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Zusammenfassung

Die Darstellung globaler Schwerefeldmodelle (GGMs) durch sphärische Harmonische (SHs) hat sich über die
letzten Jahrzehnte als de facto Standard behauptet. Basierend auf deren Inhalt, können GGMs unterteilt
werden in Modelle, welche lediglich Satelliteninformation enthalten (SGGMs) und Modelle, welche zusätzlich
terrestrische Beobachtungen beinhalten (EGGMs). Die Prozessierung von EGGMs wird technisch zumeist
durch ein Zweischrittverfahren realisiert: In einem ersten Schritt werden terrestrische Beobachtungen auf ein
reguläres Gitter vorprozessiert (im Allgemeinen als regionale Schwerefeldmodellierung bezeichnet), welche
anschließend, in einem zweiten Schritt effizient analysiert und mit einem SGGM kombiniert werden können (als
globale Schwerefeldmodellierung bezeichnet). Bis jetzt werden üblicherweise beide Schritte, dh. regionale und
globale Schwerefeldmodellierung, unabhängig voneinander behandelt, sodass globale Modelle oft aus einem
Flickenteppich von regionalen Modellen bestehen, welche ihrerseits üblicherweise von verschiedenen Gruppen
unter Verwendung verschiedener Methoden prozessiert werden (und daher unterschiedliche Eigenschaften
aufweisen). Aus der Erkenntnis, dass dieses Vorgehen zu verschiedenen Inkonsistenzen und Nachteilen im re-
sultierendem EGGM führen kann, ergibt sich der Gegenstand dieser Arbeit, nämlich die Verbesserung der Sit-
uation durch die Einführung eines integrierten Ansatzes, welcher beide Teilschritte umfasst. Das ganzheitliche
Vorgehen versucht (1) verschiedene methodische Aspekte zu verbessern, (2) Synergien zwischen den Ve-
rarbeitungsschritten zu erzeugen und (3) auf verbleibende Einschränkungen hinzuweisen und mögliche Lö-
sungen aufzuzeigen. Diese drei Aspekte definieren die Hauptthemen dieser Dissertation, welche (kumulativ)
auf drei (Haupt-)Publikationen basiert. Zur Veranschaulichung wird die Vorstellung der Methodik von einem
Testszenario begleitet, in dem Fluggravimetriedaten (von kontinentalem Ausmaß) der GRAV-D Schwerefeld-
kampagne nahtfrei in ein EGGM integriert werden (welches als SGDTv1 bezeichnet wird). Der ganzheitliche
Ansatz selbst kann in drei Hauptprozessierungsschritte unterteilt werden (welche ihrerseits weiter unterteilt
werden können), welche jeweils durch den Inhalt einer Publikation abgedeckt werden und auch gleichzeitig
jeweils ein Hauptkapitel dieser Arbeit darstellen: Der erste Schritt besteht aus der Validierung und Reduktion
der Eingangsbeobachtungen. Hauptaspekte hier sind die Herleitung des SATOP Modells, die Präsentation
einer schnellen Synthesemethode und Strategien zur Identifizierung und Beseitigung von Problemen in den
Daten. Im zweiten Schritt, der lokalisierten Schwerefeldmodellierung, wird ein gegitterter Datensatz unter Ver-
wendung von Kollokation (LSC) abgeleitet. Unter der Einführung der PE-LSC Methode werden eine Reihe von
Innovationen vorgestellt, welche dazu dienen, die Anwendbarkeit von LSC in mehrerer Hinsicht zu verbessern
(automatisierte Datenausdünnung, Einführung einer 2D Kovarianzfunktion, Anpassung der ellipsoidischen
Geometrie, Lokalisierung des Kernels und eine automatisierte Partitionierung). Zusätzlich werden Rückkop-
plungsmöglichkeiten aufgezeigt (zurück zur Validierungsphase), um Probleme mit den Beobachtungen (nach
der Kollokation) noch besser identifizieren zu können und um das Ergebnis der Kollokation unter Umständen
iterativ zu verbessern. Der dritte und letzte Prozessierungsschritt, die globale Schwerefeldmodellierung behan-
delt die SH Analyse und Möglichkeit zur Kombination mit SGGMs zur Herleitung des finalen EGGMs. Beson-
dere Aufmerksamkeit wird dabei den Eigenschaften der SH Analyse auf geographischen Gittern zuteil, dem
Blockdiagonalansatz und der sog. Kite-Methode als Kombinationsstrategie mit SGGMs. Abschließend wer-
den Strategien zur Validierung des resultierenden EGGMs vorgestellt zusammen mit weiteren Möglichkeiten,
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das finale Modell in die Validierungsphase zurückzukoppeln, um die Reduktionen (und damit auch das finale
EGGM) iterativ zu verbessern. Ein Vergleich des SGDTv1 Modells (als Resultat des GRAV-D Testszenar-
ios) zu anderen EGGMs durch GNSS/Nivellements zeigt, dass das experimentelle Modell (in Bereichen mit
Datenüberdeckung) gleich oder besser abschneidet als die konkurrierenden Modelle. Dies unterstreicht die
korrekte Funktionsweise des vorgestellten ganzheitlichen Ansatzes.



Abstract

The representation of global gravity field models (GGMs) through spherical harmonics (SHs) has de facto
been established as standard over the last few decades. GGMs can be subdivided into models which solely
contain satellite information (SGGMs) and models which extend SGGMs through additional (ground) gravity
observations (EGGMs). The processing of EGGMs is due to its nature commonly a two-step approach: in a
first step (ground) gravity observations are preprocessed onto a regular grid (denoted as regional gravity field
modelling) which can then efficiently be analyzed and combined with a SGGM in a second step to obtain the
final SH representation (classified as global gravity field modelling). Currently, both steps, i.e., regional and
global gravity field modelling are usually treated independently of each other, so global models often consist of
a patchwork of regional models with different properties processed by different groups using different method-
ologies. Acknowledging that this procedure may lead to various inconsistencies and disadvantages in the final
EGGM, this thesis tries to tackle these deficiencies by incorporating the entire gravity field processing into a
single integrated approach. The resulting holistic approach attempts to (1) improve various methodological
aspects, to (2) create synergies among the various processing steps, and to (3) highlight remaining limitations
and give hints towards possible solutions. These three aspects build the main objectives of this work which is
of cumulative nature and based on three main publications. For illustration, the presentation of the whole pro-
cedure is accompanied by a test case where the continent-scale GRAV-D airborne gravity mission is integrated
into a seamless EGGM (denoted as SGDTv1). The holistic approach itself can be subdivided into three main
processing steps (which can be further divided into substeps), each covered by the content of one of the three
publication and each representing one main chapter of this thesis: the first step consists of the validation and
reduction of the input observations. Key aspects here are the derivation of the SATOP model, the presentation
of a fast synthesis method and strategies to identify and remove problems in the data. In the second process-
ing step, the localized gravity field modeling, a gridded dataset is derived by means of least squares collocation
(LSC). Introducing the PE-LSC method, a set of innovations is presented which improves the applicability of
LSC in several aspects (automated data thinning, introduction of 2D covariance functions, adjustment of the
spheroidal geometry, kernel localization and automated partitioning). Additionally, feedback possibilities (to the
validation stage) are presented to further validate observations after the collocation and to possibly improve
the collocation result iteratively. The third and last processing step, the global gravity field modelling, treats
the SH analysis and possibilities to combine the solution with SGGMs to derive the final EGGM. Here, special
emphasis is given to properties of the SH analysis on geographic grids, the block-diagonal SH analysis and
the so-called kite solution as combination strategy with SGGMs. Eventually, validation strategies for the re-
sulting EGGM are presented along with further possibilities to feedback the final model to the validation stage
to iteratively improve the reduction, and, with that, also the final EGGM. Comparing the SGDTv1 model (as
result of the GRAV-D test case) to other EGGMs by means of GNSS/levelling reveals that the experimental
model performs equally or better than its competitors (in areas with observation coverage), which underlines
the correct functionality of the integrated approach.
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Chapter 1

Introduction

1.1 Motivation and Scope

The development of a consistent and accurate description of the Earth’s gravity field through Global Gravity
field Models (GGMs) is crucial for numerous applications in geosciences and, hence, one of the main tasks
of physical geodesy. As important example, the International Association of Geodesy (IAG) has declared
the definition and realization of an International (physical) Height Reference System (IHRS) as one of its
main objectives. Since physical heights are strongly connected to the Earth’s (exterior) gravity field, the IAG
recognizes GGMs as one of the central aspects for the establishment of an International Height Reference
Frame (IHRF, Ihde et al., 2017). However, not only from GGMs physical heights can be obtained, but also any
other gravity field functional, such as the potential, accelerations, deflections of the vertical or gradients. Thus,
GGMs are very flexible in their application and may serve as input/constraint to any model influenced by gravity,
which basically includes all mass-related dynamic physical processes.

Due to the importance of GGMs, significant effort has already been put into enhancing theories and method-
ologies behind global gravity field modelling, resulting in a variety of different approaches. While the developed
methods may strongly vary, the use of spherical resp. spheroidal harmonics (both abbreviated with SHs in
this thesis, see Sec. 2.1.2 and Heiskanen & Moritz, 1967) for the representation of the final GGM emerged as
de-facto standard in geodesy over the last few decades (see ICGEM). Dealing with GGMs therefore means
dealing with SHs and thus, also with the SH analysis (see Sec. 2.1.2). Here, it is imperative to notice that mod-
ern GGMs can be subdivided into two classes: (1) GGMs solely relying on satellite gravity field observations
(henceforth denoted as SGGMs), and (2) GGMs extending SGGMs by including additional ground gravity field
observations (henceforth called EGGMs). While SGGMs provide very accurate and globally homogeneous
gravity field data, their resolution is inevitably limited due to the high-frequency damping caused by the upward
continuation to satellite altitude of the gravity signal (see Sec. 2.1.2). Thus, increasing the resolution to enable
a higher point-wise accuracy near or on the Earth’s surface can only be achieved by means of EGGMs. Due to
the high computational demand of directly performing a SH analysis on scattered high-resolution ground gravity
datasets the ground gravity datasets have to be preprocessed for EGGMs. Hence, EGGM modelling through
SHs can always be considered as an at least two-step approach, where the first step consists of the preparation
of the input dataset, and the second step is the SH analysis itself. This two-step structure forms the common
basis of most of the EGGM modelling approaches, which mainly differ in how the first step is performed. Usu-
ally, it is covered by regional gravity field modelling methods. Regional methods cover, among others, least
squares collocation (LSC, Krarup, 1969; Moritz, 1980; Forsberg & Tscherning, 1981, and Sec. 2.3), Fourier
transform, wavelets (Chambodut et al., 2005; Holschneider et al., 2003; Schmidt et al., 2005), radial basis func-
tions (e.g, Marchenko, 1998; Schmidt et al., 2007; Eicker, 2008; Lieb, 2017) or Slepian functions (e.g., Simons,
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2010). Although all those methods are based on different ideas, they all try to find an estimate for the generally
ill-posed problem of regional gravity field modelling by introducing some additional assumptions or constraints
to ‘regularize’ the underlying system. Up until now, this regional modelling step is mostly performed indepen-
dently of the subsequent SH analysis, since gravity data is often just available in an already preprocessed state
provided by certain countries or measurement campaigns. This circumstance is not least caused by the fact
that raw gravity field observations are often still considered proprietary. So, all currently available GGMs may
be considered as reliant on a patchwork of different regional models (presumably also derived through differ-
ent methods) compiled into a global dataset. Obviously, such a patchwork is predestined to introduce errors
and artefacts due to possible inconsistencies between the different regional models. Also, when working with
preprocessed gravity field data, it is not possible to introduce any synergies between the SH analysis and the
regional gravity field modelling by interconnecting both steps more strongly. As a consequence, Ihde et al.
(2017) declared current EGGMs (e.g., EGM2008, Pavlis et al., 2012) as inappropriate for the inclusion into the
IHRF, mostly due to the unknown reliability of those models.

Understanding these shortcomings in the current state of global gravity field modelling directly leads to the defi-
nition of the purpose of this work, namely the study on how to generally improve future EGGMs. The question of
how to improve EGGMs can conceptually be split into three main objectives:

O-1 Improving existing state-of-the-art (regional and global) gravity field modelling methods
To tackle this objective, for regional gravity field modelling, this thesis builds upon the established and
widely used method of LSC, introducing several modifications that allows an efficient, consistent and
large-scale application (see publications P-1, P-2 and Chaps. 3, 4). In the scope of the combined global
gravity field modelling, the weighted least-squares-adjustment approach (see Pail et al., 2018) is chosen
as a starting point, improving the weighting strategy and extending it for very high-resolutions (see P-3
whereas in the course of Chap. 5 some novel assessments on this topic are presented which may shed
a new light on it).

O-2 Creating synergies among the different processing steps by presenting a unified approach
The final aim of this thesis shall be the presentation of an integrated gravity modelling approach
that reaches from in-situ observations to the final high-resolution EGGM, integrating data vali-
dation (Chap. 3) as well as regional (Chap. 4) and global gravity field modelling (Chap. 5) into
a unified framework and workflow. The presented workflow is highly automatable with the ability
to forward error information and feedback results between processing steps, thus producing synergies
throughout the integrated approach (cf. Sec. 1.2).

O-3 Identifying the theoretical limits and possible caveats of current (regional and global) gravity field mod-
elling approaches
To lead the way for future investigations, the limiting factors of the respective methods used within O-1
and O-2 are discussed by also presenting possible solutions. Additionally, some important caveats of the
methods are highlighted.

1.2 Structure

This thesis is of cumulative nature, meaning that major parts are already published in peer-reviewed scientific
journals. To create the link to the objectives defined in Sec. 1.1, the publications mainly discuss the individual
methodological enhancements (O-1), while the thesis itself mainly aims to present the framework in which
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these methods can be merged together to form a unified approach (O-2). Three publications with first author-
ship (named P-1, P-2, P-3), covering the majority of (O-1), are collected and reprinted in appendix A and con-
tain a declaration of own contribution. Two further related publications with co-authorship (P-4, P-5), highlight-
ing additional synergies, are not reprinted, but can be found in the Journal of Geodesy.

Since this thesis shall be an autonomous work, the content of the underlying publications is summarized for the
core findings and integrated in the aforementioned holistic processing framework (O-2). In addition, if applica-
ble, theoretical and practical limits and/or caveats are highlighted for the individual processing steps, providing
a scientific added value to the work already performed within the publications (O-3). To keep the structure of
this thesis as intuitive as possible, the three main chapters are aligned with the three main processing steps
of the framework which luckily also coincide with the three main publications (P-1, P-2, P-3). Fig. 1.1 provides
an overview of the proposed holistic framework and simultaneously describes the basic structure. To illustrate
and validate the holistic framework a test case is included throughout this work where GRAV-D airborne gravity
observations are included into a global model (see Sec. 1.3).

To give the reader the appropriate context the fundamental physical and mathematical backgrounds are reca-
pitulated in Chap. 2. This encompasses the basics of potential theory (Sec. 2.1.1) as well as an introduction
to the method of LSC (Sec. 2.3). As part of potential theory, special emphasis is given to the spherical resp.
spheroidal harmonic transformation (Sec. 2.1.2) since it is elementary to GGM modelling (Secs. 2.1.3, 2.2 and
2.2.1). For LSC, next to describing the remove-compute-restore technique (Sec. 2.3.2) the focus is laid on
the statistical interpretation of the gravity field by using homogeneous-isotropic covariance functions based on
degree variances (Sec. 2.3.3).

In chapter 3, the proposed methods of gravity data validation and reduction are explained as summary of P-1.
Thereby, the compilation of the combined satellite-topography EGGM (SATOP) is descibed, which forms the
basis for gravity data reduction (Sec. 3.1). To allow a fast evaluation of the SATOP model on the actual grav-
ity data locations a fast 3D synthesis method (FSYNTH3D) is introduced (Sec. 3.2). Using the FSYNTH3D
method, reductions for the gravity observations can be efficiently calculated leading to reduced (residual) grav-
ity observations. This residuals can then be evaluated in a statistical way (e.g., through thresholds, empirical
covariance functions or by low-pass filtering) to eliminated outliers and/or remove offsets or long-wavelenght
effects (Sec. 3.3). The final aim of this chapter is to derive validated, reduced gravity observations from raw
gravity observations (see Fig. 1.1, yellow box).

Starting from scattered, but already validated and reduced gravity observations, a gridding of the data can
be performed according to the first step of the two step EGGM modelling approach defined in Sec. 1.1. This
task is described within chapter 4 (see Fig. 1.1, orange box), recapitulating the content of publication P-2 (PE-
LSC): in the first stage, the possibly oversampled observations are thinned out to reduce the overall number
of observation and, hence, also reduce the computational effort for later steps (Sec. 4.1). Then, a spherical
approximation to the coordinates is applied to remove the latitude-dependency of the covariance function
derived by spherical degree variances (Sec. 4.2). Based on the observation with the modified coordinates,
an isotropic empirical 2D-covariance function is obtained, which can then be directly correlated to degree
variances (Sec. 4.3). Having estimated the degree variances, a least squares collocation of the observations
can finally be performed to acquire a regular observation grid (Sec. 4.6). Within LSC, special emphasis is
given achieving an optimized computation time by introducing a partitioning of the collocation area (Sec. 4.4).
Simultaneously, a localization of the LSC kernel is introduced to minimize the fringe effects caused by the
partitioning (Sec. 4.5).
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Fig. 1.1 – Overview over the holistic processing chain and, simultaneously, the structure of this thesis. The three main
chapters (3, 4, 5) correspond to one of the rectangular main blocks resp. processing steps: Validation and reduction
(Chap. 3, yellow block), Localized gravity field modelling (Chap. 4), orange block), Global gravity field modelling
(Chap. 5, blue block). The finer structure of the processing is provided through the smaller rectangular blocks within
the main blocks. Data is visualized in rounded boxes - green boxes highlight data derived from observations and
purple boxes emphasize data which is based on auxiliary information (e.g., other gravity field models). Dotted boxes
and arrows signalize optional or alternative processing steps resp. data products.



1.3 The GRAV-D test case 5

Finally, when gridded observations are available, an EGGM can be derived. Chapter 5 (see Fig. 1.1, blue box)
summarizes the respective workflow from publication P-3 (at least partially). Firstly, the geographic input grid
needs to be spectrally limited to the target resolution. To achieve this, the behavior of the SH transformation
on geographic grids is investigated (Sec. 5.1) and a block-diagonal SH-analysis is performed, leading to a
block-diagonal solution of the gridded observations (Sec. 5.2). The lower frequency part of this block-diagonal
solution can then be used to synthesize a lower resolution geographic grid. Subsequently, this lower reso-
lution grid can be combined with a satellite-only gravity field model through a weighted dense least squares
adjustment approach. The needed accuracy information (for the weights) of the lower resolution grid can be
obtained empirically by comparing it to a so-called kite solution. In a final step, the outcome of the weighted
least squares adjustment, i.e., the lower frequency combined model, can be merged together with higher
frequency part of the block-diagonal solution to compose the final model (Sec. 5.3). However, it has been
shown during the implementation that for the integrated approach it is not even necessary to calculate the
weighted combination (which has several disadvantages) because a kite solution is sufficient (Secs. 5.3, 5.4).
Concluding this thesis, an outlook to the future of high-resolution global gravity field modeling is provided in
chapter 6.

1.3 The GRAV-D test case

To showcase the possibilities of the presented approach a test scenario is included within this thesis. The
presented scenario is also meant to accompany the introduction of the different processing steps to provide
a concrete context and to give a better illustration. Specifically, the scenario consists of the integration of
airborne gravity observations from the GRAV-D project into a SH global model. The GRAV-D project is initiated
and managed by the US National Geodetic Survey (NGS) with the primary goal to provide a high-resolution
"snapshot" of gravity in the US. As such, GRAV-D consists of an extensive continent-wide collection of airborne
gravity observations which are organized in regionally confined blocks, which are processed independently to
a certain degree. The data acquisition in the project is designed to enable a target resolution of about 10 km,
hence, the nominal distance of adjacent flight tracks is also defined to be 10 km. It is also noteworthy, the
campaign (also within specific block) is conducted by a variety of different instruments and airplanes, flown at
different heights, resulting in a collection of observations which can be considered variable in accuracy, spatial
resolution and spectral content. For more details, the reader is referred to the GRAV-D publications found on
their dedicated website (https://geodesy.noaa.gov/GRAV-D/index.shtml). An overview of the covered area and
available blocks is given in Fig. 1.2a.

For the test case, data from all blocks where the processing has been finished is taken (cf. Fig. 1.2a, all
green blocks, except Kansas). The data is provided by courtesy of NGS in an already preprocessed state
(corrected for offsets and high-frequency noise) where the along-track sampling is already reduced (to about
1 km). Additionally, the observations are already reduced to gravity disturbances by removing the normal field
of the reference ellipsoid (GRS80 in this case, see Moritz, 2000). All in all, the complete dataset consists of
about 1.2 million observations which are located on an average altitude of about 6km (see Fig. 1.2b). Although
the presented test case has mainly illustrative character in the scope of this thesis, there will also be an
actual application for the obtained results. Namely, NGS defined the goal to optimally integrate the GRAV-
D observations into a global model with the spatial target resolution of 10 km since they recognize the SH
representation as the most versatile for 3rd party usage. For instance, NGS itself wants to use the GRAV-
D dataset to validate its terrestrial gravity data source against it. Obviously, for this application a downward

https://geodesy.noaa.gov/GRAV-D/index.shtml
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(a)

(b)

Fig. 1.2 – The GRAV-D dataset. (a) Overview of the current processing state of the individual blocks (as of May
2021). Green blocks: data available. Blue blocks: data being processed. Yellow blocks: data acquisition in progress.
White blocks: data acquisition planned. Map taken from the GRAV-D website (https://geodesy.noaa.gov/GRAV-
D/index.shtml) on 05/05/2021. (b) Visualization of the in-situ observations in terms of gravity disturbances.

https://geodesy.noaa.gov/GRAV-D/index.shtml
https://geodesy.noaa.gov/GRAV-D/index.shtml
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continuation of the GRAV-D observations to the terrestrial measurement sites is necessary. Performing a
downward continuation is straightforward when having a SH model, which makes EGGMs optimally suited for
this task (although, there exist other methods which also have this capability perhaps with some limitations,
e.g., LSC, see Sec. 2.3).
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Chapter 2

Basic theory on gravity field modelling

This chapter introduces the mathematical and physical principles needed by the various processing steps.
Since the shown theory is commonly used in geodesy, for most parts only a brief summary is provided, col-
lecting the most important formulas. An in-depth treatment of the addressed theory can be found, e.g., in the
comprehensive work of Heiskanen & Moritz (1967) or Moritz (1980).

2.1 Mathematical description of the gravity field

2.1.1 Potential theory

In this work, Newtonian law of gravity is used as the fundament for gravity field modelling. This means that
relativistic effects are not taken into account for the modelling part (although these may have been considered in
the course of the acquisition of the measurements themselves, e.g., within satellite gravity missions). However,
in case of the Earth’s comparatively weak gravity, the direct perturbations of Newtonian law due to relativity can
be neglected regarding the targeted accuracies and application scenarios of the resulting gravity field models.
For a sufficiently small test mass P located at xP the attracting gravitational acceleration regarding a body Q
reads:

a (xP ) =

˚
XQ

G

ρQ︷ ︸︸ ︷
ρ
(
xQ
)

rPQ︷ ︸︸ ︷
xQ − xP∣∣xQ − xP

∣∣
︸ ︷︷ ︸

rPQ

3 dXQ = G

˚
XQ

ρQ
ePQ
r2
PQ

dXQ. (2.1)

Here, XQ denotes the volume of the body Q, ρ
(
xQ
)

the density at xQ and G the gravitational constant. It can
easily be shown (see, e.g., Heiskanen & Moritz, 1967) that a has zero curl, i.e. ∇ × a = 0. This also implies
that a scalar potential V (xP ) to a (xP ) exists, such that a (xP ) =: ∇V (xP ). By integrating the components of
Eq. 2.1 one finds:

V (xP ) =

˚
XQ

Gρ
(
xQ
)

∣∣xQ − xP
∣∣ dXQ = G

˚
XQ

ρQ
rPQ

dXQ. (2.2)

Thus, the gravitational acceleration a as a vector field can be expressed more conveniently through a scalar
field, i.e., through the respecitve potential V. As an additional crucial property of the gravitational potential, it
can be shown, that the Laplacian ∆V := ∇∇V of the potential V is zero in the absence of masses. To see this,
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one may use the fact, that the divergence operator ∇a can be derived from the divergence theorem on a in its
differential form (see, e.g., Bronstein et al., 2015):

∆V = ∇a (xP ) =

lim
XQ→xP

(‚
∂XQ

a d
[
∂XQ

])

dXQ
=

=

‹
∂XQ

lim
XQ→xP

(a)

dXQ
d
[
∂XQ

]
=

=

‹
∂XQ

Gρ (xP ) lim
XQ→xP

(˚
XQ

xQ − xP∣∣xQ − xP
∣∣3
dXQ
dXQ

)
d
[
∂XQ

]
=

=

‹
Ω

Gρ (xP )

(
eP ′P
δr2
P ′P

) [
−eP ′P δr2

P ′P dΩ
]

=

=

‹
Ω

−Gρ (xP ) dΩ = −4πGρ (xP ) .

(2.3)

In this equation [∂XQ] denotes the boundary (i.e., surface) of the volume XQ (of the body Q) and d
[
∂XQ

]
=

d [∂XQ]n a directed surface element (regarding the normal direction n). Since ρ (xP ) becomes zero in empty
space, also the Laplacian of V is zero. A function V for which ∆V = 0 holds true is called harmonic and
the stated harmonicity constraint defines the class of Laplacian differential equations. For Laplacian differential
equations it is known that a solution (that is, the function values for V) for a harmonic space (i.e., a space where
the function is harmonic) can be obtained by knowledge of the function values on the boundary of this space (by
means of a boundary value problem). In the actual case of gravity field modelling, when assuming that spatially
confined bodies (e.g., the Earth) are defining the boundary to the empty (i.e., harmonic) space, the gravitational
potential at every position in this empty space can be determined by knowing the gravitational potential just on
the boundary (e.g., the surface of the body). This harmonicity property forms the basis for the definition of the
so-called spherical resp. spheroidal harmonic representation as a solution to the Laplacian differential equation
regarding spherical resp. spheroidal coordinates (see Sec. 2.1.2).

2.1.2 Spherical resp. spheroidal harmonic representation

Spherical synthesis. In most applications the gravity field of a spherical or spheroidal-shaped body is of
interest (as, e.g., the Earth or other planets or larger bodies). For such bodies, it is convenient to describe the
gravity field regarding coordinates that follow their shape. Considering a spheroidal body (such as the Earth) an
appropriate coordinate system would be the spherical coordinates in a first approximation and the spheroidal
(i.e., ellipsoidal) coordinates in a closer approximation. A solution of the Laplacian differential equation ∆V = 0

can then be sought regarding the respective coordinate system. A detailed solution path for both coordinate
systems is presented, e.g., in Heiskanen & Moritz (1967). The solution in spherical coordinates (θ, λ, r) is
given by the so called (solid) spherical harmonic synthesis, defined as:

V (θ, λ, r) =

nmax∑

n=0

(
R

r

)n+1 n∑

m=0

P̄nm (cos θ) (Csnm cosmλ+ Ssnm sinmλ) (2.4)

where θ is the spherical (geocentric) co-latitude, λ the longitude, r the spherical (geocentric) radius andR some
(constant) reference radius. P̄nm denotes the so-called (fully normalized) associated Legendre polynomials
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(see, e.g., Fukushima, 2012a). In the stated form, Eq. 2.4 defines the so-called spherical harmonic domain,
which is given by the index n, called the degree and the index m, called the order of a specific element (called
coefficient) C/Ssnm in this domain. Theoretically, the series in Eq. 2.4 has to be expanded up to infinity, i.e.,
nmax = ∞. However, in practical applications, the maximum degree and order (d/o) nmax is set to a finite
integer value which corresponds to a limitation of the maximum frequency (or minimum wavelength) that is
covered by the synthesis. In practice, the harmonic coefficients C/S

s
nm are usually given in a normalized

fashion c/snm, such that:

c/s
s
nm :=

GM

R
C/S

s
nm. (2.5)

with GM as the product of total mass M and gravitation constant G so that the coefficient of the central term
of the expansion c00 = 1. Such normalized coefficients c/snm are usually referred to as Stokes coefficients.
From Eq. 2.4 one can also already see the numerical instabilities induced by the radial component (R/r)

n+1.
As an example, when considering the flattening f ≈ 1/300 of the Earth, the radial ratio for a point located
on the equator and a point located on the pole is given by 1 − f ≈ 300/299. This means that the ratio of
the radial terms for both points is given by (300/299)n, which becomes as large as 1 · 103, 7 · 107, 5 · 1015

for n = 2160, 5400, 10800. Since the arithmetic precision of modern computers is usually limited to ∼ 1016

(double precision) this exponential amplification quickly becomes uncontrollable. Hence, currently, as a rule of
thumb for the application on the Earth’s surface, spherical harmonics should not be used higher than d/o 5400
(especially within adjustments, see also Sec. 2.1.2 and 5.2).

Spheroidal synthesis. As alternative to the spherical expansion also a spheroidal expansion of the harmonic
potential (regarding spheroidal coordinates) is possible (see Heiskanen & Moritz, 1967). For simplicity, in this
thesis, the use of the spheroidal expansion is limited to spheroidal surfaces, on which it has an especially
simple form:

V (β, λ, hell = 0) =

nmax∑

n=0

n∑

m=0

P̄nm (sinβ) (Cenm cosmλ+ Senm sinmλ) . (2.6)

Comparing Eq. 2.4 with Eq. 2.6, it can be seen that they are quite similar despite the fact that in Eq. 2.6
the radial component is missing and that the spherical colatitude θ is substituted by the parametric latitude β
(connected by the flattening f through cot θ = (1− f) tanβ). As mentioned, Eq. 2.6 applies for potential values
on the surface of the respective spheroid (hell = 0) and the corresponding coefficients Cenm and Senm differ
from the spherical counterparts in case that the flattening is not zero (in the special case of f = 0 Eq. 2.4 is
equivalent to Eq. 2.6). Spheroidal coefficients C/Senm and spherical coefficients C/Ssnm are related through
the transform described in Jekeli (1981):

C/S
s
nm =

nmax∑

n=m

te→snm C/S
e
nm, C/S

e
nm =

nmax∑

n=m

ts→enm C/S
s
nm. (2.7)

The required transformation coefficients te→snm , ts→enm can be calculated in a numerically stable way (see Jekeli,
1981) and, thus, also the transformation itself is stable. Noteworthy, only harmonic coefficients of a certain or-
der m are related through this transform, reflecting the fact that the effect of oblateness is limited to the latitudi-
nal direction. Hence, using the spheroidal harmonic expansion (Eq. 2.6) as well as the transformation to spher-
ical harmonics (Eq. 2.7), the previously mentioned problem of the numerical instabilty of the spherical harmonic
expansion on the Earth’s surface can be prevented (e.g., within adjustments).
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Please note that in this thesis the term spheroid (resp. spheroidal) is used to denote an ellipsoid of revolution
(i.e., with two identical principal axes) to distinguish from arbitrary ellipsoids (with three arbitrary principal
axes). This seems necessary since next to spheroidal harmonics also (3-axis) ellipsoidal harmonics (see,
e.g., Romain & Jean-Pierre, 2001) exist, which are not used within this thesis (because the Earth can be
well approximated through a spheroid). Further, since many statements in this thesis are valid for spherical
harmonics and spheroidal harmonics alike the abbreviation SH(s) will be used to simultaneously address
both.

Orthogonal linear operator. For later considerations, it is useful to interpret the harmonic expansion (Eq. 2.4
or Eq. 2.6) as a linear operator YXH that transforms from the spectral domainH to the spatial domainX :

fX = YHX fH

X :=
{

(θ, λ, r) |θ ∈ Rmodπ, λ ∈ Rmod 2π, r ∈ R+
}

H := {(n,m) |n ∈ N,m ∈ Z}
fX = fX (θ, λ, r) := V (θ, λ, r)

fH = fH (n,m) :=
GM

R




cnm ⇔ m ≥ 0

snm ⇔ m < 0

YHX = Y ((θ, λ, r) ∈ X , (n,m) ∈ H) :=

(
R

r

)n+1

P̄n|m| (cos θ)





cosmλ ⇔ m ≥ 0

sin |m|λ ⇔ m < 0

(2.8)

For this linear operator YHX it is important to notice that spatial base functions Ynm (θ, λ, r = R) are orthogonal
regarding the integration over the sphere (resp. spheroid), i.e.:

¨
Ω

Ynm (θ, λ) Yn′m′ (θ, λ) dΩ = 4πδ (n, n′) δ (m,m′) . (2.9)

Analysis. Using this property, Eq. 2.4, resp. Eq. 2.8 can be inverted, yielding the so-called analysis formula
for spherical resp. spheroidal (surface) harmonics:

¨
Ω

Ynm (θ, λ) fX (θ, λ) dΩ =

¨
Ω

Ynm (θ, λ)



nmax∑

n′=0

n′∑

m′=0

Yn′m′ (θ, λ) fH (n,m)


 dΩ =

=

n∞∑

n′=0

n′∑

m′=0

4πδ(n,n′)δ(m,m′)︷ ︸︸ ︷[¨
Ω

Ynm (θ, λ)Yn′m′ (θ, λ) dΩ

]
fH (n,m) = 4πfH (n,m)

⇒ fH (n,m) =
1

4π

¨
Ω

Ynm (θ, λ) fX (θ, λ) dΩ.

(2.10)

Thus, by knowledge of the continuous potential field on the body’s surface, harmonic coefficients can be derived
independently of each other due to the given orthogonality. However, the orthogonality (Eq. 2.9) does in general
not hold in the application-related discrete scenario, where, e.g., potential field values are just provided through
some sort of sampling. Hence, in the realistic discrete case, the analysis usually needs more attention and gen-
erally leads to a formulation through least squares adjustment (LSA, see 2.2).
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2.1.3 Disturbing potential and derived quantities

Since the gravitational potential field V of large bodies (as the Earth) is usually quite homogeneous on large
scales due to the isostasy driven by its own masses, it is reasonable to remove a reference potential V ′ to
obtain a so-called disturbing potential field T :

T := V − V ′. (2.11)

Normal gravity. For the Earth, a well-approximating reference potential V ′ is found by modelling the gravi-
tational potential of a so-called (physical) reference ellipsoid resp. spheroid (see, e.g., Heiskanen & Moritz,
1967). In this context, the obtained reference field is usually denoted as normal field, since the direction of the
gradient of this potential field (plus the centrifugal potential) is defined to be aligned with the normal direction
of the spheroidal surface of the corresponding reference ellipsoid. A (physical) reference spheroid E of a body
is usually described by (1) its geometric form, e.g., through the semi-major axis aE and the flattening fE , (2)
GME the product of the total mass ME and gravitational constant G, and (3) the angular velocity ωE , that is
V ′E = V ′ (aE , fE , GME , ωE). Ultimately, since V ′E is harmonic, it can also be expressed through a spherical har-
monic expansion, only concerning the even zonal (m = 0) coefficients cE2n0 (aE , fE , GME , ωE) due to rotational
and equatorial symmetry:

V ′E (θ, r) =
GM

R

∞∑

n=0

(
R

r

)2n+1

P̄2n0 (cos θ) cE2n0 (2.12)

For details about the calculation of the coefficients cE2n0 the reader is referred to Heiskanen & Moritz (1967).
It shall be noted that in this considerations the centrifugal potential of rotating bodies, which is not harmonic,
is assumed to be already removed beforehand (by using ωE). Since the harmonic synthesis is a linear op-
eration, the disturbing potential T can be expressed directly via Stokes coefficient differences ∆fH (cf. Eq.
2.8):

T = V − V ′ = YHX fH −YHX fH
′ = YHX

∆fH︷ ︸︸ ︷(
fH − fH′

)
=: YHX ∆fH (2.13)

Disturbing gravity field quantities. Based on the disturbing potential T , other disturbing gravity field function-
als δf? can be derived by means of derivatives of T , such as, e.g., the gravity disturbance, the deflection of the
vertical, or the gravity gradient. When using derivates along the axis of the coordinate system of the harmonic
expansion (e.g. spherical coordinates), the functionals (in the respective approximation) can be expressed
as:

δf? =
∂i+j+kT (θ, λ, r)

∂θi∂λj∂rk
=
∂i+j+kYHX
∂θi∂λj∂rk

∆fH

∂i+j+kYHX
∂θi∂λj∂rk

=
∂iP̄n|m| (cos θ)

∂θi
∂jcos/sin |m|λ

∂λj
∂k
(
R
r

)n+1

∂rk

(2.14)

Hence, it is discernible that all those functionals δf? can be derived from the same set of disturbing Stokes
coefficients ∆fH by just modifying the linear operator YHX accordingly (for the computation of the derivatives
of the Legendre polynomials, see, e.g., Fukushima, 2012c). This property makes the Stokes coefficients ∆fH
universally applicable, which is probably the main reason why they became the de facto standard in geodesy for
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representing/defining gravity fields. Among all the different feasible gravity field functionals (see, e.g., Meissl,
1971), in this work, special emphasis is given to the spherically approximated gravity disturbance δg ≈ −∂T /∂r
since it is used as the primary observable to model the GRAV-D dataset:

δg ≈ −∂T
∂r

=
∂YHX
∂r

∆fH = −n+ 1

r
YHX ∆fH =: YHδg∆fH =

=

nmax∑

n=0

−n+ 1

R

(
R

r

)n+2 n∑

m=0

P̄nm (cos θ) (Csnm cosmλ+ Ssnm sinmλ)

(2.15)

Anomalous gravity field quantities. Note that next to the disturbing gravity field quantities, in geodesy
also the so-called anomalous gravity field quantities are historically of importance, since in earlier days the
ellipsoidal height of the observation sites was generally unknown. Thus, relying on physical heights, the geoid
height resp. height anomaly (as difference to the ellipsoidal height) had to be co-estimated which led to the
formulation of the so-called fundamental equation of physical geodesy and, eventually, to the definition of the
so-called gravity anomaly ∆g as counterpart to the gravity disturbance. However, since the theory behind
anomalous gravity field quantities is of minor importance for this work, it is omitted at this point and the reader
is referred to Heiskanen & Moritz (1967) for a detailed explanation. Ultimately, anomalous quantities can be
expressed similarly to disturbing items by means of Stokes coefficients by modifying the linear operator YXH
(see Eq. 2.15, e.g., YH∆g := −n−1

r YHX ).

Block-mean quantities. Block-mean quantities δf̄? regarding spherical or geographic surface elements (∆θ,∆λ)

may be defined as

δf̄? (θ0, λ0, r) =

θ0+∆θˆ

θ0

λ0+∆λˆ

λ0

[
∂i+j+kT (θ, λ, r)

∂θi∂λj∂rk

]
∂θ ∂λ =

=:ȲH?︷ ︸︸ ︷
θ0+∆θˆ

θ

λ0+∆λˆ

λ

[
∂i+j+kYHX
∂θi∂λj∂rk

]
∂θ ∂λ ∆fH

ȲH? =

θ0+∆θˆ

θ0

[
∂iP̄n|m| (cos θ)

∂θi

]
∂θ

λ0+∆λˆ

λ0

[
∂jcos/sin |m|λ

∂λj

]
∂λ

[
∂k
(
R
r

)n+1

∂rk

]
.

(2.16)

Here, the ? indicates that possibly different gravity field functionals (as disturbances, anomalies, gradients,
etc.) may be addressed by the block-mean operation (cf. Eq. 2.14). As seen, for the block-mean quantities
the integrals of the associated Legendre polynomials P̄n|m| are needed which introduces some additional
effort regarding their computation (see, e.g., Fukushima, 2014 and Fukushima, 2012b). On the other hand,
obtaining the integrals of the trigonometric functions in longitudinal direction is straightforward since they remain
basically unchanged (except of a scaling and a phase shift). This circumstance will be important when deriving
orthogonality properties (see Sec. 2.2.1).

2.2 Least squares adjustment

As highlighted in the previous section (2.1.2), a determination of Stokes coefficients is theoretically possi-
ble through knowledge of the potential field given continuously on a boundary surface of the body of inter-
est. It has been shown that in the continuous spherical resp. spheroidal case the spatial basis functions
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Ynm (θ, λ, r = 0) are orthogonal (see Eq. 2.9) and Stokes coefficients can be derived independently of each
other by means of integration (see Eq. 2.10). In practical applications, though, it can neither be assumed that
the potential field is known in a continuous manner, nor that the given boundary surface is spherical resp.
spheroidal. Thus, instead of having a continuous operator Ynm

? (θ, λ, r = 0) an arbitrary discrete operator (i.e.,
matrix)

AH? = A? (x,h) := Y? ((θi, λi, ri) =: x ⊂ X , (nk,mk) =: h ⊂ H) (2.17)

is applied. Having a finite set h of Stokes coefficients f := ∆fH (h) describing some gravity field functionals
f

?
:= ∆f? (x) on a finite set x of spatial locations, the following linear relation can be established (according to

Eq. 2.10):

f
?

= AH? fH. (2.18)

This linear equation system can now be used to formulate a least squares adjustment (LSA) problem (see
Niemeier, 2008) when interpreting f

?
≈ l̂? = l?+v̂? as observation l? with corrections v̂?:

l? + v̂? = AH? f̂ . (2.19)

Without loss of generality, when the problem is well-posed, i.e., the equation system is overdetermined, a statis-

tically optimal solution can be found through the minimization of
(
l? −AH? f̂

)2

(assuming normally-distributed
items and no prior information). The solution to this minimization problem leads to the well-known formula of
LSA (see Niemeier, 2008):

f̂ = (AH?
′
=:Pll︷︸︸︷
C−1
ll AH?︸ ︷︷ ︸

=:N=C−1
HH

)−1

q︷ ︸︸ ︷
AH?
′
C−1
ll l? = N−1 q. (2.20)

In Eq. 2.20 Cll denotes the covariances matrix of the observations, l? and Pll the respective weighting matrix.
N is the so-called normal equation matrix and its inverse CHH the covariance matrix of the sought unknowns f̂ .
Note that for the sake of simplicity in this thesis it is generally assumed that Qll = Cll, i.e., that the a-posteriori
covariance Cll is the same as the a-priori covariance Qll.

