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Abstract

The continuous modernisation of existing Global Navigation Satellite Systems (GNSS) and the development of new
systems with a multitude of different carrier frequencies and a variety of signal modulations creates a true multi-GNSS
and multi-signal environment available today.
Still most precise GNSS processing strategies rely on dual-frequency measurements only by applying the Ionosphere-
Free (IF) Linear Combination (LC) of GNSS observables and therefore do not benefit from the available multi-signal
environment. While in this processing approach the first order effect of the ionospheric delay can be eliminated almost
completely, the formation of linear combinations of GNSS observables leads to a noise increase for the resulting observa-
tions and a loss of some of the physical characteristics of the original signals, like the integer nature of the carrier phase
ambiguity.
In order to benefit from the multi-GNSS and multi-signal environment available today, the scientific analyses and precise
applications presented in this work are based on the raw observation processing approach, which makes use of the orig-
inal (raw) observations without forming any linear combinations or differences of GNSS observables. This processing
strategy provides the flexibility to make use of all or a selection of available multi-GNSS and multi-signal raw observa-
tions, which are jointly processed in a single adjustment as there is no inherent limitation on the number of usable signals.
The renunciation of linear combinations and observation differences preserves the physical characteristics of individual
signals and implies that multi-signal biases and ionospheric delays need to be properly determined or corrected in the
parameter estimation process.
The raw observation processing approach is used in this work to jointly process measurements from up to three different
GNSS, including eleven signals tracked on up to eight different carrier frequencies in one single adjustment.
The bias handling for multi-GNSS and multi-signal applications is analysed with a focus on physically meaningful param-
eter estimates to demonstrate the benefits of handling clock offset parameters, multi-signal code biases and ionospheric
delay estimates in a physically meaningful and consistent way. In this context, receiver-specific multi-GNSS and multi-
signal biases are analysed and calibrated by the use of a GNSS signal simulator. The disadvantages of eliminating
physical characteristics due to the formation of linear combinations of observations or commonly used parameter estima-
tion strategies are demonstrated and discussed.
The carrier phase Integer Ambiguity Resolution (IAR) approach developed and implemented in the course of this work is
based on the joint processing of multi-GNSS and multi-signal raw observations without forming any linear combinations
or observation differences. Details of the implemented IAR approach are described and the performance is analysed for
available carrier signal frequencies of different GNSS. Achieved results are compared to the conventional IAR approach
based on IF linear combinations and the so called Widelane (WL) and Narrowlane (NL) ambiguities. In addition, the
resolution of inter-system integer ambiguities is analysed for common GNSS signal frequencies.
The performance of the implemented IAR approach is demonstrated and analysed by the joint Precise Orbit Determi-
nation (POD) of multi-GNSS satellites based on fixed multi-frequency carrier phase ambiguities. The improvement of
the satellite orbit and clock quality by fixing raw observation ambiguities confirms the successful implementation of the
IAR approach based on raw observation processing. Multi-GNSS satellite orbits and clock offsets determined with this
approach are compared to results generated with the conventional IF linear combination processing approach and inde-
pendent external products. This comparison demonstrates an at least equivalent performance of the implemented IAR
approach based on raw observation processing. In addition, the fixed raw observation ambiguities are used to investigate
and discuss characteristics of multi-GNSS and multi-frequency phase biases.
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Zusammenfassung (in German)

Die kontinuierliche Modernisierung existierender Globaler Navigationssatellitensysteme (GNSS) und die Entwicklung
neuer Systeme mit einer Vielzahl verschiedener Trägerfrequenzen und Signalmodulationen führt zu einem wahren Multi-
GNSS- und Multi-Signal-Umfeld, das heutzutage zur Verfügung steht.
Dennoch beruhen die meisten präzisen GNSS-Prozessierungsstrategien nur auf Zweifrequenz-Messungen durch die Ver-
wendung der ionosphären-freien (IF) Linearkombination (LC) von GNSS-Beobachtungen und profitieren daher nicht von
der verfügbaren Multi-Signal-Umgebung. Während bei diesem Prozessierungsansatz ionosphärische Laufzeitverzögerun-
gen erster Ordnung fast vollständig eliminiert werden können, führt die Linearkombinationsbildung von GNSS-
Beobachtungen zu einem Anstieg des entsprechenden Beobachtungsrauschens und dem Verlust gewisser physikalischer
Eigenschaften der Originalsignale, wie dem ganzzahligen Charakter der Trägerphasen-Mehrdeutigkeit.
Um von dem Multi-GNSS- und Multi-Signal-Umfeld, das heutzutage zur Verfügung steht, zu profitieren, basieren
die wissenschaftlichen Analysen und präzisen Anwendungen, die in dieser Arbeit präsentiert werden, auf dem
Prozessierungsansatz für Rohbeobachtungen. Dieser Ansatz verwendet die originalen (Roh-)Beobachtungen, ohne
jegliche Linearkombinations- oder Differenzbildung von GNSS-Beobachtungen. Diese Prozessierungsstrategie bietet
die Flexibilität alle verfügbaren oder eine Auswahl an Multi-GNSS- und Multi-Signal-Rohbeobachtungen gemein-
sam in einer Ausgleichsrechnung zu verarbeiten, da keine inhärente Limitierung der Anzahl an benutzbaren Sig-
nalen existiert. Der Verzicht jeglicher Linearkombinations- und Beobachtungsdifferenzbildung bewahrt die physika-
lischen Eigenschaften der einzelnen Signale und bedeutet, dass systematische Multi-Signal-Messabweichungen und
ionosphärische Laufzeitverzögerungen in dem verwendeten Parameterschätzverfahren korrekt bestimmt oder korrigiert
werden müssen.
Der Prozessierungsansatz für Rohbeobachtungen wird in dieser Arbeit verwendet, um Messungen von bis zu drei ver-
schiedenen GNSS und elf Signalen auf bis zu acht verschiedenen Trägerfrequenzen gemeinsam in einer Ausgleichsrech-
nung zu verarbeiten.
Die Handhabung von systematischen Messabweichungen für Multi-GNSS- und Multi-Signal-Anwendungen wird
analysiert mit Fokus auf die Bestimmung physikalisch sinnvoller Parameterwerte. Die Vorteile eines physikalisch sinn-
vollen und konsistenten Umgangs mit Uhrenfehlern, systematischen Multi-Signal-Codeabweichungen und ionosphäri-
schen Laufzeitverzögerungen werden demonstriert. In diesem Zusammenhang werden empfängerspezifische systemati-
sche Multi-Signal-Messabweichungen analysiert und mit Hilfe eines GNSS-Signalsimulators kalibriert. Die Nachteile der
Eliminierung physikalischer Eigenschaften durch die Linearkombinationsbildung von GNSS-Beobachtungen oder häufig
verwendete Parameterschätzverfahren werden demonstriert und diskutiert.
Der im Rahmen dieser Arbeit entwickelte und implementierte Ansatz zur Bestimmung ganzzahliger Trägerphasen-
Mehrdeutigkeiten (IAR) basiert auf der gemeinsamen Verarbeitung von Multi-GNSS- und Multi-Signal-Rohbeobachtungen
ohne die Bildung jeglicher Linearkombinationen und Beobachtungsdifferenzen. Details des implementierten IAR-
Ansatzes werden beschrieben und die Leistungsfähigkeit für verfügbare Trägerfrequenzen verschiedener GNSS analysiert.
Erzielte Ergebnisse werden mit dem konventionellen IAR-Ansatz verglichen, der auf der Verwendung ionosphären-freier
Linearkombinationen und so genannter Widelane (WL) und Narrowlane (NL) Mehrdeutigkeiten beruht. Darüber hinaus
wird die Bestimmung ganzzahliger Trägerphasen-Mehrdeutigkeiten zwischen zwei Systemen für gemeinsame Signalfre-
quenzen analysiert.
Die Leistungsfähigkeit des implementierten IAR-Ansatzes wird anhand der gemeinsamen präzisen Orbitbestimmung
(POD) von Multi-GNSS-Satelliten, die auf fixierten Mehrfrequenz-Trägerphasen-Mehrdeutigkeiten basiert, demonstriert
und analysiert. Die Verbesserung der Orbit- und Uhrenqualität von Satelliten durch die Fixierung von Mehrdeutigkeiten
für Rohphasen-Beobachtungen bestätigt die erfolgreiche Implementierung des IAR-Ansatzes unter der Verwendung von
Rohbeobachtungen. Die mit diesem Ansatz bestimmten Multi-GNSS-Satellitenorbits und -uhrenfehler werden mit Ergeb-
nissen basierend auf der konventionellen Verarbeitung von ionosphären-freien Linearkombinationen und unabhängigen
externen Produkten verglichen. Dies demonstriert eine mindestens äquivalente Leistungsfähigkeit des implementierten
IAR-Ansatzes basierend auf der Verarbeitung von Rohbeobachtungen. Darüber hinaus werden fixierte Trägerphasen-
Mehrdeutigkeiten von Rohbeobachtungen benutzt, um Eigenschaften von systematischen Multi-GNSS-Mehrfrequenz-
Phasenabweichungen zu untersuchen und zu diskutieren.
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1 Introduction

Global Navigation Satellite Systems (GNSS) have become an essential part of modern society. Services, including those
directly provided by the multiple GNSS available today and those based on the existence of GNSS, are used on every
continent by a vast number of people. Classically, GNSS services consist of the determination of position, velocity and
time at any point on Earth, including at sea and in the air. In the last decade, the application of GNSS services for
satellites orbiting the Earth in a Low Earth Orbit (LEO) has gained considerable interest and in recent years there has
been extensive research and development in the field of using GNSS services to support satellite missions above the GNSS
satellite altitude, an application referred to in the literature as the Space Service Volume (SSV).
The enhancements of the U.S. Global Positioning System (GPS) and the Russian GNSS (GLONASS), as well as the de-
velopment of the European GNSS (Galileo) and the Chinese GNSS (BeiDou) have established a proper multi-GNSS and
multi-signal environment available today. In addition, Regional Navigation Satellite Systems (RNSS) like the Japanese
Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite System (IRNSS) provide supplemen-
tary position, navigation and timing services in their respective regions.
The required accuracies for applications based on GNSS signals range from tens of nanoseconds for timing applications
and a few metres for standard position and navigation solutions to centimetre- and millimetre-level accuracy in precise
positioning applications.

1.1 Background and Motivation

In the last decade, the satellite navigation system environment has changed from GPS-only dual-frequency to multi-GNSS
multi-frequency and multi-signal, enabled by the satellite navigation systems existing today and their use of different
carrier signal frequencies with a variety of signal modulations.
Despite this environmental change, most of the operational and precise GNSS processing strategies rely only on dual-
frequency measurements and therefore do not benefit from the available multi-signal environment. When dealing with
only dual-frequency GNSS observables, signal hardware delays play a subordinate role and are usually not considered
since estimated and applied clock offsets are specific to the commonly-used dual-frequency ionosphere-free (IF) linear
combination (LC) as described in section 5.1. While the first order effect of the ionospheric delay can almost entirely be
eliminated, the formation of IF linear combinations amplifies the noise of the resulting observations and leads to a loss
of some of the physical characteristics of the original signals, like the integer nature of the carrier phase ambiguity. The
conventional dual-frequency IF LC processing approach does not provide the flexibility to make use of multiple signals as
the number of usable signals is limited by definition.
In order to benefit from the multi-GNSS and multi-signal environment, the raw observation processing approach (Schöne-
mann et al., 2011; Schönemann, 2014), also referred to as Raw Method (RAW), is applied in this work. This processing
strategy, described in section 5.2, makes use of the original (raw) observations without forming any linear combinations
or differences of GNSS observables and provides the flexibility to process all or a selection of available multi-GNSS and
multi-signal raw observations. The renunciation of linear combinations and observation differences implies that signal
biases and ionospheric delays remain in the observation equation and need to be properly handled. In the raw observa-
tion processing approach there is no inherent limitation on the number of usable signals and the use of the original (raw)
observations preserves the physical signal characteristics and allows to analyse them. As the original noise characteristics
of the individual signals are maintained, this approach allows to benefit from the low code noise of modern GNSS signals.
The focus of the work presented in this thesis are scientific analyses and precise applications based on the joint processing
of multi-GNSS and multi-signal raw observations. The GNSS raw observation equations have been refined to describe a
rigorous handling of all involved points in time and define all components of the observation equation with proper time
arguments, which is often missing in the literature.
Whereas previous works performed in the field of GNSS raw observation processing (Schönemann, 2014; Strasser et al.,
2018) were limited in the number of available GNSS or signals, or did not make use of all available signals, the raw
observation processing approach described in this work is used to jointly process measurements from up to three different
GNSS, including eleven signals tracked on up to eight different carrier frequencies, in one single adjustment.
In the context of multi-GNSS and multi-signal bias handling, a rigorous analysis of what is referred to as physically
meaningful code biases is performed to demonstrate the benefits of handling clock offset parameters, signal code biases
and ionospheric delay estimates in a physically meaningful and consistent way. The negative impact of removing correct
physical characteristics from signal code biases, as it is commonly done in the generation of conventional code bias
products, is demonstrated and discussed. In addition, the conventional handling of so called Inter-System Bias (ISB) is
described and issues with this approach are presented and discussed.
While most commonly used carrier phase IAR approaches, as described in section 5.1.3, are based on the formation
of dual-frequency IF and Melbourne-Wuebbena (MW) linear combinations as well as GNSS observation differences
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(Hofmann-Wellenhof et al., 1992; Wübbena, 1989), the IAR approach developed and implemented in the course of
this work is based on the joint processing of multi-GNSS and multi-signal raw observations without forming any linear
combinations or observation differences.
In order to demonstrate the performance of the implemented IAR approach based on raw observations, the approach
has been applied to the joint determination of precise satellite orbits for up to 72 satellites from three GNSS for a
variety of different scenarios. In addition, the results of these analyses have been used to investigate characteristics of
multi-frequency phase biases based on raw observation ambiguity estimates for signals of different GNSS.

1.2 Objectives of this work

The aim of this work is to apply and further develop the raw observation processing approach by analysing several funda-
mental issues in the context of multi-GNSS and multi-signal processing. A refined and detailed description of the GNSS
code and phase raw observation equations has been developed to describe a rigorous handling of all involved points in
time. The handling of signal biases for multi-GNSS and multi-signal raw observation processing is analysed to motivate
the use of physically meaningful signal code biases for different applications. A carrier phase integer ambiguity resolution
approach based on raw observation processing has been developed and implemented, making use of all available multi-
GNSS and multi-signal raw observations in a single global network adjustment without forming any linear combinations
or observation differences. The successful implementation of the integer ambiguity resolution approach is demonstrated
by its application to the problem of multi-GNSS satellite precise orbit determination.

The main objectives of this work can be summarised as follows:

• Analyses of signal bias handling in multi-GNSS and multi-signal raw observation processing

• Development and implementation of a carrier phase integer ambiguity resolution approach based on multi-GNSS
and multi-signal raw observation processing

• Demonstration of successful integer ambiguity resolution by the precise orbit determination of multi-GNSS satel-
lites

1.3 Outline

Section 2 gives a short overview of available GNSS, their signal structure and the fundamental GNSS receiver measure-
ments. Important coordinate and time reference systems are summarised in section 3.
The GNSS raw observation models introduced in section 4 have been refined to describe a rigorous handling of all
involved points in time and define all components of the observation equation with proper time arguments, which is
often missing in the literature. The handling of GNSS signal delays is described and applied corrections are specified. In
addition, a summary of linear combinations of GNSS observables describes the commonly applied observation models
used in conventional state-of-the-art GNSS processing and carrier phase integer ambiguity resolution approaches.
The description of conventional GNSS processing methods in section 5 is followed by the introduction of the multi-GNSS
and multi-signal raw observation processing approach applied in this work. The section is closed out by a description of
the fundamentals of the applied linearised iterative weighted batch least squares adjustment with soft constraints.
Section 6 describes the developed and implemented carrier phase integer ambiguity resolution approach based on multi-
GNSS and multi-signal raw observations in detail.
Analyses performed in the course of this work related to a physically meaningful handling of multi-GNSS and multi-signal
raw observation code biases, code bias calibrations, single receiver absolute ionospheric delay estimation and inter-system
time offset determination are shown in section 7. In addition, the carrier phase integer ambiguity resolution approach
based on multi-GNSS and multi-signal raw observations is applied to the problem of multi-GNSS satellite precise orbit
determination and raw observation phase biases are analysed.
The achieved results are summarised and concluded in section 8 and a description of remaining issues with respect to
the analysed field of research and an outlook on future work is given in section 9.
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2 Global Navigation Satellite Systems

2.1 Operational Principles

The basic principle of positioning with GNSS is based on the concept of trilateration. The location of a user is determined
by the measurement of distances to multiple GNSS satellites in combination with the known positions of these satellites.
The basic distance measurement is the time required for a signal to propagate from a GNSS satellite to the user receiver.
Section 2.4.2 describes the fundamentals of different distance measurements performed by a GNSS receiver and specifies
how the signal propagation time of different measurements can be modelled.
Before describing the details of GNSS receiver measurements, an overview of the general GNSS architecture and different
existing systems is given, followed by a description of the GNSS signal structure.

2.1.1 GNSS Architecture

All GNSS consist of three different segments, namely the ground segment, space segment and user segment. While the
user segment is mostly shared among different GNSS, each system has its own dedicated ground and space segment.

The ground or control segment usually consists of two (master and backup) control centres, a network of globally dis-
tributed Telemetry, Tracking and Command (TT&C) stations for spacecraft and payload control and monitoring, globally
distributed sensor stations to monitor the navigation signals sent by the GNSS satellites and globally distributed uplink
stations to distribute navigation information to the GNSS satellites. The ground segment also defines the GNSS system
time scale, computes the navigation information prior to uplink and prepares official notifications about the system status.

The space segment consists of the GNSS satellites orbiting the Earth. The satellites transmit electromagnetic waves
modulated with navigation information on different carrier frequencies, called GNSS signals to the users. The number of
satellites and their orbital parameters differ for each GNSS, as described in section 2.2.

The user segment consists of all receivers which measure the GNSS signals and use them for Positioning Navigation
Timing (PNT) applications. There is a wide range of supported timing and positioning applications for different types of
dynamics like cars, ships, trains and aircrafts, as well as orbit determination of LEO and beyond LEO satellites in the so
called SSV.

2.2 Overview of Existing GNSS

As the satellite types and orbital parameters differ for each GNSS, this section provides a short overview of the space
segments of the four existing GNSS. Throughout this work the symbol Σ is used to refer to a generic GNSS, whereas
the following uppercase letter are used to refer to a specific system: G for GPS, E for Galileo, C for BeiDou and R for
GLONASS.

2.2.1 GPS

The GPS space segment nominally consists of 24 (usually around 30) Medium Earth Orbit (MEO) satellites, orbiting
the Earth with an orbital period of 11 hours 58 minutes and 42 seconds (half a sidereal day) at a nominal altitude of
20200 km (U.S. Government, 2019). The satellites are arranged in six equally spaced orbital planes around the Earth
with an inclination of 55deg. The current GPS space segment consists of 31 operational satellites from four different
generations (1 Block IIA, 11 Block IIR, 7 Block IIR-M and 12 Block IIF) (U.S. Government, 2019).

GPS employs Code Division Multiple Access (CDMA) to distinguish between satellites and therefore navigation signals
are sent on the identical three nominal carrier frequencies: L1 (1575.42 MHz), L2 (1227.6 MHz) and L5 (1176.45 Mhz).

2.2.2 Galileo

The nominal Galileo space segment consists of 30 MEO satellites (including 6 spares) orbiting the Earth with an orbital
period of 14 hours 4 minutes and 41 seconds at a nominal altitude of 23222 km (GSA, European GNSS Agency, 2019b).
The satellites are arranged in three equally spaced orbital planes around the Earth with an inclination of 56 deg in a
so called Walker 24/3/1 constellation. The current Galileo space segment consists of 22 operational satellites from two
different satellite types (3 In-Orbit Validation (IOV) satellites and 19 Full Operational Capability (FOC) satellites (GSA,
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European GNSS Agency, 2019b).

Galileo employs CDMA and satellites transmit navigation signals on the identical four nominal carrier frequencies:
E1 (1575.42 MHz), E5a (1176.45 MHz), E5b (1207.14 MHz) and E6 (1278.75 MHz). The signals on frequencies E5a and
E5b are combined by the so called Alternative Binary Offset Carrier (BOC) (AltBOC) modulation, generating a wideband
signal with the effective carrier frequency: E5 (1191.795 MHz)

2.2.3 Beidou

The BeiDou space segment nominally consists of 27 MEO, 3 Inclined GeoSynchronous Orbit (IGSO) and 5 Geostationary
Orbit (GEO) satellites. The MEO satellites are arranged in three equally spaced orbital planes around the Earth with an
inclination of 55deg and orbit the Earth with an orbital period of 12 hours 53 minutes and 14 seconds at a nominal
altitude of 21528 km (Roskosmos, 2019b). The GEO satellites at an altitude of 35786 km are positioned at longitudes
in the range between 58deg and 160deg East. The IGSO satellites orbit the Earth at an altitude of 35786 km and an
inclination of 55 deg.
The current BeiDou space segment consists of 33 operational satellites from two different satellite types (15 BeiDou-2
and 18 BeiDou-3) in three different orbits (5 GEO, 7 IGSO and 21 MEO) (Roskosmos, 2019a). It should be noted that
for the analyses shown in this work BeiDou GEO satellites were not used.

BeiDou employs CDMA and satellites transmit navigation signals on the identical three nominal carrier frequencies:
B1I (1561.098 MHz), B2I (1207.14 MHz) and B3I (1268.52 Mhz). To support interoperability with other GNSS, the
BeiDou-3 MEO and IGSO satellites also transmit the B1C signal on carrier frequency 1575.42 MHz (BeiDou OS B1C SIS
ICD, 2017) and the B2a signal on carrier frequency 1176.45 MHz (BeiDou OS B2a SIS ICD, 2017).

2.2.4 GLONASS

The nominal GLONASS space segment consists of 24 MEO satellites orbiting the Earth with an orbital period of 11 hours
14 minutes and 32 seconds at a nominal altitude of 19100 km (Roskosmos, 2019d). The satellites are arranged in three
equally spaced orbital planes around the Earth with an inclination of 64.8deg. The current GLONASS space segment
consists of 22 operational satellites (Roskosmos, 2019c).

GLONASS mainly employs Frequency Division Multiple Access (FDMA) to distinguish between satellites and therefore
each satellite transmits navigation signals on a slightly different frequency. The two nominal carrier centre frequencies
for the FDMA signals are: L1 (1602.00 MHz) and L2 (1246.00 MHz). The carrier frequency for the CDMA signal, trans-
mitted by the newer GLONASS satellites is: L3 (1202 Mhz) (Roskosmos, 2019d).

An overview of the GNSS signal frequencies used in this work is given in Figure 2.1.

frequency1575.421227.61207.141191.7951176.45 1278.75 1561.0981268.52

GPS L5
GAL E5a

BEI B2I
GAL E5bGAL E5 GPS L2

GPS L1
GAL E6 GAL E1BEI B3I BEI B1I

(in MHz)

Figure 2.1: Overview of GNSS signal frequencies used in this work with schematically indicated signal bandwidths.

2.3 GNSS Signals

GNSS signals are generated on-board the GNSS satellites and are based on the frequency output and time signal of the
on-board atomic clock, inherent to every GNSS satellite. The time signal usually is referred to as satellite time scale or
satellite clock. The atomic clock provides the nominal frequency used to generate the different carrier frequencies of the
GNSS signals and the satellite time signal used to modulate the carrier wave to enable measurements of the satellite time
at the receiver and to transmit information to the user.

Signals sent by the GNSS satellites therefore not only differ in carrier frequency, but also in how the navigation informa-
tion is modulated onto the carrier wave and which information is provided to the user. In order to identify GNSS signals,
a three character ID is used throughout this work, indicating the corresponding GNSS (Σ), the carrier frequency index
(i) and the signal identifier (a). The frequency index and signal identifier used in this work are in line with the definition
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in the Receiver Independent Exchange (RINEX) format. A generic GNSS satellite signal is written Σia, with the example
of a GPS C/A signal on carrier frequency L1 (G1C) or a Galileo signal on carrier frequency E5a without navigation data
(E5Q). Table 2.1 describes the mapping of the Galileo, GPS and BeiDou satellite signals introduced in section 2.2 to the
three character ID of the GNSS observations used in this work.

Table 2.1: Mapping of Galileo, GPS and BeiDou satellite signals to the three-character ID used in this work.

GNSS Frequency (in MHz) Signal Component 3-char. ID

Galileo E1 1575.42 no data E1C

E5a 1176.45 no data E5Q

E5b 1207.14 no data E7Q

E5 1191.795 Q E8Q

E6 1278.75 no data E6C

GPS L1 1575.42 C/A G1C

L2 1227.6 P(Y) G2W

L5 1176.45 Q G5Q

BeiDou B1I 1561.098 I C2I

B2I 1207.14 I C7I

B3I 1268.52 I C6I

2.3.1 Signal Structure and Modulation

In order to enable the basic distance measurement required for positioning with GNSS, the carrier wave of a GNSS signal
is modulated with a so called Pseudo Random Noise (PRN) code. This characteristic sequence of zeros and ones facilitates
the measurement of the signal generation time on-board the GNSS satellite, as described in detail in section 2.4.2.
The navigation information contained in the so called navigation message are modulated onto the GNSS signal carrier
wave in addition to the PRN code, as illustrated in Figure 2.2. The navigation message mainly contains information about
the position and time of the GNSS satellites, required for positioning based on the concept of trilateration.
Various signal modulation schemes are applied by the different GNSS and they have become more complex for newer
generation of GNSS satellites and signals in the last decade. GNSS signal modulation schemes are ranging from simple
Binary Phase Shift Keying (BPSK) modulation used in the GPS L1 C/A signal via different versions of BOC modulations
like Composite BOC (CBOC) and Multiplexed BOC (MBOC) to advanced wideband signal modulations like AltBOC, used
for the generation of the Galileo E5 signal.
Detailed information on the different GNSS signal structures and modulation schemes can be found at (European Space
Agency, 2019).

Carrier

PRN

Nav Msg

Figure 2.2: Signal structure of a GNSS signal carrier wave modulated with PRN code and navigation message.

2.4 GNSS Receiver

GNSS receivers are the user interface to GNSS services and enable the determination of Position Velocity Time (PVT)
solutions. However, with a receiver alone, no measurements of the GNSS signals can be performed.
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2.4.1 Receiver System Components

A GNSS receiver system is composed of the receiver itself and a receiving antenna, connected via a Radio Frequency
(RF) cable. The antenna acts as physical interface between the electromagnetic waves sent by the GNSS satellites and
the RF signals processed by the receiver. A GNSS receiver acquires and tracks the satellite signals, performs the distance
measurements, demodulates the navigation message from the received signal and computes the navigation PVT solution.
GNSS receivers perform measurements based on their own internal or externally provided time signal, referred to as
receiver time scale or receiver clock. GNSS measurements are therefore time tagged with the measurement time given in
the receiver time scale.

2.4.2 GNSS Measurements

The natural distance measurements of a GNSS receiver used for positioning are the replica signal code phase and replica
carrier signal phase relative to the received satellite signal, as described in (Kaplan and Hegarty, 2017). A receiver also
measures the carrier signal Doppler shift and Signal-to-Noise Ratio (SNR), these measurements however, are only men-
tioned for completeness and are not directly used for applications described in this work. An analysis of the received
signal strength for multiple GNSS and signals is shown in section 7 to demonstrate the existence of GNSS signal interfer-
ence for certain frequency bands, which is directly visible in the SNR measurements. The receiver signal acquisition and
tracking Phase Lock Loop (PLL) continuously adjust the frequency of the replica signal generated by a GNSS receiver to
the received satellite signal frequency. The code phase is measured by aligning the PRN code of the receiver generated
replica signal with the received satellite signal, which is handled by the so called Delay Lock Loop (DLL). The code phase
ambiguity of the PRN code length (1 ms≈ 300km for the GPS L1 C/A signal and 4 ms≈ 1200km for the Galileo E1 Open
Service (OS) signal) is then solved by exploiting the navigation message structure.
The measured replica signal code phase can be used to determine the signal time of generation t tog in the satellite time
scale τs, measured at the time of measurement t tom in the receiver time scale τr to form the so called pseudorange
measurement in units of length, depicted in Figure 2.3

Ps
r (t tom) = c ·

�

τr(t tom)−τs(t tog)
�

+ es
r(t tom) , (2.1)

with the pseudorange measurement noise es
r(t tom), which is assumed to be a zero-mean random variable.

τr

timet tom

τs

timet tog

c · [τr(t tom)−τs(t tog)]

Figure 2.3: GNSS code phase (pseudorange) measurement, derived from the signal
generation time in the satellite time scale τs(t tog) and the measurement
time in the receiver time scale τr(t tom).

The measured replica carrier signal phase is used to generate a continuous cumulative carrier signal phase measurement
in cycles

φs
r(t tom) =∆φ

s
r(t tom) + ns

r(t tom, t ini t) +η
s
r(t tom) , (2.2)

where ∆φs
r(t tom) ∈ [0,1) is the fractional phase measurement, ns

r(t tom, t ini t) is the full cycle count of the measured
replica carrier signal phase since initial signal acquisition at t ini t and ηs

r(t tom) is the carrier phase measurement noise,
which is assumed to be a zero-mean random variable.
With the unknown number of carrier phase cycles at initial signal acquisition, the so called integer ambiguity N s

r , the
carrier phase measurement can be recognised as precise measure of the carrier phase pseudorange, depicted in Figure
2.4.
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φr

timet tom

φs

timet tog

N s
r

φs
r(t tom)

Figure 2.4: GNSS carrier phase measurement φs
r(t tom) of fractional and

full cycles, recognised as precise measure of the carrier phase
pseudorange by adding the unknown integer ambiguity term
N s

r .

3 Reference Systems

The determination of positions and time with GNSS and any other positioning or timing concept requires the definition of
coordinate and time reference systems. The use of consistent reference systems is essential to compute accurate positions
and time. A coordinate reference system is defined by a set of prescriptions, conventions and required models to define
a triad of axes at any point in time (IERS, 2019a). The realisation of a coordinate reference system in the form of
coordinates (and velocities) is referred to as coordinate reference frame. For time reference systems one could use a
similar definition, however, it is uncommon to distinguish in the same way between reference time systems and reference
time frames. Therefore, reference time systems are referred to as time scales in the course of this work. The following
sections describe the relevant coordinate reference systems and time scales used in GNSS processing.

3.1 Coordinate Systems

A reference system co-rotating with the Earth, referred to as terrestrial reference system, is most suitable to express
user coordinates on Earth, whereas it is convenient to describe positions and velocities of satellites in a non-rotating
inertial reference system, referred to as celestial reference system. The relation between these two systems and the
transformation of positions given in the corresponding reference frames is based on the so called Earth Orientation
Parameters (EOP).

3.1.1 International Terrestrial Reference System

The International Terrestrial Reference System (ITRS) is a specific terrestrial reference system defined and provided by
the International Earth Rotation and Reference Systems Service (IERS) with its origin located at the centre of mass of
the whole Earth, including oceans and atmosphere (Petit and Luzum, 2010). The orientation of the geocentric ITRS is
equatorial with its z-axis pointing towards the IERS Reference Pole (IRP). The direction of the x-axis is defined by the in-
tersection point of the Earth’s equator and the IERS Reference Meridian (IRM) and the y-axis completes the right-handed
orthogonal system. The ITRS therefore is co-rotating with the Earth. The orientation was initially given by the Bureau
International de l’Heure (BIH) orientation at epoch 1984.0 and the time evolution of the orientation is ensured by using
a no-net-rotation condition with regards to horizontal tectonic motions over the whole Earth (Petit and Luzum, 2010).
The unit of length is the International System of Units (SI) metre.

The ITRS is realised by the International Terrestrial Reference Frame (ITRF) which consists of a set of coordinates and
velocities for a selected number of IERS tracking stations covering the whole Earth. The coordinates and velocities are
determined from observations of the four main space geodesy techniques: GNSS, Very Long Baseline Interferometry
(VLBI), Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).
The set of coordinates and velocities defining the ITRF is updated on a regular basis and published by the IERS at (IERS,
2019b).
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3.1.2 Celestial Reference Systems

The International Celestial Reference System (ICRS) is the celestial reference system defined and provided by the IERS
with its origin located at the barycentre of our solar system (Petit and Luzum, 2010). It is a non-rotating inertial coordi-
nate system, thus the directions of its axes are fixed with respect to the ensemble of distant extragalactic radio sources
observed by VLBI. Its principal plane is defined to coincide as closely as possible with the mean equator at J2000.0 and
the origin of right ascension is defined to coincide as closely as possible with the dynamical equinox at J2000.0 (from
Petit and Luzum, 2010).

The ICRS is realised by the International Celestial Reference Frame (ICRF) which consists of a set of equatorial coordi-
nates for extragalactic radio sources, estimated based on VLBI observations. The set of coordinates defining the ICRF is
updated on a regular basis and published by the IERS at (IERS, 2019a).

The Geocentric Celestial Reference System (GCRS) is a specific celestial reference system used to describe the motion of
satellites orbiting Earth. It is oriented in the same way as the ICRS, but its origin is shifted from the barycentre of our
solar system to the centre of the Earth. Hence, the GCRS is a geocentric non-rotating quasi-inertial reference system, as
the origin performs an accelerated motion.

3.1.3 Earth Orientation Parameters

The IERS Earth Orientation Parameters (EOP) describe the irregularities of the rotation of the Earth and provide the
rotation of the ITRS to the ICRS as a function of time (from IERS, 2019c). The five EOPs measured by space geodetic
techniques and provided by the IERS are (IERS, 2019c)

• dψ, dε: The celestial pole offsets, defined as observed residual corrections to the conventional pole position
defined by the International Astronomical Union (IAU) precession and nutation models

• UT1-UTC (described in section 3.2), also called Length Of Day (LOD): The excess revolution time of the Earth
relative to 86400 SI seconds describes the variation in the rotation rate of the Earth

• xp, yp: The terrestrial coordinates of the Celestial Intermediate Pole (CIP) in the ITRS, ie. relative to the IRP, also
referred to as polar motion

As the GCRS is oriented the same way as the ICRS, EOPs can be used to transform coordinates from the rotating ITRS to
the GCRS. According to Petit and Luzum (2010), the transformation of a position vector X(t) from ITRS to GCRS at time
t can be written as

XGCRS(t) = Q(t) R(t) W(t) XI TRS(t) , (3.1)

where Q(t), R(t) and W(t) are the transformation matrices for the celestial motion of the CIP in the GCRS due to
precession and nutation including celestial pole offsets, the rotation of the Earth around the axis of the CIP including
LOD and the polar motion respectively. The detailed procedure and algorithms for the ITRS to GCRS transformation are
given in (Petit and Luzum, 2010).

3.2 Time Scales

The basic distance measurement required for positioning with GNSS practically is a measurement of different points
in time. As described in section 2.4.2, these time measurements are realised on different time scales, which are not
synchronised. The following section therefore provides an overview of the most important time scales used in GNSS
signal processing.

