the need for redundant information about the

location of pedestrians in order to eliminate the in�uence of measurement errors. Consequently, a

geometrically more accurate posterior position of pedestrians is expected.

The predictive function proposed on the basis of Implicit Motion Context and Gaussian Process Re-

gression is expected to give more realistic state estimations, with the most bene�cial impact expected

for epochs where no measurements are available. Assuming that in such situations the predictions

are correct, measurements can be associated more reliably to the trajectories than by using a stand-
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alone �lter for every pedestrian independently of the other pedestrians. In this way, one can expect

a reduction in the number of tracking errors, such as trajectory continuations by alternating persons

(i.e., identity switches). Data association is supported by the instance-speci�c classi�er that, together

with the motion model, de�nes the a�nity measures. The Gaussian Process Regression model takes

uncertainties of the input variables (i.e. the velocities of all tracked persons) into account. Hence, per-

sons with more accurate state estimates automatically have a larger in�uence on a predicted velocity.

During an occlusion, where the uncertainty increases due to the additive process noise, the prediction

of the occluded person state progressively depends on the persons surrounding the occluded person.

The integration of the estimation of dynamic parameters and image-based variables allows for the

evaluation of the agreement between the temporal model and the observations and to account for

this agreement when updating the classi�er. The prior knowledge from previous time steps allows to

verify the detections based on deviations from instance-speci�c information: The height of a person,

estimated as a part of the state vector, is updated over time based on instance-speci�c information

provided by the observation model. In this way, the innovation test takes account of target speci�c

information over time that helps to validate single frame detections and makes the tracking framework

more robust against outliers in the measurements.

The approach requires the availability of the exterior and the interior parameters of the images. This

requirement may be restrictive for arbitrary application scenarios, but, in the addressed applications,

the requirement can easily be met. In practice, the cameras being used in the regarded application

scenarios mostly have a �xed focal length so that the laboratory calibration can be regarded as constant.

In case of moving camera platforms, the motivation of using the proposed method primarily lies in

the context of assisted driving and robotics. Both applications typically involve a range of di�erent

sensors, including active ranging devices, global navigation satellite systems (GNSS), accelerometers,

and car odometry. Alternatively, the self-localisation can be carried out by means of visual odometry

(Geiger et al., 2011), but the absolute accuracy of the derived locations is generally not as high as the

one obtained by using the active sensors.

The proposed method only uses an indirect approach to ensure that two or more persons cannot

take the same position in space. This is realised by assigning detections to trajectories (typical for

detection-based tracking in general), that is, no detection can be assigned to more than one trajectory.

Due to the grouping of the rectangles, two detections cannot have the same position and size, and, thus,

the update steps of the trajectories are always mutually exclusive. In the absence of measurements,

however, when only the temporal model is used to continue the trajectories, there is no guarantee for

mutual exclusion.

The classi�cation strategy based on Online Random Forests is expected to improve the tracking

results, because this strategy trains a multi-class person classi�er with instance-speci�c appearance

features. Di�erent from the related work using only binary classi�ers, the classi�cation accuracy is

expected to be superior, because the classi�er can be learnt from the training samples representing

all persons, while a binary classi�er does not distinguish between the samples in the set of negative

training data. Due to the ability of being updated at runtime, the classi�er accounts for the gradually

changing appearance of a target. However, the critical point is the derivation of training samples
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for the classi�er, which has to be done based on the tracking results. Because training is performed

incrementally, samples derived from misplaced image positions lead to the learning of a non-optimal

classi�er, due to which the tracker is prone to be continued towards wrong positions in future recursions.

Assumptions

The proposed method depends on the validity of three basic assumptions:

1. It is assumed that the ground plane is horizontal and that the terrain is �at. The assumption

enables the conversion of 2D image to 3D object coordinates. In practice, it may be easily violated

in terrain with more complex topography. In case of mobile robotics and in autonomous driving

applications, the viewing direction of the camera is nearly parallel to the ground plane, which leads to

an unfavourable propagation of measurement errors to the state space domain. The susceptibility of

the approach to deviations from the assumption of a �at world is one of its shortcomings. To account

for violations of this assumption, the �ctitious observation that keeps persons to the ground plane

is modelled stochastically. Given that the assumption is ful�lled, the tracking in 3D is expected to

improve the results of 2D tracking due to a more realistic model of motion and interactions.

2. The proposed method involves a decision for or against the update of the recursive �lter with

the inferred image positions. As described in Section 4.5.1, if the disagreement between measurement

and prediction (as measured by the system innovation) is too high, the update is avoided and the

trajectory is continued using the temporal model only. However, a very high innovation only implies

an erroneous behaviour of the �lter, the source of which cannot be located exactly. The assumption

that the temporal model can be relied on, rather than the measurement, is motivated by the observation

that in crowded environments measurements are prone to be inaccurate, whereas the temporal model

based on Implicit Motion Context is designed to deal with such situations.

3. It is further assumed that the state variables in the Dynamic Bayesian Network have an un-

derlying uni-modal Gaussian distribution. However, in the absence of measurements, the uni-modal

distributions possibly do not model the belief about the state variables correctly, depending on the

complexity of the scene. In the regarded applications, uni-modal state representations are expected to

perform su�ciently well, as the expected time of occlusions is rather short. Alternative models, e.g.

mixtures of Gaussian Processes (cf. Trautman et al., 2015) or particle-based approaches, might be

relevant for more complex scenes, such as soccer matches, where persons perform abrupt manoeuvres.

Free parameters

The free parameters of the proposed method are summarized in Table 4.3. The parameters can be

categorised into four groups, according to their associated module. The data association is parameter-

free, except for the parameters of the Online Random Forest.

The detection model entails the parameters for the HOG/SVM detector, which are the SVM con�-

dence threshold θsvm and the coe�cient of the detection window increase ρdet, the parameters σd, µP
and σP used for false positive reduction, the parameter σkde, which is the standard deviation assigned
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Detection

θsvm Threshold of the Support Vector Machine (SVM)
ρdet Coe�cient of the detection window increase
σd Standard-deviation of the height of a detection in pixels
µP Expected value of the height of a person in metres
σP Standard-deviation of the height of a person in metres
σkde Standard-deviation of the Gauss-kernel in the kernel density estimation
εnms Parameter of the grouping function used for non-maximum suppression

Classi�cation

ηtre Number of trees
ηdep Maximal depth of the trees
ηtes Number of random tests per node
ηsam Minimum number of samples required for splitting
ηstr Number of stripes to divide the image region of interest in
ηque Time span to store the samples

Temporal model

l Length scale
σ2
f Signal variance
θα Angular threshold
ηh Number of time steps regarded for correlating the trajectories

Recursive �lter

θini Threshold for initialisation
θabs Maximum absence count
ρn Measurement noise coe�cient

Table 4.3: Free parameters.

to the Gauss-kernel in the kernel density estimation, and the parameter εnms used for computing the

equivalence criterion for two detections in the non-maximum suppression step. The parameters of the

HOG descriptor are set to the values used in the implementation in the seminal work by Dalal and

Triggs (2005).

The parameters for the classi�cation strategy comprise the parameters of the Random Forest classi-

�er, which are the number of trees, the maximum allowable depth of the trees, the number of random

tests applied at each node and the minimum number of samples required for splitting. Two additional

parameters are speci�c for the proposed strategy, namely the number of stripes in the STR-model and

the size of the temporal window in which previous samples are stored.

The parameters related to the temporal model are the length scale, signal variance, angular threshold

and length of the trajectory snippet.

For the recursive estimation, only three parameters are relevant. θini is the threshold based on which

is decided whether or not to initialise a new trajectories (cf. Section 4.5.2). θabs is the maximum num-

ber of time steps, before the tracking of a person, whose trajectory is not updated in successive frames,

is �nished. The measurement noise coe�cient ρn controls the variances of the additive measurement

noise added to the covariance matrix of the image position.
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5 Experiments

In this chapter, the proposed method is evaluated with respect to its capability of multi-person local-

isation and tracking. After an introductory section on the used datasets and evaluation criteria, three

speci�c aspects will be addressed, namely the sensitivity of the proposed method to the variation of

single parameters and the determination of optimal parameters for the individual models, the impact

of the individual components of the system with regard to the localisation and tracking capability,

and a comparison of the developed system with the related work.

The datasets and evaluation criteria used for the experiments are introduced in Section 5.1. Two

di�erent kinds of image sequences are used: Sequences captured by static cameras, which are typically

used for video surveillance and forensics, tra�c control and sport-sciences, and sequences captured

by cameras on moving platforms, as they are used in driver assistance systems and mobile robotics.

Note that the proposed method was originally developed for the application to the �rst type of image

sequences (Klinger et al., 2015, 2016). In this work, however, the method is also tested for the use

with image sequences of the latter group, in order to assess its transferability and possible limitations.

In Section 5.2, the detection, classi�cation and prediction components of the system are investigated

in detail. That section analyses the sensitivity of these components to the variation of the parameters

and determines the parameters that deliver the best results for each component. The detection with the

proposed strategy for false positive reduction is compared with an out-of-the-box pedestrian detector

and di�erent parameters of the strategy are examined. For the classi�cation strategy, di�erent models

for the aggregation of features taken from the rectangle surrounding a person and di�erent colour spaces

are tested. The Implicit Motion Context parameters are trained using the direct search approach by

Hooke and Jeeves (1961) and the optimality of the prediction is evaluated based on the sequence of

system innovations and compared to a stand-alone �ltering approach. Finally, the free parameters of

the recursive estimation framework are investigated.

In Section 5.3, the impact of every component of the system is analysed by omission of the respective

component from the overall strategy. The analysis is supported by qualitative results that show the

trajectories generated by all investigated model variants.

Finally, in Section 5.4, the tracking performance of the proposed method is investigated. This

chapter includes an analysis of the localisation performance in terms of geometric accuracy, an analysis

of the predictive function based on Implicit Motion Context. Finally, a comparative study based on

the test datasets available in two di�erent benchmarks reveals the superiority or inferiority of the

proposed method with respect to related work.
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5.1 Datasets and evaluation criteria

The datasets used for the experiments represent di�erent application scenarios and, thus, di�er in the

variation of the camera orientation, viewing direction and in the complexity of the depicted scene in

terms of the number of contained persons, the range of depth and the severity of mutual occlusions.

PETS 2009 and AVG-TownCentre

In the �rst class of image sequences, the images are captured by cameras with constant exterior orien-

tation, mounted about 7 metres above the ground with an inclined viewing angle. The Performance

Evaluation of Tracking and Surveillance (PETS) 2009 dataset (PETS, 2009) depicts a university cam-

pus (cf. Figure 5.1(a)). This dataset is divided into three datasets S1, S2 and S3, originally designed

for person count and density estimation of crowds (S1), people tracking (S2) and event recognition

(S3). In this work, only sequences from the S1 and S2 datasets are used. The S1 and S2 datasets

comprise three image sequences L1, L2 and L3 each, where the size of the image sequences varies

between about 200 and 800 frames. In these sequences, the di�culty levels in terms of crowd density

vary between about two and 40 persons per scene. The image size is 768x576 pixels captured at 7 Hz.

