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Abstract

The search for parking is a highly important problem in many cities. Drivers circle around the
blocks on a more or less random search path when looking for on-street parking, wasting time
and resources. Thus, parking information has great potential to reduce the search time by guiding
the drivers to road segments with a higher chance of finding parking. The goal of this thesis is
the automatic generation of dynamic parking maps, which contain both the areas with parking
permission and the estimated parking availability. As input, the data collection by vehicular

crowdsensing is investigated, where sensors of many vehicles continuously scan the availability of
on-street parking spaces during their regular trips. This goal is addressed holistically, starting
with the detection of parked vehicles in parking lanes, over the aggregation of parking availability
information, to the quality evaluation of the dynamic parking maps.

The main body of this thesis is split into two parts regarding the underlying data: 1) self-recorded
street environment data from a LiDAR mobile mapping vehicle and 2) long-term datasets from
static parking sensors and taxi trajectories in San Francisco, US. First, a processing pipeline is
presented to extract the locations of parked vehicles from the 3D point clouds of the LiDAR mobile
mapping vehicle. A key challenge was the distinction between moving and parked vehicles. Results
showed that this pipeline was able to provide accurate results with a recall of 93.7% at a precision
of 97.4%. Based on detections of parked vehicles at different time instants, a learning approach
was developed, in order to generate a parking legality map automatically, containing the areas
where parking was allowed. Two classifiers using several features were compared with an approach
from the literature. The results showed that the proposed approach using a random forest classifier
achieved the best results. Most interestingly, a clustering-based classification achieved a similar
quality, without the need for expensive training data.

Since crowdsensing needs many vehicles and thus records of one vehicle are not sufficient to study
crowdsensing of parking availability comprehensively, the observations from more than 5,000 static
parking sensors were used to simulate crowdsensing. Crowdsensing was simulated by downsam-
pling of the regular sensor observations, based first on an observation rate model and then on
trajectories from taxis as potential probe vehicles. The parking data was analyzed in a detailed
spatio-temporal evaluation. The main results were that parking had a strong daily periodicity and
that the temporal correlations were much more relevant than spatial similarities. With crowdsens-
ing, parking availability is not observed at regular intervals, and therefore needs to be estimated
at unobserved time instants. Three methods for parking availability estimation were investigated.
Spatial interpolation achieved only modest results. However, a simple persistence of the last ob-
servation value on the same road segment achieved remarkable results, unsurpassed by a binary
classification. However, the binary classification has the benefits that 1) a better weighting be-
tween precision and recall is possible, 2) an accurate probability estimate is provided, and 3) the
method can also be used for an availability prediction. In a comparison between taxi crowdsens-
ing and continuous measurements by static sensors, only a small quality decay was observed for
crowdsensing. In a final evaluation of the different parking information for an exemplary search
scenario, the parking legality map with capacity information led to a strong search reduction. Fur-
ther improvements were observed by including parking availability information, particularly when
the parking capacity was similar in the road segments and thus the parking legality map helped
less.

In conclusion, parking crowdsensing with probe vehicles has high potential for providing detailed
dynamic parking maps without the need for static sensors in the streets. Moreover, dynamic
parking maps significantly support drivers on the parking search.

Key words: Smart parking search, machine learning, collaborative sensing





Zusammenfassung

In vielen Städten ist die Suche nach einem freien Parkplatz ein großes Problem. Autofahrer
suchen auf einer mehr oder weniger zufälligen Route nach Parkplätzen am Straßenrand und ver-
schwenden dabei Zeit und Sprit. Parkplatzinformationen haben daher ein großes Potential diese
Suche zu erleichtern, etwa durch eine Routenführung zu den Straßenabschnitten mit der höchsten
Wahrscheinlichkeit, einen Parkplatz zu finden. Das Ziel dieser Arbeit ist die automatische Er-
stellung dynamischer Parkplatzkarten, die sowohl die Flächen, auf denen man parken darf, als
auch eine Schätzung der aktuellen Parkplatzverfügbarkeit beinhalten. Dabei wird das Sammeln
der benötigten Daten mittels Messungen einer Vielzahl an Fahrzeugen (Crowdsensing) untersucht,
die die aktuelle Parkplatzverfügbarkeit auf ihren regulären Fahrten über eingebaute Sensoren er-
fassen. Dieses Ziel wird dabei ganzheitlich verfolgt, von der Detektion parkender Fahrzeuge in
Parkbuchten, über die Aggregation von Informationen zur Parkplatzverfügbarkeit, hin zu einer
Qualitätsbewertung der dynamischen Parkplatzkarten.

Der Kern der Arbeit teilt sich hinsichtlich der verwendeten Daten in zwei Hauptteile: 1) selbst-
erfasste Daten des Straßenumfeldes mit Hilfe eines LiDAR Mobile Mapping Fahrzeuges und 2)
Langzeitdaten von statischen Parkplatzsensoren und Taxitrajektorien in San Francisco (USA).
Zuerst wird ein Vorgehen zur Erkennung von parkenden Autos aus den 3D-Punktwolken des Li-
DAR Mobile Mapping Fahrzeugs beschrieben. Eine Hauptherausforderung ist dabei die Unter-
scheidung zwischen fahrenden und parkenden Fahrzeugen. Die Ergebnisse zeigen, dass mit diesem
Vorgehen sehr genaue Ergebnisse mit einer Sensitivität von 93,7% bei einer Genauigkeit von 97,4%
erreicht werden. Basierend auf den Erkennungen von geparkten Fahrzeugen zu unterschiedlichen
Zeitpunkten wird ein Lernansatz vorgestellt, um automatisch eine Parkraumkarte zu erzeugen, die
die erlaubten Parkbereiche enthält. Zwei Klassifikationsverfahren, die verschiedene raumzeitliche
Merkmale nutzen, werden mit einem Ansatz aus der Literatur verglichen. Die Ergebnisse zeigen,
dass der Random Forest Klassifikator die besten Ergebnisse erzielt. Interessanterweise erzielt eine
clustering-basierte Klassifikation eine ähnliche Qualität ohne die Nutzung aufwendiger Trainings-
daten.

Da Crowdsensing eine Vielzahl an Fahrzeugen benötigt und somit die Messungen eines einzel-
nen Fahrzeugs nicht ausreichen, um ein Crowdsensing der Parkplatzverfügbarkeit umfassend zu
untersuchen, werden Messdaten von mehr als 5.000 statischen Parksensoren in San Francisco ver-
wendet. Crowdsensing wird durch eine Ausdünnung der Sensorbeobachtungen simuliert, zunächst
basierend auf einem Modell mit konstanter Beobachtungsrate und anschließend basierend auf Tra-
jektorien von Taxis als potentielle Messfahrzeuge. Darüber hinaus werden die Parkplatzdaten
in einer detaillierten raumzeitlichen Auswertung analysiert. Die Hauptergebnisse dieser Auswer-
tung zeigen, dass die Parkplatzbelegung eine starke tägliche Periodizität aufweist und dass die
zeitliche Korrelation deutlich relevanter ist als die räumlichen Ähnlichkeiten. Beim Crowdsens-
ing wird die Parkverfügbarkeit nicht in regelmäßigen Abständen beobachtet und muss daher
für die unbeobachteten Zeitpunkte geschätzt werden. Drei Methoden zur Schätzung der Park-
platzverfügbarkeit werden untersucht. Die räumliche Interpolation erzielt nur mäßige Ergebnisse.
Aber bereits ein einfaches Fortführen des letzten Beobachtungswertes auf demselben Straßenseg-
ment (Persistenzmethode) erzielt bemerkenswerte Ergebnisse, die von einer binären Klassifika-
tion nicht übertroffen werden. Die binäre Klassifizierung hat jedoch die Vorteile, dass 1) eine
bessere Gewichtung zwischen Genauigkeit und Sensitivität möglich ist, 2) eine genaue Wahrschein-
lichkeitsschätzung bereitgestellt wird und 3) auch eine Prädiktion der Parkplatzverfügbarkeit
möglich ist. In einem Vergleich zwischen Crowdsensing mittels Taxis und kontinuierlichen Messun-
gen durch statische Sensoren wird nur ein geringer Qualitätsabfall für Crowdsensing beobachtet.
Abschließend werden die verschiedenen Informationen der dynamischen Parkplatzkarte in einem
beispielhaften Suchszenario ausgewertet. Bereits die Verwendung der Parkraumkarte mit der Park-



platzkapazität führt zu einer starken Reduktion der Suche. Weitere Verbesserungen werden bei
Nutzung der Informationen zur Parkplatzverfügbarkeit beobachtet, insbesondere wenn die Parkka-
pazität in den Straßenabschnitten ähnlich ist und daher die Parkraumkarte weniger Unterstützung
bietet.

Zusammenfassend kann festgestellt werden, dass das Parkplatz-Crowdsensing mit Messfahrzeugen
ein hohes Potenzial für die Bereitstellung dynamischer Parkplatzkarten bietet, ohne dass statische
Sensoren in den Straßen benötigt werden. Darüber hinaus helfen dynamische Parkplatzkarten den
Autofahrern erheblich bei der Parkplatzsuche.

Schlüsselwörter: intelligente Parkplatzsuche, maschinelles Lernen, kollaborative Erfassung
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1 Introduction

1.1 Background and motivation

The search for an empty parking space is a highly important problem for many drivers. When
drivers cannot find an empty parking space at their destination, they start to roam around the
blocks looking for the next empty spot. This phenomenon, called parking search traffic, occurs
particularly in cities where many people live in dense areas. The additional driving leads to stress,
as well as wasted time and money for the drivers. In addition, other traffic participants suffer from
this problem: the parking search traffic increases the total traffic volume (Shoup, 2006), drivers go
at a lower speed when they are trying to spot a gap (Hampshire et al., 2016), and thus, all other
drivers are slowed down just because of missing parking spaces. The number of traffic accidents
is also increased due to the search for parking (Bush and Chavis, 2017). Finally, the environment
suffers from needless pollution because of additional fuel consumption.

Many studies have quantified the problem of parking search. Shoup (2006) surveyed several of them
from all around the globe. He concluded that, on average, 30% of total traffic is just parking search
traffic in the study areas. The average search time is more than eight minutes1. However, as these
studies were conducted in problematic districts at problematic hours of the day, these numbers
represent rather an upper bound of the problem. In another study, Shoup (2007) estimated that,
in a small business district in Los Angeles called Westwood Village with 470 metered parking
spaces, parking search cruising adds up to 950,000 miles per year, with pollution of 730 tons of
CO2. Van Ommeren et al. (2012) conducted a nationwide survey to find out the extent of parking
search in the Netherlands. When excluding employer-provided and residential parking, 30% of
the trips ended with some parking search. Averaged over all trips, the search time was about 36
seconds. They also found that parking search was more common in large cities. In San Francisco,
Millard-Ball et al. (2014) found that parking search traffic is spatially heterogeneous. A small
number of blocks is already responsible for half of the parking cruising in the area investigated.

A promising solution to reduce parking search is the provision of parking information to drivers.
For large parking lots and garages, signposts have for decades indicated the directions to parking
locations and a count of empty parking spaces (Axhausen et al., 1994). These systems are generally
called Parking Guidance and Information (PGI) systems. The number of empty parking spaces
can easily be obtained from the barriers that count incoming and departing vehicles. For on-street
parking spaces, the acquisition of parking availability information is more difficult and expensive.
Several types of static sensors have been suggested to monitor the availability in every road segment.
However, as such systems are expensive to install and maintain (Xu et al., 2013; Lin et al., 2017),
only a few traffic management authorities deploy this technology, mostly in just a few blocks of
the city.

An emerging alternative is the use of mobile sensors. Smartphones and modern vehicles are
equipped with a variety of sensors that allow the detection of parking-related information. With

1Note that the ratio of parking search traffic and the average search time do not bear a direct relation. For example,
as extreme case, only 1% of the traffic could search for parking for hours, if there is a large amount of through
traffic and there are few parking spaces. Contrary, 50% of the traffic could search for parking, but they may
only spend a few seconds because of a large parking supply in every second road.

13



14 1 Introduction

a large number of these mobile sensors, mobile crowdsensing might cover a complete city at a
satisfactory frequency. Most existing smartphone parking availability applications aim to detect
parking and leaving events. These events are detected either directly from GPS and accelerometer
signals, or indirectly from the transition of detected travel modes or connection build-up between
vehicle and smartphone (e.g. via Bluetooth) (Lin et al., 2017). In addition, there is also the
approach to detect parking search by identification of characteristic movement patterns in the
GPS traces (Weinberger et al., 2017). Dozens of start-ups (e.g. Parknav2, Parkbob3) with such
approaches offer their parking application in the app stores. None of them has reached a wide user
acceptance so far. However, a high user rate might be necessary for good data quality (Lendák
and Farkas, 2016). Recently, larger companies (e.g. TomTom4, Inrix5) have also started to offer
on-street parking data products.

Smart vehicles not only detect their parking and leaving events, but they also have the potential
to scan parking availability in the parking lanes during their regular trips. In research studies,
ultrasonic sensors or cameras were used to continuously observe parking availability at the side
of the vehicle (Mathur et al., 2010; Sivaraman and Trivedi, 2013). With the efforts towards
autonomous vehicles, laser scanners are becoming more popular, but there is little research to
detect parking availability from these sensors (e.g. Thornton et al., 2014). When the vehicles detect
a gap in the parking lane, they could communicate the location and length of the gap to a central
server instance (see also Figure 1.1). This instance collects all detected gaps and compares them
to a parking map, to distinguish between empty parking spaces and no-parking zones. Information
about the parking spaces can then be sent to the navigation systems or smartphone applications
of drivers on the search in the form of dynamic parking maps. Similar concepts were announced
recently from automotive suppliers and car manufacturers (e.g. Robert Bosch GmbH, 2016; Daimler
AG, 2017), but such products are not on the market yet.

Figure 1.1: Concept of vehicular crowdsensing for parking availability. Vehicles scan for gaps in the parking
lane during their regular trips and communicate gap information to a central server instance. The parking
gap information is aggregated there and sent to searching vehicles. The illustration is based on the work by
Robert Bosch GmbH (2016).

Not many researchers have addressed the exploitation of crowdsensed parking data from smart
vehicles so far (Lin et al., 2017). To generate parking information for drivers, knowledge about the
location of parking spaces and the current parking availability is essential. Many cities do not have
detailed maps of parking lanes, or they are outdated. Thus, data-driven methods can be applied
to derive parking maps from crowdsensed parking data (Ge et al., 2013; Coric and Gruteser, 2013).
However, machine learning methods have not yet been applied to improve the quality of parking
maps. Regarding the parking availability, as sensing vehicles do not scan all parking lanes at all
time instants, it is highly relevant to estimate the missing availability information. Research exists

2http://parknav.com/
3http://www.parkbob.com/
4https://automotive.tomtom.com/products-services/connected-services/parking/
5http://inrix.com/products/parking/



1.2 Goals of this thesis 15

only for the case of parking crowdsensing with smartphones where the data input is just parking
and leaving events (Xu et al., 2013), but not scans of a complete road segment. To suggest other
destinations or travel modes to drivers, prediction of the parking availability is also highly relevant.
It is intuitive that the quality of the crowdsensing approach strongly depends on the number of the
sensing vehicles and their spatio-temporal coverage. Thus, it is important to study how the number
of sensing vehicles and their movement patterns influence the information quality. This problem
was addressed only by Mathur et al. (2010) in a simplified evaluation. Finally, the relevance of
this parking information and its quality on the parking search needs further investigation, as only
studies based on simulation environments exist (Tasseron et al., 2016). Thus, there is still a great
need for research in the field of crowdsensing of parking-related information.

1.2 Goals of this thesis

This thesis aims to address the steps for the generation of dynamic parking maps from crowdsens-
ing, from the detection of parked vehicles in parking lanes to the aggregation of parking availability
information and the quality evaluation of the maps. In Figure 1.2, an overview of the parts of
this thesis is provided. For the generation of a parking crowdsensing dataset, 3D point clouds
from a LiDAR mobile mapping system were recorded and processed. In order to also investigate
parking crowdsensing for a large number of sensing vehicles and for a longer period, real-world
data from static parking sensors and GPS-equipped taxis were used to simulate a second parking
crowdsensing dataset. Based on this parking crowdsensing data, the parking legality was derived
and the parking availability was estimated. Finally, both parking information types were combined
into a dynamic parking map.

Crowdsensing 

datasets 

Simulation Measurements 

Parking 

availability 

estimation 

Parking 

legality 

Dynamic  

parking map 

evaluation 

Figure 1.2: Overview of the parts of this thesis, from parking crowdsensing to the generation and evaluation
of the dynamic parking map.
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The thesis is built on the following main research questions:

• How can on-street parking occupancy information be obtained with a LiDAR
mobile mapping system?
A LiDAR mobile mapping system can be used to record precise 3D point clouds of the street
environment. The objective is the formulation of a processing pipeline to automatically
extract parking occupancy information on the roads from these 3D point clouds.

• How can parking legality maps, representing the legality of parking on the
streets, be derived from crowdsensed parking observations?
The locations of parked vehicles are usually a good indicator for the locations of parking
spaces. However, if the parking availability is scarce, drivers also tend to park in illegal
areas. In contrast, some parking locations are less attractive and thus seldom occupied. The
objective of this research question is the derivation of a methodology to learn the parking
legality from crowdsensed parking observations at different times.

• How can parking availability be estimated based on crowdsensed parking avail-
ability information?
Even if many sensors observe the parking availability on the streets, parking is unobserved
in some places at some time instants. Thus, methods are needed to estimate the parking
availability in these cases.

• What is the potential quality of parking crowdsensing with taxis as probe vehi-
cles?
Taxis drive in cities around the clock, using all the roads on the road network. Thus, they
might be suitable as probe vehicles for crowdsensing. The objective of this research question
is the spatio-temporal assessment of the quality of parking availability information from taxis
as crowdsensing sources.

In addition to answering these research questions, the following contributions are made, which are
directly related to the research questions:

• Assessment of spatial and temporal characteristics in parking behavior based on
an extensive dataset from static parking sensors
Parking data from more than 5,000 parking spaces over six weeks were analyzed to extract
basic statistics, as well as spatial and temporal characteristics. After cleaning from irregular
sensor data, the capacity of parking lanes and the prevalence of different parking occupancy
levels and their periodicity was evaluated. Moreover, the existence of spatial and temporal
correlations in parking occupancy behavior was investigated. Clustering of parking lanes was
performed to identify areas with similar temporal parking characteristics.

• Examination of the spatio-temporal movement patterns of a large fleet of taxis
A taxi trajectory dataset from more than 500 taxis over nearly one month was preprocessed
and matched to the road network. Their spatio-temporal coverage was evaluated to examine
their suitability for parking crowdsensing.

• Simulation of parking crowdsensing by taxis based on real-world parking and
taxi trajectory datasets
Assuming that taxis were equipped with sensors to detect parking availability while driving,
a parking crowdsensing dataset was simulated from the parking dataset based on typical taxi
activity behavior. In particular, the number of lanes in the road, one-way roads, and the
spatio-temporal movement characteristics were considered. As a comparison, simple models
for taxi and smartphone crowdsensing were developed based on a constant observation rate,
without consideration of spatio-temporal characteristics.
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• Evaluation of the required fleet size of probe vehicles for a sound parking crowd-
sensing
When evaluating the quality of parking crowdsensing with taxis as probe vehicles, different
fleet sizes of probe vehicles were considered. That way, the required number of probe vehicles
was determined depending on the quality requirements.

• Relevance of different on-street parking information for the reduction of parking
search
Knowledge about the parking capacity of roads and about the parking availability from dif-
ferent sources helps searching drivers. Different types of parking information were evaluated
in an exemplary scenario for parking search to identify their relevance on the search.

With these contributions, this thesis presents a holistic approach to generate dynamic parking
maps from crowdsensing. In addition, thorough analyses of the datasets and the obtained results
are presented.

1.3 Outline

This thesis is structured as follows: as parking is a highly dynamic phenomenon that can be
represented in maps, basic knowledge about dynamic maps is described, with a focus on navigation
maps, their updates, and the Navigation Data Standard (NDS) in Chapter 2. For the processing
of large datasets of parking information, methods from the field of data mining are used. Thus,
Chapter 2 also contains fundamentals about data mining and the relevant methods, including a
description of the evaluation measures used in this thesis. Chapter 3 outlines the related work
in the context of on-street parking and mobile crowdsensing. Based on this state of the art, the
research gaps that are addressed in this thesis are described.

The main body of the thesis is divided into two parts: in the first part, a self-recorded dataset
from a LiDAR mobile mapping system was used to detect parked vehicles on the street (Chapter
4) and to learn the parking legality from vehicle detections recorded at multiple time instants
over a complete day (Chapter 5). For the second part, long-term measurements from parking
sensors and GPS sensors in the city of San Francisco (US) were exploited to simulate a much
larger crowdsensing dataset. The parking data stems from the SFpark project, which provided
availability information from more than 5,000 static parking sensors (San Francisco Municipal
Transportation Agency, 2014). The taxi GPS trajectories were recorded in a socio-economic project
called Cabspotting (Piorkowski et al., 2009). The processing and analysis of these raw datasets,
as well as the simulation of the crowdsensing datasets are described in Chapter 6. Based on the
simulated crowdsensing data, multiple approaches to estimate parking availability are investigated
in Chapter 7. Finally, the benefits of different parking information are evaluated based on a model
scenario in Chapter 8.

In the last chapter, the answers to the research questions are given and an overall conclusion is
drawn. Furthermore, the relationship to other dynamic phenomena in a street environment and
the applicability of the presented methods are described. Finally, future research directions based
on the results presented are outlined.





2 Background on digital maps and data mining

In this chapter, the basic concepts and techniques relevant for this thesis are presented. First, in
Section 2.1, the main aspects of digital maps related to navigation are addressed. In particular,
navigation maps and their dynamics, the open-source map platform OpenStreetMap, and the
upcoming Navigation Data Standard (NDS) are described. In Section 2.2, the basic principles
and terminology of data mining are addressed. Relevant data mining algorithms are explained in
detail.

2.1 Digital maps

Digital maps are the foundation for several applications in the field of vehicle navigation and traffic
management. Routing algorithms use navigation maps (see Section 2.1.1) to provide route sugges-
tions to drivers. Additional attributes such as Points of Interest (POI) or parking information can
be used to inform the driver or can also be included in the routing calculation. An open source
map including road information is OpenStreetMap, which is generated voluntarily by many users,
as described in Section 2.1.2. This source is used in this thesis to extract road information for
the investigation sites. Finally, the Navigation Data Standard (NDS) is a map standard currently
under development by a large consortium of car manufacturers and automotive suppliers. This
standard is described in Section 2.1.3 with a focus on the potential integration of dynamic parking
information.

The term dynamic map is not well-defined in the literature and different aspects are related to this
name. Within this thesis, dynamic maps are digital maps that are continuously updated with new
and near-real-time information. Similarly, dynamic maps are also used in robotics for simultaneous
localization and mapping tasks in dynamic environments (e.g. Wolf and Sukhatme, 2005). The
term is also used for maps that illustrate locations of dynamic behavior and its temporal variations,
such as the dynamic pedestrian map of Schlichting and Brenner (2016). In addition, the term is
used in the domain of map visualizations, where the map illustration continuously changes (e.g.
Hu et al., 2012).

2.1.1 Navigation maps and map dynamics

Navigation maps are a digital representation of the real road network in the form of a routable
graph and additional information related to the nodes and edges of the graph. Typically, an edge
represents a road segment between two intersections, which are represented by nodes (Kleine-
Besten et al., 2015). Additional information includes road geometries, street names, road classes,
zip codes, speed limits, turn restrictions, and further types of background information (Bill, 2016).
To compute a route from start to destination, a shortest path is searched for in the graph. Edge
costs of the graph may be based on length, travel time, and/or road classes (Kleine-Besten et al.,
2015). The main commercial providers of navigation maps are TomTom1 and HERE2. However,

1https://www.tomtom.com/
2https://here.com/
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more and more navigation solutions are based on crowdsourced map data from OpenStreetMap
(e.g. Skobbler3).

Modern navigation maps are not only used for route guidance and driver information, but also
for driving assistance systems. The electronic horizon provides information such as road curvature
or hazard spots on the road ahead, which can be integrated into warning systems (Kleine-Besten
et al., 2015). Map information can also support the sensor perception of the environment and
enhance vehicle localization (Matthaei et al., 2015).

According to the book chapter by Kleine-Besten et al. (2015), changes in the environment lead to
errors in navigation maps. Thus, they must be updated by the providers at regular intervals. For
example, TomTom has provided a map update once per quarter year since 2008 (TomTom, 2017).
Traditionally, these updates are sold to customers, who transfer the updates to the navigation
device with a storage medium. In recent years, updates are also available via an online connection.
To avoid large data traffic for updating maps that cover a country or even a continent, regular local
updates in the area of residence or of regular trips are proposed. Consequently, the navigation
maps for the vehicle might become more personalized. In the future, a personalized map might
learn the preferences of drivers and contain user-group-specific map content (e.g. support for elderly
people).

Near-real-time information such as traffic information is broadcast via non-audible very high fre-
quency (VHF) radio signals (Radio Data System - Traffic Message Channel (RDS-TMC), Schmidt
et al., 2009; Kleine-Besten et al., 2015) and mobile communication. A TMC message consists of
a predefined event code, location code, and an optional expiration time. The ‘Event Code List’
contains more than 1400 event types about traffic-related information such as traffic jams, con-
struction sites, or accidents. The ‘Location Code List’ encodes relevant locations such as highway
sections, highway ramps, intersections, and parking lots in a 16 bit code (up to 65,536 entries
possible). For Germany, there are about 40,000 locations listed. This standard was tailored for
communication with low data transfer rates. An enhancement is the TPEG (Transport Proto-
col Experts Group) coding standard to transfer more detailed information about traffic, travel,
weather, public transportation, parking, and more (Schmidt et al., 2009). TPEG is more flexi-
ble and scalable than TMC. It is independent of the method of communication and the type of
navigation map because of standardized location references such as AGORA-C (Navigation Data
Standard (NDS) e.V., 2016). A traffic message expires if either the expiration time is reached or
a delete message is broadcast.

While offline route calculations were once the standard in navigation systems, modern communi-
cation technologies allow online or hybrid navigation (Kleine-Besten et al., 2015). In these cases,
parts of or all routing calculations are performed on a backend server, and the result is transferred
to the client in the car. That way, more complex algorithms can be used and less information
needs to be processed and stored on the client side. However, these solutions are dependent on a
continuous network connection. In addition, vehicle sensor data can be transferred to the backend
server, where information is collected and aggregated from many vehicles (e.g. extraction of traffic
information from floating car data) (Klanner and Ruhhammer, 2015).

3https://www.skobbler.com/
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2.1.2 OpenStreetMap

OpenStreetMap4 is a project that provides a free world map, currently at a very detailed level in
many places worldwide. It helps people in regions where map data is proprietary, restricted, or
not available in such detailed granularity. More than four million users contributed about four
billion nodes to the map up to the end of 2017 (OpenStreetMap, 2017b). The integrated data
stems from GPS devices, aerial photography, and manual annotations, as well as data imports
from public institutions. While the data quality is high in areas with many contributors, it is still
very heterogeneous, depending on the region.

