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Abstract

Tracking pedestrians based on visual sensors has many diverse applications, among them au-

tonomous driving. Through tracking, not only the position of pedestrians but also their temporal

movement can be obtained. This information helps vehicles and robots to sense their surrounding

environment and thus they can plan appropriate reactions. In addition to obtaining a high recall,

maintaining the consistency of tracked trajectories during data association is one of the most cru-

cial issues of any tracker.

Following the tracking-by-detection paradigm, a new method called 3D-TLSR (3D pedestrian

tracking using local structure refinement) is presented in this thesis aiming at improving the accu-

racy, reliability, and consistency of tracked trajectories. The contributions of this work are four-

fold. First, a framework combining both, 2D image and 3D object space information, to track

multiple pedestrians in 3D object space is presented, in which tracking, detection, and prediction

are all considered and improved to enhance tracking results in terms of completeness, correctness,

and reliability. Second, a hierarchical association approach is introduced to improve the consis-

tency of trajectories by utilising geometry cues, which is carried out in two steps: (1) targets whose

assignments have a high probability of correctness are selected as anchors and (2) prior knowledge

about the geometry changes of the anchors is used to correct unreliable assignments of detections

with their nearby trajectories in 3D space. Additionally, the tracking-to-confirm-detection (TCD)

approach is introduced to address low-quality detection results so that both, completeness and cor-

rectness of trajectories, can be improved during tracking. Third, a simple approach to estimate and

correct the velocity of a tracked person is proposed based on the relationship of moving targets,

which allows missed detections to be better retrieved. Fourth, a new dataset called MuVi, consist-

ing of image sequences of pedestrians from three different viewpoints with a large overlapping has

been acquired, which can be employed for either single view or multi-view collaborative track-

ing. The new dataset offers additional data for the community to promote research achievements

theoretically and practically.

Experiments on different datasets are carried out to illustrate the advantages and weaknesses

of the proposed tracking method and its individual component. Experimental results on the well

known KITTI tracking benchmark, the ETHMS dataset, as well as a self-generated MuVi dataset

show that the proposed tracker yields comparable results to other state-of-the-art methods and gives

the best online result among all investigated approaches. On the ETHMS dataset, our approach

obtains the best results with large margins for most tracking metrics. These findings confirm the

effectiveness and generalization potential of the proposed tracking method.

Keywords 3D pedestrian tracking, tracking-confirm-detection, online association, linear pro-

gramming, local structure constraints, missed detection recovery
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Zusammenfassung

Die auf visuellen Sensoren basierende Fußgängerverfolgung findet in vielen verschiedenen Bere-

ichen Anwendung, einschließlich dem des autonomen Fahrens. Die Verfolgung liefert dabei nicht

nur die Position der Fußgänger, sondern auch deren Bewegung über die Zeit. Diese Informa-

tionen helfen Fahrzeugen und Robotern, ihre Umgebung zu erfassen und ermöglichen ihnen so,

notwendige Reaktionen zu planen. Neben einer hohen Detektionsrate ist die Wahrung der Konsis-

tenz nachverfolgter Trajektorien während der Datenzuordnung eines der Hauptprobleme für jede

Methode zur Fußgängerverfolgung.

Dem Tracking-by-Detection-Paradigma folgend wird in dieser Arbeit unter dem Namen 3D-

TLSR (3D-Fußgängerverfolgung mit lokaler Strukturverfeinerung) eine neue Methode vorgestellt,

die darauf abzielt, Genauigkeit, Zuverlässigkeit und Konsistenz von nachverfolgten Trajektorien

zu verbessern. Die vorliegende Arbeit beinhaltet dafür vier verschiedene Beiträge. Zunächst wird

ein Framework vorgeschlagen, das sowohl 2D-Bild- als auch 3D-Objektrauminformationen kom-

biniert, um mehrere Fußgänger im 3D-Objektraum zu verfolgen. Dabei werden Verfolgung, Erken-

nung und Vorhersage berücksichtigt und optimiert, um die Ergebnisse im Sinne von Vollständigkeit,

Korrektheit und Zuverlässigkeit zu verbessern. Zweitens wird ein Ansatz zur hierarchischen Zuord-

nung eingeführt, um die Konsistenz von Trajektorien durch Verwendung von geometrischen Hin-

weisen zu verbessern. Dies erfolgt in zwei Schritten: (1) Ziele, deren Zuordnungen mit hoher

Wahrscheinlichkeit korrekt sind, werden als Anker ausgewählt und (2) Vorkenntnisse hinsichtlich

geometrischer Änderungen dieser Anker werden verwendet, um unzuverlässige Zuordnungen von

Detektionen zu benachbarten Trajektorien im 3D-Raum zu korrigieren. Darüber hinaus wird ein

TCD-Ansatz (Tracking-to-Confirm-Detection) eingeführt, um dem Problem entgegenzuwirken,

welches aus qualitativ schlechten Erkennungen resultiert. Damit kann sowohl die Vollständigkeit

als auch die Korrektheit der Trajektorien während der Verfolgung verbessert werden. Drittens wird

ein einfacher Ansatz zur Schätzung und Korrektur der Geschwindigkeit einer nachverfolgten Per-

son vorgeschlagen, welcher auf der Beziehung zwischen bewegten Zielen basiert und fehlende De-

tektionen ausgleicht. Viertens werden Bildsequenzen von Fußgängern aus drei verschiedenen Per-

spektiven mit großem Überlappungsbereich erfasst und in Form des MuVi-Datensatzes vorgestellt.

Dieser neue Datensatz kann zur Nachverfolgung auf Basis einer einzelnen oder mehrerer ver-

schiedener Perspektiven verwendet werden und soll die wissenschaftliche Gemeinschaft bei theo-

retischer wie praktischer Forschung unterstützen.

Durch Experimente auf unterschiedlichen Datensätzen werden die Vor- und Nachteile der vorges-

chlagenen Methodik und ihrer einzelnen Komponenten veranschaulicht. Experimentelle Ergeb-

nisse auf dem bekannten KITTI-Tracking-Benchmark, dem ETHMS-Datensatz, sowie auf dem

selbst erstellten Datensatz MuVi zeigen, dass der vorgeschlagene Ansatz dem Stand der Technik

entspricht und das beste Online-Ergebnis aller untersuchten Methoden liefert. Auf dem ETHMS-
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Datensatz erzielt für die meisten Tracking-Metriken mit großem Abstand die besten Ergebnisse.

Diese Resultate bestätigen die Wirksamkeit und Allgemeingültigkeit der vorgeschlagenen Methodik

zur Fußgängerverfolgung.

Schlüsselwörter 3D-Fußgängerverfolgung, Nachverfolgung bestätigt Erkennung, Online-

Zuordnung, lineare Programmierung, lokale Strukturbeschränkungen, Wiederherstellung fehlen-

der Erkennungen
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Symbols

General notations

Rn the n-dimensional Euclidean space

| | absolute value, number of elements in a set

|| ||L2 L2 norm

σx standard deviation of x

Σxx covariance matrix of vector x

p(x) marginal probabilty of x

p(x|y) conditional probabilty of x given y

N normal distribution

µx mean value of x

E〈.〉 expected value

� element-wise multiplication

Localization

(Ω) ground plane

ξ disparity map

P foot position of a pedestrian in 3D object space

I foot position of a pedestrian in image space

B bounding box of a detection
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% detection confidence value

u, v image coordinates

d disparity value

M binary mask

ε threshold value

H histogram

PedH , P edW average of pedestrian height and width

ζMs ratio between the number of pixels in an instance segmentation mask and its

bounding box

ζB ratio between the height and width of a bounding box

cu, cv image principle point coordinates

f camera focal length

Base base line of a stereo system

Z depth value calculated from 3D point cloud

Z+
H/W depth value predicted from height or width of a bounding box

Tracking

D set of detections

T set of trajectories

D detection

S state vector

S+ predicted state vector

S∗ updated state vector

ψ state transition matrix

τ trajectory
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A coefficient matrix

c indicator vector

ΓA appearance similarity

ΓG geometry similarity

W vector of association weight

wji association weight between detection i and trajectory j

ρ, θ, ν weights of different terms in association weight

gate3D 3D association gate

gate2D 2D association gate

L regression line

F measurement model

JA Jacobian matrix of A

vX , vZ velocity in X and Z direction of a tracked target

aX , aZ acceleration in X and Z direction of a tracked target
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1 Introduction

The human visual system is capable of capturing information about interesting objects like po-

sition, type, and interaction, accurately within an extremely short time. In contrast, this task is

highly challenging for computer vision systems. In such systems, cameras act as the eyes to cap-

ture images and software algorithms take responsibility for analysing and providing necessary

information for further applications. With the support of these systems, human effort in processing

huge amounts of images, which is expensive and less stable in the long run, can be reduced or

completely avoided. Despite constant development and progress in the fields of photogrammetry

and computer vision, the performance of a computer system still cannot reach the human ability.

One of the problems is the perception of motion at the object-level over time (Rasouli et al., 2019;

Huang et al., 2019).

Derived from the development of applications related to autonomous driving, traffic safety,

robotics, etc., pedestrians are one of the most momentous objects to be tracked. Today, with

advanced technologies of computational vision systems in terms of both hardware and software,

pedestrians, in principle, can be localized and tracked automatically in image sequences with or

without prior information about the captured scenes. Tracking allows vehicles and robots not

only to know where pedestrians probably appear in the scene but also to anticipate their mov-

ing directions and behaviours, which are crucial factors for planning their moving paths and safe

navigation (Rasouli and Tsotsos, 2019). Though a substantial amount of studies have been car-

ried out to tackle the problem, tracking pedestrians correctly and robustly still requires extensive

improvements to deal with difficulties coming from various sources. First, pedestrians cannot be

considered as rigid bodies, they constantly carry out flexible and articulated movements. Second,

the surrounding illumination conditions and the visible complicated background change over time.

These factors result in incomplete, incorrect, and noisy detections as well as significant changes

of pedestrians’ appearance. Moreover, when pedestrians appear in crowds, their projections in

images can be occluded by the others. This also poses problems to assign a pedestrian detection

to its corresponding detections in other image frames. All the aforementioned challenges usually

lead to two main problems in tracking: missed detections and identity switches. Last but not least,

though accurate and reliable 3D geometry trajectories are required by many real-world applica-

tions, most of the existing literature is targeted at improving the completeness and consistency

of 2D trajectories. In summary, applying detection and tracking results to practical applications
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requires significant quality of generated trajectories, which is still far from what has been accom-

plished (Leal-Taixé et al., 2017). Motivated by these challenges, this thesis deals with tracking

pedestrians in 3D object space with high reliability and accuracy using stereo images.

Besides the development of novel and advantageous algorithms, the provision of public datasets

also contributes to significantly promote research achievements theoretically and practically. Data

sets are means to evaluate the accuracy, robustness, as well as the generalization potential of ap-

proaches, which allows the strong and weak points of a suggested method to be thoroughly anal-

ysed. Thus, current difficulties and challenges can be emphasized and untangled by the research

community. Encouraged by this fact, a 3D pedestrian tracking dataset named multi-views (MuVi)

was created within the scope of this thesis, in which stereo cameras are utilised to acquire the

movements of pedestrians. Furthermore, to enable collaborative tracking by fusing information

from multiple camera systems, the scenes were captured from three different viewpoints of a junc-

tion. To the best of our knowledge, at the time of writing (18-Feb-2020), no similar dataset is

publicly available.

1.1 Problem statement

Tracking-by-detection is a well-known and widely used remedy in the state-of-the-art tracking

literature (Xu et al., 2019), in which the tracking task is decomposed into two separate stages:

detection and data association. Most of the studies following this approach concentrate on con-

catenating detections across image frames to form consistent trajectories for interesting objects.

The data association task can become extremely complicated in crowded groups, especially when

the tracking is carried out in the 2D image domain, which suffers the problem of dimensionality

reduction. Moreover, for autonomous driving applications, the 3D position is essential informa-

tion for a vehicle to plan its path. Hence, tracking in the image domain is neither sufficient nor

effective.

In this study, the problem of pedestrian tracking is investigated using stereo images acquired

from moving cameras in a probabilistic manner. The ultimate aim is to obtain correct 3D tra-

jectories with high localization accuracy and completeness by combining both 2D image and 3D

stereoscopic information. The state of a target at each epoch is accompanied by its uncertainty,

which accounts for the precision of the estimated trajectory in terms of localization. This un-

certainty information is vital for real-world applications in making decisions and responding to

events. The difficulties of tracking are exposed both in the detection and the association stage. In a

detector result, together with an increase in recall also the number of false positives (FPs) rises up.

Consequently, choosing only observations with a high probability of correctness results in losing

true positives (TPs). In contrast, taking into account also incorrect detections as input for tracking
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causes more complexity and difficulty for the association. Due to problems such as erroneous input

results and ambiguities in appearance or position, the association can easily fail under non-optimal

conditions. Last but not least, the behaviour of pedestrians is sometimes unpredictable, which

makes modelling their motion difficult, especially when important information is neglected such

as undetected nearby pedestrians.

Based on specific characteristics of pedestrians such as size and moving behaviour, a number of

filters are developed to eliminate wrong detections, which help to increase the accuracy of track-

ing results and to reduce the complications due to incorrect and incomplete inputs for the later

stages. In order to maintain accurate identities for tracked trajectories, local geometry constraints

among pedestrians in groups are employed to enhance association results. This idea has been

explored using 2D image information (Yoon et al., 2016), yet it cannot help to completely under-

stand the real-world geometry in 3D space. Therefore, in this work, 3D point clouds obtained from

stereoscopic images are employed to model the relationship among pedestrians, which enables the

inference of geometry constrains between them both, in 2D image and 3D object space. Combin-

ing those constraints with appearance cues, the accuracy of association and tracking tasks can be

improved. To this end, the motion of a person is modelled by taking advantage of the relationship

between pedestrians. In this approach, the moving direction and speed of a tracked pedestrian

can be corrected and updated according to his/her friends. With a correct motion model, missed

detections of a target can be recovered so that not only the recall value is improved but also the

fragmentation of tracked trajectories is reduced.

1.2 Research objectives and contributions

The primary goal of this study is to develop an online tracker that can accurately and robustly

localize and track multiple pedestrians on the street level in 3D object space using stereo images,

and which yields results at least on par with the scientific state-of-the-art. For this purpose, several

crucial issues of tracking including improving the recall of tracked people, enhancing the accuracy

and reliability of generated trajectories are endeavoured and developed.

To achieve these research objectives, several contributions have been made in this thesis:

• A multi-person tracking framework is introduced to track pedestrians in world coordinates

by employing both, 2D images and 3D stereoscopic information. Using stereo images, meth-

ods are proposed to model the scene and estimate pedestrian positions in 3D object space.

The appearance of pedestrians in image space is utilised for detection and spatio-temporal

features comparison.

• A hierarchical association approach to improve the re-identification accuracy of tracked tar-
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gets by employing relationships in 3D space among nearby pedestrians, which is divided

into two steps: (1) determining trajectories whose assignments are strongly believed to be

correct, which are called anchors and (2) using local geometry constraints between the an-

chors and their nearby trajectories in 3D space to correct unreliable assignments in the first

step. Additionally, the tracking-confirm-detection (TCD) approach is suggested to cope with

the problem of low quality detection results so that high recall and small false alarm values

of detections during tracking can be obtained.

• A method to reliably estimate and assess the motion of pedestrians is explored. In addition, a

so-called friend relationship to correct pedestrian velocity and improve trajectory prediction

is defined, which endorses the interpretation of the motion model for tracked pedestrians.

Consequently, detections missed by the detector can be retrieved through the prediction step.

• A dataset containing image sequences of pedestrians from three different stereo rigs with a

large overlapping area is created. This dataset, therefore, can be used to carry out experi-

ments either for mono view tracking or for collaboration and fusion of images in multi-view

tracking.

1.3 Outline of the thesis

The rest of this thesis is arranged as follows. Following this introduction is the presentation of

fundamental theories for the thesis in Chapter 2. Existing literature related to this work is reviewed

in Chapter 3, covering four primary aspects of the tracking problem, namely general tracking ap-

proaches, object detection methods, tracking-by-detection, and motion modelling. The details of

the proposed tracker are given in Chapter 4. Particularly, Section 4.1 presents the general pipeline

of the developed tracking approach and defines the relationship between pedestrians and the transi-

tion state of a trajectory, followed by the explanation of the detection and post-processing methods

in Section 4.2. The association optimization and its involved cues are illustrated in Section 4.3.

Section 4.4 describes in detail the suggested velocity estimation and missed detection prediction

methods. Section 4.5 provides an implementation of an extended Kalman filter to smooth trajec-

tories. Extensive experimental results are reported in Chapter 5. This chapter focuses on analysing

three subjects, consisting of component optimization, method evaluation, and performance of the

tracking approach compared to state-of-the-art methods. These results and their implications are

discussed in Chapter 6. Finally, this thesis is concluded by an outlook for future works in Chap-

ter 6.
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2 Basics

This chapter presents fundamental theories and methods which are utilized to develop the tracking

approach in this dissertation. The basic formulation and solution of linear programming, which

is commonly used in data association optimization is described in Section 2.1. The architecture

of the mask R-CNN detector which is employed to detect pedestrians in images, is presented

in Section 2.2, followed by the description of TriNet in Section 2.3 which is exploited as a feature

extractor for pedestrian appearance. Section 2.4 provides the theory of the social force model. On

the ground of this, various motion models are designed to predict behaviours of pedestrians while

they are moving. Finally, the fundamentals of Kalman filtering are presented in Section 2.5. This

filter is often used in an object tracking approach to smooth the resulting trajectories.

2.1 Linear programming

The term linear programming (LP) can be traced back to the late 1940s and was first introduced

by Dantzig (1998). Until now, this set of algorithms has been widely adopted to optimize (finding

the maximum or minimum) a linear function subject to a set of constraints which can be either lin-

ear equalities or inequalities. Following (Bazaraa et al., 2011), a basic formulation of this problem

can be depicted as follows:

Minimize : c1x1 + c2x2 + ...+ cnxn (2.1.1)

Subject to : a11x1 + a12x2 + ...+ a1nxn ≥ b1

a21x1 + a22x2 + ...+ a2nxn ≥ b2

· · ·

am1x1 + am2x2 + ...+ amnxn ≥ bm

xi ≥ 0 i = 1, . . . , n

, (2.1.2)

in which the row vector c = [c1, c2, ..., cn]T ∈ Rn is the cost coefficient vector and x = [x1, x2, ..., xn] ∈
Rn is decision vector. x needs to be optimized to minimize the objective function in Equa-
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unbounded
feasible area

feasible area

optimal solution

(a) (b)

Figure 2.1: An example illustration of bounded (a) and unbounded (b) feasible area in 2-

dimensional space, adapted from (Leal-Taixé, 2014).

tion (2.1.1) and satisfy constraints in Equation (2.1.2). A ∈ Rmn is the constraint matrix:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn


and b = [b1, b2, ..., bm] is the right-hand-side vector. Each inequality constraint ai1x1 + ai2x2 +

...+ ainxn ≥ bi is a half space in Rn.

The linear programming can be expressed in short form as:

min {cx : x ∈ Rn, Ax ≥ b xi ≥ 0 i = 1, . . . , n} (2.1.3)

A solution x̂ ∈ Rn complying with the condition Ax̂ ≥ b is called feasible solution. A problem

is feasible if there is at least one feasible solution existing for it, otherwise, it is infeasible. The

feasible region of an LP problem is formed by all feasible points and is a convex polytope as it is

the intersection of half-spaces. If this region is finite and bounded, the problem is called bounded.

A feasible x∗ ∈ Rn is optimal if cx∗ < cx̂ for all existing feasible solutions x̂ ∈ Rn. It has

been proven that if an LP is feasible and bounded, its optimal solution is one of the vertices of the

feasible area (Bazaraa et al., 2011).

An inequality can be easily converted into an equality equation by simply adding non-negative

surplus or slack variables. For instance, the constraint
∑n

j=1 aijxj ≥ bi is equivalent to
∑n

j=1 aijxj−
xn+1 = bi with xn+1 ≥ 0. An LP is said to be in standard from if all constraints are equalities and

all variables are non-negative. On the other hand, if all restrictions are constructed by inequality

equations, the LP has canonical form. By transforming inequalities into equations, an LP problem

can be converted from canonical to standard and vice versa.
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optimal solution

starting vertex

Figure 2.2: A visual exemplar of the simplex method, adapted from (Leal-Taixé, 2014).

Simplex method

Although it is known that the optimal solution of an LP problem lies on one of its feasible area

vertices, exhaustively checking all of them is not an efficient way because usually the number of

vertices in an LP problem is very large. In practice, the simplex method which was described

in (Bazaraa et al., 2011) is extensively applied to solve this problem in standard form. The algo-

rithm first starts with a vertex of the feasible region and moves along edges to another vertex until

it reaches the optimal solution. The current solution only moves to one of its adjacent vertices if

this makes the objective function improve its value so that the problem can converge. The two pri-

mary aspects which need to be inspected in this algorithm are how to evaluate whether a solution

is optimal or not without checking the objective function value of other vertices and how to move

to a better vertex so that the optimal solution can be obtained.

Consider an LP in standard form:

min {cx : x ∈ Rn, Ax = b xi ≥ 0 i = 1, . . . , n}

Suppose that rank (A, b) = rank (A) = m, B is an m × m invertible matrix, and N is an

m× (n−m) matrix such that A = [B,N ].

Then, x =
(
xB
xN

)
, in which xB = B−1b = b̄ , xN = 0 and satisfies the equation Ax = b is called

a basic solution of the LP. The component xB contains basic variables and xN includes non-basic

variables.

If B−1b ≥ 0, then x is a basic feasible solution. The objective value z at x can be rewritten as:

z = cx

= (cB cN)

(
xB
xN

)
= cBxB + cNxN

= cBB
−1b

(2.1.4)
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It can be proven that the collection of basic feasible solutions are equivalent to a set of extreme

points (i.e. vertices of a feasible area) (Dantzig, 1998) and the procedure of finding the optimal

solution with an initial basic solution x =
(
xB
xN

)
is carried out as follows:

1. Let:
zk − ck = max

j∈J
(zj − cj)

zj = cBB
−1aj

, (2.1.5)

in which j is an index of the non-basic variables in xN whose |xN | = J . aj is the column j

of matrix A. If (zk − ck) ≤ 0, the current basic feasible solution x is the optimal solution.

Otherwise, xk is called the entering variable and the operation continues with step 2.

2. If yk = B−1ak ≤ 0, it is concluded that the optimal solution is unbounded.

3. r is the index of the blocking variable xBr based on the minimum ratio test:

b̄r
yrk

= min
1≤i≤m

{ b̄i
yik

: yik > 0} , (2.1.6)

B is updated as aBr is replaced by ak. Then repeat step 1.

In the worst case, the complexity of the simplex method can be exponential (Klee and Minty,

1972). Nevertheless, the simplex method often performs extremely well in practice. It is observed

to usually converge within a number of iterations which linearly increases with the input dimen-

sions. In other words, the simplex method has polynomial-time average-case complexity under

various probability distributions. Moreover, the running time of this algorithm is assured to be

sub-exponential O(mn2 + eO
√
n logn) once some randomized pivot rules are applied (Matoušek et

al., 1996).

Integer programming

In many practical applications, fractional solutions are not reasonable and acceptable. Thus,

another variance of LP called integer programming (IP) are employed to optimize solely integer

solutions x. A IP has similar form to an LP as follows:

minimize cx

subject to Ax ≥ b,

x ≥ 0,

with x ∈ Zn .

(2.1.7)

The computational complexity of IP is NP-hard and thus much higher than LP. While the simplex

method can effectively solve LPs, it is not suitable for IP problems. Simply rounding the solution

obtained by the simplex method may even not be a feasible of an IP (see Figure 2.3). Nevertheless,

the solutions of an LP and its IP are observed to be highly correlated:
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Figure 2.3: An example illustration of the optimal solutions x∗ and x̄∗ for an LP and the corre-

sponding IP.

• The optimum objective value Z∗ of an LP is the lower or upper bound for the objective of

its corresponding IP, depending on whether the objective function is to be minimized or

maximized.

• If an LP is feasible, so is its IP.

Several techniques have been proposed to solve the IP utilizing the above observations, two well-

known approaches are branch-and-bound and cutting plane (Wolsey and Nemhauser, 1999). In the

branch-and-bound method, the algorithm of finding an optimal solution is carried out in following

steps:

• Find the solution for the corresponding LP using simplex method.

• Select a variable xi that has fractional value x∗i and divide the current problem into two sub-

problems by adding one of the two constraints: xi < x∗i and xi > x∗i to the original problem.

This procedure is called branching.

• Repeat step (1) and (2) for the sub-problems until either a branch is infeasible or an integer

solution is obtained.

The branching routine is finished after a finite number of steps, yet requires a lot of computational

effort. To reduce the number of branches, either the upper bound or lower bound Z∗ can be used

to terminate a branch if its objective value does not satisfy the bounding condition.

