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Abstract

Lunar Laser Ranging (LLR) measures the distance between observatories on Earth
and retro-reflectors on Moon since 1969. The LLR analysis is split in various steps:
(1) The calculation of lunar and planetary ephemeris, (2) calculating the travel
times of the laser pulses and examining its differences to the observed travel times
of the pulses based on sophisticated models, and (3) fitting a set of parameters of
the Earth-Moon system by a least-squares adjustment based on the Gauss-Markov
Model (GMM). In this thesis, all three steps were investigated, and new results are
given. Two articles on this work have been published in Advances in Space Research
[Singh et al., 2021, 2022] and one has been published in Physical Review Letters
[Singh et al., 2023].

The starting point for the numerical integration of the ephemeris calculation in the
LLR analysis software (‘LUNAR’) of the Institute of Geodesy (IfE) was changed
from June 24, 1969 to January 1, 2000. This change improves the uncertainty of
the lunar orbit by about 35%. The uncertainties of the parameters other than the
lunar orbit also change, showing a small systematic improvement. The ephemeris
calculation was updated based on the DE440 ephemeris. This change leads to a
small improvement in the results, and keeps the dynamical model up to date.

The non-tidal loading effect causes deformations of the Earth surface up to the
centimetre level. Its addition in LUNAR improves the uncertainties of the station
coordinates by about 1% and also the LLR residuals by up to 9%. Similarly, the
additional modelling of tidal atmospheric loading (TAL) from the IERS 2010 con-
ventions in LUNAR also improves the uncertainty of the station coordinates by up
to 7% and the LLR residuals by up to 24%. The changed TAL modelling is with
respect to an older model in which the atmospheric pressure loading from the IERS
1996 conventions was used.

A sensitivity analysis and a validation by resampling was performed by creating vari-
ous solutions of LUNAR with different conditions to test the need for a scaling factor
for the GMM-obtained standard deviation (1σ) values. An up-scaling to provide re-
alistic uncertainties is neither necessary for the standard set of parameters, nor for
the polar motion coordinates (xp and yp). For ∆UT1 values, however, the uncer-
tainty of recent estimates must be given as 2σ values. The current best uncertainty
from their individual estimation are 9.77 µs for ∆UT1, 0.35mas for xp, and 0.64mas
for yp.

A possible violation of the equivalence of passive and active gravitational mass, for
Aluminium and Iron, using LLR data is also discussed in this thesis. For the test,
the method of Bartlett and Van Buren [1986] is used. A new limit of the validity
of that equivalence of 3.9 · 10−14 is given. This is about 100 times better than the
previous one.

Keywords: Lunar Laser Ranging, lunar ephemeris, earth rotation parameters, rel-
ativity tests
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Zusammenfassung

Lunar Laser Ranging (LLR) beobachtet seit 1969 die Entfernung zwischen Observa-
torien auf der Erde und Retroreflektoren auf dem Mond. Die LLR Analyse umfasst
verschiedene Schritte: (1) die Berechnung der Mond- und Planetenephemeriden, (2)
die Berechnung der Laufzeiten der Laserpulse und Untersuchung der Differenzen zu
den beobachteten Laufzeiten der Pulse basierend auf hochgenauen Modellen, und (3)
die Bestimmung von Parametern des Erde-Mond-Systems im Rahmen einer kleinsten
Quadrate-Ausgleichung basierend auf dem Gauß-Markov-Modell (GMM). In dieser
Arbeit wurden alle drei Schritte untersucht und es wurden neue Ergebnisse vorgelegt.
Zwei Artikel zu dieser Arbeit wurden in Advances in Space Research [Singh et al.,
2021, 2022] veröffentlicht, und ein weiterer [Singh et al., 2023] wurde in Physical
Review Letters veröffentlicht.

Der Ausgangspunkt für die numerische Integration der Ephemeridenberechnung in
der LLR-Analysesoftware (‘LUNAR’) des Instituts für Erdmessung (IfE) wurde vom
24. Juni 1969 auf den 1. Januar 2000 geändert. Diese Änderung verbessert die
Genauigkeit der Mondumlaufbahn um etwa 35%. Die Genauigkeiten der anderen
Parameter ändern sich ebenfalls und zeigen eine kleine systematische Verbesserung.
Die Ephemeridenberechnung wurde auf Basis der DE440-Ephemeriden aktualisiert.
Diese Änderung führt zu einer kleinen Verbesserung der Ergebnisse und hält das
dynamische Modell aktuell.

Der nicht gezeitenbedingte Auflasteffekt verursacht Verformungen der Erdoberfläche
bis in den Zentimeterbereich. Seine Berücksichtigung in LUNAR verbessert die
Genauigkeiten der Stationskoordinaten um etwa 1% und die LLR-Residuen um bis zu
9%. In ähnlicher Weise verbessert die zusätzliche Modellierung der atmosphärischen
Auflasten durch Gezeiten (TAL) aus den IERS 2010-Konventionen in LUNAR auch
die Genauigkeit der Stationskoordinaten um bis zu 7% und die LLR-Residuen um
bis zu 24%. Die geänderte TAL-Modellierung bezieht sich auf ein älteres Modell,
in dem die atmosphärische Druckbelastung aus den IERS-Konventionen von 1996
verwendet wurde.

Eine Sensitivitätsanalyse und eine Validierung durch Resampling wurde durchge-
führt, indem mehrere Lösungen von LUNAR mit verschiedenen Bedingungen berech-
net werden, um die Notwendigkeit eines Skalierungsfaktors für die erhaltenen Werte
der Standardabweichung (1σ) aus dem GMM zu testen. Eine Hochskalierung auf re-
alistische Genauigkeiten ist weder für den Standardparametersatz noch für die Polko-
ordinaten (xp und yp) notwendig. Für ∆UT1-Werte muss die Genauigkeit neuerer
Schätzungen jedoch als 2σ-Werte angegeben werden. Die derzeit besten Genauig-
keiten aus ihrer individuellen Schätzung sind 9.77 µs für ∆UT1, 0.35mas für xp und
0.64mas für yp.

Eine mögliche Verletzung der Äquivalenz von passiver und aktiver Gravitationsmasse
für Aluminium und Eisen unter Verwendung von LLR-Daten wird ebenfalls in dieser
Arbeit diskutiert. Für den Test wird die Methode von Bartlett and Van Buren
[1986] verwendet. Für die Gültigkeit dieser Äquivalenz wurde ein neuer Grenzwert
von 3,9 · 10−14 bestimmt. Dieses Ergebnis ist etwa 100 Mal besser als das Vorherige.

Schlagwörter: LLR, Mondephemeriden, Erdrotationsparameter, Relativitätstests
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1 Introduction

Lunar Laser Ranging (LLR) was first made possible with the Apollo 11 landing
in 1969, before which the distance to the Moon was best known via radar obser-
vations and to an uncertainty of about 1.25 km [Hey and Hughes, 1959]. With
LLR, ranges to the surface of the Moon have reached an uncertainty of about 5
- 10mm today. The first retro-reflector (henceforth only ‘reflector’) was placed
on the Moon by the Apollo 11 astronauts in July 1969. It is square shaped with
a size of 46 cm×46 cm. The Apollo 14 reflector, placed on the Moon in January
1971, is of the same shape as the Apollo 11 reflector. Both these reflectors con-
sist of one hundred 3.8 cm diameter corner cube reflectors each. The Apollo 15
reflector, shown in Figure 1.1, is the biggest in size: 105 cm×65 cm. It was placed
on the Moon in July 1971. It consists of three hundred 3.8 cm diameter corner
cube reflectors. The Luna 17 and Luna 21 Soviet missions to the Moon deployed
the Lunokhod 1 and Lunokhod 2 rovers in November 1970 and January 1973,
respectively. The two Lunokhod reflectors were designed by the French and are
identical in shape. The reflectors are sized 44 cm×19 cm and consist of 14 corner
cubes. Lunokhod 2 was the last reflector to be placed on the Moon. The ab-
breviations A11, A14, A15, L1, and L2 will be used for the individual reflectors
hereon. Currently, there are five reflectors on the Moon (see Figure 1.2), to be
tracked via LLR.

The LLR measurements have primarily been carried out from six observatories
on the Earth that were or are capable to range to the Moon. These are: the Côte
d’Azur Observatory, France (OCA), the McDonald Laser Ranging Station, USA
(MLRS), the Apache Point Observatory Lunar Laser ranging Operation, USA
(APOLLO), the Lure Observatory on Maui island, Hawaii, USA (LURE), the
Matera Laser Ranging Observatory, Italy (MLRO), and the Geodetic Observatory
Wettzell, Germany (WLRS). The positions of the observatories are shown in
Figure 1.3. Two of these LLR observatories have now stopped LLR: LURE after
1990, and MLRS after 2013.

Laser pulses are shot from laser telescopes at observatories on the Earth towards
reflectors on the Moon. They are then reflected back, completing the Earth-
Moon-Earth travel. Due to the improvements in technology, the energy of one
laser pule being shot has improved since 1969. Energetic laser pulses, as of current
measurements, have a width of about 100 ps and an energy of about 100mJ. The
reflectors have different specifications, as mentioned above, and therefore have
different characteristics (see section 2.1.2). The details of such specifications of
the reflectors and of the laser telescopes can be found, for example, in Murphy
[2013] and Müller et al. [2019].

The strength of the laser signal received at the Earth observatory after returning

1https://www.nasa.gov/mission_pages/LRO/multimedia/lroimages/lroc-20100413-
apollo15-LRRR.html, last check: 27.02.2023

1
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1 Introduction

Figure 1.1: A15 reflector on the Moon, photographed by astronaut David Scott. The
image is obtained from the NASA website1.

Figure 1.2: The positions of LLR reflectors on the lunar surface [Hofmann, 2017].
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Figure 1.3: The positions of LLR observatories on the Earth surface [Hofmann, 2017].

from one of the reflectors on the Moon is very weak. The LLR observatories record
the return time of single photons. This procedure is carried out multiple times
and lasts several minutes. The data of the travel times of multiple laser pulses
shot to the Moon is then combined to provide one observation, called a normal
point (NP). The variation in the strength of the laser signal depends significantly
on the atmospheric conditions and on the lunar elevation from the observatory.
Another limiting factor in the LLR observation procedure is the divergence of
the laser pulse during both, up-link (i.e. from the Earth observatory to the
reflector on the Moon) and down-link (i.e. from the reflector on the Moon to
the Earth observatory). Finally, the NP gives the Earth-Moon-Earth light travel
time (LTT) at one specific epoch.

The direction of the Earth, when seen from the Moon, varies by roughly ±0.1
rad in both longitude and latitude. This variation of the Moon is called libration,
and leads to a tilt of the reflectors to the Earth, causing a temporal spread of the
reflected laser pulses. This temporal spread is caused because the reflectors have
multiple corner cubes, some of which are then closer to the Earth than the others
[Murphy, 2013; Williams et al., 2022]. This effect of libration must be modelled
in the LLR analysis, and can contribute to increased LLR residuals. The two
Lunokhod reflectors lead to less dispersion than the Apollo reflectors as they are
relatively small in size. In future, single-corner cube reflectors will be deployed
on the Moon which will be larger in size. This will assure that the reflected laser
pulse will not be temporally spread [Williams et al., 2022].

LLR NPs were first observed using a ruby and green laser light (wavelength of
λ = 694.3 nm and λ = 532 nm). Since 2015, LLR NPs have also been regularly
observed using laser light of the infra-red (IR) wavelength (λ = 1064 nm). This
enables obtaining NPs at low and high lunar elevations and also closer to new and
full Moon [Chabé et al., 2020]. A better coverage of the lunar orbit leads to a more
uniform estimation of all parameters from LLR, as the non-uniformly distributed

3



1 Introduction

data is one of the reasons of the correlations between various estimated LLR
parameters [Williams et al., 2009]. When using green laser light, the performance
of L1 is comparable to those of the Apollo arrays, but that of L2 is worse [Murphy
et al., 2011; Courde et al., 2017]. The reason for the difference of performance of
the two Lunokhod reflectors with green laser light is yet unexplained. However,
this difference was reduced when ranging with IR laser light. Overall, a better
coverage over the lunar reflectors is obtained when ranging with IR laser light.

LLR has the longest observation time series of all space geodetic techniques and
allows the determination of a variety of parameters of the Earth–Moon dynamics.
Many authors, such as Hofmann [2017], Müller et al. [2019], point out that the
results from LLR, discussed below, can be divided in the following main groups:

1. Tests of relativistic parameters,

2. Lunar ephemeris calculation,

3. Estimation of the selenocentric inertial and terrestrial reference frame pa-
rameters and of lunar interior and selenophysical parameters, and

4. Estimation of geocentric inertial and terrestrial reference frame parameters
along with estimation of Earth Orientation Parameter (EOP).

Due to the large Earth-Moon distance and the possibility of measuring this dis-
tance at the millimetre level as well as the long time span of LLR observations
(53 years), LLR provides one of the current best test fields of Einstein’s general
theory of relativity. This is because the non-gravitational effects show up only
at the millimetre level [Murphy, 2013; Müller et al., 2019]. From LLR analysis,
it is possible to solve for parameters like the temporal variation of the gravita-
tional constant, test for a violation of the Equivalence Principle (EP), test for
preferred-frame effects, etc. Biskupek et al. [2021] show that a combined test of
the strong and weak EP is possible from LLR analysis. For the test, the Earth
and the Moon are considered as test bodies in the gravitational field of the Sun.
Both, the Earth and the Moon, have gravitational self-energies and different com-
position. A violation of the EP would cause the Moon to additionally accelerate
into the direction of the Sun. Biskupek et al. [2021] report that no deviation
from Einstein’s theory of relativity was found, and give the currently best result
of this test of EP as ∆(mg/mi)EM = (−2.1 ± 2.4) · 10−14. Zhang et al. [2020]
also investigated a possible violation of the EP due to assumed dark matter in
the galactic centre. This would cause an oscillation, with a sidereal month pe-
riod, in the Earth–Moon range. Zhang et al. [2020] report an oscillation with an
amplitude of A = 0.6±1.0 mm, also showing no deviation from Einstein’s theory
of relativity. Furthermore, in Einstein’s theory, the gravitational constant G is a
universal constant. However, in other theories (such as one by Brans and Dicke
[1961]), this is not the case. When testing for a deviation from Einstein’s theory,
Genova et al. [2018] show an upper limit of Ġ/G < 10−14 per year based on MES-
SENGER data anaylsis, and Biskupek et al. [2021] give Ġ/G = (−5.0±9.6)·10−15

per year based on LLR data analysis. For further discussion and results of rela-
tivistic parameters from LLR analysis, see Kopeikin et al. [2008]; Hofmann and

4



Müller [2018]; Park et al. [2021]; Fienga et al. [2019]; Pavlov [2020]; Biskupek
et al. [2021], etc. Some results are also addressed in Chapter 6.

LLR also contributes heavily to the calculation of lunar and planetary ephemeris.
The ephemeris are important for navigation of spacecraft, and for the observations
of planets and other objects in the solar system, etc. Ephemeris can be obtained
from various sources such as from NASA’s Jet Propulsion Lab (JPL), France’s
IMCCE-Observatoire de Paris (INPOP ephemeris), and the Russian Academy
of Sciences’ (RAS) Institute of Applied Astronomy (IAA), called Ephemeris of
Planets and Moon (EPM). Furthermore, the ephemeris are also needed for exper-
iments such as LLR, which require a model of the solar system. The analysis of
LLR data is strongly dependent on the quality of lunar ephemeris. See Williams
et al. [2013]; Murphy [2013]; Pavlov et al. [2016]; Hofmann [2017]; Viswanathan
et al. [2019] etc. for details of lunar and planetary ephemeris calculations.

The physical properties of the Moon have been studied from various sources,
such as the APOLLO seismic data, Gravity Recovery and Interior Laboratory
(GRAIL) data, Lunar Reconnaissance Orbiter (LRO) data, and LLR data analy-
ses. From LLR data, the solid-body tides, the physical librations, and the orbit of
the Moon can be studied, by the determination of several parameters related to
lunar physical properties. See Williams et al. [2013]; Williams and Boggs [2016];
Biskupek [2015]; Hofmann et al. [2018], etc. for recent results of selenophysical
parameters from LLR analysis.

From LLR data analysis, the coordinates and velocities of the observatories can
be estimated. It is still not feasible to obtain a time series of coordinates of
LLR observatories over short time spans spanning from a few weeks to up to a
few years, due to the lack of extensive data. Therefore, the contribution of LLR
data to the terrestrial parameters is limited. However, recent contributions from
LLR to the Earth Rotation Parameter (ERP) estimation (see Singh et al. [2022];
Biskupek et al. [2022]) show a good estimation of ∆UT1, which can be used for a
comparison of estimated ∆UT1 from Very Long Baseline Interferometry (VLBI).
The analysis of LLR data also contributes to the estimation of precession and
nutation parameters. Hofmann et al. [2018] show a comparison of the precession
rate and nutation coefficients of different periods (18.6 and 9.3 years, 1 year,
182.6 and 13.6 days) to the values of the MHB2000 model. For further details,
see Williams et al. [2006]; Müller et al. [2012]; Hofmann et al. [2018]; Biskupek
et al. [2021]; Singh et al. [2021, 2022], etc.

LUNAR Software

In Germany, from the early 1980ies, the software package LUNar laser ranging
Analysis softwaRe (LUNAR) has been developed to study the Earth-Moon system
and to determine several related model parameters [Egger, 1985; Gleixner, 1986;
Bauer, 1989; Müller, 1991]. The analysis model used in LUNAR is based on
Einstein’s theory of relativity. It is fully relativistic and complete up to the
first post-Newtonian (1/c2) level. To take advantage of the high-precision NPs

5



1 Introduction

that can be obtained with an accuracy of several millimetres [Murphy, 2013], the
LUNAR software was updated continuously [Biskupek, 2015; Hofmann, 2017]. A
recent overview of LUNAR is given in Hofmann et al. [2018], a detailed description
can be found in Müller et al. [2014]. LUNAR10 (the previous version of LUNAR)
was expanded in this thesis, as described below.

Outline of the Thesis

In the current version of LUNAR, with a least-squares adjustment (LSA), up to
175 unknown parameters can be determined. A list of all parameters which are
determined (for a so-called standard calculation) is given in Appendix A. The
different parts of and the models currently included in LUNAR are discussed in
Chapter 3 and Chapter 4.

Chapter 2 gives a description of the dataset of LLR and briefly describes the
LLR analysis. A short description of the Gauss-Markov Model (GMM) is given
in Chapter 3. In the chapter, a new test (in LLR analysis) to obtain realistic un-
certainties by finding a relevant scaling factor for the standard deviations of the
estimated parameters is discussed, and results are given. The chapter also dis-
cusses and shows the results of improving the LLR model by the implementation
of geocentre motion (GCM), and tidal (only atmospheric) and non-tidal loading.
In Chapter 4, a new calculation strategy for the lunar ephemeris calculation is
discussed and its benefit on the LLR results is shown. The chapter also addresses
the recent changes made to the dynamical model, and the effect of inclusion of
asteroids in LLR analysis. Finally, it compares the results from LUNAR to the
latest results from the other LLR analysis groups. In Chapter 5, latest results of
the ERP estimation from LLR analysis are given, where novel analysis methods
have been applied. Chapter 6 entails a discussion of the relativistic parameters
that can be estimated from LLR analysis, and gives the current limit on a possible
violation of equivalence of active and passive mass, a new test of one cornerstone
of the relativity theory. Chapter 7 gives the conclusions and an outlook on further
research.
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2 Normal Points and LLR
Analysis Description

2.1 Distribution of Normal Points

The Institute of Geodesy (IfE) LLR dataset1 has 30 172 NPs from April 1970 until
April 2022. The distribution of these NPs according to observatories, reflectors,
and synodic angle is discussed in this section.

2.1.1 Observatories

Table 2.1 shows the time span in which the different observatories observed the
NPs, and Figure 2.1 shows a histogram of recorded NPs over the years (1970 -
2022) from all observatories. MLRS has observed 22.8% NPs, using three different
telescopes (McD, MLRS1, and MLRS2). The largest number of the NPs have
been observed from OCA (60.2% NPs). This very high percentage of NPs from
one observatory affects the results obtained by LLR, for example, the estimated
ERPs from LLR are highly influenced by the position of OCA.

2.1.2 Reflectors

Figure 2.2 shows the distribution of the NPs with respect to the reflectors they
were recorded from for the time spans 1970 - 2022, and 2015 - 2022. Overall, most
NPs are recorded from the A15 reflector (64.9%). Many factors, such as the large

Table 2.1: Details of LLR observatories (‘Obs.’ in table) and their observations used
within IfE normal point (NP) file. For MLRS, the three telescopes are men-
tioned by their individual names.

Obs. Time span NPs Obs. Time span NPs

McD 1970 - 1985 3042 OCA 1984 - 2005 9576

MLRS1 1983 - 1988 708 2009 - 2022 8588

MLRS2 1988 - 2013 3131 APOLLO 2006 - 2022 3822

LURE 1984 - 1990 751

MLRO

2003 - 2004 11

WLRS
1994 - 1996 4 2010 - 2015 91

2018 - 2022 170 2017 - 2022 278

1last update in June 2022

7



2 Normal Points and LLR Analysis Description

Figure 2.1: Distribution of the 30 172 NPs over the time span April 1970 - April 2022.
The percentages of the contribution of the respective observatories are given
in the legend. For MLRS, the three telescopes are mentioned by their indi-
vidual names. OCA measurements with laser wavelength of λ = 694.3 nm
and λ = 532 nm are listed as ‘OCA gr’.

size of the A15 reflector, missing L1 reflector until 2010 [Murphy et al., 2011],
etc., combined with overall degradation of reflecting capabilities of all reflectors
led to most ranges to the A15 reflector.

After re-detecting the position of the L1 reflector and finding out that it has
degraded much less compared to the other reflectors [Murphy et al., 2011], and
with ranging to the Moon using IR laser light starting 2015 that gives better
reflection at the reflectors [Müller et al., 2019], the distribution of the NPs over
the reflectors on the Moon has changed. The A15 reflector still dominates this
distribution (41.1% in the time span 2015 - 2022), however, the other reflectors
are now used for many more ranges compared to before 2015.