The AVG-TownCentre dataset from the Active Vision Laboratory (AVG) (Benfold and Reid, 2011)

depicts a crowded pedestrian zone (cf. Figure 5.1(b)). The dataset contains one image sequence with

450 frames captured with a resolution of 1920x1080 pixels at 2.5 Hz. PETS09-S2L1, PETS09-S2L2

and the AVG-TownCentre dataset are part of the 3D Multiple Object Tracking benchmark (3DMOT,

Leal-Taixé et al., 2015), which is used for the evaluation of the method in this work. In the 3DMOT

benchmark, the PETS09-S2L1, and an additional dataset from Technische Universität Darmstadt

(Andriluka et al., 2010), are available for training, the other datasets are held back for testing. Be-

cause the training data are not characteristic for the complexity of the test data, the PETS09-S1L1-1

dataset, consisting of 221 frames depicting up to about 30 persons at a time is used for training in this

work1. The PETS09-S2L2 sequence involves a total of 42 pedestrian passings with 9641 single-frame

annotations and the AVG-TownCentre sequence involves a total of 226 pedestrian passings with 7148

single-frame annotations. Due to the inclined viewing angle, the scale at which pedestrians are de-

picted is limited and mutual occlusions are only partial, depending on the density of the crowds. For

all cameras, the parameters of the interior and exterior orientations are available together with the

images.

KITTI

For the moving camera set-up, the KITTI (Karlsruhe Institute of Technology and Toyota Technological

Institute at Chicago) Object Tracking Evaluation 2012 dataset from the KITTI Vision Benchmark

Suite (Geiger et al., 2012), is employed. In the KITTI dataset, the camera was mounted on a moving

vehicle at a height of 1.65m above the ground. The dataset comprises 21 image sequences for training

1Reference data is available online (http://www.milanton.de/data/, accessed on September 2016). Previous publica-
tions that report results on that challenge, (Klinger et al., 2015, 2016), were trained on the training data of the
3DMOT benchmark only.
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(a) PETS09-S2L2 (b) AVG-TownCentre (c) Image from the KITTI training sequence 0016

Figure 5.1: Example images from the (a) PETS09-S2L2, (b) AVG-TownCentre and (c) KITTI dataset.

and 29 image sequences for testing (see Figure 5.1(c) for an example image). Stereo image data is

available for all sequences. In this work, only the image data captured by the left camera is used.

The KITTI dataset is designed for the evaluation of tracking di�erent object classes (vehicles and

pedestrians) and only �ve training sequences (set numbers 13, 15, 16, 17 and 19) and eleven sequences

of the test dataset (set numbers 18�28) are characteristic for person tracking. Due to the nearly

horizontal viewing direction at pedestrian height, the dataset comprises a large range of depth and

severe mutual occlusions of the pedestrians. The exterior camera orientation was computed using the

library for visual odometry of Geiger et al. (2011) prior to the actual processing.

Evaluation criteria

The evaluation metrics used in the literature address di�erent criteria of the tracking results, which

are related to the completeness and correctness of all automatic single-frame annotations (i.e., the

posterior image position described by the rectangle surrounding a person) in total and per object, to

logical errors in the detection-to-track assignment and to the geometrical accuracy of the generated

results.

In accordance with the literature (Leal-Taixé et al., 2015), this work reports the numbers of false

positive (FP) and false negative (FN) detections, and, based on these values, the number of false

positive detections per image (FPPI), recall ( TP
TP+FN ) and precision (

TP
TP+FP ), where TP is the number

of correct detections. These metrics assess the ability of the tracker to detect and localise all persons

in all frames independently from the identity of the result. To account for the identity of the generated

detections, the mostly tracked and mostly lost metrics (Li et al., 2009) are used. A person is considered

as mostly tracked (MT) if it is tracked at least 80% of the time being present in consecutive images,

and as mostly lost (ML) if it is tracked at most 20% of this time. Furthermore, the number of identity

switches (IDS) and fragmentations of trajectories (FRAG) are reported. Finally, the classi�cation of

events, activities and relationships (CLEAR) metrics Multi Object Tracking Accuracy (MOTA) and

Multi Object Tracking Precision (MOTP, Bernardin and Stiefelhagen, 2008) are reported. The MOTA

metric is a combined measure of tracking errors, taking into account the numbers of FPs, FNs and

IDS per frame over the sum of all reference annotations gt per frame,

MOTA = 1−
∑

t FNt + FPt + IDSt∑
t gtt

, (5.1)

and is normalised to lie in a range of minus in�nity to one (100%), where a value of one indicates
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that no errors occurred. The MOTP metric re�ects the positional accuracy of the results and is

evaluated either in 2D as the average intersection-over-union score or as the average displacement

from a reference position in 3D (Leal-Taixé et al., 2015), i.e.,

MOTP = 1−
∑
dist(X,Xref )

θdist
∑
TP

, (5.2)

where dist(X,Xref ) is the 3D distance between the estimated 3D position of the target and the

reference position, and θdist is the acceptance threshold applied to the distance. By convention, this

threshold is set to one metre. A value of MOTP= 1 (100%) corresponds to the best possible accuracy.

Additional evaluation criteria are used in Section 5.2 to investigate the individual components of the

model.

Settings of the parameters

An overview over the settings of the free parameters in the individual sections is given in Table 5.1,

for their explanation see Table 4.3. Grey �elds indicate that the respective parameter is modi�ed

within the associated section. Dashes indicate that the respective parameter has no impact on the

experiments in that section. Fields with two values show the chosen values for the PETS and AVG

datasets and for the KITTI datasets. If only one value is given, it is used for all datasets in the

associated section.
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0.6
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5.2.4 0.0/
0.6
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10 1.7 0.1 10 0.2 100 6 4 10 48 3 2.75 7.5 90 1 0.5 1/
0.5

50
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Table 5.1: Parameter settings. See Table 4.3 for a description of the parameters. When two values
are given, the �rst one refers to the PETS and AVG datasets and the second refers to the
KITTI dataset. Grey �elds indicate that the respective parameter is trained in that section.
Dashes mean that the parameter has no e�ect on the experiment in the respective section.

The covariance of the measurement noise is determined from the kernel density estimation, so that

individual quality measures for the measurement vector are assigned automatically. For the covariance

of the process noise, the accelerations in X and Z directions, are set based on the outcomes of the

Gaussian Process Regression (cf. prediction step in Section 4.1). The expected velocities in Y and
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H are set based on the expected deviation from the �at-world assumption to allow for an inclined

ground plane and on the expected magnitude of change in a person's height due to gait and articulated

movements. To account for the process noise, σvY = 1mm/s and σvH=10mm/s is set for the static

camera set-ups, and σvY = σvH = 10mm/s for the tracking in dynamic scenes, with the higher

variance in Y to account for potentially changing terrain. σπ is assigned a comparatively small value

of 1mm. The initial covariance of the �lter state, Σww,t=0, is assigned with σX=σZ=0.3m, σY=0.01m,

σH=0.03m and σvX=σvZ=0.1m/s.

5.2 Sensitivity study and training

This chapter is divided into four parts following the grouping of the model parameters given in Table

4.3. In each part, the free parameters of the associated system component are investigated inde-

pendently from the other components. As these groups form self-contained systems, the presumed

independence between the parameters of di�erent groups is a valid assumption.

5.2.1 Detector

The detection strategy depends on seven parameters. One parameter de�nes the acceptance threshold

θsvm for the distance of a sample from the SVM hyperplane, and another one is the coe�cient of the

detection window increase ρdet, as part of the HOG/SVM detector. These parameters are investi-

gated in this section. The other parameters of the detection model are kept constant throughout the

experiments. For the false positive reduction, a normal distribution HD ∼ N
(
µD, σ

2
D

)
is assumed

for the detections, where the mean equals the projected size of a detection to object space and the

standard-deviation σD is computed by variance propagation from the detection variance in image co-

ordinates, for which a constant value of σd = 10px is assumed. For pedestrians, a normal distribution

HP ∼ N
(
µP , σ

2
P

)
with µP = 1.7m and σP = 0.1m is taken. For kernel-density estimation, a Gaussian

kernel function with σkde = 10px is also chosen heuristically for all experiments. For the statistical

test used for false positive reduction, a probability of error of α = 5% is assumed.

For the investigation of the parameters of the detector, the strategy proposed in Section 4.2.2 is

applied to the training sequences PETS09-S1L1-1 and KITTI-0019, which comprises 1059 frames. For

these sequences, the detection is applied to every image and the recall and precision of the detection

results are averaged over the entire sequences. The results are reported in Figure 5.2, where the

curves are generated by using the detection strategy at di�erent values of the acceptance threshold

θsvm. The right-most point of every curve corresponds to a value of θsvm = 0. The experiment is

executed for di�erent values of the detection window increase ρdet, as shown by the coloured curves.

For comparison, results from a HOG detector (Dalal and Triggs, 2005), which this work is based on,

and from a Deformable Part Model (DPM, Felzenszwalb et al., 2010) are shown as baselines. The

increase of precision compared to the HOG and DPM detector is due to the fact that, if the underlying

detector is applied permissively, high recall rates are achieved at the cost of many FPs, many of which

can be rejected using the proposed strategy. For both datasets, the highest recall values are achieved

using the proposed strategy with an acceptance threshold of 0.0 and a coe�cient ρdet of 1.02. For
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Figure 5.2: Precision over recall. The coloured curves are generated at di�erent values of the detection
window increase ρdet. The black curves are generated by the baseline detectors DPM and
HOG.

the PETS09-S1L1-1 sequence, an increase of ρdet to a value of 1.05 yields a higher precision at the

cost of a lower recall. For the KITTI sequence, the same variation of coe�cient ρdet yields a higher

precision at a similar recall value. Thus, the parameters ρdet = 1.02 and ρdet = 1.05 are chosen for

the PETS 2009 and KITTI data in the remainder of the experiments, respectively. Because on the

KITTI dataset, the precision decreases rapidly at increasing recall rates, an acceptance threshold of

θsvm = 0.6, at which a recall of 0.32 and a precision of 0.76 is achieved, is taken for the KITTI dataset.

5.2.2 Classi�er

In this section, the three di�erent models for feature extraction proposed in Section 4.2.3 and the

parameters of the classi�cation strategy are analysed. Two di�erent metrics are used here to assess

the capability of the classi�er to discriminate between individual persons: The overall accuracy, which

re�ects the percentage of correctly classi�ed persons, and the average score di�erence (ASD), which is

the di�erence between the classi�cation score of all correctly classi�ed persons from the class with the

second highest score, averaged over all classi�cations. High overall accuracies are desirable to compute

reliable weights in the data association. For localisation by classi�cation, a large score di�erence

is desirable to emphasise the region in the image associated to the desired target, while neglecting

the in�uence of other persons on the measurements. Furthermore, the average runtime per frame is

reported along with the classi�cation metrics.