3.2.1 International Atomic Time

International Atomic Time (TAI) is a uniform and stable time scale calculated at the International Bureau of Weights
and Measures (BIPM) from atomic clocks in over eighty national laboratories (BIPM, Bureau International des Poids et
Mesures, 2019b). The unit of TAI is the SI second and TAI therefore does not follow the irregular rotation of the Earth.
For practical purposes however, it is convenient to use time scales which are linked to the actual rotation of the Earth.

3.2.2 Universal Time

Universal Time (UT1) is defined as the mean solar time at 0 deg longitude and therefore directly follows the rotation
of the Earth. As the Earth rotation rate varies, UT1 is neither uniform nor stable. For practical purposes however, time
scales should be based on a constant progress of time.
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3.2.3 Coordinated Universal Time

Coordinated Universal Time (UTC) combines the definitions of TAI and UT1 and serves as the global reference time scale.
The unit of UTC is the SI second, however, from time to time a leap second is added to ensure that UTC follows UT1
within 0.9 s. UTC therefore is a uniform and stepwise stable time scale. The insertion of UTC leap seconds is decided by
the IERS.

3.2.4 GNSS System Time

Each GNSS maintains its own system time scale, which is broadcast via the navigation satellites to the users to enable
PNT applications. However, each GNSS has its own definition of "time" and provides different levels of timing accuracy
with respect to UTC.

GPS Time (GPST) is a continuous time scale (ie. no leap seconds applied) established by the GPS control segment and
referenced to the physical UTC realisation at the U.S. Naval Observatory UTC(USNO) (IS-GPS-200, 2015). The GPST
start epoch is midnight UTC in the night from January 5 to 6, 1980 with a difference TAI-UTC = 19 s. Hence the offset
between GPST and UTC is defined by GPS-UTC = nleap − 19 with the number of UTC leap seconds nleap. GPST shall be
synchronized to be within 1 µs of UTC (modulo one second) (IS-GPS-200, 2015).

Galileo System Time (GST) is a continuous time scale (ie. no leap seconds applied) established by the Galileo control
segment from a selection of European timing laboratories (Stehlin et al., 2006). The GST start epoch is 23:59:47 UTC
on 21 August 1999 with a difference TAI-UTC = 32 s (Galileo OS SIS ICD, 2016). As GST is defined to start 13 seconds
before midnight UTC, the offset between GST and UTC is given (as for GPST) by GST-UTC = nleap − 19. This definition
supports the Galileo-GPS interoperability, as no integer second offset exists between GST and GPST. GST shall be steered
to be within 50ns of UTC (modulo one second) (Teunissen and Montenbruck, 2017). Detailed information on the physi-
cal generation of GST are given in (Stehlin et al., 2006).

BeiDou Time (BDT) is a continuous time scale (ie. no leap seconds applied) referenced to the physical UTC reali-
sation at the National Time Service Center UTC(NTSC) (BeiDou OS B1I SIS ICD, 2019). The BDT start epoch is
00:00:00 UTC on 1 January 2006 with a difference TAI-UTC = 33 s. Hence the offset between BDT and UTC is de-
fined by BDT-UTC = nleap − 33. BDT shall be synchronised to be within 50ns of UTC (modulo one second) (BeiDou OS
B1I SIS ICD, 2019).

GLONASS Time (GLOT) is a discontinuous time scale with leap seconds applied as for UTC, generated by the GLONASS
Central Synchronizer and referenced to the Russian national time realisation UTC(SU) plus a constant three hour offset
(GLONASS ICD, 2008). GLOT therefore directly relates to UTC, which is why GLONASS satellites do not transmit any
information on UTC leap seconds in their navigation messages. GLOT shall be synchronized to be within 1 µs of UTC(SU)
plus three hours (GLONASS ICD, 2008).

Figure 3.1 shows the relationship between TAI, UT1, UTC and the different GNSS system times.
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Figure 3.1: Relationship between TAI, UT1, UTC and GNSS system times
(adopted from Ley et al., 2019).
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3.2.5 Clock Offsets, Epochs and Points in Time

The proper handling of different time scales and clock offsets is essential whenever dealing with GNSS and especially
important for multi-GNSS applications. The general definition and nomenclature of clock offsets, epochs and arbitrary
points in time used in this work is therefore introduced.
An arbitrary point in time shall be defined by t, which can be expressed in different time scales τi . The clock reading τi(t)
at time t on the clock which defines the time scale τi will be referred to as an Epoch in time scale τi . If one point in time
is expressed in different time scales τi(t) and τ j(t) it still refers to the exact same point in time. However, as long as the
two time scales (their respective clocks) are not synchronised, the clock readings at this point in time will be different and
their difference defines the clock offset between the two time scales (their respective clocks): d t i, j(t) = τi(t)−τ j(t). Two
independent clocks show the same clock reading (Epoch) at different points in time τi(t) = τ j(t + d t j). It is assumed,
that the time offset d t j applied at one clock to show the same clock reading as another clock at a different time and the
clock offset between two time scales at the same point in time d t i, j(t) are identical d t i, j(t) = d t j .
The value of a time varying quantity measured at a certain point in time Pmeas(τi(t)) = Pmeas(τ j(t)) = Pmeas(t) is
invariant to a change in the time scale, whereas the Epoch at which the quantity was measured differs for every time scale.
However, in practice the measurement time is always driven by a certain time scale and therefore is performed at a certain
Epoch τi(t). If the same measurement is triggered twice, at the same Epoch but from two different unsynchronised clocks
(time scales), the measurement values of the time varying quantity will be different. In fact, the measurement was taken
at the same Epoch, but at different points in time Pmeas(τi(t)) 6= Pmeas(τ j(t + d t j)).
This principle can be transferred to taking measurements and processing observations in GNSS applications. Whereas
GNSS measurements are taken at a certain epoch, triggered by the GNSS receiver clock time scale τr , observations might
be processed at the same epoch, but in a reference time scale τΞ, see 4.1.4.
For GNSS positioning applications this reference time scale is realised and provided to the user in form of the so called
navigation satellite clock offsets. As described above, a clock offset is the difference between two clock readings from
independent time scales at a certain point in time. For GNSS applications, both the navigation satellite clock offset
d t s
Ξ = τ

s(t)−τΞ(t) and the receiver clock offset d t r,Ξ = τr(t)− τΞ(t) need to be considered. In Figure 3.2 the general
relationship of independent time scales τr and τΞ and the offset between them is shown.

τ

timet

τr(t)

τΞ(t)

τr

τΞ

d t r,Ξ(t) = τr(t)−τΞ(t)

Figure 3.2: Schematic representation of the relationship between GNSS receiver clock
time scale τr , reference time scale τΞ and the receiver clock offset d t r,Ξ.
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4 GNSS Observation Model

The GNSS measurements introduced in section 2.4.2 form the set of observables, available to a GNSS receiver to estimate
geodetic parameters like station coordinates, satellite orbits and time. The pseudorange and carrier phase observables for
each individual signal are modelled by the so called raw observation equations, indicating that these equations describe
the uncombined raw observable per signal measured by the GNSS receiver.

4.1 GNSS Raw Observables

The basic GNSS observable is the travel time T s
r of the signal to propagate from a navigation satellite s to a receiver r.

The apparent range or pseudorange between satellite and receiver is the signal travel time multiplied by the speed of
light Ps

r = c · T s
r . It is called pseudorange, since GNSS observables are affected by numerous effects, described in the

following section, which prevent the direct measurement of the correct geometric distance between satellite and receiver.
There are many publications and textbooks on modelling GNSS observables (Hofmann-Wellenhof et al., 1992; Kleusberg
and Teunissen, 1998; Kaplan and Hegarty, 2017) with different depth of detail. The observation equations derived in this
work are based on (Teunissen and Kleusberg, 1998), however, they have been refined to describe a rigorous handling of
all involved points in time. This allows to define all components of the observation equation with proper time arguments
and discuss necessary assumptions, which usually are missing or not sufficiently explained in the literature.
The measurements are triggered by the receiver clock and therefore are taken at the time of measurement t tom in the
receiver clock time scale τr , called the measurement epoch τr(t tom). The concept of time scales and epochs has been
introduced in section 3.2. It is assumed, that GNSS receivers take a set of measurements at the same epoch (Kaplan and
Hegarty, 2017), resulting in a measurement epoch independent of tracked satellites and signals. On the satellite side,
all signals originate from the same on-board oscillator and are realisations of the same satellite clock. Without loss of
generality it can therefore be assumed that the signal time of generation t tog in the satellite clock time scale τs is identical
for all signals.

4.1.1 Pseudorange Observation Equation

The pseudorange measurement between receiver r and navigation satellite s is given by the difference of the time of
measurement t tom, given by the measurement epoch in the receiver time scale τr(t tom) and the time of signal generation
t tog , given by the generation epoch in the navigation satellite time scale τs(t tog)

Ps
r (t tom) = c ·

�

τr(t tom)−τs(t tog)
�

+ es
r(t tom) , (4.1)

where c is the speed of light in vacuum and es
r(t tom) the pseudorange measurement noise, which is assumed to be a zero-

mean random variable. It should be emphasised, that in order to consistently describe all involved points in time, the time
arguments used in (4.1) are the time of signal generation and measurement, instead of the time of signal transmission and
reception, as usually found in the literature (cf. Teunissen and Kleusberg, 1998). The signal dependent transmission and
reception time arguments are introduced in (4.4) and Figure 4.1 shows the relation between the four time arguments.
Expanding the pseudorange equation (4.1) by the receiver measurement time and the signal generation time both given
in an independent reference time scale τΞ and rearranging the terms gives

Ps
r (t tom) = c · [τr(t tom) +τΞ(t tom)−τΞ(t tom)−τs(t tog) +τΞ(t tog)−τΞ(t tog)] + es

r(t tom)

= c · [τΞ(t tom)−τΞ(t tog) + d t r,Ξ(t tom)− d t s
Ξ,rel(t

tog)] + es
r(t tom)

= c · T s
r + c · [d t r,Ξ(t tom)− d t s

Ξ,rel(t
tog)] + es

r(t tom)

(4.2)

where

T s
r = τΞ(t tom) − τΞ(t tog) is the total signal travel time, between the moment of signal generation on-board the

navigation satellite and the moment the signal is measured in the receiver, determined in a common reference
time scale τΞ

d t r,Ξ(t tom) = τr(t tom)− τΞ(t tom) is the receiver clock offset from the reference time scale at the time of measure-
ment

d t s
Ξ,rel(t

tog) = τs(t tog) − τΞ(t tog) is the satellite clock offset from the reference time scale at the time of signal
generation including relativistic effects
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The satellite on-board clock is affected by periodic relativistic effects due to the eccentricity of the noncircular satellite
orbits, namely time dilation and frequency shifts due to Earth’s gravitational potential, described in the theory of relativity
by Albert Einstein. These effects can be modelled analytically as described in section 4.1.4 and are therefore separated
from the satellite clock offset d t s

Ξ(t
tog) by subtracting the periodic relativistic correction term δrel(t tog)

d t s
Ξ,rel(t

tog) = d t s
Ξ(t

tog)−δrel(t
tog) (4.3)

The total signal travel time T s
r not only depends on the receiver and satellite but also on the signal itself. As introduced

in section 2.3, a navigation satellite signal Σia is defined by the system Σ, frequency index i and signal identifier a. The
total signal travel time T s

r,Σia can be split into three parts

T s
r,Σia = ds

ia +∆T s
r,Σia + dr,Σia (4.4)

where

ds
ia = t tot

ia − t tog is the (code) delay between the time of signal generation t tog and transmission t tot
ia on-board the

navigation satellite

∆T s
r,Σia = t tor,Σia− t tot

ia is the free space travel time of signal Σia from the time of transmission t tot
ia at the navigation

satellite antenna to the time of reception t tor,Σia at the receiver antenna

dr,Σia = t tom − t tor,Σia is the (code) delay between the time of signal reception t tor,Σia and time of measurement
t tom at the receiver

timet tomt tog

c ·∆T s
r,Σia

t tor,Σiat tot
ia

Figure 4.1: Representation of the relationship between the four time arguments: sig-
nal generation time t tog , signal transmission time t tot

ia , signal reception
time t tor,Σia and time of measurement t tom.

From the definition of the signal dependent (code) delay of electronic equipment on-board the navigation satellite fol-
lows, that signals generated at the same time are not transmitted at the same time, as described in (GSA, European GNSS
Agency, 2019a). On the receiver side, signal dependent (code) delays of electronic equipment cause signals measured at
the same time not being received at the same time.
Although the signal (code) delays physically are time differences, they are often referred to and modelled as instantaneous
biases, which do not affect the receiver-satellite geometry. As discussed in detail in section 4.1.4, this assumption is valid
for signal delays d < ≈ 1 µs when dealing with receivers on Earth and signal delays d < ≈ 0.1 µs for GNSS receivers
on-board of LEO satellites. In order not to introduce significant ranging errors due to changes in the receiver-satellite
geometry for precise multi-signal applications, the (code) delay difference between signals generated at the same time
or measured at the same time should not exceed these limits.
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In addition, it is a valid assumption to consider signal (code) delays to be constant over the signal travel time interval.
The time argument of the satellite and receiver signal delays can therefore be set to the time of measurement

ds
ia = ds

ia(t
tot
ia ) = ds

ia(t tom)

dr,Σia = dr,Σia(t tom)

The free space signal travel time ∆T s
r,Σia is affected by atmospheric and relativistic delays along the signal path and is

disturbed by signal Multipath. It can be modelled in units of length by

c ·∆T s
r,Σia = ρ

s
r,Σia(t

tot
ia , t tor,Σia) + d t ros

r + dions
r,i + c ·δstc + dms

r,Σia (4.5)

where

ρs
r,Σia(t

tot
ia , t tor,Σia) is the geometric distance between the point of signal transmission at the navigation satellite

antenna at time t tot
ia and the point of signal reception at the receiver antenna at time t tor,Σia, both described in an

inertial coordinate system

d t ros
r models tropospheric delays in units of length

dions
r,i models ionospheric delays in units of length

δstc is the relativistic time delay due to space-time curvature

dms
r,Σia is the code signal multipath

The difference in signal transmission time t tot
ia − t tot

j b and signal reception time t tor,Σia − t tor,Σ j b for different signals are
typically small |dΣia − dΣ j b| << 1µs, see example in section 5.2.2. This allows to neglect their effect on the receiver-
satellite geometry and therefore model the geometric range with signal independent time arguments.

ρs
r,Σia(t

tot
ia , t tor,Σia) = ρ

s
r,Σia(t

tot , t tor) (4.6)

As for the signal delays, it is a valid assumption to consider the atmospheric delays, relativistic corrections and signal
multipath to be constant over the signal travel time interval and therefore set their time arguments to the time of
measurement

d t ros
r = d t ros

r(t tom)

dions
r,i = dions

r,i(t tom)

δrel(t tog) = δrel(t tom)

δstc = δstc(t tom)

dms
r,Σia = dms

r,Σia(t tom)

The formulas applied to model the geometric range, atmospheric delays and relativistic corrections are described in detail
in section 4.1.4.
Instead of using the points of signal transmission and reception at the respective antenna, the geometric distance can be
described by the difference between two Point Of Interest (POI), usually the centre of mass at the navigation satellite
and the reference/marker point at the receiver. Therefore the geometric range as defined above is split to account for the
offset between the points of interest and the points of signal transmission and reception respectively

ρs
r,Σia(t

tot , t tor) = ‖r s(t tot) + dr s
ia(t

tot)−
�

rr(t tor) + drr,Σia(t tor)
�

‖
= ‖r s(t tot)− rr(t tor)‖+ drs

ia(t
tot)− drr,Σia(t tor)

(4.7)

where

r s(t tot) is the geocentric position vector to the centre of mass of navigation satellite s at time of signal transmission,
described in an inertial coordinate system

rr(t tor) is the geocentric position vector to the reference/marker point of receiver r at time of signal reception,
described in an inertial coordinate system
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dr s
ia(t

tot) is the code signal dependent satellite antenna offset vector, ie. the vector between satellite centre of
mass and the point of signal transmission

drr,Σia(t tor) is the code signal dependent receiver antenna offset vector, ie. the vector between receiver refer-
ence/marker point and the point of signal reception

As the vector between the POIs and the point of signal transmission/reception respectively does not change significantly
during the signal travel time interval, the time argument of the antenna offset range corrections, see section 4.1.4 for
details, can be set to the time of measurement

drs
ia(t

tot) = drs
ia(t tom)

drr,Σia(t tor) = drr,Σia(t tom)

With the receiver coordinate displacement correction dispr(t tom), required for precise applications on Earth, the pseudo-
range observation equation for raw signal Σia measured at time t = t tom is given by

Ps
r,Σia(t) = ‖r

s(t tot)− rr(t tor)‖+ drs
ia(t)− drr,Σia(t) + dispr(t) + c · [d t r,Ξ(t)− d t s

Ξ(t
tog) +δrel(t)]

+ d t ros
r(t) + dions

r,i(t) + c ·δstc(t) + c · [ds
ia(t) + dr,Σia(t)] + εs

r,Σia(t)
(4.8)

where εs
r,Σia(t) contains the pseudorange measurement noise, the code signal multipath and residual modelling errors.

4.1.2 Carrier Phase Observation Equation

The theoretical carrier phase pseudorange measurement between receiver r and satellite s is given by the phase difference
between the carrier signal replica at measurement time t tom, generated in the receiver and the received carrier signal at
generation time φs(t tog) generated on-board the navigation satellite in carrier wavelength cycles

φs
r
∗(t tom) = φr(t tom)−φs(t tog) +ηs

r(t tom) (4.9)

where φr(t tom) and φs(t tog) are the receiver and satellite unwrapped (continuous) carrier signal phase respectively
and ηs

r(t tom) is the carrier phase measurement noise. However, due to the ambiguity of sinusoidal carrier signals, a
receiver can only measure the wrapped (fractional) phase difference of the receiver and satellite carrier signals and
count the full phase cycles of the measured fractional phase difference after the initial signal acquisition to provide a
continuous cumulative phase measurement, as described in section 2.4.2. The actual carrier phase measurement may
therefore be written by modifying (4.9) as

φs
r(t tom) =

�

φr(t tom)−φs(t tog)
�

mod 1+ ns
r(t tom, t ini t) +η

s
r(t tom) , (4.10)

where the modulo operator indicates the measured fractional phase difference constrained to the interval [0, 1) cycles
or [0,2π) radians and ns

r(t tom, t ini t) denotes the integer value at measurement time t tom incremented by the receiver
since the initial signal acquisition at t ini t .
The carrier signal frequency and unwrapped instantaneous phase, which is a continuous function of time are linked (cf.
Teunissen and Kleusberg, 1998) by

f (t) = dφ(t)
d t

φ(t) = φ(t0) +
∫ t

t0
f (τ)dτ

(4.11)

The carrier signal phase is therefore given by the interval of a time varying frequency, due to Doppler shift and drift of
the underlying oscillator clock. For short time intervals (t − t0) the equation for carrier signal phase can be simplified,
assuming constant frequency, by

φ(t) = φ(t0) + f · (t − t0) (4.12)

Time and phase can only be perceived as relative quantities and therefore are defined relative to the initial values t0 and
φ(t0) respectively. However, as the initial values in (4.12) can not be separated, they can mathematically be lumped into
one initial phase offset, which is equivalent to setting the initial time to zero t0 = 0:

φ(t) = φ̃(t0) + f · t (4.13)

14



The unwrapped signal phase realisations of the receiver and satellite oscillators can be written as

φr(t tom) = φ̃r(t0) + fr ·τr(t tom)

φs(t tog) = φ̃s(t0) + f s ·τs(t tog)
(4.14)

where fr and f s are the receiver and satellite clock frequencies respectively, τr(t tom) is the measurement time in the
receiver time scale and τs(t tog) is the signal generation time in the satellite time scale. As described in section 2.4.2,
the receiver signal acquisition and tracking loops constantly adjust the frequency of the receiver generated carrier signal
replica, so a common frequency f can be used to formulate the carrier phase measurement.
The full unwrapped carrier phase pseudorange of the signal path is given by the difference between the unwrapped
receiver and satellite signal phase (4.14) and making use of the time difference expansion in (4.2)

φr(t tom)−φs(t tog) = φ̃r(t0)− φ̃s(t0) + f · [τr(t tom)−τs(t tog)] + pwus
r(t tom)

= φ̃s
r(t0, t0) + f · [T s

r + d t r,Ξ(t tom)− d t s
Ξ,rel(t

tog)] + pwus
r(t tom)

(4.15)

where φ̃s
r(t0, t0) is the combined initial phase offset and the phase wind-up pwus

r(t tom) was added to account for changes
in the relative orientation of transmitting and receiving antennas, see section 4.1.4 for details.
As described above, a receiver measures the wrapped (fractional) phase difference of the receiver and satellite carrier
signals and counts the full phase cycles of the measured fractional phase difference after the initial signal acquisition to
provide a continuous cumulative phase measurement. However, the initial number of full phase cycles at the time of
signal acquisition, the so called carrier phase integer ambiguity term N s

r is unknown.
The carrier phase measurement in (4.10) can be written in terms of the initial integer ambiguity at the time of signal
acquisition N s

r and the full unwrapped carrier phase pseudorange (4.15) as shown in Figure 2.4, to model the carrier
phase observation for signal frequency i

φs
r,i(t tom) = φr,i(t tom)−φs

i (t
tog)− N s

r,i +η
s
r,i(t tom)

= φ̃s
r(t0, t0) + fi · [T s

r,i + d t r,Ξ(t tom)− d t s
Ξ,rel(t

tog)] + pwus
r(t tom)− N s

r,i +η
s
r,i(t tom)

(4.16)

Multiplying equation (4.16) with the signal wavelength λi = c/ fi and expanding the total signal travel time as shown
in equations (4.4) and (4.5) yields the full carrier phase observation equation for the time of measurement t = t tom in
units of length

Φs
r,i(t) = λi ·φs

r,i(t)

= ‖r s(t tot)− rr(t tor)‖+δrs
i (t)−δrr,i(t) + dispr(t) + c · [d t r,Ξ(t)− d t s

Ξ(t
tog) +δrel(t)]

+ d t ros
r(t)− dions

r,i(t) + c ·δstc(t) +λi

�

δs
i (t) +δr,i(t) + pwus

r(t)− N s
r,i

�

+ηs
r,i(t)

(4.17)

Comparing equation (4.17) with (4.8) reveals the following differences between modelling GNSS carrier phase and
pseudorange observations

• Antenna offsets mapped to line of sight δrs
i (t) and δrr,i(t) are given with respect to the Antenna Phase Center

(APC) instead of the Antenna Code Phase Center (ACPC).

• The ionospheric delay has opposite sign as described in section 4.1.4

• Instead of code signal delays, carrier phase signal delays δs
i (t) and δr,i(t) in cycles are used, see section 4.1.3 for

details

• The phase wind-up effect pwus
r(t) in cycles needs to be corrected as described in section 4.1.4

• The carrier phase integer ambiguity N s
r,i in cycles, which is constant for a satellite pass without cycle slip, ie.

reacquisition of the carrier phase signal

• ηs
r,i(t) contains the carrier phase measurement noise, the carrier phase signal multipath δms

r,i(t) and residual
modelling errors. Note that compared to (4.16) it is multiplied with the signal wavelength, but the same notation
is kept.
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4.1.3 GNSS Signal Delays

GNSS signal delays, as introduced in (4.4) and (4.17) are usually unknown and often referred to as Uncalibrated Signal
Delays (USD) or more specific Uncalibrated Code Delays (UCD) and Uncalibrated Phase Delays (UPD) (Schönemann,
2014). Whereas the definition of UCDs is comprehensive and straight forward due to the measurable code signal depen-
dent difference in propagation time through electronic equipment, UPDs are not as well defined and different definitions
can be found in the literature (cf. Hofmann-Wellenhof et al., 1992; Kleusberg and Teunissen, 1998; Schönemann, 2014).
An important part of the analysis of signal delays performed in this work is based on the use of calibrated signal delays,
see section 7.1, thus the term uncalibrated used in UCD and UPD is omitted. Hence, signal delays considered in the
pseudorange (4.8) and carrier phase (4.17) observation equations are referred to as signal code delay and signal phase
delay respectively. The general definition and understanding of code and phase delays for multi-GNSS and multi-signal
raw observation processing in this work is described in the following paragraphs.

Observable-specific Code Biases

As defined in section 4.1.1, code delays physically are time differences, whereas the satellite signal code delay ds
ia accounts

for the time delay between signal generation and transmission on-board the navigation satellite and the receiver signal
code delay dr,Σia accounts for the time delay between signal reception and the time of measurement. They are caused
by the antenna cable and signal dependent delays in the electronic equipment on-board the navigation satellite and in
the GNSS receiver. Despite the physical definition, signal code delays may be referred to as instantaneous code biases
which do not affect the receiver-satellite geometry. In analogy with the bias type identifier in (Schaer, 2016), the term
Observable-specific Code Bias (OCB) is therefore used in this work. Signal delays on-board the navigation satellite before
signal transmission or signal delays on the receiver side after signal reception might influence the computed receiver-
satellite geometry due to the fact that these delays are usually unknown and therefore are part of the applied or estimated
clock offsets. As described in sections 4.1.4 and 5.2.2, depending on the application signal code delays might be treated
as biases for signal delays d < ≈ 1 µs when dealing with receivers on Earth and signal delays d < ≈ 0.1 µs for GNSS
receivers on-board of LEO satellites.

Observable-specific Phase Biases

Signal phase delays have been introduced in section 4.1.2 similar to the definition of signal code delays. However, due
to the nature of carrier phase signals and the resulting measurements, signal phase delays cannot be defined as absolute
time differences caused by signal dependent delays in the electronic equipment on-board the navigation satellite and
in the GNSS receiver. Satellite and receiver phase delays in (4.17) can physically be described as a combination of the
oscillator initial phase offsets φ̃r(t0) and φ̃s(t0) from (4.14) and frequency dependent carrier phase delays on-board the
navigation satellite and in the GNSS receiver hardware. However, as full cycles of phase delays are indistinguishable
from integer values of the carrier phase ambiguity term, signal phase delays in this work are defined as the digits behind
the decimal point, also referred to as fractional value, of the float (non-integer) carrier phase ambiguity M s

r,i . As the
magnitude of signal phase delays thereby is limited to one cycle of the carrier signal wavelength, they are referred to as
Observable-specific Phase Bias (OPB) in analogy with the bias type identifier in (Schaer, 2016). Satellite phase biases δs

i
and receiver phase biases δr,i are fully correlated with the carrier phase integer ambiguity term N s

r,i , so from a raw carrier
phase observation without additional information only their lump sum, also referred to as carrier phase float ambiguity
M s

r,i = N s
r,i − δ

s
i − δr,i can be determined. The existence of phase biases prevents the direct determination of integer

ambiguities from raw carrier phase observations, even if all other parameters, corrections and errors would be accurately
known.

4.1.4 Correction and Error Modelling

This section describes corrections and mathematical models applied in (4.8) and (4.17), which are required by the
described GNSS raw observation processing scheme for precise applications.

Satellite Position Travel Time Correction

The geometric range between the navigation satellite center of mass and receiver reference/marker point is given by

ρs
r(t

tot , t tor) = ‖r s(t tot)− rr(t tor)‖
=
p

[X s(t tot)− X r(t tor)]2 + [Y s(t tot)− Yr(t tor)]2 + [Z s(t tot)− Zr(t tor)]2 ,
(4.18)

where X , Y, Z are the cartesian components of the geocentric position vectors in an inertial reference frame.
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As the free space signal travel time ∆T s
r = t tor − t tot in (4.5) also appears implicitly in

ρs
r(t

tot , t tor) = ‖r s(t tor −∆T s
r )− rr(t tor)‖ , (4.19)

the geometric range and therefore satellite position has to be determined either iteratively or by developing the satellite
position in a Taylor series around the signal reception time t tor .

Whereas most single point positioning algorithms implemented in commercial devices use an iterative approach to deter-
mine the satellite position at signal transmission time, the approach used in this work is based on developing the satellite
position in a Taylor series around the signal reception time, mainly to avoid the time consuming iterative process and to
handle both receiver and satellite positions at the same time.

With the Taylor series expansion of the satellite position around the signal reception time

r s(t tot) = r s(t tor −∆T s
r ) = r s(t tor)−

dr s(t)
d t

�

�

�

�

t tor

·∆T s
r (t tor) +O 2(∆T s

r ) (4.20)

and neglecting second order and higher terms, the signal travel time correction for the satellite position mapped to the
signal Line Of Sight (LOS) is given by

cor r∆T s
r
(t tor) =

r s(t tor)− rr(t tor)
ρs

r(t tor)
· vvv s(t tor) ·

ρs
r(t tor)

c
, (4.21)

where the free space signal travel time is approximated by ∆T s
r (t tor) =

ρs
r (t tor )

c and all geocentric position and velocity
vectors r (t) and vvv (t) are given in an inertial reference frame.

The geometric range between the navigation satellite center of mass and receiver reference/marker point can then be
written as:

ρs
r(t

tot , t tor) = ρ
s
r(t tor) + cor r∆T s

r
(t tor) , (4.22)

where both the receiver and satellite positions are treated at signal reception time

ρs
r(t tor) = ‖r s(t tor)− rr(t tor)‖ . (4.23)

Range Rate Correction

The range rate correction is applied to account for changes in the receiver-satellite geometry and has two main use cases.
The first one is to define a criterion to distinguish between the terms delay and bias, as noted in section 4.1.3. The second
use case is to unify the time of measurement for a global network of GNSS receivers to estimate precise GNSS satellite
orbits and clock offsets at a common processing time.

The change in the receiver-satellite geometry mapped to the signal LOS is given by the time derivative of the geometric
range, referred to as range rate

dρs
r(t)

d t
= −

r s(t)− rr(t)
ρs

r(t)
· (vvv s(t)− vvv r(t)) (4.24)

where all geocentric position and velocity vectors r (t) and vvv (t) are given in an inertial reference frame.

Figure 4.2a shows the range rate computed for GPS and Galileo satellites tracked by ESA’s GNSS Observa-
tion Network (EGON) receivers on 2019-05-26. Typical values for the range rate between GPS satellites
and receivers on Earth are dρGPS

EGON/d t ∈ [−800, 800]m s−1. For Galileo satellites typical range rate values are
dρGAL

EGON/d t ∈ [−600, 600]m s−1, whereas for the two satellites in elliptical orbits (GAL-201 and GAL-202) higher val-
ues of dρGAL∗

EGON/d t ∈ [−1.36, 1.36] kms−1 are observed. The magnitude of the range rate depends on the orbit and
therefore velocity of the navigation satellites and differs slightly for the different GNSS.

For GNSS receivers on-board of LEO satellites, the range rate is significantly higher, compared to receivers on Earth, due
to the much higher receiver velocity vvv r(t). Figure 4.2b shows the range rate computed for GPS satellites, tracked by the
receiver on-board the Jason-1 satellite on 2002-06-09. The semi-major axis of the Jason-1 orbit was determined to be
aJ = 7712.097km with an orbital velocity of vJ = 7.186 km s−1. Typical values for the range rate between GPS satellites
and the Jason-1 satellite are dρGPS

J /d t ∈ [−7.6,7.6] km s−1.
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Figure 4.2: Computed time derivatives of the geometric range between GNSS satellites and receivers for different applica-
tions.

In order to specify a criterion to distinguish between the terms delay and bias, a limit for the acceptable range error
has to be defined. Assuming that range errors due to changes in the receiver-satellite geometry of ∆ρ < 1mm can be
neglected, a time delay d may be treated as instantaneous bias if the following condition is fulfilled:

∆ρ = d ·
dρs

r

d t
< 1mm . (4.25)

Applying this condition to the range rate values found above, reveals the limits for treating signal delays as biases to be
d <≈ 1 µs when dealing with receivers on Earth and d <≈ 0.1 µs for GNSS receivers on-board of LEO satellites.

When processing data of a global network of GNSS receiver in order to estimate precise navigation satellite orbits and
clock offsets, the range rate correction can be applied to unify the time of measurement among different receivers. Since
GNSS receiver perform measurements in their own time scale, observations from different receivers are usually time
tagged with the same epoch, but they are not measured at the exact same point in time. This prevents the determination
of satellite orbit and clock offsets at a common time. The range rate correction can be used to bring observations from
different receivers measured at the same epoch to a common point in time, defined by the exact same epoch in the
reference time scale τΞ. This allows to consistently process all observations of a certain epoch from different receivers at
a single point in time. It is important to note, that this range rate correction based on clock offsets including signal code
delays might introduce significant ranging errors, if these receiver signal code delays including antenna cable exceed the
limits described above.
The receiver clock range rate correction due to a receiver clock offset with respect to the reference time scale τΞ is given
by

cor rrcr(t, d t r,Ξ(t)) = −
dρs

r(t)

d t
· d t r,Ξ(t) . (4.26)

For receiver clock offsets d t r,Ξ(t) = 500 µs, the receiver clock range rate correction can have a magnitude of up to
cor rrcr(t, d t r,Ξ(t))≈ 40cm for ground applications and up to cor rrcr(t, d t r,Ξ(t))≈ 3.8m for LEO applications.
Applying the receiver clock range rate correction can be interpreted as a change in the time argument of the observation
equation from receiver dependent time of measurement to a receiver independent common point in time, referred to as
processing time t top:

Ps
r,Σia(t top) = Ps

r,Σia(t tom) + cor rrcr(t, d t r,Ξ(t))

Φs
r,i(t top) = Φs

r,i(t tom) + cor rrcr(t, d t r,Ξ(t)) ,
(4.27)

where it is assumed that this change in time argument only affects the receiver satellite geometry, while other parameters
of the observation equations remain unchanged.
It is important to emphasise that although they refer to different points in time, the receiver dependent time of measure-
ment and the common processing time by definition refer to the same epoch τr(t tom) = τΞ(t top).
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For Precise Point Positioning (PPP) applications the receiver clock range rate correction can be used to unify the argument
of time for applied precise GNSS orbits and clock offsets, applied corrections and estimated parameters and refer all to
a common reference time scale. In combination with the satellite position travel time correction (4.21) this allows to
directly use precise satellite state vectors given at a certain epoch in a reference time scale without iterative computation
of the satellite position at signal transmission time. Depending on how many GNSS and satellites are processed, this
approach might therefore improve the efficiency of PPP real-time applications.
Ignoring this correction in precise GNSS applications on ground, where satellite orbits and clock offsets given in a
certain reference time scale are applied directly, can lead to range errors up to ∆ρ ≈ 80 cm for receiver clock offsets of
d t r,Ξ(t) = 1ms.
It should be noted, that this approach usually still requires the interpolation of precise satellite orbits to the receiver
measurement epoch, in addition to applying the afore mentioned corrections. In case a receiver measurement epoch
differs by several seconds from the available precise GNSS clock offset epochs, also all GNSS clock offsets would have to
be interpolated to the measurement epoch, which requires highly stable atomic clocks on-board the navigation satellites,
analysed for example in (Hauschild et al., 2013; Peng et al., 2019). This is especially important for PPP applications
involving LEO satellites.