2.1.3 Synodic Angle and Wavelength of Laser Signals

The synodic angle is the angle defining the position of the Moon with respect to
the Sun, where 0◦ represents new Moon and 180◦ represents full Moon. Figure
2.3 shows the distribution of the NPs according to the synodic angle at which
the NPs were observed, for the full time span of the IfE LLR dataset (1970 -
2022), and for a shorter time span of 2015 - 2022, segregated by the wavelength
of the observed NPs. In Figure 2.3, OCA measurements with laser wavelength of
λ = 694.3 nm and λ = 532 nm are listed as green.

It can be seen from Figure 2.3 that the NPs observed with the IR wavelength
provide a more uniform coverage of the lunar orbit over the synodic month, and
even include observations close to new and full Moon which is not feasible when
ranging to the Moon using green laser light. The improved coverage of the lunar
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2.2 Uncertainty of Normal Points

(a) 1970 - 2022 (b) 2015 - 2022

Figure 2.2: The distribution of NPs over the LLR reflectors from the IfE LLR dataset
(a) over the entire time span and (b) in the time span 2015 - 2022.

orbit and fewer gaps in LLR data improves the results by reducing the uncertainty
for all estimated parameters, especially the estimated EOP.

2.2 Uncertainty of Normal Points

Figure 2.4 shows the uncertainty of the NPs over the entire time span of the IfE
LLR dataset, and Table 2.2 shows the mean uncertainty of each LLR observatory.
In the table, OCA is subdivided into three parts to focus on the different wave-
lengths of the laser light used (green and IR) and the time span (before and after
2015.0) over which OCA has recorded NPs. It can be seen that the uncertainty
of NPs has reduced over the years. The smallest, i.e. the best, uncertainty is
of APOLLO. Details of measurement procedure and estimating uncertainty of a
NP can be found in, for example, Murphy et al. [2008, 2011], Chabé et al. [2020].

2.3 LLR Analysis Description

As mentioned in Chapter 1, the LLR observatories measure the LTT of multiple
laser pulses, combine them, and provide the LTT of one NP (observed LTT).
Using this observed LTT, the distance between the Earth and the Moon can be
calculated as

ρobs =
τobsc

2
, (2.1)

where ρobs is the Earth-Moon distance, τobs is the observed LTT, and c is the
speed of light.

The Earth-Moon distance can also be calculated mathematically, using the emis-
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2 Normal Points and LLR Analysis Description

(a) 1970 - 2022

(b) 2015 - 2022

Figure 2.3: The distribution of NPs with respect to the synodic angle from the IfE LLR
dataset (a) over the entire time span and (b) in the time span 2015 - 2022.

Figure 2.4: Uncertainty of the recorded NPs from each individual LLR observatory over
the entire time span of the IfE LLR dataset. For MLRS, the three telescopes
are mentioned by their individual names, and OCA is given separately for
the different wavelengths of the laser light used.

10



2.3 LLR Analysis Description

Table 2.2: Mean uncertainty of the recorded NPs at each LLR observatory (“Obs.”).
For MLRS, the three telescopes are mentioned by their individual names,
and OCA is given separately for the different wavelengths of the laser light
used.

Obs. Mean Uncertainty
[ns] Obs. Mean Uncertainty

[ns]

McD 0.98 OCA gr1 0.33

MLRS1 0.80 OCA gr2 0.19

MLRS2 0.17 OCA IR 0.19

LURE 0.18 APOLLO 0.03

WLRS 0.13 MLRO 0.30
1before 2015.0, 2after 2015.0

sion time of laser pulse from the telescope (t1). The computation of the LTT
(τcalc) is an iterative process, which estimates the time of reflection of the laser
pulse at the reflector (t2), and the time of reception at the station (t3), by esti-
mating the travel time t2 − t1 = τ12 for the laser signal from the telescope to the
reflector, and the travel time t3 − t2 = τ23 for the laser signal from the reflector
back to the telescope (refer Figure 2.5).

For the calculation of the Earth-Moon distance for any epoch, some corrections
need to be added to the calculated LTT (τ12 + τ23). These corrections include
relativistic corrections (τrel), atmospheric corrections (τatm), systematic failures
of measurement (τsyst), and effects of solar radiation pressure on the geocentric
lunar orbit (τSRP ), and give the calculated Earth-Moon distance (ρcalc) as

ρcalc =
τcalcc

2
=

(τ12 + τ23 + τrel + τatm + τsyst + τSRP )c

2
. (2.2)

For the calculated value of the Earth-Moon distance for each NP, the position
of the Earth, the Moon, and the Sun, and the orientation of the Earth and the
Moon must be known. The orientation of the Earth can be used from, for ex-
ample, the International Earth Rotation and Reference Systems Service (IERS)
14C04 EOP series. For the position of the Earth, the Moon, and the Sun, and the
lunar orientation, the planetary and lunar ephemeris must be calculated. Alter-
natively, the ephemeris can also be used from an external source2. A calculation
of the ephemeris is done by numerical integration, for which the values (position,
velocity, and orientation of bodies) at a certain initial time must be known. The
calculation of the ephemeris is the first step of the LLR analysis. This is followed
by the computation of the LTTs for each NP, for which the positions of the LLR
observatories and reflectors at the time of emission and reception of the laser

2Details of external sources of ephemeris are given in Chapter 1
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Figure 2.5: Depiction of LLR modelling for residual calculation [Hofmann, 2017]

pulse must be calculated (called ‘data reduction’).

The differences of the observed and the calculated Earth-Moon distance, for each
NP, are then computed (called the LLR residuals). The parameters involved in
the ephemeris calculation and in the data reduction are then fitted by a least-
squares adjustment based on a Gauss-Markov Model (GMM). This is henceforth
referred to as ‘GMM adjustment’. The different parameters that can be fitted in-
clude initial orbit (position, velocity, and orientation at the initial time mentioned
above) of the Moon, positions of stations and reflectors, tidal time delays, etc.
The GMM adjustment is an iterative process. In each iteration, the ephemeris
are calculated and the data reduction is performed. These iterations are repeated
until a pre-defined stop criteria of the GMM is satisfied. A general description
of the GMM is given in Chapter 3. For the iterations, the partial derivatives of
the parameters which are to be estimated must be known. These derivatives are
computed analytically for some parameters (such as coordinates of observatories
and reflectors, velocity of observatories, etc.), and numerically for the other pa-
rameters (such as tidal time delays, spherical harmonic coefficients of the Moon,
etc.).

12



2.3 LLR Analysis Description

IfE Normal Point Dataset

NPs can be downloaded from the website of the Crustal Dynamics Data Informa-
tion System (CDDIS)3 Noll [2010] and from the EUROLAS Data Center (EDC)4.
Hofmann [2017] describes the details of the IfE NP dataset, and is therefore only
summarised here. The IfE format contains the following information for each NP:

1. Transmission time of the laser pulse,

2. LTT of the pulse,

3. Uncertainty of the LTT

4. Air temperature, pressure, and relative humidity at the observatory,

5. Reflector and station codes,

6. Wavelength of the laser light used,

7. Number of individual echos used to form the NP,

8. Source of the NP (whether downloaded from CDDIS or privately obtained),
and

9. Release code of the NP (if updated on the source).

To convert the CDDIS format of the NPs to a format readable within LUNAR, the
original code by Randall Ricklefs (University of Texas, Center of Space Reseach),
modified by various current and previous contributors of LUNAR, is used.

3https://cddis.nasa.gov/archive/slr/data/npt_crd/quarantine/, last check:
20.02.2023

4https://edc.dgfi.tum.de/en/, last check: 20.02.2023
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3 Data Reduction and Parameter
Estimation

In section 2.3, the LLR analysis procedure has been briefly described, where it is
mentioned that for the computation of the LLR residuals, the observed LTT of
the laser pulses from an Earth observatory to a reflector on the Moon and back
must be subtracted from the computed LTT for each NP. Many known effects
affect the time taken by the laser pulse for this Earth-Moon-Earth measurement.
These effects are calculated and the computed LTT is fitted to the observations
by estimating various parameters of the Earth-Moon system, leading to smaller
LLR residuals. Smaller residuals indicate higher correctness of the models in-
volved in the calculation. These effects, which influence the calculated LTT, can
be classified in different kinds, such as, displacement of reference points (observa-
tories on the Earth and reflectors on the Moon) and corrections to the LTT. The
corrections which were included until LUNAR10 were based on the IERS 2010
conventions [Petit and Luzum, 2010], except the effect of atmospheric loading
which was based on the IERS 1996 conventions [McCarthy, 1996].

In this chapter, various aspects of the data reduction and parameter estimation
are addressed, which were implemented in the context of this thesis to improve
the LLR modelling and analysis. Section 3.1 discusses the representation of un-
certainty obtained from the Gauss-Markov Model (GMM) used in LUNAR. In
the further sections, the effects of geocenter motion (section 3.2), Tidal Atmo-
spheric Loading (TAL) (section 3.3.1), and non-tidal loading (section 3.3.2) on
the LLR residuals and the uncertainties of fitted parameters are discussed.

3.1 Uncertainty of Estimated Parameters

In LUNAR, the least-squares adjustment procedure for parameter estimation
is based on a GMM. In a GMM, the uncertainty of parameters is estimated
assuming the errors in the model have a zero mean, constant variance, and are
uncorrelated. A depiction of the model is given in Figure 3.1. For details of
performing the adjustment procedure following the GMM in general, see Niemeier
[2008] and chapter 2 of Thaller [2008].

In Figure 3.1, vectors l0 and x0 represent the observations and the initial val-
ues of the fitted parameters1, A represents the design matrix containing partial
derivatives of the observations with respect to the parameters which are to be
fitted, vector ∆l represents the reduced observations (i.e. observed - computed
values), vector v represents the residuals, σ̂2

0 represents a-posteriori variance of
unit weight, and Qx̂x̂ represents the variance-covariance matrix. The variance

1The fitted parameters are alternatively also referred to as ‘estimated parameters’
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3 Data Reduction and Parameter Estimation

Figure 3.1: Flowchart of the adjustment procedure following a GMM based on Niemeier
[2008]. The given depiction is an exact reproduction of one given by Alkhatib
[2021].

of each fitted parameter is given by the corresponding diagonal element of the
variance-covariance matrix. The standard deviation, a measure of how well a
parameter is known, is given by the square root of the variance of a parameter.

The reported uncertainties of the estimated parameters from LUNAR have, for
many years, been published as up-scaled values of the standard deviation ob-
tained from the iterative GMM adjustment. For older versions of LUNAR, it was
concluded that some small random and systematic effects remained in the solu-
tion from LUNAR. These errors could amount to 1 - 2 cm in the LLR residuals.
A scaling factor of three was therefore often used for studies based on LUNAR in
the past (see, for example, Hofmann et al. [2018]; Singh et al. [2021] etc.) for a
realistic uncertainty representation. This section discusses the results for a sen-
sitivity analysis and a resampling validation performed with the current version
of LUNAR. This is done to analyse if an up-scaling of the obtained standard
deviation from the GMM is still required for a realistic uncertainty representa-
tion of the estimated parameters. The uncertainty of the estimated parameters
is henceforth referred to as 1σ values or, if the obtained standard deviation is
up-scaled by a factor of three, 3σ values.

3.1.1 Sensitivity Analysis

To decide if an up-scaling is still necessary with the current version of LUNAR
to get realistic uncertainties, a sensitivity analysis was performed. Here, different
versions of LUNAR were run to obtain multiple solutions by creating variations
in the list of fitted and fixed parameters for each solution. Thereby, multiple val-
ues for each estimated parameter were obtained (henceforth, ‘variation-values’).
Each variation solution was also individually adjusted following the LLR iteration
procedure. These were then compared against the standard values (i.e. values
obtained from the standard solution). These standard values are henceforth re-
ferred to as ‘SV’. A scaling factor (e.g. 3σ) for giving a realistic uncertainty of a
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3.1 Uncertainty of Estimated Parameters

parameter should be used if the variation-values of any parameter in such a sensi-
tivity analysis show significant deviations from the standard values. The different
cases for this evaluation, where the subsets of fitted and fixed parameters were
varied, are as follows (mentioned changes are made to the standard set of fitted
parameters, see Appendix A):

1. Coordinates of all LLR observatories fixed,

2. Velocities of all LLR observatories fixed,

3. Coordinates and velocities of all LLR observatories fixed,

4. Coordinates of all LLR reflectors fixed,

5. Biases (added to coordinates of the observatories for certain time spans, see
Appendix B) fixed,

6. Coordinates, velocities, and biases of all LLR observatories fixed,

7. Lunar Euler angles and angular velocity of the mantle fixed,

8. Lunar initial position and velocity, and Euler angles and angular velocity
of the mantle fixed, and

9. All dynamical parameters (see Appendix A) fixed.

The mean (µV V ) and the standard deviations (σV V ) of the nine variation-values
were then calculated as,

µV V =
Σxi
N

, σV V =

√
Σ(xi − µV V )2

N
, (3.1)

where xi are the variation-values, i ranges from 1 to N , and N is the total
number of cases (here, 9). These were then compared to the standard value
and uncertainty for each parameter (i.e. SV and their corresponding GMM-
obtained 1σ values). For the nine cases other than the standard solution, the
initial values used for all estimated parameters were those from the last iteration
of the standard solution (i.e. the solution, with the final values of each parameter,
which led to a convergence). This is done to ensure that the difference, if any,
between the variation-values and standard value occurs due to a difference in
the estimation strategy, and not due to different starting values of the iterative
analysis following a GMM.

The comparison between the standard values and the nine variation-values for
the station and reflector coordinates is given in Table 3.1. It can be seen that
the 1σ values are considerably bigger than the two other values in the table:
The standard deviation of the variation-values (σV V ) and the difference of the
mean of the variation-values to the standard value (‘SV - µV V ’ in table). The
values of all other estimated parameters (not shown) show similar results. The
maximum deviation of all estimated parameters is obtained for the oblateness of
lunar core (fc) and for the x-axis of the angular velocity of the lunar core (defined
in the mantle frame). The mean of the variation-values for both parameters is
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3 Data Reduction and Parameter Estimation

Table 3.1: The changes in station and reflector coordinates from a set of nine variation
solutions, and the associated 1σ values from the standard solution (‘Std.
Sol.’ in table). ‘Obs.’ stands for ‘observatory’, ‘Ref.’ stands for ‘reflector’,
‘Coord.’ stands for ‘coordinate’, ‘SV - µV V ’ shows the difference between the
standard value and the mean of the variation-values, and σV V stands for the
standard deviation of the variation-values. Units = mm.

Obs./Ref. Coord. 1σ (Std.
Sol.) SV - µV V σV V

MLRS
x 2.88 0.00 0.01
y 1.91 0.00 0.05
z 5.82 -0.02 0.13

APOLLO
x 0.87 0.00 0.01
y 0.88 0.00 0.02
z 2.73 -0.01 0.09

OCA
x 1.07 0.00 0.03
y 0.87 0.00 0.01
z 3.64 -0.01 0.13

LURE
x 5.01 0.03 0.09
y 5.95 -0.01 0.10
z 10.77 -0.01 0.34

WLRS
x 10.12 -0.03 0.09
y 5.25 -0.01 0.09
z 23.97 0.06 0.19

MLRO
x 8.20 0.00 0.00
y 7.25 -0.01 0.03
z 12.38 0.00 0.02

A11
x 21.40 -0.71 1.48
y 15.40 1.23 3.05
z 5.33 -0.26 0.76

L2
x 21.08 -0.73 1.52
y 13.56 1.20 2.77
z 11.96 -0.32 0.71

A14
x 22.31 0.23 0.87
y 15.39 1.36 3.43
z 5.54 0.03 0.72

A15
x 21.21 -0.19 0.42
y 14.26 1.40 3.26
z 12.16 -0.16 0.59

L1
x 21.62 0.55 1.53
y 11.92 1.23 2.82
z 15.41 0.10 0.63
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3.1 Uncertainty of Estimated Parameters

close to their standard values. If either the ‘SV - µV V ’ value or the σV V value,
for any estimated parameter, would have been bigger than the corresponding 1σ
value, an up-scaling for a realistic uncertainty representation would be needed.
These results indicate that a multiplication of the obtained standard deviation
from GMM-adjustment by a factor of three is not necessary for the parameters
estimated in a standard solution with the current version of LUNAR.

3.1.2 Validation by Resampling

The LLR dataset was re-sampled hundred times for a further validation of the
results. Each newly created sample contained 28 758NPs (i.e. about 95% of the
original dataset). The NPs removed from any sample were selected systematically,
to ensure a similar distribution of each sample dataset to the full dataset (see
section 2.1). For the removal, the NPs were divided into subsets per station
per month over the entire time span. The NPs were then removed from those
subsets whose length was sufficient enough for the removal of at least one NP.
This ensured that no large data gaps were present in any sample, specially for
the months where only a few NPs per station were obtained. Finally, a GMM
adjustment was performed on each of the hundred samples, using the same list
of fitted and fixed parameters as the standard solution. The values, henceforth
referred to as ‘sample-values’, are those that led to a convergence of the LLR
iteration for each individual sample. The mean and standard deviation of these
sample-values (see equation (3.1)) are referred to as µ100 and σ100. The initial
values used for all estimated parameters of the hundred samples were those from
the last iteration of the standard solution (i.e. the solution, with the final values
of each parameter, which led to a convergence). This, similar to the sensitivity
analysis, is done so that the differences in the results are due to different selection
of NPs and not due to a different estimation strategy.

Figure 3.2 shows the hundred sample-values and the standard values for geocentric
position and velocity of the Moon at 2000.0. Almost all sample-values fall within
the GMM-obtained 1σ values around the standard value (shown by the grey
area in the figures). This holds true for all estimated parameters and not just
for those shown in Figure 3.2. The lowest number of samples which fall within
the 1σ value around the standard fitted value are 89 (i.e. 11 are outside of the
range ‘SV ± 1σ’), for the z-coordinate of reflector A11 and for the lunar gravity
field coefficient C32. These two parameters also show the maximum standard
deviation (σ100) in their sample-values, both about 55% of their 1σ value. The
maximum difference of the mean of the hundred sample-values to the standard
value is seen for the lunar mantle’s Euler angle ψ. This difference is of about
35% of the 1σ value. Furthermore, the sample-values for each fitted parameter
are near-normally distributed (not shown). When comparing the deviation of
the mean of the sample-values to the standard values (i.e. SV - µ100), only
the coordinates, velocities, and biases of MLRS show a difference slightly larger
than 1σ100 but less than 2σ100. Therefore, all fitted parameters fall within a 95%
confidence interval obtained from the samples, and the parameters other than the
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3 Data Reduction and Parameter Estimation

(a) x-coordinate, lunar position (b) y-coordinate, lunar position

(c) z-coordinate, lunar position (d) x-coordinate, lunar velocity

(e) y-coordinate, lunar velocity (f) z-coordinate, lunar velocity

Figure 3.2: The y-axis of each sub-figure is offset by its parameter’s standard value,
as mentioned in its title. Each sub-figure shows the hundred sample-values
(distributed over the x-axes) and the standard value for the geocentric lunar
position ((a) - (c)) and the geocentric lunar velocity ((d) - (f)) of the Moon
at 2000.0. The green lines in the figures represent the mean of the hundred
sample-values (µ100) and the grey area shows the region marked by the
uncertainty (1σ) around the standard value.
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3.2 Geocenter Motion

coordinates, velocities, and biases of MLRS perform even better. No significant
deviations are observed, therefore, an up-scaling of the standard deviation from
GMM adjustment for a realistic uncertainty representation is not necessary.

In conclusion, neither the sensitivity analysis nor the validation by resampling
shows any need for an up-scaling of the standard deviation obtained from the
GMM for a realistic representation of the uncertainty. Therefore, the uncertainty
values of all standard parameters (see list in Appendix A) in this thesis are
provided as 1σ values. A sensitivity analysis was also performed to analyse if
uncertainties should be published as up-scaled standard deviation values for the
ERP estimation. Results and discussion are provided in section 5.3. Furthermore,
when estimating relativistic parameters, similar tests should be performed to
determine the correct scaling factor for the parameters being estimated.

3.2 Geocenter Motion

The centre of mass of only the solid Earth without its fluid components is different
to the centre of mass of the solid Earth including the atmosphere, oceans, and
continental water. The interaction of these components with each other influences
their motion and causes mass redistribution within the Earth system. This causes
changes in Earth’s gravitational field. The difference of the centre of mass of only
solid and total (solid and fluid) Earth defines the two frames: The centre of figure
(CF) frame and the centre of mass (CM) frame respectively. The CF is realised
from the positions of geodetic stations on the solid Earth, and the CM is realised
by the centre of orbiting satellites. The motion of the CM with respect to the CF is
called the geocentre motion (GCM). As described by various authors (such as Wu
et al. [2012]; Sun [2017]), the GCM is driven by tides, seasonal and inter-annual
surface mass redistribution and long-term mass transport processes, which take
place above and below the solid Earth surface. It is defined by the degree-1 Stokes
coefficients (C1,0, C1,1, and S1,1). For further details on the differences between
CM and CF, see Sun [2017] or Collilieux [2022] in the context of ITRF2020.

The Gravity Recovery and Climate Experiment (GRACE) satellite mission en-
ables a constant monitoring of redistributing masses within the Earth’s system.
However, it still cannot provide reliable time variations in degree-1 coefficients,
which are directly related to the GCM. The degree-1 Stokes coefficients can be
obtained based on methods described by Swenson et al. [2008] and Sun [2017],
and are available as a part of GRACE technical note 132. These GCM values
are provided by three observatories: Center for Space Research (CSR) at Univer-
sity of Texas at Austin, Jet Propulsion Laboratory (JPL), and German Research
Centre for Geosciences (GFZ). In LLR analysis, the Stokes coefficients of the
Earth’s gravitational field starting degree-2 play an important role (for example,
in ephemeris calculation to account for the interaction of Earth’s figure with other
solar system bodies assumed as point masses), and degree-1 Stokes coefficients
are not considered in a standard solution. In LUNAR, the Stokes coefficients of

2https://podaac.jpl.nasa.gov/gravity/grace-documentation, last check: 07.10.2022
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Figure 3.3: The percentage changes in the WRMS-R of the three GCM solutions from
the standard solution for all LLR observatories.

the Earth’s gravitational field are used from EGM2008 [Pavlis et al., 2012]. In
this section, the effect of the addition of GCM displacement at the observation
level, is discussed.

