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Abstract 
For the validation of a symmetric rank-two random tensor, for instance of strain and stress, the eigenspace com-
ponents (principal components, principal directions) play a key role. They classify deformation and stress pat-
terns in earthquake regions, of plate tectonics and of glacially isostatic rebounds. The main purpose of this study 
is to develop the proper statistical inference for the eigenspace components of a two- and three-dimensional 
symmetric deformation tensor. Let us assume that the strain or stress tensor has been directly observed or indi-
rectly determined by other measurements. According to the Measurement Axiom such a symmetric rank-two 
tensor is random. For its statistical inference, we assume that the random tensor is tensor-valued Gauss-Laplace 
normally distributed. It is proven that the vectorized three-dimensional symmetric random tensor y = vech 
T ∈ R6×1 has a BLUUE estimate ˆ yµ ∈ R6×1 which is multivariate normally distributed, ˆ yµ ∼ 1

6 ˆ( , ; )n−
y y yµ Σ µN , 

where n is the number of full tensor observations and {vech },D=yΣ T  the variance-covariance matrix of y. The 
BIQUUE sample variance-covariance matrix ˆ

yΣ  is Wishart distributed ̂ ∼yΣ
1

6 ; )ˆ( 1, ( 1)n n −− − y yΣ ΣW . The 
eigenspace synthesis relates the eigenspace elements to the observations by means of a nonlinear vector-valued 
function establishing a special nonlinear multivariate Gauss-Markov model. For the linearized forms, we have 
succeeded to construct BLUUE (Best Linear Uniformly Unbiased Estimation) of the eigenspace elements and 
BIQUUE (Best Invariant Quadratic Uniformly Unbiased Estimation) of its variance-covariance matrix for the 
two- and three-dimensional cases. The test statistics, such as Hotelling’s T2, Lawley-Hotelling’s trace test, likeli-
hood ratio statistics and Growth-Curve model are proposed. In two case studies both model and hypothesis tests 
are applied to the two- and three-dimensional, symmetric rank two strain rate tensor observations in the region of 
central Mediterranean and Western Europe, which are derived from ITRF92 to ITRF2000 series station positions 
and velocities. The related linear hypothesis test has documented large confidence regions for the eigenspace 
components, namely eigenvalues and eigendirections, based upon real measurement configurations. They lead to 
the statement to be cautious with data of type extension and contraction as well as the orientation of principal 
stretches.  

Numerical tests have documented that the estimate ξ̂  of type BLUUE of the parameter vector ξ  within a linear 
Gauss-Markov model { { },E=Aξ y  { }}D=yΣ y  is not robust against outliers in the stochastic observation vector 
y. It is for this reason that we give up the postulate of unbiasedness, but keeping the set-up of a linear estimation 
ˆ =ξ Ly of homogeneous type. According to best linear estimators of type homBLE (Best homogeneously Linear 
Estimation), S-homBLE and α-homBLE of the fixed effects ξ  (Grafarend and Schaffrin 1993, Schaffrin 2000). 
We have developed a new method of determining the optimal regularization parameter α in uniform Tykhonov-
Phillips regularization (α-weighted BLE) by minimizing the trace of the Mean Square Error matrix ˆ{ }MSE ξ  (A-
optimal design) in the general case. Within two case studies, the new method is tested and analyzed in the uni-
variate and the multivariate case with data which is derived from simulated observations of a random tensor of 
type strain rate.  

 

Zusammenfassung 
Für die Validierung eines symmetrischen Zufallstensors, zum Beispiel der Spannung und Strain, spielen die 
Eigenkomponenten (Hauptverzerrungen und Orientierungen) eine Schlüsselrolle. Mit ihnen lassen sich Span-
nung und Strain in erdbebengefährdeten Regionen, bei der Plattentektonik sowie bei isostatisch postglazialen 
Hebungen klassifizieren. Die Entwicklung geeigneter mathematisch-statistischer Verfahren zur Schätzung der 
Eigenkomponenten eines zwei- oder dreidimensionalen symmetrischen Deformationstensors ist der Hauptge-
genstand der vorliegenden Arbeit. Es wird angenommen, dass der Spannungs- oder Straintensor entweder direkt 
beobachtet oder aus anderen Beobachtungen abgeleitet wurde. Auf Grund des Beobachtungsaxioms ist ein sol-
cher symmetrischer Tensor zweiter Stufe zufällig. Für seine statistische Inferenz nehmen wir an, dass der Zu-
fallstensor Gauß-Laplace normal verteilt ist. Es wird gezeigt, dass der vektorisierte dreidimensionale symmetri-
sche Zufallstensor y = vech T ∈ R6×1 eine beste lineare erwartungstreue uniforme Schätzung (BLUUE) 
ˆ yµ ∈ R6×1 hat. Diese ist multivariat normalverteilt mit ˆ yµ ∼ 1

6 ˆ( , ; )n−
y y yµ Σ µN . n ist die Anzahl der Tensor-

Beobachtungen, {vech }D=yΣ T  die Varianz-Kovarianz-Matrix der Beobachtungen y. Die BIQUUE (beste 
invariante quadratische uniforme erwartungstreue Schätzung) Varianz-Kovarianz-Matrix ˆ yΣ  der Stichprobe ist 
Wishart-verteilt ˆ ∼yΣ