Model selection. In a �rst experiment, the classi�er is applied using the model variants Ellipse

(ELL), Stripes (STR) and Symmetry axes (SYM), as described in Section 4.2.3. The experiments in

this section are carried out on two di�erent image sequences from the PETS 2009 dataset with di�erent

numbers of persons passing the scene, the PETS09-S2L1 and PETS09-S1L1-1 sequence, which have

di�erent levels of complexity: The PETS09-S2L1 sequence never contains more than 8 persons at a

time, while the PETS09-S1L1-1 sequence shows up to about 30 persons in one image. Because the
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classi�cation results are assumed to be independent from the camera orientation, these tests are not

carried out on the KITTI dataset. Features are extracted from the RGB, HSV and Lab colour space.

For this experiment the ORF is trained based on the annotations provided by the reference data, in

order to avoid a degradation of the classi�cation results caused by misaligned samples. In each frame,

the rectangles provided by the reference data are classi�ed before the classi�er is updated using new

samples from these rectangles. To account for the stochastics of the Random Forest classi�er, each

test was run �ve times and the means and standard deviations of all runs are presented here. The size

of the feature vector is di�erent in each model, with 2622 features for the ELL model, 288 features for

the STR model, and 12 features for the SYM model.

Figures 5.3 (a) and (c) show the overall accuracy in form of bars with the error bars indicating

the standard deviation of the overall accuracy, and Figure 5.3 (b) and (c) show the average score

di�erences and standard deviations for the proposed models, for the proposed colour spaces and for

both datasets.
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(c) PETS09-S1L1-1: Overall accuracy
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Figure 5.3: Classi�cation performance for di�erent model and feature compositions. The Ellipse

(ELL), Stripes (STR) and Symmetry axes (SYM) models are tested in combination with
the colour spaces RGB, HSV and Lab. The bars show the achieved scores, the error bars
show their standard-deviations. The curves in (a) and (c) show the average runtime per
frame.
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The highest overall accuracy is achieved using the STR model together with the features from the

Lab colour space for both datasets. In terms of the average score di�erence, the SYM model with

Lab features performs best on the PETS09-S2L1 dataset, whereas the SYM model with HSV features

performs best for the PETS09-S1L1-1 dataset, closely followed by the STR model with Lab features.

The ELL model performs worst in terms of all metrics with all colour spaces on both datasets. The

runtime decreases with the number of samples used in each model, so that the ELL model is also the

slowest due to the highest dimensionality of the feature space, whereas the SYM model is the fastest.

The absolute values show that in the best case (STR and Lab) 39% for PETS09-S2L1 and 28% for

PETS09-S1L1-1 of the highest classi�cation scores correspond to the desired target.

As the best overall accuracies are achieved using the STR model with Lab features, this feature

extraction strategy is used for the remainder of the experiments.

Parameter selection. In a second experiment, the free parameters of the classi�cation strategy (cf.

Table 4.3) are investigated. Here, the experiments are carried out only on the PETS09-S1L1-1 se-

quence, which is among the most complex sequences from the PETS datasets and assumed to be

representative for the other sequences, too. In Figure 5.4, the results for di�erent parameter settings

are shown. Independence between the variables is assumed and every parameter is varied along a

prede�ned range. Default values for the parameters not modi�ed during an experiment are set to

ηtre = 100, ηdep = 6, ηtes = 4, ηsam = 10, ηstr = 48, ηque = 1s. Figure 5.4 shows the overall accuracy

and average score di�erence for di�erent (a) number of trees, (b) maximal depths of the trees, (c)

number of random tests considered at every node of each tree for splitting, (d) the minimum number

of samples at each node required for splitting, (e) the number of stripes of the STR model, and (f)

the time span samples are stored for re-initialisation of the classi�er. The overall accuracy, ASD and

processing time per frame are reported for every parameter.

The number of trees a�ects both overall accuracy and ASD. The overall accuracy increases up to

about 100 trees and then stagnates, while the ASD decreases rapidly down to a number of about 20

trees. The runtime increases rapidly as the number of trees exceeds 500. A value of ηtre = 100 is chosen

for the remainder of the experiments. Varying the depth of the trees a�ects both metrics. The overall

accuracy does not increase considerably for depth values larger than 3, whereas the ASD increases

strictly monotonically up to a depth of 10. The depth of the trees should be high enough to build

enough leave nodes to represent the available classes, while an overly deep tree makes the classi�er

prone to over�tting to the training data. A value of ηdep = 6 is chosen for the remaining experiments,

which results in trees having up to 64 leaves, which is more than the expected number of classes in all

test cases, so that every class (pedestrian) can be represented by at least one leave node in every tree.

The number of random tests per node does not have a major impact on the overall accuracy, while the

ASD increases strictly monotonically with growing parameter values and stagnates from approximately

8 tests. Hence, the value of 8 is chosen for the parameter ηtes. Parameter ηsam has no major impact on

the overall accuracy for the experimental data either, whereas the ASD has a distinguished maximum

at ηsam = 6, so that this value is appropriate for the remaining experiments. The number of stripes

into which the bounding rectangle is divided a�ects both metrics in the parameter range between 1
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and 24, after which both metrics stagnate. The value of 24 for parameter ηstr, thus, is appropriate.

The number of time steps for which samples are stored to re-train the classi�er in�uences both metrics

in the way that the overall accuracy is maximal at 20 and the ASD value stagnates at values larger

than 20, so that ηque = 20 was chosen as optimal value for this application, which corresponds to a

time span of about 3s at a frame rate of 7Hz.

1 10 100 1,000
0

10

20

30

40

50

ηtre

O
ve

ra
ll

ac
cu

ra
cy

,
A

S
D

[%
]

Overall accuracy
Avg. score diff.
Runtime

0

1

2

3

4

A
ve

ra
ge

ti
m

e
p

er
fr

am
e

[s
ec

]

(a) Number of trees

2 4 6 8 10
0

10

20

30

40

50

ηdep

O
ve

ra
ll

ac
cu

ra
cy

,
A

S
D

[%
]

Overall accuracy
Avg. score diff.
Runtime

0

1

2

3

4

A
ve

ra
ge

ti
m

e
p

er
fr

a
m

e
[s
ec

]

(b) Depth of the trees

2 4 6 8 10
0

10

20

30

40

50

ηtes

O
ve

ra
ll

ac
cu

ra
cy

,
A

S
D

[%
]

Overall accuracy
Avg. score diff.
Runtime

0

1

2

3

4

A
ve

ra
ge

ti
m

e
p

er
fr

am
e

[s
ec

]

(c) Random tests per node

0 5 10 15 20
0

10

20

30

40

50

ηsam

O
ve

ra
ll

ac
cu

ra
cy

,
A

S
D

[%
]

Overall accuracy
Avg. score diff.
Runtime

0

1

2

3

4

A
ve

ra
ge

ti
m

e
p

er
fr

am
e

[s
ec

]

(d) Minimum number of samples for splitting

10 20 30 40 50
0

10

20

30

40

50

ηstr

O
ve

ra
ll

a
cc

u
ra

cy
,

A
S
D

[%
]

Overall accuracy
Avg. score diff.
Runtime

0

1

2

3

4

A
ve

ra
ge

ti
m

e
p

er
fr

am
e

[s
ec

]

(e) Number of stripes

0 10 20 30 40 50
0

10

20

30

40

50

ηque

O
ve

ra
ll

ac
cu

ra
cy

,
A

S
D

[%
]

Overall accuracy
Avg. score diff.
Runtime

0

1

2

3

4

A
ve

ra
ge

ti
m

e
p

er
fr

am
e

[s
ec

]

(f) Number of time steps to store samples

Figure 5.4: Classi�cation performance for di�erent parameter settings in the classi�cation model.
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5.2.3 Temporal model

The temporal model, which involves the Implicit Motion Context (IMC), is guided by four parameters.

The IMC parameters are the length-scale l, the signal variance σ2
f , the angular threshold θα and the

history h, which is the number of recent trajectory points used to compute the covariances and the

trend. These parameters are learnt from the PETS09-S1L1-1 sequence using the direct search approach

(Hooke and Jeeves, 1961). The initial values are l = 2.0m, σf = 7.0km/h, θα = 90◦ and ηh = 1m. To

�nd the parameters p = {l, σf , α0, ηh} that yield optimal results on the training data, the argument

variables p̂ that solve the maximisation problem

p̂ = argmax
p

S(p), (5.3)

with the score function S(p) = (MOTA(p) + MOTP(p))/2, are taken. Both metrics are considered

equally important in the optimisation. Using the direct search approach one parameter is changed at

a time, keeping the others �xed. To account for stochastic results, which appear, for instance, because

of the Random Forest classi�er, the processing with each parameter was executed three times and the

results are averaged. The parameters yielding the best results are kept constant during the variation

of the next parameter. This procedure was repeated for six iterations. In Figure 5.5, the results of the

training after the �nal iteration are visualised. The Figure is divided into four parts, each showing the

results achieved upon variation of one parameter. For each parameter the MOTA, MOTP, the number

of ID switches, which is related to the MOTA metric, and the score function S are visualised. Only

parameter values at �xed interval points are tested, as indicated by the error bars that show the 1σ

intervals of the metrics. The parameters associated to the peaks of the score function (dashed line)

are taken as optimal values.

The values of l = 2.75m, σf = 7.5km/h, thetaα = 90◦ and ηh = 1m were determined to yield

optimal results. The length-scale parameter indicates that interactions take place in a radius of about

3m around a person. The signal variance σ2
f controls the maximum range of velocities and limits

the velocity estimates far from the input data. The value achieved by the training, thus, indicates

that, when a person cannot be observed and no other persons contribute to the estimation of the

velocities, it positively a�ects the result to assign a comparatively large value of 7.5km/h to σf . The

angular threshold of 90◦ means that considering all persons moving with an angular displacement of at

most 90◦ positively a�ects the tracking results. The length of the trajectories ηh = 1m indicates that

only the last metre of the trajectories contributes to the tracking; if longer parts of the trajectories

are taken into account, sudden changes in the direction of motion do not a�ect the covariances of

the trajectories, and the performance decreases. The determined values are used as parameters in

the remainder of the experiments. Furthermore, it can also be concluded from the training that the

method is not overly sensitive to these parameters. In terms of statistical signi�cance, tested at an

error probability of 5%, the di�erence between the lowest and the highest score achieved by variation

of parameter l is signi�cant. The same holds true for parameters σf and θα. Parameter ηh does not

have any signi�cant impact on the score function. However, the maximum value at ηh = 1.0m and a

comparatively low IDS rate justify the selection of that value for the remaining experiments.
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Figure 5.5: Tracking performance for di�erent parameter settings in the temporal model.

