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A B S T R AC T

The Measurement– and Model–based Structural Analysis (MeMoS) project was

initiated in 2013 with the aim to detect and localise damage to structures based

on an integrated analysis of spatially and temporally distributed hybrid meas-

urements. Therefore, a physical model of the structure is directly embedded

as a functional model in the least squares adjustment, ensuring a rigorous and

direct solution of the system parameters solely based on the measurements.

This enables a damages analysis based on the estimated system parameters us-

ing well established geodetic deformation analysis methods. However, besides

a detailed understanding of the applied sensors, a profound knowledge of the

functional model is indispensable for a correct and successful data evaluation.

This thesis, therefore, provides new and in-depth insights into the characterist-

ics of an integrated analysis using an embedded physical model and addresses

the resulting challenges of a damage analysis via MeMoS using static meas-

urements, such as, displacements, inclination or strain. Based on a detailed

discussion on the approximation of univariate functions by polynomials from

a geodetic point of view, the structural behaviour is not approximated by

FEM as usual, but by a spectral method using Chebyshev polynomials. This

ensures, in principle, that the functional model is always correct and com-

plete, so that there are no systematic falsifications of the estimated system

parameters due to approximation errors of the structural behaviour. The

characteristics of the resulting inverse problem are discussed in detail and

it is shown how the measurement noise affects the estimation of the system

parameters and consequently the detection and localisation of damage. In

addition, the impact of damage on the static measurements will be addressed,

which provides insights into the extent to which damage can be reconstructed

from measurements at all. Consequently, known statistical tests were adap-

ted for the problem at hand and transferred to continuous functions, so that

they can be effectively used for a damage analysis via MeMoS. Furthermore,

new approaches for the localisation of damage have been developed, which

are based on a data-driven regularisation of the least squares solution. The

capabilities and limitations of a damage analysis via MeMoS are demonstrated

by numerical and experimental studies on a four-point bending test.
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Z U S A M M E N FA S S U N G

Das Measurement– and Model–based Structural Analysis (MeMoS) Projekt

wurde 2013 mit dem Ziel initiiert, Schäden an Bauwerken auf Grundlage einer

integrierten Analyse räumlich und zeitlich verteilter hybrider Messungen zu

detektieren und zu lokalisieren. Zu diesem Zweck wird ein physikalisches Mod-

ell der zu untersuchenden Struktur direkt als funktionales Modell in eine Aus-

gleichung nach der Methode der kleinsten Quadrate eingebettet, wodurch eine

strenge und direkte Lösung der Systemparameter allein auf der Grundlage der

Messwerte gewährleistet wird. Dies ermöglicht eine Schädigungsanalyse an-

hand der geschätzten Systemparameter unter Verwendung etablierter geodät-

ischer Methoden zur Deformationsanalyse. Für eine korrekte und erfolgreiche

Datenauswertung ist jedoch neben einem detaillierten Verständnis der einge-

setzten Sensoren auch eine fundierte Kenntnis des funktionalen Modells der

Ausgleichung unabdingbar.

Diese Arbeit gibt daher neue und vertiefte Einblicke in die Charakteristiken

einer integrierten Analyse unter Verwendung eines eingebetteten physikalis-

chen Modells und adressiert die sich daraus ergebenden Herausforderungen

einer Schadensanalyse mittels MeMoS unter Verwendung statischer Messun-

gen, wie z.B. Verschiebungen, Neigungen oder Dehnungen. Ausgehend von

einer ausführlichen Darlegung der Approximation univariater Funktionen

durch Polynome aus geodätischer Sicht, wird das Strukturverhalten nicht wie

üblich durch FEM, sondern durch eine Spektralmethode mit Tschebyscheff-

Polynomen approximiert. Damit ist prinzipiell sichergestellt, dass das funk-

tionale Modell immer korrekt und vollständig ist, so dass es keine system-

atischen Verfälschungen der geschätzten Systemparameter durch Approxima-

tionsfehler des Strukturverhaltens gibt. Die Eigenschaften des resultierenden

inversen Problems werden ausführlich diskutiert und es wird gezeigt, wie sich

das Messrauschen auf die Schätzung der Systemparameter und folglich auf

die Detektion und Lokalisierung von Schäden auswirkt. Darüber hinaus wird

der Einfluss von Schäden auf die statischen Messungen behandelt, was Auf-

schluss darüber gibt, inwieweit Schäden überhaupt aus Messungen rekonstru-

iert werden können. Folglich wurden bekannte statistische Tests für die vorlie-

gende Problemstellung angepasst und auf kontinuierlichen Funktionen über-

tragen, so dass sie effektiv für eine Schädigungsanalyse mittels MeMoS gen-

utzt werden können. Darüber hinaus wurden neue Ansätze zur Lokalisierung

von Schäden entwickelt, die auf einer datengetriebenen Regularisierung der

Kleinste-Quadrate-Lösung basieren. Die Einsatzmöglichkeiten und Grenzen

einer Schädigungsanalyse mit MeMoS werden anhand von numerischen und

experimentellen Untersuchungen an einem Vier-Punkt-Biegeversuch demon-

striert.
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I N T RO D U C T I O N

The determination of the movement and deformation of an object is one of the

main task in engineering geodesy, as stated in the foreword of (Heunecke et al.

2013, p. VI). For this purpose, numerous approaches have been developed in

geodesy during the last decades, whereby the focus is essentially based on an

evaluation of measurements using statistical methods. Such a data analysis

in terms of precision and reliability by means of adjustment calculation is an

integral part of engineering geodesy and one of its core competencies in general,

see e.g. (Kuhlmann et al. 2014). For a correct and successful data evaluation,

a detailed understanding of the applied sensors and also a profound knowledge

of the mathematical relationships are playing a decisive role. Besides natural

objects such as hillsides or glaciers, the main focus of a deformation analysis

lies typically on structures such as tunnels, dams or bridges. The latter in

particular has been the subject of numerous studies and scientific work for

many years, especially in civil engineering, see e.g. (Koo et al. 2013), (Meng

et al. 2004), (Lienhart et al. 2017) or (Omidalizarandi et al. 2020). Due

to ageing structures and increasing traffic loads innovative approaches for a

reliable damage assessment and predictions regarding the remaining service

life of bridges are required.

One technology that has established itself in recent decades for the assessment Together with Condition
Monitoring, which essentially
relates to machines, the Structural
Health Monitoring is summarised
under the generic term Technical
Diagnostics (Czichos 2013).

of the integrity of structures is the Structural Health Monitoring (SHM), see

(Boller et al. 2009), (Farrar and Worden 2013) or (Karbhari and An-

sari 2011). The SHM covers the entire process from the characterisation of

the structure, the selection of a suitable sensor technology and up to the stat-

istical evaluation of the measurements, see (Daum 2013, p. 414 ff). Since in

general “sensors cannot measure damage” (Worden et al. 2007, Axiom IVa),

two main approaches are used in a SHM to extract information about dam-

age from the measurements, namely the inverse–problem or model–based ap-

proach and the data–based approach (Farrar and Worden 2013, p. 9). The

data–based approach is built on “intelligent feature extraction” and machine

learning algorithms in order “to convert sensor data into damage information”,

see (Worden et al. 2007, Axiom IVa/b). A functional model does not have

to be explicitly defined, but is rather estimated on the basis of training data

and optimisation routines. In contrast, the model–based approach is built on a For detailed information about
finite element method (FEM) in
general please refer to standard
literature such as (Bathe 2014),
(Šolin 2006) or (Zienkiewicz et al.
2013).

physical model of the structure under investigation, which is usually defined by

a set of partial differential equations (PDEs) with boundary conditions and is

often represented by a finite element model, see (Farrar and Worden 2013,

p. 9). In general, this modelling must be very accurate, because even small

deviations can sometimes have a large impact on the structural response. This

requires not only the expert knowledge of different engineering sciences, but

usually also an update of the model by measurements carried out on the real

structure, see e.g. the standard literature on model update (Friswell and

Mottershead 2011). The resulting model is also referred to as a structural

model and is considered to represent the normal condition of the structure un-

der investigation. The damage analysis is then based on deviations between

the model and measurements from future monitoring epochs. Apart from this,

there are also modal models which also belong to the model–based approach,

although “the modal model does not contain specific information about the

3
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structural connectivity or the geometric distribution of mass, structural damp-

ing and stiffness” (Chen and Ni 2018, Chapter 4.6). In this approach, the

structural analysis is based on the dynamic behaviour of the structure rep-

resented by the modal parameters, i.e. eigenfrequencies, mode shapes and

damping. One strategy that refers to modal models is the ambient vibration

monitoring, see (Wenzel and Pichler 2005).

system identification

In general, the process to create a model from measured input and output

data of a system is referred to as system identification. According to (Ljung

1998, p. 163), the entire process can be divided into the four steps:

� Measurement of the input and output data of a system.

� Choosing a set of candidate models.

� Estimation of the parameters of the model.

� Validation of the model.

“The single most important step in the identification process is to decide upon

a model structure, i.e., a set of candidate models. In practice typically a whole

lot of them are tried out and the process of identification really becomes

the process of evaluating and choosing between the resulting models in these

different structures” (Ljung 1998, p. 164). Generally, a distinction is made

in the model structure between black box, grey box and white box models, for

which the relationship according to (Heunecke et al. 2013, p. 81) is shown

in Figure I.1.

Figure I.1: Model structures
according to (Heunecke et al.
2013, p. 81).

System
identification

with
physical model

without
physical model

parametric
identification

non–parametric
identification

white box black boxgrey box

If the modelling of the system is based on a purely mathematical formula-

tion without taking into account the physical relationship between input and

output, then it is referred to as a black box model. In this case, the model

parameters can only be interpreted mathematically and the process is referred

to as non-parametric identification. In contrast, a white box model takes the

physical relationship between input and output into account, and the model

parameters can be interpreted physically. The process is referred to as para-

metric identification. Finally, grey box models are, as the name already implies,

a mixture of both and are based on a semi-physical modelling, see (Ljung

1998, p. 165).
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The classification of the system identification in the overall context of struc-

tural problems according to (Natke 1992, p. 3) is shown in Figure I.2.

Structural
problem

forward problem

given
system parameters
input

wanted
output

inverse problem

design problem

given
input
output

wanted
system design

input problem

given
system parameters
output

wanted
input

identification
problem

given
input
output

wanted
system parameters

Figure I.2: Classification of
the system identification ac-
cording to (Natke 1992, p.
3).

Basically, structural problems can be divided into two main classes, namely

the forward and the inverse problem. Whereas for forward problems with

given input and system parameters the output can be calculated directly, this

is typically not the case for inverse problems, as usually an infinite number of

solutions exist. Especially for identification problems, therefore, in most cases

only optimal sets of system parameters are determined by using optimisa-

tion routines and under consideration of additional information and/or search

space constraints. However, for such problems there is usually no guarantee

to find the best solution, which also corresponds to reality. In general, it

can only be checked whether the determined system is reasonable and ideally

provides the correct output for all input data of interest.

deformation models for monitoring measurements

Engineering surveying is involved in all phases of the life cycle of a structure,

from design/planning through construction and maintenance to reconstruc-

tion/demolition, see (Borrmann et al. 2015, p. 4). However, the monitoring

measurements during the maintenance and operational phase have always

been of particular interest in engineering geodesy. The focus thereby lies on a

statistical analysis with regard to deformation affecting the stability and func-

tionality of the structure under investigation. Depending on the problem/task,

different models can be used for the deformation analysis of monitoring meas-

urements, which can be classified according to (Heunecke et al. 2013, p. 77)

as shown in Figure I.3.
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Figure I.3: Deformation
models for monitoring
measurements according to
(Heunecke et al. 2013, p. 77).

Deformation models

Acting forces
are modelled?

yesno

descriptive
models

Time is modelled?

yesno

congruence
model

kinematic
model

cause-response
models

Time is modelled?

yesno

static
model

dynamic
model

Basically, the deformation models are classified in two steps. Firstly, whether

the external forces acting on the structure are modelled or not and, in addition,

if a movement of the structure over time is taken into account. Compared to

cause–response models, the influence of external forces is not modelled for

descriptive models and, consequently, deformation due to changes in these

forces cannot be distinguished from actual deformation. Furthermore, if the

movement of the structure as a function of time is not taken into account, the

deformation analysis is based on a so-called congruence model. The congruence

model is, therefore, the simplest modelling case and also the classical approach

in engineering geodesy for the deformation analysis of structures. In this case,

the deformation analysis is usually based on a purely geometric comparison

of discrete points representing the structure under investigation. In contrast,

dynamic models usually represent the real behaviour of structures in the best

way, however, they are also often highly complex.

the measurement– and model–based structural analysis

Initiated by a project in cooperation with the Bundesanstalt für Materi-

alforschung und -prüfung (BAM) and the Institut für angewandte Forschung

im Bauwesen e.V (IaFB) on the detection of structural damage by an analysis

of the Lagrange multipliers of adjustment calculation, the Measurement– and

Model–based Structural Analysis (MeMoS) project was launched in 2013.

The functional model to adjust displacements and strain measurements for

the Lagrange multiplier analysis was based on a mechanical model and al-

lowed to detect damage, but rather based on a geometric comparison than on

a deeper analysis of the model itself, see (Brandes et al. 2012). In addition, it

was not possible at this stage to localise any damage with this first approach.

These drawbacks and motivated by the work of (Lienhart 2007) this was

to be changed with MeMoS. It was the unanimous opinion of all initiators

at this time that MeMoS must be built on a model–based approach, or more

precisely on a structural model. Because, the core of this approach shall beThis expression has been adapted
from the Integrated Analysis

Method proposed by Lienhart
(2007) and now describes the

basic process for the least squares
adjustment of measurements using
a structural model within MeMoS.

based on an all-embracing Integrated Analysis (IA) of spatially and tempor-

ally distributed hybrid measurements, observed e.g. by total stations, GNNS,

terrestrial laser scanning (TLS), photogrammetry, radar interferometry, fibre

optic sensors (FOS), strain gauges, accelerometers or inclination sensors. The
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aim of this IA is to ensure a rigorous and direct solution for the system para-

meters solely based on the measurements using the method of least squares.

Consequently, a physical model of the structure must be embedded directly

as a functional model in the least squares adjustment. The damage analysis

is then based on these system parameters using well established geodetic de-

formation analysis methods, while the deformation model, thus, corresponds

to a cause-response model.

The sheer number of publications in the field of civil engineering on damage

assessment based on modal parameters demonstrates that such approaches are A general overview of the health
monitoring of structures e.g.
using modal parameters as well as
their successful application in
many examples can be found in
standard literature such as
(Karbhari and Ansari 2011),
(Chen and Ni 2018), (Farrar and
Worden 2013) or (Wenzel 2009).

of great importance and that they can be used in a wide range of applications,

while even some of these approaches are available to the user as a software

package for several years now, see e.g. ARTeMIS Modal by Structural

Vibration Solutions A/S (2021). Thus, they can already be used directly

for practical applications.

However, apart from basic studies in the analysis of vibration measurements

using accelerometers or TLS, see (Neitzel et al. 2011) and (Neitzel et al.

2012), and the frequency analysis via the method of least squares, see (Weis-

brich and Neitzel 2014), it was soon decided to focus first on static meas-

urements such as displacements, inclinations and strains. This was necessary

to keep the functional model for the IA as simple as possible and, therefore,

to gain a better understanding of the inverse problem.

In contrast to the structural analysis using modal parameters, approaches

based on structural models and static measurements are much less present

in the literature. Although all these approaches are usually rely on an FEM,

however, they roughly follow 3 different strategies for the structural analysis:

1. A geometrical comparison between model and measurements, see

(Boljen 1983) or (Ma 2019).

2. A determination of the system parameters using mainly black box FE

programmes and an additional optimisation routine, see (Lienhart

2007), (Eichhorn 2005) or (Künzel 2016).

3. An estimation of the system parameters, where both the model and

the measurements are contributing to the objective function of the least

squares adjustment, see (Tesky 1988) or (Stephan 2016).

In principle, the last strategy corresponds most closely to the actual require-

ment for the IA, but with the drawback that the estimation of the system

parameters is not solely based on the measurements. Due to the formulation

of the objective function for estimating the system parameters according to

the method of least squares, both the model and the measurements have an

impact on the solution. The structural model is not directly integrated as

a functional model in the least squares adjustment. Therefore, a modified

approach is developed for MeMoS.

In collaboration with my colleague Cheng-Chieh Wu from the BAM, we de-

veloped a preliminary version of the IA for a parametric identification, that

allows a rigorous and direct solution for the system parameters solely based

on the measurements, directly embedding a structural model represented by

an FEM into the least squares adjustment, see e.g. (Neitzel et al. 2014) or

(Wu et al. 2016). Furthermore, a substitute model for geometrical complex

structures was derived, to drastically reduce the number of elements while

keeping the behaviour of the model almost the same, see (Wu et al. 2017).
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Introducing a material parameter for each element enabled the localisation of

damages within the structure based on statistical tests, which was to some

extent successfully applied in two experimental tests, see (Wu 2020, Chapter

5). However, non-modelled residual stresses probably falsified the analysis

and thus the localisation of small damages.

Introducing a material parameter for each element using the concept of ob-

served unknowns, see (Wu 2020, Chapter 5.2), already had some disadvant-

ages. Apart from a very large resulting equation system, prior knowledge

about the material parameters must first be determined and the correspond-

ing weights for the adjustment carefully chosen. The damage localisation is,

therefore, not only based on the measurements, but also on the prior inform-

ation about the material parameters. In addition, for many elements, i.e. for

a high spatial resolution of the damage localisation, the least squares solution

in practice no longer converges and the local material parameters can take

numerical values up to ±∞ without changing the value of the objective func-

tion even in the last decimal place. In these cases, a solution can only be

obtained by introducing high weights for the material parameters, which of

course counteracts the localisation of damage.

After all, it remained unclear which part of the solution was due to the meas-

urement noise and which was due to the functional model of the adjustment,

i.e. the approximation of the structural behaviour by FEM. As already men-

tioned, a profound knowledge of the mathematical relationships, i.e. the func-

tional model of the least squares adjustment, are playing a decisive role for

a successful damage analysis, which was unfortunately not the case for this

former approach and is the actual motivation for this thesis.

the main objective of this thesis

Several aspects are of great importance for a successful damage analysis with

MeMoS. The most important one is certainly, that “it is very difficult to build

an accurate model of a structure from first physical principles. Information

or insight will be lacking in many areas, for example, and the exact nature

of bonds, joints and so on can be difficult to specify. Another issue is that

material properties may not be known with great accuracy” (Farrar and

Worden 2013, p. 9). Consequently, modelling errors are usually present,For such problems, therefore, the
expert knowledge of various

engineering sciences is usually
required and cannot be addressed

within the scope of this thesis.

which in general significantly affect the damage analysis, especially for complex

structures.

Furthermore, the physical model is usually defined by a set of PDEs with

boundary conditions, for which the analytical solution is usually not known

and can only be approximated, e.g. by means of FEM. Depending on the

chosen approach, therefore, approximation errors are also present, which in

the worst case also have a large impact on the damage analysis.

In addition to the error influences affecting the accuracy of measurements, the

actual challenge of a damage analysis by means of MeMoS can be described,

as shown in Figure I.4.
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Figure I.4: Problems in model-
ling and measuring reality.

According to Figure I.4, the actual problem can be divided into two parts,

namely in modelling and measuring reality. As already mentioned, the model-

ling and approximation errors are the two main error influences in the part of

modelling reality, which mainly falsified the damage localisation in (Wu 2020,

Chapter 5). On the part of measuring reality, two further important error In addition, outliers or gross
errors also occur, but they are not
considered further in this case, as
their influence often corresponds
to damage itself. Therefore, it
must be ensured that no outliers
in the measurements are present.

influences are present affecting the accuracy of the measurements, namely the

systematic and random errors, which basically cannot be avoided. In general,

systematic errors have a similar influence as modelling errors and in the best

case, their influence can be reduced by e.g. calibration of the sensors, a suit-

able measurement configuration or by mathematical compensation. At least

it should be ensured that the influence of systematic errors is significantly

smaller than the random errors, otherwise the damage analysis will be falsi-

fied. In the optimal case, a damage analysis would be based on an error-free

model as well as on measurements that are only affected by random errors.

Apart from the discussed problems in modelling and measuring reality, there

is another issue for a damage analysis based on a physical model and measure-

ments. In general, the model has a different reference frame than the meas- Even worse, because usually each
sensor has its own reference frame.urements. Thus, each part has its own coordinate system and for a damage

analysis, both have to be transferred into a common reference frame, which

can usually only be done on the basis of additional measurements. If this

transformation is not performed accurately, it will in turn falsify the damage

analysis. However, it always has an influence.

Before a damage analysis can be carried out at all, the challenge is to eliminate

all error influences as far as possible, except for the unavoidable random errors,

and to transform the model and the measurements into a common reference
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frame. Only then is it ensured that a damage analysis using MeMoS has any

significance at all. In this context, the following two main research topics are

addressed in all detail in this thesis.

About the characteristics of basis functions on the approximation

of functions

Especially for the least squares adjustment of observations of different phys-

ical quantities based on a complex functional relationship, undesired effects

between the measurements and the model can easily be missed, which can dis-

tort the result and consequently make a successful damage analysis impossible.

Therefore, the behaviour of the functional model must be clearly understood.

For this purpose, the characteristics of different sets of basis functions for the

approximation must be considered, since the functional model is based on an

approximation of the unknown analytical solution of PDEs. Within the scope

of this research topic, the following questions will also be addressed:

� What are the advantages and disadvantages of different approximation

approaches, i.e. different sets of basis functions?

� Can it be ensured that the best approximation is always available?

� What about the numerical stability of the different approaches?

� How can approximations be transformed between different sets of basis

functions?

� What problems generally arise in the transition from the approximation

of univariate to multivariate functions?

� Is there a set of basis functions that always provides an optimal approx-

imation for continuous functions?

� Which set of basis functions provides the best approximation of the

analytical solution of PDEs for structures with simple geometry?

� Which set of basis functions is best suited for the analyses in the second

research topic?

About the impact of random errors on the damage analysis using

MeMoS

This research topic is essentially based on the results of the previous examin-

ations with the actual aim of selecting the best set of basis functions for the

damage analyses with MeMoS, which in this thesis is only based on static meas-

urements, such as displacements, inclinations and strains. In this context, the

following questions need to be answered first:

� What is the impact of measurement noise on the estimated unknown

parameters?

� Are there any systematic effects between the chosen functional model

and the measurements?

� What is the actual nature of the inverse problem?

� Does a numerically stable solution for the unknown parameters exist?
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With regard to a damage analysis using MeMoS, the following questions must

also be addressed.

� How does damage to the structure affect the measurements?

� To what extent can the effects of damage be measured at all?

� Is a damage analysis based on an IA possible, i.e. based solely on the

measurements using the method of least squares?

� How can the information content of static measurements be optimally

exploited for damage localisation using the method of least squares?

Based on the new insights, the potential of a Measurement– and Model–based

Structural Analysis is finally re-evaluated using the example of the four-point

bending test apparatus from (Wu 2020, Chapter 5.2).

outline of this thesis

Except for this and the last part, the thesis is divided into three main parts

consisting of 9 chapters altogether. A short summary for each of these three

parts is given below.

Fundamentals

The methodological background for the practical guide to the approximation

of functions using the method of least squares in Part ii is given in Chapter

1. Afterwards, Chapter 2 presents the basics of adjustment calculation and

shows how unknown parameters can be estimated from measurements using

the method of least squares. In addition, the precision and reliability of adjust-

ment results are briefly discussed. Both chapters provide the theoretical back-

ground for a Measurement– and Model–based Structural Analysis (MeMoS).

A practical guide to approximation of functions

In Chapter 3 the approximation of univariate functions in the monomial basis

is discussed from a geodetic point of view in detail and then extended to an

elementwise approximation. In addition, a transformation between different

sets of basis functions is shown and how new basis functions with specific

properties can be derived. At the end of this chapter an approximation with

two sets of orthogonal basis functions is presented. These approaches are

then extended to functions of two variables defined on a rectangular domain

in Chapter 4. How bivariate functions in general can be approximated over

any convex domain is outlined at the end of this chapter. Lastly, the approx-

imation of boundary value problems (BVPs) using the method of least squares

is briefly discussed in Chapter 5. Based on the insights gained in this part,

we select an approximation approach which ensures that the approximation

error of the functional model used for MeMoS in Part iii is zero within machine

precision.

Measurement– and Model–based Structural Analysis

The challenges of MeMoS are clarified by the simple example of a statically

bended Euler–Bernoulli beam. For this purpose, the mechanical model of a
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four–point bending test is presented in Chapter 7. Subsequently, a numerical

solution of the unknown function describing the bending line of the beam is

derived. Then, this solution is implemented in Chapter 8 as the functional

model of an Integrated Analysis (IA), which is the core of MeMoS. However, the

derivation of the IA is limited to static measurements such as displacements,

inclinations and/or strains, with the aim to detect and localise damage to

the beam. Although this example is only a simple 1D problem and only

static measurements are considered, there are already serious difficulties for

a reliable damage analysis. Therefore, comprehensive numerical studies are

carried out in Chapter 9 to highlight the actual nature of the inverse problem.

First questions will be clarified, e.g. how the sensor position, the number

of sensors or the measurement noise influence the estimated parameters and

thus the damage analysis. Furthermore, it is shown how damage affects the

static measurements and what can be expected from a damage analysis using

MeMoS. The potential of a damage analysis via MeMoS is finally demonstrated

in Chapter 10 by numerical and experimental studies, whereby some tools

have been developed especially for this purpose.

At the end, the results of this thesis are summarized and evaluated. In addi-

tion, an outlook of MeMoS is given and future extensions and possibilities are

addressed.



Part I

FUNDAMENTALS





1
A P P ROX I M AT I O N T H E O RY

When we speak of an approximation in engineering geodesy, we usually mean

an approximation using the method of least squares (MLS), as it is the most

common method for the analysis of measured quantities. It is widely ac-

knowledged that the first fundamental work on this method was published A comprehensive overview of the
historical development of the MLS,
including detailed summaries of
the important contributions up to
1974, can be found in the series of
articles (Harter 1974a) (Harter
1974b), (Harter 1975a), (Harter
1975b) and (Harter 1975c).

by Legendre (1806), where he mainly “proposed [it] as a convenient method

only”, see (Merriman 1877). Almost at the same time, Adrian (1809) and

Gauß (1809) presented a justification for the MLS based on normal distrib-

uted errors and the estimation of the most probable values for the unknown

parameters. In addition, “Gauss had the temerity to claim that he had been

using the method since 1795, and one of the most famous priority disputes in

the history of science was off and running”, see (Stigler 1981). The circum-

stances and the contributions of all those involved in its development are still

being discussed centuries later, see e.g. (Plackett 1972) or (Sheynin 2014).

Apart from that, the derivation of the MLS shown by Adrian (1809) or Gauß

(1809), is the basic approach in statistical inference to estimate the most prob-

able value for unknown parameters from a given sample of arbitrarily distrib-

uted observations, see e.g. (Gentle 2009, Chapter 1.4) or (Montgomery

and Runger 2011, Chapter 7), and can also be found in standard literature

on adjustment calculation, see e.g. (Ghilani 2018, Chapter 11.2). In addi-

tion, the relevant literature on measurement data analysis in general either

simply refers to the least squares principle, see e.g. (Mikhail and Acker-

mann 1976, p. 104), (Niemeier 2008, p. 132) or (Radhakrishna Rao and

Toutenburg 1999, p. 24) , or also derives it via orthogonal projection, see

(Teunissen 2000, p. 6). The latter is generally also the common approach in The geometric interpretation of
MLS via orthogonal projection is
discussed in the geodetic literatur
also by e.g. (Ádám 1982), (Borre
2006, p. 93 ff), (Dermanis 1976, p.
30 ff), (Mikhail and Ackermann
1976, p. 131 ff) or (Moritz and
Sünkel 1978, pp. 134–148).

approximation theory, which is essentially concerned with the approximation

of functions. Thereby, complicated functions are usually approximated by a

linear combination of simple basis functions, especially by polynomials. How-

ever, interpolation rather than MLS is typically used as it is faster to calculate

in practice. But in order to understand the properties of different sets of basis

functions, the MLS by means of orthogonal projection is well suited and will

be discussed in more detail in this chapter. Therefore, we will only consider an

approximation of functions using the method of least squares, while the basic

structure and content of this chapter is essentially based on (Langtangen

2016a) or (Langtangen 2016b).

1.1 approximation of vectors

To illustrate an approximation of vectors, we consider a three–dimensional

vector L ∈ R3 with standard basis, as shown in Figure 1-1.

15
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Figure 1-1: Approximation of
a 3D vector L in a 2D vector
space V spanned by the basis
vectors φ0 and φ1.

V

(0, 0, 0)

φ0 = (3,−1, 0)

φ1 = (−1, 2, 0)

Φ

v

L = (3, 3, 3)

c0

c1

In addition, we assume that we want to approximate L by another vector Φ,

that lies in a two–dimensional vector space V spanned by the two basis vectors

φ0 and φ1
V = span{φ0,φ1} . (1-1)

Thus, vector Φ can be written as a linear combination of these two basis

vectors

Φ =
1

∑
j=0

cjφj = c0φ0 + c1φ1 , (1-2)

with the two unknown parameters c0 and c1. As L is generally not in V, vector

L is different from Φ and this difference is known as correction or residual and

is denoted by v. Hence, we obtain the following relationship

L + v = Φ , (1-3)

known in adjustment calculation as observation equations. Now the objective

is to determine the unknown parameters in such a way that Φ approximates L
to the best possible extent. Usually the length of vector v is used as a measure

for the best approximation, which is given by its Euclidian or L2 norm

‖v‖2 =
√
〈v, v〉 , (1-4)

with 〈·, ·〉 being the standard scalar product of two vectors. The determination

of the unknown coefficients under the condition that the length of v is minimal

is known as the method of least squares and will be illustrated on the example

presented in Figure 1-1.

1.1.1 Method of least squares

In the following we want to determine the unknown coefficients c0 and c1 from

Figure 1-1 in such a way that the length of v is minimized. The length (1-4)

is minimal, when

Ω(c0, c1) = 〈v, v〉 → min , (1-5)

which is known as objective, target or cost function. Rearranging (1-3) and

inserting into (1-5) yields

Ω(c0, c1) = 〈Φ− L, Φ− L〉 . (1-6)
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With (1-2) and since the scalar product is bilinear, equation (1-6) results in

Ω(c0, c1) = 〈c0φ0 + c1φ1 − L, c0φ0 + c1φ1 − L〉
= 〈c0φ0, c0φ0〉+ 〈c0φ0, c1φ1〉 − 〈c0φ0, L〉

+ 〈c1φ1, c0φ0〉+ 〈c1φ1, c1φ1〉 − 〈c1φ1, L〉
− 〈L, c0φ0〉 − 〈L, c1φ1〉+ 〈L, L〉 . (1-7)

As the constant coefficients c0 and c1 can be extracted from the scalar product,

the objective function (1-7) reads

Ω(c0, c1) = c2
0〈φ0,φ0〉+ c0c1〈φ0,φ1〉 − c0〈φ0, L〉

+ c0c1〈φ1,φ0〉+ c2
1〈φ1,φ1〉 − c1〈φ1, L〉

− c0〈L,φ0〉 − c1〈L,φ1〉+ 〈L, L〉 . (1-8)

Introducing the necessary conditions for a minimum of the objective function Throughout this thesis we only
consider unknown functions as a
linear combination of basis
functions and since 〈v, v〉 ≥ 0, it is
ensured that the objective
function has only one stationary
point, which is a minimum.

(1-8)
1
2

∂Ω(c0, c1)

∂c0
= 0 and

1
2

∂Ω(c0, c1)

∂c1
= 0 (1-9)

and with 〈φ0,φ1〉 = 〈φ1,φ0〉, equations (1-9) results in

1
2

∂Ω(c0, c1)

∂c0
= c0〈φ0,φ0〉+ c1〈φ0,φ1〉 − 〈φ0, L〉 = 0 ,

1
2

∂Ω(c0, c1)

∂c1
= c0〈φ1,φ0〉+ c1〈φ1,φ1〉 − 〈φ1, L〉 = 0 . (1-10)

The resulting system of equations (1-10) are known as normal equations and

can be written in matrix notation as follows

Nx = n〈φ0,φ0〉 〈φ0,φ1〉
〈φ1,φ0〉 〈φ1,φ1〉

c0

c1

 =

〈φ0, L〉
〈φ1, L〉

 . (1-11)

Since the basis vectors φ0 and φ1 are linear independent, the normal matrix

N is invertible and the normal equation system (1-11) can be solved. For the

example depicted in Figure 1-1, the normal equation system (1-11) reads 10 −5

−5 5

c0

c1

 =

6

3

 (1-12)

and the coefficients are c0

c1

 =

1.8

2.4

 . (1-13)

Inserting the coefficients (1-13) into (1-2) yields the least squares approxima-

tion of L

Φ =
1

∑
j=0

cjφj = c0φ0 + c1φ1 = 1.8φ0 + 2.4φ1

= 1.8


3

−1

0

+ 2.4


−1

2

0

 =


5.4

−1.8

0

+


−2.4

4.8

0

 =


3

3

0

 , (1-14)

which is depicted in Figure 1-2.
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Figure 1-2: Least squares
approximation of a 3D vec-
tor L in a 2D vector space V
spanned by the basis vectors
φ0 and φ1.

V

(0, 0, 0)

φ0 = (3,−1, 0)

φ1 = (−1, 2, 0)
Φ = (3, 3, 0)

‖v‖2 = min

L = (3, 3, 3)

c0 = 1.8

c1 = 2.4

·

1.1.2 Orthogonal projection

As can be clearly seen in Figure 1-2, the length of v is minimal if it is or-

thogonal to V. Consequently, we can determine the unknown coefficients c0

and c1 of an least squares approximation of L by demanding that v must be

orthogonal on V. From a geometrical point of view, this is only the case if v
is orthogonal to the basis vectors and therefore the scalar products must be

equal to zero

〈φi, v〉 = 0 for i = 0, 1 . (1-15)

However, this can also be shown in general, as done in (Langtangen 2016b,

p. 10). Therefore, we consider an arbitrary vector u ∈ V. If v is orthogonal to

V, then it is also orthogonal to u. Hence, the scalar product is equal to zero

〈u, v〉 = 0 ∀u ∈ V . (1-16)

As all vectors u can be written as a linear combination of the two basis vectors

u =
1

∑
i=0

uiφi , (1-17)

equation (1-16) results in

〈
1

∑
i=0

uiφi, v〉 = 0 (1-18)

and rearranging yields

1

∑
i=0

ui〈φi, v〉 = 0

u0〈φ0, v〉+ u1〈φ1, v〉 = 0 . (1-19)

Since (1-19) must hold true for all u ∈ V with arbitrary ui, the two scalar

products in (1-19) must be equal zero

〈φ0, v〉 = 0 and 〈φ1, v〉 = 0 , (1-20)

which finally gives the same equations as from the geometric considerations

in (1-15). Rearranging (1-3) and inserting into (1-20) yields

〈φ0, Φ− L〉 = 0

〈φ1, Φ− L〉 = 0 . (1-21)
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Introducing (1-2) into (1-21) yields

〈φ0, c0φ0 + c1φ1 − L〉 = 0

〈φ1, c0φ0 + c1φ1 − L〉 = 0 (1-22)

and results in

c0〈φ0,φ0〉+ c1〈φ0,φ1〉 − 〈φ0, L〉 = 0 ,

c0〈φ1,φ0〉+ c1〈φ1,φ1〉 − 〈φ1, L〉 = 0 , (1-23)

which is the same equation system as already given by (1-10). To derive the

normal equation system of a least squares approximation by demanding that

v must be orthogonal to the basis vectors φj is known as projection.

1.1.3 Least squares approximation of general vectors

The presented least squares approximation of three–dimensional vectors in

Section 1.1 can directly be transferred to vector spaces of any dimensions.

Let us consider an arbitrary vector L ∈ RN to be approximated by Φ, that

lies in a vector space V spanned by p + 1 basis vectors

V = span{φ0,φ1, . . . ,φp} , (1-24)

with N > p + 1 and

Φ =
p

∑
j=0

cjφj = c0φ0 + c1φ1 + . . . + cpφp . (1-25)

According to Section 1.1.1 and 1.1.2 the length of v is minimal when

Ω(c0, c1, . . . , cp) = 〈v, v〉 → min , (1-26)

or, when v is orthogonal to the basis vectors φi with

〈φi, v〉 = 0 for i = 0, 1, . . . , p . (1-27)

Introducing v = Φ− L into (1-27) yields

〈φi, Φ− L〉 = 0 for i = 0, 1, . . . , p (1-28)

and as the scalar product is bilinear equation (1-28) reads

〈φi, Φ〉 = 〈φi, L〉 for i = 0, 1, . . . , p . (1-29)

Inserting (1-25) results in

〈φi,
p

∑
j=0

cjφj〉 = 〈φi, L〉 for i = 0, 1, . . . , p (1-30)

and rearranging yields the p + 1 normal equations

p

∑
j=0

cj〈φi,φj〉 = 〈φi, L〉 for i = 0, 1, . . . , p , (1-31)

or in detail

c0〈φi,φ0〉+ c1〈φi,φ1〉+ . . . + cp〈φi,φp〉 = 〈φi, L〉 (1-32)
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for i = 0, 1, . . . , p. Writing the normal equation system (1-32) in matrix nota-

tion reads

Nx = n
〈φ0,φ0〉 〈φ0,φ1〉 . . . 〈φ0,φp〉
〈φ1,φ0〉 〈φ1,φ1〉 . . . 〈φ1,φp〉

...
...

. . .
...

〈φp,φ0〉 〈φp,φ1〉 . . . 〈φp,φp〉




c0

c1
...

cp

 =


〈φ0, L〉
〈φ1, L〉

...

〈φp, L〉

 . (1-33)

1.2 approximation of functions

As already shown for vectors, functions can also be approximated by theFor detailed information on the
approximation of functions in

general please refer to standard
literature such as (Burden and

Faires 2011, Chapter 8.2), (Süli
and Mayers 2003, Chapter 9) or

(Trefethen 2013).

method of least squares. For this purpose we consider an arbitrary function

f (x) ∈ L2([a, b]), the Hilbert space of square integrable functions. In addition,

we assume that we want to approximate f (x) by another function Φ(x), that

lies in vector space V spanned by p + 1 basis functions

V = span{φ0(x), φ1(x), . . . , φp(x)} . (1-34)

Thus, function Φ(x) can be written as a linear combination of these basis

functions

Φ(x) =
p

∑
j=0

cj φj(x) = c0φ0(x) + c1φ1(x) + . . . + cpφp(x) , (1-35)

with the unknown parameters cj. Since f (x) is generally not in V, it is different

from Φ(x) and this difference is known as residual function. As for vectors,In the literature, the residual
function is usually denoted by

R(x).
we obtain the following relationship

f (x) + v(x) = Φ(x) . (1-36)

Now the objective is to determine the unknown parameters in such a way that

Φ(x) approximates f (x) to the best possible extent and as for vectors we use

the length of v(x) as a measure for the best approximation, which is given by

the L2 norm

‖v(x)‖2 =
√
〈v, v〉 =

√∫ b

a

(
v(x)

)2 dx , (1-37)

with 〈·, ·〉 being the inner product of two functions, see for example (Bron-

shtein et al. 2007, page 920) and

v(x) = Φ(x)− f (x) =
p

∑
j=0

cj φj(x)− f (x) . (1-38)

1.2.1 Method of least squares

Like before, we want to determine the unknown coefficients cj in such a way

that the length of v(x) is minimized and this is the case when

Ω(c0, c1, . . . , cp) = 〈v, v〉 → min . (1-39)

Inserting (1-38) into (1-39) yields

Ω(c0, c1, . . . , cp) = 〈Φ− f , Φ− f 〉 (1-40)
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and with (1-35) the target function (1-40) reads

Ω(c0, c1, . . . , cp) = 〈
p

∑
i=0

ci φi − f ,
p

∑
j=0

cj φj − f 〉 . (1-41)

Since the inner product is bilinear, equation (1-41) results in

Ω(c0, c1, . . . , cp) =
p

∑
i=0

p

∑
j=0

cicj〈φi, φj〉 − 2
p

∑
k=0

ck〈φk, f 〉+ 〈 f , f 〉 . (1-42)

Introducing the necessary conditions for a minimum of the objective function

(1-42) yields

1
2

∂Ω(c0, c1, . . . , cp)

∂ci
=

p

∑
j=0

cj〈φi, φj〉 − 〈φi, f 〉 = 0 , (1-43)

or rather
p

∑
j=0

cj〈φi, φj〉 = 〈φi, f 〉 , (1-44)

for i = 0, 1, . . . , p. The system of normal equations (1-44) can be written in

matrix notation as follows

Nx = n
〈φ0, φ0〉 〈φ0, φ1〉 . . . 〈φ0, φp〉
〈φ1, φ0〉 〈φ1, φ1〉 . . . 〈φ1, φp〉

...
...

. . .
...

〈φp, φ0〉 〈φp, φ1〉 . . . 〈φp, φp〉




c0

c1
...

cp

 =


〈φ0, f 〉
〈φ1, f 〉

...

〈φp, f 〉

 . (1-45)

For a least squares approximation of f (x) with respect to a certain set of basis

functions φj(x) we only have to calculate the integrals

〈φi, φj〉 =
∫ b

a
φi(x) φj(x) dx

〈φi, f 〉 =
∫ b

a
φi(x) f (x) dx (1-46)

for i, j = 0, 1, . . . , p and to solve (1-45) for the unknown coefficients cj.

1.2.2 Orthogonal projection

As already shown in Section 1.1.2, we can also determine the unknown coef-

ficients cj of a least squares approximation of f (x) by demanding that v(x)

must be orthogonal on V. This is only the case if v(x) is orthogonal to the

basis functions and therefore the inner products must be equal to zero

〈φi, v〉 = 0 , (1-47)

with i = 0, 1, . . . , p. Inserting (1-36) into (1-47) yields

〈φi, Φ− f 〉 = 0 for i = 0, 1, . . . , p , (1-48)

and with (1-35) the system of normal equations reads

〈φi,
p

∑
j=0

cj φj(x)− f 〉 = 0 . (1-49)



22 approximation theory

Since the inner product if bilinear, equation (1-49) results in

p

∑
j=0

cj〈φi, φj〉 = 〈φi, f 〉 , (1-50)

for i = 0, 1, . . . , p and is equal to (1-44).

The normal equation system (1-45) forms the basis for all kinds of approxim-

ations of functions or partial differential equations using the method of least

squares. In addition to the norm and/or the vector space in which the residual

function is orthogonally projected, the choice of a suitable basis is essential

for a reasonable approximation. To clarify this issue, a practical guide to the

approximation of functions for different sets of basis functions is given in Part

ii.



2
A D J U S T M E N T C A L C U L AT I O N

In Chapter 1 we already discussed the method of least squares and demon-

strated in general how functions can be approximated. In addition, we will

present the basics of adjustment calculation in the following and show how

unknown parameters can be estimated from measurements using the method

of least squares. For detailed information about adjustment calculation in gen-

eral please refer to standard literature such as (Ghilani 2018), (Mikhail and

Ackermann 1976) or (Teunissen 2000). The notation used here is based

on (Niemeier 2008).

2.1 mathematical model

As described in (Mikhail and Ackermann 1976, p. 5), for example, the

mathematical model of adjustment calculation consists essentially of two parts:

the functional model and stochastic model. While the stochastic model con-

siders the non–deterministic properties of the observations, the functional

model represents the deterministic properties that reflect the geometrical or

physical situation to be investigated. A clear description of both parts is

indispensable for the solution of an adjustment problem.

2.1.1 Functional model

An essential task in adjustment calculation is to formulate a mathematical

relationship that connects the observations l with the unknown parameters x,

which is known as the functional model. In general, this can be any implicit

functional relationship

Φ(l, x) = 0 , (2-1)

with Φ(l, x) being in general a nonlinear, differentiable function. A rigorous

solution of adjustment problems resulting from such implicit functional rela-

tionships can be found in (Lenzmann and Lenzmann 2004) and (Neitzel

2010), for example. At this point, however, we only want to consider the

special case that the observations l can be represented as a function of the

unknown parameters x, which results in the following explicit functional rela-

tionship

l = Φ(x) . (2-2)

2.1.2 Stochastic model

While usually dealing with heterogeneous types of observations measuring

different physical or geometrical quantities, we have to take their different

stochastic properties into account. Usually this is done by specifying variances

and covariances. In case n observations li with i = 1, . . . , n are given, their

23



24 adjustment calculation

stochastic properties can be combined in the variance–covariance matrix of

the observations Σll, which is defined by

Σll =


σ2

l1 σl1 l2 · · · σl1 ln

σl2 l1 σ2
l2 · · · σl2 ln

...
...

. . .
...

σln l1 σln l2 · · · σ2
ln

 , (2-3)

with the standard deviation σli of the observations li being the positive square

root of the variance σ2
li
. In addition, the correlation coefficient $li lj between

two observations li and lj can be calculated by

$li lj =
σli lj

σli σlj

, (2-4)

with σli lj being the covariance. Choosing an arbitrary theoretical referenceFrom a numerical point of view,
one should always choose an

appropriate value for σ0.
standard deviation σ0 and scaling the variance–covariance matrix (2-3) yields

the cofactor matrix

Qll =
1
σ2

0
Σll . (2-5)

Assuming that Qll is a non-singular matrix, the weight matrix P represents

the stochastic model and reads

P = Q−1
ll . (2-6)

2.2 observation equations

As already mentioned, we only consider a functional model according to Equa-

tion (2-2). Let us suppose that n observations li for i = 1, . . . , n are available

to estimate m unknown parameters xj for j = 1, . . . , m, then the functional

relationship is given by the equation system

l1 = Φ1(x1, . . . , xm) ,

l2 = Φ2(x1, . . . , xm) ,

...

ln = Φn(x1, . . . , xm) . (2-7)

In general, only those cases will be considered in adjustment calculation where

more observations than unknown parameters are given with n > m. Hence,

the equation system (2-7) is usually not fulfilled as the true values for the

observations are in principle not given. Thus, we introduce a residual vi for

each observation li and Equations (2-7) result in

l1 + v1 = Φ1(x1, . . . , xm) ,

l2 + v2 = Φ2(x1, . . . , xm) ,

...

ln + vn = Φn(x1, . . . , xm) , (2-8)

which are known as the observation equations. In addition, we only want

to consider linear adjustment problems, so that the system of observation

equations (2-8) can be written in matrix notation as follows

l + v = Ax , (2-9)



2.3 least squares adjustment 25

with the vector of observations

l =
[
l1 l2 . . . ln

]T
, (2-10)

the vector of unknowns

x =
[

x1 x2 . . . xm

]T
(2-11)

and the design matrix A containing the coefficients of the linear model.

2.3 least squares adjustment

In the following we want to determine the vector of unknown parameters x
from the linear observation equations (2-9) in such a way that the sum of

weighted squared residuals is minimum. Hence, the target function reads

Ω(x) = vTPv→ min . (2-12)

Solving (2-9) for v and inserting in (2-12) yields

Ω(x) = (Ax− l)TP(Ax− l) (2-13)

and results after rearranging into

Ω(x) = (xTAT − lT)P(Ax− l) ,

= xTATPAx− lTPAx− xTATPl + lTPl ,

= xTATPAx− 2xTATPl + lTPl . (2-14)

Introducing the necessary conditions for a minimum of the objective function

(2-14)
1
2

∂Ω(x)

∂xT
= 0 (2-15)

results in

ATPAx−ATPl = 0 (2-16)

and yields the normal equation system

ATPAx = ATPl ,

Nx = n , (2-17)

with the normal matrix N = ATPA and the vector of the right hand side

n = ATPl. Solving (2-17) yields the least squares estimate of the unknown

parameters Adjusted quantities are denoted
by “ ˆ ”.

x̂ = N−1n ,

= Qx̂x̂n , (2-18)

with the cofactor matrix of the unknown parameters Qx̂x̂ = N−1. The empir-

ical reference standard deviation s0 can be calculated by

s0 =

√
vTPv
n−m

, (2-19)

with

v = Ax̂− l . (2-20)

The variance–covariance matrix of the unknown parameters is given by

Σx̂x̂ = s2
0 Qx̂x̂ , (2-21)

providing the standard deviations sx̂j of the adjusted unknown parameters x̂j
on the main diagonal of Σx̂x̂.
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2.4 least squares adjustment with constraints

Let us assume that in addition to the observation equations in (2-9), the

following nc linear constraints between the unknown parameters x are given

Cx = 0 , (2-22)

with matrix C containing the coefficients of the linear constraints. The leastThis problem can also be solved
by eliminating unknown

parameters, which is not covered
here.

squares solution of such a problem can be determined by formulating the

Lagrange function

L(x,λ) = vTPv + 2λTCx , (2-23)

with the vector of Langrangian multiplier λ, see (Bronshtein et al. 2007, p.

403). For linear adjustment problems the Lagrange function in (2-23) has only

a saddle point, see e.g. (Bronshtein et al. 2007, p. 862), that can be found

by introducing the necessary conditions

1
2

∂L(x,λ)

∂xT
= 0 ,

1
2

∂L(x,λ)

∂λT
= 0 , (2-24)

which in the end results in the extended normal equation systemATPA CT

C 0

x

λ

 =

ATPl

0

 , (2-25)

or in short N CT

C 0

x

λ

 =

n

0

 . (2-26)

Solving (2-26) yields the least squares estimate of the unknown parametersx̂

λ

 =

N CT

C 0

−1 n

0

 ,

=

Qx̂x̂ Qx̂λ

Qλx̂ Qλλ

n

0

 , (2-27)

under the requirement that the constraints (2-22) must be fulfilled. The em-

pirical reference standard deviation s0 can be calculated by

s0 =

√
vTPv

n−m + nc
(2-28)

and the standard deviations sx̂j of the adjusted unknown parameters x̂j can be

determined from the variance–covariance matrix of the unknowns Σx̂x̂, which

can be calculated according to Section 2.3.

2.5 quality assessment of adjustment results

So far, we have mainly dealt with the estimation of unknown parameters, how-

ever, it is indispensable to assess the quality of the adjustment result. In gen-

eral, conclusions about the quality of adjustment results are based on measures
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referring to precision and reliability. The precision describes the reproducibil-

ity or repeatability of the unknown parameters estimated from measurements

acquired under the same conditions and under the assumption that the func-

tional and stochastic model is appropriate and that measurements are only

affected by random errors. Only if this is the case, it makes sense to provide

measures describing the precision, because otherwise the result can be strongly

falsified by, for example, possible outliers in the observations. Therefore, meas-

ures for the reliability are describing to what extent outliers can be detected,

how large their impact on the estimation of the unknown parameters is and

how well the observations control each other. A common measure describing

the precision is the standard deviation of the unknown parameters sx̂j , which

is derived from the cofactor matrix of the unknowns Qx̂x̂ and has already been

discussed in Section 2.3 or 2.4. In contrast, all measures describing the reliab-

ility are derived from the cofactor matrix of the residuals Qvv, which can be

calculated by

Qvv = Qll −Ql̂l̂ , (2-29)

with the cofactor matrix of the adjusted observations

Ql̂l̂ = AQx̂x̂AT . (2-30)

However, the measures known from literature to describe the internal and

external reliability are not discussed here, further information can be found

e.g. in (Niemeier 2008, Chapter 8.3). In the following we only want to

consider the redundancy numbers (EVs), the global test of the adjustment

calculation and the standardised residuals (NVs) in more detail.

2.5.1 Redundancy numbers

The redundancy number ri can be regarded as a transfer factor indicating the

extent to which an error in an observation li is transferred to its corresponding

residual vi and is given by

ri =
(
QvvP

)
ii . (2-31)

The redundancy number ri can take values between 0 and 1, where ri = 1
means that an error in the observation li is to be found completely in its

residual vi and hence is detectable. While for ri = 0 the error can not be

found in its residual at all and therefore is not detectable. The redundancy

number ri thus indicates how well an observation li is controlled by the others

and can be given in percentage by EVi with German: Einfluss auf die
Verbesserung.

EVi = 100 % ri . (2-32)

In practice, the following rating scale for the evaluation of the redundancy

numbers is used:

0 % ≤ EVi < 1 % observation is not controlled,

1 % ≤ EVi < 10 % observation is poorly controlled,

10 % ≤ EVi < 30 % observation is sufficiently controlled,

30 % ≤ EVi < 70 % observation is well controlled,

70 % ≤ EVi < 100 % observation can be removed

without loss of reliability.
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2.5.2 Global test

After an adjustment, a global test is usually performed first. Assuming that

the functional and stochastic model was chosen appropriately and the obser-

vations are well controlled, this test can indicate if outliers may be present

in the observations. Thereby it is checked whether the empirical reference

standard deviation s0 corresponds to the theoretical reference standard devi-

ation σ0 chosen before the adjustment. This is done by a χ2–test with the null

hypothesis

H0 : E{s2
0} = σ2

0 , (2-33)

while E{·} being the expectation operator. The alternative hypothesis results

in

HA : E{s2
0} > σ2

0 . (2-34)

The test statistic is given by

χ2 = f
s2

0

σ2
0

(2-35)

and the critical value of the χ2–distribution for a degree of freedom f and

error level α is denoted by χ2
f ,α. The null hypothesis H0 will be rejected in

favour of the alternative hypothesis HA if

χ2 > χ2
f ,α . (2-36)

In case the null hypothesis will be rejected and under the aforementioned

assumptions it can be concluded that outliers are present in the observations.

2.5.3 Standardised residuals

If the null hypothesis of the global test must be rejected, we have to check the

observations for outliers and remove them from the adjustment. The following

approach for the localisation of outliers was developed by Baarda (1968) and

is referred to as Data Snooping. The measure for the localisation of outliers

is called standardised residual NVi and is defined byGerman: Normierte Verbesserung.

NVi =
|vi|
σvi

=
|vi|

σ0
√

qvivi

, (2-37)

where qvivi is the cofactor from Qvv for observation li. In practice, the following

rating scale for the evaluation of the standardised residual can be applied:

NVi < 2.5 no outlier identifiable,

2.5 ≤ NVi < 4 outlier is possible,

4 ≤ NVi outlier is very likely.

The outliers must be eliminated iteratively, whereby the observation with the

largest NV is always removed from the adjustment.
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S Y N O P S I S

At first we give a general practical introduction to the approximation of uni-

variate functions using different sets of basis functions and discuss the main

advantages as well as the disadvantages. Here, the main focus is on the extent

to which a best approximation can be realised at all and, therefore, the numer- Best in the sense of how close it
fits the function, i.e. L∞ norm
→ min.

ical stability of the different sets is also briefly discussed and compared. One

aim of this work is to obtain a comprehensive understanding of the general

behaviour of approximations, which is fundamental for a successful damage

analysis using MeMoS, since the functional model is based on an approximation

of the unknown analytical solution of the physical model, represented usually

by a set of PDEs. In accordance to Figure I.4, this part also deals with the

approximation error within modelling reality, see Figure S.1.

x

u

x

u

x

u

x

u

x

u

Modelling errors Systematic errors

True
solution

Trueness

Approximation errors Random errors

Approximate
solution

Precision

Computed
Reality

Measured
Reality

M o d e l l i n g M e a s u r i n g

C h a l l e n g e

Figure S.1: Addressed er-
ror source in modelling and
measuring reality within Part
ii. Elements in grey are not
considered

Furthermore, we will also consider the transformation between different sets of

basis functions und briefly discuss the challenges arising for the approximation

of multivariate functions. In addition, a set of basis functions for approxim-

ation is presented, which is apparently best suited for the approximation of

continuous functions and the determination of the optimal degree is solely

based on its coefficients. In practice, it has been shown that this approach

works very well and in general always guarantees that the deviations from the

true function are within machine precision. Consequently, one can assume
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that basically no approximation errors are present any more. Finally, we will

briefly demonstrate how the unknown solution of PDEs can be approximated,

which, therefore, is the basis for the examinations of the second research topic

using MeMoS.



3
A P P ROX I M AT I O N O F F U N C T I O N S I N O N E D I M E N S I O N

Any polynomial can be written in the well known form

Pp(x) =
p

∑
j=0

cj φj(x) =
p

∑
j=0

cj xj = c0 + c1x + c2x2 + · · ·+ cpxp (3-1)

with the linear independent basis functions 1, x, x2, . . ., xp, which are called

monomials. Let us choose a polynomial of 3rd degree to approximate the The choice of a 3rd degree is a
compromise between a “good fit”
and a small equation system as an
example.

following continuous real function

f (x) = sin(3x) (3-2)

on the interval x ∈ [−1, 1]. While choosing monomials xj as basis functions

φj(x), the least squares approximation of (3-2), according to (1-45), yields the

following normal equation system
〈x0, x0〉 〈x1, x0〉 〈x2, x0〉 〈x3, x0〉
〈x0, x1〉 〈x1, x1〉 〈x2, x1〉 〈x3, x1〉
〈x0, x2〉 〈x1, x2〉 〈x2, x2〉 〈x3, x2〉
〈x0, x3〉 〈x1, x3〉 〈x2, x3〉 〈x3, x3〉




c0

c1

c2

c3

 =


〈x0, sin(3x)〉
〈x1, sin(3x)〉
〈x2, sin(3x)〉
〈x3, sin(3x)〉

 . (3-3)

Solving the integrals

〈xi, xj〉 =
∫ 1

−1
xi xj dx =

1
i + j + 1

(
1− (−1)i+j+1

)
with i, j = 0, 1, 2, 3

and

〈xi, sin(3x)〉 =
∫ 1

−1
xi sin(3x) dx with i = 0, 1, 2, 3

yields 
2 0 2/3 0

0 2/3 0 2/5

2/3 0 2/5 0

0 2/5 0 2/7




c0

c1

c2

c3

 =


0.000 000 000 000 000

0.691 354 999 524 712

0.000 000 000 000 000

0.293 171 670 090 401

 . (3-4)

The solution of the normal equation system yields the unknown coefficients
c0

c1

c2

c3

 =


0.000 000 000 000 000

2.633 574 950 607 669

0.000 000 000 000 000

−2.660 904 085 534 336

 (3-5)

for a polynomial approximation of 3rd degree. The resulting approximation

and the residual function are depicted in Figure 3-1.
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34 approximation of functions in one dimension

Figure 3-1: Given function
(3-2) in blue and it’s polyno-
mial approximation P3(x) in
red (left). Residual function
v(x) = sin(3x)− P3(x) (right).
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The polynomial P3(x) approximates (3-2) within roughly ±0.1 and only ex-

ceeds it at the limits of the interval. The residual function for this and all

upcoming examples have been determined by discretising the function using

at least 1 million equispaced points. For the plots, these points have been

reduced in such a way that the main characteristic of the residual function

and especially their extreme values have been preserved.

The computations have been done with the Matlab code in Programme 3-

1. While the integrals in the normal matrix can be easily solved directly,

the integrals for the right hand side have been solved numerically using aIt has been verified that the
results of numerical integration

for the monomial basis are within
machine precision.

global adaptive quadrature. Parts of the Matlab built-in function integral

are based on (Shampine 2008). Furthermore, all entries in the symmetric

normal matrix have been calculated individually, so the performance of the

code is not optimal.

Programme 3-1: Code for
polynomial approximation in
the monomial basis.

1 %Approximation of f(x) on [-1, 1]

2 a=-1; b=1;

3

4 %Polynomial degree

5 p=3;

6

7 %Preallocate matrices

8 N=zeros(p+1); n=zeros(p+1,1);

9

10 %Normal equation system

11 for j=0:p

12 for i=0:p

13 N(j+1,i+1) =1/(i+j+1)*(1-a^(i+j+1));

14 end

15 n(j+1)=integral(@(x) sin(3*x).*x.^j,a,b);

16 end

17

18 %Solution

19 c=N\n;

Depending on the problem it might be already a sufficient approximation or

not. Nevertheless the question might arise, which polynomial degree is needed

to approximate function (3-2) to roughly machine precision, about 15 digits

of relative accuracy?