To obtain the Weighted Root Mean Square (WRMS) of the yearly-averaged LLR
residuals (henceforth referred to as ‘WRMS-R’), the LLR residuals (see section
2.3) for each NP are weighted (inversely proportional) according to the uncer-
tainty of the observed LTT. Figure 3.3 shows the percentage change in the
WRMS-R of the three GCM solutions compared to the standard solution. A
maximum change of about 3.00% can be seen. Negative percentage values indi-
cate that the WRMS-R of the individual GCM solutions are smaller than those of
the standard solution, and therefore better. Overall, the addition of GCM from
the three solutions is very similar, and shows only sub-millimetre level changes of
the WRMS-R compared to the standard solution. As the movement of the GCM
is not of a high value itself, a small change due to its addition is not unexpected.

To estimate how the addition of the GCM affects the residuals from each LLR
observatory, the WRMS-R values of the individual LLR observatories were ex-
amined. Figure 3.4 shows the percentage changes in the WRMS-R of the CSR
GCM solution from the standard solution for all the LLR observatories. The
addition of GCM is mainly only beneficial to WRMS-R values from OCA (mean
improvement of 0.37%). LURE shows a very small mean improvement of 0.04%.
All the other observatories show a slight deterioration when adding GCM, with
the maximum mean deterioration of 1.17% at MLRO. When considering the
WRMS-R values from all observatories (Figure 3.3), the CSR solution shows a
small mean improvement of 0.07%. This is similar to the small improvements
shown by the other two GCM solutions, and is primarily caused due to the small
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3.3 Loading

Figure 3.4: The percentage changes in the WRMS-R of the CSR GCM solution from
the standard solution for all the individual LLR observatories.

improvement in the WRMS-R values of OCA (accounting for over 60% of the
data).

Furthermore, the effect on all fitted parameters (see Appendix A for a list of all
fitted parameters) due the three GCM solutions was also examined. The fitted
parameters show a maximum of 0.07% improvement, if any, due to the addition
of GCM, and is therefore deemed to be negligible. Overall, when accounting for
the movement of GCM in LLR analysis, it does not lead to any strong benefits.
Therefore, it is currently not a part of the standard solution of LUNAR.

3.3 Loading

Until LUNAR10, the effect of displacement of reference points (i.e. positions
of LLR observatories) due to atmospheric loading was based on the IERS 1996
conventions [McCarthy, 1996]. This simplified vertical displacement of the crust
was used to account for the overall (tidal and non-tidal) atmospheric loading. In
this section, the effect of the separate loading components, tidal (atmospheric)
and non-tidal (atmospheric, oceanic, and hydrological loading), in LLR analysis
are investigated.

3.3.1 Atmospheric Loading

To analyse the effect of displacement of LLR observatories due to the tidal part
of the atmospheric loading, the effect was added in LUNAR from two sources:
As given in IERS 2010 conventions [Petit and Luzum, 2010] (S1-S2 Atmospheric
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Pressure Loading (APL) correction) called ‘RP03 model’ and by the ESMGFZ
repository3 of the GFZ [Dill and Dobslaw, 2013] in two individual solutions. These
two solutions are henceforth referred to, in this section, as the ‘RP03’ and the
‘GFZ’ solutions.

Petrov and Boy [2004] point out that the atmospheric tides induce periodic mo-
tions of the Earth’s surface at diurnal S1, semi-diurnal S2, and higher harmonics.
These motions are caused due to the diurnal heating of the atmosphere. Their
effect is calculated using Green’s functions [Farrell, 1972]. The three dimensional
displacement4 is temporally and geographically dependant. In addition to the
two tides (S1 and S2) considered in the IERS 2010 conventions, the model of Dill
and Dobslaw [2013] analyses a contribution of ten additional (i.e. in total twelve)
tidal constituents.

Both TAL solutions mentioned above were applied in the current version of
LUNAR, and compared to a version in which only the APL, as described in the
IERS 1996 conventions, was applied. This solution, used only for a comparison,
is referred to as the ‘1996’ solution. The TAL from GFZ defines its coefficients
starting 1976. Therefore, for the GFZ TAL solution, the IERS 2010 TAL was
added for the rest of the time span (i.e. 1970 - 1976).

Station Positions

In LUNAR, the coordinates of the LLR observatories (also referred to as ‘station
coordinates’) are fitted and their uncertainties are obtained for epoch 2000.0,
applying the GMM. Due to the limited data availability, only one solution of
the station coordinates for the entire time span of the LLR data is estimated.
This is unlike other space geodetic techniques, which can obtain a few hundred
observations per station per week (see Sośnica et al. [2013]; Glomsda et al. [2020]),
and therefore are able to produce a time series of solutions.

Table 3.2 shows mean values of the estimated coordinates of the LLR observato-
ries from the three solutions. As the McDonald observatory conducted its LLR
measurements for different times at three different locations (which are very close
to each other and linked by local ties), namely McDonald, MLRS1, and MLRS2,
they are analysed as one observatory in LUNAR. From the table, it can be seen
that the uncertainties for all coordinates become better compared to the 1996
solution when implementing the two TAL models (RP03 and GFZ). The newly
applied TAL models give results very similar to each other, however, the GFZ so-
lution performs slightly better than the RP03 solution. Overall, the improvement
in the uncertainty of the coordinates from the new TAL models is about 7.00%
for all LLR observatories. The estimated parameters other than the coordinates
of the LLR observatories (not shown), in both solutions, also show a systematic
improvement of about 7.00%.

3http://rz-vm115.gfz-potsdam.de:8080/repository/entry/show?entryid=
24aacdfe-f9b0-43b7-b4c4-bdbe51b6671b, last check: 07.10.2022

4coefficients can be obtained from https://geophy.uni.lu/atmosphere/tide-loading-
calculator/, last check: 07.10.2022
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Table 3.2: Mean values of 1σ uncertainties of the coordinates of the LLR observatories
(‘Obs.’, estimated for epoch 2000.0) obtained from LUNAR with the Atmo-
spheric Pressure Loading implemented as given in the IERS 1996 conventions
and the the IERS 2010 conventions. Units = mm.

Obs. 1996 RP03 GFZ Obs. 1996 RP03 GFZ

MLRS 3.80 3.54 3.53 LURE 7.79 7.24 7.23

APOLLO 1.60 1.49 1.49 WLRS 14.10 13.11 13.10

OCA 2.00 1.86 1.86 MLRO 9.26 8.61 8.60

WRMS of LLR Residuals

Figure 3.5 shows the changes in the WRMS-R when comparing the two TAL
solutions (RP03 and GFZ) to the 1996 solution. The differences between the
1996 solution and the two new solutions changes the WRMS-R up to a few mm.
Here, as in the previous figures, negative values indicate a lower value of the
WRMS-R and are therefore an indication of improvement. As the values of LLR
residuals and hence the WRMS-R become smaller over the years (especially after
1990), the percentage by which the WRMS-R are affected are much higher after
1990 than before. Both new solutions show a mean improvement over all years
of about 2.00%, ranging between about 15.00% deterioration and about 24.00%
improvement over the time span. As was the case with the uncertainty of the
station coordinates, the GFZ solution performs slightly better than the RP03
solution, with its mean WRMS-R being 0.15% smaller (therefore, better) than
the RP03 solution when considering NPs from all observatories together.

Figure 3.6 shows the changes in the WRMS-R between the RP03 and GFZ so-
lutions, where negative values indicate the WRMS-R of the GFZ solution are
smaller than those of the RP03 model. The two solutions are in very close agree-
ment with each other (indicated by values close to zero). The differences between
the two solutions are mostly at sub-mm level. Overall, based on the mean percent-
age change of the WRMS-R over all years, only OCA shows a small improvement
in the WRMS-R (0.15%), whereas the other LLR observatories show a small de-
terioration. As differences between the WRMS-R from the two solutions are only
at sub-mm level, and because OCA dominates the LLR dataset and shows a small
improvement for the GFZ solution, WRMS-R from all observatories together also
show the small improvement for the GFZ solution. In the current standard ver-
sion of LUNAR, the RP03 model, as recommended by the IERS 2010 conventions
[Petit and Luzum, 2010], is used. In all parts of the thesis, when referring to the
‘standard solution’, the effect of TAL is based on the RP03 model.

3.3.2 Non-Tidal Loading

The discussion and results in this section have benefited from the knowledge
gained from a previous study by Singh et al. [2021] published in Advances in
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Figure 3.5: The difference between the WRMS-R and the corresponding percentage
change for all observatories, for the two TAL solutions compared to the
standard solution.

Figure 3.6: The difference between the WRMS-R for all observatories, for the two TAL
solutions compared to the standard solution.
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Space Research. The author of this thesis is the first author of this paper, having
carried out the central research and data analysis. This previous study was
based on LUNAR10 (i.e. the previous version of LUNAR), and the results were
obtained from a slightly smaller dataset containing 26 839 NPs. The conclusions
of the previous study and its impact on this thesis are addressed below.

The crustal deformation due to the redistribution of masses in the atmosphere,
ocean, and land water mass has both tidal loading and Non-Tidal Loading (NTL)
components. For the calculation of the displacement of a reference point, the
IERS 2010 conventions do not recommend the addition of NTL deformations.
This is due to their low modelling accuracy and impact on the geodetic param-
eters compared to other deformations [Singh et al., 2021]. The IERS, however,
established the Global Geophysical Fluids Center (GGFC) in 1998, which has
different bureaus responsible for research and data provision related to the redis-
tribution of masses in atmosphere, oceans, and hydrological (land water) systems.
These bureaus, amongst other products, provide time series of NTLs over differ-
ent time spans [Singh et al., 2021]. The NTL time series are based on calculations
using Numerical Weather Models (NWMs) and Green’s functions [Farrell, 1972;
Dill and Dobslaw, 2013; Petrov, 2015], and can be added as corrections to obtain
the instantaneous position of a reference point.

Optical observation techniques (Satellite Laser Ranging (SLR) and LLR) can only
be performed in clear sky conditions. This leads to a difference in their results
in comparison with microwave observation techniques (such as VLBI, Doppler
Orbitography and Radiopositioning Integrated by Satellite (DORIS), and Global
Navigation Satellite System (GNSS)) [Otsubo et al., 2004; Sośnica et al., 2013;
Bury et al., 2019]. This weather-dependant effect on the results is called the
Blue-Sky effect. The accuracy of the loading effect due to NTL, as pointed out
by Glomsda et al. [2020] and Singh et al. [2021], has improved over the past
years due to the improved accuracy of the numerical weather models used for its
calculation [Jungclaus et al., 2013; Gelaro et al., 2017; Hersbach et al., 2018; Dill
and Dobslaw, 2013], and therefore addition of NTL can be beneficial in geodetic
analyses and provide a better comparison between results of optical-based and
microwave-based geodetic observation techniques.

The different NTLs (atmosphere, ocean, and land water mass) have different mag-
nitudes, depending on the position on Earth where the effects are being observed
[Singh et al., 2021]. The Non-Tidal Atmospheric Loading (NTAL), occurring due
to the non-tidal component of the APL, has the highest contribution of all NTL
effects for inland observatories. NTAL is the dominating loading for most LLR
observatories. The Non-Tidal Oceanic Loading (NTOL) primarily occurs due
to ocean water redistribution by atmospheric circulation, inflow and outflow of
ocean water, and changes in the total atmospheric mass over the oceans. It is
most dominant for coastal points. For LLR observatories, this effect is observed
for LURE. The Hydrological Loading (HYDL) is caused by redistribution of con-
tinental water mass, such as snow, ground water, etc. and is the most dominating
one close to the equator, in a ±40° latitude band [Eriksson and MacMillan, 2014;
Singh et al., 2021], and additionally, along lakes and river sides, and at special
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sites such as along the Rocky Mountains (North America), Himalayan region,
Northern Australia, and Amazon basin [Dill and Dobslaw, 2013]. For all compo-
nents of the NTL, the horizontal components have a smaller magnitude compared
to the vertical component [Singh et al., 2021].

The effect of NTL has been studied in VLBI (Schuh et al. [2004]; Glomsda et al.
[2020], and others), GNSS (Boy and Lyard [2008]; Dach et al. [2010]; van Dam
et al. [2012]; Nordman et al. [2015]; Memin et al. [2020], and others), and SLR
(Sośnica et al. [2013]; Bury et al. [2019], and others), where the results showed
that the addition of displacements due to NTL lead to an improvement of overall
results, most significantly in the reduction of seasonal signals. Based on the
improved results from other space geodetic techniques when adding NTL, it was
added as an observation level correction in LUNAR and its affect on the results
was analysed [Singh et al., 2021], as mentioned above. This previous study was
performed with 26 839 NPs, in a time span from 1970 - 2019, and analysed NTLs
from five different datasets:

1. International Mass Loading Service (IMLS)5,

2. German Research Centre for Geosciences (GFZ), Potsdam, Germany (data:
Dill and Dobslaw [2013]),

3. EOST loading service, University of Strasbourg, France6,

4. GGOS Atmosphere at Vienna (VMF), Technical University Vienna, Austria
(data: VMF Data Server [2020]), and

5. University of Luxembourg, Luxembourg (data: van Dam [2010]).

NTL was added as observation level correction from three of these datasets:
IMLS, GFZ, and EOST, and it was concluded that the addition of NTL from
IMLS provides the best results for LLR analysis. The different loading centres
have slightly different values of the magnitude of the effect, however, stay within
close agreement to each other. These differences occur due to different land-sea
masks, resolution, NWMs, and computation method. In this section, the results
of NTL addition from IMLS to LUNAR are reported with the current version of
LUNAR. The results of Singh et al. [2021] were based on LUNAR10, as men-
tioned above. A degree 10 Lagrange interpolation was performed on the time
series of the three individual loadings. As the IMLS NTL dataset is only avail-
able starting 1980 (see Table 2 of Singh et al. [2021]), the NTL effect was added
only in the time span 1980 - 2022. The effect of the three individual NTLs at
OCA from the IMLS dataset are shown in Figure 3.7. From the figure, it can
be seen that the effect NTL is up to cm level at OCA, and the maximum effect
is due to NTAL. The reference results (without any NTL addition), referred to
as ‘standard’ solution, are compared to the results obtained when adding NTL
from IMLS. In the results, ‘NTSL’ refers to the solution in which all loadings of
IMLS are applied together in the analysis, i.e. a combination of NTAL, NTOL,

5http://massloading.net/, last check: 12.10.2022
6http://loading.u-strasbg.fr/index.php, last check: 12.10.2022
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3.3 Loading

Figure 3.7: Effect of the three individual NTLs at OCA from 1980 to 2022 using the
IMLS dataset.

and HYDL. The solutions with the addition of only one NTL are referred to by
the name of the loading.

WRMS of LLR Residuals

The WRMS-R of the standard solution are compared to those of the four NTL
solutions: Three individual loading solutions and one combined loading solution.
Figure 3.8 shows the magnitude of differences (standard solution minus non-tidal
station loading (NTSL) solution) obtained in the WRMS-R, showing the effect
impacting up to a few millimetres. As expected, the entire time-span shows a
similar effect. The negative values in the figure mean lower values of WRMS-R,
and are therefore better.

Figure 3.9 shows the percentage change in WRMS-R obtained from LUNAR when
adding the NTLs for all LLR stations (negative change means improvement). As
expected, the maximum effect is shown by the NTSL solution, ranging between
−9.30% (improvement) and 3.98% (deterioration). The WRMS-R change ranges
between −8.20% and 2.42% for the NTAL solution, between −4.92% and 1.65%
for the NTOL solution, and between −2.84% and 2.48% for the HYDL solution.
Over all years, the mean value of the changes in WRMS-R are −0.54%, −0.28%,
and −0.20% for the NTAL, NTOL, and HYDL solutions, respectively. When
adding all three loadings, the mean value of the change of WRMS-R is of −0.89%,
showing an overall small improvement. All sub-figures in Figure 3.9 show a higher
value of percentages in the last thirty years, i.e. after 1990, because of better laser
systems which help obtain a lower value of the LLR residuals in the recent years.

Table 3.3 shows the WRMS-R for individual LLR observatories. As the loading
effect is different on different points on Earth, each individual observatory shows
different effects of the addition of the NTL in the WRMS-R. For NTAL, the
WRMS-R for each observatory show an improvement. The improvements when
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Figure 3.8: WRMS-R for the IMLS NTSL solution subtracted from standard solution,
for all LLR stations.

(a) NTAL (b) NTOL

(c) HYDL (d) NTSL

Figure 3.9: Percentage change in WRMS-R for the IMLS NTL solutions compared to the
standard solution for all LLR stations. (a), (b), and (c) show the individual
NTLs and (d) shows the combined NTLs. Negative values indicate lower
WRMS-R, and therefore an improvement.

30



3.3 Loading

Table 3.3: Mean values of the WRMS-R of individual LLR observatories (‘Obs.’) ob-
tained from LUNAR with the standard solution (‘Std.’) and the IMLS NTL
solutions. Units = mm.

Obs. Std. NTAL NTOL HYDL NTSL

McD 187.62 187.31 187.67 187.29 187.01

MLRS1 106.52 106.49 106.50 106.51 106.46

MLRS2 40.94 40.89 41.03 40.62 40.63

APOLLO 13.56 13.46 13.57 13.59 13.51

OCA 36.60 36.49 36.52 36.45 36.32

LURE 60.55 60.13 60.60 60.36 59.99

WLRS 28.52 27.35 28.24 28.84 27.34

MLRO 31.31 30.90 31.40 31.13 30.85

adding NTAL range from 0.03% for MLRS1 to 4.10% for WLRS. The addition
of NTOL has a mixed effect on the WRMS-R from the individual observato-
ries, where McD, MLRS2, APOLLO, LURE, and MLRO show a deterioration
ranging between 0.03% and 0.29%. This deterioration could be due to small
systematic effects, or due to incorrect numerical weather modelling at these loca-
tions. However, as the WRMS-R from OCA (contributing about 60% NPs) show
an improvement of 0.22%, the addition of NTOL leads to an overall improve-
ment of the WRMS-R. For HYDL, APOLLO and WLRS show a deterioration
of 0.22% and 1.12%, and the improvement in WRMS-R values for other obser-
vatories range from 0.01% (for MLRS1) to 0.78% (for MLRS2). When adding
all loadings together (i.e. for NTSL), all individual values of WRMS-R show an
improvement, ranging from 0.06% (for MLRS1) to 4.14% (for WLRS). The re-
duction in the value of WRMS-R when adding the NTLs, whether for all stations
together or individually shows the benefit of applying NTL in the LLR analysis.

Station Positions

Table 3.4 shows the mean value of uncertainties (1σ values) of the coordinates
of all six observatories used in LUNAR for the standard solution as well as for
solutions using the NTL datasets. From the table, it can be seen that none
of the NTL solutions show any deterioration of the uncertainty of the station
coordinates. The NTAL solution shows an improvement ranging between 0.53%
and 0.67% for the other observatories. For NTOL, APOLLO and OCA show
no changes, and all other stations show small improvements ranging between
0.28% and 0.35%. HYDL shows the most significant improvement in the station
coordinates’ uncertainty compared to the other loadings. The uncertainty for all
stations improves when adding HYDL, ranging between 0.41% (for LURE) and
0.67% (for APOLLO). The addition of all loadings (NTSL) shows the maximum
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Table 3.4: Mean values of 1σ uncertainties of the coordinates of LLR observatories
(‘Obs.’, estimated for epoch 2000.0) obtained from LUNAR with the stan-
dard solution (‘Std.’) and the IMLS NTL solutions. Units = mm.

Obs. Std. NTAL NTOL HYDL NTSL

MLRS 3.54 3.52 3.53 3.52 3.50

APOLLO 1.49 1.48 1.49 1.48 1.47

OCA 1.86 1.85 1.86 1.85 1.84

LURE 7.24 7.20 7.22 7.21 7.16

WLRS 13.11 13.04 13.07 13.05 12.96

MLRO 8.61 8.56 8.58 8.57 8.51

improvement in the uncertainties, ranging between 1.08% (for OCA) and 1.34%
(for APOLLO) indicating that the addition of all three loadings provides the best
results.

Spectral analysis of LLR residuals

Figure 3.10 shows a Fast-Fourier Transformation (FFT) periodogram of the three
NTLs for OCA (see Figure 3.7) from 1980 to 2022. All three periodograms show
a peak at the (roughly) annual signal, where the peak is obtained at 354 days by
HYDL and NTOL and at 368 days by NTAL, and a small peak at the semi-annual
signal. These signals are present in the NTLs due to the movement of atmosphere,
oceans, and surface water masses. As these movements are seasonal in nature,
they affect the signals obtained from time series of the geodetic observations.
Various authors, such as van Dam et al. [2012]; Schuh et al. [2004]; Dill and
Dobslaw [2013], have pointed out the existence of these and other signals in all
components of NTL, the primary being the annual and the semi-annual signal.
An addition of NTL in LLR should cause a corresponding effect in the time series
of the LLR residuals.

The residuals from LLR themselves contain signals with many different periods.
The dynamic interaction of Earth, Moon, and Sun primarily cause these periods.
The most dominant of these signals have periods of 27.5 days, 29.5 days, 365.25
days, etc. Combinations of these periods also contribute to some signals. As the
LLR NPs do not cover the span of an entire month due to the lack of observations
during new and full Moon, restricting the continuity of observations, and due to
further constrains such as cloudy sky nights, investigation of signals with periods
shorter than one month is difficult with LLR. In this section, the annual and the
semi-annual signals in the LLR time series are focused upon, which may exist
due to different reasons such as un-modelled effects in LUNAR, e.g., the effect of
asteroids on LLR analysis.