Normal equation stacking. Having several uncorrelated normal equation systems (short NEQSs) Ni f̂ i = q
i

from several different sets of observations li an optimally combined NEQS can be derived by summing up
(stacking) the individual equation systems:

NΣ︷ ︸︸ ︷∑

i

Ni f̂Σ
=

q
Σ︷ ︸︸ ︷∑

i

q
i
, NΣ f̂Σ

= q
Σ
. (2.21)

The technique of stacking normal equations is useful, since in some cases observation sets are just pro-
vided by means of normal equations. This has the advantage that the user does not have to be concerned
about the possibly difficult functional models behind the equations (e.g., when combining with satellite mod-
els).
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2.2.1 Orthogonalities within normal equation systems

Depending on A and P, when building the normal equation matrix N = A′PA some entries may turn zero due
to orthogonalities between the occurring basis function (i.e., columns of matrix A, that is anm). For instance, as
seen in Sec. 2.1.2, Eq. 2.9, in the continuous case, when A = Y (and P = sin θ, i.e., the area weight) all basis
functions are orthogonal, and, thus, N would become diagonal and the LSA problem would decay to a simple
integration problem again as shown in Eq. 2.10. Though, even if this general orthogonality does not hold in the
arbitrary discrete case, with some constraints it is possible to establish at least a partial orthogonality between
the basis functions (cf. Colombo, 1981):

m-block orthogonality. Within the spherical harmonic synthesis (Eq. 2.4) it is easy to see that in lon-
gitudinal direction regarding m the formula equals a discrete Fourier transform (by swapping the summa-
tions):

f? (θ, λ, h) =

nmax∑

m=0

=:Cm(θ,h)︷ ︸︸ ︷(
nmax∑

n=m

C?
nm qnm (h) P̄ ?

nm (cos θ)

)
cosmλ+

=:Sm(θ,h)︷ ︸︸ ︷(
nmax∑

n=m

Snm qnm (h) P̄ ?
nm (cos θ)

)
sinmλ =

=

nmax∑

m=0

Cm (θ, h) cosmλ+ Sm (θ, h) sinmλ

(2.22)

In Eq. 2.22 the ? indicates once again the possibly different expressions for the respective parts depend-
ing on different functionals. qnm (h) is used to arbitrarily describe the possible height dependency which,
in the general case, may depend on n and m (referring to the Legendre Polynomials of the second kind
in the general spheroidal harmonic case, see, e.g., Fukushima, 2013). In the following it is assumed to
have (1) samples on a regular grid θ × λ which is (2) complete and equally spaced in longitudinal direction,
i.e.

λ = (λi) =

(
λ0 +

i− 1

ni
2π

)
(2.23)

where ni is the number of samples in longitudinal direction and λ0 an arbitrary shift. It is further demanded (3)
that h = h(θ), meaning that the height of the sample locations is invariant within the same latitude, and, thus,
C/Sm (θ, h) ≡ C/Sm (θ). Finally, when considering covariances Cll for the observations, it is also demanded (4)
that Cll = (cov(θi)), i.e., Cll (and, thus, also Pll) is independent of the longitude. Under these conditions (1-3)
Eq. 2.22 describes a regular discrete Fourier transform from which is known to retain the orthogonality between
the m basis functions (since the sample points cover all of the so-called roots of unity of the complex form of the
trigonometric functions). So, when building the normal equation matrix, considering also condition (4), matrix
elements from distinct orders will become 0. When ordering the coefficients m-wise, a block-diagonal matrix
emerges with the block size corresponding to the number of occurring degrees n in the respective order m, i.e.
(nmax −m). It is important to notice that gravity field functionals obtained through derivation or integration (cf.,
Eqs. 2.14, 2.16) retain the basic structure as indicated above in Eq. 2.22. Hence, fulfilling conditions (1-4),
the m-block orthogonality takes effect for all those derived functionals (for an illustration see Fig. 5.5a in Sec.
5.3).

Equatorial symmetry. Next to the m-block orthogonality, it is also possible to exploit the symmetry properties
of the associated Legendre polynomials. From P̄n|m| it is known to be symmetric in case (n −m) is even and
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antisymmetric in case (n−m) is odd. Parameterizing P̄n|m| with cos θ resp. sinβ transforms the symmetry/an-
tisymmetry into equatorial symmetry/antisymmetry. Thus, if one has a symmetric setup of sample locations x
(of samples of the same functional) regarding the equator, that is (θi, λi, hi) ∈ x ⇔ (π − θi, λi, hi) ∈ x, then
two basis functions animi

, ankmk
are orthogonal in case (ni + nk −mi −mk) is odd. So, also the respective

element Nik in the normal equation N becomes 0:

Nik =
〈
animi

, ankmk

〉
=

=
∑

j

[
P̄ ?
ni|mi| (θj) . . .

] [
P̄ ?
nk|mk| (θj) . . .

]
=

=
∑

(j: θj≤π/2)

[
P̄ ?
ni|mi| (θj) . . .

] [
P̄ ?
nk|mk| (θj) . . .

]
+

∑

(j: θj>π/2)

[
P̄ ?
ni|mi| (θj) . . .

] [
P̄ ?
nk|mk| (θj) . . .

]
≡

≡
∑

(j: θj≤π/2)

[
P̄ ?
ni|mi| (θj) P̄

?
nk|mk| (θj) + P̄ ?

ni|mi| (−θj) P̄
?
nk|mk| (−θj)︸ ︷︷ ︸

=−(··· ) ⇔ (ni+nk−mi−mk) mod 2=1

]
. . . =

= 0 ⇔ (ni + nk −mi −mk) mod 2 = 1

(2.24)

For sake of simplicity, Cll is omitted in this derivation. However, if Cll is also symmetric regarding the equator,
it can be shown that Nik remains 0 in case of odd parity. When exploiting this additional symmetry feature
together with the m-block orthogonality, the diagonal m-blocks halve their size, resulting in so-called mp-blocks
where the ’p’ stands for parity.

Gauss-Legendre quadrature. As pointed out, e.g., in Sneeuw (1994), with an appropriate choice of sam-
pling locations (nodes) θG = (θGj ) and weights PG := diag(wG) it is possible to retain the orthogonality of
the associated Legendre polynomials in the discrete case (diag(...) denotes the vector to diagonal matrix
transform). The method corresponds to the so-called Gauss-Legendre quadrature from which it is known to
resemble an exact integration of polynomials of degree 2N − 1 in the interval [−1, 1], where N is the number
of nodes. Hence, choosing at least N = nmax + 1 nodes, all polynomials P̄ ?

ni|mi|P̄
?
nk|mk| can be integrated

exactly:

ˆ 1

−1

P̄ ?
ni|mi|(x)P̄ ?

nk|mk|(x)dx =

nmax+1∑

j=1

wj P̄
?
ni|mi|(cos θj)P̄

?
nk|mk|(cos θj) = 0 ⇔ i 6= k. (2.25)

The main difficulty when using this method is the determination of the n + 1 nodes and weights. As defined
by the approach, the nodes θj have to be located at the n + 1 roots of the Legendre polynomial Pn+1 and the
weights wj can then be calculated by, e.g. (see, Sneeuw, 1994):

wj =
2
(
1− (cos θj)

2
)

[(n+ 1)Pn(cos θj)]
2 (2.26)

For finding the roots θi several efficient and accurate methods exist (up to machine precision, e.g., Bogaert,
2014). Using this so-called Gauss-grid (together with the weights and the m-block orthogonality) leads again to
a diagonal structure of the normal equation matrix N and corresponds again to a (weighted) simple quadrature.
While this approach is, from the perspective of the computational efficiency, far superior to all other solutions
acquired through LSA, there are two major limitations: (1) the observations have to be given on the Gauss-grid
which is usually not the case for pre-compiled datasets, and (2) the applied weights are solely synthetic and
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do not have to resemble the actual accuracies of the observations. However, while the weights are purely
synthetic it has been shown that they resemble a sin θ weighting in good approximation (see Sneeuw, 1994,
converging to it with N →∞) which corresponds to an equal-area weighting (as in the quadrature case through
dΩ, see Eq. 2.10).

2.3 Least squares collocation

This section provides a brief overview of the LSC theory and introduces the notation. Thereto, a somewhat
different access to LSC is presented with the aim to highlight similarities and disparities to least-squares ad-
justment. This approach is neither completely new nor mathematically fully rigorous, but might support readers
who are more familiar with LSA than LSC. Advanced readers may also find it interesting to get a glimpse at
LSC from a slightly different perspective. For a more complete and elaborated treatment of this topic the reader
is referred to Moritz (1980).

2.3.1 The LSC method

The measurement as random variable. LSC is a statistically optimal method for estimating (predicting) quan-
tities based on their stochastic properties. Since it is a statistical technique, all treated quantities within the
scope of LSC have a probabilistic character and can be modelled mathematically through random variables.
Consequently, before explaining the method itself, to build the basis for later, the structure and possible inter-
pretation of the random variables which are used must be described first. For LSC, it is convenient to define
the random variable V as

V :=V X + VM with

V X : X → R ,

VM : M→ R.

(2.27)

as the central quantity. In words, V consists of a random variable V X with spatial reference X (see Sec. 2.1.2)
and a random variable VM with state dependency M. One can think of V as a measurement (e.g., through
an instrument) of a signal V X (e.g., gravity field item) with (additive) noise VM (e.g., instrument errors). In the
sense of a random variable, (X ,M) builds the so-called sample space of V , where in LSC a single element
(i.e., sample) x ∈ X is denoted as location (or coordinates) and m ∈ M as (measurement) state of a con-
crete event v:=V (x,m). An event v represents an actual realization of a “measurement” (assuming a fixed
sample (x,m)) and is henceforth called observation (i.e., the outcome of a measurement). For random vari-
ables, samples are defined to be non-deterministic. Consequently, the state m is interpreted as purely random
entity on which V is reliant on (e.g., some unobserved environmental variables influencing the measurement
such as temperature, pressure, humidity, time, etc.). In classical LSC also the location x is treated as ran-
dom regarding the statistical behavior of V X (e.g., when using homogeneous isotropic covariances functions,
all locations are treated as a sample with identical statistical properties, see, e.g., Moritz, 1980), although
x usually has a deterministic character (since the locations of measurements are generally assumed to be
known).

Normally distributed random vectors. In the general application, in LSC one does not just have one ran-
dom variable, but an entire (ordered) set of “measurements”, forming a so-called random vector V := (Vi)
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(the underscore indicates multivariate items, i.e., vectors). Accordingly, an event of the random vector V
can be interpreted as a set of observations v = V (x,m) depending on a set x of locations and a set
m of states. Here, for the sake of simplicity, V shall be a vector in a finite-dimensional Euclidean space
(though, in principle, an interpretation of V as a random process regarding X would also be legit). Thus,
in the following, all items related to V shall also be understood as ordinary vectors resp. matrices in a Eu-
clidean sense. For LSC it is premised that V ∼ N (v̇,CV V ), i.e., V is normally distributed with expectation
v̇ = E (V ) and covariance CV V = CXV V + CMV V [+CXMV V + CMXV V ]. Here, square brackets are used to indi-
cate terms which are usually omitted in practice. CXV V is frequently called the signal (or error) covariance of
V X ,CMV V the (measurement) noise covariance of VM [and CXMV V the cross-covariance between signal and
noise].

Objective and prerequisites. Within the context of LSC (other than in LSA) it is assumed that CXV V , CMV V
[and the cross-covariance CXMV V = cov

(
V X , VM

)
] are known, and the expectation v̇ is only approximated for a

subset L ⊆ V through given observations l (xL,mL) ⊆ v, (xL ⊆ x are called observation points). Under these
conditions, the aim of LSC is defined by finding a statistically optimal (linear) estimate ŝ for the expectation ṡ
of a chosen (arbitrary) subset of the signal SX ⊆ V X under the premise of the given observations l. Note that
in this formulation both sets, the signal part LX of the observations as well as the signal part SX of estimates
are modeled to origin from the common signal V X , and, furthermore, LX and SX do not necessarily have to
be disjoint. This interpretation seems to be advantageous since dealing with parts of a common covariance
(matrix) is in our view easier than dealing with individual covariances (especially in the scope of covariance
propagation, e.g., Eq. 2.37).

LSC in terms of the least squares principle. Based on this setup, the LSC solution for ŝ is typically found by
minimizing the diagonal of the estimate’s covariance CŜŜ (called the minimum variance principle, see Moritz,
1980). However, since in this work it is intended to draw comparisons to LSA, a different approach is presented
which nonetheless results in the same final formulation for LSC. For this alternative derivation, to be compatible
with LSA, it is assumed in the following that the stated estimation problem could also be solved through classical
LSA (by means of the least squares principle, see Moritz, 1980). This requirement basically implies that a
relation of the form:

LX = AS
L S
X (2.28)

shall (at least theoretically) exist, meaning that the signal LX within the observations is linearly dependent on
the estimate’s signal SX . Be aware that this is a premise that does not exist in the classical derivation of LSC.
The impact of this assumption will be briefly discussed at the end of this section and in Sec. 2.3.3. Having
AS
L at hand, it is straightforward to derive the well-known formula for the least-squares solution (Eq. 2.29).

Although, in this formula AS
L is generally not explicitly known in the scope of LSC, it is possible to substitute the

a posteriori covariances CŜŜ resp. CŜL (by means of covariance propagation) so that all occurrences of AS
L

vanish, finally yielding the LSC estimator ÃL
S :

ŝ =

CŜŜ︷ ︸︸ ︷(
AS
L

′
C−1
LLAS

L

)−1

AS
L

′

︸ ︷︷ ︸
CŜL

C−1
LLl =

=CSLC−1
LLl = ÃS

Ll, with ÃS
L = CSLC−1

LL.

(2.29)
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Obviously, by having direct knowledge of the covariances CŜL and CLL the LSC estimate can be obtained in
the same way as the respective LSA estimate. While CLL := C (L,L) is known as per definition, CŜL must be
chosen appropriately. With the choice of CŜL one can explicitly steer the optimal covariances the estimate ŝ
shall have. Without loss of generality, in LSC one usually follows the definition CŜŜ := CXSS , meaning that one
defines the estimate’s optimal covariance CŜŜ to be the given a-priori signal covariance CXSS := CXV V (S, S)

(without the noise component). Using this definition, CŜL is obtained by:

CŜL := CSL = cov
(
SX , L = LX + LM

)
=

= cov
(
SX , L = LX

)
+ cov

(
SX , L = LM

)
= CXSL

[
+CXMSL

]
.

(2.30)

Thus, the adapted, but still most general, LSC estimate reads:

ŝ = ÃLS l =
(
CXSL

[
+CXMSL

]) (
CXLL + CMLL

[
+CXMLL +CMXLL

])−1
l. (2.31)

As indicated, in many applications it is assumed that the cross-covariances CXMV V are zero (i.e., that there is
no location-dependent measurement noise).

Difference to the minimum variance principle. Note that within this derivation neither l nor ŝ must neces-
sarily be centered, that is v̇ = 0, as it is the case in the classical derivation given by Moritz (1980). However,
since this derivation follows the same rules as LSA, also the same limitations apply, i.e., (1) AS

L must (at least
theoretically) exist and (2) CLL and AS

L
′
C−1
LLAS

L must be invertible. In other words, this means SX must be
unambiguously derivable from LX and vice versa, although a result might still be obtained by LSC even if this
is not the case (see also Sec. 2.3.3). As an example, predicting non-reduced gravity observations ŝ on a re-
gional scale may produce an unrealistic result when the long-wavelength components within l are almost linear
dependent and, hence, cannot be propagated correctly to the estimate ŝ. In case of gravity field modelling, this
can be especially problematic when performing up-/downward continuations or when changing the functional.
As such, the requirement of centered observations can be interpreted as equivalence to the requirement of an
invertibility of the forward model, while the latter is less restrictive in the sense that it does not forbid uncentered
random vectors a priori. As a counterexample, predicting unreduced gravity observations by LSC on a global
scale will most likely yield a good result even if the global mean in l does not vanish (and hence contradicts
the premise of centered random vectors). This is easily discernible by the fact that a corresponding LSA would
also succeed.

2.3.2 LSC with a-priori reduction

As highlighted in the previous section, signal parts within SX that are not recoverable from LX should be
avoided. This can be achieved by reducing such signal components using a-priori information before the col-
location and by restoring them afterwards (known as remove-compute-restore technique, RCR, see Forsberg
& Tscherning, 1981). To reuse the previous notation, V X can be reinterpreted as the reduction itself and VM

as the measurement to be reduced (see P-4). With this definition the reduced random vector ∆V is defined
by:

∆V = VM − V X (2.32)

It is assumed that realizations vX (called reductions) for all V X and realizations lM (called observations)
for all LM exist. Having ∆l instead of l, ∆ŝ instead of ŝ and CXV V as the error covariance (instead of the
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signal covariance), the estimator ÃL
S of the previous section remains basically unchanged (only difference:

the sign of CXMV V changes). Together with the restore step, the modified LSC equation, based on residuals,
reads:

∆ŝ = ÃL
S∆l→

ŝ = sX + ∆ŝ = sX + ÃL
S

(
lM − lX

) (2.33)

with

ÃL
S =

(
CXSL

[
−CXMSL

]) (
CXLL + CMLL

[
−CXMLL −CMXLL

])−1
. (2.34)

A respective rigorous covariance propagation yields the covariance for the restored estimate ŝ:

CŜŜ = CXSS − CŜLC−1
LLC′

ŜL
(2.35)

This formulation of LSC including a RCR procedure (short RCR-LSC) is widely used (Forsberg & Tscherning,
1981; Kühtreiber, 2002) as it allows to remove the non-recoverable signal parts, such that the remaining re-
solvable parts can be expressed sufficiently well by the implicit forward model within LSC. Of course, this is
only possible if appropriate a-priori information of the non-recoverable signal part is available. In gravity field
modelling this complementary information can be derived from satellite-based global gravity field models and
topographic models, respectively.

2.3.3 The covariance function

Covariance propagation. As shown above, LSC and LSA can be derived in a similar way and share the same
basic properties. However, they differ in obtaining the cross-covariance CŜL: while in LSA the a posteriori
covariances are calculated through the propagation of the a-priori covariances (i.e.,CLL), in LSC the a poste-
riori cross-covariances are assumed to be known. With this, the LSC approach holds the advantage that the
assumed knowledge circumvents possible instabilities in the calculation of CŜL and, hence, allows a solution
even if the estimates are linearly dependent. A further advantage is that the forward model AS

L (cf. Eq. 2.28)
does not have to be explicitly known. This can be helpful since in real-world scenarios the connection between
LX and SX is possibly only indirectly given over a (concealed) domain H, resulting in a linear relationship of
the form

(
LX

SX

)
=

(
AHL
AHS

)
H. (2.36)

In case the covariance information CHH to the random vector H is known, CXV V can easily be obtained by
covariance propagation:

CXV V = AHV CXHHAHV
′
. (2.37)

Accordingly, all covariances needed for LSC can be calculated without explicit knowledge of AS
L. This directly

implies an important difference to LSA which is that in LSC the result ŝi for one estimate is usually independent
of the choice of all other estimates s. This is obvious, as the calculation of CXV V (Eq. 2.37) and thus CXSL can
be performed element-wise, while the calculation of CŜL within LSA (Eq. 2.29) requires an adequate choice of
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a whole set of estimates s. In LSA, this adequate set s has to be chosen in such a way that the corresponding
forward model AS

L explains the actual observation l (see Eq. 2.28 where the problem of underfitting or overfitting
may be introduced). In LSC this requirement is generally substituted through the prior knowledge of CXV V
which is believed to already cover all available functional coherences. However, as explained in Sec. 2.3.1,
by using such a-priori covariances one may risk that LSC (in contrast to LSA) succeeds even when ŝ is not
unambiguously derivable by l according to the forward model, hence yielding unrealistic results which might
not be easy to uncover as such.

Homogeneous-isotropic covariances. In gravity field modelling, the domain H can be considered as the
spherical resp. spheroidal harmonic domain (with fH the set of spherical harmonic coefficients, being a
realization of H, see Sec. 2.1.2). In the classical application CXHH is modeled by so-called degree vari-
ances

Cn :=
∑

m

(
C2
nm + S2

nm

)
(2.38)

yielding a homogeneous-isotropic covariance function CT T (here in terms of potential values, that is, V X := T ,
see Sec. 2.1.3)

CT T (ψ, u) :=

˚
X

[
1

2π

ˆ
α=0

T (θ, λ, r) T (θ′, λ′, r′) dα

]
dX
/˚

X
dX

=
∑

n

un+1Pn (cosψ) Cn

≈ cov (T , T ′)

(2.39)

with

cosψ = cos θ cos θ′ + sin θ sin θ cos(λ′ − λ), sinα =
sin θ′ sin(λ′ − λ)

sinψ
, u :=

R2

rr′
(2.40)

in the domain X . In Eq. 2.39 the inner integral over α can be interpreted as the averaging operation over
all points which have a spherical distance ψ from the actual evaluation point. As such, the inner integral
establishes the isotropy property of the resulting covariance function. The outer volume integral over X , on the
other hand, averages over all locations and, thus, constitutes the homogeneity of C (ψ, u). As Eq. 2.39 shows,
using a homogeneous-isotropic covariance function can be interpreted as the attempt of deriving covariances
in an empirical manner from actual observations T (or from given models in terms of Cnm, Snm) by making
use of simplified assumptions (i.e., the homogeneity and isotropy). The proof of the relation given in Eq. 2.39
can be found, e.g., in Heiskanen & Moritz (1967) (without the r- resp. u-component). While in Eq. 2.39 the
covariance is modeled regarding potential values T , the covariance and cross-covariance of other gravity field
functionals can also be deduced from it by calculating the respective derivatives along the spatial coordinates
(in the same fashion as shown in Sec. 2.1.3, by means of Eq. 2.40). As an example, and since important for
the actual application presented in this work (for GRAV-D), the derivation of the covariance function in terms
of (spherical) gravity disturbances Cδgδg is shown. As highlighted Sec. 2.1.3, (spherical) gravity disturbances
δg are obtained through the radial derivative of the disturbing potential T , that is δg := ∂T /∂r. Consequently,
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the propagation of the resp. covariances Cδgδg ≈ cov (δg, δg′) requires the derivative of CT T along r and
r′:

Cδgδg (ψ, u) =
∂2CT T
∂r∂r′

=
∑

n

∂
(

=u︷︸︸︷
R2

rr′

)n+1

∂r∂r′
Pn (cosψ) Cn =

∑

n

1

R2

(R2

rr′

)n+2

Pn (cosψ) Cn =

=
∑

n

un+2

R2
Pn (cosψ) Cn =

u

R2
CT T .

(2.41)

While, as mentioned, C (ψ, u) can easily be modeled through given Stokes coefficients, there are also other
possibilities of deriving it when no fitting global model is given. For instance, one can use a simple parametric
model to design a fitting degree variance curve (as, e.g., done by Tscherning & Rapp, 1974). The method
presented in Sec. 4.3 can be considered similar, although more sophisticated. In modern approaches also
the full covariance information from global gravity field models is sometimes introduced (see P-4 or Pail et al.,
2010) which results in arbitrary covariance functions in X . A number of other methods exist which yield non-
homogeneous and non-isotropic covariance functions. However, since these methods will not be used within
this thesis the reader is referred to literature (see, e.g., Darbeheshti, 2009).
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Chapter 3

Gravity data reduction and validation

Within this chapter the workflow of gravity data reduction and validation is presented (cf. publication P-1).
Reducing gravity data means removing known parts of the gravity field from given observations to reduce their
variance, resulting in residual observations, i.e., the difference between measured and known gravity. Working
with residual gravity field observations is useful since nowadays certain parts of the gravity field signal are
already known sufficiently well through complementary sources. As an example, the long wavelength part of
the gravity signal is already determined very accurately on a global scale through SGGMs up to a wavelength
of about ≈100 km (≈d/o 200, see Kvas et al., 2019). The very short wavelength signal, on the other hand,
can be approximated to a certain degree by topographic forward models (Hirt et al., 2017). Because gravity
datasets are usually limited in their spatial and spectral resolution, using such complementary reductions is
imperative to prevent the introduction of aliasing errors in the final model. Thus, in a first step the SATOP
reduction model (Sec. 3.1) is introduced, which shall form the basis for all gravity data reductions in this thesis.
Since applying reductions pointwise on large scattered datasets is computationally expensive, the use of a
fast 3D synthesis approach based on interpolation (FSYNTH3D, see Sec. 3.2) is proposed. Based on the
acquired residuals (through subtraction of the reduction model) some validations of the gravity datasets can be
performed (e.g., inspecting the long-wavelength residuum or the overall variance of individual datasets). The
insights of this validation can then be used to identify outliers or remove unwanted offsets and/or other long-
wavelength signals (see Sec. 3.3) to obtain a validated and reduced gravity dataset as input for the subsequent
gridding (see Chap. 4).

3.1 The SATOP model

Outline. For a reduction model, to be suited as complementary gravity data and validation source, it is benefi-
cial to be (1) "as good as possible" and (2) "as independent as possible" of the gravity data to reduce. For the
reduction and validation of ground gravity data, this means that preexisting EGGMs drop out as possible can-
didates, since they already strongly rely on the ground gravity data itself (see ICGEM) and, hence, would not
be independent of it. Thus, an EGGM is needed that is not built upon ground gravity data. In theory, a SGGM
would be suited, but, due to its limited resolution it cannot be considered as "as good as possible". Therefore,
the only other gravity information available, beside SGGMs and EGGMs, is forward modelled gravity from to-
pography. So, an EGGM combining both, satellite information and forward modelled topographic information
would still be independent of ground gravity data and simultaneously would contain all complementary data
sources which are (globally) available. Hence, such a model would obviously meet both requirements stated
above. Such a model does not yet exist (at least not on ICGEM), and so, it has to be created from scratch.
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Since this reduction model will be a combination of (SA)tellite and (TOP)ography data it will be denoted as
the SATOP model henceforth. As starting point for the compilation of SATOPv2 (an updated version of the
original SATOP model as presented in P-1), the appropriate SGGM and topographic model on which the new
reduction model is based has to be chosen. For the satellite model, the latest GOCO version (GOCO06s, see
Kvas et al., 2019) is selected, as it the most recent static SGGM with the highest possible resolution, com-
bining satellite data from various missions. Additionally, the complete NEQS is available for GOCO06s, which
allows for a more rigorous combination with the topographic model. For the topographic model, also one of
the most recent ones, EARTH2014 (see Hirt & Rexer, 2015 and Rexer, 2017), is chosen since it includes the
newest global topography data and is available in the highest spectral resolution (d/o 5480). In a statistical
sense, the optimal combination of both models could be achieved when combining (stacking) the NEQSs (cf.
Eq. 2.21):

xS = (NS + NG)−1 (q
S

+ q
T

) (3.1)

with NS and NT as the normal equation matrix of the satellite resp. topographic model, and q
S

, q
T

the re-
spective right-hand sides of the NEQSs. However, for EARTH2014 no NEQS or other statistical information is
available, only the coefficients themselves. Hence, statistical information in form of degree error variances has
to be derived empirically by comparing the coefficients to another EGGM. In case of SATOPv2, EARTH2014 is
compared to XGM2019 for the estimation of the empirical degree error variances for EARTH2014. Having the
error information for each coefficient in form of degree error variances CT :=

(
CTn
)

(see Sec. 2.3.3), a simplified
(diagonal) NEQS for the topographic model can be obtained:

NT = diag(C−1
T ), q

T
= diag(C−1

T )xT (3.2)

where xT denotes the original coefficients of EARTH2014. Having this simplified NEQS, the combination as de-
scribed by Eq. 3.1 can be calculated since all items are now available. For additional details about the process-
ing and performance of SATOP (which is in principle identical to SATOPv2 except for the use of GOCO05s in-
stead of the more recent GOCO06s model) the reader is referred to the publication P-1.

Fig. 3.1 – Performance of the SATOP model in terms of
gravity anomalies (from P-1, regarding spheroidal harmon-
ics). Yellow: degree signal/amplitude. Blue: empirical er-
ror. Green: aggregated (cumulative) error from max. degree
downwards. Green: aggregated signal power. Blue box: ag-
gregated error within spectral bands. Orange box: signal re-
duction within spectral bands.

Performance. When inspecting the empirical degree
variances of SATOP, one can assess its performance
on a global average degree-wise (see Fig. 3.1). Sum-
ming up, SATOP globally reduces nearly 100% of
the gravity signal up to d/o 200 (≈100 km), with
a slight degradation over the poles due to the po-
lar gap in the GOCE satellite mission (see Kvas et
al., 2019). Above d/o 200, the signal reduction is
decreased to about 60% due to the uncertainties
in topographic forward modelling, with the largest
error contribution of about 6 mGal below d/o 720
(≈30 km). It shall be pointed out, that the whole pro-
cessing is performed in the spheroidal harmonic do-
main which holds the advantage to reduce the corre-
lations between coefficients of adjacent degrees (see
Jekeli, 1988), and thus supports the assumed diag-
onality of the topographic NEQS. Additionally, hav-
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ing spheroidal harmonic coefficients allows for the same reason the cutting-out of spectral bands without
introducing cut-off effects (near the spheroidal surface). This is advantagous, since the available grav-
ity data to reduce might have been already spectrally limited in a preceding processing step. Hence, in
order to properly reduce such datasets also a spectrally limited version of SATOP should be used (see
Sec. 3.2).

3.2 FSYNTH3D - A fast 3D synthesis method

Fig. 3.2 – Illustration of the essential parameters of the regu-
lar 3D geographic grid for the GRAV-D application.

Outline. The evaluation of the SH synthesis formula
(see Eq. 2.4) on scattered locations is computation-
ally expensive, especially for high-resolution EGGMs
such as SATOP, since it requires the seperate eval-
uation of Legendre polynomials for each location.
Hence, when having large scattered gravity datasets,
a faster method would be favorable for an efficient
calculation of the reduction values. Such a method
does not have to be as numerically accurate as the
rigorous synthesis, it is sufficient that the calculation
accuracy is well below the accuracy of the gravity
observations to reduce. For instance, when assum-
ing airborne gravity observations (as within GRAV-D)
with an estimated accuracy of 3 mGal, having reduction values with an accuracy of, e.g., below 1 mGal can
be considered sufficient. To achieve this, an interpolation approach from a regular 3D geographic grid is cho-
sen. The resolution of this regular grid has to be adapted according to the spectral content of the model to
represent. This can be achieved by considering the sampling theorem for spherical harmonics, which is in
conformity (at least as an upper bound) to the Nyquist-Shannon sampling theorem (see also Sec. 5.1) for the
Fourier transform: to avoid aliasing, one needs at least 2lmax + 1 sample points in longitudinal direction and
lmax + 1 sample points in latitudinal direction, where lmax denotes the maximum d/o of the EGGM. No theorem
exists for the sampling in the vertical direction. Hence, the sampling is chosen empirically by investigating the
maximum interpolation error. Further details on this matter can be found in publication P-1. After the 3D grid
has been defined, an appropriate interpolation method can be chosen according to the accuracy requirements
(e.g., linear, cubic, spline, etc.). It has been shown that the rigorous result can be approximated to a very high
degree (a few µGal) when using a sophisticated interpolation method (such as spline interpolation). However,
such a method is usually computationally more expensive (especially in terms of memory requirements) and
the high accuracy is not needed in the actual application. Thus, a simpler method like linear or cubic might
be preferrable since it has been shown that the accuracy requirements can still be met (see P-1). Since the
SATOP model may be split up into several spectral bands (cf. boxes in Fig. 3.1), also separate 3D grids may
be calculated according to them. This grants the possibility to reduce the SATOP model from the observations
exclusively within certain spectral bands, which may be useful for the validation/classification of the datasets
(see Sec. 3.3). However, since for n bands n 3D grids need to be stored, this technique is highly demanding
with respect to memory, which practically limits the number of bands.

Application. In preparation to future applications, the 3D grid for interpolation is chosen to have global cover-
age (although, for the GRAV-D test case a regional coverage would have been sufficient). The grid resolution
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is set to 1’ ( 2 km on equator) to safely cover the spectral content of the SATOP model, which at d/o 5480
corresponds to roughly 2’ resolution on the equator. The spacing in height direction is defined to be 200 m
starting from a negative (ellipsoidal) altitude of -1 km up until 12 km. The sampling value of 200 m is chosen
empirically to safely avoid aliasing. The selected altitude range shall cover all typical ground gravity measure-
ment sites (terrestrial and airborne). Noteworthy, to avoid fringe effects on the poles and the datum border,
the grid is extended beyond the poles/datum border for several values (to also allow higher-order interpolation
methods to work correctly). A visualization of the grid is given in Fig. 3.2. As a methodical novelty in the test
case (not yet contained in P-1), the grid values are based on (disturbing) potential values (instead of gravity
disturbances directly). The motivation for this modification is the fact that it is possible (without numerical prob-
lems) to derive the most important gravity field functionals (up to second derivative) by applying a numerical
differentiation to the interpolated values. Since the total global 3D grid size is rather large (≈700 GB in double
precision, for 6 bands), it is favorable to store only one functional from which all others can be derived. Thus,
the functional of the disturbing potential is the optimal candidate, since all other functionals just need to be
differentiated (not integrated) from it, which is a numerically stable operation (at least for low differentiation
orders).

Outlook and limitations. The 3D synthesis method has been proven to function without problems. The con-
stant evaluation quality over the entire interpolation area can be seen as the main advantage of this method.
This stands in contrast to the common alternative evaluation strategy in which Taylor-series expansion is used
for the height component (see, e.g., Hirt, 2012). There, the evaluation quality diminishes with increasing
distance to the expansion point (i.e., height). However, the proposed 3D interpolation approach has the dis-
advantage that the storage requirements are usually larger than for Taylor-series expansion. Further, the 3D
grid as presented here is not yet optimized for minimum storage: since Euclidean distances within geographic
grids are distorted towards the poles, the target resoltion of 2 km in longitudinal direction is just realized on
or near the equator for a 1’ spacing. With higher latitudes, the 1’ spacing represents smaller distances in lon-
gitudinal direction (due to the meridional convergence), and, hence, the spacing in latitudinal direction could
be increased in order to save storage. Theoretically, the storage requirements could be reduced to ∼63.7%
(2/π) when exploiting this circumstance optimally. Additional storage could be saved for 3D grids of lower
spectral bands because there the Nyquist spacing would be larger (according to the maximum d/o of the ap-
propriate band). However, considering different spacings for different latitudes (and different bands) strongly
increases the complexity of the implementation of such a method. Such a method would thus also be more
prone to programming errors, and so, it was decided to not consider it for the initial reference implementa-
tion.

3.3 Validation

Outline. By inspecting the residuals after subtracting the reduction model (e.g. SATOP) a cross-comparison
between the model and the observations is possible. Especially, when some properties of the model and/or
the observations are known, some conclusions can be drawn towards whether the residuals are reasonable
or not. If not, some further action may be required either to rectify the respective residuals or to exclude
them from further processing. Since the application scenarios may strongly vary (e.g., terrestrial vs. airborne
observations, mountains vs. plains, preprocessed vs. raw measurements), finding the most probable cause
for the discrepancies (and, thus, the optimal proceeding) can hardly be automatized, and, hence, has to be
figured out manually for each individual case. For certain preprocessed datasets, it may also be reasonable to
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investigate the reduction performance with respect to specific spectral bands since the data may have already
been spectrally limited beforehand. For such datasets, it may be unfavorable to reduce the whole spectrum of
the SATOP model, as the energy in the spectral bands which are not covered by the datasets is directly added
as error, and, thus, increases the overall variance (see P-1).

Application. In case of reducing the SATOP model, through knowledge of its performance (see Fig. 4.4b),
one may conclude that long wavelength patterns (> 100 km) in the residuals are most likely caused by the
observations, since SATOP should be very accurate in this range. This fact is especially helpful if one suspects
offsets or other large-scale errors in the datasets. For instance, one may apply an appropriate Gaussian
smoother to low-pass-filter the residuals to the frequency domain where SATOP is accurate in order to quantify
the dataset error in this lower spectrum. Ultimately, when an error is identified, it can directly be corrected by
subtracting the low-pass filtered residuals from the dataset (see, e.g., Fig. 3.3b). As an example, this strategy
is applied in the AntGrav project dataset-wise to rectify offsets and other long-wavelength effects in older
and already preprocessed datasets. For these preprocessed datasets reducing the lower bands of SATOP
has proven imparative (as mentioned above) since in some cases a low-pass filtering was obviously already
applied during the processing (cf. P-1).

In the actual GRAV-D test case, all observations are based on airborne gravity measurements, and thus,
the heterogeneity between datasets is not as prominent as it is in the AntGrav project (see P-1). Especially
offsets and drifts are already corrected in the preprocessing by comparing it to an EGGM (EGM2008 in this
case, see, e.g., GRAV-D Team, 2013). Hence, when inspecting the residuals in Fig. 3.3a and Fig. 3.3b, no
obvious long-wavelength differences are present. Nonetheless, even though the longer wavelengths seem
to be unproblematic in case of GRAV-D, larger differences can be identified on shorter scales. This is to be
expected when keeping in mind the performance of the SATOP model which strongly deteriorates above the
satellite resolution (∼100 km). However, it can be seen (Fig. 3.3a) that the deviations not evenly distributed in
space, meaning that there are regions with larger as well as smaller residuals. Also this circumstance is not
really surprising since the spatial variations may probably also be largely explained by the properties of the
topographic model contained in SATOP. Still, larger residuals may also indicate problems/errors in the specific
datasets. To explain some potential different reasons for locally larger residuals, three regions (A, B and C, see
Fig. 3.3a) are selected where differences are more prominent:

A This area south of Lake Superior, covering parts of the states of Minnesota, Wisconsin, Iowa and Ne-
braska (see Fig. 3.4a). Here, the topography is rather flat (<500 m). Thus, a direct error from the
topographic model due to improper density assumptions can be excluded. However, topographic models
do not account for density anomalies in the Earth’s interior. Due to the longer wavelengths of the resid-
uals (but also not too long, starting above satellite resolution) in this region, it is probable that they are
caused by some anomalous features in the crust. For the same reason (the longer wavelength charac-
ter), errors in the observations are also highly unlikely since the error would have to influence all flight
tracks systematically. Thus, the final conclusion for this region is that the residuals describe the actual
signal and can be used as they are given.

B In the southern part of Alaska a strong topographic signal is present due to the pronounced mountain
ranges (Alaska range, Saint Alias Mountains, see Fig. 3.4b). Those are fold mountains caused by several
faults in this area which are parts of the northernmost section of the pacific ring of fire. Thus, next to the
topographic signal itself, also a stronger signal from underground anomalies is to be expected here. In
the residuals, exactly this is discernible; similar as in area A, also here the signal is dominated by longer
wavelength features which can be attributed again to crustal anomalies which are not modelled by the
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(a)

(b)

Fig. 3.3 – Residuals between GRAV-D and SATOPv2. (a) Residuals, using SATOPv2 up to the max. resolution
(d/o 5480). Areas for further investigations are highlighted through red boxes. (b) Same residuals as in Fig. 3.3a but
low-pass filtered with a Gaussian smoother with a 150 km HWHM (half width at half maximum distance, cf. P-1 and
Fig. 4.12b).
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(a) (b) (c)

Fig. 3.4 – Three zones of investigation of the GRAV-D residuals (regarding SATOPv2, see also Fig. 3.3a). (a) Area
south of Lake Superior. (b) Area in the southern part of Alaska. (c) Coastal zone between Louisiana and Florida.

topographic model within SATOP. However, in contrast to area A, also some residual signals from the
direct topographic signal are to be expected here, mainly because varying densities in the topographic
model are neglected. Such residuals are expected to be of a more short-scale nature and partially
correlated to the topography itself. In fact, when closer inspecting Fig. 3.4b, one can see that also higher-
frequency signals are included in the residuals. Theoretically, it is also more likely that higher-frequency
signal is related to some errors in the datasets (since often only apparent in one track), but, since in this
case there is a physical explanation, this is not assumed here. Thus, also in this area the residuals can
be explained sufficiently well.

C Covering the coastal zones of Louisiana, Mississippi, Alabama and Florida, area C is located in an
exceptionally flat region (< 50 m elevation). However, when looking at the residuals (Fig. 3.4c), higher-
frequency signal is visible. In particular, three things are remarkable: firstly, in this region, one would
physically not expect so much short wavelength signal. Secondly, this signals show little correlations
between adjacent flight tracks. Thirdly, high frequency signal seems to be spatially confined to the central
part of the area. In fact, the suspicious region coincides with the GRAV-D datasets CS1 and CS8. Hence,
it seems obvious that there may be some problems with the mentioned datasets. However, at this point,
this is just a suspicion, and thus, the datasets are kept unchanged until the final validation (after the
collocation see Chap. 4).

Outlook and Limitations. In the scope of the complete processing chain, the validations done at this point
can be seen as preliminary. After the collocation of the data (see Sec. 4.6), more accurate assessments
which make use of the result of the collocation, are possible. However, the early validations at this stage
are still necessary to identify problems early on, especially those which would have a negative impact on the
collocation method such as the mentioned long-wavelength residuals or large outliers. The identification of the
latter is not explicitly discussed in this section, though such an identification method can easily be implemented
by defining some reasonable boundaries regarding the residuals. To reflect the findings of the validation of the
GRAV-D data, it can be summarized that (1) no long-wavelength residuals resp. offsets can be identified in the
datasets which would hamper the collocation, and (2) there might be some problems with the datasets CS1
and CS8.

