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Introduction

This work bibliographically reviews several aspects that relate to a new concept of geodesy, where the principles
of relativity play a leading role. Ongoing improvements, especially in the development of optical atomic clocks
and in laser technology, make it feasible to geodetically exploit relativistic effects instead of just correcting for
it in highly accurate measurements. New observables, like direct observations of potential differences, become
available and therefore require the development of new methods. Genuine geodetic tasks will certainly benefit
from a consistent relativistic approach, and modern quantum sensor technology provides the practical means
to further develop the emerging field of relativistic geodesy.
The theories of relativity (e.g. Misner et al. [366], Bergmann [39], Goenner [217], Stephani [524], Schutz [491])
and quantum mechanics (e.g. Kiefer [275]) have an increasing impact on geodesy. Apart from the relativistic
modeling of space-geodetic techniques and an occasional use of relativistic concepts, geodetic practitioners in
the most part still tend to the ideas of Newtonian mechanics and its classical concepts of space and time. With
the advent of the era of artificial Earth satellites at the latest and its utilization in the framework of physical
geodesy, it became obvious that relativistic effects no longer should be ignored (e.g. Eardley et al. [148], Huang
et al. [251]). Novel measurement techniques for the determination of time and frequency using atomic clocks are
also based on quantum-physical processes. Therefore, geodesy to some extent is directly affected by the on-going
search in physics for a unified approach that might bring its both fundamental theories together (Audretsch [23]).
Regarding the exploitation of relativistic concepts, the Earth system’s metric field will become a major subject
of investigation in future geodesy. On the other hand, several newly available quantum sensors are potentially
useful for genuine geodetic applications (e.g. Heitz [242], Börger [63]). Within the domain of physical geodesy,
the utilization of highly precise time and frequency instrumentation, e.g., optical atomic clocks and frequency
combs (Hänsch [231]), for the direct determination of the gravitational potential in combination with classical
gravity field functionals is of special interest. Generally, different types of measurements are available based on
the motion of bodies, light propagation, or clocks. Here we will focus on the last-mentioned option.
Relativistic geodesy (Müller et al. [380]), e.g., direct potential measurements via atomic clocks, in cooperation
with the German national metrological institute PTB [433] shall be advanced and promoted, and thus it was
one of the various research foci of the QUEST [437] cluster of excellence. Regarding applications, the global
unification of national height systems (e.g. Colombo [105], Rummel [464]) is a suitable task. In geophysics, for
the solution of the inverse problem, i.e., the detection of sub-surface density variations, the use of atomic clocks
can help to reduce the existing degeneracy (Bondarescu et al. [59]). Basic formulae for the determination of
heights using atomic clock readings, either by using frequency ratios or clock rate differences, are already given
in literature (e.g. Brumberg/Groten [74]) and will be recapitulated herein in later sections.
The determination equation for the comparison of atomic clock readings depends on the relative state of motion
of the involved clocks and its respective positions within a gravity potential (Moyer [370], [371]). In return,
among others, these quantities could be determined by time and frequency comparisons between atomic clocks
that are distributed in a (worldwide) network. For instance, geoid height determinations on the cm-level would
require (optical) atomic clocks with an accuracy of about 10−18 (Herrmann/Lämmerzahl [246], Chou et al. [97]).
Before any problem-dependent exploitation of the theory of relativity, specific observation methods and mea-
surement techniques had to be developed, which is not the intention of this review article. Instead, based on
an extensive bibliography, it tries to pave an annotated way through the thicket of existing approaches. Their
mathematical frameworks show a conflicting notation every now and then. In this respect, the text shall help
the reader to identify its similarities and significant differences, respectively.
We first provide an introductory digest on several aspects of time. It intentionally comprises paragraphs on
the meaning of time. An exclusive focus on practical results would be misleading because the nature of time
is anything but evident. Consequently, its implications for possible applications, e.g., in the field of relativistic
geodesy, seem to be far from being exhausted. Thus, special effort has been made to pick up some metaphysical
aspects (Esfeld [172]), in an attempt to go slightly beyond the mathematical framework and technological issues
themselves and into the context in which they belong.
Subsequent sections become more specific and outline rather practical issues that are related to an emerging
relativistic, i.e. chronometric, geodesy. Following is a review of the already existing mathematical framework for
relativistic approaches. Eventually, exemplarily calculations are given, regarding the above mentioned geodetic
task that could possibly benefit the soonest from novel approaches based on foreseeable instrumentation. These
computations may act as a starting point for more elaborate simulations, e.g., in preparation for chronometric
leveling campaigns.



Time

Basically, time can be discussed on four different levels (Eisenhardt [166]), and intuitively we all know how to
deal with time in everyday life. In scientific life however, especially in physics, we distinguish between three
more elaborate varieties to be backed by theory: coordinate or parametric time (absolute), proper time (general
relativistic) and a unified concept of time that still needs to be developed. The time specified by the one time
coordinate of a four-dimensional space-time coordinate system is referred to as coordinate time, whereas in these
terms proper time analogously refers to the spatial arc length in three-dimensional space. For the investigation
of possible geodetic applications we will mainly focus on proper time τ and its relation to coordinate time t. In
view of the reached state of presently available instrumentation (regarding precision, accuracy, and stability),
these concepts are just fine. On the other hand, the more sensitive our devices get the more obvious the need
of a consistent treatment of space and time concepts will become. The few next paragraphs provide a selective
bibliographic review especially on various time aspects which, at a first glance, seem to be purely metaphysical.
Nonetheless, they may prove to be very fruitful for the identification of starting points in future developments.

1 The search for the nature of time
Obviously, the nature of time remains a mystery (Davis [123]). The vast amount of literature at the boundary
between philosophy and physics dealing with time (e.g., Whitrow [580], [581], Kroes [302], Aichelburg [3],
Audretsch/Mainzer [24], Fraser [198], Filk/Giulini [185], Vaas [559], Eisenhardt [166], Petkov [418]) implies that
there is no evident agreement on this topic.
An essay contest, initiated by the Foundational Questions Institute (FQXi [197]), once again revealed a wide
range of ideas about time. Several authors reject the dominant role of time as being a redundant concept
(Barbour [28], [29], Girelli et al. [212], Prati [428]) and replace it by a pure concept of relations (Rovelli [460]).
Others insist on the unique features of time in comparison to space (Skow [507], Callender [83]) or even promote
the idea of the existence of more than one time dimension (Weinstein [575]). Jammer [264] highlights the
historical development of space concepts. As a distinct timewise property, the arrow of time and its implications
are discussed (Carroll [90], Crooks [110], Ellis [170], Parikh [402], Vinson [566]). Describing time as a network
and expanding an information space is just another way of introducing that time arrow (Halpern [229]). The
position of ultrastructuralism (Rickles [453]) is not far away from this view. Considerations on causality (Liberati
et al. [330]) and indeterminism are occasionally connected to the idea of a frozen arrow of time and finally even
to the question of free-will existence (Stoica [529]). Remark: the whole concept of a time arrow itself is strongly
connected to the individuals’ ideas about space, it seemingly depends on their cultural background (Weiler [572]).
The problem of time is thought to be vanishing, if geometry isn’t split from matter as it is done in Einstein’s
theory of general relativity, where geometry simply reacts to the presence of matter. Dreyer [146] therefore
introduces an internal relativity concept. Another reservation about the concept of general relativity focusses
on its alleged reduction of the time-parameter to a time-coordinate without physical significance which obscures
the nature of time, meaning change (de Saint-Ours [132]). Of course, this alleged meaning is being contested
too (Shoemaker [505]). There are also suggestions that the conceptual understanding of time and energy in
Einstein’s theory is still incomplete (Wiltshire [594]). The lack of a unified theory, i.e., a theory of quantum
gravity (Callender/Huggett[82]), is said to be due to the different notions of time in general relativity and
quantum mechanics (Gambini/Pullin [205]). Remark: Zych et al. [615] discuss a possibility to test the genuine
general relativistic notion of proper time in quantum mechanics.
Consequently, the temporal character of quantum gravity becomes of interest (Kiefer [274]). To claim the
problem of time simply being a paradox, the existence of space, geometry and gravity altogether may be
rejected (Markopoulou [347]). On the contrary, there are arguments for the impossibility of the existence of
global time (Minguzzi [364]). Time on one hand is thought to be created by measurements (Helfer [243]), but
on the other hand there are cases against our ability to uncover the true origin of physical time by experiments
at all (Jannes [266]). There even could exist theories (e.g. on time or on gravity) that are underdetermined by
all actual and possible observations (Newton-Smith/Lukes [389]).
To enter a more detailed metaphysical discussion of time’s nature is way beyond the scope of the present work.
But in the long term, geodesy too has to be founded on a revised concept of time that is able to support a
unification of the otherwise conflicting notions within the theories of relativity and quantum mechanics. In
this respect, the space-time metric of a theory of quantum gravity will probably have to be dynamical simply
because the concept of a static space-time seems not to be fundamental enough (Wheeler [578], [579]). There
exist many alternative candidate theories in physics already.
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Generally, a growth in fundamental validity of a theory on time is associated with growing structural poverty
(Eisenhardt [166]). Dropping the distance measure, i.e., getting rid of the four-dimensional line element, trans-
forms a metric manifold into a conformal manifold which raises the degree of freedom already. Subtracting
angles too, leads to an affine manifold. If we also abandon the concept of parallelism, then we get a pure
differentiable manifold. But still we can take measurements and attach real numbers to all of these manifolds.
Next we could add fundamentality by foregoing coordinates and differentiability. Now we are left with only a
topological space – neglecting neighborly relations would result in an ordered set at least. This seems to be the
minimum ingredients for being able to create a unifying concept in physics. In case we drop ordering relations
too, we end up with a pure set of unordered events which is not applicable anymore to our purposes.

General relativity, due to the lack of an external time, will not separate between different deformations of three-
dimensional manifolds. It rather only distinguishes between different equivalence classes of points. Looking at
the evolution of a system in the sense of detecting deformation changes, creates kind of a fundamental time.
An open question in quantum theory is the emergence of locality from and within a fundamental global state.
Basically, a unified concept of time will depend on the general character of the underlying physical theory. The
more fundamental, i.e. formal, a theory is being laid out, the more timeless it will be. In contrast, theories
of constructivism, e.g., Newton’s theory of gravity or some candidates for a unified theory like the quantum
loop theory for instance, will introduce time at the very beginning. Successful unification seems to require a
combination of both, formalism and constructivism.

A ’theory of everything’, being able to describe all four natural forces of physics within a single formalism,
would be relevant also in practice, e.g. for geodesists, to take full advantage of modern day instrumentation like
quantum sensors.

2 The measurement of time

Realization of a clock does not clear up the phenomenon of time, it rather defines a time scale in order to compare
the occurrence of events. Besides periodical motions, radioactive decay processes may define characteristic time
scales. Time in the sense of a coordinate time could only be measured by an idealized clock. This is quite
a common view on time. Scientists often show a tendency to take a supposedly objective outside position in
order to study a given system. Timing or pulsing means counting of certain recurring phenomena, e.g., phases
or periods of an oscillatory motion. Harmonic oscillators are vibratory systems with ideal properties, and a
clock simply is a device to create such a periodic process. In practice, we have to draw on real representatives
of a clock, i.e., real world motions like pendulums, oscillatory crystals, planetary revolutions, atomic state
superpositions, etc. Such devices, i.e. non-idealized clocks, do not provide coordinate time. On the other hand,
the only tools needed to experimentally test whether a given clock is a standard clock (providing proper time)
or not, are light rays and freely falling particles (Perlick [411]).

On a large astronomical scale, remote celestial objects such as pulsars (Hartnett/Luiten [235]) may also provide
timing signals. The first pulsars were discovered in the late 1960’s (Hewish et al. [248]). Regarded as highly
precise time beacons, they are useful in different applications, e.g., tests on gravity (Stairs [519]) or navigation
of vehicles in deep space (Sheikh et al. [503]). But one has to account for sudden mass redistributions that
may result in erratic changes of the pulsar’s rotational frequency. Furthermore, timing observations using
astronomical objects require careful transformations between the terrestrial frame and proper frames of the
astronomical object, taking into account a variety of relativistic effects (Hellings [244]). In general, the treatment
of any (astrometric) observation comprises the solutions of the equations of motion representing the world lines
of the observer (observing subject) and the observed object, and of the equations of light propagation, i.e. the
light ray. Additionally, the observation process itself has to be modeled in a consistent relativistic framework.

There is no correct or incorrect way of choosing a process as basis for time measurements. Any choice is logically
possible and finally leads to a consistent system of natural laws. But certain choices will enable much simpler
physics than others. Nonetheless, the aspect of measurability is important because time is not identical to
motion itself. Instead, the perception of time relies on the observable order of periodic motion. A good clock
selection then requires a well-countable motion which is as regularly as possible. Of course, regularity is just
another relative term, and thus, we simply compare periodic motions against each other. A pure comparison
of two clocks will not reveal, which one is more accurate. There is kind of an inherent uncertainty about the
degree of regularity of the last or best natural clock. Following the idea of the least common multiple, one could
claim that, in principle, all observable oscillations are periodically equivalent and finally lead to the same time
measure. To avoid circular reasoning, one would eventually have to introduce a timeless concept of (periodic)
motion. As a remark, the definition of space exhibits the same difficulties. Today it is quite common to reject
the idea of being able to measure absolute time and space at all. All we can possibly detect is a change in the
relative positioning of material objects. There may exist only a series of stationary pictures that imply some
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kind of ordering. Thus, something non-spatial but non-structureless and something non-temporal but non-static
would have to span our relational entities of space and time, respectively.
Measuring time (Audoin/Guinot [25]) requires some sort of a clock device. In general, the actual state of the
universe restricts the number of possible ways to construct a functional clock (Eisenhardt [166]) by employing
different types of available motion. The seemingly continuous expansion of the universe itself can be viewed
as a time creating process. Today we witness a phase in the universe’s evolution where matter is widespread
distributed on different scales. The periodic motion of macroscopic objects can very well be used to construct
mechanical clocks, e.g., on an astronomical scale by measuring the rotational or orbital motion of planets.
Looking at past phases we realize that due to thermodynamic processes large scale structures did not yet exist.
In such a regime only atomic oscillations could be used to design a clock. Going further backwards we note that
even atoms were absent. Instead, only elementary particles and fields are at hand. Now, quantum mechanical
principles had to be used. Constructing a clock becomes tricky because of the superposition of probability
densities for isolated oscillations. There are no unique clock hand positions. Asymptotically approaching the
initial state of the universe, space-time itself is now subject of quantum mechanical principles. Topology becomes
variable, ordering starts to break up and space-time is no longer a smooth continuous entity. Any remaining
selected oscillations grow faster and faster. The concept of a clock finally loses its sense. Back to the present
state, we have a wide range of different technologies at hand to measure time (McCarthy/Seidelmann [351]).

3 The different notions of time

Parametric time t as a paradigm of classical, i.e. Newtonian, mechanics also enters quantum mechanics and
even the concept of special relativity, where space-time is still treated as an invariant entity. Regarding time
aspects in the combination of relativity with quantum theory, concepts of special relativity have significant
consequences for particle physics (Giulini [213], sections 4.1-4.3). A special feature of quantum mechanics is the
fact, that it operates with probabilities and allows for the superposition of system states before measurements
actually take place. Time is read externally at these instances and is said to be static because it is independent
of the inner motions of the quantum mechanical system and therefore measurable by fixed clocks in an idealized
classical sense. In between of the measurements we assume an evolution of the system state’s probability
density. Consequently, the idea of indefiniteness had to be applied for space-time too. But the implications
of superimposed space-times are anything but clear (Eisenhardt [166]). This problem still awaits a solution
and should not be ignored, because macroscopic size of objects does not prevent us from applying quantum
mechanics. Its validity is far from being limited to the (sub-)atomic scale. Moreover, quantum mechanics is the
background theory of our atomic clocks, that we want to use for measurements of relativistic space-time events.
With the introduction of general relativity the character of time changes. Now, time dynamically depends on
matter and/or energy and will retroact upon these entities. Time and motion are strongly coupled, and space-
time itself becomes an object such that time no longer can be applied externally. Instead, we introduce the
concept of proper time τ and therefore time changes from a global to a local entity with an intrinsic dynamism.
Any motion bears its own, i.e. proper, time. Here, „local“ means uniform validity at any place at any time
in the universe whereas „global“ applies to the universe as a whole. The structure of relativistic space-time
is continuous and smooth, but it will possibly become ripped up if we want to allow for quantum mechanical
ideas. This issue will be picked up again later when we mention the concept of a Planck scale.

4 The problem of a unified concept of time

Since decades, fundamental physics rests on two major theories, namely the principles of general relativity
(e.g. Einstein [159], [162], Eddington [150], [151], Synge [536], Weinberg [573], Stephani [523], Ellis [168]) and
quantum mechanics (e.g. Dirac [139], Trostel [553]), based upon different notions of time. Mainly due to this
inconsistency, often called the problem of time, both theories could not be unified into a theory of quantum
gravity, so far. At least, Dirac was able to compose a relativistic quantum mechanics for electrons (Kragh [300]).
For details on the relativistic wave equation, consult for instance the introductory textbook by Stepanow [522].
Goenner [218] provides a historical retrospective of early attempts towards unification; see Barceló [30] for a
detailed discussion of historic and contemporary theories of gravity and Kiefer/Weber [273] for some remarks
on the interaction of gravity with quantum systems on a mesoscopic scale.
So far, any theory that is considered to be a candidate to achieve a unification tends to lead to tiny violations
of at least one of the basic principles. For example, some theories modify the space-time frame in a way that
violates the Lorentz invariance, other stipulate physical constants that evolve in time leading to violations of the
equivalence principle or the local position invariance. Furthermore, there exist theories that modify Newton’s
universal law of gravity at certain scales or introduce new long range forces, e.g., by additional scalar fields.
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The development of a theory of quantum gravity may require an extension of the relativity concept (Gefter [206]).
In general relativity the focus is on the metric field using coordinate-like quantities (space and time), whereas
quantum physics relies on Hamiltonian mechanics connecting coordinates with impulse-like quantities (energy
and momentum). Applying the concept of relativity to both space-time and momentum space, eventually leads
to the consequent use of the full phase space and the principle of relative locality (Amelino-Camelia et al. [12]),
reviving an idea of Born [64]. As a consequence for practical applications, (atomic) clocks had to be supported
by another measurement device, namely a calorimeter.

The persisting incompatibility (regarding the underlying concepts of time) between general relativity and quan-
tum mechanics may possibly be overcome by a quantization of gravity. If matter is quantized then the corre-
sponding fields should probably be quantized too. Otherwise we could end up with an infinite speed of light
violating the indispensable causality principle (chapter 3.5 in Giulini [213]). In contrast to simultaneity, which
always refers to a certain inertial system, causality can not become an observer dependent term. It has to
remain an absolute entity. Two events are not simultaneous if they can causally interact on each other. Being
an experimentally testable proposition, causal dependency will not travel faster than light.

Regarding the classical local realistic viewpoint (physical properties are defined before and independently of its
measurements), which claims the existence of a few loopholes that allow for the rejection of the opposite quantum
mechanics viewpoint (under certain conditions physical properties depend on its observation), it seemingly can
be abandoned according to experimental observations (Giustina et al. [215]). Otherwise, one had to assume any
secret form of superluminal information exchange. In this respect, a very careful revision of experimental setups
and results is of course mandatory in order to independently verify any alleged violations of natural laws, as
the example of neutrino detection experiments showed just recently (OPERA collaboration [399]).

Canonical quantum gravity, which is only one of various candidate theories, seems to require more than the
four dimensions we got used to in order to describe space-time (Giulini [214]). Introducing extra dimensions
will affect possible predictions on the variability of fundamental constants (Dent [130]).

5 The role of fundamental quantities and physical dimensions

The study of the constancy of fundamental quantities is strongly related to the realization of time scales. Besides
its potential for becoming a distinct new device for geodetic measurements, atomic clocks are being used to
reveal limits on the temporal variation of fundamental constants (e.g. Flambaum [188], Flambaum et al. [189]).
As a remark, one usually implies a linear time dependence.

Any threshold corrections for presumed variations of dimensionless fundamental quantities on a large scale
ultimately relate to variations of measurable quantities on a low scale. This relation can be constrained by
experimental data resulting in allowed ranges for corresponding observables (Dine et al. [138]).

The important question of constancy and isotropy of fundamental constants is being heavily investigated.
Evolving natural constants may provide valuable hints for a successful unification of the theories of general
relativity and quantum mechanics (Peng [409]). The large numbers hypothesis (Dirac [141]) was one of the very
first attempts to make a case for such an evolution.

In practice, radio astronomy experiments can be applied to study the constancy of the proton-to-electron
mass ratio (Bagdonaite et al. [26]), linking the strong interaction (essential for the proton mass) and the weak
interaction (essential for the electron mass).

Another example: the gravitational constant G is a fundamental parameter in celestial mechanics and satellite
geodesy. It became a major subject of investigation in research on relativistic effects (e.g. Müller/Biskupek [379],
Müller et al. [382]), too. Among others, a variable G(t) would impact on the solution of fundamental problems
in satellite orbit calculation, e.g. the classical Kepler problem (Schneider/Müller [483]). Some theories of gravity
predict an anisotropy of G which would cause an additional solid Earth tide effect. As a test, resulting local
gravitational accelerations could be measured by gravimeter measurements (Heitz [241]). Data analysis then
allows to put limits on the amplitude of any such anisotropy and of any inequality between speed of light and
speed of gravity (Will [584], Carlip [86], Schäfer/Brügmann [469]). According to the general theory of relativity,
light and gravity travel at the same speed. Recently, an alleged experimental verification of this equality
(Fomalont/Kopejkin [194]) gave rise to a controversy on this issue (e.g. Asada [18], Will [587], Samuel [466],
Carlip [87], Kopejkin/Fomalont [296]).

Additionally, a possible anisotropy of the speed of light (Pelle et al. [408]) would violate the Lorentz invariance
(Lämmerzahl [309], [310]) which itself is an essential element of special relativity (Lorentz et al. [333], Synge [535],
Müller/Peters [375]). It guarantees that to each solution of the equations of motion in a stationary reference
system there exists a corresponding solution for a reference system in motion. Within the mathematical section
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of this work, this correspondence motivates the concept of fictitious forces. By rotating two orthogonal standing-
wave optical cavities and interrogating them by a laser, one could test and verify the Lorentz invariance up to
the 10−17 level (Eisele et al. [165]).
Fundamental equation systems in physics, e.g. Maxwell’s equations, are Lorentz invariant, i.e., its solutions obey
the principles of length contraction and time dilation. Einstein [155], [156], [157], [158] mentioned immediate
consequences of a variable speed of light (Ellis/Uzan [169]) by stating (Einstein [156]): „Beschränkt man sich auf
ein Gebiet von konstantem Gravitationspotential, so werden die Naturgesetze von ausgezeichnet einfacher und
invarianter Form, wenn man sie auf ein Raum-Zeitsystem derjenigen Mannigfaltigkeit bezieht, welche durch die
Lorentztransformation mit konstantem c miteinander verknüpft sind. Beschränkt man sich nicht auf Gebiete
von konstantem c, so wird die Mannigfaltigkeit der äquivalenten Systeme, sowie die Mannigfaltigkeit der die
Naturgesetze ungeändert lassenden Transformationen eine größere werden, aber es werden dafür die Gesetze
komplizierter werden.“
Astrophysical phenomena like gamma ray bursts are being used to study the constraints of possible invariance
violations (Laurent et al. [323]), but terrestrial experiments, e.g. clock comparisons, might be used as well
(Mattingly [350]). By comparing the long-term readings of differently designed atomic clocks (Marion et al. [346])
one can identify stringent upper limits to possible variations of fundamental constants (Uzan [557], [558]). On
the subtleties of dimensional considerations that may arise due to slightly different points of view in mathematics
and physics, see for instance Wallot [570]. There is also a controversy on the actual number of fundamental
constants (Okun [396], Duff et al. [147]).
In classical geodesy, different measurement devices are being used to determine essential geodetic quantities like
directions, distances, heights or accelerations of gravity. Starting from these, other quantities can be derived,
e.g. angles, areas, volumes, gravity gradients. Some of the derived quantities could also be measured directly
by specific instruments. Each quantity has a physical dimension that is related to any of the seven basic units
or a combination of these.
In practice, there might be interactions between the realizations of the basic units (Petley [419]), which is
not a pettiness. Only the second, the kilogram and the kelvin are independently defined on the basis of local
properties (Guinot [223]). But all basic units are also uniquely related to natural constants. Besides the kelvin,
also the kilogram could be defined via a fixed value of Planck’s constant (Robinson/Kibble [457]) instead of a
material artefact (CGPM [95]). A redefinition of the kelvin may become available, if the Boltzmann constant
can be determined more accurately in near future (Fellmuth et al. [181]).
Any laws of nature have to be expressed by fundamental constants that are dimensionless due to a suitable
combination of quantities with certain physical dimensions. Otherwise a possible change in the realization of
basic units could not be distinguished from a prospected long-term change in the alleged invariants. Dirac [140]
put it concisely: „If anything is not dimensionless then you cannot discuss whether it changes or not.“

6 The realization of time scales
In metrology, whose results are crucial to the successful implementation of a relativistic geodesy, fundamental
constants play an especially important role (Karshenbŏım [268], Karshenbŏım/Peik [269]). Of all basic units
(e.g. Mechtly [353], Thompson/Taylor [545]) the one that is most precisely defined and measurable is the second
(Leschiutta [326]), which corresponds to the basic quantity time. This also affects the practical realization of
other basic units, e.g. the meter (Quinn [440]), which corresponds to the basic quantity length.
Worldwide, several national laboratories are responsible for the realization of the basic units. Every laboratory
at first establishes its own standards. In Germany, the PTB with its primary clocks contributes to the scale
unit of international atomic time (Bauch [35]). The general question arises to what degree remote standards
are equivalent (Willink [592]). As an example, the connection between two national laboratories is explained in
Piester et al. [421]. McCarthy/Seidelmann [351] present actual procedures for the derivation and distribution
of uniformly valid atomic time scales. Alternatively, one could carry the clocks between laboratory sites in
order to compare laboratories’ time scales. Accounting for general relativistic effects led to the introduction of
dynamical time scales, cf. § 31.
The establishment of a consistent system of scales and units requires the unambiguous definition of terms. Con-
sequently, relativistic effects were considered in the IERS conventions (e.g. IERS TN32 [256], IERS TN36 [257]).
Post Newtonian level implementations of several resolutions can be found in literature (e.g. IERS TN29 [255],
Soffel et al. [512]). Geodesy at all times had to incorporate and account for new definitions of time scales. Uni-
versal time is crucial for use in every day life on Earth. Its general relationship with ephemeris time and possible
uses in astronomical applications are discussed in Mulholland [374]. Relativity considerations required the in-
troduction of revised time scales (Seidelmann/Fukushima [495]) and its transformations (e.g. Thomas [543],
Fairhead et al. [177], Fukushima [204]), which sometimes led to conflicting definitions (Fukushima et al. [203]).
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7 The choice of an underlying theory and its impact on definitions

Despite the fact that Newton’s classical mechanics was extended by both, the theory of relativity and quantum
mechanics, it still serves as a reasonable approximation in case of moderate relative velocities, short distances,
and weak gravitational potentials. Moreover, firstly one may feel more comfortable when sticking with the
traditional definition of terms, its seemingly intuitive use and practical applicability.

According to Einstein’s theory of special relativity, concepts like ’equal duration’, ’equal (spatial) distance’
or ’simultaneity of events at remote places’ require a new stringent setting of rules to make real sense and a
corresponding instrumentation to measure it. Terms like ’uniform’ and ’straight’, as being used in the Newtonian
laws of motion, become relative: uniform with respect to which clock, straight with respect to which system of
reference ? The required number of rules depends on the nature of the quantity in question.

Carnap [88] distinguishes between so-called extensive and intensive quantities. The former require 3 rules,
namely defining the concepts of equality, unit, and combinability. Extensive quantities can be combined via
operations, either additively (e.g. weight, length, velocity in Newtonian physics) or non-additively (e.g. trigo-
nometric functions, velocity in (special) relativistic physics). On the other hand, intensive quantities require 5
rules to measure it. Besides defining the terms of unit and equality, one has to specify the concepts of inequality,
origin (i.e. zero point or reference point), and finally the scale. As an example, measurements of the material
temperature and hardness or tone pitches can not simply be added. More precisely, also distances can not be
added arithmetically. Instead, we add numbers that represent these distances. The latter are just configurations
in physical space that could be combined. Combining or adding in a physical sense is quite different to a simple
addition in a mathematical, i.e. arithmetically, sense. The measurement of several physical quantities relates to
measurements of spatial distance, i.e. length, and temporal duration. Consequently, length and duration can
be regarded as primary quantities.

Direct measurements deal with quantities whose values can be expressed by rational numbers. Irrational num-
bers are being introduced by theory in order to formulate physical laws and perform calculations. Observations
provide no exclusive constraint for us to decide whether values have to be expressed by rational or irrational
numbers. It’s more a matter of convenience to either use a discrete or continuous number scale for expressing
a physical law.

8 The backing of a theory by experiments

In practice, there exist different methods to measure a certain physical quantity, e.g. spatial distance or length.
Consequently, one could introduce different definitions of the term length, which of course is quite impractical.
Instead of defining physical terms by a complete set of operational rules, one should rather treat them as
theoretical terms that become more and more specific in the course of development. Therefore, quantitative
terms like ’length’ are not explicitly defined, but remain theoretical. The best we can get from theory, i.e.,
physical postulates and operational rules, is a partial interpretation of the term in question. In this sense we
can keep a single meaning of ’length’. Different measurement methods will simply draw connections between
terms of a theoretical language and the language of observations. Expressing a physical law by means of
quantitative terms is much easier and shorter than doing it qualitatively. Even more important, quantitative
laws are readily applicable.

The deflection of light phenomenon could well be expressed under retention of Euclidean geometry. In fact,
we have to choose between several alternatives of formulation. The proper choice is not a question of wrong
or false theory but convention and suitability. This does, of course, not mean that there are no rivalling non-
equivalent theories. Theories comprise conventions and natural laws alike. A single separated theory could not
be examined at all. Empirical tests are itself interlaced with theoretical terms. In practice, it may be difficult to
set up comparative experiments which allow us to rule out a theory or not. Theories are said to be equivalent, if
they lead to the same predictions in all cases. Newton’s and Einstein’s theories of gravitation both make testable
predictions (Schutz [490]). The differences in these predictions are so tiny in many cases, that it requires very
sophisticated experiments and highly precise measurements to decide, which theory provides the more accurate
predictions. In the very end, successful theories are being selected by evidence.

Theoretical predictions relate to observable effects. One can distinguish universal effects which are substance-
independent (e.g. contraction of a rod due to gravity) from so-called differential effects which depend on the
subject’s material (e.g. contraction of a rod due to temperature). In contrast to differential effects, universal
effects can entirely be eliminated from physical laws by an according reformulation of the underlying theory.
Every time a universal effect and a corresponding law stating the conditions for the appearance and the ma-
gnitude of this effect show up in a certain system, the physical theory could be reformulated such that the
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magnitude of the effect becomes zero. As a result, the final theory will become simpler. Without these simpli-
fications the question on the structure of space can not be answered in a clear way. Universal forces can always
be interpreted as geometrical properties of space-time (Filk/Giulini [185]). Only combinations of geometry and
universal forces may be tested by experiments.
Laws of nature have to be justified by experience (Einstein [163]). Following the theory of relativity in an
a-priori sense, (mathematical) geometry tells us nothing about reality. There is no proposition that connects
logical certainty with information about the geometrical structure of the physical world. The emphasis of the
importance of physical geometry was crucial for the invention of the theory of relativity. Without this new
interpretation, the transition to uniformly valid covariant equations probably would never have been occurred.
In case of competing theories, i.e., systems of physical laws, the general question arises on how to find a criterion
to judge about differences in its predictive power with regard to observable events. The cognitive content of
a physical law depends on its applicability for making predictions. In order to test these predictions, we will
make a draft on many observations, not only a single one. In this context, a physical law simply rests upon
the description of a multiple observed orderliness, i.e. regularity. In contrast, any single observed irregularity
in the future significantly breaking the empirical laws will instantly rule out a theory. As a remark, Lorentz’
ether theory is still of the same quality as Einstein’s special relativity theory regarding observable predictions
(Filk/Giulini [185]). Following the reasoning of Ernst Mach, i.e., his demand to consider only observable entities,
one could reject Lorentz’ theory because of its assumption of an ether which itself turns out to be unobservable.
For the same reason we would prefer the concept of an observable relative or intrinsic time instead of an
unobservable absolute or extrinsic time. As a consequence, simultaneity becomes a relative term, depending on
the observers’ state of motion.
Depending on the magnitude of predicted effects, evolving accurate measurements will continually tighten the
limits of the theories’ validity. It strongly depends on the available instruments whether a quantity or predicted
effect can actually be treated as an observable or not. Consequently, there is also no sharp line between empirical
and theoretical laws. Once non-observable entities might become observables if new technology enters the arena.
The advent of highly precise optical clocks and time transfer methods is just an example.

9 The different kinds of geometry
Following Einstein’s theory of relativity, space has a structure which in gravitational fields departs from the
structure of Euclidean geometry. However, if the gravity field is weak, these deviations are difficult to observe.
In Euclidean language one could say that, for instance, rods in a gravitational field are subject to contraction,
whereas in non-Euclidean language (Reichenbach [450]) the laws of mechanics and optics remain the same as in
pre-Einsteinian physics. That means, light rays in vacuum are straight lines which are not bent or deflected by
gravitational fields. The behavior of rods can be expressed in both ways. Keeping Euclidean geometry leads to
new physical laws.
We are free to choose any kind of geometry for the physical space we like, as long as we are willing to accept
necessary corrections to the physical laws both in mechanics and in optics. A physicist should make his decision
for a certain geometry before he chooses his measurement method for lengths. These choices should be consistent.
Once the measurement method is fixed, the structure of space becomes an empirical question which can be
answered by observation.
Regarding relativity theory, most physicists choose non-Euclidean geometry (Bonola [60]) whose language is
more complicated than in Euclidean geometry but avoids the introduction of much more complicated physical
laws to be consistent with observations. Only by the introduction of a joined concept of space-time we can keep
an invariant distance measure. Allowing for a non-Euclidean geometry is just the price we have to pay for this
convenient invariance (Jammer [264]).

10 The fundamental role of the line element
Four-dimensional world lines, i.e. geodesics, can be described mathematically in a simple way with help of a
special metric that was introduced by Minkowski. Today we call a flat space-time a Minkowski space. Explicitly
expressing the differential line element makes the diverse characters of space and time more apparent.
We start with the usual spatial element of arc in cartesian notation

dr2= dx21 + dx22 + dx23 , (1)

and introduce a time coordinate in spatial dimension by making use of the finite speed of light c

dr = c dt → dr2=
(
cdt
)2
. (2)
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The combination of the spatial and temporal coordinates results in an invariant spatiotemporal line element
(Sexl/Schmidt [497])

ds2=
(
dx21 + dx22 + dx23

)
−
(
c dt
)2
. (3)

The mathematical part of this work will provide a more detailed discussion of the line element, because the
appropriate use of a metric, i.e., the formulation of the invariance of space-time intervals, is essential for the
successful application of relativistic geodesy. Here we notice that the definition of space and time affects three
fundamental concepts that are of great importance to (physical and relativistic) geodesy, namely the clock
hypothesis (clocks measure proper time), the length hypothesis (whether or not to introduce a fundamental
length to fix the scale), and the concept of a field quantity. Regarding the latter issue, depending on the
actual metric coefficients, i.e. the line element, we may distinguish between different special cases of a field. For
instance, in case of time-independent coefficients we call it stationary. If there are no time-space cross-terms
than we speak of a static field, which means that all motions of any particles and fields are time reversible
(Harwit [236]). These distinctions are directly related to the above mentioned arrow of time problem.
The choice of a specific metric, i.e., the formulation of the invariance of space-time intervals, is eventually based
upon an empirical basis. Einstein [163] gives some additional remarks on our ability to imagine and visualize
non-Euclidean geometry.
The minus sign in equation (3) epitomizes the different character of space and time. The dimension of time is
geometrically mapped onto a spatial axis. In principle, any spatial reference system and time scale is possible.
Regarding space, one often introduces (quasi-)inertial systems, but non-inertial systems are by no means unphy-
sical or forbidden (Giulini [213]). It is just a question of convenience, because non-inertial motion of a reference
system causes some extra terms describing apparent forces, e.g. Coriolis force, within the equations of motion.
Special relativity theory distinguishes between real and apparent forces and therefore admits a special role to
inertial systems. In opposition to classical mechanics, where the equations of motion are invariant against Galilei
transformations, in special relativity these equations shall be invariant also against the more general Lorentz
transformations. Going one step further by geometrizing gravity, the theory of general relativity abandons the
existence of distinguished reference systems altogether. In this theory, mass densities and pressure terms or
mass/energy fluxes are regarded as sources of gravitational fields. The fundamental difference between apparent
or inertia forces and gravitational forces vanishes, at least locally. Both can formally be described by a single
gravitational field, but now being dynamic in space and time.
The minus sign further implies that space-time can not be split up in an entirely arbitrary way. Time is
separating and joining events while maintaining a consistent causal ordering. In principle, depending on the
actual chosen splitting, space will change in time and vice versa. This kind of arbitrariness, as a key property
of the theory of relativity, eliminates the existence of a single time. Instead it allows for an infinite number of
equally valid time conventions.
Minkowski diagrams (Minkowski [365]) are often used to illustrate the principles of (special) relativity and
constant speed of light (Mermin [359]). Applying it on the laws of motion of light rays and celestial bodies,
e.g. planets, one recognizes that the path of a world line in any gravitational field is a geodesic. A unified theory
of geodesy strongly relates to the general interpretation of geodesy problems as geodesic flows (You [611]).
The theory of general relativity renounces the concept of (a gravitational) force. A planet orbits the Sun not
because of the Sun attracting the planet by a gravitational pull. Instead, the Sun’s mass causes a negative
curvature of the non-Euclidean space-time. The straightest possible world line of a planet, namely its geodesic,
then equals the path of its actual motion around the Sun. An elliptic orbit, e.g. in case of an idealized two
body problem, is not a geodesic in three-dimensional space. Rather, the planets’ world line in four-dimensional
non-Euclidean space-time is a geodesic. The same holds true for the path of a single light ray or photon. The
concept of gravity as a force is replaced physically by the geometric structure of a four-dimensional system of
space-time.
One should not confuse mathematical and physical geometry. The former is purely logical, whereas the latter
is an empirical theory. Einstein transformed one physical theory (of gravity) into another. It is still physical,
because non-mathematical terms are included, e.g., the distribution of curvature in space-time. Playing an
important role in cosmology (Berry [40], [41], Weinberg [574], Lambourne [306]), different views on the curvature
of space (Friedman [202]) led to a debate (Realdi/Peruzzi [447], Realdi [448]) on whether the world as a four-
dimensional manifold would be cylindrical (Einstein [161]) or spherical (de Sitter [133], [134], [135], [136]).
Following that debate, many alternative cosmological models were developed till this day.
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According to Kurt Lewins’ „nothing is so practical as a good theory“, senseful application of a theory requires
prior testing. Both versions of the theory of relativity have been and are still being tested in various ways.
Another reason for testing is the hope for getting some hints in the search for alternative physical theories.
These alternatives then may become more promising candidates for a ’grand unified theory’. This section gives
some remarks on selected prominent individual tests of relativistic effects and its implications. Furthermore, it
highlights a few existing proposals for future testing.

11 Testing the concept of relativity

Many different theories have already been developed to account for the idea of relativity. To falsify irrelevant
candidates, several parameterized theoretical frames have been introduced. Some of these focus solely on
special relativity (Mansouri/Sexl [342], [343], [344], Vargas [563], Günther [226], Sfarti [499]). A more flexible
frame, namely the parameterized post-Newtonian formalism (Will [586]), is surprisingly suitable (Will [590])
for discussions on the validity of relativistic metric theories of gravitation. Unfortunately, it tacitly assumes
the local validity of special relativity already. It is based on the idea that the metric tensor in the near zone
of a source of gravity can be expanded into a series in inverse powers of the fundamental speed, namely the
speed of light in vacuum (Kopejkin et al. [299]), forming the primary parameter. In the past, due to limited
experimental capabilities, the deemed independence of special and general relativity tests was reasonable. But
with a tremendous increase in measurement precision, the need for a consistent frame setting becomes obvious.
Therefore, Tourrenc et al. [552] discuss the possibility of new relativity tests by means of a generalized approach
comprising a blend of appropriate theoretical frames.

12 Focussing on Einstein’s theory of relativity

Tailored tests of special relativity (Giulini [213]) mainly focus on the validity of the relativity principle itself,
properties of the speed of light c, and its practical implications. According to the relativity principle, physical
laws are equally valid in all inertial systems. In the sense of Newton, this principle is restricted to classical
mechanics. Einstein extended its scope of application to electrodynamics, and therefore to the propagation of
electromagnetic waves, e.g. light rays. He combined this general principle with some special properties of light.
According to his theory, c should be of limited constant value, isotropic, and independent of the relative velocity
of the light source.

In special relativity inertial systems are still marked reference systems. Changing from one inertial system to
another, only the light’s frequency (Doppler effect) and propagation direction (aberration effect) may change, its
speed remains the same and isotropic. The finite speed of light poses a limit for the transmission of information
and action/energy. Signals can not be transmitted instantly. Nevertheless, looking at visual phenomena in
the propagation of light waves, phase velocities and group velocities may be of larger value than c in accor-
dance to special relativity. The same holds true for the cosmological escape velocities of far remote galaxies
(Filk/Giulini [185]). Furthermore, among any set of inertial systems there exist no prominent ones. These
fundamental statements lead to a number of derivable effects like time dilation, length contraction, relativistic
Doppler shift and aberration (Stumpff [530]), that all have to be accounted for in the interpretation of highly
precise observations. The mathematical section of this work provides the fundamental formulas of the most
significant relativistic effects.

Only decades after the presentation of special relativity, several visual phenomena resulting from length con-
traction got a proper explanation. Basically, one has to distinguish between sensed geometry and measured
geometry of a body, simultaneous location of its parts, and simultaneous perception, respectively.

The experimental foundations of general relativity (Thorne/Will [547], Will [582], [583]) rest upon a series of
famous experiments. As more precise technology becomes available, refined relativistic tests are performed
or repeated. Inspired by the historic experiment of Hafele/Keating [227], [228], a renovated experimental
confirmation of relativistic effects (position in gravity field, state of motion, Sagnac effect) via flying atomic
clocks was achieved by Davis/Steele [122], for example. As a remark: these effects are routinely corrected for in
space geodetic techniques, e.g., in the operation of the Global Positioning System (GPS) (Spilker [518], Eardley
et al. [148]), otherwise its positioning results would lead to errors in the order of a few kilometers.



