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ªFor a long time we believed that insight –

knowledge of the challenges at hand – would spur action.

But experience has shown that this is simply not the case.

The barriers to sustainable action are many and

we must fully understand them if we are to overcome them.º

Mamphela Ramphele, Co-President of the Club of Rome, 2019





Abstract

The satellite gravimetry mission Gravity Record And Climate Experiment (GRACE), which was oper-

ational from 2002 to 2017, and its follow-on mission GRACE-Follow-On (GRACE-FO), which has been

active since 2018, revolutionized the observation of temporal changes of the Earth’s gravitational field. The

measurement data from these missions enable the nuanced quantification of mass redistributions on Earth.

Water redistributions between continents and oceans caused by climate change are of particular research

interest because of their relevance for mankind. These are, for example, the ice mass changes (IMC) of the

ice sheets in Antarctica and Greenland, which this work focuses on.

IMC estimates derived from satellite gravimetry data, like from other quantification methods, confirm

that both the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS) have been losing mass over

the last two decades. However, these estimates are subject to large uncertainties, which is particularly

the case for the AIS. If the mass balance is obtained from gravimetric observations, a major source of

uncertainty is the consideration of effects due to glacial isostatic adjustment (GIA). The uncertainty of the

present-day gravitational field changes caused by the isostatic adjustment of the solid Earth to IMC during

the last centuries and millennia propagates into estimates of the recent IMC. According to results of the Ice

sheet Mass Balance Inter-comparison Exercise (IMBIE), the spread of different modelling results predicting

the GIA-induced mass effect in Antarctica is almost as large as the estimated rate of the IMC itself. In

Greenland, the spread of the mass effect from different GIA modelling results is approximately 20 % of the

rate of IMC. Alternatively, the IMC can be determined using surface elevation changes derived from satellite

altimetry observations. In this case, any GIA error hardly affects the results, but there is a significant source

of uncertainty in the conversion of volume changes into mass changes.

It is possible to combine data from satellite gravimetry and satellite altimetry to jointly estimate IMC

and GIA mass effects, e.g. by solving an inverse problem (joint data inversion). This is an alternative to

the use of GIA modelling results in processing satellite gravimetry data. Results from data combination

methods are not only a means to an end to improve the estimation of IMC. They also can contribute to

answer geodynamic questions. However, previous estimation strategies for combining satellite gravimetry

and satellite altimetry data are subject to some limitations. Many approaches only allow to estimate GIA in a

regional framework and not in global framework. Other approaches strongly depend on a priori information

from geophysical modelling which are subject to large uncertainties. Furthermore, limitations are due to

processing choices, e.g. the use of deterministic parameters over defined time intervals or, e.g. due to the

consideration of errors in the applied data sets. This work investigates advancements of data combination

methods that allow to quantify IMC and present-day GIA effects. Specifically, the approaches investigated

here combine measured gravitational field changes from satellite gravimetry, measured surface elevation

changes from satellite altimetry, modelled surface mass balances from regional climate modelling, and

modelled firn thickness changes from firn modelling.

This cumulative dissertation comprises three publications that investigated three aspects of data combi-

nation approaches. The first publication analysed a regional combination approach in Antarctica and results

therein demonstrated a significant dependence of the estimated GIA effect on the input data sets and applied

processing choices. A bias correction can significantly reduce an initial bias in the determined GIA effect

associated to the spherical harmonic coefficients of degree-1 and c20. However, this bias correction region-
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Abstract

ally constrains the GIA estimate and prevents to implement such an approach in a global framework. The

second publication infers long-term mass trends with their temporal changes jointly observed from satel-

lite gravimetry and satellite altimetry data. To do so, a state-space filtering framework was applied to the

data sets allowing to estimate temporal changes of the parameters over time while accounting for temporal

correlation of short-term fluctuations. Thereby, an accelerating ice-dynamically induced ice mass loss is

found for drainage basins in West Antarctica. In contrast, the temporal variability of long-term trends in

East Antarctica is low. Noteworthy, the trends in Dronning Maud Land and Enderby Land are positive.

The third publication presents a global approach to jointly estimate IMC, GIA effects and firn thickness

changes, while accounting for spatial error covariances of the input data sets. The intention of the utilized

GIA parametrization in Antarctica is to spatially resolve GIA effects that were not predicted by GIA mod-

els. Simulation experiments demonstrated the feasibility of the approach under the presence of realistic

limitations of satellite observations and model products.

This framework paper also reports a first application of the inversion method of Publication 3 to real data.

The focus of this application is on Antarctcia over the time interval January 2011 to December 2020. Results

for the AIS are: (i) an IMC of (−150 ± 5) Gt a−1, (ii) a change of the firn air content of (40 ± 5) km3 a−1, and

(iii) an integrated GIA-induced mass effect of (72 ± 4) Gt a−1. These results are promising with regard to

the application of this methodology, as they are similar to previously published estimates. But they are

estimated in a globally consistent framework and without applying conventional filtering strategies. Future

work should further improve the methodology and eventually implement it in a global inversion framework

that allows to jointly estimate all sea-level contributions.
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Zusammenfassung

Die Satellitengravimetriemission Gravity Record And Climate Experiment (GRACE), die von 2002 bis

2017 aktiv war, sowie die seit 2018 aktive Nachfolgemission GRACE-Follow-On (GRACE-FO) revolu-

tionierten die Beobachtung zeitlicher Änderungen des Gravitationsfeldes der Erde. Die Messdaten dieser

Missionen ermöglichen die differenzierte Quantifizierung von Massenumverteilungen auf der Erde. Von

besonderen Forschungsinteresse, aufgrund ihrer Relevanz für die Menschheit, sind dabei durch den Kli-

mawandel verursachte Umverteilungen von Wasser zwischen den Kontinenten und dem Ozean. Das sind

beispielsweise die Eismassenänderungen der Eisschilde in Antarktika sowie Grönland, die im Fokus dieser

Arbeit stehen.

Aus Messdaten der Satellitengravimetrie ermittelte Eismassenänderungen bestätigen, wie auch ande-

re Quantifizierungsmethoden, dass der Grönländische Eisschild sowie der Antarktische Eisschild während

der letzten zwei Jahrzehnte an Masse verloren haben. Allerdings sind diese Schätzungen mit groûen Un-

sicherheiten behaftet, was insbesondere auf den Antarktischen Eisschild zutrifft. Wird die Massenbilanz

mit gravimetrischen Beobachtungen ermittelt, ist eine wesentliche Quelle für die Unsicherheit die Berück-

sichtigung der Effekte aufgrund des glazial-isostatischen Ausgleichs (GIA). Die Unsicherheit über die ge-

genwärtigen Änderungen des Gravitationsfeldes, aufgrund des isostatischen Ausgleichs der festen Erde an

Eismassenänderungen während der letzten Jahrhunderte und Jahrtausende, pflanzt sich in die Schätzung

rezenter Massenänderungen fort. Laut Ergebnissen von vergleichenden Untersuchungen zu Eisschildmas-

senbilanzen (Ice sheet Mass Balance Inter-comparison Exercise, IMBIE) ist in Antarktika die Bandbreite

unterschiedlicher Modellierungen des GIA-induzierten Masseneffekts fast so groû wie die ermittelte Ra-

te der Eismassenänderung selbst. In Grönland beträgt die Bandbreite des Masseneffekts unterschiedlicher

GIA-Modellierungen ungefähr 20 % der Eismassenänderungsrate. Alternativ lassen sich die Eismassenän-

derungen mittels Oberflächenhöhenänderungen bestimmen, die aus Beobachtungen der Satellitenaltimetrie

abgeleitet werden. Dabei beeinflussen GIA Fehler die Ergebnisse kaum, allerdings besteht dabei eine we-

sentliche Quelle der Unsicherheit bei der Konversion von Volumenänderungen in Massenänderungen.

Es besteht die Möglichkeit, Daten der Satellitengravimetrie sowie der Satellitenaltimetrie zu kombi-

nieren und somit die Eismassenänderungen sowie GIA-Masseneffekte gemeinsam zu bestimmen, z. B. als

Lösung eines inversen Problems (gemeinsame Dateninversion). Dies ist eine Alternative zur Verwendung

von Ergebnissen der GIA-Modellierung in der Datenprozessierung der Satellitengravimetrie. Ergebnisse von

Datenkombinationsmethoden sind dabei nicht nur ein Mittel zum Zweck, um die Schätzung von Eismassen-

änderungen zu verbessern. Sie können auch zur Beantwortung geodynamischer Fragestellungen beitragen.

Allerdings unterliegen bisherige Schätzverfahren, die Daten der Satellitengravimetrie und Satellitenaltime-

trie kombinieren, Limitierungen. Viele Ansätze ermöglichen die GIA Schätzungen nur in einem regionalen

Rahmen und nicht in einem globalen Rahmen. Andere Ansätze hängen stark von Vorinformationen der geo-

physikalischen Modellierung ab, die aber groûe Unsicherheiten aufweisen. Auûerdem ergeben sich Limi-

tierungen durch gewählte Prozessierungsentscheidungen, wie z. B. durch die Verwendung deterministischer

Parameter über definierte Zeitintervalle oder z. B. durch die Berücksichtigungen der Fehler der verwen-

deten Datensätze. Diese Arbeit untersucht Weiterentwicklungen von Datenkombinationsmethoden, welche

die Quantifizierung von Eismassenänderungen und des gegenwärtigen GIA-induzierten Masseneffekts er-

möglichen. Konkret kombinieren die hier untersuchten Ansätze: gemessene Gravitationsfeldänderungen der
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Zusammenfassung

Satellitengravimetrie, gemessene Oberflächenhöhenänderungen der Satellitenaltimetrie, modellierte Ober-

flächenmassenbilanzen sowie modellierte Firndickenänderungen der regionalen Klimamodellierung.

Diese kumulative Dissertation umfasst drei Publikationen, die drei Aspekte von Datenkombinationsan-

sätzen untersuchten. Die erste Publikation analysierte einen regionalen Kombinationsansatzes in Antarktika

und die Ergebnisse zeigten eine bedeutende Abhängigkeit des ermittelten GIA-Effekts von den verwende-

ten Eingangsdatensätzen und Prozessierungsentscheidungen. Ein ursprünglicher Bias im ermittelten GIA-

Effekt, aufgrund der sphärisch-harmonischen Koeffizienten vom Grad-1 sowie c20, kann durch eine Bias-

korrektur erheblich reduziert werden. Dadurch sind die GIA-Schätzungen allerdings regional beschränkt

und es wird verhindert, dass ein solcher Ansatz in einem globalen Rahmen implementiert werden kann.

Die zweite Publikation ermittelt Langzeitmassentrends zusammen mit deren zeitlichen Änderungen, die

von der Satellitengravimetrie und Satellitenaltimetrie gemeinsam beobachtet werden. Hierfür wurde ein Zu-

standsraumfilterverfahren auf die Datensätze angewandt, das es ermöglicht, die zeitlichen Veränderungen

der Parameter über die Zeit zu bestimmen, unter der Berücksichtigung zeitlicher Korrelation kurzfristiger

Fluktuationen. Dabei zeigt sich für Abflussbecken in der Westantarktis ein sich beschleunigender eisdyna-

misch induzierter Eismassenverlust. Dagegen ist die zeitliche Variabilität der Langzeittrends in der Ostant-

arktis gering. Bemerkenswert ist, dass die Trends im Dronning Maud Land und Enderby Land positiv sind.

Die dritte Publikation präsentiert einen globalen Ansatz, der die gemeinsame Schätzung von Eismassenän-

derung, der GIA-Effekte sowie Änderungen der Firndicke ermöglicht, unter der Berücksichtigung räumli-

cher Fehlerkovarianzen. Bei der Wahl der GIA-Parametrisierung in Antarktika wurde die Intention verfolgt,

GIA-Effekte räumlich aufzulösen, die bisher nicht von GIA-Modellen vorhergesagt wurden. Mit Simulati-

onsexperimenten konnte die Machbarkeit des Ansatzes unter realistischer Limitierungen der Satelliten- und

Modellprodukte demonstriert werden.

Diese Rahmenschrift präsentiert auch eine erste Anwendung der Inversionsmethode aus Publikation 3

unter Verwendung echter Daten. Der Fokus dieser Anwendung liegt auf Antarktika über das Zeitintervall Ja-

nuar 2011 bis Dezember 2020. Ergebnisse für den Antarktischen Eisschild sind: (i) eine Eismassenänderung

von (−150 ± 5) Gt a−1, (ii) eine Änderung des Luftgehalts der Firnschicht von (40 ± 5) km3 a−1 und (iii) ein

integrierter GIA-induzierter Masseneffekt von (72 ± 4) Gt a−1. Diese Ergebnisse sind vielversprechend mit

Hinblick auf die Anwendbarkeit der Methode, da sie vergleichbar zu bereits publizierten Ergebnissen sind.

Dabei wurden sie in einem global-konsistenten Rahmen ohne die Anwendung konventioneller Filterungen

ermittelt. Im Zuge zukünftigen Arbeiten soll die Methodik weiter verbessert werden und schlieûlich in ei-

nem globalen Inversionsrahmen implementiert werden, der die Bestimmung aller Meeresspiegelbeiträge

gemeinsam ermöglicht.
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1 Introduction

Climate change affects the living conditions on Earth and thus is of crucial relevance for mankind. The

quote by M. Ramphele on the first page of this thesis emphasizes that the knowledge gained by science

about climate change and its consequences does not necessarily lead to action required to ensure sustain-

ability. Nevertheless, scientific knowledge forms the objective basis in decision making. An essential and

measurable indicator of global climate change is the redistribution of the water between the oceans and the

continents. The two contemporary ice sheets on Earth (Figure 1.1)Ðthe Greenland Ice Sheet (GIS) and the

Antarctic Ice Sheet (AIS)Ðare the largest reservoirs of water on the continents. The ice sheets’ ice mass

change (IMC) caused ∼27 % of the global mean sea level rise from 2006 to 2018. During this time period

estimates of the observed global mean sea level rise range from 3.21 to 4.17 mm a−1 and estimates of the ice

sheets’ contribution range from 0.75 to 1.24 mm a−1 (Fox-Kemper et al., 2021). This large spread in esti-

mates of the ice sheets’ contribution to sea level change motivates to investigate and resolve the underlying

reasons.

The degree of continental glaciation indicates Earth’s climate state. A cooling climate leads to glaciation

of the continents and a decreasing sea level, vice versa a warming climate leads to deglaciation and a

rising sea level. The last ice age ended ∼12 ka ago with the beginning of the Holocene. Already since

the last glacial maximum (∼20 ka ago) the climate has been warming and deglaciation has been occurring

accompanied by a rising sea level (Lambeck et al., 2014), apart from shorter (regional) glaciation phases.

Currently, the AIS and especially the GIS are losing ice mass and are already significant contributors to sea

level rise. Simulations show a significant relevance of both ice sheets’ contribution to sea level change in

the course of a warming climate (Fox-Kemper et al., 2021; Palmer et al., 2020). Reliable estimates of the

contemporary, i.e. recent, ice sheet mass changes and the attribution to the underlying processes form the

basis for projections of future climate change impacts on the environment.

Mass redistributions between an ice sheet and the ocean occur via two interfaces: firstly, via the in-

terface between the ice sheet and the ocean, and secondly, via the interface between the ice sheet and the

atmosphere. Via the first interface, glaciers transport ice to the ocean termed ice flow dynamics (IFD), where

it is discharged into the ocean by iceberg calving. In addition to the ice, meltwater of former ice, termed

meltwater runoff, enters the ocean (including subglacial water runoff). The term ice discharge means the

flux of ice from the continent across the grounding line of an ice sheet. Either glaciers calve icebergs close

to the grounding line directly into the ocean (typical for the GIS), or the floating ice forms an ice shelf which

calves icebergs off shore the grounding line into the ocean (typical for the AIS). The IFD depends on the

basal conditions (e.g. friction), sediment transport, and, in the case of the AIS, is linked to processes affect-

ing the ice shelves. For example, the ice shelves have a buttress effect on the continental glaciers and thus

control their ice dynamic flow towards the ocean. Furthermore the grounding line is not fix and can retreat

by basal ice shelf melting (Dupont and Alley, 2005). The involved processes causing mass changes via the

second interface are summarized under the term surface mass balance (SMB). SMB includes precipitation

(in particular surface accumulation by snowfall), sublimation, and wind drift processes. SMB also includes

the triggering of snow, firn, and ice melt (surface melting) by radiation and atmospheric warming, which

subsequently runs off the ice sheet as meltwater or refreezes. Conventionally, a distinction is made between

accumulation (precipitation, snowdrift deposition) and ablation (melting, sublimation, wind erosion). In a

1
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Figure 1.1: a) The Greenland Ice Sheet (GIS) and b) The Antarctic Ice Sheet (AIS) with their grounding lines (black
solid line) from Zwally et al. (2012). The AIS is commonly divided into the East Antarctic Ice Sheet (EAIS), the
West Antarctic Ice Sheet (WAIS), and the Antarctic Peninsula (APIS). The map dataset is obtained from Patterson and
Kelso et al. (2022).

simplified view, accumulation refers to the input of an ice sheet, i.e. the mass that is added to the ice sheet

(mass gain). Ablation and ice discharge refer to the output, i.e. the ice mass that leaves the ice sheet (mass

loss). The (total) mass balance of an ice sheet is the difference between the input and output. If the mass

balance is zero, it means that the ice sheet is stable or in equilibrium. If the input and output are not in

balance, the ice sheet system will tend towards a new equilibrium state, e.g. the IFD adjusts to a changed

accumulation (Hanna et al., 2020).

Changes in mass of the ice sheets and the ocean are accompanied by deformations of the solid Earth.

This happens immediately, i.e. instantaneously. A change in load due to a displacement of mass leads to an

elastic deformation of the solid Earth. In addition, the Earth also deforms visco-elastically. Every imposed

load change causes the solid Earth to be out of isostatic equilibrium. The subsequent adjustment process of

the solid Earth by its visco-elastic deformation is called glacial isostatic adjustment (GIA). This process is

associated with displacement of material (mass redistribution) in the solid Earth by viscous flow and can last

over time scales from decades to several millennia. The visco-elastic deformation of the solid Earth depends

on its rheological properties and the history of induced changes in loading, referred to as ice history or

glaciation history. A present-day GIA effect may have been triggered by load changes from a long time ago.

In Antarctica, the IMC and the present-day GIA mass effect are on the same order of magnitude. Noticeably,

there is a large uncertainty in predicting the present-day GIA effect with geophysical forward modelling.

According to Shepherd et al. (2018), the mass balance of the AIS is (−105 ± 51) Gt a−1 from 2003 until

2010 and the modelled GIA effect varies between +3 Gt a−1 and +81 Gt a−1. The mass balance of the GIS

is (−255 ± 20) Gt a−1 and the modelled GIA effect spreads from −27 Gt a−1 to +21 Gt a−1 (Shepherd et al.,

2019). The uncertainty of modelled GIA also propagates to global mean sea level estimates from satellite

gravimetry (Horwath et al., 2022; Kim et al., 2022). The Sixth Assessment Report of the Intergovernmental

Panel on Climate Change (IPCC) (Fox-Kemper et al., 2021) concluded that there is only medium confidence

2
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Figure 1.2: The qualitative relation of spatial and temporal response scales of the interconnected processes between
ice sheets, the solid Earth, and sea level changes. Surface mass balance (SMB) and glacial isostatic adjustment (GIA)
are abbreviated in the figure.

in understanding GIA.

Furthermore, mass redistribution between ice sheets and oceans as well as solid-Earth deformation

change components of Earth’s inertia tensor. This leads to Earth rotation changes, i.e. changes in rotation

velocity and the orientation of the rotation axis referred to as polar motion or true polar wander depending

on the considered time scales (Mitrovica and Wahr, 2011; Göttl et al., 2021). This also means that GIA

is accompanied by a deformation of the entire figure of the Earth and by geocentre motion (Mitrovica and

Wahr, 2011; Spada and Melini, 2019). Moreover, (de)glaciation and GIA may affect the stress regime in the

lithosphere and are thus also related to brittle-tectonic deformation, e.g. through the reactivation of existing

faults (Steffen et al., 2014). Further links between the solid Earth and the ice sheets are e.g. that deglacia-

tion can favour volcanism due to unloading (Sigmundsson et al., 2010) or that geothermal heat flow affects

the continental basal melting (Dziadek et al., 2021). GIA effects even play a role in understanding ancient

human migration (Borreggine et al., 2022).

The ice sheets, the ocean, and the solid Earth can be distinguished as three components of the Earth

system. They interact on mass redistribution between the continent and the ocean across a wide range of

spatial and temporal scales (Figure 1.2). The comprehensive consideration of the coupled processes of these

components and how they feed each other, e.g. due to self-gravitational effects, is a challenge in simulations

and data evaluations (Whitehouse, 2018). Today and since several decades, global satellite methods are

available that allow to measure the spatio-temporal changes of the Earth’s gravity field and geometry. Data

from these methods allow to investigate the coupled processes and feedbacks between ice sheets, ocean,

and the solid Earth. In particular relevant for this are the mission Gravity Record And Climate Experiment

(GRACE) (Tapley et al., 2004), and its follow-on mission (GRACE-FO) (Chen et al., 2022), as well as

several satellite altimetry missions measuring surface elevation changes over ice sheets (Schröder et al.,

2019; Nilsson et al., 2022).

This thesis results from research conducted in two consecutive research projects funded by Deutsche

3



1 Introduction

Forschungsgemeinschaft (DFG, English: German Research Foundation): ªReconciling ocean mass change

and GIA from satellite gravity and altimetryº (OMCG) and its successor OMCG-2, which are part of the

Special Priority Programme (SPP-1889) Regional Sea Level Change & Society (SeaLevel)1. The SPP-1889

SeaLevel covers research projects from natural sciences to socio-economics. The topics range from quan-

tifying sea level changes to their impacts on societies. The relevance of such a broad research programme,

with its many interdisciplinary research projects, is also emphasized by the issue claimed in the quote at the

beginning of this thesis. Both OMCG project proposals hypothesized that

• methodological issues in the satellite gravimetry data analysis and
• the large uncertainty in predicting the present-day GIA effect by geophysical modelling

lead to a large discrepancy of ocean mass change estimates. For example, WCRP Global Sea Level Budget

Group (2018), Horwath et al. (2022), and Kim et al. (2022) demonstrated this. This work is a contribution

to resolve these discrepancies by investigating the following research questions:

• What are appropriate estimation methods and parametrization strategies to attribute observed gravity

field and surface elevation changes over ice sheets to their sources?
• What is a feasible approach to quantify GIA effects in a globally consistent framework using satellite

observations rather than geophysical GIA modelling?

It is hypothesized that the quantification of GIA, along with IMC, can be improved with methodological

developments that pursue the following objectives: Firstly, a combination method should take the spatio-

temporal sampling and error characteristics of the input datasets rigorously into account. This refers to data

from satellite gravimetry, satellite altimetry, climate modelling, and firn modelling. Secondly, a combination

method should use a physically reliable parametrization. Thirdly, GIA and IMC should be resolved in a

globally consistent framework. To achieve these objectives three research articles, the Publications 1–3

(P1–3), have been published within the framework of this cumulative dissertation (Chapter 5):

P1: Willen, M.O., M. Horwath, L. Schröder, A. Groh, S.R.M. Ligtenberg, P. Kuipers Munneke, and M.R.

van den Broeke (2020). ªSensitivity of inverse glacial isostatic adjustment estimates over Antarcticaº.

Published in: The Cryosphere 14.1, pp. 349–366.

P2: Willen, M.O., T. Broerse, A. Groh, B. Wouters, P. Kuipers Munneke, M. Horwath, M.R. van den

Broeke, and L. Schröder (2021). ªSeparating Long-Term and Short-Term Mass Changes of Antarctic

Ice Drainage Basins: A Coupled State Space Analysis of Satellite Observations and Model Productsº.

Published in: Journal of Geophysical Research: Earth Surface 126.6, e2020JF005966.

P3: Willen, M.O., M. Horwath, A. Groh, V. Helm, B. Uebbing, and J. Kusche (2022). ªFeasibility of a

global inversion for spatially resolved glacial isostatic adjustment and ice sheet mass changes proven

in simulation experimentsº. Published in: Journal of Geodesy, 96:75.

First, Chapter 2 presents the theoretical background of the processes that lead to mass and volume

changes of ice sheets along with sea level change and solid Earth deformation. This is followed by Chapter 3,

which provides an outline of the used satellite data sets and modelling outputs. Chapter 4 is an overview of

the methodology for data combination strategies and Chapter 5 includes the peer-reviewed research articles

published in the course of this work. Chapter 6 presents and discusses first results of an application of the

inversion methodology described in P3 (Willen et al., 2022). The application focuses on Antarctica. Finally,

Chapter 7 gives an outlook and Chapter 8 summarizes the most important conclusions.

1https://spp-sealevel.de
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2 Processes over ice sheets inducing changes in

Earth’s gravity and geometry

2.1 Fundamentals of Earth’s gravity and geometry

The potential of Earth’s gravity, W , at a position, x (x ∈ R
3), is the sum of Earth’s gravitational

potential, V , and the centrifugal potential, Φ (Heiskanen and Moritz, 1967):

W (x, t) = V (x, t) + Φ(x, t). (2.1)

The position vector has the spherical coordinates, x = (θ, λ, r)T, with the colatitude, θ, longitude, λ, and the

Euclidean distance to the geocentre, r ≡ |x|. The potentials depend on time, t. The gravitational potential

is the potential of the force resulting from mass attraction of bodies and can be derived from Newton’s law

of universal gravitation. For the Earth body the gravitational potential results from its density distribution

which can be described by dividing the Earth into infinitesimal mass elements. The (mass) density, ρ, links

the mass element, dM , and the volume element, dV , by dM = ρ dV . The gravitational potential at the

position, x, is the volume integral over all elements of the Earth (at the time, t0):

V (x, t = t0) = G

∫∫∫

Earth

dM

l
= G

∫∫∫

Earth

ρ

l
dV, (2.2)

with the gravitational constant, G, and the Euclidean distance, l, between the mass element, dM , and x

(Heiskanen and Moritz, 1967). Any displacement of mass element(s) over time, i.e. a change of the density

distribution, affects the gravitational potential over time. The gravitational field in the exterior of the Earth

can be described with a Laplace’s differential equation of the second order. The solution of this differential

equation with a boundary condition at the surface of a sphere (Dirichlet problem) leads to the expression

of the gravitational potential developed into a series of spherical harmonic basis functions, Ynm, of degree,

n, and order, m (Heiskanen and Moritz, 1967). The gravitational potential in the exterior of a sphere with

Earth’s mass, ME , and the radius, R, (the semi-major axis of the reference ellipsoid) then reads:

V (x, t) =
GME

R

∞
∑

n=0

(

R

r

)n+1 n
∑

m=−n

cnm(t)Ynm(θ, λ). (2.3)

cnm(t) is a spherical harmonic coefficient of the gravitational potential, the Stokes coefficient. Ynm refers to

fully normalized (or 4π-normalized) orthogonal spherical harmonics and cnm(t) are their amplitudes over

time. The factor GME/R guarantees that the Stokes coefficient is dimensionless. Ynm are defined at the

surface of the sphere at the position (θ, λ)T as follows:

Ynm(θ, λ) = an|m|Pn|m|(cos θ)







cosmλ, if m ≥ 0

sin |m|λ, if m < 0
. (2.4)
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2 Processes over ice sheets inducing changes in Earth’s gravity and geometry

Pn|m|(cos θ) is the Legendre function and the normalization factor, an|m|, ensures that the average square

of each Ynm over the sphere is unity (Heiskanen and Moritz, 1967).

The second term in Equation 2.1 is the centrifugal potential and results from the Earth’s rotation with

the rotation vector, ω, (Torge and Müller, 2012):

Φ(x, t) =
(ω(t)× x)2

2
. (2.5)

The time dependence of ω(t) denotes that the Earth’s rotation vector changes over time, i.e. the orientation

of the Earth’s rotational axis (polar motion or true polar wander) and its angular velocity (length of day

changes), ω = |ω|, vary over time.

The gravity field, g, is a conservative vector field defined as the gradient of Earth’s gravity potential,

g = gradW (Heiskanen and Moritz, 1967) and results from the gravitational potential and the centrifugal

potential (Equation 2.1). Note that the term gravitational field only refers to the conservative vector field

of the gravitational potential, gradV , without accounting for the centrifugal potential. A gravity vector is

one vector of the gravity field at a certain position in the Earth’s exterior, x0, i.e. the gravity vector is an

acceleration vector. Its magnitude is called gravity, g(x0) = |g(x0)|, i.e. the acceleration magnitude. With

a spherical homogenous approximation of the Earth, the gravity is simply:

g(r) =
GME

r2
, if r ≥ R. (2.6)

Any redistribution of mass (elements) in the Earth system leads to temporal changes of the Earth’s

gravity potential (Equation 2.1). Temporal changes of physical quantities can be expressed as differences

between two epochs, e.g. ∆V (x) = V (x, t = t1)−V (x, t = t0) (∆ means a difference and is not to be con-

fused with the Laplacian operator). Alternatively, temporal changes of physical quantities can be expressed

with mean rates of change over a time interval, e.g. estimated using least-squares adjustment. For example,

the temporal mean rate of the gravitational potential referring to a chosen time interval, [t0; t0 +∆t], may

be indicated using Newton’s notation, V̇ (x)
∣

∣

[t0; t0+∆t]
, or simply, V̇ .

The time dependency of the Stokes coefficients (Equation 2.3) express the time dependency of the

gravitational potential, i.e. any change of the gravitational potential is related to a change of the Stokes

coefficients:

V̇ (x) =
GME

R

∞
∑

n=0

(

R

r

)n+1 n
∑

m=−n

ċnmYnm(θ, λ). (2.7)

Note that the spherical harmonic coefficient c00 accounts for the total mass of the system under investigation,

i.e. c00 ∝ ME , if the whole Earth is under investigation. Here, any mass exchange of the Earth with space

is neglected and mass conservation in the Earth system is assumed, ċ00
!
= 0. However, if only a region or

subsystem, rather than the whole Earth, is under investigation using the global representation with spherical

harmonic coefficients, the c00 coefficient in this particular case may change over time.

The spherical harmonic representation of the gravitational potential enables the direct evaluation of its

spatial scales, as the degree can be interpreted as the spatial ªfrequencyº. The spatial resolution for each

degree is roughly 20 000 km/n and the degree variance, e.g. for Stokes coefficients, is (Heiskanen and
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Moritz, 1967):

Var(cn) =
m
∑

n=−m

c2nm. (2.8)

Degree amplitudes are the square root of degree variances and the degree amplitude of a degree is analogous

to an amplitude associated to a certain frequency in the 1-D case. The degree amplitudes of a certain range

of degrees represent the amplitude spectrum over these spatial scales.

As an alternative to the formulation of a changing gravitational potential, geoid height changes may be

used with a spherical approximation of the Earth surface:

Ṅ(θ, λ) = R

∞
∑

n=0

n
∑

m=−n

ċnmYnm(θ, λ). (2.9)

However, the gravitational field changes expressed as changes of the gravitational potential (Equa-

tion 2.7) or geoid heights (Equation 2.9) do not allow a direct link to the underlying mass redistributions

causing the gravitational field changes. Explaining gravitational field changes with mass redistributions

within the Earth system is an ambiguity problem. A possibility to tackle this is to express gravitational

field changes as surface density changes (also known as area density changes). This is appropriate in cases

where the mass changes of interest occur near the Earth’s surface, i.e. in the vicinity of R. Mass changes

at the surface are also referred to as surface load changes. To do so, the ambiguity problem is simplified

by assuming that all mass redistributions take place in a spherical layer with a radius that equals R (Wahr

et al., 1998). This means any gravitational field change is expressed as a mass change per unit area in this

spherical layer. Furthermore, any load change due to mass redistribution accompanies with elastic defor-

mation of the solid Earth which induces an additional change of the gravitational potential (more details of

solid-Earth deformation are provided in Section 2.3). The surface density change implicitly accounts for the

elastic-induced potential change. The gravitational field change expressed as surface density change, κ̇, at a

position at the Earth’s surface, can be developed into a series of spherical harmonic coefficients:

κ̇(θ, λ) =
∞
∑

n=0

n
∑

m=−n

κ̇nmYnm(θ, λ). (2.10)

The link between the coefficient of surface density change, κ̇nm and the change of a Stokes coefficient is

(Wahr et al., 1998):

κ̇nm =
2n+ 1

1 + k′n

ME

4πR2
ċnm. (2.11)

1+k′n considers both, the gravitational change directly caused by the mass change (ª1º) and the gravitational

effect due to elastic deformation of the solid Earth. The latter effect is described with the load Love number,

k′n, which can be estimated using a rheological model (Section 2.3). For n ≥ 2 gravitational field changes

available as Stokes coefficients can be uniquely expressed as surface density changes (Equation 2.10):

κ̇(θ, λ) =
ME

4πR2

∞
∑

n=2

2n+ 1

1 + k′n

n
∑

m=−n

ċnmYnm(θ, λ). (2.12)

This equation is uniquely valid for degrees higher than one only, because, the degree-1-coefficients (c10,

c11, c1−1) depend on the chosen Earth’s reference frame. Blewitt (2003) described isomorphic terrestrial
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2 Processes over ice sheets inducing changes in Earth’s gravity and geometry

reference frames that allow for linking the degree-1 component of a surface load to the load Love number

theory. For instance, isomorphic reference frames are reference frames fixed to the centre of mass of the

Earth system (CM), centre of mass of the solid Earth (CE), and centre of the Earth’s surface figure (CF).

Depending on the rheological model, specific load Love numbers of degree-1 can be derived for these

reference frames which allow a conversion between the different reference frames. Note that CF and CE

are close in proximity to each other and CF can be used to approximate CE. In the CM frame the degree-1

component of the surface load induced gravitational field effect is zero. In contrast, the CE or CF origin

shifts in relation to the CM which reflects in non-zero degree-1 coefficients with respect to CE or CF fixed

reference frames. The shift in relation to CM is called geocentre motion (Blewitt, 2003). The full recovery

of surface mass changes from gravitational field changes requires the knowledge of their degree-1 mass

contribution and is essential for the investigation of ice sheet and ocean mass redistributions (Swenson et al.,

2008).

It is common to express the surface density as an equivalent water height (EWH). 1 kg m−2 corresponds

to 1 mm EWH. 1 kg water with a density of 1000 kg m−3 (i.e. 1 L of water) distributed on an area of 1 m2

results in a water layer with a height of 1 mm. For instance, this is also how precipitation amounts are

commonly reported.

The mass change, Ṁ , of a region of interest, D, being part of Earth’s surface, is the surface integral of

the surface density changes of the surface elements, dD, over this region (or domain). The surface integral

is:

ṀD =

∫∫

D

κ̇(θ, λ) dD = R2

∫∫

D

κ̇(θ, λ) sin θ dθ dλ, (2.13)

using a spherical approximation of an Earth’s surface element, dD = R2 sin θ dθ dλ.

Earth’s geometry changes can be expressed with surface elevation changes, ḣ, and volume changes in a

region, V̇D. A surface elevation change is the change of the radial distance between a Earth surface element,

dD, and the coordinate origin of the reference frame over time. Analogous to Equation 2.13, V̇D can be

defined as follows:

V̇D =

∫∫

D

ḣ(θ, λ) dD = R2

∫∫

D

ḣ(θ, λ) sin θ dθ dλ. (2.14)

An illustrative example for a region D may be an ice sheet. If the mass loss of the ice sheet is higher than

the mass gain, ṀD < 0, the ice sheet shrinks, i.e. the volume of the ice sheet decreases, V̇D < 0 assuming

there is no significant decrease in snow and firn density which would compensate for the loss of volume.

2.2 The ice sheet mass balance and changes of

the firn air content

The (total) mass balance of an ice sheet is the sum of the mass input and output. If the ice sheet is

gaining (loosing) mass, the mass balance is positive (negative). The mass balance is governed, on the one

hand, by mass fluxes due to SMB and, on the other hand, by ice discharge as well as (basal) meltwater runoff

into the ocean. The base of the grounded ice sheet is the interface between the ice sheet and bedrock. At

this interface basal sediments and basal meltwater are present (Singh et al., 2011).

The term surface mass balance (SMB) summarizes mass fluxes at the surface of an ice sheet, i.e. at
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2 Processes over ice sheets inducing changes in Earth’s gravity and geometry

Figure 2.1: Artwork illustrating the ice sheets’ surface processes with their atmospheric interactions governing the
SMB in Greenland (left) and Antarctica (right) from Lenaerts et al. (2019). The equilibrium line (EL) divides the ice
sheet into the accumulation zone and the ablation zone. The grounding line (GL) is the border between floating ice
(ice shelf) and the grounded ice on the bedrock (ice sheet). SW and LW indicates shortwave and longwave radiation,
respectively.

the interface between the ice sheet and the atmosphere (Figure 2.1). The surface of an ice sheet defines

the interface between the subsystems ice sheet and atmosphere. As outlined in Chapter 1, one part of the

SMB is the accumulation determined by precipitation and snowdrift deposit. The other part of the SMB

is the ablation due to sublimation, melt, and wind erosion. Sublimation and melting (and freezing) depend

on the available amount of energy at the ice sheet’s surface. This amount of energy is controlled by the

surface energy balance which results from the energy fluxes and includes incoming and outgoing fluxes of

radiation, absorbed radiation, sensible and latent heat exchange as well as the heat flux. Further, the surface

energy balance determines the surface temperature (Singh et al., 2011). The SMB is the change in mass over

time per unit area, also referred to as the mass flux or the rate of mass flow. This mass flux fluctuates over

different time scales. In particular seasonal SMB fluctuations are known (accumulation season and ablation

season) but also interannual and long-term changes of the SMB are significant. Furthermore, the SMB-

induced mass changes for the GIS and the AIS differ (Figure 2.1). Surface melting plays a significant role

for the GIS, but only a minor role for the AIS as a whole, where a large part of the surface melt refreezes.

The SMB in Antarctica is dominated by accumulation (Hanna et al., 2020).

A state of equilibrium of an ice sheet means the balance between SMB and IFD. This can be illustrated

by the mass flow rate through a columnar element of an ice sheet. The positive (negative) surface mass flux

into this column at the top is compensated with an increased (decreased) ice mass flux out of the column

which equals the surface mass flux. The ice mass flow rate (or ice mass flux) of the whole ice sheet adjusts

to the surface climate, i.e. to the long-term mean SMB. Short-term SMB fluctuations are anomalies to this

long-term mean SMB. A simple example of such an anomaly is a snowfall event that leads to a positive

SMB during this event which might be above the long-term mean SMB. In practice, the reference climate

for the long-term mean SMB can be realized by a reference period over which the mean SMB is calculated

assuming that this mean SMB represents the long-term mean SMB. The ice mass change can beÐsomewhat

arbitrarilyÐattributed to an SMB-related contribution and an IFD-related contribution. The SMB-related
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contribution in a region over time consists in the (ac)cumulated SMB anomalies. The SMB-induced mass

change, Ṁ SMB, is the mean rate of the (ac)cumulated SMB anomalies and κ̇SMB is the SMB-induced surface

density change. Note that the SMB contribution to the mass balance refers to the mean SMB over a chosen

reference period which is a potential source of error if the chosen reference period is not fully representative

for the actual surface climate. Further, any change of the surface climate (climate trends) will lead to

changing IFD. Potentially there is a background imbalance between the long-term mean SMB and IFD.