Generally speaking, the validation based on a-priori residuals can be seen as just one kind of quality assess-
ment of observations which is, as an advantage, generically applicable, but, as a disadvantage, cannot account
for individual properties of certain observation types. For instance, the possibility for airborne observations to
acquire further quality indications by performing, e.g., a crossover analysis (see, e.g., GRAV-D Team, 2013) or
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time series analysis (see P-5 or Childers et al., 1999) should be mentioned. For other observation types other
dedicated analysis methods may exist, which makes it difficult to handle such validation techniques individually
at this stage. Hence, in the course of the processing chain it is assumed that such observation-related valida-
tions have already been performed beforehand as part of the data acquisition itself. In fact, for GRAV-D, some
data analysis is already performed for each data block during the processing of the raw measurements (see,
e.g., GRAV-D Team, 2015).



Chapter 4

Localized gravity field processing

At this stage of the processing it is assumed to have already reduced and validated gravity field observations
as input (see Chapter 3). For the reduced observations it is additionally assumed that especially the long-
wavelength part of the signal has been removed reliably. This is important since for the localized modelling
in this chapter it is necessary for the correlation between observations to also be local, i.e., spatially limited.
The aim of the localized processing is to estimate gravity field functionals based on the given observations
on predefined locations which are chosen to be optimal for a subsequent global modelling (e.g., on a regular
geographic or Gaussian grid). To accomplish this, the method of least squares collocation is used (cf. Sec. 2.3)
and improved to overcome several problems of the classical formulation in order to allow for an application on
a large scale or even globally in a realistic timeframe.

This improvements comprise as a first step an optimal spatial (2D) data thinning of the observations regard-
ing a specified target resolution based on the evaluation of local convex hulls (Sec. 4.1). This is important,
since the main computational effort can be attributed to the actual observation density. Subsequently, the
observation geometry is adjusted to correct the long wavelength pattern in the spherical covariance function
introduced by the Earth’s flattening (Sec. 4.2). Based on the rectified geometry, regionally adjusted degree
variances are estimated by using an empirical 2D covariance function as input for a non-linear regression
model (Sec. 4.3). Having optimally fitted empiricial degree variances, (homogeneous-isotropic) covariances
can be deduced, and, based on these, the collocation can be performed. To dramatically decrease the com-
putational requirements of the collocation, an optimized and automated partitioning approach is implemented
based on a 3D divide-and-conquer approach (Sec. 4.4). Eventually, to avoid drift-aways in the estimates and
to minimize fringe effects introduced by the partitioning, the kernel function is localized according to the de-
tected correlation length within the residual observations (Sec. 4.5). All mentioned improvements which will be
summarized in more detail throughout this chapter are collected to the so-called (P)artition-(E)nhanced-LSC
approach, which is also described in publication P-2. Instead of ’regional’ gravity field processing this chapter
is intentionally named ’localized’ gravity field processing to emphasize that, eventually, the improved methods
are not limited to a regional scale anymore, but instead are characterized by the need of a locally dominant
covariance function.

4.1 Optimal thinning of observations

Outline. Evaluating the formula for LSC (cf. Eq. 2.34) requires matrix multiplication and inversion (i.e.,
Cholesky factorization) which have a computational complexity tc (i.e., computing time) in the order of at least
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tc ∼ O
(
n3
obs

)
where nobs is the number of observations. Assuming a constant distance dobs between observa-

tions on a regular rectangular 2D grid with edge length d0, nobs can be approximated by

nobs ≈
aobs
d2
obs

= d2
0 ρ

2
obs (4.1)

where aobs denotes the covered area and ρobs := 1/dobs the (1D) observation density. Inserting Eq. 4.1 in the
formula for the computational complexity tc one finds:

tc ∼ O
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)
≈ O
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6
obs

)
(4.2)

Thus, one can see that the observation density ρobs is the driving factor for the complexity next to the extents
d0 of the collocation. Thus, when halving the observation density ρobs, the computation time can be reduced
by a factor (1/2)6 = 1/64. This means, that if the original collocation takes one hour, the collocation with the
halved density would finish in less than one minute, or, as another example, by increasing the observation
distance dobs by just 12%, the computation time can be halved. Hence, for an optimized calculation time of
the collocation, it is of utmost importance to not include more observations than necessary according to the
targeted spatial resp. spectral resolution. An appropriate thinning of the initial set of observations becomes
thus essential at this point.

Another critical reason for thinning the observations before the collocation is the fact that the spatial covari-
ances cXi := covX (Li, L) of the signal parts of two measurements LX1 (x1) and LX2 (x2) that are located too
close to each other, i.e., x1 ≈ x2, become nearly identical when using arbitrarily smooth location-dependent
covariance functions (see Secs. 2.3.1, 2.3.3):

lim
x1→x2

cov
(
LX1 , L

X ) := lim
x1→x2

covX (x1,xL) = covX (x2,x) ⇒ cX1 ≈ cX2 ⇔ x1 ≈ x2. (4.3)

This implies that the two rows resp. columns cX1 , cX2 of the covariance matrix CXLL are nearly colinear, which
deteriorates the numerical stability. Especially when in addition the measurment noise CM is low and, hence,
does not substantially contribute to the regularity of CLL = CXLL+CMLL (cf. Eqs. 2.31, 2.34) singularities in CXLL
are problematic since the needed inverse C−1

LL is not well defined. Thus, preventing observations that are too
close to each other through thinning does not only speed up the computation, but also increases the solution’s
numerical stability.

As the need for observation thinning is obvious, an appropriate method is required for this task. Before the
method itself can be defined, one has to assess what a ’good’ result should look like after the thinning. For this
matter, requirements can be determined that define ’good’ results:

(1) For any position in space, a good result shall not create gaps that have a larger distance to surrounding
observation points than a certain predefined distance dth.

(2) A good result should not shrink the overall area covered by observations.

(3) In a good result, points should be thinned out evenly, i.e., the thinning should preferably create equally
sized distances between adjacent observations.

While these requirements seem intuitive at a first glance, a lack of precision can be asserted after a closer
inspection. For instance, in requirement (1) the term gap is not defined. From a logical point of view, a gap
is an empty space that is surrounded by something, in this case observations. Crucial for this interpretation
is the term ’surrounded’, which implies that the empty space defining the gap must not be connected to the
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Fig. 4.1 – Illustration of the thinning algorithm’s operating principle based on local convex hulls for one evaluation point
(magenta, see Sec. 4.1). (a) Evaluation point inside local convex hull. (b) Evaluation point outside local convex hull.
(c) Evaluation point close to local convex hull.

’outer’ space, i.e., the empty space outside the coverage of the observations. A coverage in terms of a point
cloud can be understood mathematically intuitively as its convex hull, which can easily be obtained by, e.g.,
a Delaunay triangulation (see, e.g., Preparata & Shamos, 1985). Thus, when calculating a local convex hull
(i.e., a convex hull defined by the set of points which are within a radius of rmax regarding an evaluation point),
assertions can be made on whether the evaluation point is in a ’gap’ and whether the ’gap’ gets too large when
deleting it (cf. Fig. 4.1). When choosing rmax = dth/2 and:

• the evaluation point is not part of the local convex hull, the point can safely be deleted according to
requirement (1) and obviously also according to requirement (2) since the coverage, defined by the
convex hull, is not altered then (see Fig. 4.1a)

• the evaluation point is part of the local convex hull, the point cannot be deleted according to require-
ment (1) since the new gap would potentially become larger than dth (see Fig. 4.1b). In this case it is
also possible that the evaluation point is part of the global convex hull, and, hence, must not be deleted
according to requirement (2).

• the evaluation point is part of the local convex hull, but does not contribute notably to it, the point can also
be deleted (see Fig. 4.1c). This ’unsharpening’ is important for degenerated (1D) cases where points
would otherwise not be deleted when located nearly on a straight line (as it is the case, e.g., in along-
track direction in airborne gravimetry). As a measure for ’not contributing notably’, the distance ratio
q := dmin/dp of the closest distance to the convex hull dmin and the distance to the next point dp has to
be smaller than a predefined ratio qth, i.e., q < qth (cf. Fig. 4.1c)

• the evaluation point is very close to another point (within a distance rmin), the evaluation point is deleted
independently of the local convex hull to not endanger the numerical stability of the LSC.

Having this set of rules, an algorithm can be implemented which randomly inspects every observation point and
its neighborhood (up to a distance of rmax) according to the properties needed by the rules to judge whether
the point can be deleted or not. Such an algorithm can be seen as a so-called greedy algorithm, which
tries to locally delete as many observation points as possible without concern the global picture. This makes
the algorithm very efficient and, e.g., realizable through a divide-and-conquer approach. However, while an
algorithm of this form is able to fulfill requirements (1) and (2) (since they are based on local properties), it fails
on requirement (3) to thin out points preferably evenly. Establishing equally sized distances within the result is
problematic since it would require some sort of global optimization which would become computationally too
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complex to handle for large datasets. By using a workaround though, evenness can at least be approximated
by a local (i.e., greedy and, thus, efficient) approach. Specifically, it is possible to perform several iterations
of thinning by using different, increasing search radii rimax. In this way, initially only the closest points get
deleted and then, incrementally, also more distant ones. This avoids having too small and too large distances
in the thinned result. Using n iterations of the efficient greedy algorithm the computational complexity for this
approach is still manageable.

The algorithm can be additionally refined by considering datasets individually: for instance, one can choose
a smaller thinning distance dth for points of the same dataset than for points of distinct datasets. This leads
to intra-dataset thinning with subsequent inter-dataset thinning. The advantage of this approach is, that it
can often be assumed that observations of the same dataset have a higher correlation to each other, and,
thus, can be deleted more generously than observations of different datasets which are assumed to be more
independent of each other.

Fig. 4.2 – Illustration of the thinning result of the GRAV-D ob-
servations. Black: original observation points. Red circle:
Remaining observation points after thinning.

Application. As in nearly all airborne observa-
tion campaigns, also within GRAV-D the observa-
tion point density is highly anisotropic and aligned
in along-track direction where the spatial sampling is
much higher than in across-track. While the across-
track sampling (∼10 km) is chosen to reflect the
target resolution of the whole campaign, the along-
track sampling is defined by the sample frequency
of the instrument and the flight velocity of the air-
plane(s). Thus, the spatial along-track sampling may
also vary according to the used instruments and air-
crafts. Additionally, airborne observations show a
time-dependent correlation which is amplified by the
applied temporal (Guassian) low-pass filter needed
to reduce the high-frequency noise. In order not to
miss any information due to the thinning, it is decided
to stay well below the target sampling distance of 10
km and stick to dth =5 km. Going below a 5 km sampling is assumed to be unreasonable since (1) the applied
Gaussian low-pass filter to the observations prevents higher-frequency signal (and obviously noise) and (2)
the upward continuation of the gravity signal on mean flight altitude (∼6 km) also strongly attenuates shorter
wavelength signal (at least over plains). In the course of thinning airborne observations it seems reasonable
to mainly only thin out in along-track direction while trying to retain observations of different tracks, e.g., when
having cross-overs. To accomplish this, each flight track is interpreted as an individual dataset and a very small
(800m) inter-dataset thinning distance is used. This way, only very close cross-over observations get deleted
(to retain the regularity of CXLL). The GRAV-D thinning result of a small excerpt is shown in Fig. 4.2. It can be
seen that (1) the algorithm always retains edge points, i.e., points that are part of the convex hull, (2) thins out
evenly, and (3) keeps most adjacent points of different flight tracks.

Outlook and limitations. For the application to observations which show a two-dimensional distribution, the
presented method works as expected. Especially, when not only having airborne observations but a whole
collection of different datasets covering one area, the algorithm can demonstrate its strength by the distinc-
tion of intra- resp. inter-dataset thinning. However, there are also some limitations: for instance, as seen
in Fig. 4.2, through the iterative thinning it is possible that in the worst case the result contains gaps in the
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range of dth to dth/2 which contradicts the requirement (3) of an even distribution to some extent. This occurs
because sometimes an unfortunate subsampling was hit in the first iterations and propagates in such a way
that in the final iteration the distance dth/2 to the next observation is either scarcely exceeded or undershot.
Generally, the distance dth is always an upper bound for gaps for the algorithm and the resulting average gap
distance is statistically somewhere below dth near 3/4 dth. Consequently, if one is more interested to hit the
gap size dth, on average one should choose 4/3 dth as parameter for the thinning. Another current limitation
is the fact that the algorithm is just implemented for the two-dimensional case and not for an arbitrary three-
dimensional point distribution. Theoretically, the method of using local convex hulls can easily be extended
to the n-dimensional case. However, more dimensions mean more possibilities for degenerated convex hull
cases of which one would want to take care of in an actual implementation. This would increases the over-
all complexity of the algorithm. All in all, the presented algorithm is an attempt to solve the general thinning
problem, and has its limitations. For specific thinning problems such as thinning flight tracks dedicated meth-
ods may exists which may yield even better results while being much simpler at the same time (e.g., applying
a plain subsampling to the observation time series). However, the aim of this work is to present a generic
approach that covers as many applications as possible and not just a dedicated one for a limited number of
scenarios.

4.2 Handling the oblateness

Outline. In LSC, when using homogeneous-isotropic covariance functions derived from spherical degree vari-
ances, the homogeneity and isotropy is related to a spherical reference surface and does not hold for spheroidal
reference surfaces as it is the case for the Earth. For example, when calculating signal variances of gravity dis-
turbances δgi from a spherical homogeneous-isotropic covariance function (cf. Eq. 2.41)

var (δgi) := cov (δgi, δgi) := Cδgδg
(

Ψii = 0, uii =
R2

r2
i

)
= Cδgδg (ri) =

∑

n

1

R2

(
R2

r2
i

)n+2

Cn (4.4)

the obtained variance just depends on the geocentric radius ri of the evaluation point. Hence, when staying on
a sphere where ri = const. variances are homogeneous. However, when replacing the sphere with a spheroid,
then ri = r (θi), and, thus, the variance Cδgδg (θi) is dependent on the latitude and is not homogeneous any-
more. From a physical perspective though, it cannot be justified that the signal variance of the Earth’s gravity
field has a general dependency on the latitude. Hence, this effect can be interpreted as a purely methodical
deficiency when using spherical homogeneous-isotropic covariance functions. The mathematically correct way
of circumventing this effect would be to migrate to a spheroidal frame on the basis of spheroidal harmonics.
However, within spheroidal harmonics the height component gets much more difficult to handle and the use of
such spheroidal covariance functions is not common in geodesy. So, to preserve the commonly used spherical
formulation which also has the advantage of being easy to use (especially when deriving covariances resp.
cross-covariances to other functionals), another strategy must be applied to avoid the latitudinal dependency.
Since this effect is geometry related as explained, one could simply try to alter the geometry to again make
ri latitude-independent. This is possible through a spherical substitution of the spheroid, by defining modified
coordinates x̌i as:

x̌i =
(
R̄+ helli

)
ei , ei :=

xi
|xi|

. (4.5)
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Here, xi denotes the original (geocentric) coordinates of an evaluation point i, ei the normalized unit vector
in direction of xi and helli the ellipsoidal-geographic height. Through this modification, the ellipsoidal heights
are directly projected onto a sphere with reference radius R̄ which might be chosen, e.g., as mean geocentric
radius of the spheroidal surface in the collocation area. Considering the new geometry of observations that
lie within a sufficiently small perimeter, it is found that their relative distances remain widely preserved, since
locally, a spheroid (with small eccentricity) can always be closely approximated by an appropriate sphere.
The larger-scale deviations in the geometry through this modifications are of minor concern here since it is
assumed that correlations on larger distances can be neglected within the collocation when using reduced
gravity field items (see also Secs. 4.3, 4.5). Though, by introducing this modification, the u-coordinate of
the homogeneous-isotropic covariance function C (Ψ, u) is altered, and, thus, also the degree variances Cn
have to be computed using the modified geometry (see Sec. 4.3). A similar strategy is also applied in P-
4.

(a) (b)

Fig. 4.3 – A-priori signal energy (i.e., square root of the variance entries in CXll ) modelled by the estimated degree
variances (see Fig. 4.4). (a) Calculated using the unmodified geometry. (b) Calculated using the spherically modified
geometry.

Application. Since the extents of the GRAV-D dataset are large (continental scale) and cover about 50° in
latitudinal direction, the influence of the oblateness to the covariance function is substantial. This can be seen
when calculating the a-priori signal variances CXLL by means of Cδgδg (Eq. 2.41) for the GRAV-D observation
sites (Fig. 4.3, using the estimated degree variances from Sec. 4.3): when using the original geometry the
modeled signal energy (square root of variance) can become as large as 160 mGal in the northernmost areas
and as small as 3.6 mGal on the southernmost areas through the varying geocentric radii (Fig. 4.3a). Trying
to perform a collocation in those areas with the given covariance function would either result in a much too
rough result (in the north) or in a somewhat too smooth result in (in the south). In contrast, when using the
modified geometry, the estimated signal energy is everywhere in a close range from 6 to 9 mGal and reflects
mainly the flight altitudes within the specific blocks. It is expected that in this case the collocation yields a
desirable result (at least on average). Hence, it is seen that it is essential to apply this modification when
dealing with such large collocation areas when trying to use one single consistent homogeneous-isotropic
covariance function.

Comments. In the actual application, this ’workaround’ is working as expected and is able to efficiently re-
move the effect of oblateness in the covariance function. In fact, the degree variances related to the modified
geometry are closely related to spheroidal harmonics (see Sec. 2.1.2). To see this, one can assume that in a
simplified case the gravity field is evaluated on the spheroid, that is, helli = 0 and V X can be evaluated in terms
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of spheroidal harmonics by means of Eq. 2.6. Through comparison with the spherical case (Eqs. 2.4, 2.38,
2.39) it becomes obvious that homogeneous-isotropic (surface) covariances from spheroidal harmonics can
be derived in the same fashion as their spherical counterparts. The only difference is that the geocentric co-
latitude has to be substituted by the parametric co-latitude which, however, has only a very minor influence on
the spherical distance ψ between adjacent evaluation points. Eventually, this means that using spheroidal har-
monic homogeneous-isotropic covariances rigorously basically corresponds to using the spherical harmonic
ones with the modified geometry (at least on or near the spheroidal surface). Only when introducing a height
component the two cases would start to diverge. But also then, if a small eccentricity is assumed, the results
would have to be very close to each other for smaller heights since spherical harmonics are always the edge
case for spheroidal harmonics (when the eccentricity goes to 0). Only when the height values grow larger, the
similarity between the approaches and, thus, the validity of this ’workaround’ cannot be guaranteed anymore
(e.g., for satellite altitudes).

4.3 Derivation of the empirical covariance function

Outline. One of the central aspects when dealing with LSC is the adequate modelling of the signal covariance
CXV V . In many applications, CXV V is not provided a priori but has to be estimated empirically, e.g., through
the observations themselves. By doing so, it is often necessary to introduce simplifications due to the lack
of information (i.e., due to the limited number of observations available). In case of gravity field modelling
the most common simplification introduced is to assume homogeneity and isotropy within the covariances
which leads to a covariance function defined by degree variances. While the theory and some systematical
considerations about these covariance functions have already been discussed (Secs. 2.3.3, 4.2), it is still
uncertain how the needed degree variances Cn can be obtained. Theoretically, as mentioned in Sec. 2.3.3,
degree variances from a global model could be used. However, there are two limitations that come into play
then: firstly, degree variances from a global model always represent a global average which might not coin-
cide with the average over the collocation area. Secondly, because residual observations are used as input,
also residual degree variances have to be considered, and obtaining these from global models is not trivial
(theoretically, from model differences reflecting the model error, e.g., SATOPv2 - other GGM). Thus, an alter-
native, more empirical method for the determination of degree variances is sought that is able to reproduce
the correlations within the given residual observations. For this task, one usually tries to find a set of degree
variances that fits the one-dimensional empirical ψ-covariance function which depends only on the spherical
distance ψ only (as visualized in Fig. 4.4f). In literature, it is proposed to either adjust a fully analytical de-
gree variance model (e.g., see Tscherning & Rapp, 1974) or to somehow scale preexisting degree variances
accordingly (cf. P-4). The general problem here is that estimating degree variances directly from a given set
of empirical covariances is a highly instable/singular/non-linear task, especially when just using the mentioned
1D empirical ψ−covariance function. However, one usually has a second dimension available for breaking
down the empirical covariance function, namely the height dependent component u (cf. Eq. 2.39) which allows
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the derivation of a 2D ψ, u-covariance function and establishes a (pseudo) linear relation to degree variances
cH:

C(ik) := CT T (ψi, uk) =
∑

n

=:qn(ik)︷ ︸︸ ︷
un+1
k Pn (cosψi) Cn =

∑

n

qn(ik) Cn =
〈
q
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〉
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)
=
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. . . q

(nink)

)′
cH = QHT T cH.

(4.6)

Note that a (pseudo) linear relation of the form cT T = QHT T cH is not only available for the covariances of the dis-
turbing potential T but also for the (cross-)covariances of all other (linear) functionals f? of the gravity field (cf.
Secs. 2.1.3, 2.3.3). Thus, Eq. 4.6 can easily be extended to the general case, so that

c :=
(
c?i?k

)
=

=:QH︷ ︸︸ ︷(
QH?1?1

. . . QH?ni
?nk

)′
c = QH cH (4.7)

where QH?i?k
indicates the propagation matrix from degree variances cH to cross-covariances c?i?k

between
functionals f?i and f?k

. Theoretically, when having estimates for the covariances c ≈ CXLL this equation
system could be inverted to derive optimal degree variances cH by means of least squares adjustment (Sec.
2.2). However, the fact that degree variances cH are defined to be positive impedes this endeavor since it
basically destroys the linearity of the relation (hence, denoted as pseudo-linear). To circumvent the possibility
of estimating negative degree variances, it is proposed to use a mapping that prohibits negative values, e.g.,
into the logarithmic space, that is:

cH := exp (xH) ⇒ cH = QH exp (xH) (4.8)

with exp(. . . ) as the exponential function. Obviously, with this mapping xH can cover whole R while cH is
restricted to R+. Based on Eq. 4.8 an iterative least squares adjustment approach can be implemented to
estimate xH resp. cH. As mentioned, trying to use the functional model given by Eq. 4.8 directly usually
results in rank deficiencies or instabilities in the NEQS due to the nature of QH and the generally limited
number of covariance samples available (since observations are usually regionally limited). To avoid this, one
can use additional regularization techniques, such as demanding smoothness of the degree variance curve
(e.g. by using splines) or by limiting the slopes. More details on these issues can be found in publication
P-2. An additionally advantage when using 2D grids of empirical covariance functions is that the calculation of
actual covariances between observations, that is the calculation of the covariance matrix CXV V , can be vastly
accelerated. This is possible since the calculation can be reduced to a simple interpolation within the 2D
grid (e.g., c.f. Fig. 4.4c assuming a certain smoothness). This way, an explicit evaluation of Eq. 2.39, a
fairly time consuming task (due to the need of evaluating many Legendre polynomials for every point pair) , is
avoided. The respective procedure and the mathematical background for its application on, amongst others,
cross-covariance is explained in more detail in publication P-2.

Application - degree variance estimation for the GRAV-D dataset. For the GRAV-D observations, empirical
(homogeneous-isotropic) covariances based on gravity disturbances Cδgδg where estimated onto a discrete
ψi × uk grid which is obtained by binning ψ resp. u into classes [ψi, ψi+1[ resp. [uk, uk+1[. For ψ, a range
from ]0◦, 4◦] was chosen by using 400 bins, and, for u, 30 bins between ∼ [3.7 km, 11.3 km] in terms of the
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so-called equivalent height heq are used. heq is a vivid interpretation of u as the corresponding height in case
that both points reside on this height. It can be calculated by:

heq := R

(
1√
u
− 1

)
. (4.9)

The resulting covariances on the ψi × uk grid are shown in Fig. 4.4: while some disagreements are visible
in certain height bands, a relatively clear systematic pattern is discernible. Based on this grid, empirical de-
gree variances are estimated as previously explained. Concretely, the estimation was performed on a reduced
number of B-spline control points using smoothness and slope constraints (see publication P-2). The esti-
mated degree variances are depicted in Fig. 4.4b. From a first check, the estimated degree variances look
reasonable since they resemble basically the degree variances of the SATOP model (cf. Fig. 3.1). They can be
inspected more closely when applying Eq. 4.7 to calculate the estimated 2D covariance function (cf. Fig. 4.4c)
and inspecting the differences to the empirical covariance function (Fig. 4.4e): it can be seen that the overall
pattern is removed from the empirical covariance function. However, some larger areas with either a slightly
positive or negative trend remain. This can probably be attributed to the fact that it is simply not possible to
perfectly describe the vast area covered by the GRAV-D dataset by only one homogeneous-isotropic covari-
ance function, since the statistics may vary locally depending on, e.g., roughness of the terrain, underground
structures, flight altitude or speed. Nevertheless, it can be assumed that the obtained result shows the best fit
to an average observation in the area. Also, during the estimation, the sample number per bin (Fig. 4.4d) is
introduced as individual weight. Consequently, when inspecting the differences (Fig. 4.4e), it is evident that the
estimation fits best where the sample density is highest, and all larger disagreements are located where the co-
variance function is not well determined due to the low sample number (especially visible within certain height
bands). This behavior supports the assessment that the estimate is reliable and that the procedure is working
as expected. Summarizing the results, one can also inspect the aggregated (over the height component) 1D
visualization of the 2D grids (Fig. 4.4f) depending solely on the spherical distance ψ: in this representation the
strong agreement between empirical and estimated covariances is even more prominent as the differences
are basically zero. An interesting feature are the visible fine ripples in the empirical covariance function. They
are obviously induced by resonances with the spatial sampling distances of the GRAV-D observations since
the same ripples also occur in the number of samples per bin. This could indicate that the data includes
some artefacts (maybe induced by the filtering of the airborne observations) since theoretically the sample
number and the obtained covariance should be mostly uncorrelated (at least when the sample number is large
anyway).

Remarks and restrictions. In the actual example, the presented method using 2D covariance grids works
as expected and without problems. However, it cannot be stated that this will be the case for any given
scenario. Particularly, when the collocation area becomes smaller and all observations are close to each other,
the estimation problem gets more and more instable and one has to apply an even stronger regularization
to still obtain reasonable a result. This leads to another problem, namely that the presented method has
to be adjusted manually for each case, e.g., regarding reasonable parameters for the ψi × uk grid and the
design of the whole regularization. Up until now, finding the right setup can be considered as an iterative
trial-and-error procedure and a fundamental improvement of this situation is not yet in view. Moreover, and
this is a general shortcoming, the use of degree variances themselves for modelling spatial covariances has
its limits as seen, e.g., in the differences between the empirical and estimated covariance function (Fig. 4.4e),
where some remaining systematics are obvious. As already previously mentioned, this can probably be mainly
attributed to the assumed homogeneity (and, thus, also isotropy) which, on a large scale, cannot hold true.
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(a)
(b)

(c) (d)

(e) (f)

Fig. 4.4 – Empirical homogeneous-isotropic covariance function and derived estimates. (a) 2D empirical
homogeneous-isotropic covariance function in terms of gravity disturbances regarding the spherical distance ψ and
the equivalent height heq (see Eq. 4.9). (b) Estimated degree amplitudes (i.e., square root of degree variances) up
to d/o 5400 in terms of gravity disturbances (blue line) and cumulative amplitudes (from right, red line). B-spline con-
trol points used for the estimation are depicted through vertical black lines. (c) 2D covariance function (cf. Fig. 4.4)
derived from the estimated degree variances (Fig. 4.4b). (d) Number of samples per bin for the calculation of the
empirical covariance function (Fig. 4.4). (e) Difference between empirical covariance function (Fig. 4.4) and estimated
covariance function (Fig. 4.4c). (f) aggregated 1D view on the covariances depending only on the spherical distance ψ
obtained by a weighted average (weighted by number of samples, see Fig. 4.4d). Black: empirical covariance function
(cf. Fig. 4.4). Red: estimated covariances function (cf. Fig. 4.4c). Blue: difference between empirical and estimated
covariance function (cf. Fig. 4.4e). Magenta: number of samples per spherical distance class (cf. Fig. 4.4d).
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There exist several theories to introduce non-homogeneous covariance functions which are comprehensivly
described, e.g., by Darbeheshti (2009). Though, even if such methods exist, there is also an inherent limitation
that probably prevents an actual implementation of those theories: when allowing inhomogeneity, one also
always introduces a new ’dimension’ (or more precisely, two dimensions on the sphere) of parameters which
are needed to characterize the local variations. Since those parameters must be additionally estimated from
the data, such an estimation would become highly instable (when not assuming a very dense observation
coverage) and an ’overfit’ is very likely to happen. In fact, when fitting the covariance perfectly to the actual
observations, no real advantages from the LSC (working as a filter) can be expected. Thus, due to the lack
of better knowledge of the actual covariances (and to prevent overfitting), there is, at least as of now, no real
alternative to using degree variances. A possible option to circumvent this deficiency by an iterative procedure
will be discussed briefly in Sec. 4.6.

4.4 Automated partitioning

Fig. 4.5 – Comparison between the classical LSC/LSA ap-
proach and the partitioned LSC method when assuming a
constant linear observation density of ρobs = 1 obs./4 km and
a partitioning parameter r = d = 2.5 (from P-2). Computation
times are scaled according to the single-core performance of
an Intel Skylake-SP processor with AVX512 enabled. Solid
blue: Computation time of the partitioned LSC method de-
pending on the number of input points (left axis). Dashed
blue: computation time of the classical LSC/LSA approach
without partitioning (left axis). Solid orange: memory require-
ments (RAM) when using partitioning (right axis). Dotted or-
ange: memory requirements without partitioning (right axis).
Dashed green: memory limit (horizontal line) of a workstation
PC with 128 GB RAM and the respective maximum colloca-
tion size (unpartitioned). Dotted green: Same for an HPC
system with 256 TB of RAM.

Outline. From a computational perspective, the
method of LSC as described in Sec. 2.3 has the
same complexity as least squares adjustment. This
can be seen, e.g., through Eq. 2.29 where both meth-
ods basically require a matrix multiplication and a
matrix inversion. As already mentioned in Sec. 4.1,
both of these operations have a complexity in the
order of O(n3) in terms of the estimates resp. ob-
servations, and, so, also the overall complexity of
the methods is in the same order. A complexity
or computation time of tc ∼ O(n3

obs) implies that
one is usually strongly limited regarding the num-
ber nobs of observations that can be used as in-
put for the collocation (cf. Fig. 4.5). Also the
memory requirements in the order O(n2) for keep-
ing fully occupied matrices in the working memory
usually poses a hard limit. For instance, assum-
ing a workstation with 128 GB memory (RAM), a
square matrix with a dimension of maximum 130.000
can practically be processed (e.g., inverted, see
Fig. 4.5). As already pointed out in Sec. 4.1, as-
suming a constant observation density ρobs = const.,
the number of observations increases linearly with
respect to the collocation area or quadratically re-
garding the edge length d0 (assuming a square
area):

tc ≈ k0 n
3
obs =

=:k︷ ︸︸ ︷
k0 ρ

6
obs d

6
0. (4.10)
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Here, k0 describes some (unknown) scaling factor accounting for the actual performance of the calculation.
Since the computation time tc increases with the power of 6 regarding the extents d0 of the area to collocate,
at the time of writing, the classical LSC approach is always limited to a local or limited regional extent and can-
not be applied in this way on larger areas (e.g., continental scale or even global). According to Eq. 4.10, the
only way to reduce the computation time is to somehow decrease d0 which, obviously, is not possible without
introducing some assumptions resp. simplifications. In the actual framework, when using residuals, it seems
legit to assume a certain localized correlation of an observation to its surrounding since longer-wavelength
correlations should be compensated by the reduction model (more specific, by the precise satellite data within
the reduction model). An inspection of the previously derived empirical covariances (see Sec. 4.3 and Fig. 4.4f)
should support this assumption, where covariances should converge towards zero with an increasing spher-
ical distance ψ. Exploiting this simplification justifies the estimation of collocated values by just considering
observations within a certain distance to the evaluation point. As a consequence, it is possible to partition the
collocation area accordingly into smaller independent parts by ensuring that a minimum surrounding, specified
by a radius r, is included for every evaluation point (similar as proposed by Reguzzoni et al., 2009). This
can be guaranteed by adding a buffer with radius r to every partition (of evaluation points, see Fig. 4.6a).
For the determination of the arising complexity, in a simplyfied case it is assumed that the square area with
edge length d0 is partitioned into equally sized smaller squares with edge length d, which leads to a number
of

m ≈
(
d0

d

)2

(4.11)

(assumed identical) partitions. Since for every evaluation partition an extended observation partition with edge
length de = d + 2r has to be considered, the new overall computation time tcp, using partitioning can be
approximated by substituting d0 by de in Eq. 4.10 and multiplying the result by m (because the same effort for
every partition is assumed):

tcp ≈ mk d6
e =

(
d0

d

)2

k (d+ 2r)6 =

=:k̄︷︸︸︷
k d2

0

(d+ 2r)6

d2
= k̄

(d+ 2r)6

d2
. (4.12)

Since in this equation the partition edge length d is not yet predefined, it can be chosen in such a way
that the expression tcp = tcp(d) becomes minimal. By setting the derivative to zero one finds that the
minimum is found when d = r (see publication P-2) and so the optimized computation time tcpo be-
comes:

tcpo ≈ k d2
036 r4 ⇒ tcpo

tc
=
k d2

0 36 r4

k d6
0

= 9

(
3r

d0

)4

, (4.13)

with tcpo/tc as the computation time reduction when applying partitioning. It is seen that (1) the complexity
becomes linear regarding the collocation area d2

0, and that (2) the computation time reduction is strongly depen-
dent on the chosen buffer width r and, thus, r should be chosen as small as possible. Fig. 4.5 shows a compar-
ison between the classical and partitioned approach regarding runtime and memory requirements by means
of a realistic scenario (taken from publication P-2). As conclusion it can be stated that through the partitioning
(1) the memory requirements usually become unproblematic, and (2) even a collocation on a global scale be-
comes feasible. As already pointed out, the optimal choice of r depends on the actual correlation length of the
observations/residuals and will be discussed further in Sec. 4.5.
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(a) (b)

Fig. 4.6 – (a) Simplified (2D) visualization of the partitioning approach. Hatched blue area: core area of one partition
where evaluation points may be located in (simplified as 2D square area with edge length d). Hatched orange area:
extended partition wherein observations are sought for the evaluation points in the inner partition. The inner partition
is extended with a buffer of width r in every direction to ensure a minimum surrounding of radius r around each
evaluation point. Hatched green area: a neighboring partition that overlaps the actual partition through its buffer
(indicated with dashed green line). (b) Blue bars: Frequency distribution of the partition sizes (in terms of number
of observations per partition) created by the automated partitioning algorithm for the GRAV-D dataset (see Fig. 4.7).
Red bars: Relative aggregate computation time for all partitions in the respective partition size bins.

Implementation - Application. The presented idea of partitioning enables the needed speed-up to perform
a large-scale collocation (as in case of GRAV-D) within a realistic timespan and with reasonable computa-
tional resources. However, to be eventually applicable on a large scale an automated partitioning approach
is needed, since for large areas the number of required partitions and consequently, the effort to set them up
manually, increases. Especially if some areas feature a high observation density, individual treatment may be
needed to ensure to stay, e.g., within the memory limit of the system. A simple but efficient approach that ac-
complishes the partitioning is found in a 3D divide-and-conquer algorithm. The idea behind it is to recursively
divide the collocation area along the coordinate plane with the largest extent until a certain maximum partition
size falls below a certain threshold or until the number of points per (extended) partition is small enough. With
this procedure, also the mentioned special treatment of areas with high observation densities can be handled
easily. The algorithm operates based on 3D geocentric coordinates, which holds the advantage of functioning
without projections, and not being affected by distortions and all the difficulties connected with it. For collo-
cating the GRAV-D dataset, the resulting partitioning (without buffers) is depicted in Fig. 4.7a. The different
partition forms arise through the intersection of the 3D partitions with the Earth’s surface as shown in Fig. 4.7b.
As already mentioned, it can be recognized that the algorithm adjusts the partition size depending on the point
density in the respective areas to keep the memory limits. This is also seen when inspecting the statistics of the
partitioning in terms of a frequency distribution regarding the number of observations per partition (Fig. 4.6b).
For the used computing system, the memory limit for CLL was set to 20GB, and it is seen that also the largest
partitions are limited to this size (∼50k elements). The peak at 50k elements in the frequency distribution
shows that probably some partitions where further divided to keep this limit (by sacrificing the optimality in
the sense of the ideal partition size). All in all, for GRAV-D, the algorithm produces 360 (non-empty) parti-
tions (when using d = r = 4◦, see Sec. 4.5). The computation time for the least squares collocation of these
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(a)

(b)

Fig. 4.7 – Result of the automated partitioning of the GRAV-D collocation area when using r = d = 4◦ ≈ 900 km.
(a) intersections of the 3D partitions with the Earth’s surface (magenta lines, approximated through a spheroid). (b)
Same intersections (magenta lines) but with the 3D partitions (yellow lines) and observations visualized.
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360 partitions constitutes about 1.5 days on a workstation with 28 cores (on an Intel Haswell architecture). In
the example of GRAV-D, the gain in terms of computation time through the partitioning can be quantified by
a factor of ∼7 (days instead of weeks), and more importantly in terms of memory requirements by a factor
of ∼60 (20GB instead of 1.2TB). In Fig. 4.6b it can also be seen that about 60% of the computation time is
needed for the partitions containing more than 45k observations. This shows once again (as already derived
in Eq. 4.2 and Eq. 4.12) the need to reduce the partition size as much as possible which can either be done by
(1) thinning out more observations (cf. Sec. 4.1) or (2) reducing the needed buffer radius r (which is possible,
e.g., when having a better reduction model, see Sec. 4.5).

4.5 Localizing the collocation kernel

Fig. 4.8 – The (spherical) distance dependent attenuation
function wG (Eq. 4.14) for ψmax = 1 and different values for
the sharpness p.

Outline. The partitioning as applied in Sec. 4.4 as-
sumes that the collocations within the different parti-
tions can be performed independently of each other.
Obviously, this assumption is in general not valid
since the LSC estimator (i.e., kernel) ÃS

L = CSLC−1
LL

(see Eq. 2.29) requires matrix inversion of CLL which
correlates all observations to a certain extent. How-
ever, from the perspective of the covariance func-
tion which generates CLL (see Sec. 4.3, Fig. 4.4f)
there is a certain decorrelation with the spherical dis-
tance ψ discernible when assuming previously re-
duced observations. Beyond a certain distance r ≈
2 sin(ψmax/2) in most cases it can be expected that
no significant correlation between observations re-
mains (when having applied a reduction model with
good performance in the long wavelengths). Under
this assumption it is counterintuitive that a distant observation can have a significant influence on a local es-
timate. However, it has been shown that this can be the case when an estimate has no observations in its
surroundings. Then, the spatial structure of the estimator expands and includes a much wider area (which is
comprehensible since no local observations are available to support the estimate). This behavior is generally
undesirable when trying to retain a local influence of observations to the estimates since through the limited
buffer width of the partitioning in this case one would still omit a certain number of non-zero elements in the orig-
inal estimator. To prevent this, it is proposed to limit this influence by applying a distance dependent weighting to
the estimator to forbid non-zero elements beyond the buffer width r (e.g., c.f. Fig. 4.6a). As pointed out in more
detail in publication P-2 several weighting functions might be suitable for this task. In the actual implementation
though, it is decided to use a slightly modified Gaussian bell function wG(ψik) since it is (1) smooth and (2)
shows a relatively sharp transition at a specified spherical distance ψmax:

wGik = wG(ψik) := exp

(
−
(

1− cosψik
1− cosψmax

)p)
. (4.14)

The parameter p can be used to control the sharpness of the transition. A higher value corresponds to a
sharper transition (see Fig. 4.8). As default a value of p = 2 is chosen which represents a good compromise
between smoothness and an adequate attenuation. Applying this attenuation function to the elements ãik of
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the estimator ÃS
L the elements ǎik of the modified estimator ǍS

L can simply be obtained by an element-wise
multiplication:

ǎik = wGik ãik. (4.15)

Eventually, this modification has the effect of tieing estimates in far-off locations (i.e., locations with no observa-
tions in their neighborhood) towards zero, which only demands a very small sacrifice in terms of optimality while
widely reducing the possibility of fringe effects between different partitions. On the other hand, in locations with
close-by observations, the modification should have no influence at all due to the already local structure of the
original estimator there. To quantify the possible difference between original and modified estimator a kernel
disparity measure ∆ker

i is defined by:

∆ker
i =

√∑
k (ãik − ǎik)

2

∑
k ã

2
ik

. (4.16)

This measure ∆ker
i is normalized in such a way that it becomes 0 when the modified kernel equals the original,

and 1 if there is no similarity at all between original and modified kernel.

Application. Before the kernel localization can be applied to the GRAV-D collocation, an appropriate spherical
transition distance ψmax has to be chosen as parameter for the attenuation function. The choice of this distance
should depend on the applied covariance function (which is taken as a hint of how the actual estimator may
behave). As a rule of thumb, ψmax should be large enough to preserve the main features of the covariance
function. In case of the reduced GRAV-D observations, ψmax = 2◦ is chosen which is located near the second
minimum of the covariance function (see Fig. 4.9a). Having fixed the value for ψmax, also the maximum
(spherical) distance can be derived beyond which the localized estimator can be assumed to be zero. For
small values for ψmax (e.g., below 5◦) it has been shown that a value of 5/3ψmax is a good compromise
since the attenuation at this distance is already larger than 99.95% (cf. Fig. 4.9a). Thus, in accordance
with Sec. 4.4, a value of 5/3ψmax might also be a good choice for a minimal acceptable buffer distance r

in this case. However, in the actual GRAV-D case, a buffer distance of r = 4◦ is chosen for the partitioning
instead, since the computational limits were uncritical and, furthermore, an even higher consistency between
partitions can be expected from a larger buffer distance (see P-2 for comparisons between different buffer
widths).