To answer this question, different polynomials are fitted while increasing theThe interested reader who wants
to refresh his knowledge on

conditioning is referred to
(Trefethen and Bau 1997,

pp. 89-96).

polynomial degree up to 50. For each polynomial degree the maximum abso-

lute difference max | sin(3x)− Pp(x)| and the 2-norm condition number κ of the

normal matrix N was calculated and the results are depicted in Figure 3-2.
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Figure 3-2: Logarithmic plot
for max | sin(3x)− Pp(x)| (left)
and 2-norm condition number
κ(N) (right) for different poly-
nomial degree p. For better
visibility, the discrete points
are usually represented by a
line plot.

As shown in Figure (3-2) (left) the best fitting polynomial is of 15th degree. A Best in terms of
max | sin(3x)− Pp(x)| → min.further increase of the degree results in a worse approximation. A closer look

at the condition number in Figure 3-2 (right) reveals an exponential increase

with growing polynomial degree. From a polynomial of 25th degree onwards,

Matlab also displays a warning that the normal matrix is close to singular

and the result may be inaccurate. According to Trefethen and Bau (1997,

p. 95)

If a problem Ax = b contains an ill-conditioned matrix A, one

must expect to “lose log10 κ(A) digits” in computing the solution,

except under very special circumstances.

The condition number of the normal matrix for fitting a polynomial 15th de- A comprehensive insight into this
very interesting topic about the
accuracy of numerical algorithms
can be found in (Higham 2002).

gree is in this case κ(N) ≈ 5 · 1010, which already corresponds to roughly 10 di-

gits. Fitting polynomials in the monomial basis is in general an ill-conditioned

problem. The determination of the unknown coefficients is inaccurate. The

resulting normal matrix N corresponds to the Hilbert matrix, defined on an

interval [0, 1], which is a well known example of an ill-conditioned matrix.

In order to illustrate the extent of this numerical ill-conditioned problem of

polynomial approximation in the monomial basis, we will consider the follow-

ing function

f (x) = sin(30x2). (3-6)

Also in this case we fitted different polynomials while increasing the polyno-

mial degree up to 200.
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Figure 3-3: Logarithmic plot

of max | sin(30x2)− Pp(x)| for
different polynomial degree.

Figure 3-3 clearly reveals, that an increase of the polynomial degree will not

necessarily improve the approximation itself. It is also not possible to clearly

identify the degree for the best fitting polynomial. In this case a polynomial

of 124th degree leads to the smallest value for max | sin(30x2)− Pp(x)| and is

depicted in Figure 3-4 (left).
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Figure 3-4: Given function
(3-6) in blue and it’s polyno-
mial approximation P124(x)
in red (left). Logarithmic
plot for the coefficients |ci | of
P124(x) (right).
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As one can see from this graph the largest deviations between (3-6) and its

approximation P124(x) are around zero and at the two peaks to the left and

right. Even a polynomial of 1000th or higher degree will not reduce these

deviations significantly.

Figure 3-4 (right) depicts the absolute values of the coefficients for the best

fitting polynomial P124(x). Due to the symmetry of (3-6) the coefficients for

the monomials of odd degree are very small in comparison to the even ones,

which are up to 108. The increase in values with increasing degree and these

very large values are typical for such polynomials of higher degree.

Another property of polynomial approximation in the monomial basis will be

illustrated by the approximations P123(x) and P126(x) of the same function

(3-6) as depicted in Figure 3-4 (left). The difference of these two polynomials

with respect to the best fit P124(x) and the coefficients for all three polynomials

are depicted in Figure 3-5.

Figure 3-5: The difference of
P124(x)− P123(x) in blue and
P124(x)− P126(x) in red (left).
Coefficients ci for P124(x)
in blue, P123(x) in red and
P126(x) in yellow (right).
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Although P123(x) and P124(x) are very similar and only differ by ≈ 5%, their

coefficients deviate significantly from each other in values up to ≈ 107 and

sometimes even change their sign. In addition the approximation P126(x) con-

sists only of two more terms than P124(x) but results in a completely different

set of coefficients as can be seen in Figure 3-5 (right). While P124(x) preserves

at least the main characteristics of the function (3-6), Figure 3-5 (left) reveals

that P126(x) is extremely different from P124(x) and therefore is not coinciding

with function (3-6) depicted in (3-4). One can say that P126(x) is a very bad

approximation of (3-6).

Before one might conclude that polynomial approximation in the monomial

basis might be not suitable for wiggly functions like (3-6), but obviously suit-

able for smooth functions like (3-2), we will consider the following function

f (x) = exp(−100x2). (3-7)
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Following the same procedure as before we find out that a polynomial of 108th

leads to the smallest value for max | exp(−100x2)− Pp(x)|. Function (3-7) and

P108(x) are depicted in Figure 3-6 (left).
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Figure 3-6: Given function
(3-7) in blue and it is polyno-
mial approximation P108(x)
in red (left). Logarithmic
plot for the coefficients |ci | of
P108(x) (right).

The plot of P108(x) clearly reveals the oscillatory behaviour with increasing

frequency at the limits. This is characteristic for a least squares approximation.

On closer inspection this behaviour is also visible in Figure 3-1 and Figure

3-4. For polynomial approximation in the monomial basis this behaviour can

also cause huge deviations at limits or jump discontinuities.

In order to intensify this behaviour we change (3-7) to

f (x) = exp(−1000x2), (3-8)

which amplifies the spike in the function. We found P172(x) as a best fitting

polynomial, which is depicted in Figure 3-7.
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Figure 3-7: Given function
(3-8) in blue and it is polyno-
mial approximation P172(x)
in red (left). Logarithmic
plot for the coefficients |ci | of
P172(x) (right).

In Figure 3-7 (left) it is clearly visible that P172(x) as a best fitting polynomial Best in terms of
max | exp(−1000x2)− Pp(x)| →
min.

is a very bad approximation of (3-8). It is not possible to find a polynomial

approximation in the monomial basis that, at least, preserves the main shape

of the given function (3-8).

In general, we can conclude that polynomial approximation in the monomial

basis is not a good idea, especially for higher degrees. Based on the previous

examples we can identify the following drawbacks:

� Normal matrix N is usually a full matrix. This means that the coeffi-

cients cannot be determined independently of each other. Each time the

polynomial degree will be altered, a new normal equation system needs

to be solved again.

� The condition number of N grows exponentially with increasing polyno-

mial degree. Therefore, it is an ill-conditioned problem and the coeffi-

cients for polynomials of higher degree cannot be determined accurately.



38 approximation of functions in one dimension

The coefficients tend to take extremely large values and a small change

in the polynomial degree usually leads to a completely different set of

coefficients.

� Only in some cases it is possible to find a suitable polynomial approxim-

ation for a given function. In most cases the polynomial is inadequate

as an approximation.

But why is it such an ill-conditioned problem?

The reason for this ill-conditioning is due to the chosen basis functions, the

monomials. Figure 3-8 depicts the first 11 monomial basis functions.

Figure 3-8: Basis functions xj

for j = 0, · · · , 10.
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While the first three monomials can easily be distinguished, the monomials

for higher even or odd degree become more and more similar. To get an im-

pression of the impact of this similarity onto an approximation, it is of great

advantage to understand the method of least squares as an orthogonal pro-

jection, as already described in Section 1.2.2. A least squares approximation

of a function is its orthogonal projection into the vector space V spanned by

these monomials

V = span{φj(x)} = span{xj}. (3-9)

The set of basis functions φj(x) are basis vectors in space V. Figure 3-8 illus-

trates that monomials become more and more similar with increasing degree,

as a consequence the basis functions become more and more similar. This

implies, that from a certain polynomial degree onwards, the basis functions

are showing nearly in the same or opposite direction.

To illustrate this problem, we calculate the angle between two basis functions

φi(x) and φj(x). The inner product of two functions reads

〈φi, φj〉 = ‖φi‖2 ‖φj‖2 cos(αi,j), (3-10)

where αi,j is the angle between the two basis functions and ‖ · ‖2 is the

L2([−1, 1]) norm. Rearranging (3-10) and with (1-37) yields

αi,j = arccos

(
〈φi, φj〉(

〈φi, φi〉〈φj, φj〉
)1/2

)
. (3-11)
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The angle αi,j between all 11 basis vectors depicted in Figure 3-8 has been

calculated according to (3-11) and is listed in the following table.

1 x x2 x3 x4 x5 x6 x7 x8 x9 x10

1 0 100 46.5 100 59.0 100 65.6 100 69.7 100 72.6

x 0 100 26.2 100 38.7 100 46.5 100 51.8 100

x2 0 100 18.4 100 29.3 100 36.7 100 42.2

x3 0 100 14.3 100 23.7 100 30.5 100

x4 0 100 11.6 100 19.9 100 26.2

x5 0 100 9.8 100 17.2 100

x6 0 100 8.5 100 15.1

x7 0 100 7.5 100

x8 0 100 6.7

x9 0 100

Table 3-1: Angle αi,j in [gon]
between the first 11 monomial
basis functions. Due to sym-
metry only the upper triangu-
lar part is presented.

As one can see, monomials of even degree are orthogonal to those of odd

degree and vice versa, which was already visible in the normal matrix in (3-4)

while the corresponding entries are zero. Table 3-1 shows, that monomials

of higher even or odd degree are nearly showing in the same direction. The

angle α8,10 between φ8(x) = x8 and φ10(x) = x10 is only 6.7 gon. Furthermore,

the length of the basis vectors xj will decrease with increasing degree j. The

basis vector x10 is already nearly 5 times shorter than x0, which is shown in

Figure 3-9.
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Figure 3-9: The length ‖xj‖2
of the first 11 monomial basis
functions.

While we approximate functions
on x ∈ [−1, 1] the length of the
basis vectors are not playing such
an important role. Yet this will be
dependent on the chosen interval,
while the length ratios between
the monomials can be huge.

Both properties, the angle between the basis vectors and their length ratios,

are illustrating, from a geometrical point of view, the reason why a polynomial

approximation in the monomial basis is an ill-conditioned problem. Figure 3-

10 clarifies this matter.

V

φi(x)

φj(x)

f (x)

ci

cj ·
V

φi(x)

φj(x)

f (x)

ci

cj

·

Figure 3-10: Orthogonal pro-
jection of f (x) into vector
space V spanned by ortho-
gonal basis vectors with
equal length (left) and non-
orthogonal basis vectors with
different lengths (right).

A geometrical interpretation of an orthogonal projection of a function f (x)

into a vector space V spanned by orthogonal basis vectors φi(x) and φj(x)

with equal length is given in Figure 3-10 (left). For an approximation of f (x)
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we need to determine the unknown coefficients ci and cj. Hence, we need

to determine the intersection of two straight lines. While the basis vectors

are orthogonal, these two lines will also intersect orthogonally. For a polyno-

mial approximation of f (x) in the monomial basis, the vectors φi(x) = xi and

φj(x) = xj are usually not orthogonal, as depicted in Figure 3-10 (right). In

most cases they are nearly showing in the same or opposite direction. Fur-

thermore, these basis vectors have different lengths. Once again we need to

determine the intersection of two straight lines, while this time these lines will

intersect in a very acute angle. From a geometrical point of view it is quite

obvious, that the determination of an intersection of two lines is more accurate

for orthogonal than for non-orthogonal basis vectors, like monomials.

Since the approximation in the monomial basis is an ill-conditioned problem,

numerous approaches have been developed for various fields of application in

order to obtain suitable approximations for arbitrary functions. One approach

already arises from Figure 3-10, namely the approximation using orthogonal

basis functions. Another approach frequently used in engineering sciences is

based on an elementwise approximation with polynomials of low degree. Both

approaches will be addressed in more detail in the following sections.

3.1 elementwise approximation in the monomial basis

As it has been already shown in the previous section, polynomial approxima-

tion in the monomial basis leads to numerical problems for even small polyno-

mial degrees. However, the normal matrix for a polynomial of low degree is

well conditioned, so the coefficients can be determined accurately. Thus, one

might conclude that monomials are still suitable for polynomial approxima-

tion and an accurate solution can be still computed with the following strategy.

The whole domain where one wants to approximate any given function can be

divided into several sub domains and each sub domain will be approximated

by a polynomial of low degree. Hence, the accuracy of the approximation can

be increased by introducing more sub domains.

Following the same terminology with the well known finite element method

(FEM) we will also call these sub domains elements and we will call the point

connecting two successive elements a node.

3.1.1 Elementwise non continuous approximation

To illustrate the procedure of an elementwise non continuous approximation

we approximate function (3-2) by dividing the whole domain into N = 3
equispaced elements and each element will be approximated by a straight line.

Before we set-up the normal equation system for each element, it is of great

advantage to introduce a unique identifier for the nodes ν and elements ζ,

which can be stored in the following tables.

Table 3-2: Coordinates for all
nodes ν and the nodes for all
three elements ζ.

ν xν

1 −1

2 −1/3

3 1/3

4 1

and ζ ν1 ν2

1 1 2

2 2 3

3 3 4
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Based on the definition of nodes and elements in Table 3-2 and the two basis

functions of a straight line we can set-up for each element ζ the normal equa-

tion system
ζN ζx = ζn , (3-12)

which reads ζ〈x0, x0〉 ζ〈x1, x0〉
ζ〈x0, x1〉 ζ〈x1, x1〉

ζ c0
ζ c1

 =

ζ〈x0, sin(3x)〉
ζ〈x1, sin(3x)〉

 (3-13)

with ζ = 1, 2, 3. Solving the integrals in (3-13)

ζ〈xi, xj〉 =

ζ xν2∫
ζ xν1

xi xj dx =
1

i + j + 1

((
ζ xν2

)i+j+1
−
(

ζ xν1

)i+j+1
)

and

ζ〈xi, sin(3x)〉 =

ζ xν2∫
ζ xν1

xi sin(3x) dx ,

for i, j = 0, 1 results in the following three normal equation systems 2/3 −4/9

−4/9 26/81

1c0
1c1

 =

−0.510 098 267 489 528

0.312 214 313 213 494

 ,

 2/3 0

0 2/81

2c0
2c1

 =

 0.000 000 000 000 000

0.066 926 373 097 724

 ,

 2/3 4/9

4/9 26/81

3c0
3c1

 =

 0.510 098 267 489 528

0.312 214 313 213 494

 ,

(3-14)

which can be solved individually. The solution of these equation systems yields

the unknown parameters of a straight line for each element1c0
1c1

 =

−1.517 129 759 281 461

−1.127 973 537 070 754

 ,

2c0
2c1

 =

 0.000 000 000 000 000

2.710 518 110 457 811

 ,

3c0
3c1

 =

 1.517 129 759 281 465

−1.127 973 537 070 758

 .

(3-15)

All computations have been done with Programme 3-2.
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Programme 3-2: Code for
elementwise non continuous
polynomial approximation in
the monomial basis.

1 %Approximation of f(x) on [-1, 1]

2 a=-1; b=1;

3

4 %polynomial degree for each element

5 p=1;

6

7 %number of elements

8 num_elements =3;

9

10 %Position of the equispaced nodes

11 nodes=linspace(a,b,num_elements +1);

12

13 %Preallocate matrices

14 N=zeros(p+1); n=zeros(p+1,1); c=zeros(p+1, num_elements);

15

16 for zeta =1: num_elements

17 for i=0:p

18 for j=0:p

19 N(i+1,j+1) =1/(i+j+1)*(nodes(zeta +1)^(i+j+1)-nodes(

zeta)^(i+j+1));

20 end

21 n(i+1)=integral(@(x) sin(3*x).*x.^i,nodes(zeta),nodes(

zeta +1));

22 end

23 c(:,zeta)=N\n;

24 end

The solution of the elementwise approximation of (3-2) and the resulting re-

sidual function are depicted in Figure 3-11.

Figure 3-11: Given function
(3-2) in blue and it’s element-
wise linear approximation in
red (left). Residual function
v(x) = sin(3x)− ∑3

ζ=1
ζ P1(x)

(right).
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Figure 3-11 clearly reveals that the resulting approximation is not continuous,

which is the major drawback of this approach. In case continuity is not re-

quired, one can achieve suitable approximations for even complex functions.At least better approximations as
depicted in Figure 3-4 (left) or

Figure 3-7 (left).
The question might arise, how many elements are needed to approximate (3-2)

within machine precision? Therefore, the number of elements was increased

up to N = 20 000 and we determined the maximum absolute deviation between

(3-2) and each elementwise approximation. Furthermore, each element was ap-

proximated by a polynomial of 1st, 2nd and 3rd degree. The result is depicted

in Figure 3-12.
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Figure 3-12: Logarithmic plot

of max | sin(3x)−∑N
ζ=1

ζ Pp(x)|
for an elementwise linear
(blue), quadratic (red) and
cubic (yellow) polynomial ap-
proximation of function (3-2).

For the presented elementwise approximation computed by Programme 3-2

and based on the results depicted in Figure 3-12, the following conclusions

can be made:

� It is not possible to approximate (3-2) within machine precision.

� In comparison to a linear polynomial approximation (blue curve), using

quadratic (red) or cubic (yellow) polynomials will dramatically reduce

the number of elements, while max |v(x)| is nearly equal. A best approx-

imation of (3-2) can be achieved while using roughly 8000 elements for

a linear, 350 for a quadratic and 50 for a cubic approximation. But this Which is even worse than the
solution using a polynomial of
15th degree from Figure 3-2 (left).

also implies that ≈ 16 000 (linear) resp. ≈ 1050 (quadratic) or ≈ 200
(cubic) parameters are needed in order to approximate (3-2) only within

≈ 10−7.

� A further increase of elements will always lead to a worse approxim-

ation than the presented one. For an elementwise quadratic or cubic

polynomial approximation this is even much worse.

Although the resulting normal matrix ζN of an elementwise linear, quadratic

and cubic polynomial approximation is well conditioned for a small amount

of elements, it will dramatically change with increasing N. To gain a better

understanding of this issue, we will have a closer look at the angles between

the basis vectors and their length ratios for each element. In addition, we also

consider their change, while increasing the number of elements.
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Figure 3-13: Angle ζ α0,1 in
[gon] between the two basis
vectors ζ φ0(x) = 1 and
ζ φ1(x) = x (left) and length
ratio ‖ζ φ0‖2/‖ζ φ1‖2 (right) for
5 elements in blue, 10 in red
and 25 in yellow.

Figure 3-13 (left) shows the angle ζ α0,1 between the two basis vectors ζ φ0(x) = 1
and ζ φ1(x) = x, depending on the location of the element, reaching from

0− 200 gon. In case we want to approximate a function within the first element,

starting at x = −1, the angle between both basis vectors is nearly 200 gon,

no matter if we have 5, 10 or 25 elements. This means that both vectors

are showing nearly in an opposite direction. For elements close to x = 1
it is the other way round, both basis vectors will nearly show in the same
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direction, while the angle between them is nearly 0 gon. Only for an element

with a symmetric interval around x = 0 the angle ζ α0,1 between the two basis

vectors will be exactly 100 gon. In this case, both basis vectors are orthogonal.

However, Figure 3-13 (left) reveals that the length ratio ‖ζ φ0‖2/‖ζ φ1‖2 for this

element in the middle is ≈ 9 : 1, while using 5 elements. This means that
ζ φ0(x) = 1 is roughly nine times longer than ζ φ1(x) = x. While using 25
elements (yellow curve) it is even worse. These effects of a changing angle or

length ratio between basis functions for an element will be amplified, while

using more elements and/or higher polynomial degree.

To illustrate this issue, we determined the 2-norm condition number κ(1N)

always for the normal matrix of the first element for each approximation for

up to N = 1000 elements. This was done for an elementwise linear, quadratic

and cubic approximation and is depicted in Figure 3-14.

Figure 3-14: Logarithmic plot
of 2-norm condition number
κ(1N) for an elementwise lin-
ear (blue), quadratic (red)
and cubic (yellow) polynomial
approximation of function
(3-2) for N elements.
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Figure 3-14 clearly shows, that κ(1N) increases very fast and highly depends

on the number of elements and polynomial degree. The normal matrices of

a cubic polynomial approximation with only 100 elements are nearly singular.

Using quadratic polynomials with roughly 800 elements will also yield nearly

singular normal matrices. This problem is not as serious for an elementwise

linear approximation, but the normal matrices are still far from being numer-

ically well-conditioned.

Although the approximation is non-continuous and is usually not used in en-Just for the sake of completeness.

gineering science and other fields, we will also present the best approximation

for the functions (3-6) and (3-8). Based on previous considerations, we will

use quadratic polynomials, as a compromise between a good approximation

and not too many elements.

Figure 3-15: A best ap-
proximation of function
(3-6) with 470 elements us-
ing quadratic polynomials
(left). Residual function
v(x) = sin(30x2)−∑470

ζ=1
ζ P2(x)

(right).
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Figure 3-15 (left) depicts the best non-continuous approximation of (3-6) with

470 elements using quadratic polynomials, which is quite similar to the original

function (3-6) depicted in Figure 3-4 (left) in blue. The largest deviation

between both functions is in the range of 2 · 10−4 and is much smaller than
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an approximation with one single polynomial of high degree, as depicted in

Figure 3-4 (right). It is also possible to achieve a similarly good approximation

of function (3-8) as can bee seen in Figure 3-16.
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Figure 3-16: An approxim-
ation of function (3-6) with
1000 elements using quad-
ratic polynomials (left).
Residual function v(x) =
exp(−1000x2) − ∑1000

ζ=1
ζ P2(x)

(right).

For the presented approximation in Figure 3-16 (left) we have limited ourselves The computational effort to
determine an optimal number of
elements and polynomial degree
for the best possible
approximation is enormos,
especially in contrast to the
resulting residual function, which
will only be smaller by a factor of
10− 100.

to 1000 elements using quadratic polynomials. The difference between the

original function (3-8) and the chosen approximation is smaller than 10−5, but

only around the peak within the interval x ∈ [−0.1, 0.1]. Outside the peak,

the residual function is zero within machine precision. In a direct comparison

to the approximation P172(x) depicted in Figure 3-7 (left) we can see a big

improvement. While introducing more elements the residual function can be

further reduced, but only to a certain extent. With this approach it is possible

to obtain non continuous approximations, that can preserve at least the shape

of even complex functions. But usually a large number of elements are needed.

3.1.2 Elementwise continuous approximation

As already mentioned in the previous section, the presented approximation is

not continuous. An approximation with N elements will have N − 1 discon-

tinuities located at the inner nodes. Thus, we will focus on the question of

how to remove these discontinuities at the inner nodes in order to obtain an

elementwise approximation which is continuous. While we still use monomials

as basis functions, we can enforce continuity by introducing a constraint at

each inner node, namely −1 −0.5 0 0.5 1

−1

0

1

ζ P1(ζ xν2 ) = ζ+1P1(ζ+1xν1 ). (3-16)

Based on the previous example of approximating (3-2) using 3 elements, we

have to introduce the following two constraints

1c0 + 1c1
1xν2 −

(2c0 + 2c1
2xν1

)
= 0 ,

2c0 + 2c1
2xν2 −

(3c0 + 3c1
3xν1

)
= 0 .

(3-17)

Each constraint depends always on the unknown parameters of two success-

ive elements. These constraints induce a dependency between the unknown

parameters of the elements and the three normal equation systems (3-14) can

not be solved individually any more. In order to solve this issue we combine

the three normal equation systems of the non continuous approach to a single

one as follows 
1N 0 0

0 2N 0

0 0 3N




1x
2x
3x

 =


1n
2n
3n

 , (3-18)
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or in a shorter notation

N x = n , (3-19)

and rewrite the constraints (3-17) in matrix notation

C x = 0 (3-20)

with

C =

1 1xν2 −1 −2xν1 0 0

0 0 1 2xν2 −1 −3xν1

 . (3-21)

Now with (3-19) and (3-20) we obtain an equation system with constraints

between the unknown parameters. As shown in Section 2.4 a solution of such

a problem can be obtained by solving the following extended normal equation

system N CT

C 0

x

λ

 =

n

0

 , (3-22)

which reads in this case

2/3 −4/9 0 0 0 0 1 0

−4/9 26/81 0 0 0 0 −1/3 0

0 0 2/3 0 0 0 −1 1

0 0 0 2/81 0 0 1/3 1/3

0 0 0 0 2/3 4/9 0 −1

0 0 0 0 4/9 26/81 0 −1/3

1 −1/3 −1 1/3 0 0 0 0

0 0 1 1/3 −1 −1/3 0 0





1c0
1c1
2c0
2c1
3c0
3c1

λ1

λ2


=



−0.510 098 267 489 528

0.312 214 313 213 494

0.000 000 000 000 000

0.066 926 373 097 724

0.510 098 267 489 528

0.312 214 313 213 494

0.000 000 000 000 000

0.000 000 000 000 000


.

(3-23)

The solution of the extended normal equation (3-23) system yields the un-

known parameters of a straight line for each element

1c0
1c1
2c0
2c1
3c0
3c1


=



−1.350 786 978 874 439

−0.914 104 247 976 010

0.000 000 000 000 000

3.138 256 688 647 309

1.350 786 978 874 442

−0.914 104 247 976 016


. (3-24)

These results have been obtained with the code listed in Programme 3-3.
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1 %Approximation of f(x) on [-1, 1]

2 a=-1; b=1;

3

4 %polynomial degree for each element

5 p=1;

6

7 %number of elements

8 num_elements =3;

9

10 %Position of the equispaced nodes

11 nodes=linspace(a,b,num_elements +1);

12

13 %Preallocate matrices

14 N=zeros((p+1)*num_elements); n=zeros((p+1)*num_elements ,1);

15 C=zeros(num_elements -1,(p+1)*num_elements);

16

17 %Normal matrix and right hand side

18 for zeta =1: num_elements

19 index=(p+1)*zeta -p;

20 for i=0:p

21 for j=0:p

22 N(index+i,index+j)=1/(i+j+1)*(nodes(zeta +1)^(i+j+1)

-...

23 nodes(zeta)^(i+j+1));

24 end

25 n(index+i)=integral(@(x) sin(3*x).*x.^i,nodes(zeta),

nodes(zeta +1));

26 end

27 end

28

29 %Matrix for the conditions

30 for zeta =2: length(nodes)-1

31 index=(p+1)*(zeta -1)-p;

32 C(zeta -1,index:index +2*(p+1) -1)=...

33 [nodes(zeta).^(0:p) -nodes(zeta).^(0:p)];

34 end

35

36 %Extended normal equation system

37 N_ext=[N C’;C zeros(num_elements -1)]; n_ext =[n; zeros(

num_elements -1,1)];

38 c=N_ext\n_ext;

39

40 %Deleting the Lagrangian multipliers

41 c(end -num_elements +2:end)=[];

Programme 3-3: Code for
an elementwise continuous
polynomial approximation in
the monomial basis.

Function (3-2), the resulting approximation and the residual function are de-

picted in Figure 3-17 and it can clearly be seen that the approximation is

continuous. The straight lines (red) of the elements are connected at the in-

ner nodes 2xν1 = −1/3 and 3xν1 = 1/3 and therefore the residual function in

(3-17) (right) is continuous.
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Figure 3-17: Given func-
tion (3-2) in blue and it’s
continuous approximation
with 3 elements using lin-
ear polynomials in red
(left). Residual function
v(x) = sin(3x)− ∑3

ζ=1
ζ P1(x)

(right).
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Now we can obtain an elementwise continuous approximations of any real-

valued function f (x), but one might wonder what happens if we will increase

the number of elements and polynomial degree. Is it possible to achieve more

accurate approximations than using the non-continuous approximation from

the previous section, or will it be even worse? In the continuous case we have

to solve one large equation system, while in the non-continuous case we have

to solve many small equation systems. In both cases, the normal matrix is

badly conditioned for a larger amount of elements or higher polynomial de-

gree. Based on Figure 3-12 we determine the non-continuous and continuous

approximations of function (3-2) with 350 elements using quadratic polynomi-

als. The resulting residual functions of the two approximations are depicted

in Figure 3-18.

Figure 3-18: Residual function

v(x) = sin(3x)−∑350
ζ=1

ζ P2(x) of
a non-continuous (right) and
continuous (left) approxima-
tion.
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The residual functions of the non-continuous and continuous approximationSince the normal equation system
is ill-conditioned, an exact

symmetrical distribution of the
residual function is usually not

resulting.

of (3-2) are very similar and do not differ significantly. Also if we choose a

different number of elements and/or polynomial degree even for some other

functions, we always obtain very similar results. In most cases the continuous

approximation yields slightly smaller values for the residual function, with the

only advantage that the resulting approximation is continuous. However, the

following figure reveals a small drawback so far.

Figure 3-19: An approxim-
ation of function (3-2) with
3 elements using quadratic
polynomials.
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The approximation of function (3-2) with 3 elements using quadratic polyno-

mials in Figure 3-19 is continuous but reveals a kink (yellow circle) at the

inner nodes x2 = −1/3 and x3 = 1/3. The approximation is continuous but A function f (x) is said to be Cn

continuous if its first n derivatives
dn f (x)

dxn are continuous.
only piecewise smooth. To remove these kinks, we can enforce continuity in

the first and second derivative by introducing the following two additional

constraints for each inner node

ζ P′1(ζ xν2 ) = ζ+1P′1(ζ+1xν1 ),
ζ P′′1 (ζ xν2 ) = ζ+1P′′1 (ζ+1xν1 ),

(3-25)

which implies that the second derivative ζ+1P′′1 must be at least a constant.

Therefore, we will now focus on cubic polynomials and approximate (3-2) with Such an approximation is known
as a cubic spline, with the only
difference that we use monomials
as basis functions. The approach
shown was also presented by
(Ezhov et al. 2018).

3 elements. In this case each normal matrix ζN in (3-18) is larger and refers

to 4 unknown parameters. For the constraints (3-17) and (3-25) we obtain

three matrices enforcing continuity in the functional value

C1 =

1 1xν2
1x2

ν2
1x3

ν2
−1 −2xν1 −2x2

ν1
−2x3

ν1
0 0 0 0

0 0 0 0 1 2xν2
2x2

ν2
2x3

ν2
−1 −3xν1 −3x2

ν1
−3x3

ν1

 ,

(3-26)

in the first derivative

C2 =

0 1 2 1xν2 3 1x2
ν2

0 −1 −2 2xν1 −3 2x2
ν1

0 0 0 0

0 0 0 0 0 1 2 2xν2 3 2x2
ν2

0 −1 −2 3xν1 −3 3x2
ν1

 (3-27)

and in the second derivative

C3 =

0 0 2 6 1xν2 0 0 −2 −6 2xν1 0 0 0 0

0 0 0 0 0 0 2 6 2xν2 0 0 −2 −6 3xν1

 . (3-28)

These three matrices can be combined to

C =


C1

C2

C3

 (3-29)

and will be inserted in (3-22). Extending the code in Programme 3-3 by a We say an approximation is
smooth, if it is C2 continuous.couple of lines for C2 and C3, we obtain the following smooth approximation

without any kinks at the inner nodes.
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Figure 3-20: Given func-
tion (3-2) in blue and it’s
smooth approximation
with 3 elements using cu-
bic polynomials in red
(left). Residual function
v(x) = sin(3x)− ∑3

ζ=1
ζ P3(x)

(right).

Figure 3-20 (left) shows a very smooth and already quite good approximation

of (3-2) while using only 3 elements. The smoothness is also visible in the
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residual function in Figure 3-20 (right) as no kinks are noticeable. While the

computational effort to find the best approximation of (3-2) is huge we only

present a near best fit in Figure 3-21. Based on numerical investigations it is

very likely that the difference to the best approximation is small.

Figure 3-21: A near best
smooth approximation
of (3-2) with 80 elements
using cubic polynomials
(left). Residual function
v(x) = sin(3x)− ∑80

ζ=1
ζ P3(x)

(right).
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Figure 3-21 (right) shows, that the residual function for the near best smooth

approximation of (3-2) is in a range of ≈ 5 · 10−8 and is, in that case, not

really better or worse than an approximation without the constraints (3-25).

The same applies for the near best smooth approximation of function (3-6),

which is depicted in Figure 3-22.

Figure 3-22: A near best
smooth approximation of
(3-6) with 100 elements
using cubic polynomials
(left). Residual function
v(x) = sin(30x2)−∑100

ζ=1
ζ P3(x)

(right).
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The residual function in Figure 3-22 (right) is a bit worse than the one of

a non-continuous approximation in Figure 3-15. The main benefit of such

approximations is, that they are continuous in the 1st and 2nd derivative, so

they are smooth. But this benefit has also a downside while dealing with

monomials as basis functions. The constraints (3-25) are having a big impact

on the solution of the unknown parameters and while we deal with an ill-

posed problem, a small change in the parameters of one element can have a

huge impact on the unknown parameters of neighboured elements. Such a

numerical effect on the solution of the unknown parameters can be seen in

Figure 3-23.

Figure 3-23: A smooth ap-
proximation of (3-6) with 300
elements using cubic polyno-
mials (left). Residual function
v(x) = sin(30x2)−∑300

ζ=1
ζ P3(x)

(right).
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Figure 3-23 (left) shows some strange oscillations around x = 0.7, which are

caused by the solution of the ill-conditioned normal matrix. This effect should

not be confused with Runge’s phenomenon.

For sake of completeness, we also present a near best smooth approximation

of function (3-8), which is depicted in Figure 3-24.
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Figure 3-24: A near best
smooth approximation of
(3-8) with 300 elements us-
ing cubic polynomials (left).
Residual function v(x) =
exp(−1000x2) − ∑300

ζ=1
ζ P3(x)

(right).

While the residual function of the elementwise non-continuous approximation

in Figure 3-16 is zero within machine precision off site the peak, the smooth

approximation also shows large deviations in these areas as illustrated in Fig- Like a butterfly effect - a small
error in one element, can disturbe
the whole approximation.

ure 3-24 (right). Once again, these deviations are caused by the constraints

and the ill-conditioned normal matrix.

At the end of this section we can conclude that polynomial approximation

in the monomial basis is still an ill-conditioned problem. Significant improve-

ments have been achieved, while we divided the whole domain into elements

and introduced constraints in order to obtain smooth approximations. So far

we only focused on equispaced elements, probably the easiest case. For sure it

can be further improved, like implementing strategies to identify the optimal

number of elements and especially where the nodes must be located, etc. But

in the end, it is still an ill-conditioned problem. We are familiar with the

monomials basis and it is easy for us to handle it, but nevertheless it should

never be used for numerical work. Only for didactic reasons or maybe in case

that a low polynomial degree is needed.

3.2 elementwise approximation in an alternative basis

An elementwise continuous polynomial approximation can also be obtained

without the necessity of introducing constraints at the inner nodes. The basic

idea shall be exemplified on an elementwise linear approximation, as depicted

in Figure 3-25.

x

y

ζxν1

ζyν1

ζxν2

ζyν2

ζc0 + ζc1x

Figure 3-25: Illustration
of an element for a linear
approximation.

Figure 3-25 illustrates one single element of an elementwise polynomial ap-

proximation, while the elements must be connected at the inner nodes. The
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previous and successive elements are only indicated by a black dashed line.

The straight line of the depicted element is uniquely described by the two

parameters ζ c0 and ζ c1. In the previous sections, these parameters were es-

timated for each element under the constraint, that the elements must be

connected at the inner nodes. However, the same straight line is also uniquely

described by the two nodes (blue dots) and while we set ζ xν1 and ζ xν2 only

the y−coordinates ζ yν1 and ζ yν2 of the two nodes are unknown. The basic

idea is now to substitute the two unknown parameters ζ c0 and ζ c1 by the

two y−coordinates ζ yν1 and ζ yν2 . Hence, we have the following two equivalent

representations of the same polynomial

ζ P1(x) =
1

∑
j=0

ζ cj φj(x) =
1

∑
j=0

ζ dj ψj(x) , (3-30)

with the monomial basis φj(x) = xj and the new unknown parameters ζ dj,

containing the y−coordinates ζ yν1 and ζ yν2 . Now the question arises, how to

determine the two new basis functions ψj(x)? First of all we rewrite (3-30) in

matrix notation [
φ0 φ1

] ζ c0
ζ c1

 =
[
ψ0 ψ1

] ζ d0
ζ d1

 . (3-31)

Furthermore, we know the following two equations based on Figure 3-25

ζ c0 + ζ c1
ζ xν1 = ζ yν1 ,

ζ c0 + ζ c1
ζ xν2 = ζ yν2 . (3-32)

Substituting the y−coordinates ζ yν1 and ζ yν2 in (3-32) with the new unknown

parameters ζ dj yields

ζ c0 + ζ c1
ζ xν1 = ζ d0 ,

ζ c0 + ζ c1
ζ xν2 = ζ d1 , (3-33)

which can be written in matrix notation1 ζ xν1

1 ζ xν2

ζ c0
ζ c1

 =

ζ d0
ζ d1

 . (3-34)

Solving (3-34) for the unknown coefficients ζ c0 and ζ c1 readsζ c0
ζ c1

 =
1

ζ xν2 − ζ xν1

 ζ xν2 −ζ xν1

−1 1

ζ d0
ζ d1

 . (3-35)

Inserting (3-35) into the left hand side of (3-31) results in

1
ζ xν2 − ζ xν1

[
φ0 φ1

]  ζ xν2 −ζ xν1

−1 1

ζ d0
ζ d1

 =
[
ψ0 ψ1

] ζ d0
ζ d1

 ,

1
ζ xν2 − ζ xν1

[
φ0

ζ xν2 − φ1 φ1 − φ0
ζ xν1

] ζ d0
ζ d1

 =
[
ψ0 ψ1

] ζ d0
ζ d1

 . (3-36)

Equating the coefficients in (3-36) yields the two new basis functions

ψ0(x) =
φ0

ζ xν2 − φ1
ζ xν2 − ζ xν1

and ψ1(x) =
φ1 − φ0

ζ xν1

ζ xν2 − ζ xν1

. (3-37)
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Inserting the monomial basis φj(x) = xj in (3-37) yields In FEM these basis functions are
known as the hat functions.

ψ0(x) =
ζ xν2 − x

ζ xν2 − ζ xν1

and ψ1(x) =
x− ζ xν1

ζ xν2 − ζ xν1

. (3-38)

Introducing a new variable

x̃ =
x− ζ xν1

ζ xν2 − ζ xν1

, (3-39)

with x̃ ∈ [0, 1] for all elements, the two basis functions (3-38) are These basis functions are equal to
the Bernstein polynomials B0,1
and B1,1, see e.g. (Piegl and
Tiller 1997, p. 16).

ψ̃0(x̃) = 1− x̃ and ψ̃1(x̃) = x̃ , (3-40)

and are depicted in Figure 3-26.

0 0.2 0.4 0.6 0.8 1
0

1

x̃

ψ̃0(x̃)
ψ̃1(x̃)

Figure 3-26: Alternative basis
functions for a straight line,
while the two y−coordinates
ζ yν1 and ζ yν2 of the nodes are
unknown parameters.

The basis functions (3-40) are referring to a generalised element and therefore,

are always equal for all elements. The angle between ψ̃0(x̃) and ψ̃1(x̃) is

α0,1 = 66.67 gon and both are of equal length. In contrast to monomials,

the angle between these basis functions and their length do not depend on

the position of the element, but are always equal. These facts are of great

advantage from a numerical point of view, as we shall see in the following

example.

To illustrate an elementwise linear approximation in the derived alternative

basis (3-40), we approximate function (3-2) by dividing the whole domain into

N = 3 equispaced elements. Based on the definition of nodes and elements

in Table 3-2 and the two alternative basis functions of a straight line we can

set-up the normal equation system for each elementζ〈ψ0, ψ0〉 ζ〈ψ1, ψ0〉
ζ〈ψ0, ψ1〉 ζ〈ψ1, ψ1〉

ζ d0
ζ d1

 =

ζ〈ψ0, sin(3x)〉
ζ〈ψ1, sin(3x)〉

 , (3-41)

with ζ = 1, 2, 3. Using the definition of the basis function in (3-38), the integ-

rals in the normal matrix are expressed by

ζ〈ψi, ψj〉 =

ζ xν2∫
ζ xν1

ψi(x), ψj(x) dx (3-42)

with i, j = 0, 1. But it is more feasible to solve the integral for the general-

ised coordinate x̃, which is always within the interval [0, 1] for all elements.

Inserting (3-40) and adopting the limits of the integrals yields

ζ〈ψi, ψj〉 =

1∫
0

ψ̃i(x̃)ψ̃j(x̃) dx for i, j = 0, 1 . (3-43)
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In order to change dx we take the derivative of the generalised coordinate

(3-39)
dx̃
dx

=
d

dx

( x− ζ xν1

ζ xν2 − ζ xν1

)
=

1
ζ xν2 − ζ xν1

(3-44)

and after rearranging we obtain

dx = (ζ xν2 − ζ xν1 ) dx̃ . (3-45)

Inserting (3-45) with ζ J = ζ xν2 − ζ xν1 into (3-43) yields

ζ〈ψi, ψj〉 = ζ J
1∫

0

ψ̃i(x̃)ψ̃j(x̃) dx̃ for i, j = 0, 1 . (3-46)

Solving the integrals in the generalised coordinate is of great advantage, while

the integrals simplify to

ζ〈ψi, ψj〉 = ζ J〈ψ̃i, ψ̃j〉 for i, j = 0, 1. (3-47)

The integrals

〈ψ̃i, ψ̃j〉 =

1∫
0

ψ̃i(x̃)ψ̃j(x̃) dx̃ for i, j = 0, 1 (3-48)

are referring to a generalised element and therefore, they only needs to be

solved once. The integrals for the normal matrix only have to be scaled by

the factor ζ J
ζN = ζ J Nelement (3-49)

with

Nelement =

1/3 1/6

1/6 1/3

 , (3-50)

which saves a lot of computational time. In case of equispaced elements, ζ J is

also constant for all elements. The integrals for the right hand side will also

be solved for the generalised coordinate x̃ and yields

ζ〈ψi, sin(3x)〉 = ζ J
1∫

0

ψ̃i(x̃) sin(3x) dx̃ for i = 0, 1 . (3-51)

Rearranging (3-39) as

x = (ζ xν2 − ζ xν1 ) x̃ + ζ xν1 = ζ J x̃ + ζ xν1 (3-52)

and inserting into (3-51) results in

ζ〈ψi, sin(3x)〉 = ζ J
1∫

0

ψ̃i(x̃) sin
(
3(ζ J x̃ + ζ xν1 )

)
dx̃ (3-53)

for i = 0, 1. The linear approximation of (3-41) using 3 elements yields the

three normal equation systems2/9 1/9

1/9 2/9

1yν1

1yν2

 =

−0.213 272 336 075 477

−0.296 825 931 414 051

 ,

2/9 1/9

1/9 2/9

2yν1

2yν2

 =

−0.100 389 559 646 586

0.100 389 559 646 586

 ,

2/9 1/9

1/9 2/9

3yν1

3yν2

 =

 0.296 825 931 414 052

0.213 272 336 075 477

 .

(3-54)
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Based on Table 3-2, two elements share the same node, namely

1xν2 =
2xν1 = x2 (3-55)

and
2xν2 =

3xν1 = x3 . (3-56)

Substituting ζ yν1 and ζ yν2 in (3-54) by the unique identifier for the nodes, the

normal equation system can be written as2/9 1/9

1/9 2/9

y1

y2

 =

−0.213 272 336 075 477

−0.296 825 931 414 051

 ,

2/9 1/9

1/9 2/9

y2

y3

 =

−0.100 389 559 646 586

0.100 389 559 646 586

 ,

2/9 1/9

1/9 2/9

y3

y4

 =

 0.296 825 931 414 052

0.213 272 336 075 477

 .

(3-57)

While two elements share the same nodes, the three normal equation systems

can not be solved individually. To solve for the unknowns parameters, the

normal equation systems needs to be combined as follows

+

+

+

+

y1
y2
y3
y4

= (3-58)

and will read
2/9 1/9 0 0
1/9 4/9 1/9 0

0 1/9 4/9 1/9

0 0 1/9 2/9




y1

y2

y3

y4

 =


−0.213 272 336 075 477

−0.397 215 491 060 637

0.397 215 491 060 637

0.213 272 336 075 477

 . (3-59)

Solving (3-59) yields the unknown parameters
y1

y2

y3

y4

 =


−0.436 682 730 898 429

−1.046 085 562 882 435

1.046 085 562 882 435

0.436 682 730 898 429

 . (3-60)

The resulting elementwise continuous linear approximation of (3-2) is depicted

in Figure 3-27 and is equivalent to the approximation in the monomial basis

depicted in Figure 3-17.

−1 −0.5 0 0.5 1

−1

0

1

x
−1 −0.5 0 0.5 1

−0.2

0

0.2

x

Figure 3-27: Given function
(3-2) in blue and it’s continu-
ous approximation with 3
elements using the derived al-
ternative linear polynomials in
red (left). Residual function
v(x) = sin(3x)− ∑3

ζ=1
ζ P1(x)

(right).
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In order to prove that the result is really equal to the one in the monomial

basis (3-24), we insert the result from (3-60) into (3-35) and determine the

parameters ζ c0 and ζ c1 for all three lines from the y−coordinates of nodes.

The derived coefficients and the coefficients from (3-24) are listed in Table

3-3.

Table 3-3: Comparison of de-
rived coefficients based on the
solution for the y−coordinates
of the nodes in (3-60) and the
solution from an elementwise
continuous approximation in
the monomial basis in (3-24).
Deviations are due to round-
ing errors.

Derived from (3-60) Monomial basis

1c0 −1.350 786 978 874 438 −1.350 786 978 874 439
1c1 −0.914 104 247 976 009 −0.914 104 247 976 010
2c0 0.000 000 000 000 000 0.000 000 000 000 000
2c1 3.138 256 688 647 305 3.138 256 688 647 309
3c0 1.350 786 978 874 438 1.350 786 978 874 442
3c1 −0.914 104 247 976 009 −0.914 104 247 976 016

Table 3-3 shows, that the elementwise approximation in the alternative

basis (3-40) is equivalent to an elementwise continuous approximation in the

monomial basis, while we introduce constraints at inner nodes, as described

in Section 3.1.2.

The presented linear approximation in the alternative basis (3-40) has been

performed with the Matlab code in Programme 3-4.

Programme 3-4: Code for
an elementwise continuous
polynomial approximation in
the derived alternative basis
(3-40).

1 %Approximation of L(x) on [-1, 1]

2 a=-1; b=1;

3

4 %number of elements

5 elements =3;

6

7 %Position of the equispaced nodes

8 nodes=linspace(a,b,elements +1);

9

10 %Initilisation of the matrices

11 N=zeros(elements +1); n=zeros(elements +1,1);

12

13 %Normal matrix for a generalised element

14 N_element =[1/3 1/6;1/6 1/3];

15

16 for zeta =1: elements

17 J=nodes(zeta +1)-nodes(zeta);

18 N(zeta:zeta+1,zeta:zeta +1)=N(zeta:zeta+1,zeta:zeta +1)+J

*N_element;

19 n(zeta)=n(zeta)+J*integral(@(x) sin (3*(J*x+nodes(zeta))

).*(1-x) ,0,1);

20 n(zeta +1)=n(zeta +1)+J*integral(@(x) sin (3*(J*x+nodes(

zeta))).*x,0,1);

21 end

22 c=N\n;

In direct comparison to the code for an equivalent approximation in the

monomial basis in Programme 3-3, the one in the alternative basis is shorter

and also faster. Furthermore, an approximation in the alternative basis is nu-

merically more stable and also applicable for a large amount of elements. For
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the monomial basis, the condition number of the normal matrix increases rap-

idly with increasing number of elements, in contrast to the derived alternative

basis, as illustrated in Figure 3-28.

0 20 40 60 80 100

101

104

107

N

Figure 3-28: Logarithmic plot
of the condition number of
the normal matrix of an ele-
mentwise continuous linear ap-
proximation in the monomial
basis (blue) and in the altern-
ative basis (red) for increasing
number of elements N.

Figure 3-28 depicts the condition number of the normal matrix for the

monomial (blue) and alternative basis (red) with increasing number of ele-

ments N. The difference between both is huge. While the condition number

of the normal matrix for the monomial basis grows rapidly towards 107 with

increasing number of elements, the one for the normal matrix in the derived

alternative basis tends towards 4. Another difference between both sets of

basis vectors is the size of the normal equation system in dependence to the

number of elements N. While the normal matrix in the alternative basis is

only of size N + 1, the normal matrix in the monomial basis is already of size

3N − 1. For the presented approximation of functions in one dimension this

difference is not huge, but this changes for approximations of functions in two

or more dimensions.

3.2.1 The generalised 1D element

In the previous section we derived an alternative basis for a linear approxim-

ation. While introducing x̃ we transformed each element onto a generalised

element, which allows an easy and fast way to set-up the normal matrix. The

derived basis functions are always equal and are not depending on the ele-

ments any more. To define basis functions of a more complex approximation,

than for the presented one in Section 3.2, it is sometimes of great advantage to

distinguish between the transformation of the element and the transformation

of the coefficients between different basis functions. This allows to determine

the new basis function directly for the generalised element, which is usually

very simple. Therefore, we will introduce two different transformations:

1. Transformation of the elements.

2. Transformation of the coefficients.

The application of these two transformations will be illustrated on the de-

rivation of an alternative basis for a cubic elementwise approximation, as

illustrated in Figure 3-29.

ζyν1
ζy′ν1

ζyν2
ζy′ν2

ζP3(x) = ζc0 + ζc1x+ ζc2x2 + ζc3x3 Figure 3-29: Illustration
of an element for a cubic
approximation.
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Like in the previous section, we substitute the four unknown parameters ζ ci
by the two y−coordinates ζ yν1 and ζ yν2 of the nodes and the two derivatives

of the approximation at the nodes

dζ P3(x)

dx

∣∣∣∣
x=ζ xν1

= ζ y′ν1
,

dζ P3(x)

dx

∣∣∣∣
x=ζ xν2

= ζ y′ν2
. (3-61)

Thus, we have the following two equivalent representations of the same poly-

nomial

ζ P3(x) =
3

∑
j=0

ζ cj φj(x) =
3

∑
j=0

ζ dj ψj(x) , (3-62)

with the monomial basis φj(x) = xj and the new unknown parameters
ζ d0
ζ d1
ζ d2
ζ d3

 =


ζ yν1

ζ y′ν1

ζ yν1

ζ y′ν2

 . (3-63)

Choosing these parameters ensures an approximation, that is also continu-

ous in its first derivative. In the following we will present the derivation of

the new basis functions ψj(x) for an elementwise cubic approximation, while

introducing the aforementioned two transformations.

3.2.1.1 Transformation of a 1D element

Although this transformation is very simple and obvious for a 1D element, it

is a bit different for a 2D or 3D element. Therefore, we will address this issue

also for a 1D element in more detail. Consider the following transformation

of an arbitrary 1D element, depicted in Figure 3-30.

Figure 3-30: Transformation
of a 1D element.

xζxν1
ζxν2

x̃ζ x̃1 = 0 ζ x̃2 = 1

original element generalised element

The problem is to define a transformation that maps an element (blue) onto

the generalised element (red) and vice versa. In general, this can be done byWe parameterise x.

any functional relationship

x = f̃ (x̃) ,

x̃ = f (x) . (3-64)

For convenience and to ensure a unique transformation, we will focus on a

linear combination of some arbitrary basis functions

x =
p

∑
j=0

aζ
j ξ j(x̃) (3-65)

and choose monomials ξ j(x̃) = x̃j. While an element is defined by its two nodes
ζ xν1 and ζ xν2 , we define a linear combination of two basis functions in order
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to ensure a unique solution for the unknown parameters for each element aζ
j.

Finally, the linear transformation reads

x = ζ a0 + ζ a1 x̃ , (3-66)

with the two unknown parameters ζ a0 and ζ a1. To compute the unknown

parameters we set-up the following equation system based on the two nodes

of each element  xζ
ν1

xζ
ν2

 =

1 0

1 1

ζ a0
ζ a1

 , (3-67)

and obtain ζ a0
ζ a1

 =

 xζ
ν1

xζ
ν2 − xζ

ν1

 . (3-68)

The transformation reads

x = xζ
ν1 +

(
xζ

ν2 − xζ
ν1

)
x̃ , (3-69)

which is exactly the same as (3-39). The basic concept of the presented trans- The transformation is equivalent
to a parameterisation.formation is directly extendible for 2D or 3D elements, as shown in Section

4.4.

3.2.1.2 Transformation of the coefficients

The transformation of coefficients between different sets of basis functions has

already been briefly discussed. However, to easily solve the integrals of the

normal matrix for any kind of basis functions or to convert a set of coefficients

into a different basis or to convert different basis functions, it is necessary

to get a better understanding of this issue. Figure 3-31 illustrates the four

main transformations between different basis on the original and generalised

element.

xζxν1
ζxν2

x̃0 1

original element

generalised element

∑ ζcjφj(x)

∑ ζ c̃jφ̃j(x̃)

∑ ζdjψj(x)

∑ ζ d̃jψ̃j(x̃)

ζT

ζT2

ζT1
ζT3

complicated

easy

Figure 3-31: Transformation
of the coefficients between
different basis functions.

For the example of an elemetwise cubic approximation, the blue box in Figure

3-31 represents a polynomial on the original element

ζ P3(x) =
3

∑
j=0

ζ cjφj(x) =
3

∑
j=0

ζ djψj(x) (3-70)

and the red box represents the same polynomial on a generalised element

ζ P̃3(x̃) =
3

∑
j=0

ζ c̃jφ̃j(x̃) =
3

∑
j=0

ζ d̃jψ̃j(x̃) . (3-71)
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Both polynomials are describing exactly the same curve only on different in-

tervals, thus
ζ P3(x) = ζ P̃3(x̃) . (3-72)

The derivative of the polynomials in (3-72) reads

dζ P3(x)

dx
=

dζ P̃3(x̃)

dx
=

dζ P̃3(x̃)

dx̃
dx̃
dx

, (3-73)

with
dx̃
dx

=
1

xζ
ν2 − xζ

ν1

=
1
Jζ

. (3-74)

Based on these relationships we can determine the four different transforma-

tions illustrated in Figure 3-31.

1. Determination of the transformation matrix Tζ to convert cζ
j into dζ

j.

Based on Figure 3-29 and Equation (3-61) we know the following four

equations

cζ
0 + cζ

1 xζ
ν1 + cζ

2 xζ 2
ν1 + cζ

3 xζ 3
ν1 = yζ

ν1 ,

cζ
1 + 2 cζ

2 xζ
ν1 + 3 cζ

3 xζ 2
ν1 = yζ ′

ν1 ,

cζ
0 + cζ

1 xζ
ν2 + cζ

2 xζ 2
ν2 + cζ

3 xζ 3
ν2 = yζ

ν2 ,

cζ
1 + 2 cζ

2 xζ
ν2 + 3 cζ

3 xζ 2
ν2 = yζ ′

ν2 , (3-75)

which can be written in matrix notation as
1 xζ

ν1 xζ 2
ν1 xζ 3

ν1

0 1 2 xζ
ν1 3 xζ 2

ν1

1 xζ
ν2 xζ 2

ν2 xζ 3
ν2

0 1 2 xζ
ν2 3 xζ 2

ν2




cζ

0

cζ
1

cζ
2

cζ
3

 =


dζ

0

dζ
1

dζ
2

dζ
3

 , (3-76)

or,

Tζ cζ = dζ . (3-77)

2. Determination of the transformation matrix Tζ
1 to convert cζ

j into c̃ζ
j.

First of all, we need to find four equations in order to solve for Tζ
1. In

general, these can be any kind of relationship between both coefficients,

as long as they are linear independent. Due to simplicity, we chose

the same kind of equations as in (3-75). Based on the nodes of the

generalised element in Figure 3-29 and under consideration of (3-72) −
(3-74), we obtain

cζ
0 + cζ

1 xζ
ν1 + cζ

2 xζ 2
ν1 + cζ

3 xζ 3
ν1 = c̃ζ

0 ,

cζ
1 + 2 cζ

2 xζ
ν1 + 3 cζ

3 xζ 2
ν1 =

1
Jζ

(
c̃ζ

1

)
,

cζ
0 + cζ

1 xζ
ν2 + cζ

2 xζ 2
ν2 + cζ

3 xζ 3
ν2 = c̃ζ

0 + c̃ζ
1 + c̃ζ

2 + c̃ζ
3 ,

cζ
1 + 2 cζ

2 xζ
ν2 + 3 cζ

3 xζ 2
ν2 =

1
Jζ

(
c̃ζ

0 + c̃ζ
1 + c̃ζ

2 + c̃ζ
3

)
. (3-78)

Writing (3-78) in matrix notation yields
1 xζ

ν1 xζ 2
ν1 xζ 3

ν1

0 1 2 xζ
ν1 3 xζ 2

ν1

1 xζ
ν2 xζ 2

ν2 xζ 3
ν2

0 1 2 xζ
ν2 3 xζ 2

ν2




cζ

0

cζ
1

cζ
2

cζ
3

 =


1 0 0 0

0 1/ Jζ 0 0

1 1 1 1

0 1/ Jζ 2/ Jζ 3/ Jζ




c̃ζ

0

c̃ζ
1

c̃ζ
2

c̃ζ
3

 (3-79)
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and rearranging gives the transformation matrix

Tζ
1 =


1 0 0 0

0 1/ Jζ 0 0

1 1 1 1

0 1/ Jζ 2/ Jζ 3/ Jζ


−1 

1 xζ
ν1 xζ 2

ν1 xζ 3
ν1

0 1 2 xζ
ν1 3 xζ 2

ν1

1 xζ
ν2 xζ 2

ν2 xζ 3
ν2

0 1 2 xζ
ν2 3 xζ 2

ν2

 . (3-80)

Finally, the transformation matrix reads

Tζ
1 =


1 xζ

ν1 xζ 2
ν1 xζ 3

ν1

0 xζ
ν2 − xζ

ν1 2 xζ
ν1

(
xζ

ν2 − xζ
ν1

)
3 xζ 2

ν1

(
xζ

ν2 − xζ
ν1

)
0 0

(
xζ

ν2 − xζ
ν1

)2 3 xζ 3
ν1

(
xζ

ν2 − xζ
ν1

)2

0 0 0
(

xζ
ν2 − xζ

ν1

)3

 ,

(3-81)

which can be used to convert the coefficients

Tζ
1 cζ = c̃ζ . (3-82)

3. Determination of the transformation matrix Tζ
2 to convert c̃ζ

j into d̃ζ
j.

The transformation matrix Tζ
2 can be determined in exactly the same

way as Tζ , with the only difference that it refers to the generalised

element and therefore, only depends on x̃. Tζ
2 is completely independent

of x and hence we obtain the following four equations

c̃ζ
0 = ỹζ

ν1 ,

c̃ζ
1 = ỹζ ′

ν1 ,

c̃ζ
0 + c̃ζ

1 + c̃ζ
2 + c̃ζ

3 = ỹζ
ν2 ,

c̃ζ
1 + 2 c̃ζ

2 + 3 c̃ζ
3 = ỹζ ′

ν2 , (3-83)

which can be written in matrix notation as
1 0 0 0

0 1 0 0

1 1 1 1

0 1 2 3




c̃ζ

0

c̃ζ
1

c̃ζ
2

c̃ζ
3

 =


d̃ζ

0

d̃ζ
1

d̃ζ
2

d̃ζ
3

 , (3-84)

or,

Tζ
2 c̃ζ = d̃ζ . (3-85)

4. Determination of the transformation matrix Tζ
3 to convert d̃ζ

j into dζ
j.

The determination of the last transformation matrix is based on (3-72)

and (3-73). The following four relationships between d̃ζ
j and dζ

j can be

derived

ỹζ
ν1 = yζ

ν1 ,

1
Jζ

ỹζ ′
ν1 = yζ ′

ν1 ,

ỹζ
ν2 = yζ

ν2 ,

1
Jζ

ỹζ ′
ν2 = yζ ′

ν2 . (3-86)
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Writing (3-86) in matrix notation results in
1 0 0 0

0 1/ Jζ 0 0

0 0 1 0

0 0 0 1/ Jζ




d̃ζ

0

d̃ζ
1

d̃ζ
2

d̃ζ
3

 =


dζ

0

dζ
1

dζ
2

dζ
3

 , (3-87)

or equivalently

Tζ
3 d̃ζ = dζ . (3-88)

All four transformation matrices are regular and can be used to transform one

arbitrary set of coefficients into another one and vice versa. The transforma-

tion matrix Tζ can also be derived by

Tζ = Tζ
3 Tζ

2 Tζ
1 . (3-89)

Furthermore, these transformation matrices allows us to easily convert the

basis functions.