Relativistic Effects

The described relativistic effects for precise GNSS applications are split in four parts. The first relativistic effect is a
constant satellite clock frequency offset due to the combined effects of time dilation and gravitational redshift. Time
delation causes fast moving satellite clocks to appear to run slow relative to a user on Earth, whereas the difference in
gravitational potential causes satellite clocks to run fast relative to a user on Earth. The combined effect depends on
the orbit semi-major axis a, Galileo satellite clocks for example appear to run fast by ≈ 40.8 µsd−1 relative to a user on
Earth. The constant satellite clock frequency offset is applied to the satellite clock hardware prior to launch, so that on
average the apparent satellite clock rate for a user on Earth is the nominal frequency f0 = 10.23 MHz. Table 4.1 shows
the constant satellite clock frequency offsets for different GNSS.

Table 4.1: The constant satellite clock frequency offsets due to time delation and gravitationl redshift for different GNSS,
applied to the satellite clock hardware prior to launch (Ashby, 2003).

GNSS a (in km) ∆ f (in Hz)

Galileo 29599.80 −4.83× 10−3

BeiDou (MEO) 27910.20 −4.69× 10−3

GPS 26562.76 −4.57× 10−3

GLONASS 25509.64 −4.46× 10−3

The second relativist effect is a periodic variation of the satellite clock frequency due to the eccentricity of noncircular
satellite orbits. The classical periodic satellite clock correction (in units of length) can be described by (cf. Ashby, 2003)

δrel,ecc(t) = 2
r s

I (t) · vvv
s
I (t)

c
(4.28)

where r s
I (t) and vvv s

I (t) are the geocentric satellite position and velocity vectors in an intertial reference frame.
The third relativist effect accounts for the satellite clock traveling through a varying gravitational potential due to Earth’s
oblateness, described by the J20 term of the gravitational field expansion. The additional periodic satellite clock correction
(in units of length) can be described by (cf. Kouba, 2004)

δrel,J2(t) = J2
3
2

a2
⊕

c

s

µ⊕
a3

sin2 i sin2u(t) (4.29)

where J2 = J20 = 1.083× 10−3, a⊕ is the semi-major axis of the mean Earth, µ⊕ is the Earth’s gravitational constant, a is
the orbit semi-major axis, i and u are the orbit inclination and the argument of latitude u(t) = ω+ ν(t), the sum of the
argument of perigee ω and the true anomaly ν(t).
The combined periodic relativistic correction for the satellite clock is then given by

δrel(t) = δrel,ecc(t) +δrel,J2(t) (4.30)
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The fourth relativist effect is a propagation delay of the satellite signal due to the presence of the Earth’s gravitational
field. The Shapiro effect due to space-time curvature (cf. Zhu and Groten, 1988; Ashby, 2003; IERS, 2010) can be
described in units of length by

δstc(t) =
2µ⊕
c2

ln

�

‖r s(t)‖+ ‖rr(t)‖+ρs
r(t)

‖r s(t)‖+ ‖rr(t)‖ −ρs
r(t)

�

(4.31)

Sagnac Effect

In classical PVT algorithms, positions of navigation satellites and receivers on ground are computed in a non-inertial
Earth fixed coordinate system, see section 3.1 for details. In these algorithms, the Sagnac correction must be applied to
account for the rotation of the Earth (fixed coordinate system) during the signal travel time (Teunissen and Montenbruck,
2017). It is assumed that all signals are received at a common time t tor at the receiver, whereas in classical PVT
algorithms the corresponding positions of different satellites s are computed in Earth fixed coordinate system at different
signal transmission times t s,tot . If the receiver position is to be determined in an Earth fixed coordinate system at the
common reception time, the positions of all satellites need to be transformed to properly describe the geometric distances
between receiver and satellites in a consistent coordinate system. The Sagnac correction therefore can be considered as
transformation of the satellite positions at signal transmission time r s(t s,tot) given in an Earth fixed coordinate system at
signal transmission time E(t s,tot) to a common Earth fixed coordinate system at signal reception time E(t tor)

r s
E(t tor )

�

t s,tot
�

= R⊕(∆ω⊕) · r s
E(ts,tot )

�

t s,tot
�

(4.32)

where the matrix R⊕(∆ω⊕) describes a rotation around the Earth rotation axis by an angle ∆ω⊕ = ω⊕ · (t tor − t s,tot)
with the angular velocity of the Earth ω⊕. Another possibility is to apply the Sagnac correction as range correction given
by (cf. Ashby, 2004)

∆ρs
r = −

r s(t s,tot)− rr(t tor)
c

·ω⊕ × rr(t tor) , (4.33)

where ω⊕ is the vector of Earth’s angular velocity along the Earth rotation axis.
The Sagnac correction becomes irrelevant, when position and velocity vectors are handled in an inertial coordinate
system (Ashby, 2003) which is independent of the rotation of the Earth. However, as for practical reasons positions on
Earth always are expressed in an Earth fixed coordinate system, the transformation between the rotating Earth fixed and
an inertial coordinate system described in section 3.1.3 has to be applied instead. Details of the Sagnac correction can
be found in (Ashby, 2003, 2004).

Tropospheric Delay

According to Davis et al. (1993), the tropospheric signal delay between receiver r and satellite s can be modelled in a
linear form by

d t ros
r(t) = mh(e) · ZHDr(t) +mw(e) · ZW Dr(t) +mg(e)

�

Gr,N (t) · cos(a) + Gr,E(t) · sin(a)
�

, (4.34)

where mh, mw and mg are the hydrostatic, wet and gradient mapping functions, e(t) and a(t) are the satellite elevation
and azimuth as seen from the receiver, ZHDr(t) and ZW Dr(t) are the receiver dependent zenith hydrostatic and wet
delay and Gr,N (t) and Gr,E(t) are the North and East tropospheric gradients. Different models for the mapping functions
exist, for example the Neill Mapping Function (NMF), Vienna Mapping Function (VMF) or the Global Mapping Function
(GMF) and as these functions are all elevation depend, they also are implicitly time dependent. The Zenith Hydrostatic
Delay (ZHD) accounts for approximately 90 % of the tropospheric delay and as the dry part of the troposphere is quite
homogeneous over different height and geographic regions (Bauer, 2011), it can be quite accurately modelled by for
example the Saastamoinen model (Saastamoinen, 1973)

ZHDr,Saast(t) = 0.002277 ·
�

P +
�

1255
T
+ 0.05

�

E
�

(4.35)

where P is the atmospheric pressure in hPa, T is the temperature in K and E is the partial vapour pressure in hPa, derived
for a specific receiver location from a Global Pressure Temperature (GPT) model.
The Zenith Wet Delay (ZWD) accounts for approximately 10 % of the tropospheric delay and shows a large regional and
temporal variation (Bauer, 2011). It is therefore estimated per receiver as additional parameter ZW Dr(t) in the least
squares adjustment, as are the tropospheric gradients Gr,N (t) and Gr,E(t).
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Ionospheric Delay

The first order ionospheric slant delay along the signal path between receiver r and satellite s for frequency fi can be
expressed (in m) by (cf. Bauer, 2011)

dions
r,i(t) =

A
f 2
i

· ST EC s
r(t) , (4.36)

with the ionospheric constant A= 40.28 m3 s−2 and the time dependent slant total electron content ST EC s
r(t), given in

Total Electron Content Unit (TECU) (1 TECU = 1× 1016 e−/m2). The Slant Total Electron Content (STEC) is defined as
the number of electrons within a cylinder of cross sectional area of 1m2 along the signal path (Newby, 1992).
The different phase and group velocities, relevant to derive the signal delays in the dispersive ionosphere for carrier
phase and pseudorange observations respectively, lead to opposite signs for the ionospheric delay in the corresponding
observation equations (Hofmann-Wellenhof et al., 2008), compare (4.8) and (4.17).
The first order ionospheric term accounts for 99.9 % of the ionospheric delay (Hernandez-Pajares et al., 2007) and
satisfies the relation

dions
r,i(t)

dions
r, j(t)

=
f 2

j

f 2
i

(4.37)

In this work, second order terms of the ionospheric delay are not considered. A detailed analysis of second order
ionospheric effects on GNSS signals can be found in (Hernandez-Pajares et al., 2007).
There are different ways of handling ionospheric delays in GNSS applications. The classical approaches are either to
correct the ionospheric delay by models, mainly used for single-frequency observations or form the so-called ionosphere-
free (IF) linear combination from dual-frequency observations, see section 4.2.2.

z

z’

IP

hi

R⊕

Figure 4.3: Geometric relation between zenith angle z at receiver posi-
tion and z’ at the Ionospheric Pierce Point (IP) with the radius
of the Earth R⊕ and the single layer height hi of the iono-
spheric model.

The ionospheric delay can be modelled by either using ionosphere models provided by the GNSS themselves, like
(Klobuchar, 1987) for GPS and NeQuick-G (European Commission, 2016) for Galileo, or using observation based models
in the form of Vertical Total Electron Content (VTEC) maps (Hernández-Pajares et al., 2009). Global or regional VTEC
maps, published in the Ionosphere Map Exchange (IONEX) format (Schaer et al., 1998), need to be combined with a
zenith angle dependent mapping function mi(z) in order to map the vertical ionospheric delay to the slant signal path

ST EC s
r(t) = mi(z) · V T ECr(t) =

V T ECr(t)
cos(z′)

(4.38)
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where z′ is the zenith angle at the ionospheric pierce point (IP), which is related to the zenith angle z at the receiver
position (see Figure 4.3) by

sin(z′) =
R⊕

R⊕ + hi
sin(z) , (4.39)

with the radius of the Earth R⊕ and the VTEC map single layer model mean ionospheric height hi . The receiver position
zenith angle dependent ionosphere mapping function is then given by

mi(z) =

�

1−
�

R⊕
R⊕ + hi

sin z
�2
�−1/2

. (4.40)

In GNSS raw observation processing, the ionospheric delay can be estimated from multi-frequency observations by adding
ST EC s

r(t) to the list of parameters estimated in the least squares adjustment. This can be done by either estimating the
absolute ionospheric slant delay or using (4.38) together with a VTEC map as a priori ionosphere model to estimate
constrained residual STEC values. The handling of ionospheric delay estimation with GNSS raw observations in this
work is described in section 5.2.3.

Antenna Offsets

The code signal dependent antenna offset vector drΣia(t) can be split into three parts, the constant and signal indepen-
dent offset vector between the POI and the Antenna Reference Point (ARP) drARP , the signal dependent constant group
delay offset gdoΣia and the signal azimuth and zenith angle dependent scalar group delay variation gdvΣia(a, z) relative
to the ACPC, see Figure 4.4. The antenna offset vector mapped to the signal LOS with unit vector eLOS gives the antenna
offset range correction for pseudorange observations

drΣia(t) = eLOS(t) · drΣia(t) = eLOS(t) · drARP + eLOS(t) · gdoΣia + gdvΣia(a, z) , (4.41)

where the Group Delay Variation (GDV) term gdvΣia(a, z) is implicitly time dependent due to the changing azimuth and
zenith angles.

POI

ARP

ACPC

Point of Signal
Transmission/Reception

dr
AR

P

drΣia

e LOS

gd
o Σ

ia

gdvΣia

dr
Σ

ia

Figure 4.4: Antenna offset and variation corrections used for modelling GNSS pseu-
dorange observations.
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For carrier phase observations the antenna offset range correction δri(t) is given with respect to the APC instead of the
ACPC. It includes the constant and frequency independent offset between the POI and the ARP, the frequency dependent
constant Phase Center Offset (PCO) and the signal azimuth and zenith angle and implicitly time dependent scalar Phase
Center Variation (PCV), see Figure 4.5

δri(t) = eLOS(t) · dri(t) = eLOS(t) · drARP + eLOS(t) · pcoi + pcvi(a, z) . (4.42)
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Figure 4.5: Antenna offset and variation corrections used for modelling GNSS carrier
phase observations.

For precise GNSS applications, the antenna offset range corrections for pseudorange and carrier phase observations have
to be applied for both, the transmitting and receiving antenna.

Ground Receiver Coordinate Displacements

Receiver coordinates on ground vary in time due to tide effects introduced by the Earth’s changing topography. In order
to estimate stable and precise receiver coordinates, the effects due to solid and permanent Earth tides, pole tides of the
Earth and ocean loading tides need to be modelled and corrected in the observation equation.
The applied receiver coordinate displacement correction is given by

dispr(t tom) = dispr,spt(t tom) + dispr,pot(t tom) + dispr,ol t(t tom) , (4.43)

with the components described in (IERS, 2010)

dispr,spt(t) considers solid and permanent tides of the Earth, caused by lunar and solar gravitational attraction

dispr,pot(t) considers pole tides of the Earth based on EOP data and Earth’s mean pole

dispr,ol t(t) considers loading effects due to ocean tides caused by lunar gravitational attraction
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Phase Wind-Up

The phase wind-up effect describes the relative change of the orientation between transmitting and receiving antennas
in carrier wavelength cycles. The phase wind-up correction derived by Wu et al. (1992) is given in cycles by

pwus
r(t) = 2πN +δpwus

r(t) , (4.44)

where the number of full wavelength cycles N needs to be continuously tracked and the fractional part of a cycle is given
by

δpwus
r(t) = sign(γ)arccos

�

Ds · Dr

‖Ds‖‖Dr‖

�

. (4.45)

The term γ is defined as

γ= k · (Ds × Dr) (4.46)

with the unit vector k pointing from transmitter to receiver, see Figure 4.6, the effective dipole vector of the receiving
antenna with the dipole unit vectors ar and br

Dr = ar − k(k · ar) + k × br (4.47)

and the effective dipole vector of the transmitting antenna with the dipole unit vectors as and bs

Ds = as − k (k · as)− k × bs . (4.48)

yrDrx r

Receiver

ar br

zr

zs

y s

k Ds

x s Satelliteas

bs

Figure 4.6: Dipole vectors Ds and Dr of the transmitting and receiving
antennas respectively, used to compute the phase wind-up
correction.

The correct knowledge of the navigation satellite attitude and especially the rate of the changing attitude is crucial to
calculate the phase wind up effect. Taken the phase wind-up effect into account for precise GNSS applications therefore
requires to accurately model the changing attitude of all involved navigation satellites. In this context it is important
to note that for PPP applications, users must calculate the phase wind up correction using the same navigation satellite
attitude model used by the service provider generating the precise satellite orbit and clock offsets.
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4.1.5 Reduced Raw Observation Equations

Separating the correction terms described in section 4.1.4 from the parameters estimated in the least squares adjustment,
the reduced functional model for raw pseudorange observations at the processing time t = t top (measurement epoch in
reference time scale) can be written as

P̃s
r,Σia(t) = Ps

r,Σia(t)− Pcor rs
r,Σia(t)

= ρs
r(t) + c ·

�

d̃ t r,Ξ(t)− d t s
Ξ(t

tog)
�

+ d t ros
r,wg(t)

+ 40.28/ f 2
i · ST EC s

r(t) + c ·
�

ds
ia(t) + dr,Σia(t)

�

+ εs
r,Σia(t) ,

(4.49)

with

ρs
r(t) = ‖r

s(t)− rr(t)‖
d̃ t r,Ξ(t) =

�

1− 1/c dρs
r/d t

�

d t r,Ξ(t)

d t ros
r,wg(t) = mw(e) · ZW Dr(t) +mg(e)

�

Gr,N (t) · cos(a) + Gr,E(t) · sin(a)
�

(4.50)

and the computed pseudorange correction

Pcor rs
r,Σia(t) = cor r∆T s

r
(t tor) + drs

ia(t)− drr,ia(t) + dispr(t) +δrel(t) +mh(e) · ZHDr(t) + c ·δstc(t) . (4.51)

The reduced functional model for raw carrier phase observations at processing time t = t top can be written as

Φ̃s
r,i(t) = Φ

s
r,i(t)−Φcor rs

r,i(t)

= ρs
r(t) + c ·

�

d̃ t r,Ξ(t)− d t s
Ξ(t

tog)
�

+ d t ros
r,wg(t)

− 40.28/ f 2
i · ST EC s

r(t)−λi M
s
r,i(t) +η

s
r,i(t) ,

(4.52)

with the carrier phase float ambiguity

M s
r,i(t) = N s

r,i −δ
s
i (t)−δr,i(t) , (4.53)

which is the same formulation as used in (Blewitt, 1997). The computed carrier phase correction is given by

Φcor rs
r,i(t) = cor r∆T s

r
(t) +δrs

i (t)−δrr,i(t) + dispr(t) +δrel(t) +mh(e) · ZHDr(t) + c ·δstc(t) +λi pwus
r(t) . (4.54)

The combined parameter vector for precise processing of raw pseudorange and phase observations is given by

X =
�

r s(t), rr(t), d t r,Ξ(t), d t s
Ξ(t

tog), ZW Dr(t), Gr,N (t), Gr,E(t), ST EC s
r(t), ds

ia(t), dr,Σia(t), M s
r,i(t)

�T
. (4.55)

It should be noted, that parameters estimated at every processing epoch, so called epoch parameters like the clock offsets
d t r,Ξ and d t s

Ξ and for raw observation processing the slant ionospheric delay ST EC s
r , are pre-eliminated from the normal

equation system to reduce the dimension of the system without loosing any information, see (Dach et al., 2015b) for
details.

Depending on the application, certain parameters might be introduced as known. For PPP applications for example the
satellite position vector r s(t) and clock offsets d t s

Ξ(t
tog) are given by the precise product service provider and therefore

are not part of the estimated parameter vector.

4.2 Linear Combinations of GNSS Observables

This section gives an overview of commonly used linear combinations of GNSS observables and describes the correspond-
ing functional models and estimable parameters. The observation equations of linear combinations given in this section
are based on the full raw observation equations described in section 4.1, as the corrections needed to form reduced
observation equations depend on the type of linear combination.

25



4.2.1 Geometry-Free

The reduced observation equation for the Geometry-Free (GF) linear combination of two code observables for signals
Σia and Σ j b is given by

P̃s
r,GF(Σia,Σ j b)(t) = Ps

r,Σia(t)− Ps
r,Σ j b(t)− Pcor rs

r,GF(Σia,Σ j b)(t)

= 40.28 · (1/ f 2
i − 1/ f 2

j ) · ST EC s
r(t) + c ·

�

ds
ia− j b(t) + dr,Σia−Σ j b(t)

�

+ εs
r,Σia(t)− ε

s
r,Σ j b(t) ,

(4.56)

with

Pcor rs
r,GF(Σia,Σ j b)(t) = drs

ia(t)− drs
j b(t)− drr,ia(t) + drr, j b , (4.57)

considering the differences of the signal dependent antenna offset range corrections.

The reduced geometry-free observation equation (in m) of two phase observables with frequencies i and j is given by

Φ̃s
r,GF(i, j)(t) = Φ

s
r,i(t)−Φ

s
r, j(t)−Φcor rs

r,GF(i, j)(t)

= 40.28 · (1/ f 2
j − 1/ f 2

i ) · ST EC s
r(t) +λ j M

s
r, j(t)−λi M

s
r,i(t) +η

s
r,i(t)−η

s
r, j(t) ,

(4.58)

with

Φcor rs
r,GF(i, j)(t) = δrs

i (t)−δrs
j (t)−δrr,i(t) +δrr,i(t) +

�

λi −λ j

�

pwus
r(t) (4.59)

The reduced observation equations of the geometry-free linear combination contain the slant ionospheric delay ST EC s
r(t),

for code observations the so called satellite and receiver Differential Code Bias (DCB) of the used signal combination
ds

ia− j b(t) and dr,Σia−Σ j b(t) respectively and for phase observations the difference (in units of length) of the carrier phase
float ambiguities λi M

s
r,i(t) and λ j M

s
r, j(t).

The DCBs are defined as the difference between code biases of two different signals. As for the raw code biases, DCBs
are defined separately by satellite differential code biases

ds
j b−ia = ds

j b − ds
ia , (4.60)

and receiver differential code biases

dr,Σ j b−Σia = dr,Σ j b − dr,Σia . (4.61)

4.2.2 Ionosphere-Free

The reduced observation equation for the ionosphere-free (IF) linear combination of two code observables for signals
Σia and Σ j b is given by

P̃s
r,I F(Σia,Σ j b)(t) =

f 2
i

f 2
i − f 2

j
· Ps

r,Σia(t)−
f 2
j

f 2
i − f 2

j
· Ps

r,Σ j b(t)− Pcor rs
r,I F(Σia,Σ j b)(t)

= ρs
r(t) + c[d̃ t r,Ξ(t)− d t s

Ξ(t
tog)] + d t ros

r,wg(t)

+ c ·
�

ds
I F(ia, j b)(t) + dr,I F(Σia,Σ j b)(t)

�

+ εs
r,I F(Σia,Σ j b)(t) ,

(4.62)

with the correction term

Pcor rs
r,I F(Σia,Σ j b)(t) = cor r∆T s

r
(t tor) + drs

I F(ia, j b)(t)− drr,I F(Σia,Σ j b)(t)

+ dispr(t) +δrel(t) +mh(e) · ZHDr(t) + c ·δstc(t) ,
(4.63)

considering the ionosphere-free combination of the antenna offset range corrections. The reduced observation equation
of the ionosphere-free linear combination (4.62) contains the same geometric terms as the individual observation equa-
tion (4.49) but no ionospheric delay.
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The ionosphere-free code biases are defined by the IF linear combination of the raw code biases of the corresponding
signals. As for the raw code biases, IF code biases are defined separately by ionosphere-free satellite code biases

ds
I F(ia, j b) =

f 2
i

f 2
i − f 2

j

· ds
ia −

f 2
j

f 2
i − f 2

j

· ds
j b , (4.64)

and ionosphere-free receiver code biases

dr,I F(Σia,Σ j b) =
f 2
i

f 2
i − f 2

j

· dr,Σia −
f 2

j

f 2
i − f 2

j

· dr,Σ j b . (4.65)

The reduced ionosphere-free observation equation of two phase observables (in m) with frequencies i and j is given by

Φ̃s
r,I F(i, j)(t) = λnφ̃

s
r,I F(i, j)(t) =

f 2
i

f 2
i − f 2

j
·Φs

r,i(t)−
f 2
j

f 2
i − f 2

j
·Φs

r, j(t)−Φcor rs
r,I F(i, j)(t)

= ρs
r(t) + c[d̃ t r,Ξ(t)− d t s

Ξ(t
tog)] + d t ros

r,wg(t)

−λnM s
r,I F(i, j) +η

s
r,I F(i, j)(t)

(4.66)

with the correction term

Φcor rs
r,I F(i, j)(t) = cor r∆T s

r
(t) +δrs

I F(i, j)(t)−δrr,I F(i, j)(t)

+ dispr(t) +δrel(t) +mh(e) · ZHDr(t) + c ·δstc(t) +λnpwus
r(t) ,

(4.67)

considering the ionosphere-free combination of the antenna offset range corrections and the combined effect of the phase
wind up λnpwus

r(t) with the so called NL wavelength λn = c/( fi + f j).

The float ambiguity of the ionosphere-free phase observation equation is given by

M s
r,I F(i, j) = N s

r,I F(i, j) −δr,I F(i, j) −δs
I F(i, j) (4.68)

where the ionosphere-free combination of the integer ambiguities N s
r,i and N s

r, j is defined by

λnN s
r,I F(i, j) =

f 2
i

f 2
i − f 2

j
·λiN

s
r,i −

f 2
j

f 2
i − f 2

j
·λ jN

s
r, j

N s
r,I F(i, j) =

fi
fi− f j
· N s

r,i −
f j

fi− f j
· N s

r, j = N s
r,i +

f j
fi− f j
· (N s

r,i − N s
r, j) = N s

r,i +
λw
λ j
· N s

r,w ,
(4.69)

with the so called WL wavelength λw = c/( fi − f j) and widelane integer ambiguity N s
r,w = N s

r,i− j = N s
r,i − N s

r, j .

The definition in (4.69) also applies to the ionosphere-free combination of the phase biases δi and δ j to form δI F(i, j),
hence from inserting (4.69) into (4.68) follows

M s
r,I F(i, j) = M s

r,i +
λw

λ j
M s

r,i− j . (4.70)

with M s
r,i− j = M s

r,i −M s
r, j = N s

r,w−δr,i− j −δs
i− j . From (4.69) it is obvious, that the ionosphere free carrier phase ambiguity

N s
r,I F(i, j) is not an integer number. This prevents the integer ambiguity resolution from this type of observation alone in

all common processing algorithms making use of the ionosphere-free linear combination. As described in section 5.1.3,
this issue is commonly solved by using an additional linear combination of two code and two phase observations, the so
called Melbourne-Wuebbena (MW) linear combination.

4.2.3 Melbourne-Wuebbena

The reduced observation equation for the Melbourne-Wuebbena (MW) linear combination of two code observables for
signals Σia and Σ j b and the corresponding phase observables (in m) with frequencies i and j is given by
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ßMW
s
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(4.71)

with the correction term

MW corrs
r,MW (Σia,Σ j b)(t) =

1
fi− f j

�

fi ·
�

δrs
i (t)−δrr,i(t)

�

− f j ·
�

δrs
j (t)−δrr, j(t)

��

− 1
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�

fi ·
�

drs
ia(t)− drr,ia(t)

�

+ f j ·
�

drs
j b(t)−δrr, j b(t)

��
(4.72)

considering the Melbourne-Wuebbena combination of the antenna offset range corrections. Signal independent correc-
tions and the phase wind-up effect cancel in the Melbourne-Wuebbena linear combination and therefore do not need to
be applied. The receiver and satellite MW code biases are given by

dr,MW (Σia,Σ j b) =
fi

fi+ f j
dr,Σia +

f j
fi+ f j

dr,Σ j b

ds
MW (ia, j b) =

fi
fi+ f j

ds
ia +

f j
fi+ f j

ds
j b .

(4.73)

The Melbourne-Wuebbena linear combination (4.71) contains the widelane integer ambiguity N s
r,w with the correspond-

ing differential phase biases δi− j(t) and a linear combination of code biases. Therefore only a biased widelane integer
ambiguity can be retrieved from the MW linear combination. As described in section 5.1.2, this issue can be solved by
forming double differences of the Melbourne-Wuebbena linear combination with the assumption that the MW code biases
cancel.

4.3 Summary of Different Observation Models

Table 4.2 provides a summary of the components in the raw observation model described in section 4.1 and the observa-
tion models of linear combinations of GNSS observables described in section 4.2, where ∅ indicates that a component is
eliminated by forming the corresponding linear combination.

Table 4.2: Summary of the components in the raw observation model and observation models of linear combinations of
GNSS observables. The symbol∅ indicates that a component is eliminated by forming the corresponding linear
combination.

Obs. Model Posr Poss Clkr Clks Tropo Iono CodeBiasr CodeBiass Ambiguity

RAW rr r s d t r,Ξ d t s
Ξ d t ros

r,wg ST EC s
r dr,Σia ds

ia λi M
s
r,i

GF ∅ ∅ ∅ ∅ ∅ ST EC s
r dr,Σia−Σ j b ds

ia− j b λi M
s
r,i −λ j M

s
r, j

IF rr r s d t r,Ξ d t s
Ξ d t ros

r,wg ∅ dr,I F(Σia,Σ j b) ds
I F(ia, j b) λn

�

M s
r,i +λw/λ j M

s
r,i− j

�

MW ∅ ∅ ∅ ∅ ∅ ∅ dr,MW (Σia,Σ j b) ds
MW (ia, j b) λwM s

r,i− j
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5 GNSS Observation Processing

The GNSS observables introduced in section 4 can be used to estimate a variety of geodetic parameters like station coordi-
nates, satellite orbits, orientation of the Earth and time. This section describes the conventional processing approach for
precise geodetic applications based on the dual-frequency IF linear combination, introduces the GNSS raw observation
processing approach, referred to as RAW and outlines the fundamentals of the parameter estimation algorithms applied
in this work.

5.1 Conventional GNSS Observation Processing

The conventional processing approach for precise dual-frequency applications is based on the IF linear combination
described in 4.2.2. The main advantage of this approach is the cancelation of the first order ionospheric delay up
to 99.9 % (Hernandez-Pajares et al., 2007). It should be noted that the term ionosphere-free is not fully correct, as
several approximations are involved in the derivation of the first order ionospheric slant delay (4.36), as described in
(Hofmann-Wellenhof et al., 1992; Seeber, 1993).
The formation of the IF linear combination of code and phase observations, described in (4.62) and (4.66), leads to an
increase of the observation noise due to the law of error propagation by a factor of ≈ 2.5 − 3.5, compared to the raw
observation noise. Table 5.1 shows the factors of observation noise increase of the IF linear combination for different
GNSS and signal combinations.

Table 5.1: Observation noise increase factor of the IF linear combination relative to the raw observation noise for different
GNSS and signal combinations.

GNSS IF LC Noise Factor

Galileo E1/E5a 2.59

E1/E5b 2.81

GPS L1/L2 2.98

L1/L5 2.59

BeiDou B1I/B2I 2.90

B1I/B3I 3.53

As the IF linear combination is based on dual-frequency observations only, the usage of available multi-frequency sig-
nals for this commonly used processing approach is limited by definition. One option to make use of multi-frequency
observations is to form different dual-frequency IF linear combinations, as shown in Table 5.1. However, this implies the
cancelation of different dual-frequency data based ionospheric delays for the different IF signal combinations. Therefore,
the dual-frequency IF linear combination is not the preferred method for processing all available multi-signal observa-
tions. The following sections describe the state-of-the-art methods for the handling of code biases, phase biases and
ambiguity resolution in the conventional IF linear combination processing approach.

5.1.1 Code Bias Handling

When dealing with a single dual-frequency IF signal combination, as it was the case in the past decades for GPS L1/L2
only applications, signal code biases as introduced in section 4.1.3 did not play an important role and could be ignored for
standard positioning applications. With multiple GNSS and signals on multiple frequencies available today, the handling
of signal delays becomes a crucial part of the parameter estimation process when combining observations from more
than two signals. in (Villiger et al., 2019) a detailed analysis of observable specific signal biases, ionosphere-free signal
biases and differential signal biases has been performed.
However, when processing the conventional dual-frequency IF linear combination of code and phase observations, the
corresponding code biases can be ignored for most PVT applications. Satellite clock offsets broadcast in the Galileo and
GPS navigation messages, provided by the International GNSS Service (IGS) and most other service providers are based
on the ionosphere-free linear combination of dual-frequency observations (Galileo OS SIS ICD, 2016; IS-GPS-200, 2015;
Dach et al., 2015a). This implies that the provided satellite clock offsets d t s

I F(ia, j b),Ξ(t) contain the ionosphere-free linear
combination of the respective code biases ds

I F(ia, j b), defined in (4.64)

d t s
I F(ia, j b),Ξ(t) = d t s

Ξ(t)− ds
I F(ia, j b)(t) , (5.1)
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where d t s
Ξ(t) is the unbiased satellite clock offset, defined in (4.3). For the broadcast satellite clock offsets, the reference

time scale is given by Ξ=GST for Galileo and Ξ=GPST for GPS. As the satellite IF code biases are included in the broadcast
satellite clock offsets and other service providers, they are implicitly applied when these satellite clock products are used
and do not need to be considered by the user. Receiver IF code biases are typically ignored for standard PVT solutions,
except for precise timing applications, and are estimated as part of the receiver clock offset

d t r,I F(Σia,Σ j b),Ξ(t) = d t r,Ξ(t)− dr,I F(Σia,Σ j b)(t) . (5.2)

Equation (5.2) indicates that for multi-GNSS applications an additional parameter, referred to as ISB, needs to be deter-
mined as the estimated receiver clock contains GNSS and signal dependent biases. A description of the ISB is given in
section 7.3.2.

Compared to Galileo and GPS, the satellite clock offsets broadcast in the BeiDou navigation message are an exception,
as the B3I signal is selected as reference signal (BeiDou OS B3I SIS ICD, 2018). This implies that the broadcast BeiDou
satellite clock offsets d t s

brdc,BDT (t) contain the B3I signal satellite code bias

d t s
brdc,BDT (t) = d t s

BDT (t)− ds
C6I (t) . (5.3)

Using these satellite clock offsets in the conventional IF linear combination processing approach, would require the user
to apply additional satellite code biases, described in section 5.2.4.

In order to support single-frequency PVT applications in combination with the broadcast IF satellite clock offsets, or
based on signal B3I for BeiDou, all GNSS satellites transmit so called satellite group delay (Satellite Group Delay (SGD))
parameters as part of their navigation message, also referred to as Broadcast Group Delay (BGD) (Galileo OS SIS ICD,
2016; IS-GPS-200, 2015; BeiDou OS SIS ICD, 2016). Single-frequency users, except for BeiDou signal B3I, are required
to apply the additional satellite BGDs, whereas the corresponding receiver code biases are typically ignored. A detailed
description of BGDs is provided in section 5.2.4.

In addition to satellite code bias parameters broadcast in the GNSS navigation messages and to support multi-signal ap-
plications, different institutes (e.g. Deutsches Zentrum für Luft- und Raumfahrt (DLR) and Chinese Academy of Sciences
(CAS)) generate multi-signal satellite DCB products, available at (CDDIS, Crustal Dynamics Data Information System,
2019a). These satellite DCBs are commonly determined from GF linear combinations of GNSS observations, described in
(4.56) by applying a zero-mean constraint on satellite DCBs per constellation to separate receiver-specific and satellite-
specific signal code biases (Montenbruck et al., 2014). These satellite DCBs d̃s

ia− j b deviate from the physical satellite DCB
ds

ia− j b by the constellation DCB mean value

d̃s
ia− j b = ds

ia− j b −
1
n

n
∑

s

ds
ia− j b . (5.4)

The zero-mean constraint is applied to remove a rank deficiency in the conventional DCB estimation process, which is
needed as GF observations only contain the sum of receiver- and satellite-specific DCBs, as shown in (4.56).

The impact of (re)defining satellite DCBs according to (5.4) will be analysed in section 7.1.2.

5.1.2 Observation Differences

As described in section 4.2.3, the MW linear combination formed by phase and code observations contains a linear
combination of code biases and therefore only provides a biased widelane ambiguity. This issue is commonly solved
by forming double differences of the Melbourne-Wuebbena linear combination with the assumption that the MW code
biases cancel. This allows to retrieve a double difference widelane ambiguity with integer nature, which is used in the
conventional integer ambiguity resolution approach described in section 5.1.3. The double difference MW observation
equation is given by the difference of the MW linear combination in (4.71) for receivers A, B and satellites k, l

ßMW
kl

AB,(Σia,Σ j b)(t) =ßMW
k

A,(Σia,Σ j b)(t)−ßMW
k

B,(Σia,Σ j b)(t)−ßMW
l

A,(Σia,Σ j b)(t) +ßMW
l

B,(Σia,Σ j b)(t)

= −λwM kl
AB,i− j + ε

kl
AB,MW (Σia,Σ j b)(t)

(5.5)
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As shown in (6.3), the expected value of a double difference float ambiguity is given by the corresponding integer ambi-
guity, which also applies to the double difference widelane ambiguity in (5.5).