As the LLR NPs are temporally unevenly distributed, to perform a spectral anal-
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Figure 3.10: FFT periodogram of the three individual NTLs observed at OCA between
1980 to 2022 for the IMLS dataset.

ysis on such a non-uniformly sampled data, the Lomb-Scargle (LS) periodogram
is used. The output of the LS periodogram is dimensionless, therefore the magni-
tude of the LLR residuals in the analysis is not a key factor. For the LS analysis
of the annual signal in LLR residuals, a suitable subset of the NPs (station wise)
must be selected. VanderPlas [2017] points out that a high sampling rate and
uniformity of data samples is needed to obtain a very clear result with a LS pe-
riodogram. One subset of LLR NPs matches this criteria well: NPs from OCA
from 15.06.2012 to 05.10.2018 (5359 NPs). The results in this section focus on
the annual and the semi-annual signals from the standard and the NTL solutions
for the subset of 5359 NPs obtained at OCA, shown in Figure 3.11.

The observed annual signal from the time series deviates from one year by several
days. This is because of the non-uniformity and low sample size of data [Zhang
et al., 2020; Singh et al., 2021]. As seen in Figure 3.11, the NTAL solution
shows a higher period at the annual signal, and the NTOL solution shows almost
no change, and the HYDL solution shows a lower period at the annual signal.
The HYDL solution shows a 28.35% reduction compared to the strength of the
standard solution’s signal. The NTAL and NTSL solutions, on the other hand,
show an increase of 25.15% and 12.06% respectively in the peak of the annual
signal. The increase in strength of the annual signal when adding NTAL, and a
decrease when adding the HYDL was also pointed out by various authors, such
as, Petrov and Boy [2004], Glomsda et al. [2020], and Singh et al. [2021].

The semi-annual signal also shows a distinguishable effect. In the same subset of
NPs in which the annual signal is analysed, a reduction in the peak (compared
to the standard solution) at a (shifted) semi-annual period (at about 190 days)
can be observed. The three individual loading solutions show a reduction in the
strength of the semi-annual signal of 22.09%, 2.53%, and 13.96% for NTAL,
NTOL, and HYDL, respectively. For the NTSL solution, a more significant
reduction of 25.54% is obtained at the semi-annual signal.

33



3 Data Reduction and Parameter Estimation

Figure 3.11: LS periodogram of the four individual NTL solutions and the standard
(‘Std’) solution observed at OCA between 15.6.2012 and 05.10.2018 for the
IMLS dataset.

As seen in Figure 3.11, the signals with smaller periods, for example, those with a
period of less than 100 days, do not seem to be distinguishable from one another.
This is primarily caused due to the restriction of an unevenly distributed NP
dataset. Overall, the results show a similar trend as was discussed in Singh et al.
[2021].

In conclusion, the addition of NTL is beneficial to the LLR results, and it is
recommended to add all three individual NTLs for LLR analysis. The standard
solution of LUNAR discussed in this thesis, however, does not include the NTL.

Chapter Summary

This chapter gives an overview of the current methods of data reduction and
parameter estimation in LUNAR, and discusses the GMM adjustment procedure
used to estimate the uncertainties of the fitted parameters. In section 3.1, two
tests are discussed to ascertain a correct up-scaling factor for the standard de-
viation obtained from the GMM adjustment to report realistic uncertainties. In
both tests, multiple variations of the standard solution are created. The fitted
values and their uncertainties of all parameters from the standard solution are
then compared to the created variations. Section 3.1.1 discusses nine variations
created for a sensitivity analysis. Section 3.1.2 discusses the results of a hundred
variations created for an analysis using a resampling approach. One major find-
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ing is that a scaling of the standard deviation obtained from the GMM, for the
parameters fitted in a standard solution, is no longer necessary in the current
version of LUNAR. In section 3.2, the effect of addition of GCM as an observa-
tion level correction to the station coordinates in the LLR analysis is discussed.
Though the addition of the GCM as a position correction does lead to some small
systematic improvements, they are deemed to be too small to be included in a
standard calculation. In section 3.3, the effect of the tidal part of the APL, and
the effect of atmospheric, oceanic, and hydrological NTLs in the LLR analysis
is discussed. For the tidal APL, the RP03 model, from the IERS 2010 conven-
tions [Petit and Luzum, 2010], and the GFZ APL [Dill and Dobslaw, 2013] are
applied. Their results improve the LLR results compared to the previously used
simple APL model. However, the results of the two newly applied APL models
are not significantly different from each other. For NTLs, the effect is added from
the IMLS. The addition of NTLs also improves the LLR results. When adding
all three NTLs, up to 9.30% improvement is seen in LLR residuals, and up to
1.34% improvement is seen in the uncertainty of LLR observatory positions. It
is recommended to add all three NTLs for a standard LLR solution.

35





4 Ephemeris Calculation

The ephemeris describe the positions, the velocities, and the orientation of the
solar system bodies (sun, planets, their natural satellites, asteroids, etc.). Mod-
ern day ephemeris are generated by numerically fitting the integrated orbits of
the solar system bodies to various observations. The ephemeris computed in
such a manner are not suitable to cover the entire lifetime of the solar system,
but are considered adequate for a certain range of time, depending upon the
required applications. These modern day ephemeris, which require numerical in-
tegration, have only been used since 1984. Before 1984, the ephemeris for the
Sun, Mercury, Venus, and Mars were based on the theories and tables provided
by Simon Newcomb in 1898 [Standish and Williams, 2013], and the ephemeris of
the other planets (Jupiter, Saturn, Uranus, Neptune, and Pluto) were computed
from the heliocentric rectangular coordinates obtained by numerical integration.
The biggest challenge and source of error in computing modern day ephemeris
is that the mass and orbits of the asteroids are not very well known. Since the
ephemeris include the interaction of each body with one another, the uncertainty
of the mass and orbits of asteroids causes changes in the positions of planets. The
calculation of ephemeris also includes estimating initial values of various elements
(position, velocity, orientation at a certain epoch), which can be a major source
of error.

The ephemeris are not only important for navigation of spacecraft, and for the
observations of planets and other objects in the solar system, but also for exper-
iments such as LLR, which require a model of the solar system. The quality of
the ephemeris is critical for the quality of the LLR results, and therefore their
precision and accuracy are of high importance.

Ephemeris can be obtained from various sources, as mentioned in Chapter 1. For
the analysis with LUNAR, the lunar and planetary ephemeris are calculated in
the time span 1969-2023. The position and velocity of the Moon, the Euler angles
and the angular velocity of the lunar mantle, and the angular velocity of the lunar
core, along with other parameters (see Appendix A) are fitted and iterated. For
each iteration, a new set of ephemeris are calculated until the solution reaches
convergence.

As briefly described in Chapter 2, for LLR analysis, the positions of the Earth,
Sun, and Moon, and the orientation of the Moon are needed for the calculation
of the residuals. The ephemeris calculation in LUNAR, for a standard calcula-
tion, numerically integrates the positions and velocities of fourteen bodies (Sun,
Moon, eight planets, Pluto, Ceres, Pallas, and Vesta) and the orientation of the
Moon (mantle and core). For the numerical integration, the Adams-Bashforth-
Moulton integrator (original implementation described in Computer Solution of
Ordinary Differential Equations by Shampine and Gordon [1975]) is used. The
ephemeris are calculated with quadruple precision with a relative and absolute
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tolerance of 10−20 in a standard calculation. The ephemeris calculation is based
on the dynamical models (i.e. description of the motion and the orientation of the
Moon and Earth) described by the DE430 [Folkner et al., 2014] and the INPOP
ephemeris [Viswanathan et al., 2018; Fienga et al., 2019]. The point mass mu-
tual interaction is based on the relativistic Einstein–Infeld–Hoffmann equations
of motion. The ephemeris model is fully relativistic and complete up to first
post-Newtonian level.

In this chapter, various aspects of the ephemeris calculation are discussed. Sec-
tion 4.1 gives the results due to a change of the starting point of the ephemeris
calculation from June 28, 1969 (JD 2440400.5) to January 1, 2000 (JD 2451544.5).
Section 4.2 provides details of the changes made to the dynamical model of the
ephemeris calculation in LUNAR. Section 4.3 discusses the effect of inclusion of
340 additional asteroids in ephemeris calculation, compared to the standard solu-
tion, on the results obtained from LUNAR, and section 4.4 compares the results
of this thesis to those of DE430, DE440, and INPOP19 solutions.

4.1 2-way Calculation

The ephemeris in LUNAR was previously calculated from a starting point of
June 28, 1969 based on the DE430 ephemeris [Folkner et al., 2014]. As described
above, the ephemeris are calculated by a numerical integration. The integration
inherently builds up a small error when integrating from any epoch tn to the next
epoch tn+1. This inherent error increases at each epoch, resulting in the maximum
error at the end of the time span of the calculated ephemeris. When calculating
the ephemeris starting 1969, the lowest inherent error due to integration is close to
1969, when the uncertainty of the LLR NPs was high (worst NPs of the dataset),
and the maximum inherent error due to integration is close to 2023, when the
uncertainty of the LLR NPs is low (best NPs of the dataset, see Figure 2.4). To
tackle this problem of a mismatch in the superimposition of the best and the
worst data, the ephemeris calculation in LUNAR was changed to a two sided
calculation of the ephemeris, starting at January 1, 2000 (JD 2451544.5). The
ephemeris calculation starting in 1969 until 2023 is henceforth referred to as ‘1-
way’ calculation. Similarly, the ephemeris calculation starting in 2000 with a
forward calculation until 2023 and simultaneously a backward calculation until
1969 is henceforth referred to as ‘2-way’ calculation). In this section, the changes
in the results when changing from a 1-way calculation to a 2-way calculation are
discussed.

4.1.1 Calculated Ephemeris

From the ephemeris, the distance between the CM of the Earth and the CM of
the Moon (henceforth referred to as ‘Earth-Moon distance’) can be calculated.
Figure 4.1 shows the difference between the calculated Earth-Moon distance be-
tween the 1-way and the 2-way ephemeris calculation. This difference is based

38
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Figure 4.1: The difference in the calculated Earth-Moon distance between the 1-way and
2-way ephemeris calculations. For both solutions, the ephemeris calculation
was based on the fitted initial position of the Moon from the individually
converged solutions.

on the ephemerides calculations using the initial position of the Moon from the
1-way and the 2-way solutions from their individually converged solutions. The
difference stays between -3.95 and 4.54 cm. From the figure, it can be seen that
the difference between the Earth-Moon distance is the maximum for the most
recent years (around 2023) and the minimum for the beginning of the time span
of the figure (around 1970). This is because after 2000.0, both calculations of
the ephemeris show an increase in their individual inherent errors, increasing
the difference between their integrated orbits. Before 2000.0, in the direction of
1969, the inherent error of the 1-way calculation is decreasing, and that of the 2-
way calculation is increasing. Therefore, the differences before 2000.0 are smaller
than those after 2000.0. Overall, the mean of the difference, over the entire time
span of the figure, is of 0.43 cm. This indicates that the Earth-Moon orbit is
slightly shifted between the two calculations. This is because the initial orbit of
the Moon (position, velocity, orientation of the mantle and the core) are fitted
parameters. When fitting the orbital parameters of the Moon at 2000.0, it does
not exactly match the integrated value of the orbital parameters that is achieved
from numerical integration at 2000.0 with a 1-way calculation due to numerical
reasons.

Figure 4.2 shows the difference in the lunar mantle’s Euler angles between the
1-way and 2-way ephemeris calculations. For the Euler angles, it must be noted
that the first and the third Euler angles (ψ and ϕ) correspond to the the same first
and third Euler angles as mentioned in DE430 ephemeris (denoted differently as
ϕ and ψ). This mismatch is common between English and German texts, and the
notations in this thesis are kept in sync with the publications describing previous
versions of LUNAR (see [Biskupek, 2015; Hofmann, 2017]). Using the radius of
the Moon as 1738 km, the changes do not exceed a value of more than 8 cm in
any direction at the lunar equator.

From Figure 4.1 and Figure 4.2, it can be seen that both the change in the Earth-
Moon distance and the change in the Euler angles show some periodicity of the
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Figure 4.2: The difference in the calculated Euler angles of the mantle of the Moon
between the 1-way and 2-way ephemeris calculations.

signals. The involved signals for the Euler angles have two primary components:
A signal with a period of 18.6 years showing an amplitude of about 2mas and
a signal with a period of about 27 days (lunar month) showing an amplitude
of about 1mas. The involved signals for the Earth-Moon distance change show
various signals, such as those with annual and monthly (sidereal, solar, lunar)
periods. The amplitude of none of these signals exceeds 3.5mm. As explained
above, the lunar position, velocity, and orientation from the two ephemeris cal-
culations (1-way and 2-way) differ at 2000.0. Therefore the signals in the two
figures above exist. None of these signals have unexpected periods, i.e. other
than signals which are already known to exist in the Earth-Moon distance and
the Euler angles time series.

4.1.2 LLR Residuals

Figure 4.3 shows the change in the yearly averaged WRMS of the LLR residuals
(WRMS-R, see Chapter 3). As it was the case in Chapter 3, negative values in
the figure represent an improvement in the residuals. The higher percentage at
the end of the time series results from the small value of the residuals compared
to the change in these years. The change from the 2-way to the 1-way calculation
improves the WRMS-R for forty five years, with the maximum improvement
of 6.69mm for 2007. The mean improvement over all years is of 1.23mm, i.e.
5.56% improvement. As the deterioration of the WRMS-R in a few years is
small, considering the whole time span, the 2-way solution outperforms the 1-
way solution with respect to the LLR residuals.

4.1.3 Estimated Parameters

The estimated coordinates of the observatories on the Earth and the reflectors on
the Moon show significant changes (i.e. changes larger than their uncertainties).
This change in the coordinates, between the 1-way and the 2-way solutions, shown
in Table 4.1, occurs due to many factors: The changed Earth-Moon distance (see
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Figure 4.3: The difference between the WRMS-R and the corresponding percentage
change for all observatories, for the 2-way solution compared to the 1-way
solution.

Figure 4.1), the changed LLR residuals (see Figure 4.3), changed perturbation-
rotation parameters of the Earth1, changed lunar libration parameters, etc. As
seen from Table 4.1, the difference between the estimated coordinates of the LLR
observatories and the ITRF2020 coordinates decreases (for almost all coordinates)
when changing from a 1-way to a 2-way calculation, proving the benefit of the
2-way solution. In the table, the values for APOLLO are not shown because it
does not have ITRF2020 coordinates. For APOLLO, the mean change over the
three axes between the 1-way and the 2-way solution is 1.78 cm.

The velocities of the three LLR observatories (OCA, APOLLO, and MLRS) ad-
justed in a standard solution also show significant changes. When comparing
the velocities of OCA and MLRS from the 1-way and 2-way solution to their
ITRF2020 counterparts, y and z axes of OCA and z axis of MLRS showed smaller
differences for the 2-way solution. However, a trend could not be observed as
three of the six values showed an increase and the others a decrease. Other
than the positions of the LLR observatories and reflectors, and the velocities of
the observatories, a few other estimated parameters show significant differences:
Lunar gravity field coefficients C22 and C33, lunar libration parameters, Earth’s
perturbation-rotation parameters, lunar Love number h2m, and rotational time-
delay parameters (τr,21 and τr,22). Here, only the values of h2m, C33, τr,21, and
τr,22 stand out, as these values are not temporally adjusted. The 1-way and 2-way
estimates for these four parameters, along with their reference values are given in
Table 4.2. It can be seen that the 2-way estimates of three out of four parameters
(all except C33) are closer to their reference values than the 1-way estimates, and
that all parameters have smaller uncertainties. The change in the estimated value
of C33 is due to the effect of the degree-3 tides on the Moon. As the change of
the degree-3 gravity field coefficients due to the tidal effect is not accounted for
in the current model, a change in the estimated value of C33 is expected.

1see Biskupek [2015] for an explanation of the perturbation-rotation parameters
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Table 4.1: The differences of the coordinates of LLR observatories for the 1-way and
2-way solutions with each other and to the ITRF2020 coordinates, and the
differences of the coordinates of LLR reflectors for the 1-way and 2-way so-
lutions with each other.

Obs.
2-way -
1-way
[cm]

1-way -
ITRF2020

[cm]

2-way -
ITRF2020

[cm]

LURE
1.42 0.13 1.56
3.54 6.06 2.52
0.08 2.13 2.21

WLRS
2.37 3.37 1.00
4.60 5.53 0.94
1.07 0.11 0.97

OCA
0.63 1.32 0.68
3.71 4.19 0.48
0.75 2.31 1.56

MLRS
4.29 5.18 0.89
0.80 3.88 3.09
0.74 1.94 1.21

MLRO
1.86 1.05 0.81
5.02 7.19 2.17
1.83 3.27 1.45

Ref.
2-way -
1-way
[cm]

A11
0.46
9.76
0.92

L2
0.11
10.89
5.78

A14
2.12
7.70
0.92

A15
1.31
8.77
4.99

L1
1.87
8.95
9.19
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Table 4.2: Estimated values of the lunar Love number h2m, lunar gravity field coeffi-
cient C33, and the Earth’s rotational time lag for diurnal and semi-diurnal
deformation (τr,21 and τr,22) for the 1-way and the 2-way solution and their
reference values. The sources for the reference values are mentioned in the
last column.

Parameter JD 2440400.5
(1-way)

JD 2451544.5
(2-way)

Reference
Value Notes

h2m
0.04172 ±
0.00034

0.04244 ±
0.00030 0.0423

at 1 month
[Williams

and Boggs,
2015]

C33
1.66927·10−6

± 7.28·10−10

1.66623·10−6

± 6.29·10−10 1.67562·10−6

[Folkner
et al.,
2014]

τr,21 [sec] 667.99 ± 1.81 659.66 ± 1.55 636.18
[Folkner
et al.,
2014]

τr,22 [sec] 214.50 ± 0.16 215.22 ± 0.14 219.05
[Folkner
et al.,
2014]

Uncertainty of Estimated Parameters

Table 4.3 gives the uncertainty (1σ values) at the individual epochs for which
the position and velocity of the Moon and the orientation of the lunar mantle
and core are estimated for a 1-way and a 2-way solution. A negative change in
the table indicates that smaller uncertainty is achieved for the estimation of that
parameter at the starting epoch of the 2-way solution (2000.0) instead of for the
starting epoch of the 1-way solution (JD 2440400.5). It can be seen that, except
for the uncertainty of the y-axis of the lunar mantle’s angular velocity and for
the x-axis of the lunar core’s angular velocity, all parameters have smaller (i.e.
better) uncertainties when estimated at 2000.0. Overall, comparing the mean
over the three axes for the 2-way solution with respect to the 1-way solution, the
position and velocity of the Moon can be estimated 65.70% and 67.91% better,
and the Euler angles and the angular velocity of the lunar mantle can be estimated
24.63% and 14.28% better. Only the lunar core’s angular velocity shows a worse
estimation of 2.13% for 2000.0. It is unclear why one axis of the angular velocity
of the mantle and one of the core is worse, even though all other parameters can
be estimated better at 2000.0. However, when a similar test (not shown) was done
using 28 093 NPs instead of 30 172 NPs (current results), the estimated angular
velocities of the core and the mantle showed even worse estimation (2-way vs
1-way) compared to the current results. Therefore, with more NPs in the future,
it can be expected that the angular velocities of the core and the mantle for a
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Table 4.3: Uncertainty in the initial-orbit parameters of the Moon at the starting epochs
of 1-way and 2-way calculations for each axis individually. A negative change
indicates that smaller uncertainty is achieved for the initial parameters in a
2-way solution.

JD 2440400.5
(1-way)

JD 2451544.5
(2-way)

Change
[%]

Position [m]
0.0928 0.0201 -78.34
0.0319 0.0185 -42.01
0.0215 0.0050 -76.74

Velocity [m/s]
1.13·10−7 4.69·10−8 -58.50
2.26·10−7 5.01·10−8 -77.83
1.42·10−7 4.63·10−8 -67.39

Euler angles -
mantle [rad]

9.44·10−9 7.99·10−9 -15.36
4.35·10−9 2.66·10−9 -38.85
1.47·10−8 1.18·10−8 -19.73

Angular velocity -
mantle [rad/s]

7.77·10−15 6.91·10−15 -20.33
5.67·10−15 6.58·10−15 16.05
2.10·10−16 1.29·10−16 -38.57

Angular velocity -
core [rad/s]

2.71·10−11 3.99·10−11 47.23
2.29·10−11 1.91·10−11 -16.59
1.69·10−10 1.28·10−10 -24.26

2-way solution can achieve uncertainties comparable to a 1-way solution.

From Table 4.3 it can be seen that the overall obtained uncertainties for the
2-way solution are significantly smaller than those for the 1-way solution. This
improves the statistical quality of the overall results (visible by lower LLR resid-
uals, see Figure 4.3) and therefore also improves the estimated uncertainties of
other estimated parameters. When comparing these uncertainties, all parameters
show an improvement, ranging between 12.36% (for the rotational component of
degree 2 and order 2 tidal time delay of the Earth) and 18.34% (for y-coordinate
of reflector A11). The mean improvement over all estimated parameters, except
the fifteen parameters of the lunar orbit, is 14.01%.

4.1.4 Correlations

Figures 4.4 and 4.5 show the correlations between the initial orbit of the Moon
with each other, with the coordinates of the reflectors on the Moon, and with
the dynamical parameters other than the initial orbit of the Moon (see Appendix
A). Each figure shows the correlations for the 1-way and 2-way solutions and
the differences between their values (2-way - 1-way values). The integer values
mentioned for the differences are marked when they are more than ±40%. For
any mentioned value, the integer times ten represents the rounded off change in
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Figure 4.4: The correlations of the lunar initial orbit with each other (1-way and 2-way
solutions and their differences). The mentioned integer value (marked for
differences greater than ± 40%) times ten gives the rounded off change in
correlation. See Table 4.4 for a definition of the variable names used.

correlation. The differences in correlations are considered to be primarily due
to two factors: (1) The different constellation of the solar system bodies on Jan
1, 2000 compared to June 28, 1969 and (2) the better estimation of the lunar
initial orbit for the 2-way solution, thereby providing further insight into the
correlations. For the various parameters mentioned in the Figures 4.4 and 4.5,
the definition of the meaning of the variable name is given in Table 4.4.