5.2.4 Recursive �lter

In this section, the free parameters of the recursive estimation framework are addressed. The �rst

parameter θabs controls the maximum time span to wait for the termination of a trajectory in the

absence of measurements. The second parameter, the con�dence threshold for the initialisation of

new trajectories θini, is set to a constant value of 0.5. These parameters control the initialisation and

termination of the trajectories. The third parameter, ρn, which is referred to as the measurement

noise coe�cient, is set to a constant value of 50px.

The parameter θabs is evaluated with respect to the metrics MOTA, MOTP, IDS, MT and ML. The

scores in these metrics are plotted in Figure 5.6 (a) and (b) for PETS09-S1L1-1 and in Figure 5.6

(c) and (d) for KITTI-0019. The experiments show that the parameter θabs has a signi�cant impact

on the evaluation metric MOTA, which includes the number of identity switches (IDS), whereas the

impact on the MOTP is not signi�cant. The parameter controls the time to wait before terminating

a trajectory. When tracking of a subject is �nished after the �rst few frames where no measurements

are obtained to update the trajectory, possible occlusions, which are inherent in the regarded scenes,

cannot be bridged successfully. This is re�ected in the number of mostly lost targets (ML): A target

for which tracking is stopped after the �rst time a measurement cannot be obtained, e.g. during an
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Figure 5.6: Variation of the parameter θabs for PETS09-S1L1-1 and KITTI-0019.

occlusion or due to other disturbing e�ects, is unlikely to be resumed for tracking while the disturbing

e�ect persists. As the number of ML targets decreases, the number of mostly tracked targets increases.

The IDS are also reduced with growing parameter values. Due to the persistent tracking of an object,

when the absence count threshold is high, the class-statistics of the classi�er are stored for a longer

time and lead to more reliable data association over time. This comes at the cost of more false

positive detections, which arise, if predicted trajectories drift away from the target. For the remaining

experiments, a value of θabs = 1s is taken for the PETS dataset and θabs = 0.5s for the KITTI datasets,

because these values yield reasonable trade-o�s between the considered tracking metrics.

5.3 Model validation by ablation of its components

Having determined the parameters that yield optimal results on the training datasets, the aim is now

to show the bene�ts of using the full model as proposed in this thesis empirically. To this end, the

relevant building blocks of the proposed method are omitted from the method to demonstrate the

impact of the corresponding component on the tracking and localisation ability of the tracker, as

measured by the loss of performance in the relevant metrics. All metrics described in Section 5.1 are

reported for the full model and for every modi�ed version of the tracker, and the statistical signi�cance
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of any di�erences relative to the full model are indicated accordingly.

The tests are divided into two groups. In the �rst group, the initialisation of new trajectories is

based on reference data, i.e. the initial position is given. In this way, errors related to omission or

commission errors of the underlying detection strategy are avoided. In the second group of experiments,

the initialisation is carried out based on automatic detection results. Di�erent model variants, in

which single system components are omitted, are tested within the �rst group. The omission of single

components is assumed to a�ect the performance of the full model in the �rst group in the same way

as in the second group. Thus, these models are not tested in the second group.

The �rst group of tests investigates the full model, referred to as model variant (a) Full model with

given initialisation and four modi�ed versions of the tracker. In variant (b) Omission of n, the analysis

of the additive measurement noise estimated based on mutual occlusions and prior knowledge about the

scene (cf. Section 4.5.1) is omitted. In variant (c) No context, the Implicit Motion Context is omitted

from the system, so that all trajectories are continued by a temporal model with constant velocity

assumption individually for all persons. In this way, this model variant resembles the predictive

function applied in a standard Kalman Filter model. In model variant (d) No classi�cation, the

position of the feet is modelled as observation instead of a hidden variable and the position of the

feet is measured by the detection model only (cf. Section 4.2.2), and in variant (e) No detection the

positions of the feet are measured by the classi�cation approach (cf. Section 4.2.3). The initialisation of

the tracker with automatic initialisation is investigated in model variants (f) Full model with automatic

initialisation and (g) No 3DFPR, where variant (f) represents the full and variant (g) omits the false

positive reduction strategy (3DFPR) proposed in Section 4.2.2.

Experiments are conducted on the PETS09-S1L1-1 sequence and on the KITTI-0019 sequence. The

results are reported in Tables 5.2 and 5.3, respectively. To account for stochastic results, induced

for instance by the Random Forest classi�er, every model variant is applied �ve times. For every

metric, the mean value is listed in the tables. To compare the results between the full models (a) and

(f) and the model variants, statistical signi�cance tests (Student's t-tests) are applied, for which an

error probability of 5% is assumed. The table cells highlighted in red indicate that the performance is

signi�cantly worse than the one for the full model, green indicates that the performance is signi�cantly

better than the full model, and white indicates no signi�cant change. Exemplary images showing the

results of every model variant are given in Figures 5.7 and 5.8, respectively.

Table 5.2 shows that none of the other models (b) � (e) could improve any metric signi�cantly

for the PETS09-S1L1-1 sequence. In contrast, the full model achieves the highest scores in terms of

precision, FPPI, FP, IDS and FRAG rates, and in the MOTP metric, though the di�erences are only

signi�cant for the MOTP metric in contrast to model variants (c) No context and (e) No detection. In

variants (b) and (c) the performance decreased slightly in terms of precision, FPPI, FP, IDS, FRAG

and MOTA. In variant (e), the performance deteriorates in terms of all metrics except for the number

of mostly lost targets (ML). When only the detector is omitted from the model, the performance

improves slightly in terms of recall, ML, FN and MOTA, though the di�erences are not signi�cant.

Collectively, these results reveal the bene�ts of using the proposed method. If either the estimation of

the variable n or the motion context is omitted, the precision rate decreases slightly. The estimation of



78 5 Experiments
In

it
ia
li
sa

ti
o
n

M
o
d
e
l

R
e
c
a
ll
[%

]

P
re

c
is
io
n
[%

]

F
a
ls
e
P
o
si
ti
v
e
s

P
e
r
Im

a
g
e
[-
]

M
o
st
ly

T
ra

ck
e
d

(M
T
)
[%

]

M
o
st
ly

L
o
st

(M
L
)
[%

]

F
a
ls
e
P
o
si
ti
v
e
s

(F
P
)
[-
]

F
a
ls
e
N
e
g
a
ti
v
e
s

(F
N
)
[-
]

Id
e
n
ti
ty

S
w
it
ch

e
s

(I
D
S
)
[-
]

F
ra

g
m
e
n
ta

ti
o
n
s

(F
R
A
G
)
[-
]

M
u
lt
i
O
b
j.

T
ra

ck
in
g

A
c
c
u
ra

c
y
(M

O
T
A
)
[%

]

M
u
lt
i
O
b
j.

T
ra

ck
in
g

P
re

c
is
io
n
(M

O
T
P
)
[%

]

G
iv
en

(a) Full model 52.9 94.6 0.6 24.3 22.6 141 2206 34 126 49.2 65.0
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(d) No classif. 53.9 94.5 0.7 23.9 18.2 164 2161 35 135 50.0 64.5
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t. (f) Full model 53.2 89.4 1.4 27.0 19.1 298 2193 26 124 46.3 61.4

(g) No 3DFPR 52.4 80.1 2.8 23.5 19.6 612 2230 70 169 37.9 62.7

Table 5.2: Sensitivity study for the omission of single components of the method tested on the PETS09-
S1L1-1 sequence. Best values are printed in bold. Grey cell indicate the baseline metrics of
the full model, red cells indicate signi�cant degradation compared to the full model, white
cells indicate no signi�cant change. See text for details.

n reduces the impact of the inferred image positions on the posterior state estimate in cases where the

person is occluded or unlikely to occupy the estimated image position. If an occlusion occurs, parts of

the occluded person can often be observed, nevertheless, but the reliability in the determined position

decreases due to the limited visibility. The consideration of this e�ect, hence, improves the results.

The motion context yields more reliable predictions in the absence of measurements, i.e. if a person

is fully occluded or if the detection of that person fails. Using the stand-alone prediction as in variant

(c) No context, the predicted positions are prone to drift away from the target in such situations,

which causes false positive detections and, thus, a�ects the precision of the results. Note the zigzag

course of the trajectories in Figures 5.7(b) and (c) and the rather smooth lines in Figure 5.7(a). Not

using the classi�er from the observation model, variant (d), decreases the performance in terms of

fragmentations of the trajectories slightly. This e�ect can best be explained by the redundancy in

the observations related to a speci�c target. Using di�erent independent measurements of the target's

position, gaps in the observations of a single component of the observation model can be bridged

and the trajectory is terminated and re-initialised less frequently, which is re�ected in the number of

fragmentations. These fragmentations can be observed in Figures 5.7(d) and (e), where the generated

trajectories often begin further away from the image border, where the persons actually appear.

Using the automatic detection results for initialisation in variants (f) Full model and (g) No 3DFPR,

the false positive rate increases compared to the initialisation based on reference data (cf. variant (a)),

and the precision of the results, as well as the MOTA and MOTP metrics deteriorate. When the false

positive reduction strategy is not used, comparing variant (g) No 3DFPR to variant (f) Full model,

which uses that strategy, the performance decreases signi�cantly in terms of the false positive rate, as

expected, and in terms of precision, identity switches, fragmentation and MOTA. The incorporation of

the false positive reduction in 3D, thus, improves the tracking considerably. As can be seen in Figure

5.7(g), the omission of the 3DFPR strategy leads to spurious trajectories initialised based on false
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(a) Full model with given initialisation (b) Omission of n

(c) No context (d) No classi�cation

(e) No detection (f) Full model with automatic initialisation

(g) No 3DFPR (h) Reference

Figure 5.7: Qualitative results shown for frame number 94 of the PETS09-S1L1-1 sequence. The
colours of the trajectories are chosen randomly.



80 5 Experiments
In

it
ia
li
sa

ti
o
n

M
o
d
e
l

R
e
c
a
ll
[%

]

P
re

c
is
io
n
[%

]

F
a
ls
e
P
o
si
ti
v
e
s

P
e
r
Im

a
g
e
[-
]

M
o
st
ly

T
ra

ck
e
d

(M
T
)
[%

]

M
o
st
ly

L
o
st

(M
L
)
[%

]

F
a
ls
e
P
o
si
ti
v
e
s

(F
P
)
[-
]

F
a
ls
e
N
e
g
a
ti
v
e
s

(F
N
)
[-
]

Id
e
n
ti
ty

S
w
it
ch

e
s

(I
D
S
)
[-
]

F
ra

g
m
e
n
ta

ti
o
n
s

(F
R
A
G
)
[-
]

M
u
lt
i
O
b
j.

T
ra

ck
in
g

A
c
c
u
ra

c
y
(M

O
T
A
)
[%

]

M
u
lt
i
O
b
j.