3.2.1.3 Transformation of the basis functions

To determine the new basis function ψj(x) we rewrite (3-70) in matrix notationThe basic methodology for the
transformation of the basis

functions can be found in e.g.
(Gander 2005).

ζ P3(x) = φ cζ = ψ dζ (3-90)

with the monomial basis

φ =
[
1 x x2 x3

]
. (3-91)

Solving (3-77) for cζ and inserting in (3-90) yields

φ Tζ −1 dζ = ψ dζ . (3-92)

Equating the coefficients of (3-92) yields the new basis

ψ = φ Tζ −1 , (3-93)

with

ψ0 =

(
x− xζ

ν2

)2(2x− 3 xζ
ν1 + xζ

ν2

)(
xζ

ν2 − xζ
ν1

)3 ,

ψ1 =

(
x− xζ

ν1

)(
x− xζ

ν2

)2(
xζ

ν2 − xζ
ν1

)2 ,

ψ2 = −
(
x− xζ

ν2

)2(2x + xζ
ν1 − 3 xζ

ν2

)(
xζ

ν2 − xζ
ν1

)3 ,

ψ3 =

(
x− xζ

ν1

)2(x− xζ
ν1

)(
xζ

ν2 − xζ
ν1

)2 . (3-94)

It is usually quite complicated to derive the new basis functions for the original

element, while we need to substitute the generalised coordinate (3-69) in (3-94)

and rearrange the equations in a suitable way. As already mentioned, it is
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easier to determine ψ̃j(x̃) directly on the generalised element. Therefore, we

write (3-71) in matrix notation

ζ P̃3(x̃) = φ̃ c̃ζ = ψ̃ d̃ζ (3-95)

with the generalised monomial basis

φ̃ =
[
1 x̃ x̃2 x̃3

]
. (3-96)

Solving (3-85) for c̃ζ and inserting in (3-95) yields

φ̃ Tζ −1
2 d̃ζ = ψ̃ d̃ζ . (3-97)

Equating the coefficients of (3-97) directly yields the new basis for the gener-

alised element

ψ̃ = φ̃ Tζ −1
2 , (3-98)

with

ψ̃0 = 2x̃3 − 3x̃2 + 1 ,

ψ̃1 = x̃3 − 2x̃2 + x̃ ,

ψ̃2 = −2x̃3 + 3x̃2 ,

ψ̃3 = x̃3 − x̃2 . (3-99)

The derived basis functions (3-99) are known as Hermite basis functions and

they are defining the basis of a cubic Hermite spline. The basis functions

(3-99) can be converted into (3-94) according to

ψ = ψ̃ Tζ −1
3 , (3-100)

The Hermite basis functions are depicted in Figure 3-32.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

ψ̃0

ψ̃1

ψ̃2

ψ̃3

Figure 3-32: Cubic Hermite
basis functions

As we have seen in the previous section, an elementwise continuous linear

approximation in the derived alternative basis outperformes the one in the

monomial basis, in both, computational speed and numerical stability. There-

fore, we will also have a closer look at the four Hermite basis functions de-

picted in Figure 3-32. The angle αi,j between these basis functions has been

calculated according to (3-11) and is listed in the Table 3-4.

ψ̃0 ψ̃1 ψ̃2 ψ̃3

ψ̃0 0 31.4 77.5 134.8

ψ̃1 0 65.2 153.0

ψ̃2 0 168.6

Table 3-4: Angle αi,j in [gon]
between the four Hermite
basis vectors (3-99). Due to
symmetry only the upper
triangular part is presented.

Table 3-4 shows, that the Hermite basis is not an orthogonal one and hence,

is not optimal. The angle between ψ̃0 and ψ̃1 is only 31.4 gon and 168.64 gon



64 approximation of functions in one dimension

between ψ̃2 and ψ̃3. In both cases, the vectors are tending to show in the

same/or opposite direction. Furthermore, the Hermite basis functions are

also of different lengths, which are

‖ψ̃0‖2 = ‖ψ̃2‖2 = 0.6094 ,

‖ψ̃1‖2 = ‖ψ̃3‖2 = 0.0976. (3-101)

As already mentioned, for the numerical computation of the unknown coeffi-

cients of an approximation, the angle between the basis functions and their

length ratios are playing an important role. In contrast to monomial basis,

the aforementioned geometric properties of the Hermite basis do not depend

on the position of an element. It can therefore be assumed that the computa-

tion of the unknown coefficients in the Hermite basis yields numerically more

accurate results than using monomials.

In general, it has been shown that it is easier to derive a new set of basis

functions on the generalised element directly. The coefficients can always be

converted into a different basis as depicted in Figure 3-31. An approximation

in the Hermite basis and how to easily solve the integrals for the normal matrix

will be shown in following section.

3.2.2 Elementwise approximation in the Hermite basis

In the previous section, we derived an alternative basis for an elementwiseThe Hermite basis should not be
confused with Hermite

polynomials. It refers to a cubic
Hermite spline.

cubic approximation, which is C1 continuous. To illustrate an approximation

in the cubic Hermite basis, we approximate function (3-2) by dividing the

whole domain into N = 3 equispaced elements. Based on the definition of

nodes and elements in Table 3-2 and the four basis functions (3-94), we can

set-up the normal equation system for each element
ζ〈ψ0, ψ0〉 ζ〈ψ1, ψ0〉 ζ〈ψ2, ψ0〉 ζ〈ψ3, ψ0〉
ζ〈ψ0, ψ1〉 ζ〈ψ1, ψ1〉 ζ〈ψ2, ψ1〉 ζ〈ψ3, ψ1〉
ζ〈ψ0, ψ2〉 ζ〈ψ1, ψ2〉 ζ〈ψ2, ψ2〉 ζ〈ψ3, ψ2〉
ζ〈ψ0, ψ3〉 ζ〈ψ1, ψ3〉 ζ〈ψ2, ψ3〉 ζ〈ψ3, ψ3〉




ζ d0
ζ d1
ζ d2
ζ d3

 =


ζ〈ψ0, sin(3x)〉
ζ〈ψ1, sin(3x)〉
ζ〈ψ2, sin(3x)〉
ζ〈ψ3, sin(3x)〉


(3-102)

for ζ = 1, 2, 3. To solve the integrals based on the generalised element, we

introduce

ψ =
[
ψ0(x) ψ1(x) ψ2(x) ψ3(x)

]
(3-103)

and rewrite the normal matrix of an element (3-102) as

Nζ = ζ〈ψT,ψ〉 =

xζ
ν2∫

xζ
ν1

ψTψdx . (3-104)

Inserting (3-45) and (3-100) into (3-104) and adopting the limits of the integral

yields

Nζ = ζ〈ψT,ψ〉 = Jζ

1∫
0

Tζ −T
3 ψ̃

T
ψ̃ Tζ −1

3 dx̃ , (3-105)
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with

Tζ −T
3 =


1 0 0 0

0 1/ Jζ 0 0

0 0 1 0

0 0 0 1/ Jζ

 (3-106)

and Jζ = xζ
ν2 − xζ

ν1 . While Tζ −T
3 only contains constant values, we can extract

it from the integral and the normal matrix reads

Nζ = ζ〈ψT,ψ〉 = Jζ Tζ −T
3

1∫
0

ψ̃
T
ψ̃dx̃ Tζ −1

3 . (3-107)

Introducing

Nelement =

1∫
0

ψ̃
T
ψ̃dx̃ , (3-108)

with

Nelement =


〈ψ̃0, ψ̃0〉 〈ψ̃1, ψ̃0〉 〈ψ̃2, ψ̃0〉 〈ψ̃3, ψ̃0〉
〈ψ̃0, ψ̃1〉 〈ψ̃1, ψ̃1〉 〈ψ̃2, ψ̃1〉 〈ψ̃3, ψ̃1〉
〈ψ̃0, ψ̃2〉 〈ψ̃1, ψ̃2〉 〈ψ̃2, ψ̃2〉 〈ψ̃3, ψ̃2〉
〈ψ̃0, ψ̃3〉 〈ψ̃1, ψ̃3〉 〈ψ̃2, ψ̃3〉 〈ψ̃3, ψ̃3〉

 . (3-109)

Solving the integrals in (3-109) with the Hermite basis functions (3-99) yields

the normal matrix for the generalised element

Nelement =


13/35 11/210 9/70 −13/420

11/210 1/105 13/420 −1/140

9/70 13/420 13/35 −11/210

−13/420 −1/140 −11/210 1/105

 . (3-110)

Inserting Nelement into (3-107) yields the normal matrix for each element

Nζ = ζ〈ψT,ψ〉 = Jζ Tζ −T
3 Nelement Tζ −1

3 . (3-111)

In the same way we can solve the integrals for the right hand side

nζ = ζ〈ψT, f 〉 =

xζ
2∫

xζ
1

ψT f (x) dx . (3-112)

Inserting (3-45) and (3-100) into (3-112) and adopting the limits of the integral

yields

nζ = ζ〈ψT, f 〉 = Jζ

1∫
0

Tζ −T
3 ψ̃

T f (x) dx̃ . (3-113)

After rearranging (3-113) the right hand side can be expressed by

nζ = ζ〈ψT, f 〉 = Jζ Tζ −T
3

1∫
0

ψ̃
T f
(

ζ x1 + (ζ x2 − ζ x1)x̃
)

dx̃ . (3-114)
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The cubic approximation of (3-102) with 3 elements yields the following three

normal equation systems
26/105 22/945 3/35 −13/945

22/945 8/2835 13/945 −2/945

3/35 13/945 26/105 −22/945

−13/945 −2/945 −22/945 8/2835




y1

0

y1 ′
0

y1
1

y1 ′
1

 =


−0.204 667 105 858 953

−0.027 559 579 350 093

−0.305 431 161 630 575

0.033 296 399 494 442

 ,


26/105 22/945 3/35 −13/945

22/945 8/2835 13/945 −2/945

3/35 13/945 26/105 −22/945

−13/945 −2/945 −22/945 8/2835




y2

0

y2 ′
0

y2
1

y2 ′
1

 =


−0.121 067 910 317 044

−0.006 892 783 556 819

0.121 067 910 317 043

−0.006 892 783 556 819

 ,


26/105 22/945 3/35 −13/945

22/945 8/2835 13/945 −2/945

3/35 13/945 26/105 −22/945

−13/945 −2/945 −22/945 8/2835




y3

0

y3 ′
0

y3
1

y3 ′
1

 =


0.305 431 161 630 575

0.033 296 399 494 442

0.204 667 105 858 953

−0.027 559 579 350 093

 .

(3-115)

The three normal matrices in (3-115) are equal, while we introduced equis-

paced elements, thus, Jζ and also Tζ
3 are equal for all elements. Based on

Table 3-2 two elements share the same node, namely

1xν2 = 2xν1 = x2 (3-116)

and
2xν2 = 3xν1 = x3 . (3-117)

Substituting yζ
i and yζ ′

i in (3-115) by the unique identifier for the nodes, the

normal equation system (3-115) reads
26/105 22/945 3/35 −13/945

22/945 8/2835 13/945 −2/945

3/35 13/945 26/105 −22/945

−13/945 −2/945 −22/945 8/2835




y1

y′1
y2

y′2

 =


−0.204 667 105 858 953

−0.027 559 579 350 093

−0.305 431 161 630 575

0.033 296 399 494 442

 ,


26/105 22/945 3/35 −13/945

22/945 8/2835 13/945 −2/945

3/35 13/945 26/105 −22/945

−13/945 −2/945 −22/945 8/2835




y2

y′2
y3

y′3

 =


−0.121 067 910 317 044

−0.006 892 783 556 819

0.121 067 910 317 043

−0.006 892 783 556 819

 ,


26/105 22/945 3/35 −13/945

22/945 8/2835 13/945 −2/945

3/35 13/945 26/105 −22/945

−13/945 −2/945 −22/945 8/2835




y3

y′3
y4

y′4

 =


0.305 431 161 630 575

0.033 296 399 494 442

0.204 667 105 858 953

−0.027 559 579 350 093

 .

(3-118)
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To solve for the unknown parameters, the three normal equation systems need

to be combined as follows

+

+

+

+

+

+

+

+

+

+

+

+

y1
y′1
y2
y′2
y3
y′3
y4
y′4

= . (3-119)

Solving the combined equation system

N x = n , (3-120)

with

N =



26/105 22/945 3/35 −13/945 0 0 0 0
22/945 8/2835 13/945 −2/945 0 0 0 0
3/35 13/945 52/105 0 3/35 −13/945 0 0

−13/945 −2/945 0 16/2835 13/945 −2/945 0 0

0 0 3/35 13/945 52/105 0 3/35 −13/945

0 0 −13/945 −2/945 0 16/2835 13/945 −2/945

0 0 0 0 3/35 13/945 26/105 −22/945

0 0 0 0 −13/945 −2/945 −22/945 8/2835


(3-121)

and

n =



−0.204 667 105 858 953

−0.027 559 579 350 093

−0.426 499 071 947 619

0.026 403 615 937 623

0.426 499 071 947 618

0.026 403 615 937 623

0.204 667 105 858 953

−0.027 559 579 350 093


(3-122)

yields the solution for the unknown parameters

y1

y′1
y2

y′2
y3

y′3
y4

y′4


=



−0.127 892 892 631 587

−3.310 672 567 507 778

−0.846 388 475 928 077

1.699 324 240 428 790

0.846 388 475 928 077

1.699 324 240 428 787

0.127 892 892 631 591

−3.310 672 567 507 737


. (3-123)

The resulting cubic approximation of (3-2) in the Hermite basis is depicted in

Figure 3-33.
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Figure 3-33: Cubic approx-
imation of (3-2) with 3 ele-
ments using Hermite basis
functions (3-99) (left). Re-
sidual function v(x) =
sin(3x)−∑3

ζ=1
ζ P3(x) (right).
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Figure 3-20 (left) shows a very smooth and already quite good approximation

of (3-2) while only 3 elements are used. The residual function in Figure

3-20 (right) is within the range of 10−2. Figure 3-34 shows that the cubic

approximation in the Hermite basis is also continuous in its first derivative.

But of course reveals a kink at the inner nodes x2 = −1/3 and x3 = 1/3, as

indicated by a yellow circle in the residual plot in Figure 3-34 (right).

Figure 3-34: First derivat-
ive of the given function
f (x) = sin(3x) in blue
and its approximation with
3 elements using Hermite
basis functions (3-99) in
red (left). Residual function

v(x) = d sin(3x)
dx − ∑3

ζ=1
d Pζ

3 (x)
dx

(right). −1 −0.5 0 0.5 1
−4

−2
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x
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All calculations of a cubic approximation in the Hermite basis have been done

with the Matlab code in Programme 3-5.
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1 %Given function

2 f=@(x) sin(3*x);

3

4 %Approximation of f(x) on [-1, 1]

5 a=-1; b=1;

6

7 %number of elements

8 elements =3;

9

10 %Position of the equispaced nodes

11 nodes=linspace(a,b,elements +1);

12

13 %Initilisation of the matrices

14 N=zeros (2*( elements +1)); n=zeros (2*( elements +1) ,1);

15 n_element=zeros (4,1);

16

17 %Hermite basis functions

18 phi {1}=@(x) 2*x.^3 - 3*x.^2 + 1;

19 phi {2}=@(x) x.^3 - 2*x.^2 + x;

20 phi {3}=@(x) -2*x.^3 + 3*x.^2;

21 phi {4}=@(x) x.^3 - x.^2;

22

23 %Normal matrix of the generalised Element

24 N_element =[13/35 11/210 9/70 -13/420; 11/210 1/105 13/420

-1/140;

25 9/70 13/420 13/35 -11/210; -13/420 -1/140 -11/210

1/105];

26

27 for k=1: elements

28 J=nodes(k+1)-nodes(k); T_3=diag ([1 J 1 J]);

29 %Index for the normal matrix

30 from =2*k-1; to=2*(k+1);

31 N(from:to ,from:to)=N(from:to,from:to)+J.*T_3 ’* N_element

*T_3;

32 %right hand side

33 for l=1:4

34 n_element(l)=integral(@(x) f(J*x+nodes(k)).*phi{l}(

x) ,0,1);

35 end

36 n(from:to)=n(from:to)+J*T_3 ’* n_element;

37 end

38 c=N\n;

Programme 3-5: Code for an
elementwise cubic polynomial
approximation in the Hermite
basis (3-99).

When deriving the Hermite basis, we have recognized that it is not orthogonal

and therefore not an optimal basis. Consequently, we determine the condition

number of the related normal matrix for increasing N, which is depicted Figure

3-35.
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Figure 3-35: Logarithmic
plot of the condition num-
ber of the normal matrix of
an elementwise continuous
cubic approximation in the
monomial basis (blue) and in
the Hermite basis (red) for
increasing number of elements
N.
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The red curve in Figure 3-35 represents the condition number of the nor-

mal matrix for a cubic approximation in the Hermite basis. The blue curve

represents the condition number of the normal matrix for an equivalent cubic

approximation in the monomial basis. In the previous chapter we noticed that

the Hermite basis is not optimal, while we addressed the angles between the

basis functions and their length. This is also reflected by the condition num-

ber for the normal matrix, while it is already ≈ 107 for 200 elements. However,

this is significantly smaller than the condition number of the normal matrix

for the same approximation in the monomial basis, which is already ≈ 1017

for only 100 elements.

That an approximation in the Hermite basis is numerically more stable than

in the monomial basis can also be seen in the approximation of function (3-6)

using 10 000 elements, which is depicted in Figure 3-36.

Figure 3-36: Cubic approx-
imation of (3-6) with 10 000
elements using Hermite
basis functions (left). Re-
sidual function v(x) =
sin(30x2) − ∑10 000

ζ=1
ζ P3(x)

(right).
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Figure 3-36 (left) shows a smooth and very good approximation of (3-6). The

residual function indicates deviations in a range of ≈ 10−11. In the same way

function (3-8) can be approximated by 10 000 elements, as it is illustrated in

Figure 3-37.

Figure 3-37: Cubic approx-
imation of (3-8) with 10 000
elements using Hermite
basis functions (left). Re-
sidual function v(x) =
exp(−1000x2)− ∑10 000

ζ=1
ζ P3(x)

(right).
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Off site the peak, the residual function in Figure 3-37 (right) is zero within

machine precision and only reveals deviations of ≈ 10−11 around the peak at
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x = 0. Numerical effects, as presented for the cubic approximation in the

monomial basis with only ≈ 300 elements as depicted in Figure 3-23 or Figure

3-24, are not apparent so far. A further increase up to 15 000 elements only

reduces the residual function by a factor of 2, while using 20 000 elements the

residual function starts to increase again and get worse. The condition number

of the normal matrix for 20 000 elements is already ≈ 1011. The computational

effort for an improvement of the approximation is huge. To emphasize once

again, both approximations in Figure 3-36 and Figure 3-37 are functions of

20 002 parameters.

3.3 approximation using orthogonal basis functions

As shown before, polynomial approximation in the monomial basis is an ill-

posed problem and has hardly any relevance for practical applications. In

many engineering sciences, an elementwise approximation with polynomials

of low degree is used for various tasks, whereby the choice of a suitable basis is

decisive. In this way, depending on the task at hand, approximations can be

achieved that are sufficiently accurate for most applications, as demonstrated

in Section 3.2.2. However, depending on the selected basis, the accuracy of the

approximation can usually not be increased arbitrarily and also the number

of required parameters increases very quickly. Therefore, we also will discuss

a further approach for the approximation of functions.

Having a closer look on especially the angle between the basis functions al-

lows a simple geometrical interpretation of the aforementioned ill-conditioned

problem and gives the motivation to use another set of basis functions, which

are orthogonal. In the broad literature one will find a variety of orthogonal

polynomials, such as

� Chebyshev polynomial of the first kind,

� Chebyshev polynomial of the second kind,

� Gegenbauer polynomial,

� Hermite polynomial,

� Jacobi polynomial,

� Laguerre polynomial and

� Legendre polynomial,

just to name a few important ones. But in approximation theory in general one

will encounter two closely related sets of orthogonal basis functions associated

with the names of Chebyshev and Fourier, slightly rephrasing (Trefethen

2013, p. 12). Reason enough to introduce Chebyshev polynomials of the

first kind and Fourier series as a basis for the approximation of functions and

whenever we use the expression “Chebyshev polynomial” we refer exclusively

to the Chebyshev polynomial of the first kind Tj(x).

3.3.1 Approximation in the Chebyshev basis

The Chebyshev polynomial Tj(x) of degree j ≥ 0 is defined by A comprehensive overview on
Chebyshev polynomials can be
found in Mason and Handscomb
(2003) and Rivlin (1974).

Tj(x) = cos(j arccos(x)) for x ∈ [−1, 1]. (3-124)
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These polynomials satisfy the three term recurrence relation

Tj(x) = 2xTj−1(x)− Tj−2(x) for j ≥ 2 (3-125)

with the initial conditions

T0(x) = 1 and T1(x) = x. (3-126)

The Chebyshev polynomials are orthogonal with respect to a weighted inner

product

〈Ti, Tj〉 =
∫ 1

−1

Ti(x) Tj(x)√
1− x2

dx =


π, i = j = 0,

π/2, i = j ≥ 1,

0, i 6= j.

(3-127)

The first 11 Chebyshev polynomials are depicted in Figure 3-38.

Figure 3-38: Basis functions
Tj(x) for j = 0, · · · , 10.
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In direct comparison to the first 11 monomials depicted in Figure 3-8, the

Chebyshev polynomials in Figure 3-38 can easily be distinguished.

As for the monomial basis, we will first approximate function (3-2) on the in-

terval x ∈ [−1, 1] by a polynomial of 3rd degree. According to (1-45), the least

squares approximation in the Chebyshev basis of (3-2) yields the following

normal equation system
〈T0, T0〉 〈T1, T0〉 〈T2, T0〉 〈T3, T0〉
〈T0, T1〉 〈T1, T1〉 〈T2, T1〉 〈T3, T1〉
〈T0, T2〉 〈T1, T2〉 〈T2, T2〉 〈T3, T2〉
〈T0, T3〉 〈T1, T3〉 〈T2, T3〉 〈T3, T3〉




c0

c1

c2

c3

 =


〈T0, sin(3x)〉
〈T1, sin(3x)〉
〈T2, sin(3x)〉
〈T3, sin(3x)〉

 (3-128)

and while choosing orthogonal basis functions, the normal equation system

simplifies to
〈T0, T0〉 0 0 0

0 〈T1, T1〉 0 0

0 0 〈T2, T2〉 0

0 0 0 〈T3, T3〉




c0

c1

c2

c3

 =


〈T0, sin(3x)〉
〈T1, sin(3x)〉
〈T2, sin(3x)〉
〈T3, sin(3x)〉

 . (3-129)

Thus, the normal matrix N is diagonal and the unknown coefficients can

directly be determined by

cj =
〈Tj, sin(3x)〉
〈Tj, Tj〉

(3-130)
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with

〈Tj, sin(3x)〉 =
∫ 1

−1

Tj sin(3x)√
1− x2

dx for j = 0, 1, 2, 3. (3-131)

The coefficients for a polynomial approximation in the Chebyshev basis of 3rd

degree are 
c0

c1

c2

c3

 =


0.000 000 000 000 000

0.678 117 917 051 832

0.000 000 000 000 000

−0.618 125 444 510 544

 . (3-132)

Due to the symmetry of (3-2) the even coefficients are zero. The resulting

approximation and the residual function are depicted in Figure 3-39.
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Figure 3-39: Given function
(3-2) in blue and it’s polyno-
mial approximation in the
Chebyshev basis P3(x) in
red (left). Residual function
v(x) = sin(3x)− P3(x) (right).

The polynomial approximation in the Chebyshev basis in Figure 3-39 (left)

is very similar to the one in the monomial basis depicted in Figure 3-1 (left), The least squares approximation
in the Chebyshev basis is a
near-minimax or near-L∞
approximation, see Mason and
Handscomb (2003, Chapter 5.5).

but they are not equal. The residual function in Figure 3-39 (right) shows

deviations smaller than ±0.1.

The Matlab code for the presented polynomial approximation in the Cheby-

shev basis is given in Programme 3-6.

1 %Approximation of f(x) on [-1, 1]

2 a=-1; b=1;

3

4 %degree of approximation

5 p=3;

6

7 %Initialization of the matrices

8 c=zeros(p+1,1);

9

10 %First coefficient

11 c(1)=1/pi*integral(@(x) sin(3*x)./sqrt(1-x.^2),a,b);

12

13 %Remaining coefficients

14 for i=1:p

15 c(i+1)=2/pi*integral(@(x) sin(3*x).*cos(i*acos(x))./sqrt

(1-x.^2),a,b);

16 end

Programme 3-6: Code for
polynomial approximation in
the Chebyshev basis.

Like in the previous sections, we want to know which polynomial degree is

needed to approximate (3-2) within roughly machine precision. Therefore, we

iteratively determine the coefficients up to c50 and calculate the maximum
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absolute difference between function (3-2) and it’s approximation. The result

is depicted in Figure 3-40.

Figure 3-40: Logarithmic
plot of max | sin(3x)− PN(x)|
for different polynomial de-
gree (left). Residual function
v(x) = sin(3x) − P19(x) for
the best fitting polynomial
(right).
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The residual function for the best fitting polynomial P19(x) in Figure 3-40

(right) shows an oscillatory behaviour with an amplitude of about 10−13 and

is not within machine precision. Increasing the polynomial degree will not

improve the approximation and reduce the residual function. The reason why

it is not possible to approximate (3-2) within machine precision is due to

the numerical integration of the right hand side (3-131), while the last two or

three digits are wrong. These inaccuracies are leading to the presented residual

function and can be avoided while using the following analytic solution for theFor all examples presented here,
the analytical solutions have been

derived using (Wolfram
Research, Inc. 2021).

integrals of the right hand side of (3-131)

〈sin(3x), Tj〉 =

 (−1)j−1/2 π Jj(3), if j is odd,

0, if j is even,
(3-133)

with Jj(x) being the Bessel function of the first kind. As a result we found a

polynomial of 21st degree which approximates (3-2) within machine precision.

The residual function is depicted in Figure 3-41 and reveals deviations smaller

than ±10−15.

Figure 3-41: Residual function
v(x) = sin(3x)− P21(x) for the
best fitting polynomial using
the analytic solution (3-133)
for the integrals of the right
hand side.
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The non zero coefficients of P21(x) are

c1

c3

c5

c7

c9

c11

c13

c15

c17

c19

c21



=



0.678 117 917 051 873 0

−0.618 125 444 510 503 2

0.086 056 869 754 095 2

−0.005 094 588 903 609 4

0.000 168 790 042 618 2

−0.000 003 587 979 324 7

0.000 000 053 181 392 6

−0.000 000 000 581 529 0

0.000 000 000 004 887 0

−0.000 000 000 000 032 6

0.000 000 000 000 000 2



(3-134)

and revealing a very interesting and important property of polynomial ap-

proximation in the Chebyshev basis. According to Mason and Handscomb In simplified terms, this means
that the slope of f (x) cannot
become arbitrarily large.

(2003, Chapter 5.3.2) the Chebyshev series expansion will converge to f (x)

as long as f (x) satisfies the Dini-Lipschitz condition, thus if f (x) is Lipschitz

continuous. The truncation error of this approximation is in the same order-

of-magnitude as the absolute value of the last coefficient, see (Boyd 2002, A rule-of-thumb.

Chapter 2.12). This is of great advantage to approximate functions within

machine precision.

Right now we are facing the problem that the numerical integration of the Due to singularities of the
weighting function at x = ±1.right hand side (3-131) is not very accurate and to use its analytic solution

is also not really feasible, as it is usually very hard to derive. While it is

quite comfortable to integrate the right hand side numerically, we can obtain

a numerical more accurate representation of∫ 1

−1

f (x) Tj(x)√
1− x2

dx =
∫ 1

−1

f (x) cos
(

j arccos(x)
)

√
1− x2

dx (3-135)

by the following change of variable

x = cos(θ) (3-136)

and with
dx
dθ

=
d cos(θ)

dθ
= − sin(θ) (3-137)

we obtain

dx = − sin(θ) dθ. (3-138)

Inserting (3-136) and (3-138) in the right hand side of (3-135) and changing

the limits according to cos(π) = −1 and cos(0) = 1 yields

∫ 1

−1

f (x) Tj(x)√
1− x2

dx = −
∫ 0

π

f
(

cos(θ)
)

cos(j θ)√
1− cos2(θ)

sin(θ) dθ

= −
∫ 0

π

f
(

cos(θ)
)

cos(j θ)

sin(θ)
sin(θ) dθ

=
∫ π

0
f
(

cos(θ)
)

cos(j θ) dθ. (3-139)

The derived integral (3-139) as a function of θ yields more accurate results for

the numerical integration of the right hand side (3-131). Figure 3-42 depicts
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the resulting residual function of the best approximation of (3-2), while using

(3-139) for the numerical integration of (3-131).

Figure 3-42: Residual function
v(x) = sin(3x)− P21(x) for the
best fitting polynomial using
(3-139) for the integrals of the
right hand side.
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Although the residual function in Figure 3-42 is slightly different than the one

for the analytic solution in Figure 3-41, it also only shows deviations within

±10−15. Thus, the numerical integration using (3-139) nearly gives the same

results as the analytic solution (3-133).

Let us now consider the other two examples from Chapter 3, while this time

we shift function (3-8) a bit to the right in order to avoid symmetry. The two

functions are depicted in Figure 3-43.

Figure 3-43: The two ex-
amples from the previous
sections, f (x) = sin(30x2)
(left) and the shifted function
f (x) = exp(−1000(x − 0.2)2)
(right).
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Function f (x) = sin(30x2) can be approximated within 10−14 by a polynomial

of 85th degree, as can be seen in the residual plot in Figure 3-44 (left).

Figure 3-44: Residual function

v(x) = sin(30x2)− P85(x) (left)
and logarithmic plot for the
coefficients |cj| (right).
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The absolute value of the coefficients are illustrated in Figure 3-44 (right)

and due to the symmetry of the function the odd coefficients are zero within

machine precision. The even coefficients are rapidly converging to zero, while
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the last one is ≈ 10−15. Even the exact solution for the integral of the right

hand side

〈sin(30x2), Tj〉 =

 − cos
(( j

4 + 1
2

)
π + 15

)
π Jj/2(15), if j is even,

0, if j is odd,
(3-140)

will yield nearly the same result as depicted in Figure 3-44. The polynomial

approximation P85(x) of function (3-6) is within machine precision. The same

occurs for the shifted function

f (x) = exp
(
− 1000(x− 0.2)2). (3-141)

The residual plot and the absolute values of the coefficients are depicted in

Figure 3-45.
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Figure 3-45: Residual function

v(x) = exp(−1000(x− 0.2)2)−
P362(x) (left) and logarithmic
plot for the coefficients |cj|
(right).

A polynomial of 362nd degree approximates (3-141) within 10−14 and while

the function depicted in Figure 3-43 (right) is not symmetric with respect to

x = 0, neither the even nor odd coefficients are zero, except the last ones

which are ≈ 10−16.

In direct comparison to the approximation in the monomial basis presented in

Chapter 3 the approximation in the Chebyshev basis is more accurate, much

faster and easier to implement. The only problem so far is the numerical

integration of the right hand side. Using the integral (3-139) instead of (3-135)

usually yields more accurate results for the numerical integration, but only to

a certain extent. Until now the limitation of a least squares approximation in

the Chebyshev basis is the solution of the integrals of the right hand side in

both accuracy and computational time.

3.3.2 Approximation in the Fourier basis

As the Chebyshev series are closely related to the Fourier series, we will also

present an approximation in the Fourier basis. According to Bronshtein

et al. (2007, p. 420 ff.) the Fourier series is given by I intentionally omitted the term
periodic function.

Sp(x) =
1
2

a0 +
p

∑
j=1

aj cos(jωx) +
p

∑
j=1

bj sin(jωx) (3-142)

with the angular frequency ω = 2π/T and period T. The complex representa-

tion of (3-142) is given by

Sp(x) =
p

∑
j=−p

cj exp(ıjωx) (3-143)
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with the imaginary unit ı =
√
−1. The coefficients aj and bj can be converted

into cj as follows

cj =


1
2 a0, j = 0,
1
2 (aj − ıbj), j > 0,
1
2 (a−j + ıb−j), j < 0.

(3-144)

As in the previous chapters we will approximate function (3-2) by a Fourier

series with p = 3, while using the complex representation (3-143). The basis

functions φj = exp(ıjωx) satisfy the orthogonality condition

〈φi, φj〉 =
∫ 1

−1
exp(ıiωx) exp(ıjωx) dx =

 T, i = −j,

0, else.
(3-145)

and hence, the normal equation system of a least squares approximation of

(3-2) in the Fourier basis reads

0 0 0 0 0 0 T

0 0 0 0 0 T 0

0 0 0 0 T 0 0

0 0 0 T 0 0 0

0 0 T 0 0 0 0

0 T 0 0 0 0 0

T 0 0 0 0 0 0





c−3

c−2

c−1

c0

c1

c2

c3


=



〈exp(−3ıωx), sin(3x)〉
〈exp(−2ıωx), sin(3x)〉
〈exp(−1ıωx), sin(3x)〉
〈exp(0ıωx), sin(3x)〉
〈exp(1ıωx), sin(3x)〉
〈exp(2ıωx), sin(3x)〉
〈exp(3ıωx), sin(3x)〉


. (3-146)

While the normal matrix N is anti-diagonal, the coefficients can be directly

determined by

cj =
1
T

∫ 1

−1
sin(3x) exp(−ıjωx) dx , (3-147)

for j = −3,−2,−1, 0, 1, 2, 3 and T = 2. This solution can also be found in

Bronshtein et al. (2007, pp. 421) and yields the coefficients

c−3

c−2

c−1

c0

c1

c2

c3


=



0 + 0.016 661 456 383 217ı

0− 0.029 092 165 239 709ı

0 + 0.509 819 844 563 844ı

0 + 0.000 000 000 000 000ı

0− 0.509 819 844 563 844ı

0 + 0.029 092 165 239 709ı

0− 0.016 661 456 383 217ı


. (3-148)

Due to the symmetry of (3-2) the real part of the coefficients are zero. The

resulting approximation and the residual function are depicted in Figure 3-46.

Figure 3-46: Given function
(3-2) in blue and it’s approx-
imation in the Fourier basis
S3(x) in red (left). Residual
function v(x) = sin(3x)− S3(x)
(right).

−1 −0.5 0 0.5 1

−1

0

1

x

−1 −0.5 0 0.5 1

−0.1

0

0.1

x



3.3 approximation using orthogonal basis functions 79

The Matlab code for the presented approximation in the Fourier basis is given

in Programme 3-7.

1 %Approximation of sin(x) on [-1, 1]

2 a=-1; b=1;

3

4 %angular frequency and period T

5 omega =2*pi/(b-a); T=b-a;

6

7 %degree of approximation (number of harmonic ascillations)

8 p=3;

9

10 %Initialization of the matrix

11 c=zeros(p+1,1);

12

13 %Calcutaion of the coefficients

14 for j=-p:p

15 c(j+p+1) =1/T*integral(@(x) sin(3*x).*exp(1i*j*omega*x),a

,b);

16 end

17

18 %Flipping the coefficients due to anti -diagonal normal

matrix

19 c=flipud(c);

Programme 3-7: Code for an
approximation in the Fourier
basis.

Increasing the number of terms to p = 50 will generally reduce the residual

function, but will still keep the large deviation at the limits as depicted in

Figure 3-47.
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Figure 3-47: Given func-
tion (3-2) in blue and it’s
approximation in the Four-
ier basis S50(x) in red (left).
Residual function v(x) =
sin(3x)− S50(x) (right).

These deviations at the limits will not vanish while increasing the number of

harmonic oscillations. Although it is mentioned in Bronshtein et al. (2007,

pp. 420), and probably also in most books about Fourier series expansion,

that we can

. . .represent a given periodic function f (x) with period T exactly or

approximatively by a sum of trigonometric functions. . .

So far we have neglected the term periodic. But this is very important, be-

cause a representation of a function in the Fourier basis can only be exact in

case we use an interval equal to an integral multiple of the period. While we

approximated (3-2) on the interval x ∈ [−1, 1] we implicitly assumed a period

of T = 2, whereas the exact period is Texact = 2π/3. This is the reason why

it is not possible to achieve an approximation in the Fourier basis within ma-

chine precision. The resulting approximation will always preserve an implied
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periodicity of function (3-2) with a period of T = 2. Figure 3-48 illustrates

this issue.

Figure 3-48: Given function
(3-2) in blue and it’s least
squares approximation on
the interval x ∈ [−1, 1] in
the Fourier basis S3(x) in
red. We extended the interval
to x ∈ [−3, 3] in order to
illustrate what we wanted to
approximate (left) and what
we actually did (right). −2 0 2
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The different periods of the given function and the least squares approxima-

tion in the Fourier basis can be seen in Figure 3-48 (left), but this plot does

not illustrate the actual situation of the performed adjustment. While we

approximated function (3-2) on the interval x ∈ [−1, 1], we implicitly defined

that this function has a period of T = 2. As we already know this period is

not the exact one. Hence, the actually performed least squares approximation

in the Fourier basis is depicted in Figure 3-48 (right), which clearly reveals

jump discontinuities at the limits x = −1 and x = 1. The approximation

is not only a best to fit of function (3-2), it also tries to approximate these

jumps as best as possible, which is also the reason for the large oscillations ofOr, in other words, we tried to
approximate a non continuous
function by a continuous one.

the residual function in Figure 3-47 (right). This oscillating behaviour of the

approximation in the vicinity of the jump discontinuities is known as Gibbs

phenomenon.

Let’s consider the last two examples depicted in Figure 3-43. An approxima-

tion of function (3-6) is given in Figure 3-49.

Figure 3-49: Approximation
in the Fourier basis S50(x) of
function (3-6) (left). Residual
function v(x) = sin(30x2) −
S50(x) (right).
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Although it seems like function (3-6) is periodic on the interval x ∈ [−1, 1], it

is not. Once again we have jump discontinuities at the limits, which causes

large deviations, as depicted in the residual plot Figure 3-49 (right). The

coefficients of S50(x) are illustrated in Figure 3-50.
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Figure 3-50: Logarithmic plot
of the absolute values for the
real (left) and imaginary part
(right) of the complex coeffi-
cients cj of S50(x).

Due to the symmetry of the function the imaginary part of the complex coef-

ficients cj is zero, as can be seen in Figure 3-50 (right). The imaginary part of

the coefficient for the offset c0 is always equal to zero and hence always a gap

at j = 0 appears in these plots. The real part of the coefficients are decreasing

with increasing j. However, they will not converge to zero, due to the wrong

period or to the resulting jump discontinuities at the limits.

The last example depicted in Figure 3-43 (right) is also not periodic, but

it is possible to approximate function (3-141) within machine precision with

p = 112 terms. S112(x) and the residual function are depicted in Figure 3-51.
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Figure 3-51: Best approxim-
ation in the Fourier basis
S117(x) of function (3-141)
(left). Residual function
v(x) = exp(−1000(x− 0.2)2)−
S112(x) (right).

The largest deviations of ≈ 10−14 are appearing at the position of the peak of

the function, as can be seen in Figure 3-51 (right). The coefficients of S112(x)

are illustrated in Figure 3-52.
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Figure 3-52: Logarithmic plot
of the absolute values for the
real (left) and imaginary part
(right) of the complex coeffi-
cients cj of S112(x).

The logarithmic plot of the absolute values in Figure 3-52 shows that the

coefficients rapidly converging to zero within machine precision with increasing

j. Although function (3-141) is not a periodic function we can approximate it

within machine precision using the Fourier basis. But this is only due to the

nature of this exponential function. The functional value at the limits is only

f (x = ±1) ≈ 10−277 and its first k derivatives are only increasing by a factor
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≈ 1000k. And while we only deal with roughly 15 digits of relative accuracy

we can conclude, that function (3-141) is an almost periodic function. At least

from a numerical point of view.

3.3.3 Chebyshev vs. Fourier

As already mentioned in Section 3.3, the Chebyshev and Fourier basis are twoThis section is essentially based
on (Trefethen 2013, Chapter 3
& 4), while mainly focussing on

the integrals instead of the series
expansion.

closely related sets of orthogonal basis functions. To illustrate this relation-

ship, we will consider a least squares approximation of a Lipschitz continuous

function f (x) on [−1, 1] in the Chebyshev basis according to (3-130). The

coefficients can be calculated by

cChebyj
=

1
〈Tj, Tj〉

∫ 1

−1

f (x) Tj√
1− x2

dx , (3-149)

or by introducing the change in variables (3-136), the coefficients can also be

determined by

cChebyj
=

1
〈Tj, Tj〉

∫ π

0
f
(

cos(θ)
)

cos(j θ) dθ

=
1

〈Tj, Tj〉
∫ π

0
F(θ) cos(j θ) dθ . (3-150)

This change in the variables can also be interpreted as a mapping of f (x) onto

the upper half of the unit circle, which is depicted in Figure 3-53.

Figure 3-53: Unit circle in
the complex plane with the
imaginary unit ı =

√
−1.

x

y

−1 1

−ı

ı

θ

z = exp(ıθ) = x + ı y = cos θ + ı sin θ

z̄

si
n

θ

cos θ

An arbitrary point z on the unit circle is uniquely defined by its coordinates

(x, y), satisfying

x2 + y2 = 1 , (3-151)

or an angle θ, with

Re(z) = x = cos θ ,

Im(z) = y = sin θ , (3-152)

while the upper equation in (3-152) is the introduced change in variables

(3-136). Due to

x = Re(z) = Re(z̄) (3-153)

it follows

F(θ) = F(−θ) (3-154)

and the integral in (3-150) can also be written as

cChebyj
=

1
2

1
〈Tj, Tj〉

∫ π

−π
F(θ) cos(j θ) dθ . (3-155)
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While mapping f (x) onto the unit circle we obtain a so-called transplanted For a non-periodic function f (x)
we obtain a periodic function F(θ)
only after the change of variable
(3-136).

function F(θ) for θ ∈ [−π, π] which is an infinitely differentiable, even, peri-

odic function, see Orszag 1971. Therefore, F(θ) has a Fourier cosine series

expansion

F(θ) =
1
2

a0 +
∞

∑
j=1

aj cos(jωθ) . (3-156)

A least squares approximation of the periodic function F(θ) on [−π, π] in the

Fourier basis according to Section 3.3.2 results in the coefficients

cFourierj =
1

2π

∫ π

−π
F(θ) exp(−ıjωθ) dθ . (3-157)

Using Euler‘s equation

exp(±ı θ) = cos θ ± ı sin θ (3-158)

and with ω = 2π/T = 1 the integral in (3-157) can be written in the form

cFourierj =
1

2π

∫ π

−π
F(θ)

[
cos(j θ)− ı sin(j θ)

]
dθ

=
1

2π

∫ π

−π
F(θ) cos(j θ) dθ − ı

1
2π

∫ π

−π
F(θ) sin(j θ) dθ . (3-159)

While F(θ) is an even function∫ π

−π
F(θ) sin(j θ) dθ = 0 (3-160)

and Equation (3-159) simplifies to

cFourierj =
1

2π

∫ π

−π
F(θ) cos(j θ) dθ . (3-161)

Now it is quite obvious that the Chebyshev coefficients cChebyj
in (3-155) are

equal to the Fourier coefficients cFourierj in (3-161), only scaled by a constant

factor. An approximation of f (x) on [−1, 1] in the Chebyshev basis is directly

related to an approximation of a transplanted function F(θ) on [−π, π] in the

Fourier basis.

As we have seen in Section 3.3.1, solving the integrals (3-150) using the Mat-

lab built-in function integral is slow and also not very accurate. But in case According to (Trefethen 2013, p.
15) this was probably observed
around 1970, see (Ahmed and
Fisher 1970) or (Orszag 1971).

F(θ) is known only at equally spaced points θk, the integrals in (3-159) can be

approximated by the Fast Fourier Transformation (FFT), see (Bronshtein

et al. 2007, Section 19.6.4). Using FFT is very fast and in case a sufficient

amount of points are given, it is also accurate down to the last digit. Let us

consider some equally spaced points on the upper half of the unit circle as

depicted in Figure 3-54.

Re

Im

−1 1

Figure 3-54: Equispaced
points on the upper half on
the unit circle in blue and
Chebyshev points in red.
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The projection of these equally spaced points onto the real axis are known as

Chebyshev points of the second kind, Chebyshev extreme points, or Chebyshev-In the following we call them only
Chebyshev points. Lobatto points and are given by

xk = cos
(

kπ

n

)
, 0 ≤ k ≤ n . (3-162)

And if we discretize f (x) at the Chebyshev points we obtain

f (xk) = F(θk) , (3-163)

which can directly be evaluated using FFT. The basic procedure for an efficient

approximation of f (x) with the aid of the FFT is illustrated in Figure 3-55.

Figure 3-55: Procedure for a
fast and accurate approxima-
tion of f (x) in the Chebyshev
basis via FFT.

x

f (x)
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f (x)
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−π π

Chebyshev
Points

Mapping
onto the

unit circle

Solving (3-157)
via FFT

Solving
(3-149)

RecChebyj cFourierj

slow & inaccurate fast & accurate

The Chebyshev coefficients cChebyj
are the real part of cFourierj , only scaled by

a constant factor. While for Part ii the coefficents are determined by using the

Matlab built-in function integral, FFT is used for the practical applications

Measurement– and Model–based Structural Analysis (MeMoS) in Part iii.



4
A P P ROX I M AT I O N O F F U N C T I O N S I N T WO

D I M E N S I O N S

The basic methodology for the least squares approximation of univariate func-

tions shown in Chapter 3 can in principle be directly extended to bivariate or Therefore, hardly any additional
literature has been used
throughout this chapter.

multivariate functions, as already remarked in (Langtangen 2016a, Chapter

8). For detailed information about multivariate approximation of functions in

general please refer to standard literature such as (Atkinson and Han 2009,

Chapter 14 ) or (Reimer 2003). A general overview of different methods

and/or different sets of basis functions can be found in (Schaback 2015).

For the approximation of univariate functions we in general only considered

the domain [a, b] mapped onto [−1, 1]. But we have not considered the other

two domains, namely [a, ∞) and (−∞, ∞), and have not discussed the result-

ing problems in solving the integrals in the normal equations system (1-45).

However, there are many different types of domains for the approximation

of bivariate functions. Solving the integrals of the normal equation system, For practical application and since
any function can be discretised,
we would also like to refer to
standard literature on the
approximation of scattered data,
such as e.g. (Buhmann 2003),
(Lancaster and Salkauskas
1988), (Piegl and Tiller 1997)
or (Wendland 2004).

therefore, turns out to be the main problem in the computation of a least

square approximation of bivariate functions. Thus, we restrict ourselves in

this thesis only to functions defined on the unit square [−1, 1]2 and we only

briefly discuss the mapping of simple arbitrary convex domains on the unit

square in Section 4.4.

Any bivariate polynomial of degree p can be written in the form

Pp(x, y) =
p

∑
i=0

p

∑
j=0

cij φij(x, y) =
p

∑
i=0

p

∑
j=0

cij xiyj (4-1)

while i + j ≤ p. The advantage of this representation of a bivariate polynomial

is, that the indices of the unknown coefficients cij are directly referring to the

corresponding basis function φij(x, y) = xiyj. Storing these coefficients in a

matrix allows an easy way for a visual inspection and further interpretation.

Using (4-1) for the implementation of a least squares approximation in ac-

cordance to (1-45), might lead to some confusion. Therefore, it is better to

rewrite the two sums in Equation (4-1) into a single one and use the following

equivalent representation of (4-1) for a bivariate polynomial of degree p

Pp(x, y) =
pn

∑
k=0

ck φk(x, y) =
pn

∑
k=0

ck xiyj i + j ≤ p, (4-2)

with pn = 1
2 (p + 1)(p + 2) and where i, j permute accordingly. An appropriate

way to illustrate the terms of a bivariate polynomial is by the usage of the

Pascal triangle as depicted in Figure 4-1.

85
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Figure 4-1: Pascal triangle for
the terms of a bivariate poly-
nomial of degree p. Including
the number of terms pn + 1
for each degree. The terms
for a polynomial of 2nd degree
are shaded in light blue. The
illustration was adopted from
Zienkiewicz et al. (2013, p.
153) and slightly modified.
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For a least square approximation of a function in two dimensions, the repres-

entation (4-2) with only one sum can be used in the same way as already done

in Chapter 3. To illustrate the procedure we will approximate the continuous

real function

f (x, y) = cos
(

x
y + 1.5

)
, (x, y) ∈ [−1, 1]2, (4-3)

by a polynomial of 2nd degree with pn + 1 = 6 unknown coefficients. Function

(4-3) is depicted in Figure 4-2.

Figure 4-2: Given function

f (x, y) = cos
(

x/(y+1.5)
)
.
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In order to approximate (4-3) the 6 basis functions φk = xiyj of a polynomial

of 2nd degree are defined as listed in Table 4-1.

Table 4-1: All pn + 1 permuta-
tions of i and j under the con-
dition i + j ≤ p for polynomial
degree p = 2 and resulting
basis functions φk = xiyj.

k i j φk = xiyj

0 0 0 1

1 0 1 y

2 0 2 y2

3 1 0 x

4 1 1 xy

5 2 0 x2

The normal equation system

N x = n

of a least squares approximation of (4-3) by a polynomial of 2nd degree results

in 
〈φ0, φ0〉 〈φ1, φ0〉 · · · 〈φpn , φ0〉
〈φ0, φ1〉 〈φ1, φ1〉 · · · 〈φpn , φ1〉

...
...

. . .
...

〈φ0, φpn〉 〈φ1, φpn〉 · · · 〈φpn , φpn〉




c0

c1
...

cpn

 =


〈φ0, cos

(
x/(y+1.5)

)
〉

〈φ1, cos
(

x/(y+1.5)
)
〉

...

〈φpn , cos
(

x/(y+1.5)
)
〉

 , (4-4)
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with the integrals

〈φk, φl〉 =
∫ 1

−1

∫ 1

−1
φkφl dx dy for k, l = 0, 1, 2, . . . , pn

and

〈φl , cos
(

x/(y+1.5)
)
〉 =

∫ 1

−1

∫ 1

−1
φl cos

(
x/(y+1.5)

)
dx dy

for l = 0, 1, 2, . . . , pn. Based on the basis functions φk listed in Table 4-1 the

normal matrix in (4-4) reads

N =



〈1, 1〉 〈y, 1〉 〈y2, 1〉 〈x, 1〉 〈xy, 1〉 〈x2, 1〉
〈1, y〉 〈y, y〉 〈y2, y〉 〈x, y〉 〈xy, y〉 〈x2, y〉
〈1, y2〉 〈y, y2〉 〈y2, y2〉 〈x, y2〉 〈xy, y2〉 〈x2, y2〉
〈1, x〉 〈y, x〉 〈y2, x〉 〈x, x〉 〈xy, x〉 〈x2, x〉
〈1, xy〉 〈y, xy〉 〈y2, xy〉 〈x, xy〉 〈xy, xy〉 〈x2, xy〉
〈1, x2〉 〈y, x2〉 〈y2, x2〉 〈x, x2〉 〈xy, x2〉 〈x2, x2〉


. (4-5)

The integrals in (4-5) can be solved directly and yields the following normal

matrix

N =



4 0 4/3 0 0 4/3

0 4/3 0 0 0 0
4/3 0 4/5 0 0 4/9

0 0 0 4/3 0 0

0 0 0 0 4/9 0
4/3 0 4/9 0 0 4/5


. (4-6)

As in the previous sections we solve the integrals of the right hand side nu-

merically using the Matlab built-in function integral2 for double integrals.

The right hand side reads

n =



〈1, cos
(

x/(y+1.5)
)
〉

〈y, cos
(

x/(y+1.5)
)
〉

〈y2, cos
(

x/(y+1.5)
)
〉

〈x, cos
(

x/(y+1.5)
)
〉

〈xy, cos
(

x/(y+1.5)
)
〉

〈x2, cos
(

x/(y+1.5)
)
〉


=



3.508 314 674 752 977

0.231 521 135 845 772

1.104 046 536 710 792

−3.951 960 286 796 56 · 10−14

−8.604 228 440 844 96 · 10−16

1.042 930 815 846 090


. (4-7)

The solution of the normal equation system (4-4) yields the unknown coeffi-

cients 

c0

c1

c2

c3

c4

c5


=



1.056 984 072 386 777

0.173 640 851 884 329

−0.183 914 123 081 812

−2.963 970 215 097 42 · 10−14

−1.935 951 399 190 12 · 10−15

−0.355 802 088 013 786


. (4-8)

for a bivariate polynomial approximation of 2nd degree. The resulting approx-

imation and the residual function are depicted in Figure 4-3.
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Figure 4-3: Polynomial ap-
proximation P2(x, y) of
function (4-3) (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− P2(x, y) (right).
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As Figure 4-3 illustrates, P2(x, y) is only a very coarse approximation of func-

tion (4-3) with the largest deviations at the two corners for y = −1. The best

approximation can be achieved by using a polynomial of 14th degree, which

yields a residual function smaller than 10−3, as depicted in Figure 4-4.

Figure 4-4: Best polynomial
approximation P14(x, y) of
function (4-3) (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− P14(x, y)

(right).
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A further increase of the polynomial degree leads to a larger residual function

and therefore, to a worse approximation. A polynomial of 22nd degree already

yields a residual function which is slightly smaller than for P2(x, y), as depicted
in Figure 4-5 (right).

Figure 4-5: Polynomial ap-
proximation P22(x, y) of
function (4-3) (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− P22(x, y)

(right).
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As already mentioned, polynomial approximation in the monomial basis is

an ill-conditioned problem. The condition number of the normal matrix for a

polynomial of 20th degree is ≈ 1014 and exponentially increases with increasing

degree. A polynomial approximation of 24th degree has already no similarities

to function (4-3) any more, as Figure 4-6 illustrates.
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Figure 4-6: Polynomial ap-
proximation P24(x, y) of
function (4-3) (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− P24(x, y)

(right).

In order to visualise the coefficients it is convenient to convert the column wise

representation ck into a matrix cij. The coefficients of P24(x, y) are depicted in

Figure 4-7 and are offering the same characteristics as in the one-dimensional

case.
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Figure 4-7: Colour coded
visualisation of the absolute
values for the coefficients cij
of P24(x, y) on a logarithmic
scale.

Each point in Figure 4-7 represents the coefficients cij corresponding to the

basis function φij(x, y) = xiyj. The absolute value for each coefficient is visual-

ised by a colour on a logarithmic scale. Due to the symmetry of function (4-3)

with respect to x = 0 the coefficients for odd i, are very small in comparison

to the ones for even i, which takes values up to ≈ 107 with increasing degree i
and j. Due to the condition i+ j ≤ p in the definition of a bivariate polynomial

of degree p, the upper triangular part in Figure 4-7 is always empty.

The Matlab code for the presented polynomial approximation of functions in

two dimensions is given in Programme 4-1. Due to the symmetry of the normal

matrix only the upper triangular part has been determined and mirrored to

the lower one. Further optimisation of the source code has been avoided in

favour of readability.
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Programme 4-1: Code for
an approximation in the
monomial basis for bivariate
functions.

1 %Approximation of f(x) on x,y in [-1, 1]

2 a=-1; b=1;

3

4 %polynomial degree

5 p=2; p_n=(p+1)*(p+2)/2;

6

7 %Preallocation of the matrices

8 N=zeros(p_n); n=zeros(p_n ,1);

9

10 %Permutation of i and j for i+j<=p

11 [ii,jj]= meshgrid (0:p);

12 ii=reshape(ii ,[],1); jj=reshape(jj ,[],1);

13

14 %index for i+j>k and deleting entries

15 out=(ii+jj)>p; ii(out)=[]; jj(out)=[];

16

17 %Basis function

18 phi=@(x,y,i,j) x.^i.*y.^j;

19

20 %Integral for the product of two Basis functions

21 int_phi=@(i,j,a,b) 1/(i+j+1)*(b^(i+j+1)-a^(i+j+1));

22

23 for k=1:p_n

24 for l=k:p_n

25 N(k,l)=int_phi(ii(k),ii(l),a,b)*int_phi(jj(k),jj(l)

,a,b);

26 end

27 n(k)=integral2(@(x,y) cos(x.*y).*phi(x,y,ii(k),jj(k)),a

,b,a,b);

28 end

29 %Adding the lower triangular part

30 N=N+triu(N,1) ’;

31

32 c=N\n;

4.1 elementwise approximation in the monomial basis

As in Section 3.1 we improve the approximation by dividing the whole domain

into elements and approximate each element by a polynomial of low degree.

Furthermore, we enforce continuity at connecting nodes in order to achieve a

continuous approximation on the whole domain. The division of the domain

into elements can be done arbitrarily, but for convenience we will now focus

on quadratic elements, while their edges are aligned parallel to the x− and

y−axis as illustrated in Figure 4-8.
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Figure 4-8: Alignment of
the elements and position
of the nodes. Elements are
highlighted in light grey and
numbered in blue and nodes
in black. The colour of the
circles indicates the number
of constraints of each node
in order to enforce continu-
ity at the nodes, with white
= 0, blue = 1 and red = 3
constraints.

The choice of quadratic elements as aligned in Figure 4-8 allows an easy de-

termination of the integrals for all elements only based on the coordinates of

the corner nodes. In order to illustrate the procedure we approximate function

(4-3) by dividing the whole domain into N = 4 elements using polynomials

of 2nd degree. Before we set-up the normal equation system in accordance to

(3-18) we need an unique identifier for the nodes ν and the elements ζ, which

can be stored in tables as follows.

Nodes

ν xν yν

1 −1.0 −1.0

2 −1.0 0.0

3 −1.0 1.0

4 0.0 −1.0

5 0.0 0.0

6 0.0 1.0

7 1.0 −1.0

8 1.0 0.0

9 1.0 1.0

Elements

ζ ν1 ν2 ν3 ν4

1 1 2 4 5

2 2 3 5 6

3 4 5 7 8

4 5 6 8 9

Table 4-2: Coordinates for
all nodes ν and the corner
nodes for all four element ζ as
illustrated in Figure 4-8.

Based on the definition of nodes and elements in Table 4-2 and the basis

functions of a quadratic polynomial in Table 4-1 we can set-up the normal

equation system for each element ζ

ζN ζx = ζn (4-9)

which reads in accordance to (4-4)
ζ〈φ0, φ0〉 ζ〈φ1, φ0〉 · · · ζ〈φpn , φ0〉
ζ〈φ0, φ1〉 ζ〈φ1, φ1〉 · · · ζ〈φpn , φ1〉

...
...

. . .
...

ζ〈φ0, φpn〉 ζ〈φ0, φpn〉 · · · ζ〈φpn , φpn〉




ζ c0
ζ c1
...

ζ cpn

 =


ζ〈cos

(
x/(y+1.5)

)
, φ0〉

ζ〈cos
(

x/(y+1.5)
)
, φ1〉

...
ζ〈cos

(
x/(y+1.5)

)
, φpn〉

 .