To present the influence of the kernel localization to the estimates, a smaller region of the GRAV-D collocation
area is chosen (same region as in Fig. 4.2 located between Michigan, Indiana and Ohio). This region was
chosen because it contains area with and without observation coverage. As previously pointed out, the local-
ization has quite a different behavior in the respective cases. To demonstrate this, the estimator is explicitly
examined in two sample locations, one positioned in the area covered with observations (point A, see Fig. 4.9b)
and the other one located in the observation-free area (point B, see Fig. 4.9c). While the estimator for point
A remains widely unchanged through the localization (∆ker

A = 0.0004%) the estimator for point B is strongly
modified (∆ker

B = 40%). This can also be seen when comparing Fig. 4.9c and Fig. 4.9d: in the localized case
(Fig. 4.9d) all components beyond the buffer distance r are widely suppressed, while in the original case they
reach far beyond the buffer width r. Eventually, this non-suppressed components make the occurrence of
fringe effects between partitions very likely, as shown, e.g., in Figs. 4.10d, 4.10e at longitude ∼89° W where a
partition boundary is located. The influence of the kernel localization is presented in a more complete picture
in Fig. 4.9e when inspecting the kernel disparity ∆ker as defined by Eq. 4.16: it is evident that the estimates
are preserved to a very high degree in all locations close to existing observations and just differ in areas with-
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out observations. Although this kernel disparity measure is still independent of the actual observations, it is
a good indicator of where the actual estimates will differ from each other. This is confirmed by inspecting the
difference of the estimates obtained through the localized and the original kernel (Fig. 4.10d). Here, larger
differences only occur where the kernel disparity is high, i.e., in locations without observation coverage. There,
the localization has the effect to constrain the estimates towards zero (if no observations lie within a spherical
distance of r around the evaluation point the estimate becomes effectively zero, see Fig. 4.10f). Even though
this tie implies larger differences to the original solution, the formal error as obtained through covariance prop-
agation using ǍS

L increases only slightly. This is seen when examining the increase of the formal error in
the modified solution (since the original LSC estimator minimizes the formal error any, modification to it must
actually lead to an increase of the formal error, see Figs. 4.10b and 4.10c): although in the observation-free
areas the formal error increases the most, the increase is still everywhere below 2% of the original error (or
less than ∼100 µGal in total). This sacrifice of optimality is seen as uncritical in the actual application where
observations are assumed to have an accuracy of about 3 mGal.

Limitations and discussion. As empirically shown for the GRAV-D collocation, the kernel localization effec-
tively reduces fringe effects (e.g., compare Figs. 4.10e and 4.10f). However, this statement cannot be easily
extended to the general case, because the behavior of the covariance function depends on (1) the quality of
the measurements resp. reduction model, and (2) on the given functionals (e.g., gravity disturbances, potential
values, gravity gradients, etc.). If the assumed locality of the covariance function is disturbed for some reason,
the correct behavior of this method cannot be assumed anymore. This means that the localization may yield
suboptimal results. For a general application the potentially variable behavior of the covariance function has
to be taken into account, which means that it may be neccesary to apply different localizations (e.g., through
different attenuation functions) depending on the actual case. For instance, when estimating potential values
from gravity disturbances, a wider attenuation function may be neccesary than when estimating gravity gradi-
ents from gravity disturbances (due to the different eigenvalues present in the construction of the covariance
functions). As of now, such an individual treatment of the localization is not implemented simply because it was
not really necessary for the application cases (GRAV-D and publication P-2). Additionally, one further limitation
of the current implementation is that the applied attenuation function is only dependent on the spherical dis-
tance and not on the height component (cf. Sec. 4.3). Further improvements (even if they are not significant)
may be achieved when considering a 2D attenuation function. Due to the attenuation of shorter wavelengths
with higher altitudes it is generally expected that the (spherical distance dependent) attenuation function needs
to get wider (i.e., ψmax should be increased, see Eq. 4.14). Eventually, it should be noted that even when ap-
plying the localization perfectly, it cannot be guaranteed that fringe effects between partitions are fully avoided.
This is apparent since in different partitions different covariance matrices CLL containing different observations
are inverted. Since the result of the inversion generally depends on all elements of the matrix (that is, all ob-
servations), inverted covariance matrices may fundamentally differ from each other even if just one element
(observation) is altered. Nonetheless, a certain insensitivity regarding far-off observations is expected when
inverting covariance matrices from locally dominated covariance functions (see publication P-2 for a more
detailed treatment of this topic). Ideally, one could calculate every estimate independently by regarding its indi-
vidual surrounding which would introduce the need to invert the respective covariance matrix for every estimate
individually. By doing so, fringe effects could be completely avoided since no partitions would exist then in the
first place. However, as pointed out in Sec. 4.4, by doing so, the optimal computation time would be missed
by a significant margin (cf. Eq. 4.12 by setting d = 0) since an explicit matrix inversion would be necessary for
every single estimate. Hence, this idea has a purely theoretic character.
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(a)
(b)

(c) (d)

(e) (f)

Fig. 4.9 – Influence of the kernel localization on the LSC solution. (a) The exemplary influence of the attenuation
function wG to the covariance function (cf. Eq. 4.14 and Figs. 4.4f, 4.8). Blue: original covariance function. Orange:
attenuated covariance function. Green: attenuation function. Dashed black: spherical distance psimax as parameter
for the attenuation function. Red: optimal buffer distance r chosen as r = 5/3ψmax (cf. Sec. 4.4). (b) The estimator
visualized for one sample point (marked as green dot) located in an area covered by observations (point A). The
distances psimax and r are again visualized as dashed black resp. red circles (as in Fig. 4.9a). In this case, the original
estimator and the attenuated one cannot be distinguished since the kernel disparity in this point is ∆ker

A = 0.0004%. (c)
The original estimator for a sample point located in area without observations (point B). (d) The attenuated estimator for
point B (∆ker

B = 40%). (e) The kernel disparity measure as defined by Eq. 4.16 visualized for every point (logarithmic
scale). (f) The difference in the solutions (attenuated-original) caused by the kernel localization.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.10 – Influence of the kernel localization on the formal error of the LSC solution. (a) The formal error (cf. Eq. 2.35,
i.e., square root of diagonal) obtained by the original kernel. (b) Increase of the formal error due to the modification
of the estimator. (c) Relative increase of the formal error regarding the original formal error (Fig. 4.10a). (d) Relative
solution difference (attenuated-original, cf. Fig. 4.10d) regarding the original formal error (Fig. 4.10a). (e) LSC solution
using the original kernel. (f) LSC solution using the localized kernel.
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4.6 PE-LSC results and validation

Outline. With the modifications presented in the previous sections, it is now possible to apply the PE-LSC
method to the available (reduced) observations ∆l to collocate them onto the specified target grid. However,
through the collocation it is not only possible to estimate the target grid, but also to calculate estimates on the lo-
cations of the observations (using the observation’s functionals). In this way it is possible to use the collocation
as a filter to derive filtered observations ∆l̂. Assuming the validity of the covariance function, the filtered obser-
vations ∆l̂ represent an optimal estimate for the observation’s signal ∆lX (without the noise component lM).
Having the original observations ∆l and the estimates for the signal ∆l̂

X
also the estimated observation’s noise

resp. error ∆l̂
M

can be deduced by using the relation given by Eq. 2.27:

∆l̂
M

= ∆l −∆l̂
X

= ∆l − CXLL
(
CXLL + CMLL

)−1
∆l =

(
I− CXLL

(
CXLL + CMLL

)−1
)

∆l. (4.17)

By inspecting the estimated observations’ error ∆l̂
M

and by comparing it to the assumed error specified by
CMLL one can deduce whether the estimated noise is realistic or not. This can be achieved, e.g., by com-

paring the estimated error ∆l̂
M

to the formal error ∆σML =
√

diag
(
CMLL

)
; if an estimated error ∆l̂Mi is k

times larger than its expected (formal) error σMi , the respective observation can be classified as suspicious
(i.e., as outlier) since the probability that this occurs according to the assumed (centered) normal distribution
(characterized by σMi ) grows smaller and smaller with increasing k. As an example, when choosing 3σMi
as threshold for the outlier detection there is only a probability of ∼ 0.27% that this deviation is regular (in the
sense of the normal distribution). When further increasing the threshold to 4σMi this probability drops further to
0.0063%. To directly compare observation errors to their expected error the normalized error ∆l̀Mi is introduced
as

∆l̀Mi =
∆l̂Mi
σMi

. (4.18)

When inspecting ∆l̀Mi , outliers are easily identifiable, since ∆l̀Mi can be compared directly to the σ-factor k.
To identify outliers safely, choosing k ≈ 4 may be reasonable according to the probabilities given above. An
observation li is then defined as outlier if ∆l̀Mi > k.

Usually, an initial (a priori) observation noise CMLL is provided when performing the collocation. Mostly, this
observation noise is assumed to be uncorrelated and the variances are chosen according to the specified
instrument accuracies σ0

i (that is CMLL is diagonal with (σ0
i )2 as diagonal entries). While this noise assessment

might be sufficient for a first iteration, having now ∆l̂
M

it is possible to calculate a better suited data-driven
estimate for the standard deviation σ0

i , denoted now with σei , which can be acquired through local averaging
(e.g., by using a Gaussian kernel):

σei =

√√√√
∑
k w

G
ik

(
∆l̂Mk

)2

∑
k w

G
ik

, wGik := exp

(
− 1− cosψik

2(1− cosψ0)

)
. (4.19)

With ψ0 one can adjust the (spherical) width (i.e, sigma) of the Gaussian averaging kernel. The derived em-
pirical standard deviation σe describes a local estimate for the misfit between the actual observations and
their assumed behavior given by CLL. Assuming CLL is realistic, σe actually characterizes the spatial error
pattern of the observations. By inspecting this spatial error pattern, further assessments on the observations
can be made (beyond the outlier detection as explained above). For instance, if a faulty instrument or pro-
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cessing strategy was applied in a certain region, this may be quite easy to identify through an increased value
for σei in this area. Vice versa, when expecting the a-priori accuracies σ0

i to be correct, an increased resp.
lowered value for σei may indicate a misfit due to CLL through an under- resp. overfit in the respective area
(e.g. because of an unmodelled but varying behavior of the actual covariance function in plains or mountain
ranges).

Application. For the succeeding calculation of a global gravity field model, the GRAV-D observations are collo-
cated onto a regular 1’ grid of (spherical) gravity disturbances. To minimize the influence of up- resp. downward
continuation, a dedicated spheroid EGD whose surface is located on mean flight altitude of the observations
is chosen as reference surface. To achieve this, EGD is created by taking the semi-minor axis bG80 and semi-
major axis aG80 of the GRS80 spheroid (see Moritz, 2000) and increasing it by 6 km (mean flight altitude), so
that bGD = bG80 + 6 km and aGD = aG80 + 6 km. The a-priori observation noise CMLL is assumed to be diagonal
with an expected constant instrument accuracy of σ0 = 4 mGal (according to crossover error analyses, see,
e.g., GRAV-D Team, 2017). As signal covariance CXV V the covariance function derived from the estimated
degree variances (see Sec. 4.3) is used. Also the modification of the geometry, the partitioning and the kernel
localization are applied as explained in Secs. 4.2, 4.4 and 4.2. As pointed out above, for validation purpose,
also gravity disturbances at the observation locations are estimated.

The result of the collocation (using σ0 = 4mGal) in terms of collocated residuals ∆ŝ (cf. Eq. 2.33) is shown in
Fig. 4.11a and the respective formal (a-posteriori) error in Fig. 4.11b (according to Eq. 2.35). By inspecting the
collocated residuals ( Fig. 4.11a) themselves it is not easy to make any assessments of the quality of the result.
However, with naked eye, it can at least be recognized that the residuals look as expected (no severe outliers)
and that through the kernel localization the result is efficiently tied to zero in absence of observations. When
looking at the formal errors (Fig. 4.11b), mainly the different flight altitudes in different patches are apparent
which manifest themselve through increasing error with an increased altitude. Also, if the distance between
adjacent flight tracks is increased for some reason, the formal error increases accordingly. Despite this minor
variations, according to the applied model (σ0 and CXLL) the estimated formal error is relatively homogeneous
with values mostly between 1-2 mGal in areas with observation coverage. Since a more detailed evaluation
is not possible by inspecting the collocated residuals ∆ŝ resp. formal errors, the previously defined estimated
observation errors ∆l̂

M
are additionally examined (Figs. 4.12a and 4.12b). When looking at the observation

errors in terms of normalized errors ∆l̀M (Fig. 4.12a, Eq. 4.18) and the thereby derived empirical standard
deviations σe (Fig. 4.12b, Eq. 4.19), several statements can be made:

1. generally, it can be seen that the increased observation errors are accumulated in areas with rougher
topography (i.e., in mountainous areas in the western part of US, see also Figs. 4.14b,e,h,k). As already
discussed partially in Sec. 3.3, the causes behind this may be manyfold, and, thus, it might not be easy
to backtrack a single source. One reason might be the not fully adequate covariance function for these
areas since the applied degree variances (see Sec. 4.3) represent an average over the entire GRAV-D re-
gion. However, also problems with the airborne observations (e.g., through filtering out short-wavelength
signals in the preprocessing) or problems through the reduction model itself (e.g., higher uncertainties
due to the density assumptions made within the topographic model) can cause the increased observa-
tion errors (see P-5). Eventually, it can be put on record that rougher terrain is much more challenging
for the gravity processing than flat terrain, and that for a reliable backtracking of the error sources more
sophisticated evaluations would be needed which cannot be performed in the course of this thesis. Two
simple ideas for adjusting inadequate covariance functions are presented below (3) and in the outlook at
the end of this section.
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(a)

(b)

Fig. 4.11 – Result of collocating the GRAV-D dataset using PE-LSC and σ0 = 4 mGal. (a) The estimated residual
gravity disturbances on a 1’ grid on the surface of the EGD spheroid. (b) Estimated formal error to the collocated
residuals (Fig. 4.11a, according to Eq. 2.35).
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(a)

(b)

Fig. 4.12 – Post-collocation validation of the GRAV-D observations using PE-LSC and σ0 = 4 mGal. (a) Normalized
observation errors ∆l̀M with σ0 = 4 mGal. Assumed outliers with k > 4 are additionally marked with green crosses.
(b) Emprical standard deviation σe (see Eq. 4.19) using a Gaussian averaging kernel with a width of 30 km (HWHM,
that is 2 log 2σ).
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(a)

(b) (c)

Fig. 4.13 – Difference between the PE-LSC collocation result (i.e., the gridded data, cf. Fig 4.11a) when decreasing
the assumed a-priori accuracy σ0 to 2 mGal (from 4 mGal). (a) Standard deviation of the solution difference (derived
by using a Gaussian averaging kernel with a width of ∼30 km, cf. Fig. 4.12b and Eq. 4.19). (b) Solution difference
in validation zone B (see Fig. 3.3a). (c) Standard deviation of solution difference in validation zone B (excerpt of
Fig. 4.13a).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4.14 – Post-collocation validation of the three zones defined in Sec. 3.3 (cf. Fig. 3.4). (a-c) Estimated observation
errors ∆l̂

M
. (d-f) Normalized observation errors ∆l̀M with σ0 = 4 mGal. Assumed outliers with k > 4 are additionally

marked with green crosses. (g-i) Frequency distribution of the normalized errors in the validation zones, corresponding
to Fig. d-f. (j-l) Empirical standard deviation σe (Eq. 4.19, same as in Fig. 4.12b, normalized according to σ0 = 4 mGal).



58 Localized gravity field processing

2. in the south of US, in the coastal zone between Louisiana and Florida (without rough topography), an
area with a highly increased observation error is apparent (cf. Figs. 4.14c,f,i,l). As already noted in
the validation of the residuals in Sec. 3.3, it is suspected that the GRAV-D data block CS08 situated
here causes some sort of problem (possibly due to the low-pass filter which was applied differently
than on other blocks, see GRAV-D Team, 2015). The estimated observation error and the empirical
standard deviation clearly supports this assumption. Having identified data block CS08 the as source
of the problem one could either try to (1) fix the problem in the dataset, (2) decrease the assumed a-
priori accuracies for the included observations or, (3) simply omit the data. In general, option (1) is
preferable. If this is not feasible though, one should weigh option (2) against option (3) according to the
assumed new a-priori accuracy; if the new a-priori accuracy is higher than the model’s input accuracy
(from the covariance function CXV V ), only a small gain is expected through the inclusion of the data, and,
hence, omitting the data in the first place might be reasonable. Since the processing shown within this
thesis only serves an explanatory purpose, a backtracking of the error source and a reprocessing is not
conducted. Next to data block CS08 also some other individual outliers can be detected throughout the
whole GRAV-D dataset (mostly only single points in addition to a single flight track over Florida).

3. over wide areas, especially plains (see also Figs. 4.14a,d,g,j), the observation errors are below the ex-
pected accuracy of 4 mGal. Calculating the standard deviation of all observation errors yields a value of
about 1.4 mGal. Thus, it can be assumed that the a-priori accuracy (4 mGal) was chosen somewhat too
pessimistic, and that lowering σ0 in a second iteration may produce a better result. With the choice of a
decreased a-priori error, the tie towards the actual observations is strengthened, which ultimately allows
for stronger regional deviations from the assumed covariance function (CXV V ). This behavior may be
helpful in areas where the covariance function does not fit optimally (e.g., over rough terrain, see above),
but may also be dangerous because actual observation noise is also more likely to be recognized as
signal by the collocation. For testing purposes, a dedicated solution with an adjusted a-priori accuracy of
2 mGal is calculated. The comparison to the 4 mGal solution is depicted in Fig. 4.13. Generally, the dif-
ferences are comparable with the observation errors, which means that wherever the observation errors
are increased also larger differences between both solutions are to be expected. Additionally, changing
the a-priori accuracy seems to also introduce differences in the swing-off zones, i.e., observation-free
regions at the boundaries to areas with observation coverage, where the signal gets tied toward zeros
due to the kernel localization (see Fig. 4.13b).

For a more detailed view on the result, the three zones of investigation with suspicious residuals defined in
Sec. 3.3 (see Figs. 3.3a and 3.4) are reevaluated in terms of observation errors in Fig. 4.14. What can be seen
is that:

A the underground anomalies prominent in the residuals in zone A vanish completely after collocation (cf.
Figs. 4.14a,d,g,j). This can probably be explained by the good agreement of the signal with the expected
structure defined by the covariance function.

B the stronger residuals in the mountainous area of zone B are also widely reduced after the collocation (cf.
Figs. 4.14b,e,h,k). However, as already mentioned above, the observation errors are considerably larger
than in zone A due to the given reasons with several 4σ0-outliers. While smaller observation errors can
be explained through a misfit of the covariance function, 4σ0-outliers are probably more difficult to explain
since they correspond to punctual deviations of more than 16 mGal at an altitude of 6 km. However,
since the flight altitude is also around 6 km and the mountain ranges reach up to 5 km there is a much
weaker damping due to upward continuation in these zones. Theoretically, this could be a reasonable
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explanation for the larger deviations. It is also possible that there is a certain spectral misfit between
the observations and the reduction model since the airborne observations are filtered (in terms of a time
series) and the reduction model (SATOP) is not. Applying SATOP in a reduced resolution might help to
mitigate some of the observed errors in this zone.

C zone C, located over the erroneous data block CS08 (cf. Figs. 4.14c,f,i,l) shows the largest observa-
tion errors. The possible reasons have already been explained above. In comparison to the residuals
(Fig. 3.4c), the problem is even more prominent in terms of observation errors (Fig. 4.14c).

Iterative refinement strategy and conclusions. It has been shown that PE-LSC works as expected and
that with a post-collocation validation at least certain data problems can be identified. However, it has also
been shown that the increased observation errors over mountainous areas may indicate a certain deficiency
in the modelling of the covariances. This is already discussed partially in Sec. 4.3 where it has been pointed
out that the implicit assumption (when using degree variances) of homogeneity and isotropy is only a rough
approximation of the actual behavior of the gravity field. Especially when assuming homogeneity (i.e., location
independence), a strong simplification is introduced which, e.g., leads to the assumption of identical gravity field
behavior over both rough and flat terrain, although this is evidently not the case. As a consequence, since the
estimated degree variances (see Sec. 4.3) represent the averaged behavior of the gravity field over the whole
collocation area, the derived empirical covariance function is probably too rough for flat country and too smooth
for mountainous regions. While the former (flat country) seems to be more or less unproblematic (although it
can be assumed that more noise is included in the solution than in the optimal case ), the latter (rough terrain)
seems to suffer from the too smooth covariance function in this area (since too much signal is then interpreted
as noise). This problem cannot be solved by using covariances derived from degree variances. However, the
effect of non-homogeneity can at least be partially simulated when applying a workaround to reduce the impact
of the. The idea of this workaround is to restart the collocation with the narrowed down residuals given through
the observation errors ∆l̂

M
. The procedure can be summarized as follows (with the index i denoting the i-th

iteration):

1. Set the observation errors ∆l̂
M(i)

(Eq. 4.17) of the previous iteration to be the new input residuals ∆l(i+1)

within the collocation of the next iteration, i.e., ∆l̂
M(i)

→ ∆l(i+1). With this assignment one basically
implies that the estimated observation noise still contains residual signal.

2. Disregard all new residuals ∆l(i+1) which show an estimated normalized standard deviation σe(i)/σ0(i)

(Eq. 4.19) below a certain threshold. This is best done by effectively setting the residuals with a small
standard deviation (below a certain threshold) to zero. With that, the new collocation just influences
areas with significant misfits. For the transition from selected to omitted residuals, it is proposed to apply
some sort of distance-dependent damping function w

(i)
d to the new residuals in order to avoid sharp

(high-frequency) edges. With that, far-off residuals can safely be deleted from the new residuals as they
would not influence the result (since zero). This should help to speed up subsequent collocations (since
the number of observations is reduced from iteration to iteration). An illustration for the transition function
and the remaining input residuals for the collocation is given in Fig. 4.15.

3. Based on the remaining new residuals, re-estimate the empirical covariance function according to Sec. 4.3.
By readjusting the covariance function CXV V

(i+1) one essentially simulates the aforementioned non-
homogeneity since one now basically uses different covariance functions in different areas (namely in
those areas containing the selected residuals). Note that only the selected residuals in the core area
(outside the transition zone) are taken for the calculation of the empirical covariance function. A possible
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(a)

(b) (c)

(d)
(e)

Fig. 4.15 – Preparation of the collocation for the second iteration. (a) Selection of the new residuals (green and blue
points) with the used damping function highlighted (red-gray colormap) to model the transition towards the omitted
residuals (gray points). Selected are all residuals with an empirical observation error σe > 2 mGal (see Eq. 4.19 using
50 km HWHM). The damping function wd consists of a sine function parameterized through the closest distance to a
selected residual. (b) Same as Fig. 4.15a for validation zone B. (c) Resulting new residuals for the next iteration of
the collocation with the damping function (see Fig. 4.15b) already applied. Omitted residuals are marked with gray
color. (d) Estimated new empricial covariance function (1D) including all residuals where σe

i > 3 mGal (blue points in
Fig. 4.15b, cf. Sec. 4.3, Fig. 4.4f). (e) Degree variances estimated from the empirical covariance function (Fig. 4.15d,
cf. Sec. 4.3, Fig. 4.4b).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.16 – Results of the second iteration of the collocation shown exemplary for validation zone B. (a) Estimated

observation error differences ∆l̂
M(2)

to the original observation errors of the first iteration (Fig. 4.14b). This is identical
to the difference in the collocation result ∆l(2) on the observation sites. (b) Difference of the collocation result ∆ŝ(2) on
the target grid. (c) Original result of the collocation ∆ŝ(1) on the target grid after the first iteration (same as Fig. 4.11a).
(d) Refined result of the collocation ∆ŝ on the target grid after the second iteration. (e) Formal error ∆σ̂ of the refined
result. (f) Reduction of the empirical standard deviation through the refined solution ∆l̂ in comparison to the original
solution ∆l̂

(1)
(σe(1) − σe).
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result for a second iteration of the GRAV-D residuals is visualized in Fig. 4.15d and 4.4b. Since the num-
ber of residuals is reduced for the estimate of the new degree variances (in comparison to the original
estimate for the initial collocation, compare Fig. 4.15d with Fig. 4.4f), the result can be considered less
stable resp. overdetermined. However, in the actual example of GRAV-D it seems that the remaining
residuals (for the second iteration) still allow the estimation of degree variances sufficiently well.

4. Assess a realistic value for σ0(i+1). For that, one may choose the initial value of the first iteration (if
considered realistic) or an estimated one from ∆l(i+1).

5. Calculate the new residual estimates ∆ŝ(i+1) (cf. Fig. 4.16b) and ∆l̂
(i+1)

(cf. Fig. 4.16a) from ∆l(i+1),
CXV V

(i+1) and ∆l(i+1). The final estimates ∆ŝ (cf. Fig. 4.16d) can then be obtained by ∆ŝ =
∑
i w

(i)
d �

∆ŝ(i) considering the same damping function w(i)
d (now applied on the output grid) as used for the input

residuals (with � denoting element-wise multiplication). Omitting correlations, the final formal error ∆σ̂

(cf. Fig. 4.16e) can be approximated identically through ∆σ̂2 =
∑
i w

(i)
d �∆σ̂(i)2

6. Inspect the newly obtained observation errors ∆l̂
M(i+1)

(e.g., in terms of the empirical standard deviation
σe, cf. Fig. 4.16f) and assess whether another iteration is necessary. If so, restart the entire procedure
starting from step 1.

With this strategy one should be able to at least refine the initial result by a certain degree. It should be noted
that some of the proposed methods (in this validation section) are just feasible because in the GRAV-D collo-
cation only gravity disturbances occur. In the general case where a mixture of several gravity field functionals
may be present, adjustments on several points are needed. For example, calculating the empirical standard
deviation according to Eq. 4.19 would not be possible anymore, since different functionals would obviously
yield different values. So, Eq. 4.19 would have to be modified by, e.g., replacing the estimated error ∆l̂M by
the normalized error ∆l̀M. In this way, one would get a normalized empirical standard deviation which can
then be used for further validations resp. calculations instead (which then would also have to be adjusted).
Although a second iteration is calculated for the GRAV-D example, the obtained solution (see Fig. 4.16) is
not used in the following since the whole iterative procedure is still considered experimental at the time of
writing.



Chapter 5

Global gravity field processing

After having the reduced and validated gravity field observations collocated onto a global regular geographic
grid (see Fig. 4.11a), the data is ready for integration into a global model given in the harmonic domain.
Publication P-3 illustrates the basic procedure of how to do so on the example of the XGM2019 model. In
this chapter, the content of publication P-3 will be summarized and extended by topics which are relevant for
the holistic processing approach using again the GRAV-D mission for demonstration. While the presented
methodology is not too complex from a mathematical perspective, it is even more complicated in terms of
computational complexity and from a numerical point of view. Thus, the major effort in the field of global gravity
field processing has been put into an efficient and numerically accurate implementation of the procedures
discussed below. Due to the enormous computational requirements of certain parts of the processing, the
code had to be optimized for execution on distributed high-performance computing systems, which requires a
lot of rethinking of the serial algorithms. Therefore, much could be said about workload balancing, numerical
stability, vectorization, efficient I/O concepts, etc. However, such details would probably require a deeper
informatic background knowledge from the reader which would go beyond the scope of this thesis that should
retain its geodetic character. Therefore, in this chapter, the focus will be strictly kept on the methodological
part, mentioning computational details only when necessary. The readers interested in details about the actual
implementation are referred to earlier works which cover these topics sufficiently well (e.g., Zingerle, 2015,
Fecher, 2015, Brockmann, 2014, Gruber, 2001 or Schuh, 1996).

This chapter is organized as following: first, the properties of the SH transform on geographic grids are in-
vestigated (Sec. 5.1). They are of relevance to understand the interaction between the collocation and the
following SH analysis. Based on the gained knowledge, the gridded dataset is analyzed using a block-diagonal
spheroidal harmonic approach and evaluated regarding possible analysis errors (Sec. 5.2). This block-diagonal
solution can then be used to spectrally limit (and/or downsample/convert) the initial gridded data to a desired
format, which can then be used as ground observation basis for a combination with other (satellite) mod-
els. In Sec. 5.3, several combination methods are briefly described and compared against each other and
evaluated in terms of applicability within the integrated framework to derive the final EGGM. Finally, some
strategies are presented for an external validation of the resulting EGGM against 3rd party data and models
(Sec. 5.4).

5.1 The SH transform on geographic grids

Outline. For an arbitrary signal (or function) which is sampled on a geographic grid, two main statements
regarding its spectral behavior resp. recoverability (in the spherical harmonic domain) can be made: first of
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all, the signal (or function) does not necessarily have to be spectrally limited. This implies that the original
spectrum (or function) cannot be recovered when having a finite spacing within the regular grid. Moreover, it is
known that non-recoverable frequency components can cause aliasing, meaning that these components can
bias the estimate of the recoverable components (see example Fig. 5.1, 5.2). In general, there is nothing one
can do to avoid this except for using a finer spacing in the first place to make as much of the signal recoverable
as possible. Thinking of a classical (flat) discrete Fourier transform (see, e.g., Bronstein et al., 2015) there
exists a well-defined threshold frequency (denoted as Nyquist frequency, see Lüke, 1999) for the recoverability
of the signal solely defined by the spacing (or sampling):

mmax =
ns
2
− 1 =

π

∆λ
− 1, (5.1)

where mmax is the Nyquist frequency (i.e., wave number), ns the number of equidistant samples and ∆λ the
spacing between the samples as angular fraction of the unit circle. For instance, when interpreting a geographic
grid with a spacing of ∆α = 1◦ as flat and performing a discrete 2D Fourier analysis on it, the respective
Nyquist wave numbers would be given by (1/2) 360◦/1◦ − 1 = 179 (longitudinal) and (1/2) 180◦/1◦ − 1 = 89

(latitudinal). Performing the discrete 2D Fourier analysis up to the determined Nyquist frequencies would yield
a 1:1 equivalent of the signal in the spectral domain, meaning that a subsequent synthesis would fully recover
the original grid (since 360*180 sample points are orthogonally projected on 360*180 coefficients). However,
and as second statement, the same is not true in case of the SH transformation where the maximum SH
order mmax (in analogy to the Nyquist wave number) and degree lmax is induced by the Fourier transform
in longitudinal direction (cf. Eq. 2.22 which would correspond in the stated example to mmax = lmax = 179,
identical to the 2D Fourier case). The subsequent latitudinal convolution though differs from the Fourier case
since after the transformation through the associated Legendre polynomials only (lmax −m) + 1 coefficients
per order m remain (since m ≤ l), which sums up to 180*180 coefficients in total. Thus, it is evindent that
a SH transform does not retain the 1:1 relationship since a subsequent SH synthesis cannot reproduce the
original grid from a information reproducing perspective (actually, it’s a 2:1 relationship since the information
is halved in the analysis step). This loss of information resp. coefficients can geometrically be explained
best through the meridional convergence on the sphere, reflecting the fact that the equiangular sampling in
the geographic grid is not equidistant (even if not fully true). Ultimately, this means that the geographic grid
is able to hold much more high-frequency signal, especially, in the polar regions (in longitudinal direction)
than is recoverable through spherical harmonics limited to a maximum degree lmax. Thus, even if the signal
on the original grid is not affected by aliasing, the derived spherical harmonics are in general not able to
reproduce this signal (e.g., see Fig. 5.2c). While this is generally no problem, the question may arise whether
the possible additional signal content affects the spectral estimate up to degree lmax (according to Sec. 2.2,
see below).

In publication P-3, it was assumed that there may be a negative impact of this extra signal to the estimate, and
a special procedure was presented which is able to eliminate non-reproducible signal before the estimation
takes places (see Fig. 5.2). This simple method consists of a low-pass filter that is applied in the spatial
domain (cf. Fig. 5.2e) which is then reverted after the analysis step in the SH domain through multiplication
with the inverse filter coefficients (cf. Fig. 5.2f and Jekeli, 1981). In this manner, only the low-pass filtered signal
needs to be analyzed, and the effect of unresolvable higher frequency content is supposedly strongly reduced
(see P-3). However, a closer evaluation of the impact of the additional signal has shown that retaining it does
not affect the final estimate (see Fig. 5.2f, compare blue with dashed orange line). This circumstance can be
explained best by the fact that the SH analysis (on a regular grid) consists in a first step of a Fourier transform
(cf. Sneeuw, 1994 or Colombo, 1981) which is able to orthogonally decompose the longitudinal information
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(a) (b)

Fig. 5.1 – Aliasing behavior of the SH transform on geographic grids. In the example, a SH signal up to d/o 180 is
assumed which is synthesized onto a 4°x4° geographic grid (90x45 sample points) estimated (restored) up to the
grid’s ’Nyquist’ d/o of 44. (a) Aliasing (mapping) of the signal within the original orders to the signal within the restored
orders. Shown are accumulated RMS values (over all degrees of a specific order) of the least squares estimator
normalized regarding the restored orders (row-wise). The aliasing structure is in principle identical with the structure
expected from the Fourier transform (showing the folding frequencies). Though, the aliasing differs from the Fourier
case due to the attenuation of the effect towards higher orders. Hence, lower orders are less influenced by aliasing.
(b) Aliasing of the signal within the original degrees to the signal within the restored degrees. The aliasing structure
of the associated Legendre polynomials is much more complicated than the structure regarding the trigonometric
functions (no unique folding frequencies discernible). Due to the equatorial symmetry in the example, even and odd
degrees are still uncorrelated. In contrast to the order-aliasing, all degrees are affected by aliasing more or less in the
same order of magnitude.

without any loss of information. In the succeeding convolution with the associated Legendre polynomials, the
Fourier coefficients of higher orders (containing the additional signal) are simply damped towards the poles (cf.
Fig. 5.3b). Nevertheless, even if the shown procedure does not improve the estimate as initially expected, it
also does not negatively affect the result (see Fig. 5.2f).

Conclusions. At the bottom line, it can be concluded that the only way to really improve the estimate is to
perform the analysis on a grid that is fine enough to not be influenced by aliasing in the first place. Additionally,
to avoid spectral leakage (see Fig. 5.3a) the SH analysis should be performed up to the highest d/o that is
possible to estimate on the respecitve grid (i.e., up to the ’Nyquist’ d/o, see above). In case that the signal on
the geographic grid was derived by collocation as presented in the previous chapter (4), it can be assumed that
the estimated signal follows the spectral behavior defined by the used degree variances (see, e.g., Fig. 4.4b).
Thus, when adjusting the grid resolution to the expected maximum signal wavelength one should be able
to widely avoid any kind of aliasing in the SH analysis step (which does not mean that aliasing, possibly
introduced through the collocation itself, can be avoided). Performing a SH analysis on a fine geographic grid
up to the ’Nyquist’ degree lmax is a computationally very complex task when not exploiting the orthogonality
properties as explained in Sec. 2.2.1 (see Fig. 4.5). In fact, one of the main reasons why the collocation is
needed in the first place is to obtain the data on the regular grid which forms the basis for all orthogonality
properties of SHs, and, hence, also constitutes the foundation for all speed-up approaches. The utilization of
these properties leads to a block-diagonal structure or even diagonal structure (in the Gauss-Legendre case)
which can be evaluated very efficiently (the calculation can also be parallelized relatively easily). However,
as already explained in Sec. 2.2.1, the constraints for using the block-diagonality do not allow to introduce
individual point weights which would be available from the collocation. While this may seem problematic, it is
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.2 – White-noise aliasing on a 4°x4° grid when introducing signal up to d/o 179 (cf. Fig. 5.1). (a) Reference
signal (white noise) synthesized up to d/o 180 on a 4°x4° grid. (b) Recovered (estimated) signal, i.e., signal of Fig. 5.2a
analyzed up to d/o 44 and synthesized back on the 4°x4° grid. (c) Difference between reference signal (Fig. 5.2a) and
recovered signal (Fig. 5.2b). This represents the possible extra signal in geographic grids which is not recoverable
through an SH analysis (cf. Sec. 5.1). (d) Reference signal synthesized up to d/o 44. This would be the optimal
solution if no aliasing were present. (e) Reference signal (Fig. 5.2a) filtered with a Gaussian filter with σ = 4◦. (f)
Various signals in terms of degree amplitudes (square root of degree variances). solid black line: reference white
noise signal (theoretically available up to d/o 180, cf. Fig. 5.2a and 5.2d). blue dotted line: difference between the
analyzed filtered signal (Fig. 5.2e) and reference signal. solid blue line: difference between the filter-reverted signal to
the reference signal. Dashed orange line: difference between analyzed reference signal and reference signal. Solid
yellow line: reference signal filtered in the spectral domain. Solid green line: SH Gaussian filter factors (σ = 4◦, for
the calculation details see Jekeli, 1981).
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(a) (b)

Fig. 5.3 – (a) Spectral leakage of the SH transform on geographic grids. In the example, a SH signal up to d/o
179 is assumed which is synthesized onto a 1°x1° geographic grid (360x180 sample points, thus d/o 179 is the
grid’s ’Nyquist’ frequency) estimated (restored) up to d/o of 44 (note the difference to the aliasing setup in Fig. 5.1).
Shown are accumulated RMS values (over all orders of a specific degree) of the least squares estimator normalized
regarding the restored degrees (row-wise). In contrast to the aliasing error, the spectral leakage error is much weaker
in amplitude (cf. Fig. 5.1a). Because orders are uncorrelated in the block-diagonal case, spectral leakage occurs just
between degrees. For the same reason spectral leakage does not occur at all on Gaussian grids. (b) Damping of
higher orders through the associated Legendre polynomials towards the poles. Shown are accumulated RMS values
(over all degrees of a specific order) of associated Legendre polynomials for different latitudes.

not in the underlying case of a simple analysis where no combination with other data is performed, since a
weighting would just influence the estimate if inconsistencies in the data are present (if overdetermined). It is
maybe noteworthy that the aforementioned extra signal towards the poles (see Fig. 5.2c) represents such an
overdetermination. If weighting is introduced, the Fourier transform will lose its orthogonality properties, which
is why the previously made conclusion about the extra signal not influencing the result is then obsolete. As
mentioned though, if data on the grid is obtained from collocation, it can be assumed that no significant extra
signal is present in the data (because presumably already spectrally limited according to the degree variances,
see Sec. 5.2). Hence, in case of collocation, the weighting (even when assuming full covariance information)
cannot influence the estimate since no contradictions exist in the data according to the functional model of the
analysis.

Spatial resolution of SHs. An interesting finding when evaluating the SH transform on geographic grids is
that the actual spatial resolution of a signal which is provided up to the grid’s ’Nyquist’ d/o is actually lower
than the grid’s maximum spacing (at the equator). To see this, one has to compare the available information
(i. e., the number of SH coefficients) with the area on which they apply. In the 2D Fourier case, for instance,
when assuming a normalized area of 2π2 sr (steradiant, to resemble a ’flat’ geographic grid), one would come
up with a 2D resolution (when having 2m · m coefficients) of (π/m)2 sr which again is nothing else than the
original resolution of the gird if the Fourier transform is performed up to the Nyquist wavenumber (because
then, m is simultaneously the number of samples in latitudinal direction) . This is obvious since a 2D Fourier
transform is able to exactly reconstruct the original grid. In the spherical case however, the same normalized
grid has an area of 4π sr and one ends up with a spherical 2D resolution (when having m2 coefficients) of
(2/
√
π π/m)2 sr. Hence, the shortest distance which can be expressed through SHs estimated from a grid

(up to its ’Nyquist’ d/o) is 2/
√
π ≈ 1.12838 times larger than the maximum distance occurring in the same grid

(in latitudinal direction and on the equator in longitudinal direction). Hence, even on the equator, an arbitrary
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(i.e., spectrally not limited) signal cannot be reconstructed through the SH transform. This is seen, e.g., in
Fig. 5.2c where non-reconstructable signal is even present at the equator. At this point, one could argue that
the expressible resolution of SHs limited to a certain max. d/o may spatially vary depending on the position
(e.g., depending on the latitude so that the resolution on the pole could be lower/higher than on the equator).
However, this cannot be the case since SHs can be spatially rotated without loss of information (see, e.g.,
Heiskanen & Moritz, 1967). This implies that the resolution of SHs, limited to a certain max d/o, has to be
homogeneous-isotropic. As a consequence, when analyzing for instance a 1’ grid, the spatial resolution of the
obtained SH model is reduced to ∼1’8” (to ∼88.6% of the original resolution) at the equator. In other words,
the rule of thumb of 180◦/(lmax + 1) for estimating the spatial resolution of SH signal limited to d/o lmax should
rather read 360◦/ (

√
π (lmax + 1)).

5.2 The (block-)diagonal SH analysis

Outline. After the more theoretical treatment of the SH transform in the previous section (5.1) the actual ap-
plication of the (block-)diagonal analysis on the collocated observations will be subject of this section. During
the course of the holistic processing chain the (block-)diagonal analysis can be used for two main objec-
tives:

1. To get a SH representation of the collocated signal; as explained in the previous (Sec. 5.1), the solution
obtained through the (block-)diagonal analysis is unique (when avoiding aliasing, i.e., the grid’s resolution
is high enough) and is not influenced by the omitted weighting (when spectrally limited, i.e., when no
additional signal is present in the grid). Hence, since unique, the obtained solution can also be considered
as optimal regarding the collocated signal, and, therefore, this solution can already be used as the final
model (if no contradicting model is to be combined with the collocated signal, see second objective
below). Note that the SH transform is a linear transform which implies that the SH analysis can be
performed based on collocated residuals (without restoring the reductions). This is possible since the
reduction model is also available as SH model, which means that the restore step can be shifted to the
spectral domain (i.e., the analyzed coefficients of the residuals are simply added to the coefficients of the
reduction model).