However, in order to make use of the double difference widelane ambiguity, double differences also have to be formed
for the corresponding ionosphere-free linear combination. The ambiguity term of the double difference carrier phase IF
linear combination follows from (4.70) and is given by

M kl
AB,I F(i, j) = M kl

AB,i +
λw

λ j
·M kl

AB,i− j . (5.6)

Equations 5.5 and 5.6 form the basis of the conventional carrier phase integer ambiguity resolution approach for the
ionosphere-free linear combination.

5.1.3 Carrier Phase Integer Ambiguity Resolution

The resolution of integer values for the carrier phase ambiguity term is the key to high-precision GNSS applications
as it allows to exploit the precision of the carrier phase measurement in the form of precise phase pseudoranges. The
resolution of integer ambiguities therefore is not a goal in itself, but to achieve an improvement in the estimation of
other parameters of interest. To whole process of exploiting the increased precision due to resolved integer ambiguities
is usually performed in three steps:

1. Float solution: The standard least squares adjustment is performed with the carrier phase ambiguities estimated
as float values

2. Integer Ambiguity Resolution: The float ambiguities are mapped to the corresponding integer values

3. Fixed Solution: The least squares adjustment is repeated with fixed values for the resolved integer ambiguities

The second step involves the actual mapping, also referred to as fixing, of the float ambiguities to integer values, which
has been an active field of research in the past decades and still is today. Various methods for the determination of
integer ambiguities based on float ambiguity estimates have been proposed in the literature. Discussions of these methods
can be found in standard GNSS textbooks, such as (Hofmann-Wellenhof et al., 1992), (Teunissen, 1998), (Kaplan and
Hegarty, 2017) and (Teunissen, 2017). Integer ambiguity resolution methods can generally be divided in three different
approaches (cf. Teunissen, 2017)

Integer Rounding

The simplest way of mapping float ambiguities to integer values is to round each float ambiguity to its nearest integer,
referred to as Integer Rounding (IR). This method does not take any correlations between ambiguities into account and
therefore cannot be considered a serious method for resolving correct integer ambiguities (Teunissen et al., 2002).

Integer Bootstrapping

The sequential conditional integer rounding method, also referred to as Integer Bootstrapping (IB) is an advanced integer
ambiguity resolution approach, as it takes some of the correlations between ambiguities into account. The IB method
performs a sequential conditional Least Squares (LSQ) adjustment by rounding individual ambiguities to their nearest
integer and in sequential steps taking the correlation of the formed integer ambiguities with other ambiguities into
account (Teunissen, 1998).

Integer Least-Squares

The concept of performing a least-squares optimisation based on the integer nature of ambiguity parameters by min-
imising the squared norm of the deviation of float ambiguities from their corresponding integer value is referred to as
Integer Least Squares (ILS) and was first introduced in (Teunissen, 1993). In contrast to the other methods IR and IB, no
direct computation of the integer values can be performed. Instead, an integer search is necessary to obtain a solution of
the ILS method. Due to high correlations between carrier phase ambiguities in GNSS processing, the integer ambiguity
search space is large. The ILS method is therefore shifting the problem of fixing integer ambiguities to finding integer
ambiguities. Detailed information on the ILS method can be found in (Teunissen, 1999) and (Teunissen, 2001).
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The most common utilisation of the ILS concept is the Least-Squares AMBiguity Decorrelation Adjustment (LAMBDA)
method (Teunissen, 1995), where the integer ambiguity search space is refined by performing a decorrelation transfor-
mation of the ambiguities, referred to as Z-transformation. Various efficiency improvements due to integer ambiguity
search space refinements are described in e.g. (Teunissen, 1995), (De Jonge and Tiberius, 1996) and (Chang et al.,
2005).
Other realisations of the integer ambiguity resolution methods described above are summarised in (Verhagen, 2005),
where all methods except two are relying on the ILS concept and therefore only differ in the way the search space is de-
fined. The other two methods, namely Three-Carrier Ambiguity Resolution (TCAR) (Vollath et al., 1998) and Cascading
Integer Resolution (CIR), are based on IB and are compared to LAMBDA in (Teunissen et al., 2002). Other comparisons
of the different integer ambiguity resolution methods can be found in e.g. (Kim and Langley, 2000), (Joosten and Verha-
gen, 2003), (Teunissen, 2003) and (Verhagen and Joosten, 2004).

The fundamental prerequisite, which has to be fulfilled to successfully apply any of the integer ambiguity resolution
methods, is that the carrier phase ambiguities of the functional model used as input for the ambiguity resolution algo-
rithm are of integer nature. In general this is not the case for the carrier phase float ambiguity of raw observations and
other undifferenced observations (cf. Table 4.2), which is not an integer number as it includes unknown instrumental
phase biases of the satellite and receiver (Blewitt, 1997). By applying these phase biases as additional corrections, theo-
retically an integer nature could be constructed for the raw observation ambiguities. All other undifferenced observation
models in Table 4.2 would require additional corrections or assumptions to construct an integer nature ambiguity term.
Conventional phase bias handling and applications making use of their corrections are described in section 5.1.4. The
handling of raw phase biases in this work and proposed applications are described in sections 6.3 and 7.5.3.

In order to fulfil the fundamental prerequisite of using carrier phase ambiguities of integer nature for the resolution of
integer ambiguities, the methods described above are all based on Double Difference (DD) phase observations and the
estimation of DD carrier phase ambiguities, which according to Teunissen et al. (2002) are known to be integers. As
shown in (6.3), the expected value of a double difference carrier phase float ambiguity, as defined in (4.53), is indeed
integer, however, this implies the cancelation of all phase biases in the double difference. in (Teunissen, 2017) the so
called mixed-integer functional model described in (Teunissen et al., 2002) is introduced, but in contrast to (Teunissen
et al., 2002), without explicitly mentioning the formation of double difference observations. It is important to note,
that with the mixed-integer functional model a general system of linear(ized) equations is described, in which some of
the parameters are real numbers and others are of integer nature. Therefore, the mixed-integer functional model either
describes double differences of observations, or undifferenced observations with additionally applied corrections, which
is not explicitly mentioned in (Teunissen, 2017).

For the resolution of integer ambiguity values in the conventional dual-frequency ionosphere-free linear combination
processing approach, forming double differences alone is not sufficient. As shown in section 4.2.2, the carrier phase
ambiguity of the IF linear combination is not an integer number, which prevents the resolution of ambiguity integer
values from this type of observation alone. In fact, the carrier phase ambiguity of the IF linear combination contains two
integer ambiguities, therefore a second observation is required to resolve both integer numbers. This issue is commonly
solved by using the Melbourne-Wuebbena (MW) linear combination in addition, introduced in section 4.2.3. However,
as shown in section 5.1.2, only the double difference of the MW linear combination contains carrier phase ambiguities
with integer nature. Therefore, the conventional carrier phase integer ambiguity resolution approach is based on double
differences of the dual-frequency ionosphere-free linear combination and double differences of the Melbourne-Wuebenna
linear combination of two code and phase observables.
Starting from equations 5.5 and 5.6, the conventional carrier phase integer ambiguity resolution approach first resolves
the double difference widelane integer ambiguities N kl

AB,i− j and forms the so called double difference narrowlane ambi-
guities

M kl
AB,n ≡ M kl

AB,i = M kl
AB,I F(i, j) −

λw

λ j
· N kl

AB,i− j , (5.7)

based on the estimated real-valued DD IF ambiguities M kl
AB,I F(i, j) and the resolved DD MW integer ambiguities N kl

AB,i− j .

After resolving the integer values of the double difference narrowlane ambiguities N kl
AB,i , the so called fixed, integer

ambiguity based but still real-valued DD IF ambiguities can be computed by

M̄ kl
AB,I F(i, j) = N kl

AB,i +
λw

λ j
· N kl

AB,i− j , (5.8)

which are then used to compute the fixed solution.
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5.1.4 Phase Bias Handling and PPP-RTK

Carrier phase biases, as introduced in (4.17), are eliminated in the conventional integer ambiguity resolution approaches
described in section 5.1.3 by forming double difference observations. In order to enable integer ambiguity resolution
in PPP applications, referred to as PPP Real Time Kinematic (PPP-RTK) (Wübbena et al., 2005; Mervart et al., 2008;
Teunissen et al., 2010), corrections based on phase biases are required (amongst others) in addition to precise GNSS
satellite orbit and clock products to recover the integer nature of the PPP user carrier phase ambiguity term. Depending
on the applied method, different PPP-RTK corrections of clock parameters, phase biases or ambiguities are computed in
a network-level integer ambiguity fixed solution and provided to the PPP-RTK user.

Table 5.2: Overview of commonly used PPP-RTK methods.

PPP-RTK Method Observations DD User Ambiguities PPP-RTK Corrections

Integer Recovery Clock (IRC)
Iono-Free WL/NL

Sat. code/phase clocks

(Laurichesse et al., 2009) WL bias

Decoupled Clock Model (DCM)
Iono-Free WL/NL

Sat. code/phase clocks

(Collins et al., 2010) WL bias

Uncalibrated Phase Delays (UPD)

Iono-Free WL/NL

Sat. clock

Fractional Cycle Bias (FCB) WL/NL ambiguity fractionals

(Ge et al., 2008; Geng et al., 2011, 2012) of a reference station

Common Clock (CC)
Raw Per frequency

Sat. clock

(Zhang et al., 2011) Sat. bias per freq

Distinct Clocks (DC)
Raw Per frequency

Sat. code clock

(De Jonge, 1998; Teunissen et al., 2010) Sat. phase clock per freq

Different PPP-RTK approaches have been developed in recent years and Table 5.2 provides a summary of commonly used
methods. While some of these PPP-RTK approaches are based on dual-frequency ionosphere-free observations, the CC
and DC models are formulated to be applied (in theory) to multi-frequency undifferenced (raw) observations. However,
the examples provided in the corresponding references (Teunissen et al., 2010; Zhang et al., 2011) are only based on
dual frequency observations. It should be noted, that the PPP-RTK corrections in Table 5.2 are re-parameterised estimable
versions of the original clock offset, bias and ambiguity parameters.
An extensive review and discussion of PPP-RTK methods and a comprehensive derivation of the corrections shown in
Table 5.2 is provided in (Teunissen and Khodabandeh, 2014), where it is demonstrated that the corrections computed
by different methods provide the same information content and can be transformed from one to the other, making the
methods practically equivalent. According to Teunissen and Khodabandeh (2014), the lack of the ionospheric delay in
the IF linear combination is considered the bottleneck for fast ambiguity resolution with the corresponding methods.
This motivates the use of raw observations to achieve faster ambiguity resolution by applying ionospheric corrections in
addition, which has been demonstrated in (Zhang et al., 2011). Teunissen and Khodabandeh (2014) also demonstrate
that due to the parameterisation of the different methods the PPP user ambiguities are standard double difference am-
biguities and no undifferenced ambiguities as sometimes stated. According to Teunissen and Khodabandeh (2014), "the
integer ambiguity resolution at the PPP-RTK user side is always that of double difference ambiguities". Hence, the required
integer nature double difference ambiguities on network-level, as discussed in section 5.1.3, intrinsically lead to double
difference ambiguities at the PPP-RTK user side, realised by the additional PPP-RTK corrections.

5.2 Multi-GNSS Multi-Signal Raw Observation Processing

GNSS raw observation processing is the most straightforward approach of exploiting GNSS observables for the estimation
of geodetic parameters. The raw observation processing approach (Schönemann et al., 2011; Schönemann, 2014), also
referred to as raw method, makes use of the original (raw) observations generated by a GNSS receiver. No linear
combinations and observation differences are formed, thus treating the observation equations in their original form as
specified in (4.8) and (4.17). This implies, that several effects and biases eliminated by linear combinations or observation
differences remain in the observation equation and need to be properly handled. In the raw method ionospheric delays
and signal biases need to be either corrected or estimated, whereas in the conventional IF linear combination processing
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approach biases are usually absorbed by the clock offsets, as shown in section 5.1.1, or eliminated by differencing as
described in section 5.1.2. In multi-GNSS and multi-signal raw observation processing, all available original multi-signal
observations from satellites of multiple GNSS are processed together to estimate all parameters in a joint least-squares
adjustment, see section 5.3 for details.

5.2.1 Benefits and Challenges

The increasing number of signals available from the continuously modernised GNSS motivates the usage of multiple
signals to exploit their individual characteristics. Conventional dual-frequency IF linear combination processing limits the
number of usable signals and poses the problem of having to choose between different possible dual-signal combinations.
In raw observation processing, there is no inherent limitation on the number of signals, therefore allowing to benefit from
the increase in the number of signals already available today and in future. The use of the original (raw) observations
preserves the individual signal characteristics and allows to analyse the individual effects like signal biases or signal
measurement noise. The formation of (IF) linear combinations amplifies the noise of the resulting observation, as shown
in section 5.1, whereas in raw observation processing the original noise characteristics of the individual signals can be
analysed and used. This allows for example the explicit weighting and editing of individual observations based on the
corresponding signal characteristics. Figure 5.1 shows the code observation residual Root Mean Square (RMS) daily
mean values of individual Galileo signals and the ionosphere-free linear combination IF(E1,E5a) for station CEBR from
the multi-GNSS and multi-signal POD analysed in section 7.4.
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Figure 5.1: Code observation residual RMS daily mean values of individual Galileo
signals and the ionosphere-free linear combination IF(E1,E5a) for station
CEBR from analyses described in section 7.4.

The required handling of the ionospheric delay in raw observation processing can be recognised as benefit and challenge
at the same time. The ionospheric delay remains in the raw observation equations, enabling the estimation of ionospheric
effects in addition to common geodetic parameters (Odijk, 2002). Applying ionosphere corrections to raw observations
instead of using the IF linear combination is also regarded beneficial in the context of PPP-RTK applications, as described
in section 5.1.4. However, as the ionospheric delay is changing rapidly, it usually has to be estimated per processing
epoch, thus generating a considerable amount of additional parameters. In addition there is a strong correlation between
clock offset parameters, signal biases and the ionospheric delay, requiring a proper treatment of the additional parameters
in order to solve the induced rank deficiency in the normal equation system, see section 5.3 for details.

5.2.2 Handling of Raw Observation Biases

In raw observation processing all signal biases remain in the observation equation and if more then one signal is pro-
cessed, these biases need to be properly handled. They can not (all) be absorbed by the clock offset parameters, as
it is usually done in the IF linear combination processing approach, as described in section 5.1.1. Although the raw
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observation equations (4.8) and (4.17) only contain the sum of a receiver-satellite signal bias, it is commonly assumed
that the signal bias can be separated in a satellite-specific and a receiver-specific bias. Due to the correlation of signal
biases with clock offsets and the ionospheric delay, different constraints are necessary in order to eliminate the rank
deficiency and successfully process raw observations from multiple signals and GNSS. For the code biases, this is typically
done by setting the satellite and receiver code bias of a reference signal to zero, thereby redefining the remaining code
biases to be differential code biases (DCBs), as shown in the example for the Galileo IOV satellite code biases below. This
redefinition of code biases is required if no absolute raw observation code biases are available, which typically is not the
case for both, GNSS receivers and satellites. Exceptions are GNSS receivers used for precise timing applications where
absolute code biases are required as shown in section 7.3, as well as the Galileo IOV satellites where satellite-specific
absolute code biases, measured by the satellite manufacturer, have been published. Thus, by setting a reference signal
code bias to zero the respective clock offset is redefined by absorbing the reference signal code bias. However, instead
of handling code biases in the commonly used differential approach, where the used signals have to be known a priori
in order to provide a linear independent set of biases, they are still treated as observable specific biases. For multi-GNSS
processing, this approach allows to determine a common receiver clock offset by selecting reference signals with similar
(almost identical) receiver code biases (for example Galileo E1C and GPS G1C, as described in (Defraigne et al., 2013)),
or by estimating a receiver-specific DCB between the two reference signals of different GNSS. In order to eliminate the
rank deficiency and estimate ionospheric delays, the satellite and receiver DCBs of at least one additional signal have to
be constrained to a priori values. However, if the estimation of physically meaningful ionospheric delays is of interest,
the constrained signal DCBs also have to be physically correct. The estimation of physically meaningful satellite-specific
DCBs and their application for the estimation of physically meaningful ionospheric delays is shown in sections 7.1 and
7.2.
Galileo is the first GNSS to publish satellite metadata (GSA, European GNSS Agency, 2019a) and reveals that raw signal
absolute code biases of the IOV satellites are on the order of approximately 1 µs - 3 µs. The so called satellite group delay
(SGD) of for example signal band E1 on the primary subsystem of Galileo satellite GAL-103 (E19) has been measured by
the spacecraft manufacturer on-ground prior to the satellite launch to be dGAL−103

E1 = 3.1493 µs, as shown in Table 5.3.

Table 5.3: Galileo IOV satellite group delays (SGD) for the primary and redundant subsystems measured by the spacecraft
manufacturer on-ground prior to launch (taken from GSA, European GNSS Agency, 2019a).

GSAT Primary (in ns) Redundant (in ns)

E1 E5 E6 E1 E5 E6

GAL-101 1214.8 1205.1 1208.9 1215.2 1204.9 1206.7

GAL-102 1218.9 1212.0 1211.2 1218.9 1212.5 1211.7

GAL-103 3149.3 3146.9 3149.8 3150.3 3149.3 3150.1

GAL-104 3150.1 3148.1 3148.3 3151.9 3150.7 3149.8

Selecting E1 as the reference signal for the code bias values of GAL-103 from Table 5.3, would modify the satellite
clock offset by 3149.3ns and redefine the observable specific code biases to be dGAL−103

E1 = 0ns, dGAL−103
E5 = −2.4ns and

dGAL−103
E6 = 0.5ns. However, as these code biases have been redefined relative to the reference signal E1 code bias, they

actually are satellite DCBs.
As defined in (4.4), the magnitude of satellite DCBs is equivalent to the difference in signal transmission time t tot

ia −t tot
j b for

different signals. The measured DCB values for the Galileo IOV satellites satisfy the condition |dia− d j b|<< 1µs, derived
in section 4.1.4, meaning that no geometric change due to the different times of signal transmission has to be accounted
for, which confirms the assumption made in (4.6). As DCBs are relative biases between different signals and no absolute
signal delays through cables and electronic equipment, it can be assumed that the above condition is also satisfied for
GNSS receivers. This assumption is analysed in detail in section 7.1 for satellites of multiple GNSS and different receiver
types.

As described in section 4.1.4, the absorption of the reference signal code bias by the respective clock offset parameter
might introduce receiver-satellite geometry related ranging errors. For satellite clock offsets this might be the case,
depending on the application, when the modified clock offset is used to iteratively compute the satellite position at the
signal transmission epoch in the applied reference time scale. As the satellite reference signal code bias implicitly is
introduced in the computation of the signal transmission time, the satellite position might be computed at an undesired
point in time. Whether or not this effect is significant depends on the application and the magnitude of the reference
signal code bias. Ignoring the modification of the GAL-103 satellite clock offset by the measured absolute code bias for
signal E1 from Table 5.3 would introduce a maximum ranging error of 2mm (= 600m s−1 · 3.15 µs) for a receiver on
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Earth and 2.4cm (= 7.6 kms−1 · 3.15 µs) for a receiver onboard of a LEO satellite, using the typical range rate values
computed in section 4.1.4. Therefore this effect can usually be neglected in standard PVT applications on Earth.

For GNSS receivers, the modification of the clock offset might introduce ranging errors, if combined with the receiver
clock range rate correction described in (4.26). Therefore, absolute signal code delays including antenna cable for a
GNSS receiver system used in a global network adjustment with applied receiver clock range rate correction should not
exceed the 1 µs limit, as described in section 4.1.4.

5.2.3 Handling of Ionospheric Delay

As described in section 4.1.4, the first order ionospheric slant delay along the signal path between receiver r and satellite
s for frequency fi can be expressed (in m) by

dions
r,i(t) =

40.28
f 2
i

· ST EC s
r(t) , (5.9)

where ST EC s
r(t) represents the slant total electron content along the signal path. In the raw method ionospheric delays

can be determined from multi-signal raw observations by estimating the slant total electron content ST EC s
r(t) in addition

to common geodetic parameters in the least squares adjustment (Odijk, 2002). This can be done by either estimating
the absolute ionospheric slant delay or using a VTEC map as a priori ionosphere model to estimate constrained residual
STEC values. The STEC parameters are estimated per processing epoch and pre-eliminated from the normal equation
system as described in (Dach et al., 2015b).

Depending on the setup of code bias parameters, physically not meaningful (biased) ionospheric delays might be deter-
mined. This could lead to negative STEC values, as demonstrated in section 7.2, which physically does not make sense
as the STEC represents the number of electrons along the signal path.

5.2.4 Raw Observation Processing with Ionosphere-Free Products

All commonly available satellite orbit and clock products from broadcast navigation messages, provided by the IGS and
most other service providers are based on the ionosphere-free linear combination of dual-frequency observations (Dach
et al., 2015a). As described in section 5.1.1, this implies that the provided satellite clock offsets contain the ionosphere-
free linear combination of the respective raw code biases ds

I F( j b,kc), defined in (4.64). An exception are the satellite clock
offsets broadcast in the BeiDou navigation message, where the B3I signal is selected as reference signal, (cf. BeiDou OS
B3I SIS ICD, 2018).

Applying the IF satellite clock offsets to the reduced raw code observation equation 4.49 at receiver measurement time
t = t tom leads to a modification of satellite-specific code biases

P̃s
r,Σia(t) = ρ

s
r(t) + c ·

�

d t r,Ξ(t)− d t s
I F,Ξ(t

tog)
�

+ d t ros
r,wg(t) + 40.28/ f 2

i · ST EC s
r(t)

+ c ·
�

ds
ia(t)− ds

I F( j b,kc)(t)
�

+ c dr,Σia(t) + εs
r,Σia(t) .

(5.10)

The modified satellite-specific code biases, sometimes referred to as pseudo-absolute code biases (Villiger et al., 2019)
can be expressed as a combination of differential code biases for the general case of signal ia

ds
ia − ds

I F( j b,kc) = ds
ia −

f 2
j ·d

s
j b− f 2

k ·d
s
kc

f 2
j − f 2

k

= 1
f 2
k − f 2

j

�

f 2
k

�

ds
ia − ds

kc

�

− f 2
j

�

ds
ia − ds

j b

��

= α̃ j, jk · ds
ia−kc − α̃k, jk · ds

ia− j b

= ds
ia− j b + α̃ j, jk · ds

j b−kc ,

(5.11)

where the equality α̃ j, jk− α̃k, jk = 1 has been used and time arguments are neglected for clarity. The frequency dependent
factor is given in the general form

α̃i, jk =
f 2

j f 2
k

f 2
i ( f

2
k − f 2

j )
. (5.12)
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For the special case of processing raw observations j b or kc, which have been used in the ionosphere-free linear combi-
nation I F( j b, kc) to generate satellite orbit and clock offsets, the modified satellite-specific code biases are given by

ds
j b − ds

I F( j b,kc) = α̃ j, jk · ds
j b−kc =

f 2
k

f 2
k − f 2

j
· ds

j b−kc

ds
kc − ds

I F( j b,kc) = α̃k, jk · ds
j b−kc =

f 2
j

f 2
k − f 2

j
· ds

j b−kc ,
(5.13)

which agrees with the general definition in (5.11), as ds
j b− j b = 0. The modified satellite code biases in (5.13) are

equivalent to the definition of the satellite BGD values broadcast in the Galileo and GPS navigation messages (cf. Galileo
OS SIS ICD, 2016; IS-GPS-200, 2015)

BGDs
(E1,E5a) = α̃1,15 · ds

E1C−E5Q

BGDs
(E1,E5b) = α̃1,17 · ds

E1C−E7Q

T s
GD(L1P(Y ),L2P(Y )) = α̃1,12 · ds

G1W−G2W ,

(5.14)

where the frequency indices refer to the signal frequencies of the corresponding GNSS, described in section 2.2.
For BeiDou, no clear mathematical definition of the broadcast group delay (group delay differential) is given in any of
the Interface Control Document (ICD) (BeiDou OS SIS ICD, 2016; BeiDou OS B1I SIS ICD, 2019; BeiDou OS B3I SIS
ICD, 2018). However, as it is stated that the B3I signal equipment group delay is included in the broadcast satellite clock
offsets, it is assumed that the BeiDou satellite BGD values broadcast in the navigation messages are given by the DCBs
relative to signal B3I

T s
GD1(B1I ,B3I) = ds

C2I−C6I

T s
GD2(B2I ,B3I) = ds

C7I−C6I ,
(5.15)

Whereas satellite group delays are broadcast to the users only to enable single frequency applications, the general concept
in (5.11) can be applied to multi-signal GNSS raw observation processing, as used in the analysis described in section
7.3. As an example, the definitions of modified satellite code biases are given, applicable for multi-signal Galileo raw
observation processing with satellite clock offsets derived from the Galileo F/NAV message, based on I F(E1, E5a) (Galileo
OS SIS ICD, 2016)

ds
E1C − ds

I F(E1C ,E5Q) = α̃1,15 · ds
E1C−E5Q

ds
E5Q − ds

I F(E1C ,E5Q) = α̃5,15 · ds
E1C−E5Q

ds
E7Q − ds

I F(E1C ,E5Q) = ds
E7Q−E1C + α̃1,15 · ds

E1C−E5Q

ds
E8Q − ds

I F(E1C ,E5Q) = ds
E8Q−E1C + α̃1,15 · ds

E1C−E5Q

ds
E6C − ds

I F(E1C ,E5Q) = ds
E6C−E1C + α̃1,15 · ds

E1C−E5Q

(5.16)

It should be noted, that multi-signal pseudo-absolute satellite code biases are consistent with satellite clock offsets and
absolute ionospheric delays only if the computation is based on physically meaningful satellite DCBs. The impact of not
using physically meaningful satellite DCBs is analysed in sections 7.2 and 7.3.

5.3 Parameter Estimation Applied in Raw Method

As derived in section 4.1, the relation between the vector of observations Y (t) and vector of parameters X(t) is described
by the nonlinear functional model f (X(t), t)

Y (t) = f (X(t), t) =













f1(X(t), t)

f2(X(t), t)
...

fl(X(t), t)













(5.17)

where f (X(t), t) is the l-dimensional vector of observation equations (4.8) and (4.17) at time t. In this formulation
and GNSS processing in general, the Gauss-Markov model (Niemeier, 2008) is used, relating the parameters to only one
observation per equation fi(X(t), t). The observations Y (t) are associated with the weight matrix P(t) to account for
the difference in precision of code and phase measurements or code measurements of different signals and apply other
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signal or elevation dependent weighting schemes. If the observations are assumed to be uncorrelated, the weight matrix
is diagonal.
While the observation equations are nonlinear, commonly used parameter estimation approaches require linear models
and therefore a linearisation of the functional model. Linearisation of the system equations implies that only approximate
solutions are found, thus the best estimates X̂(t) of the parameters need to be found in an iterative way, where the term
"best" will be defined in the section 5.3.2. In this work, the estimation of parameters is based on the principle of Linearised
Iterative Weighted Batch LSQ Adjustment with Soft Constraints, where the individual parts of this approach are explained
in the following section.

5.3.1 Linearisation of the Functional Model

The functional model (5.17) is linearised by a Taylor series expansion, which requires nominal values X∗(t) for the
estimated parameters, used to evaluate the partial derivatives of the functional model with respect to the parameters.
The Taylor series expansion of a function f (X(t), t) is given by:

f (X(t), t) = f (X∗(t) + x (t), t) = f (X∗(t), t) +
δ f
δX

�

�

�

�

X∗(t)
x (t) +O 2(x (t)) (5.18)

where x (t) = X(t) − X∗(t) is the vector of parameter deviations from the nominal values and represents the actual
estimated parameters in a linearised LSQ adjustment, f (X∗(t), t) is the nonlinear function of the nominal parameter
values, often referred to as computed or reconstituted observation, which also includes all modelled effects not part of the
estimated set of parameters. Second and higher order terms O 2(x (t)) are neglected.
The partial derivatives of the functional model or observation equations with respect to the parameters, evaluated at the
nominal parameter values can be written in matrix notation as the so called design matrix

A(t) =
δ f
δX

�

�

�

�

X∗(t)
(5.19)

For GNSS applications using code and phase observations with the functional models described in section 4.1, the design
matrix is given by

A(t) =

�

δPs
r,Σia(t)

δX

�

�

�

�

X∗(t)

δΦs
r,i(t)

δX

�

�

�

�

X∗(t)

�T

, (5.20)

where Ps
r,Σia(t) and Φs

r,i(t) are the vectors of code and phase observation equations corresponding to all available obser-
vations at time t. With (5.17) and (5.18) the linearised system of equations can be written as

y(t) = A(t)x (t) + ν(t) (5.21)

where y(t) = Y (t)− f (X∗(t), t) is the observation deviation vector, often referred to as observed-minus-computed vector
and ν(t) is the error or residual vector.

5.3.2 Solution of the Weighted Linearised System

The solution of (5.21) can be derived by the method of least squares (Gauss, 1809), which defines the term "best" estimate
as the minimum of the weighted sum of squared residuals

Ω(t) = νT (t)P(t)ν(t)→ min . (5.22)

Skipping the time arguments for clarity and inserting (5.21) in (5.22) gives:

Ω= [y − A x ]T P [y − A x ]→ min . (5.23)

The minimum condition is fulfilled for

0
!
=
δΩ

δ x
= −2AT P y + 2AT PA x , (5.24)

and

0
!
<
δ2 Ω

δ2 x
= 2AT PA . (5.25)

38



The solution of the weighted linear least squares problem at time t is given by multiplying (5.24) by the inverse of the
so called normal equation matrix N = AT PA

x̂ (t) = N−1(t) AT (t) P(t) y(t) (5.26)

5.3.3 Sequential Batch Least Squares

The term sequential batch refers to the combination of multiple successive sets (batches) of data into one system of equa-
tions, such that the data sets are not solved individually, but instead one combined solution is generated. Mathematically,
successive observation data sets with linearised system of equations (5.21) at times t1, t2, . . . , tp can be combined in
matrix vector form:













y1

y2
...

yp













=













A1

A2
...

Ap













x +













ν1

ν2
...

νp













, (5.27)

where yi = y(t i), Ai = A(t i), νi = ν(t i). The deviation vector x contains all parameters needed to derive the functional
models at all times t1, t2, . . . , tp. It is important to note, that only parameters estimated per epoch contribute p parameters
to the combined vector x , whereas other (constant) parameters might only contribute 1 parameter for the entire time
interval. Therefore the time argument of the combined parameter deviation vector x and also the combined absolute
parameter vector X and combined vector of nominal parameter values X∗ will be omitted for the batch least squares
problem. Equation (5.27) can be written as:

ỹ = Ãx + ν̃ , (5.28)

which gives the linearised system of equations for solving the batch least squares adjustment. As this formulation has the
drawback of creating huge matrices, when combining for example observation data with 30 second sampling of a full
day, the following method called normal equation stacking is usually applied to keep the dimensions of involved matrices
at a limited size and therefore reduce the computational load of the algorithm. Neglecting correlations in time between
observations, the combined weight matrix can be written with Pi = P(t i) in block diagonal form

P̃ =













P1 0 . . . 0

0 P2 . . . 0
...

...
. . .

...

0 0 . . . Pp













. (5.29)

The solution of the sequential batch least squares problem (5.28) can then be written in the same form as (5.26) as

x̂ = Ñ−1ÃT P̃ ỹ (5.30)

where

Ñ = ÃT P̃ Ã=
p
∑

i=1

AT
i Pi Ai =

p
∑

i=1

N(t i) (5.31)

is referred to as stacked normal equation matrix, derived by the sum of the normal equation matrices computed at times
t i with i = 1, . . . , p. Similar, the stacked right hand side of the normal equation system 5.30 is given by the sum of the
right hand side computed at times t i

ÃT P̃ ỹ =
p
∑

i=1

AT
i Pi yi . (5.32)

5.3.4 Solution of the Linearised Iterative Weighted Batch Least Squares Problem

As the linearised system of equations (5.30) does not model the exact relation between observations and parameters,
iterations are needed to improve the parameter estimates. The iterative process is finished if the weighted sum of squared
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residuals Ω is no longer improving with respect to the previous iteration or when a predefined number of iteration steps
has been reached.
The batch linearised system of equations from (5.28) at iteration step k is given by

ỹk−1 = Ãk−1xk + ν̃k−1 , (5.33)

where ν̃k−1 is the combined residual vector and

ỹk−1 = Ỹ − f̃ (X∗ = X̂k−1) =













Y (t1)

Y (t2)
...

Y (tp)













−













f (X̂k−1(t1), t1)

f (X̂k−1(t2), t2)
...

f (X̂k−1(tp), tp)













(5.34)

is the combined deviation vector of the observations from all batches 1, . . . , p. The computed observations f̃ (X∗) of
iteration step k are derived by the nonlinear functional model evaluated at the parameter best estimates from the previous
iteration X∗ = X̂k−1, which in the first iteration are the initial parameter values X0. The solution of the iterative weighted
batch least squares problem for iteration step k is the best estimate of the parameter deviations vector given by:

x̂k = Ñ−1
k−1ÃT

k−1P̃k−1 ỹk−1 . (5.35)

The solution of the best estimates for the absolute parameter values in iteration step k is derived by:

X̂k = X̂k−1 + x̂k , (5.36)

with the a posteriori residual vector

ν̃k = ỹk − Ãk x̂k , (5.37)

where ỹk = Ỹ − f̃ (X∗ = X̂k) and Ãk =
δ f̃
δX

�

�

�

X̂k
are both evaluated at the absolute parameter values X̂k.

5.3.5 Constrained Least Squares Adjustment

The batch linearised system of equations in (5.33) may be expanded by introducing additional information in order to
remove a rank deficiency of the normal equation matrix or simply constrain a certain parameter to a given value. In this
work constrained parameter values Xc are added to the linearised system of equations in the form of pseudo observations,
also called fictitious observations (Dach et al., 2015b). These pseudo observations are associated with a covariance matrix
and the corresponding weight matrix R for the constrained parameters. Hence this approach of introducing parameter
constraints may also be referred to as soft constraints or Bayesian constraints.
The batch linearised system of equations for parameter constraints in the form of pseudo observations at iteration step k
is given by

zk−1 = Bk−1xk + ξk−1 , (5.38)

where ξk−1 is the residual vector of the parameter constraints and

zk−1 = Xc − X∗ (5.39)

is the deviation vector of the parameter constraints from the nominal parameter values X∗ = X̂k−1. The matrix Bk−1
contains only zeros and ones and relates the parameters to the corresponding constraints.
This allows to add different types of constraints to the linearised system of equations. An absolute constraint of param-
eter X i to its nominal value is introduced by setting the corresponding element zi = 0, which constrains the parameter
deviation to zero by introducing a fictitious observation of the form x i = 0. Relative constraints between two parameters
X i and X j may be introduced by adding a fictitious observation of the form x i − x j = 0. A zero-mean constraint for a
group of parameters 1, . . . , m may be introduced by adding a fictitious observation of the form

∑m
i=1 x i = 0.