In the context of this thesis, mainly the road network from OpenStreetMap is used. Several
evaluations about the coverage of taxis and parking sensing are based on the road class as defined
by OpenStreetMap. This definition is rather fuzzy and may differ from the road class definitions
of other providers. Moreover, contributors might not follow the official description. The most
relevant road class keys are, in descending priority (OpenStreetMap, 2017a):

• Motorway: Highest road class with two or more lanes in both directions and on- and
off-ramps.

• Trunk: Most important roads that are not motorways, often with on- and off-ramps.

• Primary: Main (often multi-lane) roads in cities / links between larger towns.

• Secondary: Medium-large roads in cities / roads that link towns.

• Tertiary: Small roads in cities with low to moderate traffic / roads that link smaller towns
and villages.

• Unclassified: Least important road class that serves a purpose other than access to proper-
ties. Note that ‘unclassified’ is a defined class and does not stand for a missing classification.

• Residential: Serve access to housing, not meant for through traffic.

• Service: Access roads to or within private area (e.g. car park or industrial estate).

2.1.3 Navigation Data Standard (NDS)

The Navigation Data Standard (NDS) is a registered association of industry partners that aims
to develop a standard for navigation maps. Numerous car manufacturers, car suppliers, map
data providers, and telematics service providers are members of this association. The following
descriptions of NDS are mainly based on the book chapter by Behrens et al. (2015).

The goals of the NDS association are the worldwide use of their map standard, the separation
of navigation software and data, and the definition of procedures for update and extension of
navigation data. The standardization is an ongoing process. The first products based on NDS
have been available on the market since 2013.

The hierarchy for navigation data in the NDS map format is the following: the navigation data
splits into regions (e.g. different countries). For each region, there are several building blocks for
different purposes. They are the main organization units that can be exchanged and adapted.
Each building block finally divides into small spatial parts called tiles. Across all building blocks,
data is stored in a database based on SQLite, which allows efficient incremental updates and search
across all building blocks.

4https://www.openstreetmap.org/
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There are 14 building blocks that are specific for each region:

• Overall Building Block: contains meta data and region-specific information that are
accessible for all other building blocks.

• Routing Building Block: consists of the road network plus attributes such as speed limit,
road class, curvature, and road width.

• Traffic Information Building Block: allows the use of traffic information from different
standards. It contains the reference tables for TMC and TPEG.

• POI Building Blocks: contains location information (Points of Interest) plus additional
attributes such as phone number or opening hours. They can be point, line, or area infor-
mation. There are two building blocks for integrated (referenced to an edge or node) and
not-integrated POIs.

• Naming Building Block: contains the names of elements in the Routing and Basic Map
Display Building Blocks.

• Phonetic/Speech Building Block: contains the phonetic transcriptions and recorded
speech patterns for voice announcements.

• Index Structure Building Blocks: consists of the SQLite Index Building Block for a fast
search for destination input and the Free Text Search Building Block, which contains an
index for a free text search across all contents.

• Basic Map Display Building Block: responsible for the main data needed for map
display: points (e.g. city center), lines (e.g. street geometries), areas (e.g. land use), icons,
and 2.5D city models.

• Advanced Visualization Building Blocks: consists of the Digital Terrain Model Building
Block, the Orthoimages Building Block, the 3D Objects Building Block, and the Junction
View Building Block.

Dynamics in the environment are handled in three ways in the NDS standard: map updates, daily
patterns, and real-time information messages. Infrastructure changes, such as the opening of a new
road or changes in the turn restrictions, are recorded by map providers and released in regular map
updates (see also Subsection 2.1.1). Phenomena with typical and periodic changes such as travel
speeds can also be stored in the map. In the case of travel speeds, the typical daily pattern (speed
profiles) are stored relative to the free flow speeds. To reduce data storage, speed profiles are often
not stored for each road segment individually, but some representative speed profiles are stored
and all road segments are referenced to them (Navigation Data Standard (NDS) e.V., 2016). For
real-time and temporary information, the NDS standard supports the TMC and TPEG protocols
(described in Subsection 2.1.1) in the Traffic Information Building Block, but other NDS-compliant
protocols can also be integrated as proprietary extensions (Navigation Data Standard (NDS) e.V.,
2016).

Parking information can be included in several building blocks. Large parking lots and garages
are contained in the POI Building Block with the POI standard category ‘Parking’. On-street
parking, also called lane-level parking, is included in the Routing Building Block via a flexible
attribute ‘Parking’. This building block also defines the boundaries of a larger parking area and
the entrance and exit to parking lots and garages. Similarly to the speed profiles, the parking
occupancy daily pattern can be stored offline to represent the typical parking occupancy level
(Richter et al., 2014). Finally, the TMC and TPEG protocols can be used to transmit real-
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time parking information to navigation systems and smartphone applications using the Traffic
Information Building Block.

2.2 Data mining

In this section, the role of data mining in the Knowledge Discovery in Databases (KDD) process is
described and the main aspects of data mining are discussed. In addition, data mining approaches
used in this thesis are explained in detail.

2.2.1 Knowledge Discovery in Databases (KDD) process

Measurement data from sensors can be processed to extract meaningful knowledge, such as the
location of parking spaces or the prediction of parking availability addressed within this thesis.
This extraction of knowledge refers to the domain of Knowledge Discovery in Databases (KDD).
“KDD is the organized process of identifying valid, novel, useful, and understandable patterns
from large and complex data sets” (Maimon and Rokach, 2005). It consists of several steps, out of
which data mining is the core element. The steps are performed in consecutive order. However, it
is a somewhat iterative process, with jumps back to one of the previous steps after gaining some
additional knowledge.

Raw data 
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Preprocessed  

data 

Transformed 

data 

Patterns 

Knowledge 

Preprocessing 

Interpretation / 

Evaluation 

Data Mining 

Transformation 

Selection 

Figure 2.1: Steps of the Knowledge Discovery in Databases (KDD) process. The illustration is based on
Fayyad et al. (1996).

The KDD process consists of the following steps (see also Figure 2.1) (Maimon and Rokach, 2005):

0. Domain understanding and Goal definition: Before processing the data, it is necessary
to gain a profound understanding of the application domain. Without this understanding,
it is difficult to make the right decisions about the data capture, processing and algorithms.
Consequently, misinterpretations are a great risk. In addition, the goals of the discovery
process need to be defined. Of course, re-definition of the goals might become necessary
after some of the following steps.

1. Selection: Within the large amount of data often involved in the KDD process, it is crucial
to select the relevant information. Certainly, more information has the potential to produce
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better results, but this also comes with additional efforts and computational costs. In addi-
tion, further attributes and other data might be identified, which still need to be collected
before the next steps.

2. Data preprocessing and Cleaning: Datasets are often heterogeneously formatted and
contain irregular values. In this step, they are homogenized and cleaned of implausible,
duplicate, or missing values. The data cleaning (also called cleansing) can be divided into
three phases (Maletic and Marcus, 2005): 1) definition and determination of error types,
2) search and identification of error instances, and 3) correction of the errors identified. To
identify the errors, statistical, clustering, pattern-based, and association rule methods can
be applied. Several approaches such as interpolation or imputing to replace missing values
also exist.

3. Transformation: The transformation step is needed to compute the input of the data
mining algorithms. On the one hand, additional attributes can be calculated by aggregation
of raw data or combination of attributes. On the other hand, the dimension of the dataset
can be reduced (e.g. by a Principal Component Analysis (PCA)) to decrease the complexity
of the desired model. Moreover, the dataset can be transformed to another coordinate system
(e.g. polar coordinates) to facilitate the computations.

4. Data mining: Data mining describes algorithms that explore the data, develop the model,
and discover unknown patterns. This step starts with the identification of the problem type.
There are several classes of problems and related data mining tasks, such as clustering and
classification. For every data mining task, there is a bunch of algorithms, each with its
advantages and disadvantages. There is no superior algorithm in general, but the quality of
the result is also dependent on the type of dataset (see e.g. Caruana and Niculescu-Mizil,
2006). In addition, other aspects, such as run time or interpretability of the model can
be relevant criteria for the algorithm choice. Finally, the chosen algorithm is applied to
the data. It is often repeated multiple times to test for different parameter settings or for
different initial random values.

5. Evaluation and Interpretation: In the last step, the knowledge, which was extracted
from the data with some data mining algorithms, needs to be evaluated and interpreted. In
particular, it is compared with the goals set in the beginning and set into context with the
decisions in the previous steps.

A highly related field to KDD and data mining is machine learning. In machine learning, the
focus is on computer programs that perform certain tasks and whose performance improves with
experience (Mitchell, 1997). However, there are no clear lines between those domains, since the
terms are not well-defined regarding methods and type of problem (Maimon and Rokach, 2005).

2.2.2 Taxonomy of data mining methods

According to Maimon and Rokach (2005), data mining methods can be divided into verification
and discovery methods (see also Figure 2.2). Verification relates to the evaluation of predefined
hypotheses which are tested with statistical methods. With discovery methods, new models and
patterns are identified from data. Among these, prediction methods learn a model from some
training data and then apply this model to some new data. They belong to the class of supervised
learning. In particular, classification (Subsection 2.2.3) and regression are prominent examples
for this type of methods. In addition to prediction methods, there is also the class of description
methods. Those methods interpret data to reveal the underlying patterns. Methods that group
samples without labeled training data are also called unsupervised. Clustering (Subsection 2.2.4)
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Figure 2.2: Taxonomy of data mining methods. The illustration is based on (Maimon and Rokach, 2005).

and outlier detection methods are two prominent examples of unsupervised learning approaches.
In addition, there are some further types of description methods such as visualization or sum-
marization methods. The field of time series analysis (Subsection 2.2.5) is a special case of data
mining working with sequences of data points related to specific times.

In supervised learning, the choice of the right model complexity is a main challenge, referred to as
the bias-variance tradeoff (Geurts, 2005). Bias relates to the error between a chosen model and
the underlying problem (Bishop, 2006):

bias(x) = ED (y(x,D)− h(x)) (2.1)

where h(x) is the optimal prediction for an input vector x, ED is the expectation value over all
possible (training) datasets D, and y(x,D) is the model output for input value x and dataset D.
As the expectation value is computed over all datasets, the bias is independent from the particular
training data. The more complex a model, the better the problem is described and the lower the
bias. On the contrary, variance is the variability of models for different training datasets (Bishop,
2006):

variance(x) = ED

(

[y(x,D)− ED(y(x,D))]2
)

(2.2)

It increases with model complexity. Thus, a trade-off needs to be found between both measures.
The choice of an overly complex model that learns too many details is called overfitting and usually
comes with a low bias and a high variance. The error of the model is low in the training data,
but high for test data. An overly simple model has a high bias and a low variance. This case
is called underfitting and comes with high errors for both training and test dataset. In addition
to reducing the model complexity, the variance can also be reduced by increasing the size of the
training dataset, since additional data points lead to additional constraints for the model, and thus
to less variability.

2.2.3 Classification

Classification methods are an essential part of supervised learning. In classification, a classifier
takes a set of training samples to learn a classification model. Each sample consists of multiple
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features (independent variables) and a class label (dependent variable). Features are either nu-
meric, categorical, or ordinal. The class label assigns each sample to one class out of a set of
predefined classes. The training of a classifier tries to find a model that describes the relation
between features and class label. The learned model is able to predict the class of a new sample
based on the features.

There are several prominent types of classifiers such as Artificial Neural Networks (ANNs), Support
Vector Machines (SVMs), and decision tree algorithms. Artificial Neural Networks are inspired
by the human brain and consist of a network of many neurons. These neurons combine signals
together with an activation function to a new signal. Support Vector Machines transfer the feature
vectors to a higher-dimensional space and search for a hyper-plane that separates the classes with
the largest margin from the support vectors. The Finally, decision tree algorithms automatically
build trees of relational operations following some optimization criteria.

The combination of many weak classifiers is also popular to reduce variance and the risk of over-
fitting (see Rokach, 2005, for more details). So-called ensemble methods vary the classifiers by
bagging, boosting, and/or stacking and combine them into a final result. Bagging, also called boot-
strap aggregating, draws random subsets of the training dataset with replacement. A classifier is
trained for each of the subsets. The modus of the individual classification results is chosen for the
final class. Random forests are bagged decision trees with random feature subset choices in every
split. Boosting algorithms iteratively adapt weights of misclassified samples, in order to force the
algorithm to also learn those cases. Again, the results of the iterations are combined in the end.
Finally, stacking runs multiple different classification algorithms and combines their results with
another classification method such as logistic regression.

For the classification tasks in this thesis, after examining different classifiers, random forests were
used, because they provide robust and competitive results (Caruana and Niculescu-Mizil, 2006).
In addition, solid results can already be achieved with low efforts of parameter tuning, compared
with other popular classifiers (Hastie et al., 2009). Decision trees and random forests are explained
in more detail in the following.

Decision trees
Following the book chapter by Rokach and Maimon (2005b), a decision tree is a classifier that
recursively divides the instance space by decisions. The decisions, based on relational operations,
build up a directed tree from a start node (root) over several internal nodes to the leaves, which
contain the class label. Each decision at a node represents a split in the tree and a split of the
instance space into two or more parts. A simple example is illustrated in Figure 2.3 for the question
‘Do I need to wear a jacket?’. In this case, the instance space has the numeric dimensions (features)
temperature and rainfall and the binary dimension ‘windy’. The possible output classes are ‘yes’
and ‘no’. Starting from the root, one or multiple decisions on the features are necessary until a
final decision is made. For example, if the temperature is over 20 degrees Celsius and there is no
rain and no wind, then the classification result is ‘no’ (I do not need to wear my jacket).

Decision tree learning algorithms build a decision tree from a training dataset. As optimal decision
tree algorithms are only feasible for small problems, because of their computational complexity,
heuristics are required. There are several top-down, greedy decision tree algorithms such as ID3,
C4.5 and CART. The following explanations are focused on the CART algorithm.

The learning of a decision tree consists of a growing and an optional pruning phase. In the growing
phase, the locally optimal splitting is determined from the training data at every node. For that,
all possible splits for every feature are evaluated based on an impurity measure. The split with the
highest impurity reduction is chosen. Several impurity measures were proposed in the literature,
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Figure 2.3: Example for a decision tree for the question ‘Do I need to wear a jacket?’. The considered
features are temperature, rainfall, and wind.

such as misclassification error, Gini index, and cross-entropy (Hastie et al., 2009). For example,
the Gini index is defined as (Hastie et al., 2009):

Gini =

K
∑

k=1

pk(1− pk) (2.3)

where K is the number of classes and pk is the proportion of class k in the considered node of the
decision tree:

pk =
Nk

N
(2.4)

with Nk being the number of samples that belong to class k and N the total number of samples
in the node. The higher the Gini index, the higher is the purity of the class distribution.

This way, the tree is grown until there is no longer any impurity reduction for any split, or a
stopping criterion is fulfilled. Stopping criteria can be a maximal tree depth, a minimal number of
samples in every node, or all samples in the nodes belonging to the same class. If the tree growing
is stopped too early, the decision tree underfits the problem. On the contrary, a large tree is likely
to run into overfitting. Instead of searching for the right size of the tree, there are also approaches
to build an overfitting decision tree and then apply some pruning methods. Pruning means the
reduction of a decision tree by removing nodes that do not improve the generalization accuracy.

Random forests
As deeply-grown decision trees have a low bias but a high variance, random forests combine many
decision trees to reduce the total variance (Breiman, 2001; Hastie et al., 2009). A majority vote
determines the final class from the results of the individual decision trees. Two main techniques
are used to diversify the decision trees. Firstly, a subset of samples is randomly chosen for every
decision tree by a bagging approach. Secondly, the correlation between the trees is reduced by
random selection of features in every step of the tree-growing process. At every split, a subset of
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all features is randomly chosen as split candidates. Breiman (2001) recommends a subset size of√
f , with f being the number of features. Since this additional feature subsampling reduces the

correlation between the trees, the variance can be further reduced, compared with bagging (Hastie
et al., 2009).

According to Hastie et al. (2009), random forests have the advantage that they provide a quality
assessment similar to a cross-validation already in the training phase. As not all samples are used
for each tree, the unused samples, called out-of-bag (OOB) samples, can be evaluated. That way,
the training phase can be stopped when the OOB error converges or reaches a threshold value.
In addition, OOB samples help to estimate feature importance. To compute the importance
of a feature, the values of this feature are randomly permuted over the OOB samples and the
classification accuracy is determined for these samples. The decrease in classification accuracy by
the permutation of the values is averaged over all trees and indicates the feature importance. If
there is a strong accuracy decrease, the feature has a high importance.

The risk of overfitting for random forests is often discussed, for example by Hastie et al. (2009).
They state that random forests do not overfit for an increasing number of trees, as the random
forest estimate converges to its expectation value. However, decision trees that grow too deep
might cause overfitting. Controlling the tree depth can lead to small improvements. Nevertheless,
a relevant overfitting is found only seldom. Thus, the improvement must be balanced against the
efforts of tuning an additional parameter.

Classification evaluation
Classification results are evaluated based on a comparison between the predicted and the actual
classes. Four cases are distinguished: true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). In the case of a binary classification with the classes A and B, and
with A being the ‘positive’ class, a true positive is a sample for which class A is predicted and is
the correct class. A false positive is a sample for which class A is predicted, but class B would be
correct. A true negative is a sample for which class B is correctly predicted. A false negative is a
sample for which class B is predicted, but class A would be correct. The counts of these cases are
usually presented in a confusion matrix (see Table 2.1).

Table 2.1: Example for a confusion matrix.

Actual Class

Positive Negative

Predicted Positive True Positive False Positive

Class Negative False Negative True Negative

Based on these counts, additional measures can be calculated:

• False positive rate:

FPR =
FP

TN+ FP
(2.5)

• True positive rate / Recall:

TPR = Re =
TP

TP + FN
(2.6)
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• Precision:

Pre =
TP

TP + FP
(2.7)

• Accuracy:

Acc =
TP + TN

TP + TN+ FP + FN
(2.8)

• F-measure (also called F1 score):

F1 =
2 · TP

2 · TP + FP + FN
(2.9)

If a binary classifier returns a classification score in addition to the class label, the decision threshold
for the positive class can be varied. That way, different combinations of true positive rate and
false positive rate are obtained. A curve with all possible combinations of TPR and FPR is called
a Receiver Operating Characteristic (ROC) curve (Davis and Goadrich, 2006). Examples for ROC
curves are shown in Figure 2.4. If both classes have equal numbers of samples, a random classifier
achieves a straight line from (0,0) to (1,1) (dotted red line in the figure). A perfect classifier
already reaches TPR=1 at FPR=0 (dashed yellow line). Typical ROC curves are monotonically
increasing, with the curve placed between the random and the perfect classifier. The area under
the curve (AUC) is a popular quality measure to evaluate the ROC curve. The larger the area
under the curve, the better the classification result. It can be interpreted as the probability that a
randomly chosen positive sample gets a higher classification score than a randomly chosen negative
sample.
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Figure 2.4: ROC curves for an example classifier, a random classifier, and a perfect classifier.

For highly imbalanced datasets, where, for example, the negative class has far more samples than
the positive class, quality measures based on TN such as accuracy and FPR do not provide accurate
quality information about the classification result (He and Garcia, 2009). It is recommended
instead to use precision, recall, and the resulting Precision-Recall (PR) curves. For these curves,
the area under the Precision-Recall curve (AUPR) can also be used as quality measure. Each point
of a PR curve has a corresponding point on the ROC curve. When comparing two classifiers, the
one with the superior ROC curve also has the better PR curve. However, optimizing the area under
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the ROC curve does not necessarily optimize the area under the PR curve (Davis and Goadrich,
2006).

Following the explanations by Bishop (2006), in order to measure the generalization performance,
a dataset is divided into two subsets: training and test data. The training data is used to learn
the classifier. Evaluating the classifier on the test data gives the generalization quality of the
approach. If the test dataset is evaluated many times to tune the parameters of the classifier, it
is recommended to divide the dataset into three subsets (training, validation, and test dataset) to
avoid overfitting of the test data. In this case, the classifier is trained with the training dataset for
different model parameters and evaluated with the validation dataset. The parameters with the
best quality on the validation dataset are then used on the unseen test dataset to determine the
generalization quality.

For small datasets, it is inadvisable to use only a part of the dataset for training. The test dataset
should also be sufficiently large for a representative result. To solve this dilemma, the dataset can
be divided into k subsets. k−1 subsets are used for training (or k−2 subsets if a validation subset
is necessary) and the remaining subset is used for testing. This procedure is repeated k times so
that each subset was the test dataset in one iteration. The final result is then aggregated over
all iterations. This approach is called cross-validation. For very small datasets, each subset could
contain just one sample, called leave-one-out cross-validation. A drawback of this approach is the
strongly increased computation time.

2.2.4 Clustering

Clustering is an unsupervised learning task with the goal of identifying groups (clusters) of similar
samples in the dataset (Bishop, 2006). According to the explanations by Rokach and Maimon
(2005a), the similarity of sample pairs is described by a similarity measure such as cosine measure
or Pearson correlation, or by a distance measure (dissimilarity) such as the Euclidean distance
or the more general Minkowski metric. Valid similarity (distance) measures s(xi,xj) need to be
symmetric and reach the maximum (minimum) value for identical samples xi = xj . Clustering
methods are often based on hierarchical and partitional approaches, but there are also density-
based, model-based and grid-based approaches.

In the following, the K-means clustering (partitional clustering) and hierarchical clustering are
explained in more detail as they are used in the thesis. In addition, two cluster validation measures
are explained, which are used to describe the quality of the clustering result and to determine the
suitable number of clusters.

K-means clustering
K-means is a basic and well-known partitional clustering algorithm. The number of clusters K
must be specified in advance. All samples are assigned to one of the K clusters with the goal to
minimize the cost function (Bishop, 2006):

J =

N
∑

n=1

K
∑

k=1

rnk ‖xn − µk‖2 (2.10)

where J is the cost value, N the number of samples xn in the dataset, µk are the prototypes of
the K clusters, ‖xn − µk‖ is the Euclidean distance between sample xn and prototype µk, and rnk
are binary values for the assignment of a sample xn to a cluster k. That means rnk = 1 if sample
xn is assigned to cluster k and rnj = 0 for all other values of j (j 6= k). Thus, the cost function
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is minimized if the prototypes µk are chosen such that the distances ‖xn − µk‖ are smallest for all
assigned samples xn.

First, initial values are defined for the prototypes µk of the K clusters. Then, the minimization of
the cost function happens iteratively in two steps (Bishop, 2006) (see Figure 2.5 for an example):

1. Assignment of samples to cluster prototypes: Each sample has to be assigned to one
of the clusters so that the cost function is minimized for the given prototypes. This is the
case if every sample is assigned to the nearest prototype. The assignment values rnk are
updated accordingly.

2. Re-computation of cluster prototypes: The cluster prototypes are computed based on
the new sample assignments. The cost function is minimized if the prototypes are placed in
the center of the assigned samples, corresponding to their mean value:

µk =

∑

n rnkxn
∑

n rnk
(2.11)

Both steps are iterated, either until a maximal number of iterations is reached or the algorithm
converges and there is no longer any change in an iteration. Since every iteration reduces the cost
function, the algorithm converges to a minimum. However, it might end up in a local instead of
the global minimum, depending on the start values of the prototypes (see Figures 2.5e and 2.5f).
Therefore, repeating the clustering multiple times for different start values is recommended. In
addition, instead of choosing the start values completely randomly, they can be selected as the
centers of random subsets of the dataset. To avoid a strong influence of outliers on the prototypes
by the mean calculation, the K-medoids algorithm was proposed, which allows other distance
functions and thus the computation of the medoid instead of the mean.

Hierarchical clustering
Following the book chapter by Rokach and Maimon (2005a), in hierarchical clustering, either small
clusters are recursively merged to larger clusters (agglomerative), or large clusters are recursively
divided into smaller clusters (divisive). The agglomerative hierarchical clustering starts with all
samples being their own clusters. In every merge step, the clusters with the smallest cluster distance
are combined into a new cluster. The merging is repeated until the clustering requirements are
reached, or only one large cluster remains. Analogously, the divisive hierarchical clustering starts
with one cluster that contains all samples. Clusters are divided into new clusters based on the
cluster distance measure. The recursive splitting or merging leads to a tree of clusters called
dendrogram. The dendrogram shows the hierarchical grouping of clusters and the similarity level
of the groupings. An example is shown in Figure 2.6. Cutting the dendrogram at any desired
similarity level or number of clusters leads to the clustering result.

Multiple cluster distance measures exist that describe the dissimilarity of two clusters (Rokach and
Maimon, 2005a):

• Single-link clustering: The distance between two clusters corresponds to the minimal
distance between any member of one cluster and any member of the other cluster. Single-
link clustering is most versatile in the shape of the clusters. However, a few samples can
mistakenly link two clusters (‘chaining effect’).

• Complete-link clustering: The distance between two clusters corresponds to themaximal
distance between any member of one cluster and any member of the other cluster. Complete-
link clustering leads to more compact results, but is less versatile.
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Figure 2.5: Illustration of the steps in the k-means algorithm: (a) distribution of samples (green dots)
and initial prototypes (red/blue crosses) before clustering, (b) first step: assignment of samples to cluster
prototypes, (c) second step: re-computation of cluster prototypes, (d) second iteration of first step, (e) final
clustering result, (f) alternative result if initial prototypes are chosen differently and the algorithm converges
to a local minimum. The illustration is based on Bishop (2006).
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Figure 2.6: Example for a dendrogram generated with hierarchical clustering.

• Average-link clustering: The distance between two clusters corresponds to the average
distance between any member of one cluster and any member of the other cluster. Average-
link clustering may lead to wrong cluster splits for elongated clusters.

Hierarchical clustering algorithms have the advantage of generating many nested cluster assign-
ments that can be represented in the dendrogram. However, their time complexity is at least
quadratic with the number of hierarchy steps (which increase non-linearly with the number of
samples).

Cluster validation techniques
Several measures were defined to indicate the quality of a clustering result and the most appropriate
number of clusters. In this thesis, the Silhouette value and the Davies-Bouldin-Index were used.

The Silhouette value is a measure for one sample Xi belonging to a cluster A in a clustering
result (Rousseeuw, 1987). It measures the difference between the average distance (dissimilarity)
a(i) of the sample and all other members of cluster A and the average distance b(i) of the sample
to the members of the most similar cluster, normalized by the maximum of both values a(i) and
b(i):

s(i) =
b(i)− a(i)

max(a(i),b(i))
(2.12)

The average distance a(i) of the sample from all other cluster members is computed as:

a(i) =
1

NA − 1

NA
∑

j=1,i 6=j

d(Xi,Xj) (2.13)

where NA is the number of samples in cluster A, Xj are the members of cluster A, and d(Xi,Xj)
is the distance between the samples Xi and Xj . If the sample i is the only member of its cluster,
a(i) cannot be computed. Thus, s(i) is set equal to zero in this case.
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The most similar cluster is determined by the average dissimilarity of the sample i from all members
of a potential cluster C:

b(i) = minC 6=Ad(i,C) = minC 6=A
1

NC

NC
∑

j=1

d(Xi,Xj) (2.14)

To evaluate the clustering result, the average of the Silhouette values for all samples is computed.
The higher the final value, the better the clustering result.

The Davies-Bouldin-Index R̄ describes the average similarity of all clusters with their most
similar clusters (Davies and Bouldin, 1979):

R̄ =
1

N

N
∑

i=1

Ri (2.15)

where N is the number of clusters and Ri is the similarity value of a cluster i with its most similar
cluster:

Ri = maxj 6=iRi,j (2.16)

The similarity value Ri,j of two clusters i and j is the ratio between the sum of dispersions Si+Sj

and the Minkowski distance of the cluster centroids Mi,j .