1

6 ; )ˆ( 1, ( 1)n n −− − y yΣ ΣW . Da die Eigenraumsynthese eines symmetrischen Zufallsten-
sors bezüglich tensorwertiger Beobachtungen nichtlinear ist, müssen die jeweiligen Parameter innerhalb eines 
speziellen nichtlinearen multivariaten Gauß-Markoff Modells geschätzt werden. Zur Stichprobenprüfung der 
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Eigenraumsynthese wird dessen Linearisierung aus den ursprünglich nichtlinearen Beobachtungsgleichungen 
abgeleitet. Die Schätzungen (Σ -BLUUE) der Eigenraumbestandteile und die Schätzung ihrer Varianz-
Kovarianzmatrix der Art BIQUUE werden für den zwei- und dreidimensionalen Fall entwickelt und entspre-
chende Teststatistiken wie Hotelling’s T2, die Likelihood-Verhältnisstatistiken und das „Growth-Curve model“ 
generiert. In zwei Fallstudien werden sowohl Modell- als auch Hypothesentests auf zwei- und dreidimensionale, 
symmetrische Tensor-Beobachtungen der Strainraten in der zentralen Mittelmeerregion und Westeuropa ange-
wendet, die von Stationspositionen und -geschwindigkeiten der Reihe ITRF92 bis ITRF 2000 abgeleitet werden. 
Die verwandten Hypothesentests liefern, basierend auf realen Messkonfigurationen, große Konfidenzintervalle 
für die Eigenwerte und Eigenrichtungen, so dass mit der Interpretation der Größenausdehnung, Kontraktion und 
Hauptstreckungsrichtung äußerst vorsichtig umgegangen werden muss. 

Numerische Tests haben dokumentiert, dass die Schätzung ̂ξ  des Typs BLUUE des Unbekanntenvektors ξ  im 
linearen Gauss-Markov-Modell { { },E=Aξ y  { }}y D=Σ y  nicht gegen Ausreißer im stochastischen Beobach-
tungsvektor robust ist. Aus diesem Grund geben wir das Postulat der Unverzerrtheit auf, behalten aber den An-
satz der homogenen linearen Schätzung ˆ =ξ Ly  bei. Auf Grundlage bester linearer Schätzer vom Typ α-homBLE 
(beste homoge lineare Schätzung), S-homBLE und α-homBLE der fixen Effekte ξ (Grafarend und Schaffrin 
(1993), Schaffrin (2000)) haben wir eine neue Methode der Bestimmung des optimalen Regularisierungsparame-
ters α einer uniformen Tykhonov-Phillips-Regularisierung (α-gewichtete BLE) für den allgemeinen Fall entwi-
ckelt. Das Kriterium ist die Minimierung der Spur der Matrix ˆ{ }MSE ξ  der mittleren Fehlerquadrate (A-optimales 
Design). Im Rahmen zweier Fallstudien wird die neue Methode für den univariaten und multivariaten Fall mit 
Daten, die aus simulierten Beobachtungen eines Strainratentensors abgeleitet werden, getestet und analysiert. 
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Chapter 0 

Introduction 

A central task of Geosciences, in particular of Geodesy and Geophysics, is to determine the temporal change of 
the Earth’s shape by observations and analysis of geodetic and geophysical global, regional or local networks. 
With the new space geodetic techniques, such as Very Long Baseline Interferometry (VLBI), Satellite Laser 
Ranging (SLR), and Global Positioning System (GPS), three-dimensional positions and velocities of points in 
these networks have been determined with high accuracy (~ mm level) from relative regular measurement cam-
paigns, which have become a key tool in plate tectonic studies. These data have improved our knowledge and 
understanding of (1) regional deformation and strain accumulation related to earthquakes, (2) contemporary 
relative plate tectonic motions of the North American, Pacific, South American, Eurasian, Australian, Nazca, and 
Caribbean plate, (3) internal deformation of lithospheric plates, and (4) crustal motion and deformation occurring 
in the regions of high earthquake activity. These facts suggest that the components of deformation measures such 
as the symmetric stress or strain tensor can be estimated from the highly accurate geodetic data and analyzed 
through the proper statistical testing procedures.  

Deformation tensors are practically random, since they are either directly measured or indirectly inverted from 
other geo-measurements. The estimate of random symmetric rank two tensors and associated statistical inference 
are usually based on the statistics, e.g., sample means and sample variance-covariance. So we should firstly 
derive the sampling distributions of sample means of the random tensor. The values of any sample statistics 
depend on a particular samples one happens to obtain. It varies from sample to sample. Thus a statistic is a ran-
dom variable. As such, it has a probability distribution called sampling distribution. We owe the early develop-
ment of sampling distributions under normality to P.S. Laplace (1812), Carl Friedrich Gauss (1816), Friedrich 
Robert Helmert (1876a) for the Helmert distribution (which is highly valued as the starting point for modern 
small sample theory), Thorvald N. Thiele (1889, 1903), Karl Pearson (1900) for his Chi square distribution, 
Sealy Gosset (1908a, b) for his Student t-distribution, Ronald A. Fisher (1920, 1922) for the F-distribution and 
John Wishart (1928) for the Wishart distribution.  

The hypothesis test of sample mean vector and sample variance-covariance matrix of a symmetric random tensor 
belongs to multivariate analysis which is the branch of statistics devoted to the study of random variables that are 
not necessarily independent. Where inference is concerned several (generally correlated) measurements are made 
on every observed subject. Many current multivariate statistical procedures were developed during the first half 
of the twentieth century. A reasonable complete list of the developers would be voluminous. However, a few 
individuals can be cited as having made important initial contributions to the theory and practice of multivariate 
analysis. T. Galton and K. Pearson did pioneering work in the area of correlation and regression analysis. R.A. 
Fisher's derivation of the exact distribution of the sample correlation coefficient and related quantities provided 
the impetus for multivariate distribution theory. C. Spearman and K. Pearson were amongst the first to work in 
the area of factor analysis. Significant contributions to multivariate analysis were made during the 1930s by. S. S. 
Wilks (general procedures for testing certain multivariate hypotheses), H. Hotelling ( Hotelling's T2, principle 
component analysis, canonical correlation analysis), R. A. Fisher (discrimination and classification), and P. C. 
Mahalanobis (generalized distance, hypothesis testing). J. Wishart derived an important joint distribution of 
sample variance and covariance that bears his name. Later M. Bartlett and G. E. P. Box contributed to the large 
sample theory associated with certain multivariate test statistics. The body of statistical methodology used to 
analyze simultaneous measurements on many variables is called multivariate analysis. Many multivariate meth-
ods are based on an underlying probability model known as the multivariate normal. The objectives of scientific 
investigations, for which multivariate methods most naturally lend themselves, include the following: 

− Data reduction or structural simplification. 