2. If the collocated signal is to be combined with a contradicting (satellite) model, a weighted combination
(using point weights) is preferrable. A contradicting model in this sense denotes a model that possibly
introduces observations that are in contradiction to the collocated signal, so that the weighting controls
the composition of the combined model (for instance, GOCO06s would not contradict since it is used
within the SATOPv2 model, see Sec. 5.3). Since no orthogonalities are preserved in the weighted case,
the combination can probably not be performed based on the full resolution of the collocated grid (due
to the high computation complexity, cf. Fig. 4.5). Thus, a lower-resolution version of the original grid is
needed for this step (see Sec. 5.3). This lower-resolution grid should ideally not be influenced by aliasing
and should also not contain unresolvable extra signal which could distort the estimate in the weighted
case. This basically implies that the lower-resolution target grid needs to be spectrally limited to the grid’s
’Nyquist’ d/o (Eq. 5.1). Obviously, this can easily be achieved when the full spectrum of the collocated
signal is available (through the block-diagonal analysis), which can then be synthesized to the desired
grid by just using the signal up to the respective ’Nyquist’ d/o lmax.
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(a)

(b) (c)

Fig. 5.4 – Result of the block-diagonal analysis of the residual collocation solution (see Fig. 4.11a) up to d/o 10,700.
The analysis is performed in the spheroidal harmonic domain using the EGD spheroid (see Sec. 4.6). (a) Difference of
the original collocation result and the resynthesized block-diagonal solution. Note that the unit is nanoGal (10−6 mGal).
(b) Block-diagonal solution (of the collocated residuals) in terms of Stokes coefficients in the spheroidal harmonic
domain visualized as coefficient triangle (negative orders correspond to sine-coefficients) up to d/o 5,600 (coefficients
above d/o 5,400 strongly converge towards zero). (c) Evaluation of the spectrum in terms of degree amplitudes (i.e.,
square root of degree variances) regarding gravity disturbances. Blue lines: degree amplitudes of the coefficients of
the residual collocation result (Fig. 5.4b, solid) and the respective cumulative amplitude (from right, dashed). Orange
lines: in comparison, the degree amplitudes estimated from the empirical covariance function used in the collocation
(cf. Fig. 4.4b, solid) and the respective cumulative amplitude (from right, dashed).
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Application - the SGDTv1(BD) model. As argued in Chap. 4 the target grid of the GRAV-D collocation is
chosen to be 1’ (∼2 km) to safely cover the spectral signal content of the whole collocated signal (keeping in
mind that GRAV-D was designed for a 10 km sampling). Thus, the resulting grid has a size of 21,600*10,800
sample points and a ’Nyquist’ d/o of 10799 (see Fig. 4.11a). To avoid the instable downward-continuation term
(R/r)n+1 (see Sec. 2.1.2, Eq. 2.4) in the functional model, the analysis is performed in the spheroidal harmonic
domain on the surface of the dedicated EGD spheroid (to which the residuals are collocated, see Sec. 4.6).
The result of the block-diagonal analysis of the collocated residuals is shown in Fig. 5.4. Several conclusions
can be drawn from the result:

1. The difference between the input signal (collocated residuals) and resynthesized block-diagonal solution
(Fig. 5.4a) is really small and close to numerics (in the nanoGal ,10−6mGal, range). This difference
corresponds to the aforementioned additional signal not recoverable by the SH analysis on geographic
grids (see, e.g., Fig. 5.2c). Since this signal is almost zero, the assumption that the collocated residuals
are spectrally limited is widely confirmed. Inspecting the spatial pattern of the differences reveals that
the partitioning within the PE-LSC approach is the main reason for the remaining signal. This is not
surprising, because even though the localization (see Sec. 4.5) is able to greatly reduce the fringe effects
between partitions, they are not fully eliminated. However, considering observation accuracies in the
mGal range, effects in the nanoGal area can be tolerated.

2. Inspecting the Stokes coefficient triangle of the collocated residuals (Fig. 5.4b), one can identify the fol-
lowing two features: firstly, near-sectorial coefficients converge towards zero. This is caused by regional
(not global) coverage of the GRAV-D signal. Especially the absence of data in the equatorial region
causes this effect, since (near-)sectorial coefficients are dominated by signal within this zone (as sup-
ported by Fig. 5.3b). Secondly, there is a strong decay of the signal above d/o 5,400. This can be
explained by the fact that by limiting the estimated degree variances in the collocation to d/o 5,400 one
basically prohibits any signal above this d/o. Another explanation is found in the airborne observations
themselves which were low-pass filtered in the preprocessing (GRAV-D Team, 2013), and the SATOPv2
reduction model which also only includes signal up to d/o 5,480. Thus, it is very unlikely that in the input
residuals of the collocation much signal can be found above d/o 5,400.

3. From the degree amplitudes of the collocated residuals (Fig. 5.4c, solid blue line) it is seen that the
form of the curve resembles to a certain degree the form of the estimated degree amplitudes used as
input to the collocation step (solid orange line). This is to be expected since the LSC should statistically
’trim’ the original signal to the form of the assumed degree variances. However, there is also a certain
mismatch between both curves especially in the shorter wavelengths where the decay of the actual
signal is stronger than the decay of the estimated one. Here, one should keep in mind that interpreting
the degree amplitudes of the collocated residuals may be dangerous since the GRAV-D dataset only
covers a limited region of the Earth while degree amplitudes always refer to a global statistic (this is
also the reason for the much weaker signal strengths of the analyzed signal compared to the estimated
degree variances).

For numerical reasons (see below) the analysis is performed only up to d/o 10,700 (instead of 10,799). How-
ever, since there is basically no signal above d/o 5400 (cf. Fig. 5.4) this should be of minor concern at this
point. Due to the absence of signal above d/o 5400, it is decided to limit the final SH model to d/o 5,480
(to the same max. d/o as the SATOPv2 reduction model, see Sec. 3.1). In a final step the spheroidal har-
monic coefficients are converted to the spherical harmonic domain and added to coefficients of the SATOPv2
model to form the final model, denoted as SGDTv1(BD) ([S]atellite-[G]RAV[D]-[T]opography model [V]ersion



5.2 The (block-)diagonal SH analysis 71

[1] [B]lock-[D]iagonal). The solution was calculated on the SuperMUC-NG high performance computing sys-
tem (of the Leibniz Supercomputing Centre) using 16 nodes with 48 cores/nodes in about 15 minutes (solv-
ing 10,700*4 NEQSs of varying size). This corresponds to a single-core computation time of about 200
hours.

Remarks and caveats. As shown in Fig. 5.4 and explained above, the SH analysis of the grid performs as
expected and yields the desired SH representation. Also, extending the grid resolution and the maximum
d/o further would not be problematic from a numerical or computational perspective. Solving block-diagonal
systems up to d/o ∼100,000 (∼200 m sampling) would still be computationally feasible (or even beyond when
having a Gauss-Legendre grid). Yet, there are also some caveats to consider when dealing with the SH
analysis and with spherical harmonics in general:

• To be compatible with earlier definitions, the latitudinal spacing was chosen to be equidistant in accor-
dance with the geographic latitude. This implies that associated Legendre polynomials are not orthogonal
on this discrete sampling, and, thus, the resulting NEQS is block-diagonal (instead of diagonal when using
the Gauss-Legendre spacing). Theoretically, one could also have chosen a (spheroidal) Gauss-Legendre
grid as output (target) grid of the collocation which would have yielded a simple diagonal system. How-
ever, since the computation time of the block-diagonal solution is still relatively low (see above) using the
simpler equidistant spacing is not problematic. On the other hand, using an equidistant spacing in terms
of the geographic latitude means that the spacing in terms of the parametric latitude (which is used for
the spheroidal harmonic analysis, see Sec. 2.1.2) is not equidistant. A consequence of this is that the
block-diagonal normal equation matrix becomes numerically unstable when analyzing up to the grid’s
’Nyquist’ d/o (since the latitudinal sampling distance is in some regions larger than the average spacing,
thus basically violating the ’Nyquist’ sampling rule). An effective way to mitigate this problem is to not
analyze up to the ’Nyquist’ d/o, but to stay safely below, as it is done in the GRAV-D example where the
analysis is performed up to d/o 10,700 (instead of 10,799). Obviously, this problem could also be solved
by changing the latitudinal grid to either be equidistant regarding the parametric latitude or to follow the
Gauss-Legendre rule. Consequently, it can be stated that from a numerical perspective, choosing a grid
with equidistant spacing regarding the geographic latitudinal is suboptimal for the SH analysis.

• When using double-precision arithmetic and calculating associated Legendre Polynomials to a higher
d/o the numerically stable sectorial standard recursions for calculating fully normalized associated Leg-
endre Polynomials (see, e.g., Heiskanen & Moritz, 1967) suffer from numerical underflow. This has the
consequence that subsequent elements in the recursion are bound to zero, although they would usually
start to grow again in amplitude within the tesseral recursion. To circumvent this problem, Fukushima
(2012a) proposed to use an extended arithmetic (called the x-numbers) which prevents underflow by
manually extending the exponent of the double precision floating point format. Accordingly, in the used
implementation, all associated Legendre Polynomials are calculated using this technique (with additional
modifications, which specifically optimize for vectorization and parallelization). Note that for the whole
procedure also associated Legendre polynomials of the second kind are needed within the transform
from spheroidal to spherical harmonics (see Jekeli, 1988; Fukushima, 2013 and Sec. 2.1.2).

• Finally, and as general remark (already pointed out in Sec. 2.1.2), it can be concluded that spherical
harmonics become numerically more and more unstable with higher degrees if upward or downward
continuation is involved. This is easily seen through the factor (R/r)n+1 (in Eq. 2.4) which attenuates
or amplifies coefficients with exponentially increasing strength with higher degrees. Even though this
problem is mitigated in the shown analysis procedure by staying on the reference surface, it comes back
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into play when using the final model for upward resp. downward continuation. In both cases a very high
relative precision between coefficients is demanded so that no artifacts are generated (cf. Sec. 2.1.2).
Because of the Earth’s topography, downward and upward continuation is always necessary when start-
ing from observations on the surface and when ending up with synthesizing the estimated signal back
onto the surface. For instance, in the actual GRAV-D example, upward continuation is performed within
the collocation when estimating observations on an altitude of 6 km, and downward continuation would
be necessary when synthesizing observations back onto the surface. If the reference height of the col-
located grid had been chosen to be 0 km, the situation would be reversed. As explained in Sec. 2.1.2,
the effect is still manageable when considering double-precision, a max. d/o of 5,400 and a max. radial
difference between pole and equator (plus topography). Though, going even higher with the spectral
resolution becomes very dangerous from a numerical perspective. While this problem is strongest when
using spherical harmonics, it still exists within spheroidal harmonics (although in a weaker form) since the
Earth’s oblateness is of no concern then (only the topographic elevation itself). Hence, also when using
(3D) spheroidal harmonics one eventually runs into the same numerical troubles at some point (within
the associated Legendre polynomials of second kind which would then basically replace the (R/r) term).
Thus, when one seeks an ultra-high-resolution general-purpose representation of a body’s gravity field
the use of spherical resp. spheroidal harmonics is not recommended (at least not inside the bodies
sphere/spheroid of convergence, i.e. the smallest sphere/spheroid containing all masses, see, e.g., Hirt
& Kuhn, 2017, Bucha et al., 2018). However, as, e.g., Bucha et al. (2018) states, even if the series is
diverging, a high-resolution model (e.g., up to d/o 5400) might still yield a good representation of the
surface gravity signal when the model was acquired through a fit to observations located on that surface
(although the aforementioned numerical problem still remains).

5.3 Combined SH modelling

Outline. In a general application, the observation-based input grid to the SH analysis (see previous section 5.2)
is thought to be widely independent of additional sources such as satellite information. Thus, when assuming
that solely ground-only observation within the input grid is available (i.e., the result of the collocation), it may be
reasonable to seek an optimal combination between all available data sources (including, e.g., satellite infor-
mation) for the final SH model. Without loss of generality, such an optimal combination (in a statistical sense)
can be acquired in the spectral domain when stacking the NEQSs of all available data sources (see Sec. 2.2,
Eq. 2.21). In the most common application, NEQSs containing satellite data (which are usually available from
third parties) are stacked to the NEQS obtained from the input grid. For an optimal combination, the correct
weighting of the normal equation components is of utmost importance. From the (externally obtained) satellite
part it is normally assumed that the provided covariance information is correct. Hence, the main variable for
influencing the combination is given by the weighting of the input grid. Depending of what is needed and what
is available, several options exists for the choice of the weighting:

• kite modelling: the most simple and numerically most efficient way is found by assuming identical and
uncorrelated errors for all grid points, such that the resulting NEQS becomes block-diagonal. If seen
as advantage, one is also free to use individual weights resp. errors for every latitude (retaining one
identical weight for all longitudinal value of one latitude) since the m-block orthogonality induced by the
Fourier transform is still preserved (even if the equatorial symmetry might be violated, cf. Sec. 2.2.1).
When stacking a block-diagonal NEQS of a higher max. d/o with a fully occupied NEQS of a lower
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max. d/o (e.g., from a satellite model) a so-called kite NEQS can be obtained which is partially fully
occupied and partially block diagonal (see Fig. 5.5). Such a kite system can be solved very efficiently
by applying a reverse Gaussian elimination procedure on the emerging 3x3 super-block matrix which
retains the sparsity of the original system (see for details Zingerle, 2015; Gruber, 2000; Schuh, 1996;
Bosch, 1993). Usually, the solution obtained from a kite-system is already relatively close to the solution
of a correctly weighted system if a satellite model is involved. This is because the errors in the satellite
models grow very quickly with increasing degree due to the strong noise amplification caused by the
downward continuation from the satellite altitude to the reference sphere (see, e.g., publication P-3, Fig.
4, violet dashed line). Due to this steep error growth in the satellite model, the actual errors within the
input grid (which normally do not vary too strongly, maybe by a max. factor of 20, see, e.g., Fecher,
2015) are of minor concern since the spectral transition band (from satellite data to ground data) would
not be altered significantly (cf. publication P-3, Fig. 4, when the yellow line is moved up and down, the
intersection degree with the violet dashed line changes only slightly). Hence, in the mentioned application
a kite solution can be used very well as a first approximation for a correctly weighted solution. The big
advantage of kite systems (next to the numerical efficiency) is that the input grid can be used in full
resolution and does not have to be downsampled (see previous Sec. 5.2). Note that a lot of effort has
been put into the development of efficient parallelized algorithms for handling the sparse structure of
huge kite systems and the appropriate linear algebra through all required processing steps (including,
e.g., the inversion to acquire variance information). All details on this subject can be found in Zingerle
(2015).

• dense modelling with a priori covariance information: if the input grid is obtained from a method such as
collocation, a relatively realistic error (covariance) information is usually available. Theoretically, these
errors can be used when creating the NEQS of the input grid either as simple (diagonal) variance infor-
mation or even as (fully occupied) covariance information. However, in both cases the resulting normal
equation matrix is fully occupied, and, thus, the gained advantages of using a regular geographic input
grid are lost again. Even on the largest current HPC systems, the maximum solvable d/o of fully occu-
pied systems is very limited (see, e.g., Fig. 4.5 and publication P-3), which is why such a combination
can just be performed on a down-sampled (and spectrally limited) versions of the original input grid. As
explained in Sec. 5.2, such a grid can be obtained by a preceding block-diagonal analysis of the original
dataset. In previously performed combinations (e.g., XGM2019) it has been shown that above the max.
d/o of the satellite model the combined solution is strongly converging to a block-diagonal solution (at
least when the input grid it already spectrally limited, see publication P-3, Fig. 4, yellow line). Hence, it
is justifiable (without mathematical proof) to extend the spectrally limited solution of the (fully occupied)
stacked system with the block-diagonal solution to reconstruct the full spectrum of the original input grid.
Intuitively, this can be explained by the fact that the satellite system does not hold information above
its max. d/o, and, thus, cannot significantly influence the higher frequency information within the input
grid. Another problem when using a spectrally limited input grid is that observations on the input grid
are correlated after the spectral limitation (even if they were not before). One could theoretically use the
original covariance information (if present), however, this information probably applies only partially to the
spectrally limited grid since the modification through the spectral limitation itself is not considered in it.
Hence, introducing covariance information from the original grid is not recommended when using a spec-
trally limited version (beside the fact that handling covariance information of the spatial geographic grids
is numerically even more demanding than in the spectral domain due to the 2:1 relation of information,
see Sec. 5.1).
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(a) (b)

Fig. 5.5 – Illustration of the sparse structure of a stacked normal equation matrix consisting of a fully occupied lower
d/o normal equation matrix (up to d/o 5) and a block-diagonal higher d/o normal equation matrix (up to d/o 8). The
minimum d/o is set to 2 in the example. Different colors represent different reasons for orthogonality (cf. Sec. 2.2.1).
Blue: orthogonal due to m-block orthogonality. Green: orthogonal due to the equatorial symmetry. White: orthogonal
due to m-block orthogonality and equatorial symmetry. Red: non-orthogonal (occupied) element of the block-diagonal
matrix. Black: element of the fully occupied matrix. (a) Structure of the stacked normal equation matrix when using a
block-diagonal sorting of the elements (i.e., Stokes coefficients, sorted by sine-cosine -> order -> odd-even -> degree).
Using this sorting, the elements of the fully occupied matrix are scattered over the resulting matrix. (b) Structure of
the stacked normal equation matrix when using a so-called kite sorting of the elements (sorted by d/o≤5→ order≤5
→ sine-cosine → order → odd-even → degree). When sorting all elements which have a d/o smaller than that of
the fully occupied matrix (5 in this example) to the beginning a so-called kite matrix emerges. The kite matrix is
characterized by a fully occupied left upper block and block-diagonal right lower ’tail’. In addition, correlations exist
between the fully occupied and the block-diagonal part which are represented by the off-diagonal ’wings’ which also
show a block-diagonal structure (taken from Zingerle, 2015).

• dense modelling using empirically-derived variances: when no other error information about the input
grid is available, the errors can also be empirically estimated by evaluating the differences in the longer
wavelengths between the input grid and the satellite model. An elegant way of comparing the long
wavelength differences is found by using the aforementioned kite solution with the same satellite model:
obviously, kite solution also the converges to the block-diagonal solution above the max d/o of the satellite
model (for the same reason as the fully occupied system does, see above). Thus, when building the
difference between block-diagonal and kite solution, only the relevant long wavelength differences remain.
From this differences (in the spatial domain) an empirical standard deviation can be obtained in the same
fashion as in Sec. 4.6 (Eq. 4.19). While this method holds the advantage that the variances of the input
grid can be estimated without any prior knowledge, the obvious disadvantages are that only the error in
the long wavelengths can be estimated and that it is not possible to acquire covariance information (which
is obviously present when working with spectrally limited grids). Further, all the other previously explained
problems when working with fully occupied normal equation also apply in this case. This procedure was
used, e.g., in the processing of XGM2019 due to the lack of additional error information for the ground
gravity grid (see publication P-3 for further details such as rescaling of the empirical errors).
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The main assumption when performing a combination with a satellite model is that the satellite model contains
observations which to some extent contradict the observations within the input grid (otherwise the input grid
would not be altered through the combination with the satellite model). While this may be true for arbitrary
input grids, it is not the case in the shown holistic processing chain. To see this, one has to go back to the very
beginning of the processing (chapter 3) to look at how the SATOPv2 model (used for observation reduction)
was constructed. In fact, the SATOPv2 model already contains the satellite information to a large extent (since
the topographic model is assumed to have a very high error in the lower wavelengths, see publication P-1,
Fig. 1a, yellow curve). When reducing the SATOPv2 model from the observations and assuming that no signal
is contained in the lower degrees in the collocation (through the empirical degree variances, see Fig. 4.4b),
one basically prohibits signal to be estimated into the longer wavelengths. Hence, after restoring the SATOPv2
model, the satellite model in the longer wavelengths is still widely preserved. In fact, since the actual covariance
of (static) satellite models is, due to its nature, relatively homogeneous and also isotropic (at least when using
combined satellite models such as GOCO06s and when disregarding the polar regions) the collocation is
able to emulate the satellite’s covariance reasonably well through the used homogeneous-isotropic covariance
function induced by the empirical degree variances. Eventually, this means that the collocation itself is already
able to perform a weighted combination with the satellite model, so that a combination in the spectral domain
should be redundant, and, thus, unnecessary. Additionally, performing the combination in the spatial domain
has several advantages: firstly, it is not affected by the disadvantages of the spectral methods mentioned
above (i.e., unrealistic weighting, limited resolution, omission of covariances, problem of restoring the original
spectrum, etc.). Secondly, due the localization within the PE-LSC approach, the ’combination’ in the spatial
domain is numerically much more efficient than in the spectral domain where a ’localization’ of the problem is
not possible. Further, the combination in the spatial domain can probably be considered as more optimal than
the combination in the spectral domain since it is performed based on the original observations and not on the
already processed gridded data. At this point, one could argue that a combination in the spectral domain is still
better since the full covariance information of the satellite model can be introduced there. However, as shown
in publication P-4, in the course of the collocation it is also possible to introduce the correctly propagated (into
the spatial domain) covariance information from SH models if one finds that assuming homogeneous-isotropic
covariances for describing the model’s performance is insufficient.

Application - the SGDTv1 model. As argued above, for the gridded GRAV-D dataset it is assumed that it
already contains a suitable combination with the GOCO06s satellite model, which is seen as identical or even
superior to what a combination in the spectral domain could achieve. Though, in some cases, the collocation
is also able to produce erroneous long-wavelength patterns in the result (e.g., if unexpected offsets or similar
is present in the observations, see below). In order to check whether the collocation worked as expected and
that the gridded GRAV-D dataset does not contain significant differences to the satellite model in the longer
wavelengths, a kite solution as explained above is calculated. Within this solution the GOCO06s satellite model
is introduced as fully occupied NEQS up to d/o 320, converted into the spheroidal harmonic system referring
to the TOPEX/POSEIDON spheroid (short T/P spheroid, see AVISO, 1996). The GRAV-D dataset is intro-
duced as 1’ grid of gravity disturbances on the surface of the T/P spheroid (by synthesizing the SGDTv1(BD)
model to this surface). For the weighting of the grid’s observations a latitude-dependent standard deviation
of 15 mGal/ sin θ is used, which should correspond to an error of 3 mGal on the equator regarding a 5’ grid
(which represents the actual target resolution of GRAV-D). The difference between SGDTv1(BD) and the kite
solution is depicted in Fig. 5.6. Fig. 5.6a shows that the differences are mostly well below 1 mGal and only
exceed 1 mGal in some few exceptional locations. These differences are remarkably small when consider-
ing the fact that GRAV-D observations have an assumed accuracy of 4 mGal. This result basically supports
the assumption that the collocation is able to perform an appropriate combination with the GOCO06s satellite
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(a)

(b) (c)

Fig. 5.6 – Result of the kite combination of the collocation result with the GOCO06s satellite model (i.e., the SGDTv1
model, see Sec. 5.3 for the detailed setup). (a) Difference between the original block-diagonal solution (SGDTv1(BD),
cf. Sec. 5.2 and Fig. 5.4) and the kite solution (SGDTv1). (b) Same differences as in Fig. 5.6a in terms of Stokes
coefficients in the spheroidal harmonic domain visualized as coefficient triangle (negative orders correspond to sine-
coefficients) up to d/o 300 (coefficients above d/o 300 strongly converge towards zero). (c) SGDTv1 in terms of
degree amplitudes (i.e., square root of degree variances) regarding gravity disturbances. Blue line: full signal of the
kite solution (SGDTv1). Orange line: Difference between kite solution and block-diagonal solution (cf. Fig. 5.6a and
5.6b). Yellow line: formal error of the kite solution. Solid violet line: redundancy component of the GOCO06s normal
equation part. Dashed violet line: redundancy component of the block-diagonal normal equation part.
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model. However, when inspecting the difference further (in terms of degree amplitudes, see Fig. 5.6c), one
can see that the majority of the discrepancies (orange line) are spectrally located below the transition band
(where the violet lines cross). This implies that those discrepancies can be attributed to the aforementioned
erroneous long-wavelength patterns induced by the collocation (since the GOCO06s model should be very
accurate in the longer wavelengths, see yellow line). An additional hint that this error is induced by the colloca-
tion is provided by the fact that the differences in the spatial domain (Fig. 5.6a) correlate to some degree with
the observation errors from the collocation (cf. Fig. 4.12a.) Consequently, by using the kite solution instead
of the block-diagonal one, these erroneous patterns can be widely corrected. Thus, it is decided to redeclare
the final SGDTv1 model to be the kite solution. Since the differences between block-diagonal solution and kite
solution are already very small, calculating an individually weighted (fully occupied) combination is considered
unnecessary (see above for the arguments).

Conclusions and outlook. Somewhat surprisingly, it has been shown that it is evidently better (due to the
aforementioned reasons) to trust the collocation with the weighted combination between satellite information
and ground data. This is in contrast to earlier paradigms where it has always been assumed that for global
gravity field modelling the combination with the satellite model has to be performed in the spectral domain (see,
e.g., Pavlis et al., 2012, Fecher, 2015 or Pail et al., 2018). However, this study indicates that the combination
in the critical spectral transition band can also be handled very well (or even better) by the collocation and that
the longer wavelengths (which are difficult to catch for PE-LSC) can efficiently be corrected (if even necessary)
by a kite combination with a satellite model. Note that for this corrective kite combination it is important to
set the weighting of the collocated observations (i.e., the block-diagonal system) high enough so that the
shorter wavelengths (which are assumingly estimated correctly through the collocation) are not impaired by
this correction which should just affect the longer wavelengths.

The reasons why the collocation estimates signal into the longer wavelengths even if the respective degree
variances (covariance function) do not foresee it is not yet conclusively clarified. One explanation may be
that long-wavelength signal in the residuals (e.g. an offset) is generally not expressible through a local
system, and, hence, causes the error. Another explanation is that perhaps every larger deviation from the
assumed statistics (e.g., an outlier) causes a certain stress to the system which may manifest itself as a
longer-wavelength pattern in the result. In case of PE-LSC it is also possible that the localization (through
damping of far-off observations) has a certain influence on the longer wavelengths (although in the AntGrav
project, see publication P-2, it has been shown that the effect is more positive than negative since the clas-
sical LSC tends to ’overshoot’ in observation-free regions). Eventually, it can be stated that this problem is
mainly confined to areas where observations do not follow the covariance function. Thus, by checking the
observations carefully before and after the collocation (see Secs. 3.3, 4.6), a lot of problems which cause
the deviations (such as offsets, long-wavelength residuals and outliers) can be sorted out. For the GRAV-D
example, this error can be considered as small (see Fig. 5.6) since the observations have already been al-
ready checked for the mentioned problems beforehand and can be assumed free of serious flaws (with a few
exceptions).

At this point, the end of the holistic processing chain has been reached with the kite solution (the SGDTv1
model, cf. Fig. 5.6) as final outcome. In addition to the model itself also spatial covariance information (at
least for a local surrounding) can be provided (as additional outcome of PE-LSC). The kite solution also pro-
vides variances for the estimated coefficients, although they are considered as not very accurate (due to the
unrealistic weighting of the block-diagonal system there). Thus, for users it is suggested to use the covari-
ance information from the PE-LSC method. Although the processing is finished, in the scope of the holistic
approach one still has the possibility to iteratively restart the whole procedure by replacing the reduction model
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from Sec. 3.1 (i.e., the SATOP model) with the final kite solution (the SGDTv1 model in this case). Using the
final model should result in much smaller residuals (cf. Sec. 3.3, Fig. 3.3a) which can be treated as suggested
in Sec. 4.6. In fact, starting the iteration from this last point of the processing chain is an alternative to starting
the iteration already after the collocation. The difference is that if the collocated observations show long-
wavelength ’errors’, these ’errors’ are reintroduced in the residuals if not corrected through the kite model. In
case that these long-wavelength errors were already in the initial observation residuals and are just propagated
by the collocation, they will more or less cancel out in the residuals of the second iteration (but not when using
the kite solution). In case that these errors were artificially produced by the collocation itself, they will be added
in the residuals of the second iteration (in contrast, when using the kite solution, they will be corrected). Hence,
it depends on the individual circumstances which iteration approach is to prefer (if an iteration is even needed).
As shown in Sec. 4.6, in the course of the GRAV-D case study a second (or maybe even third) iteration is
perhaps appropriate due to the stronger differences in the covariance function among different terrain types,
which cannot be modeled in a single iteration through a single homogeneous-isotropic covariance function.
Since for SGDTv1 the modifications through the kite solution are very small, it does not matter if the iteration
is performed based on observation errors (after the collocation) or based on a new reduction model (available
after the kite combination).

5.4 External validation of SGDTv1

Outline. For completeness (and in brevity), it shall be shown how a final EGGM can be validated through exter-
nal data sources and how the model can be benchmarked against other competing EGGMs. Generally, there
are plenty of possibilities to do so, and it is not feasible to state a complete list of methods here. However, it is at
least possible to identify two main classes of methods which are commonly used:

• model-to-data comparison: this class of validations aims to compare the model against other reference
data (i.e., gravity field observations or data derived from such observations), which may be dependent
(if already included in the modelling) or independent of the model. In the simplest case the SH model
is synthesized to the observation’s functionals, and, the residuals are investigated in the following (e.g.,
spatially or statistically). For instance, the inspection of the residual observations (see Sec. 3.3) would
fall into this category. In more complicated cases, a further processing of the synthesized data and/or
the reference data might be necessary (e.g., when performing orbit fits with the model, see for instance
Gruber et al., 2011, comparing with drifter data, see Siegismund, 2020). All in all, it can be stated that
the quality of the final assessments is governed by (1) the quality of reference data, (2) the independence
of the reference data to the model, and (3) the sensitivity of the method/functional to the spectral bands
of interest.

• mode-to-model intercomparison: when reference data (see above) is available in form of another (com-
peting) SH model, a validation (i.e., intercomparison) between both models in the spectral domain is
possible. There, coefficient differences are either investigated directly or in a statistical way (mostly in
terms of degree variances or similar). In the scope of this thesis such comparisons have already been
performed, e.g., in Fig. 5.6b or 5.6c. As in the model to data comparison case, the quality of the final
assessments is driven by the (1) quality of the reference model (in the spectral bands of interest), and by
(2) the independence to the model to validate (in the spectral bands of interest). While with this kind of
spectral validations the global performances (differences) can be quantified very well, it is not possible to
draw conclusions about the spatial distribution (patterns) of the observed deviations. However, with two



5.4 External validation of SGDTv1 79

(a) (b)

(c) (d)

(e) (f)

Fig. 5.7 – RMS of GNSS/levelling comparisons for different EGGMs regarding their maximum spectral resolutions
in different states of US (see Gruber & Willberg, 2019 for more details on the processing and ICGEM for details
on the different models). (a) RMS for the South Carolina dataset. (b) RMS for the Texas dataset. (c) RMS for the
Massachusetts dataset. (d) RMS for the Florida dataset. (e) RMS for the Puerto Rico dataset. (f) RMS for the Arizona
dataset.
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Fig. 5.8 – Difference between the SGTDv1 model and XGM2019 (see publication P-2) up to d/o 719 in terms of gravity
disturbances and on an ellipsoidal height of 6 km.

SH models it is always possible to perform a synthesis and to inspect the patterns in the spatial domain
(would then again correspond to a model-to-data comparison, see above).

Application. For the external validation of the SGDTv1 model a spectral model-to-model intercomparison
seems inappropriate; The performance of SGDTv1 can obviously not compete with other models on a global
scale, because ground data is just introduced where GRAV-D observations are available. It is therefore
decided to stick to comparisons in the spatial domain. For SGDTv1, two different comparisons are per-
formed:

In a first validation, the SGDTv1 model is used to generate physical heights used to build residuals to available
datasets in different US states. The obtained residuals are then compared to other available competing EGGMs
(taken from ICGEM) up to various maximum spectral resolutions to draw conclusions on the performance of
SGDTv1. For an explanation of the detailed procedure, please see Gruber & Willberg (2019). The results are
depicted in Fig. 5.7. Evidently, SGDTv1 shows a good performance in states which are generously covered
by GRAV-D data (with an appropriate buffer, see, e.g., Fig. 5.7a-d) and deteriorates in states which are only
partially covered (e.g., without the needed buffer, see Fig. 5.7e) or not covered at all (e.g., Fig. 5.7f). Generally,
it shall be noted that this test is disadvantageous for the SGDTv1 model since for the generation of physical
heights it is needed to perfom: (1) a field transformation (since the original data is provided in terms of gravity
accelerations), and (2) downward continuation to the topography is necessary (since GRAV-D observations
are recorded at a mean flight altitude of 6 km). With this, SGDTv1 is at a clear disadvantage compared to other
EGGMs which, e.g., contain terrestrial observations (on the topography) or already include physical heights
in the modelling. Additionally, the patch-wise coverage of GRAV-D observations is a further handicap since
then, the longer wavelengths cannot be determined as stable, which deteriorates the downward continuation
as well as the field transformation (which is why a sufficiently larger buffer of observations is necessary). This
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probably explains the visible deviations and oscillations of the SGDTv1 model above d/o ∼200 (see, e.g.,
Fig. 5.7c). Even with these drawbacks though, the model generally seems to outperform its competitors in
well-covered states.

In a second examination, SGDTv1 is compared to the XGM2019 model (see publication P-3). Up to d/o 719,
XGM2019 is composed of the same satellite model (GOCO06s) and a precompiled ground-gravity dataset
provided by courtesy of the NGA. While the processing details and exact data composition of this NGA dataset
is unclear, it is known that it contains also GRAV-D data (though not all GRAV-D blocks, because the available
dataset was compiled 2017, see Pail et al., 2018). Thus, when comparing XGM2019 to SGDTv1 up to d/o
719, only small-scale differences are expected since similar data sources are included. These are visualized
in Fig. 5.8 (up to d/o 719 and on a height of 6 km). It is evident that especially in flat regions (basically eastern
part of the US) the model differences are really small (mostly below 1 mGal), and that the differences constitute
only max. a few mGal in montaneous regions (still in the range or below the assumed accuracy of GRAV-D)
where GRAV-D data is present in both models. This is a strong indication that no severe processing errors have
orccured in the processing of either model. Further no long-wavelength residuals (in the range of the GOCO06s
model) are discernible, which basically cross-validates both combination methods (LSC+kite vs. weighted SH)
and underlines the assumptions made in the previous Sec. 5.3.

Comments. Although the performance of SGDTv1 can compete with other EGGMs in areas with GRAV-
D data coverage, the model was neighter designed for maximum performance, nor has was it designed for
publication in general. SGDTv1 shall therefore be interpreted as proof of concept for the holistic processing
approach. For instance, the final model performance could have been greatly improved (especially in the border
regions to areas without GRAV-D data coverage) if instead of the SATOP model a better performing EGGM
had been chosen (e.g., XGM2019e). However, this variant was rejected, because otherwise the observations’
independence to the reduction models would have been lost. As already mentioned, such dependencies
would have been unfavorable in the course of the validation of the observations (Sec. 3.3). At a point where
the observations are validated though, it would be a feasible option to replace the SATOP model with another
(well performing) EGGM (with the limitation that this EGGM shall contain the same satellite model as used in
the context of the final kite combination).
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Chapter 6

Conclusions, outlook and final thoughts

Summarizing this thesis, in Chaps. 3-5 it has been shown how an integrated gravity field processing approach
can help improve SH-based gravity field models, thereby fulfilling objective O-2 of this work (presentation of
a holistic approach, see Sec. 1.1). By presenting the holistic processing approach, several innovations were
introduced, starting with the SATOP model (Sec. 3.1), followed by the thinning procedure (Sec. 4.1), the es-
timation of empirical degree variances (Sec. 4.3), the partitioning/localization through the PE-LSC method
(Secs. 4.4, 4.5), and, last but not least, the findings regarding the gridded SH analysis (Secs. 5.1, 5.2) and
combination strategies (Sec. 5.3). The sum of these innovations represents the completion of objective O-1
(improvement of methodology). Additionally, in every section in which a method is explained, also an out-
look is provided which may serve as a starting point for further improvements or which shows possible lim-
itations of the current implementation. With that, also the last main objective O-2 (identifying limitations) is
covered.

On the example of applying the holistic processing approach on the continent-scale GRAV-D dataset also the
correct functionality of the proposed methods has been verified: it has been shown that (1) the approach is
applicable on a nearly unlimited number of observations while staying within a feasible processing time (if the
point density is not too high, cf. Secs. 4.1, 4.4, 5.2), and (2) the approach yields a correct result which which
can match or even outperform competing models (resp. modelling techniques, see Sec. 5.3). However, pro-
cessing a single continent-scale dataset is not the final aim of the presented holistic approach, but only a basis
for its actual purpose, namely, a global-scale application on a multitude of datasets with varying properties
(e.g., functional, accuracy, density, height, etc.). In fact, by using the localized PE-LSC method (Chap. 4) all
the varying datasets can be integrated in a single modelling step into a seamless global grid without limitation
to a local region (or a maximum number of observation points). Subsequent to the localized modelling, also
the global modelling (Chap. 5) would greatly benefit from a scenario with global data coverage. The global per-
formance of a resulting model (e.g., in terms of degree variances) would strongly improve since it wouldn’t rely
on the reduction model anywhere. Recognizing that having a global coverage of ground observations would
be the ideal case, it has to be noted that at the time of writing (ground) gravity observations are still considered
proprietary by many countries and individuals (probably due to economic or military reasons). As long as this
situation remains unchanged, even the most advanced processing strategy can only provide a limited improve-
ment of the final result (i.e., the SH model in this case). On the other hand, if a global observation coverage
were available, with the presented processing chain it should be straightforward to derive an initial global SH
model and to easily maintain it by updating the underlying data base.

While the limitations on the individual parts of the processing have already been discussed in the respective
sections, at this point it might be appropriate to address (again) an inherent limitation of the procedure: the use
of spherical resp. spheroidal harmonics in general. As already pointed out in Sec. 2.1.2 and 5.2, the SH series
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expansion is generally divergent when introducing (1) a height component and (2) high-frequency signal. When
dealing with high-resolution gravity field modelling of the Earth, both these issues (different heights and high-
frequency signal) inevitably arise due to the Earth’s topography, since (1) elevations obviously cause different
heights, and (2) vertical slopes, for instance, induce infinitely high frequencies). Eventually, this means that an
evaluation (i.e. analysis or synthesis) of the SH model below the sphere/spheroid of convergence (see Sec. 5.2,
Hirt & Kuhn, 2017 or Bucha et al., 2018) becomes more and more problematic with increasing degree of the
signal as well as with a larger downward continuation. As pointed out in Sec. 2.1.2, for the Earth, a max.
d/o of ∼5400 might be a reasonable compromise (when using double-precision arithmetic) between numerical
stability and achievable resolution (note: an additional factor which can further worsen the result, but will not
be further discussed in this thesis, are truncation errors of the SH series which also play a prominent role when
dealing with high-resolution SHs). A max. d/o of 5400 corresponds to roughly ∼4 km spatial resolution. This is
well above, e.g., the wavelength of valley-mountain structures of common mountain ridges, and, thus, misses
a crucial part of the actual ultra-high-frequency (mostly topographically induced) signal of the Earth’s gravity
field. As of now, it is not predictable that such structures (with wavelengths down to a few hundred meters)
can be resolved using SHs in the near future, since the mentioned divergence effect grows exponentially with
respect to the max. degree. This leads to the final question of whether SHs are generally suited as stand-
alone representation form for future ultra-high-resolution gravity field models which try to incorporate these
wavelengths. The short answer to this question is probably no. SHs can be considered as unsuitable for the
application in the ultra-high-resolution regime and below the sphere of convergence because the numerical
problems (divergence but also the numerical complexity of the synthesis) greatly outweigh all of the SHs’s
advantages in the longer wavelengths (e.g., when applied for satellite models). Hence, the shown processing
approach (especially, the SH global modelling part, Chap. 5) must be interpreted as a demonstration of what
is possible in the context of the SH modelling environment (see ICGEM, 2019), but has to be complemented
by other tools in the long term when aiming to further increase the resolution. For the general application of
SHs, an inherent limit regarding the spatial and spectral resolutions is reached which cannot be overcome
through simple methodological improvements. Therefore, a fundamentally different form of representation
(other than SHs) is required for describing the ultra-high-frequency features of the gravity field near or on the
topography.

In conclusion, the presented holistic SH modelling approach has been proven to work properly up to a certain
resultion and is able to integrate heterogeneous observations of the Earth’s gravity field accurately and con-
sistently. For the description of shortest wavelengths, however, different modelling approaches are preferrable,
which do not rely on reference surfaces other than the body’s topography (to avoid downward continuation).
Consequently, all currently available spectral methods (like SH transform, Fourier transform, wavelets, etc.)
cannot be seen as qualified to form the basis for such models. This basically restricts the search for future
alternative approaches to the spatial domain. Spatial methods (except collocation) are characterized by the
fact that they try to directly model the masses responsible for the gravity signal. An important class of such
spatial methods are radial basis functions (see, e.g., Marchenko, 1998, Schmidt et al., 2007) where mass-like
’objects’ located at various locations are modelled to describe the gravity signal. While those methods usually
do not have numerical problems with downward continuation (or more specifically upward continuation in this
case), a crucial, yet unsolved difficulty lies in the choice of a suitable amount of ’objects’ and the choice of
their corresponding locations. A wrong choice may easily lead to an overfitting (or underfitting) of the given
gravity field data, so that the radial basis functions may perfectly fit the observations, but fail to describe the
gravity field signal elsewhere. Additionally, as of now, radial basis functions usually do not directly take ben-
efit from topographic information (beside RCR techniques, see, e.g., Liu et al., 2020), which means that they
are hardly able to reconstruct gravity field signals induced by a complex topography on small spatial scales
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(e.g.,mountains, cliffs, canyons, etc.). In contrast to radial basis functions, the method of topographic forward
modelling (see, e.g., Hirt & Kuhn, 2014) takes full advantage of topographic information and is able to prop-
erly describe the aformentioned small-scale structures which dominate the shorter wavelengths of the Earth’s
gravity field signal. However, since topographic forward modelling usually uses constant density assumptions,
the actual gravity signal can only be roughly approximated.