This background imbalance remains unknown, if there is no actual and independent knowledge on the long-

term mean SMB and the IFD.

In order to examine volume changes of an ice sheet, it can be divided into a firn layer and an ice

layer which reaches until the bedrock (Figure 2.1). In the following, these layers are indicated with the

superscripts ICE and FIRN, respectively. SMB-related processes lead to volume changes, V̇ , and surface

elevation changes, ḣ, in both layers:

V̇ SMB = V̇ ICE + V̇ FIRN, (2.15)

ḣSMB = ḣICE + ḣFIRN. (2.16)

Precisely, firn is compacted snow which persists more than one melt season or is somewhat metamorphosed

and underlies a snow layer (Singh et al., 2011). Here, the term firn envelops everything in the transition from

snow to ice. A separate snow layer is not considered here. The transition from snow to ice is also called firn

densification and is the process from a granular material to a polycrystalline solid (Singh et al., 2011). The

thickness of the firn layer is several tens of metres to more than 100 m (Singh et al., 2011). Any thickness

change of the firn layer is referred to as the firn thickness change, ḣFIRN, and integrated over an area the firn

volume change, V̇ FIRN. The firn thickness change and the surface density change of the firn layer, κ̇FIRN, can

be related with a firn density, ρFIRN:

κ̇FIRN = ρFIRNḣFIRN. (2.17)

More precisely, this firn density is an effective density relating volume and mass changes of the firn column.

This density is smaller than the ice density, ρFIRN < ρICE = 917 kg m−3, as the firn layer contains air

in addition to particles of frozen water (ice particles). The amount of air being part of the firn layer is

referred to as firn air content (FAC). For example, when fresh snow accumulates on top of an existing

already compacted firn, the FAC of the firn layer increases. This is because the fresh snow contains a higher

proportion of air compared to ice than the existing firn. Conversely, if there is no fresh snow accumulation

and the firn layer continues to compact, the FAC decreases, as no new air is added to the firn layer. As the

change of the FAC is assumed to have no mass effect, the firn thickness change can be expressed as the sum

of the change of the FAC and the volume change that a mass change of the ice particles induces (Ligtenberg

et al., 2014):

ḣFIRN = ḣFAC +
κ̇FIRN

ρICE
. (2.18)

Further, the SMB processes induce surface mass changes of the ice layer, if it is not covered by a firn layer.

ḣICE refers to SMB-induced surface elevation changes of the ice layer, e.g. the melting of pure ice. In this

case, ice density links SMB-induced surface density changes and surface elevation changes:

κ̇ICE = ρICEḣICE. (2.19)
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Figure 2.2: Comparison of the AIS mass balance estimates in terms of the mean rate over the 1992–2017 time period
including the uncertainty range (Mottram et al., 2021). The mass balance estimates result from different variants of
modelled SMB (absciss axis) minus two different ice discharge (D) estimates: circles, (Shepherd et al., 2018) and
squares, (Rignot et al., 2019), illustrate the mean values.

If the ablation of the ice layer and the runoff plays only a very minor role in a region, as it is valid for large

part of the AIS (Lenaerts et al., 2019), the SMB-induced mass changes approximate mass changes of the

firn layer, κ̇SMB ≈ κ̇FIRN.

Apart from the SMB-related contribution to the mass balance, there is an IFD-related contribution to the

mass balance. IFD express themselves in the ice flow velocity. As discussed above in the equilibrium state

of an ice sheet the IFD adjusted to the surface climate. Further, the ice flow depends on the environmental

conditions such as the geometry of the bedrock surface (bedrock topography or geomorphology), basal

friction, and buttress effects due to ice shelves. The geometry of the ice body and the mass flux evolves in

response to any changes in the external and internal forces (Singh et al., 2011). An increased (decreased)

ice flow will reduce (enhance) the ice sheet thickness referred to as dynamic thinning (dynamic thickening).

More precisely, relevant for an IFD-related effects is the difference between the ice flow into a columnar unit

volume element and the ice flow out of this element. This difference is referred to as the mass divergence,

i.e. the rate of the net mass flux out of this columnar element (Singh et al., 2011). Ice density links the

IFD-induced surface density change, κ̇IFD, and surface elevation change, ḣIFD:

κ̇IFD = ρICEḣIFD. (2.20)

In Greenland and Antarctica, mass changes due changing IFD are on long-term time scales (decadal scales

and longer), if they are related to climate change or to the break off of ice shelves (Rignot et al., 2019;

Mouginot et al., 2019). Almost exclusively in Greenland, when considering ice sheets, the IFD contribution

to the mass balance additionally fluctuates on shorter time scales, e.g. seasonally or at surge-type glaciers

(Müller et al., 2021).
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Also basal mass and volume changes induce potentially measurable changes in surface density or surface

elevation (Pattyn, 2010). But note that the basal mass balance of the grounded ice sheet is not considered in

mass balance studies such as Shepherd et al. (2018) and Shepherd et al. (2019), as the mean basal melt rate

of the AIS amounts to ∼3 % of the total surface accumulation only (Pattyn, 2010) and temporal changes

of the basal mass balance remain unknown. Moreover, hydrostatic responses above subglacial lakes, e.g.

above Lake Vostok (Richter et al., 2022), induce some more exceptional surface elevation changes over ice

sheets.

According to Mottram et al. (2021), different SMB modelling results of the AIS over the time period

from 1987 to 2015 spread from (1961 ± 70) Gt a−1 to (2519 ± 118) Gt a−1. Shepherd et al. (2019) stated the

SMB of the GIS as (361 ± 40) Gt a−1 by taking eight different modelling results into account. In Greenland

the SMB trend is negative because of enhanced runoff.

2.3 The solid-Earth and sea-level response to present-day

ice mass change

A load at the surface of the solid Earth exerts a surface force also referred to as stress; more precisely

a surface load exerts the special case of a normal force (normal stress). In general, any load change at the

surface of the solid Earth leads to a change in stress applied to the solid Earth and results in deformation.

This deformation is termed strain if the resulting deformation is related to any original state, i.e. relative

deformation. Apart from the change in stress, the mass redistribution along with the load change affects

the acting body force due to gravity. Coevally, the deformation of the solid Earth itself results in a change

of the gravity field in addition to a change of the solid-Earth geometry. Rheological models for Earth’s

materials link acting forces and the associated deformation behaviour (e.g. Karato, 2008). Derived from

such models, Love numbers are parameters that provide the relationship between acting forces and Earth’s

deformation (Farrell, 1972; Farrell, 1973). They are calculated using an (rheological) Earth model with

certain simplifications (e.g. assuming an incompressible, non-rotating, or radially symmetric Earth).

Above in Section 2.1, load Love numbers are already introduced to describe the link between surface

load changes and the accompanying elastic deformation effect on gravity. Initially, Love numbers were

used to describe the elastic deformation of the entire Earth (or other planets) due to external forces (e.g. tidal

force), and to derive planets’ stiffness (Love, 1909). This concept was extended to forces induced by surface

load changes with the degree-dependent load Love numbers, h′, k′, l′ (Farrell, 1972). Conventionally, these

are indicated with a prime to avoid confusion with the (tidal) Love numbers. There is also a connection

between tidal Love numbers and load Love numbers (Saito, 1978).

The evaluation of different temporal scales is necessary (Figure 1.2) in the scope of investigating the

interconnected effects of sea-level change, solid-Earth deformation, and changes in Earth’s rotation caused

by the redistribution of mass between ice sheets and oceans. Satellite methods provide several decades

of observations. On these time scales immediate effects are relevant, e.g. effects due to present-day IMC.

Additionally relevant are present-day effects caused by past IMC, e.g. several thousand years ago. The

origin of the latter effects are explained in more detail in Section 2.4. A reason for the distinction between

past and present time scales is the time-scale-dependency of the deformation behaviour of Earth’s materials.

The choice of the rheological model to describe the deformation behaviour of Earth’s materials depends on
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time scales under consideration.

For the consideration of surface load changes and deformation on short time scales of a few tens of

years, the rheological model of a purely elastically deformable Earth is assumed to be sufficient (Blewitt

and Clarke, 2003; Spada, 2017). This assumption can be justified by the rheological properties of Earth’s

materials, i.e. their deformation behaviour on different time scales (Ivins et al., 2020). According to Hooke’s

law, the elastic deformation means that in the case of an immediate reversal of a load, the solid Earth as a

continuum will immediately and completely recover to the state it has before the load was applied. Such

a purely elastic approach has already been used in Equation 2.11 for the calculation of surface densities

when considering the gravitational potential effect caused by elastic deformation. The load Love number,

k′, links the gravitational potential effect caused by the solid-Earth deformation, V̇ DEF, to the change in the

gravitational potential induced by the mass change itself (cf. Equation 2.7):

V̇ DEF(x) =
∞
∑

n=0

k′nV̇n(x). (2.21)

Both gravitational potential effects are considered when expressing gravitational field changes as surface

density changes (Equation 2.11). In case of a load change, h′n links the change in the gravitational potential

with the radial surface elevation change due to the elastic deformation, ḣELA, at the spherical approximated

Earth’s surface:

ḣELA(θ, λ) =
R2

GME

∞
∑

n=0

h′nV̇n(θ, λ). (2.22)

Lastly the load Love number, l′n, also referred to as load Shida number, connects the lateral elastic deforma-

tion to the change in gravitational potential:

l̇ELA(θ, λ) =
R2

GME

∞
∑

n=0

l′nϵ(θ, λ) · ∇V̇n(θ, λ). (2.23)

l̇ELA is the horizontal displacement rate at the surface. It is calculated by projecting the directional derivative

of the gravitational potential change into the horizontal direction given by the unit vector, ϵ(θ, λ). The

relationships between load change, the gravity changes, and elastic deformation of the solid Earth can also

be described in the spatial domain using Green’s functions (e.g. Lambeck, 1988), which is not discussed

further here.

The globally consistent consideration of the redistribution of mass between ice sheet and ocean requires

the coupled consideration of IMC, sea-level changes, gravity field changes, solid-Earth deformation and

changes in Earth rotation. This is described by the gravitationally self-consistent sea-level equation (Farrell

and Clark, 1976; Dahlen, 1976). A detailed review on the current status of sea level theory is reviewed

by Spada (2017). The relative sea level, S, is in principle the water depth (Whitehouse, 2018) and defined

over the ocean described by O, an ocean function which is ª1º over the ocean and ª0º over land. The sea

level equation describes changes of S and implies two crucial assumptions: (1) mass conservation between

continental ice sheets and the ocean; and (2) the surface of the ocean is an equipotential surface. Following

Dahlen (1976) and Blewitt and Clarke (2003) the relative sea level in static equilibrium is:

S(θ, λ) = O(θ, λ)

(

N(θ, λ)− hBEDROCK(θ, λ) +
∆V

g

)

. (2.24)
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2 Processes over ice sheets inducing changes in Earth’s gravity and geometry

The potential of the sea surface in relation to the potential at the geoid is ∆V (Blewitt and Clarke, 2003).

∆V/g accounts for the constant shift of the equipotential ocean surface in relation to an initial geoid to

ensure mass conservation. For a purely elastic deformation, a bedrock motion, ḣBEDROCK, is ḣELA.

The sea level equation is an integral equation which can be solved with iterative solving strategies

(Spada, 2017). The quasi-spectral approach (Blewitt and Clarke, 2003; Clarke et al., 2005) is one reasonable

approach to estimate the globally consistent relative sea level change in response to a surface load change.

For calculations related to this work, an implementation from Groh (2014) is used: The calculation starts

with the uniform approximation of the sea level, i.e. the total mass change of the surface load change,

described by its degree-0 coefficient, is equally distributed over the ocean area. The relative sea level

change is calculated by applying the ocean mask to the globally defined sea level change transferred to

the spatial domain. The globally defined sea level, which is also defined over land, is referred to as the

quasi-spectral sea level. Afterwards this approximated relative sea level change is transferred back into the

spherical harmonic domain where it is used for updating the total load. The total load is the sum of the load

change on land and the induced load caused by the approximated relative sea level change. The updated total

load is then used to update the sea level. Additionally the change in sea level due to the rotational feedback

is considered, which reflects in a change of the degree-2 coefficients (Rietbroek et al., 2012). The update

in sea level, which includes the relative sea level, load update, and its rotational feedback effect, serves as

an input for the next iteration to estimate an improved approximation of the relative sea level change. The

iteration continues until the relative sea level change does not significantly differ from the estimation of the

previous iteration. Finally the last update of the total load is used to calculate the globally consistent elastic

deformation and the geoid change. The global spatial pattern in gravity field change, sea level change, or

bedrock motion in response to a certain surface load is also termed fingerprint (e.g. Spada, 2017; Rietbroek,

2014).

2.4 Glacial isostatic adjustment to past ice mass change

The term glacial isostatic adjustment (GIA) envelopes the interconnected behaviour of the solid Earth,

the ocean, and the ice sheets in response to glaciation and deglaciation (Whitehouse, 2018). In the previous

section, the deformation of the solid Earth due to present-day surface load changes over a period of a

few years was considered to be purely elastic, implemented with load Love numbers calculated from an

elastic Earth model (Section 2.3). In addition to the elastic deformation, i.e. the immediate and completely

reversible deformation, Earth materials deform irreversibly in response to applied stress. In general, Earth

materials show elastic, plastic, and viscous deformation behaviour (Karato, 2008). The response of the

solid-Earth to deglaciation and glaciation is a viscoelastic deformation. This means, in addition to elastic

deformation the solid Earth adjusts to glaciation or deglaciation induced load changes by viscous flow of

mantle material. With the simple assumption of the mantle material as a Newtonian fluid, surface load

changes (stress change) and deformation changes due to viscous flow are linearly related. The (dynamic

or Newtonian) viscosity is the proportional factor between stress and the strain rate. Qualitatively, a higher

(lower) viscosity of a material means a lower (higher) strain rate in response to an applied stress. A common

rheology model used in GIA modelling to implement linear viscoelasticity is the linear Maxwell body,

which is used to develop linear viscoelastic Earth models (Whitehouse, 2018). The supplement of Spada

and Melini (2019) provides a comprehensive overview of GIA modelling theory and includes, inter alia,
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2 Processes over ice sheets inducing changes in Earth’s gravity and geometry

the derivation of load Love numbers from viscoelastic Earth models. Analogously to elastic load Love

numbers, viscoelastic load Love numbers are introduced with the same letters, h′, k′, and l′, to describe the

deformation response expressed as vertical displacement, gravity field change, and horizontal displacement,

respectively (Spada and Melini, 2019). The viscoelastic load Love numbers consist of two parts: Firstly,

the elastic part resulting from the elastic properties and the density profile of the Earth model (Section 2.3).

Secondly, the viscous part derives from the viscosity profile of the utilized Earth model. For completeness it

should be noted that apart from the viscoelastic load Love numbers, fluid load Love numbers are introduced

to describe the deformation response on long time scales when a new state of equilibrium is reached after a

surface load change (Spada and Melini, 2019).

In extension of the conventionally assumed Maxwell model, Ivins et al. (2020) provided an extensive

review of linear viscoelasticity theory by an extended Burgers material model. This model enables a consis-

tent time scale-spanning consideration of load changes and solid-Earth deformation for decadal to centennial

time scales. This is also referred to as a frequency dependent viscoelasticity and currently an issue under

investigation in geodynamic modelling (Lau et al., 2021). Additionally, the assumption of a Newtonian

mantle viscosity may be inappropriate to explain observable solid-Earth deformation. This means there is

a need to implement non-Newtonian viscosities in modelling (Kang et al., 2021). Further efforts currently

pursued in GIA modelling are the consideration of the lateral inhomogeneities in the Earth’s structure, e.g.

in Antarctica (Coulon et al., 2021), and the implementation of 3-D rheological models (Wal et al., 2015;

Bagge et al., 2021; Wan et al., 2022).

From the viewpoint of geodetic observations, the isostatic adjustment process to past IMC leads to

measurable effects in present-day observations, e.g. in observations from gravimetry, GNSS, and to less

extent, altimetry. One output of geophysical GIA models are present-day effects in Earth’s gravity and

geometry changes, which may be used for correcting these effects in geodetic observations. The principal

goal of geophysical GIA modelling is the investigation of the coupled evolvement of the solid Earth, the

ocean (sea level), and the ice sheets during (de)glaciation phases over space and time (Whitehouse, 2018).

The basic prerequisites are the knowledge on Earth’s rheology, Earth rotation parameters, and the glacial

history (also termed ice history). The latter one is basically the induced surface load changes over space

and time. Further, the ice history provides the information on the mass exchange between ice sheets and the

ocean. A surface Green’s function, ΓS, can be obtained from the viscoelastic load Love numbers to describe

the solid Earth’s deformation as a gravity field change and a change of its geometry (e.g. Section S4 in Spada

and Melini, 2019). This Green’s function depends on the location and time. The sea level equation (Farrell

and Clark, 1976) used for GIA modelling can be written in the following condensed form (Whitehouse,

2018; Spada, 2017):

S(θ, λ, t) = +
ρICE

gS
ΓS ⊗ICE I +

ρWATER

gS
ΓS ⊗OCEAN S + CRSL(t). (2.25)

gS is the reference gravity at the Earth’s surface (Equation 2.6) and I is the ice thickness variation over

space and time (glacial history). In the first and second summand the surface Green’s function is spatially

and temporally convoluted with load changes over the ice sheets and the oceans, respectively, indicated by ⊗.

The term CRSL(t) ensures the conservation of mass by a uniform shift of the relative sea level and includes

the time-depend uniform part of the sea level change and the load change averages of the ice sheets and

oceans. The case of the sea level equation discussed in the previous section (Equation 2.24) is actually only
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Figure 2.3: Comparison of two alternative GIA modelling outputs a) using the GIA modelling software SELEN
(Spada and Melini, 2019) and b) from Caron et al. (2018) and c) their difference (a−b). The figure illustrates the
present-day gravity field effect expressed as surface density rate. a) is simulated with the SELEN-software package
applying VM5a rheology and ICE-6G ice history.

a special case of consideration. Namely, the exclusive study of present-day IMC. The viscoelastic response

of the mantle to load changes within time scales of geodetic observations (a few decades) can be virtually

neglected. On such short time scales of present-day IMC the solid-Earth deformation practically depends

on the elastic properties of the Earth only (Spada, 2017). This assumption of a purely elastic responding

solid Earth on IMC during geodetic observation periods is under debate in some particular regions, e.g. the

Amundsen Sea Embayment (Barletta et al., 2018).

Extensions were made to the original form of the sea level equation according to Farrell and Clark (1976)

to account for changes in Earth rotation (Mitrovica and Wahr, 2011) and shoreline migration (Whitehouse,

2018), referred to as the gravitationally and topographically self-consistent form. An example for a numer-

ical implementation of the sea level equation including these extensions is the software package SELEN4

(Spada and Melini, 2019) which is freely publicly available and used in this work. It assumes a spherically

symmetric Earth, assumes a linear viscoelasticity, accounts for rotational feedback, and accounts for moving

shorelines.

As outlined in Chapter 1, the rheology and the ice history used for geophysical GIA modelling (or

forward modelling) are subject to large uncertainties, especially in Antarctica (Whitehouse et al., 2019). As
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an example, Figure 2.3 illustrates the present-day GIA gravity field effect from two alternative GIA model

outputs and their difference. A pursued strategy to calibrate GIA modelling results is to constrain them

with observational data, e.g. from GNSS measurements (e.g. King et al., 2010; Whitehouse et al., 2012;

Ivins et al., 2013). Probabilistic modelling approaches are another strategy using inter alia GNSS data as

test information for GIA predictions (Caron et al., 2018). There are also regional investigations that infer

rheological parameters of GIA model results based on their agreement with GNSS (Barletta et al., 2018).

The present-day GIA effect needs a careful consideration when evaluating satellite gravimetry data

such as from GRACE or GRACE-FO (Chen et al., 2022). Conventionally, there are three strategies to

account for the GIA signal in satellite gravimetry observations. Firstly, one can use GIA forward modelling

results and apply them as a correction for the GIA effect (e.g. Groh and Horwath, 2021). Secondly, a

combination of satellite gravimetry data with satellite altimetry data and additional data allows to estimate

the GIA effect (e.g. Wahr et al., 2000; Riva et al., 2009; Gunter et al., 2014; Engels et al., 2018). Thirdly, a

priori information obtained from GIA forward modelling is utilized to parametrize GIA in data combination

approaches using satellite gravimetry and additional data sets (e.g. Rietbroek et al., 2016; Martín-Español

et al., 2016b; Sasgen et al., 2017). This work investigates and develops the latter two strategies in P1 and P3,

also referred to as inverse approaches to distinguish them from geophysical forward modelling (Whitehouse,

2018).
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3 Data sets

In publications P1–P3, methods for quantifying the effects induced by the processes described in Chap-

ter 2 are investigated and developed. The data sets (Figure 3.1) used in all three publications were: (1)

time-variable global gravitational field models from satellite gravimetry (from the GRACE mission), (2)

surface elevation changes from satellite altimetry observations over ice sheets, as well as (3) SMB outputs

over ice sheets from regional climate modelling and firn thickness changes from firn modelling. Similar data

products illustrated in Figure 3.2 have been combined in this theses. The publications (Chapter 5) describe

in detail the processing strategies of the data sets. This chapter provides some background information on

the measurement methods and model setups.

3.1 Time-variable gravity from satellite gravimetry

The goal of satellite gravimetry is to determine the gravitational potential (Equation 2.3), or any of its

functionals, in the Earth’s exterior. The satellite gravimetry mission Gravity Recovery And Climate Experi-

ment (GRACE, Tapley et al., 2004) was the first mission focusing on the changes of the Earth’s gravitational

potential over time. The mission was launched on 2002-03-17 and ended after more than 15 and half year

on 2017-10-27. The follow-on mission GRACE-FO started on 2018-05-22 and is continuously collecting

data. Both missions are based on the same concept: Each mission consists of two satellites in a polar Low

Earth Orbit (89.5° inclination and ∼500 km altitude), which follow each other with a distance of ∼220 km.

GNSS measurements provide information of the position over time of each satellite (orbit determination),
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Figure 3.1: Availability over time of data sets from satellite missions as well as climate and firn modelling from
2002 until 2022 relevant in the perspective of this thesis. Data from missions indicated with a dashed contour line
are not used in P1–P3, but are potentially useful in future data combinations. Surface mass balance (SMB) and firn
densification model (FDM) products for Greenland and Antarctica are available since 1958 and 1979, respectively,
and are continuously updated.
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Figure 3.2: Mean rates of data sets for the time period Jan 2011–Dec 2020 for the GIS (a,c,e,g) and the AIS (b,d,f,h).
a+b: GRACE and GRACE-FO derived surface density rates using ITSG monthly gravitational fields (Mayer-Gürr
et al., 2018) smoothed with a 200 km Gaussian filter. c+d: CryoSat-2-derived surface elevation changes updated ac-
cording to Helm et al. (2014). e+f: rates of cumulated SMB anomalies from RACMO2.3p2 (Noël et al., 2018; Wessem
et al., 2018). g+h: firn thickness rates from IMAU-FDM (Ligtenberg et al., 2011; Brils et al., 2022; Veldhuijsen et al.,
2022). Note that the GIS and the AIS are plotted with different scales (cf. Figure 1.1).
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accelerometers in each satellite measures non-gravitational forces (e.g. atmospheric drag), and a microwave

(K-band) ranging system allows for the precise determination of the distance change (range rate) between

the satellites. Additionally, GRACE-FO carries a laser ranging interferometer to enhance the precision of

the inter-satellite distance measurements (Ghobadi-Far et al., 2022). The concept of continuously measuring

the inter-satellite distance of two low-orbiter satellites is referred to as low-low satellite-to-satellite tracking

to distinguish it from other gravity mission concepts (e.g. Seeber, 2003). Furthermore, the satellites carry

additional instruments, e.g. for attitude control (star cameras, magnetometer), data handling system, laser

reflector.

Satellite gravimetry is a method to determine the gravitational field from the motion of satellites along

their orbits. The special feature of the GRACE and GRACE-FO missions is the mentioned ranging system

that allows to infer differences in acceleration of the satellites, in addition to the conventionally observed

position of the satellites. The motion of the satellites (kinematic perspective) depends on all the forces acting

on the satellites (dynamic perspective). As mentioned above, the accelerometers measure non-gravitational

(or non-conservative) forces and thus allow the separate analysis of gravitational (or conservative) forces

resulting from Earth’s (changing) gravitational potential (e.g. Beutler and Jäggi, 2016). The term gravita-

tional potential (Equation 2.3) is more precise than gravity potential as satellite gravimetry is not sensitive to

any direct change of the centrifugal potential. Note that the literature sometimes uses the terms gravitational

field and gravity field (or their functionals) synonymously when referring to satellite gravimetry products. A

reliable variant applied for calculating the motion of the GRACE and GRACE-FO satellites is the dynamic

orbit integration by using the variational equation approach (Ellmer and Mayer-Gürr, 2017). A dynamic

orbit means the motion is attributed to the forces acting on the satellite. In one approach, short arcs of the

satellites’ trajectories are integrated with force models to calculate the dynamic orbit. These dynamic orbits

are then fitted iteratively to the observations of the satellites’ motion (kinematic orbits, range-rate measure-

ments) (Kvas et al., 2019). The determined parameters of these orbits enable to calculate monthly solutions

of the Earth’s gravity field. These level-2 products are commonly provided as gravity fields in the form of

monthly sets of spherical harmonic Stokes coefficients (e.g. Mayer-Gürr et al., 2018). For example, these can

be used to derive surface density rates over the ice sheets (Figure 3.2a+b). There is a distinction of gravity

field products into static models and time-variable models, because these models differ in magnitude, in res-

olution, and in the intended application scenarios. The reader is referred to Ellmer and Mayer-Gürr (2017)

and Kvas et al. (2019) for more details on the GRACE/GRACE-FO data processing, e.g. the application of

background models. An extensive list of available GRACE/GRACE-FO level-2 products and background

information on global gravity field models is given by http://icgem.gfz-potsdam.de/series

from the International Centre for Global Gravity Field Models (ICGEM, Ince et al., 2019).

By definition, the degree-1 time-variable gravity fields from GRACE and GRACE-FO are zero, because

the gravity fields derived from these missions are in the CM reference frame. This means that the derivation

of surface mass changes, e.g. due to ocean mass changes and IMC, from these gravity fields would remain

incomplete. This is because the degree-1 mass effect cannot be resolved in the CM but in the CF reference

frame (Swenson et al., 2008). The full recovery of surface mass redistributions in the Earth system requires

to complement the GRACE/GRACE-FO gravity fields by degree-1 coefficients, i.e. by transferring into CF.

This can be achieved by using a product based on Satellite Laser Ranging observations (e.g. Cheng et al.,

2013) or by calculating the degree-1 coefficients from the gravity fields in the CM and an ocean model

(Swenson et al., 2008). Furthermore, the monthly c20 coefficients (Earth’s oblateness) can only be poorly
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determined from GRACE and GRACE-FO observations. In addition to that the c30 coefficients are of low

quality in case of GRACE-FO and during GRACE accelerometer failures. Including information for these

coefficients from Satellite Laser Ranging measurements improves the monthly gravity fields (Loomis et al.,

2020). Note that the more consistent way is to combine GRACE/GRACE-FO and Satellite Laser Ranging

normal equations in a joint framework (Beutler and Jäggi, 2016).

3.2 Surface elevation changes from satellite altimetry

The basic principle of satellite altimetry is the determination of the distance between a satellite and

the surface elevation from the travel time of electromagnetic waves. For this purpose the satellite carries a

radar or laser altimeter instrument which emits and receives electromagnetic waves (Seeber, 2003). Radar

altimetry uses electromagnetic waves in the microwave frequency range. Laser altimetry uses electromag-

netic waves in the visible light frequency range based on laser imaging, detection, and ranging (lidar). The

altimeter instrument at the satellite emits electromagnetic waves in the direction of the Earth’s surface. The

waves propagate through the atmosphere and at the Earth’s surface a part of the waves’ energy is reflected

back to the satellite where reflected waves are detected with a sensor. The distance between the satellite

and the reflective surface can be determined from the propagation time and speed of the electromagnetic

waves. The data processing of satellite altimetry to derive the surface elevation includes the determination

of the position of the satellite in space and time (orbit determination), the determination of the propagation

velocity of the electromagnetic waves (correction of atmospheric delay in relation to the speed of light in

the vacuum), and in particular the assignment of the received reflected electromagnetic waves to the target

reflective layer or feature (referred to as the (re)tracking of the received signal), i.e. commonly the reflective

surface.

In case of radar altimetry over ice sheets, the assigning of the received signal to the surface may be

challenging and requires the consideration for the time-dependent penetration of radar waves into the upper

snow and firn layers. Laser altimetry measurements over ice sheets are hardly affected by time-varying

signal penetration. However, the quality of laser altimetry measurements depends on the opacity of the

atmosphere, e.g. laser light cannot penetrate through clouds. Additionally, corrections of tides and instru-

mental biases are necessary for both radar altimetry and laser altimetry. The continuous observation of the

surface elevation of ice sheets allows the derivation of surface elevation changes (Schröder et al., 2019).

These monitored changes enable to draw inferences on the processes described in Chapter 2. Furthermore,

the detected reflected signal allows to extract properties of the reflective surface. For example, the ice sheet

surface roughness and time-dependent firn structure affect the waveform of the returning radar waves. This

means these waveforms are useful to explore the ice sheet’s surface properties (Legrésy and Rémy, 1997).

Since the 1970s satellite altimetry missions have been monitoring surface elevation changes over ice

sheets. Schröder et al. (2019) combined satellite missions, that have operated during the last four decades

until Dec 2017, to calculate time series of the AIS surface elevation changes. This data product is used in

this work. It includes surface elevation changes from missions that operated simultaneously to the GRACE

mission (Figure 3.1). For the time period since the launch of GRACE, the data product covers data from

ERS-2, Envisat, ICESat, and CryoSat-2 missions. ICESat is a laser altimetry mission and the other missions

use pulse limited radar. Additionally, the CryoSat-2 mission incorporates Synthetic Aperture Radar Interfer-

ometric (SARIn) measurements to increase the spatial resolution in regions with high topography gradients.
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Schröder et al. (2019) applied a repeat altimetry approach. After data reprocessing, including retracking,

the observations are collected in boxes on a regular grid. Within a radius of 1 km around the centre of each

grid cell, all observations are assigned to that grid cell. For each box, a spatio-temporal and mission-specific

model is adjusted (repeat-track parameter fit) which includes parameters of the temporal linear trend and the

topography. Additionally, in case of pulse limited radar altimetry, parameters are fitted to account for the

backscatter signatures in the received signal caused by the surface properties. The estimated parameters and

the residuals of the model fit are then used to compute a mission-specific time series for each box. These

time series of the individual missions are merged, i.e. calibrated to each other, depending on certain condi-

tions arising from the mission lifetimes and the observation technique applied (pulse limited radar, SARIn,

laser). Finally, both a temporal and a spatial smoothing is applied. The final product is made available as

grids with a monthly temporal resolution and 10 km spatial resolution. For the GIS, Zhang et al. (2022)

applied a similar approach as Schröder et al. (2019) and provide a multi-mission altimetry time series which

is based on radar alimetry only from 1991 until 2020. In this work, an updated CryoSat-2 product according

to Helm et al. (2014) is used in Greenland (Figure 3.2c).

The spatio-temporal coverage of satellite altimetry data poses a particular challenge for the application

to ice sheet-wide research questions. The ERS-2 and Envisat missions allow the derivation of monthly

surface elevation changes from May 1995 until July 2003 and May 2002 until April 2012, respectively

(Figure 3.1). However, the inclination of the orbits of both missions is 98.5°, so that the polar gap starts at

a latitude of ±81.5°. In Greenland, only the northernmost part remains unobserved, unlike in Antarctica,

where substantial parts of the ice sheet are unobserved by these missions (Figure 1a in P2). Note that in

a similar orbit the successor mission Sentinel-1 from the European Space Agency (ESA) was launched in

Apr 2014 but its data is not included in altimetry products used in this work. The ICESat mission operated

from Feb 2003 until Oct 2009 and covered up to a maximum latitude of ±86°, but not continuously, as

it applied a campaign-style observation strategy with two to three campaigns per year, each lasting about

one month. Unfortunately, this temporal sampling does not allow for monthly resolved surface elevation

changes. CryoSat-2 started in July 2010 and observes up to a maximum latitude of ±88°, i.e. an almost full

spatial coverage of the AIS, and it measures with a spatio-temporal sampling that allows to derive monthly

surface elevation changes. Lastly, it should be noted that in September 2018 ICESat-2, the laser altimetry

follow-on mission of ICESat, launched into an orbit with 92° inclination similar to CryoSat-2. The data

from this mission are not included in the analysis of Schröder et al. (2019) and are not used in P1–P3. But

this data will provide new prospects, e.g. in terms of spatial resolution for future combined evaluations with

GRACE-FO data. Potentially useful for this is the recently published multi-mission altimetry product from

Nilsson et al. (2022). This product provides the AIS surface elevation changes covering data from 1985 until

2020 and includes ICESat-2-data.

3.3 Regional climate and firn modelling outputs

A climate model enables to simulate atmospheric processes on climate-relevant time scales by the nu-

merical implementation of laws of fluid dynamics and thermodynamics. Such models can be in a global

domain or tailored to regions. Two examples of regional climate models, which are also specifically tailored

to the polar regions Antarctica and Greenland, are the Regional Atmospheric Climate Model (RACMO)

and the Modèle Atmosphérique Régional (MAR, English: Regional Atmosphere Model). In these models
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processes are implemented which are specific for glaciated regions and govern the SMB (Section 2.2, Lipzig

et al., 2002). These models allow the simulation of SMB components, which are made available as SMB

model outputs and can be used with satellite data for combined investigations. Profound details about the

recent model developments and modelling results for Greenland and Antarctica are provided by Noël et al.

(2018) and Wessem et al. (2018), respectively, in case of RACMO2 (second version of RACMO) and by

Fettweis et al. (2017) and Agosta et al. (2019), respectively, in case of MARv3 (third version of MAR). The

most recent updates of the climate models are RACMO2.3p2 (the second polar update of RACMO2.3) and

MARv3.12. Over Antarctica, Mottram et al. (2021) investigated outputs of five regional climate models in-

cluding RACMO2 and MARv3 (Figure 2.2). A less recent intercomparison study for the GIS is provided by

Vernon et al. (2013). The comparison of SMB measured by stake observations and modelled with regional

climate models over whole Antarctica revealed common biases of SMB models (Mottram et al., 2021). Very

locally in the Lake Vostok area on the East Antarctic Plateau, Richter et al. (2021) showed good agreement

between stake observations and RACMO2 outputs but found a bias to MARv3 outputs.

Both RACMO2 and MAR are regional climate models which require lateral boundary information about

the state of the atmosphere: the model forcing. RACMO2 and MARv3 are forced at their boundaries with

a six-hourly information on temperature, specific humidity, pressure, wind speed, and wind direction (Noël

et al., 2018; Agosta et al., 2019). This is practically realized using reanalysis products, e.g. from the Eu-

ropean Centre for Medium Range Weather Forecasts (ECMWF) which provides the ECMWF re-analysis

(ERA) products. The reanalysis products are generated by running global numerical weather prediction

models (forecast models) while assimilating historical observational data. The current SMB outputs from

RACMO2 and MAR are obtained from model runs forced with ERA-Interim and/or ERA-5 reanalysis prod-

ucts. Agosta et al. (2019) ran simulations with MARv3 over Antarctica by using three alternative reanalysis

products and found that all three simulations similarly reproduced the SMB on spatial and temporal scales.

Both RACMO2 and MAR are nudged with information from the reanalysis products within their model

domain.

To properly account for the interactions between the atmosphere and the snow/firn surface, MARv3

includes a layered snowpack and RACMO2 has implemented snow/firn layers from the semi-empirical

firn densification model (FDM) IMAU-FDM (Ligtenberg et al., 2011). A FDM simulates numerically the

processes in the snow and firn layer, i.e. firn compaction, vertical melt water transport and refreezing, and

thermodynamics of the firn layer. Semi-empirical models are tuned to density observations and are to

be distinguished from physics-based models which do not require an observational tuning (Keenan et al.,

2021). For comprehensive background information on firn modelling, implementation strategies, and further

references, the reader is referred to Lundin et al. (2017) who ran a firn model intercomparison with synthetic

signals. The IMAU-FDM is not only operated as part of RACMO2 (online), but also offline with higher

vertical resolution to study firn processes (inluding firn thickness changes) in Greenland (Kuipers Munneke

et al., 2015; Brils et al., 2022) and Antarctica (Ligtenberg et al., 2011; Veldhuijsen et al., 2022). For this

purpose, the FDM is forced at the surface with model outputs from RACMO2, i.e. precipitation, snow drift,

sublimation, erosion–deposition, surface melt, and surface temperature. For the initialization of the FDM,

a firn layer needs to be simulated, but a stable firn layer is typically formed over longer time periods than

forcing data is available. In order to create an equilibrium firn layer, which can be used for numerical

simulation, the firn layer is created in a spin-up run. For this purpose, a reference period is chosen in which

no significant climate trends are expected, and which is thus assumed to be representative for a long-term
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stable climate. The simulation is iterated over the reference period until a stable firn layer is formed. For

Antarctica, the entire period modelled with RACMO2 have been used (e.g. 1979–2016 in P2). However,

the assumption of a stable climate within the reference period may not reflect reality. For example, on

the Antarctic Peninsula climate trends have been identified and need consideration (Pritchard et al., 2012;

Thomas et al., 2017). For Greenland, the time period from Jan 1960 to Dec 1979 may be assumed as the

reference period being representative for a long-term stable climate (Kuipers Munneke et al., 2015). Note

that a major part of the uncertainty of the firn trends can be attributed to assumptions on the reference

climate (Kuipers Munneke et al., 2015; Pritchard et al., 2012). Recently, Verjans et al. (2021) investigated

the uncertainty of firn thickness changes of the East Antarctic Ice Sheet using a statistically generated model

ensemble and identified the climate forcing as the largest uncertainty contributor.

The SMB outputs from RACMO2 and MARv3 provide monthly SMB from which κ̇SMB (Section 2.2)

can be obtained (Figure 3.2e+f). The IMAU-FDM output is a surface elevation time series representing

all surface elevation changes induced by processes in the firn layer (accumulation, compaction etc.) from

which ḣFIRN can be estimated (Figure 3.2g+h).
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The processes described in Chapter 2 lead to changing physical quantitiesÐgravity and geometryÐover

time which can be observed by a wide variety of methods. During the last three decades numerous studies

were published making use of satellite data over ice sheets to estimate their mass balance along with their

contribution to the global sea level budget, and to investigate the driving processes (e.g. Shepherd et al.,

2018; Shepherd et al., 2019; Horwath et al., 2022, and references therein). These investigations utilize, in

addition to data from satellite gravimetry, satellite altimetry mentioned in Chapter 3, observational data

from other satellite methods, e.g. GNSS, passive remote sensing, imaging radar (with SAR), as well as

combinations of these.