Relativistic Effects 15

13 Testing relativity via earthbound and space-bound experiments

Traditionally, one distinguishes between three classical tests (Sexl/Sexl [498]), already suggested by Einstein,
and subsequent modern tests. Those classical tests specifically pertain to predictions on the deflection of light by
the Sun, the gravitational frequency shift of light, and the anomalous precessional shift of Mercury’s perihelion.
The last phenomenon is historically reviewed in detail by Roseveare [458]. Surprisingly, Einstein was not aware
of other important consequences of his own theory, e.g. the gravitational time delay, i.e. Shapiro delay. In case
of the Sun, this effect is superimposed by another time delay effect due to the Sun’s coronal electron plasma
(Muhleman/Johnston [373]). Relativistic tests have to account for a number of superimposed effects, which
places high demands on the experiments’ design and execution. The Shapiro effect (Shapiro et al. [501]) may
be measured between drag free spacecraft (Ashby/Bender [22]), where non-gravitational disturbing effects will
be shielded. The drag-free satellite control (Theil [541], Fichter et al. [182]), after some preliminary conceptual
considerations (e.g. Lange [319], [320]), led to prototype space vehicles (e.g. DeBra et al. [124]) and eventually
became a standard feature, especially in geodetic satellite missions, e.g. GOCE (Rummel et al. [463], Yi [610]).

Lämmerzahl [313] highlights underlying assumptions in the relativistic theory of gravity. One key element is the
equivalence principle (Einstein [160]), first termed this way in Einstein [156]. In Einstein’s theory of relativity,
the weak equivalence principle, i.e., the proportionality of inertial and gravitational mass, is a prerequisite for
the possible geometrization of gravitation. If this principle were violated, as predicted by some alternative
theories of gravity, the gravitational force could not be reinterpreted as curvature of space-time, as being
done by Einstein. The Eötvös experiment (Dicke [137]) was one way to test this proportionality. Earthbound
experiments, e.g., the Pound-Rebka experiment (Pound/Rebka [427]) for testing the gravitational redshift, are
exposed to a series of perturbations. The success of this experiment relied on the exploitation of the Mössbauer
effect (Wegener [571]). A gravitational redshift occurs because light looses energy as it escapes gravitational
fields. This loss is proportional to the field’s strength and results in a longer wavelength and lower frequency,
respectively. However, the effect is very small and superimposed by another redshift phenomena due to relative
motion and the expansion of the universe. It is a real challenge to experimentally separate those effects.

When performed in space, corresponding free-fall experiments are much less susceptible to several noise sources.
Various microgravity environments are technically available: vacuum drop towers, atmospheric parabolic flights,
sounding rockets, and (drag-free controlled) orbital platforms. The last-mentioned alternative is superior if long
duration free-fall is required. On the other hand, satellite based experiments are by far the most demanding
option in terms of costs and development time.

There are proposals for space missions comprising atomic clocks to accurately measure the gravitational fre-
quency shift (Schiller et al. [473]). Likewise, the sensitivity of equivalence principle tests improves by several
orders of magnitude (Worden [604]). The remaining disturbances are mainly due to residual gravity gradients,
tracking errors and gas pressure effects.

Space conditions show several advantages in comparison to earthbound experiments (Lämmerzahl/Dittus [311]).
Experiments in space (Dittus et al. [142]) are indispensable if we want to test predictions of low-magnitude
relativistic effects. Bertolami et al. [42] discuss the discovery potential of gravitational experiments and existing
alternative theories of gravitation. As an example, the gravitomagnetic field may be detected by modern gravity
gradiometer experiments (Paik [400]). There was a debate on what experimental technique is more sensitive to
gravitomagnetic interaction, either lunar laser ranging (LLR) (Murphy et al. [385]) or specialized space probe
missions (Kopejkin [297]). There is plenty of literature available on the relation between LLR and tests on
gravity (e.g. Merkowitz [358]), e.g. gravitomagnetism (Soffel et al. [513]). Thanks to improved instrumentation,
lunar laser ranging with an accuracy on the 1-mm-level is in reach (Kopejkin et al. [298]). Within relativistic
geodesy, LLR continues to be valuable tool (Müller et al. [378], Biskupek/Müller [44], Müller et al. [381]).

One of the amazing consequences of gravitomagnetic fields, which can be illustrated by massive rotating bodies
and the finite speed of propagation of its gravitational attraction, is the so-called frame dragging, or Lense-
Thirring effect (Thirring [542], Lense/Thirring [325], Mashhoon et al. [349], Lämmerzahl/Neugebauer [308]).
Measuring it (Pfister [420]), e.g. via satellite laser ranging (Ciufolini [99], Ciufolini et al. [101], Iorio [262]), results
in a test of Mach’s principle (Brans [66], Misner et al. [366], Narlikar [387]), too. Technology improvements
enable alternative experimental settings which meet high demands on the precision of measurements. A test of
the Coriolis effect was already suggested in the late 1950’s (Pugh [434]). Gyroscopic tests of Einstein’s theory
of general relativity using spacecraft were envisaged with the advent of the first artificial satellites (Schiff [471],
[472]). As an example, the Gravity Probe B mission (Everitt [174], Everitt et al. [175], Will [591]), initially
proposed in the early 1960’s (Fairbank/Schiff [176], Cannon Jr. et al. [85]), was designed as an Earth orbiting
laboratory. Further improvements in the experimental setting could lead to potentially even more sensitive
gyroscopic missions (Lange [321]).
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14 Alternative modeling of gravitation

Tests of relativity can not only be performed in earthbound laboratories (Chen/Cook [96]) or in Earth’s orbit,
but also in the solar system and beyond (Turyshev [555], Damour [120]). Interplanetary space probes proved
to be useful in relativity tests, e.g. the Viking spacecraft (Reasenberg et al. [449]). They are especially useful
in the search for occasionally proposed long distance violations of Newton’s law of gravitation. The equivalence
principle is subject to investigation for both, laboratory test masses and massive bodies (Shapiro et al. [500]).
Lämmerzahl [307] proposed a generalized weak equivalence principle in order to cover quantum phenomena too.
This may pave the way for a better understanding of the nature of gravity (Lämmerzahl [314]).
Some alternative theories predict a violation of the strong version, i.e., the existence of an external field effect
(Blanchet/Novak [56]). Observational data of the spiral arm rotation of galaxies indicate a violation of the
Newtonian law of dynamics. Various gravitational theories do exist. For example, modified Newtonian dynamics
(MOND) (Milgrom [362], Blanchet [54], Blanchet/Le Tiec [55]) and its relativistic upgrade (Bekenstein [38])
were set up to circumvent the unpleasant dark matter hypothesis. There exist severe doubts, based upon recent
astronomical observations (Moni Bidin et al. [368]), on proposed dark matter models at least in case of the
solar neighborhood. The MOND claims a nonlinear relation between force and acceleration when gravitational
acceleration is extremely low, which had to result in a long-range modification of Newton’s law of gravitation.
The space age revealed several anomalies, e.g., the Pioneer anomaly (Jaekel/Reynaud [263], Johann et al. [267],
Turyshev/Toth [556]), some of which still await an explanation (Preuss et al. [430]). Quantitatively, an assump-
tive cosmological expansion of the universe most likely does not explain these anomalies (Carrera/Giulini [89]).
For a discussion of lastingly unexplained phenomena in celestial mechanics and astronomy we refer to Lämmer-
zahl et al. [312].

15 Progression of the interferometric method for relativity testing

Interferometry is a well-established metrological method. It either uses light waves (optical interferometers), or
matter waves (atom interferometers) (Bouyer et al. [65], Cronin et al. [109]), that are being superimposed to
extract information, e.g., on the rotational status of the interferometer itself. The wave nature of matter can well
be observed and studied in earthbound drop tower experiments (van Zoest et al. [562], Müntinga et al. [384]).
Applying matter waves, atom interferometry (Sterr/Riehle [527]) becomes an alternative to experiments compri-
sing classical test masses (e.g. Hubler et al. [252], Kleinevoß et al. [281], Nolting et al. [393], Schwarz et al. [492],
Luo et al. [336]). It might also be used to test the invariance of the Newtonian gravitational constant (Fixler et
al. [187], Lamporesi et al. [315]). Milyukov et al. [363] provide a review of rather traditional (e.g. torsion or free
fall) experiments on the determination of G. Some proposals for future space missions comprise the combined
use of both, microscopic and macroscopic test masses in order to investigate possible violations of established
laws of gravitation on different scales (Amelino-Camelia et al. [11]). Atomic spectroscopy can improve the limits
on possible variations of other fundamental quantity too, e.g. the fine structure constant α (Fortier et al. [196]).
A variable α would affect the readings of atomic clocks and hence its comparability. In gradiometry, instead
of (possibly miniaturized) extended test-masses used up in conventional accelerometers, quantum engineering
technology employs individual atoms or atomic clouds as identical drag free test masses (Maleki et al. [340]).
Earthbound atom interferometers, in principle, can be regarded as atom gravimeters (Peters [414], Schilling et
al. [474]) or devices that also allow for the determination of the Sagnac effect (Post [426], Riehle et al. [454],
Schneider [482]). In general, they can be used to measure external fields, e.g. inertial forces. Steffen et al. [521]
suggest an instrument based on single trapped atoms being able to measure potential gradients with a precision
of 5 ·10−4 in units of gravity acceleration g and, with the implementation of further technological improvements,
eventually rivaling in precision free-fall atom interferometers. Among others, atom interferometers provide the
means to test different theories of gravitation by experiments on Earth. Theories make different predictions, e.g.,
on the universality of free fall or the universality of clock rates, i.e., the gravitational redshift. It is questionable
whether (Müller et al. [376]) or not (Wolf et al. [600], [601]) the latter effect is testable by atom gravimeters (Sin-
ha/Samuel [506]). Applying different atomic ensembles enables the concept of differential atom interferometry
(Eckert et al. [149]). Various quantum sensors are currently under development (Gilowski/Rasel [211]).
Another testable prediction of Einstein’s theory of gravitation is the existence of gravitational waves. Ear-
thbound gravitational wave detectors could be significantly improved (Punturo/Lück [436]), e.g., by highly
stabilized lasers (Willke et al. [593]) or by using non-classical light sources (Vahlbruch et al. [560]), that are
mostly based on parametric processes in non-linear optical materials. Freise et al. [200] discuss the implications
of different topologies for gravitational wave detectors. Both, laser interferometry and matter wave interferome-
try, can be applied for the purpose of detection (Delva/Rasel [129]). If interferometry is based on light waves,
then laser astrometric tests of relativity (Turyshev et al. [554]) could be performed. In principle, a constellation
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of at least three formation flying spacecrafts, e.g., as within the upcoming Laser Interferometer Space Antenna
(LISA) mission (Rüdiger et al. [461]), enables time delay interferometry (Tinto [549]). By now gravitational
waves could not be detected.

16 Clocks as relativistic sensors
In general, relativity has to be exploited in two alternative ways. Single time measurements make use of clock
readings, and clock comparisons additionally make use of electromagnetic signals. Both means are affected by
relativistic effects, the causes of which can be described in terms that are of interest in geodetic applications.
The availability of precise atomic clocks make the theory of relativity a practical tool, i.e., we can regard and
apply those clocks as relativistic sensors. The theory of relativity, in its special (Einstein [154], Giulini [213],
Will [588]) or general form (Einstein [159], [162], Will [586], [589]), is a key element in modern metrology
(e.g. Maleki/Prestage [339], Guinot [224]).
Special relativity states that a clock’s ticking rate in comparison to another ones’ depends on their relative
states of motion. Likewise, following general relativity, clock readings are affected by the clocks’ position within
a gravitational potential. Or, to be more precise, following Filk/Giulini [185] „the world line (of a clock) in a
gravity field is shorter“.
Conversely, velocities and potential values can be determined by clock comparisons. Starting from these primary
quantities, secondary quantities may be derived, e.g. potential differences or heights. All these quantities are
relative ones. Therefore, as in classical geodesy, the question of reference frames (Soffel et al. [509]) is essential
for relativistic geodesy.
Electromagnetic signals traveling through space will be affected in various ways (frequency shift, time delay,
path deflection) due to several properties of disturbing massive bodies (mass, spin, irregular shape). Reversely,
highly precise measurements of these effects on a signal, in principle, allow for the determination of the massive
objects’ properties (Ciufolini/Ricci [100]).
Some fundamental features of the theory of relativity, e.g. the finite speed of light, have to be accounted for
even in earthbound classic geodetic instrumentation, e.g. absolute gravimeters (Nagornyi [386]), if high-precision
measurements are to be taken.
In the early days of relativistic testing, experimental settings relied on comparatively high relative velocities
(Reinhardt [451]) and big changes in elevation, i.e. changes of the gravity potential. Thus, the theory of relativity
was first respected on astronomical scales (e.g. Clemence [102]). Planetary space missions are also very well
suited for testing modern gravitational theories (e.g. Anderson et al. [15]). With the growing precision and
stability of frequency standards (Guinot/Arias [225]) it became apparent that the annual motion of the Earth
about the Sun imposes significant variations in the readings of clocks that are attached to Earth’s surface
(Clemence/Szebehely [103]). Later, observational equations accounted for many different physical causes of
these variations (Moyer [370], [371]).
Today, with the advent of 10−17 to 10−18 (frequency inaccuracy level, δf/f) frequency standards, relativistic
effects can even be detected in experiments that make use of only moderate to small earthbound velocities (Chou
et al. [97]) and changes in position (Pavlis/Weiss [403]). In experimental physics, applications of the attosecond
(1as = 10−18s) (Wengenmayr [576]) are already in reach (e.g. Kienberger/Krausz [277], Corkum/Krausz [107],
Krausz/Ivanov [301]). On the other hand, relativistic geodesy (Müller et al. [380]) nowadays still owns the status
of a somewhat experimental science. Proving its applicability to contemporary open questions (e.g. a unified
world geodetic height system), the beneficial use of relativistic geodetic techniques should become evident.

17 Apparent limits on the resolution
Possibly all physical quantities, including time and space, are finally discrete. ’Hodon’ and ’chronon’ are
suggested terms for the minimal values of length and time, respectively. Consequently, discrete time would
consist of tiny leaps and in between two steps there could not run any physical processes. In engineering
practice however, space and time are still regarded as being continuous. From a mathematical point of view
this is important, because otherwise the traditional concept of a limit value, which is a prerequisite in physics
for introducing velocities or accelerations etc., would become inapplicable.
Measurements of space and time can not be performed with an arbitrary precision or on an arbitrary scale.
Ultimate limitations seem to be imposed on one hand by the existence of a Planck scale (Filk/Giulini [185]),
where fundamental quantities such as length, time, mass, temperature or charge, and derived quantities exhibit
certain extremal values that are interconnected by natural constants, e.g., speed of light c, gravitational con-
stant G, Planck’s constant h, or the reduced Planck’s constant ~ = h/2π, respectively. For length, time, and
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mass we find the minimal values

lP =

√
~G
c3

≈ 1.6 · 10−35m (Planck length),

tP =

√
~G
c5

=
lP
c

≈ 5.4 · 10−44 s (Planck time),

mP =

√
~c
G

≈ 2.2 · 10−8kg (Planck mass).

(4)

The nominal values for lP and tP impose lower limits for any localization in space and time (Giulini [213]).
As a consequence (Eisenhardt [166]), the resolution of distance measurements via light rays is theoretically
limited by the light’s wavelength λ. The latter is related to frequency f and the speed of light (c = λf).
From elementary physics we know that frequency depends on energy via Planck’s constant (E = hf). So, a
minimum energy level is associated with the existence of smallest possible distances: Emin ∝ λ(f). On the other
hand, following the theory of general relativity, an object of mass m will curve space-time with the so-called
Schwarzschild radius rS = 2Gm/c2 as a limit for the radius of curvature ρ. For r < rS the escape velocity value
would have to exceed the speed of light, which already gives a hint on the existence of black holes. This is just
an apparent ’coordinate singularity’. Only at r = 0 we face a true singularity (Filk/Giulini [185]). Due to the
equivalence of mass and energy E0 = mc2 (Okun [397], [398]), we find another limit for the measurement of
small distances: Emax ∝ ρ(m).
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Already in classical geodesy one tries to relate essential measurements directly to time. For instance, distances
correspond to time measurements by determining the round trip time of an electromagnetic signal between
distant points. As another example, gravity can be measured by the determination of the time period of a
pendulum’s oscillation. It is a fundamental feature of classical geodesy to apply concepts like ’reference direction’
and ’reference plane’, ’simultaneity of events’ (Jammer [265]), ’Earth rotation’ and so on in a Newtonian sense.
Newtonian mechanics assumes that space and time are both absolute. As we now know, this is only a first
approximation to reality, because time and spatial motion are not decoupled phenomena.

To start with the transition from classical to relativistic geodesy we will treat space-time as an absolute entity,
i.e. sharply defined, herein. For the solution of earthbound geodetic problems, especially since the advent of
artificial Earth satellites and its use within space geodetic techniques, relativistic effects became non-negligible
(e.g. Ashby [20]). For the ease of practical work, the task of taking relativistic measurements should not be
superimposed with the task of pursuing relativistic tests alongside. Several measurement campaigns and satellite
missions are dedicated to the determination of refined confidence intervals for various parameters of candidate
theories of gravitation.

Instead, depending on the attainment of a chosen adequate precision level of our instrumentation, for the time
being, we take for granted the validity of Einstein’s theory of relativity. Still being the most reliable relativistic
extension of the theory of gravity, it should simply be regarded as a new tool (Will [585]). Many different post-
Newtonian approximations were examined, but Einstein’s theory of gravity remains the simplest alternative,
which so far passed all tests regarding its predictions with great success. Remark: recently, Kiefer et al. [276]
confirmed the existence of Einstein’s „relativistic mirror“.

Applying Einstein’s general theory of relativity, we assume that the metric tensor is the only gravitational
field variable (Kopejkin [299]). Nonetheless, this theory has its own limitations, which acts as a motivation to
develop more elaborate concepts of gravity in fundamental physics. The successful exploitation of any theory
of relativity requires a consistent relativistic modeling of observations (Klioner [289], [291]).

In physics, one is more interested in pure metrological applications of atomic clock readings, whereas in geodesy
we focus on various traditional tasks, e.g., the determination of potential differences, that might benefit from
this new type of direct observations.

18 Selected technological issues

The relativistic framework of actual instrumentation is presented in mathematical detail in Bordé [61]. Mo-
reover, modern day measurement technologies make use of quantum-physical processes. Frequency and time
measurements with atomic clocks are based upon certain state transitions (Lombardi [332]). Gill [210] describes
several suitable atomic transitions for optical frequency standards in detail.

Precisely speaking, there is a difference between a pure frequency standard (Riehle [455]) and a clock. The latter
is more demanding from an engineering point of view. Frequency standards periodically generate pulses at a
rate as regular as possible. It may take some time for the equipment to settle in order to achieve a required level
of regularity. Making it a clock requires the additional implementation of a counting unit, which continually
records the number of pulses. For practical application, it should be possible to easily turn on and off a clock.
Another desirable property would be the mobility of the whole device.

The quality of a frequency standard can be characterized by certain quantities: accuracy, precision, and stability
(McCarthy/Seidelmann [351]). Depending on a proposed application, for the selection of a suitable clock, one
has to find a compromise, because high accuracies require comparatively long averaging times, whereas stability
naturally decreases with time. Relativistic geodesy, in view of the typical time scales involved within the
geophysical processes of the system Earth, requires high accuracy and stability at the same time.

Precise frequency standards are often still based on atomic hydrogen maser oscillators (Vessot [565]) and atomic
fountain clocks (Wynards/Weyers [606]). Microwave clocks are progressively being replaced by atomic clocks
that rely on so-called optical transitions. These new frequency standards operate on 4 to 5 magnitudes higher
frequencies than microwave clocks. The development of optical clocks (Peik/Sterr [407]) required the availability
of ultra-stable interrogation lasers (Sterr et al. [526]). Additional improvements in laser technology, e.g., the
realization of so-called superradiant lasers (Bohnet et al. [58]) with linewidths of a few mHZ, may lead to even
more stable atomic clocks (Meiser et al. [355]).
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Optical lattices (Takamoto et al. [537]) are created to trap countable (in a statistically sense) sets of individual
particles (atoms or ions) (Katori et al. [270]), the interrogations of which are suitable for constructing precise
frequency standards. In case of neutral atoms one typically traps 103 to 104 particles, whereas ion-based
devices trap only a few particles (or even a single ion). The trapping is necessary to eliminate the (classical)
Doppler effect. Generally speaking, the interrogation of trapped particles is suitable for constructing a variety
of measurement devices. The application of quantum logic in precision spectroscopy indicated the feasibility to
construct optical clocks based on single ions (Schmidt et al. [478]). As another example, single electrons may
be used as a magnetometer (Hanneke et al. [230]), e.g., for the determination of the fine structure constant α.
The performance of a frequency standard is degraded by various sources of (residual) frequency shifts and noise.
Besides relativistic effects, various physical processes may lead to frequency shifts in an (optical) atomic clock,
such as electric fields, magnetic fields and atom collisions. Much effort is spent on the shielding of the clock
instrumentation and the reduction of the individual sources of noise, but eventually the intended application of
the clock determines the distinction of signal and noise. To increase the performance of a clock, physicists have
recourse to various measures, e.g., operating the apparatus in a vacuum regime, optimizing the interrogation
technique, using comparatively long averaging times (measurement duration) of up to several hours, etc.
The dependency of the relative frequency instability on the averaging time is usually expressed by the Allan
variance (e.g. Allan [6], Schlüter [475], Peik/Bauch [406]). It is still one of the most prominent quality measures
of clock performance or frequency stability (Barnes et al. [32], [33], Riley [456], Allan [9]) because of the divergent
behavior of the classical variance for some correlated time series (Allan [8]). One of the best clock performances in
terms of inaccuracy so far was confirmed by the NIST laboratory using trapped ion clocks based on Al+ (9·10−18)
and Hg+ (2 ·10−17), respectively. Remark: the same measure (Allan variance/deviation) is used to characterize
the quality of different techniques for remote time and frequency comparisons (Piester/Schnatz [422]).
The level of frequency shifts (Zeeman effect, Stark effect, cold collisions, spectral purity, leakage, neighboring
transitions, etc.) can be reduced, for instance, by using higher transition frequencies, which is a motivation to
replace microwave clocks by optical clocks. Ultra-high performance can be achieved by reducing perturbation
effects as far as possible. In order to reduce thermal noise, the isolated atoms or ions are put nearly at perfect
rest by means of laser cooling techniques (Schmidt [477]). This improves the signal-to-noise ratio and even
more so the overall quality of the clock. Reaching the cooling limits takes a certain amount of time, where this
procedure is part of a comparatively long total preparation process which is necessary for the entire laboratory
instrumentation setup. In this respect, ion clocks are a bit easier to handle.
Wineland et al. [595] discuss how to achieve a requested measurement precision within a reasonable time
frame. The measurement duration clearly restricts possible geodetic and metrological applications. Advanced
interrogation techniques, e.g., based on correlation spectroscopy, enabling shorter averaging times of a few
minutes (Chou et al. [98]), will support applications that require a higher temporal resolution of clock readings.
Another approach to further improve systematic clock shift compensation and suppression uses certain optical
nuclear transitions by utilizing a specific electronic level in both the nuclear ground and isomer manifolds.
Outstripping even the performance of conventional optical atomic clocks, nuclear clocks based on so-called
virtual clock transitions composed of stretched states within suitable electronic ground levels could result in
clock operation with total fractional inaccuracy approaching O(10−19), or even O(10−20) (Campbell et al. [84]).
As a reminder, a fractional frequency shift of 1 · 10−19 corresponds to a 1mm discrepancy in clock height.
The clock performance can also be increased by another technological improvements. For instance, a better laser
beam guidance (Kleine Büning et al. 2010) enables longer interrogation times and possibly even continuous laser
interferometric measurements. In quantum optics, the ability to create coherent laser light with high frequency
stability is a prerequisite for precise measurements (Lisdat/Tamm [331]). Femtosecond laser frequency combs
(Hollberg et al. [250]) show great potential for the development of new instrumentation. They are already
used, for instance, for the transfer of stability. Lezius et al. [329] discuss how highly accurate long distance
measurements based on spectral interferometry with frequency combs could be performed. Femtosecond laser
based space metrology is already in reach (Klein/Bedrich [279]). An alternative to atomic clocks and gravimeters
(using a free falling atomic sample) is based on the levitation of a Bose-Einstein condensate (BEC) which shows
enhanced measurement sensitivity (Impens/Bordé [261]).
Remark: (optical) cavity cooling (Wolke et al. [602]) seems to be superior to the laser cooling approach, but
rather for the purpose of matter wave generation for atom lasers and BEC studies. Regarding geodetic appli-
cations, it may enable more accurate measurements of rotation and gravity accelerations (atom interferometry,
atom gravimetry). In principle, matter waves may also enable a (Compton) clock design, directly demonstrating
the connection between time and mass (Lan et al. [316]).
Another promising advancement in the transition of atomic clocks towards a practical geodetic instrument
comes from successful miniaturization attempts. Frequency reference devices with a total volume of only a few
cubic centimeters with reasonable precision and stability seem to be technically feasible (Kitching et al. [278]).
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19 Clock networks requiring time and frequency transfer
In the following, unless stated otherwise, ’clock’ is meant to be an atomic clock, based on either microwave or
optical transitions. Basically, atomic clocks give proper times. The difference between proper time scales and
coordinate time scales, as well as its connection to atomic clock readings is being discussed in detail by several
authors (e.g. Aoki [16], Winkler/Van Flandern [596], Guinot [222], Arias [17]) and it is outlined in later sections
on the mathematical framework of relativistic geodesy.
In view of geodetic applications, we tend to prefer relative measurements of time, instead of ’absolute’ measure-
ments at a single location. Consequently, we have to compare clock readings in a suitable way. Ashby/Allan [19]
present theoretical and practical aspects on how to set up a coordinate clock network. Exploiting the capabili-
ties of highly precise clocks requires the ability to intercompare frequency standards at the same level (Abbas
et al. [1]). Therefore, synchronization of a clock network is a major issue, e.g., for combined measurement
campaigns within networks of globally distributed observation sites. Without synchronization clocks could not
be successfully distributed, neither on Earth nor in space, in order to globally read time and attain a causally
consistent temporal order of remote events. The general network topology for different synchronization methods
is explained in Wing [603], whereas Bregni [67] provides more technical details.

20 Time and frequency transfer via clock transportation
Synchronization (Klioner [285]) or syntonization (Wolf/Petit [598]) of different clocks in a relativistic sense
can practically be achieved by various means. Clocks are either located nearby at the same site or they are
separately located at remote sites. In the first case, clock readings may easily be compared in a direct way. In
case of remote clocks, one could bring them together in one location by physical transportation. This requires
portable clocks in the sense that they are moveable.
Following the theory of relativity, clocks in motion potentially bear information on its state of motion and
the environment along its path of transportation. To gather and possibly exploit this information, we need
the clock(s) to be continuously ticking during transportation phases. In case of a continuously operating clock
during transportation, we call it a mobile clock. To this date, from a technological or engineering point of view,
this requirement is much more challenging than simple movability, where the clockwork can be switched off and
on occasionally. Clock synchronization by (slow) transport is equivalent to Einstein’s rule for synchronization.
There already exist several suggestions for specific measurement procedures in case one can use mobile clocks in
order to compare and apply its readings at remote stations (Bjerhammar [47]). Today, mobile high-performance
optical clocks are under development. Regarding its performance, at the moment, the (Strontium based) non-
mobile optical (lattice) clock at PTB is one of the world’s best optical clocks, not least due to an highly accurate
determination of room temperature induced frequency shifts (Middelmann et al. [361]). It has an accuracy of
about 3 · 10−17 and a stability of about 5 · 10−17 for an averaging time of τ = 100 s, under controlled laboratory
conditions. The quality measures of transportable counterparts are still worse by a few orders of magnitude.
Furthermore, till this day, aside from validating earthbound or airborne experiments (e.g., round-the-world flying
clocks aboard a plane) to dedicated space missions concerning certain predictions of the theory of relativity,
there is only limited practical experience with mobile frequency standards on a routinely field work basis, e.g.,
with a passive hydrogen maser (Feldmann [180]).

21 Time and frequency transfer via signal transmission
Alternatively to clock transport, one can follow indirect approaches by exchanging information between sites.
Quantum mechanic entanglement of macroscopic objects has already been demonstrated (Schnabel et al. [479]),
and also the transition of quantum information into materials via the interaction of light and matter is under
investigation (e.g. Stute et al. [531], [532]). Nonetheless, using such techniques for operational information
exchange over very long distances referring to clock readings will probably remain fiction for quite some time.
A working option is the classical exchange of (electromagnetic) signals. Perlick [412] discusses geometrical
subtleties of clock synchronization based on this method. From a mathematical point of view, relativistic
formulae for time and frequency transfer up to order c−3 have been derived (e.g. Blanchet et al. [51]).
The transfer medium could either be ’free air’ or ’by wire’ (Piester/Schnatz [422]). The former option means
going through the atmosphere with all its complicated environmental effects on the electromagnetic signal.
Environmental influences on signals are much more manageable, if we use a material connection, e.g. glass
fiber, between clock sites. Optical fiber networks for time and frequency transfer (Foreman et al. [195]) and
dissemination (Amemiya et al. [13]) have already been used to achieve an optical frequency transfer with 10−19

relative accuracy over a distance of more than 100 kilometers (Grosche et al. [219], Terra et al. [539]). Other
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experiments demonstrated the feasibility of optical clock comparisons using telecommunication fiber links for
extended distances up to about 900 kilometers (Schnatz et al. [480], Predehl et al. [429]).
If (very) long distances have to be bridged, e.g., on an intercontinental or global scale, then fiber networks
are of limited use. Besides technological issues, its cost efficiency probably loses against free air transmission
techniques. If there is no direct line of sight between remote clock sites, we may set up a signal chain. Depending
on the wavelength of the electromagnetic signal, one could use atmospheric layers to bounce off and forward
the signal. Accurate transfer methods require shorter wavelengths and therefore the use of artificial reflectors.
Aiming at highest accuracies for very large distances, laser ranging techniques using two-way signals require
active or at least passive transponders instead of reflectors (Degnan [125]). Depending on the actual application
and its constraints, reflectors or transponders could be mounted on balloons, air vessels, stratosphere planes,
satellites or even the Moon and other celestial bodies (e.g., if interplanetary distances have to be bridged).
Lasting problems in transferring time or frequency over large distances (which requires a precise delay determi-
nation etc.) is one of the most limiting factors in real clock applications like chronometric leveling, especially if
sub-centimeter accuracies shall be achieved.

22 Time and frequency transfer methods
Depending on the sites’ network geometry and available instrumentation, several time and frequency transfer
methods (through the atmosphere) have been established. These can be classified using different categories. For
instance, there are single view or common view methods (Schmidt/Miranian [476]), and one-way or two-way
methods (Petit/Wolf [416]), respectively. Stable clock readings require comparatively long averaging times.
This poses some topological constraints on the use of moving reflectors or transponders. In this respect, using a
geostationary orbit would be of great benefit, but probably there will be limited access to commercial satellites for
scientific time transfer studies, if any. On the other hand, regarding routinely realizations of time scales like TAI
and UTC (cf. § 31), corresponding comparisons between national metrological institutes have been conducted
for years now with leased satellite transponders, e.g., via Intelsat’s IS-3R satellite (Zhang et al. [612]).
Several dedicated space missions exist (ongoing and/or planned) that either make use of comparatively low
orbital heights (signal comparison/exchange experiments) or highly elliptical orbits (relativity testing), where
the latter configuration is chosen in order to exploit larger differences in terms of gravitational potential and
velocity along the trajectory of the instrumental platform that allow for an easier detection of various effects.
Despite the fact that two-way methods are of advantage, e.g., for the elimination of unwanted systematic effects,
one-way methods are most commonly used. Several active artificial satellites carry passive retro-reflectors on-
board, mainly for the reason of precise orbit determination. These reflectors can readily be applied for time
transfer and dissemination. Besides positioning, this is one of the main purposes of global navigation satellite
systems (GNSS) like GPS (American), GLONASS (Russian) or GALILEO (European).
As long as the two way satellite time and frequency transfer (TWSTFT) approach (Hanson [232]) is more
expensive, the application of GNSS (Levine [327]) with its established geodetic phase and code measurements
is of advantage (Ray/Senior [446]). For example, the GPS time signal (Klepczynski et al. [282]) is exploited by
customized receivers, and one way GPS carrier phase time transfer (Delporte et al. [128]) has been used in the
past to study the isotropy of the speed of light (Wolf/Petit [599]). Recent advances in GPS based time and
frequency comparisons are discussed in Feldmann [180]. Other satellite constellations are equally useful, e.g.,
GLONASS (Lewandowski et al. [328]) or PRARE (Bedrich/Hahn [37]).
For highly precise signal transfers, connections to the satellites should be established via stable microwave or
laser links (e.g. Klioner/Fukushima [287], Fridelance et al. [201], Petit/Wolf [417]). As an example, within the
Jason2 satellite mission an optical link (time transfer by laser link [T2L2]) was established in order to calibrate
the onboard oscillator with respect to ground clocks which led to improved altimetry and positioning results.
Estimating the standard uncertainty in frequency transfer (Douglas/Boulanger [144]) is essential. Kleppner [284]
remarks that, at high levels of precision, uncontrollable fluctuations might act upon atomic clocks such that
it will be impossible to select a master clock for keeping true time. Furthermore, for ground-to-space time
transfers with picosecond-accuracy via laser link, as with the upcoming ISS on-board package ’Atomic Clock
Ensemble in Space’ (ACES) (Spallicci [516], Salomon et al. [465], Cacciapuoti et al. [80], Švehla [534], Daganzo
et al. [113], Heß et al. [247]), the signal detection process has to factor in the optical to electrical detection delay
within the instrumentation setup (Prochazka et al. [431]). One aims at a few picoseconds time stability for the
comparison of distant clocks and about one hundred picoseconds time accuracy for the time scale distribution.
Obviously, to accomplish highly precise time transfers, many effects have to be taken into account. One way
of checking the achieved performance is a loop-wise use of multiple transfers, similar to the leveling method in
classical geodesy. By doing so, one could study resulting non-zero closures, e.g., for triplets of two way satellite
time and frequency transfers (Bauch et al. [36]).
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In traditional physical geodesy, one of the main tasks is to establish and monitor a global geodetic observing
system (GGOS, Plag/Pearlman [424]) which comprises three major parts, namely the geometry, rotation, and
gravity field or geoid of the Earth. Geodesists contribute to the detection of the actual state of all three parts
and its changes. Due to the combination of different effects, a functional GGOS requires an accuracy level for
its individual observation techniques and reference systems of at least 10−9. Regarding Earth dimensions with
radius R⊕ ≈ 6378 km and a gravity value at the surface of about g⊕ ≈ 9.81m/s2, an order of 10−9 means that
we want to determine metric quantities on the millimeter level and gravitational quantities on the microgal
level. Present gravity models (e.g. EGM08) and (quasi-)geoid models (e.g. EGG08) both have an accuracy on
the decimeter level. Current gravity field space missions like GOCE aim at a geoid accuracy on the centimeter
level and a gravity anomaly field on the milligal level with a spatial resolution of about 100 km (Pail et al. [401]).
Typical reference stations of the international reference system of gravity (epoch year 1971) have an accuracy
of approximately 100µgal, whereas modern classical gravimeters can reach the µgal (absolute gravimeter) or
even sub-µgal (superconducting gravimeter) level (Torge/Müller [551]).

23 Decorrelation of physical effects by means of clock readings
Changes in the system Earth involve several interacting spheres, namely the biosphere, geosphere, atmosphere,
cryosphere, and hydrosphere. There exist models to all parts of the system, the parameters of which shall be
monitored, resulting in corresponding time series. Changes in form of variations, deformations, and rotations are
induced by a variety of correlated causes. We are able to separate these to a certain extent, because they show a
broad spectrum in amplitude and frequency. Spatially, we can distinguish between local and global effects. All
these space-wise and time-wise differences imply corresponding requirements on geodetic instrumentation for
observations. Consequently, the characteristic properties or specifications of individual clocks as a measurement
device may be sufficient or not for a given task.
Different time scales (here in a non-technical sense of time intervals) are involved, which has consequences
on the necessary frequency stability of the clock. Short intervals are associated with signal travel times or
epoch distances. Intermediate intervals are needed for comparisons of atomic time scales (related to elementary
particles, i.e. micro-scale objects like electrons or photons) with ephemeris or astronomical time scales (related to
celestial bodies, i.e. macro-scale objects, like Earth, Moon, Sun). Long intervals are associated with large-scale
Earth system processes, e.g. plate tectonics. Basically, Earth’s gravity field connects different geo-disciplines.
It therefore plays a dominant role in Earth system research. The combined analysis of globally distributed
accurate clock readings can help to separate and study Earth system changes.
Atomic clocks are operated in vacuum. Nonetheless, in practice, any clock reading is affected by several effects
(state of motion, gravity field, magnetic field, any possibly imperfect shielding from environment, etc.). Its
output, which is kind of a proper time, can be written as a functional of different parameters describing these
effects (e.g. Moyer [370], [371]). In principle, problem-dependent observation equations (regarding a specific
effect as a perturbation or observation) can be set up to determine those parameters. In order to separate
effects, differently or equally constructed clocks at various locations in space-time might have to be operated.

24 From theoretical relativistic framework to real world scenarios
Given general relativistic formulas on gravitational physics (e.g. Misner et al. [366]), it is not trivial to derive
special cases for real-world applications. Already the Newtonian limit (Ehlers [153], Lottermoser [334]) of a
three-dimensional rotating perfect fluid in equilibrium is quite complicated in its analytical formulation, even
more so if multipole moments (potential coefficients) are not to be neglected (Kopejkin [294]).
The Newtonian limit is characterized by three requirements. First, any particles/bodies, apart from photons,
move slowly with respect to the speed of light c, such that we can apply the following special case for the equation
of a geodesic (for mathematical details we refer to § 29.1, especially equation (14), § 29.5, and equation (50)):
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Furthermore, we stipulate weak gravitational fields which can be considered as perturbations of a flat space,
i.e., one can decompose the general metric gij (cf. equation (17)) into a Minkowski form ηij (cf. equation (46))
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plus a small perturbation hij with ∥hij∥ ≪ 1. Finally, the Newtonian limit only considers static gravitational
fields (unchanging with time with respect to a (quasi-)inertial system).
For real-world applications tidal phenomena and dissipative forces play an essential role that can not be appro-
ximated by a simplifying perfect fluid assumption. Alternatively, one can try to treat such elaborate problems
iteratively (Lottermoser [335]) or numerically (Meinel et al. [354]). Accounting for precession and nutation
in a consistent relativistic manner enables the construction of a numerical theory of Earth rotation using the
post-Newtonian model of rigidly rotating multipole moments (Klioner et al. [290], [292], [293]). In general, the
comprehensive relativistic formulation of rotation remains a trouble spot. Usually, the relativistic notion of ro-
tation (Moritz/Hofmann-Wellenhof [369]) either uses the inertial compass (gyroscope axes, local criteria) or the
stellar compass (incident light rays of remote stars, non-local criteria) (Weyl [577]). Additionally, the concept
of an ephemeris compass exists, where a dynamical reference system is defined by the motion of non-remote
(in comparison to quasars) celestial bodies, e.g., planetary and/or satellite orbits. The concept of rotation in
general relativity, its effects and measurement techniques using interferometry is discussed in Feiler et al. [179].
Using a canonical dynamics approach, one can rigorously show that Newtonian gravity is well embedded into
general relativity and results from it in the weak-field slow-motion limit (Schäfer [470]). Depending on the
actual gravity regime in place, i.e., its weakness or strongness, the same observed phenomena may be used to
probe or test alternative theories of gravity, see Psaltis [432] for a discussion of this distinction between probing
and testing.
Calculations of the time delay and frequency shift of light are mostly based on the integration of the null
geodesic equations, but there exist alternatives. If 10−18 precision is requested then relativistic terms up to
order c−4 have to be taken into account. Teyssandier et al. [540] present parameterized formulae for a specific
case, where an isolated axisymmetric body causing a weak static gravitational field (due to its total mass and
quadrupole moment J2) slowly rotates with a certain internal angular momentum (Thompson [544]). Xu et
al. [609] provide a unified formula approach in case certain different effects in combination affect atomic clock
reading comparisons. It also enables the consideration of coupling terms.
Applying the theory of relativity to a given system mathematically means to solve a set of field equations, as we
will see later on. Einstein’s system of ten equations implies that everywhere a certain combination of space-time
curvatures has to equal a corresponding combination of energy or energy flux of matter. Given a certain mass
distribution, we can search for an equivalent geometry of space-time (Filk/Giulini [185]). Basically, one solves
for the metric (field), which allows for the calculation of the corresponding gravitational field which in turn
enables a direct determination of resulting trajectories of test masses. In sum, it is far from being a trivial task.
The first exact solutions of Einstein’s field equations were found for highly simplified problems, e.g., a single
mass point (Schwarzschild [493]) or an incompressible liquid sphere (Schwarzschild [494]). Several authors list
known exact solutions for more general problems (e.g. Stephani et al. [525]). Occasionally, new ideas appear to
potentially ease the mathematical treatment of general relativity, e.g., Penrose [410] replaced the usual tensor
approach by a spinor formalism. In principle, there are formally correct solutions to Einstein’s equations that
lead to logical contradictions, e.g., violations of the causality principle. These difficulties will be resolved or
vanish, because we also have to take additional equations into account, describing matter itself. The solution to
the latter equations rules out all cases that are inconsistent with the geometry of space-time (Filk/Giulini [185]).
In combination, all formulae form a set of deterministic equations.

25 The resurrection of the chronometric leveling idea
Accurate optical clocks have the potential to be exploited in several areas (e.g. Soffel [511], Peik/Bauch [406]).
As an example, the idea of a chronometric leveling already came up decades ago (Vermeer [564], Schüler [488])
by reasoning that clock rates are shifted by changing gravitational potentials. Differences in potential values
relate with differences in height. As in the classical approach, relativistic height determination is inevitably tied
to the definition of reference surfaces. Correspondingly, one can introduce the concept of a relativistic geoid
(Kopejkin et al. [299]), which acts as a reference for global clock comparisons. Conversely, the idea for global
gravity field determination using atomic clocks in space came up (e.g. Švehla/Rothacher [533]).
Bjerhammar [46], [47] can be viewed as one of the pioneers of relativistic geodesy. Unfortunately, previous oc-
casional work on the same subject (Bjerhammar [45]) has been hardly appreciated by the geodesy community.
Allan/Ashby [7] also already discussed a wide range of possible applications. Basic formulae for relativistic gra-
vimetry and relativistic gradiometry have been derived by several authors (e.g. Soffel et al. [510], Kopejkin [295],
Gill et al. [209], Kusche [304], Kopejkin et al. [299]).
Gravity measurements can be obtained by various means. If we apply classical absolute free-fall gravimeters,
relativistic corrections have to be taken into account (Rothleitner/Francis [459]). By doing so, one tacitly
retains Newton’s interpretation of gravity. Stressing the smallness of relativistic effects, geodesists tend to treat
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general relativity as Newtonian mechanics plus relativistic corrections (Moritz/Hofmann-Wellenhof [369]). On
the contrary, a consequent exploitation of Einstein’s relativistic space-time concept almost inevitably leads to
the idea of using clocks as a new gravity meter of choice, i.e., a tool for the purpose of height determination.