Ri,j =
Si + Sj

Mi,j
(2.17)

The dispersion Si describes the deviation of the cluster samples Xj from their cluster centroid Ci.
‖Xj − Ci‖ is the Euclidean distance, Ni is the number of samples in cluster i and q is the order of
the momentum (q=1 simply corresponds to the average Euclidean distance, q=2 to the standard
deviation of the distance):

Si = (
1

Ni

Ni
∑

j=1

‖Xj − Ci‖q)1/q (2.18)

Finally, the Minkowski distance is

Mi,j = (
D
∑

k=1

|ck,i − ck,j |p)1/p (2.19)

where D is the number of dimensions in the dataset, ck,i is the k-th element of the cluster centroid
vector Ci, and p is the order of the Minkowski distance. Mi,j describes the distance of the clusters,
while the dispersions Si +Sj measure the compactness of the clusters themselves. A smaller value
of the Davies-Bouldin Index R̄ means a better clustering result, since the dispersions of the clusters
are small, when compared with the Minkowski distance between the clusters.

2.2.5 Time series analysis

A sequence of observations over time is called time series (Makridakis et al., 2008). In this thesis,
mainly parking information such as the number or rate of occupied parking spaces over time is
considered as time series. Moreover, trajectories can be seen as time series with measurements of
the coordinates at subsequent time instants.
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Autocorrelation function
To further explore a time series and to identify the periodicity of the time series, the autocorrelation
function can be used. The autocorrelation is based on the covariance, which describes the similarity
between two time series X and Y (Makridakis et al., 2008):

Cov(X,Y ) =
1

N − 1

N
∑

t=1

(Xt − X̄)(Yt − Ȳ ) (2.20)

where N is the length of the time series, Xt and Yt the values of the time series at time step t,
and X̄ and Ȳ are the mean values of the time series. The (Pearson) correlation is the covariance
value normalized by the standard deviations σX and σY .

ρ(X,Y ) =
Cov(X,Y )

σXσY
=

∑N
t=1(Xt − X̄)(Yt − Ȳ )

√

∑N
t=1(Xt − X̄)2

√

∑N
t=1(Yt − Ȳ )2

(2.21)

The autocorrelation function(ACF) is the (Pearson) correlation of a time series Y and its lagged
time series with lag value k:

ρ(Y,k) =

∑N
t=k+1(Yt − Ȳ )(Yt−k − Ȳ )

∑N
t=1(Yt − Ȳ )2

(2.22)

It describes the similarity between the lagged time series and the time series itself. Thus, it is a
good indicator for periodic patterns. The plot of the autocorrelation value against the lag k is
called correlogram.

Fourier analysis
An alternative to identify the periodicity of a time series is the Fourier analysis. For a time series
of discrete time steps, the Discrete Fourier Transform transfers the series Y with N time steps
from time to frequency space (Shumway and Stoffer, 2010):

d(ωj) = N−1/2
N
∑

t=1

Yte
−2πiωjt

= N−1/2
N
∑

t=1

Yt(cos(2πωjt)− i sin(2πωjt))

(2.23)

where d(ωj) are the Fourier coefficients, ωj = j/N the Fourier frequencies, and i is the imaginary
unit. The Fourier coefficients can be transformed back to time space similarly:

Yt = N−1/2
N−1
∑

j=0

d(ωj)e
2πiωjt

= N−1/2
N−1
∑

j=0

d(ωj)(cos(2πωjt) + i sin(2πωjt))

(2.24)
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This means that every time series can be decomposed into a linear combination of sine and cosine
functions. The Fourier coefficients are complex numbers. Thus, the magnitude of the frequencies
is described by the periodogram as an estimate of the spectral density:

I(ωj) = |d(ωj)|2 (2.25)

The periodogram reveals the most prominent frequencies in the time series, which can be used to
determine the periodicity for the time series decomposition. In addition, the Fourier transform
can also be used for dimensionality reduction, by keeping only the coefficients of the most relevant
frequencies.



3 Related work about mobile crowdsensing of on-street parking spaces

Fundamental and recent research about on-street parking technologies (Section 3.1) and mobile
crowdsensing (Section 3.2) is presented in this chapter. In addition, based on the related work
presented, the research gaps addressed in this thesis are described (Section 3.3).

3.1 On-street parking

Parking in urban areas can be divided into off-street and on-street parking. Off-street parking
relates to parking lots and parking garages, often with hundreds of parking spaces. Since access to
them is usually regulated, the occupancy can be determined easily, by counting the incoming and
outgoing vehicles. In this work, the focus lies on the more challenging case of on-street parking,
such as parking lanes and parking stalls directly accessible from the road. The detection of parking
occupancy with static and mobile parking sensors is described in Subsection 3.1.1. When parking
occupancy information is detected for at least some of the parking spaces, the overall parking
occupancy in a road segment or an area can be estimated and the future occupancy predicted
(Subsection 3.1.2). Finally, field and simulation studies about parking search, as well as the
assistance of drivers on the search by parking guidance systems is described in Subsection 3.1.3.

3.1.1 Parking occupancy detection

For most smart parking applications, the current parking situation needs to be determined first.
Approaches to detect parking occupancy can be divided by the usage of either static or mobile
parking sensors:

Static parking sensors
Static parking sensors are used to continuously observe the occupancy of parking spots. Mag-
netometers, cameras, and radar sensors are the most prominent sensor types considered for this
task.

Magnetometers are installed in the pavement of every parking spot. They measure the magnetic
field and detect differences when a car is parked above the sensor. Detections are communicated
to repeaters and gateways via an ultra-low power mesh network (San Francisco Municipal Trans-
portation Agency, 2014). The gateways collect sensor information from all nearby sensors and
send the data to a central instance via mobile communications. This technology is already used
in busy roads in several cities around the world, such as San Francisco, Moscow, and London (Lin
et al., 2017). However, a main disadvantage of static sensors is that deployment and maintenance
are expensive for large scale deployment (Xu et al., 2013). For example, San Francisco Municipal
Transportation Agency (SFMTA) paid more than five million dollars for installation and mainte-
nance of about 8,000 parking spaces with sensors (there are more than 270,000 on-street parking
spaces in San Francisco), but stopped running the sensors after the batteries were dead and the
end of the SFpark project was reached (San Francisco Municipal Transportation Agency, 2014).
More details about the SFpark project in San Francisco will be described in Section 6.1, as data
from 5,000 of these sensors (pilot area) are used in parts of this thesis.

37
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To reduce the sensor costs, Evenepoel et al. (2014) proposed an approach to thin out the sensor
coverage by reducing the number of equipped parking spaces and to interpolate the parking sat-
uration. In their case study, they built a detailed cost model for a parking sensor system and a
probabilistic model to assess the reliability of the approach. They concluded that costs could be
reduced up to a factor of 30 while retaining sufficient performance. However, the performance
measure was based only on an estimation of parking-related congestion, but did not consider fur-
ther effects such as reduced search time. In addition, a strong assumption was made that the
occupancy probability is the same for all parking spaces in the city. This assumption makes an
interpolation much easier than in a real-world heterogeneous environment.

An alternative for reducing the number of sensors is the installation of sensors such as cameras
and radar sensors on elevated spots. They are installed on walls, lamp posts, or traffic light
poles, to survey several parking spaces of the parking lane. Cameras detect vehicles from the
video images using computer vision techniques (Cleverciti, 2017; Fabian, 2008). However, a lack of
public acceptance for cameras at every corner could be a main problem, as they might also be used
for other surveillance tasks. Thus, radar sensors seem to be a good alternative. In 2015, Siemens
started a test field in Berlin, Germany, where they equipped a road segment of 250 meters with
radar sensors (Siemens, 2017).

A more detailed survey of sensors for parking occupancy detection is provided by Lin et al. (2017).

Mobile parking sensors
Mobile sensors can be a meaningful alternative. Mobile sensing means that the sensor moves
through the streets and can thus cover a larger area. In the context of parking, sensors in vehicles
and smartphones are mainly investigated. In addition, the use of unmanned aerial vehicles (UAVs)
has also been proposed (Li et al., 2017).

Sensors in vehicles can detect the parking occupancy both by observing parking-related events
of the vehicle itself and by scanning the parking lanes while passing. For the detection of the
parking lane occupancy during the trip, ultrasonic, radar, camera, and LiDAR (Light Detection
And Ranging) sensors have been proposed. Ultrasonic sensors are the cheapest. If they are facing
the side of the vehicle, they continuously scan the distance to the next object (Mathur et al., 2010;
Park et al., 2008; Robert Bosch GmbH, 2016). Thus, gaps in the parking lane can be detected.
However, the interpretation of the object reflections and also the frequency of the ultrasound
signals are limited. To increase the resolution of the scanning, multiple ultrasonic sensors can be
combined. Alternatively, radar sensors can also be used to create a detailed occupancy grid of
the surroundings (Dubé et al., 2014). Video images from in-vehicle cameras can also be exploited
to directly detect parked vehicles (Sivaraman and Trivedi, 2013). Both Ono et al. (2002) and
Thornton et al. (2014) used 2D LiDAR scanners to conduct parking surveys. The scanners were
installed perpendicular to the driving direction. Ono et al. (2002) identified parked vehicles by
analysis of the coverage of the adjacent lane, assuming that the vehicle was driving next to the
parking lane. Thornton et al. (2014) identified ground and curb in the point clouds. If the curb
was occluded, they inferred that the parking lane was occupied. To avoid misinterpretations, they
applied an occlusion reasoning approach.

Most smartphone parking availability applications aim to detect parking and leaving events (Sten-
neth et al., 2012; Ma et al., 2014). These events are detected either directly from GPS and
accelerometer signals or indirectly from detections of travel mode changes or connection buildups
between vehicle and smartphone (e.g. via Bluetooth). Moreover, parking payment applications can
be exploited to extract parking and leaving events (Lin et al., 2017). From these sources, the start
and end of the trip can be extracted. Usually, the start and end points correspond to occupying
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and leaving a parking space. In addition, there are also approaches to detect parking search by the
identification of characteristic movement patterns in the GPS traces (Montini et al., 2012; Hamp-
shire et al., 2016; Liu et al., 2017). Characteristic movement patterns can be, for example, reduced
velocity, detours from the shortest path, and/or driving in circles. Note that these parking-related
events could also be detected by vehicle sensors. In addition, there are smartphone applications
considered that are based on active interaction with the user to answer questions about the parking
availability (Chen et al., 2012).

The detection of parking-related information by many vehicles or smartphones leads to parking
crowdsensing (Chen et al., 2012; Margreiter and Mayer, 2015; Robert Bosch GmbH, 2016). Vehicles
and smartphones communicate their information to a central server instance (see also Figure 1.1
on page 14). The server collects the data from all sources and aggregates them to a complete
map of parking availability. This map can then be transferred back to other users searching for an
empty parking space.

Many of the approaches with mobile sensors only detect gaps in parking lanes, but miss the
information about whether parking in this gap is illegal (e.g. at a garage entrance or close to a
crosswalk). Thus, maps containing locations of parking spaces are necessary. Since many cities do
not have parking maps in this level of detail, approaches were proposed to learn the legality from
parking occupancy detections at different time instants (Coric and Gruteser, 2013; Ge et al., 2013).
The approach of Ge et al. (2013) only compares the number of vehicles detected at a location to
a threshold. Coric and Gruteser (2013) proposed a more elaborate method. They split the road
into small segments of one meter and computed a weighted occupancy rate at each segment. The
weights were based on the average occupancy level of the road. The weighted occupancy rate
was compared with a threshold. Afterwards, a smoothing was applied to remove sections of legal
or illegal parking smaller than a threshold. Both thresholds were manually defined without any
calibration.

3.1.2 Parking availability estimation and prediction

Based on the collection of parking-related information, the parking availability can be estimated
and predicted. In this context, estimation means that the current parking availability is estimated
from incomplete current observations and historic information. The prediction guesses the parking
availability in the near future, for both incomplete and complete observation scenarios.

Few studies exist about the parking availability estimation from crowdsensed, and thus irregularly
sampled, datasets. In a simulation environment, Farkas and Lendák (2015) evaluated a parking
search scenario where drivers used an application that detected empty parking spaces with a smart-
phone app. Only the empty spots detected were recommended to other drivers, but the availability
was not estimated for the remaining parking spaces. Xu et al. (2013) compared approaches using
a Kalman filter, weighted average, and historical availability average to estimate the parking avail-
ability rate in a street segment based on vehicle leaving/parking detections, such as from mobile
apps. They considered different user rates and simulated error rates of the sensors. Evaluations
with real-world data from the SFpark project in San Francisco showed that the Kalman filter and
weighted average approaches achieved similar results, both better than the historical availability
average.

Much of the literature addresses the prediction of parking availability (Lin et al., 2017), especially
for the case of parking lots, as parking data is easier to obtain at the lot entrances than for on-
street parking. Caliskan et al. (2007) used a Markov model to predict the parking occupancy
based on current arrival and leaving rates at the parking lot. In their scenario, vehicles exchanged
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this information in an ad hoc network and predicted parking availability for their expected time
of arrival. Wu et al. (2014) proposed the use of real-time data only for short-term prediction in
combination with historical data. For longer terms, the average day trend from historical data was
used. An alternative is the clustering of parking occupancy daily patterns to find similar patterns
and the prediction using a k-nearest-neighbor classifier (Tamrazian et al., 2015).

For on-street parking, the prediction is more challenging, because the parking occupancy rate of
a street segment with some parking spaces significantly changes for every parking/leaving event,
compared with parking lots with hundreds of parking spaces. In a patent, Google claims an
approach to estimate and predict the population density from smartphone data (Lookingbill, 2013).
In a second step, they learn the relationship between population and parking occupancy. Artificial
neural networks are also popular for prediction, either to predict the time series (Vlahogianni
et al., 2016) or to predict from various attributes such as weather, traffic, events, and time of day
(Zheng et al., 2015; Pflügler et al., 2016). Rajabioun and Ioannou (2015) proposed a multivariate
autoregressive model for parking prediction in systems with static parking sensors, considering
both spatial and temporal correlations. To reduce the amount of data for the daily patterns of
parking occupancy per road segment, Richter et al. (2014) evaluated different levels of spatial and
temporal clustering of the daily pattern.

3.1.3 Parking search and guidance

The search for an empty parking space is investigated from multiple perspectives. Bonsall and
Palmer (2004) used a driving simulator to study the route decisions of drivers during the parking
search. Several parking simulation platforms were developed to study parking search characteristics
(Benenson et al., 2008; Horni et al., 2013; Bessghaier et al., 2012). In a real-world environment,
Hampshire et al. (2016) analyzed the parking search behavior of drivers based on their GPS
trajectories and in-car video recordings. They found that the combination of reduced velocity and
head rotations accurately indicated the parking search phase.

As reported in the introduction, the observed average duration of parking search varies widely
(e.g. 36 seconds (Van Ommeren et al., 2012) and 8.1 minutes (Shoup, 2006)). Moreover, the
measurement of parking search length and duration is often biased, since parking studies are
primarily conducted in problematic areas (Shoup, 2006). Millard-Ball et al. (2014) evaluated
multiple years of parking data from SFpark in San Francisco. Based on the occupancy data, they
simulated the parking search. As a result, they found that parking search is less severe during
metered hours than outside metered hours, and might be more severe in non-metered parking
lanes. Thus, the sensors in SFpark capture only parts of the city’s parking situation.

The first systems that inform drivers about the location and the current availability count in
parking lots via variable message signs date back to the 1970s (Axhausen et al., 1994). Those
systems are called Parking Guidance and Information (PGI) systems. Studies claim that PGIs
lead to a significantly increased probability of finding available parking spaces (Teodorović and
Lučić, 2006) and reduced search time (Axhausen et al., 1994). In parking garages, the search time
could be more than halved, if proper stall availability information was available (Caicedo et al.,
2006). Modern PGI approaches can be integrated into navigation systems and provide personal
search route recommendations. Multiple approaches have been proposed for the computation of
an optimal search route (Guo and Wolfson, 2016; Jossé et al., 2013), for an optimized parking
space assignment (Ayala et al., 2011), and for parking reservation methods (Kotb et al., 2017).
The restriction of information dissemination was also discussed, to avoid all drivers rushing to the
same parking space (Delot et al., 2013).
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3.2 Mobile crowdsensing

Mobile crowdsensing (also called collaborative sensing by Ilarri et al. (2014)) is a modern approach
to collecting large amounts of data from mobile devices. Guo et al. (2014) defines it as “a new
sensing paradigm that empowers ordinary citizens to contribute data sensed or generated from
their mobile devices, aggregates and fuses the data in the cloud for crowd intelligence extraction
and people-centric service delivery”. Crowdsensing applications can be divided into two classes:
participatory and opportunistic sensing (Ganti et al., 2011). Participatory sensing means that
an action is required by the user to generate the data (e.g. marking the location of an empty
parking space). In opportunistic sensing, no or low efforts by the users are needed (e.g. recording
of GPS trajectories). In the following, crowdsensing approaches in transportation and parking in
particular are described.

3.2.1 Mobile crowdsensing in transportation

In the field of transportation, mainly vehicles and smartphones are considered as mobile devices for
crowdsensing. The most important sensors in traffic scenarios are GPS sensors and accelerometers
(Lendák, 2016). According to Ilarri et al. (2014), those sensors fall into the category of physical
sensors. Moreover, there are virtual sensors (also called software sensors; they provide an aggre-
gation of multiple sensors), social sensors (data extracted from social media such as Foursquare1

or Twitter2), and human sensors (explicit information provision by humans, e.g. as volunteered
geographic information (VGI)) (Ilarri et al., 2014). To increase the coverage of vehicular crowd-
sensing, Masutani (2015) proposed a reservation-based approach. If a vehicle plans to drive along
a road segment, it ‘reserves’ this road segment at the predicted arrival time. The reservation leads
to an increased edge cost in the routing of other cooperative vehicles and thus to alternative route
choices.

Ilarri et al. (2014) identified three main domains of crowdsensing in the field of transportation:
traffic information, trajectories, and parking. The most widely used traffic information is travel
time. The current speed and location of vehicles is transferred via cellular communication and
collected in a central instance as floating car data (FCD). The aggregation of floating car data
provides real-time traffic information that can help drivers to avoid busy roads and traffic jams.
Several providers, such as TomTom3, Google Maps4, and Inrix5 achieve accurate real-time traffic
information from a very dense network of probes. Another prominent example for traffic crowd-
sensing on smartphones is Waze6. This application encourages users to press buttons to report
traffic jams, accidents, speed traps, and more. Those notifications are directly provided to all
other users in the vicinity. From trajectories collected, various types of knowledge can be ex-
tracted. For example, road network maps can be reconstructed (Kuntzsch et al., 2016; Ahmed
et al., 2015), popular routes can be identified, and drivers with similar routes can be pooled for
real-time ride-sharing (Ilarri et al., 2014).

1https://foursquare.com/
2https://twitter.com/
3https://www.tomtom.com/
4https://maps.google.com/
5http://inrix.com/
6https://www.waze.com/
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3.2.2 Mobile crowdsensing for parking

For parking crowdsensing, vehicular and smartphone sensors can be used in various ways, as
described in Section 3.1.1. In a simplified evaluation of taxi trajectories based on the coverage of
small rectangular grid cells, Mathur et al. (2010) found that 536 taxis led to a mean inter-sampling
interval of 10 minutes for 80% of the area (25 minutes for 85%) in downtown San Francisco. They
assumed that this taxi activity would be enough to cover this area adequately. The smartphone
application OpenSpot from Google used a participatory approach to guide drivers to empty parking
spaces that were tagged before by other users (Sherwin, 2011). However, this service was cancelled
in 2012 due to a too small user base and hence poor data quality. Lendák and Farkas (2016)
investigated potential reasons for the failure. In their study, they assumed an application that
provides information on empty parking spaces either right after the user leaves, or with drive-by
detection. Only the empty spots detected are recommended to other drivers. They discovered that
drive-by sensing is necessary to achieve good system quality, but a pure participatory approach
such as in OpenSpot was not sufficient. However, the approaches were only tested in a rather
simple simulation scenario.

The magnitude of search time reductions by parking crowdsensing applications is controversial.
Rybarsch et al. (2017) found that cooperation on the search, by exchange of the planned routes
and of the past trajectories with unsuccessful search, can lead to a significant search time reduction
of up to 30%. In a simulation study with sensing vehicles by Kokolaki et al. (2012), the benefit
depended on the distribution of parking availability. In a scenario with a parking hotspot, a central-
ized system with a reservation approach achieved the best search time, followed by a decentralized
information exchange between the vehicles without reservation and the baseline without crowd-
sensing. However, in a scenario with uniformly distributed high parking demand, the centralized
system performed even worse than the baseline. The decentralized approach still led to reduced
search times. In two further simulation studies, the exchange of parking and leaving information
did not significantly reduce parking search time in rather homogeneous parking settings (Tasseron
et al., 2015, 2016). However, they did not consider a reservation protocol, and as a result, several
vehicles tried to catch the same empty spot. Moreover, they discussed the possibility that a more
realistic environment (e.g. different capacities of the parking lanes) might lead to reduced search
times. Still, a search time reduction was observed in the case of static sensors instead of crowd-
sensing. In an extension of their simulation, they found that a decentralized reservation system
for parking spaces with sensors further reduced the search times for intelligent vehicles (Tasseron
and Martens, 2017). However, normal vehicles suffered in the same extent, so that the search time
averaged over all vehicles was not reduced.

3.3 Research gaps addressed in this thesis

Collection of parking occupancy information with a LiDAR-equipped vehicle
Using LiDAR-equipped vehicles to detect parking gaps or parked vehicles is seldom studied in the
literature. The approach by Thornton et al. (2014) is applicable only in the presence of curbs.
Moreover, they needed some prior knowledge about the location of the parking lanes (like also
Ono et al., 2002). However, a more general approach for the extraction of parking information was
missing. Thus, a new approach is presented in this thesis, based on a segmentation of 3D point
clouds and a classification of the resulting segments. The approach requires neither the presence
of curbs nor prior explicit knowledge of vehicle shapes or parking lane locations. Thus, vehicles
parked illegally outside of parking lanes can also be detected.
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Learning parking legality maps from crowdsensed occupancy information
Both approaches from the literature (Ge et al., 2013; Coric and Gruteser, 2013) are based on man-
ually defined parameters which might vary significantly for different investigation areas. Further-
more, Coric and Gruteser (2013) assumed that learning on more occupied roads is more relevant.
However, they disregarded the fact that illegal parking grows considerably with increasing occu-
pancy level (White, 2007). In this thesis, an approach is described that turns the identification of
legal parking areas into a data mining problem. Several additional features are proposed to learn
more spatio-temporal details in the parking data. Manual parameter optimization is reduced by
calculation of the features at different length scales. In the case of a clustering-based classification,
the parameter choice could be completely avoided.

Estimation and prediction of parking occupancy for irregularly observed parking spots
While a great deal of research has already been done for the occupancy prediction of parking
lots and on-street parking with static parking sensors, the estimation and prediction of parking
crowdsensing approaches is still largely unstudied (see Subsection 3.1.2). Studies using real-world
parking data are also rare. Three methods for parking estimation and prediction are evaluated in
this thesis: spatial interpolation, a persistence method based on the last observation, and binary
classification. Additionally, the classification approach is used to estimate the probability of at
least one empty parking space in a road segment. The quality of the approach is compared for
different coverage levels of the mobile sensors, based on sensor data from the large scale parking
project SFpark in San Francisco.

Evaluation of the quality of parking crowdsensing with probe vehicles
The data quality in parking crowdsensing is seldom studied. For the case of probe vehicles, only
Mathur et al. (2010) investigated the coverage of taxis based on GPS trajectories. However, they
did not perform a real map-matching of the taxi trajectories and did not consider the presence of
intersections, the driving directions, and the number of lanes per road. In this work, the spatio-
temporal coverage of taxis as probe vehicles is investigated in detail, solving the aforementioned
shortcomings. Moreover, the probe vehicle coverage is combined with parking data to evaluate the
parking data quality in the crowdsensing scenario. Finally, the relevance of crowdsensed parking
data is compared with other parking-related information in a typical parking search scenario based
on real-world data.
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This chapter presents the detection of parked vehicles using a LiDAR mobile mapping system.
The recording of the 3D point clouds on a predefined test track is described in Section 4.1. The
processing consists of the segmentation to gain object point clouds, their classification, and their
matching to the road network (see Section 4.2). A detailed evaluation of the processing steps and
the complete processing chain is presented in Section 4.3, followed by some concluding remarks
in Section 4.4. As it is hardly possible to distinguish between stopping and parked vehicles in a
single time instant without further knowledge about the lanes, the more precise term non-moving
vehicles is used in the following. This work was also published in Bock et al. (2015).

4.1 Data recording

To evaluate the approach of detecting non-moving vehicles in an inner-city scenario, a test track
was recorded ten times with a LiDAR mobile mapping system. The system with the sensors used
for the measurements is described in Section 4.1.1. Details about the test track are given in Section
4.1.2.

4.1.1 Sensor equipment

The mobile mapping system Riegl VMX-250 (Riegl LMS GmbH, 2012) was used for the recording
of the 3D point clouds. The system was installed on the roof of a VW T4 multivan. It consists
of two 2D laser scanners VQ-250, four cameras, and a localization unit (see Figure 4.1). Each
laser scanner has a sampling rate of 300,000 measurements per second. Measurement accuracy
and precision are 10mm and 5mm, respectively. The scanners face backwards with an angle of
60◦ between each other from top view and each 35◦ tilted compared to a vertical scanning plane.
This skew has the advantage of identifying movements of objects since the two scanners see these
objects at different times and therefore at different positions. However, curbs were often occluded
by parked vehicles in the measurements because of this skewed laser scanner orientation. Therefore,
considering curbs for the detection approach like by Thornton et al. (2014) was hardly applicable
in this situation. The recording was limited to dry weather conditions as the laser scanning system
is only splash-proof.

A high precision global navigation satellite system (GNSS) receiver with Inertial Measurement Unit
(IMU) (Applanix POS-LV 510) is contained in the mobile mapping system for precise positioning.
In urban scenarios, its positioning accuracy is a few decimeters in height and horizontal directions
(Hofmann, 2017). Therefore, the positioning unit dominates the position accuracy of objects
detected. The four cameras of the system face to the sides and backwards. They were used in this
investigation to extract ground truth information about the presence of non-moving vehicles.

4.1.2 Measurement campaign

Two areas in Hannover (Germany) with parking lanes were defined for the recording of 3D point
clouds with the mobile mapping system. The Nordstadt district was chosen as a residential area
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Figure 4.1: Riegl VMX-250 mobile mapping system with two 2D laser scanners, four cameras, and a global
navigation satellite system (GNSS) receiver.

and the center of Hannover as a commercial district. A suitable route with an effective length of
5.5 km (excluding connecting parts without measurement evaluations) was defined to cover single-
lane streets in both districts with parallel and perpendicular parking (see Figure 4.2). For this
evaluation, data was recorded on this route ten times between 9 am and 8 pm.

Figure 4.2: Map of the measurement track: the evaluated part in Nordstadt is colored in red, the city center
in blue, and the connecting track in black. The connecting track is excluded from processing because of
multi-lane roads. The background map is taken from OpenStreetMap.