To begin with, the data from single satellite methods may be used to quantify the changing physi-

cal quantities, e.g. to quantify mass redistributions from gravitational field changes observed by satellite

gravimetry. Additional information may be necessary to analyse the observations, e.g. from geophysical

modelling. This is because the changing physical quantities caused by various processes superimpose and

thus the detectable effects of the individual processes are superimposed in the measurements. A conventional

example is the IMC and GIA effect inherent in satellite gravimetry data. The GIA effect can be predicted

by geophysical modelling and utilized in satellite gravimetry analyses to isolate IMC. This is referred to as

the gravimetric mass balances in Shepherd et al. (2018). However, evaluating individual data types may be

limited due to the utilized a priori information. This is because the uncertainty of this information is poten-

tially hardly characterized. For example, this is the case of modelled GIA effects in Antarctica. Approaches

that combine different data types (also referred to as joint data inversion) can loose the dependency on such

a priori information from modelling by assembling information from more than one observation method.

From this perspective, combination approaches aim to disentangle and quantify the superimposed sources

by drawing on the characteristics of how the processes affect the assembled quantities over space and time.

Moreover, single data type evaluations are limited because the individual sensors are limited to a techni-

cally defined spatial and temporal coverage. Data combinations intend to enhance the spatial and temporal

coverage of the estimated parameters by assembling the spatial-temporal sampling characteristics of several

observation methods.

There are two directions of evaluation between the changing physical quantities and the observational

data. One direction is the forward problem which describes how the changing physical quantities map into

the observational data. An observation method (sensor or detector) can be described by a forward operator,

a spatio-temporal sampling function (cf. P3) obtained by forward modelling. The other direction, which

is inverse to the forward problem, is the inverse problem (e.g. Koch, 1999; Tarantola, 2005; Menke, 2012)

and encapsulates obtaining information about the processes from observational data. The aim of solving the

inverse problemÐthat is the inversionÐis to determine parameters of a model from the data. This implies

the careful parametrization, i.e. the formulation of the model with the parameters to be determined, along

with the careful consideration of data limitations. These are the limited spatio-temporal resolution of the

observation types, systematic errors, and random errors. In a joint data inversion the parametrization builds

upon the characteristic link between an observation type and the processes of interest. Relevant for this

work is how the causing processes (Chapter 2) characteristically change the quantities gravity and geometry

observed by satellite gravimetry and altimetry. Note that the sensitivity of a certain observation type towards

27



4 Data combinations over ice sheets

the causing process may differ. An example is GIA which strongly affects the Earth’s gravity field measured

by satellite gravimetry. But the geometric GIA effect (almost) disappears in the noise level of satellite

altimetry data. Alternatively to the inversion including a thorough parametrization, the inverse problem can

be somewhat simplified with the perspective of a deterministic signal-separation problem (e.g. Wahr et al.,

2000; Gunter et al., 2014). In this sense, ‘signal’ means the change of a physical quantity (effect) caused by a

certain process. The observation is the sum of the signals (apart from errors) which can be deterministically

separated.

In the following, previous combination approaches applying satellite gravimetry and satellite altimetry

data over ice sheets, and eventually incorporating further data sets, are briefly reviewed and broadly classi-

fied in three categories. The publications P1-P3 are categorized accordingly and placed within the current

state of the research.

Firstly, the combination of satellite gravimetry and satellite altimetry has been applied in regional studies

in Antarctica to determine the GIA effect and IMC from the observational data, rather than determining GIA

a priori from geophysical forward modelling: Wahr et al. (2000) were the first to investigate a combination

of the two satellite methods by simulations. They found that it will be possible to improve AIS mass balance

estimates by no longer relying on error-prone GIA modelling outputs. Velicogna and Wahr (2002) further

developed this combination method with the additional use of GNSS data. Riva et al. (2009) were then

the first to combine satellite gravimetry (GRACE data) and satellite altimetry (ICESat data) in Antarctica

to jointly determine IMC and GIA effects. Compared to forward models, the GIA-related bedrock motion

determined in this way fits better with GNSS-based GIA rates (Thomas et al., 2011). Groh et al. (2012) ap-

plied this methodology to the Amundsen Sea Embayment in West Antarctica for a regional investigation of

GIA-induced bedrock motion. Gunter et al. (2014) extended the approach from Riva et al. (2009) by adding

outputs from regional climate and firn modelling. Thus firn and SMB induced volume and mass changes

were explicitly considered. Gunter et al. (2014) investigated the sensitivity of their results towards different

GRACE products but they left open how individual processing choices, alternative surface elevation change

products from satellite altimetry, or alternative time periods affect the GIA estimate. Nor did they rigorously

consider the uncertainties of the SMB and firn thickness change model products that were used. These points

were investigated in P1 (Willen et al., 2020). Martín-Español et al. (2016b) published results of a stochastic

modelling approach (Zammit-Mangion et al., 2015) using satellite gravimetry, satellite altimetry, and GNSS

data as observations. The spatio-temporal stochastic characterization (i.e. the parametrization) of the pro-

cesses over the AIS is based on outputs from forward models. Sasgen et al. (2018) and Sasgen et al. (2017)

were then the first to present a methodology combining satellite gravimetry, satellite altimetry, and GNSS,

that, in addition to determining IMC and GIA effects, allowed to touch the investigation of rheological prop-

erties in Antarctica. Zhang et al. (2017) and Gao et al. (2019) demonstrated benefits from utilizing GNSS

data as a constraint in the approach according to Gunter et al. (2014). Engels et al. (2018) further developed

the approach from Gunter et al. (2014) with a patch parametrization, in particular to increase the spatial res-

olution of the estimated GIA effect. They made use of GNSS observations to constrain the spatial scales of

the GIA estimate. Also Hardy (2019) presented combination methods of GRACE, ICESat as well as GNSS

over the AIS, to enhance spatial resolution of IMC and to assign the source of the mass change. Similar to

Riva et al. (2009), Zwally et al. (2021) combined GRACE and satellite altimetry observations over the AIS

to constrain the GIA effect.

Secondly, there are approaches that combine satellite gravimetry and satellite altimetry data with a re-
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gional focus, but without co-estimating the GIA effect. They focus on investigating the processes causing

IMC. In Antarctica these are e.g. estimating rates of IMC with enhanced spatial resolution (Sasgen et al.,

2019) or separating processes in the firn and ice layer by Mémin et al. (2014) and also by Kallenberg et al.

(2017), who applied a similar approach as Gunter et al. (2014) but made use of GIA forward modelling

outputs. Horwath et al. (2012), Mémin et al. (2015), and Kaitheri et al. (2021) investigated the interannual

variations due to climate variability. In this context, P2 (Willen et al., 2021) can also be categorized. In

P2 long-term and short-term mass changes on the drainage basin level were separated by using state space

methods to allocate IMC to their source. This state-space model framework allows to overcome limitations

of analyses that artificially choose time periods. Further investigations using state space methods to inves-

tigate geodetic time series in Antarctica have been published by Davis et al. (2012), Didova et al. (2016),

and Wang et al. (2021) but they do not incorporate ice altimetry observations. In Greenland Slobbe et al.

(2009), Ewert et al. (2012), and Yang et al. (2019) combined information from GRACE and satellite altime-

try to investigate volume and mass changes of the GIS. Kappelsberger et al. (2021) used IMC estimates with

enhanced spatial resolution from a combination of GRACE and CryoSat-2 data to evaluate GNSS-observed

bedrock motion in North-East Greenland. Finally, Forsberg et al. (2017) demonstrated the spatial-resolution

enhancement of GRACE-derived IMC by incorporating Envisat and CryoSat-2 data over both ice sheets.

Thirdly, there are combination approaches that allow to co-estimate for present-day GIA effects in global

frameworks. However, so far only Jiang et al. (2021) utilized data inter alia from GRACE, ICESat, firn and

climate modelling in a global framework. Their work builds upon Wu et al. (2010). The parametrization

of GIA and the GIA uncertainty is based on GIA forward modelling results. Also Rietbroek et al. (2016)

presented a global approach allowing for co-estimating GIA and applied a GIA parametrization based on

forward modelling results. However, GIA remains a major source of uncertainty in the global inversion

for all sea level budget components (Uebbing et al., 2019). Further global frameworks, that estimate GIA

solely from GNSS data and solely from GRACE data, have been published by Sha et al. (2018) and Sun

and Riva (2020), respectively, however without implementing the information over ice sheets from satellite

altimetry data. P3 (Willen et al., 2022) presents the methodology and investigates the feasibility of a global

approach for a spatially resolved GIA estimate enabled by incorporating satellite altimetry in addition to

satellite gravimetry observations over ice sheets as well as firn and climate modelling data.
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In summary, the three publications of this thesis can be interpreted as three contributions towards re-

solving the inverse problem of spatio-temporal signal separation over ice sheets by combining satellite

gravimetry and satellite altimetry data with climate and firn modelling outputs. In a simplified view, in

P1 the signal-separation task is led back to solving an arithmetic problem, in P2 it is led back to solving

a stochastic filtering problem, and in P3 it is led back to solving a linear parameter estimation problem.

These three research articles within this cumulative dissertation can be found in this chapter. Supplementary

material (SM) is published along each article and is included in the appendix. In particular for P2, a more

detailed description of the applied methodology can be found in the appendix.

In addition to the research extensively documented in the articles below, a brief classification of some

motivational and methodological aspects is provided first from the overall perspective of this thesis.

P1 (Willen et al., 2020) focuses on the investigation of the sensitivity of regional GIA estimates over

Antarctica towards input data sets and processing choices. Therefore a combination approach according to

Gunter et al. (2014) is investigated. In this approach GIA is resolved arithmetically as follows:

ḣGIA =
κ̇GRAV − ρα(ḣALT − ḣFIRN)− κ̇FIRN

ρGIA − ρα
. (5.1)

κ̇GRAV is the surface density rate derived from satellite gravimetry observations in the spatial domain, ḣALT

the surface elevation rate from satellite altimetry, and ḣFIRN, κ̇FIRN surface density and surface elevation rate

in the firn layer. ρGIA relates the mass and volume effect induced by GIA and ρα is a spatial and input-

data dependent density mask which allows to distinguish between IFD and SMB induced mass and volume

changes. In order to apply this equation to the datasets, the data sets are harmonized in terms of spatial

resolution by filtering (smoothing) and corrected for bias. Furthermore, P1 investigates an Antarctic GIA

estimate from a combination on time series level rather than combining mean rates.

P2 (Willen et al., 2021) focuses on the temporal separation of long-term and short-term Antarctic ice

mass and volume changes on drainage basin level without the attempt to co-estimate GIA. The aim of this

investigation was to disentangle and quantify the sources of the AIS mass and volume changes commonly

observed by satellite gravimetry and satellite altimetry. The different temporal characteristics of IMC are

exploited and form the basis for separating long-term and short-term changes in the time series. The central

perspective is that short-term changes are fluctuations in the firn layer and (temporally correlated) errors. The

long-term changes are mainly interpreted as the IFD contribution to the mass balance and are parametrized

with a smooth time-variable rate. It should be noted that this perspective requires to correct for all alternative

sources of long-term and short-term mass and volume changes. The temporal stochastic parametrization of

the involved processes is mapped into a state space model linking the observation time series and the state

vector (model). The state estimation problem is solved using a Kalman filter and smoother. The applied

state space framework builds upon work from Frederikse et al. (2016) and applies the state space methods

from Durbin and Koopman (2012). The states are estimated in four consecutive steps: (1) The irregular

and disturbance variances and covariances (hyperparameters or process noise) are estimated by statistical

optimization. (2) The Kalman filter is applied to estimate the states in a forward loop. (3) The states are

smoothed in a backward loop. This enables to improve the estimation of each state by incorporating all
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observations. (4) Finally, the disturbance variances are smoothed in a backward loop to base the smoothed

disturbance variance estimates on all observations.

P3 (Willen et al., 2022) focuses on the spatial separation of IMC, GIA, and changing FAC in a global

framework while accounting for spatially correlated errors of the input data sets. Observations and parame-

ters are linked in a Gauss Markov model which is solved by generalized least squares adjustment (e.g. Koch,

1999). An essential element of P3 is the advancement of the GIA fingerprint parametrization according to

Rietbroek et al. (2016) based on findings from Sasgen et al. (2017) and Gunter et al. (2014). The utilized

parametrization for GIA in Antarctica aims to spatially resolve the GIA effect. This is done to potentially

unravel GIA effects unpredicted by GIA modelling. In Antarctica, the predicted patterns of GIA forward

modelling are incompatible with geodetic observations due to deficiencies in the knowledge about the rheo-

logical Earth structure (Ivins et al., 2021) and the ice loading history governing the present-day GIA effects

(Whitehouse et al., 2019). In the other regions of the world, the spatial patterns of modelled present-day GIA

effects is trusted to capture the present-day GIA effects for the largest part. Apart from the parametrization,

an essential element of P3 is the characterization of the spatially correlated errors of the observations along

with the investigation of the feasibility of the global inversion approach under the presence of these spatially

correlated errors.
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Abstract. Glacial isostatic adjustment (GIA) is a major

source of uncertainty for ice and ocean mass balance es-

timates derived from satellite gravimetry. In Antarctica the

gravimetric effect of cryospheric mass change and GIA are of

the same order of magnitude. Inverse estimates from geodetic

observations hold some promise for mass signal separation.

Here, we investigate the combination of satellite gravimetry

and altimetry and demonstrate that the choice of input data

sets and processing methods will influence the resultant GIA

inverse estimate. This includes the combination that spans

the full GRACE record (April 2002–August 2016). Addi-

tionally, we show the variations that arise from combining

the actual time series of the differing data sets. Using the

inferred trends, we assess the spread of GIA solutions ow-

ing to (1) the choice of different degree-1 and C20 prod-

ucts, (2) viable candidate surface-elevation-change products

derived from different altimetry missions corresponding to

different time intervals, and (3) the uncertainties associated

with firn process models. Decomposing the total-mass sig-

nal into the ice mass and the GIA components is strongly

dependent on properly correcting for an apparent bias in

regions of small signal. Here our ab initio solutions force

the mean GIA and GRACE trend over the low precipita-

tion zone of East Antarctica to be zero. Without applying

this bias correction, the overall spread of total-mass change

and GIA-related mass change using differing degree-1 and

C20 products is 68 and 72 Gt a−1, respectively, for the same

time period (March 2003–October 2009). The bias correc-

tion method collapses this spread to 6 and 5 Gt a−1, respec-

tively. We characterize the firn process model uncertainty

empirically by analysing differences between two alterna-

tive surface mass balance products. The differences prop-

agate to a 10 Gt a−1 spread in debiased GIA-related mass

change estimates. The choice of the altimetry product poses

the largest uncertainty on debiased mass change estimates.

The spread of debiased GIA-related mass change amounts to

15 Gt a−1 for the period from March 2003 to October 2009.

We found a spread of 49 Gt a−1 comparing results for the pe-

riods April 2002–August 2016 and July 2010–August 2016.

Our findings point out limitations associated with data qual-

ity, data processing, and correction for apparent biases.

1 Introduction

The quantification of recent and current sea level changes

plays a crucial role for local, regional, and global projections.

Mass changes of the Greenland and Antarctic ice sheets are

responsible for approximately 20 % of the global mean sea

level rise between 1991 and 2010 (Church et al., 2013).

Space gravimetry observes temporal gravity changes which

result from mass redistribution on and in Earth. An ice mass

trend estimation can be determined using time-variable grav-

ity fields from the Gravity Recovery And Climate Experi-

ment (GRACE) mission (e.g. Groh et al., 2014; Forsberg

et al., 2017), which is continued by its follow-on mission

GRACE-FO.

Large uncertainty in the ice mass change estimates derived

from space gravimetry is related to viscoelastic deformation

of the solid Earth by glacial isostatic adjustment (GIA). This

Published by Copernicus Publications on behalf of the European Geosciences Union.
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is the deformation of the solid Earth due to loading varia-

tions through sequences of past glacial advance and retreat

over many millennia. The manifestation of ice sheet and GIA

mass change signals is superimposed and is of the same or-

der of magnitude over Antarctica (Sasgen et al., 2017). This

requires GIA to be carefully considered when determining

ice mass change. Moreover, quantified GIA provides insights

into the glacial history of ice sheets or changing tectonic

stress (Johnston et al., 1998).

One approach to determine the GIA signal is forward mod-

elling (e.g. Ivins and James, 2005). GIA forward models

are obtained using assumptions about the ice load history

and the solid-Earth rheology, which are both subject to large

uncertainties (Whitehouse, 2018; Whitehouse et al., 2019).

GIA-induced vertical bedrock elevation change (BEC) de-

rived from the Global Navigation Satellite System (GNSS)

observations have been used to constrain forward models

(e.g. King et al., 2010; Ivins et al., 2013; Whitehouse et al.,

2012) or, more recently, to test probabilistic information of

a suite of globally consistent forward models (Caron et al.,

2018). Caron and Ivins (2020) used this method to investi-

gate the regional GIA signal over Antarctica and to separate

the contributions from oceanic and far-field regions.

In an alternative approach, satellite gravimetry and altime-

try are combined to separate the GIA and ice-related mass

signals (Wahr et al., 2000). Both spaceborne techniques ob-

serve a superposition of GIA and ice sheet change signals.

For example, satellite altimetry observes surface elevation

changes (SECs), some of which are caused by GIA-induced

BEC. The combination requires assumptions about the re-

lation between surface geometry changes and gravity field

changes induced by GIA and likewise between the respective

changes induced by ice sheet processes. These relations may

be expressed in terms of effective densities. This combina-

tion approach was first implemented by Riva et al. (2009) and

later refined by Groh et al. (2012) and Gunter et al. (2014).

Hereinafter they are called the inverse (Whitehouse, 2018)

because they use present-day observations to determine the

GIA signal (in contrast to forward models). Results from

Riva et al. (2009) fit better with GNSS-derived GIA rates

than forward models (Thomas et al., 2011).

Recent studies separate the individual processes of the

ice sheet and the underlying bedrock with statistical mod-

elling (Zammit-Mangion et al., 2015; Martín-Español et al.,

2016a). They use spatial and temporal a priori informa-

tion (from numerical simulations), additional GNSS obser-

vations, and altimetry data of several satellite missions. Fur-

thermore, a joint inversion has been presented that takes

into account the rheological parameters of the solid Earth

(Sasgen et al., 2017). Engels et al. (2018) use a regularized

parameter estimation approach (dynamic patch) to resolve

the superimposed mass trends in Antarctica. Martín-Español

et al. (2016b) compared available GIA solutions from for-

ward modelling and inverse estimation and have shown that

differences are larger than indicated uncertainties.

We analyse the sensitivity of inverse GIA estimation on

the choice of data input and methodology, thereby identify-

ing both the possible causes of discrepancies and the uncer-

tainty. Our inverse GIA estimation is based on the approach

of Gunter et al. (2014) but uses both contrasting and up-

dated data sets. Special attention is paid to surface processes,

namely changes of mass and volume of the firn layer. By the

term firn, we assume both snow and firn. In inverse GIA es-

timation, changes in the firn layer need to be separated from

those in the ice layer below. For that purpose, the surface

mass balance (SMB) as well as the volume change from the

firn layer are needed. These are usually provided by regional

climate models like RACMO2 (van Wessem et al., 2018) and

firn densification models (FDMs) forced with climate mod-

els, like IMAU FDM (Ligtenberg et al., 2011). Uncertainties

of these model products are poorly known. Here, we charac-

terize the uncertainty by comparing the RACMO2.3p2 SMB

products with those of the MAR model (Agosta et al., 2019).

Another focus of this research is on the use of ice altimetry

data. Different altimeter missions such as Envisat, ICESat, or

CryoSat-2 use different observation techniques and differ in

their spatial and temporal coverage. The multi-mission (MM)

altimetry data set delivered by Schröder et al. (2019a) is well

suited for a GIA inversion over nearly the full GRACE obser-

vation period (April 2002–August 2016). The effect of using

different gravity field solutions from the GRACE process-

ing centres and different filtering options is shown by Gunter

et al. (2014). We use different degree-1 and C20 products to

quantify their effect on inverse GIA estimation. We contrast

estimates derived by combining linear trends of input data to

estimates derived by combining monthly-sampled time series

of input data.

Section 2 derives and describes in detail the combination

approach, bias corrections using the low-precipitation zone

(LPZ) of East Antarctica, estimation of the mass balance,

and filtering. Afterwards, we explain how the errors for the

firn process models are characterized and how the sensitivity

analysis is performed. Furthermore, the approach is adapted

to extract a more nuanced and self-consistent combination of

input-data time series. Section 3 describes the products em-

ployed, processing steps, and additional assumptions. Sec-

tion 4 presents results of derived uncertainties of the firn

process models, the sensitivity analysis, and the time-series-

based combination. Finally, the results are discussed and the

most important findings are summarized in the conclusions.

2 Methods

2.1 Combination approach

Wahr et al. (2000) were the first to suggest the combination

of satellite geodetic methods – gravimetry and altimetry –

to estimate GIA. We use the analytical approach from Wahr

et al. (1998) to explain gravity changes by mass changes pro-
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jected into a spherical layer (with radius a) – termed area

density changes (ADCs) or surface density changes. Note

that a change of mass is with respect to a reference mass

distribution. Based on GRACE solutions given in the spher-

ical harmonic domain, the conversion of changes in Stokes

coefficients with degree n and order m (1cnm) into spherical

harmonic coefficients of ADC (1κnm) is

1κnm =
2n + 1

1 + k′
n

ME

4πa2
1cnm, (1)

where ME is the total mass of the Earth, a the equatorial ra-

dius of the reference ellipsoid, and k′
n the second-load Love

number to account for the deformation potential of the solid

Earth induced by the mass redistribution. The linear ADC

κ̇nm is synthesized into spatial domain ṁgrav, which is the

superposition of the ADC through GIA, and processes in the

ice (ID) and firn layer:

ṁgrav = ṁGIA + ṁID + ṁfirn. (2)

While GIA is not a process of ADC, ṁGIA is defined as

the apparent ADC that would induce a gravity field ef-

fect equal to the GIA-induced gravity field effect. We re-

fer to ṁGIA (as well as spatial integrals of ṁGIA) as GIA-

related mass change. ID summarizes all processes which are

weighted with ice density, e.g. ice-dynamic flow or basal

melt. We summarize the ice-induced, or cryospheric, area

density trend as ṁice = ṁID + ṁfirn.

Analogously, the overall linear SEC derived from altime-

try
˙̃
halt is the sum of the linear SEC through ID, firn, GIA,

and elastic BEC:

˙̃
halt = ḣGIA + ḣelastic + ḣID + ḣfirn. (3)

Note that GIA refers to the viscoelastic deformation of the

solid Earth. The elastic BEC (ḣelastic) triggered by present-

day ice mass changes needs to be subtracted from the overall

SEC observed by altimetry
˙̃
halt prior to the combination. We

define ḣalt =
˙̃
halt − ḣelastic. Doing this, the SEC signals in ḣalt

are consistent with ADC signals in ṁgrav.

The process-related elevation and area density changes are

linked with effective density assumptions (ρGIA, ρID):

ṁGIA = ρGIA · ḣGIA, (4)

ṁID = ρID · ḣID. (5)

Rearranging Eq. (3) to

ḣID = ḣalt − ḣfirn − ḣGIA (6)

and substituting it together with Eqs. (4) and (5) into Eq. (2)

leads to

ṁgrav = ρGIAḣGIA + ρID(ḣalt − ḣfirn − ḣGIA) + ṁfirn, (7)

which can be solved for

ḣGIA =
ṁgrav − ρID(ḣalt − ḣfirn) − ṁfirn

ρGIA − ρID
. (8)

In Gunter et al. (2014), Eq. (8) is modified with a crite-

rion to include assumptions about the difference ḣalt − ḣfirn

using a priori uncertainties. ρID is replaced by ρα to permit

the following case distinction:

ḣGIA =
ṁgrav − ρα(ḣalt − ḣfirn) − ṁfirn

ρGIA − ρα

, (9)

where

ρα =























ρID, (I) if ḣalt − ḣfirn < 0

and |ḣalt − ḣfirn| > 2σh

ρfirn, (II) if ḣalt − ḣfirn > 0

and |ḣalt − ḣfirn| > 2σh

0, (III) otherwise

(10)

with

σh =
√

σ 2
ḣalt

+ σ 2
ḣfirn

. (11)

The case distinction accounts for uncertainties in altimetry

and in the firn densification model (FDM) as well as a priori

knowledge on ice sheet processes. The GIA-induced BEC

is in the millimetre per year range, whereas ḣfirn and ḣID

can be in the centimetre to metre per year range. If altime-

try and FDM are perfect, ḣalt − ḣfirn would leave essentially

ḣID (apart from a very small ḣGIA). The following case dis-

tinctions are made.

– Case I. If differences between ḣalt and ḣfirn are signif-

icantly negative, an ice-dynamic-induced SEC is as-

sumed (glacial thinning). Gunter et al. (2014) argue that

only one region in Antarctica is known to show glacial

thickening: the area of the Kamb Ice Stream (Retzlaff

and Bentley, 1993; Wingham et al., 2006). This region

is therefore treated separately by a mask which sets ρα

to ρID. The mask is generated from positive SEC from

altimetry in this area.

– Case II. If differences between ḣalt and ḣfirn are signif-

icantly positive, it is assumed that the FDM underesti-

mates SEC due to firn processes and the remaining part

therefore must not be weighted with ice density but with

firn density.

– Case III. If differences between ḣalt and ḣfirn are not sig-

nificant (with an absolute value smaller than 2σh), those

differences are ignored by setting ρα = 0, which means

ṁGIA = ṁgrav −ṁfirn. That is, no mass change in the ice

layer is considered and a mass trend of the ice sheet only

arises by the trend of cumulated surface mass balance

anomalies.
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Making this case distinction for ρα has the advantage of solv-

ing for GIA without a predefined spatial mask to distinguish

between firn and ice processes (e.g. density mask in Riva

et al., 2009) except for the Kamb Ice Stream. An underes-

timated σh leads to differences between ḣalt and ḣfirn being

included in the mass balance, although they are within their

true uncertainty bounds and vice versa if σh is overestimated.

2.2 Bias corrections and estimation of the mass balance

The following steps are performed in sequence.

– Step 1. Estimation of biased ḣGIA using the data combi-

nation approach (Eq. 9).

– Step 2. Removing the bias from ḣGIA, leading to the de-

biased
˙̃
hGIA.

– Step 3. Removing the bias from ṁgrav, leading to the

debiased ˙̃mgrav.

– Step 4. Estimation of the debiased ice mass trend from

debiased GIA-related mass trend (Step 2) and debiased

total-mass trend (Step 3).

The bias corrections are necessary to consider offsets intro-

duced by systematic errors in degree-1 and C20. The estima-

tion of the bias is done using the same strategy as Gunter

et al. (2014). They argue that the effect of such offsets is

significantly larger than potential mass signals in a low-

precipitation zone (LPZ) of the East Antarctic Ice Sheet.

In Step 2, the LPZ-based GIA bias correction is applied. It

is assumed that the GIA-induced BEC should be negligibly

small in this area. The GIA estimate from Step 1, averaged

over the LPZ, ḣGIA,LPZ, is interpreted as a bias due to the

input data sets. It is subtracted from ḣGIA. The debiased GIA-

induced BEC is

˙̃
hGIA = ḣGIA − ḣGIA,LPZ. (12)

From this we derive the debiased GIA-related mass trend

˙̃mGIA =
˙̃
hGIA · ρGIA. (13)

This means that input-data-set biases are jointly removed.

Removing a small GIA-induced BEC introduces an error in

the final result. GIA models predict approximately −3 to

+1 mm a−1 in the area of the LPZ (Whitehouse et al., 2019).

Gunter et al. (2014) argue that the error introduced by the

LPZ bias correction is smaller than other bias contributors.

In Step 3, the LPZ-based GRACE bias correction is ap-

plied. ADCs from gravimetry are calibrated to the LPZ by

removing the mean ADC in this area, ṁgrav,LPZ. The debi-

ased gravimetric ADC is

˙̃mgrav = ṁgrav − ṁgrav,LPZ. (14)

In Step 4, the debiased ice mass trend is calculated as

˙̃mice = ˙̃mgrav − ˙̃mGIA. (15)

Note that the gravimetric bias correction is not applied to

ṁgrav used in Step 1, the initial combination (Eq. 9).

2.3 Filtering

For the necessary noise suppression we use GRACE data

with a de-striping filter applied (FDS(ṁgrav)) in addition to

the filtering implied by the spherical harmonic truncation.

Ideally, the data and models involved in the combination

should have consistent spatial resolution; that is, they should

be filtered consistently. This is not strictly possible for the

quotient (ṁgrav)/(ρGIA−ρα) in Eq. (9) because no unfiltered

ṁgrav is available that could be divided by (ρGIA−ρα) before

filtering. Pragmatically, components with a similar spatial

resolution are combined before they are filtered with a Gaus-

sian filter F . Hence, we obtain a filtered GIA-induced BEC:

F̃(ḣGIA) =
F(FDS(ṁgrav))

F(ρGIA − ρα)
−F

(

ρα(ḣalt − ḣfirn) − ṁfirn

ρGIA − ρα

)

. (16)

For integrating mass trends in space, the signal redistribution

(leakage) is taken into account by a buffer zone equal to the

half-response width of the Gaussian filter appended to the

grounding line of the ice sheet (Sect. 4.2). We do not cor-

rect for leakage through ocean mass signal separately as it

amounts to only 4.5 Gt a−1 (Gunter et al., 2014). This ocean

mass leakage is the same in every experiment, because we do

not test the sensitivity to filters.

2.4 Uncertainty characterization of firn process models

In Eqs. (9) and (10), assumptions on uncertainties of the

FDM and altimetry are crucial. Gunter et al. (2014) take

σḣalt
from the formal uncertainty of the least-squares esti-

mation. σḣfirn
can be derived in the same way from the es-

timated trend of FDM SEC for the observation period. Note

that both uncertainties are derived from stochastic informa-

tion of the least-squares estimation rather than from an uncer-

tainty characterization of the measurements and the model.

Gunter et al. (2014) have also performed an uncertainty anal-

ysis of the combination result. For this purpose, they define

the SMB-related uncertainty as 10 % of the estimated trend

value, referring to Rignot et al. (2008). Note that the uncer-

tainty assessment by Rignot et al. (2008), which amounts to

10 %–30 % of the signal, is applied to a different physical

quantity than ḣfirn: namely to the snow accumulation in a

drainage basin.

Because there is no comprehensive regional climate model

ensemble, we quantify the error of firn process models by

statistics on differences between two models. We use differ-

ences of trends of cumulated surface mass balance anomalies

(cSMBAs) and of firn thickness trends. We assume those dif-

ferences are due to modelling errors. This characterization

comprises only a part of the full uncertainty, because it is

based on two alternative climate model products.
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2.5 Time-series-based combination

Previous studies combining gravimetry and altimetry are

based on linear seasonal deterministic models over certain

periods (Riva et al., 2009; Gunter et al., 2014; Martín-

Español et al., 2016a; Sasgen et al., 2017; Engels et al.,

2018). However, signals in the firn and ice layer over the

Antarctic Ice Sheet (AIS) show inter-annual changes (Hor-

wath et al., 2012; Ligtenberg et al., 2012; Mémin et al.,

2015). In theory, combining observations on a time series

level will lead to a linear GIA signal. For T months the vector

mgrav = {mgrav(t = 1), . . .,mgrav(t = T )} (17)

contains the differences in mass at month t = 1, . . .,T with

respect to a reference mass distribution. The combination of

all time series is

hGIA =
mgrav − ρID(halt − hfirn) − mfirn

ρGIA − ρID
. (18)

This requires that all data are available as monthly gridded

products. To simplify, we assume that effective densities do

not change over time. To be consistent with the combination

of trends, ρID is replaced with ρα from the trend-based ap-

proach.

The data and models of every month are filtered in the

same way as for the trend-based approach to make the res-

olution consistent (Sect. 2.3). Afterwards they are combined

according to Eq. (18), which results in a GIA time series for

each grid cell.

By assumption the GIA signal in the resulting time se-

ries hGIA is linear over decades of satellite observations (e.g.

Huybrechts and Le Meur, 1999). A fitted trend to hGIA is

ḣGIA. We are aware that for regions with a low-viscosity as-

thenosphere, e.g. Pine Island Bay, the viscoelastic deforma-

tion associated with GIA may be non-linear even for decadal

periods (Barletta et al., 2018). In this case, the assumption of

a linear GIA-induced BEC introduces an error.

2.6 Sensitivity analysis

The sensitivity of inverse GIA estimates to different data,

models, and assumptions is quantified. Starting from a refer-

ence experiment, certain parameters are changed. Every ex-

periment is performed with and without the two LPZ-based

bias corrections to demonstrate their effect. It is examined

how different altimetry data (Sect. 3.1), degree-1 and C20

products (Sect. 3.2), and the empirically determined errors

of the firn process models (Sect. 4.1) affect the GIA solution.

Analogous to Riva et al. (2009) and Gunter et al. (2014), a

Gaussian filter (half-response width = 400 km) is applied to

all data sets. For the integration of mass trends over the AIS,

the West Antarctic Ice Sheet (WAIS), and the East Antarctic

Ice Sheet (EAIS), we use a buffer zone of 400 km grounding-

line distance to mitigate leakage. The Antarctic Peninsula

(AP) is not considered separately here.

For each inverse GIA solution, the integrated mass change

is calculated. In addition, a root-mean-square (rms) differ-

ence with respect to the reference experiment is determined,

hereinafter referred to as the rms difference from reference

experiment (RMSRE),

RMSRE =

√

√

√

√

1

N

N
∑

i=1

(

ḣGIA,comp,i − ḣGIA,ref,i

)2
. (19)

Here, N is the number of grid cells of a Cartesian grid in the

polar stereographic projection of the AIS area (EPSG: 3031)

including the buffer zone. ḣGIA,comp refers to the GIA

solution which is compared to the reference experiment

(ḣGIA,ref). The RMSRE values are sensitive to regional differ-

ences, which may be hidden in the comparison of integrated

mass trends.

The sensitivity to the choice of firn process models is in-

vestigated as follows: based on the comparison of two firn

process models, empirical samples of error patterns are gen-

erated. They are added to ḣfirn and ṁfirn and propagated to

the empirical GIA estimates. Additionally, all identified trend

differences of cSMBAs are added to ḣfirn and ṁfirn.

Furthermore, the dependency on differing time periods

is investigated. Under the assumption that GIA is linear in

time, the used time interval should have negligible influ-

ence. While the time interval for the reference experiment

is March 2003–October 2009 (according to Gunter et al.,

2014), alternative periods are the main GRACE observation

period (April 2002–August 2016) and the overlap period be-

tween GRACE and CryoSat-2 (July 2010–August 2016).

3 Data and models

This section specifies the data sets and processing steps used

in the sensitivity experiments which are summarized in Ta-

ble 1. Furthermore, models and assumptions are explained.

Reference system parameters are chosen according to the

IERS Conventions (Petit and Luzum, 2010).

3.1 Altimetry

The SECs from Schröder et al. (2019a) are based on a

repeat-altimetry analysis in a multi-mission altimetry (MM

altimetry) framework. Data from the Seasat, Geosat, ERS-1,

ERS-2, Envisat, ICESat, and CryoSat-2 missions are com-

bined, resulting in a monthly sampled time series on a 10 km

grid. The reader is referred to Schröder et al. (2019a) for

details on processing and background information. In order

to combine the altimetry time series with GRACE, we use

the monthly results from April 2002 at the earliest to Au-

gust 2016 at the latest. This period involves observations of

ERS-2, Envisat, ICESat, and CryoSat-2 missions (Fig. 1a).

The altimetry missions have a different spatial and temporal

sampling, e.g. ICESat’s campaign-style temporal sampling.
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Figure 1. (a) Surface elevation change (SEC) from the multi-mission altimetry product (Schröder et al., 2019a), (b) GRACE-derived area

density changes (ADC), and (c) FDM-derived SEC (time period: April 2002–August 2016). A Gaussian filter was applied to the GRACE

result (half-response 250 km). Low-precipitation zone (LPZ) (green, c).

Further, the data quality varies over mission lifetime. For

this reason every month of the combined time series differs

in spatial coverage. We obtain a linear rate over the respec-

tive intervals by adjusting an offset and a linear trend to the

MM time series for each cell of the 10 km grid. For the ref-

erence experiment no annual periodic signal is co-estimated

in order to be consistent with Gunter et al. (2014). We apply

weights according to the uncertainty estimates of each epoch

of the MM time series. We took the criterion that the trend

would only be estimated for a grid cell if more than 5 months

with observations are available and at least 80 % of the se-

lected total time span is covered. This criterion should avoid

outlier trends through insufficient sampling. The uncertainty

σḣalt
used in Eq. (11) is the a posteriori standard deviation

derived from the least-squares adjustment of the MM time

series.

To investigate how the choice of altimetry products affects

the GIA estimation, single-mission time series are calcu-

lated for Envisat and ICESat. They consistently use the same

processing steps as the MM altimetry from Schröder et al.

(2019a), with the exception that the final step of weighted

spatio-temporal smoothing is applied to single-mission data

rather than multi-mission data. In total three different altime-

try time series are used for testing the gravimetry–altimetry

combination approach. To assess the sensitivity of results to

the co-estimation of seasonal signals, an additional version

of the MM altimetry trends is calculated by co-estimating

the annual sinusoidal signal (MM seasonal in Table 1). This

is consistent with the treatment of GRACE and the firn pro-

cess models.

Part of the altimetry-derived SEC is caused by the elastic

BEC of the solid Earth due to present-day ice mass change

(ḣelastic), which needs to be subtracted from the altimetry ob-

servations (
˙̃
halt) prior to the combination (Eq. 9). We esti-

mate ḣelastic to be −1.5 % of
˙̃
halt (Riva et al., 2009). Hence,

the elastic-corrected altimetry-derived SEC is

ḣalt =
˙̃
halt − ḣelastic ≈ 1.015 ·

˙̃
halt. (20)

The approximative nature of this elastic correction leaves

an error, but its influence on the GIA estimate is negligible

(Gunter et al., 2014).

3.2 Gravimetry

GRACE-derived monthly mass variations are calculated

from the ITSG-Grace2016 monthly gravity field solutions up

to a degree and order of 90 (Mayer-Gürr et al., 2016) us-

ing Eq. (1). Monthly solutions from other processing cen-

tres are not considered because ITSG-Grace2016 is identi-

fied through internal comparison as the gravity field solu-

tion series with a high signal-to-noise ratio. This is supported

by Jean et al. (2018), who found that the precursor ITSG-

Grace2014 show a lower noise level compared to solutions

from other processing centres. The influence of the differ-

ent GRACE monthly solutions on the inverse GIA result was

shown and discussed in Gunter et al. (2014). We do not use

solutions after August 2016. Those solutions show a much

higher noise level due to accelerometer issues.