Realization of a GGOS implies the demand for a unified worldwide height system which relates to the geoidal
geopotential value W0, i.e., the geopotential of the equipotential surface which, in a least squares sense, fits best
to the mean ocean level (Burša et al. [78], [79]). Thus W0 can be defined by∫

S

(
W −W0

)2
dS = min, (6)

where dS is a differential element of the oceanic surface topography.

In height computation W0 is of paramount importance because it can be used to uniquely define the geoidal
surface. Burša [77] provides a discussion on its relevance as a primary parameter in geodesy, and its current
best estimate is given by Groten [220], [221]. Other important issues in the definition of a reference system of
height are the metric unit (usually the SI meter), the exact relation between the terms ’height’ and ’potential
differences’, and information about the tide model that has been in use. Height systems (either geometrically
or physically defined) act as reference systems for the well-defined mathematical description of points in three-
dimensional space in relation to two-dimensional height reference surfaces. The precise transformation between
various height systems remains a central issue in contemporary physical geodesy.

Classical global height transfer is very much limited in accuracy due to the dynamic ocean topography (DOT)
(Albertella et al. [5]). This is an hydrodynamical effect, basically non-gravitational, with magnitudes up to a few
meters. Ideally, the sea level is assumed to be perpendicular to the plumb line direction. Due to DOT, this first
order approximation is no longer adequate if we want to unify national height systems on an intercontinental or
global scale. Another problematic issue is also related to DOT = h−N , where h is sea level height as determined
by altimetry, and N denotes geoid height as being derived from gravity field determinations. Problems may
arise, because h and N are of quite different nature. The former results from high-resolution point-wise direct
altimetric measurements, whereas the latter is a derived quantity from a smoothed analytical function, i.e.,
worldwide gravity model.

In relativistic geodesy, we have to use a non-classical definition for the geoid. Bjerhammar [47] defines the
relativistic geoid as the surface nearest to the mean sea level, on which precise clocks run with the same speed.
Remark: one could apply alternative definitions of a relativistic geoid (Kopejkin [295], Kopejkin et al. [299]). For
the use of GNSS leveling methods based on the concept of normal heights relating to the quasigeoid as a reference
surface, precise computation of differences to orthometrical heights relating to the geoid as a reference surface
is crucial (Wirth [597]). Flury/Rummel [191] exemplarily present necessary topographic mass computations for
a precise geoid-quasigeoid separation. The quasigeoid plays an important role for the unification of regional
height systems.

Determination of the global geoid is strongly connected to the issue of height levels or tide gauges and its
location. Regarding the use of atomic clocks, future investigations have to reveal where to ideally place them
on Earth and how to establish a link to already existing height systems. There seem to be different alternatives.
One could locate them near the sea shores in order to ensure close connections to classical gauges. From an
economical point of view, we may just leave the clocks at the laboratories of the metrological institutes for
taking advantage of existing infrastructure, e.g., established frequency and time comparison instrumentation.
Theoretically, it may be the best choice to set up new reference stations right in the middle of tectonically
stable regions. By doing so, we could possibly reduce irregular disturbing effects on the clock readings. Other
constraints may stem from time transfer issues like accessibility to glass fiber networks or potential satellite
coverage. Using free air links requires considerations of atmospheric effects, etc.

Today, the geoid is determined either by space geodetic techniques, more precisely satellite gravity missions, or
classical leveling, and their combination. On a global scale, consistency could be achieved on the decimeter level
only, which is not accurate enough for a unified world height system. Ongoing gravity field space missions strive
for the centimeter level and a spatial resolution of around 100 kilometers. The geoid is variable in time due to
mass redistributions which are caused by tides (oceanic and solid), mass loading effects, hydrodynamics, plate
tectonics, ice melting, etc. Amplitudes at the centimeter or decimeter level lead to uncontrollable frequency
standard fluctuations in the order of 10−17 to 10−18. These gravitational effects themselves do change time.
Consequently, the question of the practical realization of a reference time and reference clock arises. If multiple
reference clocks are very far apart, then potential changes due to variable solar influence (caused by Earth’s
rotation about its axis, thus leading to variations in the clocks’ relative positions w.r.t. the Sun’s gravitatio-
nal potential) become significant and have to be accounted for. This would require extended time series of
measurements and therefore long-stable atomic clocks.
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26 The improvement of gravity field determination techniques

The determination of Earth’s gravity field is a major issue in geodesy. Classical determinations comprise different
sources of data which have to be combined (Fecher [178]). The merger of a satellite-derived geopotential models
with gravity information available from the ground is discussed in Rapp/Pavlis [443]. For details on classical
relations between reference surfaces, vertical datum, geoid, and spherical harmonic coefficients we refer to the
literature (e.g. Rapp [444], Rummel/Teunissen [462]). A thorough introduction to potential theory can be
found in Kellogg [272], and there exist specialized textbooks on potential theory in relation to geophysical
applications (e.g. Blakely [50]). In the past, gravity and gravity gradient measurements were obtained solely
either by earthbound classical gravimetry (e.g. Niebauer et al. [390]) or dedicated satellite gravity missions. The
combination of gravity and altimetry mission results may also benefit from advanced atomic clock operations.

Proposals for future missions suggest novel metrology system detectors for gravity field determination, e.g., laser
interferometer (Sheard et al. [502]) for a GRACE follow-on concept (Dehne et al. [127]). One goal of dedicated
satellite missions is to accurately determine also the time rate of change of the spherical harmonic coefficients
(Wahr [568]). Earth’s gravity field is subject to change in time due to various reasons (Peters [414], [415],
Kusche [305]). Growing demands in spatial and temporal resolution require innovative mission concepts for
an improved gravity field determination. Several approaches, e.g., using optical techniques for both, SST and
gradiometer test mass observations (Brieden et al. [68]), or alternative constellation scenarios and its implications
(Elsaka/Kusche [171]) have been investigated in theory and by numerical simulations (Raimondo et al. [442]).

27 Further potential applications of highly precise atomic clocks

Atomic clocks may also be used for the comparison and the alignment of reference systems. The unification
of different positioning and timing systems based on different satellite constellations would be supported. The
same holds true for the unification of geometric (GNSS) and gravimetric (optical clocks) positioning. Precise
positioning of spacecraft is of growing importance, e.g., in formation flying.

The timing aspect itself is another important issue. Accurate clocks in Earth orbit may provide a lasting and
reliable global time scale which could be used, for instance, to monitor existing GNSS time signals. GNSS would
be designed in a new way, based upon two-way connections. This allows for the elimination of the first order
Doppler effects and enables real-time frequency dissemination. The annoying estimation of clock parameters
and ambiguities would become unnecessary.

Precise timing is essential for Earth measurement techniques like reflectometry, radio occultations, scattero-
metry, atmospheric and ocean sounding. Popular research topics on climate change (e.g., separation of mass
portions and volume portions in sea level changes), the atmosphere (e.g., atmospheric remote sensing by signal
detection using zero differences), or oceanography (e.g. sea level heights, dynamic ocean topography, tsunami
early warning systems) offer plenty of potential applications. The system as a whole is highly complex (e.g. Ca-
zenave/Llovel [94]). Sea level changes result as a sum of many different causes, e.g., driven by tides, irregular
Earth rotation, or meteorological fluctuations, and so on. Seasonal variations may contribute up to tens of
centimeters. Over decades changes on the order of a few decimeters are possible. Eddies can spark off variations
on the meter level. Additionally, large scale hydrodynamics (e.g. ocean currents) also changes the sea level on
the order of one to two meters. Regarding climate research as a major GGOS application, atomic clocks may
become a valuable tool for the separation of those geophysical effects.

Space geodetic techniques like Very Long Baseline Interferometry (VLBI) or Satellite Laser Ranging (SLR)
are based on the precise determination of the signals’ time of arrival, time delays, or travel times. Improved
start/stop detection relies on better clocks. Using better clocks one could switch from relative to absolute epoch
allocation and possibly decorrelate geometrically, atmospherically, and instrumentally induced time delays.

Furthermore, present time scale realizations at the ground stations are no better than on the 100ns-level. So far,
time scale synchronization between stations is done via GNSS. A closer tie of temporal and spatial referencing is
highly desirable for existing and upcoming space geodetic techniques, e.g., a substantial gain in precision could
make it feasible to perform VLBI also with solar system sources instead of only with quasars, or space based
VLBI in addition to ground based interferometry. Time and frequency transfer in GNSS operations may even
become precise enough to determine water vapour or higher order ionospheric effects.

Obviously, Earth system research in total with all its differential or time delay techniques would benefit from
more accurate clock readings. Besides potential, i.e. height, measurements and positioning, the determination
of the rotational behavior of a massive body (e.g. Earth) remains a major task in geodesy. Comparing the
possible use of atom interferometers against customary laser technology shows that there is still lot of room for
improvements regarding large ring lasers (Stedman et al. [520]). Besides space geodetic techniques, ring laser
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gyroscopes are currently being used to detect variations in Earth’s rotation (Schreiber et al. [486]). Appropriate
atomic clock networks could be another alternative device to sense rotation.
A general advantage of the chronometric approach is the fact, that we do not necessarily rely on available line
of sights. This may be of great benefit if we think of underwater or tunnel applications.
In the long term, the sensitivity of clocks will probably reach a level where very moderate velocities become
detectable using the relativistic/gravitational Doppler effect. In this case a lot more applications (e.g. monitoring
of plate tectonics) come in reach.

28 The relativistic approach in satellite orbit calculation
In addition to the above mentioned examples of Earth measurements, relativistic effects are routinely to be
applied in satellite geodesy (Müller et al. 2008), and especially in satellite orbit calculations (Hugentobler [253]).
Combrinck [106] provides an overview of (general) relativistic effects that are essential for selected space geodetic
techniques, e.g., for GNSS like GPS (Ashby [21]) or gravity field space missions like GRACE (Larson et al. [322]).
The relativistic equations of motion of an artificial Earth orbiting satellite, e.g. the relativistic Schwarzschild
problem, can be solved by various methods comprising different sets of orbital elements. In practice, dealing
with real orbital data most likely leads to several metrics that have to be involved in the formulation of the
whole motion problem. In this respect, Georgevic/Anderson [207] provide advantageous relationships between
osculating elements for the general relativistic Schwarzschild problem. The relativistic N-body problem was
first treated in the late 1930’s (e.g. Einstein et al. [164], Eddington/Clark [152]).
In general, there are different ways to solve the relativistic two body problem (Kopejkin et al. [299]), e.g., by
Fourier series expansion (Broucke [69]). For approaches that require the Hamiltonian of the system in post-
Newtonian approximation, Schäfer [468] provides the 2PN-Hamiltonian, whereas the 3PN-Hamiltonian is given
in Damour et al. [119]. Details on the solution in context of the PPN theory are given in Soffel et al. [508].
So far, applications of the relativistic two body problem are mainly discussed in astronomy, e.g., for the study
of compact binary star systems. The Lagrangian up to third post-Newtonian order (Blanchet [52]) can be used
to push the approximation level to a higher order. One needs to have a very precise two body solution at hand
before observational data can be surveyed for very week relativistic effects like the predicted gravitational waves
(Blanchet [53]). By increasing the degree of freedom, Barker/O’Connell [31] discuss various precession effects
within the two body problem from a Lagrangian point of view in consideration of a possible spin of both bodies
and an additional quadrupole moment of the primary body.
Deep space navigation of interplanetary spacecraft by means of precise clock readings in a changing gravitational
potential is just another conceivable space geodetic application.
Present space missions comprising highly precise atomic clocks mostly still focus on relativity tests. The ACES
mission (Švehla [534]) shall demonstrate the potential of relativistic geodesy by performing ground-to-space
clock comparisons. Two frequency standards will be attached to the ISS, a laser cooled cesium atomic clock
and a hydrogen maser. The time transfer is based on a stable microwave link. Another task of ACES is to
provide a precise orbit determination for the ISS. Based on ACES technology, upgraded frequency standards
will be used in the Space-Time Explorer and Quantum Equivalence Principle Space Test (STE-QUEST) mission
(Cacciapuoti [81]). The earthbound orbit will be highly elliptical in order to gain differences in potential and
velocity values along the trajectory as large as possible. This leads to easier testable relativistic effects. Remark:
the principle idea for the determination of the gravitational redshift by means of an Earth orbiting satellite
already came up in the early 1970’s (Kleppner et al. [283]).
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Einstein stressed the equivalence of all reference systems. Physical laws should be expressed by equations that
describe geometrical entities and relations independent of the reference system. They should be invariant with
respect to coordinate transformations and with respect to the curvature of space-time. Physical laws must
reflect the invariant properties of space-time geometry. This can be achieved by the use of tensor relations.
As we have learned from Einstein and others, there exist very strong ties between (differential) geometry and
relativity. The index notation is an indispensable feature in the theory of relativity. Therefore, it is no surprise
that tensor calculus is also of advantage in differential geometry (Eisenhart [167]) or linear algebra. One of the
main advantages is the fact that resulting formulas will hold for any number of dimensions. The well-established
theory of surfaces can readily be extended to space or even space-time, and possibly beyond, e.g. for an extended
phase space. Applications comprise ellipsoidal geometry, differential geometry of the gravity field, the theory of
refraction, or the connection of relativistic and quantum mechanical aspects. One of the first attempts to fully
exploit the potential of this new approach to geodesy was done by Marussi [348].
In order to employ the general relativistic approach, one has to extend the classical concepts of differential geo-
metry. Geodesists are very familiar with the generalization of flat Euclidean geometry to the curved Riemannian
geometry of (two-dimensional) surfaces with its extrinsic notion of curvature, as well as with Newtonian physics.
However, its restrictions to invariant time intervals and invariant space intervals (implying the existence of an
absolute simultaneity) are not compatible with the precision level of atomic clock observations. Instead, we
have to apply the (special) relativistic concept of invariant space-time intervals ds, the study of which enables
the derivation of the space-time’s structure. Special relativity is understandable as a theory of flat Lorentzian
geometry, where we still fix the geometry of space-time in advance. Likewise to classical differential geometry,
we can generalize to a curved Lorentzian geometry, where the geometry of space-time dynamically evolves. This,
in combination with the equivalence principle, is the fundamental idea of general relativity. It finally leads to
the dynamical evolution equation for the metric, i.e., Einstein’s equation. In comparison to classical differential
geometry, one generalizes the Riemannian geometry to non-positive definite metrics, which leads to a purely
intrinsic notion of curvature and the existence of null-vectors (non-zero vectors with zero-„length“).
This chapter is not intended to substitute for the reading of detailed textbooks on relativity and/or differential
geometry. Following Wald [569] a precise mathematical introduction to the mathematical framework of relativity
requires a somewhat laborious step-wise derivation of several notions and definitions. In this paragraph we
shortly recapitulate the main steps that will be outlined in more detail within the preceding sections.
One usually starts with the precise notion of a set of points that constitutes space-time by the notion of a
manifold, still without any metrical or other structure. Then, the notion of a tangent vector has to be introduced,
which can be done in several (more or less intuitive and direct) ways, e.g., via a directional derivative operator
(acting on functions). The following step, the definition of tensors of arbitrary rank, in general relativity differs
from the usual procedure that relies on the existence of a positive definite inner product and the expression of
tensor components in an orthonormal basis. Instead, within the theory of relativity it is essential to make no
assumption on the inner product in advance, i.e., the role of the space-time metric is completely explicit, it acts
as the key unknown variable to be solved for. Next one defines a dual vector space from a given finite-dimensional
vector space, the latter being a tangent space at a point of space-time. In general relativity, space-time does
not have the structure of a vector space, and coordinates are merely labels of events in that space-time. Now
one should introduce a tensor over an arbitrary vector space, and study basic operations that can be performed
on tensors (contraction, taking outer products). A metric on a vector space is defined as a special type of
tensors. If it is positive-definite, it describes ordinary curved geometries (Riemannian metric). In mixed cases
(e.g., negative-definite on a one-dimensional subspace and positive-definite on the orthogonal complement of
this subspace), it describes general relativity’s curved space-time (Lorentzian metric) via the inner product of
tangent vectors. The space-time metric, at a later stage, will be used for the determination of elapsed proper
time along a time-like curve.
Different tensor notations do exist, here we will mostly follow the traditional index notation, acknowledging
that this approach to a certain extent veils the true nature of a tensor but allows for easier handling in practice.
Furthermore, one has to define a tensor field and introduce a notion of its differentiation. This is a subtle task,
because we could define the derivative in various ways, e.g., via a notion of parallel transport of vectors along
a curve. Consequently, one can then define a geodesic as a curve whose tangent is parallel transported. One
adds some structure to the tensor field by imposing an additional requirement in stipulating that the derivative
of the metric shall be zero. This step introduces the concept of a co-variant derivative. Analogically with
Riemannian geometry (where geodesics can be considered as curves of extreme length with respect to variations
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whilst keeping its endpoints fixed), in Lorentzian geometry time-like geodesics can be characterized as a curve
that extremizes the elapsed proper time along the curve.
Finally, curvature can be defined in different but equivalent ways. Curvature is (Wald [569])

- the failure of successive co-variant derivatives on tensor fields to commute,

- the failure of parallel transport of a vector around a closed curve to return the vector to its original value,

- the failure of initially parallel and nearby geodesics to remain parallel.

We will mathematically describe curvature via the Riemann curvature tensor. Aiming at a geodetic exploitation
of clock readings and its comparisons (via signal transmission or clock transport), it is essential to determine
time-like and null geodesics in space-time, respectively. The former represent possible paths of freely falling
particles (to study the motion of observers, clocks, celestial bodies, etc.), whereas the latter represent possible
paths of light rays (to study the travel of signals, bending of light, etc.). The determination process basically
involves the solution of the respective geodesic equations.
Remark: again, an essential feature of general relativity is the non-existence of any non-dynamical background
structure of space-time. Therefore one should theoretically use a completely coordinate independent way for
its formulation. On the other hand, this text first and foremost aims at a geodetic readership. Herein we will
intentionally get (slightly) off the before-mentioned strict formal mathematical path. Instead, we will introduce
coordinates at the outset and mostly work with components of tensors in coordinate bases, define differentiation
of tensors via the introduction of the Christoffel symbol, and use these to set up the Riemann curvature tensor.
The first half of this chapter introduces the basic relativistic framework along the lines of differential geometry
concepts, following a few standard texts, e.g. Moritz/Hofmann-Wellenhof [369]. The second half accentuates
those parts that are of importance for relativistic geodesy, especially various formulations of the gravity potential.
A subsequent chapter exemplarily focusses on the chronometric leveling idea.

29 Introduction of fundamental relations

29.1 Equation of a geodesic
One and the same geometric vector may look algebraically different, depending on the chosen coordinate system.
In opposition to algebraic vectors (i.e. n-tuples of numbers), geometric vectors (i.e. arrows in n-dimensional
space) are independent of the coordinate system. Index notation as a powerful alternative to symbolic vector
or matrix notation becomes especially useful, if affine coordinates are involved. Base vectors bi are no longer
unit vectors and/or are not all mutually orthogonal, i.e. bi · bj ̸= δij .
In this case we may describe a certain vector x either by covariant components xi or contravariant components xi.
The former are obtained by orthogonal projection of the geometric vector onto the base vectors, whereas the
latter are obtained by parallel projection. Introducing Einstein’s summation convention as well as covariant
(bi) and contravariant (bi) base vectors, we get specifically for the three-dimensional space

b1 =
b2 × b3

(b1,b2,b3)
, b2 =

b3 × b1

(b1,b2,b3)
, b3 =

b1 × b2

(b1,b2,b3)
(7)

with
bi · bj = bi · bj =: gji = δji = δij = δij , (8)

where [gji ] = [δji ] (fundamental mixed tensor) is identical to the identity matrix. The vector x can be written as

x = xibi = xib
i. (9)

The distinction between covariant and contravariant indices is not needed, if only rectilinear coordinates are
being used. The main advantage of tensors however is the fact, that they represent geometrically invariant
objects. Again, all formulas will equally work for any n-dimensional space and for any choice of curvilinear
coordinates. Index notation is superior in geometrical interpretation, whereas in many cases, symbolic notation
is easier to use in calculations. Almost any textbook on relativity and gravitation (e.g. Ohanian [395]) comprises
at least some kind of introduction to tensor calculus for non-orthonormal coordinate systems (i.e. Ricci calculus).
Here we only highlight those relationships that affect our purpose of calculations in relativistic geodesy.
To start with, we mention the fundamental covariant and contravariant metric tensor, given by

gij = bi · bj , gij = bi · bj ⇒
[
gij
]
=
[
gij
]−1

. (10)
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They can be used to switch between covariant and contravariant vectors by lowering or raising of indices
(remember Einstein’s summation convention):

bi = gijb
j , bi = gijbj , xi = gijx

j , xi = gijxj . (11)

In special relativity we have constant metric tensors which is equivalent to a linear space. Non-linearity would
refer to the coordinate system (curvilinear coordinates) and/or to the space itself (curved space). In ordinary
differential geometry (position vector of a surface x = x(u1, u2) with partials xui := dx/dui), the (covariant)
metric tensor is directly related to the Gaussian fundamental quantities of first kind E, F , G via (Heck [237])

[
gij
]
=

[
E F
F G

]
with

E(u1, u2) := xu1 · xu1 ,

F (u1, u2) := xu1 · xu2 ,

G(u1, u2) := xu2 · xu2 ,

and ds2= E(du1)2+ 2F du1 du2+G(du2)2. (12)

Tensor algebra deals with the calculus of constant metric tensors in Euclidean spaces using linear coordina-
tes (cartesian or affine), whereas tensor analysis in applied for the calculus of variable tensors in curvilinear
coordinates (Moritz/Hofmann-Wellenhof [369]).
In geodesy, the concept of a geodesic as the straightest possible connecting curve between two points is essential
(e.g. Mai [338]). The fundamental parameter arc length s of a curve is chosen as the independent variable.
Alternatively, this metric quantity can be related to other (physical) quantities, e.g. time.
In rectangular coordinates, the differential equation of a straight line is given by

d2x

ds2
= 0, (13)

because the solution is simply x = c1s+ c0, where c0 and c1 are the constants of integration. As in the case of
ordinary differential geometry, the position vector x of a (surface) curve is given by some (surface) parameters ui.
In general, these parameters may represent curvilinear coordinates. By making use of the tensor calculus, we
are no longer restricted to the treatment of surfaces (i = 1, 2) but can deal with spaces (i = 1, 2, 3), space-times
(i = 0, 1, 2, 3) or any n-dimensional space in general. The generalized final form of a straight line (geodesic) in
curvilinear coordinates results in

d2ui

ds2
+ Γi

jk

duj

ds

duk

ds
= 0, (14)

where the indices i, j and k all have the same range. For simplicity reasons one introduces so-called Christoffel
symbols of first

Γkij :=
1

2

(
∂gik
∂uj

+
∂gjk
∂ui

− ∂gij
∂uk

)
(15)

and second
Γl
ij := glkΓkij (16)

kind. Instead of using Γ, several other notations exist. Due to the commutativity of the inner product of the
base vectors, the metric tensors and hence the Christoffel symbols show some properties of symmetry. Therefore,
in practice, we do not have to explicitly calculate its values for all possible n3 index combinations.
The generalized square of the line element takes the form (with gij = gij(u

i))

ds2 = gij du
iduj . (17)

Equation (14) can be regarded as a special case of

dnui

dsn
+ Γi

jkl···
duj

ds

duk

ds

dul

ds
· · ·︸ ︷︷ ︸

n factors

= 0 , (18)

where the unit tangent vectors dui/ds =: ξi could be used to define Riemannian coordinates via xi := ξis,
acting as cartesian coordinates in a tangent plane.
Higher Christoffel symbols are defined as

Γi
jkl :=

∂Γi
jk

∂ul
, Γi

jklm :=
∂Γi

jkl

∂um
, etc. (19)

and the general solution can be expressed as a series expansion

ui =

∞∑
n=0

1

n!

(
dnui

dsn

)∣∣∣∣
0

sn= ui
∣∣∣∣
0

+ ξi
∣∣∣∣
0

s− 1

2
Γi
jkξ

jξk
∣∣∣∣
0

s2 − 1

6
Γi
jklξ

jξkξl
∣∣∣∣
0

s3 − 1

24
Γi
jklmξ

jξkξlξm
∣∣∣∣
0

s4 · · · . (20)
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In mathematical geodesy, the explicit differential equations for a geodesic in case of n = 2 (geodesics as surface
curves) and orthogonal coordinates are very well-known. They are related to so-called main geodetic problems,
namely the direct (initial value problem) and inverse, i.e. indirect (boundary value problem) (e.g. Heck [237]).
There exist several techniques to solve these, e.g., via a Hamiltonian approach (Mai [338]). For our purposes
equation (14) is of great importance, because it also represents the trajectory of a point in the gravitationally
curved space-time of general relativity.
Another way to look at equation (14) is the idea of parallel transport of a contravariant vector vi, i.e. v = vibi,
which means that its direction and length do not change during transport. Ordinary differentiation of v yields

dv =
(
dvi + Γi

jkv
jduk

)
bi =: Dvibi (21)

and therefore, in case of a parallel transport,

dv = 0 ⇒ dvi + Γi
jkv

jduk = 0. (22)

Dividing the whole equation by ds and regarding as a special case the tangent vector of the curve, namely
vi = dui/ds, we end up with (14) again. Thus, along a geodesic (generalized straight line), the tangent vector
of the curve has constant direction. In other words, geodesics are autoparallel.
The intrinsic differential of a contravariant vector

Dvi =

(
∂vi

∂uk
+ Γi

jkv
j

)
duk (23)

can be used to further shorten the general differential equation of a geodesic. Using the intrinsic derivative
D/Ds in combination with the ordinary derivative d/ds one gets equivalently to equation (14) (Stephani [523])

D

Ds

dui

ds
= 0. (24)

29.2 Riemannian curvature tensor
The first fundamental form (17) in differential geometry reflects the intrinsic geometry of a surface. It is governed
by the metric tensor gij . To describe its curvature in the embedding space we apply the second fundamental
form by making use of the Gaussian fundamental quantities of second kind, forming the tensor Lij via[

Lij

]
=

[
L M
M N

]
, (25)

where Lij can be calculated using the surface normal vector z by

Lij =
∂2x

∂ui∂uj
· z. (26)

All important theorems of differential geometry can be generalized using the index notation. As an example, the
curvature of a normal section κn = 1/R with R being the radius of curvature, as usually given by the theorem
of Euler, now reads

1

R
= Lij

dui

ds

duj

ds
=
Lij du

iduj

gij duiduj
. (27)

The parallel transport in space, as defined by equation (22), has to be supplemented with a subsequent normal
projection onto the tangent plane if a (curved) surface is involved. As a consequence, the parallel transport of
a surface vector becomes path dependent and is directly related to the curvature of the surface. Generalizing
this result to higher dimensions, we are thus able to set up experiments where we can sense and quantify the
curvature of space-time by geodetic measurements.
The condition for parallel transport based upon the intrinsic differential can be stated for both, the contravariant
and covariant representation of a vector:

Dvi = dvi + Γi
jkv

jduk = 0,

Dvj = dvj − Γi
jkvidu

k = 0.
(28)

The magnitude of the deviations caused by path dependent parallel transportation of a (surface) vector is
a direct measure of the (surface) curvature and can be expressed by the Riemannian curvature tensor. Its
contravariant form is defined as

Ri
jkl :=

∂Γi
jl

∂uk
−
∂Γi

jk

∂ul
+ Γm

jl Γ
i
mk − Γm

jkΓ
i
ml , (29)
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where all indices have the same range from 1 to n (overall dimension). If time is involved, the range may also
start from 0. Regarding 4-dimensional space-time, traditionally we use i, j, k, l,m = 0, 1, 2, 3. The covariant
form follows from

Rijkl = gimR
m
jkl . (30)

If all components of the Riemannian curvature tensor are zero, we face a totally flat n-dimensional space,
otherwise it may be curved to some extent. Depending on the actual non-zero components, the curvature can
also be related to a sub-space only. Having four indices, this tensor consists of n4 components (total number of
index combinations). But, due to symmetry reasons, only n2(n2 − 1)/12 of them are potentially non-zero and
independent of each other. So, in case of a 2-dimensional surface, a 3-dimensional space, or a 4-dimensional
space-time, we just need to calculate 1, 6, or 20 different components, respectively, to judge about its intrinsic
geometrical properties. In compliance with ordinary differential geometry, we get a single intrinsic measure
for the curvature of a surface. The well-known Gaussian curvature K is directly related to the Riemannian
curvature tensor and the determinant of the metric tensor |gij | via

K =
R1212

|gij |
, (31)

and the famous theorema egregium of Gauss can formally be derived by the index notation approach. The
Riemannian curvature may be regarded as a generalization of the Gaussian curvature to higher dimensions.
As a remark, sometimes the determination of the metric from a given curvature is called the inverse problem
(Quevedo [439]). The same paper also discusses different ideas to measure the curvature of space-time.

Geodesics are fundamental not only in Gauss’ theory of surfaces or within Riemannian geometry but also
in Einstein’s theory of relativity. As Moritz/Hofmann-Wellenhof [369] remark, depending on an intrinsic or
extrinsic point of view, they represent autoparallel curves, shortest lines, straightest lines, and the force free
motion on a (n-dimensional) surface, or they can be related to a higher-dimensional embedding space. In the
theory of surfaces, the shortest possible definition of a geodesic is given by

n = ± z , (32)

where n is the principal normal of the curve, z still denotes the surface normal. Equation (32) directly leads to
the defining ordinary differential equation(s) of a geodesic (either second order or multiple first order equations).
These are especially suited for the solution of the direct main geodetic problem (Heck [237]). Alternatively, a
geodesic may also be characterized by a partial differential equation for the distance, namely the eiconal equation
(Eisenhart [167]), which fits very well to the treatment of the inverse main geodetic problem (Heck [237]):

gij
∂s

∂ui
∂s

∂uj
= 1. (33)

29.3 Eötvös tensor and Marussi tensor

In physical geodesy, the occurrence of non-linear three-dimensional coordinates is quite common. As spatial
parameters we could choose astronomical latitude Φ and longitude Λ, and Earth’s gravity potential value W as
kind of natural coordinates, such that

u1 = Φ, u2 = Λ, u3 =W. (34)

Relativistic geodesy is strongly related to the differential geometry of gravity fields. The second partial deriva-
tives of the gravity potential form a (symmetric) gravity gradient tensor, known as Eötvös tensor

E :=

 W11 W12 W13

W21 W22 W23

W31 W32 W33

 =

 Wxx Wxy Wxz

Wyx Wyy Wyz

Wzx Wzy Wzz

 with Wij =
∂2W

∂xi∂xj
, (35)

whose elements can be measured by different means, e.g. gradiometry. As a remark, Torge [550] uses a slightly
different sign convention, where g = ∇W = (Wx,Wy,−Wz)

T such that the Eötvös tensor results as

∇g =

 Wxx Wxy −Wxz

Wyx Wyy −Wyz

−Wzx −Wzy −Wzz

. (36)
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The cartesian coordinates x1 = x, x2 = y, x3 = z form an orthogonal coordinate system originating at the
(surface) point P of interest as defined by ΦP , ΛP , WP , and axes pointing towards north, east, and vertical
upwards.
Eötvös’ tensor Wij bears physical dimension 1/T 2. In order to relate gravity with geometry, one introduces
the Marussi tensor wij , which bears geometrical dimension 1/L, by [wij ] = −[Wij ]/g (Marussi [348]), where
g represents the acceleration due to gravity. The individual components of the Marussi tensor can now be
interpreted in terms of curvature and torsion. Introducing orthometric height Ho, ∂/∂z ≡ ∂/∂Ho and g = −Wz

one gets

[wij ] =
1

g

 −Wxx −Wxy ∂g/∂x

−Wyx −Wyy ∂g/∂y

∂g/∂x ∂g/∂y ∂g/∂z

 =

 κnx τx κx

τx κny κy

κx κy w33

. (37)

The quantities κnx , κny (normal curvature in meridional and parallel direction) and τx (geodesic torsion in
meridional direction) indicate the curvature of the level surface at P . Furthermore, κx and κy represent the
curvature of the plumb line through P . Taking the vertical gradients of our natural coordinates, we find

w13 = κx =
1

g

∂g

∂x
=

∂Φ

∂Ho
,

w23 = κy =
1

g

∂g

∂y
= cosΦ

∂Λ

∂Ho
,

w33 =
1

g

∂g

∂z
=

1

g

∂g

∂Ho
.

(38)

The mean curvature of the level surface can be calculated as H = (κnx + κny )/2. The tensor Lij allows us to
express mean curvatureH = tr[Lij ]/2 and Gaussian curvature K = det[Lij ] directly. Constituting the upper left
part of the Marussi tensor, Lij also relates to the so-called Dupin indicatrix (Moritz/Hofmann-Wellenhof [369])
and connects genuine geodetic concepts (e.g. direction of north) with pure surface theory concepts via Pizzetti’s
theorem. Denoting the angle from the northern direction towards the meridional curve by m, and towards the
parallel curve by p, respectively, we get

tanm = −w12

w22
, tan p = −w11

w12
. (39)

Taking the gradient of g with respect to the local cartesian coordinate system, and performing a subsequent
comparison of coefficients will eventually lead to the most important formula of intrinsic geodesy for prac-
tical applications, namely Bruns’ equation. It relates the geodetically important vertical gradient of gravity
∂g/∂Ho to genuine geometrical (mean curvature H), physical (gravitational constant G, mass density ρ), and
astronomical quantities (rotational velocity of Earth ω⊕):

∂g

∂Ho
= −2gH + 4πGρ− 2ω2

⊕. (40)

In classical geodesy, (orthometric) heights are determined indirectly by measurements of changes in gravity,
i.e. potential differences (δW = −g δHo). The gravity vector itself results as the gradient of the gravity
potential, i.e. g = gradW . Relativistic geodesy enables us to determine (orthometric) heights directly by
measuring the local properties of space-time using highly precise atomic clocks. The Marussi tensor is strongly
related to the metric tensor(s). Inversely, we can express the metric tensor(s) in terms of the wij . In (the easier)
case of the contravariant metric tensor one finds

[
gij
]
=



w2
11 + w2

12 + w2
13

(
w11 + w22

)
w12 + w13w23

cosΦ
−g w13(

w11 + w22

)
w12 + w13w23

cosΦ

w2
12 + w2

22 + w2
23

cos2 Φ
−g w23

cosΦ

−g w13 −g w23

cosΦ
g2


. (41)

For practical computations, one could set up an auxiliary matrix

M :=

w11 w12 w13

w21 w22 w23

0 0 1

, (42)
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perform the matrix multiplication

MMT =

 w2
11 + w2

12 + w2
13 w11w21 + w12w22 + w13w23 w13

w11w21 + w12w22 + w13w23 w2
21 + w2

22 + w2
23 w23

w13 w23 1

, (43)

and alter the resulting matrix by the following rules. Multiply every element

- with index 2 occurring k times by the factor (1/ cosΦ)k,

- with index 3 occurring k times by the factor (−g)k.

29.4 Ricci curvature tensor and fundamental metric tensors
The remarks following (30) imply that we may compress the information content of the Riemannian curvature
tensor to some extent. It is common practice to contract the Riemannian curvature tensor (rank 4) into the
Ricci (curvature) tensor (rank 2) via

Rjk = gilRijkl. (44)

As before, this new curvature tensor is symmetric. Out of its n2 components (total number of index combina-
tions) only n(n+ 1)/2 have to be calculated. For a curved space Rjk ̸= 0 has to be true for at least one index
combination, otherwise it is a flat space.
We have already noticed, that only for n = 2 a single quantity (Gaussian curvature K) is sufficient to charac-
terize the (in general, position dependent) curvature. For higher dimensions curvature will become direction
dependent, too. An n-dimensional surface element can be regarded as being part of a generalized tangent
plane, which is spanned by two generalized vectors ξi and ηi. Their directions depend on the direction of the
generalized surface normal zi. As a consequence, we can generalize Gaussian curvature to be applicable to any
dimension n and call it Riemannian curvature. This direction dependent quantity (likewise denoted by K)

K =
Rijklξ

iηjξkηl(
gikgjl − gilgjk

)
ξiηjξkηl

(45)

is identical to the Gaussian curvature in case of n = 2, and thus Rij = −Kgij . In three-dimensional space
equation (45) simplifies to K = Rijz

izj . In any case we recognize a close relation between the Ricci curvature
tensor and the fundamental metric tensor(s).

29.5 Line element and special relativity
In special relativity the metric tensor reduces to a constant diagonal matrix [ηij ] = diag[−1, 1, 1, 1], such that

ds2 = ηij dxidxj = −dx20 + dx21 + dx22 + dx23. (46)

To avoid an unnecessarily messy notation, we temporarily switch to lower indices when writing formulas expli-
citly. The actual definition of the fundamental tensor ηij is not fixed. There exist other forms of the metric that
are equally valid. For the illustration of the line elements’ invariance with respect to a Lorentz transformation
one usually introduces

ds2 = dx2 + dy2 + dz2 − c2dt2. (47)

With settings x = x1, y = x2, z = x3, ct = x0 equation (46) follows immediately. This line element does not
describe a pure Euclidean metric but rather a pseudo-Euclidean metric, because a Lorentz transformation leaves
a hyperbola invariant instead of a circle. This has to be kept in mind when interpreting properties of world lines
within Minkowski diagrams. From a theoretical point of view, it may be of advantage to introduce a Euclidean
line element in a four-dimensional Minkowski space. This can be achieved by substituting x4 = ix0 = ict such
that dx24 = −dx20, resulting in the Minkowski form

ds2 = dx21 + dx22 + dx23 + dx24. (48)

Thus we can apply the Pythagorean theorem in four-dimensional space, but only at the price of dealing with a
non-physical imaginary time. Nonetheless, depending on the problem at hand, one may easily switch from one
interpretation or form to another.
Due to the variable sign of ds2, three different kinds of a world line (of an hypothetical observer), i.e., geodesics in
four-dimensional space time, do exist. Differences occur depending on the observers’ velocity. Light propagates
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along geodesics where ds2 = 0, therefore we name it light-like geodesics. On the contrary, in the state of rest in
time, we have dt = 0 and the line element reduces to an ordinary spatial line element ds2 = dx2 +dy2 +dz2 =
dr2 > 0. Representing a straight line in R3, we call it a space-like geodesic. In special relativity, the straight
world line of an observer at rest with respect to some inertial system represents a time-like geodesic with ds2 < 0.
In order to avoid an imaginary quantity, a purely formal factor i (imaginary unit) is being introduced together
with the observers’ real-valued proper time τ via

ds =: icdτ (49)

such that ds2 = −c2dτ2.

29.6 Proper time and generalized Doppler effect
Denoting the spatial velocity of the observer as v = dr/dt we find a fundamental relationship between coordinate
time t and proper time τ , as given by an atomic clock:

−c2dτ2 =
(
v2 − c2

)
dt2 ⇒ dτ =

√
1−

(v
c

)2
dt. (50)

This equation indicates that a time dilatation will occur whenever an object, e.g. an atomic clock, is moving
with respect to the t-related coordinate system, i.e., the rest frame (x, y, z; t). Because of v < c, always dτ < dt.
Time dilatation can be regarded as a relativistic transversal Doppler effect (Moritz/Hofmann-Wellenhof [369]).
Even in the absence of the classical Doppler effect at the point of closest approach, emitted signals will undergo
a frequency shift simply due to the transmitters’ relative velocity with respect to a receiving observer at rest.
Integrating equation (50), the emitted frequency fE = 1/∆τ and received frequency fR = 1/∆t are related by

fR =

√
1−

(v
c

)2
fE ⇒ fR < fE . (51)

There is another relativistic phenomenon that has to be taken into account, namely a longitudinal Doppler effect.
It also includes the classical Doppler effect. The physical reason for the longitudinal effect is the limited travel
speed of the signal. It takes some travel time (travel distance r divided by travel speed c) to reach the observer.
For a moving source, the distance becomes time and velocity dependent, i.e. r = vt, such that the reception
time will be tR = t + r/c = t + vt/c = (1 + v/c)t. This relation is equally valid for some corresponding time
intervals ∆tR and ∆t. The latter can now be replaced by ∆τ , leading to

∆tR =
(
1 +

v

c

) 1√
1−

(v
c

)2 ∆τ =
c+ v√
c2 − v2

∆τ. (52)

Replacing time intervals by its respective frequencies yields

fR =

√√√√√1− v

c

1 +
v

c

fE . (53)

In order to unveil the classical Doppler effect, one may replace the square root by a product of binomial series
expansions (for the nominator and denominator) and neglect terms of higher order, i.e., starting with O

(
(v/c2)

)
.