4.2 Methodology

The approach for detecting non-moving vehicles from laser scanning measurements consists of
five main steps, as illustrated in Figure 4.3. First, the point clouds recorded were structured and
enriched in the preprocessing step (Subsection 4.2.1). Then, the point clouds were split into ground
surface and distinct objects in the segmentation step, using a region growing approach (Subsection
4.2.2). The classification step (Subsection 4.2.3) divided the objects into non-moving vehicles and
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other objects, based on multiple characteristic features. To reduce under-segmentation (splitting
that is too weak, so that object point clouds still contain multiple objects after segmentation),
segmentation and classification were repeated in a finer raster resolution (Subsection 4.2.4). In a
last step, the non-moving vehicles detected were matched to the road network, to extract statistics
on distinct road segments (Subsection 4.2.5). Note that this work is based on the implementations
for preprocessing, segmentation, and feature extraction by Eggert (2017). These implementations
were extended and adapted for this specific case of detecting non-moving vehicles.
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Figure 4.3: Block diagram of processing steps to extract non-moving vehicles from LiDAR mobile mapping
records.

4.2.1 Preprocessing

In the preprocessing step, the point clouds needed to be structured into tiles and enriched with
additional attributes. As the point clouds had more than half a billion points per measurement
trip, they needed to be split into smaller units. Therefore, the area of the point cloud was spatially
divided into tiles of 25mx 25m (see also Eggert and Sester, 2013). Some locations were passed
multiple times during one trip. Therefore, the records were also separated temporally, based on a
simple threshold. If the time gap exceeded this threshold (e.g. five minutes), a new time segment
for the corresponding tile was created. To avoid a local agglomeration of points at almost the same
positions (e.g. at very low velocity), the point cloud density of every tile was reduced by keeping
only one arbitrary point per cell in a dense raster (raster edge length of 1 cm in this case).

Finally, additional attributes for each scan point were computed to facilitate further processing
steps. The normal vector of every point was estimated by a principal component analysis (PCA) via
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the covariance matrix, using the point itself and its k-nearest neighbors. Based on the eigenvalues,
every point was also assigned to one of four categories to describe the local structure: planar,
linear, cylindrical, and scatter. This dimensionality classification was based on Demantké et al.
(2012), which was extended by Monnier et al. (2012).

4.2.2 Segmentation

For segmentation, the preprocessed point clouds per tile were separated into distinct objects and
ground surface using the points’ Euclidean distance, their normal vector orientation, and their
dimensionality label. To avoid the truncation of objects by tiling (Subsection 4.2.1), adjacent
tiles were buffered and neighboring parts at the border of tiles were included. The segmentation
approach consists of three steps: first, the ground surface was identified and extracted by basic
region growing (Zucker, 1976), based on the points’ normal vectors. Second, a region growing
approach was again used for object segmentation in the ground-free point clouds. Remaining points
were assigned to an object point cloud if they were enclosed by this object’s convex hull. A raster
data structure with a cell size of 15 cm was used to speed up the nearest neighbor computation
for region growing. In a final step, duplicate and irrelevant objects, caused by the tile buffer, were
filtered, based on their center of mass.

In the ground segmentation step, seed points were defined as the points with lowest z-coordinate
values (the lowest 0.5% in this case) and nearly vertical normal vector. Their cells and the adjacent
cells were taken as seed cells for region growing if at least a certain number of points contained
were classified as planar. All points of the identified ground cells with a nearly vertical normal
vector were labeled as ground points. This procedure was repeated for adjacent cells of ground
points until no further ground points could be identified. From all ground points, a plane was
estimated. All points close to this plane with nearly vertical normal vector were used as seeds for a
second region growing. The repeated region growing was computed to also identify ground surface
points not directly connected to the initial seed points. Finally, all ground points were excluded
from the point clouds for the subsequent computations.

For the object segmentation step, the region growing started with raster cells that contained a large
number of points with planar dimensionality to first extract large building facades. A seed cell of
an object grew to adjacent cells having a minimal number of points. The growing finished when
there were no adjacent cells fulfilling this requirement. If the resulting object had more points than
a certain threshold (e.g. 1,000 points), the object was retained. Smaller objects were discarded
and the points were kept in the remaining point cloud. After the region growing was computed for
every cell, the convex hulls of identified objects were calculated. Remaining points within such a
hull were added to the object, assuming that small enclosed parts belonged to the enclosing object.
Still unassigned points were labeled as noise and removed.

In the filtering step, duplicate and irrelevant objects that were caused by the additional buffer area
around the tiles were removed. As the buffer area of the tiles overlapped, the same object could be
generated from two different tiles. To avoid these cases, the center of mass was computed for every
object. Objects were retained if they had their center of mass within the tile extents. In addition,
objects were removed if the center of mass was too far from the track of the measurement vehicle
(10m in this case) since these objects were located outside of the region of interest.
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4.2.3 Classification

In the classification part, all objects from the previous segmentation were assigned to the classes
non-moving vehicles and other objects. The class of non-moving vehicles contains cars and also
trailers, minibuses, and transporters, as those vehicles typically cover on-street parking spaces.
Larger vehicles, such as buses and trucks, as well as small vehicles, such as motorbikes and bicycles,
are not considered for parking statistics and were therefore assigned to the class ‘other objects’.
Further prominent examples for this class are building facades, trees, poles, and persons.

For this binary classification task, a random forest classifier was used, as it is fast, robust against
overfitting, and easy to parametrize (see also Section 2.2.3). For classifier training and evaluation of
classification performance, the segmented objects from one measurement drive were labeled manu-
ally. Multiple features were defined based on object geometry, point density, point dimensionality,
and comparison of the scanner-specific point clouds to identify vehicle movements:

• Object geometry: Bounding boxes were estimated for every object point cloud based on a
3D principal component analysis (PCA), on a 2D PCA with fixed vertical vector, and on the
driving direction of the measurement vehicle. The extents of these bounding boxes as well
as the ratios between the axes were used as features since vehicles have characteristic sizes.
For example, the length of a vehicle is typically between 3 and 6 meters and the height is
lower than the length. As point clouds of parallel and perpendicular parked vehicles often
appeared differently, consideration of the driving direction was also relevant.

• Point density: The point density is the ratio between the number of points and the volume
of the vertical bounding box. This feature was useful to distinguish vehicles from objects
with low point density, such as tree branches and scaffolding.

• Point dimensionalities: The ratio of points with different dimensionalities (see also Section
4.2.1) was used, because vehicles consisted of several planar parts, while leaves of trees and
bushes mainly consisted of points with the dimensionality type ‘scatter’.

• Vehicle movements: Moving vehicles appeared different from non-moving vehicles in the
point clouds, depending on the relative speed between measurement vehicle and observed
vehicle. If both vehicles moved in the same direction at similar speed, the scanned vehicle was
visible for one or both laser scanners for a long time. This elongated shape of the vehicle point
cloud could be distinguished from the regular shape of non-moving vehicles by the object
length. If the observed vehicle was moving in the opposite direction, the resulting point cloud
appeared like a squeezed vehicle (see Figure 4.4a). In addition, both laser scanners saw this
vehicle at different positions, due to their different mounting orientation. If the relative speed
was high, both point clouds did not overlap. This led to two objects in the segmentation
step, each recorded by one scanner only (see Figure 4.4a). The ratio of points from each
scanner allowed the identification of these objects. Slower vehicles appeared as overlapping
point clouds (see Figure 4.4b). These situations were revealed by a feature consisting of
the distance between the centers of the scanner-specific object point clouds. Since center
differences also existed for partially occluded objects, the length difference of both scanner-
specific object point clouds was also used as a feature. In other words, objects leading to
scanner-specific point clouds with different center positions but the same object length were
very likely to be moving.
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(a) (b)

Figure 4.4: Examples for moving vehicles with colors indicating which scanner recorded the points: fast
vehicles lead to two separate objects (a) while the point clouds of slower vehicles overlap (b).

4.2.4 Repetition of segmentation and classification

To reduce under-segmentation (e.g. an object consists of two closely parked vehicles in Figure
4.5c), the segmentation step was repeated with a finer raster resolution after classification. Only
objects classified as ‘other objects’ were segmented again in the same way as in Section 4.2.2, but
with a finer raster cell size of 8 cm (instead of 15 cm). In the second ground surface estimation
step, points need to be removed only if the first ground surface estimation is incomplete. Thus,
the newly estimated ground points were removed only if these points were lower than the average
height of the remaining points. After ground and object segmentation, the resulting objects were
classified again with the same parameters.

4.2.5 Matching to road network

The absolute coordinates of the detected non-moving vehicles’ centers were calculated. These
coordinates were fused with the road network from OpenStreetMap. Small trails and walkways
were excluded from the road network. Every road on this network was split at intersections to
obtain intersection-free road segments. Then, every non-moving vehicle was matched to the closest
road segment based on Euclidean distance. This assignment allowed the computation of parking
statistics for every road segment.

4.3 Results

To evaluate the proposed methods and their interaction, the data recorded from the first drive
was analyzed in detail. First, the resulting objects of the segmentation were labeled as correctly
segmented, over-segmented, or under-segmented, based on the visual appearance. The labeling
focused only on the correct segmentation of non-moving vehicles. The correct segmentation of
other objects was not investigated. Over-segmentation means that a physical object (e.g. vehicle,
tree, person) results in multiple separate point clouds after segmentation (see Figures 4.5a and
4.5b). Under-segmented vehicle point clouds contain not only the shape of the vehicle itself, but
also of another object such as another vehicle or the curb next to the vehicle (see Figures 4.5c
and 4.5d). In a second step, correctly segmented objects were labeled with one of the two classes:
non-moving vehicle and other objects.

Based on this labeling, the quality of the segmentation and classification is evaluated in Section
4.3.1 and Section 4.3.2, respectively. Note that partially occluded vehicles lead to truncated ve-
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(a) (b)

(c)

(d)

Figure 4.5: Examples for over- and under-segmentation: weakly reflecting vehicles lead to multiple object
point clouds in (a) and (b), very closely parked vehicles are not separated in (c), and curb is not separated
properly in (d).
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hicle shapes, which are very challenging in the classification step even though they are correctly
segmented. To also consider strongly occluded vehicles and the classification of incorrectly seg-
mented objects, an end-to-end evaluation is performed in Section 4.3.3. For this, videos of the
measurement drive were evaluated manually and a ground truth was created. Finally, an example
for parking statistics over the course of one day is given in Section 4.3.4.

4.3.1 Object segmentation

From the records of the first measurement drive, the object segmentation generated 2,741 distinct
objects in the investigation area. An example of a segmentation result is shown in Figure 4.6. For
the first segmentation, 777 non-moving vehicles and 1,896 other objects were correctly segmented,
while 13 vehicles were split into a total of 26 object point clouds (sum of first two lines of Table
4.1). Under-segmentation occurred for 42 object point clouds, which contained both vehicle and
other elements. That means 97.5% of all objects and 91.9% of all vehicle-related objects are
correctly segmented regarding vehicles after the first segmentation. Note that object point clouds
with only a few points (e.g. small vehicle parts) were eliminated in the segmentation process and
are therefore not part of these statistics.

Figure 4.6: Example for the result of the object segmentation with each object in a different color.

The main reason for over-segmentation was the weak reflectance of some vehicle paint types (22 of
26 over-segmented objects, e.g. Figures 4.5a and 4.5b). Missing laser reflections led to very sparse
point clouds. If the point density is too low, the region growing to adjacent cells stopped too soon
and split the vehicle into multiple object point clouds. Under-segmentation was mainly caused by
incomplete ground segmentation (12 of 42 under-segmented objects, e.g. Figure 4.5d) and objects
very close to non-moving vehicles (25 of 42 undersegmented objects). These close objects included
other vehicles which were parked very closely (14 times, e.g. Figure 4.5c), persons loading the
vehicle, and close vegetation. When the segmentation step was repeated after classification with a
finer cell raster for all objects classified as ‘other objects’, 33 additional non-moving vehicles were
correctly segmented (last line in Table 4.1).

4.3.2 Classification

For classification evaluation, the dataset of correctly segmented objects after the first segmentation
was split into training and testing datasets, according to the two observation regions, to show the
generalization of the approach. Data from the city center containing 133 non-moving vehicles
and 669 other objects were used as the training set. An example of the classification result is
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Table 4.1: Object segmentation results. Note that there is no 2nd segmentation for the city center, as this
area was only used for training of the classifier.

Area
Correctly segmented Other Over-segmented Under-segmented

non-moving vehicles objects vehicle objects vehicle objects

1st segmentation

city center
133 669 4 2

1st segmentation

Nordstadt
644 1,227 22 40

2nd segmentation

Nordstadt
677 1,512 26 11

given in Figure 4.7. The feature importance evaluation showed that the features of the bounding
boxes (vertical orientation and extents) and the ratio of planar points contributed most to the
classification performance.

Figure 4.7: Example for the classification result with the classes non-moving vehicle (green) and other object
(red).

Table 4.2: Confusion matrix of the classification result.

Actual Class

Non-moving vehicles Other objects

Predicted Non-moving vehicles 617 (TP) 10 (FP)

Class Other objects 27 (FN) 1,217 (TN)

The test dataset consisted of data from Nordstadt district, with 644 non-moving vehicles and
1,227 other objects. Applying the learned classifier to this dataset led to 617 correctly classified
non-moving vehicles (true positives) and 1,217 correctly identified other objects (true negatives).
However, 27 non-moving vehicles were not identified (false negatives) and 10 other objects were
incorrectly classified as non-moving vehicles (false positive) (see also Table 4.2). This result corre-
sponds to a precision of 98.4% and a recall of 95.8%. To balance between false positives and false
negatives, the decision threshold of the classifier can be varied. This variation of the threshold
led to the Precision-Recall curve shown in Figure 4.8. The red circle shows the parametrization
chosen for the previous results in this section.
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Figure 4.8: Precision-Recall curve of classification result for different decision thresholds (blue) and chosen
parametrization for detailed evaluation (red).

The main sources of false positives were objects next to the street with a vehicle-similar shape (5 of
10, e.g. Figure 4.9a). False negatives mostly resulted from parking spots perpendicular to the lane
(13 of 27, e.g. Figure 4.9b), even though only about 10% of all parking spots were perpendicular.
The point cloud of many perpendicular parked vehicles consisted only of the front or back of the
vehicle. Therefore, the object did not have the characteristic shape of a vehicle. In addition, poorly
reflecting vehicle objects were not identified in five cases.

(a)
(b)

Figure 4.9: Examples for a false positive (construction trailer in (a)) and false negatives (vehicles parking
perpendicular to the lane in (b)).

4.3.3 End-to-end evaluation of complete approach

The results from the complete approach, including the second segmentation and classification,
were also evaluated. For this, a ground truth was generated by visual identification of non-moving
vehicles in camera images from the measurement drive. In total, 672 out of 717 vehicles were
correctly detected in the area inspected. Eighteen objects were wrongly marked as non-moving
vehicles (false positives) and 45 non-moving vehicles were not identified (false negatives). This
corresponds to a precision of 97.4% and a recall of 93.7%. The recall value was clearly lower than
the pure classification result because the classifier did not identify most over-segmented vehicles.
Occlusions caused only six missing vehicle detections. In two cases, the same non-moving vehicle
was detected in two tiles, because of insufficient filtering at the tile borders.
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4.3.4 Parking occupancy statistics over the day

Multiple statistics can be derived from the detections of non-moving vehicles. A highly relevant
evaluation for parking management is the parking occupancy over the course of a day. An example
of these statistics is shown in Figure 4.10. It shows the count of non-moving vehicles at four different
street segments for all ten measurements. The lines in red and green represent the city center with
high occupancy during the main business hours. Inversely, the blue and black lines from Nordstadt
district show high occupancy in the morning and evening, but lower values during the day.
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Figure 4.10: Example of parking occupancies over the course of a day for selected street segments in both
districts. Note that there is one observation missing for both Nordstadt segments because of system failure
during data recording in one drive.

4.4 Concluding remarks

This chapter presented a novel approach to collecting parking statistics from 3D point clouds. It
has the advantage of being independent of assumptions about curb existence, road design, and
parking space locations, compared with the approaches by Thornton et al. (2014) and Ono et al.
(2002). The evaluation of the complete procedure showed a recall of 93.7% at a precision of
97.4%. While the classification step achieved a clearly better performance, the quality was mainly
reduced by the segmentation step. Over-segmentations were observed for vehicles that weakly
reflected the laser beam. Under-segmentations often occurred, when objects were very close to each
other. Therefore, it was challenging to select a suitable cell size for segmentation based on region
growing. To reduce this prolem, the repetition of segmentation and classification was introduced.
The localization accuracy of the mobile mapping system is in the order of some decimeters in urban
environments (Hofmann, 2017). Thus, the position accuracy of detected vehicles was in the same
order. This quality is much higher than results reached by approaches using other sensors, such
as ultrasonic sensors with series vehicles’ GPS solutions (Mathur et al., 2010). However, as such
mobile mapping systems are much more expensive, this approach is suitable only for dedicated
measurement campaigns. Cheaper sensors must be used for a crowdsensing approach.

A limitation of this approach is the missing discriminability between stopping and parked vehicles.
Stopping vehicles (e.g. at intersections) affect the evaluation of parking statistics. However, it was
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found that this is a minor issue in this dataset, as fewer than 0.5% of non-moving vehicles were
identified as stopping instead of parking, according to the manual evaluation.



5 Learning parking legality maps from parking observations

In many cities, maps of on-street parking spaces do not exist. However, this knowledge is necessary
for automated detection of empty parking spaces, as they need to be distinguished from gaps in
the parking lane where parking is not allowed (e.g. garage entrances). In addition, many visitors to
a city do not know which streets allow on-street parking. Thus, on-street parking maps could help
for a number of applications. In this chapter, a learning-based approach to automatically generate
on-street parking maps from parked vehicle positions, detected by sensing vehicles, is presented.
For learning, multiple sets of features are presented to characterize the occupancy of small road
segments at different time instants. The use of the k-means algorithm as unsupervised learning and
random forests as supervised learning are compared by applying these feature sets. The proposed
method is evaluated with repeated LiDAR measurements on more than five kilometers of potential
parking space length, based on the detection approach presented in Chapter 4. The work presented
in this chapter is also published in Bock et al. (2016b).

5.1 Methodology

The steps to generate on-street parking maps consisted of the preprocessing of the parked vehicle
detections, the computation of features based on information from multiple time instants, and the
learning based on these features (see Figure 5.1). Inputs of the method were the positions of parked
vehicles at different time instants (Section 5.1.1) and a road network from OpenStreetMap. The
preprocessing step (Section 5.1.2) consisted of splitting the road network into small road segments
and of considering each side of the road individually (called road subsegments in the following
to distinguish them from road segments between intersections) and matching the parked vehicle
information to the subsegments. The occupancy information for all road subsegments was used
to calculate several features regarding the occupancy of the road subsegments themselves and the
occupancy level in the neighborhood. Finally, the parking legality was determined in the learning
step (Section 5.1.3). Both supervised and unsupervised approaches were evaluated. The parking
legality information of road subsegments was then fused to a complete parking map.

5.1.1 Location of parked vehicles as method input

For the generation of on-street parking legality maps, the main input was the position of parked
vehicles at different time instants (e.g. at different times of the day or on different days), annotated
with a timestamp. This information could be obtained from various sensors, as described in Section
3.1.1. This approach is likely to work for any of these sensor types. While laser scanners, cameras,
and ultrasonic sensors provide information about the position and the extent of the vehicle directly,
GPS trajectories from smartphones or in-vehicle recordings provide only a single position. In the
latter case, a typical length for a vehicle has to be assumed.

57
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Figure 5.1: Overview of the steps for the generation of the parking legality map from parked vehicle positions.
The illustration is adapted to the KDD process in Figure 2.1.

Figure 5.2: Projection of a detected vehicle on the road subsegments (space between small strokes). The color
represents the occupancy: the occupancy value is 1 for completely occupied road subsegments (red), a float
between 0 and 1 for partially occupied road subsegments (yellow), and 0 for unoccupied road subsegments
(green).
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5.1.2 Data preprocessing

The road network for the region of interest was obtained from OpenStreetMap. To obtain a road
network with nodes at every intersection, links were merged and split accordingly. Then, each
road segment was split into small subsegments to learn the parking legality for each of them. A
subsegment length of 10 cm was chosen, but a coarser partition should also be feasible as long as
small parking prohibition areas can be represented. The road subsegments were connected to a
graph to determine spatial relationships. The extent of detected vehicles was projected on the
road subsegments (see Figure 5.2), also considering the side of the road, and an occupancy value
between 0 and 1 was determined.

5.1.3 Definition of feature sets

Eight feature sets were defined for later use in the learning step. They contained both raw and
aggregated data based on the road subsegments themselves and their neighboring road subseg-
ments. An overview is given in Table 5.1. Many feature sets contained a distance parameter for
the neighborhood considered. To keep the model generic and avoid parameter optimization, the
feature sets were computed for multiple generic values, similar to histogram features. The distance
parameter of the features was set to 0.5m, 1m, 3m, 5m, 10m, 20m, and 40m to cover the effects
in both the short and more distant surroundings.

Table 5.1: Overview of all feature sets used in this evaluation.

Feature set
Name Size of feature vector

number

1 Raw occupancy #(measurement drives)

2 Occupancy rate 1

3 Weighted occupancy rate 1

4 Raw neighbor occupancy #(measurement drives) · #(distance values)

5 Average neighbor occupancy #(measurement drives) · #(distance values)

6
Gaussian average neighbor

#(measurement drives) · #(distance values)
occupancy

7 Segment saturation #(measurement drives)

8 Road subsegment attractiveness #(distance values)

FS1: Raw occupancy This feature set is the input data itself. At each road subsegment, the
occupancies for each time instant are taken as features. Therefore, this feature set contains
a feature column for each time instant.

FS2: Occupancy rate This feature set is the (temporal) average occupancy of the road subseg-
ment over all time instants.

FS3: Weighted occupancy rate Weighted occupancy rate is the concept suggested by Coric and
Gruteser (2013). It contains the weighted average occupancy over all time instants per road
subsegment. The average is weighted by the (spatial) average occupancy of the complete
road segment at every time instant.
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FS4: Raw neighbor occupancy In addition to the low and high level information for the road
subsegments, information about their neighbors is included. For this, the road subsegment
graph is traversed and the average occupancy of all the neighbors at a certain distance
for each time instant is computed. Note that there are usually two neighbors at the same
distance, because there are two directions of the road. In some cases (e.g. at intersections),
the number of neighbors that are at the same distance to the current subsegment can even
be more than two. Therefore, just the average occupancy of all possible neighbors at each
distance and time instant is calculated as a feature.

FS5: Average neighbor occupancy For each time instant, the occupancy averaged over all neigh-
bors within a predefined range is computed. The identification of neighbors is calculated by
traversing the neighborhood graph, as in the previous feature set.

FS6: Gaussian average neighbor occupancy The weighted average occupancy of neighbors is
similar to the ordinary average occupancy of neighbors. The only difference is that the
average is weighted by a Gaussian function. The width of the Gaussian function is chosen so
that its value is 10% of the maximal value at the distance limit. This weighting is applied
assuming that closer road subsegments give a stronger hint of the parking legality, but the
occupancy of distant road subsegments still provide some valuable information.

FS7: Segment saturation The segment saturation describes the occupancy level of a complete
road segment. The number of occupied road subsegments of a road segment at one time
instant is divided by the maximal number of occupied road subsegments of all time instants
on this road segment. It is assumed that the maximum value represents the fully occupied
road segment. If the value of this feature is low, parking demand is low at this time instant
(or parking is not allowed in this subsegment), while the parking demand is high if this value
is high.

FS8: Road subsegment attractiveness The road subsegment attractiveness represents the occu-
pancy rate of the specific road subsegment compared with other road subsegments in the
neighborhood. The occupancy rate is divided by the maximum occupancy rate of the neigh-
bors within a certain range. A low value means that this road subsegment is less attractive
than others in the surroundings. This is likely to be a clue that parking might be not allowed
there. If this value is high, this road subsegment is about as attractive as the most occupied
subsegment. Therefore, it is more likely that parking is allowed there.

5.1.4 Learning the parking legality of road subsegments

The decision as to whether parking at a given road subsegment is legal is a classification problem.
Each road subsegment belongs to the classes legal or illegal. As described in Section 2.2.3, most
classification algorithms belong to the group of supervised learning and need a training dataset with
labeled data before application to another dataset. Clustering methods as a subset of unsupervised
learning algorithms do not have this requirement. They group objects to clusters based on their
similarity. For assignment to the correct class, however, a manual or automatic post-processing
step is necessary. Nevertheless, it has the strong advantage that it can be applied to different areas
without the need to generate representative training data. In the following, both approaches are
described and evaluated.
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Unsupervised learning: clustering-based classification with k-means
The k-means algorithm was used as a basic and established clustering algorithm (see Section 2.2.4).
It has the advantages of being fast and of allowing users to define the number of clusters. The
latter was important in this problem setting, since there were the two classes ‘legal’ and ‘illegal’.
However, it was unclear which cluster represents legal parking spaces. Thus, to assign the clusters
to the classes, it was assumed that legal parking spaces had a higher average occupancy rate than
parking prohibitions on average. This means that the algorithm assigned the cluster with a higher
average occupancy rate to the class ‘legal’.

Supervised learning: random forests
For supervised learning, a random forest classifier was used (see Section 2.2.3). Since the training
data was assigned to the two classes ‘legal’ or ‘illegal’, the classifier directly estimated the classes
for the test data and there was no need to guess the class assignment.

Approach from literature: weighted occupancy rate threshold (WORT) with smoothing
Coric and Gruteser (2013) described an algorithm that decides the legality based on a weighted
occupancy rate. This value was compared with a threshold followed by post-processing to smooth
the results. Since there was no method suggested to choose proper threshold values, a grid search
was applied for the best parameters with cross-validation and cost function c = FP+α ·FN (α is a
weighting parameter, FP are the false positives, and FN are the false negatives). In the following,
the approach is abbreviated as WORT.

5.2 Evaluation

This approach to learn parking legality from the position of parked vehicles was evaluated with
data using the parked vehicle detection method described in Chapter 4. The results were compared
with a manually recorded ground truth. Finally, the proposed learning algorithms were compared
with the WORT method of Coric and Gruteser (2013).

5.2.1 Evaluation approach

Test scenario
The detections of non-moving vehicles with the mobile mapping system, as described in Chapter
4, were used for the evaluations in this chapter. It was assumed that all detected non-moving
vehicles were parked vehicles. Since a system breakdown occurred in one of the ten measurement
drives, only nine drives were considered in this evaluation. Two examples of the extracted vehicle
coordinates are shown in Figure 5.3. The data was restricted to the Nordstadt part of the test
track, where parking spaces were parallel to the road. Road subsegments in areas with parking
perpendicular to the road as well as parking areas for special groups such as taxis were excluded
from the evaluation. In the end, the length of the track considered was more than 2.5 kilometers
and thus more than five kilometers of potential parking space, as both sides of the road were
observed. Parking was allowed on about 3.1 kilometers for about 500 vehicles.