GRACE monthly solutions need to be complemented by

the degree-1 term of the spherical harmonic coefficients, as

this is not observed by GRACE. Three different products to

replace the degree-1 coefficients are evaluated. (1) A prod-

uct is determined following Swenson et al. (2008) using

ITSG-Grace2016 monthly solutions (d1_ITSG). (2) A satel-

lite laser ranging (SLR) product by Cheng et al. (2013b)

(d1_SLR) and (3) degree-1 coefficients by Rietbroek et al.

(2016) are used (d1_ITG).

Furthermore, the influence of the flattening term C20 is in-

vestigated. Because C20 is poorly determined by GRACE

(Cheng and Ries, 2017), external products are compared.

(1) SLR-based time series are used from the Center for Space

Research at the University of Texas, USA (c20_SLR_CSR;
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Cheng et al., 2013a). (2) SLR-based time series from the Ger-

man Research Centre for Geosciences, Potsdam, Germany

are used (c20_SLR_GFZ; König et al., 2019). (3) A time se-

ries from the Delft University of Technology, Delft, Nether-

lands (c20_TU_Delft), which is derived from GRACE obser-

vations themselves and an ocean model is used (Sun et al.,

2015).

A critical point is filtering because the monthly solutions

are noisy and have a correlated error pattern (Horwath and

Dietrich, 2009). A de-striping filter is applied in the spherical

harmonic domain (Swenson and Wahr, 2006).

A linear seasonal model is adjusted to fit the filtered Stokes

coefficients (offset, linear, annual periodic, and 161 d peri-

odic). The trend is synthesized from the spherical harmonic

into the spatial domain on the altimetry grid with 50 km res-

olution. In this way for each grid cell a linear area density

trend in kilogrammes per square metre per year is determined

(Fig. 1b).

3.3 Firn process models

Information on variations in the firn layer is required in the

combination approach (Eq. 10). SMB is the sum of pre-

cipitation, snow drift, sublimation, and meltwater runoff.

The SMB components are numerically simulated with the

RACMO2.3p2 model, which contains a multilayer snow

model developed by the Royal Netherlands Meteorolog-

ical Institute (KNMI) and the Institute for Marine and

Atmospheric Research, Utrecht, Netherlands (IMAU) (van

Wessem et al., 2018). These results are compared to the

MAR model of the Laboratory of Climatology, Liège, Bel-

gium (Agosta et al., 2019). The regional climate models are

forced at their lateral boundaries with the ERA-40 and ERA-

Interim reanalyses. Mass fluxes (snowfall, snow drift, subli-

mation, erosion–deposition, and surface melt) as well as sur-

face temperature are then used to force an offline firn den-

sification model that includes firn compaction, vertical melt-

water transport and refreezing, and thermodynamics of the

firn layer.

The RACMO2 and MAR SMB products are appropri-

ate for comparison as both are similar in terms of tem-

poral (monthly) and spatial resolution (RACMO2: 27 km;

MAR: 35 km). Moreover, both variants considered here use

the same forcing. There is no independent knowledge (in a

spatial resolution similar to that of SMB models) about the

ice flow contribution to ice mass balance and hence about the

degree of balance or imbalance between SMB and ice flow.

Therefore, the modelled SMB is only used to derive SMB-

induced mass variations with respect to any background sig-

nal of mass change. The unknown background signal of mass

change is the possible imbalance between the mean SMB

over a multi-year reference period and the mean effect of ice

flow over the same reference period. The considered SMB-

induced mass variations hence arise from the temporal cumu-

lation of SMB anomalies with respect to the mean SMB over

the reference period. Here, we define the reference period to

be the entire model period for RACMO2.3p2 and MAR (Jan-

uary 1979–December 2016). For the satellite observation pe-

riods (e.g. April 2002–August 2016) the surface mass trend

(ṁfirn), or literally the trend of cumulated surface mass bal-

ance anomalies (cSMBAs), is estimated (co-estimated with

bias and annual periodic signal).

The used firn model IMAU FDM (Ligtenberg et al., 2011)

is forced at the upper boundary by SMB components from

RACMO2. The firn layer is initialized by forcing the FDM

repeatedly with the 1979–2016 surface mass fluxes and tem-

perature, until an equilibrium firn layer is established. This

implies that present-day conditions represent a state of equi-

librium and that there is no net firn thickness change over the

model period January 1979–December 2016. One result of

the actual model run is the firn-elevation-change time series.

A linear seasonal model (bias, trend, annual periodic sig-

nal) of firn-process-induced SEC is adjusted to fit the FDM

time series for the observation periods under investigation

(Fig. 1c).

The LPZ (Fig. 1c) is defined based on the ECMWF ERA-

Interim reanalysis precipitation product. We use 20 mm a−1

annual precipitation as a threshold for low precipitation (Riva

et al., 2009), rather than 21.9 mm a−1 used by Gunter et al.

(2014).

The trend differences between RACMO2.3p2 and MAR

SMB products are used for uncertainty characterization of

firn process models. In order to gain statistical information on

possible trend differences over a 7-year interval, we calculate

trend differences over 32 intervals of 7 years (January 1979–

December 1965; January 1980–December 1966;...; Jan-

uary 2010–December 2016) covered by RACMO2.3p2 and

MAR. The 7-year length is the approximate length of the ob-

servation period of our reference experiment (March 2003–

October 2009) defined by the ICESat observation period. A

FDM forced with MAR SMB does not exist. However, the

RACMO2.3p2 SMB and the derived FDM are directly linked

to each other. For this reason we assume that derived con-

clusions on errors of SMB are transferable to the FDM as

a lower bound. Pseudo FDM trend differences are estimated

out of the cSMBA trends by

1ḣfirn,j =
1ṁfirn,j

ρMAR
. (21)

1ṁfirn,j is the j th trend difference between cSMBA from

RACMO2 and cSMBA from MAR. ρMAR is calculated from

MAR density fields by taking their average over the near-

surface layers (0–1 m) and over the whole model period. This

does not consider the evolution of the firn layer, as an inde-

pendent FDM driven by MAR outputs would consider it. Fur-

thermore, uncertainties associated with equilibrium assump-

tions are not considered.

Prior to the combination, cSMBA and FDM trends are lin-

early interpolated to the polar stereographic grid. The high-

resolution products (altimetry and firn process models) are
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modified as follows. NaN-Grid cells on the grounded part of

the ice sheet (missing data) are treated as case III in Eq. (10).

3.4 Density assumptions

The ratio between volume changes and area density changes

is defined by the effective densities ρGIA, ρfirn, and ρID for

GIA-related, firn-related, and ice-related processes, respec-

tively. We use a ρID of 917 kg m−3. The firn density is vari-

able in space and time. The location-dependent estimation

for ρfirn is calculated using the empirical Eq. (2) in Ligten-

berg et al. (2011).

The density mask for ρGIA is generated as follows: The

ratio between the GIA-induced BEC and the GIA-induced

ADC is about 3700 kg m−3 (Wahr et al., 2000). We use

4000 kg m−3 over the Antarctic continent and 3400 kg m−3

under the ice shelves and the ocean with a smooth transition

(according to Riva et al., 2009; Gunter et al., 2014). These

numbers account for the redistribution of ocean mass through

GIA and are derived from forward-model results. This den-

sity is not a density in a material-science sense. It is an ef-

fective value which sets GIA-induced BEC and the ADC in

relation. The term rock used in the literature might be mis-

leading.

4 Results

4.1 SMB uncertainty

There are considerable differences between the time series

of cSMBA from the RACMO2 and MAR SMB products for

each cell. Figure 2 shows the integrated values for the AIS.

Note that a ∼ 400 Gt cSMBA difference in 1987 (8 years af-

ter model start) represents a 50 Gt a−1 difference in SMB,

which is ∼ 2 % of the total grounded ice sheet SMB. The in-

tegrated SMB from RACMO2.3p2 is 2229 Gt a−1 with an in-

terannual variability of 109 Gt a−1 (van Wessem et al., 2018).

We use the 32 trend differences from the moving 7-year in-

tervals to quantify discrepancies of derived cSMBA trends

between both models. Figure 3 shows (1) the rms of all

trend differences and compares it with (2) the formal un-

certainty we derive from the least-squares estimation and

with (3) the 10 % uncertainty assumption (Sect. 2.4). The

last two are derived from the estimated cSMBA trends of

the RACMO2.3p2 SMB product over the ICESat observation

period (March 2003–October 2009). The formal uncertainty

and the 10 % assumption are similar in spatial pattern and

magnitude. The rms of trend differences is similar in spatial

pattern, too, but approximately 3 times larger in magnitude.

To extract the dominant error patterns, a spectral decom-

position of the 32 7-year trend differences (see Sect. 3.3) is

carried out using principal-component analysis (using sin-

gular value decomposition). Hence, the dominant empiri-

cal orthogonal functions (EOFs) and accompanying principal

components are computed. From this analysis we obtain the

dominant error patterns that are uncorrelated to each other

and capture characteristic features of uncertainty. The first

three EOFs of the trend differences explain ∼ 68 % of the to-

tal variance (Fig. 4a–c). The normalized EOF is scaled with

the square root of the particular eigenvalue. Figure 4d shows

the principle components indicating the scaling of the corre-

sponding EOF. For instance, EOF-1 is dominated by varia-

tions in the WAIS. EOF-2 shows more variations on smaller

scales. Without an attempt to further interpret the patterns

of trend differences between the two models, the explored

trend differences are used here to investigate the sensitivity

of the inverse GIA estimates to these differences characteriz-

ing firn process uncertainty. For this purpose, (1) we add the

EOFs to the firn process trends (ṁfirn, ḣfirn), which we use

as input for the data combination. Because a FDM forced

with MAR products does not exist, we transfer the cSMBA-

derived EOFs to FDM EOFs by calculating pseudo EOFs us-

ing MAR density fields (see Sect. 3.3, Eq. 21). The pseudo

EOFs account for a lower bound of uncertainties of the firn

thickness trends. True firn thickness trend differences are

presumably higher as they would contain the potential mis-

modelling of firn densification. From the added EOFs we get

three GIA estimates to be compared with our reference solu-

tion. (2) Moreover, we add each trend difference separately

to the cSMBA trend and each pseudo trend difference sepa-

rately to the firn thickness trend. The pseudo firn thickness

trend differences are likewise calculated using MAR density.

This results in another 32 GIA estimates.

4.2 Sensitivity analysis

Inverse GIA estimates are calculated using different

choices of (1) degree-1 solutions, (2) C20 substitutions,

(3) altimetry products, (4) empirical orthogonal functions

(EOFs) of firn process errors, and (5) time intervals (Ta-

ble 1). The reference experiment refers to the time pe-

riod March 2003–October 2009 and uses the MM-altimetry-

derived SEC, ITSG-Grace2016 monthly solution (degree-1:

d1_ITSG, C20: SLR_CSR) and the firn process trends from

RACMO2.3p2 over this period. The rms of the reference

GIA-induced BEC estimate is 2.2 mm a−1. The estimated ρα

(Eq. 10) is shown in Fig. 5a. Apart from the gridded GIA-

induced BEC (Figs. 5b, S5 in the Supplement), we com-

pare the integrated trends ˙̃mgrav, ˙̃mGIA, and ˙̃mice correspond-

ing to total-mass change (from GRACE), GIA-related mass

change, and ice mass change, respectively. The results are

summarized in Table 2. Furthermore, the RMSRE (Eq. 19)

quantifies the discrepancy to the reference experiment GIA

estimate. Figure 6 shows the mass balance estimates for

March 2003–October 2009.

Biased total-mass changes for different C20 and degree-1

products vary between −43 Gt a−1 (c20_TU_Delft) and

+25 Gt a−1 (d1_SLR), a range of 68 Gt a−1. Debiased total-

mass change (Eq. 14) only differ by 6 Gt a−1 for the same

time period (Table 2). Figure 6 illustrates biased and debi-
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Table 1. Overview of all performed experiments of the sensitivity analysis (Sects. 2.6 and 4.2, Table 2). All experiments use ITSG-Grace2016

monthly solutions (Mayer-Gürr et al., 2016) over the March 2003–October 2009 time period, except for the last two experiments which use

the quoted time period.

Experiment Degree-1 repl. C20 repl. Used altimetry Used firn process

Sect. 3.2 Sect. 3.2 Sect. 3.1 model Sect. 3.3

Reference d1_ITSG c20_SLR_CSR Multi-mission (incl. ERS-2, RACMO2.3p2

Envisat, ICESat)

d1_SLR d1_SLR c20_SLR_CSR Multi-mission RACMO2.3p2

d1_ITG d1_ITG c20_SLR_CSR Multi-mission RACMO2.3p2

c20_SLR_GFZ d1_ITSG c20_SLR_GFZ Multi-mission RACMO2.3p2

c20_TU_Delft d1_ITSG c20_TU_Delft Multi-mission RACMO2.3p2

ICESat only d1_ITSG c20_SLR_CSR ICESat RACMO2.3p2

Envisat only d1_ITSG c20_SLR_CSR Envisat RACMO2.3p2

MM seasonal d1_ITSG c20_SLR_CSR Multi-mission, co-estimation RACMO2.3p2

of seasonal components

RACMO2+EOFx d1_ITSG c20_SLR_CSR Multi-mission RACMO2.3p2 with empirical orthogonal

functions (EOFs) of firn process

uncertainty (Sect. 4.1)

Jul 2010–Aug 2016 d1_ITSG c20_SLR_CSR Multi-mission (incl. RACMO2.3p2

Envisat, CryoSat-2)

Apr 2002–Aug 2016 d1_ITSG c20_SLR_CSR Multi-mission (incl. ERS-2, RACMO2.3p2

Envisat, ICESat, CryoSat-2)

Figure 2. Cumulated surface mass balance anomalies (cSMBAs) of the regional climate models RACMO2.3p2 (blue; van Wessem et al.,

2018) and MAR (red; Agosta et al., 2019), integrated over the grounded AIS.

ased total-mass changes of the entire AIS. Note that the bi-

ased total-mass change of 0 Gt a−1 in Table 2 arises coinci-

dentally.

The biased GIA-related mass change of the AIS with MM

altimetry (reference experiment) is very close to the Envisat-

only estimate (174 vs. 172 Gt a−1). The biased ICESat-

only result differs from the reference experiment by about

30 Gt a−1 (142 vs. 172 Gt a−1). Debiased estimates that use

Envisat-only or ICESat-only results differ from the estimate

of the reference experiment by 10 and 15 Gt a−1, respec-

tively. The differences due to the co-estimation of seasonal

components are marginal (∼ 2 Gt a−1).

Applying the approach to different time intervals

April 2002–August 2016 and July 2010–August 2016 leads

to debiased total-mass changes of −121 and −181 Gt a−1,

respectively (biased estimates: −48 and −70 Gt a−1).

The addition of the EOFs (Sect. 4.1) propagates to dif-

ferences in the GIA solution of up to 7 Gt a−1 for the de-

biased GIA-related mass change and up to 18 Gt a−1 for

the biased GIA-related mass change. Additionally, Fig. S6

shows the standard deviation of the 32 GIA estimates re-

sulting from propagating the 32 trend differences between

RACMO2 and MAR.
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Table 2. Results from the sensitivity experiments. This table is structured like Table 2 in Gunter et al. (2014). Each line reports results from

one experiment, where line one reports the reference experiment. The time period is March 2003–October 2009 except where it is quoted by

experiment name. Column 1: experiment name, according to Table 1. Column 2: rms difference of the GIA-induced bedrock elevation change

(BEC) estimate (RMSRE) to the reference experiment. Columns 3 and 4: applied LPZ-based bias correction (see Sect. 2.2) for GIA-induced

BEC and GRACE area density change, respectively. Columns 5, 6, and 7: spatial integral of total-mass change (Eq. 14) over the Antarctic

Ice Sheet (AIS), the West Antarctic Ice Sheet (AIS), and the East Antarctic Ice Sheet (EAIS), including a 400 km buffer zone. Columns 8–10

and 11–13: same as columns 5–7, but for the GIA-related mass change (Eq. 13) and for the ice mass change (Eq. 15), respectively. Numbers

in brackets give results of experiments with no bias corrections.

Experiment RMSRE LPZ bias Total-mass change GIA-related mass change Ice mass change

GIA GRACE AIS WAIS EAIS AIS WAIS EAIS AIS WAIS EAIS

mm a−1 mm a−1 kg m−2 a−1 Gt a−1 Gt a−1 Gt a−1

Reference 0.0 1.6 1.9 −40 −78 39 44 21 24 −84 −99 15

(1.6) (0.0) (0.0) (0) (−68) (68) (172) (53) (119) (−173) (−121) (−51)

Degree-1

d1_SLR 0.1 2.0 3.2 −42 −79 38 43 20 23 −85 −99 15

(2.0) (0.0) (0.0) (25) (−62) (86) (199) (60) (139) (−174) (−122) (−53)

d1_ITG 0.1 1.8 2.5 −41 −80 39 43 19 24 −84 −99 15

(1.8) (0.0) (0.0) (12) (−66) (78) (185) (55) (130) (−173) (−121) (−52)

C20

c20_SLR_GFZ 0.0 1.4 1.2 −39 −78 39 46 21 25 −85 −99 15

(1.4) (0.0) (0.0) (−14) (−72) (57) (157) (49) (108) (−171) (−121) (−50)

c20_TU_Delft 0.1 1.0 −0.4 -36 −77 42 48 21 26 −83 −99 15

(1.1) (0.0) (0.0) (−43) (−79) (36) (127) (41) (85) (−170) (−121) (−49)

Altimetry

ICESat only 1.1 1.1 1.9 −40 −78 39 59 20 39 −99 −98 −1

(1.7) (0.0) (0.0) (0) (−68) (68) (142) (41) (101) (−142) (−109) (−34)

Envisat only 0.8 1.5 1.9 −40 −78 39 54 33 22 −94 −111 17

(1.8) (0.0) (0.0) (0) (−68) (68) (174) (63) (111) (−174) (−131) (−43)

MM seasonal 0.1 1.7 1.9 −40 −78 39 46 21 25 −86 −99 14

co-estimated (1.7) (0.0) (0.0) (0) (−68) (68) (177) (54) (122) (−177) (−122) (−55)

Firn process error

RACMO2+EOF1 0.5 1.8 1.9 −40 −78 39 48 29 18 −87 −108 20

(1.9) (0.0) (0.0) (0) (−68) (68) (190) (65) (124) (−190) (−133) (−57)

RACMO2+EOF2 0.3 1.7 1.9 −40 −78 39 51 31 20 −90 −109 19

(1.8) (0.0) (0.0) (0) (-68) (68) (181) (64) (117) (−181) (−132) (−50)

RACMO2+EOF3 0.3 1.6 1.9 −40 −78 39 41 20 21 −80 −98 18

(1.6) (0.0) (0.0) (0) (−68) (68) (169) (52) (117) (−169) (−120) (−49)

Time interval

Apr 2004–Aug 2016 1.1 1.8 3.5 −121 −160 39 18 −4 22 −140 −156 17

(1.7) (0.0) (0.0) (−48) (−141) (93) (158) (32) (126) (−205) (−172) (−33)

Jul 2010–Aug 2016 1.4 2.2 5.3 −181 −189 8 67 37 30 −248 −227 −21

(2.9) (0.0) (0.0) (−70) (−160) (90) (239) (81) (158) (−309) (−241) (−68)

Time-series-based combination

Jul 2010–Aug 2016 2.1 5.3 −181 −189 8 39 17 23 −220 −206 −14

(0.0) (0.0) (−70) (−160) (90) (207) (59) (148) (−277) (−219) (58)
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Figure 3. Three uncertainty assessments for the area density change (ADC) trend induced by cumulated surface mass balance anomalies

(cSMBA). (a) The rms of cSMBA trend differences between RACMO2.3p2 and MAR for all 7-year intervals (Sect. 3.3), (b) the formal

uncertainty from least-squares estimation for March 2003–October 2009, and (c) the 10 % uncertainty assumption.

Figure 4. (a)–(c) Area density change (ADC) of the first three EOFs of the trend differences between RACMO2.3p2 and MAR cumulated

surface mass balance anomalies (cSMBA). (d) The respective principal components (PCs).

4.3 Time-series-based combination

Our time-series-based combination takes advantage of the

fact that gravimetry, altimetry, SMB, and FDM are available

as monthly gridded products with sufficient spatial coverage

from July 2010 to August 2016, owing to the availability of

GRACE, CryoSat-2, and RACMO2.3p2. Riva et al. (2009)

and Gunter et al. (2014) only use ICESat altimetry data,

which does not allow a monthly sampling, as it has only 2–3

months of observation per year.

We used the values of ρα estimated from the trend-based

combination during the same time interval (Fig. S4I) to be

consistent for comparison. Figure 7 shows the GIA-related

mass change time series for the AIS (with 400 km buffer-

zone). For applying the LPZ-based GIA bias correction, the

linear GIA trend in the LPZ is estimated (offset and trend

only). Figure 8A shows the debiased GIA-induced BEC

based on the time series combination. Figure 8c shows its for-

mal uncertainty from least-squares estimation, which should

be considered as a lower bound. For comparison, Fig. 8B

shows the GIA-induced BEC following the trend-based com-

bination approach. The GIA-related mass changes from the

time-series-based and trend-based combinations are 39 and

67 Gt a−1 for the AIS, 17 and 37 Gt a−1 for the WAIS, and

23 and 30 Gt a−1 for the EAIS, respectively (Table 2). The ice

mass changes are −220 and −248 Gt a−1 for the AIS, −206

and −227 Gt a−1 for the WAIS, and −14 and −21 Gt a−1

for the EAIS, respectively. The integrated formal uncertainty

of the GIA-related mass change for the AIS with a 400 km

buffer zone is 25 Gt a−1 (Fig. 8c).

5 Discussion

Since the aim of this study is to examine the sensitivity of

the inverse approach to several data input and methodolog-

ical choices, differences from the reference experiment are

discussed on the basis of the selected processing parameters.
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Figure 5. (a) Estimated ρα density (Eq. 10) of the reference experi-

ment. (b) GIA-induced bedrock elevation change (BEC) of the ref-

erence experiment (rms: 2.2 mm a−1); 400 km buffer zone (green

line); geographical regions indicated: Antarctic Peninsula (AP),

Marie Byrd Land (MBL), Victoria Land (VL), and Queen Mary

Land (QML). For results from the other simulation experiments see

Figs. S4 and S5.

5.1 Assessment of the results

To test our data processing we performed a run with similar

input data as used in Gunter et al. (2014). We used GFZ RL05

GRACE solutions, ICESat Altimetry, the RACMO2.1 SMB

product, and the corresponding IMAU FDM. Table 3 shows

the comparison of both results. AIS total-mass, GIA-related

mass, and ice mass change estimates reproduce results by

Gunter et al. (2014) to within 6, 5, and 1 Gt a−1, respectively.

Those differences might be attributed to a slightly different

LPZ, altimetry processing, and the missing ocean mass leak-

age correction. Gunter et al. (2014) indicate that the uncer-

tainty for the GIA-related mass change and ice mass change

from various GRACE solutions and filtering variants is 40

and 44 Gt a−1, respectively.

In general our GIA estimate (Fig. 5b) shows a similar spa-

tial pattern compared to estimates by Gunter et al. (2014).

Nonetheless, notable differences appear in the AP, Marie

Byrd Land (MBL), Victoria Land (VL), and Queen Mary

Land (QML).

In the AP, altimetry-derived SECs are available for a part

of the area only (Fig. S1). As a result of missing altime-

try data, GRACE-derived area density changes are attributed

mainly to GIA-related mass change. The result is a neg-

ative GIA-induced BEC. Although negative GIA-induced

BECs are predicted by forward models for other regions (e.g.

Whitehouse et al., 2019), we consider it unphysical for this

particular region because we cannot find any further indica-

tions to substantiate it. Furthermore, the missing altimetry

leads to unconsidered elastic deformation. The negative sig-

nal in MBL is of a similar order of magnitude as in Riva

et al. (2009) and Sasgen et al. (2017). A negative GIA signal

in QML can be found in Martín-Español et al. (2016a). The

uncertainty of the GIA signal is sometimes so large that even

its sign cannot be determined.

For example, propagating trend differences between

RACMO2.3p2 and MAR cSMBA products to GIA estimates

(Fig. S6) leads to a high standard deviation of the GIA signal

in MBL and Victoria Land (VL). This issue cannot be re-

solved by considering the results of forward models because

they also show large variations and sign differences in the

predicted spatial pattern of the GIA-induced BEC (Martín-

Español et al., 2016b; Whitehouse et al., 2019).

5.2 Sensitivity to degree-1 and C20 products and the

effect of bias estimation

The use of several degree-1 and C20 products for the GRACE

processing leads to a differing total-mass trend for the AIS

(Barletta et al., 2013). The Gunter et al. (2014) Supple-

ment showed the influence of two different degree-1 prod-

ucts. Here we show how the bias corrections eliminate

those differences in total-mass and GIA-related mass change

(Sect. 4.2, Table 2). The RMSRE of all debiased GIA esti-

mates amounts to only 0.1 mm a−1 (Table 2). As discussed

in Sect. 2.2, any GIA signal over the LPZ would be re-

moved erroneously in the method of Gunter et al. (2014),

but the uncertainty in low-degree harmonics is assumed to

be much higher than a potential GIA signal within the LPZ.

The bias correction regionalizes the GIA estimate; i.e. de-

rived mass changes are always given relative to the mean

LPZ mass change. The bias correction defines how the total-

mass change is decomposed into mass signals and is made to

ensure that the combination approach produces robust mass

estimates. The large uncertainty introduced by degree-1 and

C20 is suppressed at the cost of global consistency.

Several objections can be made to the assumption that

over the LPZ the mean GIA-induced BEC, the mean total-

mass change, and hence the mean ice mass change are zero.

(1) The precipitation of the last 40 years is not directly linked

to GIA. (2) Areas are included which show quite relevant

GIA-induced BEC in forward models, e.g. close to the Ross

Ice Shelf (Martín-Español et al., 2016b). (3) The threshold

for low precipitation is arbitrary and cannot be based on

physical reasons in relation to GIA. For a given threshold,

the definition of the LPZ still depends on the precipitation

product used. (4) The LPZ is a large area in which even a

low GIA effect can cause several gigatonnes per year of mass

changes. (5) The LPZ bias correction does not allow for a

simple transfer of the approach to Greenland or to a global

framework. Nevertheless, the calibration over the LPZ is at

least one possibility to consider the presumably existing bi-

ases.

Shepherd et al. (2012, Fig. 3) show large differences in the

EAIS mass change estimates derived from satellite gravime-

try and altimetry. In principle, the question of quantifying

GIA in the EAIS arises. For this discussion, the reader is re-
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Figure 6. Mass change results for the entire AIS over the interval March 2003–October 2009 from experiments with different data products

and methodological choices. The LPZ-based bias correction was applied. Debiased total-mass change (solid black lines) is separated into

debiased GIA-related mass (red) and ice mass change (blue). Dotted lines show the total-mass changes that arise when no bias corrections

are applied. The case of no bias correction is further illustrated in Fig. S7.

Figure 7. The GIA-related mass time series of the AIS (with 400 km buffer zone) resulting from the combination of the monthly gridded

time series (July 2010–August 2016) with (blue) and without (red) LPZ-based bias correction of the determined GIA signal.

ferred to Whitehouse (2018) and Whitehouse et al. (2019),

for example.

5.3 Sensitivity to altimetry product

The choice of the altimetry product has a major effect on

the GIA estimate. Using ICESat-only and Envisat-only prod-

ucts leads to a RMSRE of 1.1 and 0.8 mm a−1, respectively

(Table 2). Both missions use different observation meth-

ods and have different spatial coverage. The radar altime-

try time series of Envisat is sampled monthly but only to

a latitude of 81.5◦ south. ICESat uses laser altimetry and

its polar gap is smaller (south of 86◦). These differences

affect the results across Kamb Ice Stream where a domi-

nant ice-dynamic signal is expected (Retzlaff and Bentley,

1993). ICESat’s campaign-style temporal sampling may af-

fect the trend estimation significantly. For the time period

March 2003–October 2009 the MM altimetry product uses

mainly observations from ICESat and Envisat. The trend de-

rived from the MM altimetry product shows a spatial dis-

continuity at the 81.5◦ latitude limit of Envisat coverage

(Figs. S1A, 5a). We attribute this to the sparse time sam-

pling of the ICESat mission. The spread of debiased GIA-

related mass change estimates of the AIS using various al-

timetry products is 15 Gt a−1 (Table 2). Furthermore, differ-

ences in the spatial GIA pattern are remarkable in MBL and

VL (Fig. S5f, g). The co-estimation of an annual seasonal
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Figure 8. For the July 2010–August 2016 time period. (a) Debiased GIA bedrock elevation change (BEC) by combining time series of all

data sets and models, (b) combination of trends, and (c) the formal uncertainty from least-squares estimation.

Table 3. The comparison of integrated mass changes calculated in this study and those published in Gunter et al. (2014). For this we used

GFZ RL05 GRACE solutions, ICESat-only altimetry, and RACMO2.1 products during March 2003–October 2009.

Solution Total-mass GIA-related Ice mass

change in Gt a−1 mass change in Gt a−1 change in Gt a−1

AIS WAIS EAIS AIS WAIS EAIS AIS WAIS EAIS

This study −51 −90 39 49 12 37 −100 −102 2

Gunter et al. (2014) −45 −86 41 54 18 36 −99 −104 5

signal in altimetry only leads to small changes in the overall

result (Sect. 4.2, RMSRE: 0.1 mm a−1) but is more consistent

with processing of other data and models.

5.4 Firn process assumptions and uncertainties

A crucial point in the combination approach is the case dis-

tinction for ρα (Eq. 9). As mentioned in Sect. 2.1, it accounts

for the uncertainty of altimetry and the FDM but does not ac-

count for the uncertainty of GRACE and the cSMBA trends.

The resulting map of ρα (Figs. 5a, S4) does not agree with

predefined, physically reasonable density maps. For exam-

ple, ρα is set to ice density in large areas of the EAIS where

dynamically induced ice mass losses are not plausible. The

values of ρα largely depend on used data sets (Fig. S4b, c).

An alternative to the ρα approach could be the formal ap-

proach shown in Eq. (8). Technically this would be correct.

However, it results in an ice density weight for the whole

AIS. We are aware that this is not correct either because pre-

sumable processes in the firn layer are not completely con-

sidered by input data and models. Another strategy may use

a predefined density mask similar to Riva et al. (2009), but

with a predefined significance criterion for all input data sets.

This would need further investigation.

The ρα approach (Eq. 10) to assign height changes to

either ice dynamics or firn processes may be a source of

bias. For example, if a negative SEC is firn-related, but er-

roneously attributed to the density of ice by Eq. (10), this

will lead to a higher ice mass decrease assigned to altime-

try. GRACE would sense the true smaller ice mass decrease.

Through combination of both, this discrepancy in ice mass

change would be assigned to a positive GIA signal. We sup-

pose this is qualitatively visible for ice-density-weighted re-

gions in the EAIS (Fig. 5a, b), e.g. the sector between a

longitude of 30 and 100◦ (Dome F). We presume this erro-

neously introduced positive GIA signal explains a part of the

GIA bias.

The propagation of the empirically determined error pat-

terns (EOFs 1–3) of the firn process models (Sect. 4.1) shows

small effects on the spatial pattern of inverse GIA estimates

(Fig. S5i–k). The RMSRE for the EOF 1, EOF 2, and EOF 3

experiments is 0.5, 0.3, and 0.3 mm a−1, respectively (Ta-

ble 2). Note that this deviation arises solely from differences

in similar climate models that use the same forcing data.

Uncertainties assumed in Gunter et al. (2014) for σḣfirn
are

very small compared to our results (Sect. 4.1, Fig. 3). In ad-

dition, any long-term trend in firn mass and firn thickness is

ignored by the equilibrium assumption made by the firn mod-

elling. SEC from Altimetry and the IMAU FDM show major

differences even with a different sign for some areas, such as

the AP and QML (Fig. 1a, c). These differences may indicate

that the equilibrium assumption of the FDM (Sect. 3.3) is not

fulfilled for those areas of the AIS, i.e. that net firn thickness

changes occur over the modelling period.
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5.5 Sensitivity to time interval

We also investigate a GIA solution derived from data

sets over almost the entire GRACE period (April 2002–

August 2016) and the approximately 6-year period

of CryoSat-2 overlapping with GRACE (July 2010–

August 2016). The variability of these estimates cannot be

attributed to a single processing choice. On the one hand,

different data sets are used (depending on assembled altime-

try missions). On the other hand, cSMBA trends and FDM-

derived SEC differ largely depending on the selected time

interval (Sect. 3.3, Fig. S3). Ice mass change estimates are

very high for the time interval July 2010–August 2016 (Ta-

ble 2). The quality of input data varies over time, e.g. due

to the changing availability of data. Therefore the GIA esti-

mates show large discrepancies among different time inter-

vals, which is incompatible with the assumption of a con-

stant linear rate of GIA-induced BEC. However, regions

(e.g. Pine Island Bay) are known where a non-linear defor-

mation through GIA is plausible during decadal periods (Bar-

letta et al., 2018).

5.6 The role of time-series-based combination

The combination of time series leads to similar results com-

pared to the trend-based approach for the same July 2010–

August 2016 interval (Sect. 4.3). We combined time series

only for this time period, where CryoSat-2 and GRACE data

are available with monthly sampling and sufficient spatial

coverage. A closer examination of the time series approach is

the aim of ongoing research. It needs to account for monthly

uncertainties in all input data sets. Similar to the trend-based

combination, challenges include (1) the consideration of un-

certainties of all data sets, (2) differences in spatio-temporal

sampling of both sensors, and (3) dealing with the resolu-

tion discrepancies including the consideration of signal leak-

age in GRACE observations. For further discussion of the

challenges associated with combining geodetic time series,

the reader is referred to King et al. (2006), for example. It

should be noted that state-space approaches in geodetic Earth

system research show promising results dealing with time-

variable geophysical signals in observational time series (Di-

dova et al., 2016; Frederikse et al., 2016).

6 Conclusions

We investigated a combination method to isolate the GIA sig-

nal from satellite gravimetry and altimetry data. Our analysis

is an extension of ideas presented by Gunter et al. (2014)

for the inverse estimation of GIA-induced BEC. We investi-

gated the sensitivity of this approach (Eq. 9) to the variation

in input parameters (Table 1): (1) degree-1 and C20 products

in satellite gravimetry, (2) different satellite altimetry prod-

ucts, (3) empirically determined errors of firn process models

(SMB and FDM), and (4) the use of different time epochs in-

cluding diverse data.

The comparison between the data sets used in this study

shows impressive similarities in terms of the spatial pattern

of determined trends (Fig. 1), given that the results of al-

timetry, gravimetry, and the FDM are independent. The sep-

aration of GIA and ice mass signals following Gunter et al.

(2014) depends strongly on the input parameters and pro-

cessing steps (Table 2).

Following Gunter et al. (2014), gravimetry data are treated

differently for (1) estimating the GIA signal and (2) deter-

mining the mass balance (Sect. 2.2). (1) A Gaussian filter

and a de-striping filter are applied to gravimetry observa-

tions. This predetermines the smoothness of the GIA solu-

tion. The GIA-induced BEC is calibrated over the LPZ. It

is converted to mass change by an effective density mask.

(2) GRACE-derived area density change is calibrated over

the LPZ, too. The mass balance is the difference between

the debiased total-mass change and the debiased GIA-related

mass change. The estimated biases and the Gaussian filtering

are an implementation of a priori information which region-

ally constrains the GIA solution and the ice mass balance.

We conclude that the LPZ-based bias correction facilitates

regional but robust mass change estimates (Figs. 6, S7, Ta-

bles 2, S1).

The definition of ρα according to Eq. (10) does not lead

to a readily decipherable density pattern that can account for

processes in the firn and ice layer (Figs. 5a, S4). Furthermore,

it is highly sensitive to input data sets.

A critical feature of the combination approach is the ob-

servational constraints that are imposed on the inversions by

the limitations of the actual geodetic satellite sensors. On the

one hand, altimetry enables the derivation of SEC with a high

resolution. However, observations are missing in some areas,

especially in areas of high topographic relief, such as val-

leys and mountainous coastal regions. In many of these re-

gions lateral ice mobility may have a more complex relation-

ship to ice heights that are extracted from altimetry as SEC.

On the other hand, GRACE records all mass changes, al-

beit with lower resolution and signal-to-noise ratio. Because

of the availability of the MM altimetry from Schröder et al.

(2019a), the used GRACE observations limit the time period

to 14 years from April 2002 to August 2016. This may be ex-

tended with GRACE-FO (and bridging solutions). We note

that Sasgen et al. (2019) have presented a new combination

approach in the spherical harmonic domain with the potential

to take advantage of both sensors.

For the integrated mass changes over the AIS area, results

of our sensitivity analysis are as follows. (1) The use of dif-

ferent degree-1 and C20 products in GRACE processing leads

to biased total-mass changes from −43 to 25 Gt a−1. The

LPZ-based bias correction almost completely eliminates the

effect on the GIA estimate (RMSRE ≤ 0.1 mm a−1) and on

derived mass change estimates. (2) Using different altimetry

products generates a spread of GIA-related mass change of
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15 Gt a−1 if the GIA bias correction is applied. The spread is

35 Gt a−1 without correcting for a bias. (3) The uncertainty

patterns empirically estimated from the firn process models

generate a spread of debiased and biased GIA-related mass

estimates of 7 and 21 Gt a−1, respectively. (4) The spread of

GIA-related mass change estimated between the time peri-

ods April 2002–August 2016 and July 2010–August 2016 is

49 (debiased) and 81 Gt a−1 (biased). (5) The debiased GIA-

related mass change derived by the time-series-based com-

bination is 28 Gt a−1 smaller than the corresponding trend-

based estimate.

Our results do not fully address the uncertainty introduced

by input parameters. Especially important may be the as-

sumption of an equilibrium state assumed in the firn model.

In future work, improvement is needed for the correction of

apparent biases and for the separation of processes in the firn

and the ice layer. This might improve the self-consistency of

GIA inverse estimates from satellite observations and gener-

ate a more appropriate time-series-based estimate.
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1. Introduction

The response of the Antarctic Ice Sheet (AIS) to climate change is a major public concern due to its poten-

tial impact on sea level rise. Meredith et al. (2019) concluded that the ice mass loss of the West Antarctic 

Ice Sheet (WAIS) has increased during the last two decades. In contrast, some drainage basins of the East 

Antarctic Ice Sheet (EAIS) show both mass losses and mass gains (Rignot et al., 2019). The Gravity Recov-

ery And Climate Experiment (GRACE) mission and its follow-on (GRACE-FO) mission have monitored 

gravity changes due to mass redistribution. Simultaneously, several altimetry missions have monitored 

Abstract Satellite gravimetry and altimetry measurements record gravity and elevation changes, 

respectively, which are useful for determining mass and volume change of the Antarctic Ice Sheet. 

Common methods employ products from regional climate modeling and firn modeling to aid 

interpretation and to link volume changes to mass changes. Estimating deterministic parameters 

over defined time periods is a conventional way to evaluate those changes. To overcome limitations of 

deterministic analyses with respect to time-variable signals, we have developed a state-space model 

framework. Therein, we jointly evaluate four mass and volume data sets by coupling of temporal 

signal variations. We identify long-term signals of ice drainage basins that are observed by the satellite 

gravimetry mission GRACE and several satellite altimetry missions from April 2002 until August 2016. 