(4-10)

Due to the alignment of the elements depicted Figure 4-8 and the order of

the corner nodes for each element in Table 4-2, the limits for the integrals in
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(4-10) are defined by the coordinates of ν1 and ν4 for each element. For the

integrals in the normal matrices we get

ζ〈φk, φl〉 =

ζ yν4∫
ζ yν1

ζ xν4∫
ζ xν1

φkφl dx dy for k, l = 0, 1, 2, . . . , pn

and for the right hand side

ζ〈cos
(

x/(y+1.5)
)
, φl〉 =

ζ yν4∫
ζ yν1

ζ xν4∫
ζ xν1

cos
(

x/(y+1.5)
)
φl dx dy,

with l = 0, 1, 2, . . . , pn and ζ = 1, 2, 3, 4. Approximating each element by a

polynomial of 2nd degree leads to pn = 6 basis functions. Inserting the basis

functions from Table 4-1 in (4-10) the normal matrix for each element reads

ζN =



ζ〈1, 1〉 ζ〈y, 1〉 ζ〈y2, 1〉 ζ〈x, 1〉 ζ〈xy, 1〉 ζ〈x2, 1〉
ζ〈1, y〉 ζ〈y, y〉 ζ〈y2, y〉 ζ〈x, y〉 ζ〈xy, y〉 ζ〈x2, y〉

ζ〈1, y2〉 ζ〈y, y2〉 ζ〈y2, y2〉 ζ〈x, y2〉 ζ〈xy, y2〉 ζ〈x2, y2〉
ζ〈1, x〉 ζ〈y, x〉 ζ〈y2, x〉 ζ〈x, x〉 ζ〈xy, x〉 ζ〈x2, x〉

ζ〈1, xy〉 ζ〈y, xy〉 ζ〈y2, xy〉 ζ〈x, xy〉 ζ〈xy, xy〉 ζ〈x2, xy〉
ζ〈1, x2〉 ζ〈y, x2〉 ζ〈y2, x2〉 ζ〈x, x2〉 ζ〈xy, x2〉 ζ〈x2, x2〉


(4-11)

and the right hand side yields

ζn =



ζ〈1, cos
(

x/(y+1.5)
)
〉

ζ〈y, cos
(

x/(y+1.5)
)
〉

ζ〈y2, cos
(

x/(y+1.5)
)
〉

ζ〈x, cos
(

x/(y+1.5)
)
〉

ζ〈xy, cos
(

x/(y+1.5)
)
〉

ζ〈x2, cos
(

x/(y+1.5)
)
〉


. (4-12)

Due to the the alignment of the elements with respect to x = 0 and y = 0,

the entries in all four normal matrices have the same absolute values and only

their algebraic sign changes. For the normal matrices these values are

|ζN| =



1 1/2 1/3 1/2 1/4 1/3

1/2 1/3 1/4 1/4 1/6 1/6

1/3 1/4 1/5 1/6 1/8 1/9

1/2 1/4 1/6 1/3 1/6 1/4

1/4 1/6 1/8 1/6 1/9 1/8

1/3 1/6 1/9 1/4 1/8 1/5


(4-13)

While the given function (4-3) is symmetric with respect to x = 0 the absolute

values for the entries in the right hand side are also equal for elements mirrored

at x = 0, with

|1n| = |3n| =



0.797 961 310 921 639

0.365 984 483 528 582

0.229 825 889 790 003

0.350 103 493 838 381

0.150 796 269 875 836

0.214 341 565 866 359


(4-14)
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and

|2n| = |4n| =



0.956 196 026 034 606

0.481 745 052 176 112

0.322 197 377 003 143

0.467 200 192 747 361

0.236 326 734 438 577

0.307 123 841 908 079


. (4-15)

The algebraic sign for each entry of the right hand sides are as follows

1nsign =



+

−
+

−
+

+


, 2nsign =



+

+

+

−
−
+


, 3nsign =



+

−
+

+

−
+


, 4nsign =



+

+

+

+

+

+


(4-16)

and for the entries in the normal matrices (4-13) the algebraic signs are given

by
ζNsign = ζnsign

ζnT
sign. (4-17)

The four normal equation systems are combined to a single one as follows
1N 0 0 0

0 2N 0 0

0 0 3N 0

0 0 0 4N




1x
2x
3x
3x

 =


1n
2n
3n
4n

 (4-18)

or in shorter notation

N x = n , (4-19)

while x contains the unknowns parameters of a polynomial of 2nd degree for all

four elements. In order to obtain a continuous approximation, we introduce

constraints at nodes connecting two or more elements as already described

in (3.1.2). As the colour for the nodes in Figure 4-8 indicates the number of

constraints, we have to introduce for nodes in white = 0, for nodes in blue = 1
and for nodes in red = 3 constraints. According to Figure 4-8 and Table 4-2

the constraints between the polynomials (4-2) at these nodes are

ν = 2:
1P2(1xν2 , 1yν2 )− 2P2(2xν1 , 2yν1 ) = 0 , (4-20)

ν = 4:
1P2(1xν3 , 1yν3 )− 3P2(3xν1 , 3yν1 ) = 0 , (4-21)

ν = 5:

1P2(1xν4 , 1yν4 )− 2P2(2xν3 , 2yν3 ) = 0 , (4-22)
1P2(1xν4 , 1yν4 )− 3P2(3xν2 , 3yν2 ) = 0 ,
1P2(1xν4 , 1yν4 )− 4P2(4xν1 , 4yν1 ) = 0 ,

ν = 6:
2P2(2xν4 , 2yν4 )− 4P2(4xν2 , 4yν2 ) = 0 , (4-23)
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and for ν = 8:
3P2(

3xν4 , 3yν4)− 4P2(
4xν3 , 4yν3) = 0 . (4-24)

As an example the costraint for (4-20) explicitly reads

1c0 +
1c1

1yν2 +
1c2

1y2
ν2
+ 1c3

1xν2 +
1c4

1xν2
1yν2 +

1c5
1x2

ν2

−
(

2c0 +
2c1

2yν1 +
2c2

2y2
ν1
+ 2c3

2xν1 +
2c4

2xν1
2yν1 +

2c5
2x2

ν1

)
= 0 . (4-25)

Rewriting the seven constraints (4-20) to (4-24) in matrix notation

C x = c with c = 0 (4-26)

and inserting the coordinates of nodes from Table 4-2 yields

C =



1 0 0 −1 0 1 −1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 0 0 0 0 0 0 0 0 0 −1 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 −1 0 0 −1 0 −1


(4-27)

Extending the normal equation system (4-19)N CT

C 0

x

λ

 =

n

0

 (4-28)

and its solution yields the unknown parameters of a two-dimensional polyno-
mial of 2nd degree for all elements

1c0
1c1
1c2
1c3
1c4
1c5


=



0.918 692 574 762 579

−0.554 136 455 301 609

−0.473 688 826 744 928

−0.290 392 910 713 106

−0.991 210 870 907 134

−0.402 288 988 764 597


,



2c0
2c1
2c2
2c3
2c4
2c5


=



0.918 692 574 762 579

0.189 589 873 414 247

−0.128 719 468 646 491

−0.111 985 010 531 353

−0.004 195 617 695 992

−0.223 881 088 582 844


,



3c0
3c1
3c2
3c3
3c4
3c5


=



0.918 692 574 762 579

−0.554 136 455 301 626

−0.473 688 826 744 945

0.290 392 910 713 097

0.991 210 870 907 132

−0.402 288 988 764 592


,



4c0
4c1
4c2
4c3
4c4
4c5


=



0.918 692 574 762 579

0.189 589 873 414 254

−0.128 719 468 646 497

0.111 985 010 531 362

0.004 195 617 695 991

−0.223 881 088 582 857


. (4-29)

The resulting approximation of (4-3) with N = 4 elements using quadratic

polynomials and the residual function is depicted Figure 4-9.

Figure 4-9: Polynomial ap-
proximation of function (4-3)
with N = 4 elements using
quadratic polynomials (left).
Residual function v(x, y) =
cos

(
x/(y+1.5)

)
− ∑4

ζ=1
ζ P2(x, y)

(right).
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As one can see in Figure 4-9 (left), ∑4
ζ=1

ζ P2(x, y) is only a very coarse approx-

imation of function (4-3) with the largest deviations at the two corners for

y = −1. The nodes of neighboured elements are connected but the residual

function in Figure 4-9 (right) also shows discontinuities along their edges for

y = 0.

While dealing with an elementwise approximation of two-dimensional func-

tions we face some problems which do not occur in the one-dimensional case.

To introduce constraints at nodes in order to obtain a Cn continuous approx-

imation, as we did for the one-dimensional case, is no longer sufficient. In

general, a continuous approximation for any number of elements and arbit-

rary polynomial degree can not be guaranteed any more. In this way, one

must always define a suitable polynomial for a certain element, for instance,

triangle or rectangle and desired Cn continuity. In the presented example of us-

ing rectangular elements and introducing constraints to enforce C0 continuity

only

Pζ
1 = cζ

0 + cζ
1x + cζ

2y + cζ
3xy (4-30)

would always yield a continuous approximation for any number of elements.

One loses the flexibility of choosing an arbitrary number of rectangular ele-

ments and of any polynomial degree.

4.2 elementwise continuous approximation

As we have seen in the previous section, introducing constraints at nodes to

achieve an elementwise Cn continuous approximation is only suitable for a

certain typ of element and an appropriate polynomial. In order to keep the

flexibility of choosing any typ of element and an arbitrary polynomial degree,

two slightly different approaches for defining appropriate constraints will be

presented and are referred in this thesis as

� Node based and

� Edge based approach.

The node based approach is simply an extension of the concept to enforce

continuity by introducing constraints at nodes connecting elements, as already

shown in Section 3.1.2. The basic idea of this approach is also widely used

in the finite element method to derive higher order elements, see e.g. (Zien-

kiewicz et al. 2013, p. 153). In contrast, the edge based approach has been

developed in this thesis only out of pure curiosity. The motivation behind

this was to obtain continuity between elements not by introducing constraints

at discrete points, but rather continuously along common edges. Both ap-

proaches are discussed in detail in the following sections.

4.2.1 Node based approach

Perhaps the simplest way to obtain a continuous approximation is to intro-

duce additional constraints at auxiliary nodes along an edge connecting two

elements. As an illustration we consider the same example as in Section 4.1,

while approximating function (4-3) by N = 4 elements using polynomials of

2nd degree. The curve along an edge connecting two elements is a cross section

of Pζ
2 (x, y) and therefore also a polynomial of 2nd degree. So far, two connec-
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ted elements are sharing two nodes and while any polynomial of 2nd degree

is uniquely described by three different points, we only have to introduce one

further auxiliary node on the edge connecting two elements. For convenience

we introduced the auxiliary nodes in the middle on the edges as depicted in

Figure 4-10 (left).

Figure 4-10: Placement of the
auxiliary nodes (yellow) for
an continuous elementwise
polynomial approximation.
For polynomials of 2nd degree
we have to introduce four
auxiliary nodes (left) and for
polynomials of 3rd degree
eight auxiliary nodes (right).
Elements are highlighted in
light grey and numbered in
blue and nodes in black
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Figure 4-10 illustrates the placement of the auxiliary nodes while using poly-

nomials of 2nd degree (left) and also for 3rd degree (right). With increasing

polynomial degree we have to introduce more auxiliary nodes accordingly. For

our example we only need to introduce four auxiliary nodes as depicted in Fig-

ure 4-10 (left). The coordinates of these nodes are listed in Table 4-3.

Table 4-3: Tables for the co-
ordinates of the auxiliary
nodes as illustrated in Figure
4-10 (left).

Auxiliary nodes

ν xν yν

A1 0.0 −0.5

A2 0.0 0.5

A3 −0.5 0.0

A4 0.5 0.0

For each of these auxiliary nodes we have to introduce one additional con-

straint and according to Table 4-3 and Figure 4-10 these constraints are

ν = A1:
P1

2 (xA1, yA1)− P3
2 (xA1, yA1) = 0 , (4-31)

ν = A2:
P2

2 (xA2, yA2)− P4
2 (xA2, yA2) = 0 , (4-32)

ν = A3:
P1

2 (xA3, yA3)− P2
2 (xA3, yA3) = 0 , (4-33)

ν = A4:
P3

3 (xA4, yA4)− P4
2 (xA4, yA4) = 0 . (4-34)

As an example the constraint for (4-31) explicitly reads[
c1

0 + c1
1 yA1 + c1

2 y2
A1 + c1

3 xA1 + c1
4 xA1 yA1 + c1

5 x2
A1

]
−

−
[

c3
0 + c3

1 yA1 + c3
2 y2

A1 + c3
3 xA1 + c3

4 xA1 yA1 + c3
5 x2

A1

]
= 0, (4-35)

Rewriting the four constraints (4-31) to (4-34) in matrix notation

CA x = cA with cA = 0 (4-36)
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and inserting the coordinates of nodes from Table 4-2 yields

CA =


1 − 1

2
1
4 0 0 0 0 0 0 0 0 0 −1 1

2 − 1
4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1
2

1
4 0 0 0 0 0 0 0 0 0 −1 − 1

2 − 1
4 0 0 0

1 0 0 − 1
2 0 1

4 −1 0 0 1
2 0 − 1

4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
2 0 1

4 −1 0 0 − 1
2 0 − 1

4


(4-37)

Adding the constraints (4-37) to (4-27)

Cext =

C

CA

 (4-38)

yields in total 11 constraints, which can be used to extend the normal equation

system (4-19)  N CT
ext

Cext 0

x

λ

 =

n

0

 . (4-39)

Solving (4-39) yields the unknowns parameters of Pζ
2 (x, y) for each element

of an continuous approximation of function (4-3)

1c0
1c1
1c2
1c3
1c4
1c5


=



0.918 692 574 762 582

−0.613 605 755 362 188

−0.523 246 576 795 413

−0.201 188 960 622 225

−0.991 210 870 907 130

−0.313 085 038 673 720


,



2c0
2c1
2c2
2c3
2c4
2c5


=



0.918 692 574 762 582

0.130 120 573 353 657

−0.079 161 718 596 000

−0.201 188 960 622 225

−0.004 195 617 695 996

−0.313 085 038 673 719


,



3c0
3c1
3c2
3c3
3c4
3c5


=



0.918 692 574 762 582

−0.613 605 755 362 188

−0.523 246 576 795 412

0.201 188 960 622 226

0.991 210 870 907 130

−0.313 085 038 673 721


,



4c0
4c1
4c2
4c3
4c4
4c5


=



0.918 692 574 762 582

0.130 120 573 353 656

−0.079 161 718 595 999

0.201 188 960 622 226

0.004 195 617 695 996

−0.313 085 038 673 721


. (4-40)

The resulting continuous approximation of (4-3) with N = 4 elements using

quadratic polynomials and the residual function is depicted Figure 4-11.
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Figure 4-11: Continuous ap-
proximation of function (4-3)
with N = 4 elements using
quadratic polynomials (left).
Residual function v(x, y) =
cos

(
x/(y+1.5)

)
− ∑4

ζ=1
ζ P2(x, y)

(right).

In direct comparison to Figure 4-9 (right) the residual function depicted in

Figure 4-11 (right) does not reveal any discontinuities. In addition, it has also

been proven numerically that two connected elements are always describing

exactly the same curve along their edge. The approximation is C0 continuous

within machine precision.
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4.2.2 Edge based approach

In the following we will derive a continuous approximation of functions in two

dimensions, while introducing constraints for edges connecting two elements.

To illustrated the procedure we use the same example as in Section 4.1 and

approximate function (4-3) by N = 4 elements using polynomials of 2nd degree.

The alignment of the elements is depicted in Figure 4-12.

Figure 4-12: Alignment of
the elements and position
of the nodes. Elements are
highlighted in light grey and
numbered in blue, edges in
red and nodes in black. To
enforce continuity between ele-
ments, we need to introduce
constraints for edges coloured
in red. x

y

1 3 5

2 4 6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

1

2

3

4

Based on Figure 4-12 we define a unique identifier for nodes, edges and ele-

ments, which can be stored in the following tables.

Table 4-4: Tables for the
nodes, edges and elements
as illustrated in Figure 4-12.

Nodes

ν xν yν

1 −1.0 −1.0

2 −1.0 0.0

3 −1.0 1.0

4 0.0 −1.0

5 0.0 0.0

6 0.0 1.0

7 1.0 −1.0

8 1.0 0.0

9 1.0 1.0

Edges

ε ν1 ν2

1 1 2

2 2 3

3 4 5

4 5 6

5 7 8

6 8 9

7 1 4

8 2 5

9 3 6

10 4 7

11 5 8

12 6 9

Elements

ζ ε1 ε2 ε3 ε4

1 1 3 7 8

2 2 4 8 9

3 3 5 10 11

4 4 6 11 12

The alignment of the elements as well as the definition of the nodes is exactly

the same as for the example in Section 4.1. Therefore, we can also use the

same normal equation system (4-18) and we only have to introduce constraints

for edges connecting two elements in order to achieve a C0 continuous approx-

imation. For this example we have to introduce constraints for the four edges

coloured in red in Figure 4-12.

The basic idea is to enforce connected elements to share the same curve along

their edge. Each edge ε is uniquely defined by its starting and end node νε
1

and νε
2 according to Table 4-4. The curve is in general a cross section of

Pζ
p (x, y) and therefore a univariate function. In order to describe the curve
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we transform each edge onto a generalised edge, represented by a single gen-

eralised coordinate u. This can be done in the same way as for the transform-

ation of a 1D element, described in Section 3.2.1.1. Figure 4-13 illustrates the

transformation.

x

y

νε
1

νε
2

u

xε
ν1

yε
ν1

xε
ν2

yε
ν2

u = 0

u = 1

Edge ε

Figure 4-13: Transformation
of the coordinates of the edge

Each edge ε within the x, y−plane is described by its coordinates xε
e and

yε
e, which can be expressed as a function of the generalised coordinate u by

applying transformation (3-69). These coordinates are

xε
e = xε

ν1
+
(

xε
ν2
− xε

ν1

)
u ,

yε
e = yε

ν1
+
(

yε
ν2
− yε

ν1

)
u ,

(4-41)

with u ∈ [0, 1]. Let us assume that two neighboured elements ζ1 and ζ2 are

sharing the same edge ε1. The curve along this edge described by element ζ1

for a polynomial of 2nd degree reads

Pζ1
2
(

xε1
e, yε1

e

)
= cζ1

0 + cζ1
1 yε1

e + cζ1
2 yε1 2

e + cζ1
3 xε1

e+

+ cζ1
4 xε1

e yε1
e + cζ1

5 xε1 2
e . (4-42)

Inserting (4-41) into (4-42) yields

Pζ1
2 (u) = cζ1

0 + cζ1
1

(
yε1

ν1
+
(

yε1
ν2
− yε1

ν1

)
u
)

+

+ cζ1
2

(
yε1

ν1
+
(

yε1
ν2
− yε1

ν1

)
u
)2

+

+ cζ1
3

(
xε1

ν1
+
(

xε1
ν2
− xε1

ν1

)
u
)

+

+ cζ1
4

(
xε1

ν1
+
(

xε1
ν2
− xε1

ν1

)
u
)(

yε1
ν1

+
(

yε1
ν2
− yε1

ν1

)
u
)

+

+ cζ1
5

(
xε1

ν1
+
(

xε1
ν2
− xε1

ν1

)
u
)2

. (4-43)

While the coordinates of the starting and end node of edge ε1 are constants

the polynomial in (4-43) is only a function of u and simplifies to

Pζ1
2 (u) = dζ1

0 + dζ1
1 u + dζ1

2 u2 , (4-44)

with

dζ1
0 = cζ1

0 + cζ1
1 yε1

ν1
+ cζ1

2 yε1 2
ν1

+ cζ1
3 xε1

ν1
+

+ cζ1
4 xε1

ν1
yε1

ν1
+ cζ1

5 xε1 2
ν1

,

dζ1
1 = cζ1

1
(

yε1
ν2
− yε1

ν1

)
+ 2 cζ1

2 yε1
ν1

(
yε1

ν2
− yε1

ν1

)
+

+ cζ1
3
(

xε1
ν2
− xε1

ν1

)
+ cζ1

4 yε1
ν1

(
xε1

ν2
− xε1

ν1

)
+

+ cζ1
4 xε1

ν1

(
yε1

ν2
− yε1

ν1

)
+ 2 cζ1

5 xε1
ν1

(
xε1

ν2
− xε1

ν1

)
,

dζ1
2 = cζ1

2
(

yε1
ν2
− yε1

ν1

)2
+ cζ1

4
(

xε1
ν2
− xε1

ν1

)(
yε1

ν2
− yε1

ν1

)
+

+ cζ1
5
(

xε1
ν2
− xε1

ν1

)2 . (4-45)
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The same curve along edge ε1 described by element ζ2 reads

Pζ2
2
(

xε1
e, yε1

e

)
= cζ2

0 + cζ2
1 yε1

e + cζ2
2 yε1 2

e + cζ2
3 xε1

e+

+ cζ2
4 xε1

e yε1
e + cζ2

5 xε1 2
e . (4-46)

Inserting (4-41) into (4-46) and rearranging yields

Pζ2
2 (u) = dζ2

0 + dζ2
1 u + dζ2

2 u2 , (4-47)

with

dζ2
0 = cζ2

0 + cζ2
1 yε1

ν1
+ cζ2

2 yε1 2
ν1

+ cζ2
3 xε1

ν1
+

+ cζ2
4 xε1

ν1
yε1

ν1
+ cζ2

5 xε1 2
ν1

,

dζ2
1 = cζ2

1
(

yε1
ν2
− yε1

ν1

)
+ 2 cζ2

2 yε1
ν1

(
yε1

ν2
− yε1

ν1

)
+

+ cζ2
3
(

xε1
ν2
− xε1

ν1

)
+ cζ2

4 yε1
ν1

(
xε1

ν2
− xε1

ν1

)
+

+ cζ2
4 xε1

ν1

(
yε1

ν2
− yε1

ν1

)
+ 2 cζ2

5 xε1
ν1

(
xε1

ν2
− xε1

ν1

)
,

dζ2
2 = cζ2

2
(

yε1
ν2
− yε1

ν1

)2
+ cζ2

4
(

xε1
ν2
− xε1

ν1

)(
yε1

ν2
− yε1

ν1

)
+

+ cζ2
5
(

xε1
ν2
− xε1

ν1

)2 . (4-48)

To enforce continuity between element ζ1 and ζ2 along edge ε1 the two poly-

nomials (4-44) and (4-47) must be equal

Pζ1
2 (u) = Pζ2

2 (u) ,

dζ1
0 + dζ1

1 u + dζ1
2 u2 = dζ2

0 + dζ2
1 u + dζ2

2 u2 .
(4-49)

This is fulfilled, if their coefficients are equal. Hence, we get the following

three constraints

dζ1
0 − dζ2

0 = 0 ,

dζ1
1 − dζ2

1 = 0 ,

dζ1
2 − dζ2

2 = 0 .

(4-50)

For the example of approximating function (4-3) by N = 4 elements as aligned

in Figure 4-12 and based on the tables for nodes, edges and elements in Table

4-4 the constraints (4-50) with (4-45) and (4-48) have to be introduced for

each edge connecting two elements. For edge ε = 3 these constraints are

d1
0 − d3

0 = 0 ,

d1
1 − d3

1 = 0 ,

d1
2 − d3

2 = 0

(4-51)

and inserting (4-45) and (4-48) yields[
c1

0 + c1
1 y3

ν1
+ c1

2 y3 2
ν1

+ c1
3 x3

ν1
+ c1

4 x3
ν1

y3
ν1

+ c1
5 x3 2

ν1

]
−

−
[

c3
0 + c3

1 y3
ν1

+ c3
2 y3 2

ν1
+ c3

3 x3
ν1

+ c3
4 x3

ν1
y3

ν1
+ c3

5 x3 2
ν1

]
= 0, (4-52)

[
c1

1
(

y3
ν2
− y3

ν1

)
+ 2 c1

2 y3
ν1

(
y3

ν2
− y3

ν1

)
+ c1

3
(

x3
ν2
− x3

ν1

)
+

+ c1
4 y3

ν1

(
x3

ν2
− x3

ν1

)
+ c1

4 x3
ν1

(
y3

ν2
− y3

ν1

)
+ 2 c1

5 x3
ν1

(
x3

ν2
− x3

ν1

)]
−

−
[

c3
1
(

y3
ν2
− y3

ν1

)
+ 2 c3

2 y3
ν1

(
y3

ν2
− y3

ν1

)
+ c3

3
(

x3
ν2
− x3

ν1

)
+

+ c3
4 y3

ν1

(
x3

ν2
− x3

ν1

)
+ c3

4 x3
ν1

(
y3

ν2
− y3

ν1

)
+ 2 c3

5 x3
ν1

(
x3

ν2
− x3

ν1

)]
= 0

(4-53)
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and[
c1

2
(

y3
ν2
− y3

ν1

)2
+ c1

4
(

x3
ν2
− x3

ν1

)(
y3

ν2
− y3

ν1

)
+ c1

5
(

x3
ν2
− x3

ν1

)2
]
−

−
[

c3
2
(

y3
ν2
− y3

ν1

)2
+ c3

4
(

x3
ν2
− x3

ν1

)(
y3

ν2
− y3

ν1

)
+ c3

5
(

x3
ν2
− x3

ν1

)2
]

= 0.

(4-54)

Rewriting these constraints in matrix notation

Cε x = cε with cε = 0 (4-55)

and inserting the coordinates for the nodes ν1 and ν2 of edge ε = 3 results in

C3 =


1 −1 1 0 0 0 0 0 0 0 0 0 −1 1 −1 0 0 0 0 0 0 0 0 0

0 1 −2 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

 .

(4-56)

The constraints for the other three edges can be derived accordingly and are

reading

C4 =


0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

 ,

(4-57)

C8 =


1 0 0 −1 0 1 −1 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 −2 0 0 0 −1 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

 ,

(4-58)

C11 =


0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1

 .

(4-59)

While combing (4-56) to (4-59) into

C =


C3

C4

C8

C11

 and c = 0 (4-60)

yields in total 12 constraints. As we have seen in Section 4.2.1 only 11 con-

straints are necessary to obtain an elementwise continuous approximation with

N = 4 elements using polynomials of 2nd degree. Therefore, matrix C ∈ R12×24

has a rank deficiency of one with

rank(C) = 11 , (4-61)

which means that one row in C can be represented by a linear combination

of all other rows. Before we proceed we need to remove this rank deficiency

by choosing any 11 linear independent rows of matrix C in such a way that

C ∈ R11×24 is of full rank. The remaining 11 constraints are used to extend

the normal equation system (4-19)N CT

C 0

x

λ

 =

n

0

 . (4-62)
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Solving (4-62) yields the unknown parameters of a two-dimensional polyno-
mial of 2nd degree for each element

1c0
1c1
1c2
1c3
1c4
1c5


=



0.918 692 574 762 579

−0.613 605 755 362 192

−0.523 246 576 795 415

−0.201 188 960 622 233

−0.991 210 870 907 130

−0.313 085 038 673 726


,



2c0
2c1
2c2
2c3
2c4
2c5


=



0.918 692 574 762 579

0.130 120 573 353 666

−0.079 161 718 596 009

−0.201 188 960 622 233

−0.004 195 617 695 995

−0.313 085 038 673 726


,



3c0
3c1
3c2
3c3
3c4
3c5


=



0.918 692 574 762 579

−0.613 605 755 362 192

−0.523 246 576 795 415

0.201 188 960 622 234

0.991 210 870 907 131

−0.313 085 038 673 728


,



4c0
4c1
4c2
4c3
4c4
4c5


=



0.918 692 574 762 579

0.130 120 573 353 666

−0.079 161 718 596 009

0.201 188 960 622 234

0.004 195 617 695 995

−0.313 085 038 673 728


,

(4-63)

while the approximation is continuous along edges connecting two elements.

The coefficients derived from node based (4-40) and edge based (4-63) ap-

proach only differ by ≈ 10−14. The resulting approximation of the edge based

approach is depicted in Figure 4-14 and does not differ from the result of the

node based approach in Figure 4-11.

Figure 4-14: Polynomial ap-
proximation of function (4-3)
with N = 4 elements using
quadratic polynomials (left).
Residual function v(x, y) =
cos

(
x/(y+1.5)

)
− ∑4

ζ=1
ζ P2(x, y)

(right).
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It has also been proven numerically that two connected elements are always

describing exactly the same curve along their edge. The presented edge based

approach yields also an approximation, which is C0 continuous.

Figure 4-15 depicts an approximation with N = 25 elements using quadratic

polynomials, which is already quite similar to function (4-3).

Figure 4-15: Polynomial ap-
proximation of function (4-3)
with N = 25 elements using
quadratic polynomials (left).
Residual function v(x, y) =
cos

(
x/(y+1.5)

)
− ∑25

ζ=1
ζ P2(x, y)

(right).
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The residual function in depicted Figure 4-15 (right) reveals deviation in a

range of ≈ 0.1. An approximation with N = 100 elements using polynomialsThe computational effort to find
the best continuous elementwise

approximation of function (4-3) is
tremendous.

of 4th degree is depicted in Figure 4-16 and reveals a residual function, which

is overall just slightly smaller than the best polynomial approximation P14(x, y)
depicted in Figure 4-4.
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4 Figure 4-16: Polynomial
approximation of function
(4-3) with N = 100 ele-
ments using polynomials
of 4th degree (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− ∑100

ζ=1
ζ P4(x, y)

(right).

But one should remember that for the best approximation P14(x, y) depicted

in Figure 4-4 only 120 parameters are needed, while for the approximation

∑100
ζ=1

ζ P4(x, y) in Figure 4-16 (left) already 1500 parameters are needed. An

enormous increase of unknown parameters with hardly any improvement.

At first glance, the introduced edge based approach seems to be very complex

and difficult in comparison to the node based approach presented in Section

4.2.1. However, the edge based approach is almost as easy to implement

as the node based one and also the rank deficiency can be removed very

easily. Furthermore, the basic concept of the presented edge based approach

illustrates how to obtain approximations with certain characteristics along

borders or arbitrary cross sections. These characteristics can be any given

function expressed as polynomial coefficients, which can directly be imposed

in the constraints without the necessity of defining proper auxiliary nodes as

needed for the node based approach.

4.2.3 Elementwise smooth approximation

In this section we will briefly show how to obtain an elementwise C2 continu-

ous approximation of functions in two dimensions. A smooth approximation

can be achieved, while introducing additional constraints for the partial deriv-

atives in the same way as already shown for a C0 continuous approximation

as described in Section 4.2. In this section, however, we will only focus on the

edge based approach and exemplify the derivation of the additional constraints

for the same example as in Section 4.2.2. According to Equation (4-42) the

polynomial of 2nd degree for an edge ε of an element ζ is given by

Pζ
2
(

xε
e, yε

e

)
= cζ

0 + cζ
1 yε

e + cζ
2 yε 2

e + cζ
3 xε

e+

+ cζ
4 xε

e yε
e + cζ

5 xε 2
e , (4-64)

with the coordinates of the edge ε

xε
e = xε

ν1
+

(
xε

ν2
− xε

ν1

)
u ,

yε
e = yε

ν1
+

(
yε

ν2
− yε

ν1

)
u .

(4-65)

In order to obtain a smooth approximation between two neighboured arbitrary

elements ζ1 and ζ2, the polynomials of both elements must be equal along their

connecting edge ε1, as already shown in Section 4.2.2, and they must also be

equal in their first-order

∂ Pζ1
2
(

xε1
e, yε1

e

)
∂ xε1

e
=

∂ Pζ2
2
(

xε1
e, yε1

e

)
∂ xε1

e
, (4-66)

∂ Pζ1
2
(

xε1
e, yε1

e

)
∂ yε1

e
=

∂ Pζ2
2
(

xε1
e, yε1

e

)
∂ yε1

e
(4-67)
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and in their second-order partial derivatives

∂2 Pζ1
2
(

xε1
e, yε1

e

)
∂ xε1 2

e

=
∂2 Pζ2

2
(

xε1
e, yε1

e

)
∂ xε1 2

e

, (4-68)

∂2 Pζ1
2
(

xε1
e, yε1

e

)
∂ yε1 2

e

=
∂2 Pζ2

2
(

xε1
e, yε1

e

)
∂ yε1 2

e

, (4-69)

∂2 Pζ1
2
(

xε1
e, yε1

e

)
∂ xε1

e ∂ yε1
e

=
∂2 Pζ2

2
(

xε1
e, yε1

e

)
∂ yε1

e ∂ yε1
e

. (4-70)

The derivation of the constraints for fulfilling Equations (4-66) to (4-70) is

done in the same way as described in Section 4.2.2 and will be exemplified for

(4-66). The partial derivative of (4-66) for element ζ1 reads

∂ Pζ1
2
(

xε1
e, yε1

e

)
∂ xε1

e
= Pζ1

x

(
xε1

e, yε1
e

)
= cζ

3 + cζ
4 yε1

e + 2 cζ
5 xε1

e . (4-71)

Inserting (4-65) into (4-71) yields

Pζ1
x (u) = cζ1

3 + cζ1
4

(
yε1

ν1
+
(

yε1
ν2
− yε1

ν1

)
u
)

+

+ 2 cζ1
5

(
xε1

ν1
+
(

xε1
ν2
− xε1

ν1

)
u
)

. (4-72)

While the coordinates starting and end node of edge ε1 are constants, the

resulting polynomial of the first derivative in (4-72) is only a function of u
and simplifies to

Pζ1
x (u) = dζ1

0 + dζ1
1 u , (4-73)

with

dζ1
0 = cζ1

3 + cζ1
4 yε1

ν1
+ 2 cζ1

5 xε1
ν1

,

dζ1
1 = cζ1

4
(

yε1
ν2
− yε1

ν1

)
+ 2 cζ1

5
(

xε1
ν2
− xε1

ν1

)
. (4-74)

Analogous to the above, the partial derivative of (4-66) for element ζ2 results

in
∂ Pζ2

2
(

xε1
e, yε1

e

)
∂ xε1

e
= Pζ2

x (u) = dζ2
0 + dζ2

1 u , (4-75)

with

dζ2
0 = cζ2

3 + cζ2
4 yε1

ν1
+ 2 cζ2

5 xε1
ν1

,

dζ2
1 = cζ2

4
(

yε1
ν2
− yε1

ν1

)
+ 2 cζ2

5
(

xε1
ν2
− xε1

ν1

)
. (4-76)

Inserting (4-73) and (4-75) into the first-order partial derivative (4-66) yields

dζ1
0 + dζ1

1 u = dζ2
0 + dζ2

1 u . (4-77)

Equation (4-77) is fulfilled, if the coefficients of both polynomials are equal.

Hence, we get the following two constraints

dζ1
0 − dζ2

0 = 0 ,

dζ1
1 − dζ2

1 = 0 .
(4-78)

For the example of approximating function (4-3) by N = 4 elements as aligned

in Figure 4-12 and based on the tables for nodes, edges and elements in Table

4-4 the constraints (4-78) with (4-74) and (4-76) have to be introduced for

each edge connecting two elements. For edge ε = 3 these constraints are

d1
0 − d3

0 = 0 ,

d1
1 − d3

1 = 0
(4-79)
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and inserting (4-74) and (4-76) yields[
c1

3 + c1
4 y3

ν1
+ 2 c1

5 x3
ν1

]
−
[

c3
3 + c3

4 y3
ν1

+ 2 c3
5 x3

ν1

]
= 0 (4-80)

and[
c1

4
(

y3
ν2
− y3

ν1

)
+ 2 c1

5
(

x3
ν2
− x3

ν1

)]
−

−
[

c3
4
(

y3
ν2
− y3

ν1

)
+ 2 c3

5
(

x3
ν2
− x3

ν1

)]
= 0 . (4-81)

Rewriting these two constraints in matrix notation

Cε
x x = cε

x with cε
x = 0 (4-82)

and inserting the coordinates for the nodes ν1 and ν2 of edge ε = 3 yields

C3
x =

 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

 .

(4-83)

The constraints for the other three edges can be derived accordingly and are

reading

C4
x =

 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0

 ,

(4-84)

C8
x =

 0 0 0 1 0 −2 0 0 0 −1 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0

 ,

(4-85)

C11
x =

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 −2

 .

(4-86)

Combing (4-83) to (4-86) into

Cx =


C3

x

C4
x

C8
x

C11
x

 and cx = 0 (4-87)

yields in total 8 constraints in order to enforce continuity in the first derivative

(4-66) along the four connecting edges. In the same way, constraints for the

remaining partial derivatives can be derived and yields the following matrix

for the first-order partial derivative (4-67)

Cy =



0 1 −2 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

0 1 0 0 −1 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0


,

(4-88)
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while the order of the rows in (4-88) is the same as in (4-87). Each of the

three remaining second-order partial derivatives (4-68) to (4-70) yields only

one constraint for each edge. These constraints are

Cxx =


0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2

0 0 0 0 0 2 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 −2

 ,

(4-89)

Cyy =


0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 0

0 0 2 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 −2 0 0 0


(4-90)

and

Cxy =


0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0

 .

(4-91)

Combining the constraints (4-87) to (4-91) with (4-60) into

Cext =



C

Cx

Cy

Cxx

Cyy

Cxy


(4-92)

yields in total 40 constraints, while only 18 are necessary in order to obtainI want to point out that this
approach is not well thought out
so far and has some weaknesses.

Its derivation and implementation
was just pretty straight forward

and it works.

a C2 continuous approximation using polynomials of 2nd degree. To remove

this rank deficiency, we choose any 18 linear independent rows of matrix Cext

in such a way that Cext ∈ R18×24 is of full rank. The remaining 18 constraints

are used to extend the normal equation system (4-19) N CT
ext

Cext 0

x

λ

 =

n

0

 . (4-93)
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Solving (4-93) yields the unknowns parameters of Pζ
2 (x, y) for each element

of an C2 continuous approximation of function (4-3)

1c0
1c1
1c2
1c3
1c4
1c5


=



1.056 984 074 859 209

0.173 640 852 971 296

−0.183 914 131 081 515

−2.656 963 858 023 53 · 10−18

0

−0.355 802 088 061 745


,



2c0
2c1
2c2
2c3
2c4
2c5


=



1.056 984 074 859 209

0.173 640 852 971 296

−0.183 914 131 081 515

−2.656 963 858 023 53 · 10−18

0

−0.355 802 088 061 745


,



3c0
3c1
3c2
3c3
3c4
3c5


=



1.056 984 074 859 209

0.173 640 852 971 296

−0.183 914 131 081 515

−2.656 963 858 023 53 · 10−18

0

−0.355 802 088 061 745


,



4c0
4c1
4c2
4c3
4c4
4c5


=



1.056 984 074 859 209

0.173 640 852 971 296

−0.183 914 131 081 515

−2.656 963 858 023 53 · 10−18

0

−0.355 802 088 061 745


. (4-94)

As can be seen easily, the coefficients are equal for all elements and almost

identical to those in (4-8). While the second order derivative of a polynomial

of 2nd degree is only a constant value, the presented elementwise smooth ap-

proximation yields the only possible solution referring to one single polynomial

defined for the whole domain, as already derived in Chapter 4. Polynomials

of 2nd degree have only been chosen in order to illustrate the derivation of the

constraints for a smooth approximation, while using higher order polynomials

would have led to very large equations that would have filled several pages.

A smooth approximation with N = 100 elements using polynomials of 4th

degree is depicted in Figure 4-17.
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Figure 4-17: Polynomial
smooth approximation of
function (4-3) with N = 100
elements using polynomi-
als of 4th degree (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− ∑100

ζ=1
ζ P4(x, y)

(right).

In comparison to the C0 continuous approximation depicted in Figure 4-16,

the resulting smooth approximation in Figure 4-17 shows huge differences.

The residual function in Figure 4-17 (right) shows deviations within a range

of ≈ 0.15 and are nearly 1000 times larger than the one for the C0 continuous

approximation in Figure 4-16 (right). The introduced constraints for a C2 This would not be different if we
had chosen the node based
approach to obtain an elementwise
smooth approximation.

continuous approximation are having a huge impact on the solution of the

unknown parameters. To increase the number of elements will hardly improve

the residual function in Figure 4-17 (right). The chosen polynomial of 4th

degree with 15 parameters is not flexible enough to approximate the function

in a suitable way under the requirement that the constraints must be full

filled. Even a polynomial of 5th degree with 21 parameters is not suitable as

illustrated in Figure 4-18.
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Figure 4-18: Residual func-
tions of a smooth approxim-
ation of function (4-3) with
N = 9 (left) and N = 100
(right) elements using polyno-
mials of 5th degree.
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As can be seen in Figure 4-18, the residual function of a smooth approximation

using polynomials of 5th degree with only N = 9 elements hardly differs from

the one using N = 100 elements. This will not change even if more elements

are used. The only way to improve the approximation for the presented ap-

proach is to introduce more parameters, so to increase the polynomial degree.

Figure 4-19 depicts the residual functions of a smooth approximation using

polynomials of 6th degree.

Figure 4-19: Residual func-
tions of a smooth approxim-
ation of function (4-3) with
N = 9 (left) and N = 100
(right) elements using polyno-
mials of 6th degree.
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The residual function of a smooth approximation using polynomials of 6th

degree with N = 100 elements, shown in Figure 4-19 (right), is nearly 100 times

smaller than the one with only N = 9 elements (left). The residual function

decreases with increasing number of elements, therefore, the constraints no

longer have an unwanted impact on the approximation, as before. The chosen

polynomial of 6th degree with 28 parameters is now flexible enough to full fill

the constraints and still be able to approximate the function in a proper way.

The already mentioned polynomial smooth approximation of function (4-3)

with N = 100 elements using polynomials of 6th degree is depicted in Figure

4-20.
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(a) ∑100
ζ=1

ζ P6(x, y)
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(b) ∑100
ζ=1

ζ Px(x, y)
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(c) ∑100
ζ=1

ζ Py(x, y)
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(d) ∑100
ζ=1

ζ Pxx(x, y)
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(e) ∑100
ζ=1

ζ Pyy(x, y)
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Figure 4-20: Polynomial
smooth approximation of
function (4-3) with N = 100
elements using polynomials
of 6th degree and its first
and second order partial
derivatives.

Furthermore, Figure 4-20 also illustrates the first and second order partial

derivatives given in Equations (4-66) to (4-70), to show that the smooth ap-

proximation in (a) is really C2 continuous. It has also been proven numeric-

ally that two connected elements are always describing exactly the same curve

along their edge for all its partial derivatives.

Nevertheless, the presented smooth approximation in the monomial basis us- It should be noted that, according
to the definition in Figure 4-1, a
polynomial of 6th degree already
consists of 28 basis functions.
That is why the normal matrix
becomes nearly singular even for
small polynomial degrees.

ing polynomials of 6th degree is an ill-conditioned problem. The extended

normal matrix in Equation (4-93) is nearly singular for only N = 25 elements.

In summary, a smooth approximation in the monomial basis as presented in

this section is hardly applicable for the approximation of complex functions.

4.3 approximation in the chebyshev basis

A bivariate polynomial of degree p in the Chebyshev basis can be formed in A sophisticated approach for the
approximation of bivariate
functions using Chebshev
polynomials is presented by
(Townsend 2014).

the same way as for the monomial basis and reads

Pp(x, y) =
p

∑
i=0

p

∑
j=0

cij φij(x, y) =
p

∑
i=0

p

∑
j=0

cij Ti(x)Tj(y) (4-95)
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while i + j ≤ p. Rewriting the two sums in Equation (4-95) into a single one

yields its equivalent representation

Pp(x, y) =
pn

∑
k=0

ck φk(x, y) =
pn

∑
k=0

ck Ti(x)Tj(y) for i + j ≤ p, (4-96)

with pn = 1
2 (p + 1)(p + 2) and where i, j permute accordingly. To illustrate

a least squares approximation in the Chebyshev basis, we also approximate

function (4-3) by a polynomial of 2nd degree and the resulting 6 basis functions

φk = Ti(x)Tj(y) of a polynomial of 2nd degree are listed in Table 4-5.

Table 4-5: All pn + 1 per-
mutations of i and j under
the condition i + j ≤ p for
polynomial degree p = 2
and resulting basis functions
φk = Ti(x)Tj(y).

k i j φk = Ti(x)Tj(y)

0 0 0 T0(x)T0(y)

1 0 1 T0(x)T1(y)

2 0 2 T0(x)T2(y)

3 1 0 T1(x)T0(y)

4 1 1 T1(x)T1(y)

5 2 0 T2(x)T0(y)

The normal equation system

N x = n

for a least squares approximation of (4-3) by a polynomial of 2nd degree results

in 
〈φ0, φ0〉 〈φ1, φ0〉 · · · 〈φpn , φ0〉
〈φ0, φ1〉 〈φ1, φ1〉 · · · 〈φpn , φ1〉

...
...

. . .
...

〈φ0, φpn〉 〈φ1, φpn〉 · · · 〈φpn , φpn〉




c0

c1
...

cpn

 =


〈cos

(
x/(y+1.5)

)
, φ0〉

〈cos
(

x/(y+1.5)
)
, φ1〉

...

〈cos
(

x/(y+1.5)
)
, φpn〉

 .

(4-97)

While Chebyshev polynomials are orthogonal with respect to a weighted inner

product, the basis functions φk are also orthogonal and for integrals offside

the main diagonal it holds

〈φk, φl〉 =
∫ 1

−1

∫ 1

−1

φk φl√
1− x2

√
1− y2

dx dy = 0 for k 6= l (4-98)

and k, l = 0, 1, 2, · · · , pn. Hence, the normal matrix N is diagonal
〈φ0, φ0〉 0 · · · 0

0 〈φ1, φ1〉 · · · 0
...

...
. . .

...

0 0 · · · 〈φpn , φpn〉




c0

c1
...

cpn

 =


〈φ0, cos

(
x/(y+1.5)

)
〉

〈φ1, cos
(

x/(y+1.5)
)
〉

...

〈φpn , cos
(

x/(y+1.5)
)
〉

 (4-99)

and the unknown coefficients can be determined directly by

ck =
〈φk, cos

(
x/(y+1.5)

)
〉

〈φk, φk〉
, (4-100)

with

〈φk, cos
(

x/(y+1.5)
)
〉 =

∫ 1

1

∫ 1

−1

φk cos
(

x/(y+1.5)
)

√
1− x2

√
1− y2

dx dy (4-101)
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for k = 0, 1, 2, · · · , pn. For the implementation it is convenient to determine

the coefficients cij of (4-95) by

cij =
〈Ti(x)Tj(y), cos

(
x/(y+1.5)

)
〉

〈Ti(x)Tj(y), Ti(x)Tj(y)〉 (4-102)

with

〈Ti(x)Tj(y), Ti(x)Tj(y)〉 =
∫ 1

1

∫ 1

−1

Ti(x)Tj(y) Ti(x)Tj(y)√
1− x2

√
1− y2

dx dy

=


π2, i, j = 0,

π2/2, i = 0 or j = 0,

π2/4, i, j 6= 0.

(4-103)

and

〈Ti(x)Tj(y), cos
(

x/(y+1.5)
)
〉 =

∫ 1

1

∫ 1

−1

Ti(x)Tj(y) cos
(

x/(y+1.5)
)

√
1− x2

√
1− y2

dx dy (4-104)

The integrals for the right hand side (4-104) are solved numerically and as we

have seen in Section 3.3.1, it is more accurate to solve its equivalent repres-

entation derived by a change of variables

x = θ1

y = θ2 . (4-105)

According to (3-139) the right hand side in general reads

〈 f (x, y), Ti(x)Tj(y)〉 =
∫ π

0

∫ π

0
f
(

cos(θ1), cos(θ2)
)

cos(iθ1) cos(jθ2) dθ1 dθ2 .

(4-106)

The coefficients cij of a least squares adjustment of function (4-3) by a poly-

nomial of 2nd degree in the Chebyshev basis are

cij =



c00

c01

c02

c10

c11

c20


=



0.768 628 045 269 019

0.292 411 417 653 142

−0.146 557 372 362 098

2.999 709 625 653 26 · 10−17

−1.406 113 887 024 97 · 10−17

−0.219 584 736 147 031


. (4-107)

The Matlab code for the presented polynomial approximation in the Cheby-

shev basis is given in Programme 4-2.
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Programme 4-2: Code for 2D
polynomial approximation in
the Chebyshev basis.

1 %Function f(x)

2 f=@(x,y) cos((x)./(y+1.5));

3

4 %Polynomial degree

5 p=2; c=zeros(p+1);

6

7 for i=0:p

8 for j=0:p-i

9 c(i+1,j+1) =(2/pi)^2* integral2(@(t1,t2) f(cos(t1),

cos(t2))...

10 .*cos(i*t1).*cos(j*t2),0,pi ,0,pi,’Method ’,’

iterated ’);

11 end

12 end

13 %Correcting c due to the different weighted inner product

of N

14 c(1,:)=c(1,:)/2; c(:,1)=c(:,1)/2;

The resulting approximation and the residual function are depicted in Figure

4-21.

Figure 4-21: Polynomial
approximation P2(x, y) in
the Chebyshev basis of
function (4-3) (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− P2(x, y) (right).
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The residual function in Figure 4-21 (right) of a polynomial approximation in

the Chebyshev basis is quite similar to the one in the monomial basis in Figure

4-3 (right). Both residual functions are nearly within the same range and also

share the same characteristic. But as before, this dramatically changes for

increasing polynomial degree. The polynomial in the monomial basis of 24th

degree depicted Figure 4-6 has already no similarities with function (4-3) any

more. In contrast to the polynomial in the Chebyshev basis depicted in Figure

4-22, which approximates function (4-3) very well.

Figure 4-22: Polynomial
approximation P50(x, y)
in the Chebyshev basis of
function (4-3) (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− P50(x, y)

(right).
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The residual function for a polynomial approximation in the Chebyshev basis

of 50th degree in Figure 4-22 (right) is already within ≈ 10−11. But having a

closer look at the coefficients cij depicted in Figure 4-23 reveals a drawback so

far.
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100 Figure 4-23: Colour coded
visualisation of the absolute
values for the coefficients cij
of P50(x, y) on a logarithmic
scale.

Each point in Figure 4-23 represents the coefficients cij corresponding to the

basis function φij(x, y) = Ti(x)Tj(y). The absolute value for each coefficient is

visualised by a colour on a logarithmic scale and are offering the same charac-

teristic as in the one-dimensional case. The coefficients cij rapidly converging

to ≈ 10−16 for increasing i and j. But Figure 4-23 also shows that for the x−
and y−direction a different polynomial degree is needed, while the coefficients

converge much faster to zero for i than for j. This is also the reason not to

use a polynomial based on a single parameter p with i + j ≤ p as defined in

(4-95). Usually too many coefficients have to be determined, although they

are already zero within machine precision. In general, it is better to introduce

for the x− and y−direction a separate polynomial degree. For a polynomial

approximation in the Chebyshev basis the bivariate polynomial reads

Ppx,py(x, y) =
px

∑
i=0

py

∑
j=0

cij Ti(x)Tj(y) (4-108)

and it is more suitable than as defined by (4-95). Introducing a different poly-

nomial degree for the x− and y−direction reduces the amount of coefficients

to be calculated and also allows an easy implementation of a break-off con-

dition in order to find the best approximation of a given function. For the

former example we find P18,42(x, y) as the best polynomial approximation in

the Chebyshev basis of function (4-3), which is depicted in Figure 4-24.
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13 Figure 4-24: Best polyno-
mial approximation in the
Chebyshev basis P18,42(x, y)
of function (4-3) (left). Re-
sidual function v(x, y) =
cos

(
x/(y+1.5)

)
− P18,42(x, y)

(right).

The residual function in Figure 4-24 (right) is ≈ 10−13 but obviously not zero

within machine precision. Due to the numerical integration of the right hand

side, the last 2 − 3 digits of these values are inaccurate. This results in the

residual function depicted in Figure 4-24 (right), which can not be reduced by

a further increase of the polynomial degree any more.

As in the previous chapter, the advantages of an approximation of bivariate

functions in the Chebyshev basis in direct comparison with the results of an

elementwise continuous approximation in the monomial basis from Section

4.2 are also clearly evident. The optimal polynomial degree for the x− and
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y−direction can be easily determined and usually significantly fewer coeffi-

cients are needed to represent the function with sufficient accuracy. However,

there is also a considerable drawback. While an elementwise approximation

can be performed quite easily on arbitrary domains, this is no longer so easy

for an approximation in the Chebyshev basis as the whole domain must be

mapped on the unit square [−1, 1]2.

To illustrate the general problem of mapping arbitrary domains, the next

section will demonstrate how an approximation of bivariate functions can be

performed for an arbitrary convex tetragon.

4.4 the generalised 2d element

Until now we focussed on quadratic elements, while their edges are alignedFor further information about
affine or isoparemetric mapping in

general please refere to standard
literature, such as e.g.

(Langtangen 2016a, p. 88 ff.),
(Logg et al. 2012, Chapter 2.4) or
(Zienkiewicz et al. 2013, Chapter

6.5).

parallel to the x− and y−axis. Using such elements allows an easy determ-

ination of the integrals in the normal equation system. But it is not always

convenient to use such elements and in general it would be easier to use any

convex tetragon as elements. To illustrate the procedure, we consider the

following transformation for arbitrary convex tetragons, depicted in Figure

4-25.

Figure 4-25: Transformation
of a convex 2D element.

x

y

ν
ζ

1
ν

ζ
2

ν
ζ

3

ν
ζ

4

u

v

(0, 0) (1, 0)

(1, 1)(0, 1)original
element

generalised
element

A transformation that maps an element (blue) onto the generalised elementThis mapping can also be solved
by a projective transformation,
e.g. (Hartley and Zisserman

2003, pp. 87).

(red), can be any two dimensional functional relationship. For convenience we

define two independent transformations

xe = x(u, v) ,

ye = y(u, v) . (4-109)

While the procedure to derive the transformation of xe is exactly the same as

for ye, we will now only consider the derivation of the transformation for xe.

In order to ensure an unique transformation, we once again chose a linear

combination of some arbitrary basis functions

xe =
p

∑
j=0

aζ
j ξ j(u, v) (4-110)

and we also chose monomials, as given in Figure 4-1. While an element is

defined by its four nodes ν
ζ

1 to ν
ζ

4 , we define a linear combination of four basis

functions in order to ensure an unique solution for the unknown parameters

aζ
j for each element. The linear transformation for x reads

xe = aζ
0 + aζ

1u + aζ
2v + aζ

3uv , (4-111)



4.4 the generalised 2d element 115

To solve for the unknown parameters we set-up the following equation system

based on the four nodes of each element as illustrated in Figure 4-25
xζ

ν1

xζ
ν2

xζ
ν3

xζ
ν4

 =


1 0 0 0

1 1 0 0

1 1 1 1

1 0 1 0




aζ

0

aζ
1

aζ
2

aζ
3

 , (4-112)

and obtain 
aζ

0

aζ
1

aζ
2

aζ
3

 =


xζ

ν1

xζ
ν2 − xζ

ν1

xζ
ν4 − xζ

ν1

xζ
ν1 − xζ

ν2 + xζ
ν3 − xζ

ν4

 . (4-113)

The transformation for the xe reads

xe = xζ
ν1 +

(
xζ

ν2 − xζ
ν1

)
u

+
(

xζ
ν4 − xζ

ν1

)
v +

(
xζ

ν1 − xζ
ν2 + xζ

ν3 − xζ
ν4

)
uv . (4-114)

The transformation of the ye can be derived accordingly and yields

ye = yζ
ν1 +

(
yζ

ν2 − yζ
ν1

)
u

+
(

yζ
ν4 − yζ

ν1

)
v +

(
yζ

ν1 − yζ
ν2 + yζ

ν3 − yζ
ν4

)
uv . (4-115)

Based on the transformations (4-114) and (4-115) the integrals of the normal

equation system can also be solved for the generalised elements, as already

shown in Section 3.2.2. This allows to use any arbitrary convex tetragon as

elements. To illustrate this we will approximate the following continuous real

function

f (x, y) = sin(xy) (4-116)

by a polynomial in the monomial basis of 2nd degree on the convex element ζ

depicted in Figure 4-26.
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Figure 4-26: f (x, y) = sin(xy)
on an arbitrary convex ele-
ment ζ.

The coordinates of the four corner nodes of the element are listed in Table

4-6.

Nodes

ν xν yν

1 −1.5 −1.0

2 1.0 −1.5

3 0.5 1.0

4 −1.0 0.5

Table 4-6: Coordinates for the
corner nodes of the element ζ
in Figure 4-26. The labelling
is in accordance to Figure
4-25 (left).
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The least squares approximation of (4-116) by a polynomial of 2nd degree

results in the normal equation system

N x = n
〈φ0, φ0〉 〈φ1, φ0〉 · · · 〈φ5, φ0〉
〈φ0, φ1〉 〈φ1, φ1〉 · · · 〈φ5, φ1〉

...
...

. . .
...

〈φ0, φ5〉 〈φ1, φ5〉 · · · 〈φ5, φ5〉




c0

c1
...

c5

 =


〈φ0, sin(xy)〉
〈φ1, sin(xy)〉

...

〈φ5, sin(xy)〉

 (4-117)

and with the 6 basis functions φk = xiyj listed in Table 4-1 the normal matrix

reads

N =



〈1, 1〉 〈y, 1〉 〈y2, 1〉 〈x, 1〉 〈xy, 1〉 〈x2, 1〉
〈1, y〉 〈y, y〉 〈y2, y〉 〈x, y〉 〈xy, y〉 〈x2, y〉
〈1, y2〉 〈y, y2〉 〈y2, y2〉 〈x, y2〉 〈xy, y2〉 〈x2, y2〉
〈1, x〉 〈y, x〉 〈y2, x〉 〈x, x〉 〈xy, x〉 〈x2, x〉
〈1, xy〉 〈y, xy〉 〈y2, xy〉 〈x, xy〉 〈xy, xy〉 〈x2, xy〉
〈1, x2〉 〈y, x2〉 〈y2, x2〉 〈x, x2〉 〈xy, x2〉 〈x2, x2〉


. (4-118)

Accordingly the right hand side in (4-117) results in

n =



〈1, sin(xy)〉
〈y, sin(xy)〉
〈y2, sin(xy)〉
〈x, sin(xy)〉
〈xy, sin(xy)〉
〈x2, sin(xy)〉


. (4-119)

In order to determine the unknown coefficients ck we need to solve the following

integrals

〈φk, φl〉 =
∫∫

ζ
φkφl dx dy for k, l = 0, 1, 2, . . . , 5 (4-120)

and

〈φk, sin(xy)〉 =
∫∫

ζ
φk sin(xy) dx dy (4-121)

for k = 0, 1, 2, . . . , 5 over the element ζ depicted in Figure 4-26. While this is

quite complicated we will map the element on the generalised element using

the two transformations (4-114) and (4-115). Inserting the coordinates of the

corner nodes into these two transformations results in

x(u, v) = −3
2

+
5
2

u +
1
2

v− uv

y(u, v) = −1− 1
2

u +
3
2

v + uv . (4-122)

According to (Bronshtein et al. 2007, p. 473-474) and with (4-122) the

integrals of the normal matrix (4-120) can be solved for the generalised element

as follows∫∫
ζ

φk(x, y) φl(x, y) dx dy =∫ 1

0

∫ 1

0
φk
(
x(u, v), y(u, v)

)
φl
(
x(u, v), y(u, v)

)
|J| du dv , (4-123)
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while |J| being the absolute value of the Jacobian determinant

J =

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ . (4-124)

Inserting the partial derivatives of (4-122) into (4-124) yields

J =

∣∣∣∣∣∣5/2− v 1/2− u

v− 1/2 u + 3/2

∣∣∣∣∣∣ = 4 + 2u− 2v . (4-125)

The integrals for the right hand side (4-121) can be solved in the same way

and are reading

∫∫
ζ

sin(xy) φl(x, y) dx dy =∫ 1

0

∫ 1

0
sin
(
x(u, v)y(u, v)

)
φl
(
x(u, v), y(u, v)

)
|J| du dv . (4-126)

The integrals for the normal matrix (4-125) and right hand side (4-126) can

easily be solved numerically and results in

N =



4 −4/3 11/6 −2/3 1/6 3/2

−4/3 11/6 −7/5 1/6 −1/20 −7/10

11/6 −7/5 7/4 −1/20 −1/20 259/360

−2/3 1/6 −1/20 3/2 −7/10 −17/20

1/6 −1/20 −1/20 −7/10 259/360 41/120

3/2 −7/10 259/360 −17/20 41/120 77/60


(4-127)

and

n =



0.145 756 487 141 373

−0.042 846 463 368 636

−0.042 499 116 708 621

−0.612 543 848 627 254

0.631 791 937 468 570

0.291 378 751 245 651


. (4-128)

The solution of the normal equation system (4-117) yields the unknown coef-

ficients 

c0

c1

c2

c3

c4

c5


=



0.003 253 362 989 749

0.000 736 886 760 280

0.005 069 718 055 172

−0.005 888 389 584 868

0.880 390 318 592 853

−0.017 484 163 373 636


. (4-129)

for a polynomial approximation in the monomial basis of 2nd degree on the

convex element ζ depicted in Figure 4-26. The resulting approximation and

the residual function are depicted in Figure 4-27.
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Figure 4-27: Polynomial ap-
proximation P2(x, y) of func-
tion (4-116) on the convex ele-
ment ζ (left). Residual func-
tion v(x, y) = sin(xy)− P2(x, y)
(right).
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As Figure 4-27 illustrates, P2(x, y) is only a very coarse approximation of

function (4-116) with the largest deviations at the two nodes ν = 1 and ν = 2.
Whereas a polynomial of 8th degree approximates function (4-116) already

within ≈ 10−4 as illustrated in Figure 4-28.