T
ra

ck
in
g

P
re

c
is
io
n
(M

O
T
P
)
[%

]

G
iv
en

(a) Full model 41.9 71.1 0.9 4.8 17.2 999 3407 125 199 22.7 56.3
(b) Omis. of n 38.2 73.0 0.8 2.2 26.9 829 3626 165 218 21.2 58.0
(c) No context 42.2 71.6 0.9 4.8 18.8 985 3387 126 199 23.3 56.5
(d) No classif. 41.7 71.1 0.9 3.2 21.0 992 3418 124 202 22.7 56.4
(e) No det. 30.8 58.6 1.2 0.0 32.3 1277 4056 257 270 4.7 55.7

A
u
t. (f) Full model 35.5 52.5 1.8 3.2 32.8 1881 3782 102 156 1.7 54.3

(g) No 3DFPR 38.6 42.0 3.0 3.2 27.4 3121 3601 171 209 -17.6 54.8

Table 5.3: Sensitivity study for the omission of single components of the method tested on the KITTI-
0019 training sequence. Best values are printed in bold. Grey cell indicate the baseline
metrics of the full model, red cells indicate signi�cant degradation, green cells signi�cant
improvement in the associated metric, compared to the full model, white cells indicate no
signi�cant change. See text for details.

positive detections on the façade of a building in the background, and on a group of persons on the

right side of the image, which are avoided using the 3DFPR strategy as shown in Figure 5.7(f). The

increase in the number of IDS in variant (g) compared to the full model (f) results from the spurious

trajectories initialised based on false positive detections, which cannot be associated to any person

persistently and, thus, pass over to nearby persons in the scene.

On the KITTI-0019 dataset, the results reported in Table 5.3 are not as clear as for the PETS

data. Model variant (b) Omission of n, which leaves out the estimation of variable n based on mutual

occlusions and prior scene knowledge, performs signi�cantly worse in terms of recall, in terms of the

number of mostly lost (ML) targets and FN and IDS, while the false positive rate is signi�cantly lower

than in variant (a) Full model. The omission of the Implicit Motion Context, variant (c) No context,

has no signi�cant impact on the performance on this dataset at all. This may be explained by the fact

that persons observed in a pedestrian zone less frequently move in groups than on a campus (see results

for the PETS dataset). As a consequence, the motion context does not assist the motion prediction,

as the covariance function only takes into account persons close to each other. Not using the classi�er

for the observation model, variant (d), does not a�ect the results by any means, either. The omission

of the detector, variant (e), leads to a decrease in all metrics, except for MOTP. Using the automatic

detections for initialisation in variants (f) Full model and (g) No 3DFPR, the performance decreases

in terms of almost all metrics, except for the number of IDS and FRAG, compared to the full model

using the reference data for initialisation. Many tracking errors, thus, can be explained by wrong, i.e.

missing or false positive detections. When the 3DFPR strategy is omitted from the full model, variant

(g), the performance deteriorates in terms of precision, in the number of IDS and FRAG and in the

MOTA metric. Here again, the use of 3D information for the validation of the detections improves

the tracking results. However, the omission of that information also decreases the FN rate and, thus,
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(a) Full model with given initialisation (b) Omission of n

(c) No context (d) No classi�cation

(e) No detection (f) Full model with automatic initialisation

(g) Without 3DFPR (h) Reference

Figure 5.8: Qualitative results shown for frame number 602 of the KITTI-0019 sequence. The colours
of the trajectories are chosen randomly.

the recall, which indicates that some persons that are actually present in the scene are detected, but

not veri�ed by the 3DFPR strategy.

Figure 5.8 shows the results of all model variants for an exemplary image of the KITTI sequence.

The qualitative results of the model variants (b) � (d) do not di�er much from those of the full model

(a). In variant (e) No detection, the trajectories are terminated and re-initialised more often, which

can be seen by the rather short trajectories. When tracking is initialised based on the automatic

detections, and the 3DFPR is omitted, a trajectory is initialised based on a detection with a wrong

height on the left-most person in the scene and on the third person from the right, cf. Figure 5.8(g).

When using the false positive reduction, the detections are aligned more accurately to the visual

outlines of the persons (cf. Figure 5.8(f)).
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5.4 Multi-person localisation and tracking evaluation

In this section, the actual localisation performance and the optimality of the recursive �lter are inves-

tigated. The localisation accuracy is evaluated by the change in the tracking metrics in dependency

of the acceptance threshold. The optimality of the �lter is investigated exemplarily by comparison of

the system innovations in a situation with simulated occlusions, with and without using the proposed

model of Implicit Motion Context. Lastly, the method is compared to other methods from the related

work based on two di�erent benchmarks.

5.4.1 Localisation accuracy

To assess the localisation accuracy, the acceptance threshold for the validation of the estimated posi-

tions, i.e. the maximum allowable distance of an automatic annotation from the reference annotation

in 3D, is varied. The achieved recall and precision and the average localisation error are plotted over

the acceptance threshold in Figure 5.9 (a) for PETS09-S1L1-1 and in Figure 5.9 (b) for KITTI-0019.

The plotted values are the average results of three times executing the tracking algorithm. As re�ected

by the precision curve, 95% of all automatic detections are correct with a maximum positional error of

about 0.8m for the PETS data, whereas, for the KITTI sequence, 95% are only correct with at most

3m positional error. The average positional error of all correct assignments indicates that, within the

range of an acceptance threshold of 1m, as used as default threshold in all experiments, the average

error amounts to 35cm for the PETS and to 44cm for the KITTI dataset. At a distance threshold

of 0.5m, the recall rate on the PETS dataset is almost saturated, whereas on the KITTI dataset,

saturation only occurs for a threshold larger than 2m. Below these values, the recall rates decrease

rapidly.
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(b) KITTI-0019

Figure 5.9: Impact of the distance threshold on the PETS09-S1L1-1 and KITTI-0019 sequence.

5.4.2 Filter consistency

The optimality of a recursive �lter can be evaluated based on the sequence of system innovations. If the

innovation sequence is unbiased and white, the �lter is free of systematic errors (Mehra, 1970). In this
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section, the whiteness property of the innovation sequence is evaluated exemplarily. The innovation

depends both on the prediction, as well as on the measurements. In order to exclude errors related

to the measurements and to be able to evaluate the predictive function, the manual annotations of

pedestrians available in the reference data are taken as measurements, which are assumed to be correct.

By looking at the sequence on system innovations, any bias or whiteness constraint violation can be

attributed to the predictive function.

The innovations are observed for one person in a scenario in which six to eight persons are tracked.

The prediction is carried out using a stand-alone �lter and the IMC model, and measurements are

taken from the reference data and are assumed to be correct. Person 1, for which the innovations are

observed, is simulated to be occluded for 30 consecutive frames (frames 70-100). Figure 5.10 shows

three images taken at time steps 70 (just before the occlusion), 99 (at the end of the occlusion) and 105

(shortly after the occlusion was resolved) for the tracking without IMC (left column) and with IMC

(right column). For clarity, the background is removed in Figures 5.10 (a)�(f), and only the trajectories

and rectangles around the tracked persons are shown. In the background, points in a discrete grid with

a spacing 0.5m×0.5m in object coordinates are shown in Figures 5.10 (a), (c) and (e). In these �gures,

the motion context is not applied. In Figures 5.10 (b), (d) and (f), velocity vectors are shown in the

background, indicating that velocities can be interpolated by means of Gaussian Process Regression

at any position in object space, even if an area is occluded.

When the IMC is not used, the trajectory of person 1 drifts away from the person. Note the

estimated bounding rectangle of person 1 only comprises background in Figure 5.10(c). After the end

of the occlusion, a sharp bend appears in the estimated trajectory, as indicated by the arrow in Figure

5.10(e). When motion context is applied, correlations between trajectory 1 and other trajectories, e.g.

2 and 7, are detected by the IMC model (cf. Figure 5.10 (b)), by which the drift can be reduced (cf.

Figure 5.10(d)) and the �nal trajectory has a smoother shape (cf. Figure 5.10(f)).

Figure 5.11 shows the sequences of innovations for variables xF and yF for the tracking of person 1

in Figure 5.10 without IMC (Figure 5.11(a)) and with IMC (Figure 5.11(b)). The time in which the

tracked person is occluded is indicated by the grey-shaded area. Note the innovations right after the

end of the occlusion at time 100, where the innovations are high for the stand-alone �lter and lower

for the IMC model.

The whiteness of an innovation sequence can be evaluated based on the autocorrelation of that

sequence. Following the evaluation of Mehra (1970), the autocorrelation is evaluated for increasing

time lags, so that the range and possible periodic e�ects of deviations from the whiteness assumption

can be quanti�ed. Figure 5.12 shows the autocorrelation of a sequence of system innovations for

the person tracked with the ID number 1 in Figure 5.10. The left column of Figure 5.12 shows the

autocorrelations of the innovations for variable xf (a) and yf (c) obtained by stand-alone Kalman

�ltering, while the right column shows the innovation of the respective variables obtained using the

IMC model (Figures 5.12(b) and (d)). The lag is the time span between two samples of the sequence

evaluated, so that small lags indicate the correlation between nearby time steps, and larger lags those of

samples further apart. The horizontal lines mark the rejection regions for testing the autocorrelations

to be equal to zero. Modelling the covariance of the autocorrelations by 1
N , where N is the number
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(a) Before occlusion, without IMC
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(b) Before occlusion, with IMC

(c) During occlusion, without IMC
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(e) After occlusion, without IMC
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(f) After occlusion, with IMC

Figure 5.10: Qualitative comparison of the prediction with and without using the Implicit Motion
Context (IMC) model. The Trajectories of six to eight persons are shown in random
colours. The arrows in (b), (d) and (f) symbolise the interpolated velocities in a discrete
grid of 0.5m× 0.5m. The variances of these velocities are indicated by the colours of the
arrows, where red indicates high values and green indicates low values. The covariance
matrices of the trajectories are shown in (b), (d) and (f). Note the sharp bend in the
trajectory of person 1 in (e), as marked by the red arrow.
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(b) Innovations, with IMC

Figure 5.11: Sequence of system innovations for person 1 in Figure 5.10 with simulated occlusion
marked as shaded area.
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Figure 5.12: Autocorrelation of the sequence of system innovations for person 1 in Figure 5.10, without
using Implicit Motion Context (IMC, (a) and (c)) and using IMC ((b) and (d)).

of samples, the con�dence interval for an expected probability of error of α = 5% can be modelled

by ±1.96/
√
N (Mehra, 1970). When the autocorrelation is zero, the sequence of innovations can be

regarded as white noise. 95% of the samples are expected to lie within the area between these lines.

For an optimal �lter, the autocorrelations are spread randomly around zero.
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In Figure 5.12, systematic deviations from zero can be observed for both models. These deviations

indicate non-optimal performance of the predictive function, because the innovation sequence is not

white. However, approximately 95% of the autocorrelation values lie within the expected interval for

both models.