From the figures, it can be seen that the correlations of the initial orbit of the
Moon with the estimated parameters are different for the two solutions, and
can differ up to 80% for some parameter combinations. For the correlations
between the initial orbit of the Moon (Figure 4.4), the 2-way solution shows
significantly lower correlations than the 1-way solution. Only the combinations
of the first Euler angle of the mantle (ψ) with the x-axis of the angular velocity
of the mantle and the second Euler angle of the mantle (θ) with the y-axis of
the angular velocity of the mantle show over 40% increase of correlations for the
2-way solution compared to the 1-way solution. The low correlations of the initial
orbit parameters with each other are presumed to be the primary reason for the
better estimated lunar initial orbit with the 2-way solution. The 2-way solution
shows higher correlations than the 1-way solutions for the reflector coordinates
and for some dynamical parameters (mainly Earth-Moon gravitational mass, Love
number h2m of the Moon, and lunar gravity field coefficients - C22, C32) with
the lunar initial orbit. This can be seen from Figures 4.5. The parameters
which have an increased correlation still show an improvement in their estimated
uncertainties because of the overall improvement of the solution.
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(a)

(b)

Figure 4.5: The correlations of the lunar initial orbit with (a) the reflector coordinates
and (b) dynamical parameters (except orbital parameters) mentioned in Ap-
pendix A (1-way and 2-way solutions and their differences). The mentioned
integer value (marked for differences greater than 40%) times ten gives the
rounded off change in correlation. See Table 4.4 for a definition of the vari-
able names used.
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Table 4.4: Definition of names of variables used in Figures 4.4 and 4.5.

Name/s of
parameter/s Description

X1, X2, X3 Initial position of the Moon

XP1, XP2, XP3 Initial velocity of the Moon

OM1M, OM2M,
OM3M Initial angular velocity of the lunar mantle

Om1c, Om2c, Om3c Initial angular velocity of the lunar core

PSIM, THETM,
PHIM Initial Euler angles of the lunar mantle

XREF31 and others z-coordinate of reflector A11. Order of
reflectors: A11, L2, A14, A15, and L1.

GEM Total gravitational mass of the Earth-Moon
system

h2 Love number of the Moon

C22, C32, C33, S32 Lunar gravity field coefficients

tau2m Time lag for the solid body tides on the Moon

fcore Oblateness the lunar core

kvc Friction coefficient between the lunar core
and mantle

tau21r, tau22r Rotational time lag for diurnal and
semi-diurnal deformation of the Earth

CT_mr2 Ratio of polar moment of inertia of the Moon
to a product of its mass and square of radius

47



4 Ephemeris Calculation

Other than the correlations of the lunar initial orbit with the above mentioned pa-
rameters, the correlations of the other parameters with each other do not change
by more than 10% between the two solutions, and are therefore not discussed.

Further Discussion

The benefit of the solution based on a two-directional calculation of the ephemeris
outweighs the cost of high correlations of a few parameters with the lunar orbit
and the slightly worse estimation of one axis of the angular velocity of the lunar
mantle and one of the core. Therefore, for all results in this thesis, the 2-way
calculation is considered the standard solution.

When changing the ephemeris calculation from a one-directional (starting JD
2440400.5) to a two-directional calculation (starting 2000.0), epochs other than
2000.0 as the starting point of the calculation were also considered. These in-
cluded 0h UTC 01.01.1995, 0h UTC 01.01.1999, 12h UTC 01.01.2000, and 0h
UTC 28.06.2000. All of these solutions showed a decrease in WRMS-R values,
and changed correlations between the lunar orbit and the various parameters dis-
cussed in section 4.1.4. These changed correlations were different for each case.
Overall, the solution with the calculation of ephemeris starting at 2000.0 was
found the best, and is therefore used in the current version of LUNAR as the
standard case.

4.2 Dynamical Model

The latest dynamical model in LUNAR, before the beginning of this thesis, was
based on the DE430 ephemeris. The changes made to the dynamical model, based
on the latest versions of the DE and the INPOP ephemeris are described in this
section.

4.2.1 DE440 Ephemeris based updates

Initial Values from DE440

The DE440 ephemeris were created in 2020 and published in 2021 [Park et al.,
2021]. Therefore, to keep the current version of LUNAR up to date, the initial
positions and velocities of all solar system bodies, orientation of the lunar mantle
and core, and the product (GM) of mass with the gravitational constant were
updated to their DE440 values. Compared to DE430, seven more years of data
was added to create the DE440 [Park et al., 2021]. When changing the initial
values and the GM of all bodies to their DE440 values, the results from LUNAR
show only minor changes, as expected.

For the estimated parameters, when changing from DE430 to DE440 values, the
lunar initial orbit (position, velocity, orientation), averaged over all parameters,
shows a minor improvement of 0.16% in their uncertainty. Other parameters that
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show an improvement in their uncertainty are: The lunar gravity field coefficients
(C22, C32, C33, and S32) by 0.58%, oblateness of lunar core fC by 0.60%, and
the parameter CT/MMR

2
M (see section 4.2.2) by 0.21%. Some parameters, on

the other hand, show a small deterioration: The reflector coordinates by 0.47%,
degree-2 tidal time lag of the Moon by 1.74%, friction coefficient between the
lunar core and the mantle kv/CT by 1.82%, and the degree-2 rotational time lags
of the Earth by 0.38%. Parameters which showed a change of less than 0.10%
were considered unaffected. For the WRMS-R values, the changes in the values
were less than 0.50mm, and the correlations between the two solutions changed
less than 10% between any parameter combination.

Updated Dynamical Model

The DE440 ephemeris description includes two additions to the translational
equations of motion (Lense-Thirring (LT) acceleration and Solar Radiation Pres-
sure (SRP) acceleration) and an addition of a torque affecting the rotational
dynamics of the Moon (due to rate of geodetic precession). In LUNAR, the ef-
fect of SRP traditionally added to the calculated LTT is based on Vokrouhlicky
et al. [1996]. To estimate the effect of the SRP acceleration on LLR analysis,
two further solutions (without any SRP acceleration considered and with SRP
acceleration from the DE440 ephemeris) were calculated. When comparing the
standard solution to the solution of SRP acceleration from the DE440 ephemeris,
only a small change is observed. The WRMS-R values improve by up to 0.60%
and the uncertainties of the estimated parameters show a systematic improve-
ment of about 0.10%. However, the systematic effect of the SRP acceleration is
important and must be considered in LLR analysis. This is visible when compar-
ing the SRP acceleration solution from DE440 ephemeris to a solution in which
the SRP acceleration is not considered. Here, the estimated parameters show am
improvement of about 0.57% and the WRMS-R values improve by up to 3.80%
when adding the SRP acceleration.

When adding the LT acceleration (on each body other than the Sun) and the
geodetic precession rate in the calculation of the lunar angular velocities in
LUNAR, the value and the uncertainty of the estimated parameters remain unaf-
fected. The LLR residuals show a very small improvement (in WRMS-R values)
of up to 0.10% (geodetic precession rate) and 0.20% (LT acceleration). As the
changes due to these effects are negligible, they are currently not added in a
standard calculation in LUNAR.

4.2.2 Undistorted Total MOI of the Moon

The implementation of the undistorted total moment of inertia (MOI) matrix of
the Moon in the DE ephemeris (see equation (46) of Park et al. [2021]) and the
INPOP ephemeris (see equation (1) of Viswanathan et al. [2018]) is not the same.
Two solutions were calculated to estimate the effect of this change. For the DE
based solution, the parameter βL was estimated in the LLR analysis. For the
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INPOP based solution, the parameter CT/MMR
2
M , i.e. ratio of Moon’s undis-

torted polar moment of inertia to a product of its mass and square of radius, was
estimated in the LLR analysis. The relationship between these two parameters is
given by equation (49) of Park et al. [2021]. A change from the DE model to the
INPOP model marginally improves the uncertainty of the estimated parameters
by about 0.20 percent (averaged over all parameters). Overall, only C22 shows a
deterioration in its uncertainty, by 0.39%, and all other parameters show an im-
provement. The highest improvements are obtained for: The friction coefficient
between the lunar core and the mantle kv/CT by 2.12%, the degree 2 tidal time
lag of the Moon by 1.64%, and the angular velocity of the lunar core (averaged)
by 1.20%.

4.3 Effect of Additional Asteroids

The ephemeris calculation in LUNAR has the capability to include the 343 aster-
oids mentioned in the DE430 catalogue [Folkner et al., 2014], of which, a standard
calculation includes three asteroids: Ceres, Pallas, and Vesta, as mentioned above.
Two versions of ephemeris were compared with each other to estimate the effect
of asteroids on LLR analysis: A standard calculation with 14 bodies (i.e. three
asteroids) and an extension-calculation with 354 bodies (i.e. with 343 asteroids).
This extension-calculation is henceforth referred to as the ‘extension-solution’.
The initial values for both calculations were the same. Only the acceleration
due to the interaction of point masses with each other for the 340 additional
asteroids is added in the extension-solution. This affects the integrated position
and velocity of all integrated bodies and also the orientation of the lunar core
and mantle, with the effect increasing over time. Figure 4.6 (a) shows the dif-
ference in the calculated Earth-Moon distance between a first calculation of the
ephemeris in the two solutions. As visible from the figure, the maximum effect on
the Earth-Moon distance when including the 340 additional asteroids is of about
6 cm. The maximum effect on the Euler angles of the mantle (not shown) is of
about 0.7mas. Figure 4.6 (b) shows the difference in the calculated Earth-Moon
distance between the ephemeris calculated from the two individually converged
LLR iterations. It can be seen that the Earth-Moon distance shows a systematic
shift of about −6.60 cm between the two solutions. This is because the initial or-
bit of the Moon is fitted in both solutions. In general, the effect does not lead to
any significant changes in the uncertainty of the estimated parameters obtained
from the GMM adjustment. As the initial orbit of the Moon changes over the
iterations between the two solutions, the station positions and velocities and the
reflector positions show some small changes in their GMM adjusted values.

One can conclude that for most LLR solutions, such as those in Chapter 3, an
ephemeris calculation with 14 bodies provides good results. Furthermore, a cal-
culation of the ephemeris with 14 bodies is significantly faster than a calculation
with 354 bodies. Therefore, as the goal of ephemeris calculation from LUNAR
is not to produce ephemeris for lunar or other space missions, and due to faster
computation, a calculation considering only 14 bodies is currently used in the
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(a)

(b)

Figure 4.6: The difference in the calculated Earth-Moon distance between two ephemeris
calculations: with 14 bodies (i.e. with three asteroids, standard case) and
354 bodies (i.e. with 343 asteroids). (a) shows the difference in the distance
after one calculation of the ephemeris using the same initial positions of all
bodies and (b) shows the difference in the distance after the final ephemeris
calculation based on initial geocentric position of the Moon which lead to a
convergence of the LLR iteration.

standard solution of LUNAR.

4.4 Comparison of Results: LUNAR vs INPOP
and DE

The results published by the different LLR analysis groups are not exactly the
same. These differences arise due to many factors, such as different NP dataset
involved in the individual calculations, total number of NPs in any calculation,
different NP rejection strategies, differences in calculation strategies: Inclusion,
exclusion, or choice of certain models. Some differences also occur due to different
fixed and fitted parameters, the constraints applied on the fitted parameters, etc.
If different numerical integrators or time steps are used for the ephemeris calcu-
lation, it would also lead to some small differences in the results. In spite of the
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4 Ephemeris Calculation

Table 4.5: The coordinates of the reflectors on the Moon (‘Ref.’) from three solutions:
LUNAR (this thesis), DE440 [Park et al., 2021; Williams and Boggs, 2021],
and INPOP19 [Fienga et al., 2019]. The estimated value of each coordinate
from LUNAR is subtracted from the three columns showing the results of the
solutions. Therefore, the columns DE440 and INPOP19 show the differences
of each coordinate to the estimates from LUNAR. Units: m.

Ref. Coordinate LUNAR DE440 INPOP19

A11
x-1591966.83 0.00 ± 0.02 0.29 ± 0.17 -0.22
y-690699.30 0.00 ± 0.02 -0.85 ± 0.39 0.25
z-21003.59 0.00 ± 0.01 0.85 ± 0.05 0.16

L2
x-1339363.69 0.00 ± 0.02 -0.02 ± 0.19 -0.33
y-801871.79 0.00 ± 0.01 -0.89 ± 0.34 0.22
z-756358.53 0.00 ± 0.01 0.78 ± 0.10 0.12

A14
x-1652689.58 0.00 ± 0.02 -0.19 ± 0.12 0.00
y+520997.77 0.00 ± 0.02 -0.82 ± 0.40 0.27
z+109730.67 0.00 ± 0.01 0.80 ± 0.05 0.15

A15
x-1554678.51 0.00 ± 0.02 -0.36 ± 0.03 -0.21
y-98095.35 0.00 ± 0.01 -1.00 ± 0.38 0.26
z-765005.08 0.00 ± 0.01 0.82 ± 0.06 0.12

L1
x-1114292.35 0.00 ± 0.02 -0.89 ± 0.18 -0.09
y+781298.59 0.00 ± 0.01 -0.72 ± 0.34 0.21
z-1076058.61 0.00 ± 0.02 0.57 ± 0.19 0.03

many factors which cause these differences, the results of the different analysis
groups are in close agreement with each other, as can be seen from Tables 4.5
and 4.6. Table 4.5 shows a comparison of the estimated reflector coordinates from
LUNAR with their DE440 and INPOP19 counterparts. Table 4.6 shows a com-
parison of the estimated parameters of the Earth-Moon system form LUNAR with
their DE430 and INPOP19 counterparts. Here, for the DE ephemeris, DE430 re-
sults are considered because the DE440 values of these parameters are not yet
published.

The estimated parameters from LUNAR have smaller uncertainties compared to
the DE and INPOP19 results. This is primarily because of the weighting scheme
for each NP in the GMM adjustment in LUNAR. In a separate version of LUNAR
(results not shown), each NP was given the same weight in the GMM adjustment,
and all other aspects were kept the same as a standard calculation. The uncer-
tainties of the fitted parameters in this solution were significantly bigger. For
some parameters, this deterioration of the uncertainties was about ten times its
corresponding value from the standard solution. Some other aspects, such as, a
longer time series and a higher number of LLR NPs, differences in the fitted and
fixed parameters, differences in models used in the LLR analysis, can also be the
reasons of the lower uncertainties obtained from LUNAR.
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4.4 Comparison of Results: LUNAR vs INPOP and DE

Table 4.6: The estimated parameters of the Earth-Moon system from three solutions:
LUNAR (this thesis), DE430 [Folkner et al., 2014; Williams et al., 2013], and
INPOP19 [Fienga et al., 2019].

Parameter Units LUNAR DE430 INPOP19

GMEMB km3s−2 403503.23598±
6.19 · 10−5

403503.23550±
5.00 · 10−4 403503.23567

CT/MMR
2
M

0.3931409±
1.36 · 10−7 - 0.393140

C32,M
4.8442 · 10−6 ±
3.67 · 10−11 4.8449 · 10−6 4.8450 · 10−6

S32,M
1.6853 · 10−6 ±
6.84 · 10−11 1.6845 · 10−6 1.6850 · 10−6

C33,M
1.6662 · 10−6 ±
6.29 · 10−11 1.6756 · 10−6 1.6686 · 10−6

τM sec 8400.82± 51.13 8277.12± 941.76 8121.60

kv/CT day−1 1.6098 · 10−8 ±
8.67 · 10−11

1.6366 · 10−8 ±
1.35 · 10−9 1.6400 · 10−8

fC
2.452 · 10−4 ±
1.48 · 10−6

2.460 · 10−4 ±
0.28 · 10−4 2.800 · 10−4

h2 0.04243±0.00029 0.04760± 0.0064 0.04260

τ21,r sec 659.66± 1.55 636.16± 26.01 689.47

τ22,r sec 215.22± 0.14 219.16± 2.16 243.65
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4 Ephemeris Calculation

Chapter Summary

In this chapter, the current calculation strategies and models used for lunar and
planetary ephemeris calculation are given, and the current results are discussed.
One major conclusion is that starting ephemeris calculation on January 1, 2000
is better for LLR results than starting the ephemeris calculation on June 28, 1969
(previous approach), as discussed in section 4.1. In section 4.2, the changes made
to the dynamical model compared to the previous version of LUNAR are dis-
cussed. None of the changes lead to any big changes. The changes are, however,
deemed important as they keep the LUNAR software up to date, and system-
atic effects, even if small, are reduced. Furthermore, section 4.3 shows that an
inclusion of 340 more asteroids, compared to the 14 bodies considered during
integration in a standard solution, does not significantly change the results ob-
tained from LUNAR. Therefore, due to faster computation, results of this thesis
are based on ephemeris calculation with 14 bodies and not on the currently avail-
able full model. In section 4.4, the results of this thesis are compared to those of
DE430, DE440, and the INPOP19 solutions. The results are in close agreement
with each other, and the possible reasons for the small differences are discussed.
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5 Earth Rotation Parameters
Estimation

The discussion and results in this section have benefited from the knowledge
gained from a previous study by Singh et al. [2022] published in Advances in
Space Research. The author of this thesis is the first author of this paper, having
carried out the central research and data analysis. This previous study was
based on LUNAR10 (i.e. the previous version of LUNAR), and the results were
obtained from a slightly smaller dataset containing 28 093 NPs. The conclusions
of the previous study and its impact on this thesis are addressed below.

The terrestrial pole coordinates (or, polar motion coordinates (PMC)), xp and
yp, describe the change of the rotation axis in relation to the Earth’s surface.
The Earth rotation phase ∆UT1 and the Length-of-Day (LOD) refer to the rota-
tion of the Earth about its axis. All these parameters are summarised as Earth
Rotation Parameters (ERPs). Together with the celestial pole offsets, δX and
δY , as corrections to the conventional precession–nutation model, they define
the Earth Orientation Parameters (EOPs). The EOP values are combined from
different space geodetic techniques [Bizouard et al., 2018], such as VLBI, GNSS,
SLR and DORIS. As the rotation matrix between the Earth fixed International
Terrestrial Reference System (ITRS) and the space fixed Geocentric Celestial
Reference System (GCRS) includes the PMC and ∆UT1 in its calculation, these
can be estimated from LLR analysis, as shown by Dickey et al. [1985]; Müller
[1991]; Biskupek [2015]; Hofmann et al. [2018]; Singh et al. [2022]; Biskupek et al.
[2022]. For the equations of calculation of the partial derivatives of ERPs (used
for the adjustment in the LLR analysis), see Eq. 5.43 - Eq. 5.53 of Biskupek
[2015].

EOP values are published by the Earth Orientation Centre of the IERS1,2 . LLR
products are not yet a part of the EOPs published by the IERS. However, LLR
contributes to the Kalman Earth Orientation Filter (KEOF) COMB series of
Ratcliff and Gross [2020]. Other than data from LLR, the COMB series includes
data from SLR, VLBI, and GNSS.

The ERP estimation from the other individual techniques leads to better results
than those from LLR. This is due to the availability of much more data and a
better global coverage. The uncertainties achieved from different space geodetic
techniques are given in Table 5.1, where it can be seen that the best results of
the PMC are from GNSS, primarily due to the dense network of its stations. Not
all space geodetic techniques can determine all parameters: ∆UT1 (absolute val-
ues) can only be obtained from VLBI and LLR. The estimation of ∆UT1 values

1http://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
2https://hpiers.obspm.fr/eop-pc/index.php?index=C04&lang=en
last check for 1 and 2: 10.02.2023
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5 Earth Rotation Parameters Estimation

Table 5.1: Uncertainties of the ERPs obtained from different space geodetic techniques
[Sciarretta et al., 2010; Schuh and Behrend, 2012; Capitaine, 2017; Zajdel
et al., 2020; Raut et al., 2022; Singh et al., 2022].

Technique Parameters
PMC ∆UT1

VLBI 50 - 80 µas
3 - 5 µs (24h),

15 - 20 µs (intensive)

SLR 10 - 30 µas -

GNSS 5 - 20 µas -

from satellite geodetic techniques (such as SLR, GNSS) is affected by long-term
systematic errors [Pavlov, 2019; Gambis et al., 2011; Singh et al., 2022]. As de-
scribed in Singh et al. [2022], these errors are mainly caused by effects of the
long-wavelength Earth gravity field on satellite orbits (i.e. mainly due to C20 of
the Earth). Therefore the estimated ∆UT1 values from satellite geodetic tech-
niques are commonly not used to verify the results of VLBI. For LLR, this error
effect is much less relevant, as the perturbation of the lunar orbit due to C20 of
the Earth (compared to artificial satellites) is not that critical. Therefore, space
geodetic techniques other than LLR are not suited for any reasonable compari-
son of ∆UT1 with VLBI. Furthermore, as the Solar Radiation Pressure (SRP)
experienced by the Moon is small, it leads to a significantly reduced effect com-
pared to what artificial satellites experience [Pavlov, 2019], thereby proving the
importance of LLR in EOP determination.

LLR is more sensitive to the estimation of ∆UT1 values than PMC values. This
is because the number of NPs per night used for ERP determination from LLR is
low, combined with the fact that changes per night are larger for ∆UT1 than for
the PMC. In terms of sensitivity of LLR to PMC estimation, the x-axis for the
polar motion is defined by the Greenwich meridian, and the y-axis is defined by
the line joining the 90◦ meridian (see Figure 2 of Combrinck [2009]). Therefore,
the European observatories are more sensitive to the estimation of xp than yp,
and the American observatories are more sensitive to the estimation of yp than xp.
This was shown by Singh et al. [2022], where results from a subset selection of only
OCA NPs were better for xp and those from a subset selection of only APOLLO
NPs were better for yp. As most NPs are measured from OCA (see Figure 2.1)
LLR estimation of PMC is more sensitive to xp than to yp. Furthermore, an
estimation of the PMC together is possible from LLR analysis, however, it leads
to very high correlations between xp and yp values of the same night, and therefore
they should be estimated separately from LLR analysis. The correlations, when
estimating the PMC, are further discussed in section 5.5.2.