The cutting plane method literally adds additional constraints (i.e. cuts) into an LP to eliminate

non-integer solutions in the feasible area. The cuttings are repeated until the optimal solution

of the LP is integer. There are a number of algorithms for finding cuts, the one introduced by

Gomory (Gomory, 1958) is one of the most common and prominent ones.
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CNN

RPN

classification

box regression

instance segmentation

fixed size 
feature map

FCLs

FCN

RoIAlign 
layer

Figure 2.4: General network architecture of Mask R-CNN, adapted from (He et al., 2017).

In practice, the branch-and-bound algorithm usually works better than the cutting plane algo-

rithm and converges fast. Nevertheless, in the worst case, the effort for convergence can grow

exponentially with the problem size. Both, the branch-and-bound and the cutting plane methods

are guaranteed to converge with in a number of finite steps.

2.2 Mask R-CNN

Mask R-CNN is a neural network introduced in (He et al., 2017) to simultaneously solve both,

object detection and instance segmentation. The general architecture of this network is depicted

in Figure 2.4. Mask R-CNN is trained in an end-to-end manner and has three main branches: region

proposal, object classification and bounding box (BB) regression, and instance mask segmentation.

The region proposal network searches for all possible regions, i.e. a set of rectangles, in an

image that can contain objects. First, a feature map of the whole input image is calculated using

the convolution and pooling layers. At each position in the feature map, a sliding window is

used to obtain n proposal BBs with different size and height-to-width ratio. Each BB has a score

representing how likely it contains an object. For each proposal box, a fixed size feature map FB is

extracted employing the RoIAlign layer (see below). After obtaining the FB, mask R-CNN carries

out three tasks at once as follows:

• The FB is fed into a sequence of fully connected layers that are divided into two sibling

output layers: one delivers a classification in term of discrete probability distribution % over
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(k + 1) object types including the background; the other layer outputs four BB coordinate

offsets for each class (box regression in Figure 2.4).

• Another branch employs a fully convolutional networks (Long et al., 2015) to produce k

instance binary masks m ×m, one for each proposal region. Then, the mask that matches

with the predicted object type is scaled up to the region of interest (RoI) size. Since the

instance mask needs a precise spatial layout to map between the feature map and the RoI in

the original image, a RoIAlign layer is developed to preserve the explicit per-pixel spatial

correspondence during the mask generation step.

During training, a multi-task loss is computed to train the whole network end-to-end:

L = Lcls + Lbox + Lmask , (2.2.1)

where Lcls is the classification loss, Lbox is the bounding box loss, and Lmask is the loss for the

instance segmentation mask, which are computed as follows:

Lcls = −log(pi) , (2.2.2)

pi is the classification probability for the ground truth (GT) class i (i.e. the detection confidence

score %) which is derived from the soft-max classification function.

Lbox(t, t
∗) =

∑
i

(p∗i )
∑

q∈{x,y,w,h}

smoothL1(tq − t∗q)

tx = (x− xa)/wa , ty = (y − ya)/ha
tw = log(w/wa) , th = log(h/ha)

t∗x = (x∗ − xa)/wa , t∗y = (y∗ − ya)/ha
t∗w = log(w∗/wa) , t∗h = log(h∗/ha)

, (2.2.3)

smoothL1(x) =

0.5x2 if |x| < 1

|x| − 0.5 , otherwise
(2.2.4)

where {x, y, w, h} are the predicted BB coordinates and size which are returned by mask R-CNN

for its proposal {xa, ya, wa, ha} and {x∗, y∗, w∗, h∗} is the GT. The term p∗i illustrates that only

predicted BB corresponding to the correct object class i are considered.

Lmask = − 1

m2

m∑
i=0

m∑
j=0

Mijlog(M+
ij) + (1−Mij)log(1−M+

ij) (2.2.5)

Mij is a binary value of pixel (i, j) in the instance GT mask M. The value of pixels in the

predicted mask M+ range from 0.0 to 1.0. During the inference, M+ is binarized using the

threshold of 0.5
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2.3 TriNet

TriNet is introduced in (Hermans et al., 2017) to solve the problem of person re-identification

(Re-Id) using a convolutional neural network (CNN) and triplet loss. For that purpose, the network

is trained to learn an embedding function fθ to extract person visual properties. In the embedding

space, images of the same person should be closer to each other than those from different persons.

Mathematically, if the picture of a person is represented as a data point in RF and its appearance

features are embedded as a vector in RD, the function fθ maps semantically similar data points in

RF onto a metrically close point in RD. The function fθ is parameterized by θ which are learned in

the training phase of the CNN. The architecture of the TriNet and its exemplary results are shown

in Figure 2.5.

Triplet 
Loss

CNN

CNN

CNN

shared weight

shared weight

input triplet learning embeding vector

anchor

positive

negative

embedding space

Figure 2.5: Overview of the TriNet architecture. The network takes three images as input, the

positive has the same Id as the anchor, while the negative has different Id. The training

strategy is that in embedding space, the distance between an anchor and its positive is

smaller than the distance of the anchor and a negative by at least a margin m.

During training, TriNet takes three images as input, in which one is call anchor a, a positive

image p contains the person of the same id with the one in the anchor, and a negative n is an image

of another person. The feature vector y of these three images is extracted through a shared weights

CNN as yi = fθ(i). The weights of this network are updated using the triplet loss as following:

Ltri(θ) =
∑

a,p,n,ya=yp 6=yn

max(m+Da,p −Da,n, 0)

=
∑

a,p,n,ya=yp 6=yn

[m+Da,p −Da,n]+
, (2.3.1)
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[.]+ is a standard hinge function. Di,j is the distance metric between yi and yj . Da,p and Da,n are

called pull and push term, respectively. And for a given training triplet a, p, n, the loss function

Ltri(θ) is constructed to achieve at a situation where Da,p is smaller than Da,n by at least a margin

m.

However, calculating the loss using pull and push term of all training samples not only time-

consuming but also makes the network fail at non-trivial triplets. Therefore, moderate negative

and positive data mining techniques are applied to help the network better generalize. The core

idea is that batches are randomly sampled from P person identities. Each batch has PK samples,

in which K images comes from each person. Then, for each anchor a in the batch, its hardest

negative nh and positive ph are mined in the batch so that Da,ph has the biggest distance and Da,nh

has the smallest. The loss function is modified to take the mining data strategy into account as

follow:

LBH(θ;X) =
P∑
i=1

K∑
a=1

[m+ max
p=1...K

D(fθ(x
i
a), fθ(x

i
p))− min

n=1...K
j=1...P
j 6=i

D(fθ(x
i
a), fθ(x

j
n))]+ (2.3.2)

There are also different methods to sample the hardest negative and positive samples in a batch

depending on training strategies, which can lead to different performance of the network.

2.4 Social force model

The social force model (SFM) is suggested by Helbing and Molnar (1995) to explain the motion

changes of pedestrians subject to social forces in most of situations and populations except com-

plex scenarios. These models provide valuable clues to predict the walking trajectory of pedestri-

ans so that vehicles and robots can plan their appropriate interactions in time. The force terms are

reflected through intentions of people when they move including: a pedestrian planning to reach a

desired place within a certain time on the most convenient path; a pedestrian always trying to keep

a certain distance from other people and obstacle objects on streets like facades, traffic lights, vehi-

cles; the attraction which can come from known persons or interesting events on streets. According

to these terms, the process of behaviour changes depends on personal aims and perceptions about

the surrounding environment of a person, which is depicted in Figure 2.6.

While the term force can be related as physical exertion on the pedestrian’s body, the SFM

describes the reactions of pedestrians in responding to their perception of the surrounding environ-

ment using quantity mathematics models.

Personal aims

A pedestrian α usually tries to reach a defined place ~rα as conveniently as possible by choosing
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Information Processing:
Assessment of alternatives,

Utility Maximization

Psychological Tension:
Motivation to Act

Physical Realization:
Behavioral Change, Action

Psychological
and Mental
Processes

Stimulus

Figure 2.6: The diagram illustrates the procedure of pedestrian behaviour changing (Helbing and

Molnar, 1995).

the shortest path. If he/she is not disturbed by the environment, he/she tends to keep a desired speed

v0 and direction ~e(t) when moving, ~vα(t) := v0 ~eα(t). However, keeping with a constant velocity

is nearly impossible in the real-world due to acceleration or deceleration processes. Given the real

velocity ~vα,r, a small time τα is needed to achieve the ideal one. This results in the acceleration

term as follow:
~F 0
α( ~vα,r, ~vα) :=

1

τα
( ~vα − ~vα,r) . (2.4.1)

Environment influences

People want to keep a certain distance from others while moving depending on the density level

of objects around them and also their desired speed. This allows them to maintain their private and

comfortable space, as well as to avoid collisions. Thus, the motion of a pedestrian is influenced by

another pedestrian β, which results in repulsive effects represented as follows:

~fαβ(~rαβ) := −∇~rαβVαβ[b(~rαβ)] (2.4.2)

with

b :=
1

2

√
(||~rαβ||+ ||~rαβ − vβ 4 t~eβ||)2 − (vβ 4 t)2 , (2.4.3)

where ~rαβ = ~rα−~rβ . Vαβ(b) is a monotonically decreasing function of b. b is an equipotential line

in elliptical form.

The same computation can be applied to calculate the repulsive effect between a pedestrian and
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a static object B the on street:

~FαB(~rαB) := −∇~rαBUαB(||~rαB||) , (2.4.4)

where U is is a monotonically decreasing function. ~rαB = ~rα − ~rαB and ~rαB denotes the position of

an object B which is nearest to the pedestrian α.

In contrast to repulsive forces, attractive effects are caused by interesting events, person, or object

γ on the streets that make pedestrians want to get closer. Therefore, the attractive effects can be

modelled similarly as in 2.4.2. However, different from the repulsive effect, the attractive effects

usually decrease with time as pedestrian’s interests are typically lost over time:

~fαγ(||~rαγ||, t) := ∇~rαγWαγ(||~rαγ||, t), (2.4.5)

Wαγ(b) is a monotonically increasing function.

Though the aforementioned effects are calculated for all objects that exist in the same area as

a pedestrian, objects that appear in the perceiving direction of that person have more influence

than others. Due to this fact, the motion direction of a pedestrian is taken into account (i.e. the

effective angle 2ϕ) as weight value for different repulsive and attractive effects that can change the

pedestrian velocity:

w(~e, ~f) =

1, if ~e~f > ||~f ||cosϕ

c, otherwise (0 < c < 1)
. (2.4.6)

Both, the repulsive and the attractive effects lead to the acceleration or deceleration of pedestrian

velocity, given by:

~Fαβ(~eα, ~rα − ~rβ) := w(~eα,−~fαβ)~fαβ( ~rα − ~rβ)

~Fαγ(~eα, ~rα − ~rγ, t) := w(~eα, ~fαγ)~fαγ( ~rα − ~rγ, t)
. (2.4.7)

Combine all the mentioned influential forces that a pedestrian can be subject to at time t results in

its behaviour changes due to the social force ~Fα(t) described as follows:

~Fα(t) :=~F 0
α( ~vα, ~vα,r) +

∑
β

~Fαβ(~eα, ~rα − ~rβ)

+
∑
B

~FαB(~eα, ~rα − ~rαB) +
∑
γ

~Fαγ(~eα, ~rα − ~rγ, t) .
(2.4.8)

Let v̄α be the preferred velocity of α under the social force ~Fα(t). Then, the change of v̄α over time

is:
d ~̄vα(t)

dt
= ~Fα(t) + fluctuations . (2.4.9)

The fluctuation term is caused by random behaviour which stems from ambiguous situations and

unusual motions. People move with a limited speed vmax
α . In many cases, the preferred velocity is
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different from the actual movement ~vα,r they can make. Taking vmax
α into account, ~vα,r is computed

as follows:

~vα,r(t) = ~̄vα(t)g(
vmax
α

|| ~̄vα||
)

g(
vmax
α

|| ~̄vα||
) =

1, if || ~̄vα|| ≤ vmax
α

vmax
α

|| ~̄vα||
, otherwise

. (2.4.10)

2.5 Kalman filter

The Kalman filter is an estimator known to solve linear-quadratic problems (Grewal and Andrews,

2014). It is commonly used in statistic and control theory to recursively estimate an instantaneous

state of a linear dynamic system. This filter works under the assumptions that both state and mea-

surement variables of the system are affected by uncorrelated Gaussian noise and their relationship

can be derived by a linear model.

The filter algorithm is carried out in two steps consisting of prediction and update. First, it

predicts the current state of the dynamic system based on previous states which is called predicted

state. Once the current measurement is observed, the state variables are updated as the weighted

average of the measurement and the predicted state, in which less weight is given to estimates with

higher uncertainty. By combining the information in the past and current time, the Kalman filter

can deliver the state variable with smaller uncertainty.

System dynamic model

The system dynamic model describes the linear transition of state variables S ∈ Rn between two

adjacent temporal epochs:

Sk = ψk−1Sk−1 + qk−1

qk ∼ N (0, Qk)
, (2.5.1)

where ψk−1 is the transition matrix. qk ∈ Rn is the process noise with zero mean (E〈qk〉 = 0) and

covariance Qk ∈ Rn×n. It describes the deviations of the estimated state obtained from the linear

model. Using the prior information about the previous state and the linear transition model, the

current state S+
k can be predicted as follow:

E〈S+
k 〉 =ψk−1E〈Sk−1〉+ E〈qk−1〉

=ψk−1E〈Sk−1〉 .
(2.5.2)
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The corresponding covariance Q+
k of the predicted state S+

k is derived as follow:

Q+
k =E〈[Sk − E〈S+

k 〉][Sk − E〈S
+
k 〉]

T〉

=E〈[ψk−1[Sk−1 − E〈Sk−1〉] + qk−1][ψk−1[Sk−1 − E〈Sk−1〉] + qk−1]T〉

=ψk−1E〈[Sk−1 − E〈Sk−1〉][Sk−1 − E〈Sk−1〉]T︸ ︷︷ ︸
Qk−1

〉ψT
k−1 + ψk−1E〈[Sk−1 − E〈Sk−1〉]qT

k−1〉

+ E〈qk−1[Sk−1 − E〈Sk−1〉]T〉ψk−1 + E〈qk−1q
T
k−1︸ ︷︷ ︸

Pk−1

〉

=ψk−1Qk−1ψ
T
k−1 + Pk−1 .

(2.5.3)

Measurement model

let Zk ∈ Rm be the measurement observed at time k, which is applied to estimate the state

Sk ∈ Rn of a stochastic system. The linear relation between Zk and Sk is represented through the

measurement sensitivity matrix H ∈ Rm×n:

Zk = HkSk + vk ,

vk ∼ N (0, Rk)
, (2.5.4)

where vk ∈ Rm is the measurement noise with zero mean (E〈vk〉 = 0) and covarianceRk ∈ Rm×m.

The optimal updated estimate state S∗k , is a posterior value of Sk, which is computed based on

the observation Zk and the prior estimate state S+
k :

S∗k = K1
kS

+
k +KkZk , (2.5.5)

K1
k and Kk are unknown and need to be determined so that S∗k satisfies the orthogonality princi-

ple (Grewal and Andrews, 2014):

E〈[Sk − S∗k ]ZT
i 〉 = 0 , i = 1, 2, · · · , k − 1,

E〈[Sk − S∗k ]ZT
k 〉 = 0 .

(2.5.6)

This equation can be rewritten as:

E[〈ψk−1Sk−1 + qk−1 −K1
kS

+
k −KkZk〉ZT

i ] = 0 , i = 1, 2, · · · , k − 1,

=> E[〈ψk−1Sk−1 −K1
kS

+
k −KkHkSk −Kkvk〉ZT

i ] = 0

=> ψk−1E〈Sk−1〉ZT
i −K1

kE〈S+
k 〉Z

T
i −KkHkψk−1E〈Sk−1〉ZT

i = 0

=> E〈Sk〉ZT
i −K1

kE〈S+
k 〉Z

T
i −KkHkE〈Sk〉ZT

i +K1
kE〈Sk〉ZT

i −K1
kE〈Sk〉ZT

i = 0

=> E〈[Sk −KkHkSk +K1
kSk]〉ZT

i −K1
kE〈[S+

k − Sk]〉Z
T
i

=> [I −KkHk −K1
k ]E〈Sk〉ZT

i = 0

=> K1
k = I −KkHk

=> S∗k = (I −KkHk)S
+
k +KkZk .

(2.5.7)
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The optimum Kk is computed as follow:

Kk = Q+
kH

T
k [HkQ

+
kH

T
k +Rk]

−1 , (2.5.8)

Kk is called the Kalman gain. The covariance error Q∗k of the updated state S∗k is:

Q∗k = E〈[S∗k − Sk][S∗k − Sk]T〉

= E〈[S+
k −KkHkS

+
k +KkZk − Sk][S+

k −KkHkS
+
k +KkZk − Sk]T〉

= [I −KkHk]Q
+
k .

(2.5.9)

The updated state S∗k is the optimum estimated state that can be obtained based on available infor-

mation about the dynamic and measurement model. The best trade-off between the predicted S+
k

and the measurement Zk is computed based on their covariance matrices Q+
k and Rk and repre-

sented in the Kalman gain Kk.

Summary

The Kalman filter is carried out in two main steps consisting of prediction and update can be

summarized as follow:

• Prediction:
S+
k = ψk−1Sk−1

Q+
k = ψk−1Qk−1ψ

T
k−1 + Pk−1

(2.5.10)

• Update:
S∗k = (I −KkHk)S

+
k +KkZk

Q∗k = [I −KkHk]Q
+
k

Kk = P+
k H

T
k [HkP

+
k H

T
k +Rk]

−1

(2.5.11)

The Kalman filter is applied under the assumption that both the measurement and prediction mod-

els are linear. However, many problems of practical interest are non-linear, yet differentiable. For

those cases, the extended Kalman filter algorithm can be used instead of the standard one. The

non-linear functions are linearised using Taylor expansion (Grewal and Andrews, 2014).
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3 Related Works

This chapter provides an overview of previous studies related to multi-object tracking (MOT) and

pedestrian tracking to bring the contributions of this dissertation into a picture of reference w.r.t.

state-of-the-art developments. Several significant aspects of MOT in general are thoroughly exam-

ined. Different available tracking approaches are summarized in Section 3.1, followed by a brief

review of up-to-date object detection methods in Section 3.2. The tracking-by-detection method,

which is employed by most successful trackers and also used as the framework of our approach,

is discussed in Section 3.3. In this section, along with optimization methods of data association,

feature cues that facilitate the person-reidentification during tracking are described. Motion mod-

els, which are explored by existing studies to anticipate reactions of tracked targets w.r.t. to their

surrounding environment, are represented in Section 3.4. To close this chapter, strengths and weak-

nesses of previous works are summarized in Section 3.5, raising open questions of the tracking task

and showing how our work can partially solve them.

3.1 Tracking approaches

Pedestrian tracking is the task of continuously localizing interesting targets over time consistently.

This means a trajectory should be generated from the positions of one and solely one person.

The task can come in the form of single or multiple-person tracking. Here, only the problem of

tracking multiple pedestrians is investigated due to its significances for practical applications and

because it includes single person tracking. One important condition that affects the formulation

of the tracking task is the availability of input images at the time the tracker is executed, which

enables it to be operated either in an online or offline manner. In addition, the considered domain,

in which the tracking is carried out, also depends on the problems that it is applied to. Whereas

some applications only require the trajectories of pedestrians in 2D image space (e.g. footage

surveillance), others (e.g. autonomous vehicle) need the 3D positions of trajectories so that a

scene in 3D space can be sensed.

Tracking methods

Most of the modern trackers employ the tracking-by-detection approach to constantly track

pedestrians in image sequences (Pirsiavash et al., 2011; Zamir et al., 2012; Choi, 2015; Dehghan
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et al., 2015a; Yoon et al., 2016; Klinger et al., 2017; Henschel et al., 2018). This method comes in

two phases: (1) pedestrians are detected in each image separately, and (2) detections in consecutive

frames are associated consistently to generate a set of trajectories. While detection is considered

as an independent problem in the computer vision field and can be solved by employing state-of-

the-art detectors (He et al., 2016; Zhang et al., 2016; He et al., 2017), most studies following this

approach concentrate on concatenating observed objects across image frames accurately to form

consistent trajectories. This task can become excessively challenging depending on the number

of persons in a scene and their appearance scales, illuminations, etc. Previous studies usually try

to handle the association task either by developing better optimization methods (Berclaz et al.,

2011; Dehghan et al., 2015a) or by improving the appearance feature extractors (Leal-Taixé et al.,

2016; Bae and Yoon, 2018). More insightful discussions on data association are presented later

in Section 3.3. For the sake of smoothness, a filtering step can be added after the association stage,

which is in charge of correcting a state variable consisting of the position and velocity of a pedes-

trian based on its previous states, motion model and current observation. One advantage of the

tracking-by-detection approach is that the detection and association steps are separated. Thus, it is

straightforward to develop and improve individual components as well as to analyse their perfor-

mances independently. However, since the tracking-by-detection method heavily depends on the

detection results to generate trajectories, it faces several severe challenges as follows:

• Missed detection: pedestrians may not be detected in some image frames because of illumi-

nation difficulties, occlusions, or scale. This can result in the fragmentation of trajectories

and the decline of true positive (TP) results. If the detections of a person are missed for a

long time, it is very hard to re-identify that person later because of changes in appearance or

ambiguous position. Thus, its trajectory can be inconsistent or even completely lost.

• Low quality detection results: pedestrian detection is not a trivial task. Objects with similar

looks can be incorrectly classified as a pedestrian or one pedestrian can have several detec-

tions that partly overlap in an image. Because of these false alarms, generated trajectories

can contain false positive (FP) results. This leads to a reduction in the quality of trajectories

in terms of consistency and accuracy.

• Appearance similarity: though the visual property is an important cue to link detections

of the same person in consecutive frames, different pedestrians can look alike and also the

same person may look differently depending on the viewing direction of the camera system,

occlusion, and illumination conditions.

• Unpredictable behaviours: in most tracking systems, pedestrians are assumed to have smooth

movements, which enables the employment of the geometry cue. However, this assumption

does not always hold, people can change their walking intentions fast and unpredictably.

Hence, it can be problematic to keep track of those people accurately.
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With the explosion of deep learning techniques in recent years, CNNs have emerged as powerful

tools for analysing time-series data and understanding images (Jin et al., 2013; Ma et al., 2015;

Nam and Han, 2016). The general idea of these approaches is that the networks take various small

image sequences as input to learn and encode semantic information of objects over time in the

training phase. The learned features are then used to recognize and track moving objects in the

testing phase. The drawback of those systems is that they need a huge amount of training data for

the network to learn. Moreover, deep learning approaches alone do not allow to control the mutual

interaction among tracked objects easily. Thus, their tracking results are intractable and it is really

hard to predict when and why they fail to track a specific person.

Lately, two groups of tracking methods based on siamese architecture and correlation filters have

attracted great attention in the tracking community due to their speed and favourable performance.

First, siamese architecture networks are designed to track objects in an end-to-end fashion (Val-

madre et al., 2017; Zhu et al., 2018; Wang et al., 2018; Li et al., 2018a; Wang et al., 2019; Li et al.,

2019) by following the strategy of appearance similarity comparison, whose key element is metric

learning. The ultimate goal of siamese trackers is to learn an embedding space to maximize the

visual differences between various objects and minimize the intraclass dissimilarity for the same

object.

Applying the same strategy of the siamese tracking method, the second group of trackers utilises

CNNs to learn discriminative correlation filters so that an object can be discriminated from the

background (Mueller et al., 2017; Valmadre et al., 2017; Zhang et al., 2017; Liu et al., 2018;

Cheng et al., 2019). While siamese trackers can handle the task of multiple object tracking, the

correlation filter-based approaches are usually suitable to track single objects only. However, since

these two groups of trackers are developed based on a similar idea, they are subject to the same

weaknesses: first and foremost, they heavily rely on only appearance features to search and match

objects in consecutive images, while important geometry information is more or less neglected.

Thus, they can hardly cope with occlusions, which is one of the most significant problems of

tracking. Furthermore, these tracking approaches are developed based on very strong assumptions

that desired objects must all appear in the first epoch and camera motion is completely smooth

so that the positions of interesting targets in forwarding frames are known to be within a small

region. Due to the mentioned drawbacks, these approaches are solely appropriate to track objects

in specific scenarios, where prior knowledge about the scenes, sensor motions as well as object

behaviours are guaranteed to satisfy the described assumptions. Hence, they are currently not

suitable for tracking objects in highly dynamic scenes such as pedestrians in down-town areas or

on streets.

It is critical that the detection results are accurate and reliable for both tracking-by-detection

and CNN-based methods to yield good results. Different from all approaches mentioned earlier,

tracking objects based on motion does not require the detection step to localize target subjects in
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images. These trackers utilise optical flow or object scene flow to separate moving objects from the

background, and the object type can be determined through analysing their shape, blob, or moving

characteristics (Schwarz et al., 2012; Aslani and Mahdavi-Nasab, 2013; Leal-Taixe et al., 2014a).