As a result
fR ≈

(
1− v

c

)
fE , (54)

which indeed is the well-known classical expression. In order to get a general expression for the Doppler effect,
we treat the radial component of the observers’ velocity vr separately by replacing v in the nominator of (52)
by vr. Finally we get

fR =

√
1−

(v
c

)2
1 +

vr
c

fE . (55)

This formula includes the transversal effect (vr = 0) as a special case.
Not only the (classical) Doppler effect but other (classical) effects of signal propagation too have to be reformu-
lated in the framework of special relativity. As an example, the final expressions for the aberration of light show
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some modifications due to special properties in the addition of velocities. Applying the Lorentz transformati-
on to the relation between the observers’ moving frame and the signal source’s rest frame alters the classical
expression for the aberration angle from tanϑ = v/c (e.g. Seidelmann/Fukushima [495], Schödlbauer [485]) to

tanϑ =
v

c

√
1−

(v
c

)2 . (56)

29.7 Gravity and space-time metric
Adding the concept of force, we pass from special to general relativity. Inertial systems, as applied in special
relativity, are systems, where strictly no forces do exist at all. In order to account for gravity, we distinguish
real forces of attraction (gravitation) and apparent forces, e.g., due to (Earth) rotation, i.e. centrifugal forces.
Following the weak equivalence principle (gravitational mass equals inertial mass), one can equate Newton’s
law of gravitation and his law of inertia to set up the classical equation of motion of a particle in case of its
gravitational attraction by a primary body. Doing so, we equate the concepts of force and acceleration, knowing
that gravitational attraction, rotation and acceleration are of different physical origin. The gravitational field,
as described by the gravitational potential V , can be removed (locally) by a change of the coordinate system.
Considering (plane and uniform) rotations, e.g., with angular velocity ω in the xy-plane, the metric in an inertial
frame (x, y, z, t) changes from

ds2 = dx2 + dy2 + dz2 − c2dt
2 (57)

due to the simple transformation
x = cos(ωt)x − sin(ωt) y

y = sin(ωt)x + cos(ωt) y

z = z

t = t

(58)

into a metric with respect to a non-inertial frame (x, y, z, t)

ds2 = dx2 + dy2 + dz2 − c2

(
1−

ω2
(
x2 + y2

)
c2

)
dt2 − 2ωydxdt− 2ωxdydt. (59)

The metric tensor now reads (reintroducing index notation again, i.e. x0 = ct, x1 = x, x2 = y, x3 = z)

[gij ] =



−

(
1−

ω2
(
x21 + x22

)
c2

)
−ω
c
x2 +

ω

c
x1 0

−ω
c
x2 1 0 0

+
ω

c
x1 0 1 0

0 0 0 1


. (60)

The centrifugal potential is well-known to be Φ = ω2(x21 + x22)/2. Thus, the component g00 can be written as
g00 = −1 + 2Φ/c2. The components of the Coriolis force are related to the entries g0i (i = 1, 2, 3) of the metric
tensor. Remark: if the rotation is non-uniform then the metric tensor becomes explicitly time-dependent too.
In the presence of gravitation, we add the corresponding field V to Φ, and simply replace the centrifugal potential
by the gravity potential W = V + Φ. On the other hand, in the absence of rotation, W = V and the Coriolis
force components of the metric tensor become zero, i.e. g0i = 0 (i = 1, 2, 3). The before mentioned statements
are valid for weak fields, which is practically true in most cases, e.g., within the solar system. In case of strong
fields, e.g., in the neighborhood of ultra-massive bodies like black holes, or for extremely precise applications,
higher order terms had to be factored in any computations, because several effects are interrelated. Earth’s
rotational field is only partially represented by Φ (Moritz/Hofmann-Wellenhof [369]).
Now, V and Φ are already incorporated in the space-time metric and therefore do not explicitly appear as forces
anymore. Rather, the motion of a particle follows a force-free geodesic. The use of the geodesic equation (14)
is the price one has to pay for the use of non-inertial, e.g. rotating Earth-fixed, coordinates. Thus, the straight
line from flat space-time is replaced by a general geodesic in curved space-time. On first sight, it is impossible
to tell, whether a given metric refers to a flat or curved space-time. We can judge about this issue only after
computing the Riemannian curvature tensor which will be related to the second derivatives of V , as we have
seen before.
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The equation of motion in Einstein’s theory of gravitation, where gravitational forces are fictitious just as
inertial forces and can be transformed away, result as an effect of curved space-time. In case of a non-rotating
weak gravitational field it is governed by the metric tensor gij with g00 = −1 + 2V/c2, g0i = 0 and gij = δij for
i = 1, 2, 3. For a detailed analysis of this case we only need the equations (14), (15), (16), (29), (30), and (44).
To start with the Christoffel symbols Γkij , only the Γ00j , Γk00 and Γ0i0 are potentially non-zero, because all
gij other than g00 are constants. We find

Γ00j =
1

2

∂g00
∂xj

, Γk00 = −1

2

∂g00
∂xk

, Γ0i0 =
1

2

∂g00
∂xi

, (61)

and subsequently

Γ0
0j = Γ0

j0 = − 1

c2
∂V

∂xj
, Γk

00 = − 1

c2
∂V

∂xk
. (62)

To illustrate the validity of Einstein’s geometrical interpretation of gravity we look at the geodesic equations
for the spatial components (i = 1, 2, 3):

d2xi
ds2

+ Γi
00

(
dx0
ds

)2
= 0 . (63)

For v ≪ c equations (49) and (50) yield ds ≈ icdt = idx0, such that

dx0
ds

≈ 1

i
⇒

(
dx0
ds

)2
≈ −1,

d2x0
ds2

≈ 0 . (64)

Therefore
d2xi

−c2dt2
− 1

c2
∂V

∂xi
(−1) ≈ 0 (65)

and after multiplication with −c2
d2xi
dt2

≈ ∂V

∂xi
⇔ ẍ ≈ gradV, (66)

which shows, that the classical equation of motion is equivalent to a Newtonian approximation of the more
general relativistic equation of motion. As Moritz/Hofmann-Wellenhof [369] put it: the equation of a geodesic
in a gravitationally curved space-time gives the Newtonian equation of motion in a „real“ gravitational field. It
is also possible to derive the Poisson equation ∆V = −4πGρ or the Laplace equation ∆V = 0 from Einstein’s
theory by means of the Riemannian curvature tensor. In order to do so, it is of advantage to switch to the
explicit notation of time, namely x0 = ct, such that

ds2 = −
(
1− 2V

c2

)
c2dt2 + dx21 + dx22 + dx23 (67)

and thus
g00 = −

(
1− 2V

c2

)
⇒ g00 ≈ −

(
1 +

2V

c2

)
. (68)

In search for the classical expression we may neglect terms of order O(c−2). Consequently, we solely retain
Christoffel symbols Γk

00 = −∂V/∂xk ̸= 0 for k = 1, 2, 3, and the Riemannian curvature tensor, i.e., its only
non-zero components, becomes

Ri
0k0 = −Ri

00k =
∂Γi

00

∂xk
= − ∂2V

∂xi∂xk
. (69)

It already shows the fundamental importance of the 2nd order gravitational gradients. Measuring it by means
of gradiometric techniques, in accordance with Marussi’s theory of intrinsic geometry of the gravity field, is
equivalent to measure the elements of the curvature tensor. The geometry of Earth’s gravity field is completely
determined by those 2nd order gradients, whereas the complete determination of space-time curvature requires
the additional consideration of the influence of a centrifugal potential.
Equation (67) already implies that three-dimensional space remains flat, i.e. Euclidean, if only gravitational
attraction is considered. The occurrence of the zeros in the sub-indices within (69) indicates the evolvement
of time. Because all other components are zero, especially the pure spatial ones, the curvature of space-time
is due to the time element and can fully be described by the Eötvös tensor of gravity gradients. Inclusion
of gravitation changes the formerly flat space-time of special relativity into a curved space-time of general
relativity. Gravitation, and hence gravity, is characterized by a non-vanishing curvature tensor. Conversely,
fictitious gravitational forces are regarded as being caused by curvilinear coordinates in a curved space-time,
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where curvature is induced by the presence of mass. In this sense, a satellite orbit in space can be viewed as a
projected geodesic from space-time into space.

Fictitious inertial forces are caused by accelerated/rotating systems in a flat space-time. Like gravitation, they
correspond to curvilinear coordinate systems, but only gravitation leads to a non-vanishing curvature tensor. If
it vanishes, we are sure about the absence of gravitational forces. In this case one can introduce a truly inertial
coordinate system or use an accelerated and rotating coordinate system, Ri

jkl will remain zero for all index
combinations. If Ri

jkl ̸= 0 then it is not possible to set up a globally valid inertial system, and gravitation could
only be removed locally.

29.8 Einstein field equations

Neglecting the centrifugal potential, the Eötvös tensor will be denoted by Vij = ∂2V/∂xi∂xj . In empty space,
i.e. ρ = 0, the Laplace equation ∆V = 0 can be written with use of the contracted Eötvös tensor as Vii = 0.
Alternatively, following the above statements, we can replace the Eötvös tensor by the Riemannian curvature
tensor. Again applying the contraction of a tensor we get the Ricci curvature tensor Rjk = Ri

jki and get
Einstein’s equivalent to the Laplace equation. In empty space we have

Rjk = 0, (70)

which can even be contracted further, leading to the Ricci scalar R, by

gjkRjk = Rj
j =: R. (71)

Using these relations one can introduce the Einstein tensor

Gij := Rij − 1
2Rgij (72)

to finally set up the Einstein field equations (assuming the cosmological constant as being zero) (Stephani [524])

Gij = κTij = Rij − 1
2Rgij , (73)

where κ is a constant of nature (κ = 8πG/c4≈ 2.077 · 10−43s2kg−1m−1 in case of Newtonian approximation),
sometimes called Einsteinian [gravitational] constant, and Tij represents the so-called energy-momentum tensor
(Heitz/Stöcker-Meier [240]). The latter characterizes matter and generalizes the mass density ρ.

One distinguishes ρ with respect to a co-moving frame from its invariant counterpart in a barycentric frame,
i.e. the baryon mass density (also known as Fock density of matter) ρ∗ =

√
−g u0ρ with g = det(gij), which

satisfies a so-called equation of continuity (Kopejkin et al. [299])

cρ∗,0 +
(
ρ∗vi

)
i
= 0, (74)

where vi = cui/u0 is the three-dimensional velocity of matter. The original continuity equation itself is a direct
consequence of the stated conservation of the energy-momentum tensor, i.e. ∇νT

µν = 0, such that

∇α

(
ρuα

)
=

1√
−g

∂α
(
ρ
√
g uα

)
= 0. (75)

The energy-momentum tensor comprises mechanical, thermal, and electromagnetic parts, each of which can be
separated further into different subparts. For example, the mechanical part contains kinematical, potential, and
viscous terms (Börger [62]).

Introducing an internal energy per unit mass u one can relate T00 to the energy density, namely T00 = µc2,
where µ = ρ(1 + u/c2) represents the mass density. Einstein’s equations generalize the Poisson equation of the
Newtonian theory of gravity and the metric tensor extends the notion of the Newtonian gravitational potential
(Kopejkin et al. [299]).

Einstein’s equation for empty space results in

Gij = 0 = Rij − 1
2Rgij , (76)

which is satisfied if R = 0 and Rij = 0 is simultaneously true. Rij = 0 means that space-time is as flat as
possible. It does not imply Ri

jkl = 0, as already mentioned before, which is a much stronger condition and
stands for complete flatness in all of the n dimensions.
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Equivalently, by applying the variational principle, i.e. by taking the variational derivative of a problem-
dependent given Lagrangian L based action equation (Hehl [238]) with respect to the metric tensor and its spatial
derivatives (Kopejkin et al. [299]), one could write, again using a contracted quantity T = T i

i , i.e. T = gijTij ,

Rij = κ
(
Tij − 1

2Tgij
)
. (77)

Following the laws of conservation, the energy-momentum tensor of matter itself satisfies a variational equation:

1

2

√
−g Tij =

∂
(√

−gL
)

∂gij
− ∂

∂xk
∂
(√

−gL
)

∂
(
∂kgij

) . (78)

As a remark, in case of alternative (more general) theories of gravitation, e.g. in scalar-tensor theories comprising
the additional action of a scalar field (leading to an eleventh field equation), one may apply a conformal
transformation of the metric tensor and introduce a corresponding conformal Ricci tensor to finally get field
equations in a form that is as simple as possible. Einstein’s theory of general relativity (d’Inverno [112]) can
be regarded as a special (limiting) case with constant and thus unobserved scalar field. Scalar field modes are
related, for instance, to the alleged phenomenon of gravitational wave emission.
The metric tensor gij can be regarded as a solution of Einstein’s field equations with imposed boundary and
initial conditions. The usage of boundary conditions is physically motivated by the application of the principle
of causality (strong, i.e. practical, version: similar causes lead to similar effects versus weak, i.e. impractical,
version: equal causes lead to equal effects) to gravitational fields. The gij is used in real measurements of time
intervals and spatial distances and therefore called a physical metric, whereas a conformal metric is called the
Einstein-frame metric which may be more convenient for doing calculations (Kopejkin et al. [299]). Nevertheless
one usually prefers the (non-conformal) metric tensor for the sake of an easier meaningful physical interpretation
of final results.
Applying our simple weak gravitational field example from above leads after contraction of (69) to

Ri
00i = R00 =

∂2V

∂xi∂xi
= ∆V ⇒ ∆V = 0 ⇔ R00 = 0, (79)

or, in case of a non-empty space, we get the classical Newtonian field equation

∆V = R00 = −4πGρ, (80)

again showing the relevance of the pure time component of the curvature tensor. The Laplace operator in
Euclidean space is defined as ∆ := δij∂i∂j for i, j = 1, 2, 3. For details on the derivation of the Poisson
equation see for instance Stephani [524]. To summarize, the Newtonian theory of gravitation can be viewed as a
special case or limit of Einstein’s theory of gravitation, namely for weak gravitational fields (V ≪ c2) and slow
motions (v2 ≪ c2). Remark: instead of a post-Newtonian approximation scheme in case of slow motions one
should apply a so-called post-Minkowskian approximation scheme (Kopejkin et al. [299]) if fast moving bodies
are involved. Rendall [452] provides some details on the justification and breakdown of (higher order) post-
Newtonian approximations which relates to the (non-)existence of several interdependent small parameters. The
post-Minkowskian scheme solves the field equations in terms of retarded gravitational potentials (the retardation
effect simply shows up due to the limited speed of propagation of gravity).

29.9 Special case: Schwarzschild metric and resulting testable relativistic effects
The Schwarzschild metric is one of the few special cases for which an exact solution of Einstein’s field equations
has been found (Stephani et al. [525]), even though many exact solutions (Bičák [43]) exist for the special case
Tij = 0. In order to illustrate and get used to the calculation of a specific Riemann tensor and its implications,
as an aside, we explicitly provide the intermediate steps in the following.
Representing the spherically symmetric gravitational attraction of a point mass M it is given in usual spherical
coordinates (r, θ, λ; t) by (Schwarzschild [493], Schneider [481])

ds2 = −
(
1− 2m

r

)
c2dt2 +

(
1− 2m

r

)−1

dr2 + r2dθ2 + r2 sin2 θdλ2 (81)

with m = GM/c2 having the character of a mass, but physical dimension of a length. Introducing an auxiliary
quantity µ(r) := 1− 2m/r leads to the only non-zero Christoffel symbols

Γ001 = Γ010 = −Γ100 =
1

2

∂µ

∂r
, Γ111 =

1

2µ2c2
∂µ

∂r
, Γ122 = −Γ212 = −Γ221 =

r

c2
,

Γ133 = −Γ313 = −Γ331 =
r sin2 θ

c2
, Γ233 = −Γ323 = −Γ332 =

r sin θ cos θ

c2

(82)
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and

Γ0
01 = Γ0

10 = −Γ1
11 =

1

2µ

∂µ

∂r
, Γ1

00 =
µc2

2

∂µ

∂r
, Γ1

22 = −µr ,Γ1
33 = −µr sin2 θ ,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1

r
, Γ2

33 = − sin θ cos θ , Γ3
23 = Γ3

32 = cot θ .

(83)

The following non-zero components of the Riemannian curvature tensor do exist

R1
001 = −2R2

002 = −2R3
003 =

2mc2

r3

(
1− 2m

r

)
= −R1

010 = 2R2
020 = 2R3

030 ,

R0
110 = −2R2

112 = −2R3
113 = − 2m

r2(r − 2m)
= −R0

101 = 2R2
121 = 2R3

131 ,

−2R0
220 = −2R1

221 = R3
223 = −2m

r
= 2R0

202 = 2R1
212 = −R3

232 ,

−2R0
330 = −2R1

331 = R2
332 = −2m

r
sin2 θ = 2R0

303 = 2R1
313 = −R2

323 .

(84)

Contraction yields only zero-valued components of the Ricci curvature tensor:

Rk
00k = R00 = 0 , Rk

11k = R11 = 0 , Rk
22k = R22 = 0 , Rk

33k = R33 = 0 . (85)

Setting up the individual geodesic equations we find a coupled system of four ordinary differential equations of
second order

d2r

dτ2
− m

µr2

(
dr

dτ

)2
− µr

(
dθ

dτ

)2
− µr sin2 θ

(
dλ

dτ

)2
+
µmc2

r2

(
dt

dτ

)2
= 0 ,

d2θ

dτ2
+

2

r

dr

dτ

dθ

dτ
− sin θ cos θ

(
dλ

dτ

)2
= 0 ,

d2λ

dτ2
+ 2

(
1

r

dr

dτ
+ cot θ

dθ

dτ

)
dλ

dτ
= 0 ,

d2t

dτ2
+

2m

µr2
dr

dτ

dt

dτ
= 0 .

(86)

where the already given setting s = icτ ⇒ ds2 = −c2dτ2 has been applied. Several books discuss the solution
of this equation system (e.g. Moritz/Hofmann-Wellenhof [369], Schneider [481]). The derivation yields several
integrals of motion which are well-known from classical celestial mechanics, i.e. the solution of the idealized
two-body problem (Kepler problem). The final solution will take a similar form. Besides the integrals of motion
we seek to find a final expression for the evolution of the radial distance r of the secondary body (e.g. a satellite)
with respect to the primary body (e.g. the Earth).
The classical solution could be regarded as an approximate solution to the relativistic problem, thus

r0 =
p

1 + e cos f
, (87)

being the general equation of a conic section with the shape governed by the numerical eccentricity e, the size
defined by semi-major axis a or semi-latus rectum p = a(1− e2), and the position of the secondary body within
its orbit given by the true anomaly f . The resulting relativistic orbit equation shows a slight but essential
modification:

r =
p

1 + e cos

((
1− 3GM

c2p

)
λ

) . (88)

Considering point masses we may choose without loss of generality any orbital plane, e.g. the one identical
to Earth’s equatorial plane. Therefore, df = dλ and we can use λ as our new independent variable, equally
counting from the periapsis per definition. It is important to note that the period for the relativistic case is
now larger than 2π because

P =
2π

1− 3GM

c2p

≈ 2π

(
1 +

3GM

c2p

)
, (89)

where we neglect terms of higher order (O(c−4)). Obviously, there is a relativistic shift of the periapsis:

∆λ = P − 2π ≈ 6πGM

c2a(1− e2)
. (90)
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This shift had to be superimposed on the classical precessional effects which come into play when considering
a non-spherical primary body. The relativistic precession already applies to point masses. From equation (90)
follows ∆λ ∝ 1/a. The closer the secondary body to the primary body, the more significant the relativistic shift
of the periapsis becomes. Exemplarily applying this formula to planetary motion within the solar system, we
recognize that planet Mercury will exhibit the largest relativistic deviation from its classical solution due to the
mass of the Sun, i.e., its influence on the curvature of space-time. Taking nominal values for the astronomical
quantities of Mercury (aM , eM ), the Sun (M⊙), and for the fundamental quantities (c, G) (Cox [108]) one gets

∆λM ≈ 0.103516′′
1

rev
≈ 42.98′′

1

century
. (91)

Of course, one rather uses the more precise gravitational parameter of the Sun µ⊙ = GM⊙ instead of the
product of the single quantities G and M⊙. This is a tiny but significant effect that, in principle, has to be
accounted for also in highly precise satellite orbit calculations or ephemeris computations.
Another relativistic effect, besides the gravitational time delay (relativistically generalized Doppler effect) or
relativistic correction of the precessional motion in the two-body problem, is the deflection or bending of an
electromagnetic signal, e.g. a light ray, due to gravitational attraction. Remark: for highly precise applications
it is no longer sufficient to treat the deflecting body as a mass monopole (Zschocke/Klioner [614]).
For a light-like geodesic with ds2 = 0 we also have dτ = 0, which has to be accounted for in the equations (86).
Again solving the resulting system approximatively, one gets an expression for the minimal distance D of a light
ray passing a massive body (Moritz/Hofmann-Wellenhof [369])

D = r cosλ+
GM

c2D

(
r + r sin2 λ

)
. (92)

An auxiliary transformation from polar coordinates (r, λ) into cartesian coordinates (x, y), where the x-axis
originates at the center of the massive body and points towards the point of closest approach of the signal,
enables the straightforward derivation of a formula for the small bending angle δ of the light ray. It finally reads

tan δ ≈ δ =
4GM

c2D
. (93)

As an example, we consider a light ray passing the Sun right at its rim. With values D = R⊙ ≈ 695000 km and
GM⊙ = 132712440018 km3/s2 one gets δ = 1.753′′, which was verified by astronomers through observations.
Einstein’s theory of gravitation also predicts several additional bending effects that are of second order caused
by higher order post-Newtonian terms of the spherical solar field (≈ 11 · 10−6 ′′), solar angular momentum
(≈ 0.7 · 10−6 ′′), Sun’s oblateness (≈ 0.2 · 10−6 ′′) (Soffel [511]), or even Jupiter’s influence (Soffel et al. [512]).
The Schwarzschild metric (taking only mass into account) provides a first mathematical basis for studies of
black hole phenomena. If additional properties (besides mass) shall be considered, one has to apply another
metric, e.g., the Kerr(-Newman) metric which comprises mass and angular momentum (and electric charge).

29.10 Inertial systems and general relativity

In relativistic geodesy, we are more interested in the impact of special and general relativistic effects on genuine
geodetic tasks and observations. In geodetic practice one often introduces the concept of (quasi-)inertial systems.
Even in the context of general relativity those systems can be established locally to a very good approximation
by neglecting terms of order O(c−2). Nonetheless there exist differential, i.e. tidal, gravitational forces in
such a system, because it is not possible to exactly remove or transform away gravitational effects other than
in a point-wise manner. These tidal forces correspond to the above mentioned 2nd order gradients, i.e. the
Riemannian curvature tensor, and are measurable in satellite geodesy by space-spaced gradiometers whereas
on-board gravimeters would indicate zero measurements for gravity itself due to point-wise weightlessness.
In opposition to the rigorous sense of Einstein’s theory there do exist privileged systems in practice which
are approximatively inertial, because space-time is asymptotically flat. The adjective „inertial“ may refer to
translation and/or rotation. Inertial systems are always at the state of uniform motion with respect to each
other which implies relative motion on a straight line with constant velocity. In geodesy, most three-dimensional
cartesian coordinate systems, e.g. ECI (Earth Centered Inertial), are inertial only with respect to rotation. Its
orientation remains fixed against the positions of remote stars but the origin moves non-uniformly or arbitrarily
in space. The description of the non-uniform motion of a quasi-inertial system makes use of the concept of Fermi
propagation, i.e. the Fermi-Walker transport (Stephani [523]). It is a generalization of the parallel transport,
because it is valid for the transport of a vector (or tetrad-system) along an arbitrary curve, whereas the usual
parallel transport is limited to world lines that are geodesics.
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An observer moving along an arbitrary world line xi(τ) can regard himself being at rest and his spatial axes as
non-rotating, and hence inertial, if he chooses an appropriate local coordinate system accounting for the possible
action of forces. He will carry along a tetrad system such that any transported vector shows constant orientation
with respect to the tangent vector dxi/dτ of his path, because being at rest means that the four-velocity vi

does not possess any non-zero spatial component. This observer would regard all vectors as constant that do
not change with respect to his moving local coordinate system. Comprising the intrinsic differential (23), the
Fermi-Walker transport of a (contravariant) vector λi is defined by the Fermi differential

Dλi = λj
(
Dvj vi −Dvi vj

)
= λjDv

j vi −Dvi λjv
j . (94)

In case of a four-vector λi with zero-valued time component and a corresponding four-velocity vj with zero-
valued spatial components, which means resting in a local system without velocity in rest space, we have
λjv

j = 0 and therefore
Dλi

Ds
= λj

Dvj

Ds
vi. (95)

The change Dλi/Ds has the direction vi and thus no component in the rest space of the observer. Any change
occurs purely in time, and λi remains unchanged in space. Therefore, Fermi propagation is closely related
to spatial parallelism, but small precessional effects may exist (Moritz/Hofmann-Wellenhof [369]). Combining
three mutually orthogonal vectors that conjointly are subject to Fermi-Walker transportation, one can practically
realize an approximative quasi-inertial system in the framework of general relativity. As an example, consider
the gyroscopes within inertial navigation systems. As we have seen, (quasi-)inertial systems may be defined
either inertially, e.g. by means of gyroscopic motion, or astronomically, e.g. by means of light ray propagation.
This was the reason for Weyl [577] to introduce the terms inertial compass and stellar compass, respectively.

29.11 Geodesic deviation equation
Relativistic geodesy, comprising the use of precise atomic clocks, relies on the accurate modeling of the gravity
field. Considering the world lines of atomic clocks, i.e. its time-like geodesics in space-time, also requires the
determination of its potential deviations due to tidal forces. We recognized already that this effect is related to
the Riemannian curvature tensor.
Tidal forces acting upon atomic clocks, e.g. located at Earth’s surface, are induced by the gravitational attraction
of disturbing masses (e.g. Sun, Moon, and planets). Each mass will contribute to the resulting space-time
curvature and thus to the overall gravitational potential value at the actual position of the observer (atomic
clock). An earthbound clock is co-moving with Earth’s center of mass, both being neighboring points in space-
time. To a good approximation the paths of these points can be regarded as geodesics that will deviate due to
the existence of tidal forces. With ξi(τ) denoting the deviation vector we set up the general geodesic equation
(14) for the two world lines xi(τ) and xi(τ) + ξi(τ) separately. The second equation contains a term Γi

jk(x+ ξ)
which can be rewritten by expanding the Christoffel symbol in a Taylor series about the point x with deviation
ξ and neglecting higher order terms. Subtracting both geodesic equations results in a fundamental equation of
the geodesic deviation, again deploying the intrinsic derivation for the sake of simplification (Nieto et al. [391]):

D2ξi

Dτ2
+Ri

jkl ξ
k dx

j

dτ

dxl

dτ
= 0 . (96)

To find a Newtonian approximation for this geodesic deviation, a couple of further simplifying assumptions are
made. First we introduce a quasi-inertial system by using free-fall coordinates. This results in Γi

jk = 0, and
hence the intrinsic 2nd derivative will be equal to the ordinary 2nd derivative. Then, in order to get proper
relations for the orders of magnitudes of the metric tensor components, we reintroduce t as time coordinate
such that x0 = t and therefore d/dτ = d/dt. Furthermore, we assume deviations only in space, i.e. ξ0 = 0, and
remember equation (69) which means that the only non-zero components of the Riemannian curvature tensor
to be accounted for can be written as Ri

00j = ∂2V/∂xi∂xj . One finally gets the geodesic deviation in Newtonian
approximation as (Moritz/Hofmann-Wellenhof [369])

d2ξi
dt2

=
∂2V

∂xi∂xj
ξj , (97)

where we switched from upper to lower indices. This result is in full agreement with classical mechanics; we
accordingly apply Newton’s law d2xi/dt

2 = ∂V/∂xi to the neighboring point. Thus, we replace the argument
by xi + ξi and expand the right hand side, i.e. ∂V/∂(xi + ξi), in a Taylor series again. Neglecting higher order
terms results in equation (97), the left hand side of which can be interpreted as a differential acceleration and
the right hand side as a tidal, i.e. differential, force acting upon a unit mass, respectively.
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Exemplarily, we treat the Moon as a disturbing point mass with the lunar potential simply given by Vl = GMl/rl,
where rl is the radial distance from this point mass position. The 1st and 2nd order partial differentials are

∂Vl
∂xi

= −GMl
xi
r3l
,

∂2Vl
∂xi∂xj

= −GMl

r3l δij − 3xir
2
l

xj
rl

r6l
. (98)

From the second equation in (98) we deduce the validity of Laplace’s equation

∂2Vl
∂x2i

= −GMl
r2l − 3x2i

r5l
⇒ ∆Vl = 0 (99)

and find an explicit expression for the tidal force

fi :=
∂2Vl
∂xi∂xj

ξj = −GMl

(
ξi
r3l

− 3xixjξj
r5l

)
. (100)

The latter formula may be simplified by the choice of a special (orthogonal) coordinate system. In order to do
so, we place its origin at Earth’s center of mass, and let the x3-axis point towards the lunar point mass, to get
the position vector of the Moon as xl = (0, 0, rl)

T .
Now introduce spherical coordinates such that a position on the surface of the Earth (assumed to be spherical
with radius R⊕), e.g. an atomic clock observation site A representing the neighboring point, is defined by

ξA =

 ξ1

ξ2

ξ3

 =

R⊕ sin θA cosλA

R⊕ sin θA sinλA

R⊕ cos θA

, (101)

where the angles do not refer to the usual geographical coordinate system. Instead, polar distance θ here refers
to the direction towards the Moon, and λ acts as a longitude-like angle within the plane perpendicular to that
direction.
Introducing the above mentioned special choice for the lunar position vector into equation (100) yields the
components of the tidal force acting upon A

fA =

 f1

f2

f3

 =
GMl

r3l

 −ξ1
−ξ2
2ξ3

, (102)

which can be rewritten as the gradient of the following potential function:

V =
GMl

r3l

(
− 1

2ξ
2
1 − 1

2ξ
2
2 + ξ23

)
⇒ fA =

 ∂V/∂f1

∂V/∂f2

∂V/∂f3

. (103)

Replacing the cartesian components ξi by means of equation (101) leads to

V =
GMl

rl

(
R⊕

rl

)2
P2(cos θA) , (104)

where P2(cos θ) = (−1+3 cos2 θ)/2 is a Legendre polynomial of degree 2. Equation (104) represents the classical
tidal potential formula of a disturbing (point) mass. Analogous expressions have to be set up for any other
significant third bodies, depending on the required accuracy, e.g., the Sun and major planets may be included.
As we have seen, tidal forces even remain in a free falling system. They act as residual forces that can be
recognized in weightlessness via detection of differential changes by means of gradiometer measurements or
atomic clock readings. As indicated before, gravitational forces only can be removed point-wise by an opposite
inertial acceleration field. At that very point we get Γi

jk = 0 but in the neighborhood we have Γi
jk ̸= 0, though

these non-zero values may be very small. In principle, we should be able to determine the gravitational field,
i.e. the Riemannian curvature tensor, by highly precise geodetic measurements of the (changing) length of the
deviation vector ξi and/or by clock reading comparisons. For example, Shirokov [504] applied the geodesic
deviation equation (96) to the Schwarzschild metric in order to set up a gradiometer scenario comprising two
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neighboring test masses orbiting a black hole. In (physical) geodesy, the geodesic deviation equation is the
theoretical basis of relativistic gradiometry (Paik [400]).
Gravimeters only measure the resulting acceleration (gravitational plus inertial). Its decomposition requires
the knowledge of more than a single force vector and is only possible due to the different structure of the
gravitational and inertial field. For an extended and rigid moving system the (inertial) acceleration may be
identical at any single point, but gravitation will differ slightly from point to point because of the existence of
those tidal forces.

29.12 Separability of different kinds of forces
Moritz/Hofmann-Wellenhof [369] outline the general separability of gravitational and inertial effects in the
framework of classical mechanics by comparing the Newtonian equations of motion with respect to an inertial
system (denoted by capital letters)

Ẍi = Fi (105)

against corresponding equations with respect to a moving system (denoted by small letters)

ẍi = fi + 2ωij ẋj +
(
ω̇ij + ωikωjk

)
xj − b̈i, (106)

where both, translational motion and rotational motion is accounted for and may be time dependent. In index
notation, the former is represented by a displacement vector Bi, whereas the latter is described by a rotation
matrix aij , such that the transformation reads

Xi = aijxj +Bi. (107)

The skew-symmetric matrix ωjk = −ωkj in equation (106) stems from products ωjk = aikȧij and ωkj = ȧikaij ,
because d(aikaij)/dt = δ̇kj = 0. Its non-diagonal elements define the instantaneous axis of rotation, expressed
by the vector ω = (ω23, ω31, ω12)

T .
The equation of motion for the moving system can also be brought into factitious Newtonian form by conflating
the right hand side of equation (106), such that ẍi = f∗i . The total force f∗i will by measured by means of
accelerometry, where fi = ∂V/∂xi is the only gravitational force. All other terms belong to fictitious inertial
forces, distinguishing between Coriolis force 2ωij ẋj , centrifugal force ωikωjkxj , Euler force ω̇ijxj , and Einstein
force −b̈i (Lanczos [317]). The Euler force accounts for a possibly non-uniform rotation.
The separability of different kinds of forces becomes obvious, if we resort the individual forces and take the first
few gradients. Considering the case of a co-moving clock (ẋj = 0) we can neglect the Coriolis force and get the
1st order gradient

∂V

∂xi
= f∗i − (ω̇ij + ωikωjk

)
xj + b̈i. (108)

The next higher order gradients follow as

∂2V

∂xi∂xj
=
∂f∗i
∂xj

− (ω̇ij + ωikωjk

)
,

∂3V

∂xi∂xj∂xk
=

∂f∗i
∂xj∂xk

. (109)

Now, depending on the stabilization of our measuring platform, certain gradients will be affected by inertial
effects or not. If our instrument is inertially stabilized, i.e., its xi-axes defining the moving system are per-
manently kept parallel to the inertial Xi-axes, there are no rotations. That means ω = 0 or ωij = 0, and
therefore the corresponding 1st order gradient ∂V/∂xi = f∗i + b̈i still contains some linear acceleration (inertial
effect), but the 2nd order gradient ∂2V/∂xi∂xj = ∂f∗i /∂xj is already unaffected by any inertial effects. Thus,
given the ideal case were we assume the absence of instrumental misalignments or any other systematic errors,
integrated measurements of the 2nd order gradients by means of an inertially stabilized gradiometer will allow us
to separate the individual kinds or forces. The purely gravitational Riemannian curvature tensor is not affected
by inertial fields. Regarding higher order gradients, all inertial effects vanish completely whether inertial stabi-
lization is used or not. On the other hand, by combination of gravimetry and gradiometry, separation becomes
possible also for the 1st order gradients. These can either be regarded as a vector of gravitational force (in case
of airborne or space-borne instrumentation) or as a vector of gravity (in case of ground-based instrumentation
that is affected by the centrifugal potential, too). Combining a tensor gradiometer that measures the full Eötvös
tensor Vij = ∂2V/∂xi∂xj and a vector accelerometer that simultaneously measures the total force vector f∗i ,
one can finally set up a second order linear differential equation for the velocity ḃi of the moving system

d2ḃi
dt2

− Vij ḃj + ḟ∗i = 0, (110)
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where the variable coefficients Vij and ḟ∗i are given by simultaneous gradiometer and accelerometer measure-
ments. Equation (110) may be solved by numerical integration. Knowing the inertial acceleration or Einstein
force b̈i which is unaffected by gravitational effects, we can calculate the 1st order gradient Vi = ∂V/∂xi = f∗i +b̈i.
Integration of the velocity ḃi yields the position vector bi of the moving system with respect to the (quasi-)inertial
system.

29.13 Various relativistic effects

In order to account for the capabilities of available highly precise measurement techniques, e.g. (optical) atomic
clock readings, one has to consider additional small relativistic effects that might be significant, namely gravi-
tomagnetic effects. These are induced by non-zero components g0i of the metric tensor, forming a space-vector
m := (g01, g02, g03)

T . Whereas in Newtonian mechanics the gravitational field of a sphere does not depend on
its rotational status, in general relativity there exist a dragging effect which means that a rotating sphere would
drag the surrounding space-time. Of course, the usual Coriolis force is also characterized by non-zero g0i. This
classical effect can be removed by proper choice of an inertial reference system, but the dragging effect would
remain.

Taking into account higher order relativistic effects, the line element will change from equation (67) to

ds2 =

(
−1 + 2

(
V

c2

)
− 2

(
V

c2

)2)
c2dt2 +

(
1 + 2

(
V

c2

))
dxidxi + 2g0idxicdt. (111)

Moritz/Hofmann-Wellenhof [369] provide the corresponding formula for the more general PPN approximation,
i.e. β, γ ̸= 1.

Earth’s gravitomagnetic field is represented by the vector m⊕ via

m⊕ = −2GM⊕

c3r3
J⊕ × x, (112)

where J⊕ is the Earth’s angular momentum vector per unit mass, which can be approximated by

J⊕ =
I⊕ω⊕

M⊕
≈

 0

0

0.33R2
⊕ ω⊕

=: J⊕

 0

0

1

. (113)

The use of a factor 0.33 leads to a better approximation for the moment of inertia I⊕ of the Earth (approximated
by a sphere of radius R⊕), than the classical formula I = (2/5)Mr2 for a solid sphere.

Gravitomagnetic effects are of gyroscopic nature. Whereas in classical mechanics a rotating gyroscope remains
its orientation when transported parallel to its rotational axis, the theory of general relativity predicts the
existence of small measurable precessional effects (Schröder [487]), primarily the geodetic precession and the
Lense-Thirring precession. Secondary precessional effects as well as spin-curvature coupling effects (Misner et
al. [366]) are neglected here.

We assume parallel propagation without linear acceleration, i.e. a special case of the Fermi-Walker transport. As
a remark, equivalent formulas result from a derivation based on the asymptotic matching technique (Kopejkin
et al. [299]). The spatial angular momentum vector is being used to construct a four-dimensional spin vector Si

in a rest frame. It is a purely space-like vector with zero time component (S0 = 0). A corresponding 4-velocity
vector vi = dxi/dτ = (1, 0, 0, 0)T results for the case of no translational motion in the rest frame. Therefore,
both vectors satisfy the orthogonality condition Siv

i = 0, which is valid not only in the rest frame.

Applying the above mentioned formulas for the parallel transport of contravariant vectors yields the timely
evolution of the spin vector Si = gijSj formally as

dSi

dt
= −Γi

jkS
jvk, (114)

where the tedious task of deriving the Christoffel symbols for the metric (111) arises (Weinberg [573]). We are
mainly interested in the change of the spatial spin axis s, which finally results in a simple precessional motion,
i.e. infinitesimal rotation (Moritz/Hofmann-Wellenhof [369])

ds

dt
= Ω× s, (115)
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governed by the angular velocity vector Ω with

Ω =
3

2c2
v ×∇V⊕ − c

2
∇×m⊕ =: ΩGP +ΩLTP . (116)

The first term on the right hand side, called geodetic precession or de Sitter precession, is caused by the motion
of a gyroscope through a (possibly static) curved space-time. Thus, it would also occur for a point mass or for
a non-rotating sphere and can be written as

ΩGP =
3

2

GM⊕

c2r3
x× v, (117)

where the following approximation has been used:

V⊕ ≈ GM⊕

r
⇒ ∇V⊕ = −GM⊕

r3
x. (118)

The geodetic precession is independent of m, therefore it is not a gravitomagnetic effect.
The second term on the right hand side of equation (116) is called Lense-Thirring (or gravitomagnetic) precession
and expresses the dragging of the surrounding space-time by a rotating mass. It can be written as

ΩLTP = −GM⊕

c2r3

(
J⊕ − 3J⊕ · x

r2
x

)
, (119)

because, using equation (112),

m⊕ = −GM⊕

c3r3

−J⊕x2
+J⊕x1

0

⇒ ∇×m⊕ = rotm⊕ =
2GM⊕

c3r3

(
J⊕ − 3J⊕ · x

r2
x

)
. (120)

In practice, the gravitomagnetic field of several other celestial bodies, e.g. Sun, may become significant. In case
of an Earth orbiting satellite, the geodetic precession due to the Sun’s influence will be superior to the same
effect caused by the Earth. Furthermore, the effect of geodetic precession is by a few orders of magnitude larger
than the effect of Lense-Thirring precession. As mentioned before, there exist minor additional effects, e.g., the
so-called Thomas precession in case of non-zero local acceleration, i.e. if the observer is not in a free fall regime.
To incorporate relativistic precessional effects into the classical equation of motion of an Earth orbiting satellite

r̈+
GM⊕

r3
r = f (121)

one would have to add a force term fΩ = 2Ω× ṙ to the disturbing force f . Details on spin-precessional effects
are provided by Gill et al. [209].

29.14 Proper time and gravitational time delay
Aiming at the geodetic use of atomic clocks we apply the formula for the general proper time element, based
on equations (17) and (49)

dτ2 = − 1

c2
gij dx

idxj . (122)

Explicitly, neglecting higher order terms but allowing for Coriolis force,

dτ2 = −
(
g00 +

v2

c2

)
dt2 − 2

c
dt
(
g01dx+ g02dy + g03dz

)
(123)

with v2dt2 = dx2 + dy2 + dz2.
For clocks at rest at Earth’s surface we have dx,dy, dz = 0 and therefore

dτ2 = −g00dt2 with g00 = −1 + 2

(
W

c2

)
, (124)

because Earth’s rotation transmits to the clock. Thus, the clock is subject to the centrifugal potential Φ, too.
For clocks in motion aboard planes or satellites we have v ̸= 0 but v ≪ c and g0i = 0, because now Earth’s
rotation has no direct effect on the clock. Of course, there exist indirect effects, but approximatively

dτ2 = −
(
g00 +

v2

c2

)
dt2 with g00 = −1 + 2

(
V

c2

)
. (125)
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Most geodetic applications will require differential clock measurements. Considering different earthbound posi-
tions, denoted by a subindex k, one gets

dτk =

√
1− 2Wk

c2
dt. (126)

The definition for coordinate time t provides dtk = dt. Comparing two different positions/clock readings, yields

dτ2
dτ1

=

√√√√√√1− 2W2

c2

1− 2W1

c2

. (127)

Binomial series expansion and neglecting of higher order terms results in

dτ2
dτ1

≈
(
1− W2

c2

)(
1 +

W1

c2

)
= 1 +

W1

c2
− W2

c2
− W1W2

c4
≈ 1 +

W1

c2
− W2

c2
. (128)

In the following we will use
dτ2
dτ1

= 1 +
W1 −W2

c2
=: 1− ∆W

c2
. (129)

(Moritz/Hofmann-Wellenhof [369]) introduce Tk as the periods of the individual clocks’ atomic vibrations in
their respective proper times, such that dτ2/dτ1 = T2/T1. The same periods with respect to coordinate time
are all equal and denoted by T := dtk = dt. Again making use of binomial series expansion, we find

∆T

T
:=

T2
T

− T1
T

=
dτ2
dt

− dτ1
dt

=

√
1− 2W2

c2
−
√

1− 2W1

c2

≈
(
1− W2

c2

)
−
(
1− W1

c2

)
=
W1

c2
− W2

c2
= −∆W

c2
=

dτ2
dτ1

− 1 .

(130)

In order to get a corresponding expression in terms of (proper) frequency with

f =
1

T
⇒ df = − 1

T 2
dT ⇔ Tdf = − 1

T
dT ⇔ df

f
= −dT

T
, (131)

one just has to replace differentials by differences:

∆f

f1
= −∆T

T1
=

∆W

c2
⇔ f2 − f1

f1
=
W2 −W1

c2
. (132)

This simple but very important relation, representing a frequency shift due to gravitation (gravitational time de-
lay) implies that, in principle, classical geodetic leveling techniques are replaceable by frequency measurements.
This frequency shift may be superimposed by other effects, e.g., the Doppler effect that we have discussed be-
fore. Practically, the gravitational frequency shift can be detected in various ways, either directly or indirectly.
Within the more practical part of this work we will provide additional remarks on the sign of the frequency
shift, which might be helpful for comparison with other publications, cf. § 41.

29.15 Superposition and magnitude of individual relativistic effects
The use of accurate time or frequency measurements for the determination of geopotential differences has
already been suggested decades ago, as mentioned in the introductory paragraphs. But only today or at least
in the near future the necessary instrumentarium seems to be in reach in order to achieve an accuracy of
∆f/f = 10−18, which is actually required to determine geopotential differences that relate to height differences
on the demandable cm-level.
In case of a moving clock, remember equation (125), we have

dτ

dt
=

√
1− 2V

c2
− v2

c2
≈ 1− V

c2
− v2

2c2
, (133)

once more applying series expansion and neglecting terms of higher order.
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As with the gravitomagnetic effects, any contributions stemming from different sources can be superimposed.
Depending on the reference for the relative velocity v and the actual source of a gravitational potential, we may
sort the significance of terms based upon its magnitude.
Considering the most important influences due to the Earth and the Sun only, one will find a

- term of order O(10−8) due to Sun’s gravitational potential,
because at Earth’s center of mass V ⊙

Earth’s cm/c
2 = 9.9 · 10−9,

- term of order O(10−9) due to Earth’s gravitational potential,
because at Earth’s surface V ⊕

Earth’s surface/c
2 = 7.0 · 10−10,

- term of order O(10−9) due to Earth’s orbital motion about the Sun,
because for an earthbound clock (vorb

⊕ /c)2/2 = 4.9 · 10−9,

- term of order O(10−12) due to Earth’s rotation,
because for a clock located at Earth’s equator (v⊙⊕/c)

2/2 = 1.2 · 10−12,

if the following approximative formulas and nominal values are being used:

vrot
⊕ = ω⊕a⊕ sin θA with ω⊕ =

2π

86164 s
= 7.292123517 · 10−5 s−1,

a⊕ = 6378.136 km ,

v⊙⊕ =
2πd⊙⊕
P⊙
⊕

with d⊙⊕ = 1AU = 149.598 · 106 km ,

P⊙
⊕ = 365.25d · 86400 s d−1= 31557600 s ,

V ⊕
Earth’s surface =

GM⊕

R⊕
with GM⊕ = µ⊕ = 398600.4415 km3s−2,

R⊕ ≈ a⊕ ,

V ⊙
Earth’s cm =

GM⊙

d⊙⊕
with GM⊙ = µ⊙ = 132712440018 km3s−2.