Since 2015, due to IR NP measurements from OCA, the results of ERP esti-
mation from LLR analysis have significantly improved. This is because the IR
measurements enable a better coverage of the lunar orbit (see Figure 2.3) and
obtain more NPs per night, leading to a better and more stable estimation of
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5.1 A-priori Data

ERP from LLR. Overall, the current results achieve better uncertainty compared
to previous results.

The ERP results from LLR, discussed by Singh et al. [2022], were based on a
study during the preparation of this thesis, as mentioned above. The estimated
ERPs were published [Singh and Biskupek, 2022]. For the study, the subsets
of nights were formed based on combination of NPs from either only one or
more observatories, with different cut-off limits of minimum number of NPs per
night. For the analysis, the velocities of the LLR observatories were kept fixed
to the ITRF2014 solution values [Altamimi et al., 2016], and ∆UT1 and the
PMC were estimated separately. For the estimation of PMC, xp and yp were
estimated simultaneously and separately. The estimated PMC (when estimated
simultaneously) were observed to be highly correlated to each other (xp and the
yp values of the same night), with correlations going as high as 100%. Of all
the subsets of nights for which the ERP were estimated, the strictest selection
criterion of a minimum of 15 NPs per night lead to the best results. With the
estimated uncertainty weighted according to the number of NPs per night, it was
shown that the best possible spatial resolution of estimated ERP (on Earth’s
surface) from LLR is 7.8mm (i.e. 17.03 µs) for ∆UT1 estimation, and about
4.4 cm for PMC (i.e. 1.30mas for xp and 1.63mas for yp).

In this chapter, the current results of ERP estimates from LLR analysis are
discussed. Section 5.1 gives a brief description of the a-priori EOP data used in
LUNAR, section 5.2 discusses the various subsets which were selected for the ERP
determination and the criterion the selection was based on. Section 5.3 discusses
the need of a scaling factor for a realistic uncertainty determination of ERP with
the current version of LUNAR. The estimated values, deviations from the IERS
C04 series, uncertainty of estimates, and their correlations to other parameters,
for ∆UT1 and PMC estimation from LUNAR, are given in sections 5.4 and 5.5
respectively.

5.1 A-priori Data

The IERS publishes multiple time series of the EOPs, which differ in their char-
acteristics. For example, the Bulletin A is a rapid series containing EOPs until
present day (and a few days of prediction), whereas the C04 series is published
with a time delay of about a month. Additionally, they are produced by different
groups, and have small differences between them. This is despite the fact that
the underlying principle of forming the EOP series are similar. The differences
between published EOP series are not uncommon, and can also be seen between
the Kalman Earth Orientation Filter (KEOF) COMB19 and IERS 14 C04 series
(see Figure 3 of Singh et al. [2022]). The differences between EOPs time series
from various sources can be attributed to several factors, such as different analysis
strategies, differences in the realisation of the Terrestrial Reference System (TRS)
and Celestial Reference System (CRS), different combination strategies of data
from multiple sources, etc. The differences in the ERP values obtained from LLR
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5 Earth Rotation Parameters Estimation

and that of the a-priori series used are discussed in more detail in further sections.

In LUNAR, for a-priori EOP values, the KEOF COMB2019 series [Ratcliff and
Gross, 2020] is used until 0h UTC 01.01.1983 (henceforth ‘1983.0’) and the IERS
14 C04 series is used starting 1983.0. The COMB2019 series includes LLR data
in its formation and therefore fits the LLR analysis better. After 1983.0, the
differences obtained in the LLR residuals between two solutions using the two
series (in separate calculations) become small, and the differences in the estimated
parameters between the two calculations were smaller than the uncertainty of the
parameters, therefore the IERS 14 C04 is used to benefit from its shorter latency
period. Using KEOF COMB2019 until 1983.0 and IERS 14 C04 series afterwards
for LLR analysis is not uncommon, and was also applied by Pavlov et al. [2016];
Viswanathan et al. [2016] and Singh et al. [2022].

5.2 Selection of Nights

The LLR dataset is pre-analysed to sort and select NPs obtained on individual
nights for selecting nights on which the ERPs can be estimated. Different config-
urations can be taken into account, such as, defining a minimum number of NPs
obtained per night, selecting NPs from different stations, different time spans,
etc. In this thesis, the subsets of nights selected are given in Tables 5.2 and 5.3.
Table 5.2 gives the subsets which are used to ascertain a scaling factor for a real-
istic uncertainty of the ERPs. Two of the selected subsets contain NPs from all
LLR observatories (similar to some subsets selected in Singh et al. [2022]), and
additionally, two further subsets were selected with a stricter selection criterion
of NPs obtained from at least two observatories on each selected night. Table 5.3
gives the subsets selected from the LLR NPs obtained after 01.01.2015 (hence-
forth, ‘2015.0’). As the number of NPs obtained per year significantly rose after
OCA started observing NPs in IR wavelength in addition to green wavelength,
and as some of the LLR observatories have now stopped observing NPs, the selec-
tion of subsets mentioned in Table 5.3 is to focus upon the most recent results of
estimated ERP from LLR analysis. Here, the minimum number of NPs per night
is selected at 5 NPs. Even though a stricter criterion would lead to better results
(as was concluded from Singh et al. [2022]), a criterion of 5 NPs per night was set
due to two factors: (1) As the uncertainty of the involved NPs are the best from
the entire LLR dataset, and (2) to be able to select a maximum number of nights
in this time span. As the time span of none of the subsets (in both the tables)
starts before 1983.0 (cut-off of using COMB2019 series in LUNAR), the a-priori
ERP data used for all subsets in this study is from the IERS 14 C04 series.

As shown in Figure 2.1, the number of NPs has significantly risen over the past
few years, implying that more NPs were obtained per night, and that they were
obtained for more nights. Despite having more NPs per night over the past
years, it is currently still not possible to estimate PMC and ∆UT1 together from
LLR analysis, as a simultaneous estimation does not lead to a convergence of
the LLR iteration. For a test of such an estimation (i.e. adjusting PMC and
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Table 5.2: List of subsets which were created for the estimation of a scaling factor for
ERP determination from LLR analysis. ‘All2’ indicates that the selected
nights include NPs from at least two observatories (‘Obs.’ in table).

Obs. NPs per
night

No. of
nights

Abbreviation
used Time span

All
10 971 All10 29.09.1983 - 12.03.2022

15 491 All15 08.04.1984 - 12.03.2022

All2
10 370 All2_10 08.04.1984 - 09.02.2022

15 212 All2_15 08.04.1984 - 09.02.2022

Table 5.3: Table of subsets used in this study for ERP estimation from LLR analysis.
The selected nights are from observatories (‘Obs.’ in table) which currently
observe LLR NPs. The time span of all subsets starts after 2015.0.

Obs. No. of nights Abbreviation used Time span

OCA 477 OCA5 01.01.2015 - 22.02.2022

APOLLO 220 Apollo5 16.01.2015 - 06.01.2022

WLRS 15 WLRS5 06.08.2018 - 11.04.2022

MLRO 14 MLRO5 14.09.2017 - 26.01.2022

All 673 All5 01.01.2015 - 11.04.2022

∆UT1 together) an even stricter selection criterion: Minimum of 15 NPs from at
least three LLR observatories observed each night was selected. Only 14 nights
fulfilled this criterion. However, when adjusting PMC and ∆UT1 together for
these nights, the LLR iteration did not lead to a convergence. Therefore, in the
current study, either PMC (xp and yp, separately and simultaneously) or ∆UT1
were determined, where the other values were fixed to the IERS 14 C04 series.
The ERP values for the nights for which the ERPs were not estimated were also
fixed to the IERS 14 C04 series.

5.3 Uncertainty Estimation

As mentioned in Chapter 3, the reported uncertainties of the estimated param-
eters from LUNAR have previously been published as three times the standard
deviation obtained from the GMM adjustment for a more realistic uncertainty
representation. This up-scaling of the standard deviation was also done for the
estimated ERP (see Biskupek [2015]; Hofmann et al. [2018]; Singh et al. [2022]).
To investigate if such a scaling factor is still necessary when estimating ERPs
from LLR with the current version of LUNAR, a sensitivity analysis was per-
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formed, similar to that in section 3.1.1. Here, different cases of LUNAR were run
with variations in the fitted and fixed parameters to obtain multiple solutions of
estimated ERP. These different values were then compared to each other. Four
cases (1.1, 1.2, 2.1, and 2.2) were made for these calculations:

• Case 1.1: Initial values of all parameters (including velocity of LLR obser-
vatories) were used from the standard solution. All standard parameters
along with the ERP values for the selected nights were fitted,

• Case 1.2: Similar to case 1.1, except only the ERP values on the selected
nights were fitted, and standard parameters were kept fixed,

• Case 2.1: Initial values of all parameters were used from a solution of
LUNAR which was obtained by fixing velocities of LLR observatories to
ITRF2020 values3. All standard parameters except velocities of LLR ob-
servatories were fitted, along with the ERP values for the selected nights,
and

• Case 2.2: Similar to case 2.1, except only ERP values on the selected nights
were fitted, and all other parameters were kept fixed.

The network of any space geodetic technique is important for its analysis, and
different network configurations can lead to different results. For example, the
estimated z-component of the velocity of MLRS from the current standard so-
lution of LUNAR is in the opposite direction to the velocity of MLRS from the
ITRF2020 solution. Therefore, case 2.1 is taken as the standard case when esti-
mating ERP values from LUNAR. This is done to keep the network in coherence
with the spatially well distributed ITRF2020 solution (and therefore in closer
agreement with the IERS C04 series), and to establish a relationship between
the parameters fitted in a standard LLR solution and the estimated ERP. For a
sensitivity analysis, the ERP values of the three other cases, henceforth referred
to as ‘variation-values’, are compared to the standard values of ERP (i.e. from
case 2.1). The mean and standard deviation of these variation-values (see equa-
tion (3.1)) are referred to as µV V and σV V . The estimated ERP values and their
corresponding GMM based standard deviation (see Figure 3.1) from the case 2.1
are referred to as ‘SV’ and their 1σ values.

Tables 5.4 and 5.5 show the results of the sensitivity analysis for the estimation of
xp (without simultaneous estimation of yp), yp (without simultaneous estimation
of xp), and ∆UT1. As the ERP is estimated for individual nights, for a com-
parison, the WRMS values weighted according to the number of NPs per night
are shown in the tables. The values shown are for the four subsets mentioned
in Table 5.2. The results are bifurcated into two time spans: Before and after
2000.0. From Tables 5.4 it can be seen that the σV V -values and the difference
of the standard value to the µV V -values is smaller than the GMM-obtained 1σ
values of the standard case of individual xp and yp estimation. This holds true
for both before and after 2000.0. This is similar to the changes observed for the
scaling factor of the standard set of parameters (see section 3.1.1), and indicates

3APOLLO velocities fixed to GPS station ‘P027’

60



5.3 Uncertainty Estimation

Table 5.4: The tables show the WRMS values for xp and yp, weighted according to the
number of NPs per night, for the uncertainty for the standard case (case 2.1),
the difference of the standard value to the mean of the variation-values (‘SV -
µV V ’), and the standard deviation (σV V ) of the variation-values. The values
are bifurcated into two time spans: Before and after 2000.0.

(a) xp, units = mas

Subset Time Span 1σ (2.1) SV - µV V σV V

All10
<2000.0 6.17 0.82 0.63

>2000.0 0.58 0.17 0.16

All2_10
<2000.0 4.67 0.61 0.60

>2000.0 0.64 0.14 0.12

All15
<2000.0 5.22 0.45 0.38

>2000.0 0.47 0.10 0.10

All2_15
<2000.0 3.19 0.42 0.31

>2000.0 0.44 0.09 0.08
(b) yp, units = mas

Subset Time Span 1σ (2.1) SV - µV V σV V

All10
<2000.0 4.01 1.22 1.21

>2000.0 0.73 0.17 0.15

All2_10
<2000.0 3.39 0.39 0.38

>2000.0 0.66 0.14 0.12

All15
<2000.0 3.84 0.74 0.59

>2000.0 0.59 0.11 0.09

All2_15
<2000.0 3.24 0.35 0.29

>2000.0 0.51 0.10 0.08
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Table 5.5: The table shows the WRMS values for ∆UT1, weighted according to the
number of NPs per night, for the uncertainty for the standard case (case
2.1), the difference of the standard value to the mean of the variation-values
(‘SV - µV V ’), and the standard deviation (σV V ) of the variation-values. The
values are bifurcated into two time spans: Before and after 2000.0. Units =
µs.

Subset Time Span 1σ (2.1) SV - µV V σV V

All10
<2000.0 43.68 101.12 109.02

>2000.0 7.53 8.05 7.13

All2_10
<2000.0 32.60 58.38 69.51

>2000.0 7.18 8.72 7.60

All15
<2000.0 39.30 38.61 46.97

>2000.0 6.18 5.52 4.77

All2_15
<2000.0 29.16 44.79 51.96

>2000.0 5.47 5.67 4.59

that an up-scaling of the obtained standard deviation for xp and yp by a factor of
three is not necessary with the current version of LUNAR. Therefore, in section
5.5, the uncertainties mentioned are 1σ values.

For ∆UT1 estimation, in contrast to the results of the estimation of the standard
parameters and the PMC, the values in the Table 5.5 show that the σV V -values
and the difference of the standard value to the µV V -values is bigger than the than
the GMM-obtained 1σ values of the standard case of ∆UT1 estimation. For the
values before 2000.0 this difference is more significant than for the values after
2000.0. This is not unexpected, as the subsets before 2000.0 compromise of the
nights which have the biggest (therefore, worst) uncertainty of the NPs in the
subsets. The poor uncertainty of NPs is also visible in Figure 2.4. Since the
1σ ∆UT1 values are bigger than the two other values shown in the table (i.e.
σV V and SV - µV V ), it is important to up-scale the standard deviation obtained
form the GMM for a realistic uncertainty representation of the ∆UT1 estimation.
An up-scaling factor of three and two is selected for the values before and after
2000.0 respectively. All reported uncertainties of the ∆UT1 values in the further
subsections are given as up-scaled standard deviation values.

5.4 Earth Rotation Phase Estimation

In this section, the results of the estimated values of ∆UT1 and their uncertainty,
the differences of the estimated values to the IERS 14 C04 series, and the corre-
lations of ∆UT1 with various LLR parameters are discussed. All results in this
section are for the standard case of ERP estimation. As mentioned above, when
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Table 5.6: The WRMS of the differences (‘Diff.’ in table) of the estimated ∆UT1 values
from LUNAR to the values from the IERS 14 C04 series, bifurcated for each
subset into time spans before and after 2000.0. The values of the differences
are given in µs. The WRMS values are weighted by number of NPs per night.

Subset Time Span Diff. Subset Time Span Diff.

All10
<2000.0 259.25

All15
<2000.0 230.06

>2000.0 74.48 >2000.0 57.51

All2_10
<2000.0 255.90

All2_15
<2000.0 230.57

>2000.0 74.03 >2000.0 63.99

estimating ∆UT1 values for the nights of a subset, the values of the PMC for
all nights and ∆UT1 values for all not-selected nights are fixed to their a-priori
values from the IERS 14 C04 series.

5.4.1 Estimated Values

Table 5.6 shows the differences of the estimated ∆UT1 values from LUNAR to
the values from the IERS 14 C04 series. The given values are WRMS values,
weighted with respect to the number of NPs per night, and are bifurcated for
each subset into time spans before and after 2000.0. From Tables 5.5 and 5.6, it
can be seen that the uncertainty of the estimated ∆UT1 and the differences of
the estimated ∆UT1 to the C04 series become smaller over the time span of all
subsets. This improvement of the uncertainties over the time span of the subsets
is due to many different factors, such as a more number of NPs obtained per
night in the recent years (see Figure 2.1), better distribution of observed NPs
over the synodic month (see Figure 2.3), and improvement of uncertainties of the
observed NPs (see Figure 2.4). Figure 5.1 (a) and (b) shows, for subset ‘All10’ for
nights after 2000.0, the distribution of the uncertainty of the estimated ∆UT1
values with respect to two parameters: (1) Number of NPs per night used for
∆UT1 estimation (correlation coefficient = -0.29), and (2) mean uncertainty of
NPs on each night (correlation coefficient = 0.56). From the figure and from the
correlation coefficients, it can be seen that the smallest (i.e. best) values of the
uncertainty of the estimated ∆UT1 are obtained when more NPs are obtained
per night, and with NPs which have the smallest uncertainty.

Furthermore, from Table 5.6 it can be seen that the differences do not become
smaller when comparing the values from the ‘All’ and the ‘All2’ subsets. This
is in contrast to the trend of the uncertainty (see Table 5.5), where the values
of the two ‘All2’ subsets are smaller than the two ‘All’ subsets. This indicates
that better ∆UT1 estimates from LLR analysis would not necessarily be in closer
agreement with the ∆UT1 values from the IERS 14 C04 series (based on esti-
mates from VLBI). This can also be seen from Figure 5.1 (c) and (d), which
shows the differences (absolute values) between ∆UT1 values (LUNAR vs C04)
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(a) Correlation coefficient = -0.29 (b) Correlation coefficient = 0.56

(c) Correlation coefficient = -0.16 (d) Correlation coefficient = 0.10

Figure 5.1: The number of NPs per night and the mean uncertainty of the NPs per night
plotted against the uncertainty (2σ) of the ∆UT1 values ((a) and (b)) and
the differences (absolute values) of the obtained ∆UT1 values to the IERS
14 C04 series ((c) and (d)) for the subset ‘All10’. For all four sub-figures,
the values shown are for after 2000.0.
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with respect to two parameters: (1) Number of NPs per night used for ∆UT1
estimation (correlation coefficient = -0.16), and (2) mean uncertainty of NPs on
each night (correlation coefficient = 0.10). The differences are more spread out,
and even best cases (highest number of NPs per night or lowest uncertainty of
observed NPs) show high values of differences. The correlation coefficients of the
differences are closer to zero than the correlation coefficients for the uncertainty
values, further proving that the differences are more spread out. For the two sub-
figures, the differences are shown as absolute values for a comparison between the
four sub-figures of the Figure 5.1, and the values shown are for estimates after
2000.0, from the subset ‘All10’. Finding differences between the ∆UT1 values
from LLR and VLBI analyses is not unusual, and can be attributed to many
different factors, which are mentioned in detail in Singh et al. [2022], and are
summarised here: (1) The different realisations of the CRS from VLBI and LLR,
(2) due to systematic errors in the calculation in LUNAR (such as unaccounted
correlations between NPs as well as due to the specific network constellation of
the stations and reflectors and the available time periods of LLR measurements),
and (3) only LLR based solution vs the combination of different space geodetic
techniques in the C04 series.

Figure 5.2 shows (for estimates after 2000.0) the uncertainty of the ∆UT1 values
and the differences of the obtained ∆UT1 values to the C04 series for the subsets
‘All10’ and ‘All2_10’. It can be seen that the differences of the ∆UT1 values
(LUNAR vs C04) stay around zero. The mean value of the differences (over the
entire time-span of the subsets) are always close to zero as well, indicating that
the subsets for which the ∆UT1 values were estimated showed neither an offset
nor any systematic deviation from the C04 series. From the figure, for estimates
after 2015.0, it can also be seen that the number of nights are higher and the best
∆UT1 estimates (i.e. with lowest uncertainty values) are from this time span.
Therefore, to get an estimate of the current best possible results of ∆UT1 from
LLR analysis, the ∆UT1 values were estimated from further subsets (see Table
5.3), where only nights after 2015.0 were selected. Here, as mentioned in section
5.2, the selection criterion was to estimate the current possible results of ∆UT1
values from all observatories which currently range to the Moon. Therefore, a
less strict selection criterion of a minimum of 5 NPs per night was selected to
also include and individually show results from WLRS and MLRO.

Table 5.7 shows the WRMS values of the uncertainty of ∆UT1 for all subsets
of Tables 5.24 and 5.3. It also shows the WRMS of the mean uncertainty of
NPs per night (WRMS values), total number of NPs used in the subset and time
span, and a ratio of the total number of NPs to the total number of nights.
Both WRMS values are weighted with respect to the number of NPs per night.
The table further proves that better ∆UT1 estimates can be achieved when NPs
have a low uncertainty (see estimates from ‘Apollo5’), and when a higher number
of NPs per night contribute to the estimation (see estimates from ‘All2_15’).
When comparing the results from ‘All’ and ‘All2’ subsets, it can also be seen
that better estimates are achieved when more observatories contribute to the

4Only for nights after 2015.0
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(a) All10 (b) All2_10

(c) All10 (d) All2_10

Figure 5.2: The uncertainty of the ∆UT1 values ((a) and (b)) and the differences of
the obtained ∆UT1 values to the IERS 14 C04 series ((c) and (d)) for the
subsets ‘All10’ and ‘All2_10’.
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Table 5.7: The WRMS values of the uncertainty (2σ) of ∆UT1 estimation for all subsets
mentioned in Tables 5.2 (*only for nights after 2015.0) and 5.3, along with
number of nights for each subset, number of total NPs over all nights, WRMS
values of the mean uncertainty of NPs per night, and average number of NPs
per night. The mentioned WRMS values are weighted with respect to the
number of NPs per night.

Subset No. of
nights

No. of
NPs

2σ
(∆UT1)

[µs]

σ (NPs)
[µs]

Avg. NPs
per night

OCA5 477 6789 20.18 93.95 14.23

Apollo5 220 1735 12.98 35.93 7.89

WLRS5 15 138 64.34 113.93 9.20

MLRO5 14 81 79.02 302.15 5.78

All5 673 8954 17.11 90.03 13.30

All10∗ 380 6889 12.16 91.19 18.13

All2_10∗ 108 2188 10.70 92.13 20.26

All15∗ 218 5027 10.74 90.57 23.06

All2_15∗ 73 1786 9.77 90.84 24.47

estimation. Therefore, even though MLRO and WLRS contribute only a few
nights, they are capable of individual ∆UT1 estimation and their contributions
are highly valuable in other subsets.