The disadvantage of motion-based tracking is that it only works when interesting objects perform

movements continuously. Moreover, eliminating the ego-motion of moving cameras to separate

static and dynamic objects is not easy. Therefore, this technique is usually applied to track large

and fast-moving objects like vehicles rather than pedestrians at street level.

Instead of only focusing on the task of object tracking, many studies carry out both segmentation

and tracking simultaneously, as these two tasks are highly correlated and can support each other.

Similar to the optical flow tracking approach, many trackers following tracking-by-segmentation

do not require bounding boxes of interesting targets as inputs (Xiao et al., 2015; Yeo et al., 2017;

Lee et al., 2018). Instead, super pixels are employed to perform both, separating interesting objects

from the background and tracking. However, while super pixels are helpful to deal with articulated

and deformable objects, this approach becomes very complicated when the number of observations

increases. Moreover, based on super pixels, global features about appearance and motion of a

whole object are hard to obtain.

Online and offline trackers

In general, the object tracking task can be carried out either in a local (online) or a global (offline)

manner. For the online approach, the pedestrian trajectories are calculated and updated at every

epoch when the input images are fed to the tracker. Since only information about current and

past frames are available, this method is vulnerable to wrong detections (Breitenstein et al., n.d.;

Kim et al., 2012; Lenz et al., 2015; Xiang et al., 2015; Fagot-Bouquet et al., 2016; Kieritz et al.,

2016). Global methods, on the other hand, generate tracklets or complete trajectories from a batch

of frames or the whole image sequence. This enables global properties of target objects to be

taken into account during the optimization. That is why most global matchers usually outperform

local approaches (Zhang et al., 2008; Yang and Nevatia, 2014; Berclaz et al., 2011; Pirsiavash et al.,

2011; Zamir et al., 2012; Dehghan et al., 2015a). Nevertheless, requiring the entire image sequence

before tracking, global techniques can only be used for offline applications. In applications where

instant responses are demanded, like autonomous driving or robot-human interaction, only online

approaches are appropriate.

For the purpose of closing the gap between local and global approaches, a method called ”near

online” is proposed in (Choi, 2015; Tang et al., 2015; Henschel et al., 2019). This algorithm

follows the sliding window scheme in the way that tracklets of pedestrians are generated from a

certain number of epochs in the past until the current one. On the ground of additional evidence

from the past, this method can generate more accurate trajectories and mistakes in the present can

be corrected later. However, many practical applications demand information from tracking to
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make decisions in real-time which cannot be corrected later. Thus, this method certainly can boost

the tracking results, yet only improvements of current and future frames are meaningful, not the

past ones.

Tracking domain

Most state-of-the-art methods execute tracking in the 2D image space and concentrate on strength-

ening the identity (Id) accuracy of estimated trajectories (Breitenstein et al., n.d.; Fagot-Bouquet

et al., 2016; Kieritz et al., 2016; Leal-Taixé et al., 2017). Using only 2D information from images,

the trackers belonging to this paradigm usually make strong hypotheses about the movement of

camera systems. This assumption enables the inference of pedestrian motions from the 2D im-

age domain to 3D object space so that geometry cues can be introduced. Unfortunately, mobile

systems in the real-world can violate the hypothesis, which can cause failures of trackers.

Positions and moving directions of pedestrians in 3D object space are essential prerequisites for

vehicles to automatically manage their movements. For this reason, several systems do tracking in

3D based on stereo or RGB-D cameras or sensors based on structured light. Although widely used

for indoor tracking studies (Jafari et al., 2014; Linder et al., 2016), RGB-D devices are not ap-

propriate for the outdoor environment due to illumination problems and complicated surfaces. To

cope with outdoor scenes in autonomous driving applications, either a stereo rig or a combination

of camera and LiDAR sensor are usually employed to track people on streets (Mitzel et al., 2010;

Schindler et al., 2010; Ošep et al., 2017; Dimitrievski et al., 2019). The 3D geometric position of

a pedestrian is estimated by inspecting the detected bounding box or intersecting the image space

detection with the ground plane. Estimating the foot positions of pedestrians on the ground plane

allows to reduce pedestrians’ movement in 3D space from three to two dimensions, which is easier

to handle.

3.2 Object detection

Pedestrian detection is a specific case of object detection, which is one of the most active do-

mains in computer vision today. In principle, two types of detectors have been developed for this

task. A detector in the first group manually extracts defined features of RoIs and then a classifier

takes responsibility for object classification (Benenson et al., 2013; Zhang et al., 2014; Dollár et

al., 2014; Zhang et al., 2015). Some famous and representative detectors of this group are the

histogram of oriented gradients (HOG) (Dalal and Triggs, 2005) and the integral channel fea-

tures (ICF) (Dollár et al., 2009). Various deviations of these approaches were proposed to improve

the detection outcomes and achieved significant results (Felzenszwalb et al., 2008; Satpathy et

al., 2014; Hoang et al., 2014; Paisitkriangkrai et al., 2014). The second group of detectors em-

ploys CNNs, which are able to handle feature extraction directly from raw pixel values through
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forward and backward propagation (Krizhevsky et al., 2012; Girshick et al., 2014; Redmon et al.,

2016; He et al., 2017). Even though these two types of object detectors deliver promising results,

currently CNNs-based approaches outperform other methods and achieve the best performance in

object classification (Zhu et al., 2019). This is because CNNs are able to extract not only low-level

features as the handcrafted methods do but also high-level abstract features.

While a detector performs detection for a particular area where an interesting object is supposed

to lie in, the purpose of object detection is to search the locations of target objects in the whole

image. Hence, it is necessary to determine all instances of interesting objects in the image, so

that they can be delineated, e.g. with a bounding box, in order to subsequently feed them to the

detector for classification. To do so, the most common practice is to utilise exhaustive search over

the image with sliding windows of multiple scales. This method is simple and easy to implement

but time-consuming, especially when using it along with a CNN detector. An alternative approach

is to determine possible locations in an image where desired objects can appear using region pro-

posal methods. The aim of proposal generators is to determine all instances of interesting objects

in an image with as few false alarms as possible, which allows more sophisticated and accurate

classifiers like CNNs to be adopted to detect the objects. Currently, several paradigms are widely

applied to the region proposal task including objectness scoring (Alexe et al., 2012; Zitnick and

Dollár, 2014), super pixel grouping (Uijlings et al., 2013; Arbeláez et al., 2014), CNN (Ren et al.,

2015; Li et al., 2018b), and 3D object proposal (Chen et al., 2015; Nguyen et al., 2018).

Hand-crafted detectors

The core of hand-crafted detectors is their feature extraction components. The broadly used

HOG descriptor is the basic of a large numbers of hand-crafted detectors. HOG was first introduced

by Dalal and Triggs (2005) to detect humans. The main idea behind this approach is to exploit

the distribution of gradient directions to describe the local appearance of an object. The HOG

descriptor is obtained by combining local 1-D histograms of all local small cells into a feature

vector. The histogram of one cell is the accumulation of edge orientation of all pixels in it. Given

that HOG combines the whole appearance of an object into one feature vector, its performances can

be easily damaged by occlusions or deformations. Built on top of HOG, the deformable part model

(DPM) is proposed by Felzenszwalb et al. (2008) to overcome disadvantages of rigid templates and

improve the generic object detection performance. In DPM, an object is decomposed into multiple

deformation parts whose relative positions to the centre of the object are defined according to a

spatial model. Different HOG descriptors are trained for the whole object which is called root filter,

and for each part which is referred to as a part model. The detection is accomplished by taking

into account the root filter score, part models scores and the displacement of those parts in the

spatial model. Taking another direction, Dollár et al. (2009) suggest the integral channel features

(ICF), relying on multiple registered image channels to integrate and obtain richness and diversity

information of an image. These channels can be either linear or non-linear transformations from
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the source one. Features such as Gabor filters, local sums, or the histogram of a local rectangular

region extracted over various channels can be part of the ICF.

Convolutional neural network detectors

Instead of extracting features based on prior knowledge, CNNs use convolution filters to explore

meaningful feature spaces that facilitate object classification. Given a labelled training dataset,

CNNs carry out the tasks of feature extraction and classification simultaneously through back-

propagation using gradient descend to minimize a loss function which represents the task objective.

While the CNN detector is the backbone for a CNN-based object detection approach, the task

of generating object proposals can be separated from the network by using an existing proposal

method (Ren et al., 2015; He et al., 2015; Dai et al., 2016). In contrast, many CNN detectors are

designed to integrate a region proposal network as an additional branch or using the BB regression

paradigm so that the detection can be trained end-to-end (He et al., 2017; Zhang et al., 2018; Liu

et al., 2016). Though currently, CNN detectors achieve the best performance for object detection,

they are excessively data hungry. This makes them extremely expensive to train in a supervised

way, which is applied in most of the modern detectors. Due to this limitation, various studies have

been investigated on either unsupervised or semi-supervised CNNs to reduce the labelling efforts

as well as to make use of huge unlabelled data (Yang et al., 2013; Gao et al., 2019; Tang et al.,

2016b). Another direction that has attracted the community is designing CNN detectors to employ

not only visual properties from images but also 3D point clouds information (Chen et al., 2017;

Mousavian et al., 2017; Tang and Lee, 2019).

3.3 Tracking-based-detection

Currently, the tracking-based-detection is the most effective approach for multi-object tracking in

general, which includes the detection and association stages. Association can be considered as the

most critical and challenging issue for any tracker following the tracking-by-detection approach.

This task is done by concatenating detections in consecutive frames together to form trajectories for

tracked objects under the hypothesis that visual appearance and positions of pedestrians only vary

smoothly over time. Visual properties, geometry, and motion are common cues that are usually

exploited to solve the data association task. These similarity cues are then combined together

in a weight or loss function, which represents the probability that two detections belong to the

same person. Association is then optimized with the objective of maximizing/minimizing the total

weight/loss values. In the past, numerous trackers were investigated to improve the accuracy of

the assignment optimization using methods such as k-shortest path, conditional random fields,

Bayesian networks, and network flow (Zhang et al., 2008; Berclaz et al., 2011; Milan et al., 2013b;

Yang and Nevatia, 2014; Choi, 2015; Klinger et al., 2017). As the performance of optimizers seems
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to saturate in recent years, many studies focus on improving the appearance feature extractors, so

that linking detections across frames, which relies on these features, is also improved (Leal-Taixé

et al., 2016; Kieritz et al., 2016; Bae and Yoon, 2018).

Thus, the two elements that primarily influence the performance of an association-method are

the optimization approach and similarity features. Existing research, which is relevant to these

problems, is reviewed in the next sub-sections.

Data association optimization methods

The concatenating of observations across images can be considered as an optimization prob-

lem, in which the global solution is desired. The optimization is then formulated using different

methods such as network flow optimization (Zhang et al., 2008; Butt and Collins, 2013; Tang et

al., 2017), Markov Chain Monte Carlo sampling (Oh et al., 2009; Shitrit et al., 2013; Lee et al.,

2016), Markov Decision Process (Xiang et al., 2015), multi-hypothesis (Kim et al., 2015), which

all achieve impressive results.

As a network flow problem, the relationships between hypothesis detections are represented by

a directed graph G = (V,E). Vertices V are a set of detections or tracklets of a video sequence.

Edges E connect observations within and across images frames. Cost or reward values are esti-

mated for each edge depending on the similarity of two vertices linked by it. The network flow

solution can be found efficiently by using the minimum-cost maximum-flow algorithms, in which

a network is decomposed into sub-graphs. Each of them represents a hypothesis trajectory. Various

tracking studies investigated network flow optimization solutions for MOT. Zhang et al. (2008)

solve the global association for the whole image sequence using a min-cost flow algorithm. An

explicit occlusion model is also suggested to handle both short and long term occlusions of exist-

ing tracked targets by adding an occluded object hypothesis in the graph. The weakness of this

study is that it can be only operated offline. Butt and Collins (2013) propose to exploit higher-

order-constraints through replacing matching pairs of observed objects in two consecutive images

as nodes in G. Consequently, the cost of each edge encodes the cost of detection in three epochs.

Trajectory solutions are found efficiently using Lagrange relaxation and min-cost flow. However,

the convergence of this method is not guaranteed. Shitrit et al. (2013) introduce multi-commodity

network flow to include image appearance similarity between groups of objects. In other words,

the single graph G is duplicated for each appearance-group. Multiple networks are solved in par-

allel using linear programming. As the suggested approach yields much larger network than the

single-commodity solution, the complexity is also much higher. Wang et al. (2014) use a modified

version of network flow where the nodes in the graph encode different orientations and locations

of detections, which is capable of tracking objects of different interacting types. The network so-

lutions are found by mixed integer programming. A target identity-aware network flow (TINF) is

proposed in (Dehghan et al., 2015b) to simultaneously solve the detection and association exploit-
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ing online discriminative learning. The difference of this network when compared to the common

ones is that each candidate location is represented with a pair of nodes, which are linked by K

observation edges. In that way, TINF can better deal with missed detections and occlusions. This

network flow obtains high-quality trajectories using Lagrangian relaxation. A major downside of

this method is that it requires manual annotations to initialise every target entering the test scene.

To deal with long-term occlusion, the data association in (Tang et al., 2017) is formulated as a

minimum cost lifted multi-cut problem. It is similar to the normal graph, in which each node de-

scribes a detection, yet a special type of edge named lifted is introduced to connect detections far

in time but have similar appearance. These lifted edges imply the hypothesis that those detection

usually belong to the same person. However, as the core of the algorithm is to take into account

long-range connection of detections far in time, this approach cannot be operated online. Carrying

out association as bipartite matching, Klinger et al. (2017) first estimate the cost or the posterior

function, which represents how likely detections belong to a person. Then, the solution is obtained

directly by using linear programming without formulating the matching as a network problem.

This approach is straightforward and also enables incorporating tracking constraints easily.

Another direction, that has been investigated to solve the problem of association, is to apply

Markov Chain Monte Carlo (MCMC) sampling to generate trajectory solutions for a set of de-

tections. The distribution probability of hypotheses is defined by a likelihood (Benfold and Reid,

2011), posterior or energy function (Fagot-Bouquet et al., 2016) based on affinity cues such as

visual, motion, and BBs intersection over union (IoU). Those functions are called objective

functions. A sampling method like Metropolis-Hastings is then adopted to explore the space of

hypotheses and find an approximate configuration subject to minimize or maximize the defined

objective function. Though an exact solution is not guaranteed, the advantage of MCMC sam-

pling methods is that the interaction and dynamic model can be easily adopted. Moreover, the

random nature of MCMC helps to prevent the search from becoming stuck at local maxima or

minima of the objective function. Two different versions named single-scan and multi-scan are

developed in (Oh et al., 2009) to track pedestrians in case the number of interesting targets is

fixed and unknown, respectively. In (Benfold and Reid, 2011), the head BBs of pedestrians are

employed for tracking instead of the whole body as usual and the motion cue representing the

affinity between observations is derived from the Kanade-Lucas-Tomasi corner features (Tomasi

and Kanade, 1991). This is the primary clue to design their likelihood function. Milan et al.

(2013a) integrate appearance features together with multiple physical constraints such as mutual

exclusion and track persistence into a non-convex energy function. Lee et al. (2016) formulate

the problem of multi-class multi-object tracking as a Bayesian filter, which is handled by MCMC.

In this approach, object detector responses are combined with a motion detector estimated by a

changing points detection model to build the likelihood function. Xiang et al. (2015) solve the

assignment optimization of hypothesis detections as decision making based on an Markov deci-

sion process (MDP). In their framework, the lifetime of a target is explained by a MDP and the
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similarity between observations is learned through a reinforcement method, which is considered

equivalent to learning a policy of the MDP.

An alternative approach for high-order information data association is multiple hypothesis track-

ing (MHT), in which a number of track hypotheses are generated from observations of a certain

number of frames. The hypothesis representations are similar to hierarchical tree structures. The

quality of the hypotheses are evaluated using an objective function, which allows obtaining final

global trajectory solutions (Kim et al., 2015; Yoo et al., 2016). In MHT, all hypotheses in the cur-

rent epoch can be propagated to future time steps to create new hypotheses. This allows the whole

hypothesis space to be thoroughly explored, yet the space grows exponentially over time as the

number of detections increases, which makes the optimization for a global solution become highly

complicated. Therefore, in MHT a pruning step is usually utilised to reduce the search space by

choosing a subset of trees with the highest probability of representing true trajectories. A main

advantage of the MHT is that hypotheses are kept active and passed to the future until ambiguous

associations are solved. However, at the same time this is one of its negative aspects that does

not allow the method to be operated online as the association decisions are postponed for a certain

number of epochs.

Appearance model

The visual properties such as colour, shape, texture are important features to link observations

of targets together over time. However, comparing appearances between pedestrians is not a trivial

task because the appearance of an object can change dramatically under different circumstances

such as lighting, occlusion or view point changes of the camera system. Moreover, pedestrians may

look very similar due to their fashions, gestures, etc., which can result in indistinguishable visual

appearance. Therefore, a lot of recent tracking studies focus on improving appearance modelling

so that the association can be enhanced (Kim et al., 2015; Leal-Taixé et al., 2016; Tang et al.,

2017).

The visual property of an object can be characterized by very simple and basic descriptors at

the pixel level like BB colour histograms (Mitzel et al., 2010; Mitzel and Leibe, 2011; Dehghan

et al., 2015a). Klinger et al. (2017) divide a BB into multiple horizontal stripes. In every strip,

weighted mean and standard deviation values are calculated for each input channel, which are

then concatenated to form the feature vector. To employ not only raw colour information but also

shape, texture, etc., Kuo et al. (2010); Choi and Savarese (2012); Zhang and van der Maaten (2013)

combine several types of feature extractors such as gradient-based histogram and the covariance

matrix of image features to discriminate interesting objects. Also, gradient-based and pixel-level

features are used, Hu et al. (2012); Dicle et al. (2013) enhance the efficiency of those features

by modelling their distributions at different regions of the image and represent the appearance of

interesting targets through those distributions. Adopting a similar scheme, Kieritz et al. (2016),



3.3. Tracking-based-detection 29

additionally, improve the robustness of extracted features using multiple-instance learning to up-

date the appearance of objects online at every time step. After computing the appearance model

for desired objects, the classification or comparison method such as histogram intersection (Mitzel

and Leibe, 2011; Dehghan et al., 2015a), metric learning (Mitzel and Leibe, 2011; Dehghan et al.,

2015a), support vector machine (Mitzel and Leibe, 2011; Dehghan et al., 2015a), or online random

forest (Klinger et al., 2017) can be adopted to distinguish the appearance of different pedestrians.

While these handcrafted features work reasonably well, they can solely represent low and mid-

level features, which may not be sufficiently robust to various challenging environments. In some

cases, to compare the differences between those extracted features, simple measurements like Eu-

clidean or absolute distance are not sufficient. A learning step may be required to transform the

feature vectors into another space so that their power of discrimination can be exploited better.

To avoid designing hand-crafted features which highly depend on prior knowledge about inter-

esting targets and to extract more abstract features for appearance representation, CNNs have been

adapted broadly to efficiently extract appearance features of desired objects. Kim et al. (2015)

separate the task of feature extraction and classification into two separate steps. First, they employ

a CNN to calculate feature vectors of observations. Then, they train and update simultaneously

multiple linear regressors for the classification w.r.t. person Ids. Instead of separating the feature

extraction from the classification, various studies simultaneously carry out both of the tasks using

end-to-end learning. On the ground of siamese architecture, Leal-Taixé et al. (2016) train a net-

work that takes two detected BBs as inputs and produces the label positive if the two inputs belong

to the same person and the negative label if not. Different siamese topologies were explored to find

the best way to combine the input information of BBs. Similar to (Leal-Taixé et al., 2016), Tang

et al. (2017) also use the siamese network architecture to discriminate the appearance of observa-

tions. To boost the performance of their network, they include the prior information about body

part localization of BB into the network as additional inputs. Besides methods that have been

explored to effectively represent the appearance of objects in tracking scenarios, a completely in-

dependent research field also involving the task of people discrimination under arbitrary conditions

based on visual properties, is people re-identification, which has been extensively studied and has

achieved impressive results (Matsukawa et al., 2016; Hermans et al., 2017; Blott et al., 2018; Xia

et al., 2019). Thus, various powerful approaches developed in this field can also be adopted for a

data association task.

Estimated from pixel intensity values, optical flow is utilised as local appearance features in the

form of interesting points (IPs) and their trajectories or histograms, which can represent both local

appearance features and relative movements of targets in consecutive images. This information

is then used to model the likelihood of matching interesting objects over time. In (Izadinia et

al., 2012), the intersection between optical flow histograms of two observations is regarded as

appearance similarity. Combining interesting point trajectories computed from an optical flow

method with a median filter, Izadinia et al. (2012) solve the task of object tracking by performing
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the tracking in both forward and backward directions. Choi (2015) proposes to aggregate IPs of

a detected BB by a local flow descriptor that illustrates relative motions of two BBs in different

epochs. The authors claim that while individual IPs can contain an error, their aggregation is a

strong cue to differentiate detections. Not using any additional descriptor, the association cost

between observations in (Tang et al., 2016a) is estimated based on the number of intersection and

union of IPs in their BBs. Though optical flow is useful for comparing the appearance of objects

and capable of providing motion cues at the same time, it only represents local points relevant to a

target. Consequently, many global properties of the whole object appearance are ignored.

Geometry affinity

Though appearance cues are important and useful to discriminate objects, this is typically not

sufficient for obtaining a robust and accurate tracking system. Geometry cues regarding the po-

sition of objects either in 2D or 3D space further facilitates tracking of pedestrians in image se-

quences. The authority of this feature stems from the prior knowledge about movements of pedes-

trians: their speed is limited and there can be only one object occupying a place in object space

at a specific time. Milan et al. (2013b) adopt the inter-object exclusion to constrain the unique

assigning between observations and targets and also to eliminate the co-occurrence of trajectories.

Nevertheless, most existing trackers perform tracking in 2D image space, the distance between two

detections is often formulated as their BBs IoU with a motion model to anticipate the movements

of observed targets (Zamir et al., 2012; Dehghan et al., 2015a; Fagot-Bouquet et al., 2016; Kieritz

et al., 2016). However, this can lead to incorrect interpretation during self occlusion of pedes-

trians and once the camera system does not move smoothly. To deal with this problem, Yoon

et al. (2016) propose a method named structural constraint. They first randomly choose different

assignment pairs as anchors. The costs of assigning the other detections are computed based on

the 2D geometry changes of anchor pairs with the assumption that their 2D geometry changes are

similar. However, this hypothesis is guaranteed only if the anchors and observed objects are near

each other and have similar moving characteristics. In contrast, relying on 3D point clouds, the

geometry affinity calculation does not suffer the ill-pose problem of using low dimension (2D im-

age space) data to represent the position in a higher domain (3D object space) (Mitzel et al., 2010;

Schindler et al., 2010; Ošep et al., 2017; Dimitrievski et al., 2019). Instead of using additional

sensors to obtain 3D information, Klinger et al. (2017) infer pedestrian positions in object space

by assuming that their heights are constant, which enables calculating the 3D distance between the

predicted position of a trajectory and position of a detection.
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3.4 Motion model

Pedestrian tracking is a special case of object tracking, in which movements are usually predictable

and follow certain characteristics. Employing this prior knowledge, many motion models have

been studied to describe the dynamic behaviour of pedestrians, which can be either embedded in

the geometry similarity (Klinger et al., 2017) or used as an additional cue in estimating association

cost (Yang et al., 2011; Zamir et al., 2012; Leal-Taixé and Rosenhahn, 2013). Moreover, during

tracking, the position of a trajectory at a specific epoch can be corrected based on its previous

states and an accurate motion model. This not only improves the smoothness of trajectories but

also enhances the accuracy of pedestrian localization, which enables the identity consistency of

estimated trajectories by reducing the search space during the association optimization. By far, a

linear motion model is the most popular approach due to its simplicity. In this model, the velocity

of a tracked pedestrian is considered to be smooth and constant for a certain time (Breitenstein

et al., 2009; Xing et al., 2009; Yang et al., 2011; Qin and Shelton, 2012; Zamir et al., 2012). The

smoothness of object movement can be calculated from total differences of velocities between

epochs or modelled through a distribution.

Though the linear motion method is common and simple to apply, it ignores reactions of objects

corresponding to their surrounding environment. Therefore, several non-linear motion models

have been pursued to explain the movement of interesting targets in the real world. In (Yang and

Nevatia, 2012; Maksai et al., 2017), moving patterns are first learned from a set of training data,

which are called motion or pattern maps. The motion similarity of observations in a tracklet is,

then, scored according to how good their movements can be explained by the motion map. This

approach enables any free moving and reaction models, in which no hand-crafted physical rule

needs to be defined or known beforehand, but estimating the similarity of a hypothesis trajectory

with the motion map requires the whole sequence to be available.