With the normal equation matrix of the fictitious observations from parameter constraints

M = BT RB , (5.40)
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the solution of the linearised iterative weighted batch least squares problem with soft constraints is given by

x̂ =
�

Ñ +M
�−1 �

ÃT P̃ ỹ + BT Rz
�

, (5.41)

where the iteration subscripts have been omitted to improve readability.

5.3.6 Stochastic Model

The observations of the combined vector Y for the batch least squares adjustment are described by the stochastic model

Cy y = σ
2
0Q y y = σ

2
0 P̃−1 , (5.42)

where

Cy y is the covariance matrix of the observations

Q y y is the cofactor matrix of the observations

P̃ is the weight matrix of the observations

σ2
0 is the a priori variance factor

If the observations are uncorrelated, P̃ is a diagonal matrix with the elements

P̃y y =
σ2

0

σ2
y

, (5.43)

where σy is the standard deviation of the corresponding observation.
The weight matrix of the fictitious observations from parameter constraints is given in the same diagonal form for
uncorrelated parameter constraints

Rx x =
σ2

0

σ2
x

, (5.44)

where σx is the standard deviation of the corresponding parameter constraint.
The weighted sum of squared residuals, also referred to as loss function for the batch least squares adjustment is given
for the unconstrained solution by

Ω̃= ν̃T P̃ν̃ (5.45)

and for the solution with parameter constraints by

Ω̃= ν̃T P̃ν̃+ ξT Rξ . (5.46)

The a posteriori variance factor is computed by

σ2 =
Ω̃

f
, (5.47)

where f = n−u is the degree of freedom for the least squares adjustment with the number of observations n and number
of estimated parameters u. The square root of the a posteriori variance factor is often referred to as sigma of unit weight
(Koch, 2004)

σ =

√

√

√ Ω̃

f
. (5.48)

The a posteriori covariance matrix of the estimated parameters with soft constraints is then given by

C x̂ x̂ = σ
2Q x̂ x̂ = σ

2
�

Ñ +M
�−1

, (5.49)

where

Q x̂ x̂ is the cofactor matrix of the estimated parameters
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Ñ is the stacked normal equation matrix (5.31) of the observations

M is the normal equation matrix (5.40) of the parameter constraints

The diagonal elements C x̂ x̂ of the parameter covariance matrix contain the standard deviations of the estimated param-
eters

σ x̂ =
p

C x̂ x̂ , (5.50)

whereas the off-diagonal elements of the parameter covariance matrix can be used to determine the correlation coeffi-
cients between two estimated parameters

ρi j =
Ci j

σiσ j
. (5.51)

5.4 Satellite Orbit Determination

The classical orbit determination problem assumes the motion of bodies due to a central force or point mass. However,
for human-made satellites orbiting the Earth, nongravitational forces and the deviation from a central force (point mass)
are significant (Tapley et al., 2004). Table 5.4 (adopted from Flohrer, 2008) shows a list of perturbing forces acting
on Earth orbiting satellites ordered by decreasing acceleration values computed for GPS satellites by Beutler (2005). In
addition, the impact on satellite orbits after one day is shown.

Table 5.4: Perturbing forces acting on GNSS satellites ordered by decreasing acceleration values, computed for GPS satel-
lites (adopted from Flohrer, 2008)

Perturbing force Acceleration Orbit error after one day

(in m s−2) (in m)

Earth’s monopole 0.57 330000000

Earth’s oblateness 5.1× 10−5 35500

Lunar attraction 4.5× 10−6 1800

Solar attraction 2.0× 10−6 1300

Geopotential harmonics (higher terms) 4.2× 10−7 450

Direct Solar Radiation Pressure (SRP) 9.7× 10−8 200

Y-bias 1.0× 10−9 8

Solid Earth tides 5.0× 10−9 0.4

Thermal reradiation and Earth albedo ≈ 1.3× 10−9 ≈ 0.1

Planet attraction and ocean tides ≈ 1.3× 10−10 ≈ 0.01

A satellite orbit is described by the so called state vector X(t) containing the satellite’s position and velocity at time t in
an Earth centred inertial reference frame. If the differential equations of motion of the satellite are known, an initial state
vector X0 = X(t0) can be used to determine the position and velocity of the satellite at any given time. In order to achieve
the highest accuracy, the gravitational and nongravitational perturbing forces (see Table 5.4) need to be considered by
mathematical models in the differential equations of motion of the satellite. They are crucial in the determination of
the initial state vector as well as for the propagation of the orbit in order to compute satellite positions and velocities
at any point in time. As both, the exact initial state vector as well as the exact forces defining the differential equations
of motion are unknown, observations such as range, azimuth and elevation from known positions on Earth are used to
improve the estimate of the satellite orbit. The process of orbit determination is described in (Tapley et al., 2004) as

"The problem of determining the best estimate of the state of a spacecraft, whose
initial state is unknown, from observations influenced by random and systematic
errors, using a mathematical model that is not exact."

In general the orbit determination problem is linearised by a Taylor series expansion as described in section 5.3.1. The
difference to simple point positioning is that in the dynamical orbit determination process not only the relationship
between observations and state parameters is linearised about a nominal state vector at the time of observation. Also the
equations of motion describing the relationship between the state parameters at the time of observation and the initial
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time need to be linearised about a nominal orbit trajectory. The nonlinear equations of motion of the state vector X(t)
can be written in the form:

Ẋ(t) = F(X(t), t) , (5.52)

which can be linearised as shown in (5.18) by

F(X(t), t) = F(X∗(t), t) +
δF
δX

�

�

�

�

X∗(t)
x (t) +O 2(x (t)) , (5.53)

where x (t) = X(t)− X∗(t) is the vector of parameter deviations from the nominal values X∗(t), obtained by integrating
(5.52) with the initial values X∗(t0), which in an iterative solution are given by the best estimates of the initial state
vector from the previous iteration

X∗(t0) = X̂k−1(t0)≡ X̂0
k−1 .

With the time derivative of the parameter deviation vector ẋ (t) = Ẋ(t)−F(X∗(t), t) and D(t) = δF
δX

�

�

X∗(t), equation (5.53)
can be written in the form

ẋ (t) = D(t)x (t) , (5.54)

where second and higher order terms O 2(x (t)) have been neglected. Equation (5.54) describes the linearised system of
equations of motion with the general solution (cf. Tapley et al., 2004) expressed by

x (t) = Φ(t, t0)x
0 , (5.55)

where Φ(t, t0) is the so called state transition matrix, relating the state parameter deviations at the time of observation t
with the state parameters deviations x 0 = x (t0) at initial time t0.
The full linearised model for the orbit determination process is given by the linearised observation equations with ob-
servation deviation vector y(t) from (5.21) and the general solution for the linearised equations of motion for the state
deviation vector x (t):

y(t) = A(t)x (t) + ν(t)

x (t) = Φ(t, t0)x 0 .
(5.56)

The combined linearised equation for the orbit determination process can be written as:

y(t) = H(t)x 0 + ν(t) , (5.57)

with the combined design matrix

H(t) = A(t)Φ(t, t0) . (5.58)

In analogy to section 5.3.4, the best estimate solution of the orbit determination process 5.57 using iterative weighted
batch least squares is given for iteration step k by

x̂ 0
k = Ñ−1

k−1H̃ T
k−1P̃k−1 ỹk−1 , (5.59)

where the stacked normal equation matrix for the orbit determination problem is given by

Ñk−1 = H̃ T
k−1P̃k−1H̃k−1 . (5.60)

The combined design matrix at iteration step k is given by

H̃k−1 =













Hk−1(t1)

Hk−1(t2)
...

Hk−1(tp)













=













Ak−1(t1)Φk−1(t1, t0)

Ak−1(t2)Φk−1(t2, t0)
...

Ak−1(tp)Φk−1(tp, t0)













, (5.61)

where Ak−1(t i) and Φk−1(t i , t0) are both evaluated at the nominal state vector X∗(t i), derived by integrating the best
estimates of the initial parameter values from the previous iteration X̂0

k−1.
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6 Carrier Phase Integer Ambiguity Resolution with Raw Observations

The main objective of this work was to analyse the resolution of integer ambiguity values based on multi-GNSS and multi-
signal raw observation processing and to successfully implement the developed approach in the NAvigation Package for
Earth Observation Satellites (NAPEOS), a software package developed at the European Space Operations Centre (ESOC)
for processing a variety of geodetic observation data and estimating geodetic parameters including precise satellite orbit
determination and prediction. As the resolution of integer ambiguities is not a goal in itself, but used to exploit the
precision of the carrier phase measurements in the form of precise phase pseudoranges, the implemented approach was
applied to the problem of multi-GNSS precise orbit determination (POD), described in section 7.4.

The process used in this work to obtain the so called ambiguity fixed solution based on processing multi-GNSS and
multi-signal raw observations involves three steps:

1. Float solution: The iterative weighted batch least squares adjustment, described in section 5.3 is performed with
raw carrier phase ambiguities estimated as float values M s

r,i , without forming any linear combinations or observa-
tion differences

2. Integer Ambiguity Resolution (IAR): The iterative integer ambiguity resolution algorithm, described in sections
6.1 and 6.2 is used to resolve integer values for ambiguities of all GNSS on all frequencies

3. Fixed Solution: The iterative weighted batch least squares adjustment is repeated with fixed values for multi-GNSS
and multi-signal raw observation ambiguities

The second step involves the actual resolution of integer ambiguity values based on carrier phase ambiguity estimates
from multi-GNSS and multi-signal raw observations.

6.1 Concept of Raw Observation Ambiguity Resolution

The concept of resolving carrier phase integer ambiguities from raw observations implemented in the course of this work
is based on an iterative ambiguity fixing approach making use of raw observation float ambiguity estimates. In general,
the approach is based on the procedure described in (Springer, 2009), which originates from the AMBIGON method
described in (Blewitt, 1989) and can not be categorised as one of the methods described in section 5.1.3. As no search
of integer values is performed, the integer ambiguity resolution method described here could be viewed as advanced
integer bootstrapping (IB), however, instead of only a few ambiguities, in this method multiple ambiguities of different
frequencies are fixed at once.
As described in section 5.1.3 and shown in (4.53), the carrier phase ambiguity term of raw observations is not of integer
nature as it includes unknown instrumental phase biases of the satellite and receiver (Blewitt, 1997). Without additional
information integer ambiguity resolution can only be performed on double difference (DD) ambiguities (Ge et al., 2005).
In order to fix multi-signal ambiguities to integer values, double differences (DDs) of raw float ambiguity estimates are
formed on parameter level for all frequencies as only those are of integer nature, described mathematically in section
6.2.1. It will be analysed whether the formation of double differences from raw float ambiguity estimates really is of
integer nature, as the raw float ambiguity estimates might include other residual errors besides the instrumental phase
biases. The advantage of generating integer nature ambiguities on parameter level is that the raw method, see section
5.2, can be applied to process all available multi-signal raw observations and estimate all geodetic parameters of interest,
including ionospheric delays per receiver-satellite link. Therefore, no preselection of observations is necessary for exam-
ple based on baseline length, as commonly applied in conventional double difference observation processing approaches.

The iterative integer ambiguity resolution scheme for double differences of multi-GNSS and multi-signal raw float ambi-
guity estimates is shown as flowchart diagram in Figure 6.1 and based on the following steps:

1. For all existing receiver baselines (a combination of two receivers) form all possible double difference ambiguities
on all frequencies from raw ambiguity estimates with overlapping time intervals

2. For each receiver baseline

a) Compute the fixing probability for double difference ambiguities of all frequencies, as described in section
6.2.3

b) Select fixable double difference ambiguities based on two criteria: fixing probability and fractional value, see
section 6.2.3 for details
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c) Sort the fixable double difference ambiguities by fixing probability and check for independence using the
modified Gram-Schmidt process (Golub and Van Loan, 1996)

3. Sort the fixable double difference ambiguities from all receiver baselines by fixing probability and check for inde-
pendence using the modified Gram-Schmidt process

4. Introduce integer constraints for the selected fixable double difference ambiguities, as described in section 6.2.3
and solve the normal equation system including the estimation of raw ambiguity values

5. Repeat steps 2.-4. (next iteration) or finish, if

a) All ambiguities are fixed, or

b) No additional ambiguities were fixed in the last iteration, or

c) The maximum number of iterations has been reached

It is important to note, that the described method does not involve the formation of any linear combination or difference
on observation level. The estimation of all parameters, also in the ambiguity fixed solution is fully based on GNSS raw
observations. Only for the resolution of ambiguity integer values, double differences of raw float ambiguity estimates are
formed and once fixed, additional constraints are introduced to the normal equation system as described in section 6.2.3.
This process inevitably also involves the fixing of wrong double difference integer values. This issue however, is solved in
the least squares adjustment of the fixed solution, where wrong integer constraints of individual ambiguities are filtered
out by checking the respective raw phase observation residuals.
Raw observation float ambiguity estimates of the final double difference integer constrained solution are fixed, if they
belong to a fixable double difference integer ambiguity. Raw observation float ambiguities not belonging to a fixable
double difference integer ambiguity remain in the fixed solution as float ambiguity parameter estimates. The application
of fixed raw ambiguity values simplifies the introduction of double difference ambiguity integer constraints in the fixed
solution of the iterative weighted batch least squares adjustment for operational reasons.
The advantage of this method, together with raw observation processing, is that fixed raw observation ambiguities of the
final double difference integer constrained solution can directly be used to resolve undifferenced raw integer ambiguities
and determine raw observation phase biases for all involved frequencies, as described in section 6.3.

For each
receiver
baseline

Form all possible DD
ambiguities based on
raw ambiguity
estimates

Full NEQ from
float solution

Select fixable DD
ambiguities based on
fixing probability and
fractional value

Sort and identify
independent DD
ambiguities

Compute fixing
probability for all DD
ambiguities

Sort and identify
independent DD
ambiguities of all
baselines

Introducde integer
constraints and solve
normal equation
system

Full NEQ with fixed
raw ambiguities

All baselines
processed?

Finish IAR
process?

No

Yes

Yes

No

Figure 6.1: Flowchart diagram of the iterative integer ambiguity resolution scheme for double difference ambiguities
based on multi-GNSS and multi-signal raw observation float ambiguity estimates.

6.2 Multi-Frequency Double Difference Integer Ambiguity Resolution

The described iterative integer ambiguity resolution scheme for double differences of raw float ambiguities is applied
simultaneously to all processed phase observations on multiple frequencies and for multiple GNSS. The details of forming
double difference ambiguities, fixing them to integer values and applying integer constraints to the normal equation
system is described in the following sections.
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6.2.1 Forming Double Difference Ambiguities

The double difference ambiguity for raw signal frequency i in carrier wavelength cycles is formed from raw observation
float ambiguity estimates M̂ s

r,i of receivers A, B and satellites k, l by:

M kl
AB,i = M̂ k

A,i − M̂ k
B,i − M̂ l

A,i + M̂ l
B,i . (6.1)

The fractional part of the double difference ambiguity is given in cycles by

f kl
AB,i = M kl

AB,i − N kl
AB,i (6.2)

where N kl
AB,i = N IN T

�

M kl
AB,i

�

is the nearest integer of M kl
AB,i , which leads to fractional values f kl

AB,i ∈ [−0.5,0.5] cycles.

From the definition of raw observation float ambiguities in (4.53) follows, that the expected value of a double difference
ambiguity is given by

E
�

M kl
AB,i

�

= N k
A,i −δ

k
i (t)−δA,i(t)− N k

B,i +δ
k
i (t) +δB,i(t)

− N l
A,i +δ

l
i(t) +δA,i(t) + N l

B,i −δ
l
i(t)−δB,i(t)

= N k
A,i − N k

B,i − N l
A,i + N l

B,i ,

(6.3)

which is the double difference combination of the raw observation integer ambiguities and therefore also is an integer
number.
The analysis of double difference ambiguity fractionals f kl

AB,i computed from the raw observation float ambiguity estimates

M̂ s
r,i reveals, whether double difference ambiguities are close to an integer value and therefore can be fixed to the nearest

integer. The criteria used to decide whether a double difference ambiguity should be fixed to an integer value are
described in section 6.2.3.

6.2.2 Histogram of Double Difference Ambiguity Fractionals

An intuitive way of visualising whether double difference (DD) ambiguities for a certain application are close to an
integer value, is the so called histogram of double difference ambiguity fractionals. It shows the number of fractional
values within a certain bin size over the fractional value range [−0.5,0.5] cycles. The fact that values for both interval
boundaries ±0.5 cycles are computed leads to a reduction of 50 % in the number of fractionals for these bins, as from
an integer point of view they are practically identical, see Figure 6.2. As the number of fractionals for a certain signal
depends on the number of available ambiguity parameters, the histogram also indicates the differences in the number of
available DD ambiguities for different signals. The fractionals of multiple signals are colour coded and stacked on top of
each other per GNSS to show the individual signal and combined DD ambiguity fractional characteristics. The histogram
reveals whether a significant part of all computable (dependent) double difference ambiguities is close to integer, which
corresponds to a fractional value close to zero. If the ambiguity fractional histogram is shaped Gaussian like with a mean
value of 0 it can be assumed that integer ambiguity resolution can be performed properly and it will strengthen the
overall solution.
In multi-GNSS and multi-signal raw observation processing, the histogram of all computable double difference ambiguity
fractionals formed from raw observation float ambiguity estimates can be used to

• Compare the general consistency of raw float ambiguity estimates for different GNSS

• Compare the quality of different signal frequencies for a certain GNSS

• Check for potential consistency of inter-system raw float ambiguities to facilitate inter-system integer ambiguity
resolution

Figure 6.2 shows an example of a double difference ambiguity fractional histogram from raw observation float ambiguity
estimates for Galileo raw phase observations from signals E1C, E5Q, E7Q, E8Q and E6C.
In addition, the histogram of all computable (dependent) double difference ambiguity fractionals from integer constraint
solutions, ie. after fixing integer ambiguities, see section 6.2.3, indicates whether the fixing of double difference ambi-
guities to integer values was successful. An increased number of zero fractionals shows the impact of fixing independent
double difference ambiguities to integer values. As the histogram shows fractional values for all computable double
difference ambiguities and not just independent ones, it also indicates whether all double difference ambiguities con-
verge to integer values by introducing the integer constraints in the ambiguity fixing algorithm, described in section
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Figure 6.2: Double difference ambiguity fractional histogram based on raw observa-
tion float ambiguity estimates for all Galileo signals.

6.2.3. Remaining non-zero fractionals indicate, that due to inconsistencies in the raw observation float ambiguity esti-
mates, the corresponding double difference ambiguities do not converge to integer values, despite the introduced integer
constraints.

The double difference ambiguity fractional histograms for different GNSS and signals are shown in section 7.4.2 and the
impact of introduced integer constraints in the ambiguity fixing process is analysed.

6.2.3 Fixing Double Difference Integer Ambiguities

The decision whether a double difference ambiguity can be fixed to an integer value is based on two criteria, its fixing
probability and its fractional value. The probability P0 of fixing a double difference ambiguity to its nearest integer is
computed by the formula of Dong and Bock (1989), which is also used in (Ge et al., 2005):

P0

�

M kl
AB,i

�

= 1−
∞
∑

n=1

er f c





n− f kl
AB,ip

2σMkl
AB,i



− er f c





n+ f kl
AB,ip

2σMkl
AB,i



 (6.4)

with

er f c(x) =
2
p
π

∫ ∞

x

e−t2
d t , (6.5)

where σ2
Mkl

AB,i
is the double difference ambiguity variance in cycles, computed from the variances σ2

M s
r,i

of the raw obser-

vation float ambiguity estimates.

The threshold used in this work to select the fixable double difference ambiguities based on their fixing probability P0 is
set to 94%. The fractional value interval used in this work to select the fixable double difference ambiguities based on
their fractional value f kl

AB,i , computed by (6.2) is set to [−0.05,+0.05] cycles of the carrier wavelength λi .

The double difference ambiguities, which satisfy the fixing probability and fractional value criteria are fixed to the nearest
integer value, which can be summarised by

If
�

P0

�

M kl
AB,i

�

> 0.94 and
�

�

� f kl
AB,i

�

�

�< 0.05
�

then M kl
AB,i

..= N IN T
�

M kl
AB,i

�

(6.6)
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Applying Integer Constraints to the Normal Equation System

The information of integer fixed double difference ambiguities is added to the normal equation system as an additional
constraint for the double difference combination of the raw observation ambiguity parameters, as described in section
5.3.5 and therefore represents a relative constraint between four parameters

M k
A,i −M k

B,i −M l
A,i +M l

B,i = N kl
AB,i (6.7)

However, as in the linearised least squares adjustment deviations of parameter are estimated, the equivalent formulation
for the double difference combination of the raw observation ambiguity parameter deviations ms

r,i = M s
r,i −M s

r,i
∗ is used

mk
A,i −mk

B,i −ml
A,i +ml

B,i = f kl
AB,i (6.8)

where M s
r,i
∗ are the nominal values of the raw observation ambiguity parameters and the fractional value f kl

AB,i is the
difference needed to be applied to the computed double difference ambiguity to make it an integer value.

Assuming that the parameter deviation vector x is ordered in such a way, that the raw observation ambiguity parameter
deviations contributing to a fixed double difference ambiguity are at the end of the parameter deviation vector, the
normal equation system in (5.35) can be written in block matrix form

�

N11 N12

N21 N22

��

x1

x2

�

=

�

AT
1 P y

AT
2 P y

�

(6.9)

where x2 is the vector of raw observation ambiguity parameter deviations ms
r,i contributing to a fixed double difference

ambiguity. The integer constraint (6.8) can be written in matrix vector notation

DD x2 = f (6.10)

where DD is the double difference operator forming the fixed double difference ambiguities and f is the vector of all
fixed double difference ambiguity fractionals.

The integer constraints (6.10) are applied to the normal equation system in the form of fictitious observations or soft
constraints as in (5.41), which for the block matrix notation (6.9) can be written as (Springer, 2009)





N11 N12

N21 N22 +
σ2

0DDT DD

σ2
m





�

x1

x2

�

=





AT
1 P y

AT
2 P y +

σ2
0DDT f

σ2
m



 (6.11)

where the standard deviation of the raw observation ambiguity parameter deviations σm is set to a small value (typically
1× 10−9) to give the integer constraints a strong weight. However, care must be taken when choosing this value to avoid
numerical problems when solving the normal equation system.

The constrained system of normal equations is used to re-estimate the raw observation ambiguities and all other param-
eters in an iterative way. As will be shown in section 7.4.2, the additional integer constraints improve the solution and
therefore in consecutive iterations even more double difference ambiguities can be fixed to an integer value. The double
difference integer ambiguity fixing described in section 6.2.3 is repeated until one of the following criteria is met:

• All double difference ambiguities have been fixed to integer

• No additional double difference ambiguities have been fixed to an integer value in the last iteration

• The maximum number of iterations has been reached

After the double difference integer ambiguity fixing is finished, the raw ambiguity estimates belonging to a fixed double
difference ambiguity are kept fix to compute the fixed solution of the iterative weighted batch least squares adjustment.

6.2.4 Inter-Frequency Consistency Check

In addition to the formation of double difference ambiguities per frequency, as described in section 6.2.1, the difference
between two double difference ambiguities on different frequencies, so called widelane double difference ambiguities
can be used to check the consistency of double difference ambiguities on different frequencies.
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The widelane double difference ambiguity for frequencies i and j is formed from double difference ambiguities (6.13)
by:

M kl
AB,i− j = M kl

AB,i −M kl
AB, j . (6.12)

In theory, widelane double difference ambiguities are associated with the widelane wavelength λw = c/( fi − f j), which is
much larger than the wavelength of individual carrier signals λi = c/ fi . The histogram of widelane double difference am-
biguity fractionals f kl

AB,i− j should therefore be more confined, if the double difference ambiguities on different frequencies
have been formed consistently without additional unmodelled frequency dependent errors.
Figure 6.3 shows an example of a widelane double difference ambiguity fractional histogram based on raw observation
float ambiguity estimates for Galileo phase observations on signal frequencies E5a, E5b, E5 and E6 with respect to signal
frequency E1. The confined shape of the histogram, compared to Figure 6.2 confirms the consistency of the used double
difference ambiguities on different frequencies. Almost 70% of all widelane double difference ambiguity fractionals from
raw observation float ambiguity estimates are within [−0.1,+0.1] widelane cycles.
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Figure 6.3: Widelane double difference ambiguity fractional histogram based on raw
observation float ambiguity estimates for Galileo signals relative to E1C.

6.2.5 Inter-System Integer Ambiguity Resolution

The integer ambiguity fixing approach described so far, was based on double differences formed from raw observation
float ambiguity estimates of receivers A, B and satellites k, l, where both satellites belong to the same GNSS.
As in the raw observation processing approach all ambiguities are handled per frequency, double difference ambiguities
can also be formed for satellites k, l belonging to different GNSS, as long as they are transmitting signals on the same
carrier frequency.
Inter-System (IS) double difference ambiguities for Galileo and GPS and a common signal frequency i are formed from
raw observation float ambiguity estimates of receivers A, B, Galileo satellite Ek and GPS satellite Gl by

M EkGl
AB,i = M̂ Ek

A,i − M̂ Ek
B,i − M̂ Gl

A,i + M̂ Gl
B,i . (6.13)

The histogram of inter-system double difference ambiguity fractionals reveals whether raw observation float ambiguity
estimates from different GNSS can be combined consistently. A distorted shape of the fractional histogram and/or a
non-zero mean value indicate, that residual errors in the raw observation float ambiguity estimates from different GNSS
prevent the consistent combination of inter-system double difference ambiguities. In this case, the additional fixing of
inter-system double difference ambiguities to integer values might not be performed properly and might weaken the
overall solution.
Figure 6.4 shows an example of an inter-system double difference ambiguity fractional histogram for Galileo phase
observations on signals E1C and E5Q and GPS phase observations on signals G1C and G5Q. The histogram shows that
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the formation of double difference ambiguities between Galileo and GPS satellites does not provide any statistically
significant integer ambiguities for the combination of E5Q and G5Q. For the combination of E1C and G1C, the shape
of the histogram reveals a better consistency between raw observation float ambiguity estimates from Galileo and GPS,
however, the histogram shows a non-zero mean value.
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Figure 6.4: Inter-system double difference ambiguity fractional histogram based on
raw observation float ambiguity estimates for Galileo signals E1C and E5Q
and GPS signals G1C and G5Q.

In section 7.4.2 inter-system double difference ambiguity fractional histograms for Galileo, GPS and BeiDou and differ-
ent carrier frequency combinations are shown. The impact of the additional fixing of Galileo-GPS inter-system double
difference ambiguities to integer values on the precise orbit determination of GNSS satellites is analysed in section 7.4.3.

6.3 Undifferenced Raw Integer Ambiguities and Phase Biases

Raw observation float ambiguity estimates of the final iteration of the integer ambiguity resolution algorithm are referred
to as fixed raw ambiguities M̄ s

r,i , if they belong to a fixable double difference integer ambiguity. These fixed raw ambigui-
ties are assumed to include only phase biases in addition to the raw integer ambiguity and no or very little other residual
errors. Therefore, they are used to resolve undifferenced raw integer ambiguities and determine raw observation phase
biases for all involved frequencies.
As described in section 4.1.3, full cycles of phase biases are indistinguishable from integer values of the raw observation
ambiguity term and raw observation phase biases per receiver satellite link can therefore be defined as the fractional
value of the final raw observation float ambiguity estimates

δs
r,i = δ

s
i +δr,i = M̄ s

r,i − N IN T
�

M̄ s
r,i

�

, (6.14)

with the undifferenced raw integer ambiguity

N s
r,i = N IN T

�

M̄ s
r,i

�

. (6.15)

In order to make use of raw observation phase biases, determined with the described approach, for applications enabling
single receiver integer ambiguity resolution with multi-signal raw observations, satellite phase biases need to be deter-
mined from the link phase biases in (6.14). One option to separate satellite and receiver phase biases is to introduce a
zero-mean constraint per frequency or fix the phase bias for all signals of a selected reference receiver or satellite. How-
ever, this might cause similar issues as the zero-mean based determination of satellite code biases, described in section
7.1.2. Another option to separate satellite phase biases from the available phase biases per receiver satellite link (6.14),
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is to form between satellite Single Difference (SD) phase biases per receiver.
The between satellite SD phase bias on frequency i for satellites k and l determined from fixed raw observation ambiguity
estimates of receiver A are given by

δkl
i = δ

k
i −δ

l
i = δ

k
A,i −δ

l
A,i =

�

M̄ k
A,i − N k

A,i

�

−
�

M̄ l
A,i − N l

A,i

�

, (6.16)

where it is assumed that the raw observation receiver phase bias δA,i cancels in the between satellite single difference of
phase biases per receiver satellite link.
The stability of multi-frequency between satellite SD phase biases from fixed raw observation ambiguity estimates is
analysed in section 7.5.2. Aspects for the use of multi-frequency between satellite SD phase biases in single receiver
integer ambiguity resolution applications is discussed in section 7.5.3.
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7 Analyses, Results and Applications

This section describes the analyses performed in the course of this work together with the main results related to the
following objectives: Handling of physically meaningful GNSS code biases in multi-GNSS and multi-signal raw observa-
tion processing and integer ambiguity resolution based on multi-GNSS and multi-signal raw observation processing. The
first approach is used to demonstrate applications using multi-GNSS and multi-signal raw observations related to single
receiver absolute ionospheric delay estimation and GNSS system time and inter-system time offset determination. The
latter approach is applied to the problem of multi-GNSS precise orbit determination from a global network of receivers.

7.1 Multi-GNSS Multi-Signal Raw Observation Code Biases

As described in section 5.2.2, GNSS signal code biases need to be properly handled in multi-signal raw observation
processing. The proper handling of code biases in a physically meaningful way is especially important for multi-signal
applications related to ionosphere estimation and time transfer. Section 7.1.1 therefore describes the performed analyses
and calibrations of receiver system code biases, which is needed for the performed analyses and estimation of physically
meaningful GNSS satellite code biases in section 7.1.2. The achieved receiver and satellite code bias results are then
applied to single receiver absolute ionosphere estimation in section 7.2 and timing applications in section 7.3.

7.1.1 Receiver System Code Biases

Receiver system code biases are defined as signal dependent delays in all components of the receiver system, containing
of the receiving antenna, signal splitter, other hardware components like lightning protector and most important the
receiver itself. When signal dependent antenna offset corrections, as described in section 4.1.4 are applied to code
observations, the receiver system code biases should only contain residual signal dependent antenna delays. In order
to estimate physically meaningful navigation satellite code biases, receiver system code biases need to be determined.
The most consistent way of estimating navigation satellite code biases is to use a global GNSS receiver network with
identical receivers. ESA’s GNSS Observation Network (EGON) shown in Figure 7.1 is equipped with the same receiver
type and mostly with the same antenna. This setup makes receiver specific code bias calibration feasible and allows for
the estimation of physically meaningful satellite code biases.

Figure 7.1: ESA’s GNSS Observation Network (EGON) (Navigation Support Office, 2019)

Code Bias Calibration with GNSS Signal Simulator

For most multi-signal applications it is adequate to handle GNSS signal code biases in the form of differential code
biases with respect to a reference signal, as discussed in section 5.2.2. In order to separate receiver and satellite code
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biases without introducing additional zero-mean constraints in the estimation process, receiver differential code biases
are calibrated with a multi-GNSS and multi-signal simulator (Reckeweg et al., 2016, 2018).
The simulator was set up to generate signals of all four GNSS (Galileo, GPS, BeiDou, GLONASS) for a static position on
Earth with all constellations in the full nominal configuration. Signal dependent atmospheric effects were not simulated
and signal dependent satellite code biases and transmitting antenna offsets were set to zero. The difference between raw
code observations of different signals measured by a receiver directly connected to the multi-GNSS multi-signal simulator
is given by:

PSI M
r,Σia(t)− PSI M

r,Σ j b(t) = c · dr,Σia−Σ j b(t) + ε
s
r,Σia(t)− ε

s
r,Σ j b(t) . (7.1)

Equation (7.1) reveals that the described GNSS signal simulator setup allows to directly measure receiver specific differ-
ential code biases for all simulated GNSS signals. The receiver type deployed in EGON was used to measure differential
code biases for 14 different signals from four different GNSS. The measured raw code observation differences (7.1) for
simulated Galileo and GPS signals are shown in Figure 7.2, for simulated BeiDou and GLONASS signals they are shown
in Figure 7.3. Figures 7.2a, 7.2b and 7.3a for Galileo, GPS and BeiDou signals show constant receiver DCBs over the full
simulated time interval. The mean values and standard deviations of the calibrated receiver DCBs are summarised in
Table 7.1.
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Figure 7.2: EGON receiver specific differential code biases (DCBs) from simulated multi-signal GNSS raw observations.

Table 7.1: Differential code bias calibration values for the EGON receiver type determined from simulated multi-GNSS and
multi-signal raw observations, shown in Figures 7.2 and 7.3a.

GNSS DCB Mean Value

(in ns)

Galileo dr,E5Q−E1C 8.42± 0.1

dr,E7Q−E1C −1.61± 0.1

dr,E8Q−E1C 1.72± 0.2

GPS dr,G1W−G1C −0.07± 0.1

dr,G2W−G1C 0.48± 0.1

dr,G2L−G1C 0.46± 0.1

dr,G5Q−G1C 8.70± 0.1

BeiDou dr,C7I−C2I −1.11± 0.1

The measured raw code observation differences for GLONASS signals show as expected no constant receiver DCBs, as the
FDMA satellites do not transmit their signals at the same carrier frequency, as described in section 2.2.4. For consistency
reasons in the handling of GNSS signal code biases applied in this work, GLONASS satellites are therefore excluded in all
further analyses.
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Figure 7.3: EGON receiver specific differential code biases (DCBs) from simulated multi-signal GNSS raw observations.

To demonstrate the universal validity of the described receiver DCB calibration approach with simulated GNSS raw
observations and also to include the Galileo E6 signal, the DCBs of other receiver types were calibrated. Figure 7.4 shows
the measured raw code observation differences (7.1) for simulated Galileo and GPS signals of the receiver type used to
update the current EGON receivers in the near future. The mean values and standard deviations of the calibrated DCBs
for this receiver type are summarised in Table 7.2.
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Figure 7.4: Future EGON receiver specific differential code biases (DCBs) from simulated multi-signal GNSS raw observa-
tions.

Receiver System Code Bias Variations

During its lifetime, the receiver system DCBs might not be as constant, as it was shown in the calibration with simulated
GNSS raw observations. Multiple factors might impact the overall receiver system code bias values although the receiver
itself is not changed. The main important factors are: receiver firmware or software setting changes, temperature drifts
and splitter or antenna hardware changes.
Updates to the receiver firmware or software settings causing changes in the correlator settings might impact the re-
ceiver code biases as described in (Hauschild and Montenbruck, 2016), where it is shown that the satellite-dependent
inter-receiver differential bias RMS doubles for most of the analysed GPS, Galileo and BeiDou signals when multipath
mitigation is switched on for one of the receivers. Maximum values for the change in satellite-dependent inter-receiver
bias rms values due to a change of the correlator/multipath settings are approximately 7 cm - 12cm for GPS signals, 6 cm
for Galileo signals and 7cm - 10cm for BeiDou signals, indicating that the lowest code bias inconsistencies were found
for Galileo signals.