Using the Earth radius as 6378 km, 10 µs corresponds to 4.60mm on the Earth’s
surface. The best possible (and current) uncertainty of the estimation of ∆UT1
of 9.77 µs (subset ‘All2_15’, after 2015.0) from LLR therefore corresponds to
4.49mm spatial resolution on Earth’s surface. For subset ‘All5’ (corresponding to
the highest number of nights after 2015.0), the uncertainty of 17.11 µs corresponds
to a spatial resolution on Earth’s surface of 7.87mm. From the best possible
uncertainty of 3 - 5 µs obtained from VLBI, a spatial resolution on Earth’s surface
of about 1.5 - 2.5mm is achieved. Therefore, for an estimation of ∆UT1, LLR
still lags behind VLBI. However, the addition of more data from a different space
geodetic technique, especially in the recent years, could be beneficial for some
applications. Additionally, the results from LLR can be used to verify the results
from VLBI.

5.4.2 Correlations

The correlations of the estimated ∆UT1 values with any of the estimated pa-
rameters depend on the selection criterion of the subset of nights, and on the
uncertainty and the total number of the NPs in the subset. For example, nights
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(a) All10 (b) All2_10

Figure 5.3: Correlations between the ∆UT1 estimates (indicated by the number of the
night of estimation in the y-axis of the sub-figures) and coordinates of the
LLR observatories (MLRS, LURE, WLRS, OCA, APOLLO, MLRO repre-
sented by the numbers 1, 3, 4, 5, 7, and 8, and x, y, and z represent the
respective coordinates of each observatory; x-axis) for the subsets ‘All10’
and ‘All2_10’.

in the estimation of ∆UT1 values from the ‘WLRS5’ subset show up to 75% cor-
relation with coordinates of WLRS. This also affects the ∆UT1 estimation from
the ‘All5’ subset, where some nights also show up to 75% correlation with co-
ordinates of WLRS. However, an estimation from ‘Apollo5’ and ‘OCA5’ subsets
shows below 35% and 25% correlation between ∆UT1 estimates from any night
with the coordinates of any observatory. Furthermore, when estimating ∆UT1
values from the subsets mentioned in Table 5.2, the correlations between ∆UT1
estimates from any night with the standard parameters reduce when selecting
NPs from at least two observatories per night. This is shown by Figure 5.3 where
correlations between the ∆UT1 estimates and coordinates of LLR observatories
are shown for the subsets ‘All10’ and ‘All2_10’. The correlations of ∆UT1 esti-
mates with the station coordinates, especially those of OCA and APOLLO, reach
up to 45% for ∆UT1 estimation from the ‘All2’ subset, but stay less than 25%
when estimating from the ‘All2_10’ subset. When selecting the subsets ‘All15’
and ‘All2_15’ (not shown), the same trend is visible, with the only difference
that the correlations are lower for both cases compared to Figure 5.3. Overall,
the maximum correlations for ∆UT1 estimates of any subset are only seen with
coordinates and biases of the observatories. The correlations of ∆UT1 estimates
with other estimated parameters stay close to or below 35%.

5.5 Terrestrial Pole Coordinates Estimation

In this section, the results of the estimated values of PMC and their uncertainty,
the differences of the estimated values to the IERS 14 C04 series, and the corre-
lations of PMC with various LLR parameters and each other are discussed. The
results shown are for the estimation of xp and yp separately, except in section
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Figure 5.4: The uncertainty (1σ) of the xp values and the differences of the obtained xp
values to the IERS 14 C04 series for the subset ‘All15’.

5.5.2 where the correlations between simultaneously estimated xp and yp are dis-
cussed. When estimating PMC values (whether together or separately) for the
nights of a subset, the values of ∆UT1 for all nights and xp and yp values for all
non-selected nights are fixed to their a-priori values from the IERS 14 C04 series.

5.5.1 Estimated Values

Figure 5.4 shows the uncertainty (1σ) of the xp values and the differences of
the obtained xp values to the IERS 14 C04 series for the subset ‘All15’. The
uncertainty values for xp and yp (yp values not shown) become smaller over the
time span. This applies to all subsets mentioned in Table 5.2. This improvement
of the uncertainties over the time span of the subsets is similar to the improvement
shown by the uncertainties of ∆UT1, and is so because of the same reasons (see
section 5.4.1). Figure 5.5 shows, for subset ‘All10’ for nights after 2000.0, the
distribution of the uncertainty of the estimated xp and yp values with respect to
two parameters: (1) Number of NPs per night used for the estimation (correlation
coefficient = -0.23 for xp and -0.30 for yp), and (2) mean uncertainty of NPs in
each night (correlation coefficient = 0.33 for xp and 0.50 for yp). From the figure
and from the correlation coefficients, it can be seen that the smallest (i.e. best)
values of the uncertainty of the estimated PMC are obtained when more NPs are
obtained per night, and with NPs which have the smallest uncertainty.

Table 5.8 shows the WRMS of the differences of the estimated PMC to the IERS
C04 series, weighted according the the number of NPs per night. It can be seen
that these differences and the uncertainty of the estimated PMC values (see Table
5.4) become smaller over the time span of the subsets. This is similar to the trend
shown by the ∆UT1 values, and is due to the same reasons mentioned in section
5.4.1. It can be seen from Tables 5.4 and 5.9 that the WRMS values of the
uncertainty of the estimated xp values is better than the estimated yp values, for
the results after 2000.0. This is, however, not visible for the results before 2000.0,
because of the combination of the worse accuracy of the NPs involved along with
the high sensitivity of OCA to the x-axis. Furthermore, from Table 5.4, it can be
seen that the uncertainty of the estimated PMC improves when changing subset
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(a) Correlation coefficient = -0.23 (b) Correlation coefficient = 0.33

(c) Correlation coefficient = -0.30 (d) Correlation coefficient = 0.50

Figure 5.5: The number of NPs per night and the uncertainty (1σ) of the obtained
NPs plotted against the uncertainty (1σ) of the PMC values for the subset
‘All10’. For all four sub-figures, the values shown are for after 2000.0.
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Table 5.8: The WRMS of the differences (‘Diff.’ in table) of the estimated PMC values
from LUNAR to the values from the IERS 14 C04 series, bifurcated for each
subset into time spans before and after 2000.0. The given values for the
differences are in mas.

(a) xp

Subset Time Span Diff. Subset Time Span Diff.

All10 <2000.0 7.14 All15 <2000.0 3.96

>2000.0 1.30 >2000.0 1.03

All2_10 <2000.0 7.98 All2_15 <2000.0 3.39

>2000.0 1.24 >2000.0 1.09
(b) yp

Subset Time Span Diff. Subset Time Span Diff.

All10 <2000.0 4.33 All15 <2000.0 3.34

>2000.0 1.30 >2000.0 0.99

All2_10 <2000.0 3.48 All2_15 <2000.0 3.53

>2000.0 1.35 >2000.0 1.13

selection from ‘All’ to ‘All2’. This is specially true for estimates before 2000.0,
and indicates that better estimation is achieved by a stricter selection criterion
of NPs.

Figure 5.6 shows, for subset ‘All10’ for nights after 2000.0, the distribution of the
differences (absolute values) of estimated xp and yp to the IERS C04 series with
respect to two parameters: (1) Number of NPs per night used for the estimation
(correlation coefficient = -0.10 for xp and for -0.15 yp), and (2) mean uncertainty
of NPs on each night (correlation coefficient = -0.04 for xp and 0.00 for yp).
Similar to ∆UT1, the differences are more spread out, and even best cases (highest
number of NPs per night or lowest uncertainty of observed NPs) show high values
of differences. This is also indicated by the values of correlation coefficients for
all sub-figures being close to zero. As was the case for ∆UT1 estimation, the
differences between the PMC values from LLR analysis and analysis of other
space geodetic techniques is not unusual, and can be attributed to many different
factors, mentioned in section 5.4.1. The differences (not shown) of the PMC
values (LUNAR vs C04) from all subsets stay around zero. The mean value
of the differences are always close to zero as well, indicating that the subsets for
which the PMC values were estimated showed neither an offset nor any systematic
deviation from the C04 series.

As seen above, the results of PMC values, like ∆UT1 values, show the best values
in the most recent years. Therefore, to see the current best possible results of
PMC from LLR analysis, an estimation from further subsets (see Table 5.3),
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Table 5.9: The WRMS values of the uncertainty of PMC estimation for all subsets
mentioned in Tables 5.2 (*only for nights after 2015.0) and 5.3, along with
other characteristics associated with each subset.

Subset No. of
nights

No. of
NPs

σ (xp)
[mas]

σ (yp)
[mas]

σ (NPs)
[µs]

Avg. NPs
per night

OCA5 477 6789 0.64 1.00 93.95 14.23

Apollo5 220 1735 1.71 0.64 35.93 7.89

WLRS5 15 138 0.82 1.99 113.93 9.20

MLRO5 14 81 5.83 3.14 302.15 5.78

All5 673 8954 0.64 0.81 90.03 13.30

All10∗ 380 6889 0.42 1.20 91.19 18.13

All2_10∗ 108 2188 0.40 1.34 92.13 20.26

All15∗ 218 5027 0.38 0.89 90.57 23.06

All2_15∗ 73 1786 0.35 1.10 90.84 24.47

where only nights after 2015.0 were selected, was performed. Table 5.9 shows the
WRMS values of the uncertainty of PMC for all subsets of Tables 5.25 and 5.3,
and additionally shows the WRMS of the mean uncertainty of NPs per night,
number of NPs which contribute to the PMC estimation, and a ratio of the total
number of NPs to the total number of nights. Both WRMS values are weighted
with respect to the number of NPs per night. The best estimates of xp are from
OCA, and the best estimates of yp are from APOLLO. This is expected and,
as described above, is due to the different sensitivity of different observatories
to the axes defining the PMC. In contrast to what is expected, MLRO shows
better estimates for yp than for xp. The worse uncertainty of xp here is assumed
to be because of the poor uncertainty and the low number of total NPs involved
in the estimation, combined with the fact that MLRO is more sensitive to the
x-direction. It can also be seen that unlike for ∆UT1 estimation, the results of
the ‘All5’ subset for yp give better estimates than the stricter selection criterion
of the subsets mentioned in Table 5.2. This can be attributed to the fact that
APOLLO, which leads to best yp estimates, does not always reach a minimum
of 10 NPs per night (as visible by the average number of NPs per night for the
‘Apollo5’ subset). Therefore, many nights of contributions from APOLLO are
not a part of the subsets with a strict selection criterion, and they do not provide
the best results. Overall, due to having the most NPs from OCA, LLR estimates
of xp are better than for yp.

For PMC, 1mas corresponds to 3 cm spatial resolution on Earth’s surface. There-
fore, for xp, the best possible (and current) uncertainty of 0.35mas (subset
‘All2_15’, after 2015.0) from LLR corresponds to 1.05 cm spatial resolution on

5only for nights after 2015.0
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(a) Correlation coefficient = -0.10 (b) Correlation coefficient = -0.04

(c) Correlation coefficient = -0.15 (d) Correlation coefficient = 0.00

Figure 5.6: The number of NPs per night and the uncertainty (1σ) of the obtained NPs
plotted against the difference of the estimated PMC values to the IERS C04
series for the subset ‘All10’. For all four sub-figures, the values shown are
for after 2000.0.
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Figure 5.7: Correlation of xp and yp estimated in the same night with each other, from
the subset ‘All15’.

Earth’s surface. For yp, the best possible (and current) uncertainty of 0.64mas
(subset ‘Apollo5’) from LLR therefore corresponds to 1.92 cm spatial resolution
on Earth’s surface. Compared to the spatial resolution obtained from other space
geodetic techniques, such as GNSS (best uncertainty of 5 - 20 µas corresponding
to a spatial resolution of 0.15 - 0.60mm), the results of PMC estimation from
LLR lag far behind. However, as seen from Tables 5.4 and 5.9, the estimates of
PMC from LLR are improving over time due to the improvement in the tech-
nology and therefore, in future, with more NPs from further observatories, LLR
PMC estimates could be beneficial for some applications.

5.5.2 Correlations

PMC with each other

The estimates and uncertainties of PMC discussed in this thesis are for the indi-
vidual estimation of xp and yp within LUNAR. This is done because the correla-
tions of the estimated xp and yp with each other, when estimated simultaneously,
are very high, as shown by Figure 5.7, where the correlations with each other of
the xp and yp estimated for the same night are shown for the subset ‘All15’. For
all subsets mentioned in Tables 5.2 and 5.3, the correlations do not reach 100%
for any night only for the subsets ‘All15’ and ‘All2_15’, proving that for lower
correlations of simultaneous estimation of PMC from LLR analysis, more NPs
per night are needed. However, even for these two subsets, the correlations are
deemed to be very high, and therefore, a simultaneous estimation of PMC from
LLR analysis in not recommended.

PMC with other parameters

The correlations discussed in this subsection are for the individual estimation of
xp and yp within LUNAR. As for ∆UT1 estimation, the highest correlations of
the estimated xp and yp are with station coordinates and biases, the correlations
with the other parameters are mostly below 25% and never exceeding 35%. For
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(a) All10, xp (b) All2_10, xp

(c) All10, yp (d) All2_10, yp

Figure 5.8: Correlations between the PMC estimates (indicated by the number of the
night of estimation in the y-axis of the sub-figures) and coordinates of LLR
observatories (MLRS, LURE, WLRS, OCA, APOLLO, MLRO represented
by the numbers 1, 3, 4, 5, 7, and 8, and x, y, and z represent the re-
spective coordinates of each observatory; x-axis) for the subsets ‘All10’ and
‘All2_10’.

coordinates of the observatories, the correlations are different for different subsets.
A stricter selection criterion achieves lower correlations between the individually
estimated xp and yp and the non-ERP parameters. The highest correlations of the
coordinates are obtained for the estimation of PMC from the ‘WLRS5’ subset.
Correlations of the coordinates of WLRS reach up to 65% for both xp (x and
z coordinates) and yp (y coordinate). This is also visible in the estimation of
PMC from the ‘All5’ subset, where the coordinates of WLRS show similarly high
correlations with the estimated PMC. When comparing the correlations from
‘All’ and ‘All2’ subsets with each other, lower correlations were achieved with the
stricter selection criterion of the ‘All2’ subsets. This was the case for both xp and
yp, however, here the difference between the correlations is higher for yp than for
xp, as shown by Figure 5.8, where the correlations between the estimated PMC
and coordinates of LLR observatories are shown for the subsets ‘All10’ ((a) and
(c)) and ‘All2_10’ ((b) and (d)).
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Chapter Summary

In this chapter, the results of the estimation of ERPs (i.e. ∆UT1, xp, and yp) are
discussed. All results, except for the correlations of xp and yp with each other are
for an independent estimation of the individual ERP. For the polar motion coor-
dinates, an estimation of xp and yp together is possible (i.e. leads to a converged
solution), but it is not recommended because of the high correlations of the PMC
with each other. With the current dataset, an estimation of all three ERPs to-
gether by the analysis of LLR data is not possible. In section 5.3, it is shown that
an up-scaling of the obtained standard deviation for a realistic uncertainty repre-
sentation of the ERP values is only necessary for the ∆UT1 estimation, and not
for the PMC estimation. A scaling factor of three and two is chosen for estimates
before and after 2000.0, respectively. The maximum correlations shown by the
estimated ERP are with the coordinates and the biases of the LLR observatories.
Overall, the current best spatial resolution from the individual ERP estimation
are 4.49mm for ∆UT1 (subset ‘All2_15’, after 2015.0), 1.05 cm for xp (subset
‘All2_15’, after 2015.0), and 1.92 cm for yp (subset ‘Apollo5’).
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The Einstein-Infeld-Hoffmann equations are used when calculating the ephemeris
of the solar system bodies assumed as point masses interacting with each other,
see Chapter 1. In LUNAR, the signal propagation in the gravitational field of
Earth and Sun, the temporal and spatial reference systems as well as their respec-
tive transformations are formulated relativistically up to the first post-Newtonian
(1/c2) level [Biskupek et al., 2021]. As LLR measurements have been recorded for
a time span of over 53 years, it makes LLR analysis a comprehensive tool to study
the general theory of relativity, e.g. by modifying the Einstein-Infeld-Hoffmann
equations in the ephemeris calculation and fitting some additional (relativistic)
parameters over the LLR analysis iterations. In a standard calculation, only the
Newtonian parameters are fitted, and the relativistic parameters are kept fixed
to their values from the general theory of relativity. The most recent results for
the relativistic parameters using LUNAR, taken from Biskupek et al. [2021], are
given in Table 6.1. The tests provide a stronger confirmation of the general the-
ory of relativity. Further results using LUNAR are given by Hofmann and Müller
[2018] and Zhang et al. [2020]. Biskupek et al. [2021] used the same version of
the software as Hofmann and Müller [2018] to show the benefit of additional LLR
data observed from OCA using IR laser light. Biskupek et al. [2021] attributed
the improvement of the results to a better coverage of the lunar orbit and better
uncertainties of the recorded NPs. So far, no violation of the general theory of
relativity has been found from any LLR data.

The equivalence principle, mentioned in Table 6.1, tests for the equivalence of
gravitational and inertial mass. However, already in a non-relativistic framework
each body has three masses: the inertial mass, the passive gravitational mass
reacting on a given gravitational field, and the active gravitational mass creating
a gravitational field. Previously, from the space mission MICROSCOPE the
equivalence of inertial and passive gravitational mass has been confirmed at the

Table 6.1: Summary of the results of Biskupek et al. [2021] for the test of relativistic
parameters using LUNAR. Values of all parameters mentioned in the table
were obtained from individual tests.

Parameter Value Test

∆(mg/mi)EM (−2.1± 2.4) · 10−14 Equivalence Principle

Ġ/G (−5.0± 9.6) · 10−15 year−1 Temporal variation of
gravitational constantG̈/G (1.6± 2.0) · 10−16 year−2

β - 1 (1.7± 1.6) · 10−4 Parameterized
post-Newtonian parametersγ - 1 (6.2± 7.2) · 10−5
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level of 10−15 in the Eötvös coefficient (η)1 [Touboul et al., 2022]. From laboratory
experiments, the equivalence of active and passive gravitational mass has been
tested at the level of 10−5 [Kreuzer, 1968]. Bartlett and Van Buren [1986] used
LLR to improve this estimate to the level ≤ 4 · 10−12. In this chapter a possible
violation of the equivalence of active and passive gravitational mass using LLR
data is tested, and a new limit on the validity of the equivalence of passive and
active gravitational mass is set. The results discussed in section 6.1 have been
published in Physical Review Letters (see Singh et al. [2023]). The author of this
thesis is the first author of this paper, having carried out our major research and
data analysis.

6.1 Equivalence of Active and Passive
Gravitational Mass

Considering the gravitational force F = GmM/r2 acting between any two bodies
A and B, the active mass for the force FAB is defined by A and the passive mass
is defined by B, and vice versa. In standard physics these three masses mentioned
above are assumed to be the same. However, if they are different [Bondi, 1957]
then for any two gravitationally bound bodies A and B the equations of motion
read

miAẍA = mpAGmaB
xB − xA

|xB − xA|3
(6.1)

miBẍB = mpBGmaA
xA − xB

|xA − xB|3
, (6.2)

where miA, maA, mpA are the inertial, active, and passive gravitational mass of
body A, and, miB, maB, mpB are the inertial, active, and passive gravitational
mass of body B. The relative and centre of mass (CM) coordinates are defined
[Lämmerzahl, 2022; personal communication] according to

x = xB − xA (6.3)

X =
miA

Mi
xA +

miB

Mi
xB (6.4)

with the total inertial massMi = miA+miB. While the relative coordinate evolves
according to the Kepler problem

ẍ = −Gα x

x3
, α =

mpA

miA
maB +

mpB

miB
maA (6.5)

the CM coordinate shows a self acceleration

Ẍ = G
mpAmpB

Mi
SA,B

x

x3
(6.6)

1η = (mg/mi)A − (mg/mi)B , for two bodies A and B
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where
SA,B =

maB

mpB
− maA

mpA
(6.7)

describes the difference of the ratio of active and passive masses of the two bodies.
x describes the vector between the two bodies. As the relative motion decouples
from the CM motion, any relative motion can be taken for the determination of
the CM motion. In the case of binary systems, this is given by the solutions of
equation (6.5). For this study, the vector between two components of the Moon
(see below) is considered. This leads to a change in the Earth-Moon distance -
which can be very precisely measured using LLR.

Bartlett and Van Buren [1986] used the simplifying assumption that the mantle
has the same composition as maria, i.e. Iron (Fe) rich basalt, and the crust has
the same composition as the highlands, i.e. Aluminium (Al) rich anorthosite,
and considered the self force Fs =MiẌ = SA,BGmpAmpB/r

2
AB between the crust

and the mantle. Here, Mi is the total inertial mass of the Moon, mpA and mpB

are the passive masses of the two constituents of the Moon, respectively, rAB is
the distance between the Fe and Al CMs, and X is the Earth-Moon distance.
The effect of this force in the tangential direction with respect to the Earth will
lead to an increase in the angular velocity of the Moon. Furthermore, they also
consider the simplification that this angle defining the tangential direction is the
same as the angular offset between the CM and CF of the Moon. They consider
the change in the total energy of the Moon per lunar sidereal month caused by
the self-force Fs and Kepler’s law (i.e. ω2r3 stays constant) to express the relation
between the self force and the angular velocity of the Moon as,

∆ω

ω
= 6π

Ft

FEM
, (6.8)

where FEM is the gravitational force between Earth and Moon, Ft = Fs sin δCM,CF

is the tangential part of the self force using the offset angle δCM,CF between the
directions of the CM and the CF of the Moon (see Figure 6.1, where δCM,CF =
14°E).