The social force model (SFM) is suggested in (Helbing and Molnar, 1995), reflecting physi-

cal constraints that are usually observed while people are moving, is adopted by many tracking

approaches (Pellegrini et al., 2009; Luber et al., 2010; Yamaguchi et al., 2011; Leal-Taixé et al.,

2011) to design their motion models. Pellegrini et al. (2009); Luber et al. (2010) predict future

positions of tracked persons considering the social forces as well as social contexts defined by the

SFM. Luber et al. (2010) incorporate their motion model in a Kalman filter to predict peoples’

actions. Pellegrini et al. (2009) combine the interactions of pedestrians with the surrounding en-

vironment like obstacle avoidance together with their destinations in the scene to model dynamic

social behaviours of pedestrians. The level of influence of one pedestrian trajectory on another

is assessed using their spatial distance and angular displacement of their moving directions. Also

following the movement rules of SFM, but not only taking into account individual reactions, Pel-

legrini et al. (2010); Yamaguchi et al. (2011), additionally, consider reactions of groups in a scene
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while predicting the velocity of a tracked target. The motivation is that a single person and a group

of pedestrians usually show different reactions to a certain event. However, since grouping re-

sults in only binary decisions, many potential influences of pedestrians in different groups can be

neglected. Taking a further step, the moving intention of pedestrians in (Leal-Taixé et al., 2011)

is also modelled using the SFM and group behaviour, but in a global manner. In that approach,

information in the past and future are utilised to more accurately interpret the movement of tracked

objects, assuming that people have a tendency to plan their moving trajectories in advance. Cer-

tainly, modelling the motion of pedestrians in the global way results in better performance, but it

is only suitable for offline applications. Zhang and van der Maaten (2013) suggest predicting the

position of a pedestrian by observing the movements of its neighbours. Similarly, also applying a

grouping model, Klinger et al. (2017) improve this method by weighting the effect of each neigh-

bour based on an angular displacement of its moving directions compared to the current person.

A Gaussian process regression is adopted to model the change of pedestrian velocity according to

physical constraints.On top of this, the defined motion model is combined with a Kalman filter so

that the beliefs about pedestrian positions and velocities can be updated at run-time. In (Leal-Taixé

et al., 2014b), interaction feature strings, encoding the velocity of observed pedestrians w.r.t. their

local scene are extracted from optical flow information. Then, a random forest framework taking

these feature strings as input is trained to predict the velocity of desired targets. The advantage of

this method is that it does not rely on hand-crafted physical constraints like SFM, thus missed de-

tections do not affect the predicted velocity of interesting objects. However, this approach cannot

be applied to generic applications because the random forest needs to be trained beforehand and

heavily depends on training data. In (Yoon et al., 2015) and (Yoon et al., 2016), the 2D spatial

distance of a target is estimated based on its 2D history trajectory and the relative displacement

of nearby persons in image space. However, using 2D image information to infer the non-linear

movement in 3D object space is solely correct if pedestrians are near to each other and have similar

velocities. Furthermore, the proposed method anticipates the states of a target based on the history

of all observed trajectories, including the movement of irrelevant people, which might affect the

results.

3.5 Discussion

To close this chapter and provide an insight into the motivation behind developments of this dis-

sertation, this section briefly summaries limitations and open questions of current state-of-the-art

works with respect to the research objective of this study. Based on open issues, proposed ap-

proaches to close those gaps are discussed.

Multi pedestrians tracking approach
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Available tracking approaches can be categorized according to three main major characteristics,

which significantly contribute to the total performance of a tracker. First, a tracking approach

can either be based on the tracking-by-detection approach or employ CNNs to end-to-end train a

tracker without a detector. Though CNN-based trackers can automatically track objects without the

demand of designing various modules to handle detection, association, occlusion, etc., they expose

several disadvantages. Such deep tracking networks usually assume that the objects’ appearance

in the next frame is more or less at the same place in image space w.r.t. to the previous image.

This hypothesis typically holds once camera movements are smooth. As a consequence, object

appearing in the scene in the later stage will be ignored. Moreover, it is hard to integrate other

cues such as motion, position, and interactions in those networks. The second property needed to

be considered when designing a tracking framework is offline vs. online. Certainly, with richer

information, offline approaches usually outperform the online ones. However, at the same time,

they require more computations and are naturally not suitable for applications demanding instant

responses. Finally, whereas conventional tracking in the 2D image domain is more convenient

compared to 3D object space, since there is no need of additional depth information, many as-

sumptions in 2D tracking rely heavily on the smoothness of camera and pedestrians movement,

which strictly limit the flexibility of a tracker to deal with complicated and dynamic scenes. More-

over, many aspects of tracking such as the accuracy of localization and state estimation can only

be thoroughly explored in 3D space. All aforementioned aspects of a tracking approach need to be

taken into account when developing a tracking framework, which not only depends on the accuracy

to be achieved but also on other properties of an application.

Motivated by autonomous driving applications, the proposed tracking method is designed to be

flexible so that it can track multi-pedestrian at street-level without restrictions on the movement of

sensors and to be capable of operating online (i.e. local association approach). For that purpose, the

tracking is carried out in 3D space using stereo images and follows the tracking-by-detection ap-

proach. Bipartite matching is applied to associate interesting objects in adjacent frames. However,

instead of using only information of two contiguous epochs that might contain high uncertainties

and errors, the information from a certain number of previous epochs is aggregated to increase

the accuracy of data association. Employing the depth value, the localization accuracy and move-

ments of estimated trajectories are explored and improved. To this end, an extended Kalman filter

is applied to recursively update the state of observed objects.

Observation processing

In the detection-based tracking approach, detection results serve an important role in the final

tracking performance. They provide instance appearance of interesting objects in image space.

It has been demonstrated in current literatures that deep CNNs are much more advanced than

hand-crafted object detectors (Zhang et al., 2016). Nevertheless, they still have the problem of

increasing the number of FPs when recall is being increased. Many trackers try to cope with
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this problem by finding multiple detections in an image corresponding to one object using non-

maximum-suppression or data association (Tang et al., 2017). This helps to reduce FPs but usually

complicated algorithms and sometimes additional cues such as depth, texture, motion must be dealt

with. Hence, obtaining a high number of TPs, but still keeping FPs at a low rate is one of research

goals of this work. It is achieved by modifying the association step of the tracking pipeline, which

connects results of consecutive frames: in this step, while employing all detections of the current

frame as input for the assignment, solely highly accurately detected pedestrians are used to create

new trajectories, a strategy called tracking-confirm-detection (TCD).

In addition, a number of properties related to pedestrians such as height and BB ratio are ex-

ploited to eliminate incorrect detections in a pre-processing step. To this end, while most of the

current approaches focus on improving the identity consistency for tracked objects and consider

that as their primary problem, the correctness level of geometry is significant for applications that

need 3D information for their interaction with interesting objects. Therefore, in this study, prior

knowledge about pedestrian height and width is combined with the reconstructed scene and 3D

point clouds to precisely determine the positions of detected objects and also provide the uncer-

tainty for those computations.

Online data association

A majority of existing trackers cast the problem of data association as network flow or graph

optimization, which can be solved efficiently by linear programming. Our tracker also follows this

paradigm to optimize the assignments of detections in consecutive images. Since our framework

is developed for online applications, the association is carried out using bipartite matching. In this

case, a global solution is guaranteed and the running time is polynomial. While most state-of-the-

art works primarily count on appearance features to estimate the association cost (i.e. observation

affinity), and it is apparent that though appearance features are an important and powerful cue for

tracking, problems can still occur in challenging situations involving scale, occlusion, and illumi-

nation differences. As a result, visual features can become indistinguishable. Similar to (Yoon

et al., 2015), therefore, in this thesis, the advantages of geometry cues are examined to improve

the association results. However, employing solely positions of pedestrians in 2D image space as

in (Yoon et al., 2015) is usually not enough to robustly infer correct movements of targets in 3D

object space. Therefore, taking a further step, both 2D and 3D information are used together in

this work to leverage relationships among pedestrians and refine the local structure among nearby

tracked targets. In addition, strong association events (anchors) are determined before the local

structure refinement (LSR) is applied for remaining detections. This makes the local structure

refinement (LSR) more robust and less prone to errors.

Besides geometry and motion, visual properties play an important role in distinguishing observa-

tions of different tracked identities. Apart from algorithms directly solve the to tracking problem,
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a substantial amount of research has been introduced for people Re-Id in general. These methods

are usually more effective, because images of the same person can be taken from various arbi-

trary viewpoints. Therefore, to obtain robust appearance features of observations under different

conditions, the TriNet (Hermans et al., 2017) which is originally proposed to solve the problem

of people Re-Id, is employed in this thesis to extract visual properties of detections. Although

there are a lot of handcrafted and CNN methods that have been proposed to improve possibility

to distinguish the appearance between pedestrians, this task becomes more and more difficult in

the case of occlusions and clustered background. To reduce the effect of these problems, instead

of directly feeding a BB to the network as input, an object is first isolated from the background,

and then the background pixels are replaced with random values. This random noise prevents a

network from using background information for feature extraction. Thus, the results of the visual

comparison can be enhanced.

Motion model

Following state-of-the-art research, a non-linear motion model is designed in this work to predict

movements of tracked pedestrians. Nevertheless, different from previous studies, it is argued that

estimating reactions of a trajectory with respect to all other people in the scene is not necessary.

Instead, such estimation should only rely on the ones that move in the same group with the target

of interest. There are several explanations for this argument. First, a group of people usually

have similar reactions to a certain event and maintain a similar velocity. Second, in a group,

there are always some persons that are more clearly visible than the others and their trajectories

are updated continuously, which results in high reliability of the trajectories estimated for those

pedestrians. Thus, the movements of other people in the group can be modelled w.r.t. those

trajectories, which already contains the interaction of a group to the other pedestrians in a scene.

Finally, relying on people not moving in the same groups as in the SFM requires all nearby objects

to be detected, which is hard to achieve in a dynamic and complex scene. In addition, anticipating

behaviours of a target can lead to even worse results if velocities of objects included in a motion

model are incorrectly calculated. While this is a critical problem that needs to be considered

in anticipating behaviours of a target, most of the existing studies assume that the velocity of

individual pedestrians is correctly computed, which is difficult to achieve in practice. Hence,

efforts are made in this study to estimate and evaluate the accuracy and reliability of velocities for

tracked targets. Moreover, since a group of people moves with more or less the same velocity,

noisy velocities of a pedestrian can be corrected by their neighbours whose motions are reliably

computed. To this end, based on the correct velocity, missed detections of tracked pedestrians are

retrieved as well.
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4 Multi-pedestrian Tracking in 3D Object Space

This chapter represents the rationale as well as the mathematical formulation for a new tracking

approach using bipartite matching and local structure refinement to track multiple pedestrians in

both, 2D and 3D object space. The general pipeline of the tracking approach is introduced in Sec-

tion 4.1, in which the connections between primary components and their tasks are illustrated.

Section 4.2 illustrates how the localization of pedestrians in image and 3D space is accomplished.

The concatenating of detected pedestrians in consecutive images to generate consistent trajectories

is detailed in Section 4.3. This data association step is developed using a bipartite technique such

that trajectories gradually evolve once new input images arrive. Based on information about previ-

ous positions and velocities of trajectories, missed detections can be retrieved both in 2D and 3D

space, which are introduced in Section 4.4. Trajectories are not simply extended but also smoothed

and corrected employing an extended Kalman filter, see Section 4.5. Finally, this chapter is con-

cluded by discussions on theoretical advantages and limitations of the proposed tracking approach

in Section 4.6.

4.1 Problem statement and the general pipeline

Aiming at tracking multiple pedestrians in 3D object space at street level for autonomous driving

and robotic related applications, our tracking approach, called 3D-TLSR (3D pedestrian tracking

using local structure refinement), is developed to track people based on images acquired by a

stereo camera pair mounted on a mobile platform. The tracker takes calibrated and normalised

stereo image pairs, i.e. pairs with known interior and relative orientation as well as scale rectified

to epipolar geometry, as input and provides 3D trajectories of pedestrians as output. Following the

tracking-by-detection paradigm, our tracking pipeline is decomposed into three primary phases:

• First, detection takes responsibility to search for areas that people appear in image space and

to delineate them with rectangular bounding boxes (BBs). Then, their positions are localized

in object space using 2D image detections and 3D stereo information.

• Second, detections in adjacent epochs are linked together in the hierarchical data association

stage, in which the most significant need to be fulfilled is maintaining correct identities (Ids)

for the generated trajectories.
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• Finally, trajectories of tracked pedestrians are smoothed in the prediction and filtering step.

This phase also retrieves pedestrians in images that the detector method did not recognize

due to difficulties such as occlusions or adverse illumination conditions, which is called

missed detection recovery.

Besides the two main stages, the tracking pipeline also includes scene modelling based on 3D point

clouds, which supports the positioning of detected pedestrians. A general overview of our tracker

is shown in Figure 4.1.

Trajectories

Calibrated stereo image pairs

Post-processing and localization

Detection Scene modeling

Detection and localization

State Prediction State correction

Prediction and Filtering

Neighbour and friend relationships

Hierarchical data association

Anchor
determination

Local structure
refinement

. . .

Figure 4.1: The overview framework of the proposed tracker.
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 head points

(a) (b)

Figure 4.2: Our 3D coordinate system, in which the Z axis points in viewing direction. The 3D

position and height of a detection are computed using the reconstructed the ground

plane (Ω), the segmentation maskMs and 3D information from the stereo rig. For the

sake of simplicity, the stereo camera is reduced to only the left camera (a). The green

box is used to select head points for estimating the height of a detection in 3D object

space (b).

In this tracking approach, it is assumed that pedestrians only move on a ground plane (Ω) and

the world coordinate system is defined as in Figure 4.2. The position of a pedestrian in 3D object

space is considered to be its foot position. Therefore, tracked pedestrians only show movements in

X and Z directions.

Let D = {D1,t, ..., Dn,t} be n detections and T = {τ1,t, ..., τm,t} be m tracked trajectories at

epoch t. A detected object Di,t at epoch t includes its positions of the foot point in both stereo

images, I = [u, v, d], in which u and v are image coordinates and d is disparity value, and in

3D space, P = [X, Y, Z]. Each position I in image space is associated with an uncertainty σI .

Apart from the positions, a detection Di,t = {I, σI , P, %, B} also contains a detection confidence %

representing how likely the detection is TP and the 2D BB B. A trajectory τj,t = {Sj,k, ..., Sj,t−1}
contains previous states of a tracked object. A state vector Sj,k = [X, Y, Z, vx, vz]

T consists of 3D

position and velocity. Note that people are assumed to move on the ground plane, so there is no

movement in Y direction and vy is ignored in the state vector. The detection confidence and the

BB of a detection that assigned to τj at epoch t are denoted as %τj ,t and Bτj ,t.

During tracking, a trajectory has one of three different attributes (see Figure 4.3): (1) if there is

a detection assigned to the target, it is active; (2) once a trajectory is not assigned to any detection,

it is called inactive and its positions can be further predicted for a number of epochs; and (3) after

a while, positions of an inactive target are not inferred any longer, because the predictions can be

inaccurate, it then becomes invalid and will be deleted after a few further epochs.

Two different relationships among trajectories are also defined. Observed targets are considered
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Active
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assigned
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over prediction time

assigned
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over invalid

time

assigned

Figure 4.3: The three possible states of a trajectory and the transitions between them.

as neighbours if their 3D distance is small. If trajectories are neighbours for a long time, they

become friends. Their friendship ends when they are not neighbours any more for a certain

number of epochs. Friends are supposed to have similar velocities.

4.2 Detection and localization

In this section, several steps are described to detect and estimate positions of pedestrians appearing

in input images. Using the 3D stereoscopic information, the ground plane (Ω) in each stereo image

pair is reconstructed. At the same time, pedestrians are detected in 2D input images individually

based on their visual properties such as texture and shape using a detection method. Then, their

3D positions are computed by projecting their conjugate point pairs onto (Ω). Moreover, geomet-

ric constraints corresponding to pedestrians having a certain sizes are employed to filter out FP

detections.

Given a stereo image pair with known orientation parameters, the disparity map ξ of all pixels

with respect to the left image is first estimated using a state-of-the-art dense matching approach

(Yamaguchi et al., 2014). Then, 3D point clouds are computed using the disparity d values.

4.2.1 Scene modelling

It is supposed that a scene is mainly composed of a more or less horizontal ground plane (e.g.

a road), vertical planes (e.g. building facades) and the sky (which is not considered further).

In addition, other objects such as pedestrians are presented, which are the objects of interest.

Many objects in an urban scene can be considered as vertical planar surfaces supported by the

ground plane. Reconstructing the ground plane in object space provides additional evidence for
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stereo pair

ground plane (  ) (green) back-projected 
into image space

disparity map

v-disparity image

disparity map without obstacles  

obstacle mask (red) 

Figure 4.4: The procedure of modeling a scene from a stereo image input to reconstruct the ground

plane (Ω).

pedestrian detection and localization, which involves the two steps of obstacle determination and

plane estimation.

Potential obstacles

Potential obstacles, i.e. non-pedestrian objects, are defined as regions in an image which have

a normal vector parallel to the ground plane. Under this definition, a number of pixels in each

image column that have the same disparity value belong to an obstacle if images are taken with

horizontal and parallel optical axes. A binary obstacle mask for each input image is estimated

using the following steps proposed by Hu and Uchimura (2005):

1. From the disparity map ξ , the vertical or v-disparity image Vdis is computed such that each

column in Vdis is a disparity histogram of the corresponding column in ξ with bin size of

5 px.

2. The intensity of a pixel (u, v) in Vdis represents the number of pixels in column v of ξ that

have approximately disparity u. Hence, the binary obstacle mask Mobs can be built by

finding pixels in the disparity map ξ, which correspond to pixels in Vdis with an entry larger

than a threshold value. Those pixels are considered as obstacle regions in the obstacle mask

Mobs, for whichMobs = 0 and the other remaining pixels are set to 1.
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3. Morphological closing is used to join small obstacle regions together. Then, all non-obstacle

regions smaller than a threshold are considered to be caused by errors and, thus, are included

as obstacle areas.

Ground plane extraction

Unlike vertical object pixels, ground plane pixels should have similar depths per row. Using this

assumption, the ground plane is estimated as follows:

1. The obstacle maskMobs is used to eliminate pixels related to vertical objects in the disparity

map, so that the remaining pixels in a new disparity map,

ξnon−obs =Mobs � ξ , (4.2.1)

mostly belong to the ground plane. In Equation (4.2.1), � denotes a pixel-wise multiplica-

tion of the grey values.

2. Ground pixels in ξnon−obs are determined in a similar way as the obstacle mask. However,

instead of using the v-disparity image, the disparity histogram of each row in ξnon−obs is

computed to generate a horizontal or h-disparity image. As a result, ground pixels in ξnon−obs
with their 3D positions are collected in a set Pground.

3. Any 3-D point (x, y, z) lying on the ground plane (Ω) must ideally satisfy the planar equation

(Ω) : ax+ by + cz + d = 0 ,

where (a, b, c) is the normal vector with length 1 and d is the distance from the origin to

(Ω). The ground plane (Ω) is determined using the 3-D ground points Pground, together with

RANSAC to remove outliers.

4.2.2 Observations

The state-of-the-art detection method mask R-CNN (He et al., 2017) is used to detect pedestrians

in the left image of each stereo pair individually. Though the detection can be performed on both,

the left and right image, it is observed that this does not help to significantly boost the accuracy

of the detection stage because the differences between the two results are not large. The pre-train

mask R-CNN provided by (He et al., 2017) is directly adopted by the proposed tracker without

re-training.

For each detected object, mask R-CNN provides:

• A BB B = {r, c, w, h} closely covering the detection, where r and c represent the top left

corner position, and w and h the size of the bounding box.
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(a) (b) (c)

Figure 4.5: Two overlapping BBs corresponding to a pedestrian (a) and their mask after the pro-

cessing to separate the overlapping area, (b) and (c). In this example the % of the green

BB is larger than the one of red BB.

• An instance segmentation maskMs, separating the foreground from the background in the

bounding box B.

• A confidence score % for the probability that a detection is a TP.

In addition to the high accuracy, the instance segmentation maskMs is a big advantage of mask

R-CNN. This mask simplifies the estimation of the position and height of a target in object space.

All detections classified as pedestrians and having a confidence value % larger than a threshold ε%1

are considered for post-processing. A detection with % < ε%1 is regarded as an FP.

Similar to other object detectors, mask R-CNN usually outputs multiple detections for only one

pedestrian. Each of these detections is associated with an instance segmentation mask, yet they

cover the same person as illustrated in Figure 4.5. This means that there can exist pixels belonging

to that person which are included in Ms of several detections, which is not reasonable. Hence,

here the masks are processed so that one pixel in an image can belong to at most one detection,

which is selected to be the one with highest confidence belief %.

After detecting a pedestrian in 2D image space, his/her foot position in 3D is computed using

the segmentation mask Ms and the 3D point clouds. The point clouds obtained from matching

are usually noisy, which leads to incorrect estimation of pedestrian positions in 3D object space.

Therefore, it is essential to eliminate 3D points not belonging to a detected object. First, for each

maskMs, a morphological erosion is utilised to shrinkMs, this helps to deal with blunders. Then,

for all 3D points corresponding to pixels inMs, a histogram of all depth values is estimated. The

bin with the highest count has a Z value range of [Z1, Z2]. All 3D points of the maskMs for which

Z does not lie in that range are considered as noise and are not used for further computation.

To localize a pedestrian in 3D object space, all valid 3D points are then projected onto (Ω) and

averaged to obtain the foot point P = [X, Y, Z] of the pedestrian. Next, P is back-projected into
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(a) (b)

Figure 4.6: The detected 2D bounding box (a) is corrected using the back-projected foot point from

3D (b).

image space to obtain the foot point in the stereo images I = [u, v, d], where u and v are the image

coordinates of the left image, and d is the disparity value. This procedure often allows to compute

the 3D position and recover the entire body of an observed object in the input image even if only

parts are visible as shown in Figure 4.6. The difference of BB height before and after the correction

is denoted by ∆Bh, which is used to determine the uncertainty of v.

It is assumed that a number of points in the maskMs having the smallest v value are head points

of a detected object (see again Figure 4.2 for the definition of the images coordinate system and

how the head points are selected). The rectangle is used to select head points is a shrinkage of

the detected BB. From those head points in images and the point clouds, the head position of

interesting objects in 3D Phead = [Xhead, Yhead, Zhead] is estimated, which is then used together

with the foot point position to compute the object heights: height = Yhead − Y .

False alarm recognition

It is clear that a BB contains an object only if the number of pixels |Ms| inMs is large enough,

which is illustrated through the ratio between |Ms| and its BB size:

ζMs =
|Ms|
BwBh

.

In addition, a pedestrian is a special type of object in which height and width are limited to a

certain range. However, as the mask R-CNN is pre-trained to detect various object types, the

specific characteristics related to human size are ignored, and thus the algorithm yields a number

of false alarms. These can partly be detected and eliminated by utilising additional properties as

follows:

• Pedestrian heights (height) are limited in a certain range [εH1 , εH2 ].

• A pedestrian detection must be covered by a BB whose ratio between height and width

ζB = Bh
Bw

is bounded by [εBr1 , εBr2 ].
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• A BB is a TP if its instance segmentation mask is large enough ζMs > εMs .

Detected objects that do not satisfy these three constraints are not further considered in the tracking

phase.

Position uncertainties

Together with the image position I , its uncertainties σI = [σu, σv, σd] is also estimated. This

uncertainty vector provides essential information to determine possible areas that can contain the

position of a detected pedestrian in image space, which is important for smoothing the trajectories

of tracked objects in the filtering step.

The values of σu and σv are approximated heuristically based on the detection confidence score

% and the BB size as follows (note that 0.0 < % ≤ 1.0):

σu = max(0.05Br/%, ηu)

σv = max(∆Bh/%, ηv)
, (4.2.2)

where ηu and ηv are minimum values for σu and σv.

In addition, in this tracking framework, the uncertainty of d for each detected pedestrian is re-

quired. To approximate σd, two depth values are predicted directly from the BB size of a detection,

which theoretically should be close to the true depth value. The uncertainty of the depth estimated

from the 3D point clouds is assessed based on these predicted depths.

Assume that the mid-point of the BB with the lowest v corresponds to the head point Bhead of

the pedestrian in the image and the BB mid-point with the largest v is the foot point Bfoot. The

conversion between image space and 3D object space of those points are given by:

Bhead = cu −
fYhead
Z

, Bfoot = cu −
fYfoot
Z

⇒Bh = Bfoot −Bhead =
f(Yhead − Yfoot)

Z

⇒Bh =
fPedH
Z

,

(4.2.3)

in which f is the focal length of the camera, cu and cv are the image coordinates of the principal

point, PedH is the height of the observed pedestrian, Z axis points in the viewing direction of the

camera.