Figure 4-28: Polynomial ap-
proximation P8(x, y) of func-
tion (4-116) on the convex ele-
ment ζ (left). Residual func-
tion v(x, y) = sin(xy)− P8(x, y)
(right).
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4

With the presented transformation we are able to solve the integrals of the

normal equation system for any kind of convex element. Implementing this

transformation into the elementwise approximation shown in Section 4.1 al-

lows us to approximate any given function over an arbitrary domain. This

results in the following two different approximations.

The approximation of the function by polynomials, as already shown in

this part.

The approximation of the domain by elements.

The presented transformation is also valid for triangular elements, while we

only have to introduce the same coordinates for two neighboured nodes, and

it can easily be adopted for 3D or higher dimensional elements.

The Matlab code for the presented polynomial approximation of two-

dimensional functions on an arbitrary convex element is given in Programme

4-3.
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1 %Function

2 f=@(x,y) sin(x.*y);

3

4 %Transformation to the generalised element

5 fx=@(u,v) -3/2+5/2*u+1/2*v-u.*v; fy=@(u,v) -1-1/2*u+3/2*v+u

.*v;

6 detJ=@(u,v) abs (4+2*u-2*v);

7

8 %Polynomial degree of approximation

9 p=2; p_n =1/2*(p+1)*(p+2);

10

11 %Permutation of i and j for i+j<=p

12 [ii,jj]= meshgrid (0:p);

13 ii=reshape(ii ,[],1); jj=reshape(jj ,[],1);

14

15 %index for i+j>p and deleting entries

16 out=(ii+jj)>p; ii(out)=[]; jj(out)=[];

17

18 %Basis functions

19 phi=@(x,y,i,j) x.^i.*y.^j;

20

21 %Preallocation of the matrices

22 N=zeros(p_n); n=zeros(p_n ,1);

23

24 for k=1:p_n

25 for l=k:p_n

26 N(k,l)=integral2(@(u,v) detJ(u,v).*phi(fx(u,v),fy(u,v),ii

(k),jj(k))...

27 .*phi(fx(u,v),fy(u,v),ii(l),jj(l)) ,0,1,0,1,’Method ’,’

iterated ’);

28 end

29 n(k)=integral2(@(u,v) detJ(u,v).*f(fx(u,v),fy(u,v)).*phi(

fx(u,v) ,...

30 fy(u,v),ii(k),jj(k)) ,0,1,0,1,’Method ’,’iterated ’);

31 end

32

33 %Adding the lower triangular part

34 N=N+triu(N,1) ’;

35

36 c=N\n;

Programme 4-3: Code for
an approximation in the
monomial basis for two-
dimensional functions on
arbitrary convex elements.
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A G L I M P S E O N T H E A P P ROX I M AT I O N O F B O U N DA RY

VA L U E P RO B L E M S

To illustrate how to solve some BVPs we consider a linear ordinary differential

equation (ODE), for example,

d2 Φ(x)

dx2 = f (x) (5-1)

for x ∈ [−1, 1], with some boundary conditions

Φ(x = ±1) = const. . (5-2)

In general, an analytic solution of a boundary value problem is unknown and

usually too complicated to derive. For many problems that arise in different

engineering sciences only an approximate solution can be found so far. In

the literature, e.g. (Atkinson and Han 2009), (Burden and Faires 2011)

or (Quarteroni and Rozza 2014), one can find many different methods

for solving such boundary value problems, for instance, the FEM or spectral For further information about
FEM in general please refer to
standard literature such as
(Bathe 2014), (Šolin 2006) or
(Zienkiewicz et al. 2013) and for
spectral methods, see e.g. (Boyd
2002), (Kopriva 2009) or
(Trefethen 2008).

methods.

We only mentioned these two methods, because FEM is based on the concept

of the described elementwise continuous approximation in Section 3.1.2 and

the class of spectral methods are mainly using orthogonal basis functions, as

explained in Section 3.3. This means that the basic idea of FEM and of the

spectral methods have already been discussed in Part ii.

In the following, we do not explicitly apply any of the aforementioned two

methods, but rather derive a solution that is based on the presented least

squares approximation of functions in Part ii.

To solve a given boundary value problem numerically, we approximate the

unknown solution Φ(x) in (5-1) by a finite linear combination of basis functions

Φ(x) ≈ Φ̂p(x) =
p

∑
j=0

cj φj(x) , (5-3)

with its second derivative

d2 Φ̂p(x)

dx2 = Φ̂′′p(x) =
p

∑
j=0

cj φ′′j (x) . (5-4)

Inserting (5-4) into (5-1) and rearranging yields the residual function

v(x) =
p

∑
j=0

cj φ′′j (x)− f (x) , (5-5)

which has the same structure as (1-38), with the only difference that the second

derivatives of the basis functions are used. Therefore, the normal equation

121
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system of a least squares approximation of the linear ODE (5-1) can be derived

in exactly the same way as described in Section 1.2 and results in
〈φ′′0 , φ′′0 〉 〈φ′′1 , φ′′0 〉 · · · 〈φ′′p , φ′′0 〉
〈φ′′0 , φ′′1 〉 〈φ′′1 , φ′′1 〉 · · · 〈φ′′p , φ′′1 〉

...
...

. . .
...

〈φ′′0 , φ′′p 〉 〈φ′′1 , φ′′p 〉 · · · 〈φ′′p , φ′′p 〉




c0

c1
...

cp

 =


〈φ′′0 , f (x)〉
〈φ′′1 , f (x)〉

...

〈φ′′p , f (x)〉

 (5-6)

with the integrals

〈φ′′i , φ′′j 〉 =
∫ 1

−1
φ′′i φ′′j dx for i, j = 0, 1, 2, . . . , p

and

〈φ′′i , f (x)〉 =
∫ 1

−1
φ′′i f (x) dx for i = 0, 1, 2, . . . , p .

To demonstrate a least squares approximation of an unknown solution Φ(x),

we consider the following boundary value problem

d2 Φ(x)

dx2 = sin(3x) +
1
10

π with Φ(x = ±1) = 0 , (5-7)

for x ∈ [−1, 1]. The analytical solution is given by

Φ(x) =
1
20

π
(
x2 − 1

)
+

1
9

x sin(3)− 1
9

sin(3x) (5-8)

and is depicted in Figure 5-1.

Figure 5-1: Analytical solution
(5-8) of the boundary value
problem (5-7).
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In the following we will determine an approximation of the unknown solution

Φ(x) by a polynomial in the monomial basis of 3rd degree

Φ(x) ≈ Φ̂3(x) =
3

∑
j=0

cj φj(x) =
3

∑
j=0

cj xj = c0 + c1x + c2x2 + c3x3 . (5-9)

The second derivative of (5-9) reads

d2 Φ̂3(x)

dx2 = Φ̂′′3 (x) =
3

∑
j=0

cj φ′′j (x) = 2c2 + 6c3x , (5-10)

with the second derivatives of the basis functions

φ′′0 (x) = 0 , φ′′1 (x) = 0 , φ′′2 (x) = 2 and φ′′3 (x) = 6x . (5-11)

Inserting (5-11) into (5-6) yields
〈0, 0〉 〈0, 0〉 〈2, 0〉 〈6x, 0〉
〈0, 0〉 〈0, 0〉 〈2, 0〉 〈6x, 0〉
〈0, 2〉 〈0, 2〉 〈2, 2〉 〈6x, 2〉
〈0, 6x〉 〈0, 6x〉 〈2, 6x〉 〈6x, 6x〉




c0

c1

c2

c3

 =


〈0, sin(3x) + 1/10 π〉
〈0, sin(3x) + 1/10 π〉
〈2, sin(3x) + 1/10 π〉
〈6x, sin(3x) + 1/10 π〉

 . (5-12)
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Solving the integrals in (5-12) results in the following normal equation system
0 0 0 0

0 0 0 0

0 0 8 0

0 0 0 24




c0

c1

c2

c3

 =


0.000 000 000 000 000

0.000 000 000 000 000

1.256 637 061 435 917

4.148 129 997 148 272

 . (5-13)

In order to be able to distinguish between the normal equation system for an

approximation of functions, as used in Part ii, and of PDEs, we will introduce

the following notation widely used in FEM for the normal matrix and the However, in this case K does not
correspond to the stiffness matrix.vector of right hand side

K c = f . (5-14)

It is easy to see that the normal matrix in (5-13) is singular and has a rank

deficiency of 2. To obtain a unique solution for (5-13) we have to impose the

two linear boundary conditions given in (5-9). For a polynomial of 3rd degree,

these two conditions result in

Φ̂3(x = −1) = c0 − c1 + c2 − c3 = 0 ,

Φ̂3(x = 1) = c0 + c1 + c2 + c3 = 0 . (5-15)

Expressing (5-15) in matrix notation yields

 1 −1 1 −1

1 1 1 1




c0

c1

c2

c3

 =

0

0

 , (5-16)

or in a shorter notation

C c = 0 . (5-17)

Extending the normal equation system (5-13) with (5-17) results in Usually, these two conditions are
imposed by substituting the first
two rows in the normal matrix N
by C and changing the first two
entries in the right hand side
accordingly.

K CT

C 0

c

λ

 =

f

0

 . (5-18)

Solving (5-18) yields the coefficients of a polynomial of 3rd degree
c0

c1

c2

c3

 =


−0.157 079 632 679 490

−0.172 838 749 881 178

0.157 079 632 679 490

0.172 838 749 881 178

 . (5-19)

The resulting polynomial approximation for the unknown solution Φ(x) of the

boundary value problem (5-7) is depicted in Figure 5-2.
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Figure 5-2: Analytical solution
(5-8) in blue and its polyno-
mial approximation of 3rd

degree in red (left). Residual
function v(x) = Φ(x)− Φ̂3(x)
(right).
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The residual function in Figure 5-2 (right) shows deviations in the range of

≈ 0.04 and can be further decreased by increasing the polynomial degree.

The best polynomial approximation for the unknown solution Φ(x) in the

monomial basis is a polynomial of 21st degree and is depicted in Figure 5-3.

Figure 5-3: Polynomial ap-
proximation of 21st degree
(left). Residual function
v(x) = Φ(x)− Φ̂21(x) (right).
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5.1 least squares approximation of bvp in matrix nota-

tion

In the previous sections we have solved a given boundary value problem in

exactly the same way as we did for the approximation of functions. The only

difference was that we used the second derivatives of the basis functions and

that we had to impose boundary conditions to ensure a unique solution. How-

ever, while using certain basis functions for the approximation of boundary

value problems, such as monomials or Chebyshev polynomials, it is conveni-

ent to use matrix notation from the beginning.Therefore, the least squaresThe basic concept was taken from
(Townsend and Olver 2015) and
(Trefethen 2008) and adopted in

this section to derive a solution
via the method of least squares.

approximation in matrix notation of an unknown solution Φ(x) for a given

boundary value problem will be illustrated in detail.

A linear ODE bounded on the domain x ∈ [a, b] can be written in the form

LΦ(x) = f (x) (5-20)

with the linear differential operator

L =
N

∑
j=0

lj(x)
dN

dxN (5-21)

where N is the differential order of L, f (x) and lj(x) are functions defined on

[a, b] and Φ(x) is the unknown solution. Moreover, linear boundary conditions

are given as

BΦ(x) = g(x) (5-22)

to ensure a unique solution. The approximation of the unknown solution Φ(x)

is given by a finite linear combination of basis functions

Φ(x) ≈ Φ̂p(x) =
p

∑
j=0

cj φj(x) , (5-23)

or in matrix notation

Φ̂p(x) = φc , (5-24)

with

φ =
[
φ0(x) φ1(x) · · · φp(x)

]
(5-25)

and

cT =
[
c0 c1 · · · cp

]
. (5-26)
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Based on (5-24) the left hand side of the ODE (5-20) can be approximated by

LΦ(x) ≈ φL c , (5-27)

with the differential operator L, which is unknown so far. Inserting (5-27)

into (5-20) and rearranging yields the residual function

v(x) = φL c− f (x) . (5-28)

To derive a least squares solution for the vector of unknown coefficients c we

need to find the minimum of the target function

Ω =
∫ b

a

(
φL c− f (x)

)2
dx → min . (5-29)

Taking the first order derivative of (5-29) and setting it to zero yields the

normal equation system

1
2

dΩ
dc

=
∫ b

a
LTφT

(
φL c− f (x)

)
dx = 0 . (5-30)

Rearranging (5-30) results in∫ b

a
LTφTφL c dx =

∫ b

a
LTφT f (x) dx . (5-31)

For basis functions, such as monomials or Chebyshev polynomials, the differ-

ential operator L contains only constant values and therefore we can extract

the operator from the integral. Thus, the normal equation system (5-31) can

be equivalently written as

LT
∫ b

a
φTφdx L c = LT

∫ b

a
φT f (x) dx , (5-32)

with

N =
∫ b

a
φTφdx = 〈φi, φj〉 =


〈φ0, φ0〉 〈φ1, φ0〉 · · · 〈φp, φ0〉
〈φ0, φ1〉 〈φ1, φ1〉 · · · 〈φp, φ1〉

...
...

. . .
...

〈φ0, φp〉 〈φ1, φp〉 · · · 〈φp, φp〉

 (5-33)

and

n =
∫ b

a
φT f (x) dx = 〈φi, f (x)〉 =


〈φ0, f (x)〉
〈φ1, f (x)〉

...

〈φp, f (x)〉

 (5-34)

being the normal matrix and the vector of the right hand side of a least

squares approximation of functions, as widely used in the previous chapters.

The normal equation system (5-32) simplifies to

LTN L c = LTn

K c = f . (5-35)

That the operator L is independent of x is of great advantage for solving

BVPs, while using monomials or Chebyshev polynomials, as basis functions.

Instead of solving the integrals for the derivatives of the basis functions, as

illustrated in Chapter 5, we can solve them for the basis functions directly

and do the conversion by applying the differential operator L. This idea is

clearly illustrated in the following section.
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5.1.1 Approximation of BVP in the monomial basis

In this section we will determine the least squares approximation of the un-

known solution Φ(x) of the given boundary value problem

d2 Φ(x)

dx2 = sin(3x) +
1

10
π , Φ(x = ±1) = 0 , (5-36)

for x ∈ [−1, 1], which was already solved in Chapter 5. The analytical solution

is depicted in Figure 5-1. As before, we will determine an approximation of the

unknown solution Φ(x) by a polynomial in the monomial basis of 3rd degree

Φ(x) ≈ Φ̂3(x) =
3

∑
j=0

cj φj(x) =
3

∑
j=0

cj xj = c0 + c1x + c2x2 + c3x3 , (5-37)

or in matrix notation

Φ̂3(x) = φc =
[
1 x x2 x3

]


c0

c1

c2

c3

 . (5-38)

The first derivative of the approximation Φ̂3(x) with respect to x is

dΦ̂3(x)

dx
= c1 + 2c2x + 3c3x2 (5-39)

and can be written in matrix notation by

Φ̂x(x) = φLx c =
[
1 x x2 x3

]
Lx


c0

c1

c2

c3

 , (5-40)

with the differential operator

Lx =


0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

 . (5-41)

Furthermore, the second derivative results in

Φ̂xx(x) = φLxx c , (5-42)

with

Lxx = L2
x =


0 0 2 0

0 0 0 6

0 0 0 0

0 0 0 0

 . (5-43)

The normal equation system according to (5-32) reads

LT
xx

∫ 1

−1
φTφdx Lxx c = LT

xx

∫ 1

−1
φT

(
sin(3x) + 1/10 π

)
dx , (5-44)
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with

N =
∫ 1

−1
φTφdx = 〈φi, φj〉 =


〈x0, x0〉 〈x1, x0〉 〈x2, x0〉 〈x3, x0〉
〈x0, x1〉 〈x1, x1〉 〈x2, x1〉 〈x3, x1〉
〈x0, x2〉 〈x1, x2〉 〈x2, x2〉 〈x3, x2〉
〈x0, x3〉 〈x1, x3〉 〈x2, x3〉 〈x3, x3〉

 (5-45)

and

n =
∫ 1

−1
φT
(

sin(3x) + 1/10π
)

dx = 〈φi, sin(3x) + 1/10π〉

=


〈1, sin(3x) + π/10〉
〈x, sin(3x) + π/10〉
〈x2, sin(3x) + π/10〉
〈x3, sin(3x) + π/10〉

 . (5-46)

Solving the integrals in (5-45) results in exactly the same matrix as for the

very first example (3-4)

N =


2 0 2/3 0

0 2/3 0 2/5

2/3 0 2/5 0

0 2/5 0 2/7

 (5-47)

and n reads

n =


0.628 318 530 717 959

0.691 354 999 524 712

0.209 439 510 239 320

0.293 171 670 090 401

 . (5-48)

Inserting (5-47), (5-48) and the differential operator (5-43) into (5-44) yields

the normal equation system

K c = f ,

LTN L c = LTn ,
0 0 0 0

0 0 0 0

0 0 8 0

0 0 0 24




c0

c1

c2

c3

 =


0.000 000 000 000 000

0.000 000 000 000 000

1.256 637 061 435 917

4.148 129 997 148 272

 , (5-49)

which, of course, is identical to (5-13). Introducing the same constraints

(5-16) for the given boundary conditions in (5-36) and solving the extended

normal equation system (5-18) results in the exactly the same solution for the

coefficients (5-19) of a polynomial of 3rd degree as was to be expected. All

presented calculations have been done with Programme 5-1.
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Programme 5-1: Code for
polynomial approximation of
BVPs in the monomial basis.

1 %Approximation of Phi(x) on [-1, 1]

2 a=-1; b=1;

3

4 %Polynomial degree

5 p=3;

6

7 %Differential operator

8 Lx=diag (1:p,1); Lxx=Lx^2;

9

10 %Preallocate matrices

11 N=zeros(p+1); n=zeros(p+1,1);

12

13 %Normal equation system for Phi=f(x)

14 for j=0:p

15 for i=0:p

16 N(j+1,i+1) =1/(i+j+1)*(1-a^(i+j+1));

17 end

18 n(j+1)=integral(@(x) (sin(3*x)+1/10* pi).*x.^j,a,b);

19 end

20

21 %Applying Lxx to obtain the normal equation system for Phi

’’=f(x)

22 K=Lxx ’*N*Lxx; f=Lxx ’*n;

23

24 %Boundary conditions

25 C=zeros(2,p+1); C(1,:)=(-1) .^(0:p)’; C(2,:) =1.^(0:p)’;

26

27 %Extended normal equation system

28 K_ext=[K C’;C zeros (2)]; f_ext=[f;zeros (2,1)];

29

30 %Solution

31 c=K_ext\f_ext;

32

33 %Deleting the Lagrangian multipliers

34 c(end -1: end)=[];

As we have seen in this section, we can easily determine an approximation for

the unknown solution of certain boundary value problems, which is mainly

based on Programme 3-1 and with the aid of a differential operator.

5.1.2 Approximation of BVP in the Chebyshev basis

The presented least squares approximation of BVPs in matrix notation in Sec-

tion 5.1 can directly be applied for the Chebyshev basis, which will be il-

lustrated on the approximation of the unknown solution Φ(x) of the already

given boundary value problem

d2 Φ(x)

dx2 = sin(3x) +
1

10
π , Φ(x = ±1) = 0 , (5-50)

for x ∈ [−1, 1]. The unknown solution Φ(x) will be approximated by a poly-

nomial in the Chebyshev basis

Φ(x) ≈ Φ̂p(x) =
p

∑
j=0

cj φj(x) =
p

∑
j=0

cj Tj(x) , (5-51)
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or in matrix notation

Φ̂p(x) = φ c =
[

T0(x) T1(x) · · · Tp(x)
]


c0

c1
...

cp

 . (5-52)

The first derivative of the approximation Φ̂p(x) with respect to x reads

dΦ̂p(x)

dx
=

p

∑
j=0

cj
dTj(x)

dx
. (5-53)

According to Mason and Handscomb (2003, p. 34) the derivative of Tj(x)

is given by
dTj(x)

dx
= j Uj−1(x) , (5-54)

with the Chebyshev polynomials of the second-kind Uj(x). The differentiation

operator reads

D =


0 1

2

3
. . .

 (5-55)

and is identical to the differential operator in the monomial basis (5-41). But,

applying D changes the basis of the series from Tj(x) into Uj(x).

The Chebyshev polynomials of the second-kind Uj(x) satisfy the recurrence

relation

Uj(x) = 2xUj−1(x)−Uj−2(x) for j ≥ 2 (5-56)

with the initial conditions

U0(x) = 1 and U1(x) = 2x . (5-57)

The relationship between the Chebyshev polynomials of the first-kind and

second-kind is given by

Tj(x) =
1
2
(
Uj(x)−Uj−2(x)

)
for j ≥ 2 , (5-58)

see (Mason and Handscomb 2003, p. 4). Therefore, a series in the Cheby-

shev basis Tj(x) can be represented by Uj(x) as follows

Φ̂p(x) =
p

∑
j=0

cj Tj(x) = c0U0(x) +
1
2

c1U1(x) +
1
2

p

∑
j=2

cj
(
Uj(x)−Uj−2(x)

)
. (5-59)

Resorting the right hand side of (5-59) yields

Φ̂p(x) =
p

∑
j=0

cj Tj(x) =
(
c0 −

1
2

c2
)
U0(x) +

p

∑
j=1

1
2
(
cj − cj−2

)
Uj(x) , (5-60)

see also Olver and Townsend (2013). Based on (5-60) we can define the

following conversion operator that maps the coefficients of a series in Tj(x)

into Uj(x)

S =


1 −1/2

1/2 −1/2

1/2 −1/2

. . .
. . .

 (5-61)
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Finally, the differential operator results in

Lx = S−1D , (5-62)

which is an upper triangular sparse matrix. Now we have everything to ap-

proximate the unknown solution Φ(x) of the given BVP (5-50) by a polynomial

in the Chebyshev basis of 3rd degree

Φ(x) ≈ Φ̂3(x) =
3

∑
j=0

cj φj(x) =
3

∑
j=0

cj Tj(x) , (5-63)

or in matrix notation

Φ̂3(x) = φ c =
[

T0(x) T1(x) T2(x) T3(x)
]


c0

c1

c2

c3

 . (5-64)

The differential operator for a polynomial of 3rd degree results in

Lx = S−1D =


1 0 −1/2 0

0 1/2 0 −1/2

0 0 1/2 0

0 0 0 1/2


−1 

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

 =


0 1 0 3

0 0 4 0

0 0 0 6

0 0 0 0

 (5-65)

and the second derivative of the approximation Φ̂3(x) with respect to x reads

Φ̂xx(x) = φLxx c , (5-66)

with Lxx = L2
x. The normal equation system according to (5-32) reads

LT
xx

∫ 1

−1
φTφdx Lxx c = LT

xx

∫ 1

−1
φT

(
sin(3x) + 1/10 π

)
dx ,

LT
xx N Lxx c = LT

xx n . (5-67)

While Chebyshev polynomials are orthogonal with respect to a weighted inner

product, the matrix N in (5-67) results in

N =
∫ 1

−1
φTφdx = 〈Ti, Tj〉 =


〈T0, T0〉 0 0 0

0 〈T1, T1〉 0 0

0 0 〈T2, T2〉 0

0 0 0 〈T3, T3〉



=


π 0 0 0

0 π/2 0 0

0 0 π/2 0

0 0 0 π/2

 (5-68)

and for the integrals of the right hand side we get

n =
∫ 1

−1
φT
(

sin(3x) + 1/10π
)

dx = 〈Ti, sin(3x) + 1/10π〉

=


〈T0, sin(3x) + 1/10π〉
〈T1, sin(3x) + 1/10π〉
〈T2, sin(3x) + 1/10π〉
〈T3, sin(3x) + 1/10π〉

 =


0.986 960 440 108 936

1.065 185 133 238 888

0.000 000 000 000 000

−0.970 949 177 735 561

 . (5-69)
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Inserting (5-68), (5-69) and the differential operator (5-65) into (5-67) yields

the normal equation system

K c = f ,
0 0 0 0

0 0 0 0

0 0 16π 0

0 0 0 288π




c0

c1

c2

c3

 =


0.000 000 000 000 000

0.000 000 000 000 000

3.947 841 760 435 742

25.564 443 197 733 318

 . (5-70)

Introducing the same constraints (5-16) for the given boundary conditions in

(5-50) and solving the extended normal equation systemK CT

C 0

c

λ

 =

f

0

 , (5-71)

yields the coefficients a polynomial in the Chebyshev basis of 3rd degree
c0

c1

c2

c3

 =


−0.078 539 816 339 745

−0.028 254 913 210 495

0.078 539 816 339 745

0.028 254 913 210 495

 . (5-72)

The resulting polynomial approximation for the unknown solution Φ(x) of the

boundary value problem (5-50) is depicted in Figure 5-4.
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Figure 5-4: Analytical solution
(5-8) in blue and its polyno-
mial approximation in the
Chebyshev basis of 3rd de-
gree in red (left). Residual
function v(x) = Φ(x)− Φ̂3(x)
(right).

The residual function illustrated in Figure 5-4 (right) shows deviation within

a range of ≈ 0.05 and can be further decreased while increasing the polynomial

degree. The best approximation is depicted in Figure 5-5.
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Figure 5-5: Polynomial ap-
proximation in the Cheby-
shev basis of 21st degree
(left). Residual function
v(x) = Φ(x)− Φ̂21(x) (right).

Figure 5-5 (right) shows that a polynomial in the Chebyshev basis of 21st

degree approximates the unknown solution Φ(x) of the BVP in (5-50) within
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machine precision. In comparison to Section 3.3.1, an approximation of the

unknown solution of BVPs in the Chebyshev basis leads to a dense normal

matrix K. The advantage of orthogonal basis functions is no longer given for

solving boundary value problems. The presented least squares approximation

of BVPs in the Chebyshev basis leads also to an ill-conditioned extended nor-

mal matrix in (5-71). However, this is even worse for the resulting extended

normal matrix in the monomial basis.

All calculations have been done with Programme 5-2.

Programme 5-2: Code for a
polynomial approximation of
BVPs in the Chebyshev basis.

1 %Approximation of Phi(x) on [-1, 1]

2 a=-1; b=1;

3

4 %Polynomial degree

5 p=3;

6

7 %Differentiation operator dT/dx -> U

8 D=diag (1:p,1);

9

10 %Conversion operator T -> U

11 S=diag (1/2* ones(p+1,1))-diag (1/2* ones(p-1,1) ,2);

12 S(1,1)=1;

13

14 %Differential operator

15 Lx=S\D; Lxx=Lx^2;

16

17 %Solution of the normal matrix N = int T_i * T_j

18 N=diag([pi; pi/2* ones(p,1)]);

19

20 %Preallocation

21 n=zeros(p+1,1);

22

23 %right hand side n

24 for i=0:p

25 n(i+1)=integral(@(x) (sin(3*cos(x))+1/10* pi).*cos(i*x)

,0,pi);

26 end

27

28 %Applying Lxx to obtain the normal equation system for Phi

’’=f(x)

29 K=Lxx ’*N*Lxx; f=Lxx ’*n;

30

31 %Boundary conditions

32 C=zeros(2,p+1); C(1,:)=(-1) .^(0:p)’; C(2,:) =1.^(0:p)’;

33

34 %Extended normal equation system

35 K_ext=[K C’;C zeros (2)]; f_ext=[f;zeros (2,1)];

36

37 %Solution

38 c=K_ext\f_ext;

39

40 %Deleting the Lagrangian multipliers

41 c(end -1: end)=[];
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5.1.3 Alternative approximation of BVP in the Chebyshev basis

As already mentioned in Section 3.3.1 and according to Trefethen (2013,

Theorem 3.1), if Φ(x) is Lipschitz continuous, then it has an absolutely and

uniformly convergent Chebyshev series

Φ(x) =
∞

∑
j=0

cj Tj(x) . (5-73)

Thus, we can determine the coefficients cj of a least squares approximation

in a faster and numerical more stable way, which is mainly used for the nu-

merical solution of BVPs by spectral methods as described in, for example,

(Trefethen 2008), (Olver and Townsend 2013), (Townsend 2014). To

illustrate this procedure we will consider the same example from the previous

section
d2 Φ(x)

dx2 = sin(3x) +
1

10
π , Φ(x = ±1) = 0 , (5-74)

for x ∈ [−1, 1]. Let us rewrite the differential equation (5-74) into

Φxx(x) = g(x), (5-75)

with

g(x) = sin(3x) +
1
10

π. (5-76)

As shown in Section 3.3.1 function g(x) can easily be approximated within

machine precision by a truncated Chebyshev series

g(x) ≈ ĝ(x) =
p

∑
j=0

gj Tj(x) (5-77)

or in matrix notation

ĝ(x) = φ g =
[

T0(x) T1(x) · · · Tp(x)
]


g0

g1
...

gp

 . (5-78)

The second derivative of the unknown solution Φxx(x) is given by (5-66) and

Equation (5-75) reads

φLxx c = φ g . (5-79)

Equating the coefficients with respect to φ yields

Lxx c = g . (5-80)

Introducing the constraints (5-16) for the given boundary conditions and solv-

ing the extended normal equation systemLxx CT

C 0

c

λ

 =

g

0

 . (5-81)

yields the coefficients a polynomial in the Chebyshev basis. In case g(x) and

Φ(x) are approximated within machine precision, these coefficients will be

exactly the same as using the extended normal equation system (5-71) of a

least squares approximation. The first column in Table 5-1 shows the 21 coef-

ficients cLS of a least squares approximation of the BVP (5-74) according to
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(5-71). While the other three columns are showing the coefficients cp determ-

ined by (5-81) for different polynomial degree p.

Table 5-1: Coefficients cj. cLS cp

p = 5 p = 12 p = 21

-0.078 539 816 339 745 -0.078 539 816 339 745 -0.078 539 816 339 745 -0.078 539 816 339 745

-0.059 666 434 332 445 −0.059 878 326 017 304 −0.059 666 433 281 276 -0.059 666 434 332 445

0.078 539 816 339 745 0.078 539 816 339 745 0.078 539 816 339 745 0.078 539 816 339 745

0.068 680 604 945 611 0.068 680 604 945 611 0.068 680 604 945 611 0.068 680 604 945 611

-0.000 000 000 000 000 -0.000 000 000 000 000 0.000 000 000 000 000 0.000 000 000 000 000

-0.009 561 874 417 122 0.008 802 278 928 307 -0.009 561 874 417 122 -0.009 561 874 417 122

0.000 000 000 000 000 -0.000 000 000 000 000 -0.000 000 000 000 000

0.000 566 065 433 734 0.000 566 065 433 734 0.000 566 065 433 734

-0.000 000 000 000 000 -0.000 000 000 000 000 -0.000 000 000 000 000

-0.000 018 754 449 180 -0.000 018 754 449 180 -0.000 018 754 449 180

-0.000 000 000 000 000 0.000 000 000 000 000 0.000 000 000 000 000

0.000 000 398 664 369 0.000 000 391 768 232 0.000 000 398 664 369

0.000 000 000 000 000 -0.000 000 000 000 000 -0.000 000 000 000 000

-0.000 000 005 909 044 -0.000 000 005 909 044

-0.000 000 000 000 000 -0.000 000 000 000 000

0.000 000 000 064 614 0.000 000 000 064 614

0.000 000 000 000 000 0.000 000 000 000 000

-0.000 000 000 000 543 -0.000 000 000 000 543

-0.000 000 000 000 000 -0.000 000 000 000 000

0.000 000 000 000 004 0.000 000 000 000 004

0.000 000 000 000 000 -0.000 000 000 000 000

-0.000 000 000 000 000 -0.000 000 000 000 000

As one can see, some of the coefficients for p = 5 and p = 12 are signific-

antly differing from cLS, while the coefficients for p = 21 are equal down to

the last digit to those a least squares approximation cLS. As already men-

tioned, solving (5-81) for the unknown coefficients is faster and more accurate

than solving the extended normal equation system (5-71) of a least squares

approximation. The extended normal matrix in (5-71) is nearly singular forA sophisticated approach for
solving PDEs using a spectral

method is presented by
(Townsend and Olver 2015),

which can approximate the
unknown solution by a polynomial

over a millionth degree within
seconds.

a polynomial of 140th degree, while using (5-81) allows to approximate the

unknown solution by a polynomial of even more than 2000th degree.



6
S U M M A RY

In Chapter 3, we discussed in detail the drawbacks of an approximation in

the monomial basis and its reasons. Afterwards we attempted to avoid the

drawbacks by an elementwise approximation in the monomial basis in Section

3.1. Although better results could be achieved, the actual problem of the

monomial basis remains. As shown in Section 3.2, an elementwise approx-

imation is only feasible by an appropriate change of the basis, whereby the

unknown parameters have new properties. This approach enables numeric-

ally stable and efficient solutions, which are often used in many engineering

sciences. However, with the big disadvantage that usually a lot of unknown

parameters are needed. Then, an approximation using orthogonal basis func-

tions was presented in Section 3.3, while we only focused on the Chebyshev

and Fourier basis. The advantages of an approximation in the Chebyshev

basis were clearly shown by some examples and although an approximation

of non-periodic functions in the Fourier basis is already per definition not

suitable, it was nevertheless shown for illustrative reasons in Section 3.3.2 as

both sets of orthogonal basis functions are closely related. Based on the re-

lationship between these two bases addressed in Section 3.3.3, the Chebyshev

coefficients can be determined very efficiently using FFT, which finally leads

to a very powerful approach for the approximation of continuous functions.

In Chapter 4 we have extended the approaches shown to the approximation

of functions in two dimensions. The problem that arises for an elementwise

continuous approximation for arbitrary polynomial degree was addressed in

Section 4.1 and two possible solutions were presented in Section 4.2. Then

the advantages of an approximation in the Chebyshev basis were again demon-

strated and the approach extended to arbitrary convex tetragons as elements.

Finally, Chapter 5 briefly described how the unknown solution of some BVPs

can be approximated in the monomial and Chebyshev basis as it was done

in the previous chapters. In addition, an alternative approach for calculating

the Chebyshev coefficients of a least squares approximation was described

in Section 5.1.3. Following this approach, the functional model for MeMoS is

derived in the following part. Thus, it is guaranteed that the functional model

at least for all numerical studies is always complete and the results are not

falsified by any approximation errors, cf. Figure I.4.
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Part III

MEASUREMENT– AND MODEL–BASED
STRUCTURAL ANALYS I S





S Y N O P S I S

In the previous part we got a general insight into the approximation of func-

tions and focused mainly on polynomials in the Chebyshev basis. It was

shown that for at least simple geometric domains this set of basis functions

has substantial advantages and basically always provides an approximation

of the function in the range of the machine precision. The approximation in

the Chebyshev basis also offers the possibility to easily and quickly perform

numerical computations with functions, such as computing derivatives, integ-

rals or root finding using of the open-source package Chebfun (2021), which

was introduced by Battles and Trefethen (2004). This is of particular

advantage for the tools developed in Chapter 10.1.

With respect to the experimental studies, the mechanical model of a four-

point bending test is derived first and its analytical solution is approximated

by a polynomial in the Chebyshev basis. Afterwards, the approximation is

directly embedded as the functional model in a least squares adjustment of

static measurements, such as displacements, inclinations and strains using

a physical model. Based on this so-called Integrated Analysis (IA) detailed

numerical studies are carried out to analyse the impact of random errors on the

estimated unknown parameters and also clarify the question of how damage

affects the measurements at all. Thus, a detailed insight into the nature of

the inverse problem is provided. In accordance to Figure I.4, the considered
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M o d e l l i n g M e a s u r i n g

C h a l l e n g e

Figure S.2: Current scenario
for the numerical studies con-
cerning the damage analysis
using MeMoS addressed in
Chapter 9. Elements in grey
are not considered or present.
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error sources for the numerical studies in Chapter 9 are shown in Figure

S.2. Based on the insights gained from the numerical studies, some tools

for the damage analysis using Measurement– and Model–based Structural

Analysis (MeMoS) are developed first and their potential for the detection

and localisation of damage is demonstrated by numerical studies. Finally, a

comprehensive damage analysis using MeMoS, from the model update to the

evaluation of individual epochs up to the localisation of damage, is presented

in an experimental example. In accordance to Figure I.4, the considered error

sources for the experimental studies in Chapter 10.3 are shown in Figure S.3.

Figure S.3: Current scenario
for the experimental studies
concerning the damage ana-
lysis using MeMoS addressed
in Chapter 10.3. Elements in
grey are not present.
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7
M E C H A N I C A L M O D E L

To illustrate the basic idea of a Measurement– and Model–based Structural

Analysis (MeMoS) and the arising challenges, we will use a simple example

in one dimension. In order to ensure that the results also corresponds to

real problems, we choose a four-point bending test as an example, which is

briefly presented in Section 7.1. Afterwards, we discuss the requirements of

the functional model for MeMoS in Section 7.2 and in Section 7.3 we derive

the solution of the BVP in the Chebyshev basis, as shown in Section 5.1.3.

7.1 four-point bending test

The basic idea of MeMoS will be illustrated on the following simple problem.

Let us consider a four-point bending test as depicted in Figure 7-1,

1
2 F

1
2 F

a a

l

x

u Figure 7-1: Four-point bend-
ing test

with force F/2 applied at the positions x = a and x = l − a. The deform- For Euler-Bernoulli beam theory
in general, please refer to
standard literature such as e.g.
(Carrera et al. 2011, Chapter 2.1)
or (Öchsner 2021, Chapter 2).

ational behaviour of such a beam can be approximately described by the

Euler-Bernoulli beam equation

d2 u(x)

dx2 = −M(x)

EI
(7-1)

with the internal bending moment M(x), elastic modulus E and the area mo-

ment of inertia I. Assuming a beam with a constant rectangular cross section

along its length l, I is a constant factor given by

I =
1

12
wh3 , (7-2)

with h being the height and w the width of the beam. Due to the bearings on

both sides of the beam, the Dirichtlet boundary conditions are as follows

u(x = 0) = 0 and u(x = l) = 0 . (7-3)

For the illustrated four-point bending test in Figure 7-1 the internal bending

moment results in

M(x) =


1
2 Fx, for 0 ≥ x ≥ a,
1
2 Fa, for a ≥ x ≥ (l − a),
1
2 F(l − x), for (l − a) ≥ x ≥ l.

(7-4)

141



142 mechanical model

and is depicted in Figure 7-2

Figure 7-2: Internal bending
moment M(x) for the four-
point bending test depicted in
Figure 7-1.

x

M(x)

a l − a l

1
2 Fa

7.2 objective

For the simple problem of a four-point bending test presented above, we need

to derive a functional model that is capable of analysing different types of

measurements in order to detect and localise damage to the beam. In this

thesis we will only consider the following three types of measurements:

Displacement,

Inclination and

Strain.

Furthermore, we need to define an unknown quantity that can be used for

damage detection and localisation. Within beam theory, the elastic modu-

lus E and the area moment of inertia I are coupled multiplicatively in (7-1).

Therefore, damage caused by a change in geometry cannot be distinguished

from damage caused by a change in the material, as shown in Figure 7-3.

Figure 7-3: Damage due to
changes in the material (up-
per left) or geometry (up-
per right) are represented by
elastic modulus E(x) (lower
middle).

x

E(x)

Damage due to material change
and constant geometry

Damage due to geometry change
and constant material

As a consequence, we chose the elastic modulus as an unknown quantity, as

already shown in (Neitzel et al. 2014) or (Wu 2020, Chapter 5.2). But,

estimating a single constant value E might be sufficient to detect damage, but

it does not allow any damage localisation. Therefore, we introduce the elastic

modulus as a continuous function along the beam E(x). The whole process

of damage detection and localisation is based on a detailed analysis of the

estimated function E(x).
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7.3 solution of the bvp in the chebyshev basis

Let us consider the slightly modified Euler-Bernoulli beam equation

d2 u(x)

dx2 = − M(x)

E(x) I
= −M(x)

I
1

E(x)
, (7-5)

with the elastic modulus E(x) being a continuous function along the beam. At

first, we express the unknown solution u(x) and the internal bending moment

M(x) in terms of their Chebyshev series expansion

u(x) =
∞

∑
j=0

uj Tj(x) = φu (7-6)

and

M(x) =
∞

∑
j=0

mj Tj(x) = φm , (7-7)

with

φ =
[

T0(x) T1(x) T2(x) T3(x) . . .
]

. (7-8)

In order to avoid 1/E(x) in Equation (7-5) we express this fraction by the Estimating E(x) instead of E∗(x)
would result in a non-linear
adjustment problem of a more
complex functional model.

Chebyshev series
1

E(x)
= E∗(x) =

∞

∑
j=0

ej Tj(x) = φe . (7-9)

To handle the product of two functions M(x)E∗(x) in terms of their Chebyshev

series we introduce the following multiplication operator according to (Olver

and Townsend 2013)

M[m] =
1
2





2m0 m1 m2 m3 · · ·

m1 2m0 m1 m2
. . .

m2 m1 2m0 m1
. . .

m3 m2 m1 2m0
. . .

...
. . .

. . .
. . .

. . .


+



0 0 0 0 · · ·

m1 m2 m3 m4
...

m2 m3 m4 m5
...

m3 m4 m5 m6
...

...
...

...
...

...




,

(7-10)

where M[m] is a Toeplitz plus almost Hankel operator. According to Section

5.1.3, with the differential operator (5-62) and the multiplication operator

(7-10), the modified Euler-Bernoulli beam equation (7-5) can be written as

Lxxu = −1
I
M[m]e . (7-11)

As can be seen in Figure 7-2, the curve of the internal bending moment M(x)

is not a continuously differentiable function. The first derivative of M(x)

has two jump discontinuities located at x = a and x = l − a and we would

need a polynomial of very high degree in order to approximate the given

BVP with sufficient accuracy. Therefore, we divide the beam into 3 elements

and introduce nodes at these two jump discontinuities. The resulting unique

identifier for the nodes ν and elements ζ are listed Table 7-1.

ν xν

1 0

2 a

3 l − a

4 l

and ζ ν1 ν2

1 1 2

2 2 3

3 3 4

Table 7-1: Coordinates for all
nodes ν and the nodes for all
three elements ζ.
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Dividing the beam into three elements and according to Section 3.1, Equation

7-11 reads
Lxx 0 0

0 Lxx 0

0 0 Lxx




u1

u2

u3

 = −1
I


M[ m1 ] 0 0

0 M[ m2 ] 0

0 0 M[ m3 ]




e1

e2

e3

 . (7-12)

So far we have not yet addressed the issue that Equation (7-5) is defined on the

interval x ∈ [0, l], while the presented approximation in the Chebyshev basis

is defined on [−1, 1]. Therefore, we have to introduce a generalised coordinate

t and map each element onto the interval t ∈ [−1, 1]. Equation (7-5) is defined

on x ∈ [0, l] and all Chebyshev series expansions are defined on t ∈ [−1, 1].

According to Section 3.2.1 the mapping for each element ζ reads

xζ = fx
(

t, xζ
ν1 , xζ

ν2

)
=

1
2

(
xζ

ν1 + xζ
ν2

)
+

1
2

(
xζ

ν2 − xζ
ν1

)
t (7-13)

and

Jζ =
d xζ

dt
=

1
2

(
xζ

ν2 − xζ
ν1

)
. (7-14)

Taking this mapping into account and analogously to Section 3.2 Equation

(7-12) reads
J1 2Lxx 0 0

0 J2 2Lxx 0

0 0 J3 2Lxx




u1

u2

u3

 = −1
I


M[ m1 ] 0 0

0 M[ m2 ] 0

0 0 M[ m3 ]




e1

e2

e3

 ,

(7-15)

or in shorter notation

Lu = −1
I
Me , (7-16)

with

L =


J1 2Lxx 0 0

0 J2 2Lxx 0

0 0 J3 2Lxx

 , (7-17)

M =


M[ m1 ] 0 0

0 M[ m2 ] 0

0 0 M[ m3 ]

 , (7-18)

u =


u1

u2

u3

 and e =


e1

e2

e3

 . (7-19)

In order to solve the equation system (7-16) for u we have to introduce the

Dirichtlet boundary conditions (7-3), namely

u(x = 0) = φ(−1) u1 = 0 ,

u(x = l) = φ(1) u3 = 0 , (7-20)

with

φ(−1) =
[

T0(t = −1) T1(t = −1) T2(t = −1) T3(t = −1) . . .
]

(7-21)
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and φ(1) analogously. Writing these two constraints in matrix notation yields

φ(−1) 0 0

0 0 φ(1)




u1

u2

u3

 =

0

0

 , (7-22)

or in a shorter notation

CBC u = 0 . (7-23)

Furthermore, we introduce additional constraints at the inner nodes to ensure

a C2 continuous approximation of the unknown function u(x) as described in

Section 3.1.2. For the inner nodes these constraints are

φ(1) uζ = φ(−1) uζ+1 ,

Jζ φ(1) Lx uζ = Jζ+1 φ(−1) Lx uζ+1 ,

Jζ 2φ(1) Lxx uζ = Jζ+1 2φ(−1) Lxx uζ+1 . (7-24)

Expressing the constraints (7-24) in matrix notation results in

φ(1) −φ(−1) 0

J1 φ(1) Lx − J2 φ(−1) Lx 0

J1 2φ(1) Lxx − J2 2φ(−1) Lxx 0

0 φ(1) −φ(−1)

0 J2 φ(1) Lx − J3 φ(−1) Lx

0 J2 2φ(1) Lxx − J3 2φ(−1) Lxx




u1

u2

u3

 =



0

0

0

0

0

0


, (7-25)

or in short

Cconti u = 0 . (7-26)

Combing (7-23) and (7-26) into

C u = 0 (7-27)

with

C =

 CBC

Cconti

 (7-28)

and solving the extended equation systemL CT

C 0

u

λ

 =

− 1
I Me

0

 (7-29)

yields the coefficients u of the unknown solution u(x) in the Chebyshev basis

as a function of the internal bending moment M(x) and the elastic modulus

E(x). The extended system of equations (7-29) serves as the basis for the

functional model, which will be derived in the following section.





8
I N T E G R AT E D A N A LY S I S

Based on the solution (7-29) of the modified Euler-Bernoulli beam equation

we derive a functional model that allows to adjust displacement, inclination

and strain measurements by means of a least squares adjustment to estimate

the elastic modulus E(x) represented in its Chebyshev series expansion. The

functional model is developed for the following two different types of observa-

tions.

� Discrete measurements as observations.

� Functions as observations.

The latter was mainly developed for the evaluation of quasi continuous meas-

urements using for example terrestrial laser scanning (TLS), fibre optic sensors

(FOS) or photogrammetry. At the end of this chapter, the results of both ap-

proaches will be compared and discussed.

8.1 discrete measurements as observations

In order to derive the functional model, we need to exclude the elastic modulus

e from the solution (7-29) of the modified Euler-Bernoulli beam equation.

Hence, we obtain a new system of equations with two new unknown variables.

Instead of the unknown solution u and Lagrangian multiplier λ in (7-29) we

obtain U and Λ and the system of equations readsL CT

C 0

U

Λ

 =

− 1
I M
0

 (8-1)

and solving for U yieldsU

Λ

 =

L CT

C 0

−1 − 1
I M
0

 , (8-2)

with

u = Ue (8-3)

and

λ = Λe . (8-4)

Since we divided the whole beam into three elements matrix U also contains

three parts one for each element and reads

U =


U1

U2

U3

 . (8-5)

147
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8.1.1 Functional model

Based on (8-3) we derive the functional model for an integrated analysis of

displacement, inclination and strain measurements as follows.

Displacement

Before we can set up the functional model for a displacement measurement

Ldispi
at a position xdispi

along the beam, we need to check to which element

a measurement at a position xdispi
belongs to and map it onto the interval

[−1, 1] of the corresponding element ζ applying the inverse function of (7-13),

which reads

t = ft
(

x, xζ
ν1 , xζ

ν2

)
=

2x− xζ
ν1 − xζ

ν2

xζ
ν2 − xζ

ν1

. (8-6)

Based on (7-6), with (8-3) and applying the mapping (8-6) the functional

model for a displacement measurement Ldispi
at a position xdispi

reads

Ldispi
=

∞

∑
j=0

uζ
j Tj

(
ft
(

xdispi
, xζ

ν1 , xζ
ν2

))
=

∞

∑
j=0

uζ
j Tj
(
tdispi

)
= φ

(
tdispi

)
uζ

= φ
(
tdispi

)
Uζ e , (8-7)

or in a shorter notation

Ldispi
= Adispi

e , (8-8)

with the design matrix

Adispi
= φ

(
tdispi

)
Uζ , (8-9)

containing the coefficients of the unknown parameters e.

Inclination

The inclination of the bending line u(x) is described by its first spatial deriv-

ative

tan(α) =
du(x)

dx
, (8-10)

see Müller and Ferber (2012, Chapter 2.6.1). The deflection u(x) is usu-

ally quite small in comparison to the geometry of the beam and hence, the

inclination of the bending line is very small. Therefore, for most problems theBesides this, the Euler-Bernoulli
beam equation is also just an

approximation.
assumption

tan(α) ≈ α (8-11)

is justified. Nevertheless, instead of using α we will use tan(α) as an observation

for the adjustment and the functional model for a inclination measurement

Linci at a position xinci results in

Linci = Jζ
∞

∑
j=0

uζ
j

dTj

(
ft
(

xinci , xζ
ν1 , xζ

ν2

))
dt

= Jζ
∞

∑
j=0

uζ
j

dTj
(
tinci

)
dt

= Jζ φ
(
tinci

)
Lx uζ

= Jζ φ
(
tinci

)
Lx Uζ e , (8-12)

or in a shorter notation

Linci = Ainci e , (8-13)

with

Ainci = Jζ φ
(
tinci

)
Lx Uζ . (8-14)
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Strain

According to Gere and Goodno (2013, Chapter 5.4) or Müller and Fer-

ber (2012, Chapter 2.6.1) the longitudinal strain ε is closely related to the

second derivative of the deflection u(x) and is given by

ε = −eu
d2u(x)

dx2 , (8-15)

with eu being the orthogonal distance to the neutral surface. While measuring

the strain at the bottom or top of the beam and assuming the neutral surface

to be located in the middle of the beam yields

eu =
1
2

h . (8-16)

The functional model for a strain measurement Lstraini at a position xstraini

results in

Lstraini =
1
2

h Jζ 2
∞

∑
j=0

uζ
j

d2 Tj

(
ft
(

xstraini , xζ
ν1 , xζ

ν2

))
dt2

=
1
2

h Jζ 2
∞

∑
j=0

uζ
j

d2 Tj
(
tstraini

)
dt2

=
1
2

h Jζ 2φ
(
tstraini

)
Lxx uζ

=
1
2

h Jζ 2φ
(
tstraini

)
Lxx Uζ e , (8-17)

or in a shorter notation

Lstraini = Astraini e , (8-18)

with

Astraini =
1
2

h Jζ 2φ
(
tstraini

)
Lxx Uζ . (8-19)

8.1.2 Observation equations

The derivation of the observation equations for displacement, inclination and

strain measurements are based on the following assumptions: We’re considering the simplest
case now.

� The geometry of the beam is fixed and hence, the width w, height h and

length l are error free values.

� The force F is an error free value.

� The positions the forces are applied to the beam are error free values,

hence a is a fixed value.

� The sensor position x is error free.

� No movements at the bearings.

Let us assume that we have n displacement measurements along the beam

with their positions given by

xdisp =


xdisp1

xdisp2
...

xdispn

 . (8-20)
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The functional model for a displacement measurement is given by (8-8) and

based on the assumptions we made, only Ldispi
are observations subject to ran-

dom errors and all entries in the design matrix Adispi
are constant values (error

free). Introducing the corresponding residuals vdispi
results in the observation

equations for all displacement measurements
Ldisp1

Ldisp2
...

Ldispn

+


vdisp1

vdisp2
...

vdispn

 =


Adisp1

Adisp2
...

Adispn

 e , (8-21)

or in short

Ldisp + vdisp = Adisp e , (8-22)

with the vector of unknown parameters e

e =


e1

e2

e3

 , (8-23)

containing the coefficients of a Chebyshev series for each element representing

the inverse of elastic modulus E(x) as a function along the beam. Analogously,

the observation equations according to (8-13) for all inclination measurements

are given by

Linc + vinc = Ainc e (8-24)

and based on the functional model (8-18) the system of observation equations

for all strain measurements results in

Lstrain + vstrain = Astrain e . (8-25)

The observation equations (8-22), (8-24) and (8-25) can be combined into

L + v = A e , (8-26)

with the vector of observations L, vector of residuals v and design matrix A
beeing

L =


Ldisp

Linc

Lstrain

 , v =


vdisp

vinc

vstrain

 , A =


Adisp

Ainc

Astrain

 . (8-27)

8.1.3 Least squares adjustment

Based on the observation equations (8-26) and the stochastic model represen-

ted by the weight matrix P, the normal equation system for a least squares

adjustment according to Section 2.3 results in

N e = n

ATPA e = ATPL , (8-28)

with the design matrix A and vector of observations L from (8-27). To ensure

that E∗(x) represented by its coefficients e in the Chebyshev basis is C2 con-

tinuous along the whole beam, we have to introduce constraints at the two
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inner nodes listed in Table 7-1 (left). In accordance to (7-24) these constraints

are

Cconti e = 0 , (8-29)

with Cconti being exactly the same matrix as in (7-25). Solving the extended

normal equation system N CT
conti

Cconti 0

e

λ

 =

n

0

 (8-30)

yields the unknown coefficients e of a Chebyshev series for each element rep-

resenting the inverse of elastic modulus E(x) as a C2 continuous function along

the beam.

8.2 functions as observations

Let us now consider the case that measurements with a high point density

are available, e.g. recorded by TLS, photogrammetry or FOS. Of course, it is

possible to analyse such measurements with the functional model derived in

Section 8.1, but if, for example, outliers are present in the measurements, they

would falsify the solution of the normal equation system. The elimination of

outliers by data snooping according to (Baarda 1968) is an iterative pro-

cess and is maybe not really feasible for complex structures and/or the huge

amount of observations. Therefore, it can sometimes be useful to eliminate

outliers and also to reduce the dataset by a pre-processing of the measure-

ments.

But for now, let us assume that a suitable approximation in the Chebyshev

basis of measurements along the whole beam is available, as depicted for

displacement measurements in Figure 8-1.

0 1 2 3 4 5 6 7

−1

−0.5

0

x [m]

D
is

pl
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em
en

t
[m

m
] Figure 8-1: Displacement

measurements (blue dots) and
its C2 continuous approxim-
ation in the Chebyshev basis
(red line).

Instead of using all displacement measurements (blue dots) in Figure 8-1 to

estimate E(x) according to Section 8.1, we can also use its approximation in

the Chebyshev basis (red line) represented by the coefficients

u =


u1

u2

u3

 . (8-31)

Furthermore, we also assume that the variances and covariances of the coeffi-

cients u are also given by the variance-covariance matrix ΣLL. Thus everything

is provided to estimate E(x) from the approximation u. The same applies for

inclination and strain measurements.
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8.2.1 Functional model

The functional model for an adjustment of displacement, inclination and strain

measurements as a function represented in its Chebyshev series expansion

is also based on the solution (7-29) of the modified Euler-Bernoulli beam

equation. Therefore, the functional models are as follows.

Displacement

As the solution of the BVP and the approximation of the measurements are

given in the same basis, the functional for displacement measurements rep-

resented by a function in its Chebyshev series expansion is already given by

(8-3), namely

u = Ue , (8-32)

or 
u1

u2

u3

 =


U1

U2

U3




e1

e2

e3

 . (8-33)

Hence, the functional model for an adjustment of displacement measurements

represented by the coefficients u reads

Lu = Au e , (8-34)

with

Lu =


u1

u2

u3

 and Au =


U1

U2

U3

 . (8-35)

Inclination

The inclination of the bending line u(x) is described by its first spatial de-

rivative and due to the assumption (8-11) we have the following functional

relationship

α(x) ≈ du(x)

dx
. (8-36)

The approximation of α(x) in the Chebyshev basis from inclination measure-

ments along the whole beam is given by the coefficients

α =


α1

α2

α3

 . (8-37)

Thus, the functional model reads
α1

α2

α3

 =


J1 Lx 0 0

0 J2 Lx 0

0 0 J3 Lx




u1

u2

u3



=


J1 Lx 0 0

0 J2 Lx 0

0 0 J3 Lx




U1

U2

U3




e1

e2

e3

 , (8-38)

or

Lα = Aα e , (8-39)
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with

Lα =


α1

α2

α3

 and Aα =


J1 Lx 0 0

0 J2 Lx 0

0 0 J3 Lx




U1

U2

U3

 . (8-40)

Strain

The longitudinal strain ε(x) is closely related to the second derivative of the

deflection u(x) and assuming the neutral surface to be located in the middle

of the beam, yields the following functional relationship

ε(x) = −1
2

h
d2u(x)

dx2 . (8-41)

An approximation of ε(x) in the Chebyshev basis from strain measurements

along the whole beam is given by the coefficients

ε =


ε1

ε2

ε3

 . (8-42)

This results in the following functional model.
ε1

ε2

ε3

 =


J1 2 Lxx 0 0

0 J2 2 Lxx 0

0 0 J3 2 Lxx




u1

u2

u3



=


J1 2 Lxx 0 0

0 J2 2 Lxx 0

0 0 J3 2 Lxx




U1

U2

U3




e1

e2

e3

 , (8-43)

or

Lε = Aε e , (8-44)

with

Lε =


ε1

ε2

ε3

 and Aε =


J1 2 Lxx 0 0

0 J2 2 Lxx 0

0 0 J3 2 Lxx




U1

U2

U3

 . (8-45)

Finally, we derived a functional model for an integrated analysis of functions

as observations in order to estimate the inverse of the elastic modulus E∗(x)

represented by its coefficients e in the Chebyshev basis.

8.2.2 Observation equations

Under the same assumptions as listed in Section 8.1.2, we can set up the

observation equations for the aforementioned functional models to adjust dis-

placement, inclination and strain measurements as a function represented in

its Chebyshev series expansion by means of a least squares adjustment.

The functional model for displacement measurements is given by (8-34) and

only the coefficients in Lu are regarded as observations subject to random



154 integrated analysis

errors and all entries in the design matrix Au are constant values (error free).

Introducing the corresponding residuals vu results in the observation equations

for displacement measurements

Lu + vu = Au e , (8-46)

with the vector of unknown parameters e

e =


e1

e2

e3

 , (8-47)

containing the coefficients of a Chebyshev series for each element representing

the inverse of elastic modulus E(x) as a function along the beam. Analogously,

the observation equations according to (8-39) for inclination measurements are

given by

Lα + vα = Aα e (8-48)

and based on the functional model (8-44) the system of observation equations

for strain measurements results in

Lε + vε = Aε e . (8-49)

The observation equations (8-46), (8-48) and (8-49) can be combined into

L + v = A e , (8-50)

with the vector of observations L, vector of residuals v and design matrix A
beeing

L =


Lu

Lα

Lε

 , v =


vu

vα

vε

 , A =


Au

Aα

Aε

 . (8-51)

8.2.3 Least squares adjustment

The least squares adjustment of functions as observations based on the obser-

vation equations (8-50) and a stochastic model represented by a weight matrix

P is analogous to the least squares adjustment of discrete measurements as

observations in Section 8.1.3 and the normal equation system reads

N e = n

ATPA e = ATPL , (8-52)

with the design matrix A and vector of observations L from (8-51). In order

to ensure that E∗(x) represented by its coefficients e in the Chebyshev basis

is C2 continuous along the whole beam, we have to introduce constraints at

the two inner nodes listed in Table 7-1 (left). In accordance to (7-24) these

constraints are

Cconti e = 0 , (8-53)

with Cconti being exactly the same matrix as in (7-25). Solving the extended

normal equation system N CT
conti

Cconti 0

e

λ

 =

n

0

 (8-54)

yields the unknown coefficients e of a Chebyshev series for each element rep-

resenting the inverse of elastic modulus E(x) as a C2 continuous function along

the beam.
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8.2.4 Discrete measurements vs. functions

Introducing coefficients of an approximation of displacement, inclination or

strain measurements as observations into a least squares adjustment in order

to estimate the unknown coefficients e may appear unusual at first glance.