− Sorting and grouping. 

− Investigation of dependence among variables. 

− Predication. 

− Hypothesis construction and testing. 

In the deformation analysis in geosciences (geodesy, geophysics and geology), we are often confronted with the 
problem of a two-dimensional (or planar and horizontal), symmetric rank-two deformation tensor. Its eigenspace 
components (principal components, principal direction) play an important role in interpreting the geodetic   
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phenomena like earthquakes (seismic deformations), plate motions and plate deformations among others. With 
the new space geodetic methods three-dimensional positions and velocities of points in these networks have been 
determined with high accuracy (~ mm level) from relative regular measurement campaigns, which have become 
a key tool in plate tectonic studies. This fact suggests that the components of a two-dimensional deformation 
tensor can be estimated from the high accuracy geodetic data and analyzed through the proper statistical testing 
procedures. According to the Measurement Axiom such a two-dimensional, symmetric (2, 0) tensor is a random 
tensor T which we assume to be an element of the tensor-valued Gauss-Laplace normal distribution over R2×2 of 
type independently, identically distributed (i.i.d.) tensor-valued observations, but with identical off-diagonal 
elements.  

In reality, crustal motions and deformation are of three-dimensional nature and most deformation tensors derived 
from geodetic, geological and seismological observations are three-dimensional, such as the seismic moment 
tensors. In the last two decades some efforts have been made to formulate the problem in the three-dimensional 
space. A curvilinear three-dimensional finite element method has been introduced by Grafarend (1986) for the 
representation of local strain and local rotation tensors in terms of ellipsoidal, Gauss-Krüger or UTM coordi-
nates. More researches about the three-dimensional strain and strain rate tensor analysis in geodesy are referred 
to the papers of Brunner (1979), Lichtenegger and Sünkel (1989), Dermanis and Grafarend (1993) and Witten-
burg(1999). In comparison with the more complete solution and application about two-dimensional deformation 
tensors on the Earth, there are three aspects that limit the deformational analysis in three dimensions: (1) there is 
insufficient accuracy of vertical components of point positions due to unresolved modeling errors; (2) the verti-
cal movements of the crust, whether uplift or subsidence, are generally an order of magnitude smaller than hori-
zontal movements; (3) the restriction of the extensive geodetic measurements to the earth’s surface make the 
vertical gradient of the velocity vector generally unobservable. In addition to the analysis of the eigenspace com-
ponents of three-dimensional deformation tensor it is difficult to uniquely determine the three eigendirections. 

Random tensors, also called random matrices, were first analysed in Nuclear Physics (Porter 1965, Mehta 1991), 
independently in Mathematical Statistics (Anderson 1984) in the context of multivariate modeling. Given the 
probability density function (pdf) of a random tensor of second order, it has been documented that apart from 
special cases, the exact probability density function of the random eigenspace components cannot be found in a 
closed form. Accordingly, statistical analysts have focussed on approximate and/or limit distributions, for in-
stance, of the products of random matrices and/or the random eigenspace components (Anderson 1958; Mehta 
1991; Girko 1979, 1990, 1995, 2000; Cohen, Kesten & Newman 1984). 

In the Earth Science random tensors have only recently been investigated from the statistical point of view. Since 
the tensors in the Earth Science are physical quantities and their dimensions are generally low (3 for stress/strain 
tensors and 6 for elastic material tensors), mathematically approximate/limit distributions of the random eigen-
space components are of limited practical value. In fact, the study of random stress/strain has been focused on 
the following four aspects: (1) the exact distribution of the random principal stress/strain components, since the 
dimension of stress/strain tensors is not greater than three and since the number of measurements is always fi-
nite; (2) the accuracy of the random eigenspace components. The accuracy is generally not investigated in the 
mathematical literature of rank-two random tensors. It is however a routine indicator that must be attached to any 
estimated/derived geo-quantity; (3) the biases of the random eigenspace components. Since the mapping be-
tween a stress/strain tensor and its eigenspace components is nonlinear, the random eigenspace components are 
biased. The biases of the eigenspace components, except for some inequality results on the biases of the random 
eigenvalues (see e.g. Cacoullos 1965), have not been well investigated in the mathematical literature on rank-two 
random tensors. They can have an important role to play in correctly interpreting the estimated stress/strain field 
geophysically, however; and (4) the eigendirections. The eigendirections have been almost always treated as 
nuisance parameters in nuclear physics and multivariate analysis. Geophysically, the eigendirections are very 
important and thus cannot be ignored (Xu and Grafarend  1996b). 

The first work on the statistical analysis of random tensors in the Earth Sciences was to compute the first-order 
accuracy of the principal eigenvalues of a symmetric, rank-two random tensor (Angelier et al. 1982 as an appen-
dix, and probably independently, Soler & van Gelder 1991). Kagan & Knopoff (1985) studied statistically the 
first two moments of stochastic three-dimensional (3D) seismic moment tensor invariants, which were used to 
explain complex fault geometry (Kagan 1992).  