Similarly, the width Bw of a BB can be computed from the real width PedW in object space of

a pedestrian:

Bw =
fPedW
Z

. (4.2.4)

Employing Equation (4.2.3) and Equation (4.2.4) and using standard values for PedH and PedW ,

values for the z-coordinate of the foot point Z+
H based on the BB height Bh and the foot point Z+

W
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Figure 4.7: The depth Z in the estimated position P which is computed using 3D point clouds.

Z+
W,H is predicted based on BB size and camera parameters. The difference between Z

and Z+
W,H is a clue to determine the uncertainty σZ of Z.

using the BB width Bw can be predicted as follows:

Z+
H =

fPedH
Bh

, Z+
W =

fPedW
Bw

, (4.2.5)

These depth values can then be compared to the depth Z derived from the 3D point clouds. The

uncertainty of Z is calculated using the following equation:

a = min(|Z+
H − Z|, |Z

+
W − Z|)

σZ =

a, if a ≥ εZ

ησZ , otherwise
,

(4.2.6)

where ησZ is a constant. The threshold εZ needs to be selected large enough to ensure that the

difference between Z and Z+
W,H is the result of the matching uncertainty, and does not stem from

the fact that people can have slightly different height PedH and width PedW . σd is then calculated

based on σZ through error propagation as follows:

σd =
fBase

Z2
σZ , (4.2.7)

where f is the camera focal length and Base is the base length of the stereo system.

4.3 Hierarchical data association

The detections in two consecutive images are linked in an online manner using a hierarchical data

association approach called local structure refinement (LSR). The quality of association can be



4.3. Hierarchical data association 47

considered as the most significant problem of every tracker, in which the identities (Ids) of tracked

pedestrians should be consistently maintained. To determine whether two detections belong to the

same person, the two cues geometry and appearance are utilised. While the geometry cues are de-

rived from the fact that at the same time, there can be at maximum one object occupying a specific

place in 3D space, the appearance cue is obtained by hypothesising that the visual properties of a

pedestrian remain similar in a small period of time. Though these two cues can help to re-identify

the pedestrian in two adjacent images, problems can arise in complicated situations, where both

geometry and appearance become ambiguous and indistinguishable. Therefore, to improve the

accuracy of data association, the proposed approach is carried out in two steps: anchor determina-

tion and LSR. Trajectories that are assigned to detections with high probability of correctness are

defined as anchors, these are matched first. Assigning of less reliable detections is then supported

based on the geometric adjustments of the anchors in the LSR step. While the introduced associ-

ation approach can be proceeded into two steps, the LSR is only applied if at least one anchor is

found in the first step. Otherwise, the assignment results are directly obtained in one step.

Figure 4.8: Association result without (left) and with (right) the use of anchors (green boxes). The

detections in the previous frame are denoted in dashed lines, the current detections are

shown in solid lines.

4.3.1 Anchor determination

In this step, a number of trajectories matched to detections with a high degree of accuracy are

determined. This includes the calculation of similarity (i.e. association weight) between a detection

and an existing target and the global optimization to find the optimal assignment results.

Association weight

This weight describes the likelihood that an observation to be assigned to a target, which is

primarily explained by its visual appearance ΓA and spatial distance ΓG similarity. Beyond that,

a high confidence detection is preferred to be allocated to existing trajectories over one with low
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confidence. The association weight is computed as follows:

wji = ρΓG(Di,t, τj,t) + θΓA(Di,t, τj,t) + ν%Di,t , (4.3.1)

where ρ, θ, and ν are parameters used to define the impact of each criterion on the association

weight value and ρ+θ+ν = 1. The component ΓG and ΓA are defined in the following paragraphs.

Geometry similarity

This value is related to the 3D spatial distance of an object and its potential target. Let S+
j,t be a

predicted state of τj,t at an epoch t, which is estimated by the Kalman filter (see Equation (4.5.1)).

The Mahalanobis distance φG is computed in 3D space between the predicted position S+
j,t at t

of τj,t and the 3D position PDi,t of Di,t as their geometry affinity. Using this distance, both the

position and the uncertainty of the prediction state are taken into account:

φG(Di,t, τj,t) =
√

(S+
j,t − PDi,t)T (Σ+

SS,t)
−1(S+

j,t − PDi,t) , (4.3.2)

where Σ+
SS,t is the predicted variance of S+

j,t (see Equation (4.5.2)). In the above calculations, only

the position entries [X, Y, Z] of S+
j,t is used while the velocity elements are disregarded.

φG is then mapped to a value range of 0.0–1.0 by an exponential function to obtain the criteria

ΓG:

ΓG(Di,t, τj,t) = e
−
φG(Di,t,τj,t)

ηG , (4.3.3)

where ηG is a free parameter.

Appearance similarity

The appearance similarity accounts for the resemblance between two objects in image space

in terms of texture, color, shape, etc. Besides the geometric similarity, this is a significant cue

to distinguish between different persons. The visual properties of a detection are represented by

a feature vector f . TriNet (Hermans et al., 2017) is employed to extract the appearance feature

vector f of an interesting object based on its BB. However, instead of directly feeding a BB to

the network as input, the segmentation maskMs is used to isolate an object from the background

first and then the background pixels are replaced with random values as shown in Figure 4.9. The

random noise prevents TriNet from using background information for feature extraction. Thus, the

results of the visual comparison can be enhanced.

At time t, the feature vector of a trajectory τj,t is the average of its appearance vectors from a

certain number of previous epochs, which can account for visual properties of a trajectory within

a temporal window. The appearance similarity ΓA between Di,t and τj is computed as:

φA(Di,t, τj,t) = ‖fτj,t − fDi,t‖L2

ΓA(Di,t, τj,t) = e
−
φA(Di,t,τj,t)

ηA

, (4.3.4)
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(a) (c)(b) (d)

Figure 4.9: (a) and (b) show the detection results of two pedestrians. Note that one pedestrian

occludes the other. (c) and (d) depict the results after separation and using random

pixels as background.

where ηA is a free parameter, and ‖fτj,t−fDi,t‖L2 is the Euclidian distance between the two feature

vectors fτj,t of the trajectory and fDi,t of the detection.

Association gates

Since there is at maximum only one person can occupy a spot in 3D object space at a specific

time, the distance between a detection and its corresponding target must be small in both, image

and object space. Exploiting this property, two geometric gates are generated, which indicate

whether a detection can be assigned to a target or not. The first gate is used to restrict detections

and trajectories that are distant in 3D object space, which is called 3D gate:

gate3D(Di,t, τj,t) =

1, if ||PDi,t , S+
τj,t
|| < ε3D−gate

0, otherwise
. (4.3.5)

The second gate, named 2D gate, guarantees that the BBs IoU in image space of a detection and a

target that belong to same pedestrian at epoch t must be larger than a threshold:

gate2D(Di,t, τj,t) =

1, if IoU(BDi,t , B
+
τj,t

) > ε2D−gate

0, otherwise
, (4.3.6)

where B+
τj,t

is the predicted BB of trajectory τj,t at epoch t (see Section 4.4). While the 3D gate

reduces the confusion of pedestrians at spares level, the 2D gate helps to increase grouping.

These gates compensate for indistinguishable appearance between tracked pedestrians to avoid

incorrect associations in case different pedestrians look similar. In addition, they help to reduce

the complication of the optimization problem as the number of hypothesis assignments become

smaller. These gating results are directly included in the assignment optimization using linear

programming by modifying the association weight value as follow:

wji = wji gate3D(Di,t, τj,t) gate2D(Di,t, τj,t) . (4.3.7)
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trajectory

detection

3D-gate

2D-gate

Figure 4.10: The position of detections in the current image (left) and existing trajectories in the

previous time step are clustered in groups using 3D and 2D gates. An unions between

two gates do not necessarily empty.

Tracking-confirm-detection

Since detected pedestrian results can be noisy, using a single detection confidence threshold

(DCT) is usually hard to achieve high recall and low false alarm at the same time. Considering

observed objects with a low score as TPs can result in inaccurate trajectories which contain FPs and

also make the association become incorrect. On the other hand, using only detections with high

confidence scores can lead to less tracked pedestrians or increasing fragmentation of trajectories.

To mitigate this problem, in the proposed tracking-confirm-detection (TCD) approach, two pre-

defined DCTs are utilised: a low ε%1 and a high ε%2. All detections with a confidence value larger

than ε%1 are considered during assignment optimization. The reason is that a trajectory can be used

to confirm the presence of a TP detection even if its confidence value is low. However, when a

new trajectory is created, there is no additional evidence to confirm its correctness other than its

detection confidence. Hence, at a specific epoch, a detection that is not assigned to any existing

target initializes a new trajectory if its confidence value is larger than ε%2.

Assignment optimization

The problem of assigning n detections in D to m targets in T is solved using a binary integer

program. However, since a detection may not belong to any existing target, a dummy trajectory

representing a potential new trajectory is assigned to every observation with a defined weight value.

The assignment objective is to maximize the sum of association weight, while still maintain a set

of constraints as follows:maximize cTw

subject to (Ac)k ≤ 1, k = 0, ..., (n+m)
, (4.3.8)

where c is an (nm + n) indicator vector. For cji = 1 the detection Di ∈ D and trajectory τj ∈ T
are associated with each other, otherwise, cji = 0; τ ∗ is a dummy variable, which means that a new

trajectory is created. The association weight wji ∈ w = {wji , ..., w∗n} describes how likely Di and

τj belong to one and the same person; w∗i is set to a constant value. A is a (n + m) × (nm + n)
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design matrix and has the effect that one detection is assigned to at most one trajectory and vice

versa:

A =



1 . . . 1︸ ︷︷ ︸
n

. . . 0 . . . 0︸ ︷︷ ︸
n

... . . . ...

0 . . . 0 . . . 1 . . . 1

10 . . . 0 . . . 10 . . . 0
... . . . ...

0 . . . 01 . . . 0 . . . 01


︸ ︷︷ ︸

mn+n

m

n

(4.3.9)

and

c =

[
c0

0 . . . c
0
n︸ ︷︷ ︸

n

. . . cm0 . . . c
m
n︸ ︷︷ ︸

n

c∗0 . . . c
∗
n︸ ︷︷ ︸

n

]
. (4.3.10)

After the optimization using IP, the anchor can be chosen by two different strategies:

• A trajectory has an assignment with an association weight larger than a threshold εan1 , it is

then considered as an anchor. This way, the chosen anchors are guaranteed to be correct at a

certain level. However, at an epoch, there may be no anchor.

• A certain percentage εan2 of trajectories with the highest association weight are anchors.

Obviously, in this scheme, always at least one anchor is determined. However, some anchors

can be unreliable, which may result in unstable and incorrect prior information for LSR.

4.3.2 Local structure refinement

The assignment results obtained from the anchor determination step are usually accurate in case

pedestrians appear clearly in image space. In crowded groups, where occlusion can happen often

and pedestrians also move very near to each other, preserving a correct Id for tracked targets be-

comes much more difficult. To improve the association accuracy in these situations, the geometry

changes of anchors can be employed as additional information to find the correct assignments for

other trajectories.

Since the movement of the camera system results in only global changes in image space, and

pedestrians do not move fast, in adjacent epochs the geometry changes in image space of two

nearby trajectories τ1 and τ2 are similar. This assumption can be expressed through the IoU as

follows:

IoU(Bτ1,t−1, Bτ1,t) ≈ IoU(Bτ2,t−1, Bτ2,t) , (4.3.11)

where Bτ1,t−1, Bτ2,t−1, Bτ1,t, and Bτ2,t are BBs corresponding to τ1 and τ2 at t − 1 and t, respec-

tively.
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Figure 4.11: The position P
(t,F)
τj at epoch t of invalid trajectory τj is inferred using its anchor

friends τl and τk. The relative positions between τj and its friends are estimated in h

epochs before it starts to be inactive at epoch g.

Let a trajectory τj,t have l neighbours which are anchors. I = {iou1, ..., ioul} are the IoUs

between those anchor neighbours and their assigned detections. Assume that I has normal dis-

tribution with mean µI and standard deviation σI . Let Bτj ,t−1 be the BB at epoch (t − 1) of

the tracked pedestrian corresponding to trajectory τj and Di,t the correct candidate detection as-

signed to τj at t. Then, the IoU iouij between Bτj ,t−1 and Di,t should have a similar distribution

as I, which is modelled through the normalised maximum likelihood function ΓG∗(Di,t, τj,t, I) as

in Equation (4.3.12). The association weight is modified to take the local structure constraint of

neighbours reflecting in Equation (4.3.11) into account as follows:

wji = ρΓG∗(Di,t, τj,t, I) + θΓA(Di,t, τj,t) + ν%Di,t

ΓG∗(Di,t, τj,t, I) = e
−

(iouij−µI)
2

2σ2I

, (4.3.12)

where ρ, θ and ν are again free parameters, and again ρ + θ + ν = 1. Note, the same symbols

are used as in Equation (4.3.1) (and also in eq. Equation (4.3.14) below), although the values of

those free parameters are not necessarily the same. In this system, however, the same numerical

values are used in the experiments.

Here, only neighbours which are anchors as well are utilised, so that our LSR is less prone to

error due to incorrect matching in the first step. This LSR step is only applied to active and inactive

targets and detections which are not considered as anchors in the first step.

Invalid trajectory handling

Once a target becomes invalid, it means that its predicted positions are not very trustworthy any

more and its appearance can also become ambiguous. This is especially hard to handle when the

tracked pedestrian also moves in a crowd, where there are a lot of candidate detections close to

it and occlusions regularly occur. However, while in a group, a target τj typically walks together
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with other tracked objects, which are considered as friends. Friends usually move in a similar way

and cover a similar 2D and 3D distance in image and object space, respectively. Therefore, the

position P (t,F)
τj at epoch t of τj can be estimated according to its anchor friends F = {τl, ..., τk} as

follows:

P (t,F)
τj

=
1

k − l + 1

k∑
i=l

(P (t)
τi

+
1

h+ 1

g∑
q=g−h

P (q)
τj
− P (q)

τi
) , (4.3.13)

where g is the epoch that τj starts to become invalid and the difference between positions of τj
and its friends τi are estimated in h epochs before g. Moreover, the average µdisF and standard

deviation σdisF of 2D distances of all trajectories of F between epochs g and t are accounted as a

threshold to restrict the possible area that a correct detection of τj,t can appear in image space. The

association weight between τj,t and a detection Dj,t is then computed as follows:

wji =

ρΓG(Di,t, P
(t,F)
τj ) + θΓA(Di,t, τj,t) + ν%Di,t

0, if |dis(Di,t, τj,g)− µdisF | > ηFσdisF

. (4.3.14)

After the LSR step and recomputing the association weights for invalid trajectories, the global

optimum association results are obtained by using linear programming as presented in Equa-

tion (4.3.8).

4.4 Motion correction and position prediction

Detection is a difficult task, in which challenges can come, e.g., from illumination, scale, occlu-

sion, and unusual shape of pedestrians. Hence, during tracking, some interesting objects can be

missed, which is severe in online applications, because instance responses are demanded at every

epoch. Therefore, retrieving missed detections is an important task of a tracking system, which not

only improves the tracking results by increasing the number of TPs but also reduces the fragmen-

tation of tracked targets. Employing the trajectory information, the positions of missed detections

can be recovered through prediction. However, this inference can also create more FPs as soon

as predicted positions drift away from the true ones or the prediction is applied to trajectories that

do not represent pedestrians. Therefore, it is important to assess how long the prediction should

last and evaluate the correctness of predicted positions. In order to answer these questions, several

concerns have been investigated including computing velocity and its correctness of interesting tar-

gets, using relationships among pedestrians to correct velocity of a desired target, and termination

conditions, which are detailed in next sub-sections.
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4.4.1 Velocity calculation and correction

Due to uncertainties in detection and association, the position of a target also contains uncertainties,

which can result in incorrect velocities. A simple but efficient approach to estimate the 3D velocity

of a tracked target and evaluate its correctness is proposed. As people typically do not change their

speed and direction of movement significantly within a short time interval, it is assumed that their

velocities in several epochs are similar. Therefore, the more consistent the velocities during those

epochs, the higher the probability that they are reliable. Let VX = {vX,t−k+1, ..., vX,t} be velocities

in direction of the X-axis of a target, calculated from its 3D positions for the most recent k epochs.

We estimate the histogram of VX , all vX,∗ that fall in the bin with the highest count a are averaged

to obtain vX . The reliability of vX is assessed by the frequency of the highest bin: p(vX) = a/k.

The same calculations are applied to compute vZ and p(vZ).

To add more credit to the correctness of the estimated velocity −→v = [vX , vZ ], the least square

method is applied to fit the positions of the observed trajectory in the k most recent epochs to a

straight line L with standard deviation being the slope σL. Based on the movement of the target,

the direction of L is determined. L is afterwards transformed to vector form
−→
L . The posterior

probability of −→v is updated as follows:

p(−→v |
−→
L ) ≈ p(

−→
L|−→v )p(−→v ), p(−→v ) = p(vX)p(vZ)

p(
−→
L|−→v ) =

1√
2πσ2

L
e
− α2

2σ2L
, (4.4.1)

where α is the angle between −→v and
−→
L . For the rest of the paper, the notation p(v) is used instead

of p(
−→
L|−→v ) for simplicity.

Motion correction

While a social force model (SFM) is employed by many trackers to model the behaviour of

pedestrians w.r.t. their surrounding environment, this requires all objects which can affect the

movement of a pedestrian to be detected first. Moreover, evaluating the relationship between

a person and his/her nearby objects may also be needed such as in case of repulsive forces for

interesting events or other objects, such as friends. Thus, using a SFM is only efficient if there is

no missed detection and prior knowledge about pedestrians is available. These requirements are

hard to fulfil in real world and highly dynamic scenes. Based on similar force terms to predict the

movement changes of tracked pedestrians, the proposed method indirectly explains the observed

changes through movement of neighbouring pedestrians. Friend trajectories are supposed to have

similar velocities and reactions to their surrounding environment. In addition, as image sequences

are usually captured at a high frequency, the velocity of a pedestrian between two epochs should

only vary slowly. Therefore, it is beneficial to predict motion tendencies of inactive trajectories

w.r.t. to their friends, but not the active ones. On the other hand, the velocity of people moving in
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a group is also corrected. In order to avoid adding errors to corrected velocities, only targets with

highly reliable velocities can be used to correct the estimated movement of their friends whose

velocities are more uncertain.

Let τj be a trajectory with an unreliable velocity which has a set of friend trajectories F =

{τl, ..., τk}. The movements of friends and the own moving properties of a target are assumed to

have equal effects on updating the velocity of that target. Thus, the velocity of τj can be updated

as follows, where the influence of the target and that of its friends have been set equal:

v
τj
X = 0.5

∑k
i=l p(vτi)v

τi
X∑k

i=l p(vτi)
+ 0.5v

τj
X

p(vτj) = 0.5
1

k − l + 1

k∑
i=l

p(vτi) + 0.5p(vτj)

. (4.4.2)

The same calculations are carried out for vτjZ .

4.4.2 Missed detections retrieval

There are two critical criteria that need to be fulfilled to obtain good predictions: (a) the last active

state St at frame t is highly accurate, which means that both, position and velocity are reliable,

and (b) the last detection which is assigned to the trajectory should be a TP. The accuracy of St
is evaluated using the difference between St and its predicted position S+

t (see Equation (4.5.1)).

Based on the listed cues, the number of epochs that for τj,t inference can take place is estimated as

follows:

Nτj,t = %p(v)e
− ||S

+
t −St||L2
ηN εN , (4.4.3)

where % is the confidence of the detection assigned to τj,t at epoch t; εN is the maximum number

of inactive epochs a trajectory can have; and ηN is a constant. The 3D positions are predicted using

the Kalman filter as in Equation (4.5.1), which are subsequently back projected into image space

to obtain the 2D foot point. The BB is moved to the new foot point position and its size is updated

according to the change of the distance between the object and the camera system.

Let S+
t+1 and I+

t+1 be predicted positions in object and image space of a inactive trajectory at

(t+ 1). The inferred BB B+
t+1 is determined by moving its previous BB Bt to a new position such

that I+
t+1 lies in the middle of the bottom edge of B+

t+1 (see Figure 4.12). The predicted BB is

then examined whether it contains the tracked pedestrian or not based on its percentage of pixels

that have 3D positions similar to S+
t+1. If most of the 3D points in B+

t+1 lie further away from the

camera than the 3D predicted position S+
t+1, it is assumed that there is no object in B+

t+1. In the

case of a large portion of 3D points nearer to camera than S+
t+1, it is assumed that the object is

occluded.
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Figure 4.12: 2D bounding box prediction and correction. The corrected box (green) tightly covers

the inactive target object (gray).

Once the presence of an object in a predicted BB is assumed, the BB is first enlarged by a fixed

amount, then all pixels in the extended BB with similar depth are assumed to belong to the object

in question. The predicted BB is adjusted to cover all those points as shown in Figure 4.12.

4.5 Filtering

As a trajectory evolves over time, pedestrian states consisting of positions and velocities close in

time are correlated. Therefore, the state of the trajectory at a specific epoch can be predicted from

its previous states. This predicted state is employed to correct the current measurement using an

extended Kalman filter (Gelb, 1974).

Prediction

Let the state vector of a trajectory at (t−1) be S = [Xt−1, Yt−1, Zt−1, vx,t−1, vz,t−1]T , its predicted

state vector has the form of S+ = [X+
t , Y

+
t , Z

+
t , v

+
x,t, v

+
x,t]

T . While the position of X+
t and Z+

t are

computed based on the velocities and position of last epoch, Y +
t is considered to be not changed.

It is assumed that there is no acceleration between a small period time of two epochs.

S+
t = ψSt−1

ψ =


1 0 0 ∆t 0

0 1 0 0 0

0 0 1 0 ∆t

0 0 0 1 0

0 0 0 0 1


, (4.5.1)

where ψ is the transition matrix, which transforms a state vector St−1 to the current epoch and ∆t

is the time interval between two epochs.
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The covariance matrix Σ+
SS of the predicted state S+ is estimated based on the covariance matrix

of previous epoch and process noise Qpn:

Σ+
SS,t = ψΣSS,t−1ψ

T +Qpn . (4.5.2)

The process noise accounts for unexpected events happening while pedestrians move such as ac-

celerations ax and az. Those changes can violate the assumption that vx, vz, and Y are constant,

which is described in form of u = [ax, az, vy]. Since u is caused by unforeseen incidents, it is

assumed to have white noise with mean of 0 and covariance Σuu = diag(σ2
ax , σ

2
az , σ

2
vy). The un-

certainty of u affects the predicted state and is taken into account through the process noise as

follows:

Q = GΣuuG
T =



σ2
ax∆t4

4
0 0

σ2
ax

∆t3

2
0

0 σ2
vy∆t

2 0 0 0

0 0
σ2
az

∆t4

4
0
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∆t3

2
σ2
ax

∆t3

2
0 0 σ2

ax∆t
2 0

0 0
σ2
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2
0 σ2

az∆t
2


, (4.5.3)

in which G is defined as:

G =



∆t2

2
0 0

0 ∆t 0

0 0 ∆t2

2

∆t 0 0

0 0 ∆t

 . (4.5.4)

Update

The measurement It = [ut, vt, dt] of the current time is obtained with the measurement noise

VF . The noise is assumed to have Gaussian distribution of N (0,ΣII). The uncertainties of I is

described by its variance matrix ΣII = diag(σ2
u, σ

2
v , σ

2
d). The conversion from a state vector to its

measurement values is done as follows:

It = F (St) + VF , (4.5.5)

where F is the measurement model, which back-projects the 3D position of a pedestrian into

images space. In this project, the transformation is computed via triangulation for stereo based

on the camera principle point (cu, cv), focal length f , and the base line Base between two stereo

cameras:

u = cu −X
f

Z

v = cv − Y
f

Z

d = f
Base

Z

. (4.5.6)
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Let It be the position in image space of a detected object which is assigned to τj at (t). The state

vector St is then updated as follows:

S∗t = S+
t +K(It − F (S+

t ))

Σ∗SS,t = Σ+
SS,t −KJFΣ+

SS,t

, (4.5.7)

where K is the Kalman gain matrix; JF is Jacobian matrix of F w.r.t. the state parameters:

JF =


∂uF
∂X

∂uF
∂Y

∂uF
∂Z

0 0
∂vF
∂X

∂vF
∂Y

∂vF
∂Z

0 0
∂dF
∂X

∂dF
∂Y

∂dF
∂Z

0 0

 =


−f
Z

0 fX
Z2 0 0

0 −f
Z

fY
Z2 0 0

0 0 −fBase
Z2 0 0

 . (4.5.8)

In the Jacobian matrix JF , only position variables of the state vector are taken into account and

velocity variables vx and vz are ignored. This is because only positions can be derived by mea-

surement, but the velocity comes from the temporal modelling.

4.6 Discussion

Based on detailed descriptions of the methodology and mathematics modelling of the suggested

tracking approach, several advantages and weak-points of the tracker are envisioned and analysed

in this section.