However, that this approach generally leads to the same result for the unknown

coefficients e as inserting the measurements directly according to Section 8.1,

will now be demonstrated only for displacement measurements, since it can

be shown for inclination or strain measurements in the same way.

First step

Let us assume that the bending line of a beam has been observed by TLS and

thus a profile is available represented by n displacement measurements Ldispi

at positions xdispi
with i = 1, . . . , n, as illustrated in Figure 8-1 (blue dots). To

use the approximation of the points as an observation for an integrated ana-

lysis according to Section 8.2, they will be approximated by a C2 continuous

polynomial in the Chebyshev basis using 3 elements in accordance to Table

7-1. The mapping of the positions xdispi
of the displacement measurements on

the interval [−1, 1] of the corresponding element ζ is done by Equation (8-6)

and the functional model for the resulting approximation is already given by

(8-7) and reads

Ldispi
=

∞

∑
j=0

uζ
j Tj

(
ft
(

xdispi
, xζ

ν1 , xζ
ν2

))
=

∞

∑
j=0

uζ
j Tj
(
tdispi

)
= φ

(
tdispi

)
uζ , (8-55)

or in short

Ldispi
= Aφi u , (8-56)

for i = 1, . . . , n and with the design matrix

Aφi = φ
(
tdispi

)
. (8-57)

Writing (8-56) in matrix notation yields
Ldisp1

Ldisp2
...

Ldispn

 =


Aφ1

Aφ2

...

Aφn

u , (8-58)

or

Ldisp = Aφ u . (8-59)

Based on the assumptions in Section 8.1.2, only Ldispi
is an observation and

all entries in the design matrix Aφi are constant values (error free). Therefore,

the observation equations for all n displacement measurements results in

Ldisp + vdisp = Aφ u , (8-60)

with the vector of unknown parameters u

u =


u1

u2

u3

 , (8-61)
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containing the coefficients of a Chebyshev series for each element represent-

ing the approximation of the displacement measurements as a function along

the beam. For the observation equations (8-60) and the stochastic model of

the displacement measurements represented by the weight matrix Pdisp, the

normal equation system for a least squares adjustment results in

N u = n

AT
φ Pdisp Aφ u = AT

φ Pdisp Ldisp . (8-62)

Introducing the constraints (7-24) at the two inner nodes results in the exten-

ded normal equation systemAT
φ Pdisp Aφ CT

conti

Cconti 0

u

λ

 =

AT
φ Pdisp Ldisp

0

 (8-63)

and solving (8-63) yields the unknown coefficients u for the approximation of

the displacement measurements and their stochastic properties represented by

the co-factor matrix Qu with

Qu = Q11 (8-64)

and AT
φ Pdisp Aφ CT

conti

Cconti 0

−1

=

Q11 Q12

Q21 Q22

 . (8-65)

Second step

Now we want to use the approximation of the displacement measurements u
to estimate the inverse of the elastic modulus e according to Section 8.2.1.

The functional model is given by (8-32) and under the same assumptions as

before, the observation equations are given by (8-46), namely

Lu + vu = Au e . (8-66)

For the observation equations (8-66) and the stochastic model represented

by the weight matrix Pu, the normal equation system for a least squares

adjustment results in

AT
u Pu Au e = AT

u Pu Lu . (8-67)

As the weight matrix Pu is the inverse of the cofactor matrix Qu and with

(8-64), the weight matrix Pu reads

Pu = AT
φ Pdisp Aφ . (8-68)

Substituting Pu in (8-67) by (8-68) yields

AT
u AT

φ Pdisp Aφ Au e = AT
u AT

φ Pdisp Aφ Lu . (8-69)

If we insert the functional model of the second step (8-34) into the functional

model of the first step (8-59) we obtain

Ldisp = Aφ Au e , (8-70)

which is exactly the same functional model as for discrete displacements meas-

urements (8-7) in Section 8.1 and this results in the following relationship

between the design matrices

Adisp = Aφ Au . (8-71)
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Inserting (8-71) in (8-69) with

AT
disp =

(
Aφ Au

)T
= AT

u AT
φ (8-72)

and with

Ldisp = Aφ Lu , (8-73)

according to (8-56), the normal equation system (8-69) results in

AT
disp Pdisp Adisp e = AT

disp Pdisp Ldisp , (8-74)

which is basically the same normal equation system as (8-28) that results

when using discrete displacements measurements as observations according

to Section 8.1. As has been shown, using the coefficients of an approxima-

tion of displacement measurements as observations in order to estimate the

unknown coefficients e generally provides the same result as using the displace-

ment measurements directly according to Section 8.1. Therefore, the correct

stochastic model must be considered, which is also shown in more detail in

the numerical studies in Section 9.1.





9
N U M E R I C A L S T U D I E S

To gain a better understanding of the inverse problem (8-30), for example,

how measurement noise affects the solution E(x), we will first conduct some

numerical studies. This is essential while the strategy for MeMoS depends on

the solution for E(x) or more precisely on E∗(x). All presented numerical

studies are based on the same specification of the four-point bending test set-

up and beam specimen as already used in (Wu 2020, p. 89), which is listed

in Table 9-1.

beam length l 7.26 m beam elastic modulus 70 GPa

beam width w 0.20 m load F 7460 N

beam height h 0.36 m loading position a 2.42 m

Table 9-1: Specification of
the four-point bending set-up
and beam specimen for the
numerical studies.

For these parameters, the true solution L̃type for the displacement, inclination

and strain along the beam can be calculated using (7-29) and is depicted in

Figure 9-1.
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Figure 9-1: True solution
L̃type for displacement, inclin-
ation and strain measurement
along the beam.

To ensure the comparability of the results, all numerical studies are based on

sensor precisions relative to the true measured values as depicted in Figure

9-1. Throughout these studies we consider three different sensor precisions,

which we will refer to as low, medium and high precision according to Table

9-2.

159
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Table 9-2: Used sensor preci-
sions for the numerical studies
based on the maximum abso-
lute value for the true solu-
tions depicted in Figure 9-1.

max |L̃type| Sensor precision σLtype

low [10 %] medium [1 %] high [0.1 %]

Displacement [mm] ≈ 0.93 9.3 · 10−2 9.3 · 10−3 9.3 · 10−4

Inclination [mgon] ≈ 25.0 2.5 2.5 · 10−1 2.5 · 10−2

Strain [µstrain] ≈ 30.0 3.0 3.0 · 10−1 3.0 · 10−2

Based on the true solutions in Figure 9-1 for the presented four-point bend-

ing test set-up and the different sensor precisions listed in Table 9-2 we will

perform a sensitivity analysis in order to get a better understanding of the

inverse problem (8-30). Therefore, we will answer the following questions,

among others.

� What is the impact of the sensor position on the precision of E(x)?

� What is the impact of the measurement noise on the estimation of E(x)?

� What is the impact of the number of measurements on the estimation

of E(x)?

� What is the impact of the polynomial degree of E∗(x) on the estimation

of E(x)?

Since the sensitivity analysis in Section 9.2 is only based on discrete meas-

urements as observations, we will first of all also show numerically that both

integrated analyses based on discrete measurements and functions as observa-

tions are equivalent, which in principle guarantees the transferability of the

results.

9.1 discrete measurements vs. functions

As we have already seen in Section 8.2.4, the integrated analysis using dis-

crete measurements as observations, as described in Section 8.1, is in general

equivalent to the integrated analysis of functions as observations, presented

in Section 8.2. In the following we will also show this numerically and outline

the impact of different weight matrices Pu on the unknowns e.

Therefore, we consider the 24 equidistant and uncorrelated displacement meas-

urements of high precision listed in Table 9-3, with 8 measurements for each

of the three elements according to the beam specification listed in Table 9-1.

Table 9-3: 24 equidistant dis-
placement measurements of
high precision.

1st element

i xi Ldispi

[m] [µm]

1 0.0000 −0.6

2 0.3157 −125.2

3 0.6313 −251.2

4 0.9470 −371.4

5 1.2626 −484.5

6 1.5783 −589.0

7 1.8939 −683.0

8 2.2096 −763.4

2nd element

i xi Ldispi

[m] [µm]

9 2.5252 −829.7

10 2.8409 −878.5

11 3.1565 −912.9

12 3.4722 −927.9

13 3.7878 −930.1

14 4.1035 −911.3

15 4.4191 −879.3

16 4.7348 −829.4

3rd element

i xi Ldispi

[m] [µm]

17 5.0504 −765.4

18 5.3661 −683.7

19 5.6817 −587.4

20 5.9974 −481.8

21 6.3130 −370.6

22 6.6287 −249.9

23 6.9443 −124.7

24 7.2600 1.6
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Based on the solution (8-2) of the beam equation for the specification listed

in Table 9-1 we use these measurements to determine the unknown solution

e for a polynomial degree pe = 3 for each element. The standard deviation of

the 24 uncorrelated displacement measurements of high precision according to

Table 9-2 is σLdisp
= 0.93µm and choosing the same value for the theoretical

reference standard deviation σ0 results in an identity matrix for the weight

matrix Pdisp, see Section 2.1.2. Thus, e can now be determined in two ways:

� Using the 24 displacement measurements as observations according to

Section 8.1.

� Approximating the 24 displacement measurements and using the coeffi-

cients u as observations according to Section 8.2.

That both approaches generally lead to the same solution for e has already

been presented in Section 8.2.4 and will now be demonstrated numerically,

with focus on the impact of different stochastic models for Pu on the solution

e. Therefore, we consider the following four different adjustment problems in The detailed calculation of the
results in Table 9-4 can be found
in Appendix A.

order to estimate e:

1. Using the 24 displacement measurements as observations.

2. Using the coefficients u as observations and under consideration of cor-

relations ⇒ Pu = AT
φ Pdisp Aφ.

3. Using the coefficients u as observations and without consideration of

correlations ⇒ Pu = diag
(
AT

φ Pdisp Aφ

)
.

4. Using the coefficients u as observations and without explicit stochastic

model ⇒ Pu = I.

The results of the four different estimations for e are given in Table 9-4.

Estimated coefficients e in
[
GPa−1

]
according to

1. 2. 3. 4.

0.014 306 766 300 151 0.014 306 766 300 212 0.014 172 412 374 338 0.014 343 935 390 659

0.000 080 971 277 957 0.000 080 971 277 841 0.000 318 308 581 172 0.000 016 728 279 048

−0.000 183 237 594 773 −0.000 183 237 594 699 −0.000 354 862 279 467 −0.000 158 897 874 031

0.000 048 179 060 970 0.000 048 179 060 954 0.000 090 003 822 607 0.000 043 401 985 193

0.014 284 158 519 764 0.014 284 158 519 764 0.014 286 234 410 083 0.014 279 231 576 483

0.000 103 484 603 866 0.000 103 484 603 859 0.000 143 530 605 680 0.000 114 461 350 024

0.000 065 238 799 878 0.000 065 238 799 878 0.000 062 758 301 860 0.000 076 174 257 866

−0.000 006 766 328 528 −0.000 006 766 328 524 −0.000 020 400 392 386 −0.000 004 223 296 544

0.013 057 831 082 907 0.013 057 831 082 851 0.013 176 983 814 449 0.012 944 001 628 930

−0.002 246 518 605 775 −0.002 246 518 605 880 −0.002 018 366 780 776 −0.002 498 454 983 944

−0.001 034 809 078 185 −0.001 034 809 078 253 −0.000 855 944 393 495 −0.001182 342 165 776

−0.000 176 574 984 482 −0.000 176 574 984 498 −0.000 132 716 723 507 −0.000205 529 440 730

Table 9-4: Resulting coeffi-
cients e of the unknown solu-
tion based on the 24 displace-
ment measurements of high
precision listed in Table 9-3
for four different adjustments.
Differences in the values to
the 1. solution are shown in
red.

As already presented in Section 8.2.4, the integrated analysis with discrete

measurements as observations provides the same results as the integrated

analysis with functions as observations, in case the correct stochastic model

was considered. As the first two columns of Table 9-4 show, the coefficients

of both adjustments only differ in the range of ≈10−13, which mainly results

from the solution of the normal equation system. As soon as a simplified

stochastic model is applied and the correlations between the coefficients u are

neglected, the results already differ in the fourth decimal place, as can be seen

in the last two columns of Table 9-4. Nevertheless, these differences in the
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coefficients e only have a minor impact on the resulting function E(x) for the

elastic modulus, as can be seen in Figure 9-2.

Figure 9-2: Difference ∆E(x)
between the elastic modulus
E(x) resulting from the coeffi-
cients e of the inverse elastic
modulus E∗(x) in column 1
and 4 listed in Table 9-4.
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The difference ∆E(x) between the elastic modulus E(x) resulting from the

coefficients e of the inverse elastic modulus E∗(x) using the 24 displacement

measurements as observations and using the coefficients u as observations

without explicit stochastic model is depicted in Figure 9-2. Over almost the

entire beam this difference is below 1 GPa, only at the right bearing larger dif-

ferences up to ≈ 6 GPa occur. Consequently, an explicit stochastic model can

be omitted if no information about the variances and covariances of the obser-

vations are available. For further analyses, however, the impact of a simplified

stochastic model must be quantified and evaluated. That the largest deviation

occurs close to the bearing is not a coincidence and will be discussed in detail

in the following sections. As an integrated analysis with functions as obser-

vations is equivalent to an integrated analysis with discrete measurements as

observations we will only consider the latter case for further studies.

9.2 sensitivity analysis

To get in insight into the difficulties of the determination of E(x) from dis-Similar results were also partially
published in (Becker et al. 2015),
but based on a FEM as functional

model for the IA.

placement, inclination and strain measurements and to answer the previously

asked questions we perform a Monte Carlo simulation (MCS). The general

workflow for the applied MCS is shown in Programme 9-1.

Programme 9-1: Pseudo code
for Monte Carlo Simulation. 1: L̃type ← solving (7-29) for Ẽ(x) = 70 GPa

2: σLtype
← from Table 9-2

3: for i = 1 : 103 do

4: Ltype ← L̃type + N(0, σLtype
)

5: E∗(x)← solving (8-30)

6: E(x)← E∗(x) according to Section 3.3.1

7: end for

9.2.1 Impact of sensor position on the precision of E(x)

First of all, we will analyse the impact of the position and precision of a single

measurement on the unknown function E(x). Therefore, we consider E(x) as

a constant function and choose 726 equally spaced sensor positions xobsi along

the beam. For each position we perform a MCS and estimate E(x) and σE fromA minimal configuration.
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one single measurement, while the true function is given by Ẽ(x) = 70 GPa.

The result of the MCS for displacement measurements is shown in Figure 9-3.
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Figure 9-3: Logarithmic plot
of the standard deviation σE
of the estimated elastic mod-
ulus depending on the posi-
tion of a single displacement
measurement along the beam
and for low (blue), medium
(red) and high (yellow) sensor
precision.

As was to be expected, the determination of E(x) from displacement meas-

urements in the middle of beam yields the most precise results, while for

measurements close to the bearings the estimation E(x) is very inaccurate.

The blue line in Figure 9-3 represents the expected standard deviation σE

of the unknown elastic modulus for displacement measurements of low preci-

sion. In the middle of the beam we can expect to estimate an adjusted elastic

modulus of about E ≈ 70 GPa with a standard deviation σE ≈ 7 GPa, while

for measurements close to the bearings a meaningful result for the adjusted

elastic modulus E can not be expected. This is caused by the fact that dis-

placement measurements close to the bearings are very small in comparison to

their precision, which results in incredible high standard deviation of roughly

σE ≈ 105 GPa. For measurements of medium (red) and high (yellow) precision

this effect is only limited to positions very close to the bearings. In summary,

a poor signal-to-noise ratio gives a very poor result for the estimated elastic

modulus E. The result for the MCS using inclination and strain measurements

are depicted in Figure 9-4 and 9-5.
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Figure 9-4: Logarithmic plot
of the standard deviation
σE of the estimated elastic
modulus depending on the
position of a single inclination
measurement along the beam
and for low (blue), medium
(red) and high (yellow) sensor
precision.
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Figure 9-5: Logarithmic plot
of the standard deviation
σE of the estimated elastic
modulus depending on the
position of a single strain
measurement along the beam
and for low (blue), medium
(red) and high (yellow) sensor
precision.
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Based on the conclusion for displacement measurements and the true solution

depicted in Figure 9-1, we obtain similar results for inclination and strain

measurements. To determine the elastic modulus E(x) as precise as possible,

inclination should be measured at the bearings and strain in the middle of

the beam. The expected standard deviation σE for each type of measurement

observed at the best position and for low, medium and high precision are

summarized in Table 9-5.

Table 9-5: Mean standard
deviation σE for the estimated
elastic modulus E(x) in [GPa]
of the best position according
to Figure 9-3 – Figure 9-5
for each type of observation
and different sensor precisions
σLtype

σE in [GPa] for σLtype equal

low medium high

Displacement 6.768 0.7013 0.069 94

Inclination 6.844 0.7017 0.069 92

Strain 6.742 0.7026 0.070 34

As Table 9-5 clearly reveals, we can expect to estimate the elastic modulus

E with nearly the same precision for all three types of observations for each

sensor precision. These numerical studies were also carried out by (Wu 2020,

Chapter 5.1.4), while the numerical solution of the Euler-Bernoulli beam equa-

tion (7-1) is based on FEM, but with the same conclusion.

9.2.2 Impact of measurement noise on E(x)

To analyse the impact of measurement noise on the elastic modulus E(x),

the MCS is based on measurements of 10 sensors equally distributed over theIt is an overdetermined
adjustment problem with 10

observations, 12 unknowns and 6
constraints.

entire beam and a polynomial degree pe = 3 for the unknown solution Eζ ∗(x)

of each element. Five randomly chosen solutions for E(x) using displacement

measurements of low, medium and high precision are depicted in Figure 9-6.
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Figure 9-6: Derived E(x)
from the estimated E∗(x)
for 5 MCS using 10 displace-
ment measurements with
low (top), medium (middle)
and high (bottom) precision.
The horizontal red line in
all plots is the true function
Ẽ(x) = 70 GPa.

The top plot in Figure 9-6 shows five random solutions for E(x) derived from

the estimation E∗(x) using 10 displacement measurements of low precision,

while the horizontal red line is the true function Ẽ(x) = 70 GPa we are looking

for. The vertical dotted lines are indicating poles due to roots in the solution

E∗(x). As one can easily see, the solutions for E(x) are meaningless and can

take any arbitrary numerical value and is not at all identical with the true

function Ẽ(x). Different noise in the measurement usually results in a com-

pletely different solution for E(x). The result for displacement measurements

of medium precision (middle) is much better and only yields a poor approx-

imation of E(x) close to the bearings. For displacement measurements of high

precision (bottom) the result is quite satisfying and the true function Ẽ(x)

can usually be estimated within several GPa, only revealing larger deviations

close to the bearings. The result for inclination measurements is illustrated

in Figure 9-7.
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Figure 9-7: Derived E(x) from
the estimated E∗(x) for 5 MCS

using 10 inclination measure-
ments with low (top), medium
(middle) and high (bottom)
precision. The horizontal red
line in all plots is the true
function Ẽ(x) = 70 GPa. −400
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As for displacements, the solutions for E(x) based on inclination measurements

of low precision in Figure 9-7 (top) are generally meaningless, while the solu-

tions for medium (middle) and high (bottom) precision are quite satisfying,

with often only minor deviations at the bearings. In general, the results seem

to be better for inclination than for displacement measurements. For strain

measurements the results are even better and are depicted in Figure 9-8.
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Figure 9-8: Derived E(x) from
the estimated E∗(x) for 5
MCS using 10 strain measure-
ments with low (top), medium
(middle) and high (bottom)
precision. The horizontal red
line in all plots is the true
function Ẽ(x) = 70 GPa.

Even for strain measurements of low precision in Figure 9-8 (top), the solutions

between the bearings are reasonable and even quite good for medium precision

(middle). The result for strain measurements of high precision are really good

and the true function Ẽ(x) can usually be approximated within 1 GPa.

In Section 9.2.1 we introduced E(x) as a constant value and we could estimate

this value with nearly the same precision for all three types of observations.

But now E(x) is a polynomial of low degree and not a constant function

any more. Based on Figure 9-6 – 9-8, now it really matters which type of

observations we chose in order to estimate E(x) as precisely as possible. To

get a better insight on how precise the function E(x) can be approximated for

each type of measurement, the mean standard deviation σE of all MCS for low,

medium and high precision are listed in Table 9-6.

Mean σE in [GPa] for σLtype

low medium high

Displacement 11 897.63 131.39 7.59

Inclination 7023.55 9.46 0.94

Strain 26.32 2.45 0.24

Table 9-6: Mean standard
deviation σE for the elastic
modulus E(x) for each type
of observation and different
sensor precisions σLtype . Num-
bers in red are only rough
values, as σE can be extremely
large for some MCS.

Table 9-6 clearly confirms that the elastic modulus E(x) can be determined

most precisely by strain measurements. Even for displacement measurements

of high precision the result is three times worse than for strain measurements

of medium precision. That the solutions for E(x) by strain measurements are

most precise is no surprise, because strain is directly related to the elastic

modulus. In contrast to inclination and displacement measurements, which
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are linked to the elastic modulus by their derivatives. For these studies strain

measurements are the clear winner before inclination and displacement meas-

urements.

9.2.3 Impact of number of measurements on E(x)

In the previous section we gained an impression on the expected precision of

the elastic modulus E(x) in dependence of the measurement noise, while the

approximation is only based on 10 measurements. In the following we will ana-

lyse to what extent the approximation can be improved if more observations

are available. Therefore, we will iteratively increase the number of measure-

ments from 10 to 500 and for each iteration we distribute the sensors equally

over the entire beam. As before, we choose a polynomial degree pe = 3 for the

unknown solution Eζ ∗(x) and perform a MCS for each type and every number

of measurements. However, we only consider medium sensor precision, as the

conclusion for low and high precision is similar. The result is illustrated in

Figure 9-9.

Figure 9-9: Logarithmic plot
of the standard deviation σE
of the derived elastic mod-
ulus E(x) for displacement
(blue), inclination (red) and
strain (yellow) measurements
depending on the number of
measurements and for me-
dium sensor precision
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Based on graphs in Figure 9-9, we can generally conclude that the elastic

modulus E(x) can be determined more precisely if more measurements are

available. But only to a certain extent, since the gain in accuracy must be

obtained by more and more observations, as the decreasing curves indicate.

The approximation will only be slightly more precise for 200 than for 100
measurements.

9.2.4 Impact of the polynomial degree of E∗(x) on E(x)

So far we have gained an insight into the impact of noise and different numbers

of sensors on the approximation E(x). However, the polynomial degree pe also

has a significant influence on the approximation, which will be demonstrated

in the following. For each type of measurements we always use the same 100
equally distributed observations of high precision and determine E(x) for a

different polynomial degrees pe for the unknown solution Eζ ∗(x). The resulting

approximations for displacement measurements are shown in Figure 9-10.
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Figure 9-10: Derived E(x)
using 100 displacement meas-
urements of high precision for
7 different polynomial degrees
pe for the unknown solution
Eζ ∗(x).

The blue curve for pe = 3 in Figure 9-10 approximates the true function Ẽ(x)

within less than 1 GPa, while we can already recognize larger deviations at

the bearings for pe = 4 (red). The approximation for pe = 5 (yellow) already

reveals a pole (dotted line) at the right bearing for x = 7.26 m. A further It is perhaps worth mentioning
that the target function Ω really
becomes smaller with increasing
polynomial degree.

increase of the polynomial degree pe leads to a more unstable solution for

the unknown solution E(x). The condition number of the extended normal

matrix in (8-30) increases and is nearly ≈ 3 · 1014 for pe = 9. The solution

of E(x) for larger polynomial degree are useless although we have used 100
measurements of high precision. The choice of equidistant measurement points

is not causing the numerical instabilities, it also exists even if we would have

chosen Chebyshev points. Besides the functional model described by (8-30)

also the constraints (8-29) having a huge impact on the condition number. The Rescaling each row in Cconti

improves the condition number.result for inclination measurements of high precision is depicted in Figure 9-11

and is slightly better than for displacements.
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Figure 9-11: Derived E(x)
using 100 inclination measure-
ments of high precision for 7
different polynomial degrees
pe for the unknown solution
Eζ ∗(x).

As shown in Figure 9-11, the influence of the polynomial degree pe on the

approximation of E(x) for inclination measurements is not as detrimental as
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for displacements. The approximation only becomes unstable for a polynomial

degree pe ≥ 20. However, poles can also occur at the bearings for smaller

polynomial degrees, as can be seen on the violet curve for pe = 12. The

impact of the polynomial degree pe on the unknown solution E(x) using strain

measurements of high precision is somewhat lower and is illustrated in Figure

9-12.

Figure 9-12: Derived E(x) us-
ing 100 strain measurements
of high precision for 7 differ-
ent polynomial degrees pe for
the unknown solution Eζ ∗(x).
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The determination of the approximation E(x) using strain measurements of

high precision becomes unstable for a polynomial degree pe ≥ 27. As before,

poles can also occur at the bearings for smaller polynomial degrees. In general,

the resulting approximation is much smoother in between the bearings than for

displacement or inclination measurements. Once again, for these studies strain

measurements are the clear winner followed by inclination and displacement.

However, Figure 9-12 also reveals a problem that was already apparent in

Figure 9-11 but not really in Figure 9-10. The approximation for pe = 27Perhaps these peaks are also
caused by the Gibbs phenomenon,

while the first derivative of the
bending moment M(x) has two

jump discontinuities at the inner
nodes and also the solution u(x) is

only C2 continuous.

shows two larger peaks at the two inner nodes for x ≈ 2.5 m and x ≈ 4.8 m
corresponding to the points where the force is applied. This is caused by

the introduced constraints (8-29) for a C2 continuous approximation of E(x),

which can have a unfavourable impact on the solution, that will be discussed

in the following section.

9.2.5 Analysis of Residuals

In general, the estimation of E(x) from measurements is equivalent to the prob-

lem of finding the best fit polynomial to a set of data points. Consequently,Polynomial regression.

there must exist a polynomial E(x) interpolating the measurements, resulting

in v = 0. The impact of the constraints (8-29) will be shown on the resulting

interpolating polynomial for E(x) with and without constraints. Therefore,

we consider 15 equidistant displacement measurements of high precision, ex-

cluding the bearings. This results in 5 observations for each element. The

degree of the interpolating polynomial without continuity at the inner nodes

is pe = 4 and pe = 6 for the C2 continuous interpolation. Figure 9-13 shows
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how the constraints (8-29) for C2 continuity at the inner nodes only can have

minor impact on the solution.
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Figure 9-13: Small impact
of the constraints. Non-
continuous (blue) and C2

continuous (red) interpolat-
ing polynomial for E(x) based
in the same 15 displacement
measurements of high preci-
sion.

Both curves in Figure 9-13 are resulting in residuals for the 15 displacement

measurements which are zero within machine precision. The largest deviations Ω is always a bit smaller for the
non-continuous approximation.between both curves occur at the two inner nodes, but in general they are

quite similar. The introduced constraints only have a small impact on the

estimation of the polynomial and actually enforce only what they’re supposed

to, namely a C2 continuous approximation. However, this is not often the

case and the constraints usually have a large impact on the approximation as

illustrated by Figure 9-14.
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Figure 9-14: Large impact
of the constraints. Non-
continuous (blue) and C2

continuous (red) interpolat-
ing polynomial for E(x) based
on the same 15 displacement
measurements of high preci-
sion.

While for the element in the middle in Figure 9-14 both curves are quite

similar, which is not the case for the first and last element and both curves

are very different. Quite often the C2 continuous approximation is completely

different from the non-continuous one. Nevertheless, both curves in Figure

9-14 are resulting in residuals for the 15 displacement measurements which

are zero within machine precision. Furthermore, both curves for the elastic

modulus E(x) yield almost the same solution for the bending line u(x), with

deviations in µm range, as depicted in Figure 9-15.
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Figure 9-15: Difference ∆u(x)
between the resulting bend-
ing line u(x) from the non-
continuous and C2 continuous
interpolating polynomial for
E(x) from Figure 9-14. The
roots of ∆u(x) are indicated
by red dots.
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As Figure 9-15 shows, the difference between u(x) based on the non-continuous

and C2 continuous elastic modulus E(x) from Figure 9-14 are within ≈ 2.5µm
which is about three times the standard deviation of the displacement meas-

urements. The difference ∆u(x) has a total of 20 roots (red dots) where 15
exactly match the position of the measurements. Unfortunately, the approx-

imation for E(x) can be extremely different and still describe nearly the same

bending line u(x).

9.2.6 Summary and Conclusion

As we have seen from this sensitivity analysis, the accuracy of the estimated

elastic modulus E(x) depends on several factors, with the measurement noise

having the largest impact. The determination of E(x) based in displacement

measurements is a highly unstable adjustment problem. Small differences in

the measured values usually yield a completely different solution for E(x). So

far, it seems that strain measurements are best suited for the determination

of E(x), followed by inclination measurement and displacements yield by far

the worst result. Due to the curve of the internal bending moment depicted

in Figure 7-2, however, the larger oscillations of E(x) always occur at the

bearings, regardless of which measurement type, sensor precision or how many

measurements we use. In the best case, this indeterminacy at the bearings

has only a small influence on the estimation of E(x), but it can also completely

spoil it.

Besides the functional model there are also problems with the elementwise

approximation using polynomials as shown in the previous section. The in-

troduced constraints for a C2 continuous approximation of E(x) can have a

detrimental impact on the solution which is additionally magnified by the os-

cillatory behaviour of polynomials. In addition to the aforementioned Gibbs

phenomenon, it can be assumed that we also face the Runge phenomenon

under certain circumstances. In this context, the number of measurement

points, point distribution and polynomial degree pe play an important role.

However, using Chebyshev points as measurement positions has not signific-

antly improved the results of the numerical studies and has therefore not been

presented in this chapter.

9.3 damage analysis

In the following we will discuss the impact of damage on the measurements in

order to gain an insight into the extent to which damage can be reconstruc-

ted from measurements. Therefore, we have to clarify how damage can be

modelled in the particular case. As already mentioned in Section 7.2, dam-

ages caused by changes in the material or geometry are represented by the

elastic modulus E(x). However, it is usually easier to assess the extent of

damage caused by geometry changes, such as a cut in the beam, than by ma-

terial deterioration. Therefore, the cubic polynomial in Figure 9-16 provides

a rough idea of the relationship between damage caused by a cut or material

deterioration represented by the elastic modulus E(x).
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Figure 9-16: Relationship
between damage caused by a
cut or material deterioration.

As the red arrow in Figure 9-16 illustrates, damage caused by a cut with a

depth of 20 % of the beam height results in the same deformation as a reduced Just as a rule of thumb.

elastic modulus of E ≈ 35 GPa over the same width as the cut. For the current

physical model shown in Section 7.1 and the specification of the four-point

bending set-up in Table 9-1, a huge cut with a width of 20 cm and a depth of

7.2 cm can be described mathematically by the elastic modulus E(x) illustrated

by the blue curve in Figure 9-17.
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Figure 9-17: Elastic modulus
E(x) representing a huge cut
with a width of 20 cm and a
depth of 7.2 cm in blue and its
approximation in red.

As can be clearly seen in Figure 9-17, the blue curve for E(x) has two jump

discontinuities which hardly can be approximated by Chebyshev polynomials

without introducing new nodes at these two positions. For a proper approxim-

ation of the blue curve we would need a very high polynomial degree and for

this reason we want to approximate damage by a smooth function as shown

by the red curve in Figure 9-17. Consequently, damage will be represented by

the contrived function

D(x) = hD exp
(
− wD(x− xD)2), (9-1)

with hD being the height, wD the width and xD the position of the damage. In

the following we will clarify the impact of such damage on the three different

types of measurements.

9.3.1 Impact of damage on the measurements

Let us consider the huge damage represented by the red line in Figure 9-17,

which is given by

ED(x) = 70− 40 exp
(
− 500(x− 3.63)2). (9-2)

The impact of this damage on displacements is illustrated in Figure 9-18.
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Figure 9-18: Displacements
u(x) without damage for
E(x) = 70 GPa in blue and
with damage for ED(x) given
by (9-2) in red (left). Dif-
ference ∆u(x) between dis-
placements with and without
damage (right).
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As shown in Figure 9-18, a huge cut in the middle of the beam at x = 3.63 m
simulated by (9-2) has only a small impact on the displacements. The largest

deviations can be found exactly where the damage is located and are in the

range of ≈ 25µm (right), which is about 2.6 % of the maximum displacement

without damage. With increasing distance from the position of the damage,

the difference ∆u(x) decreases linearly. The impact of damage given by (9-2)

on the inclination is depicted in Figure 9-19.

Figure 9-19: Inclination
α(x) without damage for
E(x) = 70 GPa in blue and
with damage for ED(x) given
by (9-2) in red (left). Differ-
ence ∆α(x) between inclina-
tion with and without damage
(right).
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As can be seen in Figure 9-19 (left), the impact of the huge cut in the middle

of the beam on the inclination is also quite small. In contrast to the dis-

placements, the largest deviations ∆α(x) of ≈ 0.4 mgon do not occur at the

location of the damage, but are constant along the beam outside the damaged

area. The largest deviations are only about 1.7 % of the maximum inclination

without damage. However, the position of the damage can be clearly seen in

the curve by the sudden change of sign in Figure 9-19 (right). For strain, the

situation is quite different, as Figure 9-20 reveals.

Figure 9-20: Strain ε(x)
without damage for E(x) =
70 GPa in blue and with
damage for ED(x) given by
(9-2) in red (left). Difference
∆ε(x) between strain with and
without damage (right).
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Due to the functional relationship (7-1) between strain and E(x), it is not

surprising that ∆ε(x) in Figure 9-20 (right) represents the damage itself. The

largest deviations are in the range of ≈ 40µstrain (right), which is about 134 %
of the maximum strain without damage. As we have seen, damage affects
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displacements and inclinations over the entire beam, however only to a small

extent. In contrast to strain, which only changes locally to damage, but

on a large scale. Therefore, if only a few discrete strain measurements are

available, we can only detect and localize damage if it occurs in the vicinity

of the measurement position. Otherwise, we will not be able to detect any

damage from these strain measurements.

9.3.2 Ambiguities

As we have seen in the previous section, the huge damage represented by (9-2)

has only a minor impact on the displacement and inclination, but a large

one on strain, however, only locally. Therefore, and because usually only

discrete measurements are available, another problem arises. In Section 9.3

we have decided that we simulate damage by the smooth function (9-1) and the

magnitude of a damage depends on the height hD and width wD representing

for example the depth and width of a cut. However, different combinations

of these two parameters lead to a similar magnitude of the damage and thus

to a similar impact on the measurements. To illustrate this issue, we consider

the following four different types of damages EDi (x)

ED1 (x) = 70− 9.2550 exp
(
− 10(x− 3.63)2) ,

ED2 (x) = 70− 18.2955 exp
(
− 50(x− 3.63)2) ,

ED3 (x) = 70− 23.9015 exp
(
− 100(x− 3.63)2) ,

ED4 (x) = 70− 32.7145 exp
(
− 250(x− 3.63)2) , (9-3)

which are also depicted in Figure 9-21.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
20

40

60

x [m]

E
(x
)
[G

Pa
] ED1 (x)

ED2 (x)
ED3 (x)
ED4 (x)
ED(x)

Figure 9-21: Different dam-
ages of similar magnitude.

Although these four damages clearly differ, they still result in almost the

same deformation of the beam and thus to almost the same displacements At this point we disregard strain,
as damage has a direct impact on
it anyway.

and inclinations. The differences ∆u(x) between the displacements for damage

ED(x) from (9-2) and for damages EDi (x) from (9-3) are shown in Figure 9-22.
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Figure 9-22: Differences ∆u(x)
between displacements for
damage ED(x) and for dam-
ages EDi (x).
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As Figure 9-22 clearly reveals, the displacements derived for damage ED(x)

and EDi (x) hardly differ from each other over almost the entire beam. Outside

the damaged area these differences can be in the nm range or less and are

usually smaller than 1µm within this area. Thus, deviations can occur which

correspond to less than 0.1 % of the maximum displacement of the beam. The

situation is slightly different for inclination, as can be seen in Figure 9-23.

Figure 9-23: Differences ∆α(x)
between inclinations resulting
for damage ED(x) from (9-2)
and for damages EDi (x) from
(9-3).
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Although the inclination derived for damage ED(x) and EDi (x) also hardly

differs outside the damaged area, differences of up to 0.4 mgon can occur within

this area, which already represents about 1.7 % of the maximum inclination.

Nevertheless, no matter for which type of observation, damage can only be

quantified in this case if a sufficient number of measurements with appropriate

accuracy are available within the damaged area.

9.3.3 Impact of the position of damage on the measurements

Moreover, we want to analyse to what extent the position of a damage affects

the measurements. Therefore we move the position xD in (9-1) for the damage

in (9-2) along the beam, calculate the difference ∆(x) as shown in Figure 9-18

– 9-20 (right) and determine the maximum absolute value of this difference.

The resulting impact of the damage position on displacements is shown in

Figure 9-24.

Figure 9-24: Maximum ab-
solute difference ∆umax(xD)
between displacements with
and without damage as a
function of the damage pos-
ition xD ∈ [0, l] in red. Dif-
ference ∆u(x) from Figure
9-18 (right) in blue and for
xD = [0.5, 1, 1.5, 2, 2.5, 3, 3.5] in
grey.
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The blue curve in Figure 9-24 shows the difference ∆u(x) from Figure 9-18

(right), where the damage is exactly in the middle of the beam. The grey

curves are illustrating the resulting differences ∆u(x) for the same damage
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but for different positions xD = [0.5, 1, 1.5, 2, 2.5, 3, 3.5]. As already mentioned,

the maximum impact of a damage on displacements always occurs exactly at

the position of the damage and if we draw more such curves for additional

damage positions xD ∈ [0, l] and connect their peaks with each other we obtain

the red curve in Figure 9-24. In general, damage in exactly the middle of the

beam has the largest impact on displacements than at any other position

and decreases only slightly within the two points where the force is applied.

Outside these two points for xD < 2.42 and xD > 4.84, however, the impact of

a damage decreases rapidly the closer it is to the two bearings. In a similar

way, the impact of the damage position on the inclination was determined and

is depicted in Figure 9-25.
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Figure 9-25: Maximum ab-
solute difference ∆αmax(xD)
between inclinations with
and without damage as a
function of the damage pos-
ition xD ∈ [0, l] in red. Dif-
ference ∆α(x) from Figure
9-19 (right) in blue and for
xD = [0.5, 1, 1.5, 2, 2.5, 3, 3.5] in
grey.

As before, the blue curve in Figure 9-25 shows the difference ∆α(x) from Figure

9-19 (right) and the grey curves are the resulting differences ∆α(x) for damages

at xD = [0.5, 1, 1.5, 2, 2.5, 3, 3.5]. The red curve in Figure 9-25 represents the

impact ∆αmax(xD) of a damage on the inclination in accordance to its position

xD. In contrast to displacements, the largest impact on the inclination occurs

exactly at the two points where the force is applied. In between these two

points the impact drops a bit and also decreases almost linearly towards the

bearings and thus by far not as fast as for the displacements. Due to the

functional relationship (7-1) between strain and E(x) the impact of the damage

position on strain corresponds to the bending moment from Figure 7-2. For

illustrative reasons, however, the maximum impact of the damage position is

shown with negative signs in Figure 9-26.
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Figure 9-26: Maximum ab-
solute difference ∆εmax(xD)
between strain with and
without damage as a func-
tion of the damage posi-
tion xD ∈ [0, l] with neg-
ative signs in red. Differ-
ence ∆ε(x) from Figure 9-
20 (right) in blue and for
xD = [0.5, 1, 1.5, 2, 2.5, 3, 3.5]
in grey.
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As already mentioned, the red curve in Figure 9-26 represents the impact

∆εmax(xD) of the damage position on the strain measurements with negative

signs and corresponds to the curve of the internal bending moment in Figure

7-2. Therefore, ∆εmax(xD) is constant between the two points at which the

force is applied and decreases linearly towards the bearings. In general, the

impact of the position of a damage outside the two points where the force is

applied is worst for displacements and somewhat more favourable for inclina-

tions because it decreases slightly more slowly than linearly. Within these two

points, the impact for displacements and inclination changes only marginally.

9.3.4 Impact of the magnitude of damage on the measurements

Another aspect that we would like to clarify briefly is the relationship between

the magnitude of a damage and its maximum absolute impact on the measure-

ments. As discussed in Section 9.3.2, the magnitude of the simulated damage

(9-1) depends on the height hD and width wD, where different combinations of

these two parameters can lead to a similar magnitude of the damage. Hence,

we will now consider wD as constant and describe the magnitude only by hD.

For strain, the impact can simply be derived from Equation (7-5) and with

(9-1) it reads for x = xD

∆εmax(hD) = − M(x)

I︸ ︷︷ ︸
=const.

1
70− hD exp

(
− wD(x− xD)2)︸ ︷︷ ︸

=const.

(9-4)

and is also illustrated in Figure 9-27, where, for reasons of comparability, it

is shown relative to the impact for the maximum magnitude of hD = 60.
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Figure 9-27: Impact of the
magnitude of damage hD on
the maximum absolute differ-
ence for strain ∆εmax(hD) in
blue and for displacements
∆umax(hD) and inclination
∆αmax(hD) in red.

The blue curve in Figure 9-27 shows the relative impact of the magnitude

of damage on the maximum absolute difference for strain ∆εmax(hD). For

small damages, this impact is almost linear, whereas for larger damages it

rapidly increases. In addition, the impact of the magnitude of damage on the

maximum absolute difference for displacements ∆umax(hD) and inclinations

∆αmax(hD) was determined numerically. Since the relative impact for both

types of measurements are almost the same, both are represented by the red

line and differ only slightly from the relative impact for strain.

9.3.5 Summary and Conclusion

As we have seen from this study, the impact of damage on the displacements

and inclination is unfortunately rather small. Even the huge cut with a width

of 20 cm and a depth of 7.2 cm, represented by (9-2), has only a small impact

of about ≈ 2 % on the displacements and inclinations and is much lower for

small damages. Due to the functional relationship (7-1) between strain and

E(x), damage has a direct and large impact on strain measurements, however

only locally. The main conclusions are summarised in Table 9-7.

Displacements Inclination Strain

Impact small small large

Indicator global global local

Table 9-7: Summary of the
studies on the impact of dam-
age on displacements, inclina-
tions and strains.

For a damage detection and localisation via MeMoS it is of course useful if

damage has a large and global impact on the measurements, unfortunately

none of the three types has this property, as can be seen in Table 9-7. However,

the results from the studies in Sections 9.2 and 9.3 clearly favour strains for

damage detection and localisation due to existing sensors such as FOS, see

e.g. (Lienhart 2007, p. 36 ff.), (Lopez-Higuera et al. 2011) or (Wu 2020).

However, scattered strain measurements are quite useless if the damage is not

in the vicinity of a measuring point.
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In the numerical studies in Chapter 9 we have seen which problems occur in

the estimation of E(x) and that even huge damages have hardly any influence

on the displacements and inclinations. Except for almost continuous strain

measurements, a structural analysis via MeMoS does not seem to be very prom-

ising at first glance. To show to which extent damage can still be detected

and localized by MeMoS, we first present some tools.

Since for the presented four-point bending test damage has a direct and local

impact on strain measurements, a structural analysis with strain corresponds

in principle to a conventional deformation analysis in geodesy. Accordingly,

existing approaches for deformation analysis of point clouds, such as (Schill

2018) or (Wujanz 2016), can also be used for strain measurement using e.g.

FOS. As this is another challenge and since no strain measurements are avail-

able for the experimental studies, the following tools were essentially designed

for displacement and inclination measurements only. However, this does not

generally mean that these tools are not suitable for analysing strain measure-

ments. But, in general, it is recommended to use a different methodological

approach for the damage analysis of strain measurements, as also the results

of the numerical studies in Section 10.2 will illustrate.

10.1 toolbox

For damage detection and localisation via MeMoS, some tools have been de-

veloped. Several of them are based on statistical tests and methods known

from the literature and some were developed particularly for this application.

These tools are referred to as

� Parameter Sifter (PS),

� Global Identifier (GI),

� Local Indicator (LI),

� Local Smoother (LS),

� Damage Sniffer (DS),

� Damage Modeller (DM)

and are described in the following sections.

10.1.1 Parameter Sifter

As a result of the Integrated Analysis (IA) from Chapter 8, the unknown

parameters ej and their standard deviations sej are available, see Chapter 2.

Based on these values, the Parameter Sifter (PS) iteratively removes unknown

181
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parameters from the IA, which are not significant different from zero. Thus,

the null hypothesis reads

H0 : |ej| = 0 (10-1)

and the alternative hypothesis results in

HA : |ej| > 0 . (10-2)

The test statistic for each unknown parameter ej is given byt–test

tj =
|ej|
sej

(10-3)

and the critical value of the t–distribution for a degree of freedom f and error

level α is denoted by t f ,α. The null hypothesis H0 will be rejected in favour of

the alternative hypothesis HA if

tj > t f ,α . (10-4)

This iterative removal of the unknown parameters tends to result in a highly

smoothed solution for the unknown function, which in some cases even fails

to reveal larger damage. To reduce this problem an error level of α = 1 %
was chosen and f corresponds to the redundancy of the adjustment problem

within the Integrated Analysis. The general workflow of the PS is shown in

Programme 10-1.

Programme 10-1: Pseudo code
for the Parameter Sifter (PS). 1: ej and sej ← from IA according to Chapter 8.

2: tj =
|ej |
sej

∀j

3: while min
(
tj
)
< t f ,α do

4: ek ← parameter with smallest tj value.

5: ej and sej ← from IA without ek.

6: tj =
|ej |
sej

∀j

7: end while

The elimination of all non-significant parameters at once is not effective, since

this procedure neglects the correlations between the unknown parameters and

thus leads to false results. If a repeated solution of the normal equation sys-

tem needs to be avoided, it is recommended to use the approach according to

(Schwintzer 1984). Thereby, the significance of all parameters ej is determ-

ined under consideration of the correlations, but without solving the normal

equation system again.

10.1.2 Global Identifier

The Global Identifier (GI) is based on the well known congruency test used

for the deformation analysis of geodetic networks, see e.g. (Heunecke et al.In this context, deformation can
also be considered as damage. 2013, Chapter 11) or (Niemeier 2008, Chapter 13). Thereby, the solutions of

two epochs are compared by a statistical test in order to determine whether

deformation is present or not. However, it turned out that a direct comparisonFor further information about
type-I and type-II error please

refer to standard literature, such
as (Gentle 2009, p. 52 ff.) or

(Dekking et al. 2005, p. 377 ff.).

of the estimated parameters e of two epochs by a congruency test is not

feasible, as the type-I error is much larger than the chosen error level α. Both,

the type-I and type-II error can be up to 50 % or more, so that a reliable
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damage detection is no longer possible. By transferring the congruency test to

continuous functions, much more reliable results could be achieved. Therefore,

we will now consider the solution of the Integrated Analysis as a continuous

function, which of course is always represented by its Chebyshev coefficients.

Based on the solutions of two epochs

Epoch I:

Epoch II:

EI(x) , sEI
(x) , s2

0I , fI , ΩI

EII(x) , sEII
(x) , s2

0II , fII , ΩII ,
(10-5)

and in case

E{s2
0I} = E{s2

0II} , (10-6)

with E{·} being the expectation operator, a common empirical variance factor

for both epochs can be introduced and results in

s2
0 =

ΩI + ΩII

fI + fII
. (10-7)

The null hypothesis of the statistical test for the GI reads

H0 : E{Θ2} = E{s2
0} (10-8)

with

Θ2 =
1
l

l∫
0

(
EI(x)− EII(x)

)2

q2
EI

(x) + q2
EII

(x)
dx (10-9)

and

q2
EI

(x) =
s2

EI
(x)

s2
0I

,

q2
EII

(x) =
s2

EII
(x)

s2
0II

. (10-10)

Hence, the alternative hypothesis is given by

HA : E{Θ2} > E{s2
0} (10-11)

and the test statistics results in F–test

F =
Θ2

s2
0

. (10-12)

The null hypothesis H0 will be rejected in favour of the alternative hypothesis

HA if So far, the assumption that the
integrated quantity Θ2 follows the
χ2 distribution is based only on
empirical studies and has not yet
been proven methodically.

F > Ff1, f2,α , (10-13)

with f1 = 1 and f2 = ∞. Based on numerical studies an error level α = 5 %
was chosen and the critical value yields F1,∞,0.05 ≈ 3.8.

10.1.3 Local Indicator

The Local Indicator (LI) compares the solution of two epochs by a statistical

test to determine in which regions they differ significantly from each other. As

for the Global Identifier (GI) we will also consider the solution of the Integrated

Analysis as a continuous function. Given are the solutions of two epochs

Epoch I:

Epoch II:

EI(x) , sEI
(x)

EII(x) , sEII
(x)

(10-14)
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and the null hypothesis reads

H0 : EI(x)− EI(x) = 0 . (10-15)

Hence, the alternative hypothesis yields

HA : EI(x)− EI(x) 6= 0 . (10-16)

In this case, the test statistic is a function of x and is given bycontinuous t-test

t(x) =
EI(x)− EII(x)√
s2

EI
(x) + s2

EII
(x)

. (10-17)

Numerical investigations have shown, however, that t(x) does not follow the t–
distribution and therefore a new critical value needs to be determined, whichThe new critical value has been

determined by an Monte Carlo
simulation (MCS).

apparently depends on the type of measurement and configuration. For 30
equidistant displacement measurements of high precision and an error level

α = 5 %, the critical value results in tcritical = ±3.5. The null hypothesis H0

will be rejected in favour of the alternative hypothesis HA for certain positions

x if

t(x) < tcritical or t(x) > tcritical . (10-18)

To illustrate this in more detail, we will consider two arbitrary solutions for

E(x), which are shown in Figure 10-1.

Figure 10-1: Two solutions for
E(x) (solid line) and their cor-
responding 3σ error bounds
(dashed line) determined
by their standard deviation
sE(x).
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Based on these two solutions and their standard deviations, which are shown

as 3σ error bounds in the Figure 10-1 (dashed line), we want to analyse where

both solutions may differ significantly from each other or not. Therefore we

calculate the test statistic t(x) according to Equation (10-17), which is shown

in Figure 10-2.

Figure 10-2: Local Indic-
ator in blue for the two
solutions depicted in Figure
10-1 according to Equation
(10-17). The critical value
tcritical = ±3.5 in red.
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As can be seen in the Figure 10-2, both functions differ significantly from

each other within x ∈ [3.1, 4], since t(x) is smaller than the critical value in

this range. In all other regions it can be assumed that the difference between

both solutions is caused by the measurement noise.

10.1.4 Local Smoother

Due to the problems described in the numerical studies in Chapter 9, it is

sometimes advantageous to stabilize the solution and, for instance, to reduce

the oscillations occurring at the bearings. For the Local Smoother (LS) this

is done by introducing the regularisation term

wreg

∫ l

0

(
W(x)

dβE∗(x)

dxβ

)2

dx , (10-19)

whereby the areas in which the unknown function E∗(x) is smoothed are spe-

cified by the weighting function W(x) and β defines the type of smoothing,

where with β = 1 the slope and β = 2 the curvature of E∗(x) is reduced. The

intensity of smoothing is regulated by wreg. Before we embed this term into

the Integrated Analysis, we write (10-19) in matrix notation, in which both

functions E∗(x) and W(x) are represented by their Chebyshev coefficients e
and w. According to Section 5.1.2 and 7.3 the regularisation term in the

Chebyshev basis reads

wreg

∫ 1

−1

(
φML e

)2 dt . (10-20)

The local smoothing of the unknown function E∗(x) is done by adding (10-20)

to (2-12) and minimizing the following target function

Ω(e) = vTP v + wreg

∫ 1

−1

(
φML e

)2 dt→ min . (10-21)

Analogous to Section 2.3, the following normal equation system results for the

target function (10-21) (
N + wregNreg

)
e = n , (10-22)

with

Nreg = LTMT
∫ 1

−1
φTφ dt ML ,

= LTMT Nφ ML , (10-23)

and since we have 3 elements the matrices in (10-23) are as follows

L =


J1 βLβ

x 0 0

0 J2 βLβ
x 0

0 0 J3 βLβ
x

 , (10-24)

M =


M[ w1 ] 0 0

0 M[ w2 ] 0

0 0 M[ w3 ]

 (10-25)

and

Nφ =


N1

φ 0 0

0 N2
φ 0

0 0 N3
φ

 , (10-26)
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with Nζ
φ being the same normal matrix as in (5-68). To reduce the oscillations

at the bearings, the following contrived weighting function W(x) has been used

W(x) = exp
(
− 50x2)+ exp

(
− 50(x− l)2) , (10-27)

which is also depicted in Figure 10-3.

Figure 10-3: Weighting func-
tion W(x) to reduce the oscil-
lations at the bearings.
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The weighting function (10-27) shown in Figure 10-3 is non-zero only in theAll weighting functions were
chosen in such a way that they
can be approximated by a few
parameters in the Chebyshev

basis and still fulfil their objective.

vicinity of the bearings, which ensures that the unknown function E∗(x) is

only smoothed in these areas and nowhere else.

10.1.5 Damage Sniffer

Before we have a closer look at the Damage Sniffer (DS), let us first consider

the following example depicted in Figure 10-4.

Figure 10-4: Derived E(x)
from the estimated E∗(x) for
polynomial degree pe = 6
using the 30 displacement
measurements of high pre-
cision listed in Table B-1 in
blue. The true damage ED(x)
given by (9-2) in red. The red
dots are the extrema of E(x).
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The red curve in Figure 10-4 is the true damage (9-2) we want to determine,

with a clear peak at l/2. For this damage we derived 30 equidistant displace-

ment measurements of high precision, which are listed in Table B-1 and based

on these measurements we estimated E∗(x). The blue curve shows the solution

for E(x) derived from the estimation E∗(x) and it is easy to see that the blue

curve is by far not similar to the red curve. The true damage (9-2) could only

be derived from the measurements insufficiently. Out of a total of 11 extrema

(red dots) of the blue curve, the local minimum 6 corresponds most closely

to the true position of the damage. Unfortunately, this is only recognizable

in direct comparison with the true damage, which is not possible for real ap-

plications. However, based on numerical studies and the conclusions from

Chapter 9, it can be assumed that the local minimum 6 is mainly resulting

from the damage and that all others are only due to the measurement noise,

the indeterminacy at the bearings and the characteristics of a polynomialPolynomial approximations tend
to oscillate. approximation itself.
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With aid of the DS we want to analyse the extrema of the solution E∗(x) in

order to decide whether they might be caused by damage or not. Principally,

the DS is based on the Local Smoother (LS), with the main difference that

the entire solution is smoothed by using the weighting function WGS(x) = 1
and for different intensities wGS ∈ [0, 1]. Consequently, there is not only

one smoothed solution for E∗(x) but several. For our previous example from

Figure 10-4, we will now compute several different smoothed curves for E∗(x),

choosing β = 2 and 29 logarithmically spaced values between 0 and 1 for wGS, For the implementation we use
10−15 instead of 0.where 0 corresponds to none and 1 to maximal smoothing. The smoothed

solutions for 29 different values wGS are depicted in Figure 10-5.
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Figure 10-5: 29 smoothed
solutions for E(x) for different
intensities wGS using the 30
displacement measurements of
high precision listed in Table
B-1. The red dots are the
extrema of E(x).

The blue curve in Figure 10-5 for wGS = 1 is the solution with maximum

smoothing, which is only a straight line. Decreasing wGS changes the solution

slowly and an extremum arises which in principle corresponds to the local

minimum 6. With wGS getting smaller and smaller, more and more extrema

are appearing up to 11 for the unsmoothed curve from Figure 10-4. The blue

curve in Figure 10-5 for wGS = 0 is the exactly the same as in Figure 10-4. In

a direct comparison of all extrema, the local minimum 6 is the most dominant

of all. To make this clearer, we first make a surface out of all the curves in

Figure 10-5 , which is shown in Figure 10-6.
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Figure 10-6: Resulting sur-
face Esurf(x, wGS) from the
smoothed solutions E(x) illus-
trated in Figure 10-5.
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To distinguish between maxima and minima we reduce the mean of the straight

line for wGS = 1 in Figure 10-5 from the surface Esurf(x, wGS). The resulting

reduced surface is illustrated as a filled contour plot in Figure 10-7.

Figure 10-7: Resulting re-
duced surface ∆Esurf(x, wGS).
The black lines are the roots
of

∂∆Esurf(x,wGS)
∂x and hence

representing the extrema from
Figure 10-4 (red dots).
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The reduced surface ∆Esurf(x, wGS) in Figure 10-7 clearly shows how dominant

the local minimum 6 actually is. To remove this minimum from the solution, it

must be smoothed in such a way that only a straight line remains. In contrast

to the two extrema 3 and 4, which are only mutually dependent with smallWe call the connection of the two
extrema a loop. amplitude and already disappear when the solution is smoothed only slightly.

It can be assumed that these two extrema are caused only by measurement

noise and do not exist in the unknown solution E(x). Therefore, the unknown
solution E(x) can be smoothed locally at the position of the two extrema

3 and 4 and the whole procedure can be repeated. The weighting function

WLS(x) for the Local Smoother and the resulting solution for E(x) is depicted
in Figure 10-8.
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Figure 10-8: Weighting func-
tion WLS(x) for the Local
Smoother to remove the ex-
trema 3 and 4 (top). Locally
smoothed solution E(x) for
polynomial degree pe = 6 us-
ing the 30 displacement meas-
urements of high precision
listed in Table B-1 in blue
(bottom). The true damage
ED(x) given by (9-2) in red.
The red dots are the extrema
of E(x).

As can easily be seen in the Figure 10-8 (bottom), the two extrema 3 and

4 are removed from the solution by the Local Smoother using the weighting

function depicted in Figure 10-8 (top). The position of the remaining extrema

has changed slightly, but the locally smoothed solution E(x) is basically the

same as the unsmoothed one in Figure 10-4. Based on this locally smoothed

solution for E(x), a reduced surface can again be derived according to the

procedure described above, which is shown in Figure 10-9.
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Figure 10-9: Resulting re-
duced surface ∆Esurf(x, wGS).
The black lines are the roots
of

∂∆Esurf(x,wGS)
∂x and hence

representing the extrema from
Figure 10-8 (bottom) (red
dots).

The reduced surface ∆Esurf(x, wGS) in Figure 10-9 with local smoothing is also

just slightly different from that shown in Figure 10-7 without local smoothing.

In the following, the solution can be further smoothed locally at extrema that

are most likely caused only by measurement noise or by the characteristics

of a polynomial approximation itself and not by damage. In this case this

would be for example extremum 10. However, the polynomial degree must be

carefully increased with increasing local smoothing, otherwise the solution will

be smoothed too much and only a straight line remains. It is also not advisable

to use a high polynomial degree right from the start, since the solution will

only follow the measurement noise and the numerous extrema can usually
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no longer be distinguished. The whole iterative process of local smoothing

and increasing the polynomial degree is extremely sensitive and must be done

carefully. In this example, the position of the damage is already clearly visible

in the first step depicted in Figure 10-7, but unfortunately that is not always

the case, especially not for small damages. For this reason, the described

iterative procedure with local smoothing and increase of the polynomial degree

is proposed, whereby the position of damages can be localized more reliably.

However, there remains one point to be clarified as to how the dominance of an

extremum can be expressed. Based on a large number of numerical examples,This is an essential aspect, and I
assume that the reliability of the

damage localisation can be
increased significantly by selecting

further suitable features.

it has been observed that the dominance can be adequately described by

combining the following three features

� The arc length of the roots of ∂∆Esurf(x,wGS)
∂x (the black lines in Figure

10-7).

� The relative amplitude of the extrema for wGS = 0.

� The largest value wGS for which an extremum appears.

The described procedure is implemented in the Damage Sniffer as shown in

Programme 10-2.