Ground truth recording
The ground truth to evaluate the results of the parking space map was obtained by a combination
of field measurements and precise post-processing. For most of the roads, a handheld differential
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(a)

(b)

Figure 5.3: Examples for input data of (a) one measurement drive and (b) all nine measurement drives.
The black lines represent the one-dimensional extent of the parked vehicles, red (illegal) and green (legal)
are the ground truth classes of the road subsegments.
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GPS device was used to record the beginning and end of the legal parking spaces. The standard
deviation of the GPS device measurements ranged from a few centimeters to multiple meters. For
streets with low GPS accuracy due to obstructions (e.g. tall buildings) and thus limited sky view,
Google satellite images were used for a first estimation of the parking legality. Then, 3D point
clouds from the laser scan data were overlaid, in order to refine these locations. The boundaries
of the parking area, such as curb stones or traffic signs, could be clearly identified from the laser
scan point clouds.

Uncertainty in ground truth
In addition to the measurement inaccuracy of the equipment, the start and end of a parking space
could not be identified precisely in several cases. For example, the curb at the end of a parking
lane was often not perpendicular to the road, or the parking restriction traffic sign was not aligned
with the street markings. To account for both measurement and identification uncertainties, the
borders of the legal and illegal parking spaces were not evaluated. More precisely, 0.5m to each
side of the borders between the legal and illegal parking spaces were not considered in the quality
measures.

Figure 5.4: Illustration of regional subsets of investigated road segments. Each color represents a subset.
Note that parts of the Nordstadt track from Figure 4.2 are missing, because they are multi-lane roads or
have parking slots perpendicular to the road. The background map is taken from OpenStreetMap.

Cross-validation
A three-fold cross-validation was applied to the supervised approach and the WORT approach. The
k-means approach was also evaluated for different subsets of the dataset, to investigate the impact
of the area size. For this, each road segment (not subsegment) was assigned to one of three similar
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sized sets. Two kinds of cross-validation sets were generated to investigate the generalization of
the models. For the first cross-validation sets, the track was divided based on the spatial vicinity
of the road segments (see Figure 5.4; called regional road subsets in the following). In the second
case, the road segments were assigned randomly to the three sets, keeping the length of all three
sets about the same. Note that cross-validation with a random split of subsegments would lead
to an improper evaluation, since adjacent subsegments have very similar neighborhood features
(features 4-6), and was therefore not evaluated.

5.2.2 Results

Overview of results
A comparison of results for all three approaches is shown in Table 5.2. Both the accuracy without
variation of cost weights (unweighted) and the optimal accuracy values of each approach were com-
puted for different choices of cross-validation sets. The results showed that the random forest with
random road subsets reached the highest quality scores, with 93.0% accuracy in the unweighted
case and 93.1% optimal accuracy. Most other cases also reached accuracy values above 90%. Only
the WORT approach achieved an accuracy of no more than 85.5% if the suggested parameters by
Coric and Gruteser (2013) were used. This result might be caused by potentially different parking
characteristics in their observation area, such as different parking occupancy levels or different
arrangement of parking stalls.

Figure 5.5 shows the Receiver Operating Characteristic (ROC) curves, which illustrate the pairs
of False Positive Rate (FPR) and True Positive Rate (TPR) for different weightings. For random
forests, this curve was computed by variation of the classification score threshold. The separation
plane between the cluster centers was incrementally shifted for k-means. For WORT, the relative
weight of FP and FN was varied with parameter α in the parameter grid search. The best results
(highest TPR at a given FPR) were achieved by k-means and random forest with random subsets
for almost the complete curve. Clearly worse were the curves for WORT and random forest with
regional subsets.
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Figure 5.5: Comparison of Receiver Operating Characteristic (ROC) curves for random forest, k-means, and
WORT.
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Table 5.2: Results for all methods with different choice of data subsets and parameters.

Method
Choice of data subsets and Accuracy Optimal

parameters (unweighted) accuracy

regional road subsets 90.1% 90.3%Random forest
random road subsets 93.0% 93.1%

regional road subsets 91.3% 92.2%

k-means random road subsets 91.8% 92.5%

full dataset clustered 91.8% 92.1%

Weighted occupancy suggested parameters 85.5% –

rate thresholding with optimized (regional road subsets) 92.0% 92.3%

smoothing (WORT) optimized (random road subsets) 92.3% 92.3%

Impact of subset choice in cross-validation
Figure 5.5 showed clear differences in the random forest approach for different subsets in the cross-
validation. If the roads were divided into three sets according to their geographical locations,
the ROC curve was clearly worse than for a random split of roads into three sets. The area
under the curve was 0.953 for the regional subsets, compared to 0.966 for the random split of
roads. Such differences between different subsets in the cross-validation did not exist for k-means
and WORT (see Figures 5.6a and 5.6b). It is assumed that different parking characteristics (e.g.
different parking occupancy levels) in the different regional subsets caused learning that was too
specific for model transfer. When the road segments were chosen randomly for the subsets, each
subset contained about the same characteristics and was therefore more representative for the
other subsets. Since the random forest classifier was able to learn a finer separation than k-means
with just a linear separator, the random forest results depended more on the representative choice
of training data than the other methods.

Qualitative evaluation of methods
The qualitative evaluation of the results showed that all methods provided a reliable decision for
parking legality in most situations. In particular, long parking lanes and highly occupied parking
spaces were well identified with all methods. However, false positives mainly occurred in small areas
of parking prohibition, such as in front of garage entrances, if vehicles were occasionally parked
there during the observation time (e.g. road furthest to the right in Figure 5.7). False negatives
were less frequent. They appeared at rarely used parking places, such as at the end of parking lanes
(e.g. Figure 5.8a). Moreover, systematically missing detections of parked vehicles occurred at a
few places. Without any detection, the learning also failed at these places. Differences between the
methods were found at the beginning of illegal zones. The random forest approach often classified
a few additional meters as legal in the illegal zone. In situations with only one vehicle parked
illegally for a few time instants, k-means and random forest interpreted these situations correctly,
while the WORT approach marked these spots as legal (see Figure 5.8b).

Evaluation of features
The relevance of the feature sets was evaluated both for the unsupervised and supervised learning
approach. For unsupervised learning with k-means clustering, the results for runs with all and
with a subset of feature sets were compared (see Figure 5.9). If only the features on the road
subsegments themselves were considered (feature sets 1-3) and the neighborhood features were
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Figure 5.6: Comparison of different cross-validation subsets for (a) the clustering-based classification with
k-means and (b) the WORT approach.
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Figure 5.7: Example for the resulting parking map. Blue is the estimated parking space, red (illegal) and
green (legal) show the ground truth.

(a) (b)

Figure 5.8: Examples for wrong classification results (estimated parking space in blue, ground truth for
legal/illegal parking in green/red): (a) shows false negative results at the end of a parking zone. (b) visualizes
two false positive parking spaces for WORT. The black lines represent the raw vehicle detections. At the
two wrong parking spaces (false positives), the same vehicle was detected two and four times, respectively.
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ignored, the resulting ROC curve was considerably worse than the curve with all features. A
main cause for this result stemmed from marked parking spaces where gaps between the parked
vehicles were always at the same positions and cars rarely covered that space. Thus, these gaps
were wrongly classified as illegal. If only the neighborhood features (feature sets 4-8) were used,
the result was very similar to the usage of all features. Most differences were only at the end of
parking lanes, where this result was less accurate than using all features.
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Figure 5.9: ROC curve for different feature sets with k-means.

For supervised learning, the random forest method computed the feature importance in the training
step with the out-of-bag samples of each tree. A plot of the feature importance is given in Figure
5.10. All features had a positive effect on the classification result. The most important feature
sets were the average neighbor occupancy (5), weighted neighbor occupancy (6), and segment
saturation (7). For the feature sets 4 to 6, an increasing trend for increasing feature index is
visible. As the feature index increases with the distance threshold in the feature computation, the
first values correspond to the shortest distance of 0.5m and the last values are for long distances of
40meters. Consequently, the neighborhood features were more important when including farther
distances, but still relevant for shorter distances.

Evaluation of required number of measurement drives
To investigate the influence of the number of measurement drives on the parking map result, the
methods presented were computed for different numbers of measurement drives. For each number
of measurement drives, the random choice of drives and computation was repeated nine times. The
result is illustrated in the boxplots in Figure 5.11. The figure shows that the (unweighted) accuracy
values mostly improved with increasing number of measurement drives for all methods. For all
settings, the random forest reached the best results. K-means was clearly worse than WORT for a
small number of drives, but became about equal for more drives. At seven and more measurement
drives, only small improvements were observed for all approaches.

5.3 Concluding remarks

A novel approach for the generation of on-street parking maps from parked vehicle positions using
supervised and unsupervised learning methods was presented in this chapter. Multiple feature
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Figure 5.10: Feature importance from random forest training. The intervals of the feature index correspond
to the feature sets separated and named in red.
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Figure 5.11: Accuracy boxplots of different methods for different numbers of measurement drives. Note that
for nine drives, there is no variation for different permutations, since all drives are used in the calculation.
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sets were proposed to describe the occupancy characteristics of small road subsegments and their
surroundings. It was shown that both proposed learning methods showed slightly better results
than a method from the literature, while keeping the model more generic. Most interestingly, the
main advantage of the unsupervised clustering-based classification is that it is free from any pa-
rameter choice and optimization. Still, it reached results that were competitive with the supervised
learning. In addition, it was robust against the variation of parking characteristics for different
areas. The random forest method reached the best results for any number of measurement drives.
However, it revealed a clear dependence on the representative choice of the training dataset.

All approaches were sensitive for untypical occupancy behavior. If a legal parking space was never
occupied in the dataset, it was mostly not identified. Similarly, if no-parking zones were occupied
by parked vehicles most of the time, the prohibition was barely detected. This was often the case at
garage entrances. However, a very high accuracy of a parking legality map is likely to be necessary,
because drivers should not be guided to a spot where parking is illegal. Thus, even the accuracy
of more than 93% achieved by the random forest classifier might be insufficient for a successful
parking guidance. Since the evaluation was based on data from only one day, the dataset contained
multiple situations where a parking space was occupied for a long time by the same vehicle. Thus,
measurements from different days and therefore with a higher heterogeneity are likely to improve
the results. However, it can be expected that some places are still incorrectly classified with large
amounts of data. Finally, a highly accurate mobile mapping system was used for the detection of
parked vehicles. It can be assumed that more measurement drives are necessary for cheaper sensor
systems, such as sensors in series vehicles.



6 Spatio-temporal analysis of large scale parking availability data and
simulation of crowdsensing

Parking availability is a highly dynamic phenomenon, with spatially heterogeneous distribution and
temporally recurrent patterns. In this chapter, the spatio-temporal characteristics are described
for a detailed parking dataset from San Francisco, where measurements from more than 5,000
parking spaces with static sensors were recorded. In Section 6.1, a basic description of the SFpark
project is given, including the most relevant features. In addition, as the dataset is also affected
by some sensor errors, the data cleaning from irregular patterns is described. In Section 6.2, a
detailed analysis of the dataset regarding temporal periodicity and characteristics is presented. In
addition, a clustering of the average parking occupancy over the day is presented in Section 6.3 to
show their similarities and differences in these daily patterns. Spatial properties are described in
Section 6.4. Finally, the simulation of parking crowdsensing based on observation rate estimations
(Section 6.5) and taxi trajectories (Section 6.6) is described. Some of the work in this chapter is
also presented in Bock and Sester (2016); Bock et al. (2016a, 2017a,b).

6.1 Description and processing of parking dataset from SFpark

The SFpark project in San Francisco (US) was one of the largest smart parking projects in the
world (Lin et al., 2017). The San Francisco Municipal Transportation Agency (SFMTA) ran this
project with a total budget of more than 46 million dollars, in order to improve parking efficiency
and drivers’ experience (San Francisco Municipal Transportation Agency, 2014). A main part
of the project was the evaluation of demand-responsive pricing, i.e. the price at parking meters
was changed every three months, based on the average occupancy in the specific places and time
slots. To monitor parking occupancy continuously, more than 8,000 on-street parking spaces were
equipped with sensors in a pilot and a control area. The pilot area is considered in this thesis. It
contains more than 5,000 on-street parking spaces in 579 parking segments1. The project covered
business districts (Financial District, South of Market, Civic Center), residential districts (Marina
District, Fillmore District, Mission District), and a touristic area (Fisherman’s Wharf). A map of
the pilot area is shown in Figure 6.1.

Each parking space incorporated at least one magnetometer in the asphalt to detect the parking
occupancy changes. Detections were transmitted to a roadside unit and then to a central server.
The number of available parking spaces per parking segment was computed there. During the
project duration, some sensor inaccuracies were noticed: electromagnetic interference from over-
head power lines and other sources caused inaccurate measurements. The battery lifetime of the
sensors also decreased faster than expected and caused missing measurements. Thus, data cleaning
was necessary. A more detailed description, experiences, and results of the project were extensively
documented by the San Francisco Municipal Transportation Agency (2014).

1The parking segments are defined based on the grouping of parking spaces by SFpark (called block face in their
documentation). A parking segment consists of a row of metered and marked parking spaces on one side of the
road between two major intersections. In the following, a distinction is made between road segment and parking

segment. For every parking segment, there is a corresponding adjacent road segment.

71



72 6 Spatio-temporal analysis of large scale parking availability data and simulation of crowdsensing

Figure 6.1: Map of pilot areas of SFpark: Fisherman’s Wharf (region 1), Financial District and South of
Market (region 2), Mission District (region 3), Civic Center (region 4), Fillmore District (region 5), and
Marina District (region 6). The background map is taken from OpenStreetMap.

For the pilot area, the parking availability and capacity per parking segment were provided to
the public through a smartphone app and a public API, so that drivers were informed about the
current parking situation. For this thesis, a recording of this API every five minutes was used for a
six-week period from June 13th, 2013 until July 24th, 2013 for all on-street parking segments. Each
record contained the ID, name, and coordinates of the parking segment, the number of occupied
parking spaces, the current parking capacity (number of parking spaces where parking was allowed
at that time instant), and the timestamp. An example of the time series for parking capacity and
occupied parking spaces for one parking segment over three days is shown in Figure 6.2. In this
case, the maximal capacity of the parking lane was six, but changed over time. On the morning
of July 12th, 2013, parking was completely prohibited, presumably due to street cleaning. For the
number of occupied parking spaces, a typical day trend was visible, with high occupancies during
the day and low values during the night.

The data showed some irregular patterns for several parking segments, which were removed from
the dataset. Out of 579 parking segments, for which at least one measurement existed in the obser-
vation period, the records for 51 parking segments contained a data gap or a constant occupancy
value for at least three days. Among the remainder, there were also 108 parking segments which
never reached an occupancy rate of at least 85%, which was an indicator of broken sensors, and
were therefore filtered. The remaining cleaned set of 420 parking segments was used for all the
following evaluations.

Finally, the locations of the sensors needed to be matched with the OpenStreetMap road network.
Each parking segment in the SFpark project is described by a line geometry. They were assigned
to the road segment in OpenStreetMap closest to the middle point of the parking segment and not
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Figure 6.2: Example for the occupancy and capacity time series of a parking segment over three days.

intersecting it. A detailed visual evaluation of the results showed that this simple approach was
sufficient to match all parking segments correctly.

Table 6.1: Road classes of the parking segments for the investigated districts. The ratios are based on the
lengths of the corresponding road segments.

Region Primary Secondary Tertiary Unclass. Resid. Service Other km

Region 1 20.7% 0% 6.1% 0% 73.3% 0% 0% 4.3

Region 2 32.5% 29.0% 15.1% 2.8% 19.1% 1.4% 0% 18.9

Region 3 0% 59.4% 3.8% 0% 31.3% 0% 5.5% 3.2

Region 4 25.4% 28.8% 16.1% 14.1% 7.5% 8.1% 0% 7.1

Region 5 6.1% 1.0% 38.5% 2.6% 43.6% 0% 8.2% 7.6

Region 6 3.9% 0% 46.1% 0% 50.0% 0% 0% 3.8

All regions 21.0% 21.2% 20.2% 3.9% 30.1% 1.9% 1.8% 44.9

SF City 9.2% 8.0% 8.8% 3.3% 53.3% 9.8% 7.5% 2,062.9

The distribution of road classes for considered parking segments in the different districts is shown
in Table 6.12. Based on the lengths of the corresponding road segments, the relative lengths of road
classes were computed. Note that the distribution of road classes was influenced by the choice of
the SFpark pilot area and does not necessarily represent the complete district. Still, it corresponds
to the main description of the districts: the parking segments in the business districts (regions 2
and 4) have the highest ratio of large roads and relatively small ratios of residential roads. The
residential areas (regions 3, 5, and 6) contain many residential roads and a few primary roads.
The touristic area in region 1 has both a significant ratio of primary roads and many residential
roads. Compared to the complete road network for the city of San Francisco, the distribution is
similar, but residential roads are underrepresented in the SFpark pilot area, presumably because
the SFpark project focused on the city center with high parking demand and metered parking.

2Note that the sum of ratios may slightly differ from 100% due to rounding.
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6.2 Time series analysis of parking availability data

Characteristics of parking capacity and availability
The distribution of parking capacities and empty parking spaces over the complete dataset period
is illustrated in Figure 6.3. Parking was fully prohibited in nearly 10% of all cases. The main
reasons for parking prohibition were street cleaning and peak hour drive way3 periods. When
parking was allowed, the capacity in a street segment ranged from 1 to 36 parking stalls with an
average of about nine and a mode at eight parking spaces. All parking spaces were taken in 8%
of the cases. In more than 28% of the cases, there were only one or two parking spaces left.
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Figure 6.3: Histograms with ratios of (a) parking capacities and (b) empty parking spaces accumulated over
all parking segments and time instants (frequency of specific number of spaces divided by all cases). For the
number of empty parking spaces, all cases with parking prohibition (capacity = 0) were excluded.

Periodicity of parking availability
The temporal characteristics of the parking availability time series were addressed by a Fourier
analysis and the auto-correlation function. Figure 6.4a shows the Fourier transformation for park-
ing availability averaged over all parking segments in the six-week period. The global maximum
was at a frequency of 1/day, meaning that the time series had a highly repetitive daily pattern.
A further notable maximum was at 1/7 1/day (=1/week) indicating that there was also a weekly
pattern, much less distinct than the day peak. The peaks at multiples of 1/day represented the
harmonics of the 1/day main peak. For the auto-correlation function in Figure 6.4b, there was
also a main peak at one day. However, the peaks for multiples of one day were just a little lower.
In this result, it is visible that there was a small week characteristic, as the peak at seven days is
just slightly higher than the other day shifts.

6.3 Clustering of parking occupancy daily pattern

The parking segments showed a repetitive daily pattern, however these patterns can be very
different from one parking segment to another. Consequently, a clustering of the parking occupancy
daily patterns was computed. For this, the parking occupancy daily patterns were calculated by
averaging the occupancies over the complete dataset per time instant of the day. Weekend days and

3Some parking lanes are used as drive ways during peak hours. Parking is prohibited during these periods.
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Figure 6.4: Analysis of the periodicity characteristics of the parking availability rate using (a) the Fourier
transformation (periodogram) and (b) the autocorrelation function (correlogram).

a national holiday (July 4th) were excluded, as there was a different daily pattern on those days.
In addition, segments with parking prohibition at specific hours for every day were not considered,
reducing the dataset to 317 parking segments. Then, a hierarchical clustering with complete linkage
was computed for both the Euclidean distance and the Pearson correlation as (dis-)similarity
measures (see Section 2.2.4 for details about the method). The Euclidean distance was used to
find parking segments with similar absolute parking occupancy rate. The Pearson correlation was
used to identify parking segments with similar curve shapes. Thus, for the Pearson correlation,
the average occupancy values ¯occ(p,t) were normalized per parking segment (subtracted by the
temporal mean ¯occmean(p) and divided by the standard deviation ¯occstd(p)):

¯occn(p,t) =
¯occ(p,t)− ¯occmean(p)

¯occstd(p)
(6.1)

where p is the parking segment and t is the time of the day in 5-minute steps. The Davies-Bouldin
index and the Silhouette index were used to indicate reasonable numbers of clusters. The negative
value of the Davies-Bouldin index was used in the following, so that higher values mean better
clustering results for both measures.

The results of the cluster validation measures are shown in Figure 6.5. For the Pearson correlation
(Figure 6.5a), these measures indicated that two clusters were the best quantity. The results of the
average daily patterns are presented in Figure 6.6. For two clusters and the Pearson correlation
as a similarity measure, the averaged daily patterns were two very distinct shapes (Figure 6.6a):
a large cluster with 306 members and the main day behavior with low occupancy during the night
hours and maxima in the early afternoon and the evening (Figure 6.6c). The small cluster had
only 11 members and had lower occupancy values during the day (Figure 6.6e).

In addition, six clusters represented a local maximum of the negative Davies-Bouldin index and
a medium value for the Silhouette index. The average daily patterns of those clusters were more
versatile, representing the different possible shapes of the curves (Figure 6.6b). For example,
cluster 5 had a medium occupancy during the night, a small maximum in the early afternoon and
a prominent maximum in the evening (Figure 6.6d). Cluster 4 had a similar shape, but with the
global maximum at about 1 pm (Figure 6.6f). In Figure 6.7, a map of the spatial distribution of the
six clusters is shown. Although no spatial information was used for the clustering, spatial patterns
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Figure 6.5: Negative Davies-Bouldin index and Silhouette index as cluster validation measures for different
cluster sizes: (a) the Pearson correlation as similarity measure with normalized average parking occupancy
and (b) the Euclidean distance as dissimilarity measure with average parking occupancy.

are also clearly visible. This means that the shape of the average daily parking occupancy was
often similar for parking segments in the vicinity.

For the Euclidean distance, the results of the cluster validation measure are shown in Figure 6.5b.
With four clusters, the negative Davis-Bouldin index had its global maximum and the Silhouette
index only slightly decreased. In this case, the clustering led to three clusters with very similar
shapes of the average occupancy daily pattern, but at different levels (Figure 6.8a). Only one
cluster with two members was strongly different, with very low occupancy during the day. A
detailed look at this cluster in Figure 6.8b shows drastic jumps in the morning and in the evening.
Parking was not allowed in these segments for most of the parking spaces between 7 am and
6 pm/7 pm. It is unclear whether the remaining legal parking space was really available most of
the time or some sensor failure occurred. The other three clusters contained parking segments
with similar level of occupancy. For example, cluster 4 contained all parking segments with high
parking occupancy throughout the day (Figure 6.8c).

The clustering results showed that a very diverse parking occupancy daily pattern existed for the
different parking segments, regarding both the shape and the magnitude. As the cluster validation
measures are just indications for the optimal cluster size, changing the cluster sizes led to different
relevant results. Depending on the clustering settings (not only the cluster size, but also, for
example, the clustering or linkage method), different levels of detail can be identified, and different
insights into the parking occupancy patterns can be revealed.

6.4 Spatial relations in parking availability

To assess the spatial relations of parking availability in the San Francisco dataset, the spatial mean
absolute difference MADs at different distances (also called madogram in geo-statistics) was used:

MADs(a(t),dc) =

∑

|d(i,j)−dc|<∆,i 6=j

|ai(t)− aj(t)|
∑

|d(i,j)−dc|<∆,i 6=j

1
(6.2)
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(c) Cluster 2 for clustering with two clusters
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(d) Cluster 5 for clustering with six clusters
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(e) Cluster 1 for clustering with two clusters
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(f) Cluster 4 for clustering with six clusters

Figure 6.6: Clustering results for normalized average parking occupancy with Pearson correlation. (a) and
(b) show the cluster averages for two and six clusters, (c)-(f) show exemplary clusters with the average daily
patterns for the cluster members in different colors and the cluster average as a thick black line.
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Figure 6.7: Spatial distribution of the clustering result for normalized average parking occupancy with Pearson
correlation. The background map is obtained from OpenStreetMap.
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(b) Cluster 4 for clustering with four clusters
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Figure 6.8: Clustering results for average parking occupancy with Euclidean distance. (a) shows the cluster
averages for four clusters, (b) and (c) show the average daily patterns for the cluster members in different
colors and the cluster average as a thick black line.
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Figure 6.9: Comparison of mean absolute difference (MAD) for spatial relation of the parking availability rate
(differences in availability at the same time at different distances) and for the temporal relation (differences
in availability at the same parking segment for different times).

where a(t) is the vector of parking availability measurements in different locations at time t, dc
is the considered distance for similarity calculation, d(i,j) is the distance between the locations of
the measurements i and j, and ∆ is the distance buffer (20 meters in this evaluation). The sums
were computed over all parking segment location indices i and j.

The results of this measure, averaged over all time steps in the dataset, are shown in Figure 6.9
with a direct comparison with the temporal mean absolute difference:

MADt(a(t+ tc),a(t)) =

∑

i
|ai(t+ tc)− ai(t)|

∑

i
1

(6.3)

where tc is the considered interval. The spatial mean absolute difference showed a significant
increase only at short distances of less than 100 meters. It hardly increased for longer distances.
This means that only for short distances, e.g. in the case of opposite parking lanes, there was
some correlation. Restricting the evaluation to parking segments with at least four parking spaces
led to some reduction in MADs. This can be explained by the fact that parking availability rate
changes drastically in small parking lanes, when the availability of only one parking space changes
(e.g. change by 50% in a parking lane with two parking stalls). In comparison with the temporal
MADt, the MADs was much higher in most cases. For example, the MADs value at 20 meters was
reached only after more than 5 hours for the MADt. This means that, on average, the similarity
of availability rates was higher, even after multiple hours at the same street segment, than at
adjacent streets at the same time.

6.5 Modelling of crowdsensing based on downsampling for probe vehicles and mobile
apps

Since large scale parking data from probe vehicles would be very expensive to obtain, the crowd-
sensing of parking availability was simulated by a downsampling of the SFpark dataset according
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Figure 6.10: Cumulative distribution plot of inter-sampling times between two subsequent observations on a
parking segment for 5% (mobile apps) and 30% observation rate (probe vehicles).

to models for the sensor coverage. As crowdsensing observations have an irregular temporal res-
olution, the original SFpark dataset was downsampled with a random choice of observations. In
particular, an observation rate was estimated for taxis as probe vehicles and for an exemplary
smartphone application. An observation rate of k% means that k percent of parking segments
were observed every five minutes, or that each parking segment had a k% chance of being observed.
Based on this chance, a subset of observations was extracted from the complete dataset according
to the model assumptions described below.

6.5.1 Scenario based on probe vehicles

Crowdsensing probe vehicles observe the parking availability on parking lanes with sensors while
driving. As discussed in Section 3.1.1, the number of empty spaces per parking segment is obtained
by the detection of gaps between parked cars, cross-checked with a parking legality map to ignore
driveways. Thus, at every passing of such a probe vehicle, a parking segment is scanned.

A result of the taxi trajectory analysis by Mathur et al. (2010) was that 300 taxis can observe,
on average, 80% of the parking segments in San Francisco downtown with an inter-sampling time
(i.e. interval between two subsequent taxis) of up to 25 minutes. This result could be translated to
an observation rate r0 at every five minutes: the chance of missing observations in all t 5-minute
time steps is (1− r0)

t. The probability of observing a parking segment at least once within t time
steps corresponds to the complement of not observing it within that period, i.e. 1 − (1 − r0)

t.
Based on the result of Mathur et al. (2010), 80% of the parking segments were observed at least
once within five time steps (25 minutes), thus 1− (1−r0)

5 = 80%. Solving this equation results in
an observation rate of r0 ≈ 27.5%, or roughly 30%. This calculation is based on the assumption
that all parking segments have the same chance of being visited. The cumulative distribution of
the observation intervals for this observation rate is shown in Figure 6.10.
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6.5.2 Scenario based on mobile apps

As discussed in Section 3.1.1, there are several approaches for mobile applications that could be
used to collect parking-related information. In this evaluation, a mobile app was modeled that
requires explicit feedback from the user to enter the number of empty spaces for a parking segment,
as described by Chen et al. (2012). The user inserts this number into the app after every parking
and before every leaving event. This information is even more detailed than most automatic
approaches, which just detect the parking and leaving events of the user itself.