4.6.1 Probabilistic pedestrian tracking

In the proposed approach, the uncertainties of both, detection and localization are taken into ac-

count, which leads to results represented in a probabilistic way rather than an absolute one. Con-

sequently, an application can include those uncertainties while making reactions to any observed

targets with higher certainty. Several filter steps are implemented to refine the positions in object

space so that the approach can be directly applied to different sensor types which can provide 3D

and visual information such as a fusion of a lidar with a mono camera. Moreover, specific features

related to pedestrians are exploited to reduce false positive detections and predict the uncertain-

ties of measurements. This results in improving the accuracy of tracked trajectories in terms of

geometry and Id consistency.

The data association is carried out hierarchically to obtain prior information about geometry

changes of trajectories in two adjacent epochs. On top of that, including the relationships between

pedestrians strengthens the geometry constraints among trajectories in terms of local structure con-

straints: assignments with low confidence are supported by those with high belief of correctness.

This is expected to increase the association accuracy in difficult scenarios. Together with LSR,
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appearance is a significant cue that affects assignment optimization results. Instead of directly

feeding detected BBs to TriNet, pixels belonging to the background of a BB are filled with random

values before the feature extraction step. In this way, the temporal visual similarity computation

should be more robust against occlusions and background effects, which is expected to increase

the Id accuracy of tracked targets. In contrast to existing trackers, which usually rely only on 2D

position, the proposed approach employs both, 2D and 3D information to compare the geometry

of trajectories. While the 2D geometry can help to distinguish pedestrians in image space even

when their distance in 3D space is small, occlusions pose a major problem. On the other hand, the

3D position is not useful to distinguish targets that are close to each other because it is affected

by the typically reduced resolution of point clouds. Hence, by combining both types of geometry

comparisons in forms of 3D distances and IoU, the association weight can be more effectively

computed and should lead to more accurate association.

The proposed TCD method allows observations with different belief confidences to be taken into

account. This is done by considering the relationship between trajectories and detections in the

way that detections create trajectories and trajectories can endorse the correctness of detections.

This enables the trackers to better deal with noisy detection inputs without additional steps like

non-maximum-suppression to retrieve the most number of TPs, but not FPs.

The velocity estimation employs the position information in different techniques including line

regression and histogram calculations which can provide not only more accurate velocity values

but also their correctness in the form of the posterior probability. The uncertainty of the velocity

is an important cue for the tracker to decide how long a trajectory can stay in the inactive state.

Moreover, it enables the suggested motion model in which the movement of a pedestrian can be

corrected and predicted based on its neighbours to work more effectively. This is because only

targets with well-estimated velocities can contribute to the model. Hence, the model should work

robustly against the problem of incorrect trajectory generation and localization.

The prediction of trajectory state vectors affords the recovery of detections that are missed so that

the trajectories are better completed and less fragmented. The prediction is carried out considering

position and velocity accuracy and trajectory consistency so that the predicted positions should

better correspond to the correct ones. Also, the predicted positions provide for a 3D geometry

comparison between trajectories and detections so that correct assignments should be obtained.

The proposed tracking approach requires both the interior and exterior orientation parameters

of the stereo cameras. This could be a restriction in some practical cases, but in general, these

can be easily obtained. Since the platform is not restricted to be static, the relative pose of the

cameras between epochs can be acquired either from additional sensors such as a global navigation

satellite system (GNSS) or an inertial measurement unit (IMU). Alternatively, visual odometry

can be applied to self-localize the sensor. This does not require additional devices but usually
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suffers from drift. However, since our tracker works in an online way, it solely demands accurate

relative translation and rotation of the camera in two consecutive epochs, which is not so difficult

to achieve.

4.6.2 Assumptions

The tracking method is developed under the assumption that the ground is a plane, especially

when in computing foot points of pedestrians in 3D space. Hence, violations of this hypothesis

may lead to incorrect localization results. However, in practice, the stereo platform mounted on

a vehicle is capable of delivering 3D information within a certain range, where the surface of the

ground usually does not change dramatically. Also, the viewing direction of the camera system is

assumed to be more or less parallel to the ground plane and the projection centre high enough to

capture the full body of pedestrians. Since vehicles certainly move on a street, this assumption can

be easily satisfied by appropriately placing the sensor on the vehicle.

The interesting targets tracked by the proposed tracker are considered to have limited sizes. This

postulate supports the elimination of FP detections depending on their heights. At the same time,

this restriction is employed to compute the uncertainty of depth values. Extreme cases, in which

the size of pedestrians is different from the defined range, cannot be handled by the proposed

tracker.

To calculate and correct the velocities of tracked targets, it is supposed that the pedestrians need

time to accelerate or decelerate their movements. Additionally, pedestrians who move together for

a long time are assumed to have similar movements. These expected behaviours hold for most

cases. Yet, pedestrians can behave in an unforeseeable way and without additional information,

sudden changes cannot be captured by information in the past solely. Certainly, this affects the

association weight due to an incorrect geometry term and the recovery of missed detections can

be unsuccessful. Nevertheless, the appearance can help to overcome the ill-judged geometry simi-

larity so that the association optimization accuracy should be maintained. While FPs will increase

owing to drifting prediction, the checking step whether a predicted BB contains an object assists

in detecting these failures.

In the developed tracker, several free parameters that need to be determined. Some parameters

are independently set without prior knowledge about the dataset, instead, they are based on char-

acteristics related to pedestrians. The other groups of free parameters are determined using a small

training dataset. Therefore, once the distribution of a testing dataset changes, those parameters

also need to be tuned to achieve the best performance. While some parameters can be sensitive

and have a high impact on the performance of the trackers, some are less important.
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5 Experiments and Results

In this chapter, the proposed tracking approach is evaluated including the effectiveness of each

component in the framework as well as the performance of the tracker w.r.t. the accuracy of lo-

calizing and tracking multiple pedestrians in 3D object space. The tracking results are compared

to other state-of-the-art methods to better evaluate advantages and also disadvantages of the devel-

oped method. Besides assessing the quality of the introduced approach through tracking evaluation

metrics, the sensitivity with respect to free parameters of the suggested methods is examined as

well. The results contain hints to analyse the generalization ability of the tracking approach. The

datasets and evaluation metrics used for experiments in this chapter are introduced in Section 5.1.

The free parameter settings as well as how they can affect the tracker performance are illustrated

in Section 5.2. An evaluation of the contribution of individual components of the proposed meth-

ods is reported in Section 5.3. The accuracy of localization is discussed in Section 5.4, followed

by the comparison of the suggested tracking approach with other state-of-the-art methods in Sec-

tion 5.5.

5.1 Data and evaluation metrics

Two principal components of an experiment are datasets and evaluation metrics. While the data

provides means to check the capability of the proposed approach in the aspect of handling various

situations and extreme cases, the evaluation metrics support to comprehend the effectiveness of the

tracker in terms of solving the multi-pedestrians tracking problem and also enable the comparison

of the developed tracker to other existing works. In this section, these two important elements are

described.

5.1.1 Data

In the experiments, three datasets are employed: the KITTI benchmark (Geiger et al., 2012),

the ETH mobile scene dataset (ETHMS) (Ess et al., 2008), and a dataset called multi-views

(MuVi) (https://doi.org/10.25835/0082741) acquired by ourselves. These datasets

contain various scenarios of pedestrians walking on streets, mostly in complicated down-town ar-

https://doi.org/10.25835/0082741
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eas. Hence, they cover the movements of pedestrians with different behaviours, lots of mutual

occlusions, and at diverse depths with respect to camera position and thus, the size of pedestri-

ans appearing in images also varies a lot. During the experiments, the global coordinate system

is defined as the position of the left camera in the first image frame of a sequence. The rela-

tive translation and rotation of the camera between two adjacent frames are derived from visual

odometry (Geiger et al., 2011).

KITTI

The KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)

object tracking benchmark is a dataset of the KITTI vision benchmark (Geiger et al., 2012). It pro-

vides RGB images captured by stereo cameras with a baseline of approximately 0.54 m mounted

on a moving vehicle with a height above from the ground of around 1.6 m. Since the cameras are

placed at a quite high position with respect to the ground and have a long baseline, they can cap-

ture scenes with a relatively large range of depths. With the purpose of investigating autonomous

driving applications, images of KITTI are obtained on the street level with a frequency of 10 Hz,

so that the movement of pedestrians can be recorded continuously.

The tracking benchmark has two separate datasets, one for training and one for testing. The

training includes 21 sequences with labels for 8 object types, in which only 5 sequences contain

pedestrians, namely sequences no. 13, 15, 16, 17, and 19. Ground truth (GT) is provided in both,

2D BB coordinates and 3D position relative to the left camera for each time step. Each pedestrian

of a sequence is assigned to a unique ID. The level of occlusion and truncation are also annotated;

these are cues to define the level of difficulty of those objects. The testing dataset has 29 sequences,

but without GT, in which the evaluation is carried out by the KITTI team independently. Therefore,

the test dataset can be solely used to evaluate the performance of the complete tracking framework.

The assessment of each component of the tracker as well as parameter learning are investigated

using the training dataset.

According to KITTI evaluation criteria, only pedestrians appearing in image space with the

height of at least 25 px are counted as TPs. Detected objects belonging to neighbouring classes of

pedestrians, such as sitting people or cyclists, are not considered as FPs. The occlusion of an object

is specified by three levels of visibility: completely, partly, and hardly visible. If the pedestrians

leave the image of scene, it is illustrated by the truncation level of 1; otherwise, it is 0. Based

on how challenging it is to detect and track pedestrians due to their BB height, occlusion, and

truncation, TP objects are classified into three types: easy, medium, and hard. Missed detections

of hard objects are not included as false negatives (FNs).

ETH mobile scene

The ETH mobile scene dataset (ETH mobile scene (ETHMS)) (Ess et al., 2008) offers seven
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KITTI Training 21 5 143 10551 63.3 19.7 17.0 5.6 13

KITTI Testing 29 22 292 23731 - - - - -

ETHMS (Bahnhof and Sunnyday) 2 2 201 7273 - - - 5.4 18

MuVi (first view) 8 8 215 17604 48.4 37.3 14.3 12 23

Table 5.1: Statistics related to the KITTI, ETHMS, and MuVi dataset. Unknown values are speci-

fied by ”-”.

stereo videos containing images of pedestrians in down-town areas captured from mobile platforms

with a frequency of 13–14 Hz. As the stereo system used to capture these sequences was mounted

on a kid stroller, its height above the ground is small and thus a number of occlusions exists in

the images. This dataset only provides detection annotations with 2D BB positions and sizes, Ids

of pedestrians are not available. For the two sequences called Bahnhof and Sunnyday, which are

widely employed to test algorithm performance in the literature, 2D tracking labels are provided by

MOT151. In total, these two sequences contain 9571 GT objects in 253 trajectories. The annotation

from MOT15 has a flag named invalid for difficult objects and they can be ignored in evaluations,

resulting in 7273 GT objects and 201 trajectories. All valid objects have a minimum height of

49 px in image space which is quite large compare to smallest object in KITTI with a minimum

height of 25 px.

Multi-views (MuVi)

While there are several published benchmarks for 2D pedestrian tracking, only KITTI and

ETHMS offer stereo images. Hence, to increase the diversity of pedestrian movements in crowded

places for 3D pedestrian tracking, a measurement campaign was carried by the team of the re-

search training group i.c.sens (Schön et al., 2018), in which the author took primary responsibility

(https://doi.org/10.25835/0082741). Different from existing benchmarks, pedestri-

ans are observed from various viewpoints by three stereo systems, the dataset is thus called Multi-

views (MuVi). The MuVi dataset can be used to assess tracking approaches. It also facilitates

future work related to collaborative 3D tracking by fusing the information from multiple view-

points. As far as the author knows, there is currently no other publicly available tracking dataset

for that purpose.

Besides capturing unknown people moving in the experimental area, a number of i.c.sens col-

leagues also took part in the measurement as pedestrians walking along pre-designed paths to

1https://motchallenge.net/data/2D_MOT_2015/

https://doi.org/10.25835/0082741
https://motchallenge.net/data/2D_MOT_2015/
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(a)

(b) (c)

Figure 5.1: Example image with annotated GTs (red boxes) of the KITTI (a), ETHMS (b), and

MuVi (c) dataset.

create complicated scenarios. In this way, not only the number of people appearing in images

but also the complexity of the whole scenes was partly controlled. It can be seen from Table 5.1

that the average number of pedestrians appearing in an image is much higher than in both KITTI

training and ETHMS dataset. Hence, the MuVi dataset contains images that are much more com-

plicated than the KITTI and ETHMS ones. Besides the difficulties caused by crowded scenes,

the challenges of MuVi also come from illumination conditions, and image blur, which can occur

when capturing image sequences in the real-world. Consequently, MuVi can be employed to test

and analyse the generalization capabilities of tracking approaches and to improve their robustness

and accuracy.

Similar to KITTI, the MuVi dataset is captured at 10 Hz. There are approximately 1500 images

in 8 sequences obtained from each viewpoint. The position of pedestrians is manually annotated

in 2D images with BBs. Each GT detection is classified into five levels of visibility corresponding

to the percentage of occlusion that a BB suffers including 0 %, 25 %, 50 %, 75 %, and 100 %, in

which the occlusion of 0 % is considered as easy, 25 % and 50 % are moderate, 75 % and 100 % are

hard. These complexity levels are not exactly the same as for KITTI, but similar. Each pedestrian is

assigned to a distinctive identity (Id) number in a sequence and across camera perspectives. More

detailed statistics of the KITTI and MuVi datasets are provided in Table 5.1.
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5.1.2 Evaluation metrics

According to the KITTI benchmark evaluation criteria, a detection is considered as a TP if its IoU

with the GT is equal or larger than 0.5, which is also applied to MuVi. Following the detection

evaluation standard, detection results are reported based on the number of TPs, FPs, and FNs,

which are used to compute two detection metrics, namely completeness and correctness (also

called recall and precision, respectively):

recall/completeness =
TP

TP + FN

precision/correctness =
TP

TP + FP

. (5.1.1)

The performance of a tracker is analysed using the CLEAR MOT metrics (Bernardin and Stiefel-

hagen, 2008) consisting of multi object tracking accuracy (MOTA) and multi object tracking pre-

cision (MOTP). MOTA represents the number of TPs, FPs, and Id switches (IDs) over all image

frames n, computed as follows:

MOTA = 1−
∑

n(FP + FN + IDs)∑
nGT

. (5.1.2)

The performance of different trackers are ranked based on this metric.

MOTP describes how well a tracker can localize TPs, which can be either computed in 2D image

or 3D object space. While 2D-MOTP is the average IoU between TP detections and their GTs:

MOTP2D =

∑
n IoU(B,Bref )

n
, (5.1.3)

3D-MOTP expresses the percentage of well-localized TPs, i.e. detections having 3D Euclidean

distance dist to their corresponding GTs smaller than a threshold ε3D−MOTP :

MOTP3D =

∑
n I(dist(S, Sref ), ε3D−MOTP )∑

n TP
, (5.1.4)

in which I is an indicator function with the value of 1 if dist ≥ ε3D−MOTP ; otherwise, it is 0.

Moreover, the performance of a tracker is also assessed utilising four additional metrics sug-

gested in (Li et al., 2009), namely the percentage of mostly tracked (MT) and mostly lost (ML)

targets, fragmentation (FG), and the number of identity switches (IDs). Trajectory that covers at

least 80 % of its GT are counted as MT, while MLs consist of less than 20 % of GT. IDs is the num-

ber of switched Ids between two trajectories plus the case where a new Id is assigned an existing

trajectory. The continuity of generated trajectories is represented by the number of fragmentations

FG.
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Symbol Description Value Unit

[εH1 , εH2 ] pedestrian height range 1.2–2.5 m

[εBr1 , εBr2 ] ratio range between BB height and width of a TP 1.5–5.0 -

εMs percentage of pixels in the segmentation mask w.r.t. the BB of a TP 15 %

εu, εv minimum of σu and σv, Equation (4.2.2) 2.0, 2.0 px

ησZ default uncertainty of Z when it is well estimated from 3D point clouds, Equation (4.2.6) 0.3 m

εZ threshold to evaluate the accuracy of depth values calculated from 3D point clouds, Equation (4.2.6) 3 m

ρ, θ, ν weights for different cues in association weight, Equation (4.3.1), Equation (4.3.12), Equation (4.3.14) 0.45, 0.45, 0.1 -

ηG constant to normalize geometry similarity value, Equation (4.3.3) 12 -

ηA constant to normalize appearance similarity value, Equation (4.3.4) 22 -

ε3D−gate threshold for the 3D association gate, Equation (4.3.5) 2 m

ε2D−gate threshold for the 2D association gate, Equation (4.3.5) 0.05 -

ε%1 , ε%2 confidence (cfd) values used for tracking-confirm-detection 0.2, 0.85 -

ηF constant to calculate bad association for invalid trajectories, Equation (4.3.14) 1.3 -

εan1 association weight threshold to choose anchors 0.6 -

ηN constant to normalise the correctness of a state vector of a trajectory, Equation (4.4.3) 2.0 m

εN maximum number of inactivate states, Equation (4.4.3) 10 epoch

Table 5.2: Setting of free parameters of our tracking system, which are separated into three groups

corresponding to three components of the tracker consisting of detection, association,

and prediction.

5.2 Component optimization

As mentioned in Chapter 4, the performance of the proposed tracking approach is affected by a

number of free parameters. In general, it is difficult to directly find optimum values for these

parameters using gradient descent, since there is usually no available objective functions to link

the error metrics of a specific setting with the GT of training data. Thus, to find values which

yield a strong optimum, the direct search algorithm is applied. Specifically, each parameter is

initialized with a range of values obtained from either the relevant physical facts it represents

or from statistical training data. Various values in this range are then sampled and the results

are compared using accuracy metrics and learning data. To keep the results tractable and easier

to analyse, normally only one parameter is changed at a time, unless the parameters in the same

equation are highly correlated. In this case, they are examined simultaneously. Moreover, to assess

the impact of a parameter on the results as easily as possible, the simplest version of the related

components is used. In this section, the setting of those parameters is described in detail according

to the components of the framework that they are associated with, and their sensitivity is studied

as well. This does not applied to εu, εv, and ηF .

The free parameters are learned by employing sequence 13, 16, 17 of the KITTI tracking training

dataset.
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5.2.1 Detection and post-processing

The post-processing of detection to eliminate false alarms involves a number of parameters re-

stricting the height in 3D object space [εH1 , εH1 ] and the BB ratio [εBr1 , εBr2 ] of pedestrians. In

addition, the percentage of pixels belonging to the instance segmentation mask εMs over all pix-

els of a BB is utilised to filter out bad quality detections. The height, BB ratio between the BB

height and width, and the percentage of pixels in the segmentation mask of TP and FP detections

are shown in Figure 5.2. By selecting thresholds related to these features, the number of FPs is

reduced, while recall is still maintained. The priority is to select thresholds that cover most of TPs

which are not easy to retrieve later during the tracking. On the other hand, the FPs not filtered in

this step can still be recognized in later stages.

Based on the statistics in Figure 5.2 (a), the height values of TPs are concentrated in the range

of 1.0–2.5 m, which also reflects the possible height of pedestrians in the real world. There are

also some detected pedestrians with an unreasonable estimated height, i.e. larger than 2.5 m or

less than 0.5 m, whose average detection confidence scores are approximately 0.5. Hence, those

unrealistic heights are due to either incorrect 3D point clouds corresponding to those detections or

a bad quality of the detection results. To encourage the proposed method to deal with pedestrians

in the real world, instead of just overfitting the learning dataset, the height range threshold is set to

1.2–2.5 m (m) to generalize common cases in reality. This restriction helps to reduce 8.8 % of FPs,

but at the same time, a small percentage (1.5 %) of TPs is lost. Certainly, there may be pedestrians

whose heights are less than 1.2 m, however in this study, the most common situations are the focus,

while other cases are counted as outliers.

Deriving from Figure 5.2 (b) and (c), a detection is only considered as a TP if its BB ratio

is within the range of 1.5–5.0 and its mask ratio is larger than 15 %. Since the whole BB of a

detection can contain only foreground pixels, there is no need to have an upper-bound for εMs ,

even though the results show that the mask ratio of TPs is lower than 0.9. While the BB ratio

limitation allows recognizing 4.2 % of FPs, this value is 27.4 % in the case of the mask ratio.

However, a number of TPs are also deleted due to these criteria, which are 0.4 % and 0.3 % for

BB ratio and segmentation mask ratio thresholds, respectively. Combining all the aforementioned

restrictions related to height, BB, and mask ratio, the total reduction of FPs is 36.7 %, which clearly

dominates the loss of 2.2 % of TPs (note that these results are not necessarily independent of each

other).

Localization uncertainty

In this experiment, free parameters required for estimating depth uncertainty are explored. As

hypothesized in Equation (4.2.5), the position Z in the object space of an observation can be

predicted from the camera parameters and its BB height Z+
H or width Z+

W . This is confirmed by
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(a) (b) (c)

Figure 5.2: Estimated height (meter), the ratio between BB height and width, and the percentage

of segmentation mask pixels in a detected BB for TP and FP detections delivered by

mask R-CNN.

the experimental results in Figure 5.3 (a) and (b). By repeating the prediction of Z+ with different

values of height PedH and width PedW , it is revealed that the best-predicted depths that are closest

most to their GTs are obtained with the assumption that pedestrians have an average height PedH
of 1.7 m and width PedW of 0.55 m.

It is shown in Figure 5.3 (c) that once the absolute differences between predicted depths Z+
W,H

and their corresponding values Z computed from the 3D point clouds are less than 3.0 m, the

errors of Z, which are the distances to their GTs ZGT , are also small with a mean value of 0.3 m.

On the other hand, when |Z+
W,H − Z| becomes larger, the error |Z − ZGT | of Z increases with

|Z+
W,H − Z|. Based on these observations, the threshold εZ of 3.0 m is used to decide whether the

depth estimated from the 3D point clouds is highly incorrect. The default uncertainty ησZ of Z is

fixed to 0.3 m in case Z is considered to be well estimated.

5.2.2 Data association

The quality of the proposed association approach depends on the capability to distinguish different

persons based on weight values and the effectiveness of both, the association gates and the LSR

step. In this section, all free parameters related to these methods are discussed.

Appearance model

The TriNet only delivers feature vectors for detected BBs, the classification result for an image

pair whether it is positive (i.e. the image pair represents the same person) or negative (i.e. the

image pair is captured from different persons) is assessed through the Euclidean distance between

feature vectors and a distance threshold. It is shown in Figure 5.4 that the distribution of positive
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Figure 5.3: The depth value Z of a detection calculated from the 3D point clouds and predicted

depth inferred from either BB height Z+
H (a) or BB width Z+

W (b) are highly close. The

difference between the depth computed from the point clouds and the predicted depth

|Z+
W,H − Z| corresponding to the depth error |Z − ZGT | (c).

Figure 5.4: The distribution of Euclidean distance of feature vectors extracted by TriNet for posi-

tive and negative pairs.

and negative samples mostly overlap together in the distance range of 10–25. In this experiment,

the Re-Id is evaluated for detections of two adjacent image frames.

To enhance the performance of TriNet, the random noise masks are employed to reduce the

effects of occlusion and background. The comparison between the two versions of TriNet in terms

of the precision metric is shown in Figure 5.5. In this experiment, the distance thresholds are

selected within the range of [10, 25]. The performance of the network is evaluated based on the F1

score:

F1 = (2× precision× recall
precision+ recall

) .

By using the masks, the average classification precision and F1 are slightly improved, with an

average of 1.6 % and 0.9 %, respectively, while the recall nearly does not change. Although the

increase rate is quite small, since the number of negative and positive samples is huge, these

improvements actually represent large numbers of correct classifications that the mask version can
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Figure 5.5: Person Re-Id results of TriNet with and without mask in terms of average classification

recall (a), precision (b), and F1 (c) at different distance threshold.

achieve compared to the one without the mask, which can lead to the reduction of IDs.

The best F1 score is achieved at the distance threshold of 16. Hence, a pair of images having a

distance larger than 16 can be considered as negative pair and should have appearance similarity

A smaller 0.5. Based on these criteria, ηA is set to 22 (see Equation (4.3.4)).

(a) (b) (c) (d)

Figure 5.6: Some exemplary positive pairs of BBs with mask (a), (b) and without the random noise

mask (c), (d). The masks significantly assist to reduce the appearance distance between

two images in one pair which belong to the same person.

Association weight

The association weight is constructed by three cues, namely geometry, appearance, and detection

confidence. The confidence term % does not represent any similarity between two detections but

serves as a clue for an existing target to find its most suitable detections among those that are

similar to it as described in the TCD method. Therefore, the parameter ν, which illustrates the

impact of %, should be lower than ρ and θ of the geometry and apparent cues. In this experiment,

the value of ν is varied in the range of [0.05, 0.35], while the impact of ρ and θ are thoroughly

examined in the broad spectrum of [0, 1 − ν]. Since ρ + θ + ν = 1, it is enough to inspect the

variations of θ and ν. In this experiment, the simplest version of the association component is
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Figure 5.7: The number of IDs with respect to different values of ν and θ.

utilised, i.e. the association gates and LSR are omitted. This way allows to study the impacts of ν,

ρ, and θ on the tracking results. The optimum of each setting is evaluated through the number of

IDs, the lower this number, the more favourable the setting is.