5.4.3 Benchmark results

Lastly, results achieved on the tracking benchmarks 3DMOT 2015 (Leal-Taixé et al., 2015) and KITTI

Object Tracking Evaluation 2012 (Geiger et al., 2012) are reported in this section. The results on the

test datasets from the 3DMOT challenge, PETS09-S2L2 and AVG-TownCentre are reported separately,

whereas for the KITTI benchmark, the results achieved on the 28 test sequences are averaged. For the

three datasets, the results are compared to the related work. For each method, the modus operandi

(MO), the metrics MOTA and MOTP, MT and ML, IDS and FRAG, as well as the processing frequency

in frames per second (FPS) is reported. MO indicates whether the processing of the method is

conducted in 2D image or 3D object space, and whether the processing is capable of being applied on

a frame-by-frame basis (online capability, on) or requires all frames at once (only o�ine capability,

o�).

3D Multi Object Tracking 3DMOT. The results of the presented work and those achieved by

Pellegrini et al. (2009), Leal-Taixé et al. (2011), Klinger et al. (2015) and Klinger et al. (2016) are

reported in Tables 5.4 and 5.5. In these methods, tracking is conducted in 3D object space, to which the

3DMOT challenge is dedicated. In (Klinger et al., 2015) and (Klinger et al., 2016) previous versions

of the proposed tracking method are implemented. Both methods apply a greedy data association

strategy as opposed to this work, which uses a joint probabilistic data association strategy. Implicit

motion context is not used in (Klinger et al., 2015) and was introduced only in (Klinger et al., 2016). In

addition to these results, the tables further report results from the 2DMOT challenge, where tracking

is applied in 2D image space, and from which results on the same datasets are also available. As for all

other methods, for the initialisation of new trajectories only the automatic detection results provided

along with the benchmark dataset are used. Note that the evaluation in the 2DMOT challenge is also

carried out in 2D, so that the precision of a result is evaluated based on the bounding box overlap (at

least 50% overlap are required for acceptance) between the detection and the reference annotation,

whereas in the 3DMOT challenge the 3D distance is decisive for the acceptance of the detection and

by convention the threshold is one metre.

The related work reported in this section includes only a subset of the reported results of the

2DMOT challenge. Only methods with associated original publications are reported. These include

the methods of Leal-Taixé et al. (2014), Wang and Fowlkes (2015) and Yoon et al. (2015), who

exploit motion context in the image domain. A re�nement of the position is applied in (Choi et

al., 2013) by combining di�erent observables and in (Milan et al., 2015) by joint segmentation and

tracking of pedestrians. Continuous energy minimisation is applied in (Milan et al., 2014). Xiang et

al. (2015), Yoon et al. (2015), Yang and Jia (2016), Yoon et al. (2016) and Milan et al. (2016) also

apply tracking on a frame-by-frame level. Kim et al. (2015) apply data association based on Multi
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Hypothesis Tracking, and similar to the proposed method, (Rezato�ghi et al., 2015) also include a

joint probabilistic data association approach for data association, which is established in an o�ine

optimisation procedure. Like the proposed method, Wang et al. (2015a) also perform instance speci�c

classi�cation to de�ne similarity measures for the data association. Convolutional neural networks are

used in (Xiang et al., 2015) in the context of detection and in (Milan et al., 2016; Wang et al., 2016)

and (Leal-Taixé et al., 2016) in the context of data association. The tracker of Wang et al. (2015a)

performs best as measured by an average rank of 10 metrics in the 2DMOT challenge2, while the best

result by an online tracker is achieved by Xiang et al. (2015).

Within the 3DMOT challenge on the PETS09-S2L2 dataset, the proposed method performs best in

terms of MOTA and third best in terms of MOTP. Previous versions of the proposed tracker, (Klinger

et al., 2015) and (Klinger et al., 2016), show slightly higher MOTP scores (+0.2% and +3.4%). In

terms of the MT and ML metrics, the proposed method tracks less targets persistently (−0.7%) than

both previous versions of the tracker, but less objects are lost (−0.2% and −2.5%). A lower ML

rate is only reported by (Pellegrini et al., 2009) (−2.2%), who also track considerably less targets

persistently (−23.1%). In terms of IDS and FRAG, the proposed method performs best and second

best, where (Klinger et al., 2016) presents less fragmentations (-15) but more identity switches (+16).

The improved MOTA metric, compared to (Klinger et al., 2015) and (Klinger et al., 2016), can be

explained by the way in which the data association is solved. In this work, a combinatorial problem is

solved, assigning at most one detection to a trajectory, so that a global objective function is optimised.

In (Klinger et al., 2015) and (Klinger et al., 2016), a greedy association scheme is used, assigning every

single-scale detection to the trajectory with the closest predicted position. The greedy approach often

leads to a suboptimal solution that becomes noticeable in cases a prediction deviates too much from

the true state and where another nearby object can be assigned with detections actually stemming

from a di�erent person. Such errors often lead to a misalignment of the inferred positions that are

counted as false positive detections. Regarding runtime, the proposed method performs ten times

faster than the previous versions with about one frame per second on average. This is due to the

improved runtime of the classi�cation strategy in this work compared to (Klinger et al., 2015) and

(Klinger et al., 2016). In these methods, the ellipse-model (ELL, cf. Section 4.2.3) was used, which

was shown to perform slower than the stripes-model (STR, cf. Section 5.2.2), as used in this work.

A selection of the most recent papers reported in the 2DMOT challenge is given in the lower parts

of Tables 5.4 and 5.5. Compared to these results, the proposed method provides the best MOTA

metric, with +1.5% opposed to the best result achieved by Wang et al. (2015a) in 2D (see Table

5.4). The MOTP cannot be compared due to the di�erent evaluation criteria. Pertaining to MT and

ML, the proposed method reached the fourth place in terms of MT, following the previous versions of

the tracker and (Wang et al., 2015a, −3.1%), and better in terms of ML than any method applying

tracking online in 2D. The number of IDS is best and equal to (Rezato�ghi et al., 2015), whose

method performs inferior in terms of MOTA (−23.6%), MT (−16%) and ML (+14.4%). The number

of fragmentations is higher than achieved by Milan et al. (2014), who in turn perform worse in terms

of MOTA (−16.3%), MT (−16%), ML (+9.7%) and IDS (+11).

2https://motchallenge.net (accessed on September 2016)
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Klinger et al. (2015) 3D/on 57.6 63.6 28.6 4.8 231 245 0.1
Pellegrini et al. (2009) 3D/on 32.2 55.1 4.8 2.4 893 889 83.5

Leal-Taixé et al. (2011) 3D/o� 41.3 55.7 7.1 16.7 243 271 8.4
Milan et al. (2016) 2D/on 38.3 71.6 9.5 14.3 320 417 165.2

Yoon et al. (2015) 2D/on 37.2 67.7 9.5 14.3 190 320 7.9
Yoon et al. (2016) 2D/on 44.6 69.3 7.1 14.3 175 289 6.8
Xiang et al. (2015) 2D/on 47.5 72.6 7.1 9.5 196 332 2.1
Yang and Jia (2016) 2D/on 43.1 69.4 9.5 11.9 158 412 5.9
Wang et al. (2015a) 2D/o� 59.7 74.4 31.0 4.8 173 200 6.5
Kim et al. (2015) 2D/o� 50.8 70.4 19.0 7.1 142 201 0.7
Choi (2015) 2D/o� 53.4 70.5 14.3 9.5 142 208 11.5
Wang et al. (2016) 2D/o� 49.6 70.7 11.9 11.9 192 218 1.7
Leal-Taixé et al. (2016) 2D/o� 34.5 69.7 7.1 19.0 282 424 52.8
Rezato�ghi et al. (2015) 2D/o� 37.6 65.9 11.9 19.0 139 260 32.6
Leal-Taixé et al. (2014) 2D/o� 46.6 67.6 9.5 14.3 238 264 1.4
Milan et al. (2015) 2D/o� 46.1 70.6 26.2 16.7 211 211 0.2
Milan et al. (2014) 2D/o� 44.9 70.2 11.9 14.3 150 165 1.1
Wang and Fowlkes (2015) 2D/o� 41.5 70.5 7.1 16.7 212 249 41.3

Table 5.4: 3DMOT 2015 results for PETS09-S2L2. The results are grouped into methods tracking in
3D and in 2D. Best values are printed in bold.

Within the 3DMOT challenge on the AVG-TownCentre dataset, the proposed method performs best

in terms of MOTA and MOTP. Regarding MT and ML, the method performs third best in terms of

MT, following (Klinger et al., 2015, −5.5%) and (Klinger et al., 2016, −2.8%), and worst pertaining

to ML, as opposed to (Pellegrini et al., 2009, +6.5%), who performs best in that metric. Regarding

IDS and FRAG, the proposed method takes the third position in both metrics. Compared to the

results reported in the 2DMOT challenge, the MOTA metric is outperformed by (Wang et al., 2015a)

(+21.8%), who applies tracking in an o�ine setting, and by (Xiang et al., 2015, +3.2%). Considering

MT, ML and IDS, the proposed method is outperformed by the same methods, whereas in terms of

FRAG, the proposed method is superior to these methods. The IDS achieved in this work are higher

than most of the related work in the 2DMOT challenge, though the achieved MOTA score is more

than twice the size of the score of any of these methods, except for those by (Wang et al., 2015a) and

(Xiang et al., 2015).
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This method 3D/on 46.3 58.9 23.3 23.3 171 182 1.0
Klinger et al. (2016) 3D/on 41.1 55.0 26.1 20.8 112 181 0.1
Klinger et al. (2015) 3D/on 42.4 57.1 28.8 20.4 149 173 0.1
Pellegrini et al. (2009) 3D/on 15.2 51.4 7.1 16.8 945 797 83.5

Leal-Taixé et al. (2011) 3D/o� 28.7 51.9 15.0 22.6 277 330 8.4
Milan et al. (2016) 2D/on 13.4 68.8 3.5 41.2 299 414 165.2

Yoon et al. (2015) 2D/on 5.5 66.9 0.9 59.7 74 171 7.9
Yoon et al. (2016) 2D/on 29.3 69.6 15.0 42.9 88 233 6.8
Xiang et al. (2015) 2D/on 49.5 70.1 38.9 15.5 121 297 2.1
Yang and Jia (2016) 2D/on 25.3 70.3 15.0 39.4 68 223 5.9
Wang et al. (2015a) 2D/o� 66.1 72.9 47.8 14.6 159 198 6.5
Kim et al. (2015) 2D/o� 27.1 70.4 17.3 44.2 74 165 0.7
Choi (2015) 2D/o� 31.6 70.1 11.1 36.3 146 233 11.5
Wang et al. (2016) 2D/o� 31.3 69.5 16.8 33.2 137 246 1.7
Leal-Taixé et al. (2016) 2D/o� 19.3 69.0 4.4 44.7 142 289 52.8
Rezato�ghi et al. (2015) 2D/o� 18.3 66.8 4.4 63.3 23 108 32.6
Leal-Taixé et al. (2014) 2D/o� 11.9 70.3 0.9 69.9 74 75 1.4
Milan et al. (2015) 2D/o� 3.3 69.3 0.9 86.3 151 108 0.2
Milan et al. (2014) 2D/o� -2.6 68.9 5.8 54.0 186 232 1.1
Wang and Fowlkes (2015) 2D/o� 14.7 70.1 2.7 61.5 123 141 41.3

Table 5.5: 3DMOT 2015 results for AVG-TownCentre. The results are grouped into methods tracking
in 3D and in 2D. Best values are printed in bold.