Recognizing the strengths and the weaknesses of both spatial approaches (radial basis functions and topo-
graphic forward modelling), a combination of both methods might be a viable alternative for future ultra-high
resolution gravity field models. More specifically, the geometric ’objects’ used within radial basis functions might
be set as the polyhedra defining the Earth’s topography. For these polyherda, individual (vertically constant)
’densities’ (i.e., weights) can be estimated which fit the given observations. This way, one could fully benefit
from the available topographic information while removing the uncertainties of static density assumptions (of
the topographic modelling) and the problem of the choice of amount and location of radial basis functions.
To reduce the computational effort, ’densities’ (weights) could be estimated in a reduced resolution on an in-
terpolated grid and the topographic data could be evaluated on a multi-resolution grid (e.g., Hirt et al., 2019)
depending on the distance to the observation. Further, some additional regularizations could be defined re-
garding the ’density’ (e.g., smoothness) which should stabilize the estimation even in case of a sparse data
coverage. In such an approach, the longer wavelengths could still be reduced by means of a SH model (SGGM
or EGGM) to spatially decorrelate the problem and to shift the estimation to residual ’densities’. Similar studies
linked to this subject already exist in the field of geophysical gravity inversion where one tries to constrain
density models to, amongst others, given gravity field observations (see, e.g., Sambridge & Mosegaard, 2002).
The idea of using voxel models which is related to the idea of using polyhedra has already been examined, for
instance, by Fuchs (2015). However, the mentioned studies mainly focus on local (3D) applications, they do
not aim to provide a general descirption of the gravity field and on a global scale in the first place. Also, the
previously proposed strategy is neither implemented nor investigated in any way in the scope of this thesis.
So, even if the suggested method should not be applicable for any so far undiscovered reason, this discussion
should have revealed that for ultra-higher-resolution applications SHs need a companion to describe the short-
wavelength structures of the Earth’s gravity field and that there is much room for innovative ideas here which
only wait to be investigated...
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1 Introduction
An accurate and consistent knowledge of the gravity �eld
in Antarctica is crucial for many geophysical applications
and thus also for a better understanding of the geologi-
cal structures of the continent. In order to achieve this ob-
jective, Scheinert et al. (2016) presented a �rst continent-
wide collection of gravity �eld observations within the
AntGG grid, containing a majority of all accessible mea-
surements. In concrete, more than 13 million observa-
tions collected over the past decades covering about 73%
of the continent are included in the AntGG processing.
These measurement campaigns have been performed by
many di�erent countries using di�erent measurement
techniques and analysis methods. Thus, the entire collec-
tion of gravity observations is largely heterogeneous re-
garding:
– Spatial distribution: di�erent campaigns may show

di�erent spatial distribution patterns. As an example,
airborne campaigns usually have a high resolution in
the along-track direction, while the cross-track resolu-
tion mostly depends on the airborne campaign goals
(e.g. grid- vs. star-shaped). Terrestrial observations on
the other hand may show no clear pattern at all in-
cluding larger data gaps or even having just a one-
dimensional extent along a pro�le line.

– Observation type: as the earliest campaigns date
back to a time before global navigation satellite sys-
tems became available, the observed data had to be
processed in terms of gravity anomalies using physi-
cal heights, as ellipsoidal heights were more di�cult
to obtain. In contrast,modern airborne campaigns ob-
servations are usually processed using gravity distur-
bances and ellipsoidal heights.

– Post-processing: depending on the campaign, the
available input datasets may have already been post-
processed beforehand, meaning that one may be un-
able to reconstruct the raw observation data. This im-
plies that inconsistencies made in the post-processing
chains of di�erent surveys are di�cult to undo, es-
pecially since the metadata describing the processing
strategies is often missing. The most common post-
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processing steps of the observations in the datasets
are gridding and reduction to a reference surface (e.g.
ellipsoids, o�set-ellipsoids).

– Accuracy: the observation accuracy obtained by dif-
ferent campaigns can also be heterogeneous, as
it depends on instrumentation, transportation of
the instruments and the possibly inaccurate post-
processing.

– Spectral content: regarding the spectral content of
the data one also might observe varying behavior, es-
pecially in the higher frequency domain. This can be
attributed tomultiple reasons. E.g., whendealingwith
airborne gravity observation one must keep in mind
that due to �ight dynamics and limitations of the in-
struments the rawmeasurement data needs to be low-
pass �ltered down to several km wavelength. Also,
it is possible that during further postprocessing (e.g.
gridding, collocation) the data may have already been
spectrally limited.

As the aim of the AntGG grid is primarily to represent
the available gravity �eld information, no in-depth eval-
uation or homogenization of these datasets has been per-
formed so far. To tackle this circumstance and the fact that
new gravity data is available by now the German Research
Foundation (DFG) funded the so-called AntGrav project as
part of which this study is performed. The main purpose
of this project is to compute an optimally combined grav-
ity model from satellite and ground data for the Antarctic
continent. From this dataset amodel of the bedrock topog-
raphy shall then be derived bymeans of geophysical inver-
sion.

For the targeted combination of gravity datasets re-
liable knowledge about the actual accuracy and spectral
content of individual measurement campaigns is required
as well as the possibility to detect larger outliers and sys-
tematic e�ects. Thus, an adequate evaluation method is
needed, which is applicable on the wide range of di�er-
ent survey campaigns available in Antarctica. Themethod
shall therefore meet the following criteria:
– Consistency: the method shall be able to inspect all

di�erent kinds of campaigns independently of their at-
tributes and with unvarying evaluation quality.

– Independency: the evaluation method shall not be
correlated to the actual measurements (subject of ex-
amination) allowing to make assessments about their
correctness.

– E�ciency: asmillions of datapoints need to be evalu-
ated, the evaluation method shall be fast and e�cient
w.r.t. computation time and memory consumption.

– Correctness: obviously, the evaluation method shall
be as correct as possible by itself.

The technique presented in this studywill attempt to prop-
erly ful�ll all these demands. To accomplish this, wemake
use of:
– a preexisting gravity �eld model: reducing gravity

�eld information from a preexisting model and study-
ing residuals is a feasible (and always applicable)
method to examine gravity �eld observations. Such a
gravity �eldmodelmust be as independent and as cor-
rect as possible as well as o�er the highest possible
resolution. Further, it shall be given in the spectral do-
main in order to address the consistent adaption on
di�erent observation types (e.g. gravity anomalies and
disturbances).

– a fast synthesis method: having gravity �eld infor-
mation in the spectral domain, the transformation to
the spatial domain (synthesis) is a time-consuming
task when dealing with large scattered point datasets.
To reduce computation time, it is proposed to apply a
two-step synthesis method, where in a �rst step grav-
ity �eld information is pre-calculated on regular geo-
graphic 3D grids and then in a second step interpo-
lated on the individual scattered point positions.

In section 2 the used gravity �eld model SATOP1 is de-
scribed inmore detail, as it is generated speci�cally for the
purpose of evaluation. Section 3 describes the synthesis
method with all its characteristics. Subsequently, within
section 4 the newmethod is applied to examine the AntGG
grid. Finally, in section 5 examination results for two se-
lected in-situ measurement campaigns are presented.

2 The SATOP1 gravity �eld model
As explained in section 1, an independent gravity �eld
model shall constitute the basis of the evaluation method.
To be truly independent, the model shall not contain any
of the observations being evaluated. In the case of Antarc-
tica, thismeans that no terrestrial gravity �eld information
at all is to be included, because observations over Antarc-
tica are generally sparse (and barely overlapping) and are
target of the inspection itself.

Thus, the only available data sources left are satel-
lite models as well as topographic forward models. Both
sources show complementary spectral behavior: satellite
models are very accurate in the low frequency domain but
worsen with increasing resolution due to signal attenua-
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tion of the gravity �eld with altitude. Topographicmodels,
on the other hand, donot include lateral density variations
or isostatic e�ects, which leads to a decreased accuracy es-
pecially in the low frequency domain (cf. Fig. 1). Because
of these complementary characteristics it is logical to use
both data sources in a combined (SA)tellite-(TOP)ographic
model (hence called SATOP1).

For the combined model SATOP1, the satellite model
GOCO05s (Mayer-Gürr, 2015) and the EARTH2014 (Rexer et
al., 2016) topographic model are chosen (up to d/o 5480),
as both models include actual data sources and are based
onmature processing techniques. As an optimal combina-
tion method, a variance-based stacking on normal equa-
tion level in the spectral domain is applied, similarly to
the model SatGravRET14 (Hirt et al., 2016). This strategy
can be interpreted as regularization of the satellite system
with the topographic model as a-priori information. Math-
ematically, the combination can be described as:

xSATOP1 = CSATOP1

(
qGOCO05s + diag

(
var−1

EARTH

)
xEARTH

)

(1)

with

CSATOP1 =
[
NGOCO05s + diag

(
var−1

EARTH

)]−1
(2)

where NGOCO05s is the normal equation matrix and
qGOCO05s is the right-hand side of the GOCO05s model,
xEARTH represents the coe�cients and varEARTH the vari-
ances of the EARTH2014 model, and �nally, xSATOP1
describes the resulting SATOP1 model coe�cients and
CSATOP1 the corresponding covariance matrix.

Within the processing of SATOP1, the choice of a re-
alistic variance for EARTH2014 (varEARTH) is crucial, as it
controls the spectral transition from the satellite to the to-
pographicmodel. Since topographic forwardmodelling as
used in EARTH2014 does not provide any statistical mea-
sures for its result, one has to �nd a di�erentmethod to de-
rive model variances. For SATOP1 it is assumed that those
variances are mostly degree-dependent and hence can be
simpli�ed to degree-variances (no order dependency). The
degree-variances are then derived empirically from the
comparison to another independent model. In this case,
XGM2016 (Pail et al., 2018) is used:

varEARTHl ∼
l∑

m=−l

(
cEARTHlm − cXGMlm

)2

2l + 1 (3)

and cXGMlm denote the spectral coe�cients of the
EARTH2014 resp. XGM2016 models, with degree l and
order m (negative orders indicate sine-coe�cients). The
spectral characteristics of the models and the empirical

variances are visualized in Fig. 1a in form of gravity
anomaly degree-RMS.

(a)

(b)

Figure 1: Spectral characteristics of SATOP1 (in spheroidal-harmonics
at 4 km altitude): (a) degree-RMS of the satellite band in terms of
gravity anomalies. Dark blue: signal of SATOP1, orange: formal er-
ror of SATOP1, yellow: empirical error EARTH2014 (for regularization),
violet: di�erence EARTH2014-SATOP1, green: di�erence XGM2016-
SATOP1, light blue: SATOP1 cumulative formal error. (b) SATOP1 error
estimate in termsof gravity anomalies. Yellow: signal of SATOP1, light
blue: empirical error of SATOP1 (XGM2016-SATOP1), green: SATOP1
cumulative empirical error, violet: cumulative SATOP1 signal (unre-
duced), dark blue bars: aggregated SATOP1 errors within depicted
bands, orange bars: percentage of SATOP1 band signal reduction
(refers to right axis).

In contrast to preceding strategies (Hirt et al., 2016)
the combination of SATOP1 is performed purely in a
spheroidal-harmonic domain adopting the GRS80 refer-
ence system (Moritz, 1980, 2000) - all items in Eqs. (1), (2)
and (3) are given w.r.t. this domain. To accomplish this,
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Jekeli’s transform (Jekeli, 1981) is applied in a preceding
step to transform all input quantities into the spheroidal-
harmonic domain. Performing the degree-variance-based
combination within this domain is preferred, since the
coe�cient smearing (=correlation) between adjacent de-
grees (as implied by Jekeli’s transform) on (or near)
spheroidal surfaces is reduced. A second and perhaps
more important advantage is, that due to the same reason,
spectral band cuttings in the spheroidal domain do not
lead to truncation artefacts as e.g. seen inEGM2008 (Pavlis
et al. 2012)when omitting its highest degrees (e.g. d/o 2160
upwards).

Thus, the investigation of di�erent spectral bands in
the spatial domain (on or near the spheroid) is reasonable.
For the following synthesis six (spheroidal) spectral bands
([2-200], [201-359], [360-719], [720-1439], [1440-2159], [2160-
5480]) are selected. The �rst limit is chosen, as it repre-
sents an empirical upper boundary for a (nearly) satellite-
only solution, the latter limits correspond to spatial reso-
lutions commonly used in global gravity �eld modelling.
To be compatible with the spherical harmonic de�nition
of di�erent gravity �eld functionals, the speci�c bands are
truncated in the spheroidal harmonic domain and then
transformed into the spherical harmonic domain (Jekeli,
1981) for an ordinary synthesis.

Error estimations of the di�erent spectral bands (com-
mission errors) are shown in Fig. 1b: they are derived
in the same way as the formal errors of the EARTH2014
model by comparing SATOP1 against XGM2016 extended
by EGM2008 from d/o 720 up to 2159. Due to lack of in-
dependent comparison data, errors above d/o 2159 are ex-
trapolated. As expected, the largest contribution to the
commission error (at a simulated �ight altitude of 4 km)
occurs in the lowest topographic band (between d/o 201
and 719). While the estimated percentage of signal reduc-
tion stays widely stable (at about 60%), the gravity �eld
signal, and thus also the commission error, is attenuated
with increasing d/o.

3 The AGRID3D synthesis method
Performing a spherical harmonic synthesis up to d/o 5480
is a CPU-intensive task, especially when dealing with scat-
tered points, as Legendre polynomials need to be recalcu-
lated for every single observation. As pointed out in the
introduction, a two-step synthesis may be better suited for
the purpose of evaluating big data volumes.

Firstly, it exploits the advantage of regular grid syn-
thesis, where Legendre polynomials are only evaluated in-

dividually for di�erent latitudes, but not for every single
point (Sneeuw 1994). Thus, a geographic grid has to be
chosen as a base grid, because polar stereographic grids,
for instance, would feature varying latitudes for each grid
point.

Secondly, due to the fact that the minimal wavelength
is known to be limited (d/o 5480 corresponding to 2’ spa-
tial resolution), a 2-times oversampled grid is also known
to give good interpolation results, as it ful�lls the Nyquist-
Shannon sampling theorem (Shannon 1949). Having a pre-
calculated grid at hand, the computation time of the syn-
thesis problem scales linearly w.r.t. the number of points
being interpolated and is in contrast to the rigorous syn-
thesis (nearly) independent of the maximum d/o (i.e. the
number of support points).

Even though other methods exist for the upward con-
tinuation of the gravity �eld besides 3D interpolation
(e.g., Rapp (1997), Ivanov et al. (2018)), this method is
favourable as it is simple, robust, very fast, and the accu-
racy of the result is independent of the distance to the sur-
face (cf. subsection 3.2).

3.1 Properties and components of AGRID3D

The �rst step of the two-step synthesis is the calculation
of the regular 3D grid. The dimension of the grid has to be
chosen in a way which ensures that every point to be val-
idated is located safely within the grid boundaries. The �-
nal AGRID3D properties can be summarized as follows (cf.
Fig. 2):
– Grid extent: in longitudinal direction the grid ranges

from 0◦ to 360◦, in latitudinal direction from −60◦ to
−90◦, and in vertical direction from −1 km up to 6 km.
On every periodic limit, the grid was extended by 5
cells to avoid increasing interpolation errors near the
boundaries.

– Grid resolution: in order to ensure that the spherical
grid is oversampled a least twice, a latitudinal sam-
pling of 1’ is chosen. Adapting to meridian conver-
gence, the longitudinal sampling is reduced to 2’ at
−60◦ lat. and 4’ from ~ −75.4◦ southwards. This re-
duces the grid size andhence savesmemory space. For
the vertical component, a constant spacing of 200m is
selected empirically.

– Spectral bands: to enable also a spectral evaluation,
6 distinct grids are calculated for the di�erent spectral
bands as de�ned in section 2.

– Gravity �eld functionals: as all observation data of
the AntGG dataset (Scheinert et al. 2016) are given ei-
ther in the form of gravity anomalies or gravity distur-
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bances, dedicated sets of grids are calculated for these
two functionals.

Figure 2: Visualization of the grid properties of the AGRID3D dataset.
Notes: 1. Meridian convergence is considered. 2. Limits are extended
to simulated periodicity. 3. 2x Nyquist-frequency (for d/o 5400) is
guaranteed.

One complete 3D-grid (from −60◦ to −90◦) has there-
fore a memory size of∼ 4.1 GB (in double precision). This
marks also the recommendedminimumRAM requirement
of a system to performan interpolation based onAGRID3D.
Since di�erent grids are needed for the spectral bands (6x)
and gravity �eld functional (2x), the overall size of the
complete AGRID3D dataset is∼ 49 GB.

The computation of the grid itself is performed on re-
sources of the Leibniz Computing Center (LRZ). For the
stable calculation of the Legendre polynomials, methods
based on extended numbers (Fukushima, 2012) are used.

3.2 Interpolation performance

Based on the resulting AGRID3D dataset, the gravity val-
ues at arbitrary points within the extent of the grid are
obtained by interpolation. Within this study, a common
(tri-)cubic interpolation approach (Lekien and Mars-
den, 2005) is used, as it shows good performance (cf.
Fig. 4) while keeping memory requirements and calcula-
tion costs low. Before those interpolated points can be
used as evaluation reference, it must be veri�ed that the
interpolation method is accurate and in agreement with a
rigorous direct scattered point synthesis.

To prove the correctness of the interpolation method
itself (as required for the purpose of evaluation), it is pro-
posed to simulate a worst-case scenario, where all inter-
polated points are located at the maximum distance cen-

tered between the support points (cf. Fig. 3a). This leads
to a validation grid which is shifted by half the grid spac-
ing in all three directions relatively to AGRID3D. This vali-
dation grid is then evaluated with two di�erent strategies:
�rst, the SATOP1model is synthesized rigorously to get ref-
erence values (using all bands, d/o 2-5480). Second, the in-
terpolation based on AGRID3D is applied to obtain homol-
ogous values. Latter values are not only obtained using the
cubic approach, but also involving the widely used linear
and spline interpolation methods, enabling comparisons
between the di�erent techniques. As the �rst strategy is
assumed to be error-free, di�erences in the values of both
methods represent the interpolation error.

Statistical evaluations of those di�erences for di�er-
ent height layers and interpolation approaches are shown
in Fig. 4, and an example for the spatial distribution of the
cubic interpolation errors on a near-surface height layer
of 100 m is shown in Fig. 3b for the whole spectrum (d/o
2-5480). Generally, a strong correlation of the interpola-
tion error with high-frequency signals (e.g. due to moun-
tains) is evident. This implies that the interpolation er-
ror is also strongly correlated with height, since upward
continuation of the gravity �eld leads to an attenuation
of higher frequencies and thus reduced interpolation er-
rors. Empirically, this fact can also be seen in the statis-
tics (cf. Fig. 4). Although the spline-interpolation method
shows the best interpolation accuracy, the cubic approach
is more favorable, as the actual implementation requires
less memory and the performance is still within a reason-
able limit for the purpose of evaluation (as uncertainties
within the SATOP1 model are expected to exceed the inter-
polation error).

4 AntGG inspection
In a �rst application, the evaluation method is used to in-
spect the AntGG (Scheinert et al., 2016) grid. The AntGG
dataset consists of a polar stereographic regular surface
grid (ice layer including) of gravity anomalies with a spac-
ing of 10 km. The AntGG gravity anomalies are further
spectrally limited by an average operator to minimize
aliasing e�ects due to the grid sampling.

4.1 Reducing the SATOP1 model

The SATOP1 model is interpolated on the AntGG grid
points (using the cubic AGRID3D interpolation, see sec-
tion 3) for increasing spectral content (using the 6 bands
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(a) (b)

Figure 3: (a) Visualization of the validation concept. Interpolation grid points (shown in green) lie centered between support grid points
(shown in red). This is clari�ed by dashed green lines. The chosen setup leads to equal maximum distances of the interpolation point to
all surrounding support points (indicated by dashed purple lines). (b) Interpolation errors (in terms of gravity disturbances) for the cubic
interpolation approach on a 100 m height layer for the complete SATOP1 model (including all spectral bands).

Figure 4: Statistical characteristics of the AGRID3D worst-case sce-
nario errors for di�erent heights and interpolation strategies. Shown
are RMS (dotted), absolute maximum (dashed) and absolute 99.9%
quantile (continuous) for the linear (red), cubic (blue) and spline
(green) interpolation method. Using the cubic approach, on 100 m
height, 99.9% of all values are within ±2 mGal, on 2 km all values are
within this range.

as de�ned in section 2). The resulting grids are then sub-
tracted from the original AntGG grid to obtain residuals.
As the sources of the gravity data and the SATOP1 model
are assumed to be mostly independent, it is reasonable to
use these residuals for the purpose of cross-validation: if
they are small in a certain region, this is a strong indica-
tor that both datasets are correct (meaning that they are
error-free and encompass the same spectral content). Vice
versa, when residuals become larger, it should be kept in

mind that in principle no statement of the error source
can bemade. The di�erence could either result from errors
in the real observations, or from inadequacies within the
SATOP1model. However, the analysis of residualsmay still
help �nding suspicious data, while simultaneously reli-
ably identifying trustworthy data. Further, these residuals
can also be used to estimate the spectral content of AntGG
by inspecting statistical properties for di�erent band re-
ductions (cf. Fig. 5a).

Looking at the remaining standard deviation of the re-
ductions (cf. Fig. 5a), one can identify a minimum when
using SATOP1 up to d/o 719. Thus, it is deduced that the
spectral content of the AntGG grid is limited at approx. this
resolution. In fact, the AntGG grid is low-pass �ltered to
reduce aliasing e�ects on the 10 km spaced grid. Hence,
the d/o 719 reduction is concluded to �t best to the AntGG
data and is therefore chosen for further investigations. The
empirical covariances (cf. subsection 5.2) also support this
choice, although some longer distance patterns remain
due to discrepancies in the models (e.g. isostatic e�ects
or incomplete terrain data in SATOP1, errors in the AntGG
grid).

4.2 AntGG validation

Reductions using SATOP1 also include the error of the
topographic EARTH2014 model and therefore cannot be
directly used to validate other datasets. Nevertheless,
SATOP1 also consists of the high-accuracy satellite model
part up to about d/o 200 (cf. Fig. 1).
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(a)

(b)

Figure 5: Statistical properties of the AntGG-SATOP1 inspection: (a)
Standard deviation (blue) and mean (red) for varying maximum de-
gree of the SATOP1 model reduction from the AntGG grid. (b) Em-
pirical covariances depending on the spherical distance for di�er-
ent maximum degree reductions (200-359-719). Colored dots indi-
cate the scattering of the smoothed covariance functions (continuous
lines).

This issue can be exploited when applying a low-pass
�ltering to the datawhich attenuates gravity �eld informa-
tion above d/o 200. As the spectral truncation of the signal
in the frequency-domain is obviously not (easily) possible
(since the data is only available in the spatial domain),
Gaussian �ltering (Jekeli, 1981) is applied instead towidely
reduce the in�uence of the topographic model.

The spectral strength of the Gaussian low-pass �l-
tering is determined by the choice of the full-width-half-
maximum (FWHM) distance (cf. Fig. 7a). For a reliable re-
duction of signals beyond d/o 200 a distance of 80 km is
chosen. For a less reliable but higher resolution result a

(a)

(b)

Figure 6: (a) The AntGG grid as is with white areas where no data is
available. (b) Di�erence to SATOP1, limited to d/o 719.

second variant is calculated with 40 km FWHM. As an ex-
ample, the 80 km FWHM �ltered reduction is shown in
Fig. 7b: signals within this plot arise with high certainty
from errors in the AntGG datasets.

Within the Gaussian �ltering, the occurring �lter un-
certainties near data gaps are considered by weighting
down the signal in those regions. The �lter uncertainty it-
self is estimated through comparison of the complete with
the incomplete grid �ltering result of SATOP1 data.

In a next step the low-pass �ltered reductions (∆f )
can be further processed to derive a �nal error measure.
To achieve this, local standard deviations (s̄) are derived
applying weighted integrals once again using a Gaussian
kernel (WG). The appropriate formula can be summarized
as (Jekeli, 1981):

s̄ (θ, λ) :=
√(

WG * ∆f 2
)

(θ, λ) =

√√√√
n∑

i=1
WG
(
ψi , dFWHM

)
∆f 2
i

(4)

with the spherical distance:

cosψi = cos θ cos θi + sin θ sin θi cos (λ − λi) (5)
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(a)

(b)

Figure 7: (a) The impact of di�erent FWHM �lter distances (40 km
blue, 80 km red, 150 km yellow) in the spectral domain, depending
on the spherical degree. (b) Di�erence AntGG-SATOP, up to d/o 719
(cf. Fig. 6b), 80 km FWHM Gaussian �ltered.

As a suitable FWHM distance (dFWHM) for the Gaussian
kernel the same as for the low-pass �ltering is chosen. The
�nal results are shown in Fig. 8a (for 80 km FHWM) and
Fig. 8b (for 40 km). The latter may still contain some sig-
nals from the topographicmodel but also delivers a higher
resolution than the 80 km version.

Having these error estimates at hand, one may now
take an in-depth look into suspicious regions that show
larger deviations by inspecting the underlying gravity ob-
servation campaigns (see section 5)

5 In-situ evaluations
As mentioned in section 1, the presented examination
strategy is not only meant for application to already com-
bined and gridded datasets such as AntGG, but also to in-

(a)

(b)

Figure 8: AntGG error estimate (standard deviation) based on (a)
80 km resp. (b) 40 km FWHM low-pass �ltering.

situmeasurements from various gravity campaigns (as the
ones used in the AntGG grid). This has the advantage that
possible errors/outliers may be identi�ed on observation
level and therefore eliminated/correctedwithout in�uenc-
ing othermeasurements. To showcase the application, two
di�erent campaign types are selected: �rstly, a larger re-
cent airborne survey campaign named AGAP (Ferraccioli
et al., 2011) and secondly, an older ground measurement
campaign of the Antarctic Peninsula, named BAS-LAND
(Renner et al. 1985).

5.1 AGAP dataset

Within the Antarctica’s Gamburtsev Province (AGAP)
project, a comprehensive airborne gravitymapof theGam-
burtsev Subglacial Mountains was recorded during the
2008/09 �eld season with a line spacing of 5 km and tie-
line interval of ~33 km at a mean altitude of ~4 km. The
whole dataset consists of over 2million datapoints of grav-
ity disturbances.

Performing the same reductions as in subsection 3.1
(but now in-situ, on the actual point of measurement),
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(a) (b)

(c) (d)

Figure9: (a) Standarddeviation (blue) andmean (red) for varyingmaximumdegreeof theSATOP1model reduction from theAGAPobservations.
(b) Empirical covariances depending on the spherical distance for di�erent maximum degree reductions (200-359-719-5400). (c) The AGAP
observations as provided. (d) Di�erences to SATOP1 up to d/o 5400.

the results are shown in Figs. 9a-d: Looking at the statis-
tics (Figs. 9a-b), the reduction performance can be consid-
ered outstanding while keeping in mind that from d/o 200
upward only topographic forward modelling is used. This
also suggests a lack of higher frequency isostasy (beyond
d/o 200) in this region (maybe due to the glacial coating).
The covariances (Fig. 9b) show an expected behavior: the
steepness towards the �rst minimum increases and the os-
cillation around 0 decreases with a higher reduction de-
gree.

A visual inspection of the dataset (Figs. 9c-d) reveals
no obvious errors or outliers. Also, the detected o�set of
2 mGal (Fig. 9a) meets the expectations. Thus, it can be
summarized that the AGAP data is most probably very
trustworthy. Further, it can be seen (Fig. 9a and visually
in 9c) that the spectral content is not signi�cantly limited
below d/o 2159 (e.g. due to �ltering of airborne data).

It is worth mentioning that due to the use of AGRID3D
in combination with the cubic interpolation approach, the
reduction of the 2 million observation points can be calcu-
lated within a second on a standard PC.

5.2 BAS-LAND

In contrast to the AGAP campaign, the BAS-LAND dataset
contains groundmeasurements of the Antarctic Peninsula
(cf. Fig. 10c) from the pre-GNSS era. This leads to an intro-
duction of some new error sources.

Firstly, the geolocalization of points is probably less
accurate especially in the vertical direction, as this co-
ordinate refers to an orthometric height. Consequently,
the observations are given in terms of gravity anomalies.
For the reduction with AGRID3D, a (quasi-)geoid model
is therefore needed to convert the physical coordinates
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to geometric ones. To maintain consistency, this (quasi-
)geoid is calculated correspondingly also from the SATOP1
model, introducing on top of all other e�ects its own
(height-)uncertainty.

Further, terrestrial observations in general include
more higher-frequency content than airborne measure-
ments, as no upward continuation is embedded. For the
airborne data it can be assumed that due to the common
�ight altitudes notmuch signal above d/o 5400 is left. This
may not be true for terrestrial measurements, especially
in mountainous regions (as the Antarctic Peninsula). So,
even if the SATOP1model were totally correct, there would
still be gravity information above d/o 5400 that is not cov-
ered by the model.

Another aspect to consider, altough the e�ect is con-
sidered to be minor, is the possible temporal variability
of the gravity �eld signal, as the BAS-LAND data was
recorded about 30 years prior to the SATOP1 data. Vari-
able ice-thicknesses may introduce changes in the gravity
�eld above mGal-level, as 25 m ice thickness corresponds
to roughly 1 mGal Bouguer gravity (without considering
glacial isostatic rebound, variable ice densities etc.).

Finally, the overall consistency of the data may be not
as good as from airborne campaigns since e.g. uncertain-
ties due to drift e�ects of relative gravimeters increasewith
time and transportation conditions, two in�uence factors
that are generally unknown for many terrestrial datasets
(even though Renner et al. 1985 provide some hints for the
actual campaign).

When looking at the statistics of the residuals after re-
ducing SATOP1 (Fig. 10a), it can be seen that the standard
deviation is twice as high as in the AGAP dataset. This is
not surprising regarding all the additional error sources
mentioned above. Nevertheless, the behavior of the empir-
ical covariances (Fig. 10b, �rst minimum positive) implies
some systematic e�ects. These e�ects can also be found in
Fig. 10d as longer wavelength e�ect (positive in the moun-
tains, negative over the ocean). As there could be di�er-
ent reasons for this phenomenon, no clear assertion can
be made in this case. A common cause for such e�ects in
terrestrial observationsmay be the systematics introduced
through the choice of the measurement site (e.g. measur-
ing through valleys, not over crests). The fact that with in-
creasing reduction degree the e�ect decreases (cf. Fig. 10b)
supports this theory (as unilateral measuring can be inter-
preted as source for aliasing).

Beside the longer-wavelength pattern, a strongly neg-
ative measurement track (marked in Fig. 10d) can be iden-
ti�ed. As there is no obvious reason in this case (e.g. higher
mountains) and the cut in the track is abrupt, a gross er-
ror in the observations seems reasonable. The presence of

the higher mean value (Fig. 10a) of over 20mGal is not un-
usual for a campaign dating back to a time when the tie to
global gravity reference systems was not easy to establish
(especially in Antarctica).

6 Conclusions
It is shown (through section 3b, 4 and 5) that the presented
evaluation approach widely ful�lls the demands stated in
section 1. Thus, the method is �t for application to further
datasets, with the �nal objective to inspect all datasets in-
cluded in theAntGGdatabase aswell as all other campaign
data available. The examples in section 5 were chosen to
be most di�ering in terms of campaign type and therefore
represent themajority of the available datasets. Thus, indi-
vidual campaign examinations will be performed, accord-
ingly.

After the evaluation and correction phase of the data
is �nished, the SATOP1 reductions can be reused for
the remove-compute-restore procedure within the least
squares collocation approach when producing the �nal
regional gravity �eld solution. This is possible since the
SATOP1 reductions rely on a spectral model and thus can
be adapted consistently to all di�erent kinds of gravity
�eld functionals on arbitrary points in space.

Further, with the SATOP1 model (section 2) two in-
novations are introduced: �rstly, the regularization of the
satellite model was performed based on spheroidal har-
monic degree variances, minimizing errors due to an im-
plicit downward continuation (towards the poles). Sec-
ondly, spectral bands were cut out also in the spheroidal
domain in order to avoid truncation e�ects (in contrast to
band limitations in the spherical domain).

In summary, it can be concluded that the overall eval-
uation performance of the presented approach strongly
depends on the dataset at hand – sparsely distributed
terrestrial datasets are more di�cult to inspect, as they
generally feature a lower spatial density while their spec-
tral content is higher (in comparison to airborne observa-
tions). This inevitably leads to more aliasing, preventing
assessments on small scales (e.g. single points) and pos-
sibly also on larger scales (although gross errors may still
be detectable, c.f. subsection 5.2). Dense airborne datasets
on the other hand are easier to validate for the same rea-
son, even though there is the additional di�culty with
the (mostly unknown) low-pass �ltering embedded in the
data.

Finally, it is important to mention that neither the
gravity �eld model nor the synthesis method presented
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(a) (b)

(c) (d)

Figure 10: (a) Standard deviation (blue) and mean (red) for varying maximum degree of the SATOP1 model reduction from the BAS-LAND
observations. (b) Empirical covariances depending on the spherical distance for di�erent maximum degree reductions (200-359-719-5400).
(c) The BAS-LAND observations as provided. (d) Di�erences to SATOP1 up to d/o 5400, mean value subtracted.

is restricted to the Antarctic region; one is free to use
this evaluation strategy globally for nearly all gravity �eld
functionals/observations. The application might be rea-
sonable especially in other sparsely surveyed regions (e.g.
Africa or parts of Asia).
Acknowledgements: This work was supported by the
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can also be used in other applications. One of the main drawbacks and current limitations of LSC is its high
computational cost which grows cubically with the number of observation points. A common way to mitigate
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Abstract
We present a partition-enhanced least-squares collocation (PE-LSC) which comprises several modifications to the classical 
LSC method. It is our goal to circumvent various problems of the practical application of LSC. While these investigations 
are focused on the modeling of the exterior gravity field the elaborated methods can also be used in other applications. One 
of the main drawbacks and current limitations of LSC is its high computational cost which grows cubically with the number 
of observation points. A common way to mitigate this problem is to tile the target area into sub-regions and solve each tile 
individually. This procedure assumes a certain locality of the LSC kernel functions which is generally not given and, there-
fore, results in fringe effects. To avoid this, it is proposed to localize the LSC kernels such that locality is preserved, and 
the estimated variances are not notably increased in comparison with the classical LSC method. Using global covariance 
models involves the calculation of a large number of Legendre polynomials which is usually a time-consuming task. Hence, 
to accelerate the creation of the covariance matrices, as an intermediate step we pre-calculate the covariance function on a 
two-dimensional grid of isotropic coordinates. Based on this grid, and under the assumption that the covariances are suf-
ficiently smooth, the final covariance matrices are then obtained by a simple and fast interpolation algorithm. Applying the 
generalized multi-variate chain rule, also cross-covariance matrices among arbitrary linear spherical harmonic functionals 
can be obtained by this technique. Together with some further minor alterations these modifications are implemented in 
the PE-LSC method. The new PE-LSC is tested using selected data sets in Antarctica where altogether more than 800,000 
observations are available for processing. In this case, PE-LSC yields a speed-up of computation time by a factor of about 
55 (i.e., the computation needs only hours instead of weeks) in comparison with the classical unpartitioned LSC. Likewise, 
the memory requirement is reduced by a factor of about 360 (i.e., allocating memory in the order of GB instead of TB).

Keywords  Gravity field · Least squares collocation (LSC) · Covariance function · Data combination · Prediction · 
Antarctica

1  Introduction

Least-squares collocation (LSC) is a commonly used tech-
nique in local or regional gravity field modeling (Moritz 
1980; Krarup 1969). This method is very popular because it 
allows to predict gravity field-related quantities at arbitrary 
locations. At the same time, the desired functionals can be 
inferred from different input functionals (e.g., geoid heights 
from gravity anomalies). Eventually, LSC yields an optimal 

solution in the stochastic sense as it minimizes the prediction 
error using a priori covariance information of the observa-
tion and estimation points. From this perspective, LSC also 
allows to consider the full variance–covariance information 
and an appropriate propagation in the sense of a Gaussian 
process.

There are also some disadvantages of LSC. The compu-
tational cost is proportional to the cubic power of the num-
ber of observation points, while memory requirements are 
proportional to the quadratic power. This limits the practical 
application of the method to a certain maximum number 
of observation points. Even if this number can be reason-
ably handled, in the general application, some sort of tiling 
strategy (Reguzzoni and Tselfes 2009) must be applied to 
comply with computational limits. However, this strategy 
introduces the problem of fringe effects caused by the forced 
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locality assumption. Another disadvantage of regional LSC 
is that it requires the input values at the observation points to 
have a zero mean. In practice, there may be several reasons 
why a residual (nonzero) mean exists, e.g., due to datum 
offsets, systematic effects induced by the measurement set-
up, errors in the observations or reduction models or just due 
to the spatial limitation of the region under consideration. 
In general, it is not trivial to backtrack the source of the 
residual mean value and, therefore, it is often not justified 
to preventively remove it as it is usually done. In any case, 
a residual mean (or unexpected long-wavelength signal) 
causes a severe problem to the classical LSC, which ulti-
mately culminates in unnatural oscillations and long-wave-
length compensation attempts.

In the field of gravity field modeling, the (homogeneous-
isotropic) covariance function used in LSC is commonly 
derived from spherical harmonic degree variances using 
covariance propagation (Moritz 1980). Since this calculation 
step involves the evaluation of Legendre polynomials for 
spherical distances of every pair of data points (i.e., observa-
tion and estimation points), the computation of covariance 
matrices becomes computationally demanding. Especially 
when a tiling approach is applied and identical point pairs 
must be evaluated several times (due to the overlap between 
tiles), the efficiency of the covariance matrix calculation 
deteriorates.

Tackling these challenges, a number of practical modifi-
cations to the original LSC approach was realized resulting 
in the so-called partition-enhanced least-squares collocation 
(short PE-LSC). Among these modifications, there are sev-
eral innovative aspects such as a 2D gridding approach for 
a fast set-up of the covariances, the use of exponential esti-
mators, and the filtering of the transfer function to achieve 
improved localization characteristics. From a practical point 
of view, the most important aspect is a significant accelera-
tion of the run-time, which is primarily achieved by an opti-
mal partitioning strategy of the study area. While the inves-
tigations are focused on the geodetic modeling of the gravity 
field, the usability of the presented methods may be extended 
to any harmonic functional defined on spherical or near-
spherical surfaces (e.g., spheroids with small eccentricities).

The presented investigations are motivated by the IAG 
Subcommission 2.4f “Gravity and Geoid in Antarctica” 
(AntGG) where we aim to compile a refined grid of terres-
trial gravity data in Antarctica as a major update to the data 
set published by Scheinert et al. (2016). For this, an optimum 
combination of a satellite-based global model (accounting 
for long-wavelength signal parts) and the terrestrial (ground-
based or airborne) data is sought for. From the perspective 
of data processing, this paper is a logical succession to the 
study by Zingerle et al. (2019) who discussed data reduction 
and validation making use of a high-resolution gravity field 
model based on satellite and topography data. While the 

present paper focusses on the treatment of methodological 
aspects, resulting final products with respect to the regional 
gravity field in Antarctica will be subject to a separate paper.

Section 2 recapitulates the basics of the theory of LSC 
and introduces the notation. In Sect. 3, we explain in detail 
the different modifications to finally end up with PE-LSC. 
In Sect. 4, we examine and validate these modifications. All 
examples and validations presented in Sects. 3 and 4 are based 
on selected data sets from the AntGG project. Finally, Sect. 5 
concludes the discussion by investigating the computational 
effort when using PE-LSC in real-world scenarios and gives 
a brief outlook to further research on the topic of LSC.

2 � Theory and notation

This section provides a brief overview of the LSC theory and 
specifies the notation which will be used in this publication. 
Since we present only the very basics, the reader is referred 
to Moritz (1980) for a more complete and elaborated treat-
ment of this topic.

2.1 � The LSC method

LSC is a statistically optimal method for estimating (predict-
ing) quantities s (the underscore below items tags vectors) 
from observations l based on their stochastic relation:

Here, ŝ denotes the estimates for s as result of the colloca-
tion, whereby CSL is the cross-covariance matrix between the 
estimates and observation, CLL the covariance matrix of the 
observations and CNN additive noise covariance matrix. ÃL

S
 

is defined to be the so-called estimator or kernel of the col-
location. It is useful to interpret CSL and CLL to origin from 
a common (signal) covariance matrixCVV , belonging to the 
common ‘signal’ v:

In the context of this publication, the observations l are 
measurements of the Earth’s gravity field and ŝ are estimates 
of the gravity field signal on possibly other locations and in 
terms of other gravity field functionals.

2.2 � LSC with a priori reduction

One major limitation of LSC is that it requires the signal v to 
be centered, meaning that the expectation of v shall be zero. 
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This implies that collocating a signal that is not centered 
probably yields an unfavorable result. For instance, if one 
tries to collocate gravity observations l directly on a regional 
scale, l is generally not centered since it still contains longer-
wavelength signal components. Thus, it is advantageous to 
remove such signal parts beforehand. This can be achieved 
through prior information v

0
 of the signal which can be 

used to reduce the actual signal v before the collocation and 
restore it afterward (known as remove-compute-restore tech-
nique, RCR, see Forsberg and Tscherning 1981). To reuse 
the previous notation, v can be replaced by Δv through the 
relation:

In this scenario, it is effective to substitute CVV  from 
Sect. 2.1 with the error covariance Ce

VV
∶=

[

cov
(

Δvi,Δvk
)]

 
of v

0
 (which is the same as the signal covariance of Δv ). 

Consequently, v is assumed to be error free in this context 
(despite the noise covariance CNN , see Willberg et al. 2019). 
Together with the restore step, the modified LSC equation, 
based on residuals, reads:

with

An appropriate covariance propagation yields the error 
covariance for the restored estimate ŝ:

In gravity field modeling, the needed a priori information 
can be derived, e.g., from satellite-based global gravity field 
models and topographic models, respectively.

2.3 � The covariance function

One crucial point for LSC is finding an adequate, ideally 
analytical, expression for the needed covariances Ce

VV
 . In 

gravity field modeling, it is useful to exploit the harmonic 
character of the gravity field in the absence of masses (in the 
exterior space). Doing so leads to the spherical harmonic 
representation h (i.e., Stokes coefficients, see Moritz 1980) 
of the gravity field, with the relation AH

V
 to the spatial gravity 

signal v in form of:

(3)Δv ∶= v − v
0
=

(

Δs

Δl

)

(4)
Δŝ = ÃL

S
Δl →

ŝ = s
0
+ Δŝ = s

0
+ ÃL

S

(

l − l
0

)

(5)ÃL
S
= Ce

SL

(

Ce
LL

+ CNN

)−1
.