(134)

In principle, one had to use W⊕
Earth’s surface instead of V ⊕

Earth’s surface. Here we neglected the centrifugal potential,
because its value Φ⊕

Earth’s surface is two orders of magnitude smaller. Even in the most significant (extremal) case
of an equatorial clock site we have

Φ⊕
Earth’s surface =

1
2 ω

2
⊕a

2
⊕ = 0.1 km2s−2 ≪ V ⊕

Earth’s surface = 62.5 km2s−2. (135)

In order to perform time synchronization between portable atomic clocks or to compare clock readings between
remote clock sites, one could relate accumulated infinitesimal proper time intervals with respect to a common
coordinate time t, based on equation (133), i.e.,

t =

∫ (
1 +

V

c2
+

v2

2c2

)
dτ, (136)

resulting from just another series expansion.
As we have seen, relativistic effects directly affect geodetic measurements, either by deflecting the signal’s path
or by shifting the signal’s frequency. The derivation of a final formula for the gravitational time delay is based on
the line element (111) with neglect of all gravitomagnetic effects and other higher order terms. The derivation
can be simplified if we choose the same special cartesian coordinate system that we already used in the discussion
of signal bending, see the remarks following equation (92). Thus, the signal propagates parallel to the y-axis,
i.e. dx, dz = 0, and there remains

ds2 = g00c
2dt2 + g22dy

2 = 0 , (137)

where
g00 = −1 + 2

V

c2
, g22 = 1 + 2

V

c2
with V ≈ GM

r
. (138)

The signal passes the attracting body of mass M at a minimal distance D, such that r =
√
D2 + y2. Solving

equation (137) for t and considering the time interval between two positions A and B along the path yields

∆tAB := tB − tA =
1

c

B∫
A

√
−g22
g00

dy ≈ 1

c

B∫
A

(
1 +

2GM

c2
√
D2 + y2

)
dy (139)
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and finally, setting sAB := yB − yA,

∆tAB =
sAB

c
+ δtAB with δtAB :=

2GM

c3
ln

(
yB +

√
D2 + y2B

yA +
√
D2 + y2A

)
. (140)

The total signal travel time between two points A and B exceeds the classical travel time sAB/c by a relativi-
stically induced gravitational time delay δtAB. The changing path length due to bending is of higher order and
thus can be ignored in this approximative derivation.
Of course, this gravitational time dilation has to be accounted for twice in reflector measurements, e.g., within
radar echo experiments to determine planetary distances or in case of lunar laser ranging. In addition, proper
time corrections have to be applied, as discussed before.
Combination of the general Doppler effect (55) and gravitational time delay (132) results in

fE − fR
fE

=
1

c
vr +

1

c2
(
v2r − 1

2v
2 +WE −WR

)
+O(c−3) , (141)

where the first term on the right hand side represents the classical Doppler effect. Lower indices E and R denote
emission and reception, respectively. The emitted frequency will change into a received frequency, depending on
the relative velocity v between the sender and the receiver, where vr is the radial component of v. Additionally,
the total frequency shift depends on the difference in the gravity potential values of both sites. The smallness
of all relativistic effects (excluding the longitudinal Doppler effect) allows its linear superposition.

30 Essential expressions for relativistic geodesy

30.1 Specific relations between coordinate time and proper time
Relating the individual readings of distributed atomic clocks to an uniformly valid coordinate time t comprises
a series of time scale transformations (Soffel [511]). Each single atomic clock gives an individual proper time τk.
Theoretically, atomic time may differ from proper time because we are not using ideal free falling clocks.
Kopejkin et al. [299] pick up the issue of a photon clock. To a first approximation, we will assume earthbound
individual clocks that are all spatially fixed with respect to each other. In practice, there exist tectonic motions,
tidal effects etc., of course. Even disregarding any mutual movements, clock readings will differ not only due to
systematic or stochastic errors, but because of our known simple relation (129).
Nowadays, the influence of different clock site heights, i.e. different potential values Wk, is being accounted for
by relating all individual clock readings to a common equipotential surface, e.g. the traditional geoid. From
∆W ≈ g∆Ho we can infer that a difference in (orthometric) height of 1 cm leads to an effect on the order of
O(10−18) on the ratio dτ2/dτ1, because g∆Ho/c2 ≈ 9.81 · 0.01/2997924582 = 1.09 · 10−18. Upcoming optical
clocks will probably be sensitive enough to this accuracy level. The reduction of all individual measurements
requires a priori knowledge of the potential values Wk and W0, the latter being the geoidal geopotential value
(Burša et al. [78], [79]). Remaining differences are then being averaged out by a standardized procedure
(McCarthy/Seidelmann [351]) to form an uniformly valid international atomic time scale (TAI). Subsequent
transformations via terrestrial dynamical time (TDT) and barycentric dynamical time (TDB) finally result in
a (barycentric) coordinate time t (Seidelmann [496], McCarthy/Seidelmann [351]).
In relativistic geodesy we want to solve the inverse problem. One simply regards the relation between τ and t
as an observation equation that allows us to solve for a variety of unknowns. To take full advantage of all the
different effects that influence atomic clock readings, we can supplement the right hand side of a suitably chosen
transformation equation t− τ by a consistent collection of individual terms that we know are significant to our
actual instrumentation. Depending on the final quantities we are aiming at, the observation equation might be
expressed in various equivalent forms. For instance, one may focus on earthbound unknowns, e.g. observation
site positioning, and therefore emphasize the dependency on the Earth centered Earth fixed (ECEF) position
of the atomic clock rECEF

A itself (Moyer [370]). As a remark, today’s precise measurement technology seems to
be sensitive enough for the inclusion of at least the major planets Jupiter and Saturn. Using a more intuitive
notation, one could finally write

t−τ = ∆TA+
1

c2

(
2
√
µ⊙a

⊙
⊕ e

⊙
⊕ sinE⊙

⊕+
µJ

v⊙J
e⊙J sinE⊙

J +
µS

v⊙S
e⊙S sinE⊙

S +ṙ⊙B ·rB⊕+ṙC⊙ ·r⊕A+ṙ⊙B ·r⊕A+ṙB⊕ ·r⊕A+ṙC⊙ ·r⊙B
)
,

(142)
where A refers to the atomic clock, J, S to the planets Jupiter and Saturn, ⊕ to the Earth, ⊙ to the Sun, B to the
Earth-Moon barycenter, and C to the solar system barycenter. In case of both, upper and lower indices at the
same letter, the upper one indicates the reference. For example, ṙ⊙B denotes the velocity vector of the Earth-Moon
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barycenter with respect to the Sun. The components of all vectors relate to the solar system barycentric space-
time frame of reference. The remaining symbols are familiar from celestial mechanics: e (numerical eccentricity),
a (semi-major axis), E (eccentric anomaly), v (velocity), and µ (gravitational parameter, µ = GM). The first
term on the right hand side collects a few terms that arise, if we formally integrate equation (133), i.e. (136).
Integration from t0 to t, among others, yields a term t0 − τ0 as well as periodic terms at t0, all of which are
absorbed by ∆TA. It will be nearly a constant for all earthbound atomic clocks that contribute to the atomic
time scale. Its value is essentially the same as the nominal difference between TAI and TDT (32.184 s).
We will now take a brief look at the individual bracket terms of equation (142). Applying appropriate astrono-
mical planetary data (e.g. Allen [10], Cox [108], de Pater/Lissauer [131]) we find that the amplitudes (together
with the factor 1/c2) of the first three (sine) terms are 1.658 · 10−3s, 5.21 · 10−6s, and 2.45 · 10−6s, respectively.
The remaining five terms, each expressed in form of a scalar product, can be characterized in the frequency
domain by looking at the involved celestial bodies. Although each product comprises different motions, there
will be dominant effects that govern the resulting frequency and amplitude of the term’s signal. The first term
(in the second row of equation (142)) is a monthly term, because Earth’s movement around the Earth-Moon
barycenter is involved and this effect is superior to a change of that barycenter with respect to the Sun. The
second term is a daily one, thanks to the dominant position change of the clock simply due to Earth’s rotation.
Likewise, the third term comprises a daily proportion but at the same time the annual effect of the Earth-Moon
barycenter motion around the Sun is significant. The fourth term shows a monthly and daily component again.
The last term is mainly driven by a notable change in the Sun’s position with respect to the solar system
barycenter due to the gravitational attraction by the major planets Jupiter and Saturn. Consequently, this fifth
term is synodic in nature.
Alternatively, one may be interested in space-related unknowns, e.g. planetary ephemeris, and therefore highlight
genuine astronomical terms (Moyer [371]). One can rewrite each scalar product term in equation (142) by making
use of well-known astronomical relations. The final result reads
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with
µ = µ⊕/µM ,
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where ε is the usual symbol for the obliquity of the ecliptic, ξ⊕A and η⊕A are the orthogonal distances of the
earthbound atomic clock from the rotational axis and the equatorial plane, respectively. Both values can easily
be calculated from given (geographical) coordinates of the clock site. The additional subindex M represents
the Moon, and circ indicates that a corresponding approximative value for an assumed circular orbit is suffi-
cient. The angular arguments are: elongation D (angle between two celestial bodies as seen from a third one),
ecliptical longitude L (referred to the mean equinox), mean anomaly M , and geographical longitude λ. The
independent time variable is provided by the argument UT1 (Schödlbauer [485]). Usually, variable astronomical
quantities, especially the angles D, L, and M , are calculated by means of series expansions, i.e., polynomials
in time (Seidelmann [496]). Alternatively, one applies orbital integration techniques for the computation of the
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ephemeris. Radar observations, besides other observation techniques, are being used to create the most accurate
ephemeris files, e.g., the DE-files by JPL. In principle, pure time observations of earthbound clocks should be
applicable to at least partially determine the ephemeris of major solar system bodies. This provides a complete
independent method, without looking into the sky at all. Of course, this method is only a theoretical one,
because its accuracy will probably never reach the levels of established direct methods. Rather in relativistic
geodesy, we apply the underlying formulas of time and/or frequency comparisons for the purpose of positioning
and large distance height transfer, focussing on the occurrence of r⊕A or ξ⊕A , η⊕A , and λ⊕A within the observation
equation. These are our primary unknowns. Performing transoceanic height transfers on a global scale could
be labeled as intercontinental leveling.
Equations (142) and (143) are equivalent, their usability solely depends on the actual application. Moyer [370],
[371], in order to derive his equation for t− τ , made use of several simplifying assumptions. These were justified
by foreseeable applications and available contemporary instrumentation, that this author kept in mind.
Since the early 1980’s significant progress has been achieved regarding measurement technology. Therefore, one
should revise higher order terms that were neglected by Moyer and other authors in the past. This statement
certainly holds true not only for the derivation of astronomical formulas, but also for the consideration of higher
order relativistic terms within the fundamental metric tensors.
The gravitational potential and the centrifugal potential of the Earth give raise to relativistic (correction) terms
of order (Kopejkin et al. [299])

1

c2
GM⊕

R⊕
≈ 0.7 · 10−9, and

1

c2
ω2
⊕R

2
⊕ ≈ 2.4 · 10−12, (145)

respectively. These general relativistic terms are superimposed by special relativistic terms (whose order depends
on the actual relative velocity), remember equations (133) or (141). The above stated orders of magnitude are
well within the range of accuracy of current instrumentation. Conventional ballistic gravimeters are sensitive
to the 1µgal-level, where 1gal = 10−2m/s2. Superconducting gravimeters exceed this level approximately by a
factor of 1000. Therefore, the achievable relative accuracy is about 10−3µgal/g ≈ 10−12 (with g ≈ 981 ·106µgal)
such that relativistic gravimetry no longer remains a pure theoretical idea. The same holds true for relativistic
gradiometry. Today gradients of g (dimension: acceleration/distance) can be measured with mE-level precision,
where 1E = 10−9s−2, using superconducting instruments again. As mentioned in the introductory part, novel
quantum engineering techniques make use of atom interferometry which eventually led to gravity gradiometers
that are sensitive enough to be used in precision gravity experiments (McGuirk et al. [352], Fixler et al. [187]).

30.2 Problem-dependent fixing of the tensors
For earthbound relativistic approaches the solution of Einstein’s field equations in the vicinity of Earth’s center
of mass becomes especially important. It requires a specific definition of the corresponding energy-momentum
tensor Tij or T ij of Earth’s matter, including various sources for a gravitational field. Specifically, T ij also
incorporates anisotropic stresses (Kopejkin et al. [299]), expressed by a stress tensor πij . More realistic equations
additionally account for other parameters too, like viscosity or elasticity, because in relativity several sources of
a gravitational field exist, e.g. energy density, pressure, and stresses. Consequently, different kinds of energy will
contribute, like kinetic energy, gravitational potential energy, energy from deformations, etc. (Soffel et al. [512]).
Any additional parameters could be determined from geodetic measurements.
Certain solution processes involve post-Newtonian iterations, where physical quantities like the four-velocity
ui = dxi/cdτ or tensors gij and πij are expanded in powers of c−1. These expansions are inserted into the field
equations.
Soffel et al. [512] provide a detailed explanatory supplement on a set of recent IAU resolutions regarding the
consistent definition of metric tensors, gravitational potentials and reference systems. The self-consistency of
the relativistic framework is of uppermost importance, because the significance of various relativistic effects
changes according to the underlying reference system. This article also stresses that the basic formalism should
not simply be expressed in terms of small relativistic corrections to Newtonian theory. As we have seen before, in
general relativity there do not exist globally valid spatial inertial coordinates. Rather, space-time coordinates
in general no longer have a direct physical meaning and therefore all observables should be constructed as
coordinate-independent quantities. Relativistic modeling of any observation requires a consistent relativistic
four-dimensional reference system as described by xi and materialized by a corresponding reference frame.
To fix a particular reference system one has to specify the entries of the metric tensor gij . Being the starting
point, the metric tensor allows for the subsequent derivation of equations of motion (translational as well as
rotational), equations for the propagation of signals, and for the modeling of the observation process. Depending
on the suitable choice of the reference system, the resulting models and parameters become simple and physically
adequate, respectively.
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In order to determine the equations of motion for a given model of matter one has to find a suitable formulation
of the corresponding gravitational field. This requires us to specify a gauge condition on the metric tensor,
i.e. on the field variables, in order to reduce the existing redundant degrees of freedom in those variables. The
main reason for the existence of (four) arbitrary functions in the general solution is the fact that we have
intentionally chosen the use of covariant field equations which are therefore valid in any coordinates. Imposing
gauge conditions significantly narrows down the arbitrariness. By choosing a certain gauge condition we can
simplify the field equations to our special needs. Afterwards we have to solve these reduced equations for the
given metric tensor (plus possibly other fields, e.g. scalar ones), and finally derive the equations of motion that
are consistent with our solutions of the field equations (Kopejkin et al. [299]). For details on the gauge theory
see for instance Hehl [238].

30.3 BK-approach vs DSX-approach

Several well-established reference systems are involved in astronomical and geodetic observations. A detailed
discussion on the notation and relations between the (solar system) barycentric and geocentric celestial refe-
rence systems (BCRS, GCRS) can be found in Soffel et al. [512]. Basically, two competitive approaches were
elaborated in the past. The first one by Brumberg/Kopejkin [73] (BK-approach) is based on the asymptotic
matching technique for the gravitational field potentials, where matching refers to the BCRS and GCRS me-
tric tensor components and relies on the existence of several small parameters: e.g., the slowness of involved
motions of the bodies can be characterized by a velocity parameter v as the maximum of typical internal va-
lues of {|T0j |/|T00|, |Tij,0|/|Tij,k|}, the weakness of the gravitational fields outside and inside the bodies can
be characterized by a parameter ϵ as the maximum over the entire source of h̄00 with h̄ij = −

√
−g gij + ηij ,

and small stresses can be characterized by a parameter S as the maximum over the entire source of |Tij |/|T00|
(Thorne [548]). Additionally, the structure of the bodies, Earth oblateness etc. is traditionally characterized by
scalar spherical harmonic coefficients clm and slm.
Stating that the matching approach may have some severe drawbacks (Kopejkin et al. [299]), Damour et al. [115],
[116], [117], [118] developed an alternative approach (DSX-approach) comprising a linearization of the Einstein
field equations by means of an exponential parametrization of gij . The metric tensor to be found as the solution
of the Einstein field equations simultaneously describes both the reference system and the gravitational field.
As a consequence, in order to fix a solution one may impose arbitrary (coordinate) conditions on the metric
tensor components. Among others the above mentioned approaches also differ in the treatment of this gauge
degree of freedom.
Whereas in the DSX-approach the more flexible algebraic conditions

g00gij = −δij +O
(
c−4
)

(146)

are being imposed, more restrictive approaches like the BK-approach impose a certain differential coordinate
condition, e.g., the harmonic gauge condition

gijΓk
ij = 0 or

∂

∂xi
(√

−g gij
)
= 0 ⇒ ∂

∂xi
h̄ij= 0. (147)

30.4 Celestial reference system connected to the (solar-system) barycenter

The overall idea in using several reference systems is to construct a suitable local reference system for each
subsystem that is involved in the observation process. Regarding each local system, the influence of external
matter is given by tidal potentials only, expanded in a power series with respect to local spatial coordinates. The
occurrence of (fictitious) inertial forces, represented by linear terms in the series expansion, may be eliminated
by a suitable choice of the local coordinates’ origin.
The BCRS denoted by time and space coordinates (t,x), neglecting non-solar system matter (model of an
isolated solar system, i.e. without any tidal influence of other matter in the Milky Way or beyond on this
system), is considered to be inertial and serves for astronomical applications, e.g. star catalogues, solar system
ephemerides, interplanetary navigation. The GCRS denoted by time and space coordinates (T,X), is called
quasi-inertial due to the accelerated geocenter. It is being used for applications related to the vicinity of the Earth
and serves as the basis for derived concepts like the international terrestrial reference system (ITRS). BCRS
and GCRS are related by a generalized Lorentz transformation containing acceleration terms and gravitational
potentials. Regarding the gravitational potentials it is assumed that they vanish far from the system.
There still exists a certain degree of freedom in the definition of the BCRS’s orientation of the spatial axes.
A natural choice is provided by the international celestial reference system (ICRS) as materialized by the
international celestial reference frame (ICRF) via the Hipparcos catalogue, or an improved version ICRF2
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which is based on revised and additional positions, more (VLBI-) observations and better analysis methods.
These realizations lead to a specific barycentric metric tensor following the recommended general form. For
highly precise applications the positions of stars (or remote astronomical objects in general) should solely refer
to the BCRS.

The metric tensor of the BCRS, where the time coordinate ct is related to t = TCB (barycentric coordinate
time), is defined as (Soffel et al. [512])
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− 2w2

c4
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where the traditional Newtonian potential is relativistically generalized by a scalar potential w(t,x) and a vector
(gravitomagnetic) potential wi(t,x). Due to the w2-term, the metric is obviously not flat.

As an aside, spherical fields are of great importance in (geo-)research and thus one should consider essential
features of spherical vector and tensor structures, too. Consequently, the generalization of fundamental concepts
in the theory of spherical fields, e.g., Legendre polynomials, radial basis functions, splines, or wavelets, had to
be generalized to the vectorial and tensorial case. Remembering the uncertainty principle we know that space
localization and momentum (frequency) localization are mutually exclusive. Some extremal functions in this
sense are the Legendre kernels (no space localization, ideal frequency location), and the Dirac kernels (ideal
space location, no frequency location). Freeden/Schreiner [199] show details on the transformation between
those kernels and how to find an applicable compromise. Their approach comprises two separate transitions,
from spherical harmonics to Dirac kernels, and from scalar theory to vector and tensor theory, respectively. By
choosing a coordinate-free setup they are able to avoid any kind of singularity at the poles, which is often a
problem in classical approaches.

Choosing the condition (147) the post-Newtonian Einstein field equations take the form(
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)
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(149)

with the gravitational mass σ(t,x) and the mass current density σi(t,x), where the term ’mass currents’ refers to
moving or rotating masses. These quantities are related to the energy momentum tensor T ij (Soffel et al. [512])
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c
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, (150)

which generalizes the density ρ of the Poisson equation (80) and represents the gravitational sources. This tensor
does not show up explicitly in practical computations, because gravitational fields outside extended bodies
are traditionally given in form of convergent series expansions in terms of multipole moments, i.e., potential
coefficients. These are defined by σ and σi, which describe the body’s interior in terms of distributed mass
and mass currents. Its values are estimated from observations outside of the body. In this respect, we handle
relativistic multipole moments just in the same way as conventional scalar spherical harmonic coefficients. The
latter are Newtonian multipole moments, often depending explicitly on time because the gravitating body may
oscillate, wobble and change its internal structure. Additionally, as in case of the Earth notable mass variations
in the body’s exterior may exist, e.g., varying ice coverage in Greenland or global atmospheric currents and air
tides, which are then also reflected in the gravitational potential. For the ease of modeling one often assumes
that each body consists of viscoelastic matter which admits continuous mass density distributions, anisotropic
stresses, and internal velocity fields. Under certain assumptions the lower degree moments remain constant
(Kopejkin et al. [299]).

Coming back to the earlier assumption of an asymptotically flat space-time, which acts as a boundary condition,
we find for t = const.

lim
|x|→∞

gij = ηij ⇒ lim
|x|→∞

w(t,x) = 0 , lim
|x|→∞

wi(t,x) = 0 , (151)
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and the recommended solutions in form of volume integrals over the whole three-space will read

w(t,x) = G
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(152)

Kopejkin et al. [299] also highlight the physical difference of coordinates. In contrast to global coordinates,
with local coordinates we have a metric tensor that diverges with growing coordinate distance from the body
because its gravitational field must smoothly match with any tidal gravitational fields in some region between
the bodies. There is no asymptotically flatness analogically with equation (151).
In geodetic applications restricted to the gravitational fields outside massive bodies any observable will be deter-
mined by the sum of all metric potentials. Therefore, an artificial split into various pieces is not recommended
(Soffel et al. [512]). As for the Newtonian potential in traditional satellite geodesy, suitably defined potential
coefficients based upon w and wi could be determined from satellite data.
In case of an N -body system, one may simply use

w(t,x) =
N∑
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wA(t,x) , wi(t,x) =
N∑
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wi
A(t,x) , (153)

where the lower index A denotes the mere contribution of body A. For an approximative solution one only
retains the mass monopoles of the bodies and therefore, with µA = GMA,
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∑
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where vA = ẋA, aA = v̇A and rBA = xB − xA.
An isolated ideal fluid can be characterized by the invariant densities ρ(t,x) or ρ∗(t,x) = ρ(t,x)

√
−g cdt/ds,

the specific energy density Π(t,x), the isotropic pressure p(t,x), and the matter’s velocity vi(t,x). As a remark,
to some extent in conflict with Einstein’s purist views, Fock [192] already stressed the importance of additional
initial or boundary conditions in order to identify unique solutions to the (partial differential) field equations
that link the fundamental and energy-momentum tensors to each other. Eventually this violates the postulation
of general covariant equations. Following Klioner/Soffel [288] the corresponding energy momentum tensor reads
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where V (t,x) represents a Newtonian-like gravitational potential, i.e.,

V (t,x) = G

∫
ρ∗(t,x′)

|x− x′|
d3x′. (156)

The post-Newtonian potentials w(t,x) and wi(t,x) are formally given by
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(157)

The volume integrals in equations (156) and (157) can be split into local and external parts.
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30.5 Celestial reference system connected to the geocenter
As with the BCRS, Soffel et al. [512] discuss corresponding IAU recommendations regarding the GCRS. Its
metric tensor shall be in the same form as the barycentric one. Again introducing a scalar potential W (T,X)
and a vector (gravitomagnetic) potential W a(T,X) by analogy to equation (152), we thus have
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(158)

This time it is recommended to split the metric into a local (Earth-related) part (denoted by⊕) and an external
part (denoted by ext) that collects all remaining terms stemming from inertial and tidal forces (denoted by inert
and tidal):

W =W⊕ +Wext =W⊕ +Winert +Wtidal ,

W a =W a
⊕ +W a

ext =W a
⊕ +W a

inert +W a
tidal .

(159)

Similar to the classical series expansion of the Newtonian potential we can apply a power series multipole
expansion to the potentials W and W a in terms of R := |X|.
Denoting by T ij the energy momentum tensor in the local reference system, e.g. GCRS, we introduce, likewise
to equations (150), the quantities
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Thus, the local internal gravitational potentials W⊕ and W a
⊕ are supposed to have the same functional form as

its barycentric counterparts (152):
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If the actual internal gravitational field shows any deviation from the assumed form, which would imply a
violation of the strong equivalence principle, then one would have to supplement the first equation of (159) by
an additional term (Klioner/Soffel [288]). Of course, any alternative explanations for such a deviation, e.g.,
systematic errors due to mismodelling or inappropriate series expansions in practical computation, must first
be ruled out.
The scalar inertial potential Winert arises due to the fact that the actual world line of the geocenter deviates
from a geodesic in the external gravitational field. This deviation is caused by the coupling of higher order
multipole moments of the Earth with external tidal gravitational fields, the latter being related to the space-
time curvature tensor as we have seen in the previous subsection. The coupling terms introduce an ambiguity
in the definition of the multipoles in local coordinates (Kopejkin et al. [299]). The question arises whether to
include or exclude the contribution of these terms to the definition of the central body’s multipole moments. In
fact, its inclusion will lead to simpler final equations of motion.
The above mentioned deviation vanishes in case of neglected multipole moments, i.e. if one only allows for mass
monopoles (e.g. spherical non-rotating Earth). Otherwise it is characterized by the approximative quantity
(Soffel et al. [512])

Qa = δai

(
∂

∂xi
wext(t,x⊕)− ai⊕

)
, (162)

such that the inertial force arising due to the accelerated motion of Earth’s center of mass can be described by
(Klioner/Voinov [286])

Winert = QaX
a, (163)

where x⊕, v⊕ = ẋ⊕ and a⊕ = v̇⊕ refer to the time dependent barycentric coordinate position, velocity and
acceleration of the geocenter (origin of the GCRS), respectively. The external potentials with respect to BCRS,
i.e. wext and wi

ext, are given by equations (153) without the contribution of Earth, i.e. for A ̸= ⊕.



56 Outline of the mathematical framework

The vectorial inertial potential W a
inert accounts for the relativistic Coriolis force in case of a rotating geocentric

reference system. Our specific GCRS is defined as kinematically non-rotating with respect to BCRS, as indicated
by the δai in equation (162), but it rotates with respect to a dynamically non-rotating general geocentric reference
system. This effect can be described by a precessional vector

Ωinert = ΩGP +ΩLTP +ΩTP, (164)

which we know already from equation (116), where we neglected the Thomas precession. Using the ε-tensor
(Moritz/Hofmann-Wellenhof [369]), i.e. the fully antisymmetric Levi-Civita symbol (Levi-Civita pseudo tensor),
we may express vector cross products via index notation, e.g. ci = εijk ajbk is equivalent to c = a × b. One
finally gets (Soffel et al. [512])

W a
inert = − 1

4 c
2εabc Ω

b
inertX

c. (165)

A series expansion of wext(t,x)

wext(t,x⊕+X) = wext(t,x⊕) +∇wext(t,x⊕) ·X+ · · · (166)

relates to the Newtonian tidal potential

WNewton
tidal (T,X) = wext(t,x⊕+X)− wext(t,x⊕)−∇wext(t,x⊕) ·X. (167)

Using index notation, the last term in equation (167) could alternatively be written as −wext,i(t,x⊕)X
i, and a

post-Newtonian expansion of the tidal potential in powers of X would read (Klioner/Voinov [286])

Wtidal(T,X) = 1
2 QijX

iXj + 1
6 QijkX

iXjXk + · · · (168)

with (Kopejkin et al. [299])

Qij = wext,ij(t,x⊕) +O
(
c−2
)
, Qijk = wext,ijk(t,x⊕) +O

(
c−2
)
, etc. (169)

30.6 Classical spherical harmonics and relativistic multipole moments
The moments (169) could be shortened by introducing a condensed notation (Blanchet/Damour [49]), e.g., by
replacing sequences of spatial indices (i.e., with each individual index taking the values 1,2, and 3) either by a
single upper-case latin letter index

ijk · · · = i1i2i3 · · · il =: L, i1i2i3 · · · il−1 =: L− 1, · · · , (170)

or in a slightly different way (Thorne [548]) by

ijk · · · = a1a2a3 · · · al =: Al, a1a2a3 · · · al−1 =: Al−1, · · · . (171)

The tidal gravitational quadrupole and octupole moments as given in equation (169) without explicit relativistic
terms are sufficient for ground-based geodetic applications.
In classical mechanics, based upon Newtonian potentials representing scalar fields, one usually applies the
general form of scalar spherical harmonics

Ylm(θ, ϕ) =

 Clm eimϕPlm(cos θ) for m ≥ 0

(−1)mY ∗
l|m| for m < 0

, (172)

where indices are not to be confused with usual index notation for tensors, i.e. summation rules do not apply
here. The ∗ denotes complex conjugation and Plm(cos θ) are the classical associated Legendre functions of
degree l and order m. The scalar spherical harmonic coefficients are defined by

Clm := (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
(173)

and under complex conjugation the scalar spherical harmonic coefficients transform as

Y ∗
lm = (−1)mYl−m. (174)

The definitions (172) and (173) are adopted from the physicist Thorne [548], whereas in geodesy one uses a
slightly different version, where basically the 4π factor is kept outside the whole Ylm definition.
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In physics, one has to deal with more complicated fields, namely vector fields, e.g. in electromagnetism, or
tensor fields, e.g. in general relativity. Accordingly, more general spherical harmonic multipole expansions have
to be applied. If non-linearity is added, the whole problem becomes even more complicated since the multipole
components are coupled together by field equations. General relativity is just an example, where both difficulties
come together: non-linearity and tensor fields due to the metric tensor. Several general relativistic multipole
expansions do exist in literature, which is reviewed and consolidated in Thorne [548]. There is no unique
procedure to find the gravitational field from a given metric as in the Newtonian theory of gravity. Consequently,
one has to study different proposed relativistic multipole definitions and its relations (Quevedo [438]).
The solution of the classical Poisson equation (80) in the stationary case, i.e. V = V (X), can either be written
traditionally as (R = |X|)

V (X) = 4πG
∞∑
l=0

l∑
m=−l

Qlm

2l + 1

Ylm(Θ,Φ)

Rl+1
, (175)

temporarily denoting field point related quantities by upper-case letters and source point quantities by lower-case
letters, with

Qlm =

∫
Y ∗
lm(θ, ϕ) rlρ(x) d3x , (176)

or as (Damour/Iyer [114]), using the condensed index notation,

V (X) = G
∞∑
l=0

(−1)l

l!
QL ∂L

(
1

R

)
(177)

with ∂L = ∂i1∂i2 · · · ∂il , ∂i = ∂/∂xi, and

QL =

∫
x⟨i1 · · ·xil⟩ρ(x) d3x . (178)

Angular brackets or a caret indicate symmetric trace-free (STF) tensors (Blanchet/Damour [49]), i.e. irreducible
Cartesian tensors, whereas round brackets denote symmetrization only. Finally, square brackets indicate anti-
symmetrization. As a remark, the STF part being equal to zero means isotropy.
Exemplarily, assuming a tensor symbol A we write (Klioner/Soffel [288]) for l = 2

A[ij] =
1
2

(
Aij −Aji

)
,

A(ij) =
1
2

(
Aij +Aji

)
,

Âij = A⟨ij⟩ = A(ij) − 1
3δ

ijAcc .

(179)

This notation can be extended to any value of l (Damour/Iyer [114]), e.g., l = 3 yields (Kopejkin et al. [299])

Âijk = A⟨ijk⟩ = A(ijk) − 1
5

(
δijAkcc + δjkAicc + δkiAjcc

)
. (180)

If convenient, the condensed notation can be used, e.g., Âi1i2···il = ÂL or A⟨i1i2···il⟩= A⟨L⟩ and A(i1i2···il)= A(L).
Regarding the relativistic time-dependent multipole expansion comprising tensorial fields, at least in case of
linearized gravity the Cartesian multipole approach is algebraically more transparent than a potential formalism
that was developed for vector fields.
Exploiting the concept of STF tensors one can express the spherical harmonics via

Ylm(θ, ϕ) = Ŷ lm
L nL, (181)

where Ŷ lm
L is a location-independent STF tensor as defined by Thorne [548] with −l ≤ m ≤ +l and nL is the

tensorial product of l radial unit vectors. Those Ŷ lm
L not only generate the Ylm(θ, ϕ) but may also be used to

formally expand any other STF tensor F̂L into a series

F̂L =

l∑
m=−l

Flm Ŷ lm
L . (182)

On a sphere centered on the coordinate center, we are now able to express a scalar function f(θ, ϕ) by an infinite
series in powers of the unit radial vector

f(θ, ϕ) =

∞∑
l=0

F̂Ln
L, (183)
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which is related to the traditional spherical harmonics representation

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

FlmYlm(θ, ϕ) (184)

via the coefficients Flm that can be written as

Flm = 4π
l!

(2l + 1)!!
F̂L Ŷ

lm
L

∗. (185)

The pointwise convergence of traditional spherical harmonics expansions can be controlled by the identity

l∑
m=−l

∣∣Ylm(θ, ϕ)
∣∣2= 2l + 1

4π
, (186)

which can be generalized to the tensorial case (Blanchet/Damour [49])

∑
S

j∑
m=−j

∣∣Ŷ sl,jm
S (n)

∣∣2= 2j + 1

4π
, (187)

with n being the radial unit vector, whose direction is defined by θ and ϕ.
Thorne [548] provides details on the definition and application of vectorial and tensorial spherical harmonics,
e.g., solutions of Laplace’s equation or the wave equation. His article also contains explicit formulae for the
STF version of tensor spherical harmonics. The latter can be used to obtain post-Newtonian expressions for
the multipole moments (mass and mass current) of isolated gravitational sources, where „isolated“ means that
its matter occupies a finite domain in space. Remark: STF methods are just one of several alternatives to
relativistically generalize the closed-form scalar results to the vector and tensor cases (Damour/Iyer [114]).
The time-dependent multipole moments result from a decomposition of the field in question into various spherical
harmonics (vectorial, tensorial), requiring not only a spatial integration on the source but also a time integration.
Already for the scalar case, we could replace the simple density ρ, i.e., the product Gρ, in Poisson equation (80)
by a more general source S(x, t). Generalizing the Laplace operator ∆ by the D’Alembert operator � we get

� = ηαβ∂α∂β ⇒ �V = −4πS (188)

with
V (X, T ) =

∫
S(x, U)

|X− x|
d3x , (189)

where U = T − |X− x|/c = T −R/c, representing a time delay, indicates a finite velocity of propagation, e.g.,
finite speed of gravity. Therefore, V in this case is called a retarded potential. In the exterior of the source one
can apply a multipole expansion, generalizing equation (177),

V (X, T ) =
∞∑
l=0

(−1)l

l!
∂L

(
FL(U)

R

)
. (190)

The STF multipole moments FL(U) comprise time averages Sl(x, U), which are weighted by x̂L := x⟨i1 · · ·xil⟩,
such that

FL(U) =

∫
x̂LSl(x, U) d3x (191)

with (r = |x|)

Sl(x, U) =

1∫
−1

(2l + 1)!!

2l+1l!

(
1− z2

)l︸ ︷︷ ︸
=: δl(z)

S
(
x, U + rz/c

)
dz, (192)

where a tilde may be used to denote z-retardation, e.g. S̃ = S
(
x, U + rz/c

)
.

Damour/Iyer [114] cite a series expansion, that can be applied in case of post-Newtonian expansions of gravi-
tational fields:

Sl(x, U) =
∞∑
p=0

(2l + 1)!!

(2p)!!(2l + 2p+ 1)!!

(r
c

)2p ∂2p

∂U2p
S(x, U). (193)
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The idea of STF multipole moments equally applies to Einstein’s field equations (73), where the source is given
by a tensor field Tij and not by a scalar field anymore. Linearization via gij = ηij + hij enables the following
approximative calculation of the Christoffel symbols (16) (Kopejkin et al. [299])

Γl
ij =

1
2

(
ηlk − hlk

)(
∂jhik + ∂ihjk − ∂khij

)
+ · · · , (194)

and by making use of the harmonic gauge (147) leads to the following new field equations

�h̄ij(X, T ) = −16πG

c4
Tij(X, T ), (195)

with h̄ij = hij − 1
2h ηij . Accordingly, the multipole expansions now read

h̄00(X, T ) =
4G

c4

∞∑
l=0

(−1)l

l!
∂L

(
FL(U)

R

)
,

h̄0i(X, T ) =
4G

c4

∞∑
l=0

(−1)l

l!
∂L

(
GiL(U)

R

)
,

h̄ij(X, T ) =
4G

c4

∞∑
l=0

(−1)l

l!
∂L

(
HijL(U)

R

)
,

(196)

where

FL(U) =

∫ 1∫
−1

x̂Lδl(z) T̃
00 dz d3x , GiL(U) =

∫ 1∫
−1

x̂Lδl(z) T̃
0i dz d3x , HijL(U) =

∫ 1∫
−1

x̂Lδl(z) T̃
ij dz d3x .

(197)
The quantities GiL(U) and HijL(U), representing gravitoelectric and gravitomagnetic tidal moments, are redu-
cible and can be decomposed into three and six irreducible pieces, respectively (Damour/Iyer [114]). Eventually,
the authors introduce new STF tensors, notably (so-called Blanchet-Damour) mass multipole moments ML(U)
(l ≥ 0) and spin multipole moments SL(U) (l ≥ 1) whose definition, especially in case of fast rotations, is related
to the post-Minkowskian approximation scheme. The moments ML in the Cartesian language are equivalent to
the set of classical spherical harmonic coefficients clm and slm.
After a gauge transformation which preserves the harmonicity condition (147), the tensor h̄ij can be brought to
a canonical form h̄ijcan. In doing so its components can be expressed similar to equations (196), but now solely
by means of ML(U), SL(U) and its time derivatives.
In general relativity, due to the non-linearity and tensorial character of the gravitational interaction, the de-
finition of the multipole moments gets more complicated than in the Newtonian theory of gravitation. The
existing gauge freedom makes the multipolar decomposition of the gravitational field coordinate-dependent,
which ultimately affects any subsequent physical interpretation. There exist exact closed-form expressions for
the multipole moments. Damour et al. [115], based on the theory of distributions in order to extract the
non-divergent core of some other multipole moments given by Thorne [548], define (remember equations (160))

ML(T )=

∫
X̂LΣd3X +

1

2(2l + 3) c2
d2

dT 2

∫
X̂LΣX2 d3X − 4(2l + 1)

(l + 1)(2l + 3) c2
d

dT

∫
X̂aLΣa d3X (l ≥ 0) ,

SL(T )=

∫
εab⟨clX̂L−1⟩aΣb d3X (l ≥ 1) .

(198)
To check the validity of these equations we compare low-order moments with standard expressions from non-STF
approaches. Exemplarily, in case of l = 0 the general gravitational multipole expression for ML first reduces to

M =
G

c2

∫ 1∫
−1

δ0
(
T̃ 00 − znaT̃

0a
)
dz d3x , (199)

and after using conservation equations for T̃ 00 and T̃ 0a one gets with

M =
G

c2

∫
T 00(x, t) d3x (200)
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the standard expression for the total mass (mass monopole). For simplicity some authors put G = 1 and c = 1.
With these settings, and similarly to M the mass dipole expression (case l = 1) reduces to

Mi =

∫ 1∫
−1

δ1

(
xi
(
T̃ 00 − znaT̃

0a
)
− rz

(
T̃ 0i − znbT̃

ib
))
dz d3x . (201)

Again one incorporates conservation equations for the four-momentum. In addition, we can apply the conser-
vation of relativistic angular momentum. Eventually one finds the mass dipole expression in standard form:

Mi =

∫
xiT 00(x, t) d3x (202)

If GCRS’s origin coincides with Earth’s post-Newtonian center of mass then the mass dipole of Earth vanishes.
In this manner one could generate simplified expressions of higher-order mass multipole moments Mi1i2···, too.
The same holds true for spin multipole moments. For instance, the final expression for the total spin (case
l = 1) reads (Damour/Iyer [114])

Si =

∫
εiab xaT

0b(x, t) d3x. (203)

Klioner et al. [290] discuss the mathematical framework of (rigid) rotation in general relativity based upon
multipole moments. If several bodies are involved or if one wants to indicate a specific body, moment symbols
are to be completed by a corresponding (upper) index, i.e. MA

L and SA
L with A = ⊕ in case of Earth.

30.7 Earth’s metric potentials in relativistic mass and spin multipole moments
The local parts of Earth’s metric potentials, cf. equations (161), can now be rewritten as (Damour et al. [118])

W⊕(T,X) = G
∞∑
l=0

(−1)l

l!
∂L

(
M⊕

L

(
T ±R/c

)
R

)
+O

(
c−4
)
,

W a
⊕(T,X) = −G

∞∑
l=1

(−1)l

l!

{
∂L−1

(
Ṁ⊕

aL−1

(
T ±R/c

)
R

)
+

l

l + 1
εabc ∂bL−1

(
S⊕
cL−1

(
T ±R/c

)
R

)}
+O

(
c−2
)
(204)

with R =
√
δijXiXj = |X| and f(T ± R/c) =

(
f(T + R/c) + f(T − R/c)

)
/2 as the average, which indicates

the time-symmetric solution with spherical symmetry of the wave equation.
Retaining only T as the argument of the multipole moments one gets the equivalent formulas (Soffel et al. [512])

W⊕(T,X) = G

∞∑
l=0

(−1)l

l!

(
M⊕

L (T ) ∂L
1

R
+

1

2c2
M̈⊕

L (T ) ∂LR

)
+O

(
c−4
)
,

W a
⊕(T,X) = −G

∞∑
l=1

(−1)l

l!

{
Ṁ⊕

aL−1(T ) ∂L−1
1

R
+

l

l + 1
εabc S

⊕
cL−1(T ) ∂bL−1

1

R

}
+O

(
c−2
)
.