The degree to which we can separate long-term and short-term variations strongly depends on the 

similarity of the mass and volume change time series. For the drainage system of the Pine Island Glacier 

(West Antarctica), our results show noticeable variations of the long-term trend with an acceleration 

of the contribution of ice dynamics to the mass balance from −11 ± 8 to −58 ± 8 Gt a−1. Our results in 

Dronning Maud Land (East Antarctica) show a positive long-term contribution to the mass balance at 

almost a constant rate. The presented approach can fit time-variable changes without artificial selection 

of periods of interest. Furthermore, because we only enforce common long-term time variations between 

mass and volume data, differences in mean trend rates help to uncover model discrepancies.

Plain Language Summary The ice sheet in Antarctica is constantly changing in volume and 

mass. Overall, the ice sheet is shrinking, but there are regions with large losses and regions with small 

mass gains. Mass loss can be caused either by faster flow of ice into the ocean (ice-dynamical change) or 

by less snowfall (surface climate). We aim to separate these two processes. GRACE satellites measure the 

changes in the gravity field of the Earth caused by mass changes. Other satellites that carry an altimeter 

can measure the volume changes of the ice sheet by recording changes in ice surface elevation. The 

surface climate can be simulated by a regional climate model for Antarctica. We combine these sources 

of information to extract long-term signals of mass change and find they are mainly due to ice dynamics. 

As an advantage over earlier methods, the change of our long-term signal does not have to be constant 

in time. We show that there is an accelerated ice-dynamical mass loss in the glacier drainage basins of 

West Antarctica. In contrast, we identify almost constant rates of the trend in drainage basins in East 

Antarctica.
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changes of the ice surface geometry. Reconciled estimates of the mass balance of the AIS are −73 ± 52 and 

−219 ± 43 Gt a−1 over the period 2002–2007 and 2012–2017, respectively (Shepherd et al., 2018).

The mass balance of an ice sheet has two (major) components. One component is the surface mass balance 

(SMB) involving precipitation, surface and drifting snow sublimation, drifting snow erosion, and meltwater 

runoff (van Wessem et al., 2018). Those processes take place mainly in the snow and firn layer of the ice 

sheet, hereinafter referred to as SMB-driven signals. The other component is ice dynamics (ID) taking place 

in the ice layer, hereinafter referred to as ID-driven signals. We do not account for changes of basal (or bot-

tom) melting of the grounded ice sheet separately. There are very few direct observations of basal melting 

of the grounded ice sheet (Seroussi et al., 2017). Pattyn (2010) found that the mean of the basal melt rate 

of the grounded AIS is ∼3% of the total surface accumulation, but it remains an open question how this 

contribution changes temporally. If the ice sheet is in a state of equilibrium, SMB-driven and ID-driven 

mass changes are in balance. Due to changing boundary conditions, for example, as a result of a changing 

climate, we expect mass and volume changes on long-term and short-term time scales. Long-term changes 

are characterized by a rate that varies only slowly at decadal scales. Short-term changes oscillate around 

zero at sub-decadal scales and tend to average out over decadal scales (Zwally et al., 2015). In Antarctica, the 

dominant ID-driven changes are on long time scales (Rignot et al., 2019). Here we consider long-term ice 

dynamic changes as dynamic thinning or dynamic thickening if the ice discharge is larger or smaller than 

the long-term SMB, respectively.

Satellite gravimetry and altimetry cannot distinguish between the two components of the mass balance, 

but only observe the sum of all mass and volume changes. SMB-driven mass and volume changes can be 

obtained from the SMB product from a regional climate model and from the firn thickness change product 

from a firn densification model (FDM). On drainage basin scale GRACE and SMB as well as altimetry and 

FDM show strong correlations of the nonlinear signal components (Figure 1), which motivates us to further 

investigate the temporal variations of mass and volume changes.

Horwath et al. (2012) and Mémin et al. (2015) found common interannual variability in GRACE and altim-

etry observations and could make links to their geophysical origin. They point out the limitations of treating 

long-term signals as a simple linear trend with a constant rate. Davis et al. (2012) and Didova et al. (2016) 

applied state space modeling to geodetic observations of ice mass changes. These studies showed the ad-

vantages of state space modeling for estimating trends with time-variable rates and more realistic trend 

uncertainties from GRACE and global navigation satellite system (GNSS) time series, compared to deter-

ministic results from conventional least-squares adjustment. Zammit-Mangion et al. (2015) and Martín-Es-

pañol et al. (2016) used a Bayesian hierarchical model to estimate annual ID-driven, annual SMB-driven, 

and linear glacial isostatic adjustment (GIA) mass changes from satellite altimetry, satellite gravimetry, and 

GNSS. In this approach, spatio-temporal parameters are taken from auxiliary observations and models, and 

were adjusted to GRACE, altimetry, and GNSS observations using a statistical inversion scheme.

In this study, we separate the long-term changes and the short-term changes on the drainage basin scale in 

Antarctica. For this purpose, we examine the GIA-corrected residual GRACE and altimetry time series after 

subtracting modeled SMB-driven mass change and firn-related volume change, respectively, to account 

for the bulk of SMB and firn signals. In our approach, we assume that (a) short-term variations of those 

residual time series consist of regional climate model and firn model errors next to observational errors; 

(b) gravimetry and altimetry are sensitive to the same long-term ID-driven variations; and (c) decadal and 

centennial SMB-driven signals and firn-thickness trends (e.g., Medley & Thomas, 2019) unaccounted by the 

model products are not predominant in the regions under investigation. We use a coupled state space model 

to jointly evaluate these four data sets. We estimate the time-variable signals and simultaneously relate 

common temporal variations from gravimetry and altimetry data.

The basins in this study refer to drainage systems defined by Zwally et al. (2012). In the main text we focus 

on three drainage basins (Figure 1), namely a part of Dronning Maud Land (basin 6), Wilkes Land (basin 

13), and the drainage basin of the Pine Island Glacier (basin 22). We have chosen these basins because they 

differ in the dominance of long-term and short-term changes (Rignot et al.,  2019) and should illustrate 

the feasibility of our approach. In the supporting information (SI), we provide material of all investigated 

drainage systems.
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2. Data and Methods

2.1. Model Products

To model the SMB-driven mass change we use the RACMO2.3p2 SMB product (van Wessem et al., 2018). 

The continent-wide version of this product has a spatial resolution of 27 km and is sampled monthly from 

January 1979 to December 2016 for the whole AIS. SMB anomalies are derived by assuming a representative 

climatology over a long-term period, that is, more than 30 years (van den Broeke et al., 2009). SMB anom-

alies are the residuals to this long-term mean SMB. In our case we define the whole modeling period from 

January 1979 to December 2016 as the reference period. This is consistent with the period considered during 

the spin-up of the FDM that we use. All our mass change estimates refer to this reference period. Table S1 

summarizes the mean SMB over the reference period with an uncertainty estimate analogous to Wouters 

et al. (2015). For this, we have calculated the standard deviation of mean SMB values over all 25-, 30-, and 

35-year time periods within the reference period (Table S1). Because satellite gravimetry and satellite altim-

etry observe cumulated mass balance anomalies over time, we temporally integrate SMB anomalies, which 

we hereinafter refer to as cumulated surface mass balance anomalies (cSMBA).

The IMAU-FDM (Ligtenberg et  al.,  2011) firn thickness change time series is consistent with the  

RACMO2.3p2 SMB product used because it applies the SMB components as forcing parameters at the up-
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Figure 1. (a) Basins that we investigate in this study are colored, the focus basins (6, 13, 22) are indicated with dark yellow. The polar gap of ERS-2 and Envisat 
is indicated with a red circle. Basin borders and numbers from Zwally et al. (2012). (b–d) GRACE-derived mass time series, cumulated surface mass balance 
anomalies (cSMBA), and the difference between both (GRACE-cSMBA) for basins 6, 13, and 22. (e–g) Altimetry-derived volume time series and the volume 
change from the firn densification model (FDM), and the difference between both (Altimetry-FDM).The correlation coefficient shows the correlation between 
detrendend GRACE and cSMBA (ρ(GRACE*,cSMBA*)) as well as detrended ALT and FDM (ρ(ALT*,FDM*)). Table S1 summarizes the deterministic linear 
trends for GRACE, cSMBA, altimetry, and FDM-derived time series, the GIA correction applied to GRACE, correlation coefficients, and the basin area of all 
investigated basins.
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per ice sheet boundary. It is available with the same spatial resolution. During model creation the spin-up 

of the firn layer is achieved by looping over the time series from January 1979 to December 2016 until an 

equilibrium firn layer is established. This assumes that the 38-years reference period is representative for 

the centuries before 1979 during which the firn layer was formed. Ligtenberg et al. (2014) found that the 

present-day RACMO2 forcing is a realistic reference climate. We also assume that the firn does not exhibit a 

trend during the reference period itself, because we consider it an equilibrated firn layer due to the spin-up 

run (Ligtenberg et al., 2011).

2.2. GRACE Time Series

We use CSR RL06 monthly gravity field solutions (Bettadpur, 2018) from April 2002 to August 2016. Be-

cause of accelerometer issues after August 2016 (Loomis et al., 2020), we only include solutions up to this 

time. We compute degree-1 coefficients following Swenson et al. (2008) and Sun et al. (2016) to complement 

the monthly gravity field solutions. Further, we replace the C20 coefficients with a product derived by satel-

lite laser ranging (Loomis et al., 2019). We apply error and leakage optimized sensitivity kernels on the com-

plemented gravity field time series to derive basin-wide mass changes (Groh & Horwath, 2021). We correct 

for GIA by using the model product from Ivins et al. (2013). A residual GIA signal can still be present in the 

time series, because GIA models are subject to large uncertainties. The net GIA signal predicted by current 

models differ over a range of ∼40–80 Gt a−1 (Whitehouse et al., 2019). We do not attempt to take GIA errors 

into account in the state-space filtering approach. They will be reflected in the temporal mean of our results 

(Sections 2.4 and 2.5). In Table S1, we provide the GIA uncertainty and the spread for every drainage basin 

that is estimated from a GIA model ensemble. We propagate the GIA uncertainty to uncertainty estimates 

involving GRACE. The SI provides technical details.

2.3. Altimetry Time Series

Schröder et al. (2019a) provide a monthly sampled altimetry-derived elevation change product from a mul-

ti-mission analysis using a repeat altimetry approach. Temporal and spatial smoothing is applied during 

processing using a moving average of 3 months and a 10-km-sigma Gaussian smoother, respectively. Within 

the radius of 10 km there are at least four satellite ground tracks (depending on orbit geometry), each is 

measured at least twice in 3 months. This means that the monthly surface elevation change in a grid cell is 

based on an average of at least eight satellite passes.

For our investigation, we use data over the period from April 2002 to August 2016 corresponding to the 

availability of GRACE observations. The altimetry-derived elevation changes during this time period in-

clude observations from ERS-2, Envisat, ICESat, and CryoSat-2. We selected all drainage basins that are 

covered at monthly resolution over that period. This criterion requires coverage by ERS-2 and Envisat and 

excludes basins 1, 2, 3, 17, and 18 that extend beyond the 81.5°S limit of coverage of these two missions. 

Furthermore, we do not include basins where the altimetry data are of lower quality due to strong topo-

graphic gradients. This is the case for the basins in the region of the Antarctic Peninsula (25, 26, 27) and 

Victoria Land (15, 16). For further details on uncertainties and altimetry quality limitations, see Schröder 

et al. (2019a) and Strößenreuther et al. (2020).

We correct for the elastic deformation of the solid earth and use the model product from Ivins et al. (2013) 

to correct for GIA. GIA and elastic-induced elevation changes are very small compared to elevation changes 

induced by SMB-driven and ID-driven changes. To illustrate the order of magnitude in case of basin 13, the 

integrated elastic-induced volume change and the GIA-related volume change are ∼0.4 and ∼0.4 km3 a−1, 

respectively, whereas the corrected altimetry observed volume change (Table S1) is −27.1 ± 1.3 km3 a−1 

from April 2002 to August 2016.

2.4. Long-Term Uncertainties in Model Products

If we examine long-term signals, we have to accept three limitations imposed by the data that we use: 

(a) Any long-term SMB-driven signal would violate the assumption that the mean SMB over the chosen 
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reference period is a long-term mean SMB and would thereby introduce a SMB contribution to the mean 

rate in our analysis. (b) Any long-term firn-thickness change over the reference period will affect the mean 

trend of firn-induced elevation change. Thomas et al. (2017) showed that, especially, in the Antarctic Pen-

insula, there seems to have been a long-term increase in snowfall, by about 10%–15% over the past century. 

Ligtenberg et al. (2014) predicted an increase in firn air content of 150 km3 a−1 over the 21st century for 

the AIS. Thus, the assumption that the firn is in steady-state at the start of the integration may not be valid 

everywhere. Furthermore, the firn densification model output is affected by errors in the input data, which 

include SMB variations apart from temperature variations. We expect that errors of firn-thickness change 

will be correlated with errors of SMB because the IMAU-FDM is forced by RACMO2 outputs. However, un-

certainty estimates are not available. Data from firn cores could quantify this long-term uncertainty, but this 

is beyond the scope of this study. (c) Any uncertainty in the GIA trend directly propagates to the temporal 

mean of the estimated trend. These three long-term uncertainties are superimposed on the mean rate of 

mass and volume time series, but gravimetry and altimetry are affected by them differently. First, long-term 

trends in SMB induce volume trends that involve some effective firn density, which is generally smaller than 

ice density. Therefore, the volume effects of long-term trends in SMB are more pronounced than the mass 

effects. Second, any long-term trend of the firn air content is solely part of altimetry observations. Finally, 

an unaccounted GIA-signal predominantly affects the gravimetry observations due to the large effective 

density of GIA-induced deformation of the solid earth (Wahr et al., 2000).

2.5. Signal Separation Strategy of Basin Time Series

GRACE and altimetry detect long-term and short-term mass and volume changes, which we define as a rate 

varying on decadal scales and variability at sub-decadal scales, respectively. The model products account for 

a large part of the short-term variability. The differences between (a) GRACE and cSMBA (grace–csmba) 

and (b) altimetry and FDM (alt–fdm) include the ID-driven variability (Zwally et al., 2015) in addition to 

long-term errors (Section 2.4). Furthermore, the differences include a remaining short-term signal, due to 

modeling or observational errors.

We assume that the same ID-driven signal is present in grace–csmba and alt–fdm and that this ID-driv-

en signal is most likely only long-term in Antarctica (Rignot et al., 2019). Thereby, we do not presuppose 

that the rate of the long-term signal is constant over time. Rather, we suppose that changes of this rate are 

slow. We parameterize the long-term signal through a trend with a time-variable rate. This is in contrast 

to deterministic approaches where, for example, a trend is used with a constant rate. To enable a coupled 

evaluation of the four data sets (1) we link the temporal variations of the rate of grace–csmba and alt–

fdm with the density of ice (917 kg m−3) in the state space model framework. This density is a conceptual 

assumption and we assume it is free of errors. (2) We model the long-term signal for both time series using 

the seemingly unrelated time series model (Commandeur & Koopman, 2007). This implies that the changes 

in the rate of the long-term parts of both time series are fully correlated. However, the mean rate may dif-

fer over the entire time series. In this way, we allow potential long-term errors (Section 2.4) to be reflected 

differently in both results.

We approach the remaining short-term signal of the grace–csmba and alt–fdm time series in three ways: 

(1) We use annual and semi-annual cycle components with time-variable phase offset and amplitude. (2) 

We use a residual component to model uncorrelated noise. (3) We assume that noncyclic short-term signals 

can be described as an integrated random walk starting at zero at the first observation epoch. We assume 

that unmodeled SMB can be represented with white noise. Therefore, the errors of cumulated SMB anom-

alies are cumulated white noise, that is, an integrated random walk. It can be modeled as an autoregressive 

process of the order one (AR(1) process) in which each time step is the previous one (AR-coefficient equals 

1) plus a disturbance term (Section 2.6). King and Watson (2020) showed that Generalized Gauss Markov 

models are better suited than an AR(1) process to explain the full SMB-driven variability. However, here we 

presume an AR(1) process is suited for modeling the remaining short-term variability of differential time 

series, which contains observational errors beside the SMB-driven variability. We test which AR-coefficient 

between 0 and 1 best describes the auto-correlation length of the noncyclic short-term signals. This implies 

that any error that is not an unmodeled SMB signal but behaves like an autoregressive process is interpreted 

with the same AR(1) process. That is, the AR(1) process also absorbs correlated short-term GRACE and 
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altimetry errors. Consequently, we do not necessarily expect that the same remaining short-term signal 

is present in grace–csmba and alt–fdm time series and we do not enforce a coupling of the remaining 

short-term variations.

2.6. State Space Modeling of Time-Series

2.6.1. State Space Setup

A state space model describes a time series, for every time ti, i = 1, …, n with [p × 1] observation vector yi, 

using the [m × 1] time-variable state vector αi of m model coefficients. We extend the state space model ap-

proach from Frederikse et al. (2016) to the simultaneous filtering of multiple time series, where in our case 

the dimension is p = 2 (bivariate): the first dimension is alt–fdm and the second is grace–csmba. We set 

up a state space model as (Durbin & Koopman, 2012):

,i i i j i i
j

   y μ c  (1)

with trend μi, cycle (seasonal harmonic) terms ci,j, AR(1) process ζi and irregular term (residual) ϵi, each a 

vector of size [p × 1], in total m = p ⋅ 7 = 14 model coefficients. Each of these terms is modeled as a time 

variable process, where at each epoch a stochastic disturbance term allows for time variability.

First, the trend is defined as:

1i i i i
dt  μ μ ν (2)

1 (0, )
i i i i i

N dt    ξν ν ξ ξ (3)

with [p × 1] rates of the trend νi, [p × 1] Gaussian rate disturbance vector ξi with the [p × p] variance-covar-

iance matrix ξ , and normalized time step
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that is, dti is generally close to 1 for an approximately regularly spaced time. As the trend μ is updated at each 

epoch with a time-variable rate ν—due to the disturbance term ξi—a smoothly changing trend is possible.

Second, cycle terms can be iteratively defined as (Harvey, 1990):

c c ci j i j j i i j j i i j i j icos dt sin dt N dt       1 0, , ,
*

, ,( ) ( ) ( ,     )) (5)

c c ci j i j j i i j j i i j i jsin dt cos dt N       1 0,
*

, ,
*

,
*

,
*

( ) ( ) ( ,    ** ) dti (6)

where ci,j is the cycle component, and 
*

,i jc  an auxiliary cycle term that allows for the recursive description 

of the cycle term, 
 

2

j

jT
 with Tj the jth cycle period, ωi,j the Gaussian cycle disturbance with [p × p] var-

iance-covariance matrix ω.

Third, the autoregressive AR(1) process is modeled as (Harvey, 1990; Laine et al., 2013):

1 (0, )
dti

i i i i i
N dt    ψζ ζ ψ ψ (7)

with [p × 1] AR-coefficients ϕ in the range [0,1], and [p × 1] Gaussian disturbance vector ψi with [p × p] 

variance-covariance matrix  .

Finally, the model includes a [p × 1] Gaussian irregular component vector ϵi with [p × p] variance-covari-

ance matrix  :
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i i

N dt ( , )0  (8)

In our case, the [m × 1] state vector αi contains the trend μi, rate νi, seasonal cycles ci,j and 
*

,i jc  (j = 1, 2), 

AR(1) ζi terms. Then, the state space model can be cast in state space form by:

i i i i
 y Z α  (9)

where the [p × m] design matrix Zi relates the current state αi to the observations yi. Subsequent states are 

related by [m × m] transition matrix Ti:

1i i i i  α Tα Q (10)

and [m × m] variance matrix Qi that contains all disturbance variance-covariances. The SI contains an ex-

plicit description of all relevant vectors and matrices.

2.6.2. Estimation of the State and Disturbance Variance-Covariance

We use a Kalman filter and smoother to estimate the state α, irregular term  and their error variances for 

both time series simultaneously (Koopman, 1993). We co-estimate the uncertainties of the time-variable 

model coefficients such as of the trend and its rate. We describe technical details in section B of the SI. 

As we do not have reliable knowledge about the disturbance and irregular variances and covariances, as 

well as the AR-coefficients ϕ, we estimate these parameters a priori. A common approach in state space 

modeling is to statistically optimize these parameters by maximizing the likelihood: the goodness of fit 

of the observations given a choice of (co)variance and AR parameters. Using the expectation maximiza-

tion (EM)-algorithm, we iteratively estimate variance-covariance matrices (Koopman, 1993) while we do a 

two-dimensional grid search for an optimal ϕv-ϕm-combination. We enforce a ratio of the rate disturbance 

variances between grace–csmba 


 2

m
 and alt–fdm 


 2

v
 of










2 2
m

2 3 2
v

(0.917 Gt)
.

(1 km )
 (11)

In this way, we couple the common long-term variability of grace–csmba and alt–fdm with ice density, 

because we assume that this is predominately ID-driven (Section 2.5).

2.6.3. Mean Trend Rates

We compute the mean rate from the trend and propagate estimated time variable uncertainties for a mean 

rate uncertainty. The SI provides the formal mathematical description. For comparison to the results from 

state-space filtering, we compute deterministic results by estimating trends with constant rates of grace–

csmba and alt–fdm. The deterministic rates are co-estimated with bias, annual and semi-annual cycle 

components using least-squares adjustment.

3. Results

Primarily, we focus on the long-term contributions to the mass balances of the drainage systems. We il-

lustrate the basin-integrated time series of the three focus basins in Figures  1b–1g. Figure  2 shows the 

estimated components together with the original observation, and model time series. As it shows, the AR(1)  

and cycle terms absorb the largest part of the differential time series that is not explained by the trend. The 

residual, irregular term absorbs the uncorrelated noise of grace–csmba, but is negligible in case of alt–

fdm. Figure 3 shows the grace–csmba and alt–fdm time series (observation minus model), the trend 

with time-variable rates and its uncertainty, and the deterministic trend of the focus basins. We observe that 

the uncertainties of the trend with time-variable rates vary among basins. High uncertainties are accompa-

nied with a high auto-correlation of the estimated AR(1) component (Figures S2 and S6) and reveal that the 

trend is less independent of the AR(1) process (Section 4.1). Figure 4 visualizes that the estimated time-var-

iable rate from grace–csmba and alt–fdm is fully correlated as the time variability for both is identical, 

even though the mean rate may differ (Section 2.6).
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When we compare between the mean rates of grace–csmba and alt–fdm for the focus basins 6, 13, 

and 22, we find differences of ∼2.1, ∼1.5, and ∼0.9 Gt a−1, respectively, (we use a density of 917 kg m−3 to 

convert alt–fdm volume changes to mass changes). For basin 22 these differences are small compared to 

the estimated trend. Basin 22 shows a clear acceleration of the grace–csmba trend: the rate changes from 

−11 ± 8 in April 2002 to −58 ± 8 Gt a−1 in August 2016 (Figure 4c). Figures of all investigated time series 

can be found in the SI.

Figures 5a and 5d illustrate mean rates of grace–csmba and alt–fdm. Further we compare the mean 

rates to the deterministic results in Figure 5, and include the mean rate uncertainties (values are provided 

in Table S2). The absolute values of the mean rate are highest for the Amundsen Sea Embayment (basins 20, 

21, and 22). In basins 19 and 24 the mean rate and the deterministic rate from grace–csmba have opposite 

signs to the mean rate and the deterministic rate from alt–fdm.

The root mean square (RMS) of the AR(1) component, RMSAR(1), and the irregular component, RMSirr, 

reflect the magnitude of the signal that is not explained by the trend or cycle terms. Similarly—in the deter-

ministic case—the RMS of post-fit residuals, RMSresid, represents the unexplained signal. Table S2 compares 

these values. In the case of alt–fdm a large part of the remaining short-term signal can be explained by 

an AR(1) process. In the case of grace–csmba there is a significant irregular component, whereas this is 

negligible in alt–fdm. The RMS of the post-fit residuals from the deterministic fit is highest in basins 22 

and 14 in case of grace–csmba and alt–fdm, respectively.

4. Discussion

4.1. Interpretation of the Results

The state space model is able to separate long-term variability shared by both grace–csmba and alt–fdm, 

and remaining short-term signals in these differential time series. We argue that the estimated long-term 
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Figure 2. Estimated components of the focus basins: For grace–csmba (a, c, and e) and alt–fdm (b, d, and f) the satellite observations (blue) are the sum of 
model products (red), the trend (green), the AR(1) process (orange), the cycle component (gray), and the irregular component (black). We provide results of all 
investigated basins in the SI. For interpretation of short-term signals [AR(1), cycles, irregular], the reader is referred to Figure S4.
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signal is approximately equivalent to the ID-driven time variable mass and volume changes. This has the 

limitation that the long-term signal may be affected by errors of the model products and the assumptions 

involved therein (Section 2.4). Particularly, the SMB anomalies and firn thickness anomalies considered 

in grace–csmba and alt–fdm imply assumptions on a steady-state mean SMB and firn structure as a 

reference. Consequently, a negative rate (positive rate, respectively) of the ID-driven contribution means 

that ice discharge is larger (smaller) than the mean SMB thus defined. Based on the trend uncertainties, we 

conclude that the separation performs best when the trend rates are either large (basins 21 and 22) or the 

unexplained, auto-correlated, signals have short correlation lengths (e.g., basins 7 and 11–14 in Figure S6). 

When the unexplained AR signals contain substantial long-term signals (large correlation length) either 

in grace–csmba or alt–fdm, it will be increasingly difficult to discriminate between the AR process and 

the trend. This is reflected by larger estimated uncertainties of the trend. The cross-correlation of the AR(1) 

between time series for grace–csmba and alt–fdm is small or negative (Figure S6, except for basins 6 

and 8), affirming that the common signals have been absorbed in the trend. Because the alt–fdm time 

series are more sensitive than grace–csmba to variability in SMB, due to the relatively low firn density, the 

grace–csmba is dominant in the definition of the trend.

Our estimated trends vary substantially with the region. We find a clear difference between the WAIS and 

the EAIS (Figure 5). In particular, long-term signals are dominant over basins 21 and 22. An accelerated 

decrease of volume and mass is already visible in the basin integrals of the satellite observations (Figures 1d 

and 1g). The accelerating long-term change can be fitted with the trend with time-variable rates and inter-

preted as an accelerating ID-driven signal.

Basin 6 shows strong inter-annual variations, with a significant step in the year 2009. This step can be at-

tributed to an accumulation anomaly (as already present in the SMB model) (Boening et al., 2012; Lenaerts 

et al., 2013). The rate of the trend is almost constant over time. From this, we conclude that there is a posi-

tive long-term contribution to the mass balance, which only slightly changes over time. Similarly to basin 6, 

a positive trend with a low variability is visible in all investigated basins of the EAIS except for basins 10, 11, 
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Figure 3. Estimated trends of the focus basins: For grace–csmba (a, c, and e) and alt–fdm (b, d, and f). The difference between satellite observations and 
model products (brown) is illustrated with the trend with a time-variable rate, its 1-σ-uncertainty (green), and the deterministic trend with a constant rate 
(black). grace–csmba uncertainties include GIA uncertainties. We provide results of all investigated basins in the SI.
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13, and 14 (Figures S2 and S3). In these basins, we interpret the positive 

trend as ice dynamic thickening. However, this positive trend may also 

have causes in the violation of the assumptions we made in Section 2.4, 

for example, that there is a long-term SMB-driven signal that is not part 

of the model products.

In basin 13, the trend is small. Here, the altimetry-derived and the 

FDM-derived volume time series are very similar, whereas the mass 

time series show a small long-term difference compared to the cSMBA 

values (Figure 4b). Explanations for this discrepancy include: altimetry 

missions have insufficiently sampled the mass change of Totten Glacier; 

there are unaccounted long-term climate signals that affect mass and 

volume changes differently (Section 2.4); the GIA correction of GRACE 

is underestimated. The spread of the GIA signal predicted by models is 

3 Gt a−1 in basin 13, which is higher than the difference of the mean rates 

(1.5 Gt a−1).

4.2. Differences in Mean Rates

For both grace–csmba or alt–fdm the mean rates using the state space 

model agree well with the deterministic trends using least-squares ad-

justment. Mean rates of grace–csmba and alt–fdm agree within the 

indicated 2-σ-uncertainties for basins: 4–13 and 22 (Figure 6) using the 

state space model. For the deterministic approach the grace–csmba 

and alt–fdm rates match within the 2-σ-uncertainties for basins: 9–12 

and 22. The state space model allows for a more realistic uncertainty es-

timation compared to unrealistic small standard uncertainties derived by 

least-squares adjustment. Further biases remain unconsidered. For ex-

ample, GRACE detects mass changes only at a low spatial resolution and 

signal leakage may distort the results (Horwath & Dietrich, 2009). On the 

other hand, the altimetry product provides a high resolution but biases 

are present due to topographic characteristics or interpolation (Strößen-

reuther et al., 2020). Other factors that may contribute to the differences 

between the mean rate of grace–csmba and alt–fdm are due to GIA uncertainties and assumptions 

about long-term equilibrium in the SMB and firn models (Section 2.4). Our approach allows for different 

mean values to reflect those potential long-term uncertainties. For example, if we use a different reference 

period to calculate cSMBA, this would lead to a different mean rate—or in other words it would lead to 

a shift of the time-variable rates of the trend—and therefore create a different discrepancy between the 

mean rates from grace–csmba and alt–fdm. Due to limitations of the input datasets, we cannot con-

clude whether grace–csmba or alt–fdm results have a smaller (systematic) bias. Because we assume that 

the AR(1) component represents an accumulating error, we force it to start from zero (from which it may 

deviate by incorporating disturbance variance). The deterministic fit does not include this assumption and 

therefore it may lead to an underestimation of the residual and its correlation length. It cannot capture the 

auto-correlated signal around the trend (e.g., basins 4, 5, 6, and 9 in Figure S2).

4.3. Unexplained Short-Term Signals

Except for basins 9–11, the estimated short-term signals are small compared to the cSMBA and FDM time 

series (Figure S1 and Table S2), which indicates that the cSMBA and FDM time series already explain a 

large part of the short-term variability of the GRACE and altimetry data. In basins 9–11, we find residual 

short-term components in the same order of magnitude as the time series of total mass and volume var-

iations, especially in the volume time series (Figure S1). Furthermore, the discrepancy between satellite 

observations and model products is evident by the low correlation between the time series here (Table S1). 

We find the lowest correlation of 0.12 in basin 10 between the altimetry and the FDM time series.
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Figure 4. Estimated time-variable rates of the focus basins: The rates 
of the trends over time, their uncertainties (purple and orange), and the 
mean rates (blue and red) from grace–csmba and alt–fdm, respectively. 
The rate from alt–fdm is converted to mass change with ice density. 
grace–csmba uncertainties include GIA uncertainties. We provide results 
of all investigated basins in the SI.
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The estimated AR(1) process absorbs two main parts. (1) It absorbs short-term SMB-driven signals that 

are not included in the model products. In this sense, a part of the AR(1) process can be understood as 

modeled short-term error of cSMBA and FDM. (2) Errors of the satellite data, or errors due to different 

temporal sampling of observations and model products, are absorbed in the AR(1) process, too. We find a 

larger AR(1) process in alt–fdm than in grace–csmba. A major reason for this is the temporal smoothing 

applied during the processing of altimetry (Schröder et al., 2019a). This artificially correlates temporally 

uncorrelated errors. The AR(1) process captures these correlated errors and this also explains the small 

irregular component in case of alt–fdm. We observe that the AR(1) process from alt–fdm generally 

contains relatively large signals on timescales of more than a year in basins 4–11. We also find larger re-

sidual seasonal signals in alt–fdm than grace–csmba (Figures S1 and S4). If the seasonal signal and 

the AR(1) process are an unmodeled SMB signal, a low firn density could explain the comparatively large 

volume change and relatively small mass change. In order to enable the attribution of the error to either 

the satellite data or the model products, these errors would have to be parameterized separately. So far we 

have not identified a suitable parameterization for either errors in the model products, or errors in the 

satellite data. We have tried to constrain the errors of the model products by means of an error assessment 

analogous to Willen et al. (2020). Doing so, we made use of the SMB product of another regional climate 

model, namely MAR (Agosta et al., 2019). But the error estimation based on only two SMB products does 

not provide sufficient error information, resulting in an unrealistic error budget. Moreover, no FDM based  

on MAR is available.

The filtering results of basin 6 show that most of the short-term variations in grace–csmba can be 

explained by the irregular component and can thus be described as temporally uncorrelated Gaussian 

noise. The AR(1) process is very small and accounts for a minor trend (Figures 2a and S4). This can 

be prevented by choosing a slightly reduced irregular disturbance variance. This would result in an 
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Figure 5. The mean rates, the 1-σ-uncertainties, and differences to deterministic rate are color coded. Results from alt–fdm are converted to mass with ice 
density (917 kg m−3). grace–csmba uncertainties include GIA uncertainties. Table S2 provides the underlying numbers.
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Figure 6. (a) Mean rates and deterministic results for investigated basins (cf. Table S2). (b) Comparison of mean 
trend rates to ID-driven estimates published by Zwally et al. (2015). (c) Comparison of mean trend rates to the mass 
balance estimates published by Martín-Español et al. (2016). To enable the comparison, we removed the mean SMB 
anomalies during the indicated time period from the published mass balance estimates. We used basin numbers from 
Zwally et al. (2012) (first row of labels), basin numbers from Martín-Español et al. (2016) indicated in the second row of 
labels. The sum of basins 5 and 6 approximately equals the sum of basins 305 and 306 and the sum of basins 9 and 11 
approximately equals basin 310. The time periods are indicated in the subfigure titles. The mean rates from alt–fdm 
are converted to mass change with ice density (917 kg m−3). 2-σ-uncertainties are indicated with error bars. grace–
csmba uncertainties include GIA uncertainties.
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increased part of the short-term variations being explained by the AR(1) process, at the expense of a 

lower likelihood.

Furthermore, we have investigated the sensitivity of the approach to an alternative GRACE product based on 

monthly GRACE solutions from Mayer-Gürr et al. (2016). A clear difference in the estimated AR(1) process 

is visible for most basins (Figure S7). From this we conclude that a large amount of the AR(1) process in the 

grace–csmba time series can be explained by errors due to GRACE data processing, which needs further 

investigation (Section 4.5). Our results suggest that considerable signals are present in the grace–csmba 

and alt–fdm time series that are not correlated for the two time series and cannot be attributed to long-term 

changes.

4.4. Comparison With Other Published Results

Martín-Español et  al.  (2016) estimate annual ID-driven and SMB-driven mass changes along with lin-

ear GIA from altimetry, GRACE, and GNSS. A priori information is included from models (among oth-

ers RACMO2.3p2 outputs) and further observations to constrain the spatio-temporal characteristics of 

ID, SMB, and GIA. Table 2 in Martín-Español et  al.  (2016) summarizes integrated mass changes over 

different basins than we used. Figure  6c compares mass changes from approximately the same basins  

(or approximately the same basin aggregations) over the time period January 2003–December 2013. To be 

able to make a comparison, we remove the mean SMB anomalies during this time period from the mass 

balance estimates of Martín-Español et al. (2016), because our trends are based on time series with the 

effect of the mean SMB removed (Section 2.5). Our alt–fdm results agree with mass balance estimates 

from Martín-Español et al. (2016) within 2-σ-uncertainties. This is also the case comparing grace–csmba 

results, except for basins 4 and 22 where our mass rate from grace–csmba is slightly more positive and 

more negative, respectively. The temporal evolution of the estimated long-term signal (Figures 4b and 4c) 

and the ID-driven signal from Martín-Español et al. (2016) (Figures 4c and 4a therein, respectively) are 

very similar.

Zwally et al. (2015) use ICESat data and global reanalysis products to separate SMB-driven and ID-driven 

signals from October 2003 to December 2008 in altimetry data. Our mean rates of the trends during this 

time period agree well with the ID-driven mass changes published by Zwally et al. (2015) (Figure 6b). If 

we compare mean rates over this time period from alt–fdm and Zwally et al. (2015) they agree within the 

uncertainties except for basin 19. We find the largest differences (>10 but <15 Gt a−1) for basins 10, 12, 

14, and 23. The smallest discrepancies (<1 Gt a−1) arise for basins 5, 11, and 20. It is remarkable that even 

the results with the largest differences agree within the uncertainties. Zwally et al. (2015) use a different 

methodological framework and use laser altimetry observations (ICESat) only, whereas we use an altime-

try product (Section 2.3) that includes radar altimetry (Envisat) in addition to ICESat laser altimetry and 

involves a calibration of ICESat laser operation period biases (Schröder et al., 2017) that differs from that 

by Zwally et al. (2015). Note that , we do not investigate all drainage basins of the EAIS (Figure 1), where 

Zwally et  al.  (2015) identified large positive ID-driven mass changes, which are however under debate 

(Martín-Español et al., 2017; Richter et al., 2016).

High loss rates and an ID-driven acceleration are known in the Amundsen Sea Embayment of the WAIS 

(Shepherd et  al.,  2018). Therefore, we discuss this region in more detail. Basin 21 (includes Thwaites  

Glacier) and basin 22 (includes Pine Island Glacier) belong to this region. Martín-Español et al.  (2016) 

published mass changes of −64.8 ± 4.5 and −37.4 ± 3.5 Gt a−1 for basins 21 and 22 (equal to 321 and 322 

from Martín-Español et al. (2016)), respectively during January 2003 until December 2013. SMB anom-

alies during this time period contribute −2 and −1 Gt a−1 to the mass balance, respectively (removed in 

Figure 6c). The results from Martín-Español et al. (2016) and Zwally et al. (2015) are similar to the estimat-

ed mean rates from grace–csmba and alt–fdm (Figure 6). Furthermore, our results in the Amundsen 

Sea Embayment agree well with ice discharge estimates from Rignot et al. (2019), which they estimated 

from ice velocity and ice thickness data. The drainage systems defined by Rignot et al.  (2019) differ to 

those that we use. (1) Basin 21 corresponds approximately to the aggregation of Thwaites Glacier, Haynes 

Glacier, Crosson Glacier, and Dotson Glacier; (2) basin 22 corresponds to Pine Island Glacier (Table 1 

in Rignot et al., 2019). For the time period 2009–2017, they quantified the ice discharge of (1) and (2) at 

190.7 ± 4.7 and 133.2 ± 5.8 Gt a−1, respectively. The absolute ice discharge values from our results (sum of 
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the mean SMB and the estimated mean rate) between January 2009 and August 2016 from grace–csmba 

for basin 21 and basin 22 are 176 ± 2 and 136 ± 2 Gt a−1, respectively. alt–fdm results are 186 ± 2 and 

135 ± 2 Gt a−1, respectively.