On the assumption that a strain tensor or stress tensor has been directly measured or derived from other observa-
tions, such a two-dimensional, symmetric rank-two tensor is a random tensor T which we assume to be an ele-
ment of the tensor-valued Gauss-Laplace normal distribution over R2×2 of type independently, identically dis-
tributed (i.i.d.) tensor-valued observations. The distribution of the eigenspace components of the rank-two    
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random tensor (principal components, principal directions) has been investigated by Xu and Grafarend (1996a; 
1996b), which is significantly different from the commonly used Gauss-Laplace normal distribution. The possi-
ble bias terms of eigenspace components and the nonlinear error propagation are also studied in these two pa-
pers. By means of the numerical analysis with the power series expansion, the marginal probability density func-
tion fλ (λ1, λ2) of random eigenvalues λ1, λ2 has been approximately computed by Cai (2001). In recent years Xu 
(1999a) and Kagan (2000) developed the general distribution of the eigenspace components of the symmetric, 
rank-two random tensor, which can hardly be applied directly to real Engineering and Earth Science problems, 
since an exact distribution theory of eigenspace components is almost always unavailable.  

These reasons give rise to investigate the  

Statistical inference of eigenspace components 
of the two- and three-dimensional symmetric,  
rank-two random tensor ("random matrix") 

based upon a linearized multivariate Gauss-Markov model which will provide us with the second-order statistics 
of eigenspace components. Such a statistical inference on a random matrix is completed by the design of a linear 
hypothesis test.  

With the benefit of the development of the space geodesy and the continuous observations of the permanent 
networks, such as, International GPS Service (IGS) Network, International Laser Ranging Service (ILRS) Net-
work,  International VLBI Service for Geodesy and Astrometry (IVS) Network and International DORIS Service 
(IDS) Network and their combination International Terrestrial Reference Frame (ITRF) by IERS, we can now 
derive the strain rate tensor observation and estimate the eigenspace component parameters of these random 
tensor samples, which address not only the present-day deformation pattern but also their continuous change of 
them. In two case studies both BLUUE and BIQUUE models and hypothesis tests are applied to the eigenspace 
components of two- and three-dimensional strain rate tensor observations in the area of central Mediterranean 
and Western Europe, which are derived from ITRF92 to ITRF2000 series station positions and velocities in 
Sections 6.6.and 6.7. The related linear hypothesis test has documented large confidence regions for the eigen-
space components, namely eigenvalues and eigendirections, based upon real measurement configurations. They 
lead to the statement to be cautious with data of type extension and contraction as well as with the orientation of 
principal stretches. 

In the estimate of deformation tensor we often see that the estimate ξ̂  of type BLUUE of the parameter vector ξ  
within a linear Gauss-Markov model { { },E=Aξ y  { }}D=yΣ y  is not robust against outliers in the stochastic 
observation vector y. It is for this reason that we give up the postulate of unbiasedness, but keeping the set-up of 
a linear estimation ̂ =ξ Ly  of homogeneous type. The biased estimation is a special inverse problem, also related 
to Tykhonov-Phillips regulator or ridge estimator. Ever since Tykhonov (1963) and Phillips (1962) introduced 
the hybrid minimum norm approximation solution (HAPS) of a linear improperly posed problem there has been 
left the open problem to evaluate the weighting factor α between the least-squares norm and the minimum norm 
of the unknown parameters. Since the 1960s this problem has been studied intensively not only in mathematical 
statistical field but also in industry, see e.g. Hocking (1976), Hoerl (1985), Hanke and Hansen (1993) und Engl 
(1993). In most applications of Tykhonov-Phillips type of regularization the weighting factor α is determined by 
simulation studies, but according to the literature also optimization techniques have been applied. Here we aim at 
an objective method to determine the weighting factor α within α-HAPS.  

Alternatively, improperly posed problems, which appear in solving integral equations of the first kind or down-
ward continuation problems in potential theory, depart from observations which are elements of a probability 
space. Accordingly, estimation techniques of type BLUUE (best linear uniformly unbiased estimation) have been 
implemented to estimate ξ̂  as an unknown parameter vector ξ  (“fixed effects”) within a linear Gauss-Markov 
model. Such an estimation is not robust against outliers in the stochastic observation vector .∈y Y�  

The second method of regularizing an improperly posed problem offers the possibility to determine the regulari-
zation parameter α in an optimal way. For instance, by an A-optimal design of type 

"minimize the trace of the  Mean Square 

Error matrix  ˆtr MSE{ }ξ of ξ̂ (α-hom  BLE) to find  
ˆˆ arg{tr MSE{ } min}α = =ξ " 

we are able to construct the regularization parameter α which balances the trace of the variance-covariance 
matrix ˆtr D{ }ξ and the trace of the quadratic bias tr ′ββ  for the bias vector [ ]= − −β I LA ξ . 
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According to the facts and status introduced above this dissertation presents the complete statistical analysis of 
random deformation tensor (case study: two- and three-dimensional, symmetric rank two strain rate tensor) with 
emphasis on their eigenspace components. The main contributions of this study are: 

• Determination of the sampling distribution of the three-dimensional deformation tensor and development of 
the univariate and multivariate hypothesis tests, especially the eigen-inference and test with a Growth Curve 
model;  

• Derivation of the general sampling distribution of the estimate within a Gauss-Markov linear model; 

• Derivation of the regularization parameter in uniform Tykhonov-Phillips regularization (α-weighted BLE) 
by minimizing the trace of the Mean Square Error matrix ˆ{ }MSE ξ  (A-optimal design) in the general case 
for the Gauss-Markov model; 

• Linearization of the special nonlinear multivariate Gauss-Markov model related the tensor elements and the 
eigenspace components;  

• Development of the BLUUE of the eigenspace elements of two-dimensional random tensor and BIQUUE of 
its variance-covariance matrix for the linearized model;  

• Establishment of the unique eigenvalue-eigenvector analysis and synthesis of a three-dimensional symmet-
ric random matrix based on the review and choice of orthogonal similarity transformation matrices, which 
leads to the generalization of the BLUUE of the eigenspace elements of three-dimensional random tensor 
and BIQUUE of its variance-covariance matrix in the three-dimensional case. 