(205)

30.8 Transformation between global and local reference systems
The tidal external potentials in equations (159) result from a superposition of several sources (linear split):

Wtidal(T,X) =
∑
B ̸=A

WBA(T,X) , W a
tidal(T,X) =

∑
B ̸=A

W a
BA(T,X) , (206)

where the subindex BA denotes the influence of the source B on the primary body A. Again, we may set A = ⊕
in case of Earth as primary body.
One switches from local-frame multipole moments to global-frame multipole-like moments (Damour et al. [116])
by making use of a coordinate transformation between global and local reference systems, e.g. BCRS and GCRS.
Formally, we could express such a transformation by (Klioner/Soffel [288])

T = t− 1

c2
(
A(t)+ vi⊕r

i
⊕
)
+

1

c4

(
B(t)+Bi(t)ri⊕+B

ij(t)ri⊕r
j
⊕+ C(t,x)

)
+O

(
c−5
)
,

Xa = Ra
j (t)

(
rj⊕+

1

c2

(
1
2 v

j
⊕v

k
⊕r

k
⊕+Djk(t)rk⊕+Djkl(t)rk⊕r

l
⊕

))
+O

(
c−4
) (207)
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with ri⊕ = xi − xi⊕(t), rotational matrix Ra
j (t), and a number of additional functions, that all remain to be

determined. By a simple choice one may globally fix the axes such that geocentric spatial coordinate lines
are aligned with respect to the barycentric ones, i.e. Ra

j = δaj . In doing so we get a geocentric kinematically
non-rotating frame but have to take relativistic Coriolis forces into account. The effacement of the Coriolis
effect in the geocentric frame would require the choice of a particular time dependence of the rotational matrix,
which leads to a dynamically non-rotating frame (Damour et al. [118]).
Equation (207) can be used to transform the metric (148) into the metric (158), e.g., by matching of the metric
tensors via the Jacobian ∂Xµ/∂xε, i.e.,

gελ(t,x) =
∂Xµ

∂xε
∂Xν

∂xλ
Gµν(T,X) . (208)

The determination of the unknown functions A,B,Bi, Bij , C,Djk, Djkl, and Ra
j can be achieved via the mat-

ching technique as outlined in Klioner/Soffel [288], cf. equations (225) and (226) in § 30.10.
Denoting the rotation matrix of the B-frame with respect to the A-frame by Rab

BA = Ria
AR

ib
B , the global-system

velocity of the B-frame with respect to the A-frame by viBA = viB − viA, and the projections of vBA with respect
to the local frames B and A by V b

BA/B = Rib
Bv

i
BA and V a

BA/A = Ria
A v

i
BA, one can write approximatively

WBA(TA,XA) =WB(TB ,XB) +
2

c2
v2
BAWB(TB ,XB) +

4

c2
V b
BA/BW

b
B(TB ,XB),

W a
BA(TA,XA) = V a

BA/AWB(TB ,XB) +Rab
BAW

b
B(TB ,XB),

(209)

where TA = X0
A/c and TB = X0

B/c are the local systems’ coordinate times corresponding to space-time points
Xi

A and Xi
B , respectively. The various above mentioned velocities and rotation matrices bear these time

arguments depending on indices A or B. All individual potential terms on the right hand side of equations (209)
are expressible in terms of corresponding multipole moments, for instance MB

L or MBA
L (Damour et al. [116]).

In terms of global (barycentric) coordinates one gets (Damour et al. [118])

WBA(t,x) =
µB

rB

(
1+

2

c2
(
vB−vA

)2− 1

c2
wextB(t,xB)−

1

2c2
(
(nB ·vB)

2+ aB ·rB
))
,

W a
BA(t,x) =

µB

rB
Ria

A v
i
BA

(210)

with xB(t) denoting the barycentric position vector of the B-frame origin, e.g. the center of mass of body B.
The remaining symbols are rB= x− xB , rB= |rB |, nB= rB/rB , vB= dxB/dt, aB= dvB/dt, and µB= GMB .

30.9 External and tidal potentials in post-Newtonian approximation
Closed form expressions for the resulting tidal potentials Wtidal and W a

tidal are given in Klioner/Voinov [286].
Alternatively, one can introduce relativistic tidal moments (gravitational gradients) GL and HL which can,
similarly to the linearly superimposed external potential (inertial plus tidal parts), be decomposed into N + 1
individual contributions, if N bodies are involved.
Defining the external gauge-invariant gravito-electric and gravito-magnetic fields (playing an important role for
the equations of motion)

Eext a(T,X) := ∂aWext +
4

c2
∂TW

a
ext and Bext a(T,X) := −4εabc ∂bW

c
ext, (211)

the corresponding post-Newtonian tidal moments are given by (Damour et al. [115])

GL(T ) := ∂⟨L−1Eext al⟩(T,X)
∣∣∣
Xa=0

, HL(T ) := ∂⟨L−1Bext al⟩(T,X)
∣∣∣
Xa=0

for (l ≥ 1) . (212)

For l = 0 we have an additional datum (representing another degree of freedom) G(T ) :=Wext(T,0) +O(c−2),
i.e., a monopole tidal moment, which can be gauged away by proper normalization. Remark: in all formulas we
forgo the explicit writing of a gauge function (Soffel et al. [512])

Λ = G
∑
l≥0

(−1)l

(l + 1)!

2l + 1

2l + 3

∫
X̂aLΣa d3X ∂L

1

R
, (213)

because only its temporal and spatial partial differentials, i.e. Λ,T and Λ,a, enter the final formulas for the
potentials or the metric tensors. These gauge terms are of order O(c−4) and are therefore negligible for most
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applications with the exception of highly accurate time scale transformations. For clock rate applications, as in
chronometric leveling for instance, these terms are also expendable due to its small magnitude which is much
less than 10−18.

As a remark, which is especially valid for alternative theories to the general theory of relativity, due to the
absence of clearly formulated field equations in the framework of the PPN formalism, the gauge function leaves
too many degrees of freedom that can not be uniquely fixed. This leads to a researcher-dependent ambiguity
in the interpretation of relativistic effects in GCRS (local reference) frames (Kopejkin et al. [299]).

Conversely to equation (212), the fields Eext a and Bext a as well as the external potentials itself can be expanded
as series in powers of the local spatial coordinates, e.g.

Wext =
∑
l≥0

1

l!
GLX̂

L +O
(
c−2
)
. (214)

The tidal moments are directly related to the multipole moments. The tidal-dipole moment (l = 1) can be
written as (Damour et al. [118])

Ga = −
∑
l≥2

1

l!

ML

M
GaL +O

(
c−2
)
. (215)

For higher order tidal moments the explicit expressions become quite complex. Even under the simplifying
assumption that all external bodies can be regarded as mass monopoles, the approximative post-Newtonian
tidal-quadrupole matrix (l = 2) reads

Gab =
∑
B ̸=A

Ri
aR

j
b

3µB

r3AB

(
n
⟨ij⟩
AB +

1

c2

(
n
⟨ij⟩
AB

(
2v2

AB − 2wextA(t,xA)− wextB(t,xB)− 5
2 (nAb · vB)

2 − 1
2 aB · rAB

)
+

+ a
⟨i
ABr

j⟩
AB + v

⟨i
ABv

j⟩
AB − 2(nAB · vAB)n

⟨i
ABv

j⟩
AB − (nAB · vA)n

⟨i
AB

(
v
j⟩
A − 2v

j⟩
B

)))
+O

(
c−4
)
.

(216)
For even higher tidal moments (l > 2) the Newtonian limit may be sufficient, such that

GL = RAi1
a1

· · ·RAil
al
∂LwextA(t,xA) +O

(
c−2
)

(217)

with
wextA(t,xA) =

∑
B ̸=A

µB

rB
+O

(
c−2
)
. (218)

Regarding the Newtonian case, already the Newtonian tidal potential (effective local potential) (167) may be
written as a tidal expansion, explicitly

WNewton
tidal (T,X) = G⊕

i X
i +

1

2!
G⊕

ijX
iXj + · · ·+ 1

l!
G⊕

i1··· ilX
i1 · · ·Xil + · · · (219)

with the Newtonian tidal moments (Newtonian gravitational gradients)

G⊕
i (t) := ∂iwext(t,x⊕)−

d2xi⊕
dt2

(l = 1) and G⊕
L (t) := ∂Lwext(t,x⊕) (l ≥ 2) . (220)

The Earth’s barycentric equations of motion under the influence of external bodies can thus be expressed by

M⊕

(
d2xi⊕
dt2

− ∂iwext(t,x⊕)

)
= −M⊕G

⊕
i =

∑
l≥1

1

l!
M⊕

LG
⊕
iL , (221)

where we used equation (215). Alternatively one gets (Damour et al. [115])

M⊕
d2xi⊕
dt2

= G
∑
B ̸=⊕

∑
l≥0

∑
k≥0

(−1)k

l!k!
M⊕

LM
B
K ∂⊕iLK

(
1

|x⊕ − xB|

)
, (222)

applying the condensed notation, i.e., L := i1 · · · il, K := j1 · · · jk, and ∂⊕i := ∂/∂xi⊕. Regarding the summation
indices, because of the Newtonian center of mass definition, we get for the case l = 1 zero mass-dipole moments
(M⊕

i (t) = 0) and thus all terms with l = 1 or k = 1 vanish.
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Coming back to the post-Newtonian case, if we need higher accuracy than implied by equation (214), also time
derivatives of the tidal moments have to be taken into account, namely (Damour et al. [116])

Wext =
∑
l≥0

1

l!
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GLX̂

L+
1

2(2l + 3) c2
X2G̈LX̂

L

)
+O
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)
,

W a
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1
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− 2l + 1

(l + 1)(2l + 3)
ĠLX̂

aL+
l

4(l + 1)
εabcHcL−1X̂

bL−1

)
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(
c−2
)
.
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The dominant term in the expansion (168) of Wtidal is the quadratic term (l = 2), which is by comparison with
equation (223) equivalent to (Soffel et al. [512])

Wtidal
∣∣
l=2

= 1
2GabX

aXb. (224)

To emphasize, here Gab is not a (local) metric tensor but the post-Newtonian tidal quadrupole matrix (216).
In the Newtonian approximation the Taylor series expansion for the gravitational potential of the tidal force
usually starts from the quadratic term because the monopole and dipole external multipole moments are not
physically associated with the tidal force. As we have seen before, in the framework of general relativity, the
origin of tidal forces can be explained by means of the Riemannian curvature tensor, i.e., the second derivatives
of the metric tensor. The monopole-dipole effacing property of the external gravitational field can always be
extended from the Newtonian theory of gravity to the post-Newtonian approximation by a suitable coordinate
transformation on the space-time manifold (Kopejkin et al. [299]). In other words, the gravitational field can be
reduced to a pure tidal field based on Einstein’s equivalence principle. Remark: this principle would be violated
by a scalar-tensor theory of gravity and lead to the Nordtvedt effect. Regarding the gauge degree of freedom,
a physically meaningful choice implies that any gauge-dependent external multipoles which do not carry out
gravitational degrees of freedom are eliminated by infinitesimal coordinate transformations. The functional
form of the Riemannian curvature tensor is invariant with respect to such a transformation. The residual gauge
freedom can be used differently to take advantage of a certain property of the metric tensor. For instance, one
may stipulate the pure spatial part of the local metric tensor to be proportional to the unit matrix.

30.10 Transformation between BCRS and GCRS
Equation (210) indicates that we can transform between local and barycentric gravitational potentials based on
a given spatio-temporal coordinate transformation. In practice, choosing GCRS and BCRS as reference systems,
one applies the time scales T = TCG and t = TCB, respectively. Denoting GCRS coordinates by Xα and
BCRS coordinates by xµ, its transformations are equivalently given either by Xα = Xα(t, xi) (BK-approach)
or by xµ = xµ(T,Xa) (DSX-approach).
The IAU resolutions recommend, similarly to equations (207), the following explicit formulas (Soffel et al. [512])
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with
Ȧ(t) = 1

2 v
2
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The scalar and vectorial external potentials are to be computed again by linear superposition, according to
equation (153) but without Earth’s contribution, i.e. for the summation index we have A ̸= ⊕. For individual
contributions of third bodies one has to take the integrals following (152), as mentioned before. The quantity
Qa was already given by equation (162). Finally, Earth’s local scalar and vectorial gravitational potentials are
related to the barycentric ones via

W⊕(T,X) = w⊕(t,x)

(
1 +

2

c2
v2⊕

)
− 4
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vi⊕w
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)
+O

(
c−2
)
.

(227)
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In general, a consistent introduction of a local coordinate system requires the knowledge of the nature of every
involved fundamental field within the metric tensor because each one may show a specific behavior under
coordinate transformations. The solution for the field equations is to be found directly in this local coordinate
system and must be matched to the solution of the same field equations in the global coordinate system. The
correct relativistic space-time transformation between both systems then results from a combined use of the
transformation laws for the fields and the metric tensors, respectively (Kopejkin et al. [299]).
Remark: transformation (225) represents an approximative Lorentz transformation of special relativity extended
by gravitational fields and acceleration terms (Brumberg/Kopejkin [73], Soffel et al. [512]).
As mentioned before, nominal values of multipole moments (198) as being parameters of the gravitational field
are fitted to observations. This idea corresponds to the conventional (space) geodetic gravity field determination
approach. Earth’s scalar gravitational potential W⊕(T,X) may equivalently be written in the classical form as

W⊕ =
µ⊕

R

(
1 +

∞∑
l=2

l∑
m=0

(a⊕
R

)l
Plm(cos θ)

(
C⊕
lm cosmϕ+ S⊕

lm sinmϕ
))
+O

(
c−4
)
, (228)

where θ and ϕ are the polar angles corresponding to the spatial GCRS-related coordinatesXa. As usual, omitting
any terms of degree one imposes the constraint, that the coordinate system is centered at the body’s center of
mass. The spherical harmonic coefficients, now depending on T and R = |X|, are defined by (cf. equations (43)
and (44) in Soffel et al. [512])

C⊕
lm(T,R) = C⊕

lm(T )− 1

2(2l − 1) c2
R2C̈⊕

lm(T ) , S⊕
lm(T,R) = S⊕

lm(T )− 1

2(2l − 1) c2
R2S̈⊕

lm(T ) . (229)

Again, the set of the coefficients C⊕
lm(T ) and S⊕

lm(T ) is, to sufficient accuracy, equivalent to the set of the mass
multipole moments M⊕

L (T ). They are related to the approximatively constant classical spherical harmonic
coefficients clm and slm, which refer to a terrestrial system that rotates with the Earth (ECEF, e.g., ITRF), by
time-dependent transformations. Soffel et al. [512] discuss the orders of magnitude of individual terms in the
series expansion. As a result they state that, due to its tiny effects of order 10−27, the second time derivatives
from equation (229) can safely be ignored at present.

30.11 Remarks on various spin-related terms
Likewise, Soffel et al. [512] provide a quantitative appraisal of the vectorial gravitational potential. Most of the
practical applications certainly will not require an extensive series expansion of W a

⊕(T,X). Instead, it may be
sufficient to use the approximative expression

W a
⊕(T,X) =

G

2R3

(
S⊕ ×X

)a
, (230)

where S⊕ denotes Earth’s spin vector, remember our preliminary discussion of the gravitomagnetic field in
equations (112) till (120). As Soffel et al. [512] point out, it is of conceptual advantage to characterize W a

⊕
rather by the spin vector than by the angular velocity vector of the Earth, because it allows for the effective use
of well-defined multipole moments which are independent of any theoretical assumptions about the (irregular)
rotational motion of the Earth. Nonetheless, one can find earlier treatises that prefer the explicit use of Earth’s
angular momentum (e.g. Kusche [304]). In principle, Earth’s gravitomagnetic field may be detected by orbiting
superconducting gravity gradiometers (e.g. Gill et al. [209], Paik [400], Kopejkin et al. [299]).
For precise time scale comparisons it is necessary to account for the influence of major solar-system bodies like
Jupiter and Saturn, as we know already from equations (142) and (143). Following the IAU 2000 resolutions on
relativity, the transformation between TCB and TCG requires some additional spin-related terms. Considering
the spin of celestial objects one naturally prefers the use of a global metric, i.e. the application of barycentric
gravitational potentials. Based on equations (148) and (154) we may use the following alternative formulas,
which are approximative (by decomposing and partial neglecting) and augmented (by additional spin-dipole
moments) at the same time, for the metric tensor
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(231)
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and, besides the expansion in higher order multipole moments wL(t,x), for the remaining potentials
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∑
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Approximative spin values for Jupiter and Saturn are provided by the IAU resolutions, see Soffel et al. [512].
The mass monopoles (l = 0) of the individual bodies are included within the gravitational parameters µ.

30.12 Remarks on various kinds of mass-multipole moments

A generalization of the IAU 2000 resolutions on relativity may be achieved by the derivation of a scalar-tensor
theory of gravity, i.e., the additional inclusion of phenomenological parameters by introduction of a scalar field
besides the general relativistic tensorial field gαβ

.
Providing a detailed discussion on necessary steps for such a generalization is way beyond the scope of the present
work. Here we only adumbrate that it requires the introduction of several sets of multipole moments, namely
active mass multipoles IL, scalar mass multipoles ĪL, and spin multipoles (Kopejkin et al. [299]). In order to
satisfy various post-Newtonian laws of conservation, one has to linearly combine the different mass multipoles
which eventually leads to the definition of a new set of conformal mass multipole moments ĨL. Assuming an
isolated astronomical N-body system, in the global frame there exists a simple algebraic relationship, e.g. in
case of general relativity,

IL = ĨL + 1
2 ĪL . (233)

Similar relations apply for the case of individual sub-systems of bodies in the local frame. In practice, the
conservation laws contain some simplifying assumptions. For instance, one neglects any loss of energy or
momentum of the isolated system due to the withdrawing action of gravitational waves.
As with the several sets of (relativistic) mass multipole moments there exist several definitions of mass. The
baryon (rest) mass is defined as the integral of the before mentioned baryon mass density ρ∗ over the body’s
volume in local coordinates (in general a hypersurface of constant local time). Considering the relative velocity
of the body, its internal elastic energy, as well as its Newtonian gravitational potential, one can derive the
general relativistic post-Newtonian mass of the body (Will [586]). Regarding the conformal multipoles, this
relativistic mass is altered by some additional terms towards a conformal mass. Besides that, any tests on the
strong equivalence principle require the concept of an active mass of the body (Kopejkin et al. [299]).
The applicability and relative merits of different relativistic multipole definitions has yet to prove in practice.
For the moment it seems advisable to implement the IERS recommendations and conventions as accurate as
possible.

30.13 Gravitational potential knowledge and time transformation

Applications based on precise time and frequency measurements via modern atomic clocks or frequency stan-
dards require even more precise time coordinates and time transformation models. The capabilities of available
or foreseeable instrumentation requires an accuracy level of at least 10−18 for the uncertainty in rate and
fractions of a picosecond in amplitude for quasi-periodic terms.
The barycentric scalar gravitational potential can be decomposed into (Soffel et al. [512])

w = w0 + wL − 1

c2

∑
A

∆A , (234)

assuming that for earthbound clock experiments major solar system bodies like the Sun, Jupiter and Saturn
have to be taken into account. On one hand, we treat all third bodies simply as mass monopoles such that wL

comprises (higher order) mass multipole moments (l ≥ 1) only due to Earth. Therefore we may compute this
quantity by using the first equation of (205) or equation (228) and by applying the transformation (227).
On the other hand, we may include the spinning of the massive solar-system objects to account for the Lense-
Thirring effect. Such higher order effects are only of importance for extreme ambitious applications like relativity
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testing. Theoretically, the gravitational interaction of multipole moments of the primary body (e.g. Earth) with
an external tidal field induced by other bodies leads to deviations of the primary body’s (center-of-mass) world
line from a geodesic. This had to be taken into account in precise numerical calculations (Kopejkin et al. [299]).
In practice however, due to the uncertainties in the mass multipole moments, which at present still lead to error
levels that exceed the magnitude of all relativistic spin-related terms in Earth’s vicinity, it is not necessary to
account for these higher order effects at the moment. Furthermore, for earthbound clock readings it is sufficient
to retain only the ∆⊕-related term instead of all ∆A’s in the metric tensor (231).
In order to accurately account for all tidal effects, one finally will also have to incorporate any elastic deforma-
tions of the Earth’s body, which give rise to Newtonian and post-Newtonian responses, too. Consequently, a
relativistic theory of elasticity of a deformable body had to be developed (e.g. Xu et al. [607], [608], [609]). For
some preliminary studies we will neglect those higher order effects.
Consequently, the transformation between proper time τ of the (optical atomic) clock and coordinate time
(equating t with TCB) for now reads (Soffel et al. [512])

dτ

dt
= 1− 1
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2
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2 w

2
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8 v
4 + 4viwi +∆⊕

)
, (235)

which is more accurate than equation (133).
In the same manner one can set up a refined equation for the difference TCB − TCG, which makes use of the
external part of w0 only, i.e., without the contributions of Earth itself. The evaluation comprises planetary eph-
emeris data which are expressed various time scales, depending on the institution or research group. Therefore,
e.g., in case of using ephemeris time Teph, a slightly modification of the resulting final formulas may become
necessary (Soffel et al. [512]). Remark: today’s major planetary ephemeris providers adopted different time
scales (Folkner et al. [193], Pitjeva [423], Fienga et al. [183], [184]).
Comparing proper time against TCG is related to the GCRS metric tensor (158) and requires the accurate
knowledge of its associated potentials W and W a at the location of the clock. Earthbound applications are
based on the terrestrial time scale TT and its several realizations. The transformation between TT and TCG
depends on the nominal geoidal geopotential value W0 (Burša et al. [78], [79]), not to be confused here with the
gravitational potential W .
The uncertainty level in the determination process, that led to the current fixed value of W0, will become
insufficient for future highly precise time and frequency applications. Furthermore, it is not a trivial task to
realize the (time variable) surface of the geoid with an accuracy, say to the cm-level, which is necessary for the
exploitation of upcoming optical atomic clocks. Conversely, we may solve the inverse problem, i.e., determine
potential differences and consequently heights directly by chronometric leveling.

30.14 Topocentric reference system connected to (earthbound) observation sites

The application of general relativity in geodesy comprises several reference frames. Incorporating space geodetic
techniques implies the use of a (quasi-)inertial, i.e. barycentric, reference frame, whereas in Earth modeling we
prefer a (dynamically) non-rotating geocentric reference frame.
Furthermore, any geodetic measurements at distributed observation stations are related to topocentric reference
frames and its realizations (TRS). Of course, an earthbound station could also be replaced by a space-based
station, e.g. a satellite. In this case one had to rename TRS by SRS (satellite reference system).
Having discussed the transformation between BCRS and GCRS already, it remains to treat the transformation
between GCRS and TRS with due diligence, too. This is also required for the application of post-Newtonian
gravimetry and gradiometry accompanied by (optical) atomic clock readings. Remark: simplifications arise if
we assume clocks in rest with respect to Earth’s surface.
Next, we summarize fundamental relations that are readily available (e.g. Kopejkin [295], Kopejkin et al. [299]).
Let us first recap and substantiate the approximative local metric tensor (158):

G00 = −1 +
2

c2

(
W⊕(T,X)+QiX

i+ 1
2 QijX

iXj+ 1
6 QijkX

iXjXk
)
+

2

c4

(
Φ⊕(T,X)−W 2

⊕(T,X)− 1
2 Ψ̈⊕(T,X)

)
,

G0a = − 4

c3
W a

⊕(T,X) ,

Gab = δab

(
1 +

2

c2

(
W⊕(T,X)+QiX

i+ 1
2 QijX

iXj+ 1
6 QijkX

iXjXk
))
,

(236)



Outline of the mathematical framework 67

where, in accordance with equations (157), the essential potential functions are formally given by

W⊕ = G

∫
⊕

ρ∗(T,X′)

|X−X′|
d3X ′,

W a
⊕ = G

∫
⊕

ρ∗(T,X′)V a(T,X′)

|X−X′|
d3X ′,

Φ⊕ = G

∫
⊕

ρ∗(T,X′)
(

3
2 V

2(T,X′) + Π(T,X′)−W⊕(T,X
′)
)
+ tkk(T,X′)

|X−X′|
d3X ′,

Ψ⊕ = −G
∫
⊕

ρ∗(T,X′) |X−X′| d3X ′

(237)

with V = dX/dT denoting the GCRS related velocity of Earth’s matter, and tkk representing the trace of the
stress-energy tensor, which only in case of a perfect fluid simply reduces to 3p, as assumed in equations (157).
The coupling between Earth’s oblateness and the tidal gravitational octupole incorporates the conformal mass
concept along with the spin multipole moments (Kopejkin et al. [299]), but it can be approximated in reference
to Earth’s baryon (rest) mass and second moment of inertia, namely

M⊕ =

∫
⊕

ρ∗(T,X) d3X and Iij⊕ =

∫
⊕

ρ∗(T,X)XiXj d3X, (238)

such that the inertial force, representing the indirect flattening effect from classical geodynamics, may be
rewritten as

M⊕Qi = − 1
2 QijkI

jk
⊕ . (239)

From equations (168) and (169) we know already that any higher order tidal gravitational multipole moment is
obtained by partial differentiation of the external gravitational potential, i.e. QL = wext,L. For highly precise
applications relativistic terms must not be neglected.
Outside the Earth the metric potentials (237) can be expressed in terms of internal multipole harmonics with
respect to powers of a⊕/R with R = |X|, and a⊕ denoting Earth’s mean radius. Neglecting higher order terms
one gets, in accordance with equations (177), (178), (205) and (230), the specific expressions
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with the following approximative formulas for the defining expressions (198)

M⊕
L =

∫
⊕

ρ∗X̂L d3X, S⊕
i =

∫
⊕

ρ∗
(
X×V

)i
d3X, (241)

where we only retained the spin dipole moment, i.e., the intrinsic angular momentum of the Earth S⊕
i but an

infinite number of Newtonian mass multipole moments. The latter are equivalent to the classical geopotential
coefficients clm and slm. In case of axisymmetric mass distribution (only zonal coefficients Jl = −cl0) one finds
the simple relation (Kopejkin et al. [299])

M⊕
L =M⊕r

lJl ŝ
L, (242)

where r = |x − x⊕|, and s denotes the unit vector directed along the axis of rotation, i.e. S⊕ = S⊕ s with
S2
⊕= δijS⊕

i S
⊕
j .

Being the proper reference frame of the observer, we replace T by τ in case of a (dynamically) non-rotating TRS.
In accordance with the theory of general relativity one may use any coordinates to describe local measurements.
Following the IAU recommendations we applied the harmonic gauge before. Consequently, as with the BCRS
and GCRS, again we choose so-called harmonic coordinates ξα = (cτ, ξi), which satisfy the homogeneous
D’Alembert equation, i.e. �ξα = 0. This choice is convenient for our purposes because it leads to simplified
practical calculations in case of our intended slow-motion and weak-field applications. The spatial coordinates ξi
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can be interpreted as Euclidean coordinates from Newtonian theory. They are no longer harmonic if we introduce
(rigid) rotations.
The observer (atomic clock) is assumed not to be affecting the gravitational field by itself, and its mass to be
negligibly small. Thus, we can set any of its corresponding mass-describing functions (mass density, energy-
density, stresses etc.) equal to zero. Denoting the TRS related metric tensor by Gµν , not to be confused here
with the Einstein tensor (73)) or the tidal quadrupole matrix (216), we get

Gµν(τ, ξ) = diag
(
−1 + Ξ(τ, ξ), 1 + Ξ(τ, ξ), 1 + Ξ(τ, ξ), 1 + Ξ(τ, ξ)

)
(243)

with (Kopejkin [295], Kopejkin et al. [299])
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iξjξk
)
, (244)

where the STF tensors EL are taken at the TRS’s origin as follows from the the solution of the homogeneous
Laplace equations. In case of an earthbound system we have a non-vanishing inertial acceleration Ei of Earth’s
gravity with post-Newtonian corrections taken into account, and therefore TRS itself is a non-inertial system.
Ground-based accelerometer measurements (gravimetry) of the force F i acting upon a test mass m at TRS’s
origin will deliver information about the acceleration because Ei = F i/m. For a satellite with drag-free control
system (free falling experiment) we have Ei = 0 for the SRS, of course. As always, one can split this expression
into a Newtonian and post-Newtonian part, i.e. Ei = gNi +gPN

i /c2+O(c−4), where the letter g implies a strong
relation with the classical acceleration of gravity.
The tidal forces, related to Eij and Eijk, can be measured by means of gradiometry, again centering the in-
strument at the origin of the topocentric system (TRS or SRS). Post-Newtonian gravimetry and gradiometry
are based on its respective classical counterparts but with consideration of non-negligible relativistic effects due
to the improved sensitivity of contemporary instruments. Future devices will incorporate quantum engineering
techniques but classical test masses are still common today, e.g. in superconducting gravity gradiometers. Mea-
surements of the strength and direction of a gravitational field (gravimetry) and its differential acceleration over
a unit distance (gradiometry) will prospectively be accompanied by (optical) atomic clock readings, thus accu-
mulating the arsenal of instrumentation for relativistic geodesy. Successful application requires the availability
of the final relationship between GCRS and TRS/SRS. In general, we will denote the origin of the TRS/SRS
by a subindex T , and again any (atomic) clock-related quantity will be indicated by a subindex A.

30.15 Specific relations between geocentric time and proper time
The transformation between GCRS and TRS reads
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with RT = X − XT , and VT = dXT /dT . Please note that VT ̸= dRT /dT . Considering as a special case a
clock A as being the observer (origin of the TRS), we get RT = RA = 0, and therefore equation (245) will
simply provide the relationship between proper time τ and geocentric time T = TCG, namely
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In general, we have
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2 Ψ̈⊕ ,

dRab

dT
= 3V

[a
T W

,b]
⊕ − 4W

[a,b]
⊕ + V

[a
T E

b]
,

Zab = δab
(
W⊕ +QiX

i
T + 1

2 QijX
i
TX

j
T + 1

6 QijkX
i
TX

j
TX

k
T

)
(247)

with all potential functions on the right hand side evaluated at XT . The matrices Rab(T ) (referring to the spatial
axes’ precession/rotation) and Zab(T ) (related to the spatial coordinates’ grid contraction) are anti-symmetric
and symmetric, i.e., Rab = −Rba and Zab = Zba, respectively. Again, one can derive formulas for the combined
effect of the various precessional motions.
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Putting the clock (or any other geodetic instrument) at rest with respect to the dynamically non-rotating GCRS,
i.e., setting VT = VA = 0, resembles as a special case the form of expressions (133) or (136), (225), and (235),

T − τ =
1

c2

∫
W⊕ dT +

1

c4

∫ (
− 1

2 W
2
⊕ +Φ⊕ − 1

2 Ψ̈⊕

)
dT =

1

c2

∫
V⊕ dT, (248)

where we introduced the generalized gravitational potential (Kopejkin et al. [299])

V⊕ =W⊕ +
1

c2

(
− 1

2 W
2
⊕ +Φ⊕ − 1

2 Ψ̈⊕

)
. (249)

30.16 Post-Newtonian gravimetry and gradiometry

Gravimeter measurements alone only provide non-separable information on the Newtonian and post-Newtonian
acceleration of gravity, because both

gNi = V⊕,i −Ai
T +Qi +QijX

j
T + 1

2 QijkX
j
TX

k
T ,

gPN
i = 4

(
Ẇ i

⊕ + V k
TW

i
⊕,k − V k

TW
k
⊕,i

)
− 3
(
V i
T Ẇ⊕ −Ai

TW⊕
)
−

−7
2V

i
TV

k
TW⊕,k + 2V 2

TW⊕,i − 1
2V

i
T

(
Ak

TV
k
T

)
− V 2

TA
i
T + gNj R

ij

(250)

are composed of various superimposed effects. As before, XT and VT are the GCRS-related coordinates
and velocity of the observer (gravimeter test mass in this case), and accordingly AT = dVT /dT denotes its
acceleration. Kopejkin et al. [299] discuss additional aspects when introducing specialized terrestrial reference
frames, i.e. details on the consistent treatment of rotational effects, precession, nutation, etc. The second
equation of (250) indicates a dependency on both potentials (Newtonian and gravitomagnetic), the observer’s
velocity and acceleration, as well as various correlations between all those quantities.
Besides gravimetry one can gain information on Earth gravity field by means of (relativistic) gradiometry.
The basic principle is to precisely measure the deviation of world lines of various test masses. By means of
a gradiometer at the origin of the TRS (local observer) one measures the quadrupole tidal field Kij and its
spatial derivative (octupole tidal field Kijk), which directly relate to the Riemannian curvature tensor. Again
separating Newtonian and post-Newtonian parts, one gets (neglecting higher order terms)

Kij = −R0i0j = KN
ij +

1

c2
KPN

ij , Kijk = −R0i0j,k = KN
ijk (251)

with the individual tidal matrices (Kopejkin et al. [299])

KN
ij =W⊕,⟨ij⟩+3Qij+15QijkX

k
T , KN

ijk =W⊕,⟨ijk⟩+15Qijk , KPN
ij = 2KN

k⟨jRj⟩k+K
GE
ij +KGM

ij , (252)

where the gravito-electric (GE) and gravito-magnetic (GM) post-Newtonian tidal matrices read

KGE
ij = Φ⊕,⟨ij⟩−2W⊕W⊕,⟨ij⟩− 1
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T W
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⊕ +2V 2

TW⊕,⟨ij⟩−3V k
T V
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T W
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⊕ +3A

⟨i
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T −6A
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ij = 4
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⟨i,j⟩
⊕ + V k

TW
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⊕ − V k
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k,⟨ij⟩
⊕

)
.

(253)
For the partial derivatives of Earth’s gravitational potential one obtains

W⊕,⟨ij⟩=
3µ⊕

R5

(
XiXj −R2

3
δij
)
− 2G

∞∑
l=2

(2l + 1)!!

(l − 1)!

M⊕
L(iX

j)XL

R2l+3
+G

∞∑
l=2

(2l + 3)!!

l!

M⊕
LX

L

R2l+5

(
XiXj − R2

2l + 3
δij
)
,

W⊕,⟨ijk⟩= −15µ⊕

R7

(
XiXjXk −R2

5

(
δijXk + δjkXi + δikXj

))
.

(254)
Furthermore, the following Newtonian (point mass) approximations for the tidal terms should be sufficient:

Qij =
∑
A̸=⊕

3µA

r3⊕A

(
ni⊕An

j
⊕A − 1

3
δij
)
, Qijk =

∑
A̸=⊕

15µA

r4⊕A

(
ni⊕An

j
⊕An

k
⊕A − 1

5

(
δijnk⊕A + δjkni⊕A + δiknj⊕A

))
(255)

with r⊕A(t) = x⊕(t)− xA(t), r⊕A = |r⊕A|, and n⊕A = r⊕A/r⊕A.
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Under certain assumptions on Earth’s body, e.g., stationary rotation and invariant multipole moments, one can
simplify the expressions for the gravito-electric and gravito-magnetic tidal matrices, retaining only major terms:

KGE
ij =

3GM⊕

R3

((
2V 2 − 3GM⊕

R

)
N ⟨iN j⟩ + V ⟨iV j⟩ − 3(N ·V)V ⟨iN j⟩

)
,

KGM
ij =

3GS⊕

R4

(
5(N ·V)(s×N)⟨iN j⟩ − 5

(
(s×N) ·V

)
N ⟨iN j⟩ − 3(s×V)⟨iN j⟩ − (s×N)⟨iV j⟩

)
,

(256)

where N i= N = X/R represents the GCRS-related unit vector. Kopejkin et al. [299] provide explicit formulas
for an Earth orbiting satellite, i.e. the SRS case, using classical Keplerian elements. Following this approach one
can draw conclusions on the measurability and separability of individual tidal terms based on a certain orbit
configuration. These results are important for future gradiometry space missions.

30.17 Definition of a relativistic geoid
Focussing on height determination by means of atomic clock readings, naturally the question of a suitable
reference surface arises. The classical definition of the geoid in Newtonian gravity has to be refined within the
framework of relativistic geodesy. This issue was also already addressed in parts by Bjerhammar [46].
Even though traditional geoid computation today aims at the mm-level, it still neglects any post-Newtonian
corrections that are of the same order of magnitude, which eventually leads to a bias in the geoid determination.
Two seemingly distinct definitions for a relativistic geoid do exist (Soffel [511]):
The first one is based on the rate ratio of two time scales, namely proper time τ versus GCRS time T , the latter
being regarded as kind of a coordinate time. For any point of the two-dimensional reference surface (T -geoid)
one simply stipulates that dτ/dT = const =:W0, assuming that τ relates to a stationary observer with respect
to the geocentric frame, i.e. RA = 0 and ṘA = 0. In order to derive an explicit approximative expression
for W0 remember equations (245) and (247), thus (remark: there was a mismatch in some coefficients between
Kopejkin [295] and Kopejkin et al. [299])

W0 = 1
2V

2
A +W⊕ +QiX

i
A + 1

2 QijX
i
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j
A + 1

6 QijkX
i
AX

j
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k
A +

+
1
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(
1
8 V

4
A + 3

2 V
2
AW⊕ − 1

2 W
2
⊕ − 4V a

AW
a
⊕ +Φ⊕ − 1

2 Ψ̈⊕

)
≈ 1

2V
2
A +W⊕ +

1

c2

(
Φ⊕ − 1

2W
2
⊕

)
= const.

(257)

Alternatively, we could have used equation (246) for the differentiation, of course. Even if ṘA = 0, and in
general VA ̸= 0, the evaluation of the product rule outcome for the second bracket term of the first equation
in (245) yields a zero result, i.e. AA ·RA +VA · ṘA = 0. Furthermore, due to the fact that W0 by definition is
a constant anywhere on our surface, we can drop the subindex for the observers’ (clock’s) geocentric position
and velocity altogether.
The second relativistic geoid definition is based on the inertial acceleration (of gravity) which is directly related
to the concept of a plumb line. Now, at any point of the two-dimensional reference surface (A-geoid), one
stipulates that T = const, thus dT = 0, and the surface being orthogonal to the plumb line, represented by the
topocentric direction of Earth’s gravity, i.e., the scalar product E · dξ = Ei dξ

i = 0. This time we exploit the
second equation of (245) by taking its differential. Again one can suppress the subindex because relation (245)
shall hold for any point of the surface. Applying the defining condition, expressing Ei with help of equations
(250), taking the differential of W0 based on equation (257), and assuming a constant rigid-body rotation for
the Earth’s matter, Kopejkin et al. [299] finally obtain the simple relationship

Ei dξ
i = dW0 = 0, (258)

which is in agreement with the first definition. Thus, both definitions are equivalent. The gradient of W0 can
be used to express Earth’s gravity force on the surface of our defined relativistic geoid:

Ei =
∂W0

∂ξi

∣∣∣∣
T=const

=
∂W0

∂Xk

∂Xk

∂ξi
. (259)

The question arises whether the relativistic geoid can be regarded as an equilibrium figure. Kopejkin et al. [299]
affirm this question by making the assumption that Earth’s matter is a rigidly rotating perfect fluid. This result
would eventually back the introduction of a relativistic level surface. Nevertheless, this issue has to be addressed
carefully again in the course of practical clock experiments, i.e., chronometric leveling campaigns, especially in
the context of realistic tidal considerations.



Clock based height determination
As mentioned before, various geophysical effects significantly change the potential regime at a clock site within
a comparatively short period of time. One of the most obvious effects is due to the Earth’s tides. Additionally,
the resulting spatial site displacement itself may lead to a non-negligible frequency shift due to the relativistic
Doppler effect. On the other hand, accurate clock readings still require comparatively long interrogation times.
In the following we exemplarily estimate and illustrate these tidal effects, which are crucial for the chronometric
leveling approach, i.e., the direct determination of potential differences by means of (atomic) clock readings.
The first paragraphs motivate this task a little bit further via a discussion of various aspects of classical (non-
relativistic) methods of height determination as traditionally being applied within physical geodesy. Especially,
we recap selected time scales and height definitions. A larger portion of this chapter is devoted to a detailed
treatment of tides and its implications. At the end we present some estimates on the feasibility, i.e., necessary
sensitivity, of proposed clock comparison campaigns.

31 Practical time scales and their relations
Geodesy and related disciplines make use of various time scales. A detailed description is provided by updated
IERS conventions (e.g. IERS TN36 [257]). Several links between individual time scales are depicted in figure 1,
whereas the essential relations are given by (Müller [377], Nothnagel et al. [394])

UT1 = UT0 −
(
xp sinλ+ yp cosλ

)
tanϕ ,

UT2 = UT1 + 0.022 sin 2πTB − 0.012 cos 2πTB − 0.006 sin 4πTB + 0.007 cos 4πTB ,

UT1R = UT1 −
41∑
i=1

Ai sin

 5∑
j=1

kijαj

,
UT1D = UT1 −

8∑
i=1

(
Di sin ξi + Ei cos ξi

)
with ξi =

6∑
j=1

cijγi +Φi,

MLT = UT1 + λ ,

TLT = MLT + EOT ,

(260)

for solar time scales, and by

GMST = UT1 + 24110.54841 + 8640184.812866T + 0.093104T 2 − 0.0000062T 3,

LMST = GMST + λ ,

GAST = GMST +∆ψ cos εA + 0′′.00264 sinΩ + 0′′.000063 sin 2Ω ,

LAST = GAST + λ ,

(261)

with T = (TJD − 2451545.0)/36525 for sidereal time scales, and by

UT1-UTC = defined by IERS by means of space geodetic techniques ,

TZT = UTC ± k(λ)hrs (longitude dependent Time Zone Time) ,

JD = several algorithms (depending on the time scale used) exist to calculate JD from civil date
(year, month, day, hours, minutes, seconds, leap year rule), cf. Vallado/McClain [561] ,

(262)
for universal time scales, and by

TAI = UTC +


... (for a historical list of leap seconds, starting in 1972, cf. NIST [392])

34 s since 01.01.2009
35 s since 01.07.2012

,

TP-TAI = determined by means of astronomical observations ,

TGPS-TAI = comparison of different defining atomic clock ensembles ,

(263)
for atomic time scales, and by
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Fig. 1: Time scales and their relations, based on illustrations in Müller [377].
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TDT = TAI + 32.184s ,

TT ≡ TDT ,

TDB = TDT +
1

c2
v⊕
(
x− x⊕

)
+

122∑
i=1

(
B0i+B1iT+B2iT

2
)
sin(niT + αi),

TB ≡ TDB ,

ET ≈ TDT (Ephemeris Time was not specified based on the theory of relativity;
in its uncertainty ET approximates a number of dynamical time scales) ,

TCG = TDT +
1

c2
W⊕

∣∣∣
geoid︸ ︷︷ ︸

=: k⊕ ≈ 0.7·10−9

∆TJD1.1.1977 ,

TCB = TCG +

∫ (
1

c2
Wext

∣∣∣
xB
⊕

+
1

c2
vB⊕

2

2

)
dt+

1

c2
vB
⊕
(
xB − xB

⊕
)

= TCG +
(
TDB − TDT

)
+

(
1

c2
Wext

∣∣∣
xB
⊕

+
1

c2
vB⊕

2

2

)
︸ ︷︷ ︸

=: kB ≈ 1.48·10−8

∆TJD1.1.1977 ,

= TDB +
(
k⊕ + kB

)
∆TJD1.1.1977

TCGAL = TCB +

∫ (
1

c2
Wext

∣∣∣
xG
B

+
1

c2
vGB

2

2

)
dt+

1

c2
vG
B

(
xG − xG

B

)

TCL = TCG +

∫ (
1

c2
Wext

∣∣∣
x⊕
L

+
1

c2
v⊕L

2

2

)
dt+

1

c2
v⊕
L

(
x⊕ − x⊕

L

)

(264)

with ∆TJD1.1.1977 =
(
TJD − 2443144.5

)
86400s for theoretical time scales, where indices G,B,⊕, and L denote

the galactic, (solar system) barycentric, Earth’s, and local observer’s center of mass, respectively. The latter
might also refer to a satellite reference system (SRS).
Another common quantity, namely the Earth Rotation Angle (ERA), refers to the Celestial Intermediate Origin
(CIO) and represents an angle measured along the intermediate equator of the Celestial Intermediate Pole (CIP)
between the CIO and its terrestrial counterpart TIO (Terrestrial Intermediate Origin), the latter being the non-
rotating origin of the ITRS. Thus, this quantity plays an important role in the ICRS-ITRS transformation. It is
counted positively in retrograde direction and there exists the following linear proportionality to the time scale
UT1 (IERS TN29 [255]), the latter of which is affected by the variable speed of the Earth’s rotation,

ERA(TUT1) = 2π
(
0.7790572732640 + 1.00273781191135448TUT1

)
(265)

with TUT1 = JDUT1 − 2451545.0. Via the so-called „equation of the origins“ (IERS TN36 [257]) it is related to
the sidereal time scale GMST by

GMST = ERA + 0′′.014506 + 4612′′.156534t+ 1′′.3915817t2 − 0′′.00000044t3 − 0′′.000029956t4 − 0′′.0000000368t5

(266)
with t = (TT − TT01Jan2000 12hrs) in days/36525.
Details on the individual unspecified parameters and terms in equations (260) - (266) are provided by many
authors (e.g. Müller [377]). Some of the relations are relevant for relativistic geodesy and were already discussed
in the preceding sections, for example in equation (225) which is just an alternative expression for TCB−TCG.
The most relevant time scale transformation, not explicitly shown in figure 1, is the relation between individual
atomic clocks’ local proper time τ and the geocentric coordinate time TCG as given in equations (245) - (249).