To quantify the observation rate for this case, several assumptions were necessary, since the number
of observations per parking segment depends on the number of parking/leaving events and on the
percentage of drivers using this app:

Number of parking/leaving events
The average number of occupied spaces per parking segment is 3.7 in the evaluation dataset from
San Francisco. San Francisco County Transportation Authority (2009) reported that the average
parking duration was between 0.7 and 1.7 hours in the area of San Francisco. As an optimistic
case, an average parking duration of 30 minutes is assumed in the downtown area, and therefore
both 7.4 parking and 7.4 leaving events per hour, i.e. about 1.2 (≈ 14.8/60 · 5) parking/leaving
events every five minutes.

Percentage of app users
An optimistic user rate of 4% of all drivers is assumed. For this number, the popular ride service
app Uber4 was taken as reference, which had about the same rate of monthly app users in the
USA in June 2015 (about 8 million app users on a driver population of about 214 million licenses
(Lella et al., 2015)). In addition, it was optimistically assumed that those drivers use the app for
every parking and leaving event.

Despite these optimistic estimates, this scenario corresponds to an observation rate of about 5%
(≈ 1.2 · 0.04) for every 5-minutes interval. Interestingly, a user rate of at least 24% would be
necessary to reach the same observation rate as estimated for the 300 taxis as probe vehicles
(30%). Note that the individual capacity per parking segment certainly affected the number of
parking events, which was neglected in this estimation.

6.6 Modelling of probe-vehicle-based crowdsensing from taxi GPS trajectories

To improve the quality of the crowdsensing model, observations were simulated based on real taxi
GPS trajectories and parking measurements from static sensors in the same area. By matching
both datasets by time of day, day of the week, and location, it was assumed that taxis driving
at these times would have observed parking availability in the corresponding streets as measured
by the static sensors. First, an overview of the processing steps and a description of the taxi
trajectories is shown in Subsection 6.6.1. After map matching and filtering the trajectories (see
Subsection 6.6.2), the parking segment visits of the taxis were aggregated to a median week.
Some statistical evaluations of the spatial and temporal coverage of the road network by the taxi
are presented in Subsection 6.6.3. In Subsection 6.6.4, the daily patterns of taxi activities and
parking fluctuations are directly compared. The simulation of parking crowdsensing, based on the
combination of parking and taxi datasets, is presented in Subsection 6.6.5.

4https://www.uber.com

https://www.uber.com
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6.6.1 Processing overview and description of taxi trajectory dataset

An overview of the processing steps for the parking data and the taxi GPS trajectories is illustrated
in Figure 6.11. The parking data from the static sensors were cleaned first, as already described
in Section 6.1. Based on the geometry information of the parking lanes, the lanes were matched
to the road network from OpenStreetMap. For the taxi data processing, the trajectories needed
to be map matched in a more sophisticated way because of a low record frequency. A filtering was
applied for irregular records and to limit the time frame. A downsampling of the parking segment
visits was then necessary, as there were many multi-lane roads and current systems allow only the
scanning of adjacent lanes. As the taxi dataset contained some periods of systematically missing
periods, a median week was computed in the aggregation step. Finally, the crowdsensed parking
availability was determined from the combination of parking and taxi datasets. A measurement
of parking availability was added to the parking crowdsensing dataset for every time step a taxi
visited the parking segment.

Figure 6.11: Overview of the processing pipeline for simulation of the parking crowdsensing with taxis based
on static sensor parking data and taxi GPS trajectories.

The taxi trajectory dataset was collected in the Cabspotting project, which had the goal of extract-
ing the socio-economic properties of city districts from the movement data, and is publicly available
(Piorkowski et al., 2009). All trips of 536 taxis from the Yellow Cab company in San Francisco
(US) were recorded with GPS receivers over 25 days from May 17th, 2008 until June 10th, 2008.
Longitude and latitude, timestamp, taxi identifier, and passenger occupancy status (occupied /
empty) were periodically stored and transferred to a central server. In total, the dataset consists
of 11,219,955 GPS points, with a median time gap of 60 seconds between subsequent GPS mea-
surements. About 86% of all records showed a time gap between 30 and 120 seconds. An example
of the activity of one taxi in the center of San Francisco is shown in Figure 6.12.

6.6.2 Taxi GPS trajectory processing

Map matching of GPS trajectories
To identify when a taxi passed a parking segment, the trajectories were matched to the road
network from OpenStreetMap. In particular, since the record frequency was low and the taxi might
have passed several road segments between subsequent GPS measurements, the most probable
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Figure 6.12: Example for the GPS trajectory of one taxi over the complete observation period.

route had to be estimated. For this, the map matching approach of Axer et al. (2015), based on
Lou et al. (2009), was applied to the taxi trajectories5.

This approach consisted of three steps: a splitting step to reduce the length of a trajectory, a
candidate search step to determine the possible road segments near the GPS points, and a global
optimization step to identify the most likely route connecting the candidates. In the splitting step,
the trajectory of a taxi was split into shorter sequences (called trips in the following) whenever the
occupancy status of the taxi changed, or when there was a time gap of more than three minutes.
Trips with unrealistic speeds between two subsequent GPS points and short trips with less than
five GPS points were removed from the dataset. The candidate search step identified all road
segments in the vicinity of the GPS points. All possible combinations of candidates for a trip of
GPS points were determined and connected via a shortest path calculation. For each combination,
a score was calculated in the global optimization step, based on spatial and temporal criteria and
assuming that the taxi did not take unnecessary detours. The route with the best score was then
selected for further processing.

For the taxi trajectory dataset, 8,839,942 GPS points (78.8% of the points) were successfully
matched to the road network. Thus, all following analyses based on this map matching represent
a lower bound of the taxi coverage.

Filtering of dataset and downsampling
The map-matched dataset was filtered temporally and spatially to obtain a consistent dataset.
First, the dataset was limited to a three-week period (May 18th - June 7th) to represent every day
of the week equally. Furthermore, trips by taxis that were inactive for more than a week were

5The map matching computations were performed by Steffen Axer from the Institute of Transportation and Urban
Engineering at TU Braunschweig.
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removed, reducing the number of taxis to 486. Spatially, movements were considered for further
analyses only next to the parking segments, where parking data was also available.

In addition, some of the visits of road segments were filtered on multi-lane roads, since most current
probe vehicles are able to monitor only the adjacent lanes. Therefore, if a taxi is not driving next
to the parking lane, no parking information can be obtained. As the GPS trajectories were too
inaccurate to determine the lane choice of the taxis, the choice was guessed, based on the number
of possible lanes. The number of lanes was contained in OpenStreetMap for 52% of the road
segments in this investigation area. If the number of lanes was even on a two-way road, it was
assumed that half of the lanes belong to each of the driving directions. In cases of uneven lane
count or missing information, the number of lanes per driving direction was extracted manually
from Google StreetView. For the following evaluations, two cases were distinguished:

• Pessimistic case: the lane choice of the taxi drivers was assumed to be random. Thus,
only 1/#(lanes) of the visits in the corresponding direction were next to the parking lane.
This subset was chosen randomly from the set of visits.

• Optimistic case: taxi drivers might receive a reward for driving next to the parking lanes.
Therefore, nearly all visits could be considered, except in the case of one-way roads with
multiple lanes and parking on both sides. Since in this case observing both sides is not
possible, only half of the visits were considered randomly.

6.6.3 Characteristics and aggregation of taxi coverage

Average time gap as measure for crowdsensing coverage
To measure the spatio-temporal coverage of the taxis as probe vehicles, the taxi visits next to
each parking segment had to be examined. In the study by Mathur et al. (2010), the average time
between two subsequent taxi visits T̄s (also called average inter-sampling time) at a location was
used, defined as:

T̄s =
1

Ntaxi − 1

Ntaxi−1
∑

i=1

(ti+1 − ti) =
tNtaxi

− t1
Ntaxi − 1

(6.4)

where ti are the ordered timestamps of taxi visits and Ntaxi is the total number of visits at a
parking segment in the investigated period.

However, the average inter-sampling time does not consider if the intervals were irregular. In
Figure 6.13, two examples are illustrated to show this limitation of the measure. In the upper
example, the taxis arrive in the same interval of 30 minutes. Therefore, the average inter-sampling
time T̄s is 30 minutes. If the same number of taxis arrive at irregular intervals (lower example in
Figure 6.13), the average inter-sampling time is not affected. However, in a crowdsensing scenario,
the upper example should be favored over the lower example.

As a more precise measure, the time gap between an instant of time t, when a parking change
could happen, and the time of the next taxi visit tnext(t) is proposed in this thesis. To assess a
complete observation period, the time gaps are averaged over all instants of time in that period:

T̄g =
1

tE − t0

tE
∫

t=t0

(tnext(t)− t)dt ≈ 1

Nsteps

Nsteps−1
∑

i=0

(tnext(t0 + i ·∆t)− (t0 + i ·∆t)) (6.5)
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Figure 6.13: Examples for regularly and irregularly sampled taxi visits with values for their average inter-
sampling time and average time gap.

where tnext(t) is the timestamp of the next taxi visit after time t, and Nsteps is the number of
time steps between start time t0 and end time tE with interval ∆t. Note that, for periodically
sampled measurements, the mean time gap T̄g is half of the inter-sampling time T̄s, but increases
for irregular sampling. In the example in Figure 6.13, the average time gap well incorporates the
regularity of the intervals. While the upper example has an average time gap T̄g of 15 minutes, T̄g

increases to 35 minutes for the lower example.

As an additional example of irregular sampling, the measurements in Chapter 4 (see Figure 4.10
on page 55) are considered. The mean time gaps are about 41 minutes for ‘Osterstraße’ and 56
minutes for ‘Fliederstraße’6. If the measurements were sampled perfectly at the same interval,
the mean time gap would be about 35 minutes and 39 minutes, respectively. However, the inter-
sampling time is independent of the sampling, with 69 minutes (‘Osterstraße’) and 77 minutes
(‘Fliederstraße’).

Evaluation of taxi visit time gaps
For the evaluation of the spatio-temporal coverage of the taxis, the time gap measure was used with
an interval of ∆t = 5min in the following computations. For the pessimistic case, the cumulative
distribution function of the time gap in Figure 6.14 shows that the time gap was less than an hour
in about 80% of the time instants for all parking segments. While nearly 60% of time instants
had a time gap of up to 20 minutes, and thus any changes in parking occupancy could quickly
be detected, more than 10% of the time instants were not yet observed, even after 100 minutes.
The curve for the optimistic case showed very similar behavior as for the pessimistic case, with
differences of only a few percentage points. For very small time gaps, the curves were similar to
the modeling based on a constant observation rate of 30%7 (see Section 6.5). However, for time
gaps larger than about 10 minutes, a clear difference is visible. While nearly all cases had a time
gap of less than one hour for the 30% observation rate, the curves for the modeling based on the
taxi trajectories were much flatter. This difference was presumably caused by the spatio-temporal
heterogeneity of the taxi coverage, since during the night hours and in small streets fewer taxis were
active. Thus, the model with constant observation rate clearly overestimated the spatio-temporal
coverage of the observation area.

Temporal characteristics and aggregation
As the time gaps were revealed to be quite heterogeneous, the temporal dependencies of the time

6In ‘Fliederstraße’, one measurement is missing because of system failure.
7Note that the observation rate of 30% was modeled for a fleet size of 300 taxis, based on the basic trajectory
evaluation by Mathur et al. (2010), while the taxi trajectory results are based on 486 taxis.



6.6 Modelling of probe-vehicle-based crowdsensing from taxi GPS trajectories 87

Time gap in minutes

0 20 40 60 80 100

C
u

m
u

la
ti
v
e

 d
is

tr
ib

u
ti
o

n
 f

u
n

c
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimistic case

Pessimistic case

30% observation rate

5% observation rate

Figure 6.14: Cumulative distribution function of the time gap for the optimistic and pessimistic observation
cases.

gap were investigated in more detail. A boxplot for the time gaps of the optimistic case at different
hours of the day is illustrated in Figure 6.15a. The highest median values (red bars) were observed
during night hours around 4 am. Throughout the day, the median was at about 10 minutes, with
the lowest values around noon and in the evening hours. The difference between the upper and
lower quartile (blue boxes) was also highest during the night and smallest in the evening. The
outliers appear as a solid black line due to the magnitude of the data considered. In conclusion, the
coverage of taxis as probe vehicles was strongly dependent on the hour of the day, and consequently
the time of the day needs to be taken into account for further evaluations.
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Figure 6.15: Temporal characteristics of time gaps for the optimistic case (a) as a boxplot for different hour
of day and (b) mean values for each week. Note that the outliers in the boxplot appear as a solid black line,
due to the magnitude of considered data.

The mean time gap also showed a regular pattern for every week (see Figure 6.15b). However,
there were four cases of strongly irregular patterns. There were two irregular peaks on Tuesday
and Wednesday morning in the first week, because of systematically missing values in the dataset
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for about 80 and 50 minutes, respectively. It could be assumed that there was an overall problem
in the central recording system. On Monday of the second week, there were always larger time
gaps than on the two other Mondays. This might be caused by the fact that this Monday was
Memorial Day, a US holiday, and thus the travel behavior of taxi passengers differed. Finally, the
time gaps were lower at the end of the third week, which can be explained by a computational
issue, as there were no ‘next taxi visits’ anymore for some parking segments. Since all three weeks
showed some irregular behavior, a median weekly pattern was calculated: for each hour of the
week, the median week of the mean time gaps was determined and all taxi activities during these
hours were combined to a ‘typical’ weekly taxi pattern for the following evaluations.

Spatial characteristics
The mean time gaps at different hours of the day showed some differences among the project
regions (see Figure 6.16a). Differing from the general pattern, region 1 had very high mean time
gaps during the night. These high values were presumably caused by the type of area (tourist
area) and low through traffic due to its location close to the waterside. In region 3, the lowest
mean time gaps were late in the evening, as there are many restaurants and bars in this area.

The coverage of taxis, and thus the mean time gaps, strongly depended on the road class, as shown
in Figure 6.16b. The road class was extracted from OpenStreetMap and describes the priority of
the road (see also Section 2.1.2). The most important urban road classes ‘Primary’, ‘Secondary’,
and ‘Tertiary’, about 65% of all roads assigned to the parking segments, had a time gap of 11 min,
16 min, and 27 min on average over the day, respectively. The mean values per hour were less than
50 minutes throughout the day. For small roads of the classes ‘Unclassified’8 and ‘Service’, the
mean time gaps were never lower than 50 minutes, even during the most active hours and going
up to nearly four hours during the night. However, only 5% of all investigated parking segments
belong to these two classes. The higher number of taxi visits on main roads corresponds to the
general traffic flow, which is usually higher on main roads than on side roads. For a crowdsensing
scenario, a trade-off is needed between a better coverage on small roads and the additional effort
to run more probe vehicles.

In Figure 6.17, a map of the parking segments, colored according to the mean time gaps, is shown.
The mean time gaps were very heterogeneous in each region of the investigation area. Only a few
spatial clusters were visible, such as the downtown area in region 2 with low time gaps and region
1 with rather high mean time gaps.

6.6.4 Comparison of parking and taxi daily pattern

The average daily patterns of the parking and taxi datasets over the course of the day are directly
compared in Figure 6.18. The taxi activity was represented by the mean ratio of visited parking
segments per time step of five minutes. The mean parking changes per time step were used for the
parking activity. Note that the changes were calculated based on the number of occupied parking
spaces in two subsequent time steps. However, if both parking and leaving events happened within
an interval of five minutes, these changes remained unobserved. For example, a parking occupancy
difference of zero for a certain parking segment at a given interval could be due either to the
absence of parking events or to one or more vehicles leaving the parking lane and the same number
of vehicles parking there, within this time interval. Thus, this measure does not represent the
actual turnover rate. However, as a relative measure, it still indicates times and locations of higher

8Note that the road class ‘unclassified’ is a defined class and does not stand for an unknown class assignment.
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and lower parking dynamics. In addition, it is important to mention that the distinct peaks at
every hour, especially at 6 am and 6 pm, were caused by the change in parking permission: in
some cases, parking spaces were already occupied before the start of the parking period, but this
information was not communicated by the system9.

The plot in Figure 6.18 indicates that both parking and taxi activities were lowest during the night
around 4 am and increased in the morning hours. However, while the parking activities decreased
in the evening hours, the taxis were most active then. Thus, the relationship between parking
and taxi activities was investigated in more detail in Chapter 7 to evaluate the quality of parking
crowdsensing.

6.6.5 Simulation of parking availability observations

To simulate the parking crowdsensing by the taxis, the observed parking availability data was
computed based on the spatio-temporal distribution of taxis for the typical week. For this, the
parking availability of the corresponding day of the week and time of day was added to the
crowdsensed dataset at every time step when a parking segment was visited by a taxi. In particular,
it was considered that the parking availability is observed by a taxi in the same time step, if the time
between the parking availability measurement and the next taxi visit was less than 2.5 minutes.
If the time to the next taxi visit was between 2.5 and five minutes, the visit was assigned to the
subsequent time step. This assignment was computed for every street segment separately over the
six weeks of parking data. The results of this simulation were used in the next chapter to compare
methods for parking availability estimation.

9For street cleaning, parking was not allowed during certain periods. However, if cleaning was finished already
before the end of a period, parking was allowed. The SFpark system communicated an occupancy and capacity
of 0 for the complete periods, although drivers might have parked there by that time.
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Figure 6.17: Map of the mean time gaps per parking segment for the optimistic case. The background map
is taken from OpenStreetMap.
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the mean parking changes in the parking segments per time step of five minutes.

6.7 Concluding remarks

Spatio-temporal properties of parking
The results of the detailed spatio-temporal analysis of the parking behavior in San Francisco showed
that there are both spatial and temporal correlations, but the latter is much more relevant. This
result stands in contrast to Rajabioun and Ioannou (2015), who stated that spatial and temporal
correlations are about equally important. However, their paper showed some inconsistencies in
their evaluations. In the following chapter, concerning the estimation of parking availability, both
spatial and temporal aspects are considered in detail.

The analysis of the parking occupancy time series revealed that there are repetitive daily occupancy
patterns. Based on this result, a clustering of similar occupancy patterns was computed. In line
with the works by Richter et al. (2014) and Zheng et al. (2014), characteristic occupancy patterns
were obtained, e.g. with the highest parking demand around noon or in the evening hours. In
addition, the results showed that parking segments with similar occupancy patterns are often
located nearby.

Limitations of the SFpark dataset
The SFpark dataset represents a valuable data source, since it describes the parking behavior in
San Francisco in high temporal and spatial levels of detail. However, the parking sensors cover only
metered parking spaces. Areas without parking fees might have an even higher parking demand, as
discussed by Millard-Ball et al. (2014). Moreover, San Francisco Municipal Transportation Agency
(2014) reported several issues for inaccurate sensor measures, such as early battery degradation,
electromagnetic inference, and damages from road construction. Although detailed data cleaning
was applied for this thesis, the evaluations still might be affected by some measurement errors.

During the project period, the parking meter prices were changed incrementally and individually
per parking segment. This means that the parking behavior of the drivers was influenced by the
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prices on a parking segment level. In addition, drivers could inform themselves about the parking
situation via the smartphone app, and thus head directly to less crowded parking segments.

Simulation of parking crowdsensing
Two approaches to simulate parking crowdsensing were presented, based on a constant observation
rate and on a detailed taxi trajectory analysis. It can be assumed that the observation rate method
is less accurate, since it does not consider the spatial and temporal heterogeneity of the mobile
sensors. Still, it provides an interesting insight into the comparison between vehicular crowdsensing
and smartphone crowdsensing. Although the smartphone case was modeled with several optimistic
assumptions, it clearly achieved worse results than the probe vehicles.

The analysis of taxi trajectories revealed very interesting results about their coverage. The taxis
were more active during the day than during the night, but the specific day distribution depended
on the area. For example, in area 3, with many restaurants and bars, the taxi coverage was best
at almost midnight. The coverage also strongly depended on the road class. However, the lowest
road classes were still visited from time to time.

An elaborate map matching was used to identify the most likely routes of the taxis in the minute
between two location measurements. However, due to implausible measurement values and very
short trips, the map matching of only 78.8% of the GPS points was used in the subsequent
computations. Thus, the real taxi coverage was probably markedly better.

The taxi trajectory data from the year 2008 was matched to the parking data from 2013, based
on time of day and day of the week. It is possible that socio-economic changes, seasonal factors,
and the emergence of mobility services such as Uber10 may have influenced the taxi movement
patterns. In addition, the lane choice of the taxi drivers was unknown. Two different lane models
were compared. Interestingly, the random lane choice (pessimistic case) achieved almost the same
results as the optimistic case, where drivers were assumed to be rewarded for driving in the lane
next to parking.

The simulation assumed that the taxis were equipped with sensors to observe the parking availabil-
ity while driving. The vehicles could either be retrofitted with additional sensors (Mathur et al.,
2010) or might already contain suitable sensors. However, in the latter case, cooperation with the
car manufacturer might be necessary in order to gain access to the sensor readings.

10https://www.uber.com/



7 Parking availability estimation and prediction from crowdsensed data

The estimation and prediction of parking availability on the roads is an important assistance for
drivers. If they are close to the destination, direct guidance to parking segments with better
chances of finding parking is desirable. If drivers are informed about the predicted availability
before the start of a trip, they can consider using another mode of transportation, select another
destination, or change their departure time. In a crowdsensing setup, the parking availability is
not observed continuously in all parking segments. Thus, the availability needs to be estimated.

Three methods to estimate parking availability are evaluated in this chapter. The estimations are
computed on a parking segment level, as an estimation per parking space is hardly possible and
the information per parking segment is usually sufficient for the guidance of drivers. The SFpark
project also provided the availability information on a parking segment level only. In Section
7.1, the performance of spatial interpolation methods is investigated for different taxi fleet sizes.
The repetition of the last availability observation in each parking segment, also called persistence
method, is evaluated in Section 7.2. Finally, a binary classification approach is described in Section
7.3, estimating whether the parking lane is fully occupied or not. This approach can also be used
for the prediction of parking availability. The results of this method are evaluated in great detail
for different parameter settings, feature choices, and probability estimation quality. Finally, the
results and their implications are discussed in Section 7.4. Most of the results in this chapter are
also published in Bock and Sester (2016); Bock et al. (2016a, 2017a); Bock and Di Martino (2017).

7.1 Spatial interpolation of parking availability

One possibility for estimating parking availability in locations that are not crowdsensed in the
current time step is spatial interpolation, using adjacent measurements to compute the missing
values. For the interpolation of parking availability rates, two methods were compared: inverse
distance weighting (IDW) which calculates a weighted average based on the distances (Shepard,
1968),

AIDW(x,t) =

{

Ai(t) if d(x,xi) = 0 for any i
∑

i∈R wi(x)·Ai(t)∑
i∈R wi(x)

if d(x,xi) 6= 0 for all i
(7.1)

with weights

wi(x) =
1

d(x,xi)e
(7.2)

and unweighted averaging of availability rates from all observed parking segments in the investi-
gated area

AAVG(x,t) =

∑

i∈R ·Ai(t)
∑

i∈R 1
(7.3)

where Ai(t) is the parking availability rate in parking segment i at time t at the location xi, x is
the location of the estimation, R is the set of all observed parking segments, and e is the weighting
exponent. The unweighted averaging corresponds to the special case of e = 0 in the IDW method.

93
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Additionally, the results were compared against a baseline approach, where a random value between
0 and 1 was guessed for the parking availability.

For evaluation, the parking availability dataset from crowdsensing with taxis (Section 6.6) was
used for the complete six-week period with one time step per hour (always half past the full hour).
As the parking availability rate changes drastically for any parking event in very small parking
segments, only parking segments with at least four parking stalls were considered. For every time
instant, the set of parking segments was divided into two sets: parking segments observed by taxis
and unobserved parking segments. The Mean Absolute Error (MAE) of the estimated parking
availability rate was computed for all unobserved parking segments as quality measure:

MAE(AIDW) =
1

NR ·Nt

∑

t

∑

i∈R

|AIDW(xi,t)−A(xi,t)| (7.4)

where A(x,t) are the elements of the true parking availability rates, NR is the number of elements
in R, and Nt is the number of time steps.

Figure 7.1 shows the interpolation quality for a fleet of between 10 and 486 taxis. For this, out
of the full taxi dataset of 486 taxis, a random subset of N taxis (in this investigation 10, 50,
100, 200, 300, and 400 taxis) was drawn. The plot indicates that all interpolation methods were
clearly better than the random guess baseline. The more sophisticated Inverse Distance Weighting
outperformed the simple average only for more than 100 taxis with e = 1. For smaller fleet sizes,
the results are about equal. The IDW method with e = 2 achieved only somewhat worse results.
In total, the difference between IDW and simple average was small. This means that only small
benefits could be achieved by weighting nearby parking segments higher than distant ones, and
that the overall parking demand in the city dominated. This result corresponds to the spatial
correlation result in Figure 6.9 on page 80. Thus, a stronger focus is set on the temporal aspects
in the following.

0 100 200 300 400 500

Number of taxis

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

M
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r 

in
 o

c
c
u

p
a

n
c
y
 r

a
te

IDW e=1

IDW e=2

Simple average

Random guess

Figure 7.1: Comparison of methods for parking availability interpolation for different taxi fleet sizes.
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7.2 Parking availability estimation with persistence method

As the previous results showed a low spatial influence in parking behavior, the temporal behavior
is considered in this section. The dataset of crowdsensed parking availability (described in Section
6.6) contained only measurements at the time instants when a taxi visited the parking segment.
For missing observations, the parking availability was estimated with the persistence method. This
means that the last observed value was repeated until the next measurement was obtained. For
evaluation, the estimated parking availability time series was compared to the complete parking
data time series from the static sensors. For every time step and parking segment, the difference
between both time series was computed. The frequency of the differences in the number of empty
parking spaces was counted as a quality measure.

Figure 7.2 shows the count of time steps for every specific error difference. For both the optimistic
and pessimistic case1, crowdsensing achieved the correct number of parking spaces in about 70% of
time instants over all parking segments. If a difference of one parking space between estimated and
actual parking availability is tolerated (called sufficient taxi coverage in the following), about 90%
of the cases matched. Only a small difference of a few percentage points was observed between
the pessimistic and optimistic case. Thus, the evaluations are mostly limited to the pessimistic
case (without rewarding the drivers for the lane choice) in the following. As with the comparison
of the time gaps in Figure 6.14 on page 87, the spatio-temporal coverage of the model with 30%
observation rate (see Section 6.5) overestimated the true coverage of the taxis. The case with a
constant observation rate of 5% (smartphone application) was still considerably worse than the
cases based on the taxi trajectories.
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Figure 7.2: Frequency of differences between estimated and actual parking availability for the persistence
method in the pessimistic and optimistic cases with 486 taxis and the cases with downsampling of 5% and
30% observation rate.