54



Table 7.2: Differential code bias calibration values for the future EGON receiver type determined from simulated multi-
GNSS and multi-signal raw observations, shown in Figure 7.4.

GNSS DCB Mean Value

(in ns)

Galileo dr,E5Q−E1C 0.07± 0.1

dr,E7Q−E1C −3.48± 0.1

dr,E8Q−E1C −2.01± 0.1

dr,E6C−E1C −4.39± 0.1

GPS dr,G1W−G1C −0.01± 0.1

dr,G2W−G1C 1.07± 0.1

dr,G5Q−G1C 0.42± 0.1

However, these results mainly show the impact on receiver code biases when different type of receivers with different
correlator settings are used. As only EGON receivers with identical settings are used in the code bias analysis of this
work, no differences in the receiver code biases discussed in (Hauschild and Montenbruck, 2016) are to be expected and
can therefore be neglected. As a result, the separation of signal code biases in a receiver-specific and satellite-specific
part performed in this work is a valid approach, as only identical receivers are used.

Electric components usually show temperature dependent behaviour, therefore it is likely that changes in the receiver
temperature also lead to changes in the receiver GNSS signal code biases. The impact of temperature drifts on receiver
code biases has been analysed in (Schönemann, 2014). It was shown that the temperature induced drift of differen-
tial code biases reaches maximum values of approximately 6mm ◦C−1 for the analysed GPS and Galileo signals. This
corresponds to a change in differential code biases of 1ns for a temperature change of at least 50 ◦C. Therefore, the
temperature effect on receiver code biases is neglected in the analysis performed in this work.

The impact of an additional signal splitter in the receiver system as well as the selection of the splitter output on receiver
DCBs was analysed with two different types of splitters. Both are 4-way passive multi-signal capable splitters, but from
different manufacturers.
The GNSS signal simulator scenario described above was used repeatably to measure multi-GNSS and multi-signal raw
observations with the EGON receiver connected to different signal splitters and splitter outputs. Figure 7.5 shows the
measured raw code observation differences for simulated Galileo and GPS signals with the receiver being connected to
each of the four outputs of the first splitter in test.
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Figure 7.5: Impact of the 4-way GNSS splitter type A output selection on receiver system differential code biases.

Figure 7.6 shows the measured raw code observation differences for simulated Galileo and GPS signals with the receiver
being connected to each of the four outputs of the second splitter in test.

55



7

8

9

10

11

12

0 1 2 3 4 5

d r
,E

5Q
−

E1
C

(i
n

ns
)

Time (in hours)

No Splitter
Splitter Output 1
Splitter Output 2
Splitter Output 3
Splitter Output 4

(a) Galileo signal receiver system DCB dr,E5Q − dr,E1C

−1

0

1

2

3

4

0 1 2 3 4 5

d r
,G

2W
−

G
1C

(i
n

ns
)

Time (in hours)

No Splitter
Splitter Output 1
Splitter Output 2
Splitter Output 3
Splitter Output 4

(b) GPS signal receiver system DCB dr,G2W − dr,G1C

Figure 7.6: Impact of the 4-way GNSS splitter type B output selection on receiver system differential code biases.

Table 7.3 summarises the mean values and standard deviations of the splitter and selected output dependent receiver
system DCBs. The analysis shows, that significant receiver system DCB differences up to 1.7ns were measured for Galileo
dr,E5Q−dr,E1C between different outputs of splitter A. For this splitter type, different signal outputs show different receiver
DCB measurements, which is most prominent for Galileo signals, shown in Figure 7.5a. The splitter output dependency
is not as pronounced for GPS dr,G2W −dr,G1C with receiver system DCB differences up to 0.9ns. Splitter B does not show a
signal output dependency on the measured receiver DCBs. Instead all splitter outputs induce a common receiver system
DCB offset with respect to the scenario without splitter of approximately 0.7 ns for Galileo dr,E5Q − dr,E1C and 0.4ns for
GPS dr,G2W − dr,G1C .

Table 7.3: Receiver system differential code bias dependency on selected splitter and signal output, determined from
simulated multi-GNSS and multi-signal raw observations, shown in Figures 7.5 and 7.6.

Splitter Output Mean Values Splitter A (in ns) Mean Values Splitter B (in ns)

dr,E5Q−E1C dr,G2W−G1C dr,E5Q−E1C dr,G2W−G1C

No Splitter 8.42± 0.1 0.48± 0.1 8.42± 0.1 0.48± 0.1

Output 1 9.75± 0.1 0.47± 0.1 9.29± 0.1 0.87± 0.1

Output 2 9.01± 0.1 1.35± 0.1 9.10± 0.1 0.90± 0.1

Output 3 8.09± 0.1 1.39± 0.1 9.07± 0.1 0.78± 0.1

Output 4 8.84± 0.1 1.14± 0.1 9.10± 0.1 0.81± 0.1

For the EGON receiver systems, identical splitters of type B are used and the selected splitter output is not changed.
Therefore, no splitter hardware induced differences in receiver system DCBs can be assumed. However, the fact that the
use of a splitter might induce receiver system DCB offsets with respect to not using any splitter needs to be accounted for
when applying the calibrated receiver DCBs from Table 7.1.

The relative impact of the receiving antenna with a certain Low Noise Amplifier (LNA) on receiver system DCBs was
analysed with real multi-GNSS and multi-signal raw observations, by manually switching the used antenna of a GNSS
test site at ESOC. Receiver system DCBs were estimated for the test site as well as other EGON sites in a common
adjustment. Figure 7.7 shows the impact of the antenna switch on day of year 2018-256. The estimated receiver system
DCBs of the test site show antenna induced differences of up to approximately 7 ns for dr,E7Q − dr,E1C , whereas estimated
receiver system DCBs of the EGON sites do not show any differences, as expected.

The EGON receiver network used for the analysis in section 7.1.2 did not exhibit any antenna change during the processed
time interval. Therefore, the relative impact of a receiving antenna switch on receiver system DCBs can be neglected in
the performed analysis. However, the fact that the receiving antenna with a certain LNA might induce receiver system
DCB offsets with respect to feeding the GNSS signals directly from a simulator to the receiver needs to be accounted for
when applying the calibrated receiver DCBs from Table 7.1.
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Figure 7.7: Impact of an antenna switch on estimated receiver system differential
code biases (DCBs) for different Galileo signals.

Calibration of Absolute Code Biases with Real Data

The calibration of absolute raw observation code biases is only required for timing applications. The common processing
approach however, is based on the ionosphere-free linear combination of dual-frequency observations, and therefore only
the IF combination of dual-frequency absolute code biases needs to be applied in conventional timing applications. In
order to use multi-GNSS and multi-signal raw observations for GNSS system time offset analyses shown in section 7.3,
absolute receiver system code biases need to be determined for all processed GNSS and signals.
For the operational ESOC timing laboratory, contributing with two hydrogen masers to the derivation of UTC, absolute
code bias calibration values are available for the used GNSS timing receiver. This EGON type receiver has been calibrated
at Physikalisch-Technische Bundesanstalt (PTB) for GPS only code signals G1W and G2W, which are commonly used in
the IF linear combination, as described above.

Table 7.4: Multi-GNSS multi-signal absolute code bias calibration values for the ESOC timing receiver used in the time offset
analyses in section 7.3.

GNSS Code Bias Calibration Value

(in ns)

Galileo dr,E1C 80.70

dr,E5Q 87.24

dr,E7Q 79.46

dr,E8Q 81.44

GPS dr,G1W 80.70

dr,G2W 79.45

dr,G1C 80.70

dr,G5Q 86.72

BeiDou dr,C2I 80.70

dr,C7I 79.83

Analyses have shown, that the receiver code bias of Galileo signal E1C is very close to the GPS signal G1W receiver code
bias, with a difference not exceeding 1 ns (Defraigne et al., 2013), which was confirmed in (Elwischger et al., 2013) and
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(Fonville et al., 2012). The similarity of these receiver code biases was assumed for the antenna as well (Defraigne et al.,
2013). In order to process multi-GNSS and multi-signal raw observations, the GPS signal absolute calibration values are
therefore used together with the calibrated DCBs in Table 7.1, to infer absolute receiver system code biases for Galileo
and BeiDou signals.
Table 7.4 shows the calibrated absolute GPS signal code biases together with the determined multi-GNSS multi-signal
absolute code biases, which were used in the multi-GNSS system time offset analyses in section 7.3.

7.1.2 GNSS Satellite Code Biases

The main goal of determining receiver system code biases in section 7.1.1 was to enable the estimation of physically
meaningful navigation satellite code biases. The proper handling of receiver and physically meaningful satellite code
biases is crucial for applications involving multiple GNSS and signals, like absolute ionosphere estimation and timing
applications based on the raw observation processing approach as demonstrated in sections 7.2 and 7.3 and described in
(Reckeweg et al., 2018). The subject of physically meaningful code biases will be of importance for future multi-GNSS
and multi-signal applications based on receiver code bias calibrations, as the use of currently available satellite bias
products can introduce significant inconsistencies.
This section describes and discusses satellite code bias products based on the conventional code bias determination
approach, described in section 5.1.1, and presents the results of the estimation of physically meaningful multi-GNSS
multi-signal satellite code biases performed in this work. As argued in section 5.2.2, it is adequate to handle GNSS
signal code biases in the form of differential code biases with respect to a reference signal, which is also the case for the
conventional satellite code bias determination approach.

Satellite code biases determined with the conventional approach d̃s
ia− j b, described in section 5.1.1, deviate from the

physical satellite DCB ds
ia− j b by the constellation DCB mean value. Due to this re-definition of satellite DCBs, a change

in the satellite constellation, ie. increasing or decreasing number of satellites or a change in the code bias of a single
satellite, impacts the estimated DCBs of all satellites. Conventional satellite code bias products therefore show occasional
common jumps for all satellite DCBs, which are processing artefacts mostly caused by satellites joining or leaving the
constellation. Although these jumps can be seen in the satellite DCB time series, they have no physical meaning as
the individual satellite on-board hardware bias did not change. This motivated the estimation of so called physically
meaningful satellite DCBs with the multi-GNSS and multi-signal raw observation processing approach, described below.

Broadcast Satellite Group Delays

All GNSS satellites transmit so called satellite group delay (SGD) parameters as part of their navigation message, also
referred to as BGD (Galileo OS SIS ICD, 2016; IS-GPS-200, 2015; BeiDou OS SIS ICD, 2016). As described in section
5.1.1, the main reason for the transmission of SGDs is to enable PVT services for single-frequency users, nevertheless
these group delays could also be used for GNSS raw observation processing. For Galileo and GPS the definition of
satellite BGDs is not equivalent to satellite differential code biases, however, BGDs can be transformed to satellite DCBs
as shown in (5.14).
Figure 7.8 shows the DCBs d̃s

E1−E5a derived from satellite BGDs of signals E1 and E5a for different Galileo satellites for
about 2.5 years. The time series shows significant jumps in the DCBs of all satellites at common points in time. This
clearly indicates the zero-mean approach used by the Galileo control centre to generate satellite BGD values. An exception
are the two jumps for satellite PRN numbers E18 (between 2019-048 and 2019-058) and E14 (between 2019-076 and
2019-083). As these were intentional changes of the individual satellite code biases, manually induced by the Galileo
control centre, the satellite BGDs of only those two satellites show the respective change. Apparently, these two satellite
code bias jumps were accounted for in the determination of the satellite BGDs of all other satellites. This however, was
not the case for other satellite code bias products, as can be seen in Figure 7.11 and will be discussed below. The DCB
values derived from satellite BGDs for the IOV satellites deviate from the measured calibration values in (GSA, European
GNSS Agency, 2019a) by up to 6ns, as shown in Table 7.5.
A similar behaviour of the satellite BGD time series can be seen for other GNSS, indicating that all system provider apply
the zero-mean approach to determine broadcast satellite group delays. Figure 7.9a shows the DCBs d̃s

L1P(Y )−L2P(Y ) derived
from satellite BGDs of signals L1P(Y) and L2P(Y) for different GPS satellites. It can be seen that the zero-mean constraint
applied for GPS satellites does not introduce huge jumps of satellite BGDs, which is mainly due to the fact that the GPS
constellation is not changing significantly and it contains more satellites than Galileo or BeiDou. The change of GPS
satellite DCB for PRN number G18 around 2018-022 is due to the fact, that the PRN number was assigned from satellite
vehicle number GPS-054 to GPS-034. Figure 7.9b shows the DCBs d̃s

B1I−B3I derived from satellite BGDs of signals B1I and
B3I for different BeiDou satellites.
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Figure 7.8: Galileo IOV and FOC satellite DCBs d̃s
E1−E5a, derived from broadcast satellite group

delays for signals E1/E5a.
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Figure 7.9: Satellite DCBs derived from satellite broadcast group delays.
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Realignment of Galileo Satellite BGDs

Galileo is the only GNSS which provides satellite group delays measured on-ground by the spacecraft manufacturer
(GSA, European GNSS Agency, 2019a), see values in Table 5.3. These measured SGD calibration values, provided for the
Galileo IOV satellites, allow to generate physically meaningful DCBs for all Galileo satellites, by realigning the satellite
BGDs.
The realignment is done by splitting the whole satellite BGD time series in intervals without jumps and then perform the
following steps for each time interval:

• Compute the DCB mean value for each IOV satellite with s ∈ [E11, E12, E19] and the number of epochs N in a
certain time interval t i ∈ [t1, . . . , tN ]

d̄s = 1/N
∑N

i=1 ds(t i)

• Compute the difference between determined IOV satellite DCB mean value and calibration value from (GSA,
European GNSS Agency, 2019a) with s ∈ [E11, E12, E19]

∆ds = d̄s − ds
cal

• Compute the realignment value as the mean of the IOV deviations from the calibration values with
s ∈ [E11, E12, E19]

∆drealgn = 1/3
∑

s∆ds

• Apply the realignment value to all Galileo satellites to generate physically meaningful DCBs

ds
E1−E5a = d̃s

E1−E5a −∆drealgn

As shown in Figure 7.10, the realignment of Galileo satellite BGDs with IOV satellite group delay calibration values
generates physically meaningful DCBs for all Galileo satellites and removes all jumps in the Galileo satellite DCB time
series.
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Figure 7.10: Galileo IOV and FOC satellite DCBs derived from broadcast satellite group delays for signals E1/E5a.

The realignment values computed from Galileo IOV satellite BGDs and the corresponding DCB calibration values are
given in Table 7.5.

Available Satellite Code Bias Products

In addition to the broadcast satellite group delays, other multi-GNSS multi-signal satellite code bias products have been
analysed. DLR and CAS both provide multi-GNSS DCB products derived from observations of the IGS Multi-GNSS
Experiment (MGEX) network (Montenbruck et al., 2017), available from (CDDIS, Crustal Dynamics Data Information
System, 2019a). Both centres determine daily DCB solutions and apply a zero-mean condition per satellite constellation
to separate satellite- and receiver-specific differential code biases. Details of the DCB estimation process used by DLR are
described in (Montenbruck et al., 2014), whereas Wang et al. (2016) and Li et al. (2012) provide a description of the
method used by CAS.
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Table 7.5: Galileo satellite BGD realignment values to generate physically meaningful satellite DCBs and remove jumps in
the time series of Galileo satellite DCBs derived from broadcast satellite group delays.

Time Interval Realignment value

(in Year-DOY) ∆drealgn (in ns)

2017-001 - 2017-081 6.49± 0.45

2017-082 - 2017-164 5.64± 0.35

2017-166 - 2017-348 5.07± 0.38

2017-351 - 2018-086 5.49± 0.40

2018-088 - 2018-148 3.81± 0.44

2018-152 - 2018-330 5.17± 0.44

2018-335 - 2019-120 4.87± 0.42

Figure 7.11 shows the daily Galileo satellite DCB estimates d̃s
E1C−E5Q from DLR for the same Galileo satellites and time

interval as used for the satellite BGDs. Compared to DCBs derived from satellite BGDs in Figure 7.8, the daily satellite
DCB estimates show different but still common jumps for all satellites in the time series and an agreement of the DCB
values within 1ns for most of the analysed time interval. Comparing the DCB estimates of the IOV satellites with the
calibration values in (GSA, European GNSS Agency, 2019a) however, reveals that the Galileo satellite DCB estimates are
offset with respect to the measured values on-ground by approximately 6ns. In addition, the intentional changes of the
satellite BGDs for satellite PRN numbers E14 and E18 in the beginning of 2019, lead to significant jumps of all Galileo
satellite DCBs. It should be emphasised, that the status of the two Galileo satellites in eccentric orbit GSAT0201 (E18)
and GSAT0202 (E14) is set to testing and they are not part of the usable Galileo constellation. The fact that a change
of the satellites under test impacts satellite code biases of all active Galileo satellites is questionable and particular care
must be taken when making use of these satellite code bias products.
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Figure 7.11: Galileo satellite d̃s
E1C−E5Q DCB estimates by DLR (Daily IGS MGEX DCB solutions in

Bias-SINEX format) from (CDDIS, Crustal Dynamics Data Information System, 2019a).

Figure 7.12 shows the daily GPS and BeiDou satellite DCB estimates from DLR for d̃s
G1C−G2W and d̃s

C2I−C6I respectively and
for the same satellites and time interval as for the satellite BGDs in Figure 7.9. As for the broadcast values the zero-mean
constraint applied for GPS satellites does not introduce huge jumps of satellite DCBs, whereas for BeiDou significant
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jumps are visible for all shown satellites. The change in satellite DCB for PRN number G18 around 2018-022 is due to
the fact, that the PRN number was assigned from satellite vehicle number GPS-054 to GPS-034, whereas a second change
can be identified around 2018-320, which potentially is due to a hardware change on-board the satellite. Both changes
are too small to have a significant impact on the estimation of other GPS satellite DCB values.
Unlike Galileo, the GPS and BeiDou satellite DCB estimates from DLR do not agree with the DCBs derived from satellite
BGD values and deviate by up to 6 ns for GPS and 8ns for BeiDou. It should be noted however, that for GPS satellites
different signal combinations are compared, as DLR does not provide the satellite DCBs d̃s

G1W−G2W . However, as DCBs
between signals on the same carrier frequency, e.g. d̃s

G1C−G1W , typically are on the 1-2 ns level only (CDDIS, Crustal
Dynamics Data Information System, 2019a), a deviation of up to 6ns for the GPS DCBs indicates a significant offset to
the DCBs derived from satellite BGD values.
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Figure 7.12: Satellite DCB estimates by DLR (Daily IGS MGEX DCB solutions in Bias-SINEX format) from (CDDIS, Crustal
Dynamics Data Information System, 2019a).

Satellite Code Bias Estimation with Raw Method

The estimation of physically meaningful multi-GNSS multi-signal satellite code biases performed in this work is based on
the raw observation processing approach with GNSS observation data from ESA’s GNSS Observation Network (EGON),
shown in Figure 7.1. As described in section 5.2.2 GNSS signal code biases are handled in the form of differential code
biases with respect to a reference signal. However, besides fixing the reference signal absolute code bias to zero, all
satellite code biases are estimated free, without additional (zero-mean) constraints.
As GNSS raw observation contain the sum of satellite- and receiver-specific code biases, calibrated receiver differential
code biases are used to separate satellite and receiver code biases. The receiver DCBs however, are not fixed to the values
measured in section 7.1.1. In order to allow for variations of the estimated receiver system DCB values with respect to
the calibration values, the receiver code bias parameters are constrained with a standard deviation of 1ns, as described
in section 5.3.5. Residual ionosphere slant Total Electron Content (TEC) values are estimated with respect to applied
ionospheric delays from IONEX files, generated by ESOC.

Figure 7.13 shows the physically meaningful Galileo satellite DCBs ds
E1C−E5Q for the same Galileo satellites and time

interval as used before, estimated with the raw observation processing approach.
Compared to DCBs derived from satellite BGDs and the DCB product from DLR in Figures 7.8 and 7.11, the daily satellite
DCBs estimated with the raw observation processing approach do not show common jumps for all satellites in the time
series, but a constant DCB value for most satellites with stabilities of 0.2 ns - 0.5 ns. The estimated DCB values for the
IOV satellites agree with the measured calibration values in (GSA, European GNSS Agency, 2019a) within 1ns, which is
also true for the estimated DCB values of all Galileo satellites with respect to the realigned satellite DCBs derived from
satellite BGDs shown in Figure 7.10b. This motivates to use the term physically meaningful satellite DCBs and confirms
the consistency of the applied receiver system DCB calibration values determined in section 7.1.1 and the estimated
residual ionosphere slant TEC values.

Figure 7.13 also reveals, that the intentional changes of the satellite BGDs for satellite PRN numbers E14 and E18 in
the beginning of 2019 do not impact the estimation of other Galileo satellite DCBs, when the raw observation process-
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Figure 7.13: Galileo satellite ds
E1C−E5Q DCB estimates based on the raw observation processing

approach with constrained EGON receiver DCBs and estimated residual ionospheric
delays.

ing approach described above is used. However, the manually induced jumps of the two Galileo satellite BGD values
can properly be determined. It should be noted, that several points have to be considered when comparing estimated
physically meaningful Galileo IOV satellite DCBs with the measured calibration values. For the comparison it is not clear
which on-board subsystem ("primary" or "redundant") was active during the analysed time interval and whether a switch
happened from one to the other. On-ground measurements of the IOV DCBs ds

E1−E5 deviate for the two subsystems by up
to 1.4 ns (GSA, European GNSS Agency, 2019a). Another issue is the fact that on-ground measurements of the IOV DCBs
are only available for the frequency bands E1, E5 and E6, without specifications for E5a and E5b. The last point is that
aging effects of the measured DCBs for IOV satellites launched in 2011/2012 are ignored.

Still, the fact that the described raw observation processing approach could be used to estimate physically meaningful
IOV satellite DCBs close to the measured calibration values in (GSA, European GNSS Agency, 2019a), supports the use
of this method to also estimate physically meaningful DCBs for the other Galileo satellites, satellites of other GNSS and
other signals.

Figure 7.14 shows the physically meaningful GPS and BeiDou satellite DCBs ds
G1C−G2W and ds

C2I−C7I respectively for the
same satellites and time interval as used before, estimated with the raw observation processing approach. The daily
estimates show constant satellite DCBs for most of the time interval. An exception are the DCB estimates of GPS satellite
PRN number G18 and the BeiDou IGSO satellites in the end of 2018. The change in satellite DCB for PRN number G18
around 2018-022 is due to the fact, that the PRN number was assigned from satellite vehicle number GPS-054 to GPS-034,
whereas the second change around 2018-320 potentially is due to a hardware change on-board the satellite. Whereas
BeiDou MEO satellites (C11, C12 and C14) were not affected, BeiDou IGSO satellites were tracked by only one EGON
receiver during days 2018-317 - 2018-330. This lead to an increase of the estimated satellite DCBs of approximately 2ns
and demonstrates the importance of using a network of receivers with calibrated DCB values.

As no measured calibration values of GPS and BeiDou satellites are available from the GNSS service providers, no
independent validation of the estimated physically meaningful satellite DCBs can be performed, as it was done for
Galileo.

The mean and standard deviation values of all estimated physically meaningful satellite DCBs shown in Figures 7.13 and
7.14 are given in Table 10.7. Estimates of physically meaningful satellite DCBs for other signals are shown in appendix
section G.

63



−10

−5

0

5

10

15

20

2017-001
2017-091

2017-182
2017-274

2018-001
2018-091

2018-182
2018-274

2019-001
2019-091

2019-182
2019-274

Block IIR

Block IIR

Block IIR-M

Block IIA

Block IIF

Sa
te

lli
te

D
C

B
(i

n
ns

)

Time (in Year-DOY)

G01
G02
G03
G05
G06
G07
G08
G09
G10
G18

(a) GPS satellite DCB ds
G1C−G2W

−10

−5

0

5

10

15

20

25

2017-001
2017-091

2017-182
2017-274

2018-001
2018-091

2018-182
2018-274

2019-001
2019-091

2019-182
2019-274

Sa
te

lli
te

D
C

B
(i

n
ns

)

Time (in Year-DOY)

C06
C07
C08
C09
C10
C11
C12
C13
C14

(b) BeiDou satellite DCB ds
C2I−C7I

Figure 7.14: Satellite DCB estimates based on the raw observation processing approach with constrained EGON receiver
DCBs and estimated residual ionospheric delays.

7.2 Ionospheric Delay Estimation

The estimation of slant ionospheric delay STEC parameters as an atmospheric research application is used to demonstrate
and motivate the use of physically meaningful GNSS signal code biases. As described in section 5.2.3, in the raw method
STEC parameters are estimated per processing epoch from multi-signal raw observations.
The estimation of physically meaningful ionospheric delays, also referred to as unbiased or absolute ionosphere estima-
tion is based on constraining receiver DCBs to the calibrated values determined in section 7.1.1. In addition, physically
meaningful satellite DCBs, derived in section 7.1.2, are applied. The impact on the ionospheric delay estimation when
using satellite DCBs determined with zero-mean constraint instead is analysed (cf. Reckeweg et al., 2017).
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(a) STEC estimates for Galileo satellite PRN numbers E01, E07
and E09 based on multi-frequency raw observations.
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(b) STEC estimates for GPS satellite PRN numbers G01, G03, G10
and G24 based on triple-frequency raw observations.

Figure 7.15: Ionospheric delay estimates from multi-frequency raw observation processing compared to STEC values de-
rived from IONEX files generated at ESOC.

Figure 7.15 shows the absolute ionosphere STEC estimates for an EGON type GNSS receiver at ESOC and different Galileo
and GPS satellites, determined from multi-signal raw observations. The ionosphere estimates with applied physically
meaningful and zero-mean satellite DCBs are compared to STEC values derived from an IONEX file, generated at ESOC.
The Figures show, that STEC estimates from multi-signal raw observations determined with applied physically meaningful
satellite DCBs agree well with the values derived from the IONEX file. The use of zero-mean constrained satellite DCBs
leads to offsets in the ionospheric delay estimation. In the case of GPS this even leads to the estimation of negative STEC
values, which is physically impossible, as the slant total electron content is defined as the number of electrons within a
certain cross-section along the signal path, described in section 4.1.4.
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Figure 7.16 shows the absolute ionosphere STEC estimates for the same receiver at ESOC and different GPS and BeiDou
satellites, determined from dual-signal raw observations only. In principle the Figure also shows, that STEC estimates
with applied physically meaningful satellite DCBs agree quite well with STEC values derived from the IONEX file and
using zero-mean constrained satellite DCBs leads to physically impossible estimates. However, Figure 7.16 also shows
that using only dual-frequency raw observations leads to STEC estimates, which do not agree as well with the reference
STEC values derived from the IONEX file, compared to estimates from multi-frequency raw observations in Figure 7.15.
In addition, the estimation of ionospheric delays for BeiDou satellites shows an increased noise compared to Galileo and
GPS, which is partly reflected in the higher code observation residuals shown in Figure 7.19b. The increased noise for
the left and centre satellite passes shown in Figure 7.16b might also reflect, that these are IGSO satellites, whereas the
satellite pass on the right with lower noise belongs to a MEO satellite.
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(a) STEC estimates for GPS satellite PRN numbers G11, G12 and
G13.
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(b) STEC estimates for BeiDou satellite PRN numbers C07, C12
and C13.

Figure 7.16: Ionospheric delay estimates from dual-frequency raw observation processing compared to STEC values de-
rived from IONEX files generated at ESOC.

7.3 GNSS Time Offset Analysis

The determined multi-GNSS multi-signal absolute code bias values shown in Table 7.4 were used to demonstrate the
application of estimating GNSS system time and inter-system time offsets (Inter-System Time Offset (ISTO)) with the
raw observation processing approach. This analysis is based on Galileo, GPS and BeiDou broadcast satellite orbits and
clock offsets, as only these products refer the satellite clock offsets to the respective GNSS system time. In conventional
multi-GNSS orbit and clock products all values are referred to a common time scale. Theoretically, these products could
also be used to derive inter-system time offsets, however, due to the conventional way of handling ionosphere-free signal
biases, the derived ISTO would not describe the actual offset between GNSS system times, as described in section 7.3.2.

7.3.1 System Time Offset to UTC

The GNSS system time offset relative to UTC is computed from receiver clock offset estimates, determined with the raw
observation processing approach. multi-GNSS and multi-signal raw observations were used with applied absolute code
bias calibration values for an EGON type timing receiver at ESOC, physically meaningful GNSS satellite DCBs, determined
in section 7.1.2 and estimated absolute ionospheric delays. For BeiDou, determined physically meaningful GNSS satellite
DCBs could not be used in this analysis, as the BeiDou broadcast satellite clock offsets refer to signal B3I, as described in
section 5.1.1 and (BeiDou OS B3I SIS ICD, 2018). As no simulated BeiDou B3I signals were available, no receiver DCBs
could be calibrated relative to signal B3I. Therefore, satellite BGD values were used instead to determine BeiDou system
time offset relative to UTC. These are the BGD values, users would have to apply for BeiDou timing applications based
on the standard single-frequency or dual-frequency ionosphere-free processing approach. For Galileo and GPS, the us-
age of broadcast satellite orbits and clock offsets determined with the conventional ionosphere-free processing approach
prevent the direct usage of determined physically meaningful satellite DCBs. The applied satellite DCBs therefore need
to be modified into pseudo-absolute code biases, as described in section 5.2.4.

The determination of GNSS system time offset relative to UTC is based on clock offset estimates of an EGON type timing
receiver. This timing receiver is connected to a steered hydrogen maser, which defines the physical time realisation
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UTC(ESOC). For clock offsets determined relative to each GNSS system time scale τΞ with Ξ ∈ [GST, GPST, BDT] the
following steps are performed:

• Compute the daily receiver clock offset mean value with the number of processing epochs per day N and
t i ∈ [t1, . . . , tN ]

d tESOC ,Ξ = 1/N
∑N

i=1 d tESOC ,Ξ(t i)

• The clock offset mean value represents the daily offset between the local time realisation and GNSS system time,
as described in section 3.2.5

d tESOC ,Ξ = τU T C(ESOC) −τΞ

• Align the daily clock mean values to UTC by applying the offset between UTC and the physical time realisation
UTC(ESOC), derived from the so called BIPM Circular T (BIPM, Bureau International des Poids et Mesures, 2019a)

τΞ −τU T C = −
�

d tESOC ,Ξ +
�

τU T C −τU T C(ESOC)

�

�

It should be noted, that leap seconds have been accounted for in addition in order to be consistent with the initial
definition of the different GNSS system times, shown in Figure 3.1. Figure 7.17 shows the GNSS system time offsets
with respect to UTC (modulo 1 second) for Galileo (GST = τGST − τU T C), GPS (GPST = τGPST − τU T C) and BeiDou
(BDT = τBDT −τU T C), determined with the raw observation processing approach from multi-GNSS and multi-signal raw
observations. Absolute calibrated timing receiver code biases from Table 7.4 and satellite DCBs determined in 7.1.2 were
applied and the absolute slant ionospheric delay was estimated.
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Figure 7.17: GNSS system time offset with respect to UTC determined with the raw observation
processing approach from multi-GNSS and multi-signal raw observations.

Figure 7.17 shows, that for most of the analysed time interval GST and GPST stay within ±10 ns relative to UTC, whereas
BDT deviates up to 60ns. As discussed before, satellite BGD values were used instead of determined physically mean-
ingful satellite DCBs for BeiDou. This however, can not explain the huge offset determined for BDT relative to UTC. As
the daily code observation residual mean values for BeiDou signals shown in Figure 7.19b are reasonable, as are the
estimated absolute ionospheric delays shown in Figure 7.16b, it may be concluded that the BeiDou system time has a
mean offset relative to UTC of approximately 40ns after day 2017-130.
The analysis also shows that around day 2018-146, Galileo system time encountered an unusual peak, which indicates a
malfunction in the time transfer of the not yet fully operational GNSS. Events like that motivate the independent moni-
toring of different GNSS system times for multi-GNSS applications as demonstrated with the raw observation processing
approach.
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Figure 7.18: Galileo code observation residual RMS daily mean values for
the EGON type timing receiver used to estimate the GNSS
system times.

Figure 7.18 and 7.19 show the multi-GNSS and multi-signal code observation residual RMS daily mean values for the
EGON type timing receiver used to estimate the GNSS system times.
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Figure 7.19: Code observation residual RMS daily mean values for the EGON type timing receiver used to estimate the
GNSS system times.

The general code residual RMS level for all GNSS and signals is below 0.5m, however, for Galileo and BeiDou signals
more outlier are visible compared to GPS signals. The GPS signals show code residual RMS values around 27 cm, whereas
BeiDou signal code residuals have an RMS mean value of 38cm. Galileo signal code residuals are comparable to GPS
except for the Galileo E5 AltBOC signal, which shows an RMS mean value of only 17cm.

7.3.2 Inter-System Time Offset

Inter-System Time Offset (ISTO) is the general term for the system time difference between two GNSS. The inter-system
time offset is crucial for multi-GNSS applications in combination with the GNSS broadcast satellite orbits and clocks,
which all refer to their own GNSS system time.
To support multi-GNSS application, the difference between GST and GPST, referred to as Galileo-GPS Time Offset
(GGTO) is broadcast in the Galileo navigation message. The GPGA parameter retrieved from mixed broadcast navi-
gation RINEX files (CDDIS, Crustal Dynamics Data Information System, 2019b) refers to the Galileo minus GPS time
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offset and was used as reference value in the GGTO analysis. It should be noted, that in RINEX 3.04, the label of the
parameter was changed to GAGP, but its value still refers to the Galileo minus GPS time offset.
The Galileo and GPS system time offsets relative to UTC, determined in section 7.3.1 were used to compute the GGTO
based on the raw observation processing approach with absolute ionospheric delay estimates. In addition, the GGTO
was determined with residual ionospheric delay estimates, constrained with respect to applied ionospheric delays from
IONEX files generated by ESOC to demonstrate the impact of absolute ionospheric delay estimation.
In conventional multi-GNSS precise satellite orbit and clock products generated with the ionosphere-free processing
approach, all satellite clock offsets are referred to a common time scale and the ISTO is lumped together with receiver
dependent IF signal code biases and estimated as the so called ISB. The ISB between Galileo and GPS determined with
receiver r and ionosphere-free observables Gi [e.g. GPS IF(G1W,G2W)] and E j [e.g. Galileo IF(E1C,E5Q)] can be defined
as

ISBr,E j Gi
(t) = GGTO(t) + dr,E j

(t)− dr,Gi
(t) , (7.2)

where dr,X (t) is the ionosphere-free linear combination X of the corresponding receiver code biases, as defined in (4.64).
The ISB therefore is not (only) a time offset between two different GNSS and without knowledge of the receiver IF signal
code biases, the parameter is not physically meaningful, especially for timing applications.
Figure 7.20 shows GPGA values of the Galileo navigation message, retrieved from mixed broadcast navigation RINEX files
together with GGTO values computed from GNSS system time offsets relative to UTC, determined with the raw method
as shown in section 7.3.1. In addition the GGTO values inferred from the standard multi-GNSS solution generated at
ESOC based on the conventional dual-frequency ionosphere-free (IF) processing approach are shown.
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Figure 7.20: Galileo-GPS time offset (GGTO) comparison between GPGA parameter in mixed
broadcast navigation RINEX files, computed GGTO values based on the raw method
with absolute or residual ionospheric delay estimates and GGTO values computed
from precise multi-GNSS ionosphere-free (IF) satellite clock products.