The experiment results are shown in Figure 5.7. It is interesting that completely ignoring the

geometry cue (ρ = 0.0) leads to much worse results than excluding appearance similarity (θ = 0.0)

from the association weight. The optimum result of IDs is achieved by combining both cues. The

parameter ν also affects the accuracy of data association, in which the number of IDs increases

together with the value of ρ, its impacts are especially evident when θ dominates ρ.The optimal

result of IDs is achieved when ν falls in the range of [0.05, 0.15] and the values of θ and ρ are

similar. Specifically, the setting of ν = 0.1, θ = 0.45, and ρ = 0.45 is the most favourable

according to the experimental results. While changing the parameters ρ, θ, and ν obviously leads

to fluctuations in the accuracy of person Re-Id during tracking, it is noticeable that as long as θ and

ρ lie in a certain range, the association results are more or less stable. However, when one of the

terms, geometry or appearance, loses its contribution to the association weight, the number of IDs

is very sensitive and can seriously change in response to the variation of free parameter settings.

Association gates

The association gate efficiency is defined by the number of incorrect matching pairs that can

directly be eliminated without affinity calculations. The association gates involve the 3D distance

ε3D−gate and the 2D IoU ε2D−gate threshold to recognize whether a tracking target and a detection

in two adjacent epochs are likely to have the same Id. While reducing unreasonable associations,

these gates must be able to recover most correct pairs, which are determined in the later assignment

optimization step. The recall of positive association pairs at various threshold values of the 3D gate

ε3D−gate and the 2D gate ε2D−gate are shown in Figure 5.8. In the case of the 3D gate, selecting a

distance threshold of less than 2.0 m results in the loss of a lot of correct assignments. In contrast,

once the threshold is larger than 5.0 m, the 3D gate becomes much less important as it filters out
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less incorrect associations. The same phenomena occurs for the 2D gate. According to the results

in Figure 5.8, the optimum IoU threshold should lie within the range of [0.05, 0.3]. These observed

boundaries are then employed as searching ranges to find the best setting for the free parameters

of the association gates.

Figure 5.8: The recall of correct matching pairs and the percentage of incorrect pairs that cannot

be filtered out by the 3D-gate (a) and 2D-gate (b) at different threshold settings.

Since the 3D and 2D gates work independently, their thresholds, thus, are determined separately

in turn and the order of experiments does not affect the results. The number of IDs is used to assess

the performance of the association gates at different threshold values. It is shown in Figure 5.9

that ε3D−gate = 2.0 (m) yields the optimum results that helps to reduce approximately 30 % of

IDs. Though a detection and a target belong to a same person cannot have a distance of 2.0 m,

this value reflects the uncertainty of position estimation in 3D object space rather than the ideal

situation in reality. The reduction is boosted to even higher level of 45 % when the 2D-gate with

the threshold of either ε2D−gate = 0.05 or ε2D−gate = 0.1 is applied. Here, the lower value

ε2D−gate = 0.05 is adopted for the 2D-gate, as association gates are binary decisions. Hence,

a more relaxed restriction is preferred over a tight one even if its performance is a little inferior.

Though the Id accuracy significantly changes as ε2D−gate fluctuates around its determined optimum

point, the number of IDs is not too sensitive to the value of ε3D−gate. This means that while the

association gates work effectively, their free parameters need to be learned and sampled carefully

so that the gates are able to maximize the performances of the whole method.

Tracking-confirm-detection

The recall and precision of detection results using mask R-CNN on the KITTI training dataset are

shown in Figure 5.10. While the recall gradually decreases, the precision sharply increases as the

confidence (cfd) score rises. Because new trajectories should be initialized with high correctness,

the threshold ε%2 is inspected within the bounds of [0.7, 0.95]. In contrast, ε%1 is set to a small value

within the range of [0.0, 0.5] so that most TP detections are considered during the association
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Figure 5.9: The reduction of IDs as the 3D-gate is adopted with various threshold values (a). On

the top of using the best 3D-gate, the 2D-gates are also applied (b).

optimization. The MOTA results are used as the criteria for assessing the validity of parameter

configurations. In addition, MT and ML are also computed for reference. Since the impact of ε%2
on the tracking accuracy is not affected by the value of ε%1 , it is first sampled with ε%1 = 0.0 and

ε%1 is determined afterwards. The reason for this is that the correctness of existing trajectories is

significant to support TP detections with low cfd scores during the association.

Figure 5.10: The detection results in terms of recall and precision at various cfd values.

The experimental results in Figure 5.11 (a) show that MOTA gradually increases together with

the value of ε%2 . This is because when ε%2 is becoming larger, less FPs are utilised to create

trajectories, while the number of TPs only drops slightly. However, for ε%2 larger than 0.85, the

decline of TPs starts to dominate the improvement of FPs. This results in a slight decrease of

MOTA and a significant reduction of MT. While the value of ε%2 clearly shows an influence on

MOTA and MT, ε%1 has insignificant effects on these tracking metrics as long as it remains small

enough (see Figure 5.11 (b)). The setting ε%2 = 0.85 and ε%2 = 0.2 were determined to yield the

best results in terms of both MOTA and recall.

Anchor selection

Anchor pairs provide important prior knowledge for enhancing association results of difficult

scenarios. However, incorrect anchors, offering untruthful information, can damage the perfor-
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100 100

Figure 5.11: The tracking results including MOTA, MT, and ML according to various thresholds

of ε%2 (a) and ε%1 (b).

mance of the association stage. In this experiment, two issues are evaluated, namely free parameter

setting for anchor determination and the consequences of wrong anchors selections on the tracking

consistency in terms of IDs. There are two ways to select anchors from the first step of the assign-

ment optimization. In the first way, they are selected from matching pairs with association weights

larger than a threshold εan1. The result is illustrated in Figure 5.12. The percentage of epochs

having at least one anchor drops dramatically as soon as εan is larger than 0.8. The percentage of

incorrect anchors, representing how much the prior knowledge is untruthful, is almost unchanged

with a value of 24 % and becomes smaller once εan1 rises above 0.55. In the second way, to en-

sure that there is always at least one anchor at each epoch, a percentage εan2 of association pairs

having the highest weights are chosen as anchors. Similar to the first experiment, the percentage

of incorrect anchors is more or less stable. The reason for this is that the association gates already

filtered out a lot of unreasonable matching pairs and the rest can be partly recognized with ex-

treme restrictions such as εan1 larger than 0.6 or εan2 smaller than 20 %. Since both approaches

used to choose anchors yield similar results, it is sufficient to investigate the sensitivity of the local

structure refinement (LSR) method using the threshold εan1 to determine anchors.

The impact of selected anchors on the accuracy of the data association stage can be seen in Fig-

ure 5.13. Using a small εan1, a lot of incorrect matchings are considered as anchors, the LSR,

therefore, only affects inactive trajectories which are always considered in the LSR step. This

helps to decrease the number of IDs by about 11 %. Interestingly, at the point that εan1 reaches

the value of 0.5, the number of IDs suddenly increases again. Setting εan1 = 0.6 yields the best

enhancement, where the IDs are reduced by 37 %, and thus this value is employed to select an-

chors in the first stage of the association. When εan1 becomes larger than 0.6, the IDs reduction

decreases to 33 %. These fluctuations can be explained as follows: when the threshold changes,

many trajectories with incorrect associations in the first step cannot find any nearby anchor to use
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Figure 5.12: The percentage of epochs having at least one anchor and the percentage of incorrect

anchors at various thresholds of εan1 (a) and εan2 (b).

for the correction in the LSR step. In general, it is clear that the benefit of the LSR depends on

the quality of selected anchors, which are controlled by εan1. Nevertheless, while selecting only

anchors that can satisfy the severe restriction posed by εan1 helps to eliminate errors, it does not

allow to maximize the performance of the LSR step. The oscillation of εan1 does not lead to a

dramatic difference in the efficiency of the LSR step if εan1 is large enough.

Figure 5.13: The accuracy of the data association stage measuring by the number of IDs according

to different values of εan1.

5.2.3 Missed detections recovery

Prediction allows the restoration of detections that mask R-CNN failed to detect by employing

temporal information about movement of pedestrian. This stage is only beneficial for the proposed

tracker if the number of recovered TPs is higher than the number of false alarms. In order to

maximize the advantage of this component, its free parameters, namely εN and ηN , involved in

specifying the number of epochs P that a trajectory can be elongated by prediction, need to be de-

termined. εN defines the maximum number of epochs the prediction can happen. Since pedestrians

may change their movement intention suddenly, εN should not be too large. In this experiment, εN
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(a) (b)

Figure 5.14: MOTA (a), MT, and ML (b) of tracking results w.r.t. ηN .

is set to 10 epochs corresponding to 1 s. This is usually the maximum time that a trajectory can be

well extended through prediction. ηN is used to convert the correctness of a state vector into the

range value of 0.0–1.0. A large value of ηN allows trajectories to be extended longer, which can

lead to more drifts. On the other hand, selecting ηN to small value, trajectories are predicted for

only a short time and thus many missed detections cannot be retrieved. In this experiment, ηN is

increased until the number of FPs caused by prediction surpasses the recall.

As the prediction more or less only affects the metrics MOTA, MT, and ML, these are employed

to determine the optimum values for ηN ; ηN = 2.0 (m) yields the best results (see Figure 5.14). As

ηN becomes larger, the percentage of recall that the prediction can retrieve also increases. However,

after a certain point (2.0 m), the increase in recall begins to slow down because almost detections

of existing targets are usually lost for solely a short time. In contrast, false alarm rises together with

ηN and gradually dominates the recall. Consequently, MOTA is improved first and then drops. The

effect of prediction on MT and ML is not clear in this experiment even though recall is apparently

boosted. This is because the temporal information of ML trajectories are usually not well estimated

and therefore, their missed detections cannot be recovered well.

It is illustrated in Figure 5.15 that when P is restricted by a small value of ηN , the percentage of

easy and moderate detections recovered by the prediction are quite far from the hard object type.

As ηN is more relaxed, the recalls obtained from the prediction at different detection difficulty

levels are on par with each other. This implies that the quality of a trajectory in terms of position

precision is highly correlated with the difficulty of its missed detections, which also explains the

improvement of recall and the non-alteration in ML.

5.3 Component evaluation

In the previous sections, a number of experiments has been presented to determine the optimum

values for free parameters based on the training dataset. In addition, the performance of individ-
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Figure 5.15: Recall of easy, moderate, and hard object types that are recovered by the prediction

w.r.t. ηN .

ual components were independently analysed corresponding to the goals that it was designed for.

Thus, it is important now to clarify the influences of the proposed methods on the whole tracking

framework in this section. The impact of a component is assessed by the evaluation of all tracking

metrics described in Section 5.1.2 after it is omitted. Finally, the difficult cases that even the best

model fails to handle are analysed.

Six variants of the proposed model are investigated. The version (a), i.e. full model, is used as

a standard to evaluate the others. The post-processing step of the detection stage, responsible for

eliminating FPs, is not used in the variant (b), i.e. no post-processing. This makes the detection

input for the association phase much noisier. Hence, it poses more challenges for the association

and prediction stages. Methods related to the association stage, consisting of tracking-confirm-

detection (TCD), association gate, and local structure refinement (LSR) are omitted in versions

(c), (d), and (f), respectively. As TCD is carried out by combining two different thresholds, in

version (c), only a single threshold is employed to select the detection input for the tracker. For

this, the version (c1), i.e. no TCD-low, uses ε%1 while the version (c2), i.e. no TCD-high, utilises

ε%2. These variants reveal how these components affect association accuracy (i.e. IDs) and overall

tracking results. In the last experiment (f), i.e. no prediction, missed detections are not retrieved.

This means that no TPs or FPs are created by the prediction step, yet tracked targets still have their

inactive and invalid states.

According to the KITTI evaluation criteria, a detection is counted as a TP if its IoU with its

GT is larger than 0.5. However, with IoU lower than 0.5, interesting objects can still be localized

and tracked well in 3D object space. Thus, in this experiment, several thresholds of IoU are

used to determine correct detections and the comparison between the models is carried out by

observing the changes at different values of IoU. Results of the different experiments are presented
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(a) full model 73.1 17.6 50.7 13.6 43 316 55.9 70.8

(b) no post-processing 74.0 19.2 52.3 13.6 46 314 55.0 70.8

(c1) no TCD-low 74.7 41.3 55.5 13.6 84 322 29.1 70.8

(c2) no TCD-high 71.0 17.2 45.3 18.2 38 326 55.85 70.6

(d) no association gates 73.4 19.4 46.9 13.6 102 264 53.2 71.0

(e) no LSR 73.4 19.0 49.9 13.6 53 346 53.6 70.6

(f) no prediction 69.3 16.6 32.2 18.2 35 382 52.6 71.1

Table 5.3: Tracking results of all models on the KITTI training dataset.

in Table 5.3 and Figure 5.16.

Similar to the results in Section 5.2.1, it is again confirmed that without post-processing, the

percentage of both FPs and recall increases compared to the full model. Thus, the number of MT

is also slightly higher when the IoU threshold is less than 0.5. However, since the increase of false

alarms is larger than the improvement of recall, MOTA is reduced by approximately 1.0 %. In

addition, TPs that are not eliminated in the post-processing step usually have bad quality, which

brings more confusion to the association step due to ambiguities coming from either geometry or

appearance. Consequently, the identity accuracy of trajectories generated by this tracking model is

impaired compared to the full one. The differences between the no post-processing tracking model

and the full framework are consistent for all examined IoU.

By using all detections even with high uncertainty of correctness, the version (c1), i.e. no TCD-

low, can achieve the best recall compared to all other models regardless of IoU threshold values.

The average differences over all IoU values w.r.t. the full model is 1.5 % of TPs and 2.5 % of MTs.

Nevertheless, this tracker version also has to deal with a lot more FPs, causing a big drop in both

MOTA which is less than the full model by 27 % on average. In terms of IDs, this model has a

huge gap to the performance of the full model, IDs are higher by 95 %. In contrast to no TCD-low,

the model (c2), i.e. no TCD-high, only supports detections with high cfd scores. Thus, both recall

and incorrect detections are cut down with a noticeable percentage, which leads to worse results

for MT. With respect to the full model, the percentage of MT is reduced by around 6 %. The data

association stage of variant (c2) performs better not only because it must cope with less noisy input

detections but also because there are fewer trajectories that it can track.

Excluding the association gates component leads to a significant increase in IDs, which is more

than 140 % the corresponding value when it is employed. Applying this ((d) no association gates)

tracking variant, a target can be more often assigned to an observation with incorrect Id, which
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Figure 5.16: The average tracking results (IoU values are 0.3, 0.4, and 0.5) of all models: (b) no

post-processing, (c1) no TCD-low, (c2) no TCD-high, (d) no association gates, (e)

no LSR, (f) no prediction, in comparison with the variant (a) full model for different

tracking metrics.
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results in not only less fragmentation but also a slight increase in recall, FP, MT, and 2D-MOTP.

While the association gates are proposed to filter out incorrect matching pairs to improve the ac-

curacy of trajectory identity, it is clear that they also help to enhance MOTA a little bit.

The LSR component is proposed with the purpose of improving the Id accuracy for targets

that often suffer from occlusions due to its neighbour. As this component is designed for special

crowded scenarios, its impacts on the tracker are not as compelling as the association gates, but

the reduction of IDs when the method is included in the tracking framework is obvious with an

average of 28 % for all examined IoU values. Similar to association gates, the LSR also enables

the elimination of false alarms which leads to the improvements of both MOTA and 2D-MOTP.

While the retrieval of missed detection is not applied in the model (f), recall, MOTA, MT, and

fragmentation become worse. In comparison to the full variant tracker, this model looses an aver-

age 13.7 % MT which results in smaller number of IDs. In contrast, without prediction, no false

alarms are generated due to drift and therefore, FP is improved compared to the full model. How-

ever, this does not lead to better performance in term of MOTA due to the diminishing number of

TP.

In summary, by omitting each suggested method from the full framework in turn, their influ-

ences on the performance of the proposed tracker are clearly revealed. While a particular model

in Table 5.3 may have better results on some criteria than the full model, it does not really perform

better but is biased towards a specific metric such as recall or IDs, worse results are obtained for

the others. Considering MOTA as a metric to rank the performance of a tracker, the full frame-

work achieves the best results among all variants. Moreover, examining the value of one metric in

relevance with all other metrics, the full model offers the best balanced tracking results.

Challenge issues

Though the full model has been proven to be the most promising tracker model compared to

the other variants, it still exposes some limitations. In this part, problems of the proposed tracker

including FPs, missed detections, and IDs are inspected.

It is illustrated in Figure 5.17 (a) that more than 75 % of false alarms directly come from detection

results and 25 % is due to the prediction. If IoU = 0.5 is used, more than 48 % of these FPs actually

overlap with at least one FN. This means they are not truly false alarms but rather detections that

cannot cover the whole appearance in image space of desired objects well. Thus, depending on the

selected IoU threshold, the number of FPs can also vary significantly as illustrated in Table 5.3.

This at the same time allows the increase of recall. Nevertheless, there are still nearly 50 % of false

alarms that do not cover any GT, which should be eliminated by using better detection methods or

FP eliminate mechanisms.

Regardless of the fact that the prediction step allows recovering a number of missed detections,
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the FN rate still needs to be further improved. The histogram of FNs w.r.t. their depth to the

camera in 3D object space are shown in Figure 5.17 (b). Missed detections happen at every depth

range, however, concentrating mostly at distances of 5–30 m, because this is the range that most

pedestrians appear. It can be observed from the experimental results that the percentage of FNs that

are occluded or truncated in each depth range increases as their distances to the camera decreases.

This well explains the problem that these missed objects are hard to handle because they are too

close to the camera and only partly captured in images. Approximately 40 % of FNs happens

after their corresponding trajectories are already tracked. Hence, there is a chance to recover them

through the prediction step, yet a crucial challenge remains, because pedestrians can change their

behaviours suddenly.

Figure 5.17: Histogram of FPs caused by detection inputs and prediction drifting at different IoU

intervals smaller than 0.5 (a). Histogram of FNs with IoU smaller than 0.5 at various

distances, whose corresponding percentage of either occlusion or truncation level is

also reported (b).

By applying the suggested association gates and the LSR method, the Id accuracy of generated

trajectories is greatly enhanced. Nevertheless, a number of challenging situations still causes IDs

in the current association approach. The IDs can happen either due to exchange of Ids between

targets, accounting for more than 75% of the errors, or a target is assigned to a new Id. It is shown

in Figure 5.18 that two targets swapping their Id have quite small spatial distance which is 1.8 m on

average. Since these targets are usually further away from the camera with an average of 20 m in

depth, their appearances in image space are small and hard to be distinguished by visual features.

In addition, there is usually at least one of the two targets which is not clearly visible in image

space due to occlusions. All aforementioned difficulties make both of geometry and appearance

cues become ambiguous and inaccurate, which then can result in IDs. In another circumstance,

a trajectory can be assigned to a new Id, which is usually the consequence of being inactive,

on average for 5 epochs, as illustrated in Figure 5.19 (a). Falling into inactive state prevents a

trajectory from updating its positions and appearance precisely due to lack of observations. Thus,

the trajectory is very hard to be re-matched again with its corresponding detections appearing
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later, regardless of how far the target is from camera (see Figure 5.19 (c)). Furthermore, as the

inactivation of a target is commonly caused by occlusions, its observations arriving in latter epochs

may suffer from this problem with average occlusion level of 1.9 (see Figure 5.19 (b)), which can

add more uncertainties to their 3D position and visual features.
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Figure 5.18: Statistics of target pairs that exchange their Ids w.r.t. their spatial distance (a), the

maximum occlusion or truncation level of two targets in a pair (b), and their average

distance to the camera (c).
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Figure 5.19: Statistics of targets that are assigned to new Ids due to unsuccessful Re-Id w.r.t. the

number of inactive epochs that the targets fall into (a), the occlusion level of observa-

tions (b), the distance from targets to the camera (c).

5.4 Localization accuracy in 3D object space

As mentioned before, for many applications, it is significant to estimate the positions of tracked

objects in 3D space precisely. Therefore, evaluating whether a detection is a TP or a FP solely

based on the IoU does not reflect the actual capability of the proposed tracker. In this section, the

localization accuracy of tracked trajectories in 3D object space is exhaustively examined. Unfor-

tunately, due to the lack of GT for 3D position, only the training dataset of the KITTI tracking

benchmark is employed in the experiments. TPs are supposed to be detections having IoU with

their corresponding GT larger than 0.0 so that detections that are not well localized in image space
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.

Figure 5.20: The average of localization error at various range of IoU when the 3D position is

computed directly from measurements (i.e. detections) and when the Kalman filter is

applied to smoothness tracked trajectories.

are also examined. This allows to inspect the localization accuracy of all detections and important

factors affecting this issue can be observed.

The average errors of 3D positioning calculated directly from measurements (i.e. detections) and

smoothed using the Kalman filter is shown in Figure 5.20. In both cases, either with or without

the Kalman filter, the localization error significantly decreases from approximately 6 m to 0.3 m

when the IoU increases from 0.0 to 0.6 and then remains nearly stable. The impact of the Kalman

filter on the accuracy of 3D position is largest when the IoU is in the range of 0.0–0.1 (bad quality

detections), in which the localization accuracy is improved by approximately 0.4 m. On the other

hand, as the IoU gets larger (> 0.5), the effect of the Kalman filter on the smoothness of 3D

trajectories is reduced. Nevertheless, the advantage of the Kalman filter on improving the accuracy

of 3D positioning is obvious, which also verifies the validity of the proposed motion model.

To evaluate the ability of the proposed tracker on localizing pedestrians in 3D object space, the

3D positions updated by the Kalman filter are used in the next experiments. The histogram of

localization errors in Figure 5.21 (a) shows that more than 80 % of recalls are localized within 1 m

from their reference and approximately 10 % has positioning errors within the range of 1.0–2.0 m.

At a closer look, a percentage of 49.2 % of the observed objects are well-localized with the spatial

distance to their GT less than 0.2 m (see Figure 5.21 (b)). As the localization error increases from

0.2 m to 1.0 m, the recall gradually decreases from 16.2 % to 3.2 %.

It can be seen in Figure 5.22 that as the IoU increases, the accuracy of estimated positions of

interesting objects is enhanced as well. When the IoU with GT is less than 0.3, more than 45 %

of recalls are localized more than 4 m away from their reference and less than 15 % are positioned

within an error of 1 m. Once the appearances of pedestrians are well-retrieved in images with

IoU ≥ 0.3, their positions in 3D object space are computed with higher accuracy, more than

40 % have positioning errors within 1 m and 70 % have errors not larger than 2 m. Generally, as
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Figure 5.21: The histogram of localization error at coarse (a) and fine (b) scales.

the IoU rises, the percentage of recalls that is well localized also increases. The distribution of

the localization errors clearly changes from the majority of inaccurate estimations to most of the

computed positioning errors being less than 2 m at the point that IoU = 0.3. Hence, depending on

positioning accuracy requirement, different IoU thresholds can be applied to determined TPs, it is

not necessary to always choose IoU = 0.5 as in the KITTI benchmark.

Figure 5.22: The histogram of localization errors w.r.t. various IoU ranges between detected ob-

jects and their GTs.

The correlation between the distances of interesting objects to the camera in depth direction

and their positioning accuracy are illustrated in Figure 5.23. For objects appearing no more than

20 m from the camera, positions are usually estimated within a localization error of 1 m. The most

promising area to obtain well-estimated 3D geometry for desired objects is in the depth range of

5–30 m. When pedestrians are too close to the sensor, part of their body may not be well captured

which leads to a lack of information to obtain correct disparity and thus, their 3D geometry is

incorrectly estimated. On the other hand, the inaccuracy of positioning clearly increases with

depths because a same disparity error results in a larger error of 3D points as depth increases.

This is well explained through the error propagation of the stereo triangulation formula. Moreover,

since the size of pedestrians in image space linearly decreases with depth, from a certain distance

onwards, it is difficult to obtain their BBs with high IoU, which also damages the accuracy of their

3D position as shown in Figure 5.22.
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Figure 5.23: The histogram of localization errors corresponding to the depth ranges of tracked

objects.

Figure 5.24: The histogram of localization errors corresponding to different object difficulty levels.

Figure 5.24 shows that complexity levels of detected objects, which are classified based on

their occlusion and truncation degree in image space, influence the quality of their computed 3D

positions. The localization results for the easy and moderate object types are comparable, however,

the easy one is a little better. 83 % of objects belonging to the easy group have positioning error

of no more than 1 m and 80 % in case of the moderates. When it comes to the hard group, the

percentage of observations inaccurately localized (i.e. distance to references over 4 m) significantly

increases to approximately 10 %. In contrast, the number of objects having spacial distance error

within 1 m largely drops down to around 68 %. These results are well associated to the correlations

between localization error and either IoU or depth ranges. Firstly, the more difficult an object, the

harder it is to recover its whole appearance in image space. Thus, IoU with its reference BB is

usually not high enough to yield well computed 3D geometry. In another aspect, a subset of the

hard type observations appear quite far from the cameras, which is also a reason for their inaccurate

3D positions.