• The theorems and estimators are in closed form and practical which bring a sound meaning to the statistical 
analysis of deformation tensor. 

In this doctoral thesis the following topics will be presented in detail:  

Chapter 1 first discusses the normal distribution property of a three-dimensional, symmetric random tensor. 
Further it will derive the sampling distribution of the sample mean and sample variance with classical methods. 
Section 1.3 deals with a matrix method of deriving the sampling distribution directly from the probability density 
function for the sample mean from the multivariate normal population of a three-dimensional, symmetric rank 
two random tensor. Based on the Wishart distribution the sampling distribution connected with sample variance-
covariance of symmetric random tensor is derived and the independence between sample mean and sample vari-
ance-covariance is studied in Section 1.4. As a generalization of the sampling distribution theory in the direct 
observation case for a scalar or vectorized random tensor, Section 1.5 will develop the sampling distribution of 
the estimate of the linear Gauss-Markov model and the sampling distribution of the orthonormal transformed 
parameters. 

Chapter 2 develops the testing hypotheses concerning the sample mean vector and the sample variance covari-
ance matrix, i.e. the estimated parameters (mean vector and covariance matrix) of tensor-valued multivariate 
normal population of a three-dimensional, symmetric rank-two random tensor, which are (1) Tests on µ  with 
Σ known  ( 2χ -test); (2) Tests on µ  with Σ unknown (Hotelling's 2T -test); (3) Test on equality of two mean 
vectors with common variance-covariance matrix (Hotelling's two-sample 2T test and Wilks’ Λ test ); (4) Test on 
variance-covariance matrix is equal to a given matrix (likelihood ratio statistics); (5) Test on the equality of two 
variance-covariance matrices (likelihood ratio statistics); (6) Tests on the mean vectors and variance-covariance 
matrices are equal to a given vector and matrix (likelihood ratio statistics). 

Chapter 3 develops the optimal α for Tykhonov-Phillips regularization by A-optimal design. In Section 3.1 the 
regularization parameter in uniform Tykhonov-Phillips regularization (α-weighted BLE) is determined by mini-
mizing the trace of the Mean Square Error matrix ˆ{ }MSE ξ  (A-optimal design) in the general case for the Gauss-
Markov model. With two comparisons it is shown that the optimal ridge parameter k in ridge regression devel-
oped by Hoerl and Kennard (1970a, 1970b) and Hoerl, Kennard and Baldwin (1975) are just the special case of 
our general solution by A-optimal design. Based on the introduction of the multivariate homBLEα − for the 
multivariate parameters, the determination of the optimal weight factor α  is generalized to the multivariate 
Gauss-Markov model, which we shall call "multivariate ridge estimator". In lieu of two case studies, these mod-
els are tested and analyzed with numerical results computed from simulated direct observations of a random 
tensor of type strain rate in univariate and multivariate cases.  

Chapter 4 deals with statistical inference of the eigenspace components of a two-dimensional, symmetric rank-
two random tensor. First, the eigenspace analysis and synthesis of a symmetric random matrix are reviewed. 
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Linearized with Taylor expansion  
by Jacobi matrix (Box 4.4) 

Second, the nonlinear function, which relates the tensor elements to the eigenspace components, is linearized 
with respect to a special nonlinear multivariate Gauss-Markov model. Third, for its linearized form, BLUUE of 
the eigenspace components and BIQUUE of its variance-covariance matrix have been established successfully. 
Fourth, the sampling distribution of eigenspace components is derived. The test statistics, such as Hotelling’s T2, 
likelihood ratio statistics and the general linear hypothesis test with growth curve model, are proposed. Hypothe-
sis tests for the random tensor sample means as well as its one variance component will be used in the case study 
of validating a given random strain rate tensor in Chapter 6. 

Chapter 5 deals with statistical inference of the eigenspace components of a three-dimensional, symmetric rank-
two random tensor. First, based on the review and choice of orthogonal similarity transformation matrices the 
eigenspace analysis and synthesis of a three-dimensional symmetric random matrix are established uniquely. 
Second, the nonlinear function that relates the tensor elements to the eigenspace components is linearized with 
respect to a special nonlinear multivariate Gauss-Markov model, which enables the BLUUE of the eigenspace 
elements and BIQUUE of its variance-covariance matrix, developed in Section 4.2 to be successfully applied in 
the three-dimensional case. Third, the test statistics, such as Hotelling’s T2 and likelihood ratio statistics, are 
generated. Hypothesis tests for the random tensor sample means as well as its one variance component will be 
used in the case study of validating a given three-dimensional random strain rate tensor in Chapter 6. 

Chapter 6 begins with a discussion of the geodynamic setting of the Earth and especially the selected investi-
gated regions: the central Mediterranean and Western Europe. Then the space geodetic observations are intro-
duced. Thirdly the selection of ITRF sites is performed after the history and quality of the ITRF realization series 
and the related residual velocities of selected ITRF sites are computed. Further the methods of derivation, the 
two- and three-dimensional geodetic strain rates are introduced and applied to derive the strain rates from the 
residual velocities, which are based on the Finite-Element-Method (FEM). For two case studies both BLUUE 
and BIQUUE models and hypothesis tests are applied to the eigenspace components of two- and three-
dimensional strain rate tensor observations in the area of central Mediterranean and Western Europe, which are 
derived from ITRF92 to ITRF2000 series station positions and velocities in Sections 6.6. and 6.7. Further de-
tailed analysis of the results is also performed with respect to geodynamical and statistical aspects. 

Chapter 7 concludes the main contributions and results in this study and makes a prospect for further applica-
tions of the developed theory and methods.  