32 Potential differences and classical height systems
The term „height“ (Meyer et al. [360]) can be defined as the metric length of a straight or curvilinear ray of
projection of a point onto a reference line (2D case) or reference surface (3D case) (Lelgemann/Petrovic [324]).
Following this definition, it is always a geometrical entity and shall be representable in a graphic way.
Different physical scalar fields can be used to set up a specific concept of height. Essentially, one regards the
fields’ isoscalar surfaces as surfaces of constant height. Exemplarily, gravimetric height determination is based
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on the gravity field of Earth’s masses, barometric height determination relates to the pressure field of Earth’s
atmosphere, and chronometric height determination will make use of a suitable isolated systems’ metric tensor.
Here we briefly discuss selected aspects of classical height measurement based on Earth’s gravity potential which
are of interest for later comparison to the relativistic chronometric leveling approach.
Only coincidentally isoscalar surfaces will be parallel and with a constant metric distance to each other. Thus,
one can not assign a unique metric height measure to points on different equipotential surfaces, and any pure
geometrical leveling between two given points will yield a path dependent metric height difference. Aside from
certain special cases (e.g. radial symmetric equipotential surfaces), the determination of unique (geo)potential
differences (or height differences) requires simultaneous measurements of gravity along the leveling path. Basi-
cally (Heiskanen/Moritz [239], Torge [550]),

WB −WA =

B∫
A

dW =

B∫
A

∇W · dr =

B∫
A

g · dr =

B∫
A

g · n dr = −
B∫

A

g dn, (267)

where we stipulate that equipotential values of the gravity field decrease with increasing height.
In classical physical geodesy a variety of height systems and corresponding reference surfaces exists. Geodesists
distinguish geometrically defined heights (e.g. ellipsoidal) from physically defined (metrical) heights (e.g., dy-
namical, orthometric, spheroidal or normal-orthometric, normal), where the latter are somehow connected to
gravity and are derived from raw path dependent heights which do not comprise any consideration of gravity
at all. In a strict sense, normal-orthometric heights are rather geometrically defined than physically, as we will
point out later. Physically defined height systems can be related to a specific geometrical reference surface, e.g.,
the level ellipsoid of revolution. For some height transformations this requires an additional transition between
geometrical surfaces, too.
Several height definitions theoretically lead to path independency but in practice, due to systematic errors, there
will almost always remain a (residual) path dependency. This question is of importance if one has to transform
between different height systems. As long as the involved height definitions are path independent, we can use
areal transformations, otherwise line-wise transformations apply.
Physically defined heights are related to metric distances along plumb lines, i.e., orthogonal trajectories of the
geoid or quasi-geoid, whereas geometrically defined heights are measured along normal lines to a given geometric
reference surface for position determination. The latter can be irregular in shape but preponderantly one simply
uses ellipsoids of revolution.
Figure 2 depicts various height systems and its relations. For example, orthometric heights are based on the
geoid concept, whereas normal heights are related to the quasi-geoid. As a result, its transformation is identical
to the difference function between those two reference surfaces.
The geoid (e.g. Heiskanen/Moritz [239], Hofmann-Wellenhof/Moritz [249]) acts as both a physical and geome-
trical reference surface. A physical reference surface in the sense of an equipotential surface of the vertical
datum has the advantage of always being unique, whereas a geometrical reference surface may not always be
uniquely defined, e.g., in case of dynamical or normal heights. Constituting a drawback of physical heights, the
underlying scalar field may change in time leaving the geometry of pegged height reference stations invariant.
Practically, the geoid can be determined as solution of a free boundary value problem in the sense of Stokes
or from the knowledge of Earth’s exterior gravity field (as derived by means of satellite geodesy techniques)
in combination with a downward continuation. Traditionally, the gravity field and its functionals like (quasi-)
geoid heights, deflections of the vertical etc., can be expressed by means of series expansions using spherical
harmonics.
One treats the classical geoid as a selected equipotential surface that, after some slight idealization, more or
less fits well to the shape of Earth’s mean oceanic surface, assuming an equilibrium state for the oceans and
atmosphere, i.e., being at rest relative to the rotating Earth. We usually assign the so-called geoidal geopotential
value W0 to this particular equipotential surface. Along with astronomical position coordinates Φ (latitude)
and Λ (longitude) one can introduce the height coordinate W in order to define a set of natural coordinates
for each point in the exterior space of Earth. Instead of W itself one often uses the corresponding geopotential
number C =W0 −W as height coordinate. Thus (Torge/Müller [551]),

CP =

P∫
P0

g dn =W0 −WP , (268)

such that CP0 = 0 and CB −CA =WA −WB , where the geopotential number can be expressed in geopotential
units (gpu) with 1gpu = 1kgalm. With g ≈ 0.981kgal this implies that 1gpu approximately corresponds to a
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Fig. 2: Classical height reference systems, based on illustrations in Ilk [260]. For details see main text.

metric height difference of 1m. Geopotential numbers are unique and well-defined but for practical purposes we
prefer metric height systems that at all points have the same scale. As a compromise one theoretically defines
physical metric heights H by relating geopotential numbers C to certain gravity values via

height value =
geopotential number

gravity value
,
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where the resulting height system mainly depends on the actual choice of the gravity value. In the past
there was limited access to precise gravity measurements. Furthermore, practical applications impose different
requirements on the accuracy of gravity information. Several alternatives have been proposed which will be
denoted by a corresponding upper index: Dynamic, Orthometric, Spheroidal or normal-orthometric, Normal.

In case of spheroidal heights, for the determination of the geopotential number, one replaces real measurements
of the gravity value g by calculated normal gravity values γ along the leveling path, based on a resulting normal
gravity potential as induced by a chosen reference body. According to equation (268) one gets

CD
P = CO

P = CN
P = CP =

P∫
P0

g dn and CS
P =

P∫
P0

γ dn . (269)

Dynamic heights make use of a constant (arbitrary) normal gravity value γ0, e.g., at the geometrical reference
surface for the normal gravity potential. If we choose a rotational ellipsoid as reference body for the normal
gravity potential then γ0 will be latitude dependent only. Any equipotential surface of the gravity field is
identical to a surface of constant dynamical height. To define a certain geometrical reference for the surface
of the Earth, i.e., a dynamical vertical datum, one can simply stake off the same metrical distance (dynamical
height value) along the plumb line through any point of a chosen corresponding equipotential surface.

Orthometric heights require the knowledge of a mean gravity value ḡ along the path of the plumb line from
the geoid point up to the surface point of interest. In general, this information can not be gathered by direct
measurements. One rather relies on indirect, e.g. seismic, measurements and/or on assumptions on Earth’s
interior, i.e., its mass/density distribution, and on its rotational behavior. There exist several slightly differing
methods on how to determine ḡ in practice.

In order to circumvent some difficulties, one may instead use a mean normal gravity value γ̄ along the plumb line
of the normal gravity field from the geometrical reference surface for the normal gravity potential (e.g. reference
ellipsoid of revolution) up to the corresponding telluroid point of our point of interest. The shape of the telluroid,
which is defined as the surface for which WP = UQP

(cf. figure 2) holds for every point, resembles that of the
physical surface of the Earth (Torge [550]). The telluroid itself is not a level surface of the normal gravity field.
As a remark, the before mentioned plumb line is not identical to the normal (of the ellipsoid) but in practice
its lengths are almost the same. Equipotential surfaces of an ellipsoid of revolution are not ellipsoidal in shape.

Having introduced the concept of geopotential numbers, in a second independent step one defines corresponding
metric heights by

HD
P =

CP

γ0
, HO

P =
CP

ḡ
, HS

P =
CS

P

γ̄
, HN

P =
CP

γ̄
. (270)

The precise definition of heights remains a subtle task. There exist arguments against the above mentioned
classical view. Normal-orthometric heights have to be regarded as geometrically rather than physically defined,
because they are not based on real geopotential differences but on the arbitrary introduction of a normal gravity
field. Furthermore, normal heights are based on a pure formal definition. Many artificial concepts, e.g., the
quasi-geoid and telluroid, may be expendable and some of the traditional height definitions, e.g. dynamical and
normal heights, are only substitutes or auxiliary concepts for more relevant and better interpretable quantities
like geopotential numbers, normal-orthometric heights, and ellipsoidal heights (Lelgemann/Petrovic [324]).

Several height measurement methods are available, differing in accuracy, effort for the measurement itself, and
post-processing. Many leveling techniques do exist already: geometrical (horizonal line of sight apart from
refraction effects), trigonometrical (slant line of sight), geodetic (combination of geometrical leveling plus point-
wise gravity measurements along the leveling path), geometrical-astronomical (with zenith angle measurements),
trigonometric-astronomical, GNSS (aiming at ellipsoidal heights employing satellite geodesy methods). Chrono-
metric leveling (based on clock comparisons) will become another alternative. Heights may also be determined
based on trigonometrical, photogrammetrical, inertial, or barometrical measurement techniques, etc.

The precise raw geometrical leveling result

∆nAB =
B∑
A

∆ni (271)

has to be supplemented by a reduction RAB due to gravity effects in order to obtain path independent height
differences, i.e. ∆HAB = ∆nAB + RAB . Alternatively, the reductions can directly be applied to corresponding
geopotential number differences. The actual reduction itself depends on the requested kind of height.
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The following resulting formulas can be applied in practice:

RD
AB =

B∑
A

ḡi−1,i − γ0
γ0

∆ni ,

RO
AB =

B∑
A

(
ḡi−1,i − γ0

γ0
∆ni +

ḡi−1 − γ0
γ0

HO
i−1 −

ḡi − γ0
γ0

HO
i

)
,

RS
AB =

B∑
A

(
γ̄i−1,i − γ0

γ0
∆ni +

γ̄i−1 − γ0
γ0

HS
i−1 −

γ̄i − γ0
γ0

HS
i

)
,

RN
AB =

B∑
A

(
ḡi−1,i − γ0

γ0
∆ni +

γ̄i−1 − γ0
γ0

HN
i−1 −

γ̄i − γ0
γ0

HN
i

)
.

(272)

Obviously,

RN
AB = RS

AB +
B∑
A

ḡi−1,i − γ̄i−1,i

γ0
∆ni−1,i . (273)

Normal-orthometric heights will differ noticeably from normal heights only in case of very inhomogeneous
gravitational fields and significant height differences. In equation (272) dashed quantities indicate mean values,
where those with a single index are averaged along the plumb line and those with two indices are averaged
between two neighboring surface points along the leveling path.

33 The global vertical datum problem
Besides the task of height system definition, the linking problem between regional vertical datum systems has
to be addressed. One finally aims at an integrated vertical datum system which possibly comprises multiple
datum shifts in order to obtain a consistent global vertical datum system (Ihde/Sánchez [259]).
Based on the availability of a precise high-resolution global gravity field model, one traditionally formulates
this task as a geodetic scalar boundary value problem which is related to the determination of a mean sea level
(Rummel/Teunissen [462], Rapp [445], Sánchez [467]). Neighboring height systems are often separated by marine
areas, either on local scale within insular/coastal regions or on a global scale between individual continents.
Even in continental Europe there are various national height systems in use that show significant discrepancies.
Several applications in Earth system research require unified height systems on a continental and global scale.
The reference surfaces of regional vertical datum systems can be regarded as equipotential surface sections
belonging to one and the same gravity field but, in general, referring to different levels, see figure 3. Regionally
defined geoid sections will have no direct relation to each other. Instead, on a global scale, we face numerous
datum shifts that have to be determined precisely. The gravity field model must be of a very high (spatial)
resolution because of its usual representation in spherical harmonics. As a remark, alternative (locally valid)
representations do exist, e.g., radial base functions. Any geoidal height or regional gravity measurement at an
arbitrary location, in principle, depends on globally distributed gravity anomalies which should be related to a
(still non-realized) unified and consistent reference surface.
Theoretically, the equipotential surface W0 = const could act as a global vertical datum, but existing global
geoid models are by far not precise enough (in terms of resolution) in order to allow for a sufficient solution.
Details on the practicability of W0 and its approximative value of W0 = 62636856.0m2/s2 for the realization of
a global vertical reference system (GVRS) are provided in Burša et al. [79].
Today, geodesists mostly apply global space geodetic techniques (delivering ellipsoidal heights), supplemented by
regional leveling and terrestrial gravity measurements combined with satellite gravimetry, in order to tackle the
vertical datum integration problem. In continental areas, GNSS, SLR, and VLBI are applied, whereas oceanic
areas are mainly covered by altimetry. Traditionally, tide gauges are being utilized in coastal regions to realize
the linking of continental and marine topographies. Several solution strategies evolved in the past. Combination
of satellite positioning with geodetic leveling can be applied in continental areas. Oceanic areas allow for a
combination of satellite altimetry with oceanic leveling (steric and/or dynamic/geostrophic) (e.g. Stewart [528]).
Fischer [186] discusses conceptual differences between genuine geodetic and oceanographic measurements and
reference surfaces. The collection of precise data with high spatial and temporal resolution, especially in the
marine areas, is greatly facilitated by dedicated space missions like GRACE or GOCE (Rummel et al. [463]).
The oceanic leveling technique in analogy with geodetic leveling is being used to derive geopotential differences
and dynamic height differences between different ocean surface points by means of a line-wise integration of
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Fig. 3: Integrated global vertical datum problem, based on illustrations in Ilk [260]. For details see main text.
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geometric height increments in combination with gravity information. But this time it depends on a different
set of observations, namely surface and volume forces which can be modeled by such parameters as temperature,
pressure, saltiness, and so on. Furthermore, the technique is based on the hydrodynamic equation of motion of
the individual water particles.
In comparison we have (e.g. Cartwright [93])

geodetic leveling: WAB =WB −WA =

B∫
A

g · dr ,

oceanic leveling: WAB =WB −WA =

B∫
A

(
1

ρ
∇p+ 2ω⊕ × v

)
· dr ,

(274)

where ρ denotes the ocean water density, p is a pressure function, and v represents the velocity of the water
particles. Depending on the integration path there are several ways to evaluate the integral. For example, the
steric leveling technique requires depth dependent density measurements by applying

WAB =

B∫
B′

1

ρ
dp−

A∫
A′

1

ρ
dp , (275)

with A′ and B′ being submarine points along the corresponding plumb lines through A and B which are located
on the same isobaric surface (level of no-motion), i.e., pA′ = pB′ which is equivalent to WA′ =WB′ . Other ways
comprise different observations, e.g., surface water velocity measurements in case of the dynamic/geostrophic
leveling technique.
Regarding the problem of an integrated global vertical datum system, there already exist classical theoretical
approaches, but a satisfying solution is still missing. One major limiting factor, in practice, is the insufficient
amount of accurate and globally distributed data. Furthermore, the dynamical ocean topography can not be
modeled with the same level of precision as associated with today’s regional height systems. Additionally, the
various existing height systems are not consistent in definition and level of accuracy. These drawbacks prevent
us from bridging oceanic areas and linking of the individual systems. Significant progress in the introduction
of a globally valid vertical datum is expected by the successful revival of an alternative approach, namely the
chronometric leveling by making use of precise atomic clocks.
In order to predict and study the usability of proposed clock experiment setups for the precise chronometric
determination of potential differences, we will start with simple simulations on the expected time-varying state
(due to tides) of an ensemble of clocks purely in terms of relative motion to each other and its individual posi-
tions within the same gravitational field. For any calculations, a specific geographical distribution of clock sites
will be chosen, i.e., we consider this (geophysical) state information as accurately known and not as possibly un-
known parameters to be additionally estimated for by analysis of the clock readings in a subsequent adjustment
procedure. This idealized situation enables us to assess the influence of individual effects on planned observa-
tions. Especially, we can separate major geophysical phenomena from instrumentarium specific performance
issues that finally enter our judgement on its future geodetic usability.
The precise determination of heights within the framework of relativistic geodesy requires the usage of a consi-
stently defined set of reference systems and its realizations, i.e. its materialization by corresponding reference
frames. Several initiatives exist among geodesists (e.g. Nothnagel et al. [394]) to ensure the implementation of
the latest refinements in modeling and resulting recommendations on the various definitions and conventions,
and to achieve further improvements in terms of precision, accuracy, and long-term stability. Some fundamental
remarks on the coherent treatment of concepts like reference systems, reference frames, geodetic datum and its
subtleties are addressed in Drewes [145].
Driven by the demands of other communities’ requirements (e.g. in climate or environmental research), one
currently aims at globally valid four-dimensional reference systems (Soffel/Langhans [514]) (geometric and
dynamic) that provide benchmarks to which one can reliably refer, over decades, Earth system changes on the
millimeter level maintaining a stability of less than a millimeter per year. This in turn translates to necessary
measurements of time with a sufficient high level of accuracy that could be achieved by applying upcoming
optical clocks and novel time comparison techniques.

34 Introductory remarks on the displacement of observation sites
The displacement of reference points, that are supposed to be stationary, is a general problem which applies to
every measurement technique. Additionally, especially when using a body fixed reference frame, one has to be
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aware of the fact that one can relate any site coordinates either to the body’s center of mass (COM) or to its
center of figure (COF) which are, in general, not identical (Blewitt [57]). The term reference point here refers
either to the precise location of the starting point and/or endpoint of an observation, e.g., the phase center of a
VLBI antenna, or the actual position of the interrogated atoms within the apparatus of an optical clock, or to
a physical marker (especially useful in simulations) representing the location of the whole instrument and being
rigidly attached to the body, e.g., to Earth’s solid crust. In any case, we distinguish between several sources of
displacement, namely geophysical and non-geophysical effects.
Most prominent are tidal and non-tidal loading effects as well as instrument specific effects acting upon its inter-
nal reference point, e.g., by thermally induced deformation of its apparatus (IERS TN36 [257]). The latter are
non-geophysical effects causing also position-like displacements. They can be treated by a technique/instrument-
dependent introduction of reference models, e.g., for temperature. Solid Earth deformations are due to (ocean
plus atmospheric) tidal loading and body tides, caused by external tide-generating potentials, Earth rotation
variations, and ocean pole tide loading. The total tide is a combination of load tides and body tides (Agnew [2]).
Harrison [233] collects benchmark papers on various tidal aspects, e.g., tidal forces and deformations, as well as
tidal tilt and strain issues. In a terrestrial coordinate system one could express the total tidal displacement ∆
of an observers’ (atomic clock) location rA as a sum ∆ = ∆sol +∆pol +∆ocn +∆atm + · · · (Sovers et al. [515]).
Non-tidal loading effects due to atmosphere, continental water or post-glacial rebound are superimposed by
post-seismic motions, monument stability, and other effects of higher order. Geophysical displacement effects,
in general, are driven by mass redistributions in the system Earth and can be of seasonal, secular, or episodic
character. Details on the periodicity and magnitude (mainly on the cm-level) of individual tidal and non-tidal
loading effects are provided by Nothnagel et al. [394]. This issue will be picked up again in a later paragraph.
As far as crustal markers for precise terrestrial reference frames are concerned, one has to consider not only
simple large-scale linear velocity models, as motivated by the theory of plate tectonics, but also non-linear
motion of the sites due to co-seismic and post-seismic displacements, transient and loading phenomena, local
instabilities, groundwater variations, and so on. With growing demands on the reference frames’ accuracy the
overall picture gets more and more complex. In addition to a physically meaningful and consistent parametriza-
tion of the atmosphere, oceans, hydrosphere, and cryosphere, it requires suitable mathematical approaches (e.g.,
theoretical functions versus regression between physical signals and geodetic parameters) in order to model the
site kinematics correctly. In a first approximation one had to estimate low-degree loading coefficients, at least.
In general, modeling errors exceed the precision of observations, which is also true for today’s atomic clock rea-
dings. This opens a new field of applications for optical clock ensembles, namely the near-realtime determination
and availability of reference frames, e.g., a worldwide unified height system, which comprises the detection of the
reference sites’ displacements as fast as possible. Currently, this could be achieved mainly by so-called GNSS
seismology based on receivers that operate on observation frequencies between about 50 and 100 Hz.

35 Introductory remarks on tides and the tidal potential
The simulation of (idealized) clock states involves the consideration of tides, i.e., the knowledge of the tide-
generating (or external) potential and its combined effect at the clock sites. Setting up a resulting formula due to
superimposed gravitational action of several third bodies in the neighborhood of Earth requires access to a sui-
table solar-system ephemeris. Currently, there are three major renowned ephemerides available, namely DE421
(Folkner et al. [193]), INPOP10b (Fienga et al. [183], [184], Manche [341]), and EPM2008 (Pitjeva [423]). Ano-
ther sets of ephemerides are under development (e.g. Nothnagel [394]). In contrast to analytical orbit integration
approaches based on the Newtonian theory of gravitation in the days of Brown [70], [71] or Newcomb [388], to-
day’s ephemerides, with only a few exceptions, result from numerical integrations of post-Newtonian equations
of motion, i.e., the relativistic Einstein-Infeld-Hoffman equations of motion (Brumberg [75]).
Any tide predicting software package will make use of relevant ephemeris data, either directly or in a simplified
version via tailored tide models comprising only a selection of significant tidal constituents. Newton’s theory of
gravitation clearly constituted a starting point in the modern treatment of tides (Cartwright [93]), even though
the tide problem itself was not occasioning this new ideas. Tidal issues are treated in his Principia mainly in
books I (starting in proposition 66 with the variation of the Moon due to solar perturbation) and III (discussing
the consequences beginning with proposition 24, and especially in propositions 36 and 37 on the quantification
of tidal forces), and again in the Principia’s supplement („The System of the World“). To some extent, his
arguments and results are not consistent throughout the Principia.
Before Newton, many other great scientists tried to give plausible explanations of the various observed tidal
phenomena, e.g. Galileo Galilei (Aiton/Burstyn [4], Brown [72], Clutton-Brock/Topper [104]). The work of
Laplace on the ocean’s response to the tidal forces marks just another cornerstone in the long history of tidal
theories (Cartwright [93]), paving the way for the fields of hydrodynamics and geophysical fluid dynamics in
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general. Instead of assuming a quasi-static response (as Newton did), Laplace set up a system of equations,
later labeled Laplace’s Tidal Equations (LTE), that describe the response by dynamic relations.
In principle, tides can be computed in various ways (Agnew [2]). In a direct manner one would simply use
the ephemerides to compute Earth-fixed geographical coordinates of the sub-body points and corresponding
distances. This allows for a point-wise calculation of the tidal potential Wtidal, either for a specific location
or as a distribution over the whole Earth. Furthermore, any other observable, e.g. tidal tilt or strain, can be
derived without any need to perform the initial calculations from celestial mechanics again. On the other hand,
the final accuracy of the computation solely depends on the accuracy of the ephemeris and there is a strong
coupling between the astronomical and geophysical part.
For example, angular errors for the sub-body point of a few arcseconds in combination with an error in the
normalized, i.e. relative, change of distance for the third bodies on the order of 10−5 would result in a relative
error of 10−4 for Wtidal/g. These figures already usually exceed the accuracy of classical instrumentation for
tide measurements. Remark: the assumed angular errors are equivalent to an error of a few hundred meters in
the location of the sub-body point and this in turn, due to the rotation of the Earth, relates to an accuracy
requirement for the timing of the data on the order of about a second (Agnew [2]).
Another common way of computing tides is the harmonic expansion of the tidal potential using a sum of
sinusoids (tidal harmonics) where the amplitudes depend on the sub-body point’s geographical parameters and
the frequencies and phases are related to combinations of the third bodies’ astronomical parameters. In doing
so one decouples the tidal potential from astronomical considerations. Harmonic amplitudes and frequencies
can thus be valid for a longer time span. Working in the spectral domain has the advantage of applying the
same frequencies for various tidal phenomena, given a linear response in the driving potential. The complete
separation of time-varying astronomical quantities from station coordinates, first achieved by Cartwright [93], is
thus of great benefit in the actual computation of different kinds of tides, cf. the editor’s note in Harrison [233]
following the benchmark paper of Bartels [34].
Within the geophysical/oceanographic community, the once challenging problem of tides, especially the behavi-
or of tides in the deep ocean, is sometimes regarded as being nearly finally solved (Cartwright [93]). The various
aspects of tides, i.e. its theory, physical observation, (harmonic) analysis of data, or prediction techniques, were
studied in great detail in the past and had reached a level of precision and accuracy that seemed to be suffi-
cient for most applications (e.g. Schureman [489], Godin [216], Melchior [357], Gill [208], Marchuk/Kagan [345],
Pugh [435]). In future, tidal research will most likely focus on specialized applications of tidal theory, e.g., in-
ternal motions, mixing on density layers, air-sea interaction, Earth-tide dissipation, and so on (Cartwright [93]).
The study of variable Earth rotation at tidal frequencies, and improved energy dissipation estimates are of
geodetic importance, e.g., in research on Earth-Moon dynamics.

36 The modeling of tides
With the ongoing enormous progress in measurement technology, a growing number of geophysical effects on
different scales must be taken into account to model the tides for a subsequent analysis of data. Accurate tide
modeling is important not only for chronometric leveling but for many different tasks, e.g., dedicated gravity
field space missions (Wünsch et al. [605]), detection of gravitational waves (Raab/Fine [441]), or navigation of
deep space probes (Moyer [372]).
Starting with the first serious developments of the tide-generating potential due to the Moon and the Sun (Dood-
son [143]) much progress has been made to include more and more tidal constituents (Cartwright/Tayler [91],
Cartwrigth/Edden [92], Büllesfeld [76], Tamura [538], Hartmann/Wenzel [234]), incorporating additional solar-
system bodies like the major planets. The harmonic development now contains several thousand individual
waves with more than 1000 of them due to the direct effect of third bodies. One of the latest refinements even
comprises some 27000 terms in total, and it applies a Poisson series expansion instead of the classical Fourier
analysis. This finally results in a maximum error for the accuracy in the calculation of gravity tides at mid-
latitude stations of less than one nanogal over a time span of 600 years centered at year 1900 (Kudryavtsev [303]).
All these derivations are still being carried out in Newtonian approximation.
Basically, the harmonic decomposition allows for the identification of the most significant tidal constituents
and its physical cause. As with the classical derivation of the gravitational potential itself, one can distinguish
between individual terms of different degree n and order m. For instance, the (n,m) = (2, 1)-term represents
diurnal degree-2 tides which itself contains three single harmonics differing in its arguments and amplitudes.
Accordingly, one decomposes higher degree and order terms. Depending on the celestial/third bodies taken
into account, one can classify the tidal constituents with respect to its arguments into long-period, diurnal,
semidiurnal, etc. tides. In a simplified case one only considers the Moon and the Sun as tide-generating third
bodies and introduces various associated cyclic orbital motions, such that the frequency fk (or phase ϕk) of each
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harmonic can be written as a sum of multiples of a few fundamental (astronomical) frequencies (or phases). So,
for any (n,m)-term one gets an alternative expression for its argument as (Agnew [2])

2πfkt+ ϕk = 2π

(
6∑

l=1

Dlkfl

)
t+

6∑
l=1

Dlkφl , (276)

where fl are the basic astronomical/tidal frequencies and φl represents corresponding phases of these at a
suitable epoch, and Dlk corresponds to the so-called Cartwright-Tayler codes. This derivation traces back to the
algebraic treatment of Doodson [143] based on an analytical ephemeris, comprising the following six astronomical
cycles with periodicities from hours to years: lunar day, tropical month (Moon’s longitude), solar year (Sun’s
longitude), lunar perigee, lunar node, and solar perigee. Remark: ’longitude’ here refers to celestial longitude
measured along the ecliptic. A shorthand notation, namely the six-digit Doodson number, was introduced to
illustrate the dependency of the argument on the individual cycles. This compact form also facilitates further
sub-classification of the tidal constituents as being applied in tidal spectroscopy (Munk/Cartwright [383]).
For a first simple simulation of a clock’s geophysical state, we assume a single earthbound clock, located on the
solid/crustal surface of the Earth. Solid Earth tides are easier to model than ocean tides because the medium
is more rigid and the geometry of the problem is easier to handle (Agnew [2]). Roughly speaking, tidal forces
deform solid Earth by a few decimeters over a time span of a few hours, depending on the latitude. In addition,
ocean tides create a periodic load on Earth’s surface, giving rise to further displacements of a few centimeters.
Ocean tides cause a motion of solid Earth’s COM due to motion of the oceans’ COM.
In general, current tidal models do not account for the non-conservation (dissipation) of the Earth’s total an-
gular momentum via interchange with solar system bodies, especially due to the Moon and the Sun (Sovers et
al. [515]). Atmospheric tides also lead to direct and indirect effects that might not be negligible (Gill [208], Pon-
te/Ray [425]). Other effects are significant more on the millimeter level, e.g., direct contributions of the planets
to solid Earth tidal displacements, or resonances with the Earth’s free-core nutation. Potential interactions of
this kind have to be revised in a consistent and fully-relativistic manner, in future.

37 Tidal displacement and the role of Love and Shida numbers

Changing gravitational attraction shifts the equipotential surfaces of the gravity field of the Earth. This causes
tidal forces in its interior that deform the physical surface. The solid Earth resists this force, therefore the
deformation is damped. In an idealized case (the Earth is assumed to be oceanless, spherical, non-rotating,
isotropic, and elastic with elastic properties varying only with depth), the crustal deformation, i.e. solid Earth’s
tidal response (assumed to be an equilibrium one, i.e., a quasi-static theory is applied), is completely specified
by a few dimensionless parameters kn, hn, and ln of degree n. They range from 0 (perfect rigidity) to 1 (perfect
elasticity). Theoretically, due to anelasticity, one can incorporate the concept of a lag angle in order to account
for a time-shifted peak response (Sovers et al. [515]).
The so-called Love (kn, hn) and Shida (ln) numbers quantify the tidally induced additional gravitational poten-
tial (kn), and the resulting radial (hn) and horizontal (ln) displacement, respectively. As an example, the Earth
model PREM provides the following nominal values for degree 2: k2 = 0.2980, h2 = 0.6032, and l2 = 0.0839
(Agnew [2]). An error of 0.1 in h2 can cause a displacement error of up to a few centimeters which can be directly
inferred from expressions for the tidal (northward, eastward, radial) displacement d

(n)
tidal = (d

(n)
N , d

(n)
E , d

(n)
R )T in

a local system (Špičáková [517]) due to an isolated degree-n term W
(n)
tidal of the tide-generating potential:

d
(n)
N =

ln
g

∂W
(n)
tidal

∂ϕA
, d

(n)
E =

ln
g

∂W
(n)
tidal

∂λA

1

cosϕA
, d

(n)
R =

hn
g
W

(n)
tidal ⇒ dtidal =

∑
n


d
(n)
N

d
(n)
E

d
(n)
R

, (277)

where the site location is specified by geographical coordinates (ϕA, λA) and rA, and it is sufficient to apply the
approximation g = µ⊕/r

2
A. Remark: because the Earth’s figure in reality deviates from a perfect sphere, for

highly precise calculations one had to distinguish between radial and vertical displacements, as well as between
horizontal and tangential ones.
The actual deviation of alternative/older Earth models with respect to the above stated Love numbers is at
least one order of magnitude less than 0.1. Thus, the relative errors in deformation computation will be on
the sub-cm-level and are therefore negligible with respect to expected measurement accuracies in optical clock
experiments. Furthermore, degree-2 (quadrupole) displacements are on the order of a few decimeters, whereas
degree-3 (octupole) displacements are limited to a few millimeters only (Sovers et al. [515]). For our purposes
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we can retain only the quadrupole terms of the tide generating potential, i.e. dtidal ≈ d
(2)
tidal, and thus drop the

lower index of the Love numbers (subindex n), i.e., use h := h2 ≈ 0.60 and k := k2 ≈ 0.30 in the following.

Before the advent of space-geodetic techniques tidal measurements were done by means of tiltmeters and/or
tidal gravimeters (Cartwright [93]). The former focused on the determination of a tilt (diminishing) factor γ,
used to quantify the tidal tilt of the vertical, whereas the latter measured the more easily interpretable gravity
change by making use of a gravimetric factor δ (Baker [27]). Both factors represent a combination of the Love
numbers h and k, namely (Melchior [356])

γ = 1− h+ k ,

δ = 1 + h− 3
2k

⇒
h = 5− 2δ − 3γ ,

k = 4− 2δ − 2γ
. (278)

Measurements of γ and δ are now possible with a requested precision of better than one percent in order to deduce
individual Love numbers with sufficient accuracy. Direct measurements of vertical and horizontal displacements
by means of classical instrumentation remain difficult, especially if one allows for more complex (and realistic)
Earth models, e.g., by introduction of the Earth’s figure ellipticity and non-regular rotational behavior. In this
respect, one investigates the nominal phase lag in Earth’s response to the tide generating potential.

The tilt factor γ2 = 1−h2+k2 ≈ 0.69 can be directly related to the solution for the surface displacement ζ(θ, λ, t).
Originally, the derivation of the LTE was based on the dynamic relations for a fluid element of a spherical Earth
(of radius R⊕) with fluid depth D, and with angular velocity of rotation of the Earth ω⊕. The elements’
horizontal velocity components u (southward) and v (eastward) are related to ζ by the continuity of fluid mass
assumption, as expressed by a partial differential equation (Cartwright [93])

∂

∂θ

(
vD sin θ

)
+

∂

∂λ

(
uD
)
+R⊕ sin θ

∂ζ

∂t
= 0. (279)

One can decompose the total tidal potential W total
tidal into a primary (tide-generating) (Wtidal) and a secondary

(δWtidal) potential, which correspond to the tidal forces as specified by Newton due to the mutual gravitational
interaction of the celestial bodies and to the self-attraction of the global fluid deformation, respectively. Both
parts depend on time t and the observer’s position (θ, λ). The primary potential additionally depends explicitly
on the luminaries’ position in space, e.g. determined by its co-declination Θ = π/2− δ, right ascension α, and
equatorial horizontal (sine) parallax Π0. Nominal values for Π0 are given in various astronomical fact books
(e.g. Allen [10], Cox [108]) or can be calculated based on available ephemerides.

Some remarks to clarify the relations between h, k, Wtidal, δWtidal, and the resulting (radial) displacement:

The effect of a (tidally induced) shift of the equipotential surface through a given point that is rigidly connected
to the (deformable) surface of the Earth is damped with regard to its resulting spatial displacement. This is
characterized by Earth’s specific (elasticity) parameter h, being the only factor in the last equation of (277). In
case of perfect elasticity (h = 1) there would be no damping, whereas in case of perfect rigidity, i.e. inelasticity
(h = 0), there would be no displacement. In this sense, h could be regarded as a correlation coefficient between
equipotential surface shifting and (radial) displacement. An observer free-floating in space (e.g., an apart from
third body gravitational attraction undisturbed Earth orbiting satellite) is affected by a changing gravitational
potential, causing a direct time-varying tidal force, but it can not be used as a single test particle to directly
determine h.

On the other hand, the location dependent reading of a ground-fixed gravimeter is also affected by the secondary
potential (self-gravitation of the shifted masses). The displacement of masses results in an additional shift of
equipotential surfaces and causes an indirect time-varying tidal force acting upon the satellite and thus changes
its orbit, too. This additional gravitational attraction also depends on the Earth’s material structure and can
be characterized by another specific parameter k.

Both parameters h (quantifying the resistance of a certain Earth matter particle ensemble against redistribution)
and k (quantifying the equivalence between the redistribution of this very ensemble with gravitational attraction)
depend on location and, occasionally, will have to be derived from high-resolution Earth (density) models based
on geophysical observations.

Globally valid approximative parameter values, as given above, are accurate to very few digits only. Classical
ground-based instruments for tide determination (e.g., gravimeter, tiltmeter) can sense only a combination of
h and k, cf. equations (278). Additional off-ground platforms (e.g., aboard air vessels or satellites) are useful to
separate those parameters. Atomic clocks provide just another type of instrument for this purpose.
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38 Details on the tidal potential and resulting displacements

Coming back to the LTE, balancing the rates of change of the two components of horizontal momentum relative
to Earth with the applied force per unit mass yields two more dynamic relations:

∂u

∂t
− 2ω⊕ cos θ v = − g

R⊕

∂

∂θ

(
ζ − W total

tidal
g

)
,

∂v

∂t
+ 2ω⊕ cos θ u = − 1

sin θ

g

R⊕

∂

∂λ

(
ζ − W total

tidal
g

)
. (280)

The combined equations (279) and (280) constitute the basic LTE. In order to model energy dissipation one may
(in a simplified approach) add (linear) friction terms ε∂u/∂t and ε∂v/∂t, depending on a friction parameter ε, as
well as some (non-linear) dynamic terms in case of shallow coastal seas to the left hand sides of equations (280).
The coefficient 2ω⊕ cos θ corresponds to the Coriolis frequency that accounts for the significant deflective force
caused by the rotation of the earthbound coordinate system. If one neglects ocean loading and the shifting
masses’ self-attraction the second term in the parentheses on the right hand side of (280) had to be replaced by
ζequil which corresponds to the surface displacement due to an equilibrium tide. In case of a simplified model
without rotation (ω⊕ = 0) and constant depth of a single world ocean (D = const.), the LTE reduce to

∂2ζ

∂t2
= gD∇2ζ −D∇2W total

tidal . (281)

On the other hand, (ocean) loading effects can be modeled by loading Love numbers γ′n associated with n-th
degree spherical harmonics ζn of ζ itself; the parentheses would read (Cartwright [93])(

ζ − γ2
Wtidal

g
−
∑
n

3

2n+ 1

ρocean

ρsolid
γ′nζn

)
, (282)

where the ratio of the mean densities of the oceans and the solid Earth is approximately given by (e.g. Gill [208])
3ρocean/ρsolid ≈ 3 · 1.035 g/cm3/ 5.515 g/cm3 = 0.563. As a remark, here the stability of the solution in terms
of a harmonic development (series expansion) is guaranteed by the condition ρocean/ρsolid < 1. Harrison [233]
provides details on various issues that are related to loading effects.
The implied integral of ζ itself over the whole globe is a challenging task in practice. Several methods have
been employed for its computation. Today, global coverage of data is provided by satellite altimetry which is
the basis of the latest generation of tidal models.

x
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z

R

B dB
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P

Fig. 4: Development of the tide-generating potential at a surface point P .