4.5. Outlook

During the selected time period of 14 years and 4 months covering the available GRACE observations, we 

have not investigated all Antarctic drainage basins due to the limited quality of the altimetry data (Sec-

tion 2.3). High-quality altimetry data of the almost entire AIS is available from the CryoSat-2 mission and 

ICESat-2 mission since July 2010 and October 2018, respectively. Gravity fields from the GRACE-FO mis-

sion are available since June 2018. Through the continuous observation of the AIS it will become possible 

to investigate further areas of Antarctica within the near future. Moreover, an error model for the satellite 

data and the model products is needed to improve the estimation of the time-variable signals. An error 

model should account for the temporal heteroscedasticity (nonconstant variability of errors), especially of 

the observation products. To properly understand the mechanisms that are responsible for ice volume and 

mass changes we argue that more attention should be focused on the temporal behavior of the observed 

mass and volume changes. The state space method is a likely candidate for future temporal analyses of ice 

mass changes. In particular, the approach can unravel interannual signals and aid to overcome limitations 

due to deterministic methods pointed out, for example, in Horwath et al. (2012) and Mémin et al. (2015). 

Our estimated AR process and time-variable (seasonal) cycle time series can be instrumental in assessing 

unmodeled SMB-driven signals.

5. Conclusions

Our data-driven approach is able to estimate common time-variable signals in both geodetic data sets with 

the aid of products from regional climate modeling and firn modeling. We interpret these common signals 

as most likely ID driven. We find residual auto-correlated and seasonal signals in these time series, with 

often significant variance if compared to the climate and firn model products. However, we cannot yet at-

tribute the short-term signals to a specific source.

Furthermore, our results confirm the accelerating ice loss of the WAIS in the Amundsen Sea Embayment. 

Our approach allows us to fit the acceleration without the artificial selection of time periods. The results for 

the investigated basins of the EAIS show small long-term signals with a low temporal variability. The tem-

poral variability of mass and volume changes of the EAIS can mainly be attributed to the SMB component. 

Residual short-term signals are most likely not ID driven because these signals are not positively correlated 

between the GRACE and altimetry time series.

Limitations of the presented approach are due to the treatment of short-term and long-term errors. So far 

we have not been able to assign uncertainties to the input data sets. The estimated mean rate is sensitive 

to long-term uncertainties of the SMB and the FDM product, for example, by the chosen reference period. 

However, we do not expect large errors in the mean rates of the model products for the Antarctic drainage 

basins.

Data Availability Statement

Basin time series of inputs and results (Willen et al., 2021) are publicly available via https://doi.org/10.1594/

PANGAEA.930250. Gravimetric mass balance products (Groh & Horwath, 2021) are available via https://

data1.geo.tu-dresden.de/ais_gmb/. Altimetry elevation changes (Schröder et  al.,  2019b) are available via 

https://data1.geo.tu-dresden.de/ais_alt/ (interactive access) or https://doi.org/10.1594/PANGAEA.897390. 

RACMO2.3p2 SMB and IMAU-FDM are available on request via https://www.projects.science.uu.nl/

iceclimate/.
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Abstract

Estimating mass changes of ice sheets or of the global ocean from satellite gravimetry strongly depends on the correction

for the glacial isostatic adjustment (GIA) signal. However, geophysical GIA models are different and incompatible with

observations, particularly in Antarctica. Regional inversions have resolved GIA over Antarctica without ensuring global

consistency, while global inversions have been mostly constrained by a priori GIA patterns. For the first time, we set up a

global inversion to simultaneously estimate ice sheet mass changes and GIA, where Antarctic GIA is spatially resolved using

a set of global GIA patterns. The patterns are related to deglaciation impulses localized along a grid over Antarctica. GIA

associated with four regions outside Antarctica is parametrized by global GIA patterns induced by deglaciation histories. The

observations we consider here are satellite gravimetry, satellite altimetry over Antarctica and Greenland, as well as modelled

firn thickness changes. Firn thickness changes are also parametrized to account for systematic errors in their modelling.

Results from simulation experiments using realistic signals and error covariances support the feasibility of the approach. For

example, the spatial RMS error of the estimated Antarctic GIA effect, assuming a 10-year observation period, is 31% and

51%, of the RMS of two alternative global GIA models. The integrated Antarctic GIA error is 8% and 5%, respectively, of the

integrated GIA signal of the two models. For these results realistic error covariances incorporated in the parameter estimation

process are essential. If error correlations are neglected, the Antarctic GIA RMS error is more than twice as large.

Highlights

• We present a globally consistent inversion approach to co-estimate glacial isostatic adjustment effects together with changes

of the ice mass and firn air content in Greenland and Antarctica.

• The inversion method utilizes data sets from satellite gravimetry, satellite altimetry, regional climate modelling, and firn

modelling together with the full error-covariance information of all input data.

• The simulation experiments show that the proposed GIA parametrization in Antarctica can resolve GIA effects unpredicted

by geophysical modelling, despite realistic input-data limitations.

Keywords Satellite geodesy · Ice sheets · Mass balance · Glacial isostatic adjustment
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1 Introduction

Ice mass changes (IMCs) of the Greenland ice sheet (GIS)

and the Antarctic ice sheet (AIS) are important signs of

global climate change. The main causes of IMC are changing

surface mass balance (SMB) components (e.g. precipita-

tion, surface melting, sublimation, wind drift) and changing

ice flow dynamics (ID). In turn, IMCs induce global mass

redistributions in the ocean and induce solid-Earth deforma-

tion: the elastic deformation due to present-day IMC and
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the viscoelastic deformation due to the isostatic adjustment

to past IMC, i.e. the glacial isostatic adjustment (GIA).

Satellite gravimetry and satellite altimetry measure these

superimposed signals in terms of gravity change and ele-

vation change, respectively, which allow to quantify GIA,

IMC, and thereby the contribution of ice sheets to sea level

change.

The GIA signals from geophysical forward models dis-

agree significantly due to different assumptions on ice load

histories, viscosity profiles (rheology), and the data and

methods used to constrain such underlying assumptions

(Whitehouse et al. 2019). In Greenland, GIA model outputs,

expressed in terms of equivalent surface mass change, vary

between −27 Gt a−1 and +21 Gt a−1 according to Shepherd

et al. (2019). The ice mass balance estimate of the GIS is

−255±20 Gt a−1 from 2005 to 2015 (Shepherd et al. 2019).

GIA forward models in Antarctica vary between +3 Gt a−1

and +81 Gt a−1 according to Shepherd et al. (2018) and from

+40 to +80 Gt a−1 according to Whitehouse et al. (2019).

The ice mass balance of the AIS is −105±51 Gt a−1 from

2003 until 2010 (Shepherd et al. 2018). In addition, a dis-

agreement in the spatial patterns of GIA forward modelling

results is evident to some extent for the GIS (Kappelsberger

et al. 2021) and to a large extent for the AIS (Whitehouse et al.

2019). Furthermore, GIA from geophysical modelling would

suggest a remarkable difference to GIA-induced bedrock

motion observed with GNSS in Antarctica (MartínspsEs-

pañol et al. 2016a) and in Greenland (Bevis et al. 2012;

Kappelsberger et al. 2021). This difference raises questions

on the rheological properties of the solid Earth. For example,

Barletta et al. (2018) showed that the high rates of bedrock

motion observed with GNSS in the Amundsen Embayment

region can be explained by a GIA effect due to a low man-

tle viscosity. Such low viscosity implies that the present-day

GIA is dominated by the recent decadal to centennial part of

the ice loading history which is so far not included in global

GIA modelling.

Wu et al. (2010), Rietbroek et al. (2016), and Jiang et al.

(2021) demonstrated the inverse determination of GIA using

geodetic data in a global framework as an alternative to rely-

ing on forward modelling results. Rietbroek et al. (2016)

co-estimated GIA in a global inversion framework using

GRACE and ocean altimetry data. They used five globally

consistent GIA fingerprints from geophysical GIA modelling

by Klemann and Martinec (2011) which are based on regional

ice histories. Rietbroek et al. (2016) found that the Antarc-

tic a priori fingerprint needed to be downscaled to 18% of

the initial fingerprint magnitude to obtain the best fit to the

data. The GIA fingerprint of Greenland is scaled to 77% of

its original magnitude. As a reason for the downscaling of

the prescribed Antarctic GIA pattern, we suspect that the true

GIA pattern and the prescribed GIA pattern are incompati-

ble. Thus, the true GIA cannot be effectively resolved by any

scaling of the prescribed GIA pattern (cf. Fig. S3). In con-

sequence, the unresolved GIA signals are misattributed as

IMC signals and vice versa. Jiang et al. (2021) incorporated

the GIA signal-covariance information in a global inversion

framework to loosen the dependence on geophysical mod-

elling results and to enable the revealing of GIA effects that

are not predicted by geophysical GIA modelling.

In order to derive IMC and GIA over ice sheets with-

out relying on GIA forward models, regional inversions

have combined geodetic satellite observations in Antarc-

tica (Riva et al. 2009; Gunter et al. 2014; Martín-Español

et al. 2016b; Sasgen et al. 2017; Engels et al. 2018). Gunter

et al. (2014) combined satellite gravimetry, altimetry, and

climate modelling products and provided regionally robust

estimates of IMC and GIA. Engels et al. (2018) built on

this approach and, with the additional inclusion of GNSS,

determined present-day GIA and IMC with an increased spa-

tial resolution. In contrast, Martín-Español et al. (2016b)

applied a statistical modelling approach. In this approach,

the authors derived the spatio-temporal characteristics of

the signals over the AIS from forward models and quanti-

fied the signals in a Bayesian framework using observations

from satellite gravimetry, altimetry, and GNSS. These three

types of observation are also used in the data combination

approach by Sasgen et al. (2017), while this framework

allows for determining lateral rheological heterogeneities.

These regional inversions presented strategies for obtaining

spatially resolved estimates of the present-day GIA effect

in Antarctica. However, these approaches cannot simply be

utilized in a global inversion framework. One reason is that

these approaches implement regional constraints to remove

bias in the GIA estimate (Willen et al. 2020).

Here, we present a global inversion framework with the

aim to improve the co-estimation of GIA and IMC from satel-

lite observations over ice sheets. This approach incorporates

three empirical estimation strategies: First, the approach uses

the combination of satellite gravimetry and altimetry with

climate and firn modelling products (Gunter et al. 2014).

Second, it builds on the estimation, in a global framework, of

scaling factors for GIA fingerprints related to the deglaciation

of particular regions (‘regional GIA fingerprints’) (Rietbroek

et al. 2016). Finally, the inversion framework makes use

of GIA patterns related to localized deglaciation impulses

(‘local GIA fingerprints’) for parametrizing GIA without

relying an a priori regional pattern (Sasgen et al. 2017). The

GIA parametrization by local GIA fingerprints is applied for

GIA associated to Antarctica where GIA patterns from for-

ward models are particularly unreliable, as discussed above.

The presented approach combines observations of satellite

gravimetry, satellite altimetry over the AIS and the GIS, as

well as climate and firn model products over both ice sheets.

Furthermore, the approach incorporates a parametrization of

volume changes of the ice sheets’ firn layer inherent in satel-
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lite altimetry observations, in order to accommodate errors

of climate and firn modelling results in quantifying these firn

volume changes.

We analyse the feasibility of this approach using simu-

lated signals and observations. We investigate the quality of

the estimates for ice mass change, firn volume change, and

GIA that can be expected depending on the input data quality.

For this purpose, we simulate realistic errors of the observa-

tions based on error covariances assessed from real data. We

perform three simulation experiments: (1) The observations

solely contain the geophysical signals without any error. (2)

The observations contain the geophysical signals and corre-

lated errors, but we only assume uncorrelated errors in the

parameter estimation. (3) The observations contain the geo-

physical signals and correlated errors. We account for the

error covariances in the parameter estimation. We perform

these three experiments with two variants of simulated obser-

vations. These two variants differ in terms of the GIA model

output that is used to generate the observations. To simplify

the simulation experiments, we focus on mass effects due to

IMC of ice sheets and GIA only and do not investigate the

ocean mass change contributors hydrology and glaciers in

this study. But eventually in a full inversion evaluating real

data, we will make use of a parametrization accounting all

contributors (e.g. Rietbroek et al. 2016).

Section 2 introduces the physical quantities and their rela-

tion to the observations over the ice sheets. In Sect. 3, we

present the methodology of the inversion approach and

describe how we set up the simulation environment. We

show the results of the simulation experiments in Sect. 4 and

discuss them in Sect. 5. The Supplementary Material (SM)

provides supporting information.

2 Theoretical background

We express temporal gravity field changes as equivalent sur-

face density changes in a spherical layer (also referred to as

area density changes) with the unit of mass per surface area.

The surface density change �κ at a position x can be devel-

oped into a series of spherical harmonic basis functions Ynm

of degree n and order m:

�κ(x) =

∞
∑

n=0

n
∑

m=−n

�κnmYnm(x). (1)

Following Wahr et al. (1998), a change of a Stokes coefficient

(�cnm) is converted to the spherical harmonic coefficient of

a surface density change

�κnm =
2n + 1

1 + k′
n

ME

4π R2
�cnm, (2)

where ME is the total mass of the Earth, R the semi-major

axis of the reference ellipsoid, and k′
n the load Love number

to account for the elastic solid-Earth deformation induced by

surface load variations.

We express the temporal change of physical quantities

(gravity, mass, volume, etc.) over a certain time period by

a mean rate of change over this period. This mean rate is

obtained in practice from fitting a linear function to the under-

lying time series. Although arising from a linear regression,

the mean rates do not intend to isolate any intrinsically linear

process. Therefore, nonlinear signals contained in the time

series are not a source of error for the determination of the

mean rates.

Mass redistributions due to GIA in the solid Earth (and to a

lesser extent in the ocean) lead to a change of Earth’s gravity

field, which can be expressed as the equivalent surface den-

sity rate κ̇gia. Likewise, mass changes of ice sheets and the

induced ocean mass change and the elastic load deformation

of the solid Earth lead to gravity field changes which can be

expressed by their equivalent surface mass change κ̇ imc. The

surface density rate κ̇total

κ̇total = κ̇ imc + κ̇gia + κ̇other, (3)

contains the IMC and GIA effects together with other effects

(κ̇other) such as terrestrial water mass changes that we do not

consider here, explicitly. Contributions from changing SMB,

κ̇smb, and changing ice dynamics, κ̇ id, induce IMC which can

be expressed as the sum of surface density rates in the firn

layer (κ̇firn) and surface density rates in the ice layer (κ̇ ice)

of an ice sheet

κ̇ imc = κ̇firn + κ̇ ice. (4)

For a large part κ̇firn is induced by changing SMB, and κ̇ ice

by changing ice dynamics.

The surface elevation rate over ice sheets, ḣtotal, is the

sum of elevation changes in the ice layer (ḣice), firn thickness

change (ḣfirn), the deformation of the solid Earth surface

(bedrock motion) due to GIA (ḣgia) as well as the elastic-

induced bedrock motion due to present-day load variations

(ḣela):

ḣtotal = ḣice + ḣfirn + ḣgia + ḣela. (5)

Analogous to κ̇ ice, ḣice is for a large part due to changing

ice dynamics. The density of pure ice (ρice =917 kg m−3)

links changes of the surface elevation in the ice layer ḣice

and of the surface density κ̇ ice:

ḣice =
κ̇ ice

ρice
. (6)
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The firn thickness change ḣfirn and the surface density

rate in the firn layer κ̇firn can be related by a firn density

ρfirn:

ḣfirn =
κ̇firn

ρfirn
. (7)

Alternatively, volume changes of the ice sheet’s firn layer can

be described using changes of the firn air content (FAC) ḣfac

(Ligtenberg et al. 2014). This enables the avoidance of the

firn density. Instead of Eq. 7 we can write

ḣfirn =
κ̇firn

ρice
+ ḣfac. (8)

We can rewrite Eq. 5 as

ḣtotal = ḣimc + ḣfac + ḣgia + ḣela, (9)

where

ḣimc =
κ̇ imc

ρice
=

κ̇firn + κ̇ ice

ρice
=

κ̇firn

ρice
+ ḣice. (10)

3 Materials andmethods

3.1 Inversion approach

Our aim is to jointly estimate GIA and IMC for both ice sheets

(GIS and AIS) from satellite gravimetry and satellite altime-

try. Unlike other combination strategies (e.g. Gunter et al.

2014), we do not suggest to address the effect of firn processes

in the altimetry observations by correcting for modelled firn

thickness changes in a deterministic manner. Instead, we use

modelled FAC as an additional observation subject to uncer-

tainties, and we co-estimate FAC jointly with GIA and IMC.

We set up a Gauss–Markov-model (or general linear

model or general regression model) (e.g. Koch 1999),

d + e = Xβ with C(d) = σ 2
P

−1, (11)

where the observations assembled in the vector d are linked

to the sought-for parameters assembled in the vector β by

the design matrix X . The vector e contains the residuals,

C(d) is the covariance matrix of the observation errors, P

is the weight matrix and σ 2 is the factor of unit weight. The

estimate β̂ of the parameters β and the error covariance of

the estimate C(β̂) are calculated by generalized least squares

adjustment (e.g. Koch 1999) as

β̂ = (X
T

P X)
−1

X
T

P d and C(β̂) = σ 2(X
T

P X)
−1

. (12)

More specifically, the observation vector d assembles the

following observations subject to errors ε: satellite gravime-

try data,

d
grav = Fgrav(κ̇total) + εgrav, (13)

represented as a set of spherical harmonic coefficients of sur-

face mass density change and containing the superimposed

signals according to (3). Fgrav is the forward operator, that

maps the signal κ̇total into the discrete gravimetry observa-

tions. The ice-sheet surface elevation changes observed by

altimetry with the altimetry forward operator Falt,

d
alt = Falt(ḣtotal) + εalt, (14)

are expressed in spatial grids covering the ice sheets and

contain the superimposed signals according to (5) and (9).

The modelled FAC changes with the forward operator Ffac,

d
fac = Ffac(ḣfac) + εfac, (15)

are likewise expressed in grids over the ice sheets and contain

the signal expressed by (8).

The parameter vector β contains parameters related to

GIA (βgia), to IMC (βIMC) and to FAC (βFAC). An additional

distinction of parts related exclusively to the AIS or the GIS

is indicated by according superscripts and subscripts. Hence,

the observation equation (11) reads

⎛

⎜

⎜

⎜

⎜

⎜

⎝

d
grav

d
gis-alt

d
gis-fac

d
ais-alt

d
ais-fac

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ e

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

X
grav
gia

X
grav

gis-imc
0 X

grav

ais-imc
0

X
gis-alt
gia

X
gis-alt

gis-imc
X

gis-alt

gis-fac
X

gis-alt

ais-imc
0

0 0 X
gis-fac

gis-fac
0 0

X
ais-alt
gia

X
ais-alt

gis-imc
0 X

ais-alt

ais-imc
X

ais-alt

ais-fac

0 0 0 0 X
ais-fac

ais-fac

⎞

⎟

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

βgia

βgis-imc

βgis-fac

βais-imc

βais-fac

⎞

⎟

⎟

⎟

⎟

⎠

. (16)

We describe the parametrization and the setup of the

design matrix in Sect. 3.2. The description of the simulated

observations and their error covariance information follows

in Sects. 3.3 and 3.4, respectively.

123

5 Publications

70



Feasibility of a global inversion for spatially resolved glacial isostatic adjustment… Page 5 of 21 75

3.2 Parametrization of signals

Glacial isostatic adjustment (GIA) Rietbroek et al. (2016)

and Sun and Riva (2020) demonstrated that fitting glob-

ally consistent fingerprints from GIA forward modelling to

GRACE observations in a global inversion framework rep-

resents a promising strategy to estimate the GIA signal.

However, as mentioned in Sect. 1, the GIA signal predicted

by geophysical models over Antarctica is uncertain (Shep-

herd et al. 2018; Whitehouse et al. 2019). Whitehouse et al.

(2019) showed that not just the magnitude but also the spatial

pattern of several GIA modelling results varies significantly

(Fig. 2 therein). The GIA patterns predicted by different

models are so different that scaling of one pattern cannot

reproduce another pattern. Moreover, we showed in a test

experiment that scaling a pattern inferred from a single GIA

model is inappropriate to resolve the pattern predicted by

an another GIA model (cf. Fig. S3). Albeit Rietbroek et al.

(2016) implemented a single Antarctic GIA pattern that dis-

agrees with GNSS observations for large parts (Thomas et al.

2011). We suspect that using a single Antarctic GIA finger-

print with inherent modelling errors—as done by Rietbroek

et al. (2016)—might be insufficient to resolve discrepancies

between observations and model predictions. This presum-

ably leads to the significant damping of the Antarctic GIA

fingerprint in the inversion results. Here, we propose an

extension of the fingerprint parametrization for Antarctica.

In case of Greenland, we argue that the parametrization using

a single fingerprint is appropriate, because the GIA pattern

does not need to be scaled as extensively to fit the data in

Rietbroek et al. (2016). Thus, we apply two methodological

approaches of either a more model-independent (AIS) or a

more model-dependent (GIS) GIA parametrization.

We parametrize GIA due to Antarctic glacial history based

on B globally consistent GIA patterns. Each pattern is based

on a generic glacial history at a single position represented

by a disk-shaped element on the Tegmark-grid (Tegmark

1996) used by the SELEN software (Spada and Melini 2019).

The glacial history is a step function in time where at 10 ka

before present an ice column is removed. This timing is moti-

vated by the approximate beginning of the Holocene. For the

generic glacial ‘impulses’ defined this way we model the

globally consistent viscoelastic response with the SELEN

software. These resulting GIA responses may be interpreted

as ‘GIA mascons’ or ‘globally consistent GIA radial-like

basis functions’. The shape of the GIA response to a deglacia-

tion impulse is similar to a Gaussian function (“bell curve”)

with a half response radius and one-sigma radius of ∼300

and ∼250 km, respectively (Fig. 1). The choice of the generic

deglaciation history and the rheology could be chosen within

wide limits, they induce patterns of present-day GIA grav-

ity field rates and bedrock motion rates that are similar to

patterns induced by different rheology and different deglacia-

tion histories, limited to the same local deglaciation source.

Therefore, the parametrized patterns may capture a large

range of realistic GIA signals.

We considered those AIS nodes of the Tegmark grid that

have an ice layer in the ICE-6G glacial history leading to a

full coverage of the Antarctic continent. We assume that the

ICE-6G glaciation history does not miss any larger regions

of deglaciation since the last glacial maximum. To reduce

the parameter space, we decimate the grid to an approximate

(a) (b)

Fig. 1 a The global pattern of the present-day GIA effect of a generic

ice history at one position in Antarctica, i.e. the normalized deglacia-

tion impulse response. The blue line indicates the section shown in (b).

Globally consistent GIA patterns were calculated for all highlighted

positions (black dots). b The section of the GIA pattern along a part of

the meridian of the deglaciation impulse centre shown in (a). The lower

x-axis is the ellipsoidal distance along the meridian from the centre

of the deglaciation impulse. The upper x-axis is the latitude along the

meridian. The green point in (a, b) highlights the South Pole
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spacing of 250 km, justified by the shape of the response func-

tions. Thus we obtain B = 189 Antarctic GIA parameters

related to 189 positions shown in Fig. 1a. Section 5 provides

further discussion of the chosen properties of these GIA

patterns.

Outside Antarctica, we parametrize GIA due to the glacial

history in Greenland, Laurentia, Fennoskandia, and other

regions (Patagonia, Barents and Kara Sea, etc., referred to

as Other) by 4 fingerprints from forward modelling similar

to fingerprints from Klemann and Martinec (2011) used in

Rietbroek et al. (2016). We generate these fingerprints by

GIA forward modelling using the SELEN software package

(Spada and Melini 2019). We isolated the ICE-6G glacial his-

tory (Stuhne and Peltier 2015) for each region and model the

GIA signal which would result solely from the loading vari-

ation in the selected regions. All model runs use the Green’s

function based on VM5a rheology included in the SELEN

software package. Caron et al. (2018) found that the C21-S21-

pattern of their optimized GIA result differed systematically

from the modelling result by Purcell et al. (2016) which is

based on the ICE-6G ice history with VM5a rheology (Fig-

ure S2 in Caron et al. 2018). Caron et al. (2018) attribute this

difference in the rotational feedback to an underestimated

mantle viscosity in their GIA result. We additionally include

2 fingerprints (one for C21 and one for S21) to capture a

potential residual GIA-induced rotational feedback compo-

nent that the other fingerprints do not account for.

The GIA parameters βgia are scaling factors for each of

the B + 6 prescribed global GIA patterns: B local Antarc-

tic patterns, 4 regional patterns, and 2 polar motion patterns.

With ξ1 . . . ξ B+6 denoting the representation of these pat-

terns in terms of the SH coefficients of the equivalent surface

density trends, the block of the design matrix X
grav
gia

that links

satellite gravimetry observations to GIA is

X
grav

gia
=

(

ξ1 ξ2 . . . ξ B+6

)

. (17)

The blocks of the design matrix X
ais-alt
gia

and X
gis-alt
gia

that

link observed surface elevation changes to the parametrized

GIA patterns realize the evaluation of GIA-induced bedrock

motion in the spatial domain at the positions of the AIS and

GIS grid nodes. For this purpose, the modelling results from

SELEN, representing the present-day geometric changes, are

used.

Hence, each row of X
ais-alt
gia

(and X
gis-alt
gia

, respectively)

contains the B + 6 parametrized bedrock-motion GIA pat-

terns evaluated at the grid position to which the row refers.

Once the GIA parameters are estimated as β̂gia

1 . . . β̂gia

B+6,

the estimated GIA signal at a position x is the weighted super-

position of the GIA patterns:

ˆ̇κgia(x) =

B+6
∑

b=1

β̂gia

b ξb(x). (18)

We use the software SELEN4 (Spada and Melini 2019)

for the computation, because it is a publicly available

open-source program and allows the gravitationally and topo-

graphically self-consistent solving of the sea level equation.

Furthermore, the rotational feedback and the migration of

shorelines are taken into account. So far, a 1-D Maxwell rhe-

ological profile is used.

We perform test experiments to demonstrate to what extent

the GIA parametrization is suitable to reproduce GIA signals

induced by different glacial histories and different Earth rhe-

ologies (Figs. S2–S5). The first test experiment uses a global

GIA signal that we model in the similar environment as we

use it for generating the GIA parameters, i.e. the SELEN

software run by ICE-6G ice history and VM5a rheology. In

the second and third experiment, we fit the parameters to

the present-day GIA signal from Caron et al. (2018). We

can resolve the GIA signal when we include the C21 and

S21 fingerprints demonstrated by the second test experiment

(Fig. S3). However, in the third test experiment we exclude

the C21 and S21 fingerprints to demonstrate their necessity.

Doing so, we could only partly resolve the original GIA

signal due to discrepancies of the C21 and S21 coefficients

between the GIA model from Caron et al. (2018) and the

parametrization (Fig. S4c, Figure S2 in Caron et al. 2018).

The fourth test experiment is a regional fit in the spatial

domain of the present-day GIA signal found by Barletta et al.

(2018).

Ice mass change (IMC) We parametrize IMC based on two

grids in Greenland and Antarctica. The grids are located over

the grounded ice sheets with a resolution of 50 km × 50 km

using the polar stereographic projections EPSG:3413 and

EPSG:3031 for GIS and AIS, respectively. This resolution

allows a spatially resolved estimation of IMC, similar to other

GRACE-derived products (Groh and Horwath 2021) and is

not computationally expensive. We assign a mass change to

each grid cell i with an area A. This mass change is trans-

ferred to the spherical-harmonic domain by assuming this

mass change is concentrated in a point (Pollack 1973). This

is done up to the maximum degree of 96 according to how

GRACE monthly gravity fields are provided (e.g. Mayer-

Gürr et al. 2018). We solve the sea level equation (Farrell and

Clark 1976) for each mass change to ensure mass conserva-

tion in the Earth system. Thereby, we assume the ice sheets

only exchange mass with the ocean. The globally consistent

set of spherical harmonic coefficients related to the i-th point

mass is ψ i . Furthermore, each ψ i can be transferred in the

spatial domain.

The matrix blocks of the design matrix which link the

gravimetry observations to the IMC-induced surface density

rate are X
grav

gis-imc
and X

grav

ais-imc
, each with a number of columns

equal to the number of grid cells either in Greenland u or
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Antarctica v:

X
grav

gis-imc
=

(

ψ1 ψ2 . . . ψu

)

X
grav

ais-imc
=

(

ψ1 ψ2 . . . ψv

)

. (19)

X
gis-alt

gis-imc
and X

ais-alt

ais-imc
link the satellite altimetry observa-

tions of the indicated ice sheet to the surface elevation change

caused by IMC and to the IMC-induced elastic deforma-

tion. Note that we retrieve the elastic pattern of the mass

change in each pixel by solving the sea level equation up

to degree 400 to obtain the intended altimetry resolution of

50 km (Sect. 3.3). X
gis-alt

ais-imc
and X

ais-alt

gis-imc
formally account for

the global elastic effect of AIS IMC on the altimetry obser-

vations over GIS and vice versa. Note that these effects are

negligibly small.

The parameter being estimated is the scaling factor of the

mass rate in each grid cell i (β̂i
imc

). Assuming a mass rate

of 1 kg a−1, we can write

β̂i
imc

· 1 kg a−1 = ˆ̇κ imc

i Ai . (20)

Firn Air Content (FAC) Similar to IMC, we use two grids

over the grounded ice sheets in Greenland and Antarctica to

parametrize FAC. The blocks of the design matrix which link

the altimetry observations to changes of FAC (X
gis-alt

gis-fac
and

X
gis-alt

gis-fac
) are identity matrices here, because we use the same

grids for the observations and parametrization (cf. Sect. 3.3).

Likewise X
gis-fac

gis-fac
and X

ais-fac

ais-fac
are identity matrices.

The parameter being estimated is the scaling factor of the

FAC-related elevation rate in the grid cell i (β̂fac

i ). Assuming

an elevation rate of 1 m a−1, we can write

β̂fac

i · 1 m a−1 = ˆ̇hfac

i . (21)

3.3 Synthetic signals and observables

In this section, we describe the synthetic environment we

use for the simulation experiments. To this end, we generate

synthetic signals, i.e. mean rates over a 10-year period for

GIA, IMC (ID and SMB), and FAC, which represent the

synthetic true signals in our investigations (Fig. 2). We choose

a 10-year period according to the availability of real data sets

(cf. Sect. 5.1). From those signals we compute observations

(Fig. 3). We simulate satellite gravimetry observations and

satellite altimetry observations. Additionally we use products

from regional climate and firn modelling to simulate pseudo-

observations for FAC. We use the same grids for altimetry and

FAC observations and for the IMC and FAC parametrization

(Sect. 3.2).

We generate the synthetic GIA signal (Fig. 2a+g) for the

first variant of observations (variant A) by forward modelling

using SELEN with the ICE-6G glacial history (Spada and

Melini 2019). The Stokes coefficients are converted to coef-

ficients of surface densities using Eq. 2. The model output

of the bedrock motion expressed by its spherical harmonic

coefficients is transferred into the spatial domain. For the

second variant of observations (variant B), we use the GIA

modelling output from Caron et al. (2018) which represents

an alternative GIA model derived from a different modelling

environment.

The RACMO2 SMB modelling product (Noël et al. 2018;

van Wessem et al. 2018) is the basis to compute κ̇smb. We

estimate changes of the SMB with respect to a reference

period. We choose the whole modelling period from Jan 1979

to Dec 2016 as the reference period. This is consistent with

the reference period of the IMAU-FDM firn thickness change

product (Ligtenberg et al. 2011). We remove the mean SMB

over this reference period from the SMB values to calculate

the surface mass balance anomalies and we cumulate the

anomalies, which is referred to as cumulated SMB anomalies.

We define κ̇smb (Fig. 2c+i) as the least-squares estimated rate

of cumulated SMB anomalies from Jan 2003 until Dec 2012.

The rate of the SMB-driven contribution to the mass balances

obtained in this way is −163 Gt a−1 (GIS) and −6 Gt a−1

(AIS).

Similarly, we obtain ḣfirn from the IMAU-FDM firn

thickness change product (Ligtenberg et al. 2011). ḣfirn

(Fig. 2d+j) is the least-squares estimated rate of the firn-

thickness change time series from Jan 2003 until Dec 2012.

We obtain FAC (Fig. 2e+k) from κ̇smb and ḣfirn following

Eq. 8. In result, the simulated volume rate of the FAC is

−289 km3a−1 and −10 km3a−1 for the GIS and the AIS,

respectively.

The synthetic ID signal (Fig. 2b+h) is obtained from

altimetry observations over ice sheets. We use the linear sur-

face elevation rates from altimetry observations (Schröder

et al. 2019; Strößenreuther et al. 2020) to define these sig-

nals with a minimum threshold of 0.05 m a−1 of the absolute

value of the observed surface elevation rate. Additionally in

Antarctica, we apply a mask based on McMillan et al. (2014)

to define regions where we assume ID-driven mass changes.

In Greenland, we apply a mask based on ice flow velocities

from Joughin et al. (2018) and use a minimum threshold of

1 m a−1 to define regions where we assume ID-driven mass

changes. We use ρice of 917 kg m−3 to convert surface eleva-

tion rates into surface density rates. The simulated rates of the

ID-driven contribution to the mass balances are −79 Gt a−1

(GIS) and −109 Gt a−1 (AIS). The obtained total rate of IMC

is −243 Gt a−1 (GIS) and −115 Gt a−1 (AIS).

To simulate gravimetry observations (Fig. 3a+g), we gen-

erate spherical harmonic coefficients of the surface density

rate in kg m−2 a−1 up to degree and order 96 according to a

typical GRACE level 2 product (e.g. Mayer-Gürr et al. 2018)

which allows a theoretical resolution up to approximately

208 km. To do so, we generate globally consistent coefficients
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2 The synthetic signals for GIS (a–f) and AIS (g–l) used for vari-

ant A of synthetic observations: bedrock motion due to glacial isostatic

adjustment (GIA), surface density change due to ice dynamics (ID),

surface density change due to surface mass balance (SMB), elevation

change due to firn thickness change from firn densification modelling

(FDM), the rate of the firn air content (FAC), and the elastic signal

due to surface load changes. Figure S1 illustrates the GIA signal from

Caron et al. (2018) which we use for generating variant B of synthetic

observations

123

5 Publications

74



Feasibility of a global inversion for spatially resolved glacial isostatic adjustment… Page 9 of 21 75

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3 The synthetic gravimetry (first column), altimetry observations

(second column), and FAC data (third column) for GIS (a–f) and AIS

(g–l) without errors (a–c and g–i) and including errors (d–f and j–l).

We transferred the gravimetry observations to the spatial domain for

illustration. We provide a figure of the errors in the SM (Fig. S3)
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of IMC from the synthetic IMC defined on the grids which

include the ocean response and solid-Earth elastic response.

First, we convert the mass change of each grid cell into its

spherical harmonic point mass representation (Pollack 1973)

and calculate the sum over all grid cells. Second, we solve

the sea level equation (Farrell and Clark 1976) to achieve

mass conservation in the Earth system. Along with this step

we compute the elastic deformation of the solid Earth due to

IMC (Fig. 2f+l). The synthetic gravimetry observable is the

sum of the globally consistent IMC coefficients and the GIA

surface density rates (Eq. 3).

The synthetic altimetry observable (Fig. 3b+h) is the sum

of the synthetic gridded surface elevation rates due to ID, firn

thickness change, GIA, and elastic bedrock motion (Eq. 5),

evaluated over the grid for GIS and AIS.

3.4 Stochastic error characterization

We represent the covariance matrix C(d) as a composite

block matrix of the [l × l] covariance matrices C(d
grav),

C(d
gis-alt), C(d

gis-fac), C(d
ais- alt), and C(d

ais- fac). In

case of gravimetry observations, l = (n + 1)2 − 1, the num-

ber of spherical harmonic coefficients. In case of altimetry

observations and FAC data, l is the number of grid cells for

either the GIS or the AIS.

Here, we assume that the error covariance matrix for

gravimetry observations C(d
grav) can be identified with the

inverse of the normal equations provided along with ITSG-

Grace2018 (Mayer-Gürr et al. 2018) using the approach

by Kvas et al. (2019) which includes background model

uncertainties (Kvas and Mayer-Gürr 2019). We base the

uncertainty information of the surface density rates on the

mean covariance matrix of the monthly solutions over the

period from Jan 2003 to Aug 2016. This averaging period

avoids the months of exceptionally low quality solutions

(Loomis et al. 2020). We assume no temporal correlations

of GRACE monthly solution errors. In case of degree 1,

we empirically estimate the covariance using an ensemble

of degree-1 solutions and we ignore covariances between

degree 1 and the other degrees. The SM (Sect. B) provides

more details how we estimate C(d
grav).

For altimetry observations, we retrieve the spatial covari-

ance information (C(d
gis-alt) and C(d

ais-alt)) from an

ensemble of surface elevation rates from CryoSat-2 data

(from Jan 2011 to Dec 2019) for GIS and AIS. The ensemble

has 140 members for both GIS and AIS, including solutions

obtained by 7 retrackers (AWIICE2, EWIDTH, ICE1, ICE2,

OCEAN, OCOG, TFMRA), 4 topographic fits, and 5 inter-

polation methods. To implement uncorrelated noise, we add

a variance of (0.01 m a−1)2 to the diagonal of the covariance

matrix, which is the median variance from the ensemble of

surface elevation changes. The empirical error covariance

thus obtained includes effects of temporal error correlations

in the time series that underlie the 140 ensemble members of

mean rates.

We characterize the uncertainty of FAC (C(d
gis-fac) and

C(d
ais-fac)) similar to Willen et al. (2020): We approach the

uncertainty of FAC by differences between two variants of

FAC rates assuming that these differences express modelling

errors. One variant is computed based on the RACMO2 SMB

and the IMAU-FDM. The other variant is calculated using

MAR SMB output from Fettweis et al. (2017) and Agosta

et al. (2019) for GIS and AIS, respectively, and empirical

relations between SMB variations and FAC variations estab-

lished based on IMAU-FDM results (Willen et al. 2020). We

calculate differences of the FAC rates between both vari-

ants over all 10 year time periods over the whole modelling

period, i.e. we use a 10-year moving window with monthly

increments. The time periods where SMB and FDM outputs

are available are Jan 1960 to Dec 2015 and Jan 1979 to Dec

2016 for GIS and AIS, respectively, resulting in two ensem-

bles of FAC rates with 553 (GIS) and 337 (AIS) members.

Finally, the spatial covariance of each FAC rate is computed

empirically using the ensembles. Similarly to the altimetry

observations, we add a variance of (0.01 m a−1)2 to the diag-

onal of the covariance matrix. The empirical error covariance

thus obtained includes the effect of temporal error correla-

tions in the time series that underlie the ensemble members

of mean rates.

Note that no FDM forced by MAR outputs is available.

Therefore, our uncertainty characterization of FAC trends

does not fully account for the uncertainty from firn modelling.

Results by Verjans et al. (2021) for East Antarctica suggest

that the uncertainty of firn model outputs is predominantly

related to the uncertainty of their climate model inputs, rather

than to uncertainties in the modelling of firn densification

mechanisms.

We calculate the multivariate normal random vector ǫ,

containing the random variables from the covariance infor-

mation C(d) assuming a multivariate normal distribution

with an expectation vector of 0. To ensure reproducibility, we

use the pseudorandom number generator Mersenne Twister

(Matsumoto and Nishimura 1998) initialized with the same

seed to compute a realization of ǫ, i.e. the errors ε.