At last we summarize the statistical inference and analysis of two- and three-dimensional, symmetric rank two 
deformation tensors as developed in Chapter 4, 5 and 6 in the following two schemas : 

 

 
I. The scheme of inference and analysis of the 

eigenspace components of a two-dimensional random tensor 

 

 
      
 
 
 
 

 
 

Box 4.3 
Nonlinear 

G-M model 

Box 4.5 
Linearized 
G-M model 

Theorem 4.3 
BLUUE of eigenspace 

components 
Theorem. 4.4 

BIQUUE of variances  
and covariances of a 

 symmetric random tensor 
 

Section 4.3 
Hypothesis tests of 
the estimates of ei-

genspace components 

Analysis and 
Inference 

Case Study I  
(Section 6.6) 
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Linearized with Taylor expansion curtailed       
at the first derivation by Jacobi matrix 

Linearized with Taylor expansion  
by Jacobi matrix (Box. 5.3) 

 

II. The scheme of inference and analysis of the 
eigenspace components of a three-dimensional random tensor 

 

 
      
 
 
 
 

 
 
 

Box 5.2 
Nonlinear 

G-M model 

Box 4.5 
Linearized 
G-M model 

Theorem 4.3 
BLUUE of eigenspace 

components 
Theorem. 4.4 

BIQUUE of variances  
and covariances of a 

 symmetric random tensor 
 

Section 5.3 
Hypothesis tests of 
the estimates of ei-

genspace components 

Analysis and 
Inference 

Case Study II 
(Section 6.7) 



 

 

Chapter 1 

Sampling distributions of three-dimensional, symmetric rank-two 
random tensor and the estimate of Gauss-Markov model 

In order to make the quality of the estimated random tensors significant, statistical inference has to be applied, 
which is usually based on the statistics, e.g., sample means and sample variance. So we should derive the sam-
pling distributions of the symmetric rank-two random tensor. The values of any sample statistic depend on the 
particular sample that one happens to obtain. It varies from sample to sample. Thus a statistic is a random vari-
able. As such, it has a probability distribution called sampling distribution. We owe the early development of 
sampling distributions under normality to P.S. Laplace (1812), Carl Friedrich Gauss (1816), Friedrich Robert 
Helmert (1876) for the Helmert distribution (which is highly valued as the starting point for modern small sam-
ple theory), Thorvald N. Thiele (1889,1903), Karl Pearson (1900) for his Chi-square distribution, Sealy Gosset 
(1908a, b) for his Student t-distribution, Ronald A. Fisher (1920, 1922) for the F-distribution and John Wishart 
(1928) for the Wishart distribution. 

In the following sections we will first discuss the normal distribution property of a three-dimensional, symmetric 
random tensor. Further we will introduce the derivation of the sampling distribution of the sample mean and 
sample variance with classic methods. Section 1.3 deals with a matrix method of deriving the sampling distribu-
tion directly from the probability density function for the sample mean from the multivariate normal population 
of a three-dimensional, symmetric rank-two random tensor. Based on the Wishart distribution the sampling dis-
tribution connected with the sample variance-covariance matrix of a symmetric random tensor is derived and the 
independence between sample mean and sample variance-covariance is  studied in Section 1.4. As a generaliza-
tion of the sampling distribution theory in the direct observation case for a scalar or vectorized random tensor, 
section 1.5 will develop the sampling distribution of the estimate of the linear Gauss-Markov model and the 
sampling distribution of the orthonormal transformed parameters. 

1.1  The normal distribution of a symmetric random tensor  

A tensor is a mathematical quantity that can be used to describe the state or the physical properties of a material. 
We describe a tensor by a set of scalar components referred to a particular coordinate system. A rank-two tensor 
in three-dimensional space has nine components, the most important examples of these in geophysics are stress, 
strain and strain rate. Rank-two tensors are used to describe physical quantities that have magnitudes and are 
associated with three directions. Any rank-two tensor can be defined as a sum of symmetric tensors and an anti-
symmetric tensor. Here we will concern ourselves with the statistical properties of the symmetric tensor. 

Since basic quantities to infer the stress tensor and strain tensor in Earth sciences are contaminated by random 
errors, the tensor will be random. Before we discuss the statistical properties of a symmetric random tensor, we 
will first present the definitions and properties of both random vector and matrix and the multivariate normal 
distribution of the random vector and matrix. 

In multivariate analysis, each observation consists of a vector or matrix. The elements of a random vector or a 
random matrix are random variables. Formally, a random variable is a function defined for each element of a 
sample space. We shall generally define a random vector and its moments. 

 

  Definition 1.1  (random vector) 

A random n×1vector x is a vector 

 
1

n

x

x

 
 =  
  

x �  

  of random variables 1 2, ,..., nx x x , which are jointly distributed. 
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Definition 1.2  (the first order moment - the mean or expectation)  

The first order moment of a random n×1 vector x is defined to be the  
vector of expectations 

 
1 1{ }

{ } :

{ }n n

E x

E

E x

µ

µ

   
   = = =   
      

x µ� �  (1.1) 

  More generally, if Z=( ijz ) is a  p× q random matrix then E{Z},  
the expectation of Z is the matrix whose i-j th element is E{ ijz }. 

 
Definition 1.3 (the centralized second order moment – the 
dispersion matrix, also called variance-covariance matrix) 

The centralized second order moment of a random n×1vector x  
is defined to be the n×n matrix   

 
{ } : {[ { }][ { }] }

{( )( ) },

D E E E

E

′= = − −
′= − −

xx Σ x x x x

x µ x µ
 (1.2) 

  the i, jth off-diagonal element of xΣ is  

 {( )( )},ij i i j jE x xσ µ µ= − −  

the covariance between andi jx x and the ith diagonal element of xΣ is  

 2{( ) },ii i iE xσ µ= −  

  the variance of .ix  It is proved that xΣ is positive-definite. 