1These cases refer to the optimistic and pessimistic models of lane choice by taxi drivers as described in Subsection
6.6.2.
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To estimate the necessary number of taxis to crowdsense parking availability, the previous com-
putations were repeated for different sizes of taxi subsets. In addition, a baseline as reference was
defined, assuming that half of the spaces in a parking segment were available and half occupied.
If the capacity of the parking segment was uneven, the baseline counted one more parking space
to be occupied than empty. Figure 7.3 summarizes the results of this comparison. Evidently, few
taxis clearly outperform the baseline. With increasing fleet size, the quality of parking availability
estimation continuously increases. With 300 taxis, sufficient observation coverage is achieved in
more than 85% of cases. Based on these results, the taxi fleet size required can be determined
dependent on the quality requirements for such a system.
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Figure 7.3: Frequency of differences between estimated and actual numbers of empty parking spaces for
different taxi fleet sizes in the pessimistic case.

To compare the results with the interpolation results in the previous section, the Mean Absolute
Error (MAE) of the parking occupancy rate was evaluated for the estimated (not-observed) instants
on parking segments with at least four parking spaces. In Figure 7.4, the MAE is presented for
different fleet sizes in the pessimistic case. The error for the persistence method decreased with
increasing number of taxis, similarly to the result in Figure 7.3. In particular, the error reduced
from 0.230 for 10 taxis to 0.076 for 486 taxis. The persistence method was better than the spatial
interpolation for all taxi fleet sizes. Particularly for large fleet sizes, there was a large difference
between both methods.

Figure 7.5 shows an evaluation of sufficient coverage for different road classes and time of day in
the pessimistic case. It is apparent that there was strong dependence on the road class, in line
with the evaluation of the taxi trajectories in Subsection 6.6.3. The coverage was best for all road
classes during night hours. This is remarkable, since taxi activity was lowest in this period, but
was overcompensated for by the low parking activity. The quality in primary roads was mostly
lower than in secondary roads, because primary roads were usually multi-lane roads. Therefore,
only a fraction of taxis on the road segment scanned the parking availability in the pessimistic
case.
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Figure 7.4: Mean Absolute Error (MAE) of the parking occupancy rate estimation for different fleet sizes in
the pessimistic case comparing the persistence and interpolation (IDW) methods.
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7.3 Estimation and prediction of parking availability based on binary classification

To improve the parking availability estimation, machine learning methods can be applied. In this
section, the estimation was modeled as a binary classification, since most drivers are interested in
knowing whether at least one parking space is available at the destination. In addition, drivers
benefit from an estimation of the reliability of this information. The estimation method can also
be used to predict parking availability in the near future. In this approach, it is taken into account
that crowdsensed parking data does not have a regular frequency, but parking is observed at highly
irregular intervals. Thus, established time series approaches could not be directly applied to this
setting. In the following, the term estimation refers to the parking availability at the present time,
using crowdsensed data up to this point in time, while the prediction has the goal of computing
the parking availability in the near future.

7.3.1 Binary classification approach

For the classification task, a random forest classifier was used (see Section 2.2.3). The parking
availability was estimated for the present time and predicted for a time horizon of up to 55 minutes
in the future. For the prediction, this means that there is the prediction horizon plus a time gap
between the last observation of the parking segment and the present time.

Four types of features were defined for the classification: recent observations of the availability
in the parking segment, observations of the availability in the adjacent parking segments, time
information, and road information:

• Recent observations were defined as the last n observations (n = 5 in this case) before
the present time, with a count and ratio of empty parking spaces. In addition, the time
difference between observation and the present time was used, as crowdsensed observations
are not uniformly sampled and so older information might be less relevant. If parking spaces
were not provided at that time, e.g. because of temporal parking restrictions, negative default
values are set (availability ratio to -0.5, number of empty parking spaces to -1) to distinguish
this case from the case of fully parked streets and therefore also zero empty parking spaces.

• Observations in adjacent roads were determined in predefined radii in beeline distance
(100m, 200m, 400m, and 800m) and time intervals (0 - 5 min, 10 - 15 min, 20 - 30 min, and
35 - 60 min before investigated time). For each combination of these parameters, the total
number of empty parking spaces and the rate of empty parking spaces were calculated.

• Time information consisted of the minute of the day and the day of the week. These
features were included to consider the typical temporal patterns of parking availability, as
presented in Section 6.2.

• Road information, containing the average geographic location (midpoint) of the parking
segment in UTM coordinates and the number of parking spaces provided (parking capacity)
at that time instant. The number of parking spaces provided was included to reduce the
problem to a pure estimation/prediction of parking space availability and to avoid a combined
learning of availability and capacity changes (e.g. periodic parking prohibition times).

As a baseline, the estimation was computed based on the last observation of the crowdsensing
taxis (persistence method). The baseline can be computed using either the availability rate or
the number of available parking spaces. If the availability rate r or the number of available
parking spaces p was smaller or equal to a threshold t, the classification result was ‘full’. The
different precision and recall values were obtained by variation of the threshold t. Intuitively,
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t = 0 represents the simplest solution: if a parking segment was ‘full’ in the past observation, the
estimation is also ‘full’.

7.3.2 Results of binary classification estimation and prediction

In the following, results for the estimation and prediction based on taxi crowdsensing are compared
with the baseline solution, as well as with the scenario of static sensors, and the impact of the taxi
fleet size is evaluated. In addition, an evaluation of the feature importance is presented. Finally,
the quality of the classification score as a probability estimation is described. For the following
evaluations, the SFpark dataset of six weeks was split into a training dataset of three weeks (June
13th - July 3rd), except for the evaluation of the training period length in Figure 7.6b, and a test
dataset of two weeks (July 11th - July 24th). The week between training and test period was
omitted to prevent interference and to avoid the national holiday on July 4th (Independence Day).

Results of availability estimation for taxi crowdsensing
The results of the parking availability estimation for 486 taxis (pessimistic case) using a random
forest classifier with 200 trees are presented in the confusion matrix in Table 7.1 and the Precision-
Recall curve in Figure 7.6a. In total, there were 1,528,582 cases considered, which were all time
instants during the two-week test period in July on any parking segment of the evaluation area,
when parking was allowed. Regarding the confusion matrix, the unweighted random forest classifier
estimated that there were 112,195 cases of ‘full’ parking segments (positive class), of which 94,836
cases were correct (true positives) and 17,359 cases were incorrect (false positives). The existence
of at least one empty parking space (‘not full’, negative class) was correctly estimated in 1,389,349
cases (true negatives) and wrongly predicted in 27,038 cases (false negatives). These numbers led
to a precision of 84.5%, a recall of 77.8%, and an F-measure of 81.0%. These values correspond
to the red cross in Figure 7.6a. In this figure, the Precision-Recall curve is also illustrated, in blue.
The optimal F-measure value on this curve was 81.5% (see also Table 7.2).

Table 7.1: Confusion matrix of results for binary classification with 486 probe vehicles in the pessimistic
case.

Actual Parking State

Predicted Full Not full

Parking Full 94,836 (TP) 17,359 (FP)

State Not full 27,038 (FN) 1,389,349 (TN)

Table 7.2: Evaluation metrics for result with 486 probe vehicles in the pessimistic case.

Method Precision Recall F-measure

Random forest (unweighted) 84.5% 77.8% 81.0%

Random forest (optimal F-measure) 80.8% 82.2% 81.5%

Baseline (optimal F-measure) 80.9% 81.5% 81.2%

The baseline estimations, based on the availability number (green crosses) and on the availability
rate (black dotted line), are also shown in Figure 7.6a. The optimal F-measure (81.1%) was
reached for the case in which ‘full’ is predicted only if it was also ‘full’ in the last observation. This
result was very similar to the estimation based on the random forest classifier. If good recall was
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Figure 7.6: Precision-Recall curves for parking availability estimation: (a) availability estimation for 486
taxis and comparison with the baseline (persistence method) and (b) availability estimation for 486 taxis
(pessimistic and optimistic) and constant observation rates of 5% and 30%.

more important than precision, the random forest classifier showed better results than the baseline
estimations. In the opposite case, the baseline prediction was not able to generate high precision
values except when ‘not full’ was predicted for all cases. This is the case since a threshold lower
than 0 for the availability rate in the last observation has no effect. In Figure 7.6b and Table 7.3,
the results for 486 taxis are compared with the models with constant observation rates. Similarly to
the comparison of the spatio-temporal coverage in Subsection 6.6.3, a fleet of 486 taxis is somewhat
worse than the 30% observation rate, but clearly better than the 5% observation rate.

Table 7.3: Evaluation metrics for the results with 486 probe vehicles as well as constant observation rates of
5% and 30%.

Observation scheme
Optimal Unweighted Area under the

F-measure F-measure PR curve

486 probe vehicles (pessimistic) 81.5% 81.0% 88.9%

486 probe vehicles (optimistic) 82.9% 82.6% 90.4%

30% observation rate 86.9% 86.8% 93.0%

5% observation rate 67.3% 63.5% 72.0%

The curves in Figure 7.7 support the parameter choices in the experiments. The length of the
training period was varied between two and 28 days. The results (Figure 7.7a) show a continuous
increase of the quality measures with increasing length of the training period. However, for values
larger than 20 days, small improvements were observed in the area under the Precision-Recall
curve (AUPR), but the F-measure and the optimal F-measure were almost constant. For all
other experiments, 21 days were chosen as the training period. Figure 7.7b illustrates the quality
measures for different numbers of trees in the random forest classifier. A large improvement was
observed only for the increase from 10 to 50 trees, while the quality values were nearly constant
for more than 50 trees. Thus, the choice of 200 trees for all experiments is rather conservative.
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Figure 7.7: Learning curves for the variation of (a) the training period and (b) the number of trees in the
random forest classifier.

Quality of crowdsensing in comparison to static sensors
A comparison of the estimation and prediction quality between the crowdsensing solution with 486
taxis (pessimistic case) and the continuous measurement with static sensors is shown in Figure
7.8a. As might be expected, the static sensors always achieved a better result than the crowdsens-
ing. However, the larger the prediction horizon, the smaller the difference became between both
solutions. For a zero minute horizon, the static sensors knew the complete situation (assuming
correct sensors) and thus had an AUPR value of 100%. With an increasing prediction horizon,
the quality decreased for both cases. This allows a direct comparison between both curves: for
example, the quality of taxi crowdsensing for a prediction horizon of five minutes is about the same
as the quality of static sensors with a horizon of 20 minutes. To better interpret differences in the
quality, a typical parking search scenario is described in Chapter 8.

Evaluation for different numbers of taxis
A very interesting piece of information for practitioners is the size necessary for a taxi fleet to
achieve a reasonable crowdsensing quality. In Figure 7.8b, the quality in terms of AUPR was
computed for different fleet sizes and for both the parking availability estimation and the prediction
for a 30-minute horizon. In both cases, the quality clearly increased with an increasing number
of taxis. It can be assumed that the curves asymptotically converge to the values of the static
sensors for very high numbers of taxis, and consequently continuous observations. A fleet of 300
taxis achieved almost the same quality as the 486 taxis in the complete dataset. Thus, this size
might be a good trade-off between quality and costs.

Feature importance
To investigate the importance of different features, a leave-one-out feature analysis was computed.
In this evaluation, the estimation results were compared with the results when leaving out one
type of feature. Only the last observation of the parking segment was kept for all cases, as it
was shown already in this section and in Section 6.2 that this value had a very high predictive
quality. The results are shown in Figure 7.9. All features except the adjacent parking segments
led to improvements in all cases. The addition of further recent observations (second to fifth
last observation) led to the highest improvement for the prediction with static sensors. For the
crowdsensing estimation, the number of parking spaces in a parking lane (parking capacity) was the
most important feature, but with just a small relative improvement of less than 0.5%. The features
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Figure 7.8: Quality evaluation of the estimation and prediction for (a) different prediction horizons and (b)
different numbers of taxis for the pessimistic case.

computed from parking availability in adjacent parking segments resulted in a large improvement
for the crowdsensing prediction, while there was a clear decrease of about 1% for the static sensor
prediction.

Classification score as probability estimation
The classification score, resulting from the voting of trees in the random forest (as described in
Section 2.2.3), gives an indication of the reliability of the classification result. Its value is in
the range between 0 and 1. A value close to the limits means that the classifier is very certain
(0: at least one parking space is available, 1: no parking), while a value around 0.5 means that
the classifier is unsure. In Figure 7.10a (complete view) and Figure 7.10b (enlarged view), the
distribution of the classification score is shown for the availability estimation in the test period. In
many cases, the classification score was close to 0 and there was also parking available. For all cases
with parking available (‘not full’), the count of cases decreased homogeneously with an increasing
classification score. For the ‘full’ cases, the count increased with an increasing classification score
and a high count of 30,457 cases (27.2% of all ‘full’ cases) had the value 1. This distribution shows
that only a few cases were wrongly classified if the classification threshold was set to 0.5.

An attribute often wanted is a probability estimation of the classification result. In the case of
parking search, it is desirable that parking routing decisions are based not only on the estimated
classes ‘full’ or ‘not full’, but also on a probability estimation, to provide a more reliable recom-
mendation. For random forests, the classification score already provides a good estimation. Thus,
the ratio of an actual class, in this case the class ‘full’ for all cases with a specific classification
score, was directly compared with the value of the classification score as a probability estimation.
In Figure 7.11, the classification score for both the parking estimation and the parking prediction
shows a continuously increasing behavior. For the parking estimation in particular, the behav-
ior came very close to the ideal distribution. Thus, the classification score represented a good
probability estimation.

7.4 Concluding remarks

Comparison of approaches for parking availability estimation
In this chapter, the parking availability was estimated using three different approaches: spatial
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Figure 7.10: Histogram of the classification score (486 taxis in the pessimistic case) for all cases in the test
period shown in (a) a complete view and (b) an enlarged view.
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Figure 7.11: Ratio of the class ‘full’ for different classification scores in comparison with an ideal probability
estimation for 486 taxis in the pessimistic case.

interpolation, persistence of the last observation, and binary classification with random forests.
The spatial interpolation clearly achieved the worst results for any taxi fleet size. For a fleet size
of 486 taxis, the Mean Absolute Error (MAE) values of the availability rate was about 0.18, but
only 0.08 for the persistence method. In Section 7.3, it was shown that the persistence method as
a baseline estimation gives about as good results as the classification approach, if false positives
and false negatives have the same relevance.2 The more sophisticated method might not achieve
superior results, because arrival and leaving of vehicles might be highly random and thus hard to
estimate for short periods.

The main benefits of the classification approach, compared with the persistence method, are three-
fold: firstly, an expressive score representing a probability estimation of the result is only available
for the classification approach. This information can be very useful when computing a route for
finding parking (Jossé et al., 2013; Guo and Wolfson, 2016). Secondly, the classification approach
can easily be extended to predict the parking availability in the near future. Thirdly, a preference
for a low number of false positive or false negatives can easily be implemented in the classification
approach by defining weights. In such unbalanced cases, the random forest classifier revealed bet-
ter results than the persistence method. In the case of a parking guidance system that leads a user
to the next available parking space, the system might be perceived as more reliable if the number
of recommendations for an actually full parking segment is low (false negatives). On the other
hand, available parking in not-recommended road segments (false positives) may be not perceived
by the user.

Relevance of spatial relations in on-street parking availability data
The spatial relations in on-street parking availability data were addressed in multiple sections. In
Section 6.4, the spatial correlation was analyzed and only a weak correlation was found. The spatial
interpolation of parking measurements was evaluated in Section 7.1 and only a small improvement

2Note that a direct comparison between interpolation and the binary classification method is not possible, because
the interpolation estimates the parking availability rate (regression problem) and the classification distinguishes
only between full and not full. The persistence method can easily be applied both for regression and classification.
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over a simple averaging was found for the Inverse Distance Weighting method. Finally, spatial
features were included in the binary classification in Section 7.3. These features were beneficial
in only some cases. Thus, it can be concluded that parking is a rather local phenomenon in
the parking dataset investigated. Therefore, spatial relations have a minor relevance for parking
availability estimations and predictions, in contrast with the work by Rajabioun and Ioannou
(2015), who achieved a strong improvement by including the spatial context.

Parking crowdsensing with taxis as probe vehicles
The evaluation of taxi trajectories in the investigation area in San Francisco (see Section 6.6)
showed that taxi coverage is spread over all investigated parking segments, and they are active
throughout the whole day. Sufficient coverage was observed in about 90% of the cases for the
persistence method (Section 7.2) and the AUPR quality measure for the classification approach
came close to the values of static sensors (Section 7.3), which are much more expensive to install
and maintain (Xu et al., 2013).

However, a strong dependence on the time of day and the road class was found. While the parking
activities showed a similar daily pattern and thus compensated for the periods of lower taxi activity,
small roads were seldom visited even when parking was changing frequently, leading to low quality
values in those cases. Regarding the number of taxis, the quality clearly increases with more taxis
in an asymptotic manner. Thus, only small improvements were reached for fleets with more than
300 taxis. Practitioners need to decide whether more probe vehicles are worth the additional effort.
However, the results based on standard machine learning measures, such as the Area Under the
Precision-Recall curve (AUPR), are hard to interpret for such a decision. Therefore, the relevance
of different on-street parking information is evaluated in a typical search scenario in the following
section.

The smartphone case, although optimistically modeled, clearly achieved worse results in all eval-
uations. Thus, a much larger user base than assumed (4% of all drivers) is necessary to achieve
good results and to compete with the parking crowdsensing solution. This result is in line with
the work by Lendák and Farkas (2016). They evaluated the potential reasons for the failure of
Google’s parking app OpenSpot. They concluded that the information quality of the app was
poor due to a user rate that was too low, so a very high user rate is necessary for a successful
parking app. It might be particularly challenging for parking app start-ups to achieve satisfying
information quality, at least for the approaches considered in this thesis and in the investigations
by Lendák and Farkas (2016).

Limitations of evaluations
The evaluations are limited to some districts of San Francisco. Investigations are needed whether
the relative performances of the methods presented are also valid for other parts of the city or
further cities. However, the models are generic and do not include city-specific information. Thus,
it is likely that the performance is similar in other cities, if training data from these cities are
used. A challenge might arise for parking segments without markings for every stall. Since the
maximal number of vehicles fitting in the parking segment depends on the length of the vehicles,
the parking availability rate is harder to estimate. Also, when a parking gap is available for a
small vehicle, the gap might be too small for a larger vehicle.

The limitations of the SFpark dataset also need to be considered, as discussed in Section 6.7.
At the same time, the coverage of the taxis is somewhat underestimated. Several trips were not
considered, because the map matching failed in these situations. If all trips were considered in the
evaluation, the coverage might be even significantly higher.





8 Benefits of crowdsensed parking availability information

In the previous chapter, it was shown that the crowdsensing of parking availability with taxis as
probe vehicles is a promising solution, as the results for the quality metrics come close to the results
for static sensors. However, it is hard to interpret the remaining quality difference regarding the
impact for the drivers. Thus, in this chapter, a typical scenario of parking search is evaluated
regarding the benefits for drivers using different kinds of parking information.

In Section 8.1, the types of parking information are presented in the form of map layers based on
the work in the previous chapters. The parking route choice at an intersection is modeled as an
evaluation scenario in Section 8.2. Results are described in Section 8.3. Finally, the results and
limitations of the evaluation are discussed in Section 8.4.

8.1 Types of information for on-street parking

Broadly speaking, there are two main map layers in a dynamic parking map in addition to the
basic road network layer, as illustrated in Figure 8.1:

1. Parking legality layer, containing information about the location of on-street parking lanes,
together with their vehicle capacity and optional temporal restrictions.

2. Parking availability layer, containing dynamic information about the parking availability
information, from either static or mobile sensors. For the mobile sensors, the availability
estimation is based on either the last observation (persistence method, see Section 7.2) or on
a probability estimation of the binary classification (Section 7.3).

Figure 8.1: The basic road network layer plus the two layers of the dynamic parking map: the parking legality
layer with the parking capacity and the parking availability layer with measurements from static or mobile
sensors.
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The relevance of these layers is evaluated in the following section, for different settings:

Parking legality layer with parking capacity information
The parking legality layer consists of the locations of parking lanes, their temporal restrictions, and
their capacity. They are usually defined by the city authorities. However, as maps of parking lanes
are often unavailable, manual recording or crowdsensing solutions are needed to map parking lanes
(as described in Chapter 5). Parking capacity can change over time of day, both for regular reasons,
such as peak-hour driving lanes and street cleaning, and on an irregular basis for construction sites,
for example. If each parking space is equipped with a parking meter, the capacity of the lane is
fixed. If not, the capacity depends on the length of the lane, the car size, and the distances
between the vehicles. In this evaluation, using the SFpark dataset as presented in Chapter 6, all
parking spaces were metered and the capacity was provided continuously via the API, along with
the availability information for every parking segment.

Parking availability layer: availability estimation from last measurement of mobile sensors
The last measurement from the crowdsensing vehicles (persistence method) is a good indicator for
the current parking availability in a parking segment, as evaluated in Section 7.2. The simulated
parking observations based on taxi trajectories (Section 6.6) were used in this evaluation.

Parking availability layer: availability estimation based on binary classification for mobile sen-
sors
To estimate the probability that at least one parking space is available in a parking segment,
the binary classification model using a random forest classifier was used, as described in Section
7.3. The classification score of the random forest classifier was used as a probability estimation
for finding an empty space in the parking segment. Also, for this setting, the simulated parking
observations based on taxi trajectories were used.

Parking availability layer: real-time information from static sensors
The best information about the current parking availability can be obtained from static sensors. In
this evaluation, the SFpark measurements were used as real-time information and also as ground
truth, assuming that all measurements were correct.

8.2 Experimental setup

The relevance of different parking information layers for the drivers’ search was evaluated in a
typical parking search scenario. This scenario investigates the situation when a driver does not
find a parking space in the parking segment at the destination and starts to roam. In this situation,
the driver needs to decide which road to take next, as illustrated in Figure 8.2. Similarly to the
parking search simulation by Millard-Ball et al. (2014), it is assumed that the driver considers
all roads following their current one. In contrast to their approach, the driving directions and
prohibitions, e.g. due to one-way roads, were considered in this evaluation. It is further assumed
that drivers do not make U-turns. As discussed by Millard-Ball et al. (2014), some drivers carry
out this maneuver, but it is illegal in the investigation area. The parking search is limited to only
the next road segment, as the parking search can be seen as a series of en-route decisions at the
intersections (Bonsall and Palmer, 2004). If there is no parking space available at the next road
segment either, then the driver has to re-think which road segment to take next. Walking distances
are neglected in this consideration.
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8.2.1 Routing strategies

The routing strategies of a parking guidance system are based on the availability of the dynamic
parking map layers. The following strategies were evaluated:

1. Baseline strategy : the drivers do not have access to any parking information and just ran-
domly choose the subsequent road.

2. Parking legality strategy : a random road is chosen where parking is allowed at that time.

3. Parking legality and capacity strategy : the road with the highest parking capacity is chosen.

4. Crowdsensed availability with persistence strategy : the driver is guided to the road where the
parking availability was highest based on the last observations of the crowdsensing vehicles.

5. Crowdsensed availability with classification strategy : the road is suggested that has the high-
est estimated probability of having at least one empty parking space.

6. Optimal strategy : the driver knows the real-time availability of all parking segments and
therefore always makes the correct choice, if there is a subsequent road with an empty
parking space.

a?

b?

c?

Figure 8.2: Example for the scenario where a driver does not find parking at the destination and needs to
decide on the subsequent road. The red line represents the full parking segment at the destination. The green
lines are parking segments reachable from the intersection without U-turn, the blue lines are further parking
segments.

As an evaluation measure, the number of unsuccessful decisions (not finding parking in the next
parking segment) was counted for the different strategies.

8.2.2 Data sources

For the experimental evaluation, the SFpark dataset (see Section 6.1) and the simulated crowd-
sensing dataset from taxi trajectories (for 486 taxis with the pessimistic case; see Section 6.6) were
used. The period from July 11th until July 24th, 2013 was used for the evaluation, and the period
from June 13th until July 3rd, 2013 for training of the availability estimation (analog to Section
7.3). In addition, the information about the topology and characteristics of the road network were
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extracted from OpenStreetMap. For the area of investigation considered, 420 road segments with
parking information were available, of which about 40% were one-way roads.

For all road segments with parking information, the route options at the intersection in the driv-
ing direction were determined from the road network of OpenStreetMap. However, there were
intersections with fewer than two route choices with parking information (e.g. at the border of the
SFpark pilot areas). In these cases, the road network was traversed until at least two road segments
with parking information were reached, so that a route decision could be evaluated. This traversal
was based on three steps: first, the shortest path routes were computed from the intersection
considered to the entry point of all road segments with parking information, limited to a maximal
distance of 500 meters to avoid an unrealistic route choice. Second, all routes were excluded that
contained a road segment with parking information before reaching the destination road segment.
Third, the routes were iteratively added to the final set of route choices with an increasing number
of traversed road segments until at least two routes were contained in the set. For example, if
no road segment with parking information can be reached directly from an intersection and there
are three road segments with parking information that can be reached from the intersection via
one other road segment, then no further routes were considered with more than one other road
segment between the starting intersection and the destination. If fewer than two subsequent road
segments were found by this method, the initial road segment was excluded from the evaluations
(18% of the road segments).

8.3 Evaluation of the impact of different parking information

The scenario was evaluated for all time instants per road segment when the corresponding parking
segment was completely occupied. Parking segments were not considered as drivers’ destinations
during periods of parking prohibition. In each of the cases evaluated, it was assumed that a
driver arrived at this road segment and had to decide on a subsequent road segment at the next
intersection. The ratio of unsuccessful decisions was determined, i.e. the ratio of cases without
empty parking spaces in the road chosen. In Subsection 8.3.1, all of these cases are evaluated. The
comparison of different parking guidance strategies is more relevant in cases where there is a correct
and a wrong choice (at least one empty and one full road segment). Consequently, these cases
were further investigated in Subsection 8.3.2. In addition, results were analyzed for the hours of
the day. The parking capacity was very different among the parking segments in the investigation
area in San Francisco, as shown in Figure 6.3a (page 74). To assess the impact of the capacity, the
results were evaluated for different levels of parking capacity similarity in Subsection 8.3.3.

8.3.1 Results for all decisions in the dataset

For the evaluation period of two weeks, all the spaces of a parking segment were occupied in
95,403 cases (time instants on a parking segment). An overview of the results for the different
strategies is shown in the first column of Table 8.1. To be specific, if the subsequent road segment
was chosen randomly, the driver did not find parking in the corresponding parking segment either
in about 16% of all cases. If the parking prohibitions in the subsequent road segments were
considered, the ratio of unsuccessful cases was reduced to about 11.8%. Using the parking guidance
based on the complete capacity information in the parking legality layer reduced the ratio to only
5.6%. Information from taxi crowdsensing achieved wrong decisions in 3.9% of the cases for the
persistence method and 3.5% for the binary classification. These results were already very close
to the optimal solution of 3.2% for the real-time information from static sensors. The optimal
solution was not zero, because there were some cases with no successful option. Concerning the
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Table 8.1: Rate of unsuccessful choices for all route decisions (Subsection 8.3.1) and relevant decisions
(Subsection 8.3.2).

All decisions Relevant decisions

Number of cases 95,403 28,744

Random choice 16.0% 42.5%

Parking legality 11.8% 28.5%

Parking legality and capacity 5.6% 7.9%

Crowdsensed availability with persistence 3.9% 2.5%

Crowdsensed availability with classification 3.5% 1.1%

Real-time information from static sensors 3.2% 0%

relative reduction, failure to find parking in the subsequent road segment was reduced by up to
80% (=(16%-3.2%)/16%) using the parking guidance based on static sensors, compared with the
random choice.