3.5 Experimental setup

Here, our aim is to perform three kinds of experiments with

two variants of synthetic observations (variants A and B).

We base the observations of the variant A on the GIA out-

put from SELEN run with ICE-6G ice loading history. This

variant is consistent to the GIA parametrization (Sect. 3.2).

Alternatively, we use the GIA modelling output from Caron

et al. (2018) to compute the observations of the variant B

(Sect. 3.3). In Experiment 1A (E1A) and Experiment 1B

(E1B), observations contain no errors and we apply a weight-
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ing based on the full spatial covariance (Sect. 3.4). Thus, we

demonstrate potential misattribution of signal as an error by

using the covariance information. In Experiment 2A (E2A)

and Experiment 2B (E2B), the observations contain corre-

lated errors (Sect. 3.4) but during the estimation we pretend

uncorrelated errors only. To do so, we apply a weighting

matrix P̃ which only contains the diagonal elements from

P (Eq. 11). With this experiment we investigate whether

real, possibly unknown correlations can be safely neglected

in the inversion. In Experiment 3A (E3A) and Experiment

3B (E3B), the observations contain correlated errors and we

involve the full covariance information during the parameter

estimation.

To enable comparison of the results from the experiments,

we calculate the root mean squares (RMS) of the signals. For

example, for the synthetic true GIA-induced surface density

rate in Antarctica, the RMS signal is

RMSGIA
AIS =

√

√

√

√

1

v

v
∑

i=1

(κ̇gia

i )
2
. (22)

Further, we assess the results from the experiments by the

misfit between the original signal and the estimated signal.

For example, the RMS of the Antarctic GIA misfit is:

�RMSGIA
AIS =

√

√

√

√

1

v

v
∑

i=1

(κ̇gia

i − ˆ̇κgia

i )
2
. (23)

In case of GIA, we perform this integration over the GIS

and AIS and include a buffer zone of 400 km around the area

of the grounded ice sheet (Gunter et al. 2014) because the

GIA signal is not limited to this area.

Moreover, we calculate the integrated mass and volume

rates of the signals, e.g. for the synthetic true GIA and FAC

signal in Antarctica,

Ṁgia

ais
=

v
∑

i=1

κ̇gia

i Ai (24)

V̇ fac

ais
=

v
∑

i=1

ḣfac

i Ai (25)

Table 1 Results from Experiments 1A, 2A, and 3A (E1A, E2A, E3A) that use the SELEN ICE-6G output as the synthetic GIA signal and results

from Experiments 1B, 2B, and 3B (E1B, E2B, E3B) that use the GIA modelling output from Caron et al. (2018)

GIA IMC FAC

RMS in RMS Ṁ in |Ṁ | RMS in RMS Ṁ in |Ṁ | RMS in RMS V̇ in |V̇ |

kg/m2 a ratio Gt/a ratio kg/m2 a ratio Gt/a ratio mm/a ratio km3
/a ratio

Greenland ice sheet

signalA 8.1 −17.5 154.7 −242.7 454.8 −288.7

E1A 0.3 4% 1.0 6% 1.0 1% −1.2 0% 2.6 1% 1.2 0%

E2A 0.3 3% 0.3 2% 18.0 12% −1.1 0% 49.0 11% 11.6 4%

E3A 0.3 4% 0.8 5% 3.7 2% −1.1 0% 13.8 3% 0.7 0%

signalB 7.1 11.0 154.7 −242.7 454.8 −288.7

E1B 7.3 104% 25.5 231% 7.7 5% −16.7 7% 17.3 4% 12.7 4%

E2B 7.1 100% 20.2 184% 19.2 12% −25.2 10% 52.3 11% 27.0 9%

E3B 7.3 103% 24.8 225% 11.9 8% −17.3 7% 30.7 7% 14.3 5%

Antarctic ice sheet

signalA 8.9 98.8 55.5 −114.7 27.1 −10.0

E1A 1.1 13% 5.4 5% 0.9 2% −5.9 5% 1.6 6% 5.8 58%

E2A 7.4 83% −16.7 17% 8.6 16% 22.5 20% 12.3 46% −15.3 153%

E3A 2.8 31% 7.6 8% 2.3 4% −8.9 8% 10.8 40% 6.9 69%

signalB 7.9 117.8 55.5 −114.7 27.1 −10.0

E1B 1.3 17% 13.3 11% 1.0 2% −7.5 7% 1.4 5% 5.7 57%

E2B 8.8 111% −36.2 31% 8.7 16% 55.7 49% 12.6 47% −23.5 235%

E3B 4.0 51% 6.3 5% 3.5 6% 3.5 3% 11.1 41% −2.2 22%

The root mean square (RMS) values refer either to the synthetic signal (Eq. 22, lines marked as ‘signalA’, ‘signalB’) or to the RMS error (�RMS,

Eq. 23, lines marked as E1A, E2A, E3A, E1B, E2B, E3B). The RMS ratio is the RMS error divided by the RMS signal. Ṁ and V̇ (Eqs. 24, 26) are

integrated values over the indicated ice sheet either of the synthetic signals (lines marked as ‘signalA’, ‘signalB’) or of the error of the experiments

(lines marked as E1A, E2A, E3A, E1B, E2B, E3B). |Ṁ | and |V̇ | ratios are the absolute values of the integrated error divided by the integrated

synthetic signals
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and the integrated misfit. For example for the Antarctic

GIA and FAC this is

�Ṁgia

ais
=

v
∑

i=1

(κ̇gia

i − ˆ̇κgia

i )Ai (26)

�V̇ fac

ais
=

v
∑

i=1

(ḣfac

i − ˆ̇hfac

i )Ai . (27)

4 Results

Table 1 presents the results of the experiments conducted with

the two variants of observations (variants A and B) in context

to the original signals (Sect. 3.3). We list RMS values (Eq. 22)

and the integrated mass and volume changes (Eq. 24) of the

original GIA, IMC, and FAC for the AIS and GIS. Addition-

ally, we show the misfit in terms of �RMS (Eq. 23) and the

integrated misfit (Eq. 26) from each experiment. The ratio

of the RMS of the misfit (RMS error) and the RMS of the

signals indicates the relative noise level of the results. The

ratio of the integrated difference and the integrated signals

(|Ṁ| ratio and |V̇ | ratio in Table 1) reveal the deviation of

the results from the original signal. Figures 4, 5, 6 and S8–

10 show maps of the estimated signals for GIS (a–c in each

figure) and AIS (g–i in each figure), along with the misfit in

Greenland (d–f in each figure) and in Antarctica (j–l in each

figure). In Figure S11, we compare degree amplitudes of the

original GIA signal, the Antarctic GIA signal, and the misfit

from E2A and E3A.

In case of variant A experiments deviations of integrated

results are only 6% at maximum (Table 1) in Greenland.

Moreover, results from E1A and E3A in Greenland have only

a small IMC and FAC misfit, reflected by small �RMS val-

ues (Table 1); however, results from E2A have a noticeable

misfit. The misfit is mainly present in coastal regions in addi-

tion to some random inland oscillations (Fig. 4e+f). For the

results of the variant B experiments, these statements also

generally apply to estimates of IMC and FAC in Greenland.

In contrast, the deviations in the estimated GIA are very large.

The RMS ratio is approximately 100% in all three variant B

experiments. Note that the deviation ratio of integrated results

is very large because the original integrated GIA effect from

Caron et al. (2018) over Greenland is small (the original GIA

effect is 11 Gt a−1 and the estimate from E3B is 25 Gt a−1).

In Antarctica deviations of integrated results are in the range

of 3–11% in case of GIA and IMC from E1A, E1B, E3A,

and E3B results (Table 1). The E2A and E2B results dif-

fer from the synthetic truth by 17% and 31%, respectively

(integrated GIA signal) and by 20% and 49%, respectively

(integrated IMC signal). FAC results in Antarctica deviate

considerably from the synthetic truth. In E2A and E2B, the

integrated FAC volume change of the AIS deviates most by

−15.2 km3a−1 and −23.5 km3a−1, respectively, from the

−10.0 km3a−1 true signal (Table 1). Note that the integrated

FAC signal in Antarctica is relatively small compared to the

other signals.

Despite the fact that E1A and E1B do not include any

observational errors, the errors of retrieved signals from

those experiments are not negligible. The �RMS values are

between one third and one half of the magnitude of �RMS

values from E3A and E3B for AIS GIA and AIS IMC. For

GIS GIA and GIS IMC, E1A �RMS is equal to E3A �RMS

and E1B �RMS is equal to E3B �RMS. Except for GIS GIA,

the E3A/E3B results deviate less than the E2A/E2B results

from the synthetic truth, in terms of both �RMS values and

integrated differences (Table 1). Notably, the RMS ratio of

AIS GIA is 31% in E3A compared to 83% in E2A; and 51%

in E3B compared to 111% in E2B. But also, for example, the

RMS ratio of GIS IMC is 2% in E3A compared to 12% in

E2A; and 8% in E3B compared to 12% in E2B. For Green-

land, the misfit maps for IMC and FAC show a significant

discrepancy for E2A/E2B (Fig. 4e+f, S10e+f), and somewhat

less for E3B (Fig. 6). In Antarctica differential maps (Fig. 4j–

l, 5j–l, S10j–l, and 6j–l) further illustrate that E3A/E3B

results deviate less from the synthetic truth than E2A/E2B

results. In Antarctica spatial correlations (Fig. 3j+k) are less

present in E3A/E3B results than in E2A/E2B results. This is

visible by IMC estimates from E2A/E2B (Fig. 4k, S10k) and

E3 (Fig. 5k, 6k). The spatial patterns of the Antarctic GIA

misfit (Fig. 4j, S10j) and the IMC misfit (Fig. 4k, S10k) are

opposed to some degree.

The GIA signal we used for variant A observations is

consistent to GIA parametrization with respect of their mod-

elling environment. The integrated misfit of the GIA signal

in Greenland is 1 Gt a−1 at maximum in all A experi-

ments. Differences are small (Fig. 4d, 5d). Regarding the

Antarctic GIA estimate, the misfit is considerably larger

in E2A/E2B than in E3A/E3B (Fig. 5j, 6j, Fig. 4j, S10j),

although typical GRACE error patterns are still visible for

E3A/E3B. The E2A �RMS of the Antarctic GIA signal

is 7.4 kg m−2 a−1 (Table 1), which is close to the RMS of

the original GIA signal of 8.9 kg m−2 a−1 (8.8 kg m−2 a−1

and 7.9 kg m−2 a−1 in case of E2B). When we consider the

full spatial covariance information (E3A/E3B), the �RMS

decreases to 3.0 kg m−2 a−1/4.0 kg m−2 a−1. In the spectral

domain, the GIA misfit of E2A and its excess over the GIA

misfit of E3A are mainly present between degree 10 and 80

(Fig. S11a).

For the results from variant B experiments, we can sum-

marize for the estimated GIA: In Greenland, the error of the

GIA estimate from E1B–E3B is as large as the original GIA

signal. Taking the spatial correlations into account does not

improve the GIA result in Greenland. This is different in

Antarctica where the integrated GIA misfit of the E3B result

deviates by 5% from the original GIA signal which is close
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to the 8% deviation of the E3A result. However, the RMS

ratio of the estimated GIA effect is larger for E3B than for

E3A (51% vs. 31%). The error degree amplitudes of the esti-

mated GIA (Fig. S6) are also larger for the E3B GIA result

than for the E3A result in the degree range from 12 to 32.

This is mainly due to the misfit of the variant B experiments

outside Antarctica.

5 Discussion

5.1 Conceptual assumptions

Six conceptual assumptions are paramount in our synthetic

experiments.

(1) We assume that we have full knowledge of observational

uncertainties (Sect. 3.4). We compute the covariance

information from real data and synthesize the errors from

it. Thus, the weighting in the parameter estimation is con-

sistent to the errors present in the synthetic observations.

In reality, knowledge about uncertainties is incomplete

so that the error characterization may deviate from the

actual error characteristics.

(2) We assume that altimetry observations are available with

full spatial coverage. The orbit design (inclination) of

altimetry missions and steep slope topography limit spa-

tial sampling and lead to a polar gap and unobserved

regions (e.g. valleys). In our experiments, we do not

directly investigate effects due to sampling issues. How-

ever, we use the spread between the results of different

interpolation methods in the altimetry ensemble to char-

acterize errors in the altimetry products (Sect. 3.4).

(3) We base the experiments on a period of 10 years. This

is motivated by the period of availability of CryoSat-2

observations. For CryoSat-2, limitations addressed by

point (2) are less severe than for other missions (Schröder

et al. 2019). Obviously, errors in the calculated rates

would be smaller over longer periods of time, with the

restriction that correlated errors decrease less with a

longer observation period than uncorrelated errors do.

However, we do not quantify the error reduction with

longer periods here, because analytical error models are

not available and we estimate uncertainties empirically

based on the chosen time period (Sect. 3.4).

(4) In the synthetic experiments, we incorporate mean rates

of IMC and FAC only. We did not yet generalize the

approach to analyse interannual variations of IMC and

FAC or to analyse time-variable rates of the ice dynamic

contribution to the mass balance which are in particular

present in the West Antarctic Ice Sheet (Willen et al.

2021).

(5) We generate the GIA parametrization with the GIA mod-

elling software SELEN (Spada and Melini 2019), which

is publicly available. The modelling results generated

with SELEN determine the relationship between GIA-

induced gravity changes and geometry changes. We do

not use an effective density to define the ratio of GIA-

induced gravity change and the GIA-induced geometry

change (e.g. Riva et al. 2009; Gunter et al. 2014; Engels

et al. 2018). Furthermore, by the assumptions on generat-

ing the Antarctic GIA patterns (Sect. 3.2), we essentially

specify a formal spatial GIA resolution of ∼250 km.

Thus, the chosen Antarctic GIA parametrization can only

hardly reproduce GIA changes at smaller spatial scales,

e.g. as the GIA effect found by Barletta et al. (2018)

(Fig. S5).

(6) We do not investigate other signals in addition to IMC

of ice sheets and GIA (κ̇other in Eq. 3), e.g. terrestrial

water redistributions, which we expect to be small over

GIS and AIS.

5.2 Capabilities and limitations of the approach

In Greenland, we parametrize GIA with a single regional

fingerprint which exactly matches the GIA signal to be

estimated in terms of assumed ice history and rheology in

variant A observations. Results from all experiments demon-

strate that the estimate of the GIA signal in Greenland is

robust against observational errors. This emphasizes that

the fingerprint parametrization is a globally consistent and

robust method. In addition, the relatively small magnitude

of the integrated GIA signal in Greenland (Table 1) means

that errors in the Greenland GIA recovery do not crucially

affect the global inversion results. For example, Rietbroek

et al. (2016) obtained a difference between the estimated

Greenland fingerprint and the modelled Greenland finger-

print equivalent to only −0.003 mm a−1 global mean sea

level. In general, the chosen parametrization strategy relies

on knowledge of the ice history and the solid-Earth rheol-

ogy. With the variant A experiments, we investigate the ideal

case. With variant B simulated observations, we investigate

the case when deviations between the modelled GIA finger-

prints and the synthetic true GIA signal exist. We find that

the fingerprint for Greenland created with SELEN and the

ICE-6G glacial history restricted to Greenland is hardly able

to resolve the present-day GIA effect predicted from Caron

et al. (2018). Because the fingerprint can only be scaled as

a whole, deviations affect the entire GIA signal represented

by the fingerprint. This is especially problematic if the dom-

inating spatial scale of errors in ice history and rheology are

regional or local, as shown by Kappelsberger et al. (2021)

and Adhikari et al. (2021). We confirm that large continental-

scale fingerprints are inappropriate for the regional or local

improvement of the GIA information.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

A A

kg kg

Fig. 4 Results from Experiment 2A (E2A): estimated signals (a–c and

g–i) and the difference to the original signals (d–f and j–l) for GIA-

induced bedrock motion (first column), IMC-induced surface density

change (second column), and FAC change (third column). The observa-

tions contain correlated errors and any correlations are neglected during

the parameter estimation
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5 Results from Experiment 3A (E3A): estimated signals (a–c and

g–i) and the difference to the original signals (d–f and j–l) of GIA-

induced bedrock motion (first column), IMC-induced surface density

change (second column), and FAC change (third column). The observa-

tions contain correlated errors, and the covariance information is used

during the parameter estimation
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

kg kg

Fig. 6 Results from Experiment 3B (E3B): estimated signals (a–c and

g–i) and the difference to the original signals (d–f and j–l) for GIA-

induced surface density change (first column), IMC-induced surface

density change (second column), and FAC change (third column). The

observations contain correlated errors and the covariance information

is used during the parameter estimation
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In Antarctica, we apply a different strategy for the GIA

parametrization, because we assume that spatial GIA pat-

terns from geophysical modelling may have substantial errors

(Sect. 1). The Antarctic GIA parametrization is consistent

to geophysical GIA modelling by using the local deglacia-

tion impulses to create the globally consistent GIA patterns,

but remains independent from any full GIA modelling based

on a prescribed glaciation history. This model-independent

parametrization is less robust against observational errors.

For degrees larger than 30, the effect of GRACE errors on the

GIA retrieval is larger than the GIA signal itself (Fig. S6). If

error covariances of the observations are not addressed (E2A

and E2B), the integrated GIA signal will be still relatively

close to the truth, but the noise level of the estimated signal

will be similar to that of the signal itself (Table 1). In that

case, the Antarctic GIA RMS error (�RMS) is 83%/111%

(E2A/E2B) of the RMS of the Antarctic GIA signal. This can

be considerably improved by including the covariance infor-

mation in the parameter estimation. In this case the RMS

error is 31%/51% of the RMS signal (E3A/E3B). The incor-

poration of the full covariance information also improves the

estimates for IMC and FAC. We thus caution that any real

data analysis, using the localized GIA parametrization in a

global inversion, will only provide meaningful results if the

error covariance information is available and utilized.

The formal spatial resolution of our AIS GIA parametriza-

tion is determined by the spacing between the local deglacia-

tion discs, that is, ∼250 km. This spacing is guided by

the autocorrelation of the addressed GIA signal. To further

justify our choice of spacing, we made GIA parametriza-

tion test experiments (Sect. A in the SM) and found that

our parametrization recovers the ICE-6G(VM5a) GIA sig-

nal with only small misfits.

The effective spatial resolution of the AIS GIA retrieval

may be assessed through comparing signal and error per

spherical harmonic degree (Fig. S11a). For E3A, the ampli-

tude of the Antarctic GIA signal exceeds the GIA error

amplitude below degree 45, indicating an effective resolu-

tion of ∼450 km. Note that the GIA errors of the inversion

are dominated by Antarctic GIA errors in the variant A exper-

iments. This is different in variant B results, where the GIA

misfit is dominated by misfits due to the incompatible finger-

prints outside of Antarctica (Fig. S11b).

There are some degrees of freedom in the generation of

the GIA patterns from deglaciation impulses. The shape of

the response (Fig. 1) depends on the choice of the generic

ice loading history and the assumed rheology. For example,

shifting the time of the instantaneous deglaciation step fur-

ther to the past (or to the present) would lead to wider (or,

respectively, narrower) GIA patterns.

A present-day GIA signal resulting from ice loading

changes during the last centuries and a comparatively low

mantle viscosity, as the GIA signal Barletta et al. (2018)

found in West Antarctica (Fig. S5), involves smaller spatial

scales than the GIA signals predicted by, e.g. Caron et al.

(2018). Other inversion frameworks aim to account for GIA

signals resulting from the centennial ice loading changes and

a low viscosity (Jiang et al. 2021), whereby their results show

present-day GIA effects mainly on long spatial wavelengths

(Fig. 7 in Jiang et al. (2021)). The smaller spatial scales

of the modelled signal from Barletta et al. (2018) would

require gravity fields with higher spatial resolution, prefer-

ably up to degree ∼200 (∼100 km is the approximate half

width of the found GIA feature). In that case, our approach

could be adapted by using a localized GIA parametrization

that captures the expected spatial scales. For this purpose,

the time of the deglaciation impulse could be modified as

well as the distance between the patterns and thus the num-

ber of parameters to be estimated. Likewise, the viscosity

could be adjusted. Further test experiments with GIA mod-

els that include heterogeneity of the viscosity and ice loading

history during the last centuries may help to find an appro-

priate GIA parametrization for a GIA signal on short spatial

wavelengths. However, the applied parametrization strategy

does not allow to invert for the glacial history or rheological

parameters. Attributing the GIA signal inherent in satellite

gravimetry observations to an ice history and rheological

parameters is ambiguous and needs further boundary infor-

mation.

We completely avoid filtering or regularization in the

experiments and only apply the covariance information to

account for errors. However, results from E1A and E1B (the

error-free experiments) demonstrate that the incorporation of

error correlations in the stochastic model may entail patterns

of signal misattribution that are correspondingly correlated.

That is, the separation of error patterns and signal patterns is

imperfect. Besides, it should be noted that the uncertainty

characterization we present here is an assumption on the

observational covariance information based on available data

sets.

Gunter et al. (2014) linked the surface density rate due to

SMB and the firn thickness rate by a firn density (Eq. 7). This

density is subject to large uncertainties (Willen et al. 2020),

especially if the volume and mass rates are small and need

further constraints. We link mass and volume changes by

parametrizing FAC changes in addition to IMC. This allows

to avoid the firn density (Eq. 7). FAC has the important advan-

tage that it is linearly related to altimetry observations and

can thus be directly implemented in the general linear model

(Sect. 3.1) without linearization, as would be the case using

a firn density.

By the study design, we neglect far-field effects due to

hydrological or glacier mass changes (κ̇other in Eq. 3), which

is a limitation in our simulation setup and potentially leads

to too optimistic results. We quantified the effect of mass

changes originating outside of Antarctica and Greenland
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from Jan 2003 until Dec 2012 using a global inversion for

all sea level contributions (Rietbroek et al. 2016; Uebbing

et al. 2019). Hydrological mass changes have an integrated

effect of 0.4 Gt a−1 and −1.0 Gt a−1 within in the grounding

line of the GIS and AIS, respectively. Glacier mass changes

have an effect of 1.4 Gt a−1 (GIS) and 10.5 Gt a−1 (AIS). We

conclude that these effects are relatively small and justify

neglecting them in this simulation study.

As discussed in Sect. 1, uncertainties of GIA forward mod-

els for the AIS are on the order of tens of Gt a−1 in terms

of the integral mass effect. If GIA forward models are used

to correct for GIA in GRACE IMC estimates, GIA model

errors directly map (with opposite sign) into the IMC errors.

For E3A and E3B, the AIS GIA error is below 10 Gt a−1

(Table 1), significantly lower than the uncertainty of GIA

forward models. This low GIA error is reflected in an accord-

ingly low IMC error for E3A and E3B. Its sign is opposite

to that of the GIA error and is below 10 Gt a−1, too. Hence,

the inversion is a promising approach to significantly reduce

the uncertainty of GRACE AIS IMC inferences, previously

related to GIA uncertainties.

5.3 Outlook

The next step will be obviously to implement the presented

approach in a framework to process real-world data. The syn-

thetic experiments demonstrate that the GIA parametrization

presented here is appropriate to resolve GIA. In our ongo-

ing research, we will incorporate the obtained findings into

a global framework which is able to estimate all sea level

contributions (Rietbroek et al. 2016; Uebbing et al. 2019). It

will be investigated how the new GIA parametrization affects

the GIA-related uncertainty in IMC and ocean mass change

estimates and in sea level budget assessments under the con-

ditions of the full global inversion.

We see potential for extending the approach by enabling

the investigation of temporal variations of IMC and FAC

rather than constant rates. For this purpose, the approach can

be adapted so that time series with monthly resolution can be

evaluated and, in line width Rietbroek et al. (2016), monthly

IMC, monthly changes in FAC and a linear GIA effect can be

estimated. However, this requires further investigation of the

spatial and temporal covariance of both the involved signals

and the observation errors.

Furthermore, real data results on the present-day GIA

effect derived with the approach might hold some potential

for investigation of the glacial history or lateral rheology het-

erogeneity. This might requires further development of the

GIA patterns, i.e. the parametrization of GIA, beyond the

1-D rheology and the deglaciation impulses.

6 Conclusions

The inversion that we propose here uses a globally consis-

tent parametrization of GIA and allows a co-estimation of

GIA together with changes of the ice mass and the firn air

content in Greenland and Antarctica. It enables to process, in

a global framework, three types of observations available as

five datasets: satellite gravimetry, satellite altimetry over GIS

and AIS, as well as modelled firn air content over GIS and AIS

in a single least-squares parameter estimation step. Loosen-

ing the dependence on geophysical GIA models of previous

GIA parametrizations is paramount to our approach. The use

of a set of ‘local GIA patterns’ (more precisely, global GIA

patterns based on local deglaciation impulses) holds promise

to spatially resolve GIA patterns that are not identified by

geophysical GIA modelling and therefore not part of mod-

elled regional GIA fingerprints.

In turn, a GIA parametrization through a large number

of local GIA patterns is less robust and therefore more sen-

sitive to the details of error covariance information of the

input data. We assessed this covariance information from

real observations of the five data sets and demonstrated that

the set of GIA patterns is able to spatially resolve a physi-

cally meaningful present-day GIA effect in Antarctica that

results from ICE-6G ice history and VM5a rheology. In this

case the RMS error of the spatially resolved Antarctic GIA

signal is about one third of the RMS of the GIA signal over

an observation period of 10 years assuming ideal observing

conditions and full knowledge of the covariance informa-

tion. This RMS error increases up to half of the RMS of

the GIA signal in Antarctica when we aim to resolve the

GIA signal predicted by an alternative GIA model. Longer

observation periods would lead to smaller errors of the mean

rate, which we do not quantify here, because we characterize

errors empirically over the 10-year observation period. From

the experiments we conclude: If errors of the input data sets

are thoroughly characterized, a GIA parametrization by local

GIA patterns can plausibly resolve the GIA-induced defor-

mation from satellite observations in a global framework.

On the other hand, if the error covariances are unknown,

error and signal cannot be clearly distinguished in the GIA

result. In this feasibility study, we limit the investigations to

one realization of the GIA parametrization. As a caveat, we

neglect for hydrological and glacier mass changes outside

of the ice sheets in our simulation study, but which need to

be accounted for when evaluating real world data. However,

global inversion results according to Rietbroek et al. (2016);

Uebbing et al. (2019) show rather small far-field effects over

ice sheets.
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6 Inversion of real data for glacial isostatic

adjustment and ice mass changes in Antarctica

The simulation study of the approach presented in P3 was subject to some simplifications, but P3 proved

the feasibility of the inversion method. The next step is to apply the approach to real data. This chapter shows

results of a first experiment with a focus on Antarctica where real-world data was combined. Note that this

experiment focuses only on mass redistributions without considering steric sea level changes. The imple-

mentation in the full inversion for all sea level components should be the task of future work (Chapter 7).

With the focus on Antarctica, the parametrization and choice of observations are modified here. The

experiment here restricts to the following data sets: (1) global gravity fields, dGRAV, (2) surface elevation

changes of the AIS, dAIS-ALT, and (3) changes of the FAC of the AIS, dAIS-FAC. Here, satellite altimetry

and FAC changes of the GIS are not explicitly implemented. Furthermore, glaciers and hydrology are

parametrized, because, when using real-world global gravity fields, mass changes of glaciers and hydrology

reservoirs cannot be neglected. The observation equation (Eq. 16 in P3) is adjusted to the specific case here

as follows:
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. (6.1)

P3 did not include the parameters for glacier mass changes, βGLAC, and continental hydrology mass

changes, βHYD. The matrices XGRAV
GIS-IMC, XGRAV

GLAC , and XGRAV
HYD link gravity field changes associated with IMC

of the GIS, glaciers, and hydrology, respectively. Glacier mass changes and continental hydrology mass

changes are parametrized with 68 and 60 globally consistent fingerprints, respectively, from Rietbroek et al.

(2016) and Uebbing et al. (2019). In contrast to P3, the parametrization of IMC in Greenland applies 16

fingerprints for the 8 drainage basins of the GIS (Zwally et al., 2012). For this purpose, each basin is divided

into a part below and above 2000 m surface elevation, i.e. in total 16 sub-basins of the GIS. The mass

change of each sub-basin is not assumed to be uniform. Instead, a more realistic mass change pattern within

each sub-basin is chosen based on mean rates of surface elevation changes derived from CryoSat-2 satellite

altimetry (updated according to Helm et al., 2014). The mass change pattern of each sub-basin is then used

to create a globally consistent fingerprint (cf. Sect. 3.2 in P3). The remaining parameters, β, and design

matrices, X , are chosen analogously to P3.

The observations, d, are mean rates according to the time period from Jan 2011 until Dec 2020. The

mean rate of gravity changes is derived from ITSG-Grace2018 (Mayer-Gürr et al., 2018) products which are

based on GRACE and GRACE-FO observations. These level-2 products have a low noise level compared

to other products, with retaining almost completely the signal (Ditmar, 2022). The gravity fields are com-

plemented with degree-1 products derived according to Swenson et al. (2008), Bergmann-Wolf et al. (2014),
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6 Inversion of real data for glacial isostatic adjustment and ice mass changes in Antarctica

and Sun et al. (2016). c20 coefficients, and c30 coefficients in case of GRACE-FO and GRACE accelerome-

ter failures, are replaced with Satellite Laser Ranging products (Loomis et al., 2020). The surface elevation

changes are derived from updated CryoSat-2 products according to Helm et al. (2014). The variant used here

is the median of the altimetry ensemble in P3. Finally, the FAC changes are derived from the RACMO2.3p2

SMB product (Wessem et al., 2018) and the IMAU-FDM v1.2A firn-thickness change product (Veldhuijsen

et al., 2022). Surface elevation and FAC changes are resampled to a grid of 50 km × 50 km by calculating

the mean of all observations within a grid cell.

The error covariance information utilized in P is the same as implemented in Experiment 3 in P3. Fur-

thermore, variance components for the three observational groups gravimetry, altimetry, and FAC changes

are introduced and iteratively adjusted via variance component estimation (Koch, 1999).

Initial tests showed strong spatial oscillations of the GIA result in Antarctica. This is reduced using a

Tikhonov regularization (Tikhonov et al., 1995) by extending the normal equation (cf. Eq. 12 in P3) with a

regularization matrix, Ψ:

β̂ = (N +Ψ
T
Ψ)−1n (6.2)

N = XTPX (6.3)

n = XTPd. (6.4)

Here, Ψ is designed to only regularize the Antarctic GIA parameters, βGIA,ANT. Ψ is a square matrix with

the two dimensions equal to the total amount of parameters. The non-zero elements are

ψij = εδij , i, j = 1, ..., 189. (6.5)

189 is the number of Antarctic GIA parameters and ε is the regularization factor. This factor is chosen

according to a trade-off between minimizing the norm of the residuals, ∥e∥2 =
√
eTe, and minimizing the

norm of the parameters, ∥βGIA,ANT∥2. This trade-off between a best-fit solution and a short solution vector,

i.e. a simple solution in terms of Occam’s razor, can be determined using the L-curve criterion (Hansen,
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Figure 6.1: The L-curve illustrating the trade-off between the norm of residuals and the norm of estimated Antarctic
GIA parameters depending on the regularization factor ε.
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Figure 6.2: The results (a–c) and their formal uncertainties (d–f) of the inversion experiment using real-world data
from Jan 2011 to Dec 2020. a+d, b+e, and c+f illustrate GIA-induced bedrock motion, IMC-induced surface den-
sity change, and FAC changes, respectively. The uncertainties are two times of the standard deviation from error-
covariance propagation.

2001). Figure 6.1 illustrates the relation between the norm of residuals and the norm of parameters in

dependence on the regularization factor of the real-data example. Based on the L-curve test (Figure 6.1), a

regularization factor of ε = 0.5 is chosen.

The results of the experiment, which are in focus here, are estimates of GIA bedrock motion in Antarc-

tica, AIS IMC, and AIS FAC changes (Figure 6.2a–c). Figure 6.2d–f show the formal uncertainties. The

uncertainties of the parameters are derived from the propagated error covariance information of the observa-

tions (e.g. Menke, 2012). Integrated over the grounded AIS the IMC is (−150 ± 5) Gt a−1, and the change of

FAC is (40 ± 5) km3 a−1. The Antarctic GIA mass effect integrated over the AIS with a buffer zone amounts

to (72 ± 4) Gt a−1. The indicated uncertainties are two times of the formally propagated standard deviation.

The inversion experiment using real-world data leads to integrated quantities similar to estimates of IMC

and the GIA effect published elsewhere (Shepherd et al., 2018). The integrated GIA mass effect is within

the range of GIA predictions presented by Whitehouse et al. (2019). Notably, this result is estimated in a

globally consistent framework without applying any conventional filtering strategies like Gaussian smooth-

ing or a decorrelation filter. The spatial pattern is comparable to other inverse GIA estimates (Riva et al.,

2009; Gunter et al., 2014; Engels et al., 2018; Martín-Español et al., 2016b). Main differences to these GIA

estimates exist in East Antarctica, where in particular Engels et al. (2018) (Figure 6.3) and Sasgen et al.
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Figure 6.3: The estimated GIA-induced surface density change from an inverse approach applied in this this study
shown in (a) and from an alternative inverse approach applied in Engels et al. (2018) shown in (b). (c) illustrate the
difference of both estimates (a−b). The results in (a) and (b) are based on different data sets over different time
intervals: Jan 2011 to Dec 2020 (a) and Feb 2003 to Oct 2009 (b).

(2017) found significant uplift rates. Additionally in West Antarctica there is disagreement in the southern

part of the Ross Ice Shelf. Further, the magnitude and location of the maximum uplift in the Amundsen

Sea Embayment differs (Figure 6.3). Interestingly, the results indicate a negative bedrock motion in the

Getz Ice Shelf region (∼120°–130°W). This anomaly (ªGetz bubbleº) is not predicted by forward models

(Whitehouse et al., 2019), but is apparent in the GIA estimates according to Sasgen et al. (2017), Engels et al.

(2018) (somewhat offshore in Figure 6.3), and Riva et al. (2009) (clipped in Fig. 3a in Riva et al. (2009), but

visible in Fig. 2f in Martín-Español et al. (2016a)). Part of this anomaly may be explained by a missing sig-

nal content in the altimetry observations compared to gravity fields from GRACE and GRACE-FO (Sasgen

et al., 2019). Radar altimetry measurements only capture points with the highest surface elevation within

the footprint. This leads to an incomplete sampling of surface elevation changes especially in steep-slope

topography regions. For example, surface elevation changes due to changing IFD in narrow valleys may

remain unobserved (Schröder et al., 2019). The inversion attributes this systematic difference in the signal

content due to sampling issues to an artificial GIA effect. As another reason, the parametrization is limited

to the grounded AIS. This parametrization misses the peripheral glaciers, e.g. on the islands offshore Getz

Ice Shelf. Potentially, this is a region of interest for further investigation.

A task of future work is to validate the preliminary results presented here with GNSS measurements and

geophysical modelling results. Further, the sensitivity of the inversion results towards applying alternative

data products should be investigated, e.g. with newly available altimetry time series (e.g. Nilsson et al.,

2022) and alternative GRACE/GRACE-FO level-2 products. Additional methodological developments hold

promise to further improve the results, e.g. the regularization (Equation 6.5) can be tuned to fit GIA-induced

bedrock motion from GNSS observations or other external information. Also the IMC parametrization will

be extended in future work to include peripheral glaciers. Furthermore, future investigations may find a

strategy to tackle the systematic differences between satellite gravimetry and altimetry products in regions

with steep-slope topography, e.g. the regions of outlet glaciers. And, of course, another upcoming task

is to implement this Antarctica-focused estimation strategy in the global inversion framework allowing to

estimate all contributions to sea level change (Chapter 7).
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The methodology presented in P3 (Willen et al., 2022) and findings from Chapter 6 should be utilized in

a global inversion framework allowing to estimate all contributions to sea level change. For this purpose, the

approach according to Rietbroek et al. (2016) needs to be extended by implementing additional parameters

for IMC and GIA. In the case of Antarctic IMC, the framework from Rietbroek et al. (2016) is originally

designed to monthly estimate 27 scale factors for 27 drainage basins (Zwally et al., 2012). Rietbroek et al.

(2016) parametrized the present-day GIA effect using five regional GIA patterns, including one pattern for

the Antarctic GIA signal. To spatially resolve GIA in Antarctica, the single Antarctic GIA pattern could be

replaced by 189 local patterns as demonstrated in P3. The co-estimation of the additional GIA parameters

could be enabled by implementing additional observational information from satellite altimetry over ice

sheets. But, the parametrization of IMC with 27 fingerprints would be too coarse to allow a joint estimation

of IMC and GIA. According to P3, Antarctic IMC could be parametrized on a grid of 50 km × 50 km,

i.e. with 4755 parameters. As in Rietbroek et al. (2016), GIA could be parametrized as a linear trend with

constant rate over time, whereby IMC and other parameters will be resolved monthly. This assumption

of linearity over time in case of GIA would allow to computationally simplify the estimation strategy by

applying a linear parameter transformation (e.g. Section C.5 in Rietbroek, 2014).

The determination of the present-day GIA effect using geodetic observation methods (inverse GIA es-

timation), as it is also the subject of this work, serves primarily to reduce the GIA-related uncertainty in

gravimetric mass balance estimates. As stated in Chapter 1, different GIA modelling results vary signif-

icantly, especially in Antarctica, since the assumptions about ice history and solid-Earth rheology deviate

extensively (Argus et al., 2014). Thus, the measurement of bedrock motion by GNSS and the combination

of satellite gravimetry and satellite altimetry were able to reveal GIA-induced changes of the solid Earth

which were hardly included in GIA modelling results, e.g. in the Amundsen Sea Embayment (Groh et al.,

2012). This raises questions for the geophysical models to represent the local and regional settings of rhe-

ology as well as all parts of the rheology-relevant ice history. For example, the late Holocene ice loading

history is not included in the ice history so far (Whitehouse et al., 2019). But this Holocene ice history

is particularly relevant to explain the solid-Earth response in the Amundsen Sea Embayment which is on

decadal to centennial, and not millennial, time scales. This is because of the postulated low viscosities in

this region (Barletta et al., 2018). Geodetic observational methods may also help to constrain and extend

the geophysical models in future work, e.g. as done by incorporating information from GNSS in GIA mod-

elling in the Amundsen Sea Embayment (Barletta et al., 2018), in Greenland (Adhikari et al., 2021), and in

global GIA models (Caron et al., 2018). Argus et al. (2021) even constrained the solid-Earth rheology with

GRACE and GNSS observations. The continuous observation of Earth’s gravity and geometry changes as

well as estimated rheological properties from seismological measurements (Ivins et al., 2021) may further

improve GIA modelling results in the near future and hold promise to enhance the understanding of GIA

beyond medium confidence (Fox-Kemper et al., 2021).