KITTI Object Tracking Evaluation. In the KITTI Object Tracking Evaluation, the assessment

of the results is carried out in image space, so that an automatic detection counts as correct if an

intersection-over-union score threshold of 50% is exceeded. The results of the proposed method and

those from the related work are given in Table 5.6. From the related work only the results according

to the original publications are reported here. The competing methods include the works by Yoon et

al. (2015, 2016), Xiang et al. (2015), Milan et al. (2014), Choi (2015), and Wang and Fowlkes (2015).

All these methods apply tracking in image space. Only the proposed method applies tracking in 3D.

On the KITTI Object Tracking Evaluation benchmark, the proposed method performs worst in

terms of MOTA, MOTP, MT and ML. According to the number of identity switches, this work

performs second best, and best according to the number of fragmentations. The superiority in terms

of IDS and FRAG, however, must be put into perspective of the low MOTA score, which is due to a

high number of false negative detections, so that the risk of IDS and FRAG is inherently lower. The

most top-ranked scores are achieved by Xiang et al. (2015).
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This method 3D/on 11.97 66.59 4.81 51.89 24 564 1.0
Yoon et al. (2016) 2D/on 26.02 68.45 9.62 47.08 16 724 20
Yoon et al. (2015) 2D/on 25.47 68.06 13.06 47.42 81 692 100

Xiang et al. (2015) 2D/on 35.91 70.36 23.02 27.84 88 830 11.1
Milan et al. (2014) 2D/o� 18.18 68.48 8.93 51.89 96 610 11.1
Choi (2015) 2D/o� 25.55 67.75 17.53 42.61 34 800 11.1
Wang and Fowlkes (2015) 2D/o� 23.37 67.38 12.03 45.02 72 825 16.7

Table 5.6: KITTI Object Tracking Evaluation results. Best values are printed in bold.
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6 Discussion of the results

In this chapter, the experimental results are discussed in two steps. Firstly, the method is analysed

with regard to the strengths and weaknesses of its central building blocks. For each component, the

sensitivity to the variation of the free parameters and the impact of that component to the overall

system performance are evaluated. Secondly, the generated trajectories are analysed critically.

6.1 Method evaluation

Generic object detection

The proposed detection strategy improves the output of a state-of-the-art pedestrian detector (Dalal

and Triggs, 2005) using a strategy for non-maximum suppression based of 3D information. The

experimental results given in Chapter 5.2.1 show that the precision of the detections at a recall rate of

about 50% can be improved by about 20% for the investigated datasets. This improvement increases

the quality of the �nal trajectories considerably, as validated in the impact study (cf. models (f) and

(g) in Chapter 5.3). However, the detection recall rates in Section 5.2.1 only lie in a range of at most

55%�70%, so that approximately every third person is missed in the PETS datasets and every second

person in the KITTI dataset. Because the proposed detection strategy relies on a single pedestrian

detector, omission errors committed by the detector cannot be corrected. Hence, the combination of

di�erent sources of information about the presence of pedestrians is a promising direction of future

work.

Prior knowledge about the scene

The prior knowledge about the scene is used for the validation of detections for new trajectory initia-

lisations and for the inference about the image position of persons. For the latter, the prior knowledge

is considered together with information about mutual occlusions for the inference of the variable n,

which has the function of increasing the measurement noise if a person is either occluded or unlikely

to be observed at a speci�c position. In model variant (c) in Section 5.3, the omission of the variable n

from the system was investigated and it was shown by the decrease in tracking performance that this

variable carries valuable information for the trajectory update. However, a separate study on the im-

portance of the occlusion model and the prior knowledge was not carried out and should be addressed

in future work. For the scenarios with static camera orientation, the prior knowledge about the scene

is learnt prior to the actual processing and may be outdated when new image sequences are processed.

Consequently, an incorporation of that information as a hidden variable of the graphical model is a
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suggestion for future work as well. In this work, the information was learnt using a Random Forest

classi�er, which is also available for online training, so that the approach can be readily transferred to

the online domain.

Instance speci�c classi�cation

The Online Random Forest classi�er proposed in this work, whose paramters are investigated in

Chapter 5.2.2, yields an overall accuracy of only up to 30 to 40%, depending on the number of classes

(persons, between about 8 and 30 in the test cases). These values are low when compared to state-

of-the-art classi�cation accuracies, e.g. in remote sensing applications. The low accuracy is due to

the similarity in the visual appearance of di�erent persons. The online classi�er is designed to adapt

to the changing appearance, but training samples are always rare at the beginning of the tracking

process. In comparison to related work from the re-identi�cation community (e.g., Farenzena et al.,

2010), however, the overall accuracy meets the state of the art. Furthermore, no decisions within the

tracking framework are based solely on the classi�er and for both data association and localisation,

where the classi�er is applied, even a classi�cation score lower than the highest rank in�uences the

tracking results positively (cf. model (e) in Chapter 5.3).

Temporal model

The temporal model, which comprises the Implicit Motion Context is investigated with respect to the

impact of the free parameters in Section 5.2.3, the impact of that model on the overall performance

of the tracker in Section 5.3 and the optimality in terms of whiteness of the system innovations in

Section 5.4.2. The parameters were shown to have weak, yet measurable in�uence on the tracking

performance. Parameters should, thus, be selected with caution. Training is applied on a single dataset

under the assumption that the learnt parameters are transferable to other scenes. This assumption is

not veri�ed, but it is justi�ed by the fact that the motion parameters are modelled in a common 3D

object space, where all persons reside. However, due to di�erent situations (e.g., pedestrian zones vs.

campuses), di�erent motion behaviour is imaginable, so that a training of the parameters on further

datasets may be reasonable. By the analysis of the IMC model, the decrease of performance when

IMC is not used was shown empirically in Section 5.3 for the PETS dataset, whereas the model does

not have a signi�cant in�uence on the results achieved for the KITTI data. As the transferability

of the parameters was not investigated, it cannot be concluded whether di�erent parameters have an

impact on the results. In future work, the aspect of transferability of the learnt parameters should,

thus, be addressed.

It was further shown empirically that the IMC model improves the predictive function in a multi-

person tracking environment in Section 5.4.2. For a controlled environment with measurements that

can be assumed to be correct, the sequence of system innovations in the update model of the Dynamic

Bayesian Network is shown not to be biased by the IMC model, while, during an occlusion, which

was simulated to take place over approximately 4 seconds, the predictive model yields more plausible

results and reduces the disagreement between the prediction and the measurements when the occlusion
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is over. Using the covariance function of the IMC model, correlations between the observed persons

are determined automatically, so that the trajectory of the occluded person is continued with the aid

of the state estimates of the surrounding persons.

The autocorrelation of the system innovations further shows that neither the stand-alone �lter nor

the IMC model perform strictly optimally in terms of an unbiased and white state prediction. To cope

with this e�ect, higher order motion models that loosen the assumption of zero-acceleration should be

investigated in future work.

Data association

The joint probabilistic data association (JPDA) strategy applied in this work combines location and

appearance-based measures of similarity. The data association strategy is not addressed explicitly in

the experiments, but both central components of the data association strategy, the temporal model and

the instance-speci�c classi�er, are investigated as discussed above. Furthermore, previous versions of

the proposed method (Klinger et al., 2015, 2016), which use a greedy scheme for data association, are

compared to the proposed method in Section 5.4.3. The greedy approach often leads to a suboptimal

solution which becomes noticeable in cases where a prediction deviates too much from the true state,

and where another nearby object can be assigned to detections actually stemming from a di�erent

person. Such errors lead to a misalignment of the measurements so that the posterior estimates of the

positions might not be matched with the reference data and are counted as false positive detections

instead. Using the JPDA strategy as shown in this work, a combinatorial problem is solved, which

assigns a maximum of one detection to a trajectory.

Recursive estimation

The way in which the available information is combined in the Dynamic Bayesian Network is investi-

gated by the experiments in Section 5.3. The handling of multiple persons for the predictive model was

discussed separately above. The proposed Dynamic Bayesian Network models the joint probability

of all variables used in this work. Di�erent models representing the same variables are imaginable,

depending on the category (observed vs. unknown) each variable is associated to. For instance, the

occlusion and the prior knowledge about the scene are introduced as observations, but could be mod-

elled as unknowns likewise. The design of the model is justi�ed by the experimental results in Section

5.3. The omission of any component from the model either reduces the performance in the majority of

the evaluation metrics or leaves the performance una�ected. Because inference in this work is carried

out by means of belief propagation on a tree-structured graph and the essential steps of the recursive

�lter are carried out based on Gaussian Process Regression and an Extended Kalman Filter model,

the inferred variables yield the optimal solutions at every time step.
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6.2 Evaluation of the trajectories

The aim of the developed approach for localisation and tracking of multiple persons was the improve-

ment of the reliability and precision of the generated trajectories. The ability to achieve these goals

is assessed by the experiments conducted in Section 5.4.

The localisation accuracy is addressed in Section 5.4.1. It was shown that 95% of all correct detec-

tions have a positional displacement from the reference smaller than 0.8m for the PETS and smaller

than 3m for the KITTI dataset. As measured by the recall rates at di�erent acceptance thresholds,

almost all detections the tracker is capable to achieve are made with an accuracy of about 0.5m on

the PETS and 2m on the KITTI dataset. In other words, if all automatic detections are considered to

be correct (i.e. if the acceptance threshold is su�ciently high to judge all annotations as correct), the

positional accuracy is about 0.5m and 2m, respectively. This accuracy for the scenarios with moving

cameras gives insight to the limitations of the proposed method. At an expected maximum positional

o�set of automatic annotation results of 1m (cf. acceptance criteria in the 3DMOT challenge), only

71% of all feasible detections are obtained. This indicates that the tracking in these scenarios with the

proposed method is not precise. Especially in the context of driver assistance systems, where the exact

localisation of pedestrians is essential, the achieved accuracy is not su�cient. However, the localisation

accuracy evaluated in 2D (cf. Table 5.6) is similar to the values achieved by other state-of-the-art

methods.