Bartlett and Van Buren [1986] use the offset between the CM and CF of the
Moon, as given by Bills and Ferrari [1977], of 1.98 ± 0.06 km in the direction
14 ± 1◦ to the east of the vector pointing to the Earth. They also assume a
two-component Moon, with the mantle having a density of 3.35 g/cm3 and the
crust having a density of 2.90 g/cm3. Using these assumptions, they show a ratio
between Fs and FEM of

Fs

FEM
≈ 5SA,B , (6.9)

and, using the difference in the fractional content of Al and Fe in the highlands
and maria as 0.08, they give SAl,Fe = SA,B/0.08. Williams et al. [2014] point out
that the knowledge of the structure of the outer 60% of the Moon comes from the
analysis of the Apollo seismic data. Therefore, the values mentioned above and
also assumed by Bartlett and Van Buren [1986] are not significantly different to
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Figure 6.1: A depiction of the CM and CF (marked as the geometric centre) of the
Moon with respect to its geocentric position [Lämmerzahl, 2022; personal
communication].

others reported in later publications. Thus, for this study, the same assumptions
and values as Bartlett and Van Buren [1986] are used.

For the uncertainty of the value of the tidal acceleration in the orbital mean lon-
gitude of the Moon, ω̇, Bartlett and Van Buren [1986] considered two values of ω̇,
-25.30 ± 1.20 arcsec/century2 [Dickey et al., 1983] and -25.50 ± 1 arcsec/century2

[Christodoulidis et al., 1988]. Using the maximum difference between these values
of about 2 arcsec/century2, together with equations (6.8) and (6.9), they derived
an upper limit on the coefficient SAl,Fe of 4 · 10−12.

In this section, the latest results from LLR are used to determine a new limit
on the coefficient SAl,Fe by using the current value of ∆ω from 53 years of LLR
data. The ephemeris calculation model (including initial values and the GM of
all bodies) is based on the DE430 model [Folkner et al., 2014] with only a few
minor changes. Similar to the description in Chapter 4, fourteen solar system
bodies (Sun, Moon, eight planets, Ceres, Pallas, and Vesta) are considered for a
2-way ephemeris calculation. Here, the DE430 values are used for the ephemeris
calculations instead of those from the current standard solution of LUNAR, for a
validation of the adjusted values mentioned in section 6.1.1, including the lunar
angular acceleration to the reported values by Folkner et al. [2014].

6.1.1 Determination of the Lunar Angular Acceleration

The Moon undergoes an acceleration, due to the tidal deformation of the Earth,
caused by lunisolar and other tides. Here, the biggest effect is due to degree 2
tides on the Earth. As the Earth is neither perfectly elastic nor plastic, the tides
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Figure 6.2: Geocentric change of position of the tide generating body due to time delay
[Hofmann, 2017].

that act on Earth lead to its deformation. This deformation of the structure
of Earth is significant enough to affect the potential of the Earth by having its
own potential, called the deformation potential. The deformation of Earth does
not happen instantly, and is slightly delayed [Hofmann, 2017]. This time delay
causes a change in the position of the tide producing body, as depicted in Figure
6.2, where the distortion of the Earth (tidal bulge) leads the direction to the tide
raising body. This tidal bulge leads the Moon and it is accelerated forward by the
gravitational acceleration of the bulge, also retarding the Earth’s spin [Folkner
et al., 2014]. This leads to energy and angular momentum being transferred from
the Earth’s rotation to the lunar orbit, which in turn causes the Moon to move
away from the Earth, its orbital period to lengthen, and Earth’s day to become
longer [Folkner et al., 2014]. The effect on the Moon is observed on the crust and
the mantle differently. This tidal bulge can be modelled in a simplified way, as
one angle (δ) defining a geometric rotation [Williams et al., 1978]. This model
uses one Love number defined for degree 2. An expanded model has a more
complex definition, involving three Love numbers for each frequency of degree
2, and five tidal time delays (three orbital and two rotational) which define the
time-delayed position of the tide generating bodies [Folkner et al., 2014; Williams
and Boggs, 2016]. In this study, both methods are used to obtain a value of ω̇
and its uncertainty.

For the calculation based on the one angle defining a geometric rotation [Williams
et al., 1978], an initial value of k2δ = 0.01220 is used. For this solution, later
referred to as ‘k2d’, all aspects (initial values of solar system bodies, constants,
acceleration models2, etc.) for the calculation of the ephemeris are based on
the DE430 ephemeris [Folkner et al., 2014]. k2δ, along with other parameters, is
estimated using a GMM. The other parameters are those mentioned in Appendix
A except the two rotational components of degree 2 time delays (as they are
not used in this solution). A final value of k2δ = 0.01312 ± 1.17 · 10−6 is then
obtained. Using ω̇ = −1961 k2δ [Williams and Boggs, 2016], one gets ω̇ =
−25.73± 0.0023 arcsec/century2.

2except the calculation of the effect on the lunar orbit of the degree 2 Earth tides
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Table 6.2: Limit on the violation of the equivalence of passive and active gravitational
mass for Al and Fe from the value of ∆ω/ω per month obtained based on
our k2d and L11 solutions.

Solution ∆ω/ω per month SAl,Fe

k2d 1.2 · 10−15 6.9 · 10−16

L11 1.4 · 10−14 7.7 · 10−15

For a second solution, later referred to as ‘L11’, the effect of degree 2 Earth tides
in the LLR analysis is added based on Folkner et al. [2014]. Four different cases
are created for this solution. For three of these cases, along with other standard
parameters, the individual values of the three orbital time delays are adjusted.
For the fourth case, the three orbital tidal time delay values are kept fixed, and the
two rotational tidal time-delay values are adjusted along with all other standard
parameters. Finally, four sets of values of the five tidal time delays from these
variations are obtained. These values are converted [Williams, 2022; personal
communication] to determine four values of ω̇: -25.7898, -25.7759, -25.7635, and
-25.7649 arcsec/century2. The uncertainty of ω̇, taken as the range of the four
individual cases, is then obtained as ±0.0263 arcsec/century2.

6.1.2 Limit on Equivalence of Active and Passive Mass

By integrating the uncertainty values of ω̇ mentioned in section 6.1.1 over one
month, different values of ∆ω per month, and therefore of ∆ω/ω per month, are
obtained. Apart from ∆ω, all constants and assumptions are the same as those
used by Bartlett and Van Buren [1986] to recalculate a limit on the equivalence
of passive and active gravitational mass for Al and Fe. This is done to be able to
assess the contribution of the many years of LLR data. The assumptions, such
as the 14◦ offset angle between the CM and the CF of the Moon, an onion-skin
lunar interior, Ġ = 0, etc., are critical to the results, and any change compared
to these assumptions would affect the results as well (see discussion in the next
paragraph). The updated ∆ω/ω values are given in Table 6.2, along with the
limit on the coefficient SAl,Fe for both solutions (see equations (6.8) and (6.9)).

Bartlett and Van Buren [1986] gave a value of SAl,Fe as 7 · 10−13, and worsened it
around five times to report a realistic limit of 4 · 10−12, to reflect the limitations
in the knowledge of the interior and the surface of the Moon, and to reflect
the assumptions in their calculations. Taking the worse of the two values of
SAl,Fe mentioned in Table 6.2, and using a scaling factor of five, the new limit on
the violation of the equivalence of passive and active mass for Al and Fe gives
3.9 · 10−14. If, however, the limit were taken from the k2d solution, it would,
after using a scaling factor of five, give 3.4 ·10−15. As mentioned above, the value
of SAl,Fe is determined when differentiating between the crust and the mantle of
the Moon. In reality, the lunar core will also add to the self force, and affect
the value of SAl,Fe. For this study, to keep the assumptions the same as those
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of Bartlett and Van Buren [1986], this effect was not considered. Furthermore,
if considering a more recent value of the CM-CF offset from Smith et al. [2017],
the value of SAl,Fe from the L11 solution would become even smaller by a factor
of 0.3, i.e. 2.5 · 10−14. As mentioned earlier, such minor error sources are well
captured by up-scaling the estimated error by a factor of five. The final value
of SAl,Fe = 3.9 · 10−14 shows an improvement on the limit by two more orders of
magnitude compared to that of Bartlett and Van Buren [1986].

Chapter Summary

In this chapter, the relativistic parameters that can be determined from a LLR
analysis are briefly described, and the result for a new limit of the equivalence
of passive and active gravitational mass for Al and Fe is given, following the
procedure of Bartlett and Van Buren [1986]. The new result benefits from the
many years of very good LLR data and gives a new limit of 3.9 · 10−14 on the
possible violation of the equivalence of active and passive mass.
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7.1 Conclusions

LLR has the longest observation time series of all space geodetic techniques which
allows the determination of a variety of parameters of the Earth–Moon dynam-
ics. In this thesis, new results in many aspects of the LLR analysis are addressed.
These include: (1) The calculation of lunar and planetary ephemeris, (2) the
addition of geocentre motion (GCM), (3) the addition of tidal and non-tidal
loadings (for tidal, only atmospheric), (4) the estimation of Earth Rotation Pa-
rameters (ERPs), (5) realistic uncertainty determination from the Gauss-Markov
Model (GMM) adjustment procedure, and (6) a test of the equivalence of active
and passive gravitational mass. The LLR analysis software of IfE, LUNAR, was
updated to include these changes and additions.

For providing more realistic uncertainty values, the use of a relevant scaling factor
for the standard deviation of fitted parameters is discussed. This is based on two
tests: Sensitivity analysis and a validation by resampling. In both tests, multiple
variations of the standard solution are created. The fitted values of all parameters
and their uncertainties from the standard solution are then compared to the
created variations. For the sensitivity analysis, nine variations are considered,
and for the validation by resampling, one hundred variations were investigated.
The results show that the up-scaling of the standard deviations (to give realistic
uncertainties) obtained from the GMM is neither necessary for the standard set of
parameters (given in Appendix A) nor for the polar motion coordinates (PMC).
For ∆UT1, however, a scaling factor of three (for nights before 2000.0) and of
two (for nights after 2000.0) must be used.

The effect of adding GCM on the LLR results is small, as expected. With its
addition, the LLR residuals show a maximum improvement of about 3% and a
maximum deterioration of about 1% over the entire time span. This results in a
mean improvement of about 0.07% over all years. The effect of the atmospheric
loading, in the previous version of LUNAR, was added (as effect of Atmospheric
Pressure Loading (APL)) from the IERS 1996 conventions. In this thesis, its ad-
dition was changed to separate the tidal and non-tidal loading components. The
Tidal Atmospheric Loading (TAL) is added from the IERS 2010 conventions,
and Non-Tidal Loading (NTL) is added from the International Mass Loading
Service (IMLS). For NTL, other than Non-Tidal Atmospheric Loading (NTAL),
the Non-Tidal Oceanic Loading (NTOL) and the Hydrological Loading (HYDL)
were also added. The change from IERS 1996 conventions to IERS 2010 conven-
tions significantly improved the results of the LLR analysis. The LLR residuals
show a mean improvement of about 2% over all years, ranging between about
15% deterioration and about 24% improvement over the time span. The uncer-
tainties of estimated station coordinates also become better, by about 7%. The
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NTL, an effect which was previously not added in LUNAR, causes about cen-
timetre level deformation of the Earth’s surface. Its addition improves the LLR
residuals by about 1% (mean value over all years), and also improves the un-
certainties of the estimated station coordinates by about 1%. Furthermore, the
addition of HYDL reduces the strength of the annual signal in the LLR residuals
by about 25% and of the semi-annual signal by about 22%.

The new strategy for the lunar ephemeris by changing the starting point of the
ephemeris calculation from June 28, 1969 to January 1, 2000 significantly ben-
efits the results. Here, an overall improvement in the uncertainty of the fifteen
parameters defining the lunar initial orbit is about 35%. Individually, the ini-
tial velocity of the Moon shows the maximum change in the uncertainty by an
improvement of about 68%, and the initial angular velocity of the lunar core
shows the least change in the uncertainty by a deterioration of about 2%. The
uncertainties of the parameters other than the lunar initial orbit also improve by
about 14% (mean value over all parameters). Some small changes in the results,
due to the change from DE430 ephemeris to the DE440 ephemeris, which is based
on seven more years of data, are also observed. Here, the maximum improvement
is shown by the oblateness of lunar core fC . Its uncertainty improves by about
0.6%. Some parameters, however, also show small deterioration. The friction
coefficient between the lunar core and the mantle (kv/CT ) shows the maximum
deterioration of about 1.82%.

Furthermore, the effect due to the inclusion of 340 additional asteroids (from the
DE430 catalogue) in LLR analysis on top of fourteen solar system bodies (Sun,
Moon, eight plants, Pluto, Ceres, Pallas, and Vesta) that are used in a standard
calculation, is studied. The additional asteroids do not lead to a significant
improvement in the LLR results, and therefore due to a faster computation,
only fourteen bodies of the solar system are currently modelled in the ephemeris
calculation in LUNAR.

The results of this thesis are comparable to the latest results from the other LLR
analysis groups. However, the results of most parameters from LUNAR have
smaller uncertainties compared to those published by the other groups. This is
primarily due to the weighting scheme of the LLR NPs in the GMM adjustment
used in LUNAR. Some other factors, such as different number of NPs in any
calculation, different NP rejection strategies, differences in calculation strategies,
choice of certain models, different fixed and fitted parameters, and others could
also cause the better estimation from LUNAR.

The very good results for the ERP from LLR in this thesis are obtained by
applying new calculation strategies. The current best uncertainties are 9.77 µas
for ∆UT1, 0.35mas for xp, and 0.64mas for yp. This corresponds to a spatial
resolution of 4.49mm for ∆UT1, 1.05 cm for xp, and 1.92 cm for yp.

A new limit on the equivalence of active and passive mass, a fundamental test
of one cornerstone of the relativity theory, is determined. The result benefits
from the many years of very good LLR data, giving the limit of 3.9 · 10−14 for
the possible violation of the equivalence of active and passive mass. This is an
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improvement by a factor of 100 compared to the previous results of Bartlett and
Van Buren [1986], mainly due to a much larger dataset of LLR NPs now available
and due to improved modelling over the years.

7.2 Outlook

The science of and the results from LLR have significantly improved since the
start of the LLR experiment in 1969. However, many aspects of the analysis can
still be optimised and further improved.

For the LLR data used in the analysis, currently in LUNAR, an outlier detection is
performed in a multi-step process. The different LLR analysis groups use different
data rejection strategies. However these do not necessarily lead to the rejection
of the same NPs. Here, an extensive study of outlier detection techniques using
various methods such as the M-estimation [Huber, 1973], RANSAC [Fischler and
Bolles, 1981], and others should be performed.

In this thesis, a sensitivity analysis and a resampling validation was used to
determine a correct scaling factor, if necessary, for the given uncertainties. Here,
further possibilities of tests, such as performing a Jackknife resampling, could
be applied. For a Jackknife test, many versions of the standard software, with
different datasets have to be run. The rejected NPs for each dataset will be
different. The number of NPs that will be rejected will then define the total
number of Jackknife samples that must be created, with the criterion that each
individual NP is rejected once over all samples.

Currently, the lunar model is limited to two layers: Core and mantle. With more
NPs, a better investigation of a three-layered Moon: Fluid-core, solid-core, and
mantle, would be possible. In the coming years, if further improvements to the
laser systems are made, it could become possible to observe NPs at low (less than
15◦) lunar elevation. This would then require better atmospheric modelling in
the LLR analysis, for example, by using the Potsdam mapping function.

The ERP estimation from LLR also has room for some improvement. In the
current study, only the nights in which a minimum number of NPs are available
are used for the ERP determination. This selection of nights is not continuous,
and therefore when changing the value of any one ERP in these nights, it creates
a discontinuity of the series. Here, the use of an alternate approach to smooth
the ERP series using higher weights for nights with LLR contribution could lead
to better results. Such a smoothing would also help to provide a continuous
time series of the used a-priori ERP that includes LLR. Another possibility
for a changed ERP estimation from LLR is to use piece-wise linear functions to
determine the ERP, as shown by Bauer [1989] (see section 1.2.5.9). This approach
not only provides ERP values on which NPs were observed, but also allows the
determination on other nights.

The current results of ∆UT1 estimation from LLR analysis seem to be good
enough for a combination with VLBI analysis. LLR is the only space geodetic
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technique that leads to a dynamic realisation of the celestial reference system.
A joint analysis of LLR with VLBI data will benefit from both techniques to
produce new ∆UT1 values.

In future, the Table Mountain Observatory of JPL will enable a new measurement
of LLR, known as Differential Lunar Laser Ranging (DLLR). It will provide the
difference of two consecutive ranges obtained via a single station swiftly switching
between two or more lunar reflectors [Zhang et al., 2022]. This range difference
will lead to a reduction in the Earth’s atmospheric error and therefore achieve a
very high level of accuracy of about 30 µm. It is expected that a combination of
LLR and DLLR data will be highly beneficial to all fitted parameters, specially
for relativity tests, for instance, the equivalence principle.

It is planned to expand the network of the reflectors on the Moon by placing single
corner-cube retro-reflectors on the lunar surface near the limbs and poles in the
future. This will improve the existing geometry of the reflectors and therefore
be beneficial in the determination of the rotation and the orbit of the Moon. It
is expected that the new corner-cube retro-reflectors would also be beneficial in
terms of thermal resilience and increased return signal strength. The deployment
of such reflectors will lead to a better determination of all LLR parameters.
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A List of Fitted Parameters

Dynamical parameters
These parameters affect the Earth-Moon dynamics in the numerically integrated
ephemeris and are fitted in our calculation for the above mentioned results:

1. Geocentric initial coordinates and velocities of the Moon. These values
correspond to the start of the integration time in the ephemeris calculation
(corresponding to UTC 01.01.2000 00:00h). The initial values were taken
from the DE440 ephemeris, and correspond to the ICRF2 frame.

2. Initial values of Euler angles and angular velocities of the mantle of the
Moon in lunar mantle’s Principal Axis System (PAS). These values corre-
spond to the start of the integration time in our calculation (UTC 01.01.2000
00:00h). The initial values were taken from DE440, and correspond to the
ICRF2 frame.

3. Initial values of angular velocities of the fluid core of the Moon in lunar man-
tle’s Principal Axis System (PAS). These values correspond to the start of
the integration time in the ephemeris calculation (UTC 01.01.2000 00:00h).
The initial values of angular velocity of the core were interpolated for UTC
01.01.2000 00:00h from a 1-way ephemeris calculation (see chapter 4) based
on DE430 initial values.

4. Lunar gravity field coefficients - C22, C32, C33, and S32 (Stokes’ coeffi-
cients). Initial values are taken from the GRAIL-derived GL660b model
[Konopliv et al., 2014]. Other degrees and orders of the lunar gravity field
coefficients are not fitted.

5. Total gravitational mass of the Earth-Moon system. The initial values are
taken from DE440 ephemeris [Park et al., 2021].

6. Time-lag for solid body tides on the Moon. The initial values are taken
from DE430 and DE431 ephemeris [Folkner et al., 2014].

7. Friction coefficient between core and mantle of the Moon. The initial value
is taken from DE430 and DE431 ephemeris [Folkner et al., 2014].

8. Oblateness of the core of the Moon. The initial value is taken from DE430
and DE431 ephemeris [Folkner et al., 2014].

9. CT/MMR
2
M , i.e. ratio of Moon’s undistorted polar moment of inertia to

a product of its mass and square of radius. The initial value was calcu-
lated based on the Lunar polar moment of inertia parameter (β) value from
DE430 and DE431 ephemeris [Folkner et al., 2014].

10. Rotational time lag for diurnal and semi-diurnal deformation for the Earth.
The initial values are taken from DE430 and DE431 ephemeris [Folkner
et al., 2014].
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Observation level parameters
These parameters are used at the observation level, to add corrections to the
station and reflector coordinates and the light travel time equation in the LLR
analysis, and are fitted in our calculation for the above mentioned results:

1. LLR station coordinates, corresponding to epoch 2000.0 and their velocities.
Velocities of the LURE, MLRO, and WLRS stations are not fitted.

2. Lunar reflector coordinates, i.e., the positions of the five retro-reflectors on
the Moon.

3. Angles of rotation along ecliptic angle (x and y direction), defining a ro-
tation to align LLR based lunar ephemeris with a VLBI based GCRS. See
Section 2.4.1 in Biskupek [2015] for details.

4. Lunar love number (degree 2) of the Moon for vertical displacement. Initial
values can be taken from different sources, such as Mazarico et al. [2014];
Williams et al. [2013].

5. Three periodic terms for longitude libration of the Moon, as described by
Williams et al. [2013].

6. Bias parameters corresponding to station specific parameters. The param-
eters absorb the changes that are affected by the local equipment. A list of
biases applied in this study is given in Appendix B.

90



B List of Biases

Table B.1: Details of biases applied to the light travel time (converted to centimetre by
dividing it with the speed of light) for various stations in LUNAR for this
thesis.

From To Correction
Date JD Date JD [cm]

McDonald

15.04.1970 2440691.62 30.06.1985 2446246.75 1818.50
15.04.1970 2440691.62 08.06.1971 2441110.50 8.36
21.04.1972 2441428.50 27.04.1972 2441434.50 -56.14
18.08.1974 2442277.50 16.10.1974 2442336.50 69.98
05.10.1975 2442690.90 01.03.1976 2442838.60 -6.70
01.12.1983 2445669.50 17.01.1984 2445716.50 -14.84

MLRS1 02.08.1983 2445548.96 26.10.1984 2446000.00 7.76
23.02.1985 2446120.00 11.10.1985 2446350.00 -7.37

LURE

02.04.1986 2446522.50 31.07.1987 2447007.50 -6.24
09.11.1987 2447108.50 19.02.1988 2447210.50 -8.89
23.08.1989 2447761.50 24.08.1989 2447762.50 11.72
01.01.1990 2447892.50 01.01.1992 2448622.50 -6.71

WLRS 19.02.1994 2449403.00 02.02.1996 2450116.00 29.21

OCA

07.04.1984 2445798.25 24.07.1987 2447000.50 4.58
01.09.1991 2448500.50 25.10.1992 2448920.50 0.50
22.06.1993 2449160.50 13.05.1995 2449850.50 -5.75
13.05.1995 2449850.50 10.12.1996 2450427.50 -4.86
10.12.1996 2450427.50 24.06.1998 2450988.50 -9.73

APOLLO
06.12.2007 2454440.50 03.07.2008 2454650.50 2.62
01.11.2010 2455501.50 07.04.2012 2456024.824 3.70
06.08.2012 2456145.50 14.08.2013 2456518.50 -4.29
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