 

The majority of multivariate inferential procedures is based on the assumption that the random vector of interest 
has a multivariate normal distribution, which is the direct generalization of the univariate normal distribution. 
Before developing the multivariate normal density function and its properties, we will first review the univariate 
normal distribution.  

A normally distributed random variable x with mean µ and variance 2σ  is defined as  

 
Definition 1.4 (univariate normal distribution) 

A random variable x with mean µ and variance 2σ  is said to have  
a univariate normal distribution, in symbols 2~ ( , )x µ σN , if the  
probability density function of x is of the form  

 
2 2( ) / 21

( ) ,
2

xf x e xµ σ

π
− −= ∈R . (1.3) 

  The standardized variable ( ) /z x µ σ= −  with mean 0 and variance 1 
is said to have a standard normal distribution with the density  

 
2 / 21

( ) ,
2

zf z e z
π

−= ∈R . (1.4) 

 

The multivariate normal distribution of the random vector 1 2[ , ,..., ]nx x x ′=x  can be generalized by the univariate 
normal distribution (1.3) of one random variable as presented in Definition 1.5. 
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Definition 1.5 (multivariate normal distribution) 

The n×1 random vector x  with mean µ  and variance covariance  
matrix xΣ  is said to have a nonsingular multivariate normal distribution,  
in symbols  

 ~ ( , ), 0n >x xx µ Σ ΣN
�

,  

if (i) xΣ is positive-definite, and  (ii) the probability density function 
of x is of the form 

            11
2/ 2 1/ 2

1
( ; , ) exp{ ( (( },

(2 ) (det )
n

n
f

π
−′= − − − ∈x x

x

x µ Σ x µ) Σ x µ) x
Σ

R  (1.5)  

  where 1 2[ , ,..., ]nx x x ′=x  and { }E =x µ  is the first order moment  
(1.1) and { } {[ { }][ { }] }D E E E ′= = − −xx Σ x x x x is the centralized 
second order moment (1.2).  

The matrix normal distribution is also important in order to express the multivariate normal distribution. Dawid 
(1981), Mardia (1979, 1993), Muirhead (1982), Rosen (1988) and Brown (1993) published different expressions, 
however we prefer that of Muirhead (1982).  

We write that an r× s random matrix Y is normally distributed, say Y is ~ ( , )⊗Y M C DN  where E{ Y}=M is  
r× s mean value matrix, C and D are r×  r and s× s positive-definite matrices and ⊗C D  is the variance covari-
ance matrix of the vector y=vec(Y). The statement "Y is ~ ( , )⊗Y M C DN " is equivalent to the statement that  
" y is ~ ( , ),rs ⊗y m C DN " with m=vec(M ). The following result gives the joint density function of the ele-
ments of Y, which we name the matrix normal distribution. 
 

Theorem 1.6 (multivariate matrix normal distribution) 

The r× s random matrix Y with mean matrix M  and variance  
covariance matrix ⊗C D  of the vector of y=vec(Y) is said to  
have a multivariate matrix normal distribution,  in symbols,  

 ~ ( , )⊗Y M C DN   

if (i) C and D are r×  r and s× s positive-definite matrices and  
(ii) the probability density function of Y is of the form 

 / 2 / 2 / 2 1 11
2( ) (2 ) (det ) (det ) etr{ ( ( },rs s r r sf π − − − − − ×′= − − − ∈Y C D C Y M)D Y M) Y R  (1.6) 

                                          where etr(Z):= exp{ tr Z}. 
   

Proof: 

Since y=vec(Y) is ~ ( , ),rs ⊗y m C DN  with m=vec(M ), from (1.5) the joint density function of the element of y 
is  

 / 2 1/ 2 1 11
2( ) (2 ) (det( )) exp{ ( ) ( },rs rsf π − − − ×′= ⊗ − − ⊗ − ∈y C D y m) (C D y m) y R  (1.7)  

According to the properties of Kronecker products  

 1 1 1

det( ) (det ) (det ) ,  if  is ,   is .

( ) , if  and  are nonsingular.

tr( ) (vec( )) ( ) vec( ),

s r r r s s
− − −

⊗ = × ×
⊗ = ⊗

′ ′ ′= ⊗

C D C D C D

C D C D C D

PX QXR X RP Q X

 

and with respect to the corresponding items 1 1, ,  and − −′= = − = =P C X Y M Q D R I  we can see that (1.7) is the 
same as (1.6). This completes the proof. 

With these definitions and the theorem we will now establish the distribution of the symmetric random tensor.  

Let there be given a three-dimensional, symmetric rank-two random tensor T which is either directly or indi-
rectly estimated from observations by a model adjustment. The components of T can be expressed in a matrix 

 
11 12 13

21 22 23

31 32 33

t t t
t t t
t t t

 
=  
  

T . (1.8)  
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Such a three-dimensional, symmetric (2, 0) tensor is a random tensor T which we assume to be an element of the 
tensor-valued Gauss normal distribution over R

3×3 of type independently, identically distributed (i.i.d.) tensor-
valued observations. The probability distribution of this random tensor can be presented in matrix normal form 
of theorem 1.6. In order to derive the sampling distribution of the sample mean and sample variance covariance,  
noting that t21 = t12,  t31 = t13 and t32 = t23 we can make a simplification: the symmetric random tensor (1.8) is 
vectorized by (vech, vector-half)  

 6 1
11 12 13 22 23 33vech [ ] ,t t t t t t ×′= = ∈y T y R   (1.9)    

According to the Definition 1.5 we can get directly the joint multivariate normal probability density function 
(p.d.f.) of the three-dimensional, symmetric rank-two random tensor, which is presented in Definition 1.7 