In compliance with the former simplifying point mass assumption for any tide-generating body B, e.g. (206) and
(210), one can infer from geometrical reasoning (cf. figure 4) a first expression for the tide-generating potential
at Earth’s surface in Newtonian approximation as (Cartwright [93])

WB
tidal = ∆VB =

µB

R
−
(
µB

d⊕B
+
µB

d⊕B

x

d⊕B

)
, (283)

where VB = µB/R with µB = GMB .
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Next, one usually replaces x by R⊕ cos z and 1/R = 1/
√
R2

⊕ + d⊕B
2 − 2R⊕d

⊕
B cos z by its binomial series expan-

sion, which results in a superposition of different order terms. Retaining only the leading term yields

WB
tidal(R⊕, z) =

µBR
2
⊕

2d⊕B
3

(
3 cos2 z − 1

)
(284)

with z representing the dependency on relative position between the primary body’s surface point and the
location of the tide-generating body. Expressing the distance via the (sine) parallax angle ΠB

0 := R⊕/d
⊕
B , we

find for our first order approximation

WB
tidal(R⊕, z) =

3µB

2R⊕
ΠB

0
3︸ ︷︷ ︸

=: kB

(
cos2 z − 1

3

)
. (285)

Higher order terms can also produce significant, i.e. detectable, tides. Especially in case of the Moon one can
not neglect those additional terms.
The corresponding force vector at P can be derived by simply taking the partial derivatives of WB

tidal(R⊕, z)
with respect to R⊕ (vertical direction) and z (horizontal direction). The resulting tidal variation of gravity and
the deflection of the vertical would be observed (on a perfectly rigid Earth) by a gravimeter and a tiltmeter,
respectively. The tidal displacement (positive upwards) of the equipotential surface at Earth’s surface relative
to the center of the Earth, i.e. WB

tidal(R⊕, z)/g, is called the equilibrium tide. Regarding the major two tide-
generating bodies (Moon, Sun), we get the following approximative maximum peak to peak ranges (Baker [27]):

equil. tide tidal gravity tidal tilt

Moon: 53.5 cm 165µgal 168nrad

Sun: 24.6 cm 76µgal 77nrad

(286)

Clearly, the tidal distortion due to the Moon is more than twice as much as the Sun’s influence. The values for
the equilibrium tide are directly related to the so-called Doodson constant DB := 3µBR

2
⊕/4d

⊕
B
3 = kB/2, such

that DMoon/g = 26.75 cm and DSun = 0.4605DMoon (Hendershott [245]). The displacement of an equipotential
surface can refer to various points. For instance, relative to the center of the Earth it is given by (1+k2)Wtidal/g
whereas relative to the deformed surface one has to apply the formula (1+k2−h2)Wtidal/g (Baker [27]). Again,
in both cases we assume a spherical non-rotating but elastic Earth.
The use of the zenith angle z is not suitable in practice. Instead, geographical coordinates (θ, λ) of P , explicit
astronomical quantities (ΘB, αB), as well as ω⊕t for the relation between body-fixed and space-fixed directions
shall be applied. From spherical trigonometry one gets (Doodson [143])

cos z = cos θ cosΘB + sin θ sinΘB cos
(
αB − λ− ω⊕t

)
, (287)

where H := ω⊕t + λ − αB is referred to as the hour angle of the observer with respect to the tide-generating
body (Hendershott [245]). Introducing (287) into (285) and algebraically expanding the parenthesis leads to

WB
tidal(R⊕, z) = kB

(
f1 + f2 + f3

)
(288)

with

f1 = f̃1 cos
(
0(αB − λ− ω⊕t)

)
, f̃1 = cos2θ cos2ΘB + 1

2 sin
2θ sin2ΘB − 1

3 = 1
24

(
1 + 3 cos 2θ

)(
1 + 3 cos 2ΘB

)
,

f2 = f̃2 cos
(
1(αB − λ− ω⊕t)

)
, f̃2 = 1

2 sin 2θ sin 2ΘB ,

f3 = f̃3 cos
(
2(αB − λ− ω⊕t)

)
, f̃3 = 1

2 sin
2θ sin2ΘB ,

(289)
such that

WB
tidal(R⊕, z) = kB

(
1
24

(
1 + 3 cos 2θ

)(
1 + 3 cos 2ΘB

)
+ 1

2 sin 2θ sin 2ΘB cosH + 1
2 sin

2θ sin2ΘB cos 2H
)
. (290)

The first term is independent of ω⊕t and thus varies only with the luminaries’ orbital periods, e.g., 1 month
(Moon), 1 year (Sun), and so on. The second term has periods of one Earth rotation (diurnal periodicity),
whereas the last term has periods of half an Earth rotation (semidiurnal periodicity), of course both with
orbital modulations. Superimposed are additional modulations due to variations in parallax as contained in
the common factor kB . The mathematical reason is that longitudinal angles are measured with respect to the
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equator and the tidal ellipsoid (approximation) is tilted within this equatorial coordinate system. Both, angular
quantities as well as distances to the tide-generating bodies show variations, such that the tidal potential will
finally have asymmetrical components (Hendershott [245]).
Variations of co-declination and orbital distance in time change the potential quite systematically. The variation
in co-declination is related to the precession of the equinoxes for the Sun (due to the tilt of Earth’s rotational
axis with respect to the ecliptic) and to the precession of the lunar (ascending) node for the Moon (due to the
inclination of the Moon’s orbit around Earth with respect to the ecliptic). Variations in orbital distance are
due to the orbits’ ellipticities.
The functions f̃i can be recognized as associated Legendre functions of degree 2. We only explicitly mentioned the
primary tides that result in Laplace’s classical three species f1 (long-period), f2 (diurnal), and f3 (semidiurnal).
Further expansion into harmonic terms would require more elaborate expressions for orbital motions in respective
planes. The Moon generates significant secondary tides with an additional species f4 ∼ cos 3(αB − λ − ω⊕t)
(terdiurnal periodicity), for example.
Traditionally, variations in WB

tidal are Fourier-decomposed and result in modulations of basic tidal frequencies,
i.e., each species is made up of a product of different time-varying functions (Baker [27]). Generalizing (288) to
(290) (separation into species), the tidal harmonics approach can be written as, cf. (276),

WB
tidal =

∑
s

WB
tidals with WB

tidals = DBGs

∑
k

ak cos
(
σkt+ sλ+ θk

)
, (291)

where ak, σk, and θk are the individual constituents’ amplitude, harmonic frequency, and phase angle. The
factors Gs, consistent with (289), are G0 = (1 − sin2θ)/2, G1 = sin 2θ, G2 = cos2θ, and so on. The species
are represented by s = 0, 1, 2, . . . and the harmonic frequencies are most often restricted to a linear combi-
nation of five fundamental astronomical frequencies (besides Earth rotation) which lead to the largest effects
(Hendershott [245]):

σk = sω +
5∑

l=1

mk
l fl (292)

with mk
l = 0,±1,±2, . . .. Classically, the astronomical frequencies fl are symbolized by (Baker [27], Agnew [2]) s

(mean longitude of the Moon; variation of lunar declination with period 2π/f1 = 27.321582 days, or one tropical
month), h (mean longitude of the Sun; variation of solar declination with period 2π/f2 = 365.242199 days, or
one tropical year), p (mean longitude of lunar perigee; variation of lunar perigee) with period 2π/f3 = 8.847
years), N ′ (mean longitude of lunar ascending node; variation with period 2π/f4 = 18.613 years), and pS (mean
longitude of perihelion; variation with period 2π/f5 = 20941 years). As mentioned before, one can represent
the frequencies in a more compact notation by use of the Doodson numbers, where in accordance with (276) we
have (Hendershott [245])

Dk := smk
1 m

k
2 m

k
3 m

k
4 m

k
5 + 055555. (293)

Depending on the actual time argument that should be used as independent variable, i.e. the reference tide
generating body (Moon or Sun), for ω one takes either ω⊕ − f1 (in case of Moon, astronomical time variable τ
with one mean lunar day as reference period, i.e. 24 hours 50 minutes 28.3 seconds corresponding to 14.4920521
degrees per mean solar hour) or ω⊕ − f2 (in case of Sun, astronomical time variable t with one mean solar day
as reference period, i.e., 24 hours corresponding to 15 degrees per mean solar hour).
Finally, one can allocate specific nominal values for the amplitudes and frequencies (or periods) to each tidal
constituent; for the main tidal harmonics see, for instance, table 2 (equilibrium tide and rigid Earth gravity) in
Baker [27] or tables 2 and 4 in Agnew [2].
As an example, the most prominent tidal harmonic, namely the semidiurnal tide M2 (classical symbol as being
in use since the times of Darwin [121] and Thomson/Tait [546]) with a period of 12.42 solar hours (due to the
cos 2τ term), also known as the semidiurnal principal lunar, produces an equilibrium amplitude of 24.3 cm sin2θ.
This value can be directly derived from equations (285) and (290) with

kMoon · 1
2 sin

2ΘMoon

∣∣∣
max

sin2θ =
3µMoonR

2
⊕

4d⊕Moon
3

cos2δmin
Moon sin

2θ , (294)

where the maximal deviation occurs at minimal declination of the Moon, i.e., for δmin
Moon= 23.44◦−5.13◦= 18.31◦

as calculated from the mean obliquity of the ecliptic and the maximum inclination of the lunar orbital plane
with respect to this mean. The other nominal values used for this calculation are µMoon = 4902.7779 km3/s2,
R⊕ = 6378 km, d⊕Moon = 384000 km. Accounting for elasticity in accordance with (277), the body-tide radial
displacement amplitude solely due to M2 is

a
(M2)
R (θ) = 24.3 cmh2 sin2θ ≈ 14.7 cm sin2θ. (295)
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Higher accuracy simulations (e.g., if errors should be less than 1 percent) must take into account additional effects
like Earth’s ellipticity, variable rotation, anelasticity, and lateral heterogeneity in internal (density) structure or
even the lag of the body-tide bulge resulting in an observable gravity body-tide phase lag. The latter effect is
superimposed by uncertainties in tidal loading corrections and instrumental phase lags (Baker [27], Agnew [2]).

39 Sensitivity of clocks to tidally induced potential differences
To start with simple calculations only (co-)latitude has to be fixed first. For simulations, various geographical
places of potential atomic clock sites or quantum optical laboratories were selected, see table 1 (remark: many
more laboratories around the world, e.g. NIST/Boulder in Colorado/USA, could be listed). Besides specialized
laboratories operational fundamental Earth observation stations, e.g. at Wettzell/Bavaria, run atomic clocks,
hydrogen masers and frequency combs that will take part in long range time and frequency comparison cam-
paigns as in the proposed ACES project for instance. Instead of the very points in space where the actual
optical transition within each apparatus (i.e., the atomic interrogation by use of a laser beam) takes place, the
coordinates of nearby reference markers were used, e.g., in case of PTB various masonry bolts at the respective
buildings that house the individual clocks. The non-trivial local tie problem is a separate one, that will have
to be addressed later on by dedicated high precise in-situ surveying campaigns if real clock comparisons are to
be performed. For the moment it is sufficient to calculate/simulate any effect with respect to those well-defined
physical reference markers in the clocks’ immediate neighborhood.

Tab. 1: Selection of laboratories that run (optical) atomic clocks and/or other frequency standards. Horizontal positions
(geographical latitude and longitude) are at least accurate and precise on the (few) m-level, whereas given nominal values
for vertical positions (represented here by ellipsoidal heights with respect to ITRF-08) are accurate on the cm-level.

institution
reference marker frequency latitude longitude height

no.(building or lab) standard ◦N ◦E m

KB01 (Kopfermann) Yt single ion 52.29588 10.45941 119.69 P1

PTB
GB01 (Giebe, cellar) In single ion 52.29577 10.46069 116.89 P2

LB01 (von Laue) Al single ion 52.29725 10.46059 118.37 P3

PB01 (Paschen) Sr lattice 52.29623 10.46164 120.89 P4

SYRTE
Sr lattice 48.83635 2.33655 P5

Hg lattice 48.83635 2.33655 P6

IQO/LUH Mg lattice 52.38256 9.71878 P7

MPQ lab floor (D0.41) H maser 48.25978 11.66656 522.60 P8

The given ellipsoidal heights can be converted into physical heights, e.g., by applying reductions/corrections
via corresponding (quasi-)geoid height and/or geoid undulation calculations, and additional ITRS-ETRS trans-
formations if necessary. The latter might be done pointwise online via an EUREF permanent network web
interface (EUREF [173]). As a reference height surface one may choose a local geoid model, e.g., in Germany
the German Combined Geoid 2011 (GCG2011) in order to derive consistent normal heights with respect to
the national reference height system DHHN92 (comprising normal gravity computation with respect to GRS80
parameters and point coordinates with respect to ETRS89). For height conversions (physical from ellipsoidal)
there is also an online tool readily available (BKG [48]). In case of international clock comparison campaigns
globally oriented software packages and models for the computation of geoid undulation are to be preferred,
e.g., as provided by Pavlis [405] based on the Earth Gravitational Model EGM2008 (Pavlis et al. [404]).
Coming back to equation (295) exemplarily for point P1, the individual body tide M2 will give raise to an radial
surface displacement with amplitude a(M2)

R (θP1 = 37.70412◦) ≈ 5.5 cm. Likewise, the horizontal displacement
components will be on the few cm-level even though smaller. The same holds true for other main tidal harmonics
and its species, e.g., the diurnal principal lunar (symbol O1) or lunar fortnightly (Mf ) body tides.

Remark: in comparison to the southernmost latitude in table 1 the amplitude a(M2)
R (θP8

= 41.74022◦) ≈ 6.5 cm
is different by about one centimeter, which is the equivalent difference in height for the aspired precision level
O(10−18) of modern optical clocks. Again, these crude estimates involved many simplifying assumptions, e.g.,
both sites placed on the surface of a sphere of radius R⊕ = 6378 km thus neglecting any significant topographic
height difference altogether. In order to perform more realistic simulations, one can apply approved software
packages for the calculation of tides, e.g., the program ETGTAB (version 900527, written in FORTRAN 77,
original coding done by H.G. Wenzel, some modifications added in 2010 by L. Timmen). This software com-
prises three optional tidal potential developments, namely the ones by Doodson [143] with 378 superimposed
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Fig. 5: Differences in tidal potential variations between points P1 and P8 (see table 1) in m2/s2 vs day of year 2012.
Throughout a year the maximum peak-to-peak difference is about 0.8m2/s2 (top). The main tidal species (semidiurnal,
diurnal, long-term, e.g. fortnightly) are clearly visible (middle). In the course of a single day the maximum tidal potential
difference can build up within approximately 7 hours (bottom).

individual tidal waves, Cartwright-Edden-Tayler (Cartwright/Tayler [91], Cartwright/Edden [92]) (505 waves),
and Tamura [538] (1200 waves). The last mentioned model incorporates not only lunisolar influences but also
accounts for some effects due to Jupiter and Venus.
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Fig. 6: Vertical displacement of points in cm vs day of year 2012. Each point, e.g. P1, is displaced by several dm each day
throughout a year (top). The differential displacement, e.g. between points P1 and P8, is of lower magnitude (middle). In
this example, the maximum relative displacement occurs at day 96 of 2012. Within nearly 4 hours around the maximum
this difference changes by a single cm (bottom).

ETGTAB can be used to compute the tidal potential itself, or its vertical component (gravity variation) and
horizontal component (tidal tilt), respectively. There exist updated versions of this program, e.g., version 930821
which is available from the University of Jena (Thuringia/Germany). It comprises an additional tidal potential
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development model by Büllesfeld [76] (665 waves), and one can also apply an elaborate body tide computation
based on the parameters (Love numbers and Shida numbers, gravimetric and tilt factors) of a specific inelastic
Earth model following Wahr [567] (derivation of a globally valid averaged model from a number of different
structural models), Dehant [126] (improving the elastic model by an inelastic Earth’s mantle, and introduction
of latitude-dependent Love numbers) and Zschau/Wang [613] (long-term implications of imperfect elasticity).
Similar software packages were developed for the special problem of detiding, i.e., the removal of tidal and atmo-
spheric effects in deformation analysis applications (Amoruso et al. [14]). For more details and specific nominal
values related to body tides and loading effects see for instance Landolt-Börnstein [318]. Seidelmann [496] in
his table 4.351.1 lists amplitudes and phases of displacements of many observation sites due to ocean loading
caused by the main tides.
In ETGTAB the astronomical elements are computed either by simplified formulas (approximative series expan-
sions) of Newcomb (Sun) and Brown (Moon) or updated expressions as provided by Tamura [538]. These for-
mulae in parts are given in various textbooks (e.g. Schödlbauer [485], Vallado/McClain [561], Seidelmann [496]).
Figures 5 and 6 illustrate the differential effect of tidal action, exemplarily shown here for two selected sites in
Germany (PTB/Braunschweig and MPQ/Garching). The tidal potential development of Tamura was used in
combination with the Wahr-Dehant-Zschau elastic Earth model. Clearly, the relative (vertical) displacement
effect is on the cm-level and should thus be detectable by optical atomic clock readings. Even larger effects are
expected for a comparison of sites that show a larger separation in east-west direction. As soon as still missing
data on actual clocks’ (vertical) positions become available, analogous calculations will be performed. From our
first simulations already one can conclude that the duration of relative displacements between remote sites (at
certain time intervals of the year) within the range of a single centimeter corresponds to an available averaging
time that is sufficient to reach the required clock performance levels.

40 Sensitivity of clocks to the tidally induced Doppler effect

Besides the potential difference, the movement of the sites itself, i.e., its relative velocity in comparison to each
other, alters the clock rates. Referring to the general Doppler effect (55), we obtain for our example (comparison
PTB-MPQ at day 96 of the year 2012) a nominal relative frequency change of ∆f/f = 7.3 · 10−15 because

∆f

f
:=

|fR − fE |
fE

=

∣∣∣∣∣∣∣∣
√
1−

(v
c

)2
1 +

vr
c

− 1

∣∣∣∣∣∣∣∣ , (296)

where we can neglect horizontal displacements, i.e., assume v ≈ vr, and take vr = 2.18022 · 10−6 m/s resulting
from an absolute relative displacement change of 4.9709 cm within 22800 s ≈ 6.3 hrs, cf. bottom of figure 6.
One could also apply equation (141) with v ≈ vr to get an approximative expression for the Doppler effect as

∆f

f
=
vr
c

+
1

2

(vr
c

)2
+O

(
c−3
)
≈ 7.3 · 10−15. (297)

The order of magnitude of this state-of-motion effect implies that it must not be neglected even for today’s
atomic clocks. Figure 7 quantifies the dependency of the general Doppler effect on vr.
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Fig. 7: Frequency shift ∆f/f due to the Doppler effect vs radial velocity vr in m/s for vr ∈ [0, c] in general (left), and
for expectable relative velocities due to tidally induced vertical displacements (right), respectively.
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The reading of a single clock is already affected by its tidally induced displacement alone. But again, there exist
many more (geophysical) effects that influence the position and velocity vector of an observation site. Besides
solid Earth tides, ocean and atmospheric loading, the pole tide as well as plate and polar motion, etc. have
to be taken into account. Moyer [372] provides explicit expressions for the individual displacements that may
serve as a sound basis for more detailed simulations.

41 Concluding remarks on the comparison of clocks
According to equation (133) one can compare the proper times of individual clocks

dτk
dt

=

√
1− 2Vk

c2
−
v2k
c2

= 1− Vk
c2

− v2k
2c2

+O
(
c−4
)
, (298)

such that for two clocks (assumed to be identical in construction) at locations with gravitational potential
Vk(rk, t) and velocities vk (relative to a common reference frame) one gets

dτ1
dτ2

≈
(
1− V1

c2
− v21

2c2

)(
1 +

V2
c2

+
v22
2c2

)
= 1 +

V2 − V1
c2

+
v22 − v21
2c2

+O
(
c−4
)
. (299)

Here we apply the geodetic sign convention for the (gravitational) potential, i.e., its values are always positive.
At infinity the potential is zero. Equation (298) indicates that only a clock at rest with an infinite distance to
all gravitational sources would show coordinate time, and run with dt, respectively. In real world, any clock
will run slower with its own/proper time step dτk < dt. The time step relates to the period of the clock-specific
periodical process, i.e., the occurrence of two successive wavecrests (or wave troughs), which defines a single
clock tick dN . Thus the (proper) frequencies are given by

νk =
dN

dτk
. (300)

Consequently, any decrease of dτ (clock runs slower) leads to an increase in ν, i.e., it takes more ticks to cover
the same (standard/coordinate) time step dt. Remark: For vk = 0 one can also infer directly from equation
(298) that the extremum dτk = 0 is valid for Vk = c2/2, i.e., in case of a point mass model with Vk = GM/rk,
the event horizon (Lambourne [306]) (or Schwarzschild radius) is given by rk = 2GM/c2 = rS , cf. § 17. For the
Earth with GM⊕ = µ⊕ ≈ 398600.442 km3/s2 we find r⊕S = 8.87 mm.
In case of vk = 0 equation (299) reduces to

dτ1
dτ2

− 1 =
ν2 − ν1
ν1

=
V2 − V1
c2

. (301)

Schneider [481] discusses several other special cases of equation (298) (e.g., clocks on a rotating Earth in orbit
around the Sun), the use of different reference systems, as well as its implications for clock synchronization.
Figure 8 illustrates the situation of several clocks subject to the gravitational influence of the Earth. Various
simplifications are applied. For example, we assume that the clocks are either rigidly attached to the surface of
the Earth (P1, P2) or aboard artificial Earth satellites (S1, S2), the orbits of which are supposed to be circular.
In case of earthbound clocks one has to apply gravity potential values Wk instead of the gravitational potential,
cf. § 29.14. Furthermore, any third-body perturbations (tides etc.) or non-gravitational forces are neglected.
This drawing shall only support basic arguments on the correct sign of frequency comparisons, based on a few
rough numbers. Fließbach [190] provides a detailed explanation of (general) relativistic effects on clock rates.
For practical clock comparisons, one has to determine the mutual velocities with care. Earthbound clocks might
move not only due to Earth’s rotation, if we think of mobile clocks in transportation, or environmentally induced
displacements (influence of tides, plate tectonics, etc.). In this case, one would preferably operate in an Earth-
centered Earth-fixed (ECEF) reference frame instead of an Earth-centered inertial (ECI) frame. Consequently,
V had to be replaced by W (geopotential) within equation (298). The W -term includes the velocity effect due
to Earth’s rotation already, i.e., the rotation of ECEF against ECI, and the v-term represents the remaining net
effect of any motions (of the clock) relative to ECEF, e.g., when operating (atomic) clocks aboard any vehicles
airplanes, trains, ships, cars, and so on (Hafele/Keating [227], [228]).
Today, in order to take the velocity-dependent relativistic effects into account, the trajectory/state of a clock can
be determined accurately via GNSS or INS (inertial navigation systems based on accelerometers and gyroscopes).
Of course, GNSS systems itself (like GPS) are significantly influenced by a superposition of relativistic effects
(gravitational redshift, time dilatation due to the Doppler effect, Sagnac effect due to (Earth’s) rotation in
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Fig. 8: Clock rates in dependence on the clocks’ location and state of motion. For details see main text.

combination with a limited speed of the GNSS signal propagation) and one has to consider the net effect on its
signals, i.e., a resulting frequency shift (Kleppner et al. [283], Eardley et al. [148], Ashby [21], Combrinck [106]).
Following the classical concept of height and geopotential numbers, cf. equations (267) and (268), the gravity
potential Wk = Vk +Φk decreases with height. At the geoid (Wk =W0) we define H = 0 such that HP > 0 for
CP = W0 −WP > 0. Likewise, the centripetal potential Φk = ω2r2k sin

2 θk at the body-fixed location increases
with growing distance d = r sin θ from the rotational axis of the body, such that Φmax = ω2ae2/2 would result
at the equator of an oblate two-axial ellipsoid of revolution (which might act as a first approximation for Earth’s
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geometrical shape). The position vector rk in an earth-fixed frame is given by spherical coordinates (rk, θk, λk)
(radial distance r, co-latitude θ, longitude λ) via

rk =

xk
yk
zk

 =

 rk sin θk cosλk
rk sin θk sinλk
rk cos θk

 ⇔
rk =

√
x2k + y2k + z2k ,

θk = arccos(zk/rk) ,

λk = arctan(yk/xk) .

(302)

Pavlis/Weiss [403] provide ITRF94 coordinates for a reference point at the US national metrological institute
NIST (National Institute of Standards and Technology, formerly known as the National Bureau of Standards),
which operates (primary) frequency standards that take part in the TAI realization.
Each of the worldwide distributed TAI-defining clocks realizes its own SI second. In order to compare the clocks
with each other, one had to exchange signals for synchronization/syntonization purposes, or one can apply
location and state dependent clock corrections to the proper clock readings such that they relate to a common
reference. For the latter option one naturally chooses the geoid, supposing that a virtual standard clock would
be located on the geoid. Consequently, for any real (earthbound) clock one has to determine the frequency shift

fk − f0
f0

=
Wk −W0

c2
. (303)

Remark: henceforth, we will use the symbol f for (proper) frequencies, purely to ensure compatibility with the
majority of other publications. Regarding the sign, equation (303) is consistent with Bjerhammar [46], but in
the denominator on the left hand side he introduces the mean f = (fk + f0)/2 for some unknown reason. In
fact, the difference ∆f := fk−f0 will be smaller than both values itself by many orders of magnitude, such that
the deviation between the resulting ratios ∆f/f0 and ∆f/f is negligible. On the other hand, Pavlis/Weiss [403]
apply the opposite sign, i.e., ∆f[403] := f0 − fk , interestingly enough referencing to Bjerhammar [46], too.
Obviously, the sign mismatch is due to a conflicting viewpoint regarding the frequency shift as such. Either
one treats it as an error or deviation of the clock reading in comparison to an „error-free“ situation (without
relativistic effects), or one wants to compute it as a correction to keep/achieve a nominal frequency. To avoid
confusion, apart from a stringent relativistic reasoning chain along world lines/geodesics etc., it is probably best
to clarify this issue based on a few specific/exemplary numbers, cf. figure 8.
If a clock is located above the geoid, we have Wk < W0 and thus dτk > dτ0 (clock at rk runs faster than the
(virtual) standard clock on the geoid, indicated by the various partially filled clock dials as sketched in the
figure), or fk < f0. Again, assuming identical constructions, each clock realizes its own SI second. An observer
on the geoid wants to compare his clock with the higher one. The latter sends its frequency signal towards the
geoid. During its course through the gravity potential of the Earth (which increases along the path of travel in
compliance with the geodetic sign convention) this signal gains some finite amount of energy, and consequently
its (proper) frequency continuously increases as it travels downwards - it undergoes a (gravitational/general
relativistic) blueshift. The received signal then appears to the observer on the geoid to have a higher ticking rate
than his own one; his clock obviously runs slow in comparison. Conversely, a signal that is sent upwards, loses
energy and its (proper) frequency decreases (gravitational redshift). As mentioned before, this frequency shift
can be explained purely based on energy considerations by making use of the Mössbauer effect (Wegener [571]).
If the time signals of all (TAI-defining) clocks (above the geoid) shall be of the same frequency f0 once they arrive
at the geoid, we now know that their signals’ frequencies had purposely to be set low prior to sending (to make
up for the energy gain during propagation) by adding a frequency shift to the (proper) frequencies fk according
to equation (303). With indices s, r denoting sending and receiving, respectively, we take the viewpoint of a
frequency correction, and thus conclude

fsk =

(
1 +

Wk −W0

c2

)
︸ ︷︷ ︸

< 1 forWk <W0

fr0 . (304)

To present an example, we consider two frequency standards, specifically well marked/surveyed reference points
in their neighborhoods, at NIST (Boulder, Colorado, USA) and PTB (Braunschweig, Niedersachsen, Germany).
Both places are well above the geoid, where Boulder is of larger physical (as well as geometrical/ellipsoidal)
height than Braunschweig. Following Pavlis/Weiss [403], for a certain marker at NIST, we find

rITRF94
NIST =

−1288394.075m

−4721673.869m

4078630.782m

 ⇒
rNIST = 6370980.495m,

θNIST = 50◦11′38′′.745 ,

λNIST = 254◦44′14′′.541 .

(305)

As a remark: it is stated that these Cartesian coordinates are expected to be accurate only to 20 cm (or better).
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Likewise, we pick a certain marker at PTB. Feldmann [180] performed GPS surveys of some laboratory rooftop
markers (which are not identical to the points given in table 1, but they are located in the neighborhood), e.g.,

rITRF2000
PTB =

 3844056.75m

709664.09m

5023131.72m

 ⇒ rITRF94
PTB =

 3844056.76m

709664.09m

5023131.70m

 ⇒
rPTB = 6364923.221m,

θPTB = 37◦53′24′′.540 ,

λPTB = 10◦27′35′′.262 ,

(306)

where we applied a (7-parameter Helmert) transformation between the Earth-fixed reference frames ITRF2000
and ITRF94 (IGN [258]) to be consistent with the NIST data.
The resulting centripetal potential values for ω⊕ = 7.29211505392569 · 10−5 rad/s are

ΦNIST = 63 688.06m2/s2 and ΦPTB = 40 626.71m2/s2. (307)

Thus, according to equation (299) with setting Vk = 0, an atomic clock at NIST would run slower than a clock
at PTB, i.e. dτNIST < dτPTB, as long as we only consider the effect of Earth’s rotation.
Next, we determine gravitational potential values Vk for both sites. The classical spherical harmonics represen-
tation reads (Rapp/Pavlis [443], Torge [550])

Vk(rk, θk, λk) =
GM

rk

(
1 +

∞∑
n=2

(
ae

rk

)n n∑
m=0

Pnm(cos θk)
(
cnm cosmλk + snm sinmλk

))
, (308)

where Pnm(cos θ) = Pnm(sinϕ) denote the (co-)latitude-dependent associated Legendre functions of degree n
and order m. Pavlis/Weiss [403] employed the complete Earth Gravity Model EGM96 (nmax = mmax = 360)
for the spherical harmonic coefficients cnm and snm, which are given in a normalized form

c̄nm = Nnmcnm ,

s̄nm = Nnmsnm
with Nnm =

√
(n+m)!

(2− δ0m)(2n+ 1)(n−m)!
. (309)

Here, for our rough estimate, it is sufficient to retain only the most dominant zonal degree-2 term (which, in case
of the Earth, is responsible for more than 90 percent of its mass inhomogeneities) with c̄20 = −0.000484165371736
or J2 := −c20 = −

√
5 c̄20 = 0.00108262668355. Using the approximative expression

V⊕(r) ≈
µ⊕

r

(
1 + c20

(
ae⊕
r

)2(
3
2 cos

2 θ − 1
2

))
(310)

with µ⊕ = GM⊕ = 398600.4418 · 109m3/s2 and ae⊕ = 6378136.46m yields

VNIST = 62 557 015.12m2/s2 and VPTB = 62 595 067.23m2/s2. (311)

Following equation (301), the pure effect of a gravitational frequency shift would make a clock at NIST run
faster than a clock at PTB.
In total, we get the respective gravity potential values

WNIST = 62 620 703.18m2/s2 and WPTB = 62 635 693.94m2/s2. (312)

Taking the full set of spherical harmonic coefficients leads to WNIST = 62 620 700.75m2/s2 (Pavlis/Weiss [403]),
which implies that, at least for highly precise clock comparisons, an approximation of the Earth’s gravitational
potential by the mass monopole and quadrupole moments is not sufficient, because (cf. equation (303))

δf

f
=
δW

c2
⇒ δW ≈ 3m2/s2 → δf

f
≈ 3.3 · 10−17. (313)

Such an error magnitude is well in the frequency stability range of the best performing (optical) clocks. Or, from
a practitioners point of view, upcoming atomic clocks are sensitive to higher order mass multipole moments
and thus could provide a supplementary tool for gravity field monitoring purposes. So far, this task is mainly
driven by costly space missions that have to be launched every few years due to its satellites’ limited lifetimes.
In contrast, a continuously running globally distributed clock network in future may provide uninterrupted and
consistent time series of data on the Earth’s gravity field, valuable to the proposed GGOS.
In an approximative manner, one can apply an alternative series expansion for the computation of the valuesWk,
based on § 32, cf. equation (267),

Wk =W0 − g(ϕk)hk + · · · , (314)
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where g(ϕ) is the gravity acceleration on the geoid in dependence on geographical latitude (Soffel/Langhans [514])

g(ϕ) ≈
(
9.78027 + 0.05192 sin2ϕ

)
m/s2, (315)

and h denotes height above the geoid.
The ratio dτNIST/dτPTB can thus be written as

dτNIST

dτPTB
=
fPTB

fNIST
=

1− W0 − g(ϕNIST)hNIST

c2

1− W0 − g(ϕPTB)hPTB

c2

≈
1 +

g(ϕNIST)hNIST

c2

1 +
g(ϕPTB)hPTB

c2

. (316)

For our estimates we will approximate the geoid by an ellipsoid of revolution with given size and shape values

a = ae⊕ = 6378 136.46m (semi-major axis) and f = 1/298.25765 (flattening) , (317)

which represents an ideal Earth ellipsoid in the tide-free system, whereas the GPS-related World Geodetic
System (WGS-84) applies nominal values a = 6378137.0m and f = 1/298.2572235630. Remark: GNSS provide
ellipsoidal heights, e.g., GPS heights relate to WGS-84.
The transformation between Cartesian coordinates (x, y, z) and ellipsoidal geographical coordinates (ϕ, λ, h)
(Heck [237]), where a and f are given parameters (b = a(1− f)), can be performed via (Mittermayer [367])

x

y

z

 =


(N + h) cosϕ cosλ

(N + h) cosϕ sinλ(
N

1 + e′2
+ h

)
sinϕ

 ⇔

ϕ = arctan

(
z + e′2b sin3 t
p− e2a cos3 t

)
,

λ = arctan(y/x) ,

h =
p

cosϕ
− a√

1− e2 sin2ϕ
,

(318)

with the auxiliary quantities

p =
√
x2 + y2 , t = arctan

(
z a

p b

)
, c =

a2

b
, e2 =

a2 − b2

a2
, e′2 =

a2 − b2

b2
, V 2 = 1+e′2 cos2ϕ , N =

c

V
.

(319)
The transformation (x, y, z) → (ϕ, λ, h) has no exact analytical/closed-form solution, thus the expressions for ϕ
and h on the right hand side of equation (318) actually result from series expansions. If higher accuracies are
required, the following iterative procedure can alternatively be applied:

N (i) =
a√

1− e2 sin2ϕ(i−1)
,

h(i) =
p

cosϕ(i−1)
−N (i) ,

ϕ(i) = arctan
z

p

(
1− e2N (i)

N (i) + h(i)

)
for i = 1, 2, 3, . . . with ϕ(0) = arctan

z

p (1− e2)
. (320)

In our example, cf. equations (315) and (316), we find

ϕNIST = 39◦59′42′′.861 , ϕPTB = 52◦17′46′′.391 ,

λNIST = 254◦44′14′′.541 , λPTB = 10◦27′35′′.262 ,

hNIST = 1634.421m, hPTB = 130.848m,

gNIST = 9.80172m/s2, gPTB = 9.81277m/s2

⇒
dτNIST ≈

(
1 + 1.64 · 10−13

)
dτPTB ,

fPTB ≈
(
1 + 1.64 · 10−13

)
fNIST ,

(321)

which is consistent with the (more precise) result according to relations (303) and (312)

fPTB − fNIST

fNIST
=
WPTB −WNIST

c2
⇒ fPTB ≈

(
1 + 1.67 · 10−13

)
fNIST . (322)

From dτNIST> dτPTB we conclude that the clock at NIST runs faster than an equally constructed clock at PTB.
After one day this effect would lead to an accumulated time display difference of about 14.4 nanoseconds, or
about 5.26 microseconds after one year, respectively. In this example, the frequency shift due to a gravitational
potential difference (∆V ) is predominant in comparison to the frequency shift due to a centripetal potential
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difference (∆Φ). The same holds true for another example, where one would compare the clock at PTB with
another one on top of Mt. Everest. In this situation, the higher clock would run faster too (even more so) and,
again accumulated during the time span of one year, its time display offset would be nearly twice as large in
comparison to the NIST case (Soffel/Langhans [514]).
Regarding the task of TAI realization, all of the above-mentioned (imaginary) clocks run faster than a standard
clock on the geoid, because Wk < W0 ⇒ dτk > dτ0. Frequency corrections had to be applied so that they
effectively beat at the same rate as the standard clock. At NIST and PTB these corrections would amount to
−15.5 and −1.1 nanoseconds per day (1 d = 86400 s), respectively, because

fNIST − f0
f0

= −1.79761 · 10−13 and
fPTB − f0

f0
= −1.29395 · 10−14. (323)

What happens (to the sign of the frequency correction) if we raise the clocks’ altitude ? The answer depends
on the clocks’ actual state of motion. In order to narrow down the vast amount of special cases, we do not
consider any propelled motion here but will restrict ourselves to the free-fall motion of artificial Earth satellites.
Therefore, the clock is not subject to Earth’s classical centripetal potential, and equation (298) is to be used.
Furthermore, we simply apply the (non-relativistic) Kepler problem - we assume an idealized two-body motion.
As an example, we consider a clock in a GPS-like orbit (Mai [337]) but with zero eccentricity (circular orbit),
i.e. r = āGPS ≈ 26500 km. From the vis-viva equation (Vallado/McClain [561]) one gets the circular velocity

v2 = µ⊕

(
2

r
− 1

a

)
, a = r ⇒ vcircular

GPS-like =: vGPS =

√
µ⊕

āGPS
= 3878m/s . (324)

Due to the comparatively high altitude of the orbit, the series expansion for the Earth’s gravitational potential
can be truncated after a few terms. Remark: in the early days, the GPS on-board software routines made use
of an 8 × 8-gravity field model (nmax = mmax = 8) for in-situ orbital determination purposes. Here, we will
even retain only the mass monopole term, such that

V (rGPS-like) =: VGPS ≈ µ⊕

āGPS
= 15 041 526.11m2/s2. (325)

Considering the situation from the point of view of the ECI frame, the comparison of our space-based clock with
a stationary clock at one of the poles on the rotating geoid (where Φ0 = 0 ⇒ V0 =W0) yields, cf. equation (299),

dτGPS

dτ0
=

f0
fGPS

= 1 +
W0 − VGPS

c2
− v2GPS

2c2
= 1 + 5.296 · 10−10 − 0.837 · 10−10 = 1 + 4.459 · 10−10. (326)

Ashby [21] performs a similar estimation of the net effect, assuming a clock on the equator instead and retaining
only the J2-term in the calculation of the geopotential at the ground site, resulting in ∆f/f = 4.465 · 10−10.
Spilker [518] mentions a more general case which also comprises the normal Doppler effect and higher order
terms O(c−3) etc. It is stated that, on average, at earthbound GPS receivers the observed fractional frequency
shift (fr − ft)/ft between transmitted (ft) and received (fr) GPS signals would be 4.479 · 10−10. Seemingly,
this result was obtained by simple point mass considerations, because a separate statement refers to the Earth’s
oblateness and the Sun’s potential, the combined effects of which will lead to frequency shift variations between
4.458 · 10−10 and 4.502 · 10−10. According to Kleppner et al. [283], the lunar influence is negligible altogether.
These statements were justified in the 1970’s, but in the early 1980’s Moyer [370], [371] identified various lunisolar
effects (and even the influence of Jupiter and Saturn) to be significant for time transformations/comparisons,
especially in space geodetic techniques like VLBI, cf. equations (142) and (143) in § 30.1. Regarding the GPS,
Ashby [21] discusses additional effects due to the ellipticity of its satellite orbits (the mean eccentricity is
ēGPS ≈ 0.005), or due to necessary orbital adjustments.
Remark: GPS-like orbits exhibit (deep) resonance effects because of its near 2 : 1 commensurability with Earth’s
rotation. This causes a violation of the predictions of the classical orbital perturbation theory of Kaula [271]
which, among others, states that the semi-major axis shows no secular trends. In practice, the GPS operators
have to perform (costly) station-keeping maneuvers at regular intervals (nearly every 11 months). Otherwise the
drift of the semi-major axes would grow too strongly and finally destroy the topology of the GPS constellation,
which is crucial for the functionality of the whole navigation system. Alternative orbital theories have been
developed (e.g. Cui [111]) and tested (Mai [337]) that take resonance and coupling effects into account.
The ellipticity of GPS orbits gives raise to a periodic frequency shift. If neglected, it can cause timing errors of a
few nanoseconds, corresponding to positioning errors of a few meters. The receiver has to account for this effect,
it is not included in the navigation message due to historical reasons (Ashby [21]). Most GPS users will employ
an ECEF frame, thus the receiver software additionally has to care for the Sagnac correction (Combrinck [106]).
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Following equation (326), the satellite clock runs faster than the clock on the ground. The GPS system design
intended the nominal frequency on the geoid to be f0 = 10.23MHz. Consequently, the GPS signal requires a
transmission frequency fGPS that is set low to

fGPS =
10.23MHz

1 + 4.459 · 10−10
= 10.229 999 995 44MHz , (327)

which is close to the values in Spilker [518] (10.229 999 995 45MHz) and Combrinck [106] (10.229 999 995 43MHz).
According to Ashby [21], a corresponding „factory frequency offset“ was applied to the satellites’ atomic clock
frequencies for compensation before launch, but only in case of the older satellites. These days a new procedure
is in use: clock frequencies are measured after orbit insertion and necessary corrections are transmitted to the
receivers via the navigation message.
Remark: all of our calculations are rough estimates. For any real-world clock comparisons/corrections, besides
idealized major relativistic effects and various (systematic) error sources for the clocks itself, one has to consider
distortions of the signals that result in path deflections, time delays, etc. The significance of minor relativistic
effects (cf. § 29.13) had to be studied in detail, depending on the proposed application. For earthbound atomic
clocks, major geophysical effects like Earth tides must not be neglected, as we already demonstrated in previous
sections. Obviously, more realistic simulations require an elaborate consistent modeling.



Outlook

Future geodesy will benefit from a consistent incorporation of relativistic and quantum mechanic aspects.
Technological progress opens the field of relativistic geodesy, where atomic clocks and other quantum engineering
sensors are sensitive enough to exploit relativistic effects even in case of only moderate velocities and potential
differences as usually experienced in earthbound applications.
Successful implementation in practice requires a sound theoretical basis. This means that, depending on the
actual given tasks, post-Newtonian approximations of gravity may have to be extended to required higher order
terms. The underlying field equations must be solved for more general real-world physical systems, e.g., extended
massive non-rigid bodies with irregular shapes, density distributions, and rotational rates. Appropriate solution
strategies have to be developed based on consistent reference systems for space and time.
Regarding practical aspects, the optimal configuration of clock networks and clock reading comparisons has
to be investigated, depending on the needs of proposed geodetic applications. Highly precise frequency and
time transfer methods are already being tested between established sites of remote metrological institutes or
laboratories of physics. Experience with advanced optical fiber networks and satellite based connections, either
via microwave or laser links, can be gathered from past experiments and will grow in future. Various experiments
on these issues are running, others are at least proposed or in planning phase.
Certain geodetic applications rely on mobile measurement devices. Consequently, the mobility of (optical)
clocks is a prerequisite for their widespread use in geodesy. Miniaturization is another important request.
Various applications imply different requirements on such parameters as short/long term stability (i.e. necessary
averaging time), power consumption, weight, robustness, manageability of the whole instrumentation, costs, and
so on. For instance, ultra-stable oscillators, readily available for short-period applications, are much cheaper than
long-term stable hydrogen masers. In the distant future, multiple miniature clocks or even chip traps (clocks on
a chip) with sufficient stability might become realizable. This would enable quite different measurement setups
like clock swarms, etc.
As long as an area-wise use of atomic clocks remains fiction, its selective or point-wise application stays in
focus. In this sense, highly precise frequency standards are predestined for creating references in space-time.
Terminologically, we should speak of reference events in space-time instead of reference points (in space).
Geodetic entities like ’coordinates’ or ’heights’ refer to a certain reference system or surface. Furthermore,
in today’s classical geodesy, near real-time availability of final results plays an increasingly important role.
Relativistic geodesy, based on consistent redefinitions of reference systems and surfaces, e.g. the relativistic
geoid, would offer a clear and transparent way of meeting these requirements.
For the time being, the most obvious application is a clock based determination of large-scale height differences
in combination with complementary geodetic measurements. The latter are necessary to resolve the local tie
problem in case of co-location sites that host different geodetic techniques. Combination with data from other
sources, i.e., ground-based gravimetry or space-based gradiometry, shall be used to ensure comparability with
gravity field information and height system definitions. It enables the control of existing gravimetric geoids and
leveling results. Chronometric leveling will provide an effective and unique way to link isolated regional geoids
or tide gauges, e.g., in case of remote islands, which is a prerequisite for any profound judgement on regional
consequences of long-term global sea level changes.
The chronometric approach constitutes an independent measurement technique. Continuously running globally
distributed atomic clocks (clock networks) will allow for a consistent and near real-time Earth system monitoring
of geophysical phenomena with high temporal resolution. Regarding spatial resolution, provided that reliable
and robust transportable optical clocks with shorter interrogation times become available, they can be used to
densify existing information content where other techniques may be limited in the gathering of the required
data. This new technique might be more cost effective, depending on the given task, especially in comparison to
high-budget space missions. On the other hand, the success of relativistic geodesy relies on further progress in
quantum engineering in order to release the long-desired instrumentarium from the laboratories to the geodetic
community, and on the widespread use of a consistent mathematical framework among the users.
Close cooperation between geodesists and clock operators/developers at the (metrological) laboratories will
help to detect potential sources of error (methodological and/or technological) that may hamper the successful
application of clocks in relativistic geodesy. Different views of perspective provide a chance to identify various
new applications beyond the quite obvious chronometric leveling idea.
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