As a result of the DS, we obtain the extremum with the largest dominance,

from which we assume that its position xDSk is the most likely location for

possible damage. For the presented example above, the resulting weighting

function for local smoothing and the solution for E(x) from the last iteration

step of the DS is depicted Figure 10-10.

Figure 10-10: Resulting
weighting function WLS(x)
for local smoothing in the
last iteration step of the DS

(top). Final locally smoothed
solution E(x) for polynomial
degree pe = 15 using the 30
displacement measurements of
high precision listed in Table
B-1 in blue (bottom). The
true damage ED(x) given by
(9-2) in red. The red dots are
the extrema of E(x).
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As can be seen from the weighting function WLS(x) in the Figure 10-10 (top),

the solution E(x) was not smoothed within the range between x ∈ [2.5, 4], but

everywhere else. Hence, the solution E(x) in Figure 10-10 (bottom) is very

smooth and has only 3 extrema. According to the result of the DS, the extrema

3 at xDSk = 3.3296 m is by far the most dominant one with Dk � Dj ∀j 6= k
and corresponds to extremum 6 from Figure 10-4. In direct comparison, the

result of the DS may be disappointing and the extremum 3 is even further

away from the actual damage than extremum 6 before. But now we knowThis is a very important
conclusion that we gain from the

DS.
that if there is any damage, it is probably near extremum 3, which we did
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not know before. Furthermore, we should be aware that the damage in this

example is very large and the DS is also designed for much smaller damage,

which can no longer be localized so easily. Therefore, the DS only provides

an approximate position at which any damage may be present. This position

then serves as the starting point for the Damage Modeller (DM), which will

be presented in the next section.

1: pemax = 10 . Maximum polynomial degree for E∗(x)

2: pe = 6 . Starting polynomial degree for E∗(x)

3: nexmin = 4 . Minimum number of extrema

4: nGS = 100 . Number of different intensities wGSi for global smoothing

5: WLS(x)← from (10-27) . Weighting function for local smoothing

6: WGS(x) = 1 . Weighting function for global smoothing

7: wLS = 10−5 . Intensity of local smoothing

8: wGSi ← nreg logarithmically spaced values ∈ [0, 1]

9: NGS ← from (10-23) with WGS(x) and β = 2
10: Nslope ← from (10-23) with WLS(x) and β = 1
11: nex = ∞ . Initialization for the loop

12: while pe ≤ pemax and nex ≥ nexmin do

13: NLS ← from (10-23) with WLS(x) and β = 2
14: Solve

(
N + wLSNLS + 10−9Nslope

)
e = n

15: Determine the number of extrema nex

16: if nex < nexmin then

17: pe = pe + 1
18: else

19: for i = 1 to nGS do

20: Solve
(
N + wGSi NGS + wLSNLS + 10−9Nslope

)
ei = n

21: end for

22: Compute Esurf(x, wreg) from ei
23: for j = 1 to nex do

24: D1j ← calculate the arc length of the root for extremum j
25: D2j ← determine the relative amplitude of extremum j
26: D3j ← determine largest wGSi for which extremum j appears

27: Dj = D1j · D2j · D3j . Dominance of extremum j
28: if Extremum j is a loop then

29: Dj = 1/2Dj
30: end if

31: end for

32: xk ← position of extremum with smallest dominance Dk.

33: WLS(x) = WLS(x) + exp
(
− 50(x− xk)2)

34: end if

35: end while

36: xDSj and Dj ∀j← position and dominance of all remaining extrema.

37: xDSk ← position of extremum with largest dominance Dk.

Programme 10-2: Pseudo code
for the Damage Sniffer (DS).

10.1.6 Damage Modeller

The solution E(x) of the Damage Sniffer in Figure 10-10 (bottom) approxim-

ates the true damage ED(x) only insufficiently, but it provides us an approx-

imate position where we can look for damage. Therefore, the Damage Mod-

eller (DM) uses this position to reconstruct the possible damage in its near



192 damage analysis via memos

surroundings. Like the Damage Sniffer, the Damage Modeller is also based

on the Local Smoother, but with the following contrived window function as

weighting function

WDM(x) =
1
2

(
2− tanh

(
10(x− xDS + 0.5)

)
+ tanh

(
10(x− xDS− 0.5)

))
. (10-28)

In the case that the most dominant extrema have similar values for the dom-The most dominant extremum
cannot be clearly identified. inance Dj, it can happen that the wrong extremum is identified as a possible

position xDSk of a damage. Therefore, the DM uses the position xDSj of all

remaining extrema and selects the one that finally provides the smallest value

for the target function Ω. The general workflow of the Damage Modeller is

shown in Programme 10-3.

Programme 10-3: Pseudo
code for the Damage Mod-
eller (DM).

1: xDSj and nex ← from DS according to Section 10.1.5.

2: for j = 1 to nex do

3: xold = ∞ . Initialization for the loop

4: while |xDSj − xold| > 1 cm do

5: WDM(x)← from (10-28) with xDSj

6: E(x)← from LS with WDM(x) and pe = 200
7: xold = xDSj

8: xDSj ← new position of the extrema

9: end while

10: calculate Ωj
11: end for

12: xDM ← position of extremum with smallest value Ωk

For the example from the previous Section 10.1.5, with the initial position

for a possible damage xDSk = 3.3296 m from the DS, we obtain the following

solution from the DM depicted in Figure 10-11.

Figure 10-11: Resulting
weighting function WDM(x)
for local smoothing in the last
iteration step of the Damage
Modeller (top). Final locally
smoothed solution E(x) for
polynomial degree pe = 200
using the 30 displacement
measurements of high pre-
cision listed in Table B-1 in
blue (bottom). The true dam-
age ED(x) given by (9-2) in
red.
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The weighting function WDM(x) in Figure 10-11 (top) is zero only for a small

area in the middle of the beam and enforces a smoothed solution for E(x)

everywhere else, as the blue curve in Figure 10-11 (bottom) shows. The final
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result for E(x) of the DM is mainly revealing the true damage ED(x) (red curve)

except for a small offset of ≈ 14 cm as the position for a possible damage results

in xDM = 3.49 m. Considering the already discussed problem of ambiguities

from Section 9.3.2 and the large impact of measurement noise, the true damage

ED(x) could be reconstructed very well. Surely many assumptions were made

for the solution and this reflects only a best case scenario. In general, the

Damage Sniffer and Damage Modeller can provide more detailed information

on possible damage, especially for small damages, which can no longer be

determined so easily. The extent to which damage can be detected and located

will be discussed in the following sections.

10.2 numerical studies

In order to gain a better understanding of how damage can be detected and Similar results were also partially
published in (Becker et al. 2015),
but based on a FEM as a
functional model for the IA.

localised, we will conduct some numerical studies. Like in Chapter 9, the

presented numerical studies are based on the specification of the four-point

bending test set-up and beam specimen listed in Table 9-1.

10.2.1 Damage detection

First we want to investigate how often a damage according to Equation (9-1)

can be detected with the Global Identifier (GI) in dependence of its position

xD and magnitude hD. Due to the described ambiguities in Section 9.3.2, we

keep the width of the damage constant for all studies with wD = 500. Again

we use 30 equidistant measurements of high precision and perform a MCS

with 500 simulations. Each time we estimate the unknown solution E(x) using
the Parameter Sifter with pe = 3. The result of the damage detection for

displacement measurements is shown in Figure 10-12.
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Figure 10-12: The probabil-
ity that a damage at position
xD and magnitude hD can
be detected by the GI using
30 equidistant displacement
measurements of high preci-
sion. Due to the symmetry
only the left half of the beam
is shown.

It can be seen from Figure 10-12 that for displacement measurements a dam-

age at a position xD = 2 m and with a magnitude of hD = 10 GPa can be suc-

cessfully detected with a probability of ≈ 80 %. If the damage is only slightly

larger it can in general always be detected within 2 m ≤ xD ≤ l − 2.0 m. In

contrast, even an extremely large damage with a magnitude of hD = 40 GPa
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can not be detected close to the bearing at xD = 0.25 m. The result is very

similar for the inclination measurements, as can be seen in Figure 10-13.

Figure 10-13: The probabil-
ity that a damage at position
xD and magnitude hD can be
detected by the GI using 30
equidistant inclination meas-
urements of high precision.
Due to the symmetry only the
left half of the beam is shown.

0.5 1 1.5 2 2.5 3 3.5

5

10

15

20

25

30

35

40

xD [m]

h D
[G

Pa
]

0

20

40

60

80

100

D
am

ag
e

de
te

ct
io

n
pr

ob
ab

ili
ty

[%
]

On the one hand, it is noticeable in Figure 10-13 that even very large damages

with a magnitude of hD = 40 GPa can be detected with a probability of ≈ 50 %
close to the bearings with xD = 0.25 m. On the other hand, it also turns out

that even this large damage can only be detected with a probability ≈ 90 %
in the middle of the beam within 2 m ≤ xD ≤ l − 2 m. In contrast to the

result of the displacements in Figure 10-12, where damage with a magnitude

of hD > 15 GPa and within this region can be detected up to 100 %.

As we already discussed, damage has a direct and only local impact on the

strain measurements, see Figure 9-20 (right). Since the maximum damage

for this study corresponds to a cut of ≈ 20 cm width and we only consider 30
equidistant measurements, so one measurement every ≈ 25 cm, the damage

usually affects only one single measurement. This in turn means that theIn adjustment calculation this
observation would usually be

considered as an outlier.
impact of the damage on the solution E(x) of the PS is very small and can

therefore hardly be detected with the GI, as can be seen in Figure 10-14.

Figure 10-14: The probabil-
ity that a damage at position
xD and magnitude hD can be
detected by the GI using 30
equidistant strain measure-
ments of high precision. Due
to the symmetry only the left
half of the beam is shown.
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The dark blue vertical stripes in Figure 10-14 correspond to the sensor posi-

tions and indicate that damage in their vicinity cannot be detected with this

approach. The probability that damage can be detected close to the sensor

positions is equal to zero. In contrast, damage located between two sensors In this case, two measurements
are slightly affected.can only be detected with a probability of ≈ 5 %, which is indicated by the

light blue stripes and only corresponds to the chosen error level α. This is

still negligibly small, but does not depend on whether the damage is near

the bearings or in the middle of the beam, as long as it is only between two

sensors.

In direct comparison with the results for displacement and inclination meas-

urements, damage detection using the GI for sparse strain measurements is

quite pointless.

10.2.2 Damage localisation

As we now have an understanding of the extent to which damage can be

detected with MeMoS depending on its position and magnitude, we want to

analyse in more detail to which extent damage can also be localised. In Section

10.1 we developed two tools that are suitable for this purpose, namely

1. the Local Indicator (LI) and

2. the Damage Sniffer (DS) with the Damage Modeller (DM).

While the numerical studies for damage localisation using the LI can be done

in the same extent as for damage detection, this is currently hardly feasible The source code of DS and DM

has not yet been optimised and it
is expected that the performance
can be significantly improved.

for the DS and DM as the computational time would take several months.

Therefore, the potential of the DS and DM for localising damage is not further

considered here and is only demonstrated in the experimental studies.

The numerical studies for damage localisation are performed in the same way

as described in Section 10.2.1, while this time the unknown solution E(x) is

estimated using the IA with pe = 4. These changes are necessary because

otherwise the spatial resolution would be too low for a proper localisation.

The result of the damage localisation for displacement measurements using

the LI is shown in Figure 10-15 and is not very promising.
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Figure 10-15: The probabil-
ity that a damage at position
xD and magnitude hD can be
localised within ±5 % of the
beam length by the LI using
30 equidistant displacement
measurements of high preci-
sion. Due to the symmetry
only the left half of the beam
is shown.
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As Figure 10-15 shows and also was to be expected, the damage must be very

large and must occur between the bearings in order to be localised reliably.

A damage at a position xD = 3 m and with a magnitude of hD = 20 GPa can

only be localised with a probability of ≈ 40 % and a huge damage at the same

location with a magnitude of hD = 40 GPa can always be localised. However,

it is also noticeable that the same huge damage at xD = 2.6 m or xD = 3.6 m
can only be localised with a probability of ≈ 50 %. The problem in this case

arises from the already discussed characteristics of the solution E(x) and its

standard deviation sE(x), which results mainly from the measurement noise,An influence of the sensor
positions in relation to the

damage position could not be
detected so far.

the selected polynomial degree and the introduced constraints between two

elements. Therefore, it occurs that the LI provides two possible solutions for

certain damage positions. To clarify this issue, the results of all 500 MCS for

a damage at xD = 2.6 m and a magnitude of hD = 40 GPa are visualised as a

histogram in Figure 10-16.

Figure 10-16: Histogram of
the 500 MCS for localising a
damage at xD = 2.6 m and
magnitude hD = 40 GPa using
the LI. The red dot indic-
ates the true position of the
damage.
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As Figure 10-16 shows, it is not possible to locate the huge damage at xD =

2.6 m using the LI, instead there are two solutions directly next to the true

position, where the distance mainly depends on the chosen polynomial degree.

For the same huge damage at xD = 2.3 m, however, the result of the MCS is

quite different, as Figure 10-17 illustrates.

Figure 10-17: Histogram of
the 500 MCS for localising a
damage at xD = 2.3 m and
magnitude hD = 40 GPa using
the LI. The red dot indic-
ates the true position of the
damage.
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The histogram in Figure 10-17 shows that in this case there is only one solu-

tion and the huge damage at xD = 2.3 m can be clearly localized using the

LI. The described problem also occurs for inclination measurements, however,

the distance between two possible solutions is significantly shorter and con-

sequently the damage can still be reliably localised, as illustrated by Figure

10-18.
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Figure 10-18: The probabil-
ity that a damage at position
xD and magnitude hD can
be localised within ±5 % of
the beam length by the LI us-
ing 30 equidistant inclination
measurements of high preci-
sion. Due to the symmetry
only the left half of the beam
is shown.

In general, Figure 10-18 reveals that the localisation of damage using the LI

for inclination measurements is very reliable and even smaller damages near

the bearings at xD = 1 m with a magnitude of hD = 20 GPa can already be

localised with a probability of ≈ 85 %. The result of the damage localisation for

strains corresponds roughly to that of the damage detection, with the major

difference that even small damages in the vicinity of sensors can always be

localized and damages between two sensors basically never, which is depicted

in Figure 10-19.
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Figure 10-19: The probabil-
ity that a damage at position
xD and magnitude hD can be
localised within ±5 % of the
beam length by the LI using
30 equidistant strain measure-
ments of high precision. Due
to the symmetry only the left
half of the beam is shown.

In addition, Figure 10-19 shows that even minor damages close to the bearings

can be located reliably, as long as it is only close to a sensor. In principle,

these results for damage localisation using strain measurements only reflect

the conclusions of Chapter 9 and demonstrate again that discrete strain meas-

urements are not suitable for damage analysis using MeMoS.

The results of these numerical studies only provide an insight into the possib-

ilities of a damage analysis with MeMoS. For real-world problems, there are

usually some additional issues that can have a negative impact on the damage

analysis, which will be explained in more detail in the next section.
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10.3 experimental studies

For the experimental studies we use the data of a four-point bending test,

which was carried out by Cheng-Chieh Wu as part of his doctorate at the

Institute of Geodesy and Geoinformation Science at TU Berlin, shown in

Figure 10-20.

Figure 10-20: A four/six-point
bending test apparatus for an
aluminium beam specimen
(Wu 2020, Figure 5.30). The
photogrammetric calibration
field on the wall with more
than 1000 white markers was
used to calibrate the camera
and to determine the position
of the black markers on the
beam. More markers have
been placed on the right side
of the beam where the dam-
age is located than on the
other side. Due to limited re-
sources at the institute only a
rather less professional setup
could be realised.

The aim of the bending test was to detect and localise damage to an aluminium

beam using MeMoS based on FEM. For this purpose, the displacements of

31 measuring points (black markers) along the beam for different loads and

damage levels was recorded by photogrammetry. A detailed description of the

specimen and measuring setup can be found in (Wu 2020, Chapter 5.3) and

is summarised in Table 10-1.

Table 10-1: Specification of
the four-point bending test
setup and beam specimen for
the experimental studies.

beam length l 1.48 m loading position a 0.59 m

beam width w 3.5 cm beam height h 3.5 cm

Unfortunately, the results of the load test were not very promising for the

implemented approach of MeMoS according to (Wu 2020, Chapter 5). Only in

cases where the damage is very large it could be reliably detected and localized,

see (Wu 2020, Table 5.5). In addition to the setup itself, the load test was

not carried out under optimal conditions, as unfortunately only an office with

windows facing north was available at that time. We noticed that changes in

light conditions during the day had a considerable influence on the detection

of the markers on the beam. At this point, we assumed that this influence

on the detection of the markers was more random and could be interpreted

as an increased measurement noise. In the end a standard deviation for the

displacements of σu = 9µm resulted, see (Wu 2020, Equation 5.35), which is
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not optimal for a damage analysis with this setup and which can only lead to

such results as presented in (Wu 2020, Table 5.5).

But a review of the derived displacements in 2019 revealed inconsistencies

in the position of the markers used in (Wu 2020, Chapter 5.3). Further-

more, it became apparent that some of the markers had deviations that were

rather systematic than random. In 2017, the marker positions were determ-

ined by fitting an ellipse in the greyscale image and according to (Ouellet

and Hébert 2009) this intensity-based approach is sensitive to non-uniform

illumination, which we also observed as already mentioned. Ouellet and

Hébert (2009) also points out that gradient-based approaches are less sens-

itive to non-uniform illumination. Since the raw data is still available, this

encouraged us to re-evaluate the more than 12 000 images from the bending

test. This time the ellipses were estimated by a gradient-based approach and

the determination of the position of the markers on the beam was corrected

in the software.

10.3.1 Remaining problems

However, one important aspect could not be finally solved during the re-

evaluation of the raw data. This concerns the transfer of the experimental

setup and the markers into a common reference framework. On the one hand,

the beam has its own 2D coordinate system, which is defined by the two bear-

ings. The markers, on the other hand, refer to the 3D coordinate system from

the bundle block adjustment, which is defined by the white markers of the For further information about
bundle block adjustment, see
(Luhmann et al. 2011, Chapter
4.3)

calibration field, see Figure 10-20. The problem is now, that the functional

model of the Integrated Analysis (IA) refers to the coordinate system of the

beam and the observations refer to the coordinate system of the bundle block

adjustment. Nevertheless, it is still possible to reduce the 3D coordinates of

the markers into the 2D coordinate system of the beam, however, a small

offset and scaling factor remains that cannot be determined any more. For

the determination of the displacements this problem has hardly any influence,

since these are only relative quantities. In contrast to this, the x−coordinates

of the markers xdispi
in the coordinate system of the beam are used as abso-

lute quantities in the functional model of the adjustment, see Equation (8-7).

More detailed analyses have shown that this systematic error is depending

on the position of the marker along the beam, with largest deviations in the

middle of ≈ 0.1 mm. Although this error is quite small, it still has a significant

influence on the estimation of E(x).

In addition to the systematically falsified sensor positions xdispi
, further as-

sumptions were made which do not correspond to reality, see Section 8.1.2.

These assumptions are:

� The geometry of the beam is fixed and hence, the width w, height h and

length l are error free values.

� The force F is an error free value.

� The positions the forces are applied to the beam are error free values,

hence a is a fixed value.

� No movements at the bearings.
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To consider the uncertainties of these variables when estimating E(x), the

geometry of the beam as the force F and its position a can be introduced as

observations in the functional model of the IA. Since this model is derived

from the Euler-Bernoulli beam equation (7-1), uncertainties in the geometry

of the beam have the effect of an additional scaling factor in the estimation

of E(x). Consequently, the functional model of the IA becomes a bit more

complex without obtaining a better solution for E(x), which is more suitable

for a structural analysis via MeMoS. Therefore, we still consider the width w,

height h and length l of the beam as error free values.

For uncertainties in the force F and its position a, the situation is a bit different.

Theoretically it would make sense to introduce these quantities as observations,

but this would lead to a very complex non-linear functional model for the

IA. In this case not only all entries in M[m] of Equation (7-11) would be

observations but also the coordinates of the nodes in Table 7-1. Since the

Chebyshev coefficients of both functions M(x) and E(x) are directly depending

on these nodes, the position a cannot be estimated simultaneously with the

coefficients for M(x) and E(x). This results in a highly non-linear adjustment

problem, which is not only very computational intensive, but may not even

converge. In addition, the systematically falsified sensor positions xdispi
have

a similar influence on the determination of E(x) as the uncertainties in the

force F and its position a. Therefore, we still consider the force F and its

position a as error free values and prefer a different approach, which will be

described in the following section.

What remains is the assumption that the bearings will not move. However, it

has already been stated in (Wu 2020, Chapter 5.3) that this assumption does

not hold true for this experiment and that the bearings subsided differently

for each of the 31 load test. Nevertheless, this is not an issue since the different

subsidence of the bearings can easily be estimated within the IA. As in (Wu

2020, Equation 5.28), only the right hand side of the two boundary conditions

(7-20) have to be introduced in the functional model as additional unknown

parameters. Therefore, the constraints for the boundary condition (7-23) will

be rewritten as follows

CBC u = uBC , (10-29)

with the two additional unknowns uBC representing the subsidence of the

bearings. Introducing (10-29) and (7-28) into (7-29) yields
L CT

BC CT
conti

CBC 0 0

Cconti 0 0




u

λBC

λconti

 =


− 1

I Me

uBC

0

 . (10-30)

Extracting the unknowns e and uBC from the right hand side in (10-30) results

in 
L CT

BC CT
conti

CBC 0 0

Cconti 0 0




u

λBC

λconti

 =


− 1

I M 0

0 I

0 0


 e

uBC

 , (10-31)

with I being the identity matrix. As described in Chapter 8, the solution of

the extended equation system (10-31) can be used to derive the functional

model for the IA with the two additional unknowns uBC. For each of the 31
bending tests, the subsidence of the bearings was determined in this way.
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10.3.2 Measurements

The measurement data designation of the 31 bending tests with corresponding

weights according to (Wu 2020, Table 5.5) are summarised in Table 10-2.

designation ui m

[kg]

exp

0 3.565

1 7.120

2 10.668

3 17.825

4 5.491

5 9.068

exp4mm

6 17.819

7 3.563

8 7.134

9 3.564

10 7.135

11 17.818

exp8mm

12 17.820

13 10.709

14 3.593

15 3.593

designation ui m

[kg]

exp10mm 16 3.569

exp3L 17 3.578

exp3L2

18 3.545

19 7.121

20 10.698

exp Y

21 3.546

22 7.125

23 10.703

24 14.248

exp K 25 7.114

exp Z

26 10.695

27 3.561

28 7.128

29 10.690

30 14.241

31 17.808

Table 10-2: Measurement data
designation and corresponding
weights for each measurement
set ui according to (Wu 2020,
Table 5.5). The sets with the
designation exp correspond to
the bending tests with undam-
aged beam. Sets in red are re-
ferring to a six-point bending
test and are not considered in
this thesis.

The derived 31 displacement measurements for each of the 31 bending tests

are listed in Table C-1 – C-6. As with measurements in general, we must

assume that outliers are present in the data sets. To identify possible outliers,

we need not only the stochastic properties of the measurements, but also the

correct functional model, which is not known anyway due to systematic errors

in the marker positions and later damage to the beam. Accordingly, we have

the following issues:

� The standard deviation of the displacement measurements is not known.

� The correct functional model for the adjustment is not known.

� Outliers may be present in the observations.

In-depth analyses of the measurements for the undamaged beam u0 – u3 have

shown that a standard deviation of σdisp = 0.92µm can be assumed for the By using a gradient based
approach for marker detection,
the systematic deviations due to
different illumination could be
significantly reduced.

observations, which is about 10 times smaller than for the observations used

in (Wu 2020, Chapter 5.3). Furthermore, some outliers could be detected in

parallel, which are highlighted in Table C-1 – C-6. However, the identified

outliers must be viewed with some scepticism due to the problems previously

described.

10.3.3 Model calibration

The model calibration is based on the sets of measurements for the undam-

aged beam u0 – u3 listed in Table C-1 and the previously determined standard

deviation σdisp. Furthermore, we assume that the observations are uncorrel-
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ated. An Integrated Analysis of these measurements with pe = 3 yields the

following solution for E(x), which is shown in Figure 10-21.

Figure 10-21: Solution E(x)
for polynomial degree pe = 3
using the 4 sets of displace-
ment measurements u0 – u3
listed in Table C-1.
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Under optimal conditions, a solution for E(x) can be expected that corres-

ponds rather to a constant value than to the curve of E(x) depicted in Figure

10-21. But detailed analyses have shown that this curve of E(x) mainly res-

ults from the systematic influences described in Section 10.3.1, since it tends

to occur for all 31 sets. For a damage analysis, however, these systematic

influences must be taken into account, since otherwise the solution for E(x) is

strongly falsified and consequently a damage detection and localization will

fail.

We call this approach, to take these systematic influences into account, model

calibration and proceed as follows. From the solution E(x) in Figure 10-21 we

derive a correction function C(x) by which the bending moment M(x) must be

corrected, in order to get a solution for E(x), which is only a constant value.

This approach for a model calibration is described in Programme 10-4.

Programme 10-4: Pseudo code
for model calibration. 1: L← from u0 – u3 listed in Table C-1

2: C(x) = 1 . Initialization of the correction function

3: Mc(x) = M(x) . Initialization of the corrected bending moment

4: σE = ∞ . Initialization for the loop

5: while σE > 10−3 GPa do

6: E← constant value for E(x) from IA with L, Mc(x) and pe = 0
7: E(x)← from IA with L, Mc(x) and pe = 3
8: C(x) = E C(x)

E(x)
. Updating the correction function

9: Mc(x) = M(x)C(x) . Correction of the bending moment

10: σE ← standard deviation of E(x)

11: end while

As a result from the model calibration we obtain the correction function C(x)

which is shown in Figure 10-22.
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Figure 10-22: Resulting cor-
rection function C(x) from the
model calibration.

The systematic influences are taken into account when estimating E(x) by

correcting the bending moment M(x) with C(x) from Figure 10-22 as follows

Mc(x) = M(x)C(x) . (10-32)

The evaluation of all load tests is always carried out with the corrected bending

moment Mc(x).

In addition, the adjusted elastic modulus for the undamaged beam results in

Ê = 66.52 GPa with σÊ = 0.02 GPa (10-33)

and corresponds to the value for aluminium from the literature of 66.6 GPa,

see e.g. (Bender and Göhlich 2020, p. 604). The resulting residuals v and

standardised residuals NV for the displacements u0 – u3 are shown in Figure

10-23.

Figure 10-23: Residuals v and
standardised residuals NV
after model calibration for the
observations u0 – u3.
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In general it can be seen that observations for markers on the right side of

the beam usually have smaller residuals than for markers on the left side.

Furthermore, they also seem to have a rather random negative or positive sign,

especially in contrast to the observations at xdisp11
= 0.64 m or xdisp12

= 0.67 m,
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which are all either negative or positive. It seems as if the observations on theDuring the experiment we
installed an additional spotlight,

which mainly illuminated the left
side of the beam, while the right

side was mainly illuminated by
daylight.

left side of the beam still show systematic influences, which presumably are

based on a different illumination of the beam.

The largest residual of ≈ 4µm refers to the first observation of u2 which was

previously detected as an outlier, see Table C-1. Although the outlier is still

present in the adjustment, it has in this case no impact on the estimation of

E(x) or its standard deviation. All other residuals are usually much smaller

than 2µm and also the standardised residuals NV are usually smaller than 2.5,

which indicates that no further outliers can be detected. Particularly sinceIn all upcoming cases, the
redundancy numbers are usually

larger than 70 %.
the redundancy numbers of the observations are usually larger than 70 % and

are therefore very well controlled, see Section 2.5.1.

Also the test statistic for the global test Tχ2 = 110.8 is smaller than the criticalAs the functional model is usually
not correct for the damaged case,
the global test is not considered

any further.

value χ2
α,r = 134.4 for redundancy r = 109 and error level α = 5 %. We can

summarize that the adjustment is consistent and the chosen stochastic and

functional model corresponds to the given observations u0 – u3.

Based on these results, the data sets for the damaged beam will be evaluated

in the following sections for a detailed damage analysis via MeMoS.

10.3.4 Damage detection

In accordance with the test designations from Table 10-2, the beam was gradu-

ally damaged at the approximate position

xdamage = 1.107 m . (10-34)

Starting from a small hole of 4 mm (exp4mm), through 3 closely placed holes

of 10 mm diameter (exp3L) up to an additional cut of 15 mm depth (exp Z),

see also (Wu 2020, Chapter 5.3). In the following, we will analyse to what

extent we can detect the damage based on the sets of observations for these

different tests listed in Appendix C.

To gain a better insight, damage detection is done in two different ways, which

are as follows:

1. via Integrated Analysis (IA) with pe = 0,

2. via Parameter Sifter (PS) with pe = 4.

In the first case, we estimate only a constant value for E(x), which is definitely

the wrong functional model, especially for larger damages. In the second case,

at least smaller local variations in E(x) can be considered, which at least allows

a rough approximation of the damage. Subsequently, the Global Identifier (GI)

is used to statistically compare these solutions with the one from the model

calibration in Equation (10-33). The result for all sets of the undamaged and

damaged scenarios are listed in Table 10-3.
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IA with pe = 0 PS with pe = 4

designation ui m Fi Fi > F1,∞,α Ê σÊ Fi Fi > F1,∞,α

[kg] [GPa] [GPa]

exp

0 3.565 7.7 true 66.88 0.11 7.7 true

1 7.120 0.1 false 66.55 0.07 0.1 false

2 10.668 0.6 false 66.57 0.05 0.6 false

3 17.825 0.8 false 66.49 0.02 0.8 false

exp4mm

6 17.819 0.6 false 66.55 0.04 5.0 true

7 3.563 2.0 false 66.34 0.10 2.0 false

8 7.134 2.8 false 66.41 0.08 2.8 false

9 3.564 8.5 true 66.90 0.10 8.5 true

10 7.135 0.0 false 66.53 0.10 0.0 false

11 17.818 7.8 true 66.63 0.04 7.8 true

exp8mm

12 17.820 6.0 true 66.43 0.04 13.7 true

13 10.709 0.2 false 66.50 0.06 0.2 false

14 3.593 0.0 false 66.54 0.11 0.0 false

15 3.593 18.8 true 67.09 0.11 18.8 true

exp10mm 16 3.569 0.5 false 66.43 0.09 3.1 false

exp3L 17 3.578 197.4 true 64.55 0.15 197.4 true

exp3L2

18 3.545 117.0 true 68.04 0.15 117.0 true

19 7.121 11.4 true 66.25 0.12 13.3 true

20 10.698 28.8 true 66.18 0.10 24.2 true

exp Y

21 3.546 38.3 true 65.66 0.16 22.4 true

22 7.125 30.7 true 66.07 0.11 13.4 true

23 10.703 54.4 true 66.09 0.08 48.0 true

24 14.248 22.4 true 66.03 0.19 22.4 true

exp K 25 7.114 200.7 true 64.18 0.32 120.9 true

exp Z

26 10.695 256.6 true 59.16 0.83 300.0 true

27 3.561 287.9 true 59.29 0.82 335.9 true

28 7.128 278.9 true 59.25 0.83 190.7 true

29 10.690 251.6 true 59.25 0.83 285.4 true

30 14.241 217.6 true 59.28 0.83 373.7 true

31 17.808 189.4 true 59.20 0.83 444.4 true

Table 10-3: Result of the
damage detection. Correct
decisions of the Global Iden-
tifier (GI) in green and wrong
in red.

Columns 8 and 9 in Table 10-3 show the results of the GI for the solution E(x)

estimated by the PS. Apart from an incorrect detection for the undamaged

experiment 0, it is usually possible to detect damage for larger loads. Which is

obvious, since the impact of the measurement noise on the estimation of E(x)

decreases with increasing deflection of the beam. It is hardly surprising that,

as damage increases, it is always possible to detect it even for smaller loads,

which is the case from experiment 17 onwards. This result is a bit better than

that of (Wu 2020, Table 5.5), where damage could only be reliably detected

from experiment 23 onwards.

The results of the GI for the solution E(x) of the IA with pe = 0 can be found

in columns 4 to 7. Apart from a different decision for experiment 6, the result

of the damage detection using IA is identical to that of the PS. This is quite The functional model of the PS is
also wrong, but slightly better
than the one of the IA.

astonishing as the functional model is incorrect especially for larger damage.

In addition, the estimated elastic modulus Ê and its standard deviation σÊ
are given in the columns 6 and 7. It is quite remarkable how slightly this

value changes even though the beam is heavily damaged. For several large
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holes in the beam (exp3L2), the estimated elastic modulus Ê in principle still

corresponds to the value for the undamaged case (exp). Only after a larger

cut (exp K) this value changes significantly. From this point on, the standard

deviation σÊ also increases, since the functional model is incorrect and thus

the residuals have noticeable systematic characteristics. To clarify this in

more detail, the resulting residuals v and standardised residuals NV for the

displacements u6, u8, u10 and u11 of the experiment exp4mm are shown in

Figure 10-24.

Figure 10-24: Residuals v and
standardised residuals NV of
the Integrated Analysis (IA)
with pe = 0 for some sets of
observations from experiment
exp4mm.
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In general, the distribution of the residuals in Figure 10-24 (top) is similar

to those from the model calibration in Figure 10-23, but with slightly larger

values of up to ≈ 3µm. Unfortunately, systematic errors due to the damage

are not noticeable. Also the standardised residuals in Figure 10-24 (bottom)

have slightly larger values with up to 3.8 for u11 at xdisp8
= 0.45 m, which is

not considered as an outlier. However, it is not possible to draw any further

conclusions from the standardised residuals. With increasing damage, the

distribution of residuals changes only slightly, as Figure 10-25 reveals.
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Figure 10-25: Residuals v and
standardised residuals NV of
the Integrated Analysis (IA)
with pe = 0 for the sets of
observations from experiments
exp3L and exp3L2.
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Figure 10-25 shows the resulting residuals v and standardised residuals NV
for the displacements u17 – u20 of the experiments with 3 closely placed holes

of 10 mm diameter. Although the damage to the beam is already very large,

this is hardly noticeable in the residuals, which have values of up to ≈ 3µm
and thus correspond to those in Figure 10-24 (top). However, small systematic

errors are now visible for residuals on the right side of the beam. Especially for

the observations u19 (green) and u20 (yellow), the residuals decrease linearly

from xdisp19
= 1.05 m onwards and show hardly any random character. In

addition, it should be noted that the standardised residuals NV in Figure 10-

25 (bottom) for the observations of the bending test with largest weight u20

generally are larger than for smaller loads. But as before, the standardised

residuals are all below 4 and therefore do not allow any further conclusions.

From this level of damage on, the functional model of the IA is no longer able

to adequately describe the measurements, so that the previously described

systematic errors appear in the residuals. However, these influences are rather

small and maybe hardly visible in the residuals. Only with an additional

deeper cut the damage is clearly recognizable in the residuals, as Figure 10-26

reveals.
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Figure 10-26: Residuals v and
standardised residuals NV of
the Integrated Analysis (IA)
with pe = 0 for some sets of
observations from experiments
exp Y, exp K and exp Z.
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For better comparability of the results, Figure 10-26 shows the residuals v and

standardised residuals NV for the displacements of the experiments exp Y to

exp Z under the same load. As v and NV for the observations u22 for a small

cut nearly correspond to those from Figure 10-25 without cut, this changes

significantly for the observations of the last two damage levels. The residuals of

the observations u28 for maximum damage in Figure 10-26 (top) are extremely

large and take values up to ≈ 30µm and are highly systematically falsified.

Only after a considerable damage do systematic errors in the residuals occur

very clearly. So far we have only estimated a constant value for E(x) and this

functional model of the IA is not applicable for these damage levels. This is

also confirmed by the considerably changed value for E(x) from Table 10-3

in column 6. Furthermore, it can be seen that the damage can not only beHowever, this only applies to
damage that is extremely large

and can already be seen with the
naked eye, which is not useful.

detected but also localized by the standardised residuals NV. For the two

experiments u25 and u28, the largest values for the NV result for observations

near the damage at xdamage = 1.107 m. This can also be seen in the result

presented in (Wu 2020, Chapter 5.3).

We also want to take a closer look at the solutions derived by the PS. In the

case that Fi in column 8 has the same value as in column 4 for the solution

of the IA with pe = 0, the PS has also found a constant value as a solution

and all other coefficients were not significantly different from zero. With a

few exceptions, this is always the case up to and including experiment 18.

However, to compare the results of the PS with those of the IA, we will limit

ourselves to the sets of observations used for Figure 10-26. The solution for

E(x) of the PS for some sets of observations from experiments exp Y, exp K

and exp Z are depicted in Figure 10-27.
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Figure 10-27: Solution E(x)
for the PS with pe = 4 and
displacements u22 (blue), u25
(red) and u28 (yellow).

All three solutions in Figure 10-27 are relatively smooth on the left side of

the beam and show larger oscillations on the right side where the damage

is located. In addition, all three solutions have a local minimum close to

the damage at xdamage = 1.107 m, but none of them can be clearly identified Within 1 cm.

as the damage position since the global extremum in all curves is always at

x ≈ 1.35 m with a very large magnitude compared to the other extrema. The

resulting residuals v and standardised residuals NV for the displacements u22,

u25 and u28 are shown in Figure 10-28.

Figure 10-28: Residuals v and
standardised residuals NV
of the Parameter Sifter (PS)
with pe = 4 for some sets of
observations from experiments
exp Y, exp K and exp Z.
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Although the functional model for the PS is wrong for this degree of damage,

the residuals in Figure 10-28 (top) do not show any systematic errors. Even the
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small oscillation of the residuals from x = 1.2 m onwards cannot be identified

as a systematic error due to the small number of observations. In general,

the distribution of the residuals is similar to those from exp4mm depicted in

Figure 10-24, with values of up to ≈ 3.5µm. For all three sets the largest

residuals always occur at xdisp11
= 0.64 m. Also the standardised residuals in

Figure 10-28 (bottom) are the largest for these observations and for u28 even

over 4. But since the functional model is not correct in any case and this

observation in general has no impact on the solution E(x), we decided at this

point not to eliminate this observation as an outlier. A direct comparison

of the results with those in Figure 10-26 shows that the estimated solutions

for E(x) in Figure 10-27 do not describe the damage at all, but represent its

impact on the observations very well. The extent to which these solutions can

be used to localise the damage is discussed in the next section.

10.3.5 Damage localisation

So far we have got an insight into the problem of damage detection and now

we want to analyse in more detail to which extent the damage can also be

localised. In Figure 10-27 we have already seen that at least for large damages

a local minimum at the damage position in the solution E(x) appears.

The localisation of the damage is analysed in more detail in the following two

ways:

1. via the Local Indicator (LI),

2. via the Damage Sniffer (DS) and Damage Modeller (DM).

Both ways are discussed in more detail in the following sections.

10.3.5.1 Local Indicator

In the first case, we want to analyse to which extent damage can be localised

solely on the solution E(x) and its standard deviation sE(x). Therefore, we

determine the solution for each set of observations by the IA with pe = 3
and compare it with the solution from the model calibration in Equation

(10-33) using the LI. In this case, no further conditions are imposed on theA purely data–driven approach.

solution E(x), e.g. smoothness at the bearings, etc. The solutions E(x) for

the displacements u6 – u11 of the damage level exp4mm are shown in Figure

10-29.

Figure 10-29: Solutions E(x)
of the IA with pe = 3 for
displacements u6 – u11 of
exp4mm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
40

60

80

100

x [m]

E
(x
)
[G

Pa
]

u6 u7 u8 u9 u10 u11



10.3 experimental studies 211

As Figure 10-29 shows, the solutions E(x) for all sets of displacement measure-

ments of experiment exp4mm are very similar, apart from larger deviations at

the bearings. Each of these solutions for E(x) with their corresponding stand-

ard deviations sE(x) is compared with the solution (10-33) from the model

calibration using the LI. The resulting t(x) from the LI for all solutions E(x)

for the displacements u6 – u11 of damage level exp4mm are shown in Figure

10-30.
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u6 u7 u8 u9 u10 u11 Figure 10-30: Results t(x) of
the LI for the solutions E(x)
of exp4mm from Figure 10-29.
The critical value tcritical =
±3.5 in red.

As can easily be seen in Figure 10-30, all results for t(x) of the LI are lying

within the critical value tcritical = ±3.5 (horizontal red line) and thus no region

can be identified for any of the solutions E(x) that might indicate the damage

position. Although damage has been detected for the displacements u9 and

u11, it cannot be localised with the LI. The solutions E(x) for the displacements

u12 – u17 of damage levels exp8mm – exp3L are depicted in Figure 10-29.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
40

60

80

100

x [m]

E
(x
)
[G

Pa
]

u12 u13 u14 u15 u16 u17 Figure 10-31: Solutions E(x)
of the IA with pe = 3 for
displacements u12 – u17 of
exp8mm – exp3L.

First of all, it is noticeable that the solutions E(x) in Figure 10-31 of damage

levels exp8mm – exp3L are no longer as uniform as those for damage level

exp4mm previously shown in Figure 10-29. The solution E(x) for u17 (light

blue) even has pole at x ≈ 0.1 (dotted light blue). In general, this is also

reflected in t(x) from the LI, as shown in Figure 10-32.
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of the LI for the solutions
E(x) of exp8mm – exp3L from
Figure 10-31. The critical
value tcritical = ±3.5 in red.
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As Figure 10-32 shows, t(x) is larger than the critical value only for u17 with

a maximum value at xLI ≈ 0.98 m. For this load test, the damage could be

localised within ≈ 13 cm, but in all other cases a damage localization with the

LI is not possible. The damage already has a large impact on the solution E(x)

and enforces larger oscillations, whereby more and more poles (dotted lines)

occur close to the bearings, as E(x) for damage levels exp3L2 and exp Y in

Figure 10-33 reveals.

Figure 10-33: Solutions E(x)
of the IA with pe = 3 for
displacements u18 – u24 of
exp3L2 and exp Y.
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All solutions E(x) for u21 – u24 in Figure 10-33 show a minimum near the

damage, only E(x) for u18 oscillates in the opposite direction and has a max-

imum at x ≈ 1.2 m. However, only for u22 the damage can be localized at

xLI ≈ 1.18 m, as t(x) in Figure 10-34 shows. For all other solutions no damage

can be localised with the LI, since t(x) is always within the critical value.

Figure 10-34: Results t(x) of
the LI for the solutions E(x)
of exp3L2 and exp Y from
Figure 10-33. The critical
value tcritical = ±3.5 in red.
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For the last two damage levels, the situation is completely different. Now

the impact of damage on the solution E(x) is so large that for the IA it is

necessary to increase the polynomial degree to pe = 4, otherwise the functional

model is not able to represent the damage at all. The solutions E(x) for the

displacements u25 – u31 of the damage levels exp K and exp Z are shown in

Figure 10-35.

Figure 10-35: Solutions E(x)
of the IA with pe = 4 for
displacements u25 – u31 of
exp K and exp Z.
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All solutions E(x) in Figure 10-35 for experiments exp K and exp Z show a

very clear maximum at x ≈ 1.35 m, which actually has nothing to do with the This maximum is mainly caused
by the very wide minimum at the
damage position.

damage itself. The position of the damage cannot be clearly determined from

the solution E(x) alone. However, this can be done without any problems

using the result t(x) of the LI, as can be seen in the Figure 10-36.
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of the LI for the solutions
E(x) of exp K and exp Z from
Figure 10-35. The critical
value tcritical = ±3.5 in red.

For all results t(x) in Figure 10-36 of damage levels exp K and exp Z, the

position of the damage can be determined within 2 cm, since the largest value

for all t(x) occurs at xLI ≈ 1.127 m. In addition, it can be seen that t(x)

for the maximum at x ≈ 1.35 m is usually smaller than the critical value or

only a just slightly larger. Therefore, this maximum cannot be interpreted

as damage, but is rather caused only by the minimum of the actual damage.

From a statistical point of view, this maximum hardly differs from adjusted

elastic modulus for the undamaged beam in (10-33), although it takes very

large values.

The damage localisation with the Local Indicator has shown that it only works

reliably if the damage is very large. For the presented example, the damage

could always be localised from experiment 25 onwards, which in principle

corresponds to the result of (Wu 2020, Table 5.5). In addition, the position

of the damage can already be clearly seen in the residuals of an IA with pe = 0
as shown in Figure 10-26. If enough measurements are available at different

positions, the LI unfortunately does not provide any further information which

cannot already be obtained by estimating a constant value for E(x). To which

extent damage can still be localised is addressed in the next section.

10.3.5.2 Damage Sniffer and Damage Modeller

As we have seen in the previous section, a damage localisation based on a pure

data–driven approach using an IA with a subsequent LI is unfortunately not

effective. In particular, the measurement noise has a considerable influence on

the solution E(x) and thus also on the localisation of the damage. Furthermore,

due to the indeterminacy at the bearings, large oscillations can occur in the To reduce the influence of the
indeterminacy on the bearings,
the solution is always smoothed in
this area with the LS.

solution E(x) with possibly extreme values at the bearings. All these effects

have a large influence and considerably falsify the damage localisation. The

extent to which these effects can be separated from the actual damage using

the DS will be shown in more detail for some sets of measurements of the

experiment exp4mm.

Minimal damage – minimal load

Since the impact of damage on the displacements is directly related to the

magnitude of the load, we first consider the measurements u9 of experiment
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exp4mm for minimal load of 3.564 kg in more detail. The reduced surface

∆Esurf(x, wGS) of the DS for the first iteration is depicted in Figure 10-37.

Figure 10-37: Reduced surface
∆Esurf(x, wGS) of the first
iteration of the DS for the
measurements u9.
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As Figure 10-37 reveals, 7 extrema occur in the solution, with larger deviations

of up to ≈ 40 GPa in the middle of the beam for wGS = 0. First of all, it is

noticeable that extrema 2 – 5 are probably only caused by measuring noise

and do not occur in the solution itself. Only minimum 6 differs clearly from

the others and may be considered as damage position, since it also has the

largest values for dominance of D6 = 61.3 %, as Table 10-4 shows.

Table 10-4: Resulting domin-
ance Dj of the Damage Sniffer

for the measurements u9.

Extrema j

1 2 3 4 5 6 7

Dj [%]
first iteration 8.5 3.9 7.1 10.4 7.9 61.3 0.9

last iteration 12.3 87.7

In direct comparison of the values Dj for all other extrema, the minimum 6
is by far the most dominant one and this even in the first iteration. The last

iteration of the DS is shown in Figure 10-38.

Figure 10-38: Reduced surface
∆Esurf(x, wGS) of the last
iteration of the DS for the
measurements u9.
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The result of the DS in Figure 10-38 differs significantly from that of the first

iteration in Figure 10-37. Not only that a total of 5 extrema have been removed

from the solution, the deviations of ≈ 10 GPa are much smaller than those of

the first iteration. As Table 10-4 shows, the minimum 6 at xDS ≈ 0.98 m has

always the largest value for the dominance and it also correspond to the true

damage position except for ≈ 13 cm. This is also confirmed by the DM, which

also locates the damage at xDM ≈ 0.98 m. For comparison, the two solutions

of the DS for wGS = 0 from Figure 10-37 and Figure 10-38 and the one of the

DM are shown in the Figure 10-39.
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Figure 10-39: Solutions E(x)
of the DS for wGS = 0 using
the measurements u9 for the
first iteration in blue and
for the last iteration in red.
Solution E(x) of the DM in
yellow.

Most noticeable in Figure 10-39 is the solution E(x) of the first iteration of

the DS (blue), with large oscillations in the middle of the beam. However,

a direct comparison with the solution E(x) of the last iteration (red) shows

that these oscillations are essentially caused by the measurement noise and do

not occur in the actual solution. As already mentioned, the result of the DS

(red) and the DM (yellow) is consistent and both of them indicate damage at

xDM ≈ 0.98 m, which corresponds roughly to the true position. For this data

set the damage could be detected and localised within ≈ 13 cm, see Table 10-3.

Minimal damage – medium load

Next, we will consider the the measurements u10 of experiment exp4mm for a

load of 7.135 kg. According to Table 10-3, damage could not be detected for

this case and also in the result of the DS no clear extremum can be identified

in the first iteration, as can be seen in Figure 10-40 and Table 10-5.
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Figure 10-40: Reduced surface
∆Esurf(x, wGS) of the first
iteration of the DS for the
measurements u10.
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Of the 6 extrema in total, the minimum 6 near the damage position is visually

somewhat prominent, but cannot be clearly identified as a possible damage

position, like the values for dominance in Table 10-5 reveal. Accordingly, the

two extrema 2 and 5 could also be considered as possible damage positions,

since all three extrema have very similar values for dominance between 25.7 %
and 28.2 %.

Table 10-5: Resulting domin-
ance Dj of the Damage Sniffer

for the measurements u10.

Extrema j

1 2 3 4 5 6

Dj [%]
first iteration 10.2 25.7 4.2 4.6 28.2 27.1

last iteration 36.9 63.1

In the last iteration of the DS, however, this is quite different, as Figure 10-41

reveals.

Figure 10-41: Reduced surface
∆Esurf(x, wGS) of the last
iteration of the DS for the
measurements u10.
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Figure 10-41 shows that extrema 2–5 have been removed from the solution

one after the other and only extrema 1 and 6 are left. Also, the position of the

minimum 6 has clearly shifted from x = 0.98 m to x = 1.19 m. The position
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of maximum 1, on the other hand, changed only slightly. According to the

values for the dominance Dj in Table 10-5, the DS identifies minimum 6 as

a possible damage position, but its value D6 = 63.1 % is not strikingly larger In contrast to the values for the
last iteration in Table 10-4, where
D6 is more than 7 times larger
than D1.

than D1 = 36.9 % for maximum 1. This aspect is also reflected in the result of

the DM, which finally identifies maximum 1 as a possible damage position with

xDM ≈ 0.26 m. The desired solution, however, would have been xDM ≈ 1.18 m
for the minimum 6, which corresponds to the true damage position except

for ≈ 8 cm. For comparison and in order to point out a possible reason for

this problem, the two solutions of the DS for wGS = 0 from Figure 10-40 and

Figure 10-41 and the one of the DM are shown in the Figure 10-42.
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Figure 10-42: Solutions E(x)
of the DS for wGS = 0 using
the measurements u10 for the
first iteration in blue and
for the last iteration in red.
Solution E(x) of the DM in
yellow.

If we now compare the solution E(x) of the first iteration of the DS in Figure

10-42 (blue) with that for the measurements u9 from Figure 10-39 (blue), then

we can see clear similarities between these two curves. This means that both

solutions for E(x) are not mainly caused by measurement noise but rather

by systematic errors in the observations, which is probably also the main The smaller the load, the larger
the impact of this problem on the
damage analysis.

reason for the incorrect identification of the damage position. This fact has

already been mentioned in Section 10.3.3 when we discussed the residuals of

the model calibration. Unfortunately, it has not yet been possible to consider

the remaining systematic errors in the observations in a suitable way, which

considerably falsifies the damage analysis. Furthermore, Figure 10-42 shows

also the solution E(x) for the last iteration of the DS and for the DM, with

wrongly identified damage at xDM ≈ 0.26 m.

Minimal damage – maximum load

As a last example, we will have a closer look at the measurements u11 of the

experiment exp4mm for a load of 17.818 kg. The reduced surface ∆Esurf(x, wGS)

of the DS for the first iteration is depicted in Figure 10-43.
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Figure 10-43: Reduced surface
∆Esurf(x, wGS) of the first
iteration of the DS for the
measurements u11.
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As Figure 10-43 reveals, 8 extrema occur in the solution, with some deviations

of up to ≈ 12 GPa at the right bearing of the beam. Of all extrema, minimum

2 is clearly different from all others and, according to Table 10-6, also has

the largest value for the dominance with D2 = 41 %. In this case, however,

minimum 8 at xDM ≈ 1.07 m with a dominance of D8 = 22.7 % represents the

true damage, which is also only just a few centimetres from the true position

of the damage.

Table 10-6: Resulting domin-
ance Dj of the Damage Sniffer

for the measurements u11.

Extrema j

1 2 3 4 5 6 7 8

Dj [%]
first iteration 1.7 41.0 5.7 8.6 0.2 0.2 19.9 22.7

last iteration 60.4 16.0 23.5

Although the impact of a damage on the observations actually increases with

increasing load, the correct extremum could not be identified within the first

iteration. In comparison to Figure 10-37, however, this was possible without

any problems for the measurements u9 for minimum load. Even after the last

iteration this does not really change, as Figure 10-44 shows.

Figure 10-44: Reduced surface
∆Esurf(x, wGS) of the last
iteration of the DS for the
measurements u11.
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As Figure 10-44 shows, the extrema 1 and 3 – 6 were removed from the solution,

but the DS still identifies minimum 2 as a possible damage position with

D2 = 60.4 %. However, the DM finally identifies the correct minimum 8 and

finds the right position of the damage up to ≈ 5 cm. The two solutions of the

DS for wGS = 0 from Figure 10-43 and Figure 10-44 and the one of the DM

are shown in the Figure 10-45.
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Figure 10-45: Solutions E(x)
of the DS for wGS = 0 using
the measurements u11 for the
first iteration in blue and
for the last iteration in red.
Solution E(x) of the DM in
yellow.

Also for this data set the damage could be detected and localised within ≈ 4 cm,

see Table 10-3. How well this worked for the other data sets is discussed in

the following.

All data sets

As before, damage localisation using the DS and DM was also done for all

other data sets and the results are summarised in Table 10-7. In the final

solution of the DS up to 3 extrema can occur and as we have seen in Table

10-6 the extrema with the largest value for the dominance is not necessarily

the solution we are looking for. Therefore, Table 10-7 lists two extrema, where

x1st is the position of the extremum with the largest and x2nd is the position

with the second largest value for the dominance. Whether the position of the

actual damage xdamage = 1.107 m is approximately represented by one of the If an extremum corresponds to
the damage is not only
determined by its position, but
also if it is a minimum.

two extrema is given in column 6. In addition, the solution of the DM is given

in column 5 and whether the damage could be localized is given in the last

column. The colour coding in Table 10-7 is to be interpreted as follows:

The damage position is not represented by one of the two extrema

and/or could not be localised with |∆x| ≥ 12 cm.

The damage position is represented by one of the two extrema and/or

could be located, but not accurately with 6 cm ≤ |∆x| ≤ 12 cm.

The damage position is represented by one of the two extrema and/or

could be located accurately with |∆x| ≤ 6 cm.
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Table 10-7: Result of the dam-
age localisation using the DS

and DM.

DS DM

designation ui m x1st x2nd xdamage xDM Damage

[kg] [m] [m] contained? [m] localised?

exp

0 3.565 0.80 0.71 0.71

1 7.120 0.86 0.33 0.79

2 10.668 0.40 0.89 0.89

3 17.825 0.35 1.11 0.35

exp4mm

6 17.819 1.13 0.46 1.13

7 3.563 0.69 0.99 0.99

8 7.134 0.51 0.29 0.36

9 3.564 0.98 0.32 0.98

10 7.135 1.19 0.26 0.26

11 17.818 0.38 1.15 1.15

exp8mm

12 17.820 1.05 0.51 1.05

13 10.709 0.53 0.29 0.29

14 3.593 0.60 1.12 0.72

15 3.593 0.61 1.13 0.71

exp10mm 16 3.569 0.35 0.59 0.36

exp3L 17 3.578 0.98 0.46 0.98

exp3L2

18 3.545 0.63 0.76 0.76

19 7.121 0.59 0.46 0.46

20 10.698 0.48 1.09 0.47

exp Y

21 3.546 1.19 0.64 1.20

22 7.125 0.87 1.03 0.73

23 10.703 0.29 1.20 0.29

24 14.248 0.37 1.09 1.09

exp K 25 7.114 1.10 0.63 1.03

exp Z

26 10.695 1.10 0.90 1.10

27 3.561 1.11 0.92 0.91

28 7.128 1.09 0.90 0.89

29 10.690 1.10 0.90 1.10

30 14.241 1.11 0.92 1.11

31 17.808 1.13 0.75 1.13

As can be seen in Table 10-7 column 6, the damage is very often present in

the solution of the DS, but not always exactly at the actual position. Apart

from the experiments exp for undamaged beam, only in 5 out of 26 cases the

damage is not included in the solution of the DS. In these cases the impact

of the remaining systematic errors and/or of the measurement noise on the

solution is probably larger than the impact of the damage itself. Besides, it

cannot be excluded that outliers are still present in these sets of measurements.

In general, it can be seen that the DS is very well suited to limit the possible

position of damage. Even for experiments with minimal damage of a small

vertical hole with a diameter of 4 mm, its position could be determined very

accurately for the measurements u6 and u11. From experiment 20 onwards, the

damage is always present in the solution of the DS, but unfortunately it cannot

always be correctly identified with the DM, like in the case of u27 and u28. The

decision criterion of the DM is probably not the best one, but unfortunately

no better one could be found that always identifies the correct position. In

comparison to the results of the damage localisation using the Local Indicator
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in Section 10.3.5.1, the DS and DM provide much better results. However, one

further point is noticeable, the DS has also found the position of the damage

for the measurements u3, although the beam has not yet been damaged at

all. But a closer look at the residuals for these measurements revealed that

they are larger at xdisp20
= 1.09 m and xdisp21

= 1.12 m than the residuals for

measurements in the surroundings. Since this is usually not the case for the

other sets of measurements, it is therefore assumed that the damage position

in the solution of the DS for the measurements u3 occurs only by accident.

10.3.6 Summary and Conclusion

For the damage analysis of the presented four-point bending test some tools

were developed, whereby particularly the Damage Sniffer proved to be very

useful. In general, the damage could already be successfully detected and even

localised for much smaller damage levels than in (Wu 2020, Table 5.5), whose

analysis was mainly falsified by large systematic errors in the measurements.

The results of the presented damage analysis for the four-point bending test

are summarized in Table 10-8. As already discussed, damage localisation

using the Local Indicator (LI) only works reliably for very large damages and

consequently it could only be localised accurately from experiment 25 onwards,

see column 5 in Table 10-8. In contrast, a damage localisation with the DS

and DM is very promising, while even for small damages like for experiment 6
and 11 it could be localised very accurately, see column 6. So far the DS is only

based on three features and it is assumed that the reliability of the damage

localisation can be significantly increased by choosing further suitable features.

In addition, the selection of the most significant extremum in the DM is based

on the target function Ω and, as already mentioned, the correct extremum

cannot always be identified by this decision criteria. It can also be assumed in

this case that the result of the DM can be significantly increased by choosing

a better decision criteria. Nevertheless, it is essential that a damage has

been detected before, otherwise the result of the DS and DM has no meaning.

As a direct comparison of the estimated parameters e under consideration

of their stochastic properties is not effective, the damage detection of the

Global Identifier (GI) is based on the solution E(x) as a continuous function

and its standard deviation sE(x). However, also this approach still has some

drawbacks, since especially for small levels of damage it could often not be

detected, compare column 4 in Table 10-8. In summary, the result of the

damage analysis with MeMoS is very promising and it was even possible to

successfully detect and localise the minimal damage of a small vertical hole

with a diameter of 4 mm, see results for experiments 6, 9 and 11 in Table 10-8.
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Table 10-8: Result of the dam-
age detection and localisation
with MeMoS. Correct dam-
age detection of the Global
Identifier (GI) in green and
wrong in red. Since the Dam-
age Modeller (DM) always
provides a damage position,
even if there is no damage,
the results for the experi-
ments exp are always marked
red.

designation ui m Detection Localisation

[kg] GI LI DM

exp

0 3.565

1 7.120

2 10.668

3 17.825

exp4mm

6 17.819

7 3.563

8 7.134

9 3.564

10 7.135

11 17.818

exp8mm

12 17.820

13 10.709

14 3.593

15 3.593

exp10mm 16 3.569

exp3L 17 3.578

exp3L2

18 3.545

19 7.121

20 10.698

exp Y

21 3.546

22 7.125

23 10.703

24 14.248

exp K 25 7.114

exp Z

26 10.695

27 3.561

28 7.128

29 10.690

30 14.241

31 17.808
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S U M M A RY A N D C O N C L U S I O N

This thesis resulted from a research project in cooperation with my colleague

Cheng-Chieh Wu from the Bundesanstalt für Materialforschung und -prüfung

(BAM), called Measurement– and Model–based Structural Analysis (MeMoS).