To this end, the positioning accuracy depends on a number of factors including how well objects

are visible in images and the capability of the sensors. These issues can be partly solved by the

proposed filtering methods, but cannot be completely discarded. The limitations of the sensor

come from the pixel size and the baseline length of the stereo set up. For KITTI, the pixel size

is around 0.007–0.4 (m) (focal length is approximately 720 px) at the depth range of 5–30 (m) (in

KITTI, most of pedestrians appear in this range) and the baseline is approximately 0.54 m. As

the dense matching results are not perfect and usually contain errors (around 0.9 px on KITTI),
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which results in the depth error of approximately 0.007–2.1 (m) in the depth range of 5–30 (m).

This can be improved by either using a stereo pair with larger baseline or better dense matching.

In addition, pedestrians are non-rigid objects and thus their positions, represented by only one-

foot points, are hard to be precisely annotated. Depending on the posture of a pedestrian, the

centre mass point in the ground plane can be different from the foot point. When the uncertainties

of disparity value is taken into account, the localization error in 3D object space is only smaller

than 1.0 m when pedestrians are not away from the camera further than 20 m. Consequently, in

general, the localization error of 0.2 m is not only a good result on KITTI but also for other mobile

platforms.

5.5 Comparison with state-of-the-art trackers

In order to evaluate the performance of the proposed tracker w.r.t. other state-of-the-art methods,

the results obtained on the testing tracking benchmark of KITTI and ETHMS dataset are presented

in this section. Besides evaluation metrics described in Section 5.1.2, three additional features

related to a tracker, i.e. association manner (online/ near online/ offline), tracking space (2D im-

age/ 3D object space), and detection methods, are reported. The tracking approaches of the other

state-of-the-art methods are presented in Chapter 3. In this section, they are discussed again with

respect to the performance of the proposed tracking method. Additionally, the tracking results of

the suggested tracker on the MuVi benchmark are presented, which allows an assessment of the

generalization of the proposed tracking approach.

KITTI testing tracking benchmark

The performance of the proposed tracking framework, 3D-TLSR (3D pedestrian tracking using

local structure refinement), is compared to all state-of-the-art trackers that are published on the

testing tracking benchmark of KITTI2. The experimental results are summarized in Table 5.4 which

is sorted according the metric MOTA.

As the first observation, the proposed tracker achieves comparable performance to TuSimple

of Choi (2015) in most of the metrics, only MOTA is lower with approximately 4.2 %. While

the suggested tracking method employs 3D information to track pedestrians in an online manner,

TuSimple uses additional optical flow features in a ”near online” approach. However, TuSimple

has much more IDs than 3D-TLSR, the difference is 28 %, though both methods have comparable

MT (30.6 % and 29.6 %) and ML (24.1 % and 23.7 %) .

The 3D-TLSR tracker outperforms CAT (Nguyen et al., 2019), Be-track (Dimitrievski et al.,

2019), MCMOT-CPD (Lee et al., 2016), RMOT (Yoon et al., 2015), and CIWT (Ošep et al.,

2http://www.cvlibs.net/datasets/kitti/eval_tracking.php, accessed on 22.03.2020

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
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2017) in most metrics, partly with noticeable margins. Compared to its previous version CAT, 3D-

TLSR employs post-processing more intensively and also applies LSR, which enables 3D-TLSR

to reduce IDs by a factor of 2.0. Besides IDs, 3D-TLSR also enhances the tracking results in all

metrics compared to CAT, except for a drop in the percentage of MT of around 5 %. Similar to 3D-

TLSR, Be-Track and CIWT also employ 3D information to track pedestrians, yet their results are

remarkably worse than 3D-TLSR in all metrics. Especially, while 3D-TLSR produces significantly

larger MOTA (+2.7 % and +10.6 %), MT (+8.6 % and +15.8 %), and smaller ML (-7.6 % and -

11.0 %) than Be-Track and CIWT, it is still capable of achieving a much lower number of IDs

(-15.2 % and -10.7 %) and fragmentation (FR) (-1.5 % and -7.3 %). Though that MCMOT-CPD

carries out the tracking offline, its performance in terms of tracking accuracy and Id consistency

is not on par with 3D-TLSR whose association is performed in an online manner. Despite the

fact that improvements on MOTA, MT, and ML of 3D-TLSR certainly stem from differences

in performance of the employed detection methods, the proposed prediction method makes an

important contribution in increasing the number of TPs, which results in good performance of the

tracker in terms of recall and accuracy.

MDP (Xiang et al., 2015), SCEA (Yoon et al., 2016), JCSTD (Tian et al., 2019), and LP-

SSVM (Wang and Fowlkes, 2017) are trackers having less IDs than 3D-TLSR. MDP formalizes

the problem of tracking as a Markov decision process and the similarity function for data associ-

ation is learned using reinforcement learning, which helps to produce a low number of IDs. Also

employing structural constraints between pedestrians to improve the association results, SCEA

and JCSTD carry out tracking in image domain, instead of in 3D object space like 3D-TLSR. LP-

SSVM casts the tracking problem as a network flow approach and solves it offline once the whole

image sequences are available. While these methods have a lower number of IDs than 3D-TLSR,

it does not necessarily mean that they can perform the data association better. The important rea-

son for their better IDs values is their low number of tracked pedestrians which are represented by

the smaller MOTA (MDP: -6.7 %, SCEA: -9.8 %, JCSTD: -10.1 %, and LP-SSVM: -10.3 %), MT

(MDP: -5.5 %, SCEA: -13.6 %, JCSTD: -13.4 %, and LP-SSVM: -8.9 %), and larger ML (MDP:

-4.1 %, SCEA: -10.0 %, JCSTD: -19.6 %, and LP-SSVM: -10.7 %) compared to 3D-TLSR. It is

obvious that the more pedestrians are tracked, the harder it is to maintain consistency and conti-

nuity of their trajectories. Thus, IDs and FR can happen more often. However, with the suggested

tracking framework, even when handling a high number of targets with MOTA of 54 %, MT of

29.6 %, and ML of 23.7 %, the number of IDs is still kept at 100, which can be considered reason-

ably low. Hence, we argue that 3D-TLSR can handle the Id accuracy of pedestrians at least on par

with other state-of-the-art trackers.

Among all up-to-date methods in Table 5.4, the 3D-TLSR tracker obtains the highest result

for MOTP (73.0 %). It is illustrated in Section 5.4 that the localization error in 3D is highly

correlated with the results of MOTP. Hence, this means that 3D-TLSR not only capable of tracking

pedestrians with high accuracy but also can localize interesting objects both in image space and
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Figure 5.25: Two examples for inaccurate GT annotations of KITTI dataset (dashed boxes) and

our detections (solid boxes).

object space with better precision than the other trackers.

ETHMS dataset

The performance of the 3D-TLSR tracker in comparison to the other tracking approaches is

shown in Table 5.5. The proposed tracker achieves the best results on most metrics including

recall, precision, and MT with large margins. Although 3D-TLSR operates online and is capable

of tracking a large number of pedestrians with MT of 77.3 % and a recall of 89.3 %, a good Id

accuracy of tracked trajectories is still achieved with IDs of 32. Except for SCEA (Yoon et al.,

2019) and OnlineCRF (Yang and Nevatia, 2014), this number of IDs is noticeably lower than that

of the other state-of-the-art methods, which work either online or offline. Taking into account the

IDs and FG together with recall and MT, it is fair to say that the consistency of trajectories obtained

by 3D-TLSR is at least as good as that of SCEA and OnlineCRF.

Comparing between ETHMS and KITTI, the performance of the proposed tracker on the ETHMS

dataset is much better than on KITTI, though free parameters are learned and optimized using the

KITTI training dataset. There are a number of reasons for this. First, the number of images and se-

quences in KITTI is much larger than in ETHMS, which also means that challenging situations can

happen more often. Second, while KITTI takes into account objects with high difficult level and

small appearance in image space (minimum height is 25 px), ETHMS with annotations of MOT15

only considers pedestrians with a BB height not smaller than 49 px. With larger appearance in

image space, the visual feature of an object can be observed better and thus, not only it can be

detected easier and more accurately but also their appearance similarity comparison is improved.

Nevertheless, these results still imply that the proposed tracker is not over-fitted on a particular

dataset and is able to perform properly on a new dataset that it has never seen before.

MuVi tracking benchmark

The tracking results on the MuVi benchmark are shown in Table 5.6, in which all tracking met-

rics are computed according to different thresholds of IoU in the range of 0.3–0.5. As the IoU

becomes smaller, the recall and its related metrics including FP, MOTA, MT, ML improve. How-
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ever, the improvements are not as significant as can be observed for the training dataset of KITTI

(see Table 5.3). This is partly because the GT of MuVi are annotated with better quality. The

problem with GT of KITTI is that pedestrians are annotated on 3D point clouds and the 2D BB

is computed by back-projecting the 3D BB to image space. As soon as pedestrians are near to

each other, the labelling in 3D usually is low quality which can result in incorrectly annotated BBs

(see Figure 5.25).

In order to have an unbiased comparison with KITTI, the tracking results at IoU = 0.5 are

employed for analysing the validity of the developed tracking method on both benchmarks. While

free parameters are not re-learned for MuVi, the tracker still obtains 57.5 % for MOTA and 76.9 %

for MOTP. Both values are thus considerably better than for KITTI. The differences are even larger

for MT and ML, in which the values are increased by 27.6 % for MT and decreased by 20 % for

ML. These results evidently validate the generic ability of the tracker to yield comparable results

in diverse situations. Moreover, the free parameters can apparently also be transferred from one to

another dataset without decreasing the performance of the tracker. While the number of IDs and

FG are quite high for MuVi, considering the challenges of the image sequences in MuVi due to

larger amounts of occlusion associated with the more crowed scene, the poorer image quality and

the more difficult illumination conditions, the quality of extracted trajectories in MuVi can be seen

to correspond to that in KITTI.
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Tracker domain online Recall (%) Pre (%) MT (%) ML (%) IDs FG MOTA 2D-MOTP

3D-TLSR 3D X 89.3 97.7 77.3 9.0 32 34 87.1 74.7

SCEA (Yoon et al., 2019) 2D X 82.5 89.6 71.1 5.6 24 32 - -

RMOT (Yoon et al., 2015) 2D X 81.5 86.3 67.7 4.8 38 40 - -

OnlineCRF (Yang and Nevatia, 2014) 2D 79.0 90.4 68.0 7.2 11 19 - -

MotiCon (Leal-Taixé et al., 2014b) 2D 83.8 79.7 72.0 4.7 71 85 - -

CRFT (Milan et al., 2013b) 2D 77.3 87.2 66.4 8.2 57 69 - -

MOT-TBD (Poiesi et al., 2013) 2D X 78.7 85.5 62.4 8.0 69 45 - -

StructMOT (Kim et al., 2012) 2D X 78.4 84.1 62.7 7.7 72 5 - -

LPSFM (Leal-Taixé et al., 2011) 3D 74.1 75.3 55.1 7.9 131 184 - -

KalmanSFM (Pellegrini et al., 2009) 3D 72.3 84.1 51.6 5.6 77 206 - -

Table 5.5: Evaluation results of the proposed tracking method on the ETHMS dataset. While the

results of KalmanSFM (Pellegrini et al., 2009) and LPSFM (Leal-Taixé et al., 2011)

come from MotiCon (Leal-Taixé et al., 2014b), the others are extracted by original pub-

lications. The best results are in bold. Unknown values are specified by ”-”.

IoU Recall (%) FP (%) MT (%) ML (%) IDs FG MOTA 2D-MOTP

0.50 70.7 13.2 57.6 9.5 351 998 57.5 76.9
0.45 71.7 12.1 62.1 9.5 346 976 59.5 76.4

0.40 72.4 11.4 65.6 8.9 354 989 61.0 76.0

0.35 72.9 10.7 67.5 7.8 364 1017 62.1 75.7

0.30 73.2 10.2 68.9 7.8 377 1043 63.0 75.3

Table 5.6: Evaluation results on the MuVi dataset of the proposed tracking method with various

IoU thresholds. Best value of each metric is in bold.





93

6 Discussion

In this chapter, the experimental results reported in Chapter 5 are discussed in detail. In Section 6.1,

the advantages and disadvantages of the proposed approach and the individual component are

analysed, the impact on the final tracking results and the sensitivity of the free parameters are

presented. Afterwards, an overall evaluation of the whole framework w.r.t. the accuracy and

precision of the generated trajectories is given.

6.1 Proposed components

In order to make this section compatible with experiments in Chapter 5, the proposed methods are

represented in the same order as the tested models in Section 5.3.

Detection post-processing

The suggested post-processing step aims at removing FP detections so that the inputs of the

association stage are less noisy. The prior information about pedestrians that are employed in-

cludes: their height in object space is limited and the ratio between the height and width should

lie in a certain range. In addition, the percentage of pixels belonging to the instance segmenta-

tion masks provided by mask R-CNN is utilised to eliminate bad quality detections which usually

cover solely a small part of pedestrians. The results in Section 5.2.1 illustrate that combining all

the aforementioned cues helps to eliminate in total roughly 40 % of FPs directly after the detection

step. However, at the same time, a small percentage of 2.2 % of TPs is also incorrectly determined

as false alarms. The free parameters of this approach have been defined by inspecting the statistic

of detection results. By the way of eliminating a huge number of incorrect detections, this compo-

nent significantly contributes to the improvement of the tracker performance not only in terms of

FPs and MOTA but also as far as the number of IDs is concerned, which are illustrated in Table 5.3.

Association gates

The association gates are designed to use geometry cues in both image and object space to elim-

inate false matching pairs. The motivation behind this suggested method is that people walk at a

limited speed and at the same time a pedestrian cannot stay at two different spots. By filtering out
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association pairs that are far away in object space and do not overlap enough in image space, the

association optimization becomes less complicated and more accurate. It is demonstrated in Fig-

ure 5.8 that the association gates help to eliminate more than 45 % of IDs, significantly improving

the consistency of generated trajectories. Without taking these gates into account, the tracker can-

not maintain the Id accuracy for tracked objects, which results in more than double the number

of IDs (see Table 5.3). Since the gates make binary decisions about whether a detection can be

assigned to a trajectory or not, which cannot be corrected later, their thresholds need to be deter-

mined with care. Though the free parameters of the association gates are slightly sensitive, they

can be learned from the training data and prior knowledge about pedestrian movements.

Tracking confirm detection

The TCD approach is introduced to take advantage of detections with high probability of correct-

ness, while not ignoring detected pedestrians with low cfd scores. The influences of this method

on the tracking approach are shown in Table 5.3. While using only detections with high certainty

of correctness leads to a reduction in the recall, MOTA, and MT, employing also detections with

low scores to initialize new trajectories helps to increase TP but at the same time more FPs are gen-

erated, which results in a large decrease in MOTA. It is important to carefully select the optimum

threshold for creating new trajectories as this can lead to the varying tracking accuracy. In con-

trast, a second threshold, which is responsible for selecting, which detections should be considered

during the association, does not cause significant change in MOTA, MT, and ML.

Local structure refinement

In order to improve the association accuracy in complicated, often crowded situations with many

occlusions, the LSR is proposed to obtain geometry changes of trajectories with a high probability

of correctness as preliminary information. However, it is not easy to identify whether an anchor

is a correct match or not. Thus, a number of false information is always contained in the selected

anchors as shown in Figure 5.12. The experimental results presented in Section 5.2.2 reveal that

many incorrect anchors (here 24 %) does not lead to good results. By employing only associations

with a high certainty of correctness as anchors, a lot of problems are eliminated. This also does

not help to maximize the performance of LSR, due to the loss of many correct anchors. The

important point is that there should be enough correct anchors near to where the IDs happen. A

good balance between the number of anchors and the percentage of incorrect results gives the best

performance for the LSR. The importance of this method in the whole tracker is confirmed by

experimental results in Section 5.3. By applying the LSR, the number of IDs is reduced by a

noticeable percentage. Besides Id accuracy, other tracking metrics including MOTA, MOTP, and

FG are also improved.

Missed detection recovery
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Through the prediction step, pedestrians missed by the detector are retrieved using spatio-temporal

information of their trajectories. This enables an increase in recall, but can add more false alarms

due to a divergence between a correct position and its predicted one. By selecting proper values for

free parameters, the drift can be constrained by examining the number of epochs that a trajectory

can stay in the inactive state. The experiments in Section 5.3 show that the prediction allows en-

hancing tracking results in all metrics with noteworthy margins, except for FPs and IDs. However,

arguably the number of IDs increases only, because more and longer trajectories are tracked. It

does not necessarily mean that the Id accuracy of tracked targets is reduced.

6.2 Performance of the proposed tracker

The tracker developed in this work aims at improving both, accuracy and precision of multiple

person tracking. The obtained improvements are presented and evaluated through practical exper-

iments in Chapter 5.

The tracking completeness and correctness of the proposed approach are investigated in Sec-

tion 5.5. For the testing KITTI dataset, the tracking method achieves 54 % of MOTA, which is

the second best result among the published trackers listed in the benchmark and 73 % for MOTP,

the best overall results. More than 29 % of the pedestrians appearing in the testing sequences are

regularly tracked (i.e. MT). Meanwhile, approximately 24 % of interesting objects are usually lost

during tracking (i.e. ML). This means that some pedestrians are detected and tracked, but their ap-

pearance in most of epochs are fully recovered. One way to overcome this problem is to use a more

powerful detector. The results on the KITTI testing benchmark prove that the suggested tracking

approach performs on par with other state-of-the-art methods. For ETHMS, the tracking approach

achieves the best recall, precision, MT, and ML among other up-to-date tracking approaches. In

all three datasets used for the experiments, the 3D-TLSR tracker obtains the best results on the

ETHMS dataset, though the tracker’s components are optimized using KITTI dataset. However,

this also because the objects in KITTI are more challenging to track than in ETHMS. On the MuVi

dataset, the tracker even yields better results with 57 % of MOTA, 57 % of MOTP, 23.6 % of MT,

and 25 % of ML, though the sequences in this dataset are much more challenging than KITTI. The

comparable performance on KITTI, ETHMS, and MuVi demonstrates the generalization capabil-

ity of the proposed tracker, which means that it is not over-fitted on one dataset, but can cope with

various scenarios.

The consistency of tracked trajectories is measured by the number of IDs; improving this metric

which is one of the main objectives of this work. The trajectory consistency is primarily accom-

plished in the association stage, in which the suggested association gates and LSR methods enable

an improved assignment. In addition, the other components in the framework including post-
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processing and TCD also support achieving a low number of IDs. The capability of generating

trajectories with high Id accuracy is reported in Chapter 5. However, since IDs need to be con-

sidered together with the number of tracked objects, it is hard to compare tracking results on this

metric between various approaches. The lower the percentage of ML, the harder it is to maintain

accurate Ids due to the large number of tracked objects that a tracker needs to handle. In this sense,

the proposed tracking framework can consistently track pedestrians with a low number of IDs on

the KITTI benchmark in comparison with other state-of-the-art approaches. For the ETHMS, the

tracing approach can handle the association well with a large number of tracked objects. Though

using online association approach, the 3D-TLSR tracker has a lower number of IDs than other

methods whose association is carried out offline. For the MuVi, while the number of IDs is quite

large, putting the number into the perspective with respect to the challenges of image sequences in

MuVi and the number of tracked objects, it is fair to say that the suggested association approach

performs comparably on both benchmarks.

With the purpose of tracking pedestrians in 3D object space, a high localization precision is one

of the goals that the developed tracking approach aims at. The positioning accuracy of tracked

trajectories is explored in Section 5.4 using the training KITTI dataset. If all detections have

IoU larger than 0.0 are considered as TP, more than 80 % of recalls are localized within 1 m of

displacement compared to GT and 10 % of the tracked objects have localization error larger than

2 m . Using the evaluation criteria of KITTI with IoU = 0.5, these results change to 87 % and 4 %,

respectively. This demonstrates that the tracking approach is able to track pedestrians in 3D object

space with high precision under many challenges such as moving sensors, changing illuminations

and noisy disparity values. Though 2D-MOTP is not the focus of this work, on this metric, the

proposed approach still obtains the best performance on the KITTI score board and similar results

on MuVi.

Generally, compared to other state-of-the-art tracking methods, the performance of the suggested

tracker is comparable on all metrics. Although the tracking is carried out in an online manner, the

consistency of generated trajectories is still preserved and no less competitive than the methods

using offline association approaches. In addition, not using any prior information about the scene

enables the tracker to be able to deal with highly dynamic scenes. By using additional 3D infor-

mation from stereo cameras, the tracker can avoid strong assumptions on the movement of sensor

systems the other approaches do. The tests on MuVi demonstrate the generalization ability of the

proposed tracking method. While a number of free parameters are required to be determined so

that the tracker can perform well, they can be learned from a small subset of training data. One

important assumption, which needs to hold so that the tracker can work, is that the ground is a

plane instead of terrains. However, this is not the drawback of the tracker, since the problem can

be solved by fitting multiple planes for the ground or exploiting a digital terrain model.
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7 Conclusion

Motivated by applications related to autonomous driving, the presented thesis investigated the

problem of multiple pedestrian tracking in 3D object space using stereo cameras. Following the

state-of-the-art tracking-by-detection paradigm, several issues have been investigated and devel-

oped in this work to improve both, tracking accuracy and precision. In this section, conclusions

are drawn for the methods proposed in the tracking framework and an outlook for extensions in

future work is discussed.

By employing specific characteristics associated with the appearance of pedestrian and instance

segmentation masks provided by mask R-CNN, a number of FPs are filtered out. Consequently,

these methods enable not only lowering the number of false alarms but also reducing the compli-

cation of assignment optimization, which has proven to yield significant improvements in tracking

accuracy. While a large number of FPs can be eliminated in the post-processing stage, the recall

heavily depends on the detector capability. Thus, one way to improve the results is a collaborative

set up using in multiple viewpoints so that a person who cannot be detected in one sensor can be

well-captured in the others. Additionally, redundant observations observed from different sensors

allow the enhancement of positioning precision. Especially, this direction is also important in the

future for autonomous driving, in which cars can cooperate to understand their common dynamic

surrounding by exchanging sensor information.

The Id accuracy of generated trajectories is improved in the association step, in which geometry

and visual features are combined into association weights to express how likely an observation

belongs to an existing target. The assignments are then globally optimized using linear program-

ming. Association gates and LSR are introduced to improve the performance of the association

stage by utilising prior knowledge about the movements of pedestrians. The advantage of this

approach is that it is straightforward to add more constraints or cues to the association weight, if

needed. However, as the geometry is compared only in a local manner between a detection and

an interesting target, one interesting cue, i.e., the geometry change of all pedestrians in the scene,

is neglected. As pedestrians move smoothly for a small period of time, the graph formed by their

3D position should maintain a similar topology in two epochs. One possible research line for the

association is to directly incorporate the geometry of all targets in a scene into a step of calculating

the weights using graph matching. In this way, the geometry changes of all targets can be used as

additional cue for assignment optimization.
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The prediction step is introduced to retrieve missed detection. The core of this step is to evaluate

when the position prediction should be stopped for a particular trajectory. Though the suggested

method works well and facilitates the increase of recall, several aspects still need to be advanced

further in the future. In the current approach, the interaction of pedestrians is taken into account by

the motion model, which allows to anticipate the movement of the desired target. The suggested

model is developed based on the assumption that groups of pedestrians have similar movement

intentions. Instead of using assumptions about the movement of people in general, a neural network

can directly predict the motion of a pedestrian based on training data. This trend of research can

also be advanced by including segmentation information so that not only pedestrians are taken into

account during the prediction but also other objects in a scene can be considered as well.

While there are several existing metrics to evaluate the performance of a tracking approach in

terms of accuracy and precision, these terms pose some limitations on comparing state-of-the-art

methods. The MOTA value more or less only reflects the number of recall and false alarm, which is

much more dominant than the number of IDs. Thus, the consistency of the tracked target hardly to

be analysed by this metrics. On the other hand, using only IDs to compare the association accuracy

of various trackers is not sufficient, as this value needs to be put into the context with the number

of MT, ML, and recall. Such metrics are not available yet and should be investigated in the future

for more efficient evaluations and comparisons.

To this end, this work has presented a new framework to track multiple pedestrians in 3D object

space. With a focus on automotive applications, the tracker has been developed to carry out the

task in a flexible manner, in which no prior information about the scene is used and the association

is implemented in an online manner. The experimental results on KITTI, ETHMS, and MuVi

demonstrate that the suggested tracking approach is currently the best online 3D tracker in terms

of accuracy and the other criteria commonly applied in multiple pedestrian tracking.
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