(6)Ce

ŜŜ
= Ce

SS
− Ce

SL

(

Ce
LL

+ CNN

)−1
Ce�
SL
.

(7)v = AH
V
h

Assuming the covariance Ce
HH

 related to h in the spherical 
harmonic domain is known, the covariance Ce

VV
 in the spatial 

domain can be obtained by covariance propagation:

In the classical application Ce
HH

 is modeled by degree 
variances yielding a homogeneous-isotropic covariance 
function in the spatial domain (e.g., see Tscherning and 
Rapp 1974). In modern approaches also the full covariance 
information from global gravity field models is sometimes 
used (see Willberg et al. 2019), resulting in arbitrary, but still 
harmonic, covariance functions.

3 � Methodology

Several modifications of the classical approach are intro-
duced to increase the numerical efficiency and stability of 
RCR-LSC (cf. Sect. 2.2). In most of the strategies, the basic 
assumption is that a single observation Δli has a certain 
localized influence on the estimates Δŝ . Generally speaking, 
assuming a localized influence is justified if the covariances 
cov

(

Δli,Δsk
)

 become sufficiently small beyond a certain dis-
tance from the observation point. As arbitrary covariance 
functions do not necessarily show this behavior, their appli-
cation must be restricted to the class of locally dominated 
covariance functions. For the ease of use this class is further 
constrained to (locally dominated) homogeneous-isotropic 
covariance functions. Since this paper deals with functionals 
that are harmonic and defined on or close to a sphere, the 
most natural and most general way of describing this class of 
covariance functions is by using spherical harmonic degree 
variances (cf. Moritz 1980 and Sect. 3.1). Consequently, 
they will be used to construct all covariances throughout 
the rest of this paper. In order to obtain the desired local 
character of the covariance function, it is required that 
within the RCR-LSC, the long-wavelength components are 
reduced beforehand (e.g., see Zingerle et al. 2019). Since 
the presented methods could theoretically also be applied 
to a non-reduced LSC (even if not recommended), in the 
following, each subsection describes a specific modification 
of the classical (RCR-)LSC method. Together, they form the 
basis for the PE-LSC approach which is evaluated in Sect. 4.

3.1 � Accelerated covariance calculation

As explained in Sect. 2.3, the calculation of the covariance 
Ce
VV

 from spherical harmonics theoretically requires the cal-
culation of the transformation matrix AH

V
 and the evaluation 

of the (matrix) product AH
V
Ce
HH

AH′

V
 . For the special case of 

degree variances, this calculation can be simplified to the 
homogeneous-isotropic form (see Moritz 1980):

(8)Ce
VV

= AH
V
Ce
HH

AH�

V
.
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where

Herein, cn
H

 denotes the (error) degree variances and Pn the 
Legendre polynomial of degree n, and R is the radius of the 
reference sphere chosen for the degree variances. nmax is the 
maximum degree that is considered in the modeling of cik . 
xi describes the location in form of geocentric coordinates a 

(9)

cik ∶= cov
(

Δvi,Δvk
)

= c
(

tik, uik
)

=

nmax
∑

n=0

ul+1
ik

Pn

(

tik
)

cn
H
∶=

⟨

qH
ik
, c

H

⟩

(10)
tik ∶= ⟨ei, ek⟩

�

= cos �ik
�

, ei ∶=
xi

ri
,

uik ∶= uiuk, ui ∶=
R

ri
, ri ∶=

�

�

xi
�

�

.

single signal element vi refers to. The parameterization via 
t (cosine of spherical distance � ) and u (product of length 
ratios to reference radius) is chosen so that a covariance 
matrix may be efficiently derived by outer (Cartesian) prod-
ucts regarding Δv × Δv . For a better readability in figures 
(see Fig. 1), t is substituted by � and u by the so-called equiv-
alent height heq which is defined by

heq describes the actual height of a pair of points in case that 
both points are located at the same height. The evaluation of 
the simplified Eq. 9 is still time-consuming since it involves 
the calculation of numerous Legendre polynomials for every 
element of the resulting covariance matrices. Therefore, 

(11)heq ∶= R

�

1
√

u
− 1

�

.

Fig. 1   Covariances in terms of gravity disturbances in the Ω
G

 
domain. a Empirical covariances computed from reduced Antarctic 
gravity data (see Sect.  4). b Estimated covariance function derived 
from estimated degree variances (see Fig.  2). c Difference between 
empirical and estimated covariances. d The same covariances as in 
figure a-c, averaged over dimension u . Black: empirical covariance. 

Red: estimated covariances. Blue: difference between empirical and 
estimated covariances. Magenta: number of samples per bin for the 
calculation of the empirical covariances. Results shown are calcu-
lated by applying the spherical approximation to the coordinates (see 
Sect. 3.3)
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to avoid the need to do this calculation for every element, 
it is proposed to introduce an intermediate regular grid 
ΩG = t

G
× u

G
 on which the covariance values c

G
= c

(

ΩG

)

 
are pre-calculated. Assuming a certain smoothness of the 
covariance function, the final elements are then simply 
obtained by applying a (gridded) two-dimensional interpo-
lator (i.e., the interpolation matrix) IG to the pre-calculated 
values c

G
:

This interpolation can be evaluated very efficiently for 
large numbers of point pairs avoiding the need of evaluat-
ing sums of Legendre polynomials every time. Naturally, 
the grid vectors t

G
 and u

G
 should be chosen such that all 

occurring tik and uik are within the limits of the appropriate 
grid vector. The sampling of the grid vectors shall also be 
adapted to the smoothness of the intermediate covariance 
function c(t, u) and the overall accuracy requirements for the 
calculation of the covariance functions. The accuracy can 
also be controlled by the appropriate choice of the interpola-
tion method (e.g., linear, cubic, spline, etc.).

It is even possible to calculate arbitrary derivatives of the 
covariance function regarding local frame coordinates (e.g., 
gravity disturbances, gradients, deflection of vertical, etc.) 
based on a generalized chain rule. Since this generalized 
chain rule (also known as multivariate version of Faà di Bru-
no’s formula, see Hardy 2006) is fairly complicated to state 
and even more complicated to prove, the reader is referred 
to the appropriate literature (e.g., Hardy 2006). In summary, 
the generalized chain rule consists of a linear combination of 
products of partial derivatives. For the commonly used local 
spherical east-north-up (ENU) frame, the partial derivatives 
are given in appendix (A.1). Since the number of summands 
within the generalized chain rule increases rapidly with the 
order of the derivative, the computation is practically limited 
to lower orders (i.e., below ten). In practice, this is only a 
minor limitation as higher-order derivatives are rarely used 
(at least in the scope of gravity field modeling).

3.2 � Estimation of degree variances

Having a set of reduced observations Δl , one can estimate 
an empirical covariance function c̃

G
 on the regular grid ΩG 

by binning the individual covariance estimates c̃ik ∶= ΔliΔlk 
into the 2D classes defined by t

G
× u

G
 (see Fig. 1a). In this 

context, Δl is assumed to be centered.
Theoretically, by inverting the linear relation of Eq. 9 it 

would be possible to derive empirical degree variances c
H

 
from c̃

G
 . In practice, there are two major obstacles that pre-

vent us from performing this inversion: firstly, the degree 
variances c

H
 are defined to be only positive; hence, the 

(12)cik = IG
(

ΩG →

(

tik, uik
))

c
G

relation is not linear as Eq. 9 could suggest. Secondly, in 
general this inversion is highly instable due to the high 
dynamic range of the estimates and partially high insensitiv-
ity of c

H
 to c̃

G
 . Nevertheless, a solution is possible when 

altering the functional model and including a reasonable 
regularization: to force positive values and to reduce the 
dynamic range, it is proposed to translate the estimates into 
the logarithmic domain (hence losing linearity). In order to 
tackle the instability issue, it is further proposed to introduce 
cubic basis splines (B-splines, e.g., de Boor 1978) as repre-
sentation for the degree variances c

H
 assuming a certain 

smoothness of the degree variance curve. Obviously, to 
acquire smoothness the number of B-spline control points 
must be chosen to be significantly lower than the number of 
degree variances to estimate. Modifying Eq. 9 accordingly 
yields the nonlinear relation (with QH

G
 being the matrix 

extension of qH
ik

 to all grid locations of ΩG):

where BSP denotes the linear B-spline synthesis matrix (i.e., 
the matrix containing the spline basis functions, transform-
ing from the spline function space to the logarithmic degree 
variance space). BSP might be obtained efficiently by the Cox 
de Boor recursion formula (see de Boor 1978). The vector 
x
SP

 contains the appropriate spline parameters to estimate. 
exp(… ) denotes the element-wise exponential function and 
diag(… ) indicates the vector to diagonal square matrix trans-
form. Using the linearization ASP

G
 , x

SP
 can be obtained by an 

iterative LSA approach

starting with some initial guess x̃
SP

 for x
SP

 (and iteratively 
improving x̃

SP
 by Δx

SP
 ). CGG denotes the covariance of c

G
 

which can also be derived empirically or can simply be 
approximated as, e.g., diagonal matrix with the diagonals 
(variances) as inverse of the number of samples of the appro-
priate bin. PREG and q

REG
 are regularization terms that may 

help to further improve the result. As an example, one may 
add additional smoothing constraints (e.g., second derivative 
set to be zero), add a tie to a baseline value (e.g., zero) or 
force the slope to be flat (e.g., first derivative set to be zero). 
The appropriate weights to the regularization terms may be 
derived empirically such that the iterative LSA converges 
and yields a good fit as well as a realistic result. Figure 2 (in 
combination with Fig. 1) exemplarily shows the functional-
ity of this method.

(13)
c
G
∶= Q

H

G
c
H
=∶ Q

H

G
exp

(

B
SP
x
SP

)

,

�c
G

�x
SP

=∶ A
SP

G
= Q

H

G
diag

(

exp
(

B
SP
x
SP

))

B
SP

(14)

Δx
SP

=

(

A
SP�

G
C
−1

GG
A
SP

G
+ P

REG

)−1

(

A
SP�

G

(

c
G
− Q

H

G
exp

(

B
SP
x̃
SP

))

+ q
REG

)
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3.3 � Spherical approximations

In the following, it is assumed that the reduced signal Δv 
describes some harmonic functional in the exterior of a 
spheroidal-shaped body (e.g., Earth’s gravity or magnetic 
field). When the region ΩV  of Δv is large and covers a 
certain latitude range, the use of covariance functions 
derived by spherical harmonic degree variances intro-
duces artificial latitude-dependent systematics. This is 
obvious as the quantity u in Eq. 10 depends on the obser-
vation’s (body-centric) radii which vice versa depend on 

the latitude if Δv resides near the surface (see Fig. 3). 
Apparently, such a latitude-dependent influence cannot be 
physically explained, especially when the signal Δv was 
reduced beforehand for the long-wavelength signal part. 
Theoretically, these systematics can be avoided by using 
spheroidal harmonic degree variances instead of spheri-
cal harmonic degree variances, as the height-dependent 
item u would then vanish for the signal on the surface of 
the spheroid (see Moritz 1980). However, spheroidal har-
monic degree variances become difficult to handle when 
the height is not zero, as it involves the parametric latitude 
and Legendre polynomials of the second kind. Therefore, 
they are rarely used in LSC. Hence, a different approach 
is proposed where once again the locality assumptions are 
considered: in a local (or regional) setting the curvature of 
a spheroid (with small eccentricity) can be approximated 
by a sphere with the curvature radius R , averaged over 
the region ΩV (see also Willberg 2020). Consequently, the 
oblateness in the geometry can be eliminated by a spheri-
cal modification of the coordinates:

hell
i

 denotes the ellipsoidal height of point xi. Evidently, the 
modified geometry in  preserves local relations of adja-
cent points to a large extent while removing the latitude 
dependency. When applying this geometry, also the empiri-
cal degree variances (see Sect. 3.2) should be derived using 
the modified coordinates (cf. Eq. 10) in order to preserve 
consistency. Consequently, results shown in Figs. 1 and 2 are 
also calculated by using the modified geometry.

(15)

Fig. 2   Estimated degree amplitudes (i.e., square root of degree vari-
ances c

H
 ) from empirical covariances ( ̃c

G
, cf. Eq.  13, Fig.  1a) in 

terms of gravity disturbances. Blue: degree amplitude. Red: cumu-
lative amplitude, i.e., the aggregated total power from the maximum 
degree downward (from right). Black: control points of the B-spline 
used for estimating the degree variances (see Eq. 13, equally spaced 
in the logarithmic domain)

Fig. 3   A priori standard deviations (i.e., square root of variance 
entries in CΩ

SS
 , see, e.g., Eq.  9) calculated from spherical degree 

variances (cf. Fig.  2) evaluated on the surface of Antarctica (using 
a polar-stereographic projection). a Standard deviations calculated 
using the original coordinates. b Same standard deviations calculated 

using the modified coordinates (Eq. 15). As the geocentric radii of the 
original coordinate decrease toward the pole due to the oblateness of 
the Earth, the a priori variances systematically increase (cf. Fig. 1b). 
Variations in (b) are solely correlated to varying surface heights 
(topography)
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3.4 � Localization of the LSC estimator

Even though the covariance cov
(

Δli,Δsk
)

 between an 
estimate’s signal Δsk and observation’s signal Δli is zero 
(or close to zero), the appropriate element ãik in the LSC 
estimator ÃL

S
 does not necessarily have to be zero (or even 

close to zero). This is counterintuitive because one would 
assume that the estimate does not depend on observations 
that are statistically uncorrelated. Nevertheless, due to the 
inversion of Ce

LL
+ CNN  (cf. Eq. 5) rather large nonzero 

elements may pop up especially when the system has a 
high sensitivity to small changes. This emerging corre-
lation among observations over rather large distances is 
considered to be undesirable as it destroys all previously 
made locality assumptions. Consequently, this behavior 
is mainly responsible for fringe effects when partitioning 
the region Ω to accelerate the collocation (see Sect. 4.2). 
Making a non-critical compromise in terms of optimality 
(cf. Sect. 4.1), this behavior can be avoided when ãik is 
down-weighted by applying a distance-dependent weight-
ing function wik . For PE-LSC the distance measure 1 − tik 
is used for this weighting (see Eq. 16). Alternatively, also 
the spherical distance �ik ∶= acos

(

tik
)

 may be chosen as 
distance measure. The weighting function wik should be 
(1) smooth, and (2) strongly attenuate beyond a certain 
distance �max , but (3) should not influence the LSC estima-
tor ÃL

S
 in close proximity (i.e., when �ik is small). Although 

there might be many functions that satisfy these require-
ments, a very simple and effective one is found when 
applying a slightly modified Gaussian bell curve to tik

Figure 4 exemplarily shows the behavior of wG
ik

 . It should 
be noticed that using tik ∶= cos

(

�ik
)

 (instead of �ik ) as 
parameter in Eq. 16 narrows down the transition width of the 
function and hence contributes to the requirements (2) and 
(3) as stated above. While this weighting approach allows for 
an efficient reduction of fringe effects, it does not guarantee 
to fully eliminate them (cf. Sect. 4.2 and discussion above).

3.5 � Optimal partitioning and corresponding 
reduction of numerical effort

The main aim of the forced localization introduced in the 
previous section is to enable the partitioning of the colloca-
tion region ΩS ⊆ ΩV (where the estimates are located in) into 
smaller subregions ΩP

i
 . Dividing ΩS into independent subre-

gions allows a significant reduction of the overall computa-
tion time tc as well as of memory requirements. To perform 
this separation correctly every partition must include the 
necessary surrounding �ΩP

i
 (buffer) to ΩP

i
 (according to the 

(16)wG
ik
∶= exp

(

−

(

tik − 1

cos (�max) − 1

)2
)

.

localization criterion, e.g., �max ) and subsequently introduces 
a certain amount of overhead (see Fig. 5a). As this additional 
overhead is introduced with every partition, the overall over-
head grows linearly with the number of partitions and at a 
certain point becomes larger than the acquired gain. Conse-
quently, when implementing an appropriate algorithm, it is 
favorable to determine an optimal partition size that allows 
maximizing the overall gain (i.e., to minimize tc ): from a 
computational perspective, evaluating the LSC estimator ÃL

S
 

requires a matrix inversion as well as matrix multiplication 
(cf. Eq. 5). In general, matrix inversion as well as multiplica-
tion has a computational cost of O

(

n3
)

≈ kn3 , where n is the 
number of elements of the random vector (that is the number 
of observation resp. evaluation points) and k is a constant 
factor depending on the algorithm used. For the following 
considerations it is assumed that the points are evenly dis-
tributed on a sufficiently large 2D surface (region Ω ) with 
a constant (point) density of � . Dividing this surface into 
m identical partitions, each including n points, the needed 
computation time is given by:

Assuming the subregions ΩP
i
 to be squares, their size can 

be characterized by their edge length d. Having an initial 
number of partitions m0 corresponding to an initial edge 
length d0 the actual number of partitions can be calculated 
(in the 2D case) by:

(17)tc = mkn3

Fig. 4   Modified Gaussian bell attenuation function wG

ik
 (cf. Eq.  16) 

and its exemplary influence to the covariance function. Blue: origi-
nal covariance function in terms of gravity disturbances (cf. Fig. 1d). 
Red: attenuated covariance function. Green: attenuation function 
w
G

ik
 ( �max

= 1.5◦ ). Dashed black: attenuation parameter �max ( 1� , 
cf. Fig.  5a). Vertical red: buffer distance r = 5∕3�max (cf. Fig.  5a). 
Covariance function is evaluated on the ellipsoid
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As mentioned above, the overall size of the partition must 
include its surrounding �ΩP

i
 . This shall be taken into account 

by a buffer distance r (presumably depending on �max ), yield-
ing the edge length of the extended partition de = 2r + d . As 
a rule of thumb, choosing r = 5∕3�max seems to yield a good 
trade-off between omission error and buffer distance when 
applying Eq. 16 as weighting function (see Fig. 4). For the 
sake of simplicity, �ΩP

i
 shall also be a square (omitting the 

roundings of the buffer, cf. Fig. 5a); hence, the area of the 
extended partition is d2

e
 , and with that the number of (obser-

vation) points per partition n = �d2
e
 . By inserting n and m 

into Eq. 17 one finds:

The minimum of this equation is obtained by setting the 
derivative �tc

�d
 to zero:

Hence, the optimal edge length is obviously the chosen 
buffer distance itself. Naturally, this is only valid under the 
assumed simplified conditions, where particularly the spe-
cial treatment of fringe partitions was neglected. Neverthe-
less, for larger regions, this assessment should be sufficient 
in most cases, and for smaller regions, reaching the perfect 
optimum should not be important anyway. Be aware that in 
this derivation, n is primarily related to the number of obser-
vation points 

{

LP
i
∈ Ω

P
i
, �LP

i
∈ �ΩP

i

}

 and not to the number 
of estimation points SP

i
∈ Ω

P
i
 . If the number of the latter 

is significantly larger than the number of the former (i.e., 

(18)m(d) = m0

(

d0

d

)2

(19)
tc(d) =

k

⏞⏞⏞⏞⏞

km0d
2
0
�3

d6
e

d2
= k

(2r + d)6

d2

(20)

≥ n2 ), the optimum can be missed by this estimate, gener-
ally favoring smaller partitions (hence making the matrix 
multiplication less expensive).

From Eq. 19, one can further discern the most expensive 
parts within the LSC, which are represented by (1) the buffer 
distance r (resp. �max ) that increases the cost by the power 
of six, and (2) the point density that increases the cost by 
the power of three. Consequently, if computation time is 
still problematic after partitioning, one should primarily try 
to further reduce the correlation length (e.g., by improved 
reductions) and/or to decrease the observation point density 
(e.g., by thinning the data). Additionally, even if the opti-
mality criterion as stated above is met for a sub-region, in 
practice one might be forced to further partition it, as the 
system memory might not be sufficient (e.g., if the local 
point density is high). This is critical, as the overall compu-
tation time (Eq. 19) increases significantly for d < r∕2 (see 
Fig. 3). Therefore, having enough system memory available 
might be crucial in such cases. In order to be able to dynami-
cally adapt the partition size when the density is too high, 
it is proposed to use a divide and conquer approach. In the 
reference implementation the divide and conquer algorithm 
works recursively in the 3D Cartesian space, always divid-
ing a partition along the dimension with the largest extent 
until all criteria are met (i.e., max. extents or number of 
points, e.g., see Fig. 9). Obviously, this algorithm tends to 
create partitions to be smaller than optimal regarding the 
chosen maximum extents. Hence, choosing these maximum 
extents to be slightly larger than the buffer distance r might 
help to better reach the optimum (i.e., r) on average. As 
shown in Fig. 3, choosing larger extents is less problematic 
than choosing them too small in terms of computation time 
penalty.

Fig. 5   a Scheme of the parti-
tioning items. Blue hatched: 
central area of a partition with 
edge length d. Orange hatched: 
extended area with buffer 
distance r. Light green: central 
and buffer area of an adjacent 
partition. Solid red curve: 1D 
visualization of the attenuation 
function (Eq. 16) for an evalu-
ation point located on the right 
edge of the partition. Dashed 
red line: visualization of the 
parameter �max ( 1� , see Fig. 4) 
for the attenuation function. b 
Normalized computation time 
as function of the normal-
ized partition edge length (see 
Eq. 19)
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4 � Validation

Most of the modifications described in Sect. 3 are simple 
to validate. For instance, the validation of the accelerated 
covariance calculation (Sect. 3.1) is performed by cross-
comparison to the rigorous calculation method. It has been 
found that one can approximate the rigorous result to any 
desired accuracy level by increasing the grid sampling or 
using more elaborate interpolation algorithms. The correct 
estimation of the degree variances (Sect. 3.2) is verified by 
inspecting the fit to the empirical covariance function where 
the residuals are small and do not show any systematics 
(Fig. 1c, d). The improvement by using the modified coor-
dinates (Sect. 3.3) is also directly discernible by inspecting 
the a priori variances (Fig. 3).

The validation becomes more difficult when studying the 
modification of the LSC estimator (Sect. 3.4) as this altera-
tion directly influences the outcome of the LSC especially 
in combination with the partitioning approach (Sect. 3.5). 
Hence, an in-depth validation of this topic is performed 
focusing on the behavior of the LSC estimator (Sect. 4.1) 
and the impact of the localization regarding the result and 
the partitioning (Sect. 4.2). Note that all investigations 
within this section are performed using gravity observations 
in selected regions of Antarctica, which already served as 
input to the 2016 AntGG grid (Scheinert et al. 2016). In 
particular, we are making use of gravity disturbances result-
ing from airborne gravimetry in West Antarctica (Bell et al. 
1999; Studinger et al. 2002) and over a transect from the 
Transantarctic Mts. to the South Pole (Studinger et al. 2006). 
The data is reduced beforehand by a high-resolution grav-
ity model combining satellite and topographic information 
(see Zingerle et al. 2019 for the model, Sect. 2.2 for the 
RCR-LSC theory). The obtained observation residuals fit to 
the empirical covariance function and degree variances as 
shown in Figs. 1 and 2. For the localization of the LSC esti-
mator and the partitioning, the parameters r = d = 2.5◦ and 
�max

= 1.5◦ are chosen if not stated otherwise (cf. Sects. 3.4, 
3.5, Figs. 4, 5, 6, 7, 8). Gravity disturbances on or near the 
ice surface form also the output functional in the estima-
tion. Insights found by the following evaluations do not nec-
essarily hold for other setups (i.e., other combinations of 
input/output functionals, estimates with extensive upward or 
downward continuation or different covariance functions), as 
the shape of the LSC estimator might strongly vary between 
different scenarios. Nevertheless, it can be stated that the fol-
lowing conclusions shall be valid in all cases where the pat-
tern of the LSC estimator is locally dominated (cf. Sect. 4.1, 
Fig. 6).

4.1 � Behavior of the localized LSC estimator

Without explicitly calculating the LSC estimator (Eq. 5), 
its behavior is generally hard to predict as it involves matrix 
inversion and thus may produce highly variable results even 
when just slightly altering the input configuration. Never-
theless, when inspecting the LSC estimator (i.e., the kernel) 
for different locations (see Fig. 6), at least one general rule 
of thumb could be derived, which is valid in most cases 
(when the covariance function is decreasing with increasing 
distance). The better the observation coverage (i.e., density 
and quality) surrounding an estimation point, the smaller 
the effective influence radius of the kernel (cf. Fig. 6a, point 
A). Vice versa, when the nearby observation coverage is 
poor this influence radius can significantly increase in size 
(cf. Fig. 6d, point B). As a direct consequence, the kernel of 
estimates within good coverage (e.g., point A) can be con-
sidered to be already localized, while the kernel of estimates 
within poor coverage (e.g., point B) does not show this prop-
erty. Subsequently, localizing the kernel (cf. Sect. 3.4) for 
points within good coverage has barely any influence (cf. 
Fig. 6b, c) while localizing those within poor coverage sig-
nificantly alters the kernel (cf. Fig. 6e, f). To have an objec-
tive measure of how strongly the kernel is modified by the 
localization, a kernel disparity measure Δker

i
 is introduced 

for an estimate i as:

where ãik denotes the elements of the original kernel matrix 
ÃL
S
 , and ãloc

ik
 the elements of the localized kernel. Since the 

relation 0≤ wG
ik
≤ 1 holds for all weighting coefficients (cf. 

Eq. 16, Fig. 4), Δker
i

 ranges between zero and one. A value 
of 0 means that the localized kernel is identical to the origi-
nal kernel, and a value of 1 indicates a completely different 
kernel (cf. Fig. 7b). Therefore, as the weighting function 
always attenuates kernel elements toward zero with increas-
ing distance, the appropriate estimate will also be attenuated 
toward zero in comparison with the estimate derived from 
the unmodified kernel (see also Sect. 4.2, Fig. 8). Ultimately, 
the weighting function ensures that the further away the 
closest observation is located from the estimation point, the 
more the corresponding estimate is attenuated toward zero. 
In the context of RCR-LSC (Sect. 2.2.b), this behavior can 
be considered as desirable, as it is unlikely that the LSC is 
able to significantly improve such estimates in comparison 
with the a priori reductions (e.g., see Fig. 7). In fact, the 
unmodified LSC kernel tends to unnaturally overshoot (the 
estimate) in such locations, especially when the observations 
contain long-wavelength errors. This becomes obvious when 
examining the incisive long-range patterns of the original 

(21)Δ
ker
i

=

�

�

�

�
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kernel function in such locations (cf. Fig. 6b): signals that 
are in the same wavelength range as the extents of the areas 
with positive or negative weights are able to strongly amplify 
the estimate due to possible resonances with the kernel.

In summary, one can conclude that the localization of the 
LSC estimator is probably beneficial in any situation (see 
Fig. 7): in areas with good coverage the original LSC esti-
mate is widely preserved, while in areas with poor coverage 

the estimate is attenuated and thus prevents the previously 
mentioned overshooting. A further strong indication that 
the localization does not negatively impact the estimate 
is given when inspecting the increase in the formal error 
(Eq. 6) when applying the localized kernel: obviously, this 
increase (Fig. 7d) is negligible compared to the formal error 
amplitude (Fig. 7c).

Fig. 6   Influence of the localiza-
tion of the LSC estimator ÃL

S
 

(Eq. 5) for two different evalu-
ation sites in Antarctica: site 
A is located within a densely 
measured area (a-c), while site 
B is located in an area where no 
observations are present (d-f). 
a, d Original LSC estimator. b, 
e Localized LSC estimator (see 
Sect. 3.4, Fig. 4). c, f Difference 
between original and localized 
estimator. For visualization, 
the individual weights of the 
LSC estimator are normalized 
regarding the appropriate larg-
est weight. As a reference, the 
applied weighting parameter 
�max (1.5° black dashed circle) 
and appropriate buffer distance 
r (2.5°, red circle) are shown. 
For ÃL

S
 , the covariance function 

chosen is according to Fig. 1 
using degree variances as of 
Fig. 2. Reference points are 
located on an ellipsoidal height 
of 5 km (slightly above the ice 
layer). The figure’s background 
is shaded in gray (where no 
observations are present). Grid 
coordinates refer to a polar 
stereographic projection where 
the positive y-axis coincides 
with the Greenwich meridian. 
The disparity Δker

i
(see Eq. 21, 

Fig. 7b) between original and 
localized kernel is 0.16% for 
point A and 58.49% for point B
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4.2 � Influence of the localization to the partitioning

Even though the localization of the LSC estimator already 
benefits from the classical LSC method (see Sect. 4.1), the 
primary reason for introducing the localization is to enable 
the partitioning of the collocation domain. As explained in 
Sect. 4.1, this localization limits the influence of the LSC 
estimator (i.e., kernel function) according to the chosen 
localization criterion (e.g., �max ), and with this also to the 
buffer distance r (cf. Fig. 6). Obviously, applying a parti-
tioning with buffer distance r to the collocation domain (cf. 
Fig. 5a) prevents the LSC estimator from including observa-
tions outside this region (e.g., see Fig. 6d, elements outside 
the red circle). Hence, it may be concluded that the partition-
ing itself directly impacts the collocation result in case that 
the kernel relies on observations beyond the buffer distance 
r. Albeit those alterations of the result mostly preserve the 
overall quality of the outcome, they introduce disparities 
between adjacent partitions, which manifest as fringe effects. 
In agreement with the findings in Sect. 4.1, these effects can 
be large especially in regions with sparse observation cover-
age where the LSC estimator tends to have a wide pattern 
(see Figs. 6d, 8a). There, the discontinuities on transitions 
between partitions might be problematic particularly when 

evaluating numerical derivatives of the result (cf. Fig. 8c) 
or predicting higher-order gravity functionals. As explained 
in Sect. 3.4, an adequate localization of the LSC estimator 
can prevent most of these fringe effects since correlations 
of the kernel beyond the buffer distance are removed in the 
first place (see Fig. 6e). In practical applications, residual 
fringe effects become virtually untraceable when using an 
appropriate kernel localization (cf. Fig. 8b, d).

As already mentioned in Sect. 3.4, despite the obvious 
large reduction in fringe effects due to the localized kernel, 
there is no mathematical guarantee of continuity between 
estimates of adjacent partitions (due to matrix inversion). 
Nevertheless, one can ask if there is at least convergence 
of the result when increasing the buffer distance r. In 
theory, when the buffer includes the whole collocation 
domain (i.e., an infinite buffer), fringe effects are again 
impossible (since the matrix to be inverted would always 
be the same in this case). Convergence is also desirable, as 
it indicates ‘how stable’ an obtained solution is when add-
ing additional far-distance observations to the estimator. It 
is finally expected, the better the convergence, the better 
the fit to a result obtained by an infinite buffer and hence 
to a rigorous solution without partitioning. For evaluating 
the convergence behavior, LSC estimates are calculated 

Fig. 7   Impact of the localized 
kernel on the estimation result 
(i.e., a 5 km regular polar ste-
reographic grid of reduced grav-
ity disturbances on the surface). 
The localization is identical to 
Figs. 4, 6 (i.e., �max

= 1.5◦ ). a 
Estimation difference between 
original and localized kernel. 
b Kernel disparity Δker

i
 (see 

Eq. 21) on the estimation grid 
(logarithmic scale). c Formal 
error of the estimation with 
the original kernel (see Eq. 6). 
d Formal error increase when 
localizing the kernel (regarding 
the original result, see (c))
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for two different buffer distances r (and hence partition 
edge lengths d) while the localization parameter �max is 
preserved. The difference between these two results can 
then be interpreted as a convergence resp. stability meas-
ure (see Fig. 9). As expected, the convergence is strongly 
improved when using the localized kernel (Fig. 9b) instead 
of the original one (Fig. 9a).

4.3 � Statistical evaluation

As last validation, the behavior of the localization is 
inspected from a statistical perspective over the whole 
collocation area (see Fig. 3) by examining frequency dis-
tributions regarding the non-localized LSC solution (cf. 
Fig. 10). Comparing the convergence when increasing the 

Fig. 8   Fringe effects on 
partition boundaries with and 
without kernel localization in 
a peripheral area of Antarctica 
(same setup as in Fig. 7). Parti-
tion boundaries are highlighted 
in red using d = r = 2.5◦ as 
partitioning parameters (see 
Fig. 5a). a Collocated residu-
als obtained by the original 
kernel (gravity disturbances). b 
Collocated residuals obtained 
by the localized kernel. c 
Numerical derivative of a (with 
original kernel) in y-direction. d 
Numerical derivative of b (with 
localized kernel) in y-direction

Fig. 9   Difference between 
LSC estimates when increas-
ing the buffer distance r as 
well as the edge length d from 
2.5° (red lines) to 3.0° (green 
lines). The rest of the setup is 
identical to Fig. 7. a Differ-
ences when using the original 
kernel. b Differences when 
using the localized kernel (with 
�max

= const. = 1.5◦)
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buffer distance (see Fig. 10a) as in Sect. 4b, the localized 
kernel shows a much higher consistency with a 99% per-
centile of just about ± 10 μGal (in contrast to ±320 μGal 
when using the original kernel). This improved consist-
ency by a factor of about 30 is also in good agreement 
with the amplitudes of the deviations shown in Fig. 9. 
The findings from Sect. 4.1 are statistically substantiated 
in Fig. 10b where estimates in proximity to observations 
(<10 km) show just small differences to the original ker-
nel with a 99% percentile of about ±0.3 mGal (cf. also 
Fig. 7a). These differences are getting gradually larger 
with the increasing distance to the nearest observation 
and become as large as about ±3 mGal (99% quantile) for 
far off estimates (>20km). Together with the evaluations 
in Sects. 4.1 and 4.2, this is the final evidence that the 
LSC kernel localization works as expected and produces 
stable results, where residual fringe effects are strongly 
reduced and can be further minimized by increasing the 
buffer distance r.

5 � Discussion

In this last section, we briefly discuss the impact of PE-LSC 
to actual application scenarios regarding the feasibility and 
the computational effort, and we compare it to other LSA 
techniques commonly used in this field of study (Sect. 5.1). 
Subsequently, we conclude the paper by summarizing the 

benefits of PE-LSC and by discussing remaining disadvan-
tages. Finally, we present some ideas of how to possibly 
overcome those drawbacks which might be subject of future 
investigations (Sect. 5.2).

5.1 � Consequences for the computational effort

In geodesy, large-scale gravity field modeling using scattered 
observations is usually performed either applying spectral 
methods like Fourier analysis, spherical harmonic analysis 
or statistical approaches such as LSC. In the scattered case, 
the spectral methods need to be solved using a general least 
squares adjustment (LSA) approach, since in this case no 
orthogonality assumptions can be used to accelerate these 
methods. Comparing classical LSC and LSA it is discern-
ible that both methods are in the same order of magnitude of 
computational cost (in terms of effort and memory require-
ments) as both require matrix multiplication and inversion. 
As mentioned in Sect. 1, the computational effort of those 
operations is in the cubic order, and memory requirements 
are in the quadratic order (regarding the number of obser-
vation). Solving them becomes numerically expensive with 
an increasing number of observations (see Fig. 11). In prac-
tice, the available memory usually poses a hard limit on the 
computing feasibility because conventional linear algebra 
routines cannot exceed the RAM limit of the system (or just 
with a large penalty in terms of computation time). There-
fore, even current-generation high-performance computing 

Fig. 10   Statistical comparison between the original and the local-
ized kernel over the entire collocation area (see Fig. 3), covering the 
entire Antarctica from 60° to 90°S (for estimates on the same grid as 
in Fig.  7). The frequency distribution shown are generated by com-
puting histograms from the deviations between different solutions 
using a bin size on a µGal level. A logarithmic scale was chosen to 
enable the visualization of frequency distributions of a broader range. 
a Frequency distribution of the deviation between the solution with 
r = d = 3.0◦ and the solution with r = d = 2.5◦ ( �max

= const. = 1.5◦ , 
cf. Fig.  9) for the localized kernel (solid blue line) and the original 

kernel (solid red line). b Frequency distribution of the deviation 
between the solution using the localized kernel (�max

= 1.5◦) and the 
solution using the original kernel ( r = d = 3.0◦ for both solutions, cf. 
Fig. 7). Solid blue line: frequency distribution for the set of estima-
tion points where the nearest observation is less than 10  km away. 
Solid red line: frequency distribution for the set where nearest obser-
vation is 10 to 20 km away. Solid yellow line: frequency distribution 
for the set where the nearest observation is 20 to 400 km away. The 
dashed lines in figure (a) and (b) depict the appropriate 99% percen-
tiles (two sided, > 0.5% and > 99.5%)
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(HPC) systems, having, e.g., about 256 TB of memory, are 
limited to approximately 5 million observations. Their com-
putation would take an infeasible time of ~400 years (single 
core, cf. Fig. 11, dashed blue and dotted green line).

On the other hand, PE-LSC is typically not limited by 
the system memory when using the partitioning approach 
and would accomplish the computation of the same 5 mil-
lion observations in about 2 months (single core, cf. Fig. 11, 
solid blue line). Having a multi-core workstation CPU 
(e.g., 64 cores, assuming an ideal linear scale-up) available 
this task can be performed within a reasonable timeframe 
of 1–2 days. In the appropriate partitioning scenario, an 
exemplary but realistic point density of a 4 × 4 km  grid 
is assumed, where 5 million observations would corre-
spond to a covered area of 8 ⋅ 107 km2 which is roughly the 
area of Asia and Africa together. Extending this scenario 
further to a global scale ( ∼ 5 ⋅ 108 km2 ), it would include 
about 6 times as many points (~30 mio.) and hence, would 
just need about 6 times as much time to finish for the PE-
LSC method, which still yields a reasonable timeframe of 
1–2 weeks (on a 64 core workstation CPU). Currently, the 
same calculation would not be feasible with the classical 
approach (~100,000 years of single-core computation time 

and ~8PB of memory required). This leads to the conclu-
sion, that for general high-resolution and large-scale gravity 
field modeling only a partitioned LSC approach is suited 
to perform this task (for scattered observations). With PE-
LSC, such an approach is given which not only enables the 
optimal partitioning, but also tries to minimize fringe effect 
(cf. Fig. 8) caused by the partitioning. Using PE-LSC in 
the actual scenario of the AntGG project where more than 
800,000 observations must be processed, a solution with 
approx. 1.4 Mio. estimates can be obtained within a few 
hours (on a 56 core CPU).

5.2 � Conclusion and outlook

We elaborated a partition-enhanced LSC method (PE-LSC) 
to improve the stability and computational efficiency. The 
discussed modifications, i.e., the accelerated calculation of 
covariance matrices and the partitioning strategy together 
with the kernel localization make it feasible to conduct col-
locations on large scales with relatively low computational 
effort (see Sect. 5.1 and Fig. 11) while minimizing fringe 
effects. In fact, with the shown advancements the effort 
only increases linearly with the size of the study area, which 
makes it even possible to think of applying LSC to scattered 
data on a global scale (cf. Fig. 11).

Although practical limits are not left for PE-LSC (at least 
not in the shown scenario), there is still one major inherent 
shortcoming of the (PE-)LSC method to consider, which 
is the modeling of the covariance function. By now, for 
PE-LSC there is no practical alternative to homogeneous-
isotropic covariance functions, since (1) the information 
of the actual (‘true’) covariance function is not available, 
and (2) there are usually not enough observations present to 
empirically derive general covariance functions comprehen-
sively. (3) Even if such a general covariance function might 
be derived empirically, without a spectral or closed-form 
representation, deriving cross-covariances among different 
functionals would also be problematic. Using homogene-
ous-isotropic covariance functions means to disregard the 
local and directional variations of the investigated physi-
cal quantity. In gravity field modeling, for example, even 
if it is common knowledge that in mountainous regions the 
expected variation in the gravity field signal is larger, by now 
this fact is not considered within PE-LSC. This deficiency 
becomes even more prominent with increasing size of the 
collocation area as it can be expected that the covered ter-
rain also becomes more heterogeneous (mountains, plains, 
sea, ice, etc.).

Therefore, for future work in the field of LSC, overcom-
ing this issue is considered as the most important task to 
make (PE-)LSC a feasible stand-alone alternative even for 
global gravity field modeling. Darbeheshti (2009) provides 
a comprehensive overview of studies already performed on 

Fig. 11   Computational requirements regarding the number of 
observations to process (extrapolated) of the classical LSC or LSA 
approach (unpartitioned) in comparison with the PE-LSC method 
(partitioned). Single-core CPU times are scaled to the Intel Sky-
lake-SP processor family with AVX512 enabled (using double pre-
cision). For the partitioning, a point density of 1∕16 obs./km2 is 
assumed (i.e., a regular 4 × 4 km grid ) with the partition parameters 
r = d = 2.5◦ ≈ 278 km . It is assumed that the number of estimates is 
in the same order as the number of observations. Solid blue: single-
core CPU times for the partitioned approach (PE-LSC). Dashed blue: 
single-core CPU times for the unpartitioned approaches (LSC, LSA). 
Solid red: memory requirements (RAM) for the partitioned approach 
(PE-LSC). Dotted red: memory requirements (RAM) for the unparti-
tioned approaches (LSC, LSA). Dashed green: typical memory limit 
(RAM) of current-gen. workstation PCs (128 GB). Dotted green: typ-
ical memory limit (RAM) of current-gen. high-performance comput-
ers (256 TB)
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this subject. Unfortunately, none of these seems fully appro-
priate for PE-LSC as every method has its own limitations. 
A promising approach for the application in PE-LSC might 
be the classification of the collocation area into classes of 
similar behavior (e.g., mountains, hills, plains, ocean, ice, 
etc.) and a separate estimation of ‘local’ degree variances 
(see Sect. 3.2) for each class. A non-homogeneous and 
non-isotropic covariance function might then be derived by 
some sort of interpolation between the covariance functions 
derived from the different degree variances and based on the 
actual point locations (regarding the previous classification, 
similar as proposed by Tscherning 1999).