8.3.2 Results for relevant decisions

Parking guidance is only able to help at intersections where there is at least one subsequent road
segment with an empty parking space. Moreover, if there is parking available in all subsequent
road segments, there is no need for a parking guidance system. Therefore, to compare the quality
of parking guidance based on different layers of the dynamic parking map more effectively, only
the cases with at least one full and one empty subsequent parking segment were considered. An
overview of the results is presented in the second column of Table 8.1. The number of cases reduced
from 95,403 to 28,7441. This means that parking guidance has the chance to help in about 30%
of all cases, if a driver does not find parking at the destination. In these cases, the result for
the random choice increased to 42.5%. If there were only two options at every intersection, 50%
was the theoretical result. But as there are situations with more than two choices, the result is
lower than this theoretical value. Also, corresponding to expectations, the optimal result is 0%.
Compared with the result for the guidance based on parking legality and capacity with about 8%,
the ratio of unsuccessful decisions was reduced by a factor of three when using the persistence
method with crowdsensing (2.5%). The classification approach with crowdsensed availability data
further reduced the ratio of wrong decisions to 1.1%.

The results show that parking information can be used to significantly reduce the risk ending up
in a full parking segment. However, for most types of parking information, the ratio of wrong
decisions is on a low level. Thus, a decision based on the parking capacity is sufficient in most
cases and there might be no need for parking availability information. Therefore, the influence of
the parking capacity is investigated in more detail in the following subsection.

The impact of the time of day on the result for all relevant cases is illustrated in Figure 8.3. The
ratio of unsuccessful decisions was almost constant over the day for the random choice and the taxi
sensing strategies. A strong variation was observed for the strategies based on parking legality,
with a small ratio of unsuccessful decisions during the night hours and the highest values around
noon and in the evening. However, most of the parking search cases occurred only at these times,
as shown in Figure 8.4a.

1Within the difference of 66,659 cases, all road segments had empty parking spaces in 63,638 cases and there was
no road segment with an empty parking space in only 3,021 cases.



112 8 Benefits of crowdsensed parking availability information

0 5 10 15 20

Hour of day

0

5

10

15

20

25

30

35

40

45

50

R
a

ti
o

 o
f 

u
n

s
u

c
c
e

s
s
fu

l 
d

e
c
is

io
n

s
 i
n

 p
e

rc
e

n
t

Random

Parking legality

Parking legality and capacity

Crowdsensed availability with persistence

Crowdsensed availability with classification

Real-time information from static sensors

Figure 8.3: Ratio of unsuccessful decisions for different hours of the day and parking information strategies.
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Figure 8.4: Plot of the number of parking search cases for (a) different hours of the day and (b) different
similarity thresholds of the parking capacity.
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8.3.3 Similarity of capacity

The capacity of parking segments varied significantly in the investigation area in San Francisco (see
also Figure 6.3a on page 74). Thus, the strategy based on the capacity information already achieved
very good results. In this subsection, situations were evaluated in more detail for subsequent
parking segments with similar capacities. A measure was defined for the capacity similarity s(R)
of a set of subsequent road segments R with capacities c(R) in the corresponding parking segments
as:

s(R) = 1− max(c(R))−min(c(R))

max(c(R)) + min(c(R))
(8.1)

This measure always has values between 0 (parking is not allowed in at least one subsequent
parking segment) and 1 (the capacities are the same for all subsequent parking segments), except
if all subsequent parking segments have a capacity of 0. Latter cases were excluded as they were not
relevant anyway. At every end of a road segment, this similarity measure was computed for the set
of subsequent road segments. If the similarity value was equal to or higher than a threshold, this
road segment and the corresponding subsequent road segments were considered for the evaluation.
However, if the similarity value was smaller than the threshold, it was determined whether a subset
of subsequent road segments existed which fulfilled the similarity criterion. If there were at least
two subsequent road segments with similar capacity, the intersection with these subsequent road
segments was also considered for the evaluation.

In Figure 8.5, the results are shown for different similarity thresholds between 0 and 1, considering
only the relevant cases. For a threshold of 0, the results correspond to the values in the second
column of Table 8.1. With an increasing similarity threshold, only subsequent road segments
with higher similarity were considered. The results for the strategy based on parking legality
were equal to the random choice, because situations with parking prohibition have a similarity
value of 0. When considering the parking capacity, the ratio of unsuccessful decisions increased
monotonically until it reached values similar to the random choice at similarity thresholds of 0.75
and above2. The curves for crowdsensing also increase with a higher similarity threshold, but
remain on a low level. The number of evaluated cases decreased continuously from 28,744 to 2,031
cases (see Figure 8.4b).

The strategy based on parking capacity is not better than the random guess for high similarity
values, because there is no longer any relevant information gain from parking capacity information,
as could be expected. Thus, parking availability information is much more relevant in situations
when the parking capacity is similar in adjacent roads. This means that systems for parking
availability information should focus on areas of the city where the parking capacity is similar.

8.4 Concluding remarks

Improvements of parking search using parking information
The achieved reduction of unsuccessful turn choices by up to 80% is a considerably high percentage.
This also means that parking search traffic could be reduced by up to 80%, if it is assumed that
drivers always make a new decision at every intersection. This assumption is atypical search
behavior according to Bonsall and Palmer (2004) and is also used in parking search simulations,

2The slightly higher value for the capacity information compared with the random guess at a similarity threshold
of 0.9 is likely to be an arbitrary variation caused by the small sample size.
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Figure 8.5: Ratio of unsuccessful decisions for different similarity thresholds and parking information strate-
gies. Only the cases with similarity values higher than the threshold were considered.

such as the simulation by Benenson et al. (2008). However, it neglects the fact that drivers also
consider the walking distance to the destination. In addition, drivers might not take every possible
empty parking space they spot, due to individual preferences. Finally, in this scenario it is not
considered that some drivers start to search for parking even before reaching the destination, for
example as modeled by a probability distribution by Benenson et al. (2008). However, their parking
simulation considered only parking search without any parking information.

Comparison of parking information
The guidance based on the capacity information strongly reduced wrong decisions by about 65%
for the full SFpark investigation area. This strong result implies that in such scenarios with high
capacity heterogeneity, there might be no need for parking availability information systems. Nev-
ertheless, for routing decisions with less heterogeneous capacity, the capacity information became
irrelevant. All strategies with parking availability information still provided very reliable route
suggestions, close to the optimum. Thus, the relevance of parking availability information, either
from static sensors or probe vehicles, appears to be strongly dependent on the heterogeneity of the
parking capacity in the city district.

The results for the strategies with parking availability information were similar in all cases investi-
gated. In particular, the results from crowdsensing were nearly as good as the optimal result with
static sensors. As the installation and maintenance of static sensors usually comes with high costs,
traffic management authorities should also consider probe vehicles as a promising solution with
lower costs, as proposed by Mathur et al. (2010). Since the classification approach is comparatively
easy to apply, it is, despite only a small additional improvement, still recommended instead of the
simpler persistence method.

Comparison with results from the literature
The potential reductions in parking search are higher in these results compared with the simulation
study by Tasseron et al. (2016) where reductions were less than 50% even in the most occupied
settings. A main difference between their simulation environment and this real-world scenario is
the heterogeneity in parking capacity and demand. Their model assumed a homogeneous parking
demand, except for one city block, and a homogeneous capacity of the parking lanes throughout
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the network. They suggest in their study that higher heterogeneity might further reduce the
parking search time using a parking guidance system. This assumption is supported by the results
in this chapter. Another point is that only one vehicle on the search is considered in this chapter,
while their simulation contained several vehicles. The number of informed vehicles searching at
the same time presumably affects the benefits of a parking guidance system. In particular, if only
the capacity information is used, all drivers would go to the same parking segments, regardless of
the actual availability. This could lead to the inverse situation that the parking segments with the
highest capacity would have the least availability in some cases. Meanwhile, a parking guidance
system using parking availability information is able to adapt to this new situation and to direct
drivers to other parking lanes.

Limitations of the evaluation and validity for other cities
It was assumed in this evaluation that there is one car arriving at every time instant when a
parking lane is fully occupied. To achieve more precise results, the spatio-temporal distribution
of the demand needs to be considered. Moreover, turn restrictions at intersections and (illegal)
U-turns were not considered, which certainly affects the accuracy of the results. It can be assumed
that the execution of U-turns shortens the parking search, as they are basically done when an
empty parking space is spotted. In addition, the length of the road segments was not considered
in the evaluation. The typical length of a road segment is between 150 and 200 meters and exceeds
200 meters in just a few cases. Thus, the travel time for length differences is in the same order3 like
the waiting times at intersections due to stop signs and traffic lights. Finally, only parking capacity
data from the SFpark dataset is considered, but there might be also parking spaces without sensors,
which would affect the chance to find parking in a road segment.

Several factors influence whether the results can be generalized to other cities, as parking behavior
and taxi activities can be very different. Firstly, the parking demand and supply varies significantly
among cities. In San Francisco, the low total number of fully parked parking segments indicates
that parking search is not a dominant problem throughout the whole investigation area, but only at
specific times in a few parts of the area. This result is in line with the results by Millard-Ball et al.
(2014)4. They estimated the search by a simulation based on random walk using SFpark data from
earlier years and found that there was an average cruising length of only 0.13 road segments. In
cities with higher parking pressure, a parking guidance system should help in more situation. It is
likely that the quality of the route recommendations is not affected by the level of parking pressure
in situations with at least one successful option (relevant cases in this chapter). Secondly, the city
layout with the capacity of parking lanes and their heterogeneity affects the parking guidance
as shown in Subsection 8.3.3. Thirdly, for the quality of crowdsensing, the frequency of parking
changes and the observation intervals of probe vehicles are essential (see also Subsection 6.6.4 on
page 88). In general, the higher the frequency of parking changes, the more probe vehicles are
needed to achieve a sufficient coverage. Both the frequency of parking changes and the sensing
frequency of probe vehicles need to be investigated both spatially on road level and temporally for
different hours of the day. In comparison between cities, the overall activity of probe vehicles can
be different. For example, the annual mileage of taxis in New York City, US, is more than 110,000
kilometers (New York City Taxi&Limousine Commission, 2014), while taxis in a German city drive
only about 60,000 kilometers per year (Linne+Krause, 2016). In conclusion, these factors need to
be considered by traffic management authorities and companies, when considering the introduction
of an on-street parking information system with either static or mobile sensor.

3At a velocity of 36 km/h = 10m/s, a road segment of 200 meters is traversed in 20 seconds.
4Note that Millard-Ball et al. (2014) modeled the parking search as a random walk (like the random guess in this
evaluation), but they did not evaluate the use of parking information.
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In this thesis, the approach of vehicular crowdsensing was investigated in depth, for the purpose of
the generation of dynamic parking maps. In the following, the results and answers to the research
questions are summarized and an overall conclusion is drawn (Section 9.1). In addition, further
dynamic phenomena are presented and their main spatial and temporal characteristics, sensors for
crowdsensed detection, and the possibility of estimation are listed in Section 9.2. Finally, future
research directions are outlined in Section 9.3 based on the results presented in this thesis.

9.1 Research questions addressed and overall conclusion

In terms of the research questions described in the introduction, the following results were achieved:

• How can on-street parking occupancy information be obtained with a LiDAR
mobile mapping system?
Chapter 4 presented and carefully evaluated the processing pipeline to extract the locations of
parked vehicles from records with a LiDAR mobile mapping system. This pipeline consisted
of a preprocessing step to filter and enrich the 3D point clouds, a segmentation step to
separate the point clouds of distinct objects, a classification step to identify parked vehicles
in the point clouds, and an aggregation step to match the detected vehicles to the road
network.

The evaluation showed that the pipeline achieved a recall of 93.7% at a precision of 97.4%.
While misclassifications were a minor error source, the segmentation step was the cause for
most detection errors. The aggregation of the detection results showed that valuable parking
occupancy information over the course of the day could be extracted. The aggregated parking
data are very relevant for city planners to reduce parking shortages on specific roads. From
many detections of parked vehicles, dynamic parking maps can be generated, as presented
in this thesis.

• How can parking legality maps, representing the legality of parking in the streets,
be derived from crowdsensed parking observations?
The generation of parking legality maps from crowdsensed parking observations was modeled
as a learning problem in Chapter 5. The legality was determined individually for each small
subsegment of the road. Several features were proposed to describe the parking occupancy
on the subsegment itself and in its vicinity. A random forest classifier and a clustering-based
classification with k-means were proposed to learn the legality.

The approach was evaluated based on the detections from nine measurement drives of the
LiDAR mobile mapping system with the aforementioned detection method. The results
showed that the random forest classifier achieved the best results, with an accuracy of more
than 93%. The clustering-based classification achieved results similar to the approach from
the literature by Coric and Gruteser (2013), however without the need for any training data.
Thus, both methods are suitable for the generation of parking legality maps from crowdsensed
data in cities where those maps do not exist or they are outdated.

117
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• How can parking availability be estimated based on crowdsensed parking avail-
ability information?
Three methods to estimate the parking availability from crowdsensed data were presented in
Chapter 7. In the persistence method, the last parking availability observation in a parking
segment was repeated for subsequent time instants until the next observation. In a spatial
approach, the parking availability was estimated by interpolation using the Inverse Distance
Weighting method. Finally, a classification approach was presented that estimated whether
the parking segment was full or at least one parking space was still available. In addition to
the last observations in the parking segment, features were proposed based on the occupancy
in the surroundings, as well as temporal and spatial features.

The spatial interpolation approach was clearly better than a random guess of the parking
availability rate. However, it did not achieve convincing results, as the Inverse Distance
Weighting method was mostly similar to a simple average over the complete investigation
area. The persistence approach achieved much better results than the interpolation. Even the
more sophisticated random forest classification could not outperform it for balanced precision
and recall, presumably because arrival and leaving of vehicles might be highly random and
thus hard to estimate for short horizons. The random forest classifier was beneficial, if either
precision or recall were more important. In addition, the random forest classifier can also
be trained to predict the parking availability in the near future. Furthermore, it has the
advantage that its classification score for every sample is a good probability estimate as to
whether an empty parking space can be found in a parking segment. This property is very
helpful for the guidance of drivers on the search.

• What is the potential quality of parking crowdsensing with taxis as probe vehi-
cles?
In Chapter 6, parking crowdsensing with taxis as probe vehicles was simulated, based on
large real-world datasets from static parking sensors and taxi trajectories. The crowdsensing
performance was evaluated in great detail and compared with the static parking sensors in
Chapters 6 and 7, assuming that they were always correct. For example, the parking avail-
ability estimation was correct or had a deviation of only one parking space in more than
90% of the time instants over all parking segments, using the persistence approach and a
pessimistic lane choice model. Focusing on the full parking segments, the binary classifica-
tion led to a precision of 84.5% at a recall of 77.8%. For the prediction, the crowdsensing
results were nearly as good as predictions with continuous measurements from static sensors,
with decreasing difference for higher prediction horizons.

To better interpret the quality differences between the taxi crowdsensing and the static
sensors, the relevance of both parking data sources and of the parking legality map was
evaluated in Chapter 8 for an exemplary parking search scenario. The results showed that
even the information about the parking legality and capacity could be a great help for drivers
on the search, if the capacity is heterogeneous in the parking segments, as in San Francisco,
but not for similar capacities of the parking segments. Parking availability information
from crowdsensing further reduced the ratio of wrong choices on the search, with only small
differences to the results of real-time information from static parking sensors.

Overall conclusion
This thesis presented several approaches to generate the content of dynamic parking maps. The
approaches for obtaining parking data, learning the parking legality, and estimating the parking
availability (except for the spatial interpolation) achieved very convincing results. Since these
approaches were modeled in a generic way without city-specific information, they can easily be
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applied to other cities as well. Moreover, detailed evaluations showed that dynamic parking maps
can help many drivers to shorten their search and thus to reduce the overall parking search traffic.
Even if there are insufficient resources for continuous parking availability sensing, knowledge about
the parking capacities can still offer good support.

Vehicular crowdsensing is a very promising solution for obtaining parking information for drivers
on the search. In particular, it was shown that taxis are an excellent choice for probe vehicles, as
they cover the complete city and are active all times of the day with their regular trips. Therefore,
city planners and traffic management authorities should consider parking crowdsensing with taxis
as a serious alternative to static parking sensors, which usually come with much higher costs. To
assess the suitability of parking crowdsensing for a particular city, parking surveys and analysis of
GPS trajectories from potential probe vehicles can be performed with the methods presented in
this thesis.

9.2 Applicability of dynamic map approaches to further dynamic phenomena

Crowdsensing may also be profitable for many further dynamic phenomena in a street environment,
which could be represented in a dynamic map. Some examples for those phenomena are:

Road constructions: Road constructions may exist for a few hours, such as lane paint works, or
for many days, such as road renovations. As they are a potential accident risk and affect the
traffic flow, a dynamic map of road constructions is helpful to warn drivers and to support
automatic driving functions in future self-driving cars.

Potholes: Potholes can be inconvenient for car drivers and even dangerous for bicyclists and
motorcyclists. Since they do not usually appear all of a sudden, a low temporal sensing
resolution in a dynamic map is sufficient. For example, Eriksson et al. (2008) used sensor-
equipped taxis to detect potholes.

Oil on road: Oil makes roads slippery and thus dangerous for drivers, especially for motorcy-
clists. Thus, frequent monitoring of the road in the order of minutes can prevent accidents.

Traffic signs: The location and content of static traffic signs change only seldom. However,
variable traffic signs and mobile traffic signs (e.g. at road constructions) also exist. Informa-
tion about traffic signs can assist drivers and can be used for automatic vehicle functions in
combination with detection from on-board sensors. First products are already on the market
(Pfeiffer, 2017).

Traffic light signals: The signal from traffic lights is very dynamic, as it changes every couple
of seconds. Thus, a very high number of mobile sensors is necessary for a dynamic map.
However, in cases with a periodic traffic light circuit, even a long-term prediction is possible,
and thus a dynamic traffic light map requires fewer sensors (Axer et al., 2015; Protschky et al.,
2015). Information about the traffic light signal is beneficial for fuel efficiency applications
and traffic flow improvements.

Bike sharing fill level: For users of bike sharing services, the current fill levels of the racks is
of importance. Within minutes, several bikes might be taken and the next user comes away
empty-handed. Similarly to parking occupancy, the fill levels usually follow a typical day
pattern, so that a long-term prediction is also possible (Vogel et al., 2011).

Street illumination: A dynamic map of street illumination is helpful for pedestrians during the
hours of darkness and for city authorities to plan and replace streetlights. As lights have a
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long lifetime and a broken streetlight is not usually a safety risk, an update every few days
is sufficient.

Speed traps: Both stationary and mobile speed traps can be included in a dynamic map to
warn drivers. As mobile speed traps are only installed for several hours, a higher sensing
frequency is needed in this case.

Street lanes: From time to time, the street layout changes or additional lanes are built. A map
on lane level is discussed for self-driving cars (Joshi and James, 2015). If the self-driving
cars do not strictly depend on the lane level map, an update frequency of the order of days
is sufficient.

Traffic flow: Traffic flow may quickly change in the case of accidents in a time scale of min-
utes. Traffic flow information has several similarities with parking information: both have a
periodic day pattern and a spatially heterogeneous distribution, and are usually treated on
a road segment level. However, traffic flow is easier to observe with induction loops in the
pavement or with GPS sensors in phones or cars. Moreover, flow models (e.g. based on fluid
dynamics) ease the estimation in the case of insufficient sensor data.

Pedestrians: Dynamic pedestrian maps can be very helpful for drivers to prevent accidents.
They contain either the current location of pedestrians with an update interval of a few
seconds or the typical pedestrian flow at a lower frequency (Schlichting and Brenner, 2016).

Public transportation: If public transportation vehicles do not provide their location to the
public, crowdsensing can be used to provide their current location and their estimated time
schedule. An update interval of several seconds can be beneficial, if a passenger is trying to
catch a bus.

Emergency vehicles: Dynamic maps of emergency vehicles could significantly improve rescue
missions, if drivers were more aware of approaching emergency vehicles. However, as a very
high sensing frequency is necessary, the emergency vehicles should transmit their location in
addition to crowdsensing.

Rain: Rain information with an update interval of several minutes is beneficial for many fields,
such as agriculture, leisure activities, or events. The wiper frequency of cars can be used to
generate dynamic maps of precipitation (Fitzner et al., 2013).

Advertisements: For marketing purposes, the location and duration of billboard advertise-
ments can be very relevant. For example, Matzen and Snavely (2014) presented a computer
vision method to restore the time line of advertisements in New York based on online photo
collections such as Flickr1. A low update interval of several days is sufficient.

The dynamic phenomena can be categorized according to the required location accuracy, the
temporal dynamics (typical duration of validity), the temporal resolution necessary for sensing,
the possible sensors for crowdsensed detection, and the possibility for short-term (missing data for
a period in the order of the temporal resolution) and longer-term (missing data for longer periods)
estimation of changes. Note that the two temporal scales can be very different, e.g. a traffic sign
might change only after years, but when it is changed, the dynamic map should be updated within
hours or days. Moreover, all ways of detection need a localization unit, such as a GPS receiver,
in addition to the specified sensor. In Table 9.1, an overview of the phenomena for dynamic maps
and their attributes is listed. In addition, Figure 9.1 illustrates the different orders of spatial
and temporal resolution for a dynamic map of the phenomena presented. All determined values

1https://www.flickr.com/
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are estimates and need further investigation before implementation of the corresponding dynamic
map.
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Figure 9.1: Estimated orders of temporal and spatial resolution for dynamic maps of different phenomena.

9.3 Future research directions

Regarding the detection of parked vehicles, more effort can be made to improve the segmentation
step and the investigation of segmentation-free approaches. For example, Active Shape Models
could be used to identify the vehicle shapes in the complete point clouds. Alternatively, Deep
Learning methods are able to find structures from 3D point clouds without previous segmentation.
Finally, since the LiDAR mobile mapping system is too expensive to be used on many probe
vehicles, further work could be done on the usage of other sensors to detect parked vehicles or gaps
in parking lanes, such as ultrasonic sensors or cameras.

Additional sensor inputs could be used for the improvement of the parking legality map generation.
In particular, the fusion of information from detections of parking road signs, lowered curbs, and
road markings could significantly improve the quality of the map. While lowered curbs and road
markings can also be extracted from the LiDAR 3D point clouds, cameras are necessary to interpret
the content of road signs. For the present approach to learning parking maps, further classification
and clustering algorithms could also be evaluated, to find out whether they improve the map
quality. Moreover, although a high accuracy was achieved with the proposed methods, some drivers
would be guided to spots where parking is illegal, if the crowdsensed parking legality map was used.
To reduce these cases, a reinforcement approach could be developed that considers correction
messages by drivers and continuously improves the map quality. In addition, an extension of the
approaches for more parking classes, such as special parking legislation (e.g. parking for people
with disabilities) is possible. Since the occupancy characteristics are less distinct in this case,
the supervised approach is likely to be superior over the other approaches described. Finally, if
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Dynamic phenomenon
Location Temporal Temporal

Ways of Detection Estimationaccuracy dynamics resolution

Construction sites
- moving ±10m hours hours Camera, LiDAR S
- stationary ±10m weeks-months days Camera, LiDAR S

Potholes
- for warning ±5m weeks hours - days Camera, LiDAR, Accelerometer S
- for quality assessment ±50m weeks weeks Camera, LiDAR, Accelerometer S

Oil on road ±5m months minutes Camera -

Traffic signs
- temporary ±5m days days Camera, (LiDAR)a -
- stationary ±5m years days Camera, (LiDAR)a -

Traffic light signal ±1m seconds seconds Camera, (LiDAR)a S & L

Bike sharing fill level ±10m minutes minutes Camera, LiDAR S & L

Street illumination ±10m weeks days Camera -

Speed traps
- stationary ±5m years days Camera, LiDAR -
- mobile ±5m hours hours Camera, LiDAR Lb

Street lanes ±5 dm - ±5m years days Camera, LiDAR, GPS -

Traffic flow ±50m minutes minutes Camera, LiDAR, GPS S & L

Pedestrians
- flow ±10m hours hours Camera, LiDAR S & L
- real-time ±1m seconds seconds Camera, LiDAR S

Public transportation ±5m seconds seconds Camera, LiDAR S & L

Emergency vehicles ±5m seconds seconds Camera, LiDAR S

Rain ±50m minutes minutes Camera, LiDAR S & L

Advertisements ±10m weeks days Camera S & L

Parking location
- capacity ±10m years days Camera, Ultrasound, LiDAR, GPS -
- per parking spot ±1m years days Camera, Ultrasound, LiDAR, GPS -

Parking availability
- per parking segment ±10m minutes minutes Camera, Ultrasound, LiDAR, GPS S & L
- per parking spot ±1m minutes seconds - minutes Camera, Ultrasound, LiDAR, GPS -

Table 9.1: Overview of phenomena for dynamic maps.

afor location, but not for content
be.g. maps could indicate locations where mobile speed traps are installed frequently
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parking occupancy data is recorded over a longer time period, changes to parking legislation must
be considered in the model.

In this thesis, the case of taxis as probe vehicles is investigated in depth. Certainly, other vehi-
cle types, such as delivery vehicles, buses, or even private vehicles, could also contribute to the
detection of the current parking availability. It would be very interesting to compare their spatio-
temporal coverages. Moreover, in the evaluations presented, the vehicle sensors were assumed to
be correct. Of course, these sensors also fail in some cases. Thus, it would be very interesting to
see how the quality of a parking map depends on the quality of the sensors. Furthermore, specific
algorithms might be necessary to compensate sensor errors and to provide robust estimations.

The results showed that the taxis cover the complete city well and every parking segment was
visited at least a few times. Still, there is a high imbalance in the visit frequency between the
parking segments. Approaches to send the taxis on small detours to reach a better spatio-temporal
coverage could be promising2. However, taxi drivers and passengers need to receive small incentives
to participate. An economic study is necessary to evaluate whether the improved coverage is
possible at reasonable costs.

The estimation and prediction of parking availability based on the crowdsensed data is an essential
part for the creation of a dynamic parking map. While the approaches presented already show
promising results, deeper investigations of further machine learning approaches such as the use of
Long-Short Term Memories, a particular Recurrent Neural Network for the prediction of long time
series, could improve the results. Recent methods to automatically select classification algorithms
and tune their hyperparameters could further enhance the results (Thornton et al., 2013).

The approach to parking crowdsensing was evaluated for the city of San Francisco, because it is the
only city where on-street parking and taxi trajectory data is freely available. As soon as both data
types are available for other cities (or a representative number of GPS traces for other vehicle fleets),
particularly in other city types and on other continents, a deeper evaluation of the generalizability
of the results is important. A more detailed comparison with different smartphone approaches
would also be very interesting, as many start-ups (e.g. Parknav3, Parkbob4) are currently trying
to provide successful parking apps.

Parking guidance and information (PGI) systems can use dynamic parking maps to guide drivers
on the search. However, in very crowded situations, the best PGI systems fail, if all parking spaces
are occupied in the surroundings. Therefore, PGI systems need to be extended by a multi-modal
routing, suggesting parking in a remote place and using alternative travel modes, such as public
transportation or ride sharing, for the last mile.

2First results of this idea were presented in a Master’s thesis by Koetsier (2017), supervised by this author. Results
showed that even an average detour of 3% could lead to a coverage improvement of about 30%.

3http://parknav.com/
4http://www.parkbob.com/
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