As measured by the MOTP metric in Section 5.3, the average positional displacement within an

acceptance radius of 1m amounts to 0.35m for the PETS dataset and to 0.44m for the KITTI dataset.

These di�erences are partly due to the di�erent viewing directions of the cameras, which are less

inclined in the KITTI dataset, so that the same positional o�set of an image measurements yields

larger errors in world coordinates for the KITTI dataset than for the PETS dataset. The geometric

accuracy reached in the 3DMOT benchmark, however, is superior to the related work, and could be

improved by about 5 to 10 cm.

The completeness and correctness of the detections are assessed once for the single-frame detection

(cf. Section 5.2.1) and for the tracking results (cf. Section 5.3). The single-frame detection achieves the

highest recall score of 66% with a precision of 84% for the PETS and a recall of 54% at 52% precision

for the KITTI dataset. The recall rates achieved on the same sequences after tracking decreases about

14% and 12%, while the precision is increased about 11% and 19%, respectively. The recall achieved

by the tracker is limited by the recall achieved at the single-frame detection stage. As the �nal recall

rates of about 50% and 40% indicate that about half of all persons in all images are not detected

at all, these results encourage the use of di�erent detection strategies in place or in addition to the

used HOG/SVM detector. The proposed strategies for false positive reduction and estimation of the

probability densities enable the application of other sliding-window-based detectors. The Dynamic

Bayesian Network, which joins di�erent sources of information, can readily be extended to incorporate

further detectors.

The persistence of the tracking of a person is measured by the MT and ML metrics. These are

reported in Sections 5.2.4, 5.3 and 5.4.3. According to these metrics, one of four persons in the PETS
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dataset is tracked most of the time while being present in the image sequence, whereas for the KITTI

dataset, only one of twenty persons is tracked persistently. In the addressed scenarios with constant

camera orientation, many persons are occluded for larger periods of time. If the occlusions last longer

than the system waits before terminating a trajectory, the occluded target is not tracked further and

unlikely to be re-initialised as long as the occlusion persists. These values reveal yet another weakness

of the generated trajectories: Though the completeness of the trajectories meets the state of the art

in scenes with constant camera orientation, the number of lost targets is too high to be applicable for

autonomous technologies.

Logical errors in the trajectory continuation of multiple persons are further measured by the number

of identity switches and fragmentations. In these metrics the trajectories generated by the proposed

method again perform as well as the state-of-the-art on average, and outperform the related work on

the PETS dataset. In this respect, the reliability of the trajectories generated within a multi-person

environment has seen substantiated improvements compared to the state-of-the-art.

The direct comparison of the achieved results to those of other trackers from the related work on

the KITTI benchmark shows that the proposed method performs worst among all methods listed in

the benchmark. It is noteworthy that all these methods apply tracking in 2D image space, which is

opposed to the proposed tracking approach in 3D object space. Despite substantiated success of this

method for the static camera constellations, the conversion of image coordinates to object space under

the �at world assumption and very low incidence angles of the image rays with the ground plane entail

an unfavourable propagation of errors from image-based observations to the state variables in 3D. The

estimated height of a person in object space is computed based on the estimated scale factor that

projects the person into the image. That factor depends on the estimated distance of the person on

the ground plane from the camera. If the terrain in inclined, the �at world assumption is broken, and

the estimated distance and, thus, the 3D height is wrong. The estimated height in 3D is evaluated

at the initialisation of new trajectories, and at the false positive reduction and data association. If

the initial height as part of the state vector is wrong, predictions of the height that are evaluated

in the data association step are prone to result in unrealistic similarity measures. As a consequence,

current detections may not be associated to existing trajectories and the tracking is corrupted. If the

false positive reduction fails, the recall rate of the single-frame detection decreases and trajectories

are prone not to be updated at all. Furthermore, if the camera orientation, which is assumed to be

known, is imprecise, the data association is prone to yield wrong results. In this work, the camera

orientation was only estimated by means of visual odometry and the quality of the results was not

analysed. Lastly, on the KITTI dataset, the recall and precision values of the detection model are

considerably worse than those achieved on the PETS dataset. This is due to fact that the size of

persons in the KITTI-images varies considerably, whereas the underlying HOG/SVM detector is only

trained on pedestrian images with a �xed height of 96 pixels (cf. Section 4.2.2).

A possible remedy to the e�ect of the �at world assumption violation is the combination of the

monocular tracking with 3D information, e.g. in form of a digital terrain model or depth information

extracted from stereoscopic imagery (Schindler et al., 2010; Geiger et al., 2011). In order to account

for the low recall and precision values of the detection results, a training of the HOG/SVM detector

based on images speci�c for the KITTI dataset is expedient.
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7 Conclusions and future work

The aim of this work was the improvement of the reliability and geometric accuracy of trajectories

generated by tracking in monocular image sequences. The research goal was approached by presenting

four scienti�c contributions that (a) investigate a new probabilistic framework for the joint localisation

and tracking of multiple persons, (b) present a new strategy for instance-speci�c classi�cation of

multiple persons, (c) achieve more realistic state predictions for interacting pedestrians and (d) describe

a new model for the assignment of similarity measures for data association based on the new models

of motion and appearance.

Conclusions

The Dynamic Bayesian Network proposed and investigated for the task of localisation and tracking

provides a framework for statistical inference of the unknown variables, i.e. the state parameters and

the image position of the tracked persons. Optimal decisions about the parameters are taken by infer-

ence using belief propagation. Because the underlying graph structure does not contain loops, exact

inference can be conducted by forward and backward propagation of the belief about the variables.

A key advantage of the proposed framework is that, despite the joint inference of the unknown

variables, the model is modular and expandable. This enables, for instance, weak components as the

underlying detector to be replaced by better detection methods in the future. Also, di�erent detection

and classi�cation strategies can be integrated into the model in addition to the existing components,

without requiring the entire model to be reconstructed from scratch.

By setting the task of trajectory generation into a probabilistic framework, another key advantage of

the method arises. The assignment of probabilities to the desired variables enables the quanti�cation

of uncertainties about the variables. This, in turn, o�ers a way to evaluate the results using statistical

tests, which lend themselves to the self-diagnosis of the system, which is carried out in the proposed

method by applying statistical tests for outlier detection in the measurements based on the system

innovations. Set in the context of online recursive estimation frameworks, this is an important step

towards the integrity of the system.

The generated trajectories are evaluated under di�erent aspects. Regarding the desired property of a

high reliability in the correctness of trajectory continuation, i.e. the consistency of tracking a speci�c

target within the presence of others, the results reveal a considerable reduction in the number of

tracking errors in scenes with constant camera orientation and a �at terrain. Compared to the related

work on the tracking in image sequences from static cameras, the number of identity switches and

fragmentations is reduced while preserving the completeness of the overall detections. By comparison
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of the full model with trimmed versions of the tracker, the increase of multi-object tracking accuracy

can be dedicated to the redundancy in the measurements derived from the image.

Regarding the geometric accuracy of the generated trajectories, the results achieved by this tracker

outperform the results achieved by other researchers in the 3DMOT challenge by about 5 to 10cm, as

measured by the average displacement from the reference annotations of the persons. By comparison

of the full model with trimmed versions of the tracker, the increase of geometric accuracy can be

mainly dedicated to the improved motion model, while the incorporation of additional observations

about the image positions has no clear impact on the geometric accuracy. Having shown that the

geometric accuracy is signi�cantly lower when omitting the detection from the observation model, it

can be concluded that the classi�er used for the localisation performs poorly. A promising prospect for

future developments is, thus, either improving the classi�cation strategy or adding further observations

to the tracking framework.

The method presented in this work was originally designed for the tracking in scenes with static

camera orientation and �at terrain (Klinger et al., 2015, 2016). The application to scenes with dynamic

camera orientation was carried out to demonstrate the transferability of the approach to diverse

application scenarios on the one hand and to outline the limitations of that approach on the other hand.

The tracking performance on the image sequences from dynamic platforms reveals the limitations of

the proposed method. In comparison to the related work using the KITTI benchmark, in which all

other methods perform tracking in 2D, the tracking by the proposed method in 3D performs worst.

Here, the major di�erence lies in the signi�cant increase in omission and commission errors at the

assignment of automatic detections. Training of a pedestrian detector on this speci�c dataset can be

expected to improve these results.

Future work

With respect to the conclusions drawn from this work, the proposed method for multi-person local-

isation and tracking paves the way for several aspects relevant in future research. Both the positive

and the negative aspects of the achieved results motivate future investigations of this line of research.

The substantial improvements in the geometric accuracy by using the Implicit Motion Context calls

for further investigations especially on image sequences from moving camera platforms, in order to

transfer the bene�ts from using that model to more generic situations for tracking. Especially due to

the need for highly accurate pedestrian trajectories in the context of autonomous driving and robot

navigation, the use of Implicit Motion Context is a promising approach. To this end, new models to

measure the interactions between pedestrians should be investigated, in order to �nd correlations in

the trajectories of pedestrian that do not move in crowds.

Because the recall rate of the pedestrian detection on the KITTI image sequences was rather low, the

application of di�erent approaches to the pedestrian detection is expected to yield clear improvements

of the overall results. The proposed method for false positive reduction and density estimation can

be applied to other sliding-window-based detectors. Bottom-up approaches for pedestrian detection,

such as the Deformable Part Model (Felzenszwalb et al., 2010) or Implicit Shape Models (Leibe et al.,
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2008) yield probability densities right away, and, thus, can be integrated into the Dynamic Bayesian

network immediately.

A further drawback of the proposed method is the �at-world assumption made for the conversion of

image to world coordinates. A more sophisticated model of the scene can be estimated by simultaneous

localisation and mapping (SLAM), which is applicable both to monocular (Davison et al., 2007; Engel

et al., 2014) and to stereoscopic image sequences (Engel et al., 2015). Integrating the localisation of

pedestrians and 3D scene reconstruction in a joint probabilistic model was already shown to improve

tracking by Schindler et al. (2010) using stereoscopic image sequences, so that the re�nement of the

proposed method by the 3D modelling of the scene is proposed to be applied in future work.

The performance of the recursive estimation framework was investigated mainly under the aspects of

multi-person localisation and tracking performance. The statistical properties of the recursive �lter,

i.e. the validation of the assigned process noise and the measurement noise covariances, were not

further investigated. An investigation of these properties of the tracker would improve the reliability

and integrity of the method from the statistical point of view, as further statistical tests could be

applied to detect outliers in the measurements.

Lastly, the applicability of the proposed method to real-time systems is inhibited by the average

processing rate of 1 Hz. Several components of the system enable parallelisation and/or implementation

on a GPU. The detection and the classi�cation parts are the slowest components of the system. An

available GPU implementation of the HOG detector (Prisacariu and Reid, 2009) yields about ten times

faster processing rates than the CPU-based implementation used in this work. Also, the modularity

of the Random Forests enables parallelisation and further improvements in the runtime.
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