Until such a technique becomes available, the shortcom-
ing of the suboptimal covariance modeling might be over-
come by combining (PE-)LSC with the aforementioned 
spectral methods (as discussed, e.g., by Reguzzoni and 
Tselfes 2009). While those methods are rigorous in the way 
they describe the gravity field, they require the observations 
usually to be given on regular grids in order to be applicable 
efficiently (not as in the example above, e.g., see Sneeuw 
1994). At this point, (PE-)LSC can help by pre-calculating 
the observations beforehand on the required grid and, thus, 
producing a best guess of what to expect on those locations. 
Subsequently, this best guess can be used by the spectral 
methods to derive the final spectral representation of the 
gravity field (e.g., cf. Zingerle et al. 2020). If needed, the 
obtained gravity field model can be further improved itera-
tively by recalculating reductions for the RCR-LSC from the 
newly derived model and by restarting the whole procedure 
anew using the improved (narrowed) reductions.

Appendix

Partial derivatives 
of homogeneous‑isotropic covariances 
regarding a local ENU‑frame

Evaluation of the generalized chain rule (see Sect. 3.1) 
requires the partial derivatives of the covariance c (cf. 
Eq. 9) with respect to the chosen local (reference) frame 
coordinates. In case of gravity field modeling, which usu-
ally assumes the chosen local frame to be an ENU-frame 
(east, north, up) tangential to the sphere, the partial deriva-
tives needed are:

in terms of intermediate frame coordinates,

(22)c
n,m

ik
∶=
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�tm�un
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for the up component (xU) and

for the east component and north component (xE and 
xN). Here, Plm

(
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 denotes the mth derivate of Pl

(

tik
)

 
regarding tik (not to confuse with the associated Legendre 
function which is defined slightly different), 

(

�i,�i

)

 are the 
appropriate spherical coordinates (longitude and latitude) 
of vi. In Eq. 22, in opposition to Eq. 9, the letter n for the 
spherical-harmonic degree was exchanged with the letter 
l to reuse n for the order of derivative of uik. Again, it is 
noteworthy that also partial derivatives are expressible as 
outer (Cartesian) products of v × v which allows for effi-
cient evaluation of all pairs over indices i, k. For the sake 
of performance and accuracy, it is advisable to pre-calcu-
late all the necessary derivatives cn,m

G
 of the intermediate 

grid c
G

 (see Eq. 9, in the same fashion as c
G

 is calculated). 
With some additional programming effort, also linear out-
of-scheme quantities (i.e., quantities that are not directly 
expressible as derivative such as, e.g., gravity anomalies) 
can be implemented.
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Abstract
XGM2019e is a combined global gravity field model represented by spheroidal harmonics up to degree and order (d/o) 5399, 
corresponding to a spatial resolution of 2′ (~ 4 km). As data sources, it includes the satellite model GOCO06s in the longer 
wavelength range up to d/o 300 combined with a ground gravity grid which also covers the shorter wavelengths. The ground 
data consist over land and ocean of gravity anomalies provided by courtesy of NGA (15′ resolution, identical to XGM2016) 
augmented with topographically derived gravity information over land (EARTH2014). Over the oceans, gravity anomalies 
derived from satellite altimetry are used (DTU13 with a resolution of 1′). The combination of the satellite data with the 
ground gravity observations is performed by using full normal equations up to d/o 719 (15′). Beyond d/o 719, a block-diagonal 
least squares solution is calculated for the high-resolution ground gravity data (from topography and altimetry). All calcula-
tions are performed in the spheroidal harmonic domain. In the spectral band up to d/o 719, the new model shows a slightly 
improved behaviour in the magnitude of a few mm RMS over land as compared to preceding models such as XGM2016, 
EIGEN6c4 or EGM2008 when validated with independent geoid information derived from GNSS/levelling. Over land and 
in the spectral range above d/o 719, the accuracy of XGM2019e marginally suffers from the sole use of topographic forward 
modelling, and geoid differences at GNSS/levelling stations are increased in the order of several mm RMS in well-surveyed 
areas, such as the US and Europe, compared to models containing real gravity data over their entire spectrum, e.g. EIGEN6c4 
or EGM2008. However, GNSS/levelling validation also indicates that the performance of XGM2019e can be considered as 
globally more consistent and independent of existing high-resolution global models. Over the oceans, the model exhibits an 
enhanced performance (equal or better than preceding models), which is confirmed by comparison of the MDT’s computed 
from CNES/CLS 2015 mean sea surface and the high-resolution geoid models. The MDT based on XGM2019e shows fewer 
artefacts, particularly in the coastal regions, and fits globally better to DTU17MDT which is considered as an independent 
reference MDT.

Keywords  Gravity · Combined gravity field model · Spherical harmonics · Spheroidal harmonics · Full normal equation 
systems · High-performance computing

1  Introduction

The precise knowledge of Earth’s gravity field is crucial for a 
multitude of geosciences as it can be used to deploy vertical 
reference frames and to give insights into the distribution of 
masses in the system Earth. As an example, a precise high-
resolution gravity model is fundamental for a global height 
unification (e.g. Gruber et al. 2012; Ihde et al. 2017) or a 
consistent sea level analysis (e.g. Woodworth et al. 2012). 

In oceanographic applications, for instance, the gravity field 
can be used as a physical reference surface to derive the 
mean dynamic topography (MDT, e.g. Siegismund 2013). In 
geophysics, gravity field information is used for lithospheric 
modelling where it serves as a constraining boundary value 
(e.g. McKenzie et al. 2014).

Since the emergence of satellite gravity field missions, 
especially the Gravity Recovery And Climate Experiment 
(GRACE, Tapley et al. 2004) and the Gravity field and 
steady-state Ocean Circulation Explorer (GOCE, Drinkwa-
ter et al. 2003), the quality of global gravity field models 
has significantly improved. For instance, GRACE data aug-
mented with a comprehensive collection of ground gravity 
observations contributed to the widely used high-resolution 
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combined global gravity field model EGM2008 (Pavlis 
et al. 2012). Other subsequent high-resolution models like 
EIGEN6-C4 (Förste et al. 2014) or GECO (Gilardoni et al. 
2016) extended EGM2008 later on by additionally including 
GOCE data, which resulted in a further improvement in the 
longer wavelengths.

With the introduction of the release 6 series of GOCE 
gravity field models, new improved combined satellite-only 
models such as GOCO06s (Kvas et al. 2019b) have emerged. 
Consequently, this allows the calculation of new high-reso-
lution combined gravity field models, with the intention to 
optimally merge satellite-only models with terrestrial, alti-
metric and topographic gravity information, such that each 
data source keeps its high-quality information without using 
information from pre-existing high-resolution models. This 
triggered the development of the high-resolution combined 
gravity field model XGM2019e.

At the time of writing, only three models next to 
EGM2008 with maximum d/o larger than 2000 were pub-
lished at the International Centre for Global Earth Mod-
els (ICGEM, Ince et al. 2019). All these models are using 
EGM2008 as data source above the resolution of satellite 
models and consequently are highly dependent on that 
model. With XGM2019e, we present a new model that is 
independent of EGM2008: as ground gravity data, it solely 
includes a primary 15′ gravity anomaly grid augmented with 
topographic information over land and gravity anomalies 
derived from altimetry over sea (cf. Sect. 2). The inclusion 
of these augmentation datasets allows the calculation of 
XGM2019e up to the remarkable resolution of 2′ resp. d/o 
5400 (cf. Sect. 3).

In comparison with the precursor model XGM2016 (Pail 
et al. 2018), some new techniques regarding the combina-
tion strategy are introduced with XGM2019e. These include 
the new and improved empirical weighting approach for the 
ground gravity observations and a newly developed spectral 
filter technique in the spatial domain (cf. Sect. 3). Other 
changes are the application of spheroidal harmonics instead 
of spherical harmonics and the complete reimplementation 
of the associated Legendre function routines, which eventu-
ally enable the calculation of spherical/spheroidal harmon-
ics up to very high d/o (remark: the term spheroid is used 
to denote ellipsoids of revolution and to differentiate from 
arbitrary 3-axis ellipsoids).

2 � Data sources

XGM2019e is composed of three main data sources: the 
combined satellite-only model GOCO06s, the 15′ ground 
gravity anomaly dataset provided by NGA, and the 1′ 
min augmentation dataset consisting of gravity anomalies 
derived from altimetry over the oceans and topography over 

the continents. All three datasets are briefly presented in the 
following.

2.1 � The GOCO06s satellite‑only gravity field model

GOCO06s is a combined satellite-only model consisting 
mainly of data from the GOCE (TIM6, Brockmann et al. 
2019) and GRACE (ITSG-Grace2018s, Kvas et al. 2019a) 
missions. For the lower-degree coefficients also, satellite 
laser ranging (SLR) and satellite-to-satellite tracking (SST) 
observations (using the Global Positioning Satellite (GPS) 
system) of several other satellite missions were included. 
For the combination in XGM2019e, the unconstrained nor-
mal equation (NEQ) system of GOCO06s up to d/o 300 is 
used. Since in the original GOCO06s also temporal gravity 
variations are parameterized, all non-static parameters have 
been pre-eliminated. The correctness of this procedure is 
confirmed by comparing the original GOCO06s static coef-
ficients with the recomputed solution by adding back the 
Kaula regularization to the NEQ system. As expected, the 
resulting coefficient differences are in the magnitude of 
numerical precision.

2.2 � The 15′ ground gravity dataset

As the primary source for the ground gravity observations 
(land and oceans), a pre-compiled 15′ ( ∼ 30 km at the equa-
tor) global geographic grid provided by the US National 
Geospatial-Intelligence Agency (NGA) is used. The dataset 
has already been spectrally limited beforehand to d/o 719 
(in the spheroidal harmonic domain) and reduced to the 
spheroid’s surface. This ground gravity dataset is identical 
to the dataset used in XGM2016 and is mainly based on 
observed gravity anomalies over land and DTU13 (Andersen 
et al. 2013) gravity anomalies derived from altimetry over 
sea (Fig. 1).

2.3 � The 1′ augmentation dataset

To further extend the spatial resolution, a 1′ ( ∼ 2 km at the 
equator) global geographic grid of gravity anomalies is com-
piled in a preliminary step, containing forward-modelled 
gravity anomalies from topography over land, and gravity 
anomalies derived from altimetry over sea.

For the topography-derived gravity, the EARTH2014 
(Rexer et al. 2017) spherical harmonic model is used up 
to d/o 5480, and gravity anomalies are synthesized on the 
1′ target grid. An in-depth evaluation of the performance 
of EARTH2014 can be found in Rexer et al. 2016 and Hirt 
et al. 2017. To reduce the largest uncertainties in the longer 
wavelengths which are induced by the hypothetical density 
assumptions in the course of the numerical forward mod-
elling, EARTH2014 is combined with GOCO06s in the 
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spectral domain beforehand. For more details regarding the 
applied combination strategy used for the combined model 
(SATOP1), the reader is referred to Zingerle et al. 2019b. 
The combination with the satellite model is necessary to 
minimize the (long wavelength) gravity anomaly differences 
to the altimetry dataset in the coastal areas because they 
would hamper the subsequent merging of both datasets.

To be consistent with the altimetric data of the primary 
15′ dataset, the same DTU13 gravity anomalies are used 
within the augmentation dataset, but now using the full 
resolution (1′). Both the altimetric and topographic data-
sets are combined using a land–ocean mask derived from 
the GSHHS database (Wessel and Smith 1996). In order to 
avoid discontinuities at the coastline (i.e. to smoothen the 
land–ocean transition), a distance-dependent tapering func-
tion is applied, which linearly decreases until 30 km into the 
ocean. The distance of 30 km is chosen because it roughly 
corresponds to the resolution of the primary 15′ dataset. The 
tapering is necessary not only to avoid high-frequency arte-
facts induced by such discontinuities but also to account for 
the decreasing quality of altimetric observations towards the 
coasts.

3 � Combination strategy and results

The calculation of the XGM2019e model can conceptu-
ally be split into two steps: Firstly, the combination of the 
GOCO06s with the primary 15′ ground gravity dataset lead-
ing to a d/o 719 model is referred to as XGM2019, as it 
logically succeeds the XGM series of gravity field models. 

Secondly, and independently of XGM2019, the higher-reso-
lution part of the model in the spectral band between d/o 720 
and 5480 can be derived through the augmentation dataset.

3.1 � Calculation of XGM2019 (up to d/o 719)

The calculation of the XGM2019 spheroidal harmonic 
model coefficients up to d/o 719 consists of a weighted least 
squares adjustment of GOCO06s with the primary 15′ NGA 
ground gravity dataset. Introducing individual point weights 
into the least squares adjustment (LSA) approach leads to 
the loss of the orthogonality of spheroidal harmonics and 
therefore results in a dense normal equation system with 
more than 500.000 unknowns (cf. Pail et al. 2018).

One of the challenges of this combination method is the 
realistic choice of ground gravity observation error variances 
evargr relative to the satellite component. In the previous 
model GOCO05c (Fecher et al. 2017), variance component 
estimation was used for a relative weighting of different 
regional data sets of the world. In XGM2016, the region-
ally varying relative weights were empirically derived from 
differences of the ground gravity dataset with the global sat-
ellite-only model GOCO05s up to d/o 200. The main draw-
back of latter method is that only their “commission error” 
was considered, but the gravity signal and correspond-
ing errors beyond this cut-off degree were not taken into 
account. Therefore, for XGM2019 the computation strategy 
has been improved in order to include also errors of the 
higher-frequency signals: the comparison to the 15′ ground 
observations �gground is now performed using a preliminary 
solution of XGM2019 up to d/o 719, called XGM19a in 

Fig. 1   Data composition of NGA’s primary 15′ dataset (see Pail et al. 
2018). Dark blue: airborne gravity datasets over Antarctica (Schein-
ert et  al. 2016). Orange: contributed pre-compiled dataset covering 
parts of Siberia (Pavlis et al. 2012). Dark grey: areas processed (col-
located) by the NGA (Pail et al. 2018). Light grey: areas with sparse/
inaccurate data coverage where topographic information is filled in 

(EARTH2014, Rexer et al. 2017). Red: GRAV-D airborne data over 
North America from the US National Geodetic Survey (e.g. Li et al. 
2016). Light blue: altimetric gravity anomalies derived from DTU13 
(Andersen et  al. 2013). Green: Combination of DTU13 and other 
datasets (Pail et al. 2018)



	 P. Zingerle et al.

1 3

66  Page 4 of 12

the following. XGM19a is obtained by using the same LSA 
approach as for XGM2019 by combining GOCO06s and 
�gground , but assigning an equal error of 2 mGal to all obser-
vations of the ground gravity grid. Based on gravity anom-
alies �gXGM19a , that are synthesized from XGM19a, local 
error variances evar0(�, �) are estimated applying a Gaussian 
kernel function WG with a filter strength of 50 km half-width 
at half-maximum (HWHM, empirically derived):

Since the solution of XGM19a converges strongly 
towards �gground above the resolution of the satellite model, 
�gXGM19a differs from �gground mainly in the spectral band of 
the satellite model (up to about d/o 200). Correspondingly, 
also the thereby derived error variances evar0 only differ in 
this spectral band (similar to XGM2016). Therefore, they are 
not fully representative for the ground observations which 
contain the full spectral content up to d/o 719. To account 
for this and to restore the missing spectral content within 
the local error variances, an omission/commission (signal) 
variance ratio fo/c is additionally estimated and applied to the 
uncorrected error variances evar0 , such that:

The location-dependent factor fo/c(�, �) is determined by 
the ratio of signal variances:

(1)evar0(�, �) ≈
(
WG ∗

(
�gXGM19a − �gground

)2)
(�, �)

(2)evargr(�, �) = fo/c(�, �)evar0(�, �)

(3)

fo/c(�, �) =
var up to model res.

var in satellite band
=

=
varXGM19a(�, �)

varsat(�, �)
≈

(

WG ∗ �g2
XGM19a

)

(�, �)
(

WG ∗ �g2
rsat

)

(�, �)
.

Like the local error variances evar0 , also the local signal 
variances varXGM19a and varsat are derived using the same 
Gaussian filter (cf. Eqs. 1, 3). For the estimation of varsat , 
the satellite-influenced spectral part of the XGM19a solution 
is needed. In the scope of LSA theory, this part is described 
by the redundancy component of the satellite system 
(GOCO06s) within XGM19a. Applying this satellite redun-
dancy component to the solution of XGM19a (through mul-
tiplication) leads to the gravity anomalies �grsat which are 
assumed to contain the same spectral content as the error 
variances evar0 . The basic assumption of this scaling 
approach is that the error variances of the ground observa-
tions have no spectral correlations and therefore scale identi-
cally to the signal variances in the spatial domain. Figure 2 
shows the resulting ground gravity error estimates 
�gr =

√

evargr.
Finally, we note that the LSA for XGM2019 is performed 

in the spheroidal harmonic domain, implying that the whole 
GOCO06s normal equation system has been transformed to 
the spheroidal harmonic domain beforehand (Jekeli 1988). 
After the LSA, the entire variance–covariance matrix is 
transformed back to spherical harmonics to provide the final 
formal errors.

3.2 � Calculation of the coefficients above d/o 719

The higher d/o coefficients for XGM2019e are calculated 
solely from the augmentation dataset, using the rigorous 
block-diagonal technique (Sneeuw 1994). As this high-res-
olution dataset is primarily created in the spatial domain (cf. 
Sect. 2.3), it cannot be assumed that it is spectrally limited 
to a certain d/o. Thus, trying to perform a spheroidal har-
monic analysis will inevitably introduce aliasing as well as 

Fig. 2   Standard deviations 
assumed for the NGA ground 
gravity dataset in the LSA. As 
the dataset itself, the deviations 
are provided in terms of gravity 
anomalies. Colours are scaled 
logarithmically
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spectral leakage effects (even when using the block-diagonal 
technique, as the 2:1 relation of observations to estimated 
coefficients is inevitable on geographic grids).

To avoid this, we introduce a three-step filter strategy, 
called the SLASH approach (Spatial Low pass—Analysis—
Spectral High pass): in the first step, a Gaussian filter is 
applied to the combined grid with the aim to remove most 
of the grid’s content beyond the Nyquist wavelength (< 1′ in 
this case). In the second step, the resulting low-pass filtered 
1′ grid can be safely analysed up to d/o 10700 (cf. Fig. 3, 
green line). Due to the existence of an analytical correspond-
ence of the Gaussian filter in the spatial and spectral domain 
(Jekeli 1981), the influence of the filter on the analysed sig-
nal can be reverted in the spectral domain (step three). This 
is done by multiplying the appropriate spectral Gaussian 
filter factors (one per degree, cf. Fig. 3, orange line) to the 
analysed coefficients, forming the restored signal (cf. Fig. 3, 
blue line). This signal represents an optimally low-pass fil-
tered result in the sense that the obtained coefficients (1) 
exactly match the unfiltered coefficients in the case when the 
grid is spectrally limited beforehand and (2) are minimally 
influenced by aliasing and spectral leakage effects from sig-
nals beyond the Nyquist frequency otherwise. Figure 3 visu-
alizes this spectral limitation procedure for the 1′ augmenta-
tion dataset in the spheroidal harmonic domain (the findings 
of Jekeli (1981) are also valid for spheroidal harmonics). 
Please note the increase in the signal degree variances of 
the result above d/o ~ 3000 is attributed to the increasing 

divergence of the spheroidal harmonic series expansion (cf. 
Sect. 3.3) and not related to the SLASH procedure.

3.3 � Compilation of XGM2019e

Since the topographic data (EARTH2014) are limited to d/o 
5480, the high-degree coefficients (that were calculated to 
d/o 10700) are also only used up to this d/o, resulting in 
the target resolution of XGM2019e. Theoretically, a model 
up to d/o 10700 would be feasible, but due to the limited 
resolution of EARTH2014 and the fact that DTU13 grav-
ity anomalies do not show any geophysical signal content 
beyond d/o 5400 (as DTU13 is filtered to 6.5 km HWHM, 
see Andersen et al. 2013), it has been decided to cut the final 
model at d/o 5480.

In the last step, XGM2019e is created by merging the 
coefficients of XGM2019 up to d/o 719 and the high-reso-
lution coefficients starting at d/o 720. No tapering function 
is applied. This is possible due to the use of spheroidal har-
monics, since the reference surface of the expansion (sphe-
roid) coincides with the surface where the ground data are 
located, and thus, cut-off effects as experienced with spheri-
cal harmonics are avoided. Additionally, to avoid further 
artefacts, the 1′ augmentation dataset was compiled with the 
requirement to be most compatible with the primary NGA 
dataset. Therefore, the same altimetric gravity anomalies 
DTU13GRA were used, a wide tapering function towards 
the land was chosen, and a similar replacement of the long-
est wavelengths took place, cf. Sect. 2.3. Finally, the whole 
spectrum of XGM2019e is transformed into the spherical 
harmonic domain (Jekeli 1988).

The error degree variances of XGM2019e beyond d/o 
719 are derived by comparing the high-resolution coeffi-
cients cAUG

lm
 (from the augmented dataset, cf. Sect. 3.2) to the 

XGM2019(e) coefficients cXGM2019
lm

 in the lower band (up to 
d/o 719, cf. Sect. 3.1) and applying an extrapolation func-
tion. The extrapolation is performed through a first-order 
polynomial fit (of parameters a0, a1 ) in the double logarith-
mic domain:

where clm denotes a spheroidal harmonic coefficient of 
degree l and order m . The estimated error degree variances 
evarl are then transformed to the spherical domain and 

evarAUG
l

∼

l
∑

m=−l

(

cAUG
lm

− cXGM2019
lm

)2

2l + 1
, varAUG

l
:=

l
∑

m=−l

(

cAUG
lm

)2

2l + 1

Fit
(

a0, a1
)

with l ≤ 719 in ∶ log

(

evarAUG
l

varAUG
l

)

= a0 + a1 log (l)

(4)
Extrapolate l > 719 ∶ evarXGM2019e

l
= log−1

(

a0 + a1 log (l)
)

varAUG
l

Fig. 3   Illustration of the applied spectral limitation procedure in the 
spheroidal harmonic domain. Orange: the degree-dependent factor of 
a Gaussian filter with � = 1

� . Green: signal degree variances in terms 
of height anomalies after the analysis (up to d/o 10700) of the spa-
tially filtered grid ( � = 1

� ). As the attenuation of the filtered signal at 
d/o 10700 is very high, aliasing and spectral leakage effects are mini-
mized. Blue: final signal degree variances after rescaling using the 
inverse Gaussian filter factors. In the case of the augmentation data-
set, degree variances above d/o 5400 are very small ( < 0.01 mm ) for 
filtered and restored signal degree variances
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merged with the XGM2019 error degree variances, forming 
the final error degree variances of XGM2019e. The results in 
terms of degree signals and errors in the spherical harmonic 
domain are depicted in Fig. 4. Important to note here is:

(1)	 The good agreement of the coefficient differences with 
the formal errors of GOCO06s in the spectral band of 
the transition (above d/o 100), which proves the cor-
rectness of the LSA approach.

(2)	 The convergence of XGM2019 solution towards a 
(block-diagonal) ground-only solution with increasing 
d/o (especially above d/o 500).

(3)	 The jump in the formal error at d/o 720 that is inevita-
ble due to the change of the data source.

(4)	 The slowed convergence (commencing divergence) 
of the harmonic series in the highest degrees as the 
Earth’s surface exceeds the Brillouin sphere (in the 
spherical case) resp. spheroid (in the spheroidal case) 
due to high elevations in the topography. The manifes-
tation of this effect is stronger in terms of spheroidal 
harmonics as the reference spheroid is on average fur-
ther below Earth’s surface than the reference sphere 
(since its radius is per definition the semi-major axis). 
This is discernible by comparing the blue line of Fig. 3 
(spheroidal case, already diverging) with the blue line 
of Fig. 4 (spherical case, still converging).

(5)	 The increase in the formal error in the highest degrees 
which is an effect of the spherical harmonic transfor-
mation, as it is not visible in the spheroidal harmonic 
domain. Eventually, this is also related to the spheroidal 
harmonic series divergence.

4 � Validation and discussion

The fact that XGM2019e only contains forward-modelled 
topographic gravity anomalies over land beyond d/o 719 
likely shifts the primary use of the model more towards 
oceanographic applications. With its 2′ resolution, it covers 
all the signal present in the DTU13 gravity anomaly dataset 
(cf. Sect. 3.3). Together with the weighted LSA combina-
tion strategy (cf. Sect. 3), this leads to an improved oceanic 
geoid which allows the derivation of a higher-quality MDT 
(Fig. 5b). The MDT itself is a central parameter of the mari-
time system and inherently connected to dynamic processes 
like ocean currents (Fig. 5d–f), heat transport and sea level 
rise. Hence, it is of major importance for Earth system sci-
ences like oceanography or climatology and may ultimately 
lead to a deeper comprehension of the Earth system as a 
whole, thus also allowing for better predictions in the future.

4.1 � MDT comparisons

To demonstrate the model’s performance over the ocean, 
geostrophic currents are derived by comparing the 
XGM2019e geoid to the independent CNES/CLS 2015 
mean sea surface (Schaeffer et al. 2016, see Fig. 5) and 
thereby generating an MDT: it is clearly discernible that 
the unfiltered MDT derived from XGM2019e (Fig. 5b) 
shows fewer artefacts and delivers a smoother result than 
the MDT derived from EGM2008 (Fig. 5a, the most com-
parable model in terms of performance, all other high-reso-
lution models show even larger artefacts). Consequently, the 

Fig. 4   Spherical harmonic 
degree signals and errors in 
terms of height anomalies. Dark 
blue: signal XGM2019e. Light 
red: formal error XGM2019e. 
Green: signal difference 
GOCO06s-XGM2019e. Dashed 
violet: formal error GOCO06s. 
Yellow: signal difference of a 
ground-only solution versus 
XGM2019e. The ground-only 
solution is obtained using the 
unweighted block-diagonal 
analysis technique. Dark red: 
signal difference XGM2016-
XGM2019e. Light blue: 
signal difference EGM2008-
XGM2019e. Magenta: 
signal difference EIGEN6C4-
XGM2019e
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improved MDT allows one to derive improved geostrophic 
currents, as is shown in the comparison of the Agulhas cur-
rent (Fig. 5d, e). This visual evidence is proved by com-
paring both MDTs to the drifter-optimized DTU17MDT 
(Fig. 5c, Knudsen et al. 2018). Within the open ocean (up to 
60° northern/southern latitude and 30 km away from coasts), 
the XGM2019e-derived MDT shows a global standard devi-
ation to DTU17MDT of 2.02 cm, while the MDTs derived 
from EGM2008 and EIGEN6-C4 have standard deviations 
of 3.34  cm and 4.25  cm, respectively. This means that 
the performance in the ocean has improved by ∼ 40% in 

comparison with EGM2008 ( ∼ 52% to EIGEN6-C4) when 
validating against DTU17MDT. A statistically complete 
evaluation of the comparisons to DTU17MDT is found in 
Fig. 6a in terms of empirically derived probability density 
functions (PDFs).

Please be aware that due to the use of the altimetric grav-
ity anomalies (DTU13A) in the ground observations (cf. 
Fig. 1), the XGM2019e model may be biased to a certain 
degree to the a priori MDT used within DTU13GRA. In 
the course of the processing of DTU13A, an a priori MDT 
is removed from the mean sea surface up to d/o 100 (cf. 

Fig. 5   Unfiltered geodetic MDT solutions from the CNES/CLS 2015 
means sea surface and the EGM2008 (a) resp. XGM2019e (b) ocean 
geoid (shown for the Western Pacific). c reference MDT obtained 
from the drifter-optimized DTU17MDT (Knudsen et al. 2018). Geos-

trophic current velocities for the Agulhas current derived from (iden-
tically) Gaussian-filtered EGM2008 MDT (d) resp. XGM2019e MDT 
(e). f reference geostrophic current velocities from DTU17MDT
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Andersen et al. 2013). Since up to d/o 100 XGM2019e 
is dominated by the satellite model (cf. Fig. 4), the bias 
towards this a priori MDT is completely removed. Neverthe-
less, there is still a bias to expect, as removing an MDT up 
to d/o 100 implies to neglect all MDT signal present above 
d/o 100. Through the inclusion of GOCO06s data in the 
XGM2019e model, it is possible to restore the MDT signal 
up to the satellite resolution of d/o ∼ 200 (cf. Figs. 4, 5b), 
meaning that all actual MDT signal above this resolution 
remains as bias within XGM2019e. As the actual MDT has 
in general a long-wavelength character (cf. Fig. 5c), the mag-
nitude of this bias can be considered as small (cf. differences 
to DTU17MDT), but one may expect that an MDT derived 
from XGM2019e is still somewhat too smooth compared to 
the actual MDT.

Even though the ocean’s geoid can be considered smooth 
compared to the land geoid (since the signal of the seabed 
gets attenuated due to upward continuation of the gravity 
field onto the ocean’s surface), there is still significant signal 
left above d/o 2159. This can be observed in XGM2019e 
especially over rough seabed structures (e.g. oceanic 
trenches or ridges) where deviations in the ocean’s geoid 
can reach up to about 2 cm when neglecting gravity field 
signal above d/o 2159 (cf. Fig. 7). In the proximity of such 
rough structures, one can expect a global standard deviation 
of about 5 mm induced by the residual signal above d/o 2159 
(cf. Fig. 6b, green line). This standard deviation increases 
strongly to about 10 cm when further reducing the maximal 

spectral resolution of XGM2019e to d/o 719 (cf. Fig. 6b, 
yellow line).

4.2 � GNSS/levelling performance

GNSS/levelling-derived geoid comparisons pose a good 
way to evaluate the performance of global models over 
land. For this, we apply the procedure described in Gru-
ber and Willberg 2019 and compare four models with some 
regional GNSS/levelling geoid heights. It is noted that the 
XGM2019e model has only been used up to a spectral reso-
lution of d/o 2190 (see also below) in order to be compa-
rable with the resolution of EGM2008 and EIGEN6-C4. 
From Fig. 8, which shows the RMS differences between a 
regional GNSS/levelling-derived geoid data set and geoid 
heights computed from the models, the following observa-
tions can be made:

(1)	 In case of XGM2019e, the RMS of geoid height differ-
ences to the GNSS/levelling values is always constant 
for all model truncation degrees because this model 
was also used for estimating the omission error above 
this degree and order. In case the RMS of geoid dif-
ferences for other gravity models is below this line, a 
model performs better than XGM2019e and vice versa.

(2)	 In areas where one can assume high-quality ground 
observations (Fig. 8a–d), the XGM2019e model up to 

Fig. 6   a Empirically derived probability density functions (PDFs) for 
deviations of unfiltered geoid derived MDTs (using CNES/CLS 2015 
MSS) from the reference DTU17MDT. Mean values of MDT devia-
tions were eliminated beforehand. Blue: deviation of the XGM2019e 
derived MDT. Red: deviation of the EGM2008 derived MDT. Vio-
let: deviation of the EIGEN6-C4 derived MDT. b Empirically 

derived PDFs for deviations from the XGM2019e geoid calculated 
from the roughest 10% of the ocean’s geoid surface. Red: deviation 
of the EGM2008 derived geoid. Violet: deviation of the EIGEN6-C4 
derived geoid. Green: deviation of the XGM2019e (up to d/o 2159) 
derived geoid. Yellow: deviation of the XGM2019 (up to d/o 719) 
derived geoid
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d/o 719 performs better than all other tested models in 
most cases. This is rather obvious for the EGM2008 
model, for which the RMS of geoid height differences 
is significantly higher than for XGM2019e in all areas. 
As this is observed already for low truncation degrees 
(e.g. between d/o 50 and 200), one can assume that the 
largest impact stems from the inclusion of GOCE data, 
which was not yet available at the time of EGM2008. 
In these areas, XGM2019e also performs slightly bet-
ter than XGM2016 indicating some improved mod-
elling as for both models used an identical land data 
set. For EIGEN6-C4, one can identify that for 3 areas 
XGM2019e outperforms this model as well, which 
is mainly due to the use of the latest GOCE solution 
(release 6 instead of release 5) and probably also due 
to an improved modelling approach. Only for Australia 
(Fig. 8d) EIGEN6-C4 provides slightly better results.

(3)	 When looking to the RMS of geoid differences in 
well-observed areas for degrees above 719, it becomes 
obvious that EGM2008 and EIGEN6-C4 outperform 
XGM2019e. This is visible in Fig. 8a–d as the reduced 
RMS for both models between degree 720 and their 
full resolution. This clearly shows the impact of using 
observed instead of topography-derived gravity anom-
alies in the range between d/o 719 and d/o 2190 in 
EGM2008 and EIGEN6-C4.

(4)	 In less well-surveyed areas one can identify from the 
geoid differences RMS that the XGM2019e model 
outperforms all other models (Fig. 8e, f). This shows 
on the one hand again the impact of the GOCE satel-
lite data (up to d/o 200) and on the other hand that 
topography-derived gravity anomalies can provide 
better information than less accurate ground gravity 
data. For example, in Brazil the RMS reduction from 

the EGM2008 model to the XGM2019e model is at a 
remarkable level of 7 cm. The major part of this (about 
80% of the total reduction) can be attributed to the 
GOCE data, which is nicely shown by the EIGEN6-C4 
performance in the lower degrees and the remaining 
reduction results from improved gravity data in the area 
including the topography-derived gravity anomalies for 
the very high frequencies.

In summary, one can conclude from the GNSS/levelling 
comparisons that despite the use of topographic information, 
XGM2019e shows a solid performance even over land. For 
the longer wavelengths up to d/o 719, XGM2019e exhibits 
a slightly better performance as compared to previous mod-
els. Above d/o 719 and in well-surveyed areas, XGM2019e 
cannot fully compete with EGM2008 and EIGEN6-C4 due 
to the lack of gravity measurements with a higher resolu-
tion than 15′. In areas with poor data coverage/quality, the 
performance of XGM2019e might be considered as identi-
cal, or even better than that of other models. Thus, it can be 
stated that XGM2019e performs globally more consistently 
than other models (i.e. accuracies within XGM2019e vary 
less than accuracies within EGM2008 or EIGEN6-C4, cf. 
Fig. 8). This seems reasonable since the topographic infor-
mation used within XGM2019e is available globally with 
nearly constant quality while the availability (and quality) 
of direct gravity field measurements is strongly location 
dependent. This better consistency and the fact that grav-
ity field information provided within XGM2019e is glob-
ally available up to ∼ 4 km can be important, e.g. for a 
more consistent gravity field reduction in the frame of a 
compute–remove–restore process of regional gravity field 
modelling (especially in areas where the terrestrial data 
quality is low or data access is restricted). In the scope of 

Fig. 7   Residual signal of 
XGM2019e above d/o 2159 
over the ocean in terms of maxi-
mum absolute height anomalies 
(i.e. geoid heights) on a 5′ raster
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Fig. 8   GNSS-levelling performance of XGM2019e, XGM2016, 
EGM2008 and EIGEN6-C4 for different spectral resolutions up to 
d/o 2190 (lower RMS values of geoid differences mean better perfor-
mance, for details see Gruber and Willberg 2019). RMS of geoid dif-

ferences a in Germany, b in Japan, c in the US, d in Australia, e in 
Brazil, f in Mexico. GNSS/levelling comparisons in other regions are 
also performed. As they support the drawn conclusions and thus give 
no further insights, they are not shown within this work
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regional gravity field modelling, it is also noteworthy that for 
XGM2019e full variance–covariance information is avail-
able up to d/o 719 which can be used for more realistic error 
propagations into the spatial domain to improve regional 
modelling approaches (see e.g. Willberg et al. 2019).

4.3 � Provision of XGM2019e

To comply with the existing standard, XGM2019e is pub-
lished as spherical harmonic model. As a matter of fact, 
it is problematic to truncate the spherical harmonic series 
expansion at a certain degree when evaluating functionals 
on a spheroid since artefacts are introduced (cf. Pavlis et al. 
2012). In order to avoid these problems, spectral truncations 
must be performed in the spheroidal harmonic domain. The 
resulting procedure is considered problematic for most end-
users, as they may not be familiar with the theory of sphe-
roidal harmonics and/or the spectral transformation formulas 
involved. It is therefore decided to provide the model pre-
calculated at three different spectral resolutions: d/o 5540, 
2190 and 760. All three resolutions are available on ICGEM 
(Zingerle et al. 2019a).

5 � Outlook

It is planned to continue the series of high-resolution XGM 
models in the future. On the processing branch, improve-
ments can still be made by increasing the maximum d/o 
of the densely modelled part (soon up to d/o 2159, as new 
supercomputing resources at the Leibniz Supercomputing 
Center are available). One point to focus within the prepa-
ration of future models will be the task of data acquisition 
resp. compilation. As of now (January 2020), access to grav-
ity field information is still restricted in many regions of 
the world, so the outcome of this endeavour is open. The 
situation over land might improve after the public release 
of EGM2020. In the oceanic regions, we are confident to 
achieve further enhancements in the future by switching 
to updated altimetric products and changing the process-
ing strategy. As an example, it is planned to directly use 
mean sea surface heights and individual MDT products to 
derive the gravity field instead of using pre-calculated grav-
ity anomalies.
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Publication P-4: Residual least-squares collocation: use of covariance
matrices from high-resolution global geopotential
models

Reference
Willberg M., Zingerle P. and Pail R. (2019) Residual least-squares collocation: use of covariance matrices
from high-resolution global geopotential models. J Geod 93, 1739–1757 (2019). doi 10.1007/s00190-019-
01279-1

Copyright
This work originally has been published in Journal of Geodesy, available at https://link.springer.com/, and is
reprinted here with permissions of Springer. The copyright has been transferred to Springer-Verlag GmbH
Germany.

Abstract
The paper presents a modified formulation of Least-Squares Collocation. This Residual Least-Squares Col-
location (RLSC) includes a remove-compute-restore procedure with a high-resolution Global Geopotential
Model (GGM) and a topographic gravitational potential model. In contrast to previous approaches, in RLSC,
the remaining input residuals are modeled with error covariance matrices instead of signal covariance ma-
trices. Therefore, we include the full variance-covariance information of a high-resolution GGM, namely the
XGM2016, to the procedure. The included covariance matrices are anisotropic and location-dependent and
enable a realistic error modeling of a target area. This fact represents an advantage over covariance matri-
ces derived from signal degree variances or empirical covariance fitting. Additionally, due to the stochastic
modeling of all involved components, RLSC provides realistic accuracy estimates. In a synthetic closed-loop
test case with a realistic data distribution in the Andes we demonstrate the advantages of RLSC for regional
geoid modeling and quantify the benefit which results mainly from a rigorously handled high-resolution GGM.
In terms of root mean square deviations from the true reference solution, RLSC delivers an improvement of
about 30% compared to a standard LSC approach, where the benefit is particularly pronounced in areas with
a sparse data distribution. This improved performance, together with the fact that the resulting stochastic
error estimates better reflect the true errors, might be an important aspect for the application of RLSC to de-
rive gravity potential values and their uncertainties at reference stations of the International Height Reference
System.
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MW and PZ derived the mathematical formulation of RLSC and the study design together, which are mostly
the results of joint discussions (between MW and PZ). MW designed the test case in South America and the
comparison between RLSC and LSC. PZ produced covariance matrices for XGM2016. Apart from that, MW
performed the majority of all computations and created the results. MW was responsible for most of the analysis
and interpretations, where PZ and RP contributed with discussions, corrections and support. MW wrote the text
with improvements from RP and PZ. MW created figures and tables for the paper.

The overall own contribution of PZ for P-4 is estimated at 15 %, which is the average value of the percent-
age values estimated for the five criteria listed in the table below (Tab. P.4).

Criteria Estimated
own contribution

Computation and results 10 %
Ideas and study design 40 %
Analysis and interpretation 20 %
Text 5 %
Figures and tables 0 %
Total 15 %

Tab. P.4 – Criteria and estimated contribution share of Philipp Zingerle for P-4
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Publication P-5: Integration of airborne gravimetry data filtering into
residual least-squares collocation - example from the 1 cm geoid
experiment

Reference
Willberg M., Zingerle P. and Pail R. (2020) Integration of airborne gravimetry data filtering into residual least-
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Abstract
Low-pass filters are commonly used for the processing of airborne gravity observations. In this paper for the first
time, we include the resulting correlations consistently in the functional and stochastic model of residual least-
squares collocation (RLSC). We demonstrate the necessity of removing high-frequency noise from airborne
gravity observations, and derive corresponding parameters for a Gaussian low-pass filter. Thereby, we intend
an optimal combination of terrestrial and airborne gravity observations in the mountainous area of Colorado.
We validate the combination in the frame of our participation in ’the 1 cm geoid experiment’. This regional
geoid modeling inter-comparison exercise allows the calculation of a reference solution, which is defined as
the mean value of 13 independent height anomaly results in this area. Our result performs among the best
and with 7.5 mm shows the lowest standard deviation to the reference. From internal validation we furthermore
conclude that the input from airborne and terrestrial gravity observations is consistent in large parts of the target
area, but not necessarily in the highly mountainous areas. Therefore, the relative weighting between these two
data sets turns out to be a main driver for the final result, and is an important factor in explaining the remaining
differences between various height anomaly results in this experiment.
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Declaration of own contribution
(MW: Martin Willberg; PZ: Philipp Zingerle; RP: Roland Pail)
MW had the idea to contribute to the 1 cm geoid experiment, prepared the gravity observations and per-
formed initial results, where high-frequency noise was detected in the airborne observations. Accordingly,
MW and PZ formulated the methodology section which handles high-frequency noise consistently in the
RLSC approach. MW performed most of the calculations and created the results in the paper. The coau-
thors supported MW in analysis and interpretation, and provided detailed comments and corrections to the
manuscript from MW. MW created figures and tables for the paper, whereby PZ had the idea for the figures 2
and 3.

The overall own contribution of PZ for P-5 is estimated at 12 %, which is the average value of the percent-
age values estimated for the six criteria listed in the table below (Tab. P.5).

Criteria Estimated
own contribution

Computation and results 5 %
Ideas and study design 25 %
Analysis and interpretation 15 %
Text 5 %
Figures and tables 10 %
Total 12 %

Tab. P.5 – Criteria and estimated contribution share of Philipp Zingerle for P-5