Moreover, the causal processes that lead to IMC require further investigation. In future work investi-

gations on sources of IMC from data combinations may be helpful in understanding the more Greenland-

specific processes, such as surface melting, seasonal variations of IFD, and adjustment processes of the GIS

to climate change. In Antarctica a major uncertainty is the dynamic stability of the APIS and the WAIS
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in the future. Diener et al. (2021) quantified the acceleration in the AIS ice discharge which significantly

matters in projecting Antarctica’s contribution to sea level change. Further, Barletta et al. (2018) predicted

also stabilizing effects due to the bedrock uplift in the Amundsen Sea Embayment which could somewhat

counteract an accelerating IFD contribution to the mass balance. Another major uncertainty in the AIS mass

balance originates from the uncertainty of the mass balance of the EAIS (Fig. 2 in Shepherd et al., 2018).

Firstly, this is due to the mentioned uncertainty of the present-day GIA effect. Geophysical models even

predict the present-day GIA effect with different signs in East Antarctica (Whitehouse et al., 2019). Further-

more, the most part of the East Antarctic bedrock is inaccessible for a direct observation of the bedrock mo-

tion. Secondly, different SMB modelling results (Mottram et al., 2021) and firn modelling results (Verjans

et al., 2021) show significant differences in the EAIS. Possible climate trends in the SMB and firn thickness

change may have been neglected so far. Thirdly, there is ambiguity of a potential ongoing adjustment of

IFD in East Antarctica to climate changes in the past (Zwally et al., 2015; Richter et al., 2016). As shown

in P2, separating these three long-term changes is a key challenge in the evaluation of satellite observations.

The understanding of GIA in East Antarctica would benefit from a possibility to observe the GIA-induced

solid-Earth deformation independent from gravimetry and altimetry. For the second point, climate trends in

East Antarctica, investigations of large-scale variations observed by satellite gravimetry and altimetry may

further contribute to understanding the climate variability of the (E)AIS. These large-scale variations are

related to atmospheric interannual variability, e.g. the El Niño-Southern Oscillation (ENSO), the Southern

Annular Mode (SAM), or the Antarctic Circumpolar Wave (ACW). Investigations of interannual patterns

and their causes with satellite methods were pursued by Horwath et al. (2012), Mémin et al. (2015), Kaitheri

et al. (2021), and Shi et al. (2022). Last but not least, trends in the basal mass balance of the grounded ice

sheet are an open question that remains unconsidered in ice mass balance studies so far.

Satellite missions launched a few years ago and future missions will provide data products with im-

proved quality of gravity field changes (e.g. Pail et al., 2019) as well as of surface elevation changes over

ice sheets (e.g. Nilsson et al., 2022). They will continuously extend the time period in which observational

data sets are available. The improved product quality is expected to increase both the precision and accuracy

of IMC estimates. Further, a longer total observation period and a higher spatial resolution will potentially

allow to extent the temporal and spatial parametrization applied in P2 and P3. Beyond data combination

approaches, data assimilations of observational data from gravimetry, altimetry, and GNSS into ice sheet

models and GIA models could help to answer questions about the process implementations in these models.

Another step further beyond, it may be possible in the future that global inversion approaches allow to deter-

mine surface mass changes in such a precise way that other solid-Earth signals, e.g. from core dynamics, can

be estimated (Dumberry and Mandea, 2022). Nevertheless the following challenges will remain in future

work when combining multiple observational and model data: (i) Justify assumptions when parametrizing

the geophysical processes, (ii) account for quality limitations due to errors and sampling of the observa-

tional data, (iii) characterize the uncertainty of modelling results, and (iv) find appropriate observation(s)

independent of the estimate to assess the results.
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Products derived from satellite gravimetry and satellite altimetry as well as regional climate and firn

modelling reveal high agreement over the ice sheets in Greenland and Antarctica (Figure 3.2). This work

examines, how these products can be combined to attribute mass as well as volume changes, inherent in

observed gravity and geometry changes, to their sources. Within the three publications combination methods

have been investigated and developed with a focus on resolving the present-day GIA effect in Antarctica.

This has been pursued to improve estimates of the contribution of the ice sheets to global sea level change.

In P1 it was demonstrated that an inverse approach to resolve GIA according to Gunter et al. (2014)

in Antarctica is highly sensitive to input data sets. It was shown, that a major source of uncertainties are

degree-1 and c20 products used to complement GRACE monthly gravity fields. There is a practical strategy

to remove the bias introduced by degree-1 and c20 products. This bias correction and filtering applied

during data processing leads to robust results, but regionally constraints the estimate and revokes global

consistency. This disables to utilize this inverse approach in a global inversion framework, e.g. the one

presented by Rietbroek et al. (2016). Further, the approach hardly allows to account for the temporal and

spatial sampling characteristics of the used sensors. A side investigation from Kappelsberger et al. (2021),

applying this approach to Greenland, demonstrated that it was not possible to extract a meaningful GIA

estimate for Greenland so far. The uncertainty characterization of the SMB and the firn thickness products

revealed the challenges of the signal separation on trend level between sources of mass and volume changes

in the firn or ice layer of the ice sheet.

This challenge was explored in P2 by utilizing a state space approach for time series of Antarctic

drainage basins. To separate the sources of mass and volume changes, they were parametrized by their

temporal characteristic. It is distinguished between (i) long-term changes observed commonly by altime-

try and gravimetry which are likely induced by changes of IFD, an (ii) short-term changes resulting from

SMB/firn fluctuations and (correlated) errors. It was possible to fit the accelerated ice-dynamical loss in

West Antarctica without the artificial selection of separate periods with constant trends such as determin-

istic models may use, e.g. several mean rates for various time periods. The found long-term variability of

the ice-dynamic signal is low in East Antarctica. Remarkably, a positive long-term contribution at almost a

constant rate was found e.g. in Dronning Maud Land and Enderby Land of the EAIS. This raises questions

upon interpretation of long-term errors or potential long-term thickening. So far, it was not attainable to

attribute all of the separated short-term signals to specific sources.

The feasibility of a methodology that enables to spatially resolve the present-day GIA effect in Antarc-

tica in a global inversion framework was investigated in P3. It was shown that it is possible to co-estimate

present-day GIA, IMC, and FAC over both ice sheets in this global framework by the integrated use of

information from satellite gravimetry, satellite altimetry, regional climate modelling, and firn modelling.

With the presented methodology, it is possible to resolve GIA patterns in Antarctica that are not predicted

by geophysical GIA modelling. In the study, the input-data uncertainty was characterized using real world

observations. Further, it was concluded that the uncertainty characterization accounting for spatially cor-

related errors is essential to obtain sound results. Otherwise, the detected signals may vanish in the noise

of the estimate. In a regional application of the methodology from P3 to Antarctica (Chapter 6), over the

time interval from Jan 2011 to Dec 2020, an IMC of (−150 ± 5) Gt a−1 and a GIA-induced mass effect of
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(72 ± 4) Gt a−1 is estimated.

For Antarctica the findings presented here confirm the different spatio-temporal characteristic of IMC

between the West and the East Antarctic Ice Sheet. A promising methodology has been found to co-estimate

the present-day GIA effect by combining data sets in the presence of realistic data quality limitations. This

provides the possibility to determine the present-day GIA effect as an alternative to GIA modelling results,

which differ strongly in Antarctica (Whitehouse et al., 2019). It can be expected that future GIA modelling

results will further improve by accounting for the broader range of the ice history on decadal to millennial

time scales. In addition to that local and regional specific settings of the Earth structure, such as distinguish-

ing between East and West Antarctica (Coulon et al., 2021) and implementing 3-D Earth models (Wal et al.,

2015; Bagge et al., 2021) will improve GIA modelling results. In Greenland, the integrated GIA mass effect

is small compared to the IMC, i.e. GIA modelling errors are a smaller issue in gravimetric mass balance esti-

mates compared to Antarctica. Nevertheless, GIA modelling results disagree in Greenland, too (Figure 2.3).

But compared to Antarctica, smaller improvements in the IMC can be expected here by co-estimating the

present-day GIA with a gravimetry-altimetry combination.

Finally, it is worth noting that the quantification of the present-day GIA effect from satellite geodetic

observations is very relevant to geodynamic questions, in addition to questions about the mass balance of

the ice sheets. Observations allow the detection of mismatches that are not predicted by GIA modelling.

However, it remains the task of GIA modelling to reconcile the rheology of Earth materials and the load-

ing history, but probably with the aid of (future) geodetic satellite observations. From the observational

perspective, combining satellite gravimetry and satellite altimetry data is so far the only access to solid-

Earth deformation of regions covered with ice, since in these areas there is no direct observation of bedrock

motion.
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List of Abbreviations and Symbols1

Abbreviations

ACW Antarctic Circumpolar Wave
AIS Antarctic Ice Sheet
APIS Antarctic Peninsula
CE centre of mass of the solid Earth
CF centre of the Earth’s surface figure
CM centre of mass of the Earth system
DFG Deutsche Forschungsgemeinschaft (English: German Research Foundation)
EAIS East Antarctic Ice Sheet
ECMWF European Centre for Medium Range Weather Forecast
EL equilibrium line
ENSO El Niño-Southern Oscillation
Envisat Environmental Satellite
ERA ECMWF re-analysis
ERS European Remote Sensing Satellite
ESA European Space Agency
EWH equivalent water height
FAC firn air content
FDM firn densification model
GIA glacial isostatic adjustment
GIS Greenland Ice Sheet
GL grounding line
GNSS Global Navigation Satellite System
GRACE Gravity Record And Climate Experiment
GRACE-FO GRACE-Follow-On
ICESat Ice, Cloud and Land Elevation Satellite
ICGEM International Centre for Global Gravity Field Models
IFD ice flow dynamics
IMAU Institute for Marine and Atmospheric Research Utrecht
IMBIE Ice sheet Mass Balance Inter-comparison Exercise
IMC ice mass change
IPCC Intergovernmental Panel on Climate Change
ITSG Institute of Geodesy Graz
MAR Modèle Atmosphérique Régional (English: Regional Atmosphere Model)
OMCG Reconciling ocean mass change and GIA from satellite gravity and altimetry
P publication
RACMO Regional Atmospheric Climate Model
SAM Southern Annular Mode
SARIn Synthetic Aperture Radar Interferometric
SELEN sea level equation solver
SM supplemental material
SMB surface mass balance
SPP special priority programme
WAIS West Antarctic Ice Sheet
WCRP World Climate Research Programme

1This list refers to abbreviations and symbols used in the framework paper only. Abbreviations and symbols used in the
publications (Chapter 5) are explained therein.
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List of Abbreviations and Symbols

Symbols

β parameter vector
Γ Green’s function
∆ difference
δij Kronecker delta
ϵ unit vector
ε regularization factor
θ colatitude
κ surface density
λ latitude
ρ mass density
Φ centrifugal potential
Ψ regularization matrix
ω Earth’s rotation vector
a normalization factor
CRSL uniform shift of the relative sea level
c Stokes coefficient
D region or Domain
d data or observation vector
e residual vector
G gravitational constant
g gravity field
g gravity
gradV or ∇V gradient of V , V is an example of a scalar field
h surface elevation or height
h′, k′, l′ load Love numbers
I function of ice thickness variation
i, j indices
l distance between mass element, dM , and x

M mass
N normal equation matrix
N geoid height
n right side of the normal equation
n,m degree and order
O ocean function
P weighting matrix
P Legendre function
R real space
R earth radius or semi-major axis of reference ellipsoid
r distance to geocentre
S relative sea level
t time
V gravitational potential
V volume
W gravity potential
X design matrix
x position vector
Y spherical harmonic basis function
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A State space vectors and matrices

Here we provide details on the contents of the vectors and matrices that we use to setup our state space

model. We use the following dimensions in our models: the state coefficient dimension m = 14, the

number of time series p = 2 and the number of epochs n. The [m × 1] state vector αi contains the time

variable model coefficients αi for times ti, i = 1, ..., n, and it reads in our case:

αi = [µv
i ν

v
i c

v
i,1 c

∗v
i,1 c

v
i,2 c

∗v
i,2 ζ

v
i µ

m
i ν

m
i c

m
i,1 c

∗m
i,1 c

m
i,2 c

∗m
i,2 ζ

m
i ] (S1)

with trend µi and rate νi; cycle (seasonal harmonic) terms ci and c∗i with subscripts 1 and 2 for annual

and half-annual cycles, respectively; AR(1) process component ζi, and superscripts v denoting the volume

time series from the ALT–FDM combination and m denoting the mass time series from GRACE–cSMBA. The

accompanying disturbances can be put in the vector ηi:

ηi = [0 ξv
i ω

v
i,1 ω

∗v
i,1 ω

v
i,2 ω

∗v
i,2 ψ

v
i 0 ξ

m
i ω

m
i,1 ω

∗m
i,1 ω

m
i,2 ω

∗m
i,2 ψ

m
i ] (S2)

1



Where in our models the trend level positions are empty as we do not include trend level disturbances, as

these would add too short-term variations to the trend. Furthermore, trend level disturbance would cause

model redundancy as these short-term variations are already modeled with the AR(1) process.

The [p×m] design matrix Zi connects the state vector αi to the [p× 1] observations yi:

yi = Ziαi + ǫi (S3)

The design matrix has non-zero elements for the positions of trend levels µi, cycles ci,j and AR(1) ζi terms:

Zi =

[

1 0 1 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 1 0 1

]

(S4)

The [m×m] transition matrix Ti translates the state at epoch i to the state at epoch i+ 1:

αi+1 = Tiαi +Qi (S5)

As we set up our state space model as (see main text for details on the components):

yi = µi +
∑

j

ci,j + ζi + ǫi (S6)

Ti becomes for our model:

Ti =

































1 dti 0 0 0 0 0 . . .

0 1 0 0 0 0

0 0 cos(λ1dti) sin(λ1dti) 0 0 0

0 0 −sin(λ1dti) cos(λ1dti) 0 0 0

0 0 0 0 cos(λ2dti) sin(λ2dti) 0

0 0 0 0 −sin(λ2dti) cos(λ2dti) 0

0 0 0 0 0 0 φdti

...
. . .

. . .
...

1 dti 0 0 0 0 0

0 1 0 0 0 0

0 0 cos(λ1dti) sin(λ1dti) 0 0 0

0 0 −sin(λ1dti) cos(λ1dti) 0 0 0

0 0 0 0 cos(λ2dti) sin(λ2dti) 0

0 0 0 0 −sin(λ2dti) cos(λ2dti) 0

. . . 0 0 0 0 0 0 φdti

































(S7)

Matrix Qi [m×m] contains disturbance η variances and covariances:

Qi = Σηdti (S8)

2



with

Ση =
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(S9)

We equate disturbance variances for ω∗ to ω and set their correlations to 1. We do not include disturbance

covariances between different type of components. Matrix H contains the irregular component variance-

covariances [p× p]:

Hi = Σǫdti =

[

σ2ǫv cov(ǫv, ǫm)

cov(ǫv, ǫm) σ2ǫm

]

dti (S10)

B State estimation filters

B.1 Kalman filter

The Kalman filter estimates from Yi = y1, ..,yi (the observations up to the current epoch i) the filtered state

[m× 1] a:

ai+1 = E(αi+1|Yi) (S11)

3



and its [m×m] error variance

Pi+1 = var(αi+1|Yi) (S12)

in a forward iteration i = 1, .., n. The Kalman filter consists of the five equations (Durbin & Koopman,

2012):

vi = yi −Ziai

Ki = TiPiZ
T
i (Fi)

−1

ai+1 = Tiai +Kivi

Fi = ZiPiZ
T
i +Hi

Pi+1 = TiPi(Ti −KiZi)
T +RiQiR

T
i

(S13)

where [p × 1] vi is the prediction error with [p × p] variance Fi and [m × p] Ki is the Kalman gain; Ri

is commonly an identity matrix. We initialise the filtered state a1 with zero and its error P1 with a large

number (104). We make an exception for the initial error variance of ζ1 that we equate with σ2ψ (the AR(1)

disturbance variance) to force the AR(1) process to start at zero for the first epoch.

B.2 State smoother

As the filtered estimate ai of αi is based only on observations up to epoch i, the estimate ai improves

progressively when more observations have been filtered, i.e. with time. To estimate the state α̂i and its

[m×m] error variance Vi using all observations Yn = y1, ..., yn, we use a so-called smoother. The smoother

consists of a backward loop for t = n, ..., 1 (chapter 4.4.4 of Durbin and Koopman (2012)). The smoothed

state and its variance matrix are defined as:

α̂i = E(αi|Yn) (S14)

and its [m×m] error variance

Vi = var(αi|Yn) (S15)

The smoother equations are:

ri−1 = ZT
i F

−1
i vi +LT

i ri

Li = Ti −KiZi

α̂i = ai + Piri−1

Ni−1 = ZT
i F

−1
i Zi +LT

i NiLi

Vi = Pi − PiNi−1Pi

(S16)

where [m × 1] vector ri is called the weighted sum of innovations and [m ×m] matrix Ni the weighted

sum of the inverse variances, with rn = 0 and Nn = 0.

B.3 Disturbance smoother

An alternative smoother computes smoothed estimates of disturbances ǫ and η (chapter 4.5 of Durbin and

Koopman (2012)):

ǫ̂i = E(ǫi|Yn) η̂i = E(ηi|Yn) (S17)
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These are calculated using the following recursion for ti = n, ..., 1 by:

ui = F−1
i vi −KT

i ri

Ni−1 = ZT
i DiZi + TT

i NiTi −ZT
i K

T
i NiTi − TT

i NiKiZi

ǫ̂i = Hiui

η̂i = QiR
T
i ri

Di = F−1
i +KT

i NiKi

ri−1 = ZT
i ui + TT

i ri

var(ǫi|Yn) = Hi −HiDiHi

var(ηi|Yn) = Qi −QiR
T
i N

T
i RiQi

(S18)

With additional [p × 1] smoothing error vector ui and [p × p] variance matrix Di. We use the distur-

bance smoother for optimizing the disturbance variances as in that case the state itself does not need to be

estimated.

B.4 Missing observations

If missing observations are present in one of the two time series, which is the case for GRACE data, we can

update the state for the missing time series using an extrapolation (Durbin & Koopman, 2012). To do so, wi

are the indices of those dimensions that have observations, and we use a masking matrix Wi(wi,wi) = 1

to make an alternative design matrix:

Z∗
i = WiZi (S19)

Similarly for the irregular covariance matrix and observation we use adapted matrices and vectors:

H∗
i = WiHi

y∗
i = Wiyi

(S20)

Subsequently, the matrices and vectors of Zi, Hi and yi can be replaced by Z∗
i , H∗

i and y∗
i in the equations

for the Kalman filter, smoother and disturbance smoother (Eq. S13, S16, S18). The result will be that the

state of the unobserved dimension is extrapolated using Ti and ai only without an update from Ki.

B.5 Estimation of additional parameters

As we do not have reliable prior information about the disturbance variances and covariances Σǫ and Ση

we aim to obtain the (co)variances that lead to the best fit with the observations Yn. The same holds for the

AR(1) coefficients φ. We estimate optimal values for these parameters by maximising the likelihood L(y).

L(y) = p(y1, ...,yn|Σǫ,Ση,φ) (S21)

More in specific, we maximize the log of the likelihood logL instead, which equals (chapter 7.2 of Durbin

and Koopman (2012)):

logL(Yn) = −n
2
log(2π)− 1

2

n
∑

i=1

(

log|Fi|+ vT
i Fivi

)

(S22)
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The log-likelihood is thus dependent on the (forward) prediction error v and its variance F , computed by

equation S13. We maximise logL for disturbance parameters Σǫ and Ση, using the expectation-maximisation

algorithm (EM-algorithm) and that should always lead to increasing log likelihood. Koopman (1993) pro-

vides equations for iterative updates of disturbance variance-covariance matrices Ση and Σǫ (with correc-

tions from Durbin and Koopman (2012)):

Σ̄ǫ = Σ̃ǫ +
1

n
Σ̃ǫ

n
∑

i=1

(

uiu
T
i −Di

)

Σ̃ǫ (S23)

Σ̄η = Σ̃η +
1

n− 1
Σ̃η

n
∑

i=1

(

ri−1r
T
i−1 −Ni−1)Σ̃η (S24)

with updates denoted with a bar and previous values denoted with a tilde. Smoother vectors and matrices ui,

Di, ri and Ni are determined using the disturbance filter. The EM-algorithm is applied until convergence of

logL has been reached. The EM-algorithm searches for a local optimum only, which means that it is impor-

tant to start with an educated guess for the disturbance parameters. To find optimal values for φ we optimize

logL in a grid search in the φ range [0.6 1]. Notably, variances initially set to zero, will stay zero during

the iteration, and correlations set to 1 will stay 1 during the application of the EM-algorithm. Correlations

resulting from equation S24 between different type of disturbance components we do not preserve.

C Estimation of values for comparison

C.1 Mean time-variable rate

For comparison with the deterministic trends with a constant rate, we also compute the mean rates over the

full time interval ∆t:

ν =
1

∆t

n
∑

i=1

νidti (S25)

where we use a slightly different definition of the time step dti than before to perform the integration:

dti =











(ti+1 − ti)/2 if i = 1;

(ti − ti−1)/2 if i = n;

(ti+1 − ti−1)/2 else.

We obtain the uncertainty of the average rate σν by propagation of smoothed error variances of the estimated

time variable rate σ2
νi

, and the temporal auto-covariances of the estimated (smoothed) rate σνij .

σν =
1

∆t

√

√

√

√

n
∑

i=1

dti
2
σ2
νi
+

n
∑

i=1

n
∑

j=1(j 6=i)

dtidtjσνij (S26)

The auto-covariance of the rate (σνij ) (i.e. the covariance of the state between different epochs) is part of

the auto-covariance matrix of the smoothed state α̂i as (Durbin & Koopman, 2012):

cov(α̂i, α̂j) = PiL
T
i L

T
i+1 · · ·LT

j−1(I −Nj−1Pj) j ≥ i (S27)
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as for the correlation between state component a at epoch i and b at epoch j holds:

cov(α̂a
i , α̂

b
j) = cov(α̂b

j , α̂
a
i ) (S28)

Then, it follows that the remaining auto-covariances for j < i can be calculated as, using the results from

Eq. S27:

cov(α̂i, α̂j) = cov(α̂j , α̂i)
T j < i (S29)

C.2 Deterministic parameters

Next to the state space model we set up a deterministic model which is solved by ordinary least squares for

GRACE–cSMBA and ALT–FDM time series separately from each other. We solve the following system of

equations with the parameters, β, the observations, y, the design matrix, X , and the residuals, e

Xβ = y + e (S30)

e = Xβ − y. (S31)

The deterministic model is analogous to the state space model. We estimate a bias, trend, annual cycle, and

semi-annual cycle terms. The design matrix is

X =













1 t1 cos (2π t1) sin (2π t1) cos (4π t1) sin (4π t1)

1 t2 cos (2π t2) sin (2π t2) cos (4π t2) sin (4π t2)
...

...
...

...
...

...

1 tn cos (2π tn) sin (2π tn) cos (4π tn) sin (4π tn)













. (S32)

We quantify the mean squared error (MSE) as follows

MSE =
eTe

n
(S33)

The variance-covariance matrix, Σβ can be achieved by

Σβ =
(

XTX
)−1 · MSE. (S34)

The square root of the diagonal elements of Σβ are the formal uncertainties of the estimated parameters.

C.3 Root mean square

We calculate the root mean square (RMS) of the estimated AR(1)-process as follows

RMSAR(1) =

√

√

√

√

1

n

n
∑

i=1

(ζi)2 (S35)

and the RMS of the irregular component

RMSirr =

√

√

√

√

1

n

n
∑

i=1

(ǫi)2. (S36)
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The RMS of the residuals is

RMSresid =
√

MSE =

√

eTe

n
=

√

√

√

√

1

n

n
∑

i=1

e2i . (S37)

C.4 Auto-correlations and cross-correlations

We compute auto-correlations of a time series x for lag τ as:

ρ(τ) =
C(τ)

C(0)
(S38)

C(τ) =
1

n− τ

n
∑

i=τ+1

(xi − x̄)(xi−τ − x̄) (S39)

C(0) =
1

n

n
∑

i=1

(xi − x̄)2 (S40)

with x̄ denoting the mean of x. Cross-correlations between component time series based on ALT–FDM (v)

and GRACE–cSMBA (m) as:

ρ(τ)v,m =
C(τ)v,m

σvσm
(S41)

C(τ)v,m =
1

n− τ

n
∑

i=τ+1

(xv
i − x̄v)(xm

i−τ − x̄m) (S42)

σ =

√

√

√

√

1

n

n
∑

i=1

(xi − x̄)2 (S43)

C.5 Propagation of the GIA uncertainty

We propagate the GIA uncertainty to GRACE–cSMBA results. In case of mean rates we sum up the variances

(σm,GIA
ν )

2
= (σm

ν )
2 + (σGIA)

2
(S44)

The GIA uncertainty for every time step is

σGIA
i = |ti − tref|σGIA (S45)

ref is the chosen reference time epoch from which the GIA uncertainty linearly diverges (Apr 2002 in our

case). We propagate the GIA uncertainty to the time-variable rate as follows:

(σm,GIA
νi

)
2
= (σm

νi
)2 + (σGIA

i )
2

(S46)
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D Supplemental tables and figures

Table S1: The basin area and deterministic rates estimated from the satellite observations and model products from

Apr 2002 to Aug 2016. The fourth column and fifth column are the applied GIA correction to the GRACE data

including the 2-σ-uncertainty, and the spread from a GIA model ensemble (Groh & Horwath, 2021). The indicated

uncertainties of the rates are the formal 2-σ-uncertanties from least-squares adjustment (Eq. S34). The mean surface

mass balance (mean SMB) is estimated over the whole model period (Jan 1979–Dec 2016) and the uncertainty is 2-σ
of the mean SMB values over 25, 30, and 35-year time intervals analogously to Wouters et al. (2015). The last two

columns are the correlation (corr.) coefficients of detrendend GRACE and cSMBA time series and ALT and FDM

time series.
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Table S2: Mean rates from state space filtering GRACE–cSMBA and ALT–FDM and the corresponding deterministic

results with formal 2-σ-uncertainties (Eq. S34); GRACE–cSMBA uncertainties include GIA uncertainties. Furthermore,

the root mean square (RMS) of the AR(1) process and of the irregular component are compared to the RMS of the

deterministic residuals (resid). In case of ALT–FDM: the mean rate and the deterministic rate are converted to mass

change with an ice density (917 kg m-3).

GRACE–cSMBA ALT–FDM

mean rate det. rate RMS mean rate det. rate RMS

AR(1) irr resid AR(1) irr resid

in Gt a-1 in Gt a-1 in Gt in Gt in Gt in Gt a-1 in Gt a-1 in km3 in km3 in km3

4 6.9 ± 2.3 6.8 ± 2.2 2.1 6.1 8.0 2.5 ± 7.6 0.3 ± 0.6 20.9 0.5 17.5

5 5.1 ± 1.0 5.2 ± 0.9 4.9 5.5 10.2 4.4 ± 1.8 3.1 ± 0.3 11.6 0.3 8.8

6 10.1 ± 3.0 10.2 ± 1.8 11.2 9.3 11.5 8.0 ± 4.1 4.7 ± 0.6 31.7 0.1 17.4

7 9.1 ± 4.6 9.5 ± 3.7 4.1 14.8 17.3 4.9 ± 1.5 5.2 ± 0.5 15.5 0.2 15.5

8 4.2 ± 1.7 4.1 ± 1.1 5.3 8.7 9.9 3.7 ± 1.6 2.1 ± 0.3 11.0 0.1 8.8

9 0.9 ± 1.4 0.9 ± 1.3 1.0 5.3 6.2 1.9 ± 4.4 0.6 ± 0.3 17.8 0.0 8.7

10 3.1 ± 5.9 3.4 ± 5.8 2.5 6.4 8.3 0.4 ± 9.8 -2.1 ± 0.6 26.6 0.0 18.9

11 -0.4 ± 2.1 -0.3 ± 2.1 1.0 5.5 6.2 -2.6 ± 0.9 -2.6 ± 0.4 10.3 0.1 12.0

12 10.3 ± 4.0 11.0 ± 3.8 4.4 10.3 13.0 10.4 ± 1.5 10.4 ± 0.5 14.3 0.8 16.0

13 -1.9 ± 1.9 -2.2 ± 1.6 11.4 5.5 16.5 -0.4 ± 2.5 0.4 ± 0.7 21.6 1.0 22.2

14 2.3 ± 3.4 2.2 ± 3.2 5.2 10.0 13.9 9.4 ± 2.9 9.0 ± 0.9 24.8 0.1 26.1

19 3.3 ± 2.4 3.2 ± 2.4 3.0 3.1 5.6 -1.2 ± 1.9 -2.3 ± 0.4 9.8 0.1 11.2

20 -27.2 ± 4.5 -28.0 ± 1.3 16.1 2.9 9.4 -16.6 ± 1.8 -17.8 ± 0.5 14.0 3.5 14.0

21 -50.6 ± 4.0 -51.7 ± 1.7 11.9 6.5 16.1 -61.5 ± 1.4 -61.2 ± 0.7 13.3 1.6 21.8

22 -45.7 ± 1.6 -48.3 ± 1.3 2.6 4.9 18.5 -44.8 ± 1.3 -47.1 ± 0.6 8.6 0.4 19.2

23 -10.2 ± 2.9 -11.1 ± 2.1 6.5 3.8 7.1 -6.4 ± 0.7 -6.4 ± 0.2 6.0 0.3 6.9

24 -6.1 ± 4.1 -7.5 ± 1.8 8.1 6.6 12.3 0.2 ± 1.2 0.4 ± 0.4 8.5 0.1 11.4
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Figure S1: Time series of the satellite observations (blue), model products (red) are shown together with the esti-

mated trend with time-variable rates (green), the AR(1) process (orange), the cycle (gray), and the irregular (black)

components of all investigated basins for GRACE–cSMBA (left column) and ALT–FDM (right column).
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Figure S2: Time series of the difference between satellite observations and model products (brown) with the trend

with time-variable rates and its 1-σ-uncertainty (green), an the deterministic trend (black) of all investigated basins for

GRACE–cSMBA (left column) and ALT–FDM (right column). GRACE–cSMBA uncertainties include GIA uncertainties.
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Figure S3: Time series of the rates of the trend and their 1-σ-uncertainties along with the mean rates for GRACE–

cSMBA (purple and blue) and ALT–FDM (orange and red) of all investigated basins. GRACE–cSMBA uncertainties

include GIA uncertainties.
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Figure S4: Time series of the remaining short-term signals of the differential time series: AR(1) process (orange),

the sum of the cycle components (purple), and the irregular (black) of all investigated basins for GRACE–cSMBA (left

column) and ALT–FDM (right column).
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Figure S5: The log-likelihood for φv-φm combinations for all basins, φv: ALT–FDM and φm: GRACE–cSMBA. The

picked maximum is highlighted with a black dot.
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Figure S6: Auto-correlation functions of the AR(1) process from ALT–FDM data, the auto-correlation functions of the

AR(1) process from GRACE–cSMBA, and the cross-correlation function of both AR(1) processes for all investigated

basins.
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Figure S7: Time series of the AR(1) process along with their 1-σ-uncertainties (left column) and the irregular com-

ponent (right column) estimated with GRACE solutions from Bettadpur (2018) (red) and with GRACE solutions from

Mayer-Gürr et al. (2016) (blue) of all investigated basins for GRACE–cSMBA.
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A Test experiments of the GIA parametrization

We test the GIA parametrization by reproducing two global GIA signals in the absence of other signals and of obser-

vation errors. We model the first GIA signal with the SELEN software (Spada and Melini, 2019) using the provided

ICE-6G glacial history. The second GIA signal is the modelling output from Caron et al. (2018). The model out-

puts (Fig. S1) are the test observations dGIA (spherical harmonic coefficients converted to surface densities) which are

linked to the parameters βGIA with the design matrix XGRAV
GIA (Eq. 17):

dGIA = XGRAV

GIA βGIA. (S1)

We estimate β̂GIA by least-squares adjustment following Eq. 12 with P = I .

Without the incorporation of patterns that allow for the co-estimation of unconsidered rotational feedback effects, we

can only inadequately resolve the GIA model of Caron et al. (2018) (Fig. S4c). Caron et al. (2018) pointed out the

differences in the C21-S21-pattern of the model that they created compared to a modelling result based on ICE-6G ice

history and VM5a rheology. The incorporation of the C21-S21 fingerprints allow us to capture the residual rotational

feedback effect (Fig. S3c).

In addition, we conducted a test experiment with the regional GIA modelling output from Barletta et al. (2018). For

this purpose, we transferred the GIA patterns in this region to the spatial domain and adjusted them to the modelling

output in the spatial domain. In this case the test observations dGIA are bedrock motion rates from Barletta et al. (2018).

This modelling output shows variations on much shorter spatial wavelengths than the localized parametrization can

resolve (Fig. S5).

(a)
SELEN

(b)
Caron et al.

(c)
difference

(d) (e) (f)

50 25 0 25 50
kg m 2a 1

50 25 0 25 50
kg m 2a 1

50 25 0 25 50
kg m 2a 1

Figure S1: Surface density rates of the GIA modelling output from a SELEN run with ICE-6G ice history and VM5a rheology that

we use for the variant A of simulated observations evaluated over GIS (a) and AIS (d). The surface density rates from the modelling

output from Caron et al. (2018) that we use for the variant B of simulated observations over both ice sheets (b+e). The difference

between both modelling outputs (c+f).
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Figure S2: Surface density rates and rate differences associated to a test experiment, where a global GIA signal is estimated in

the absence of other signals and of observation errors. Orthographic projections for the two hemispheres. (a): ’true’ GIA signal

simulated by SELEN based on the ICE-6G glacial history. (b): the estimated GIA signal. (c): differences between the original and

the estimated GIA signal
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Figure S3: Surface density rates and rate differences associated to a test experiment analogous to Figure S2. Here the ’true’ GIA

signal (a) is the GIA modelling output from Caron et al. (2018).

4



(a)

GIA (Caron et al.,
no C21, S21 patterns

(b)

estimated

(c)

difference

50 25 0 25 50
kg m 2 a 1

50 25 0 25 50
kg m 2 a 1

50 25 0 25 50
kg m 2 a 1

Figure S4: Surface density rates and rate differences associated to a test experiment analogous to Figure S2. Here the ’true’ GIA

signal (a) is the GIA modelling output from Caron et al. (2018). In this test experiment we do not co-estimate residual rotational

feedback effects (we do not include the C21 and S21 fingerprints).
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Figure S5: Bedrock motion rates and rate differences associated to a regional test experiment in West Antarctica, where a regional

GIA signal is estimated in the absence of other signals and of observation errors. The ’true’ GIA signal (a) is the GIA modelling

output from Barletta et al. (2018). Black dots indicate the centres of the 30 GIA patterns in this region. (b): the estimated GIA

signal. (c): differences between the original and the estimated GIA signal.
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B Gravimetric stochastic information

We generate the covariance matrix C(dGRAV) for spherical harmonic coefficients of degree larger than 1 as follows:

Along with monthly estimates of Stokes coefficients from GRACE Ŝ, Mayer-Gürr et al. (2018) provide normal equa-

tions. The system of normal equations (with the normal equation matrix N and the right side n) for every month j is

Ŝj = (N j)−1nj (S2)

From Jan 2003 until Aug 2016, we compute monthly covariance matrices Cj(Ŝ) by

Cj(Ŝ) = (σj
0
)2(N j)−1. (S3)

We estimate (σj
0
)2 from the weighted square sum of the residuals and the degree of freedoms provided by Mayer-Gürr

et al. (2018). The sum of the residuals originate from the difference between observations (K-band range rates and

kinematic orbits from GPS data of the GRACE satellites) and computed values. Note that the gravity field recovery

approach from Kvas et al. (2019) includes background model uncertainties (Kvas and Mayer-Gürr, 2019). Afterwards,

we calculate the mean covariance matrix and propagate it to the covariance matrix of surface densities.

Lastly, we assume a linear-seasonal model over 10-years including 8 parameters (offset, rate, annual cycles, semi-

annual cycles, 161-period cycles). C(dGRAV) used in the synthetic experiments is the error covariance matrix of the

surface density rates which we retrieve by propagating the mean covariance matrix of the surface densities. Note that

the covariance information for degree-1 coefficients is estimated separately (Sect. 3.4).

We compute an ensemble of degree-1 products following Swenson et al. (2008) to estimate the degree-1 covariance

information. For this purpose we use the following GRACE Level 2 products: CSR RL06 (Bettadpur, 2018), JPL

RL06 (Dah-Ning, 2018), GFZ RL06 (Dahle et al., 2018), and ITSG2018 (Mayer-Gürr et al., 2018). Further we use

different GIA models from A et al. (2013), Peltier et al. (2015), and Caron et al. (2018). The ensemble has 12 members,

from which we estimate the degree-1 covariance information. The rates are estimated over 10 years from Jan 2003 to

Dec 2012.

Figure S6 illustrates the gravimetry error degree amplitudes of the surface density rates we assume in experiments

E2A, E2B, E3A, and E3B in comparison to global GIA signal degree amplitudes (Sect. 3.3).
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Figure S6: The gravimetry error degree amplitudes of the surface density rates estimated over a 10-year time period we use for

the gravimetry observations (blue) in experiments E2A, E2B, E3A, and E3B. The degree amplitudes of the global GIA signal (red)

modelled with ICE-6G glacial history with SELEN (Spada and Melini, 2019) and the GIA modelling output from Caron et al.

(2018) (orange). Note that degree-1 coefficients of both GIA-signals are zero because the Love numbers are in a reference frame

which has its origin in the centre of mass.
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C Supplemental results

(a)
Gravimetry

(b)
Altimetry

(c)
FAC

(d) (e) (f)
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Figure S7: One realization of errors derived from the covariance information (Sect. 3.4) of each data set. Note that the gravimetry

data is synthesized to the spatial domain over the GIS (a) and the AIS (d) for illustration purposes only.
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Figure S8: Results from Experiment 1A (E1A): estimated signals (a–c and g–i) and the difference to the original signals (d–f and

j–l) for GIA-induced bedrock motion (first column), IMC-induced surface density change (second column), and FAC change (third

column). The observations contain no errors, while the weighting is based on the full error covariance information.
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Figure S9: Results from Experiment 1B (E1B): estimated signals (a–c and g–i) and the difference to the original signals (d–f and

j–l) for GIA-induced surface density change (first column), IMC-induced surface density change (second column), and FAC change

(third column). The observations contain no errors, while the weighting is based on the full error covariance information.
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Figure S10: Results from Experiment 2B (E2B): estimated signals (a–c and g–i) and the difference to the original signals (d–f and

j–l) for GIA-induced surface density change (first column), IMC-induced surface density change (second column), and FAC change

(third column). The observations contain correlated errors and any correlations are neglected during the parameter estimation.
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Figure S11: a) Degree amplitudes of the global GIA signal (red) modelled with ICE-6G glacial history with SELEN (Spada and

Melini, 2019). The amplitudes of the GIA Signal in Antarctica (cyan line) modelled with SELEN with an ICE-6G ice history

tailored to Antarctica. Degree amplitudes of the differences between this global GIA signal and the estimated global GIA signal in

Experiment 2A (orange) and Experiment 3B (green). b) Degree amplitudes of the global GIA signal from Caron et al. (2018) (red),

the differences between this signal and the results from Experiment 2B (orange), and Experiment 3B (green).
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