The GGTO values based on the raw observation processing approach are less noisy than the GPGA values from mixed
broadcast navigation RINEX files, while the time offset values agree well for most of the analysed time interval. The
raw observation processing approach can therefore be used to determine physically meaningful GGTO values from multi-
signal raw observations with applied absolute code bias calibration values, physically meaningful GNSS satellite DCBs
and estimated ionospheric delays. The two different raw observation processing approaches almost show identical re-
sults, demonstrating that the absolute estimation of ionospheric delays has no negative impact on the results compared
to applying ionospheric delays from IONEX files. The GGTO values inferred from multi-GNSS precise satellite clocks
generated with the conventional ionosphere-free processing approach however, show an almost constant offset of ap-
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proximately 8ns to the GGTO values determined with the other methods. This confirms the existence of additional
receiver- and signal-specific biases in these GGTO values, as described in the ISB definition (7.2).

7.4 Multi-GNSS Precise Orbit Determination with Fixed Raw Carrier Phase Ambiguities

The integer ambiguity resolution approach based on multi-GNSS and multi-signal raw observation processing imple-
mented in the course of this work and described in section 6, is applied to precise orbit determination of multi-GNSS
satellites with raw observation data from global receiver networks. The general performance of the integer ambiguity
resolution approach is analysed by comparing determined multi-GNSS satellite orbits of float ambiguity and fixed ambi-
guity solutions. In addition results are compared to available products from IGS and multi-GNSS products from ESOC,
both based on the conventional ionosphere-free dual-frequency processing and ambiguity fixing approach, described in
section 5.1. The performance of the integer ambiguity resolution approach based on multi-GNSS and multi-signal raw
observation processing is compared among the individual GNSS and for different signals and the impact of introducing
inter-system integer ambiguity resolution is analysed.

7.4.1 Global Network Adjustment

Different global GNSS receiver networks have been used in this analysis, all based on a selection of EGON receivers and
additional IGS stations. The receiver selection for the three different networks is based mostly on geometry to obtain a
well distributed global network. For the first network, the number of receivers was limited to 100 stations (labeled GE∗100)
with a typical network geometry shown in Figure 7.21a, which includes some receivers tracking only GPS signals. For the
other two networks used in the analysis, the selection was limited to receivers tracking (at least) both GPS and Galileo
signals, whereas one network consists of 100 receivers (labeled GE100) and another network consists of 60 receivers
(labeled GE60), shown in Figure 7.21b.
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(a) Network with 100 receivers, some tracking only GPS signals
(GE∗100)
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Figure 7.21: Global receiver networks used for the analyses of multi-GNSS precise orbit determination with integer ambi-
guity resolution based on raw phase observations.

Table 7.6 summarises the different scenarios used in the multi-GNSS POD analysis with carrier phase integer ambiguity
resolution. The first two scenarios (#1 and #2) serve as reference as they employ the conventional ionosphere-free (IF)
processing approach, based on dual-frequency IF code and phase observations and Melbourne-Wuebbena observations.
The carrier phase ambiguity resolution is based on the combination of widelane (WL) and narrowlane (NL) ambiguities,
as described in section 5.1.3.
All other scenarios employ the raw method, based on multi-GNSS and multi-signal code and phase raw observations with
a maximum of eleven signals from three different GNSS in scenario #9. The carrier phase ambiguity fixing for these
scenarios is based on raw float ambiguities, as described in section 6, whereas in scenario #4 Galileo-GPS inter-system
raw ambiguities for signals E1C/G1C and E5Q/G5Q have been fixed in addition.
The impact of the selected receiver network is analysed by comparing the results of scenarios #3, #5 and #6, whereas
the single-GNSS scenarios (#7 and #8) are used to investigate potential differences to multi-GNSS scenarios.
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Table 7.6: Summary of the analysed scenarios for multi-GNSS POD with fixed raw carrier phase ambiguities.

#
Processing Rec. Network

GNSS Used Observations
Ambiguity

Approach (#Stations) Resolution

1 IF GE60
Galileo IF(E1C, E5Q), MW(E1C, E5Q)

WL + NL
GPS IF(G1W,G2W), MW(G1W,G2W)

2 IF GE100
Galileo IF(E1C, E5Q), MW(E1C, E5Q)

WL + NL
GPS IF(G1W,G2W), MW(G1W,G2W)

3 RAW GE60
Galileo E1C, E5Q, E7Q, E8Q, E6C

RAW
GPS G1C, G2W

4 RAW GE60
Galileo E1C, E5Q, E7Q, E8Q, E6C

RAW + IS (1C)
GPS G1C, G2W

5 RAW GE100
Galileo E1C, E5Q, E7Q, E8Q, E6C

RAW
GPS G1C, G2W

6 RAW GE∗100

Galileo E1C, E5Q, E7Q, E8Q, E6C
RAW

GPS G1C, G2W

7 RAW GE100 Galileo E1C, E5Q, E7Q, E8Q, E6C RAW

8 RAW GE100 GPS G1C, G2W RAW

9 RAW GE100

Galileo E1C, E5Q, E7Q, E8Q, E6C

RAWGPS G1C, G2W, G5Q

BeiDou C2I, C6I, C7I

Table 7.7 summarises the basic parameter setup used in the multi-GNSS POD analysis with carrier phase integer ambiguity
resolution and reveals the differences between conventional dual-frequency ionosphere-free processing and the raw
method with multi-signal raw observations. The symbol Øindicates that a parameter is estimated, whereas brackets
specify the constraint on the parameter, as described in section 5.3.5. The symbol ∅ indicates that the parameter is
ignored in the LSQ adjustment.

Table 7.7: Summary of the parameter setup used in the multi-GNSS POD analyses with fixed raw carrier phase ambiguities.

Processing rr r s d t r d t s d t ros
r,wg ST EC s

r dr ds ISB N s
r EOP SRP

Approach d−1 d−1 e−1 e−1 h−1, d−1 e−1 d−1 d−1 d−1 p−1 d−1

IF Ø(1 cm) Ø Ø Ø Ø(2 m) ∅ ∅ ∅ Ø(wrt. GPS) Ø Ø Ø
RAW Ø(1 cm) Ø Ø Ø Ø(2 m) Ø Ø Ø ∅ Ø Ø Ø

The used global receiver networks are composed of multiple different receiver types for which no calibration values of
the receiver DCBs are available. Therefore, as a trade-off to improve robustness, the receiver code biases dr,Σia of the
first two signals for the first GNSS are fixed to zero, while the receiver code biases of the other signals are estimated
without any constraint. For signals from other GNSS, only the receiver code bias of the first signal is fixed to zero, while
the second signal receiver code bias is estimated with a zero-mean constraint and the other signal receiver code biases
are estimated without any constraint. The satellite code biases ds

ia of the first two signals are fixed to zero for all GNSS,
while the other signal satellite code biases are estimated with a zero-mean constraint.

In section 7.4.2 the results of the multi-GNSS and multi-signal integer ambiguity resolution approach, described in section
6 are presented and analysed for different scenarios from Table 7.6.

The orbit and clock quality of the multi-GNSS satellite POD based on resolved integer ambiguities is analysed and
discussed in sections 7.4.3 and 7.4.4.
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7.4.2 Multi-GNSS Multi-Signal Integer Ambiguity Resolution

Different quality indicators can be used to analyse the success of the applied integer ambiguity resolution approach based
on GNSS raw observation processing. As discussed in section 6, the histogram of double difference ambiguity fractionals,
computed from raw observation float ambiguity estimates reveals whether a significant part of all formed (dependent)
double difference ambiguities is close to integer, which corresponds to a fractional value close to zero. For consecutive
iterations, the fractional histogram reveals the impact of fixed integer ambiguities on ambiguities which have not been
fixed (yet). The second quality indicator used to analyse the success of the integer ambiguity resolution approach is
the percentage of independent double difference ambiguities fixed to an integer value and the percentage of fixed raw
ambiguities.
The following paragraphs compare the normalized histograms of double difference ambiguity fractionals from daily
solutions, simply referred to as fractional histograms, and the percentage of fixed ambiguities for different GNSS, different
signals, different receiver networks and inter-system double difference ambiguities.

Comparison of Galileo, GPS and BeiDou

Scenario #9 is used to analyse the characteristics of the raw observation integer ambiguity resolution performance for dif-
ferent GNSS. Figure 7.22 shows the fractional histogram, introduced in section 6.2.2, for Galileo raw phase observations
from signals E1C, E5Q, E7Q, E8Q and E6C tracked by the GE100 network in the first iteration of the integer ambiguity
resolution algorithm, where no ambiguities have been fixed to integer yet. The histogram shows that for Galileo signal
E6C significant less DD ambiguities can be formed compared to the other signals, which can be explained by the limited
number of GNSS receivers tracking signals on the Galileo E6 frequency band. However, the Gaussian shape of the his-
togram for all five signals with a mean value of 0 indicates good consistency among all computable (dependent) double
difference ambiguities and suggests that integer ambiguity resolution can properly be performed.
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Figure 7.22: Normalized DD ambiguity fractional histogram based on raw observa-
tion float ambiguity estimates for Galileo signals tracked by the GE100
network in the first iteration of the integer ambiguity resolution (IAR)
algorithm.

In Figure 7.23 the fractional histogram for Galileo signals is shown in the second and third iteration of the integer
ambiguity resolution algorithm. The additional integer constraints of double difference ambiguities fixed to integer
values, see (6.11) lead to a narrow fractional value peak centred at zero in the second iteration and an almost single
peak centred at zero in the third iteration. This indicates a successful integer ambiguity resolution with almost all
computable (dependent) double difference ambiguities fixed to an integer value after the third iteration.
The fractional histogram for GPS raw phase observations from signals G1C, G2W and G5Q tracked by the GE100 network
is shown in Figure 7.24 for the first iteration of the integer ambiguity resolution algorithm, where no ambiguities have
been fixed to integer yet. The histogram shows that for GPS signal G5Q significant less DD ambiguities can be formed
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(a) Second iteration of the IAR algorithm.
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(b) Third iteration of the IAR algorithm.

Figure 7.23: Normalized DD ambiguity fractional histograms based on raw observation float ambiguity estimates for
Galileo signals tracked by the GE100 network.

compared to the other signals, which can be explained by the limited number of GPS satellites transmitting signals on
the GPS L5 frequency band. Unlike Galileo, the histogram for GPS signals shows a significant number of fractionals
at ±0.5cycles for all signals, indicating inconsistencies in the raw observation float ambiguity estimates used to form
all computable (dependent) double difference ambiguities. However, the fractional histogram shows a bulge centred at
zero, suggesting a tendency of the double difference ambiguities towards an integer value.
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Figure 7.24: Normalized DD ambiguity fractional histogram based on raw observa-
tion float ambiguity estimates for GPS signals tracked by the GE100
network in the first iteration of the integer ambiguity resolution (IAR)
algorithm.

In Figure 7.25 the fractional histogram for GPS signals is shown in the second and third iteration of the integer ambiguity
resolution algorithm. The additional integer constraints of double difference ambiguities fixed to integer values lead
to a narrow fractional value peak centred at zero in the second and third iteration, however, the remaining significant
number of non-zero fractionals indicates, that due to inconsistencies in the raw observation float ambiguity estimates, the
corresponding double difference ambiguities do not converge to integer values, despite the introduced integer constraints.
It will be analysed in section 7.4.3 if and how this finding influences the determination of precise orbits for GPS satellites.

72



0

0.2

0.4

0.6

0.8

1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

N
um

be
r

of
Fr

ac
ti

on
al

s
(n

or
m

al
iz

ed
)

Fractional Bins (in cycles)

G5Q
G2W
G1C

(a) Second iteration of the IAR algorithm.
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(b) Third iteration of the IAR algorithm.

Figure 7.25: Normalized DD ambiguity fractional histograms based on raw observation float ambiguity estimates for GPS
signals tracked by the GE100 network.

The fractional histogram for BeiDou raw phase observations from signals C2I, C7I and C6I tracked by the GE100 network
is shown in Figure 7.26 for the first iteration of the integer ambiguity resolution algorithm, where no ambiguities have
been fixed to integer yet.
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Figure 7.26: Normalized DD ambiguity fractional histogram based on raw observa-
tion float ambiguity estimates for BeiDou signals tracked by the GE100
network in the first iteration of the integer ambiguity resolution (IAR)
algorithm.

The histogram shows that for BeiDou signal C6I significant less DD ambiguities can be formed compared to the other
signals, which can be explained by the limited number of GNSS receivers tracking the BeiDou C6I signal. Unlike Galileo
and GPS, the histogram for BeiDou signals does not show any tendency of the computable (dependent) double difference
ambiguities towards an integer value, as the number of fractionals per bin are uniformly distributed over all fractional
values. It is therefore questionable, whether the inter ambiguity resolution approach for BeiDou raw phase observations
improves the solution, which will be analysed in section 7.4.3.
In Figure 7.27 the fractional histogram for BeiDou signals is shown in the second and third iteration of the integer
ambiguity resolution algorithm. Although in the second iteration double difference ambiguities are fixed to integer
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values, indicated by the peak centred at zero, there is no significant change between the second and third iteration with a
high number of remaining non-zero fractionals. This indicates significant inconsistencies in the BeiDou raw observation
float ambiguity estimates, with the corresponding double difference ambiguities not converging to integer values, despite
the introduced integer constraints.
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(a) Second iteration of the IAR algorithm.
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(b) Third iteration of the IAR algorithm.

Figure 7.27: Normalized DD ambiguity fractional histograms based on raw observation float ambiguity estimates for Bei-
Dou signals tracked by the GE100 network.

The second quality indicator used to analyse the success of the integer ambiguity resolution approach is the percentage of
fixed integer ambiguities from the set of independent double difference ambiguities, determined as described in section
6.1, and the resulting percentage of fixed raw ambiguities.
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Figure 7.28: Percentage of fixed independent DD integer ambiguities per GNSS for
daily solutions of scenario #9.

The percentage of fixed independent double difference integer ambiguities indicates the consistency of raw ambiguity
estimates in terms of phase biases and the deviation from expected integer values, see equation 6.3, due to residual errors
in the raw ambiguity estimates. It therefore reflects the shape of the fractional histograms described above and allows
an even better comparison between the integer ambiguity resolution success rates of different GNSS. In agreement with
the fractional histograms and the discussion above, Figure 7.28 shows the percentages of fixed independent DD integer
ambiguities per GNSS for scenario #9.
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It can be seen that Galileo has the highest percentage of fixed DD integer ambiguities of around 90%, whereas for GPS
around 79 % and for BeiDou around 65 % can be fixed on average. This indicates an advantage of the truly multi-
frequency raw observation processing for Galileo, where the processed 24 satellites all are transmitting signals on five
different centre frequencies. For GPS only 12 out of the processed 31 satellites are transmitting a third L5 signal, which
is known to be affected by carrier phase variations (Montenbruck et al., 2010). For BeiDou only 9 out of the processed
17 satellites are transmitting a third B2 signal, the number of receivers tracking BeiDou signals is 10 % lower on average
compared to the number of receivers tracking Galileo and GPS signals and there is a lack of information for the precise
modelling of BeiDou satellites (for example PCV values) compared to Galileo and GPS. These effects in combination
with the additional estimation of the ionospheric delays, especially for satellites transmitting signals on two frequencies
only, lead to an increase of the residual errors in the raw ambiguity estimates and therefore to a deviation of the DD
ambiguities from the expected integer values.
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Figure 7.29: Percentage of total number of fixed independent DD integer ambiguities
(Galileo+GPS) for daily solutions of scenarios #1, #2, #3 and #5.

Figure 7.29 shows the percentages of the total number of fixed independent DD integer ambiguities for different
Galileo+GPS scenarios to demonstrate the impact of the size of the ground station network and the difference be-
tween conventional IF processing and the raw method for a combined processing of Galileo+GPS. For both processing
approaches, the increase of the ground station network size from 60 to 100 stations leads to an increase in the per-
centage of fixed DD integer ambiguities of about 2%. In general, the integer ambiguity resolution approach based on
WL and NL ambiguities, used for the conventional IF processing, shows a significantly higher percentage of fixed DD
integer ambiguities of about 97% for the 100 station network, whereas the integer ambiguity resolution approach based
on raw observation processing only achieves about 85 % of fixed DD integer ambiguities. The main reason for this
difference is the worse performance of GPS signals in the integer ambiguity resolution based on raw observations, as
shown in Figure 7.28. In addition, this indicates the existence of residual errors also in the raw observation ambigu-
ity estimates for Galileo, most likely due to the additional estimation of the ionospheric delays. In the IF processing
approach, the formation of WL ambiguities with a wavelength 3 − 4 times larger then the raw carrier phase signal
wavelength improves the resolution of correct integer ambiguities. As the raw method and the implemented integer
ambiguity resolution algorithm renounce the formation of any linear combination, there is a disadvantage in terms of the
wavelength associated with the ambiguity terms, which makes the resolution of correct integer ambiguities more difficult.

As described in section 6.3, the raw observation ambiguity estimates belonging to a fixable independent double difference
integer ambiguity are referred to as fixed raw ambiguities. The same concept can be applied to the undifferenced IF am-
biguity estimates introduced in (4.69), belonging to a fixable independent WL and NL DD integer ambiguity. Figure 7.30
shows the percentages of the fixed raw ambiguities per GNSS for scenario #9, corresponding to the percentages of fixed
independent DD integer ambiguities in Figure 7.28. In addition the percentages of fixed undifferenced IF ambiguities are
shown per GNSS for scenario #2.
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Figure 7.30: Percentage of fixed undifferenced ambiguities per GNSS for daily solu-
tions of scenarios #2 and #9.

Despite the higher number of fixed DD integer ambiguities for the IF processing approach shown in Figure 7.29, it can
be seen in Figure 7.30 that for the undifferenced ambiguities the percentage of fixed RAW ambiguities is above the
percentage of fixed IF ambiguities for Galileo and GPS.
This indicates that despite inconsistencies between some of the raw ambiguity estimates leading to lower percentages of
fixable DD integer ambiguities (see Figure 7.29) still most of the undifferenced Galileo and GPS raw ambiguities can be
fixed. This fact could be explained for example by several groups of different receiver types within the processed network,
where DD integer ambiguities from raw ambiguity estimates can be resolved within a certain group of receivers, but not
between receivers of different groups due to receiver type inconsistencies. This theory is confirmed by the improvement
of the DD ambiguity fractional histogram when using only raw ambiguity estimates of a single receiver type, as shown in
Figure 7.36.
For both processing approaches (IF and RAW) the percentage of fixed undifferenced ambiguities is slightly higher for GPS
compared to Galileo, which can be explained by the not yet full constellation of Galileo satellites and the fact that not
all receivers are tracking signals on all five Galileo frequencies. Due to missing Galileo satellites and receivers tracking
only a subset of the Galileo signals, some undifferenced raw ambiguities can simply not be used to form double differ-
ences which prevents them from being fixed. For BeiDou the percentage of fixed raw ambiguities is significantly less, as
expected from previous results.

Figure 7.31 shows the percentage of fixed raw ambiguities per GNSS signal for scenario #9 and reveals individual signal
characteristics. It can be seen that for Galileo all signals behave similar except E6C which shows a significantly smaller
fixing rate. This can be explained by two major facts. Due to the limited number of receivers tracking a Galileo signal on
E6, less raw ambiguity estimates can be used to form DD ambiguities compared to the other signals. The second factor
which might influence the overall quality of the Galileo E6 signal is interference due to other transmitting sources on or
close to the E6 carrier frequency.

Figure 7.32 shows the SNR measurements of different satellites tracked simultaneously by a multi-GNSS receiver at
ESOC. While the SNR measurements for the GPS and BeiDou satellites in Figure 7.32b do not show any disturbances,
there is a clear interference pattern in the E6 signal visible in Figure 7.32a.
This repetitive pattern was identified to belong to an amateur TV station close to ESOC, which transmits a signal close
to the nominal E6 centre frequency. The reduced performance of the Galileo E6 signal compared to the other signals can
also be visualised by the fractional histograms per signal, shown in section G.

For GPS the signal G5Q shows a smaller fixing rate compared to the fixed raw ambiguities on signals G1C and G2W as
seen in Figure 7.31. This can be explained by the two facts already mentioned above, which are the reduced number
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of satellites transmitting a signal on L5, therefore less raw ambiguity estimates are available to form DD ambiguities
compared to the other signals, and the L5 carrier phase variations.
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Figure 7.31: Percentage of fixed raw observation ambiguities per GNSS signal for
daily solutions of scenario #9.
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Figure 7.32: SNR measurements of different satellites tracked simultaneously by a multi-GNSS receiver at ESOC.

As expected from previous results the BeiDou raw ambiguities per signal in Figure 7.31 show the smallest fixing rate. As
for the Galileo signal on E6, there is only a limited number of receivers tracking BeiDou C6I signals, which explains the
reduced fixing rate of the BeiDou C6I signal compared to the other two signals.

In section 7.4.3 the impact of the analysed integer ambiguity results on the precise orbit determination of multi-GNSS
satellites will be investigated and discussed.

As described in section 6.2.4, the difference between two DD ambiguities based on raw ambiguity estimates on different
frequencies can be used to check the consistency of double difference ambiguities on different frequencies. This approach
is not used for the actual fixing of integer ambiguity values, as the implemented integer ambiguity resolution approach
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renounces the use of inter-frequency linear combinations. However, it can be used to analyse the expected narrowing of
the fractional histogram for widelane DD ambiguities.
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Figure 7.33: Normalized DD ambiguity widelane fractional histogram based on raw
observation float ambiguity estimates for Galileo signals tracked by the
GE100 network relative to E1C.

Figure 7.33 demonstrates that for Galileo the widelane DD ambiguities of all signals (relative to E1C) show a more
confined and steeper fractional histogram as compared to the DD ambiguity histogram per signal in Figure 7.22, which
suggests consistent double difference ambiguities on different frequencies.

0

0.2

0.4

0.6

0.8

1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

N
um

be
r

of
Fr

ac
ti

on
al

s
(n

or
m

al
iz

ed
)

Fractional Bins (in cycles)

G2W
G5Q
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Figure 7.34: Normalized DD ambiguity widelane fractional histograms based on raw observation float ambiguity esti-
mates for signals tracked by the GE100 network.

The widelane DD ambiguity fractionals for GPS and BeiDou shown in Figure 7.34 reveal, that consistent double difference
ambiguities can only be combined for GPS signals G1C and G2W. The combination of DD ambiguities for GPS signals G1C
and G5Q, as well as the BeiDou widelane DD ambiguities do not show the expected confined fractional histogram. This
confirms the previous results and indicates signal dependent residual errors in the respective raw ambiguity estimates
due to the aforementioned reasons of additional ionospheric delay estimation, limited number of transmitters or receivers
for certain GNSS signals and a lack of information for the precise modelling of BeiDou satellites.
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Inter-System Integer Ambiguity Fixing

In the raw observation processing approach all ambiguities are handled per frequency which enables the formation of
double difference ambiguities for satellites belonging to different GNSS, as long as they are transmitting signals on the
same carrier frequency. These inter-system (IS) double difference ambiguities have been formed for Galileo/GPS signals
E1C/G1C and E5Q/G5Q, as well as for Galileo/BeiDou E7Q/C7I, shown in Figure 7.35.
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Figure 7.35: Normalized inter-system DD ambiguity fractional histograms based on raw observation float ambiguity esti-
mates for signals tracked by the GE100 network.

The inter-system double difference ambiguity fractional histograms reveal that Galileo/GPS raw ambiguity estimates for
signals E5Q/G5Q, as well as raw ambiguity estimates for Galileo/BeiDou can not be combined consistently. The corre-
sponding histograms show an equal distribution of fractional values over the whole fractional range. The combination
of Galileo/GPS raw ambiguity estimates for signals E1C/G1C, shown in Figure 7.35a, indicates a better consistency,
however, instead of an integer tendency the histogram reveals common residual error differences in the raw ambiguity
estimates of the two different GNSS in the form of a non-zero mean value. It is therefore questionable whether the
additional fixing of inter-system double difference ambiguities to integer values strengthens the overall solution.
In scenario #4 the impact of the additional fixing of Galileo/GPS E1C/G1C inter-system double difference ambiguities to
integer values on the POD of GNSS satellites has been analysed with the results shown in section 7.4.3.

Dependency on Receiver Network

The fractional histogram based on GPS raw ambiguity estimates shown in Figure 7.36a shows a significant number
of fractionals at ±0.5 cycles for all signals, indicating inconsistencies in the raw ambiguity estimates used to form all
computable (dependent) double difference ambiguities. To analyse the cause of these inconsistencies, the histogram
was regenerated based on the same data set but using only one specific receiver type. Filtering the data set for this
receiver type lead to a reduction in the number of receivers used to form DD ambiguities from 100 to 24. Figure 7.36b
shows the resulting fractional histogram of all computable (dependent) double difference ambiguities based on a single
receiver type. The improved, more Gaussian-like shape of the histogram indicates that the residual errors of the GPS raw
ambiguity estimates are receiver type dependent, as using only a single receiver type shows a much better consistency
among raw ambiguity estimates. This suggests that for GPS signals there is a stronger receiver type dependency than
observed for Galileo signals, shown in Figure 7.22.

7.4.3 Multi-GNSS Satellite Orbit Quality

The resolution of DD integer ambiguities based on raw observation ambiguity estimates has been applied to the problem
of precise orbit determination (POD) for multi-GNSS satellites. The different scenarios summarised in Table 7.6 were used
to estimate orbits of Galileo, GPS and BeiDou satellites. The setup of the different scenarios allows to analyse the results
of combined multi-GNSS processing with up to 72 GNSS satellites, compare the conventional IF processing approach
with the raw observation processing approach and analyse the impact of fixing inter-system DD integer ambiguities.
Two quality indicators have been used to evaluate the GNSS satellite POD results. As the orbit determination is based on
daily solutions, the common midnight epoch of two consecutive days is used to compute the RMS of the so called orbit
midnight overlap. As the daily solutions are independent in terms of observations, a small midnight overlap indicates a

79



0

0.2

0.4

0.6

0.8

1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

N
um

be
r

of
Fr

ac
ti

on
al

s
(n

or
m

al
iz

ed
)

Fractional Bins (in cycles)

G5Q
G2W
G1C

(a) Using all mixed receiver types of the GE100 network.

0

0.2

0.4

0.6

0.8

1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

N
um

be
r

of
Fr

ac
ti

on
al

s
(n

or
m

al
iz

ed
)

Fractional Bins (in cycles)

G5Q
G2W
G1C

(b) Using only one specific receiver type of the GE100 network.

Figure 7.36: Comparison of normalized DD ambiguity fractional histograms based on raw observation float ambiguity
estimates for GPS signals in the first iteration of the IAR algorithm.

better intrinsic orbit quality. In order to also obtain an external evaluation of the orbit quality, the estimated GNSS satel-
lite orbits are compared with reference products from ESOC (Navigation Support Office, 2019) for multi-GNSS orbits,
labeled ESOC MGNSS (ESM), and IGS for GPS orbits.
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Figure 7.37: Midnight satellite orbit overlap 1D RMS constellation mean values for
the daily float and fixed solutions of scenario #9.

Figure 7.37 shows the midnight overlap 1D RMS constellation mean values of Galileo, GPS and BeiDou satellite orbits
for the float ambiguity solutions and the ambiguity fixed solutions of scenario #9. It can be seen that Galileo and GPS
both show an intrinsic orbit quality of about 50 mm for the float solutions and 27mm for the fixed solution. This factor
of almost two for the improvement of the midnight overlaps indicates the successful application of the integer ambiguity
resolution approach based on raw ambiguity estimates, described in section 6. Figure 7.37 also shows that for BeiDou
the midnight overlaps of the float solution are a factor of 3 worse than for the other GNSS and indicates that the fixing
of DD integer ambiguities based on raw ambiguity estimates does not improve the intrinsic orbit quality.
In order to compare the implemented integer ambiguity resolution approach based on raw observation processing with
the conventional approach, two scenarios based on the IF linear combination have been processed, see Table 7.6.
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Figure 7.38: Midnight satellite orbit overlap 1D RMS constellation mean values for the daily float and fixed solutions of
scenarios #2 and #5.

Figure 7.38 shows the comparison of the intrinsic orbit quality for scenarios #2 and #5 for the determined satellite orbits
of both, Galileo and GPS. It can be seen that the fixing of integer ambiguity values improves the midnight overlaps by
a factor of two for both, the conventional IF approach, as well as the RAW approach. The midnight overlaps of the
fixed solutions for both approaches are around 26 mm for Galileo and 27mm for GPS, indicating an at least equivalent
quality of the GNSS satellite orbits, despite the differences of the percentage of fixed ambiguities discussed in section
7.4.2. Figure 7.38b indicates a more robust orbit determination based on the raw method, as the peaks in the midnight
overlaps for the IF approach around day 2019-060 are not visible for the RAW approach.
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Figure 7.39: Midnight satellite orbit overlap 1D RMS constellation mean values for
the daily float and fixed solutions of scenarios #3 and #4.

Figure 7.39 shows the impact of fixing Galileo-GPS inter-system DD integer ambiguities for signals E1C/G1C in addition
to the integer ambiguity fixing per GNSS by comparing the results of scenarios #3 and #4. The midnight overlap 1D
RMS constellation mean values for the fixed solutions increase from about 29mm to 42 mm for both, Galileo and GPS
when inter-system DD integer ambiguities are fixed in addition. This reveals a weakening of the fixed solution due to
inter-system DD integer ambiguity fixing and confirms the inconsistencies of raw ambiguity estimates of the different
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GNSS, already indicated in the fractional histogram shown in Figure 7.35a.
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Figure 7.40: Midnight satellite orbit overlap 1D RMS constellation mean values for the daily fixed solutions of scenarios
#5, #6, #7 and #8.

In Figure 7.40 the Galileo and GPS satellite orbit midnight overlap constellation mean values are compared for the
fixed solutions of different scenarios with a network size of 100 receivers. For both GNSS it is shown that single GNSS
processing generates about 20 % less accurate midnight orbit overlaps compared to multi-GNSS processing.
In addition Figure 7.40 reveals that the usage of the GE∗100 network, which includes some receivers tracking only GPS
signals, decreases the midnight orbit overlap accuracy for Galileo by about 6 % on average, whereas the midnight orbit
overlap accuracy for GPS increases by about 12 %.
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Figure 7.41: Orbit comparison 1D RMS constellation mean values for the daily
float and fixed solutions of scenario #9 relative to the ESOC multi-
GNSS orbits based on the IF processing approach.

An external evaluation of the orbit quality is performed by comparing the estimated GNSS satellite orbits with reference
products from ESOC (for multi-GNSS orbits) and IGS in addition (for GPS orbits only).
Figure 7.41 shows the orbit difference 1D RMS constellation mean values of Galileo, GPS and BeiDou satellite orbits for
the float and fixed solutions of scenario #9. The estimated satellite orbits were compared to the routinely generated
ESOC multi-GNSS solution based on the conventional IF processing approach. Galileo and GPS both show an external
orbit quality of about 26mm for the float solutions and 12 mm for the fixed solutions, indicating a very good agreement
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of the GNSS satellite orbits and the successful application of the integer ambiguity resolution approach based on raw
ambiguity estimates. For BeiDou the difference to the ESOC reference orbit is a factor of 2-3 worse compared to Galileo
and GPS. However, the fixing of DD integer ambiguities indicates an improvement of the external orbit quality with a
BeiDou constellation mean value of 35mm on average over the shown time interval.
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Figure 7.42: Orbit comparison 1D RMS constellation mean values for the daily GPS
fixed solutions of scenarios #2, #5, #6 and #8 relative to the IGS final
orbits based on the IF processing approach.

In addition the IGS final orbits are used to compare the GPS orbit quality of different fixed solutions from Table 7.6.
Figure 7.42 reveals that the four different GPS fixed solutions of scenarios #2, #5, #6 and #8 all show a very good
agreement with the IGS final orbits.
Among the four scenarios the GPS only processing scenario #8 performs worst with 14 mm 1D RMS orbit difference,
which suggests an advantage of combined multi-GNSS processing, as already seen in Figure 7.40b. The combined Galileo
and GPS processing scenario #6 including receivers tracking only GPS satellites (GE∗100) performs best, as expected, with
12mm 1D RMS orbit difference.
Figure 7.42 also indicates a more robust orbit determination based on the raw method, as the peaks for the IF approach
around days 2019-060, 2019-080 and 2019-090 are not visible in the results based on the RAW approach.

These peaks are due to a single GPS satellite with PRN number G18, which can not be consistently processed with the IF
processing approach. Figure 7.43 shows the orbit comparison 1D RMS relative to the IGS final orbits for the problematic
satellite G18 and another GPS satellite with PRN number G19, determined from the GE60 network. It can be seen that the
orbit comparison for satellite G19 does not show any significant peaks with the determination based on the raw method
giving slightly more consistent results. The orbit comparison for satellite G18 shows differences to the IGS final orbits of
up to 66cm for the IF fixed solution, whereas the RAW fixed solution shows an average agreement of 16mm with the
IGS final orbits.

7.4.4 Multi-GNSS Satellite Clock Quality

The GNSS satellite clock quality is analysed by the RMS of the estimated clock offsets compared to a linear fit. The RMS
therefore is an indicator of the stability of the estimated clock offsets. Figure 7.44 shows RMS constellation mean values
of the estimated GNSS satellite clock offsets compared to a linear fit clock model.
Figure 7.44a indicates a significant improvement in the stability of the estimated satellite clocks for the integer ambiguity
fixed solutions of both Galileo and GPS. The Galileo constellation RMS mean value is 118ps on average and indicates an
almost 4 times better satellite clock stability compared to the GPS constellation RMS mean value of 425 ps on average.
Figure 7.44b reveals that the satellite clock stability of the fixed solution of scenario #9 is almost identical to the ESM
reference solution for Galileo and GPS with constellation RMS mean values of 116ps and 433 ps on average respectively.
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(a) GPS satellite PRN number G18
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Figure 7.43: Orbit comparison 1D RMS for individual GPS satellites from daily fixed solutions of scenarios #1 and #3 relative
to the IGS final orbits.

For BeiDou the raw method achieves a better stability then the ESM reference solution with a constellation RMS mean
values of 735 ps on average.
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Figure 7.44: RMS constellation mean values of the estimated GNSS satellite clock offsets compared to a linear fit clock
model.

7.5 Multi-GNSS Multi-Signal Raw Observation Phase Biases

The existence of phase biases, as introduced in sections 4.1.2 and 4.1.3, prevents the direct determination of raw observa-
tion carrier phase integer ambiguity values. Phase biases are therefore of specific interest for precise GNSS applications,
as described in section 5.1.4.
In this section the stability of receiver-specific and satellite-specific phase biases is analysed based on two different
approaches, one making use of simulated GNSS signals, the other using the results of the fixed raw ambiguity solutions
shown in section 7.4.