Initially, we focused on a combined adjustment of spatially distributed hybrid

measurements based on a structural model represented by an FEM and using

the method of least squares, which already allowed to detect damage to the

structure under investigation. By introducing a local material parameter using

the concept of observed unknowns, well known in adjustment calculation, a

damage localisation within the structure could be conducted. This approach

was to some extent successfully applied in two experimental test set-ups, see

(Wu 2020, Chapter 5). To evaluate the results of an adjustment, however, it

is always necessary to understand the characteristics of the chosen functional

model in all detail, especially for highly non-linear models. Unfortunately,

this was not the case at that time and it remained unclear which part of the

solution was due to the measurement noise and which was due to the functional

model of the adjustment, which is in fact an inverse problem. In addition, the

influence of the approximation of the structural behaviour by FEM on the

estimated material parameters could also not be assessed in all detail. Thus,

a falsification of the solution could not be entirely excluded. Therefore, it was

necessary to get a detailed understanding on the approximation of functions

in general and to obtain a direct influence on the solution of the adjustment

problem in order to eliminate all undesired effects caused by the functional

model as far as possible. These aspects, thus, lead to the two main research

topics addressed within this thesis.

1. About the characteristics of basis functions on the approximation of

functions.

2. About the impact of random errors on the damage analysis using MeMoS.

In Part ii we have thoroughly examined the approximation of univariate func-

tions using different sets of basis functions and discussed the main advantages elementwise vs. global approach

and disadvantages. We have also shown how approximations can be trans-

formed between different sets of basis function and addressed some general

problems that arise for the approximation of multivariate functions. With

regard to the planned examinations in the second research topic and also for

the approximation of Lipschitz continuous univariate functions in general, the

Chebyshev basis is excellent. In general, it is possible to approximate any

Lipschitz continuous function with arbitrary accuracy using this set of basis

functions and, therefore, we can ensure that the approximation error is always

zero within machine precision. In addition, the identification of the optimal

polynomial degree is solely based on its coefficients and the approximation

error can be determined from the absolute values of the last coefficients. Fur-

thermore, an approximation in the Chebyshev basis also offers the possibility

to easily and quickly perform numerical computations with functions, such as

computing derivatives, integrals or root finding. Whereby many arithmetic

operations are available in matrix notation and, thus, can directly be embed-

ded in the least squares adjustment, if necessary. These were the main reasons Just to make it clear again, it was
never the intention to replace the
general approach of the FEM by a
spectral method using Chebyshev
polynomials.

why we have chosen the Chebyshev basis for the investigations in Part iii.
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Since the investigations of the second research topic provide a fundamental

framework for understanding a damage analysis using MeMoS, the simple ex-

ample of a statically bended Euler-Bernoulli beam was chosen in Part iii. At

first, the mechanical model of a four-point bending test apparatus was de-

rived and its analytical solution was approximated in the Chebyshev basis.

The approximation was directly embedded as the functional model for an

Integrated Analysis (IA) of static measurements such as displacements, inclin-

ations and strains. In this example, we have introduced the elastic modulus

as a continuous function along the beam E(x) and the whole process of dam-

age detection and localisation is based on a detailed analysis of the estimated

function E(x). In addition, it was also shown how functions can be used as

observation within the IA, which consequently provides an easy way for the

evaluation of quasi continuous measurements using for example TLS, FOS or

photogrammetry. Numerical studies have demonstrated in detail the impact

of measurement noise on the estimation of the unknown function E(x) and

revealed the actual nature of the inverse problem at hand. Furthermore, we

gained an insight into the extent to which damage can be reconstructed from

measurements using MeMoS, while we addressed the impact of damage on the

measurements in all detail. In this thesis, we only considered static discrete

measurements such as displacements, inclinations and strains and in principle

none of these types of measurements are suitable for a damage analysis basedApart from quasi-continuous
strain measurements via FOS. purely on the presented IA using the method of least squares. Either damage

can only be detected in the direct vicinity of the measuring point, as for strain,

or the impact of damage is so small that for real problems, in principle, it can

only be detected with highly precise sensor technology at very few measur-

ing points, as for displacements or inclinations. However, the localisation of

damage using MeMoS is negatively affected if only measurements from a few

measuring points are available.

If we consider the former aim of MeMoS, namely to detect and localise damage

to a structure, based on a rigorous and direct solution for the system para-

meters by an Integrated Analysis (IA) of spatially distributed hybrid meas-

urements using the method of least squares, then these insights are quiteAt least for discrete static
measruements. disillusioning. Although damage can be detected to a certain extent, it can

basically not be localised, apart from perhaps huge damages. Unfortunately,

the measurement noise has a way larger impact on the unknown solutionThis conclusion only refers to
displacement and inclination

measurements.
E(x) than the damage itself. At this point, the nature of the inverse problem

prevents a damage assessment using well established geodetic deformation

analysis methods.

Through extensive numerical investigations, however, it became apparent that

the solution of the unknown function E(x) was not only randomly disturbed by

the measurement noise, but also contained a systematic component due to the

damage, which also occurs in its vicinity. The challenge now was to separate

this systematic influence within E(x) from the random disturbance, which

resulted in the development of the Damage Sniffer (DS) and Damage Modeller

(DM). Therefore, features were identified manually in different regularised

solutions for E(x) and a strategy for localisation was developed, which proved

to be also effective in the experimental studies in Section 10.3. As has been

demonstrated, the DS is in some cases also capable to localise minor damage

precisely. Besides this, a further approach for the localisation of damage was

presented, which is based on a statistical comparison of E(x) from two epochs.

This so-called Local Indicator (LI) relies on a t-test, which has been transferred

to continuous functions. Since this approach for damage localisation only
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works reliably for very large damages, it can only be used to a limited extent.

Nevertheless, the methodological concept of the LI can also be used for other

problems, such as a deformation analysis of parameterised point clouds, which,

however, is a different problem. In addition, the well known congruency test

for the detection of deformation in geodetic networks of different epochs was

adopted for damage detection and transferred to continuous functions, which

is referred to as Global Identifier (GI). Apart from a still slightly larger Type-I

error, this test quantity as a global indicator has proven to be very promising

as a first approach for the detection of damage.

In summary, the results of an damage analysis using MeMoS have thus proved

to be very promising, although the established methods for a geodetic deform-

ation analysis cannot be directly applied to a damage analysis based on an

inverse problem. Only by transferring statistical tests to continuous functions

as well as the development of novel approaches for the localisation of damage

enables a reliable damage analysis based on an Integrated Analysis (IA) of

spatially distributed hybrid measurements using the method of least squares.

This thesis at hand provides a fundamental framework for understanding the

problem of a Measurement– and Model–based Structural Analysis from a geo-

detic point of view and consequently provides a technological contribution for

Structural Health Monitoring.





O U T L O O K

In order to investigate the general nature of the inverse problem and con-

sequently the actual challenges of a Measurement– and Model–based Struc-

tural Analysis, a simple static model was chosen. Accordingly, only static

measurements, such as displacements, inclinations or strains, could be evalu-

ated with the presented IA. From these limitations, the following step-by-step

extensions of the model’s complexity already result:

� A simple dynamic model.

Following the presented derivation of an IA for static measurements, the

functional model for least squares adjustment of spatially and tempor-

ally distributed hybrid measurements using a simple 1D dynamic model

can be derived, which enables the combined evaluation of static and

vibration measurements from a geodetic point of view.

� A complex static model.

Although a complex 3D structure was already investigated in (Wu 2020),

the damage analysis was based on a first preliminary concept of MeMoS.

In addition, only displacements were used. Consequently, the current

concept of MeMoS can be transferred to more complex 3D structures for

the evaluation of hybrid static measurements.

� A complex dynamic model.

Once both of the previous points have been dealt with in detail, MeMoS

can finally be extended to complex 3D dynamic models, which represent

the behaviour of real structures best. An IA based on such a model

enables a combined evaluation of static and vibration measurements for

real world structures. Consequently, MeMoS can be applied for the first

time for real monitoring tasks.

Apart from this, there are other aspects that could be further addressed in

future work.

� The damage localisation via DS is currently based on only 3 features,

which were identified manually in a very time-consuming way, and it

can be assumed that the damage localisation can be further improved

when more features are available for evaluation. Therefore, additional

features need to be identified with machine learning algorithms and/or

novel approaches to extract damage from the solution of an IA need to

be developed.

� For real monitoring tasks, the environmental conditions, such as temper-

ature or humidity, play an essential role and must be taken into account

in the deformation/damage analysis. This implies for the example dis-

cussed in this thesis, that the unknown solution E(x) is also a function of

the environmental conditions, which have to be considered in the IA as

additional measurements and new additional unknown parameters have

to be introduced accordingly.
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Bender, B. and Göhlich, D. (2020): Dubbel Taschenbuch für den

Maschinenbau 1: Grundlagen und Tabellen. Berlin, Heidelberg:

Springer Berlin Heidelberg.

Boljen, J. (1983): “Ein dynamisches Deformationsmodell”. In: Deformation-

sanalysen ’83. Ed. by W. Welsch. Vol. 9. Schriftenreihe des Instituts

für Geodäsie der Hochschule der Bundeswehr München, pp. 43–66.

Boller, C., Chang, F.-K. and Fujino, Y., eds. (2009): Encyclopedia of

structural health monitoring. Chichester (G.B.): Wiley.

Borre, K. (2006): Mathematical Foundation of Geodesy: Selected Papers of

Torben Krarup. Berlin, Heidelberg: Springer.

Borrmann, A., König, M., Koch, C. and Beetz, J. (2015): Building In-

formation Modeling. Wiesbaden: Springer Fachmedien Wiesbaden.

Boyd, J. P. (2002): Chebyshev and Fourier spectral methods. Dover books

on mathematics. Mineola: Dover.

233



234 Bibliography

Brandes, K., Neitzel, F., Weisbrich, S. and Daum, W. (2012): “Lagrange-

Multiplikatoren (LM) der Ausgleichungsrechnung als Indikator für
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Birkhäuser Boston, pp. 163–173.

Logg, A., Mardal, K.-A. and Wells, G. (2012): Automated Solution of

Differential Equations by the Finite Element Method: The FEniCS

Book. 2012th ed. Vol. 84. Lecture Notes in Computational Science and

Engineering. Berlin, Heidelberg: Springer.

Lopez-Higuera, J. M., Rodriguez Cobo, L., Quintela Incera, A. and

Cobo, A. (2011): “Fiber Optic Sensors in Structural Health Monitor-

ing”. In: Journal of Lightwave Technology 29.4, pp. 587–608.

Luhmann, T., Robson, S., Harley, I. and Kyle, S. (2011): Close range

photogrammetry: Principles, techniques and applications. Dunbeath

and Hoboken, NJ: Whittles and Distributed in North America by J.

Wiley & Sons.

Ma, Q. (2019): “Identification of singularities in the displacement field for

damage detection in structures”. Doctoral Thesis. Sevilla: Universidad

de Sevilla.

Mason, J. C. and Handscomb, D. C. (2003): Chebyshev polynomials. Boca

Raton, Fla.: Chapman & Hall/CRC.

Meng, X., Roberts, G. W., Dodson, A. H., Cosser, E., Barnes, J. and

Rizos, C. (2004): “Impact of GPS satellite and pseudolite geometry on

structural deformation monitoring: analytical and empirical studies”.

In: Journal of Geodesy 77.12, pp. 809–822.

Merriman, M. (1877): “On the History of the Method of Least Squares”. In:

The Analyst 4.2, p. 33.

http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/sphinx/index.html
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/sphinx/index.html
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/sphinx/index.html
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/pdf/approx-4print-A4-2up.pdf
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/pdf/approx-4print-A4-2up.pdf
http://hplgit.github.io/num-methods-for-PDEs/doc/pub/approx/pdf/approx-4print-A4-2up.pdf


Bibliography 237

Mikhail, E. M. and Ackermann, F. E. (1976): Observations and least

squares. IEP series in civil engineering. New York: IEP.

Montgomery, D. C. and Runger, G. C. (2011): Applied statistics and prob-

ability for engineers. 5th ed. Hoboken, NJ: Wiley.

Moritz, H. and Sünkel, H. (1978): Approximation Methods in Geodesy:

Band 10. 1. Auflage. Karlsruhe: Wichmann.

Müller, W. H. and Ferber, F. (2012): Technische Mechanik für Ingenieure.

4., aktualisierte Aufl. München: Fachbuchverl. Leipzig im Carl-Hanser-

Verl.
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APPENDIX





A
D I S C R E T E M E A S U R E M E N T S V S . F U N C T I O N S

In the following we will present the detailed calculation of the comparison

from Section 9.1 for the specification of the four-point bending test set-up

and beam specimen which was used for the numerical studies and is given

again in Table A-1.

beam length l 7.26 m beam elastic modulus 70 GPa

beam width w 0.20 m load F 7460 N

beam height h 0.36 m loading position a 2.42 m

Table A-1: Specification of
the four-point bending set-up
and beam specimen for the
numerical studies.

The unique identifier for the nodes ν and elements ζ for this specification are

listed Table A-2.

ν xν

1 0.00

2 2.42

3 4.84

4 7.26

and ζ ν1 ν2

1 1 2

2 2 3

3 3 4

Table A-2: Coordinates for
all nodes ν and the nodes
for all three elements ζ for
specification of the four-point
bending test set-up in Table
A-1.

Furthermore, the 24 equidistant and uncorrelated displacement measurements

of high precision of the example from Section 9.1 are again listed in Table A-

3, with 8 measurements for each of the three elements according to the beam

specification.

1st element

i xi Ldispi

[m] [µm]

1 0.0000 −0.6

2 0.3157 −125.2

3 0.6313 −251.2

4 0.9470 −371.4

5 1.2626 −484.5

6 1.5783 −589.0

7 1.8939 −683.0

8 2.2096 −763.4

2nd element

i xi Ldispi

[m] [µm]

9 2.5252 −829.7

10 2.8409 −878.5

11 3.1565 −912.9

12 3.4722 −927.9

13 3.7878 −930.1

14 4.1035 −911.3

15 4.4191 −879.3

16 4.7348 −829.4

3rd element

i xi Ldispi

[m] [µm]

17 5.0504 −765.4

18 5.3661 −683.7

19 5.6817 −587.4

20 5.9974 −481.8

21 6.3130 −370.6

22 6.6287 −249.9

23 6.9443 −124.7

24 7.2600 1.6

Table A-3: 24 equidistant dis-
placement measurements of
high precision.

Before we can determine the unknown solution e for the inverse of the elastic

modulus E∗(x) based on these measurements, we have to map them onto the

interval [−1, 1] of the corresponding element by applying (8-6) with the nodes

according to Table A-2. For the first element this mapping reads For the sake of clarity, we will
omit the units for all values in
formulas in this chapter.

t = ft
(

x, xζ
ν1 , xζ

ν2

)
=

2x− xζ
ν1 − xζ

ν2

xζ
ν2 − xζ

ν1

=
2x− 0.00− 2.42

2.42− 0.00
=

2x− 2.42
2.42

(A-1)
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and for the other two elements, the functions for mapping the positions on

[−1, 1] can be derived in the same way. The mapped positions ti of the 24
equidistant displacement measurements are listed in Table A-4.

Table A-4: Mapped position ti
of the 24 equidistant displace-
ment measurements of high
precision from Table A-3.

1st element

i xi ti

[m]

1 0.0000 −1.0000

2 0.3157 −0.7391

3 0.6313 −0.4783

4 0.9470 −0.2174

5 1.2626 0.0435

6 1.5783 0.3043

7 1.8939 0.5652

8 2.2096 0.8261

2nd element

i xi ti

[m] [m]

9 2.5252 −0.9130

10 2.8409 −0.6522

11 3.1565 −0.3913

12 3.4722 −0.1304

13 3.7878 0.1304

14 4.1035 0.3913

15 4.4191 0.6522

16 4.7348 0.9130

3rd element

i xi ti

[m] [m]

17 5.0504 −0.8261

18 5.3661 −0.5652

19 5.6817 −0.3043

20 5.9974 −0.0435

21 6.3130 0.2174

22 6.6287 0.4783

23 6.9443 0.7391

24 7.2600 1.0000

In the following we use these measurements to determine the unknown solution

e for each element and we choose a polynomial degree pe = 3. Consequently,

we choose a polynomial degree pu = 5 for each element of the unknown solution

of the bending line u(x).

At first, we approximate the displacements according to the first step in Sec-

tion 8.2.4 and the functional model is already given by (8-55). For the measure-

ments and their mapped positions given in Table A-3 and A-4 the functional

model for each element ζ results in

Lζ
disp = Aζ

φ uζ (A-2)

and explicitly reads for the first element

L1
disp =



−0.0000006

−0.0001252

−0.0002512

−0.0003714

−0.0004845

−0.0005890

−0.0006830

−0.0007634


, u1 =



u1
0

u1
1

u1
2

u1
3

u1
4

u1
5


(A-3)

and

A1
φ =



1 −1 1 −1 1 −1

1 −0.739130434782609 0.092627599243857 0.602202679378646 −0.982840255716639 0.850691611680733

1 −0.478260869565217 −0.542533081285444 0.997205556012164 −0.411315711421843 −0.603773136391271

1 −0.217391304347826 −0.905482041587902 0.611079148516478 0.639795455276389 −0.889251085593170

1 0.043478260869565 −0.996219281663516 −0.130106024492479 0.984905714316344 0.215749999650423

1 0.304347826086956 −0.814744801512288 −0.800279444398783 0.327618183182594 0.999699208075145

1 0.565217391304348 −0.361058601134215 −0.973370592586504 −0.739273373094007 0.137670257784583

1 0.826086956521739 0.364839319470700 −0.223308950439713 −0.733784541936313 −0.989030727542022


. (A-4)

Since the vector of observations Lζ
disp and vector of unknowns uζ for the

second and third element can be set up analogous to (A-3), the corresponding

design matrices Aζ
φ for the remaining two elements are
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A2
φ =



1 −0.913043478260870 0.667296786389414 −0.305498479493712 −0.109429997748721 0.505327171034855

1 −0.652173913043478 −0.149338374291116 0.846963096901456 −0.955396099928173 0.399205729091812

1 −0.391304347826087 −0.693761814744801 0.934248376756801 −0.037389088804000 −0.904987350736279

1 −0.130434782608696 −0.965973534971645 0.382427878688255 0.866209740531230 −0.608395637087706

1 0.130434782608696 −0.965973534971645 −0.382427878688255 0.866209740531230 0.608395637087708

1 0.391304347826087 −0.693761814744802 −0.934248376756801 −0.037389088803999 0.904987350736280

1 0.652173913043479 −0.149338374291114 −0.846963096901454 −0.955396099928174 −0.399205729091817

1 0.913043478260870 0.667296786389414 0.305498479493713 −0.109429997748721 −0.505327171034856


, (A-5)

and

A3
φ =



1 −0.826086956521739 0.364839319470700 0.223308950439713 −0.733784541936313 0.989030727542022

1 −0.565217391304348 −0.361058601134216 0.973370592586505 −0.739273373094007 −0.137670257784585

1 −0.304347826086956 −0.814744801512288 0.800279444398782 0.327618183182596 −0.999699208075144

1 −0.043478260869565 −0.996219281663516 0.130106024492478 0.984905714316344 −0.215749999650421

1 0.217391304347825 −0.905482041587902 −0.611079148516477 0.639795455276391 0.889251085593168

1 0.478260869565218 −0.542533081285443 −0.997205556012164 −0.411315711421845 0.603773136391269

1 0.739130434782609 0.092627599243857 −0.602202679378646 −0.982840255716639 −0.850691611680733

1 1 1 1 1 1


. (A-6)

The three equation systems (A-2) can be combined into
L1

disp

L2
disp

L3
disp

 =


A1

φ 0 0

0 A2
φ 0

0 0 A3
φ




u1

u2

u3

 , (A-7)

or in short

Ldisp = Aφ u . (A-8)

The standard deviation of the 24 uncorrelated displacement measurements of

high precision according to Table 9-2 is given by σLdisp
= 0.93µm and choosing

the same value for the theoretical reference standard deviation σ0 results in

an identity matrix I for the weight matrix

Pdisp =


P1

disp 0 0

0 P2
disp 0

0 0 P3
disp

 = I . (A-9)

The normal equation system for a least squares adjustment according to (2-17)

results in

N u = n

AT
φ Pdisp Aφ u = AT

φ Pdisp Ldisp (A-10)

and introducing the constraints (7-24) at the two inner nodes in Table A-2

for a C2 continuous approximation of the displacements yields the extended

normal equation systemAT
φ Pdisp Aφ CT

conti

Cconti 0

u

λ

 =

AT
φ Pdisp Ldisp

0

 , (A-11)

with
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Cconti =



1 1 1 1 1 1 −1 1 −1 1 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 −1 1 −1 1 −1 1

0 0.04 0.16 0.36 0.64 1 0 −0.04 0.16 −0.36 0.64 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0.04 0.16 0.36 0.64 1 0 −0.04 0.16 −0.36 0.64 −1

0 0 0.02 0.12 0.4 1 0 0 −0.02 0.12 −0.4 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.02 0.12 0.4 1 0 0 −0.02 0.12 −0.4 1


,

(A-12)

where each line has been normalized to ±1. Solving (A-11) yields the unknown

coefficients u of a C2 continuous approximation of the displacements, which

are

u1 =



−0.000 435 174 747 739

−0.000 409 714 903 599

0.000 030 873 625 874

0.000 005 246 075 917

−0.000 000 502 460 158

0.000 000 135 802 966


, u2 =



−0.000 870 244 681 219

−0.000 000 364 653 125

0.000 060 489 091 286

−0.000 000 283 890 813

0.000 000 054 112 415

0.000 000 083 673 159


and u3 =



−0.000 434 651 922 078

0.000 410 976 779 215

0.000 030 151 025 497

−0.000 004 966 110 086

0.000 000 271 896 800

0.000 000 026 679 387


. (A-13)

a.1 solution of the bvp in the chebyshev basis

The functional model for the integrated analysis is based on the solution

(8-3) of the BVP in the Chebyshev basis for the specification of the four-point

bending test set-up listed in Table A-1 and readsU

Λ

 =

L CT

C 0

−1 − 1
I M
0

 , (A-14)

with area moment of inertia

I =
1
12

wh3 = 0.0007776 . (A-15)

According to Section 7.3, the matrices in (A-14) result in

L =


J1 2Lxx 0 0

0 J2 2Lxx 0

0 0 J3 2Lxx

 , (A-16)

with

Jζ =
2

xζ
ν2 − xζ

ν1

=
1

1.21
, (A-17)

for all ζ, see Section 3.2. The differential operator according to Section 5.1.2

yields

Lxx =



0 0 4 0 32 0

0 0 0 24 0 120

0 0 0 0 48 0

0 0 0 0 0 80

0 0 0 0 0 0

0 0 0 0 0 0


(A-18)
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and the multiplication operator for the bending moment in the Chebyshev

basis reads

M =


M[ m1 ] 0 0

0 M[ m2 ] 0

0 0 M[ m3 ]

 , (A-19)

with

m1 =



4513.3

4513.3

0.0

0.0

0.0

0.0


, m2 =



9026.6

0.0

0.0

0.0

0.0

0.0


and m3 =



4513.3

−4513.3

0.0

0.0

0.0

0.0


. (A-20)

Matrix C in (A-14) reads according to (7-27)

C =

 CBC

Cconti

 , (A-21)

with

CBC =

1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1


(A-22)

and Cconti is given by (A-12). Solving (A-14) yields

U =


U1

U2

U3

 , (A-23)

with

U1 =
[

U11 U12 U13
]

,

U2 =
[

U21 U22 U23
]

,

U3 =
[

U31 U32 U33
]

. (A-24)

The 9 submatrices in (A-24) are

U11 =



−10345715.58964359 −4887031.872427874 2082379.446525393 3307235.088281441 1779483.857843914 −573458.3488636302

−8718318.051372554 −4941499.047028706 735532.0188756472 2741790.777259978 1572984.722444413 −549468.6618478659

2015939.950204016 245556.0419178382 −1524827.866368344 −983976.1455636623 −256349.4856115345 124857.480980551

399437.6556318913 399437.6556318913 −43158.32143965364 −519234.2318691599 −232117.3169278467 110619.2462357254

−24905.31096108862 63613.88445322034 152133.0798675295 6811.53977183243 −106793.1495909436 −12047.6264363625

−35800.55466000026 −35800.55466000027 17310.96258858512 107513.9370987938 75473.81712486954 −21799.07870730117


, (A-25)

U12 =



−15242032.16875645 2306829.070937842 7418881.85730664 −714626.1325372444 −2487919.576577622 526735.0815575167

−15118040.56665488 2144847.933009133 7542873.459408216 −876607.2704659516 −2279008.861741687 446467.3687312375

83417.41103458252 −133624.0684442123 83417.41103458584 −133624.0684442107 285087.9465154848 −123904.1692700929

−54983.93684446609 35737.81110484458 −54983.93684446609 35737.81110484459 119006.3290606252 −66762.94382223717

24173.16059043959 −25637.4613317378 24173.16059043946 −25637.46133173782 5884.411049279352 1202.714796797653

38582.90636791472 −33018.20295208581 38582.90636791472 −33018.20295208582 −36944.68633179535 24329.20217522113


, (A-26)
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U13 =



−4862855.464122241 2974445.961950317 −330672.6589096251 −687304.3788272543 646008.0019119057 121108.1093380563

−4843860.696208674 2955451.19403675 −311677.890996057 −698636.0621000712 642013.5159032156 129851.2873251376

25103.32870481401 −25103.32870481402 25103.32870481536 −13872.13997947222 −8590.237471218481 14866.0696474215

9623.062869810752 −9623.062869810752 9623.062869810745 −4124.65743734581 −6872.15342758403 9277.919145036705

732.1503706491042 −732.1503706491382 732.1503706491128 −702.85313809734 644.2586729937631 −461.2210803314819

−2782.351707914459 2782.35170791446 −2782.351707914454 881.3475925931538 2920.660638049427 −3616.248565028034


, (A-27)

U21 =



−13451815.44146978 −7786586.934954012 144732.9741680761 2825271.685150603 1954597.749948288 −630938.3215258291

3507872.339619947 1619462.837448024 −1024310.465592675 −1620977.27628399 −737060.4452775045 368801.4470980304

218994.2416099797 218994.2416099799 218994.2416099795 180157.128684736 102482.9028342489 47734.34243175392

35737.81110484458 35737.81110484461 35737.8111048446 7756.283179347966 −48206.77267164475 −57141.22544785592

41120.26441236397 41120.26441236395 41120.26441236398 26521.04059910193 −2677.407027422099 −12957.47313051308

−25949.18537090776 −25949.18537090776 −25949.18537090776 −14970.11744014057 6988.018421393717 13475.31476412066


, (A-28)

U22 =



−33997575.56210501 0.000000001862645 18051711.34150867 −0.000000006053596 −4797164.896054927 0.000000001979060

0.000000001818065 −5022865.897106128 0.000000005454197 2577982.349135872 −0.000000000681774 −987831.3894498016

3810932.896666873 −0.000000000140862 −3270602.736477847 −0.000000000281725 462938.3860689035 −0.000000000246509

−0.000000000121745 779629.1855241609 −0.000000000194792 −990754.7227620186 0.000000000048698 220550.8940127617

−82240.52882472797 −0.000000000008285 271836.2528325081 0.000000000020713 −59667.92803969242 0.000000000021749

0.000000000011451 −51898.37074181549 0.000000000011451 160547.698252526 −0.000000000005326 −40786.75873140126


, (A-29)

U23 =



−13451815.44146978 7786586.934954009 144732.9741680729 −2825271.685150594 1954597.749948289 630938.321525828

−3507872.339619949 1619462.837448022 1024310.465592674 −1620977.276283992 737060.4452775029 368801.4470980299

218994.24160998 −218994.2416099797 218994.2416099794 −180157.1286847354 102482.9028342491 −47734.34243175387

−35737.81110484424 35737.81110484451 −35737.81110484464 7756.28317934779 48206.77267164487 −57141.2254478559

41120.26441236394 −41120.26441236395 41120.26441236397 −26521.04059910202 −2677.407027422129 12957.47313051308

25949.18537090773 −25949.18537090775 25949.18537090774 −14970.11744014053 −6988.018421393731 13475.31476412066


, (A-30)

U31 =



−4862855.464122242 −2974445.961950318 −330672.6589096229 687304.3788272609 646008.001911904 −121108.1093380565

4843860.696208675 2955451.194036751 311677.8909960556 −698636.062100076 −642013.5159032145 129851.2873251379

25103.32870481451 25103.32870481453 25103.32870481453 13872.13997947037 −8590.237471217933 −14866.06964742157

−9623.06286981075 −9623.062869810758 −9623.062869810758 −4124.657437345821 6872.153427584026 9277.91914503672

732.1503706491261 732.1503706491278 732.1503706491278 702.8531380973415 644.2586729937652 461.221080331482

2782.35170791446 2782.351707914463 2782.351707914463 881.3475925931648 −2920.660638049421 −3616.248565028039


, (A-31)

U32 =



−15242032.16875646 −2306829.070937841 7418881.857306645 714626.1325372359 −2487919.576577623 −526735.0815575151

15118040.56665488 2144847.933009131 −7542873.45940822 −876607.2704659452 2279008.861741689 446467.3687312357

83417.41103458381 133624.0684442129 83417.41103458381 133624.0684442129 285087.946515485 123904.169270093

54983.93684446609 35737.81110484458 54983.93684446609 35737.81110484459 −119006.3290606252 −66762.94382223711

24173.1605904395 25637.46133173776 24173.1605904395 25637.46133173776 5884.411049279331 −1202.714796797666

−38582.90636791472 −33018.20295208581 −38582.90636791472 −33018.20295208581 36944.68633179535 24329.20217522111


(A-32)

U33 =



−10345715.58964359 4887031.872427871 2082379.44652539 −3307235.088281438 1779483.857843913 573458.3488636292

8718318.051372554 −4941499.047028704 −735532.0188756455 2741790.777259975 −1572984.722444412 −549468.6618478651

2015939.950204017 −245556.0419178376 −1524827.866368342 983976.1455636612 −256349.4856115345 −124857.4809805508

−399437.6556318913 399437.6556318913 43158.32143965364 −519234.2318691599 232117.3169278467 110619.2462357253

−24905.31096108862 −63613.88445322036 152133.0798675294 −6811.539771832358 −106793.1495909436 12047.6264363625

35800.55466000027 −35800.55466000026 −17310.96258858512 107513.9370987938 −75473.81712486953 −21799.07870730116


. (A-33)

Thus everything is available for an integrated analysis of the 24 displacement

measurements.



A.2 solution for discrete measurements as observations 249

a.2 solution for discrete measurements as observations

The functional model for an integrated analysis of displacement measurements

is given by (8-7) and results for this example in

Ldispi
=

5

∑
j=0

uζ
j Tj

(
ft
(

xdispi
, xζ

ν1 , xζ
ν2

))
=

5

∑
j=0

uζ
j Tj
(
tdispi

)
= φ

(
tdispi

)
uζ . (A-34)

As the polynomial degree pe < pu, we have to remove the last two columns of

the 9 submatrices in (A-25) – (A-33). According to (Olver and Townsend

2013), this can be done by applying the (pe + 1)× (pu + 1) truncation operator

given by

P pe+1 =
[
Ipe+1 0

]
=


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

 . (A-35)

Since our problem has 3 elements, the truncation operator reads

P =


P pe+1 0 0

0 P pe+1 0

0 0 P pe+1

 (A-36)

and the functional model (A-34) can be written as

Ldispi
= φ

(
tdispi

)
uζ

= φ
(
tdispi

)
Uζ PTe . (A-37)

Introducing (8-57) the functional model (A-37) of all observations for each

element ζ results in

Lζ
disp = Aζ

φ Uζ PTe . (A-38)

and can be combined into
L1

disp

L2
disp

L3
disp

 =


A1

φ 0 0

0 A2
φ 0

0 0 A3
φ




U1

U2

U3

PT


e1

e2

e3

 (A-39)

or in short

Ldisp = Aφ UPT e , (A-40)

with Aφ given by (A-7) and U by (A-23). Finally, Equation (A-40) can be

simplified to

Ldisp = Adisp e , (A-41)

with

Adisp = Aφ UPT . (A-42)

The least squares approximation of the 24 displacement measurements accord-

ing to Section 8.1.3 and with the weight matrix (A-9) and (A-12) results in

the extended normal equation systemAT
disp Pdisp Adisp CT

conti

Cconti 0

e

λ

 =

AT
disp Pdisp Ldisp

0

 . (A-43)
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Solving (A-43) yields the unknown coefficients e of a Chebyshev series for each

element representing the inverse of elastic modulus E(x) as a C2 continuous

function along the beam, which are

e1 =


0.014 306 766 300 151

0.000 080 971 277 957

−0.000 183 237 594 773

0.000 048 179 060 970

 , e2 =


0.014 284 158 519 764

0.000 103 484 603 866

0.000 065 238 799 878

−0.000 006 766 328 528

 and e3 =


0.013 057 831 082 907

−0.002 246 518 605 775

−0.001 034 809 078 185

−0.000 176 574 984 482

 . (A-44)

These values are already listed in the first column of Table 9-4.

a.3 solution for functions as observations

The functional model for an integrated analysis of displacements as functions

is given by (8-32) and with the truncation operator (A-36) it reads

Lu = Au e , (A-45)

with

Lu =


u1

u2

u3

 (A-46)

from (A-13) and

Au = UPT . (A-47)

The least squares approximation of the displacement measurements represen-

ted as a function u according to Section 8.2.3 results in the extended normal

equation system AT
u Pu Au CT

conti

Cconti 0

e

λ

 =

AT
u Pu Lu

0

 . (A-48)

According to Section 9.1, we estimate e in the following sections for 3 different

stochastic models:

� Using the coefficients u as observations and under consideration of cor-

relations ⇒ Pu = AT
φ Pdisp Aφ.

� Using the coefficients u as observations and without consideration of

correlations ⇒ Pu = diag
(
AT

φ Pdisp Aφ

)
.

� Using the coefficients u as observations and without explicit stochastic

model ⇒ Pu = I.

a.3.1 With correlations

First of all, we estimate e under consideration of correlations using the follow-

ing stochastic model

Pu = AT
φ Pdisp Aφ (A-49)
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and with (A-7) and (A-9) the stochastic model (A-49) can be written as

Pu =


P1

u 0 0

0 P2
u 0

0 0 P3
u



=


A1 T

φ P1
disp A1

φ 0 0

0 A2 T
φ P2

disp A2
φ 0

0 0 A3 T
φ P3

disp A3
φ

 , (A-50)

with

P1
u =



8 −0.695652173913043 −2.162570888468808 −0.916577628010191 0.085105470606525 −1.278243872335579

−0.695652173913043 2.918714555765596 −0.806114900961617 −1.038732708931141 −1.097410750172885 0.427729413642389

−2.162570888468808 −0.806114900961617 4.042552735303262 −0.986948023124311 −0.696108765895277 −1.228413060553586

−0.916577628010191 −1.038732708931141 −0.986948023124311 4.385176678339127 −1.117950333505012 −0.374453822727150

0.085105470606525 −1.097410750172885 −0.696108765895277 −1.117950333505012 4.706831621507255 −0.992718837868885

−1.278243872335579 0.427729413642389 −1.228413060553586 −0.374453822727150 −0.992718837868885 4.922067160516348


, (A-51)

P2
u =



8 0 −2.283553875236295 0 −0.472010891899328 0

0 2.858223062381852 0 −1.377782383567812 0 −0.576511605236483

−2.283553875236295 0 3.763994554050336 0 −1.482283096904966 0

0 −1.377782383567812 0 3.659493840713180 0 −1.788829156182099

−0.472010891899328 0 −1.482283096904966 0 3.352947781436048 0

0 −0.576511605236483 0 −1.788829156182099 0 3.207736240291689


, (A-52)

P3
u =



8 0.695652173913045 −2.162570888468808 0.916577628010190 0.085105470606528 1.278243872335575

0.695652173913045 2.918714555765596 0.806114900961618 −1.038732708931140 1.097410750172883 0.427729413642388

−2.162570888468808 0.806114900961618 4.042552735303264 0.986948023124311 −0.696108765895281 1.228413060553588

0.916577628010190 −1.038732708931140 0.986948023124311 4.385176678339123 1.117950333505014 −0.374453822727146

0.085105470606528 1.097410750172883 −0.696108765895281 1.117950333505014 4.706831621507259 0.992718837868888

1.278243872335575 0.427729413642388 1.228413060553588 −0.374453822727146 0.992718837868888 4.922067160516345


. (A-53)

Solving (A-48) under consideration of correlations between the observations

u by the stochastic model (A-49), yields the unknown coefficients e

e1 =


0.014 306 766 300 212

0.000 080 971 277 841

−0.000 183 237 594 699

0.000 048 179 060 954

 , e2 =


0.014 284 158 519 764

0.000 103 484 603 859

0.000 065 238 799 878

−0.000 006 766 328 524

 and e3 =


0.013 057 831 082 851

−0.002 246 518 605 880

−0.001 034 809 078 253

−0.000 176 574 984 498

 . (A-54)

These values are already listed in the second column of Table 9-4.

a.3.2 Without correlations

Now we estimate e without consideration of correlations between the observa-

tions u. The stochastic model (A-50) simplifies to

Pu =


P1

u 0 0

0 P2
u 0

0 0 P3
u

 = diag
(
AT

φ Pdisp Aφ

)
, (A-55)
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with

P1
u =



8 0 0 0 0 0

0 2.918714555765596 0 0 0 0

0 0 4.042552735303262 0 0 0

0 0 0 4.385176678339127 0 0

0 0 0 0 4.706831621507255 0

0 0 0 0 0 4.922067160516348


, (A-56)

P2
u =



8 0 0 0 0 0

0 2.858223062381852 0 0 0 0

0 0 3.763994554050336 0 0 0

0 0 0 3.659493840713180 0 0

0 0 0 0 3.352947781436048 0

0 0 0 0 0 3.207736240291689


, (A-57)

P3
u =



8 0 0 0 0 0

0 2.918714555765596 0 0 0 0

0 0 4.042552735303264 0 0 0

0 0 0 4.385176678339123 0 0

0 0 0 0 4.706831621507259 0

0 0 0 0 0 4.922067160516345


. (A-58)

Solving (A-48) without consideration of correlations between the observations

u by the stochastic model (A-55), yields the unknown coefficients e

e1 =


0.014 172 412 374 338

0.000 318 308 581 172

−0.000 354 862 279 467

0.000 090 003 822 607

 , e2 =


0.014 286 234 410 083

0.000 143 530 605 680

0.000 062 758 301 860

−0.000 020 400 392 386

 and e3 =


0.013 176 983 814 449

−0.002 018 366 780 776

−0.000 855 944 393 495

−0.000 132 716 723 507

 . (A-59)

These values are already listed in the third column of Table 9-4.

a.3.3 Without explicit stochastic model

Lastly, we estimate E without explicit stochastic model, which reads

Pu = I . (A-60)

Solving (A-48) without explicit stochastic model for the observations u by

(A-60), yields the unknown coefficients e

e1 =


0.014 343 935 390 659

0.000 016 728 279 048

−0.000 158 897 874 031

0.000 043 401 985 193

 , e2 =


0.014 279 231 576 483

0.000 114 461 350 024

0.000 076 174 257 866

−0.000 004 223 296 544

 and e3 =


0.012 944 001 628 930

−0.002 498 454 983 944

−0.001 182 342 165 776

−0.000 205 529 440 730

 . (A-61)

These values are already listed in the fourth column of Table 9-4.



B
DA M AG E S N I F F E R

The measurements for the example in Section 10.1.5 are based on the true

solution of (7-5) for the huge damage (9-2). The 30 equidistant displacement

measurements of high precision are given in Table B-1.

i xi Ldispi

[m] [µm]

1 0.000 000 000 000 000 −0.1

2 0.250 344 827 586 207 −104.3

3 0.500 689 655 172 414 −202.6

4 0.751 034 482 758 621 −301.8

5 1.001 379 310 344 828 −397.3

6 1.251 724 137 931 034 −488.6

7 1.502 068 965 517 242 −575.2

8 1.752 413 793 103 448 −653.4

9 2.002 758 620 689 655 −726.0

10 2.253 103 448 275 862 −789.5

11 2.503 448 275 862 069 −841.8

12 2.753 793 103 448 276 −885.4

13 3.004 137 931 034 483 −919.4

14 3.254 482 758 620 690 −940.8

15 3.504 827 586 206 897 −954.1

16 3.755 172 413 793 103 −952.3

17 4.005 517 241 379 311 −939.8

18 4.255 862 068 965 517 −918.4

19 4.506 206 896 551 724 −884.9

20 4.756 551 724 137 931 −844.7

21 5.006 896 551 724 138 −788.7

22 5.257 241 379 310 345 −726.4

23 5.507 586 206 896 551 −653.7

24 5.757 931 034 482 758 −574.9

25 6.008 275 862 068 966 −489.4

26 6.258 620 689 655 173 −396.8

27 6.508 965 517 241 379 −302.1

28 6.759 310 344 827 585 −204.4

29 7.009 655 172 413 793 −102.8

30 7.260 000 000 000 000 −0.3

Table B-1: 30 equidistant dis-
placement measurements of
high precision for damage
according to (9-2).
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C
E X P E R I M E N TA L S T U D I E S

The resulting 31 displacement measurements for each of the 31 bending tests

are listed in Table C-1 – C-6.

i xdispi Displacements in [mm]

[m] u0 u1 u2 u3

1 0.023 096 −0.0229 −0.0523 −0.0877 −0.1202

2 0.068 709 −0.0480 −0.1039 −0.1657 −0.2457

3 0.176 352 −0.1058 −0.2210 −0.3385 −0.5332

4 0.212 851 −0.1227 −0.2569 −0.3916 −0.6280

5 0.278 871 −0.1552 −0.3230 −0.4899 −0.7885

6 0.314 151 −0.1702 −0.3534 −0.5350 −0.8683

7 0.417 935 −0.2144 −0.4423 −0.6609 −1.0827

8 0.447 853 −0.2220 −0.4612 −0.6912 −1.1344

9 0.527 959 −0.2463 −0.5110 −0.7635 −1.2536

10 0.559 127 −0.2556 −0.5291 −0.7864 −1.2944

11 0.643 514 −0.2673 −0.5558 −0.8261 −1.3639

12 0.676 329 −0.2732 −0.5649 −0.8378 −1.3823

13 0.747 849 −0.2747 −0.5701 −0.8420 −1.3940

14 0.781 092 −0.2723 −0.5670 −0.8392 −1.3888

15 0.842 090 −0.2668 −0.5567 −0.8226 −1.3620

16 0.873 664 −0.2616 −0.5483 −0.8080 −1.3380

17 0.931 494 −0.2505 −0.5259 −0.7715 −1.2791

18 0.964 512 −0.2416 −0.5084 −0.7453 −1.2361

19 1.055 018 −0.2139 −0.4540 −0.6572 −1.0929

20 1.087 295 −0.2004 −0.4278 −0.6202 −1.0301

21 1.121 913 −0.1871 −0.4024 −0.5790 −0.9631

22 1.153 746 −0.1741 −0.3749 −0.5359 −0.8940

23 1.197 998 −0.1534 −0.3357 −0.4760 −0.7925

24 1.226 644 −0.1393 −0.3080 −0.4335 −0.7250

25 1.262 643 −0.1215 −0.2739 −0.3815 −0.6355

26 1.291 306 −0.1072 −0.2448 −0.3377 −0.5632

27 1.331 778 −0.0863 −0.2028 −0.2742 −0.4576

28 1.361 852 −0.0698 −0.1710 −0.2259 −0.3766

29 1.394 834 −0.0517 −0.1353 −0.1723 −0.2881

30 1.425 921 −0.0341 −0.1012 −0.1202 −0.2027

31 1.459 129 −0.0162 −0.0644 −0.0651 −0.1100

Table C-1: 31 displacements
of the bending test exp with
undamaged beam. Measure-
ments in red are detected as
outliers. The set of displace-
ments u4 and u5 are excluded
since both refer to a six-point
bending test, which is not
considered in this thesis.
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Table C-2: 31 displacements
of the bending test exp4mm
with damaged beam. Measure-
ments in red are detected as
outliers.

i xdispi Displacements in [mm]

[m] u6 u7 u8 u9 u10 u11

1 0.023 096 −0.1542 −0.0281 −0.0585 0.0037 −0.0468 −0.1258

2 0.068 709 −0.2778 −0.0527 −0.1080 −0.0207 −0.0958 −0.2503

3 0.176 352 −0.5611 −0.1132 −0.2251 −0.0778 −0.2117 −0.5379

4 0.212 851 −0.6543 −0.1306 −0.2581 −0.0963 −0.2471 −0.6272

5 0.278 871 −0.8132 −0.1626 −0.3223 −0.1269 −0.3092 −0.7901

6 0.314 151 −0.8919 −0.1794 −0.3535 −0.1431 −0.3410 −0.8690

7 0.417 935 −1.1039 −0.2222 −0.4397 −0.1846 −0.4275 −1.0783

8 0.447 853 −1.1545 −0.2343 −0.4592 −0.1960 −0.4499 −1.1350

9 0.527 959 −1.2728 −0.2592 −0.5074 −0.2203 −0.4959 −1.2499

10 0.559 127 −1.3130 −0.2667 −0.5230 −0.2266 −0.5124 −1.2889

11 0.643 514 −1.3793 −0.2805 −0.5482 −0.2403 −0.5374 −1.3549

12 0.676 329 −1.3977 −0.2854 −0.5576 −0.2450 −0.5481 −1.3758

13 0.747 849 −1.4067 −0.2872 −0.5606 −0.2477 −0.5552 −1.3907

14 0.781 092 −1.4018 −0.2875 −0.5577 −0.2461 −0.5474 −1.3793

15 0.842 090 −1.3728 −0.2823 −0.5458 −0.2408 −0.5387 −1.3530

16 0.873 664 −1.3479 −0.2776 −0.5344 −0.2346 −0.5261 −1.3253

17 0.931 494 −1.2879 −0.2667 −0.5127 −0.2248 −0.5056 −1.2677

18 0.964 512 −1.2457 −0.2584 −0.4945 −0.2158 −0.4871 −1.2251

19 1.055 018 −1.1003 −0.2313 −0.4376 −0.1879 −0.4314 −1.0808

20 1.087 295 −1.0374 −0.2175 −0.4099 −0.1736 −0.4035 −1.0178

21 1.121 913 −0.9694 −0.2041 −0.3823 −0.1600 −0.3771 −0.9495

22 1.153 746 −0.8976 −0.1904 −0.3552 −0.1467 −0.3495 −0.8793

23 1.197 998 −0.7965 −0.1703 −0.3133 −0.1259 −0.3081 −0.7778

24 1.226 644 −0.7268 −0.1575 −0.2858 −0.1129 −0.2809 −0.7095

25 1.262 643 −0.6383 −0.1395 −0.2496 −0.0949 −0.2447 −0.6198

26 1.291 306 −0.5644 −0.1257 −0.2204 −0.0803 −0.2156 −0.5470

27 1.331 778 −0.4581 −0.1047 −0.1772 −0.0587 −0.1722 −0.4420

28 1.361 852 −0.3748 −0.0891 −0.1459 −0.0435 −0.1407 −0.3621

29 1.394 834 −0.2876 −0.0695 −0.1085 −0.0261 −0.1042 −0.2722

30 1.425 921 −0.1987 −0.0543 −0.0744 −0.0079 −0.0698 −0.1861

31 1.459 129 −0.1094 −0.0323 −0.0376 0.0097 −0.0333 −0.0970
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i xdispi Displacements in [mm]

[m] u12 u13 u14 u15 u16

1 0.023 096 −0.1265 −0.0871 −0.0273 −0.0267 −0.0090

2 0.068 709 −0.2509 −0.1613 −0.0522 −0.0515 −0.0340

3 0.176 352 −0.5389 −0.3353 −0.1111 −0.1097 −0.0911

4 0.212 851 −0.6285 −0.3885 −0.1282 −0.1267 −0.1094

5 0.278 871 −0.7908 −0.4832 −0.1605 −0.1595 −0.1396

6 0.314 151 −0.8700 −0.5295 −0.1758 −0.1740 −0.1549

7 0.417 935 −1.0809 −0.6588 −0.2189 −0.2174 −0.1979

8 0.447 853 −1.1360 −0.6884 −0.2279 −0.2268 −0.2061

9 0.527 959 −1.2527 −0.7616 −0.2518 −0.2501 −0.2301

10 0.559 127 −1.2933 −0.7845 −0.2603 −0.2581 −0.2381

11 0.643 514 −1.3590 −0.8247 −0.2739 −0.2707 −0.2500

12 0.676 329 −1.3787 −0.8346 −0.2773 −0.2746 −0.2536

13 0.747 849 −1.3879 −0.8374 −0.2821 −0.2788 −0.2564

14 0.781 092 −1.3842 −0.8393 −0.2779 −0.2740 −0.2546

15 0.842 090 −1.3526 −0.8189 −0.2731 −0.2696 −0.2480

16 0.873 664 −1.3286 −0.8053 −0.2674 −0.2634 −0.2431

17 0.931 494 −1.2716 −0.7704 −0.2567 −0.2528 −0.2312

18 0.964 512 −1.2289 −0.7441 −0.2463 −0.2419 −0.2216

19 1.055 018 −1.0847 −0.6578 −0.2176 −0.2140 −0.1912

20 1.087 295 −1.0218 −0.6192 −0.2037 −0.2007 −0.1791

21 1.121 913 −0.9524 −0.5772 −0.1906 −0.1869 −0.1649

22 1.153 746 −0.8824 −0.5357 −0.1765 −0.1725 −0.1509

23 1.197 998 −0.7796 −0.4736 −0.1563 −0.1531 −0.1304

24 1.226 644 −0.7113 −0.4317 −0.1414 −0.1384 −0.1149

25 1.262 643 −0.6216 −0.3786 −0.1243 −0.1211 −0.0978

26 1.291 306 −0.5482 −0.3349 −0.1090 −0.1063 −0.0827

27 1.331 778 −0.4418 −0.2695 −0.0881 −0.0852 −0.0607

28 1.361 852 −0.3615 −0.2221 −0.0716 −0.0692 −0.0447

29 1.394 834 −0.2711 −0.1670 −0.0533 −0.0509 −0.0261

30 1.425 921 −0.1842 −0.1150 −0.0350 −0.0335 −0.0078

31 1.459 129 −0.0933 −0.0606 −0.0166 −0.0147 0.0109

Table C-3: 31 displacements
of the bending tests exp8mm
and exp10mm with damaged
beam. Sets u12 – u15 are re-
ferring to exp8mm and u16 to
exp10mm. Measurements in
red are detected as outliers.
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Table C-4: 31 displacements of
the bending tests exp3L and
exp3L2 with damaged beam.
Set u17 refers to exp3L and
u18– u20 to exp3L2. Measure-
ments in red are detected as
outliers.

i xdispi Displacements in [mm]

[m] u17 u18 u19 u20

1 0.023 096 −0.0469 −0.0056 −0.0366 −0.0601

2 0.068 709 −0.0711 −0.0292 −0.0846 −0.1335

3 0.176 352 −0.1304 −0.0852 −0.2003 −0.3068

4 0.212 851 −0.1470 −0.1031 −0.2356 −0.3587

5 0.278 871 −0.1805 −0.1329 −0.2985 −0.4564

6 0.314 151 −0.1951 −0.1491 −0.3298 −0.5023

7 0.417 935 −0.2413 −0.1895 −0.4161 −0.6301

8 0.447 853 −0.2518 −0.2005 −0.4370 −0.6642

9 0.527 959 −0.2752 −0.2227 −0.4837 −0.7341

10 0.559 127 −0.2815 −0.2284 −0.4976 −0.7559

11 0.643 514 −0.2950 −0.2415 −0.5247 −0.7969

12 0.676 329 −0.3002 −0.2448 −0.5333 −0.8067

13 0.747 849 −0.3090 −0.2496 −0.5408 −0.8186

14 0.781 092 −0.2988 −0.2441 −0.5341 −0.8104

15 0.842 090 −0.2959 −0.2415 −0.5253 −0.7977

16 0.873 664 −0.2891 −0.2318 −0.5103 −0.7780

17 0.931 494 −0.2781 −0.2233 −0.4912 −0.7459

18 0.964 512 −0.2683 −0.2146 −0.4730 −0.7191

19 1.055 018 −0.2380 −0.1869 −0.4168 −0.6330

20 1.087 295 −0.2250 −0.1722 −0.3897 −0.5950

21 1.121 913 −0.2099 −0.1592 −0.3621 −0.5522

22 1.153 746 −0.1949 −0.1456 −0.3342 −0.5096

23 1.197 998 −0.1735 −0.1257 −0.2932 −0.4485

24 1.226 644 −0.1588 −0.1123 −0.2650 −0.4058

25 1.262 643 −0.1406 −0.0948 −0.2288 −0.3516

26 1.291 306 −0.1251 −0.0806 −0.1991 −0.3078

27 1.331 778 −0.1018 −0.0599 −0.1559 −0.2429

28 1.361 852 −0.0859 −0.0448 −0.1240 −0.1945

29 1.394 834 −0.0671 −0.0270 −0.0863 −0.1386

30 1.425 921 −0.0486 −0.0100 −0.0513 −0.0862

31 1.459 129 −0.0299 0.0075 −0.0141 −0.0304
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i xdispi Displacements in [mm]

[m] u21 u22 u23 u24 u25

1 0.023 096 −0.0313 −0.0633 −0.0942 −0.1240 −0.0574

2 0.068 709 −0.0554 −0.1130 −0.1683 −0.2217 −0.1083

3 0.176 352 −0.1126 −0.2281 −0.3422 −0.4560 −0.2251

4 0.212 851 −0.1318 −0.2630 −0.3955 −0.5178 −0.2617

5 0.278 871 −0.1615 −0.3257 −0.4914 −0.6608 −0.3255

6 0.314 151 −0.1778 −0.3573 −0.5374 −0.7210 −0.3585

7 0.417 935 −0.2201 −0.4440 −0.6650 −0.8828 −0.4476

8 0.447 853 −0.2305 −0.4625 −0.6967 −0.9424 −0.4699

9 0.527 959 −0.2546 −0.5126 −0.7696 −1.0280 −0.5195

10 0.559 127 −0.2612 −0.5277 −0.7925 −1.0587 −0.5376

11 0.643 514 −0.2753 −0.5531 −0.8325 −1.1124 −0.5639

12 0.676 329 −0.2809 −0.5648 −0.8454 −1.1367 −0.5744

13 0.747 849 −0.2775 −0.5651 −0.8455 −1.1245 −0.5791

14 0.781 092 −0.2800 −0.5640 −0.8482 −1.1438 −0.5763

15 0.842 090 −0.2737 −0.5498 −0.8271 −1.1057 −0.5684

16 0.873 664 −0.2679 −0.5394 −0.8135 −1.0901 −0.5578

17 0.931 494 −0.2564 −0.5177 −0.7784 −1.0452 −0.5378

18 0.964 512 −0.2482 −0.5002 −0.7516 −1.0118 −0.5207

19 1.055 018 −0.2202 −0.4441 −0.6646 −0.8960 −0.4673

20 1.087 295 −0.2047 −0.4166 −0.6271 −0.8451 −0.4427

21 1.121 913 −0.1924 −0.3892 −0.5847 −0.7913 −0.4131

22 1.153 746 −0.1779 −0.3613 −0.5416 −0.7341 −0.3840

23 1.197 998 −0.1563 −0.3190 −0.4793 −0.6508 −0.3408

24 1.226 644 −0.1428 −0.2913 −0.4369 −0.5946 −0.3100

25 1.262 643 −0.1239 −0.2548 −0.3830 −0.5228 −0.2718

26 1.291 306 −0.1092 −0.2250 −0.3385 −0.4630 −0.2416

27 1.331 778 −0.0867 −0.1817 −0.2733 −0.3777 −0.1959

28 1.361 852 −0.0705 −0.1492 −0.2248 −0.3135 −0.1616

29 1.394 834 −0.0518 −0.1122 −0.1693 −0.2396 −0.1234

30 1.425 921 −0.0348 −0.0773 −0.1170 −0.1698 −0.0865

31 1.459 129 −0.0153 −0.0393 −0.0607 −0.0974 −0.0476

Table C-5: 31 displacements of
the bending tests exp Y and
exp K with damaged beam.
Sets u21– u24 are referring
to exp Y and u25 to exp K.
Due to the large damage, no
outliers could be detected
reliably.
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Table C-6: 31 displacements
of the bending test exp Z
with damaged beam. Due to
the large damage, no outliers
could be detected reliably.

i xdispi Displacements in [mm]

[m] u26 u27 u28 u29 u30 u31

1 0.023 096 −0.0673 0.0041 −0.0079 −0.0293 −0.0535 −0.0778

2 0.068 709 −0.1470 −0.0220 −0.0612 −0.1084 −0.1589 −0.2103

3 0.176 352 −0.3344 −0.0821 −0.1839 −0.2938 −0.4055 −0.5180

4 0.212 851 −0.3917 −0.1010 −0.2206 −0.3501 −0.4802 −0.6134

5 0.278 871 −0.4962 −0.1338 −0.2891 −0.4538 −0.6208 −0.7883

6 0.314 151 −0.5474 −0.1512 −0.3230 −0.5032 −0.6881 −0.8734

7 0.417 935 −0.6893 −0.1961 −0.4174 −0.6433 −0.8712 −1.1043

8 0.447 853 −0.7235 −0.2080 −0.4381 −0.6776 −0.9198 −1.1616

9 0.527 959 −0.8050 −0.2341 −0.4922 −0.7583 −1.0254 −1.2957

10 0.559 127 −0.8326 −0.2444 −0.5116 −0.7857 −1.0625 −1.3401

11 0.643 514 −0.8819 −0.2564 −0.5409 −0.8329 −1.1254 −1.4231

12 0.676 329 −0.8978 −0.2625 −0.5522 −0.8478 −1.1472 −1.4476

13 0.747 849 −0.9115 −0.2659 −0.5610 −0.8622 −1.1653 −1.4730

14 0.781 092 −0.9133 −0.2661 −0.5608 −0.8633 −1.1664 −1.4737

15 0.842 090 −0.9045 −0.2621 −0.5534 −0.8525 −1.1533 −1.4564

16 0.873 664 −0.8914 −0.2555 −0.5437 −0.8393 −1.1349 −1.4360

17 0.931 494 −0.8656 −0.2469 −0.5273 −0.8124 −1.0996 −1.3901

18 0.964 512 −0.8445 −0.2397 −0.5114 −0.7898 −1.0703 −1.3532

19 1.055 018 −0.7673 −0.2144 −0.4607 −0.7128 −0.9683 −1.2250

20 1.087 295 −0.7357 −0.2011 −0.4378 −0.6796 −0.9228 −1.1701

21 1.121 913 −0.6895 −0.1859 −0.4067 −0.6338 −0.8634 −1.0939

22 1.153 746 −0.6351 −0.1684 −0.3709 −0.5794 −0.7914 −1.0050

23 1.197 998 −0.5579 −0.1408 −0.3187 −0.5017 −0.6866 −0.8741

24 1.226 644 −0.5060 −0.1239 −0.2832 −0.4490 −0.6181 −0.7887

25 1.262 643 −0.4396 −0.1016 −0.2390 −0.3828 −0.5290 −0.6759

26 1.291 306 −0.3849 −0.0825 −0.2021 −0.3275 −0.4552 −0.5839

27 1.331 778 −0.3063 −0.0555 −0.1489 −0.2480 −0.3501 −0.4528

28 1.361 852 −0.2475 −0.0357 −0.1095 −0.1889 −0.2717 −0.3541

29 1.394 834 −0.1810 −0.0132 −0.0648 −0.1224 −0.1830 −0.2436

30 1.425 921 −0.1178 0.0081 −0.0230 −0.0592 −0.0987 −0.1377

31 1.459 129 −0.0517 0.0304 0.0218 0.0084 −0.0102 −0.0265