7.5.1 Receiver Phase Bias Analysis based on Simulated Observations

The stability of receiver-specific raw observation phase biases was analysed based on GNSS signals simulated without
any atmospheric delays or antenna phase centre offsets and variations. The simulation setup comprised three different
receiver types (A, B and C) connected to the multi-GNSS and multi-signal simulator at the same time via an RF signal
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splitter. The equation for the observation difference of simulated phase and code signals with the same carrier frequency
in cycles is given by

φSI M
r,i (t)− PSI M

r,Σ j b(t)/λi = δ
s
i (t) +δr,i(t)− N s

r,i − fi ·
�

ds
ia(t) + dr,Σia(t)

�

+ηs
r,i(t)− ε

s
r,Σia(t) . (7.3)

As the code biases were shown to be constant, see section 7.1, and the carrier phase integer ambiguity is constant for
a carrier phase signal tracked without cycle slip, their sum can be considered constant (modulo an integer number of
cycles) in this analysis

N s
r,i + fi ·

�

ds
ia(t) + dr,Σia(t)

�

= const. (modulo an integer number of cycles)

The difference between phase and code observations in (7.3) therefore allows to analyse the stability of the carrier phase
bias term δs

i (t) +δr,i(t).

In order to analyse the stability and separation of satellite-specific and receiver-specific phase biases, all three receivers
have been manually restarted multiple times during the analysed time interval, indicated by vertical lines in the Figures
below. Theoretically, satellite-specific phase biases should not be affected by a receiver restart, whereas receiver phase
biases might change due to the reinitialisation of the signal tracking loops, described in section 2.4.2.
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Figure 7.45: Difference between phase and code observations for multiple satellites, generated by a multi-GNSS multi-
signal simulator and measured by an EGON receiver type (A).

Figure 7.45 shows the difference between phase and code observations for multiple Galileo satellites for signal E1C and
multiple GPS satellites for signal G1C, measured by an EGON type receiver (A). It can be seen that some receiver restarts
induce jumps of fractions of one carrier wavelength cycle, whereas some restarts do not induce any jump or a jump of
an integer number of cycles. However, the noise of the phase minus code observations for the Galileo E1C and GPS G1C
signals prevent a useful analysis of the results.
Therefore, the Galileo AltBOC signal E8Q was used to improve the phase bias stability analysis. Figure 7.46a shows the
phase minus code observation for the AltBOC signal E8Q tracked by an EGON receiver type (A) from multiple Galileo
satellites.
The noise of the E8Q phase minus code observation is considerably smaller compared to the E1C/G1C observations and
allows to analyse the phase bias stability in detail. Figure 7.46 shows that again some receiver restarts induce jumps of
fractions of one carrier wavelength cycle, whereas other restarts do not induce any jump or a jump of an integer number
of cycles. However, it can be seen that the change in phase bias due to receiver restarts is independent of the tracked
satellites. This confirms the theoretical understanding of not inducing satellite dependent phase bias changes due to a
receiver restart. The changes seen in Figure 7.46a can therefore be related to receiver-specific phase biases.

Figures 7.46b and 7.47 show the phase minus code observations for the AltBOC signal E8Q tracked by a future EGON
receiver type (B) and a different receiver type (C) from multiple Galileo satellites. The general characteristics of phase
bias changes as described before also apply to these receivers. Although the magnitude of the phase bias changes is
different for each receiver, all three receiver types show a satellite independency of phase bias changes due to receiver
restarts.
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Figure 7.46: Difference between Galileo signal E8Q phase and code observations for multiple satellites, generated by a
multi-GNSS multi-signal simulator.

All Figures shown in this section indicate that the phase bias term remains constant when no receiver restart is induced.
This suggests that the receiver-specific phase bias (for the analysed receiver types) theoretically can be treated as a
constant value, which will be further discussed in section 7.5.2.
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Figure 7.47: Difference between Galileo signal E8Q phase and code ob-
servations for multiple satellites, generated by a multi-GNSS
multi-signal simulator and measured by receiver type C.

The change in receiver-specific phase biases induced by a receiver restart indicates (for the analysed receiver types) that
the calibration of receiver-specific phase biases is impractical. This however, means that receiver-specific phase biases can
not be corrected and remain in the raw observation equation, preventing the direct integer ambiguity resolution from
GNSS raw observations. In order to be independent of receiver-specific phase biases, between satellite SD phase biases
have been analysed with real observation data.

7.5.2 Satellite Phase Bias Analysis with Real Observations

As shown in section 7.5.1 it is impractical to calibrate receiver-specific raw observation phase biases as they can not be
considered to have a constant value. Therefore, satellite-specific raw observation phase biases are analysed for between
satellite single differences (SD), where the receiver-specific part has been eliminated. The single difference raw observa-
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tion phase biases analysed in this section have been formed from fixed raw ambiguities, as described in section 6.3. The
between satellite SD phase bias on frequency i for satellites k and l based on fixed raw ambiguities is given by

δkl
i = δ

k
i −δ

l
i =

�

M̄ k
r,i − N k

r,i

�

−
�

M̄ l
r,i − N l

r,i

�

. (7.4)

These between satellite SD phase biases per frequency are used to analyse the stability of satellite-specific phase biases
based on estimates from multiple receivers. The results of scenario #9, described in section 7.4, are used to analyse multi-
GNSS multi-frequency satellite SD phase biases. The analysis is based on the fixed raw ambiguities and is performed in
the following steps:

1. Form undifferenced raw phase biases from fixed raw ambiguities, as shown in (6.14).

2. Form Pass-to-Pass (P2P) differences of all raw phase biases, ie. differences between raw phase biases δs
r,i deter-

mined from different satellite passes but belonging to the same receiver r, satellite s and frequency i

3. Select raw phase biases with a pass-to-pass stability better than 0.1 cycles.

4. Form satellite SD phase biases per frequency and per receiver from selected raw phase biases for overlapping
satellite passes.

The selection of raw phase biases in step 3, based on the pass-to-pass stability, is motivated by the fact that theoretically
receiver-specific phase biases should be constant, as discussed in section 7.5.1. The pass-to-pass stability can be visualised
in the form of a fractional histogram, as introduced in section 6.2.2. The histogram shows the pass-to-pass differences
of raw phase biases determined in step 2 and reveals GNSS and signal dependent characteristics. Figure 7.48 shows the
pass-to-pass phase bias difference histogram for all Galileo and GPS signals on day 2019-001, based on the results of
scenario #9.
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Figure 7.48: Pass-to-pass (P2P) phase bias difference histograms based on fixed raw observation ambiguities.

Figure 7.48 reveals that the most common value of the pass-to-pass phase bias differences is zero with most values within
± 0.1 cycles for Galileo signals and an almost even distribution over all fractional values for GPS. This indicates good
pass-to-pass stability for the raw phase biases determined from Galileo signals and significant worse pass-to-pass stability
for the raw phase biases determined from GPS signals.

Satellite SD phase biases per frequency are formed from raw phase biases for each receiver tracking a certain pair of
satellites at the same time. In order to visualise the results, satellite SD phase biases are associated with the centre epoch
of the corresponding satellite passes tracked by a certain receiver. Figure 7.49 shows the between satellite SD phase
biases for different Galileo and GPS satellite pairs for signals E1C and G1C respectively, where each data point indicates
a different receiver.
The Galileo satellite SD phase biases in Figure 7.49a show good consistency among the values determined from different
receivers and indicate stable satellite-specific phase biases for the shown satellite passes. For GPS, the number of satellite
SD phase biases shown in Figure 7.49b is considerably reduced, as already indicated in Figure 7.48b. Some satellite-
specific phase biases show good consistency, like for G32 - G27, whereas for most satellite pairs no consistent values can
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be determined. The Figures showing satellite SD phase biases determined for all other Galileo and GPS signals are given
in section G.
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Figure 7.49: Between satellite SD phase biases for different pairs of satellites, determined from fixed raw observation
ambiguities of multiple receivers, each tracking the respective pair of satellites at the same time.

Figure 7.50 shows the SD phase biases of satellite PRN numbers E26 and E12 for all Galileo signals and demonstrates
that stable satellite SD phase biases can be determined for all five Galileo frequencies.
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Figure 7.50: Between satellite SD phase biases of Galileo satellites E26
and E12 for all signals, determined from fixed raw obser-
vation ambiguities of multiple receivers, each tracking both
satellites at the same time.

However, when looking at the satellite SD phase biases determined for satellite passes of multiple days, it becomes
evident that the generation of independent daily solutions impacts the stability of satellite-specific phase biases. Figure
7.51 shows the SD phase biases of satellite PRN numbers E26 and E12 for four consecutive days and indicates significant
phase bias jumps between individual days for all five Galileo frequencies, which would motivate the generation of daily
satellite-specific phase bias products.

In order to improve the consistency among satellite SD phase biases over multiple days one could consider the determi-
nation of multi-day solutions or constrain satellite SD phase biases between independent daily solutions.
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Figure 7.51: Between satellite SD phase biases of Galileo satellites E26
and E12 for all signals, determined from fixed raw obser-
vation ambiguities of multiple receivers, each tracking both
satellites at the same time.

The determined multi-frequency satellite SD phase biases could aid the integer ambiguity resolution for a single re-
ceiver applying the raw observation processing approach and therefore enable PPP applications with integer ambiguity
resolution (PPP-IAR), as introduced in section 5.1.4.

7.5.3 Aspects for PPP-IAR with Determined Satellite SD Phase Biases

A single receiver PPP approach with integer ambiguity resolution based on the multi-frequency satellite SD phase biases,
as determined in section 7.5.2, would have to apply the raw observation processing approach without forming any linear
combinations or observation differences.
In principle the user corrections needed for this PPP-IAR approach are similar to the ones of the CC model, described in
section 5.1.4, namely precise satellite orbits and clock offsets and between satellite SD phase biases.
In contrast to the realisation of the CC model, demonstrated in (Teunissen and Khodabandeh, 2014) using a dual-
frequency geometry-free/ionosphere-free decomposition where the single receiver ambiguities are in fact double-
difference ambiguities, the PPP-IAR approach described here is not based on a specific re-parameterisation by fixing
certain parameters of a single reference station in the network solution. Instead it is based on the final raw observation
ambiguity estimates of the fixed network solution, as described in section 6.3. The user PPP algorithm would have to
form between satellite SDs of the estimated multi-frequency raw observation float ambiguities and apply the satellite
SD phase biases to construct ambiguities with integer nature. Fixing these ambiguities to the correct integer values and
adding the corresponding integer constraints to the normal equation system, as described in section 6.2.3, would then
strengthen and improve the standard PPP solution.
The implementation of a PPP-IAR approach based on the described method is outside the scope of this work, but offers
an excellent opportunity to analyse an alternative to the PPP-RTK methods introduced in section 5.1.4 and to further
exploit the potential of precise applications making use of the GNSS raw observation processing approach.
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8 Conclusion

The analyses and results presented in this work motivate the use of a GNSS processing approach based on multi-GNSS and
multi-signal raw observations without forming any linear combinations or observation differences. With the continuous
modernisation of existing GNSS, the finalisation of Galileo and the fast-evolving BeiDou system, future GNSS applica-
tions will largely be based on multi-GNSS and multi-signal processing. The conventional dual-frequency ionosphere-free
processing approach limits the number of usable signals and therefore does not provide the flexibility required for proper
multi-GNSS and multi-signal applications. As the GNSS raw observation processing approach has no inherent limitation
on the number of signals, it allows users to benefit from the expanding GNSS signal environment.
The simultaneous processing of multi-signal raw observations requires both a proper handling of all involved signal
hardware biases and the estimation of ionospheric delay parameters, both of which become crucial parts of the parameter
estimation process. As the ionospheric delay is changing rapidly, it usually is estimated per processing epoch, generating
a considerable amount of additional parameters. The strong correlation between clock offset parameters, signal biases
and the ionospheric delays requires a proper treatment of the additional parameters in order to solve the induced rank
deficiency in the normal equation system.
The required handling of ionospheric delays in the raw observation processing approach enables the estimation of iono-
spheric effects in addition to common geodetic parameters. In addition, applying ionosphere corrections to raw observa-
tions instead of using the IF linear combination is regarded beneficial in the context of PPP-RTK applications, as described
in section 5.1.4.
While the formation of IF linear combinations amplifies the noise of the resulting observations, using GNSS raw observa-
tions preserves the individual signal characteristics, allowing users to benefit from the original signal noise characteristics
and analyse signal individual effects.
The raw method supports precise multi-GNSS and multi-signal applications with a physically meaningful handling of
multi-signal code biases, ionospheric delays and multi-GNSS time offsets.

8.1 Signal Bias Handling in Multi-GNSS and Multi-Signal Raw Observation Processing

The calibration of receiver-specific multi-GNSS and multi-signal DCBs with simulated GNSS observations was demon-
strated and successfully applied in the estimation of physically meaningful code biases for Galileo, GPS and BeiDou
satellites. In addition, the calibration of multi-signal raw observation absolute code biases for a dedicated GNSS timing
receiver allowed the analysis of GNSS system times and inter-system time offsets using the multi-signal raw observation
processing approach.
Variations of receiver-system specific code biases due to the use of RF signal splitters and a change of the receiving
antenna were analysed, showing an impact of up to 7 ns for the analysed receiver-antenna pair. This emphasises the
importance of calibrating the complete receiver system chain for applications making use of mixed receiver and antenna
types with applied corrections for receiver-specific code biases.
The comparison of estimated GNSS satellite DCBs with published Galileo IOV metadata reveals that the raw method is
capable of determining physically meaningful GNSS satellite code biases and confirms the correct calibration of receiver-
specific code biases for the EGON receiver network.
The determined receiver and satellite code biases were used to estimate absolute ionospheric delays with the raw method,
showing excellent agreement with reference values computed from IONEX files and demonstrating the negative impact
of not using physically meaningful code biases.

8.2 Integer Ambiguity Resolution Based on Multi-GNSS and Multi-Signal Raw Observations

A carrier phase integer ambiguity resolution approach based on multi-GNSS and multi-signal raw observation processing
without forming any linear combinations or observation differences has been described and successfully implemented
in the course of this work. It was demonstrated that this approach can be used to correctly resolve integer ambiguity
values for multi-frequency Galileo signals, indicating a consistent handling of all signals for most receivers used in the
global network adjustment. For dual- and triple-frequency GPS signals, the resolution of integer ambiguity values showed
significant inconsistencies of the formed DD ambiguities, indicating a different handling of signals for different receiver
types. For dual- and triple-frequency BeiDou signals, integer ambiguity values could not properly be resolved due to a
lack of information on the modelling of BeiDou satellites and a reduced number of MEO satellites as well as receivers
tracking all BeiDou signals.
In a Galileo+GPS scenario comparing the IAR approach based on raw observations with the conventional approach
based on the IF linear combination and WL/NL ambiguities, the percentages of achieved fixed DD integer ambiguities
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are about 85 % and 97 % respectively. This large discrepancy can be explained by receiver inconsistencies (mainly for
GPS signals) and also reflects the renunciation of widelane ambiguities in the raw method. These ambiguities have
a wavelength 3-4 times larger than raw signal ambiguities and therefore ease the integer ambiguity resolution in the
conventional approach. This finding demonstrates that the raw method, as expected, is more sensitive to different GNSS
signal characteristics and the methods of signal handling and tracking employed by different receiver types.
Despite this alleged drawback, the IAR approach based on raw observations achieves a higher percentage of fixed un-
differenced ambiguities of 97-99 % for Galileo and GPS signals, whereas the conventional IF approach only achieves
95-96 %. This indicates that despite certain signal inconsistencies, almost all raw observation ambiguities can be fixed.
The IAR performance analysed for eleven different signals on eight frequencies from three different GNSS shows char-
acteristics which can only be disclosed by the raw method, e.g. the reduced performance of the Galileo E6 signal. This
reduced performance is mainly due to the lack of receivers tracking this signal, but potentially also due to interference
issues in the E6 frequency band.
The resolution of inter-system DD integer ambiguities was demonstrated for common carrier signal frequencies, however,
further investigations are required to analyse the presented issues of fixing correct integer values in order to improve the
overall solution.

8.3 Multi-GNSS Precise Orbit Determination Based on Fixed Raw Observation Ambiguities

The IAR approach based on multi-GNSS and multi-signal raw observations has been applied to precise orbit determination
of Galileo, GPS and BeiDou satellites. The successful implementation of the IAR approach based on raw observations has
been demonstrated by a factor of two improvement of the Galileo and GPS satellite orbit overlaps for the ambiguity fixed
solution with respect to the float solution.
Despite the differences in the resolution of integer ambiguity values, the POD for Galileo and GPS satellites shows a
similar performance with orbit overlap 1D RMS values at the midnight epoch of about 27mm for the ambiguity fixed
solution. For BeiDou the orbit overlap 1D RMS values of the float and fixed solutions both are about 150 mm, which
confirms that for BeiDou the resolution of integer ambiguity values based on raw observations could not properly be
performed.
The comparison of satellite orbit quality between the IAR approach based on raw observations and the conventional
approach based on the IF linear combination shows at least equivalent performance for the approach implemented in the
course of this work. For some cases the IAR approach based on raw observations even provides a better performance in
terms of orbit overlaps and orbit comparison to reference solutions from ESOC and the IGS final products.
The comparison of determined GNSS satellite orbits based on raw observations with the ESOC standard multi-GNSS
solution based on the processing of the IF linear combination reveals orbit difference 1D RMS values of about 12 mm for
Galileo and GPS satellites and about 35mm for BeiDou satellites. The comparison of determined GPS orbits with IGS
final products also reveals orbit difference 1D RMS values of about 12 mm.
In addition, it could be shown that the fixing of raw observation ambiguities also improves the stability of estimated
satellite clock offsets. The determined constellation RMS mean values for the difference between the satellite clock offset
estimates and a linear fit model are 116ps for Galileo, 433ps for GPS and 735ps for BeiDou, demonstrating the high
quality of the Galileo satellite on-board clocks.

The fixed raw observation ambiguities of the multi-GNSS POD analyses have further been used to analyse raw observation
phase biases. While receiver specific phase biases, analysed with simulated GNSS observations for different receivers,
were not found to be considered constant, the analysis of satellite SD phase biases based on fixed raw ambiguities reveals
consistent and stable multi-frequency phase bias values for Galileo signals determined from different receivers. For GPS,
most satellite SD phase biases determined from fixed raw ambiguities do not show consistent and stable values. The
consistency of satellite-specific phase biases between independent daily solutions remains to be further analysed, as well
as the use of these phase biases in PPP-IAR applications.
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9 Outlook

The developments and analyses performed in the course of this work give rise to a variety of additional research topics
to extend the presented analyses and further exploit the potential of the raw observation processing approach for precise
GNSS applications.
In the context of code bias calibration and determination, the additional calibration of receiver DCBs for Galileo frequency
E6 and BeiDou signal C6I is of interest in order to estimate physically meaningful satellite DCBs for these signals.
For the integer ambiguity resolution based on raw observations and precise GNSS satellite orbit determination, potential
improvements due to an enhanced modelling of BeiDou satellites remain to be analysed once more details are made
available by the system provider. In addition, further investigations of the resolution of inter-system integer ambiguities
based on raw phase observations of common carrier frequencies and its impact on GNSS satellite POD are required.
With respect to satellite-specific phase biases, it remains to be confirmed whether constraining multi-frequency satellite
SD phase biases between independent daily solutions is applicable to improve their consistency. The realisation of
a PPP-IAR algorithm to perform single receiver integer ambiguity resolution based on the presented multi-frequency
satellite-specific phase biases remains to be implemented. This would offer the opportunity to analyse alternative IAR
enabled PPP approaches and compare their performance with existing PPP-RTK concepts. One of the major drawbacks of
these existing concepts is the long convergence time due to the use of the ionosphere-free linear combination. It remains
to be analysed whether the estimation of ionospheric delays from multi-signal raw observations, together with applied
multi-frequency satellite-specific phase biases in the alternative IAR enabled PPP approach, can improve the convergence
time and therefore further exploit the potential of the GNSS raw observation processing approach.
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10 Appendix

A Notation and Symbols

GNSS Observation Model

Σ Symbol of a generic GNSS

�s Relates to satellite s

�r Relates to GNSS receiver r

�⊕ Relates to the Earth

Σia 3-character ID of a signal sent by a satellite of GNSS Σ with frequency index i and signal
identifier a

fi Carrier signal frequency i

λi Carrier signal wavelength corresponding to frequency i

τΞ Generic reference time scale used in GNSS observation processing

τr Time scale of GNSS receiver r

τs Time scale of satellite s

t tog Time of signal generation on-board the navigation satellite

t tot
ia Time of transmission for signal ia at the navigation satellite antenna

t tor,Σia Time of reception for signal Σia at the receiver antenna

t tom Time of measurement at the receiver, independent of tracked satellite and signal

T s
r,Σia Total signal travel time

∆T s
r,Σia Free space signal travel time

Ps
r,Σia Functional model of a pseudorange observation measured by receiver r for signal Σia re-

ceived from navigation satellite s

Φs
r,i Functional model of a carrier phase observation measured by receiver r for frequency i of a

signal received from navigation satellite s

ρs
r,Σia(t

tot , t tor) Geometric distance between the point of signal transmission at the navigation satellite an-
tenna at time t tot and the point of signal reception at the receiver antenna at time t tor

rr Geocentric position vector to the reference/marker point of receiver r, described in an
inertial coordinate system

r s Geocentric position vector to the centre of mass of satellite s, described in an inertial coor-
dinate system

d t r,Ξ GNSS receiver clock offset from reference time scale τΞ
d t s
Ξ Navigation satellite clock offset from reference time scale τΞ

d t ros
r Tropospheric delay along the signal path

dions
r,i Ionospheric delay along the signal path for frequency i

dr,Σia Receiver code bias for signal Σia

ds
ia Satellite code bias for signal ia

δr,i Receiver phase bias for signal frequency i

δs
i Satellite phase bias for signal frequency i

N s
r,i Carrier phase integer ambiguity for signal frequency i

M s
r,i Carrier phase float ambiguity for signal frequency i, including phase biases
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dms
r,Σia Pseudorange measurement multipath for signal Σia

δms
r,i Carrier phase measurement multipath for signal frequency i

εs
r,Σia Pseudorange observation residual errors and measurement noise

ηs
r,i Carrier phase observation residual errors and measurement noise

drr,Σia Receiver antenna offset range correction for code signal Σia

drs
ia Satellite antenna offset range correction for code signal ia

δrr,i Receiver antenna offset range correction for signal frequency i

δrs
i Satellite antenna offset range correction for signal frequency i

δrel Periodic relativistic satellite clock correction

δstc Relativistic propagation delay correction due to space-time curvature

pwus
r Phase wind-up effect correction

dispr Receiver coordinate displacement correction due to tide effects

Parameter Estimation

Y Vector of observations

P Weight matrix of the observations

X Vector of estimated parameters

f (X , t) Functional model relating observations and estimated parameters

X∗ Vector of nominal parameter values

X̂ Vector of best parameter estimates

X̄ A fixed parameter

y Vector of observation deviations from functional model evaluated at nominal parameter
values

x Vector of parameter estimate deviations from nominal parameter values

A Design matrix containing the partial derivatives of the functional model f with respect to
the estimated parameters X

ν Vector of residuals of the observations

Ω Weighted sum of squared residuals

N Normal equation matrix of the observations

Xc Vector of constrained parameter values

z Vector of parameter constraint deviations from nominal parameter values

R Weight matrix of the fictitious observations from parameter constraints

B Design matrix of the parameter constraints, containing only zeros and ones

M Normal equation matrix of the fictitious observations from parameter constraints

ξ Vector of residuals of the fictitious observations from parameter constraints

Integer Ambiguity Resolution

DD Double difference matrix operator

M kl
AB,i Double difference float ambiguity for signal frequency i

N kl
AB,i Double difference integer ambiguity for signal frequency i

f kl
AB,i Fractional part of double difference float ambiguity for signal frequency i
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B Constants

G Gravitational constant, G = 6.674× 10−11 m3 kg−1 s−2

M⊕ Mass of the Earth, M⊕ = 5.9722× 1024 kg

µ⊕ Gravitational constant of the Earth, µ⊕ = G ·M⊕ = 3.986× 1014 m3 s−2

ω⊕ Nominal rotation rate of the Earth, ω⊕ = 7.292 115124 7× 10−5 s−1

c Speed of light in vacuum, c = 299792 458m s−1

C Definitions

Epoch The clock reading τ(t) in time scale τ at a certain point in time t

J2000.0 Standard epoch defined as 1 January 2000, 11:58:55.816 UTC

Multipath Measured non-line of sight signals, which originate from reflections in the receiver’s local
environment

D Acronyms

ACPC Antenna Code Phase Center

AltBOC Alternative BOC

APC Antenna Phase Center

ARP Antenna Reference Point

BDT BeiDou Time

BeiDou Chinese GNSS

BGD Broadcast Group Delay

BIH Bureau International de l’Heure

BIPM International Bureau of Weights and Measures

BOC Binary Offset Carrier

BPSK Binary Phase Shift Keying

CAS Chinese Academy of Sciences

CBOC Composite BOC

CC Common Clock

CDMA Code Division Multiple Access

CIP Celestial Intermediate Pole

CIR Cascading Integer Resolution

DC Distinct Clocks

DCB Differential Code Bias

DCM Decoupled Clock Model

DD Double Difference
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DLL Delay Lock Loop

DLR Deutsches Zentrum für Luft- und Raumfahrt

DORIS Doppler Orbitography and Radiopositioning Integrated by Satellite

DOY Day Of Year

ECEF Earth Centred Earth Fixed

ECI Earth Centred Inertial

EGON ESA’s GNSS Observation Network

EOP Earth Orientation Parameters

ESA European Space Agency

ESM ESOC MGNSS

ESOC European Space Operations Centre

FCB Fractional Cycle Bias

FDMA Frequency Division Multiple Access

FOC Full Operational Capability

Galileo European GNSS

GCRS Geocentric Celestial Reference System

GDV Group Delay Variation

GEO Geostationary Orbit

GF Geometry-Free

GGTO Galileo-GPS Time Offset

GLONASS Russian GNSS

GLOT GLONASS Time

GMF Global Mapping Function

GNSS Global Navigation Satellite Systems

GPS U.S. Global Positioning System

GPST GPS Time

GPT Global Pressure Temperature

GST Galileo System Time

IAR Integer Ambiguity Resolution

IAU International Astronomical Union

IB Integer Bootstrapping

ICD Interface Control Document

ICRF International Celestial Reference Frame

ICRS International Celestial Reference System

IERS International Earth Rotation and Reference Systems Service

IF Ionosphere-Free

IGS International GNSS Service

IGSO Inclined GeoSynchronous Orbit

ILS Integer Least Squares

IONEX Ionosphere Map Exchange

IOV In-Orbit Validation
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IP Ionospheric Pierce Point

IR Integer Rounding

IRC Integer Recovery Clock

IRM IERS Reference Meridian

IRNSS Indian Regional Navigation Satellite System

IRP IERS Reference Pole

IS Inter-System

ISB Inter-System Bias

ISTO Inter-System Time Offset

ITRF International Terrestrial Reference Frame

ITRS International Terrestrial Reference System

LAMBDA Least-Squares AMBiguity Decorrelation Adjustment

LC Linear Combination

LEO Low Earth Orbit

LNA Low Noise Amplifier

LOD Length Of Day

LOS Line Of Sight

LSQ Least Squares

MBOC Multiplexed BOC

MEO Medium Earth Orbit

MGEX Multi-GNSS Experiment

MW Melbourne-Wuebbena

NAPEOS NAvigation Package for Earth Observation Satellites

NL Narrowlane

NMF Neill Mapping Function

OCB Observable-specific Code Bias

OPB Observable-specific Phase Bias

OS Open Service

P2P Pass-to-Pass

PCO Phase Center Offset

PCV Phase Center Variation

PLL Phase Lock Loop

PNT Positioning Navigation Timing

POD Precise Orbit Determination

POI Point Of Interest

PPP Precise Point Positioning

PPP-RTK PPP Real Time Kinematic

PRN Pseudo Random Noise

PTB Physikalisch-Technische Bundesanstalt

PVT Position Velocity Time
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QZSS Quasi-Zenith Satellite System

RAW Raw Method

RF Radio Frequency

RINEX Receiver Independent Exchange

RMS Root Mean Square

RNSS Regional Navigation Satellite Systems

RTK Real Time Kinematic

SD Single Difference

SGD Satellite Group Delay

SI International System of Units

SLR Satellite Laser Ranging

SNR Signal-to-Noise Ratio

SRP Solar Radiation Pressure

SSV Space Service Volume

STEC Slant Total Electron Content

TAI International Atomic Time

TCAR Three-Carrier Ambiguity Resolution

TEC Total Electron Content

TECU Total Electron Content Unit

TT&C Telemetry, Tracking and Command

UCD Uncalibrated Code Delays

UPD Uncalibrated Phase Delays

USD Uncalibrated Signal Delays

UT1 Universal Time

UTC Coordinated Universal Time

UTC(k) Physical Realisation of UTC

VLBI Very Long Baseline Interferometry

VMF Vienna Mapping Function

VTEC Vertical Total Electron Content

WL Widelane

ZHD Zenith Hydrostatic Delay

ZTD Zenith Tropospheric Delay

ZWD Zenith Wet Delay
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G Additional Results

G.1 Satellite Differential Code Bias Estimation
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Figure 10.1: Satellite DCB estimates based on the raw observation processing approach with constrained EGON receiver
DCBs and estimated residual ionospheric delays.
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G1C−G5Q DCB estimates based on
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Table 10.7: Mean and standard deviation (in ns) of the Galileo, GPS and BeiDou satellite DCB estimates based on the raw
observation processing approach with constrained EGON receiver DCBs and estimated residual ionospheric
delays for the processed time interval 2017-001 - 2019-120.

ds
E1C−E5Q ds

G1C−G2W ds
C2I−C7I

mean std mean std mean std

E01 0.02 0.45 G01 -3.71 0.3 C06 14.74 0.42

E02 1.32 0.46 G02 16.15 0.34 C07 18.02 0.44

E03 -2.16 0.43 G03 -1.80 0.33 C08 16.3 0.38

E04 2.72 0.44 G04 6.12 0.35 C09 7.90 0.42

E05 -2.43 0.45 G05 7.84 0.34 C10 7.64 0.43

E07 -3.98 0.44 G06 -3.08 0.34 C11 6.67 0.35

E08 3.22 0.46 G07 8.18 0.30 C12 7.52 0.35

E09 -1.04 0.43 G08 -2.02 0.32 C13 -7.44 0.39

E11 10.71 0.44 G09 0.00 0.38 C14 9.28 0.36

E12 8.50 0.45 G10 -0.96 0.33 C16 -2.58 0.44

E13 -0.42 0.23 G11 9.92 0.31

E14+ -29.86 0.46 G12 8.57 0.35

E14++ 2.37 0.30 G13 8.65 0.31

E15 -5.12 0.24 G14 8.49 0.33

E18− -14.82 0.47 G15 7.81 0.37

E18−− 1.19 0.31 G16 9.70 0.32

E19 2.90 0.47 G17 8.11 0.3

E21 -1.69 0.25 G18∗ 10.33 0.31

E22 2.20 0.31 G18∗∗ 5.12 0.26

E24 -37.59 0.45 G18∗∗∗ 4.45 0.21

E25 -2.89 0.29 G19 13.87 0.31

E26 -4.34 0.46 G20 8.99 0.34

E27 -1.70 0.29 G21 9.86 0.32

E30 -1.30 0.44 G22 15.53 0.33

E31 -3.80 0.28 G23 15.10 0.33

E33 2.42 0.23 G24 -1.82 0.34

E36 -4.71 0.23 G25 -2.33 0.32

G26 -3.87 0.33

G27 0.33 0.34

G28 9.91 0.31 G18 (GPS-054)
+ 2017-001 - 2019-076 G29 7.41 0.34 ∗ 2017-001 - 2018-022
++ 2019-083 - 2019-120 G30 -0.88 0.33 G18 (GPS-034)
− 2017-001 - 2019-048 G31 8.76 0.32 ∗∗ 2018-070 - 2018-320
−− 2019-058 - 2019-120 G32 -0.94 0.34 ∗∗∗ 2018-333 - 2019-120
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G.2 Signal-Specific DD Ambiguity Fractional Histograms
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Figure 10.3: Normalized DD ambiguity fractional histogram based on
raw observation float ambiguity estimates for Galileo sig-
nals tracked by the GE60 network in the first iteration of
the integer ambiguity resolution (IAR) algorithm.
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Figure 10.4: Normalized DD ambiguity fractional histogram based on
raw observation float ambiguity estimates for GPS signals
tracked by the GE60 network in the first iteration of the
integer ambiguity resolution (IAR) algorithm.
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Figure 10.5: Normalized DD ambiguity fractional histogram based on
raw observation float ambiguity estimates for Galileo sig-
nal E1C tracked by the GE100 network in the first iteration
of the integer ambiguity resolution (IAR) algorithm.
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Figure 10.6: Normalized DD ambiguity fractional histogram based on raw observation float ambiguity estimates for
Galileo signals tracked by the GE100 network in the first iteration of the integer ambiguity resolution (IAR)
algorithm.
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Figure 10.7: Normalized DD ambiguity fractional histogram based on raw observation float ambiguity estimates for
Galileo signals tracked by the GE100 network in the first iteration of the integer ambiguity resolution (IAR)
algorithm.
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Figure 10.8: Normalized DD ambiguity fractional histogram based on
raw observation float ambiguity estimates for GPS signal
G1C tracked by the GE100 network in the first iteration of
the integer ambiguity resolution (IAR) algorithm.
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Figure 10.9: Normalized DD ambiguity fractional histogram based on raw observation float ambiguity estimates for GPS
signals tracked by the GE100 network in the first iteration of the integer ambiguity resolution (IAR) algorithm.
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Figure 10.10: Normalized DD ambiguity fractional histogram based on
raw observation float ambiguity estimates for BeiDou sig-
nal C2I tracked by the GE100 network in the first iteration
of the integer ambiguity resolution (IAR) algorithm.
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Figure 10.11: Normalized DD ambiguity fractional histogram based on raw observation float ambiguity estimates for
BeiDou signals tracked by the GE100 network in the first iteration of the integer ambiguity resolution (IAR)
algorithm.

G.3 Satellite SD Phase Biases
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Figure 10.12: Between satellite SD phase biases for different pairs of satellites, determined from fixed raw observation
ambiguities of multiple receivers, each tracking the respective pair of satellites at the same time.
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Figure 10.13: Between satellite SD phase biases for different pairs of satellites, determined from fixed raw observation
ambiguities of multiple receivers, each tracking the respective pair of satellites at the same time.
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Figure 10.14: Between satellite SD phase biases for different pairs of satellites, determined from fixed raw observation
ambiguities of multiple receivers, each tracking the respective pair of satellites at the same time.
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