  
Definition 1.7 (normal distribution of a symmetric random tensor) 

The vectorized random tensor 11 12 13 22 23 33vech [ ] ,t t t t t t ′= =y T   
6 1×∈y R with mean vector µ  and variance covariance yΣ  is said  

to have a nonsingular multivariate normal distribution,  in symbols  

 6~ ( , )yy µ ΣN  

if (i) yΣ is positive-definite, and (ii) the probability density function  
of y is of the form 

 16 / 2 1/ 2 1( ; , ) (2 ) (det ) exp{ [ ] [ ]}2f −− − ′= − − −y y yy µ Σ Σ y µ Σ y µπ , (1.10)   

where { }E =y µ  is the first order moment – the mean value vector,  
{ } {[ { }][ { }] }D E E E ′= = − −yy Σ y y y y is the centralized second order  

moment- the dispersion matrix, also called variance-covariance matrix 

 

1.2 The sampling distribution of sample mean and sample variance of scalar  

In this section we will derive the sampling distribution of the sample mean and sample variance of random scalar 
with the classical method, which is a direct derivation from its distribution density function. Let us first intro-
duce one lemma about the sampling distribution of the statistics of a random scalar 
 

Lemma 1.8  (i.i.d. observation of type Gauss normal, distribution 
                      of the sample mean and sample variance) 
Let (y1, y2, …, yn) ∈ Y be a set of observations, y := [y1, y2,…, yn]',   
dimY = n, a vector-valued independent, identically distributed (i.i.d.) 
random variable from a Gauss normal distribution. Its moment  
of first order as well as its central moments of second order are  
specified by µ := µ1 = µ2 = ⋅⋅⋅ = µn and σ2 := σ2

1 = σ2
2 = ⋅⋅⋅ = σ2

n. 
Then the sample mean µ̂  of type BLUUE 

 
1

1 1 1
ˆ

n

i
i

y
n n n

µ
=

′ ′= = =∑ 1 y y 1 (1.11) 

   is an element of a specific Gauss normal distribution of type 

 21
ˆ ~ ( , )

n
µ µ σN  

  with the sample statistic 2σ̂  of type BIQUUE 

 2 2

1

1 1
ˆ ˆ ˆ ˆ( ( ) ( )

1 1
)

n

i
i

y
n n

σ µ µ µ
=

′= = − −
− −

−∑ y 1 y 1 . (1.12) 

  The random variable u has a Chi-square distribution with n-1 degrees  
of freedom 

 
2

2
2

ˆ( 1)
~ ( 1)

n
u n

σ χ
σ
−= − . (1.13) 

Before proving this lemma, we should introduce the definition of chi-square distribution, which was first found 
by Helmert (1876) and K. Pearson (1900, 1931) and plays a very important role in sampling theory.  
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Definition 1.9 (central chi-square distribution) 

A random variable x is said to have a chi-square distribution, and 
it is referred to as a chi-square random variable, if and only if its  
probability density function of x is of the form  

 
( 2) / 2 / 2

/ 2

1
for 0

2 ( / 2)( )

0 elsewhere

xx e x
f x

υ
υ υ

− − > Γ= 



 (1.14)  

  where the parameter υ  is referred to as the degrees of freedom,  
which is a positive integer. Therefore the x is also said to have a  
chi-square distribution with υ degrees of freedom. 

Proof: 

The probability density function (p.d.f.) of the i.i.d. Gauss observations is  

 / 2 2
1 1

1( , , ) ( ) ( ) (2 ) exp{ ( ) ( ) / }2
n n

n nf y y f y f y π σ µ µ σ− − ′= = − − −y 1 y 1� � . (1.15) 

We shall find the p.d.f. of ̂µ  and 2σ̂ . 

We have 

 

2 2

1 1

2

1
2

ˆ ˆ( ) ( ) ( ) [( ) ( )]

ˆ ˆ ˆ ˆ( 1) ( ) 2( )( )

ˆ ˆ( 1) ( )

n n

i i
i i

n

i
i

y y

n n y n

n n

µ µ µ µ µ µ

σ µ µ µ µ µ

σ µ µ

= =

=

′− − = − = − − − =

= − + − + − − =

= − + −

∑ ∑

∑

y 1 y 1

 (1.16) 

So with (1.15) and (1.16) we get 

 / 2 2 / 2 2 2
1 12

ˆ1 1
ˆ( ) (2 ) ( ) exp{ } exp{ ( 1) / }

2 2
n n

n nf dy dy n n dy dy
µ µπ σ σ σ
σ

− − −= − ⋅ − −y � �  (1.17) 

We now perform the Helmert transformation (Helmert 1876) 

 

1 1

2 2

1

1 1
0 0

1 2 1 2
1 1 2

2 3 2 3 2 3: :

1 1 1 1

( 1) ( 1) ( 1) ( 1)

n n

x y
x y

x y
n

n n n n n n n n

−

 − ⋅ ⋅ 
    −    ⋅ ⋅ ⋅= = =    
    
       

− −
 − − − − 

X Uy

�

�

� �
� � � � �

�

, (1.18) 

where ( 1)n n− ×∈U R  is a right orthogonal matrix, i.e., 1n−′ =UU I . 

The corresponding volume element transformation with 
1

1
ˆ

n

i
i

y
n

µ
=

= ∑  is  

 1 1 1ˆn ndy dy d dx dxµ −= J� � , (1.19) 

and its inverse  

 1 1 1 1ˆ 1 1 1n n ndx dx d dy dy dy dy

n n n

∗
− = =

U
J� � �

�
µ = 

 1 2 1

1
: .1 1 1 n ndy dy dy dy

n
n n n

= =
U

U� �
�

 (1.20) 
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Since U2 is a n×n orthogonal matrix, i.e., det U2= ± 1, we get 

 2

1 1
det

n n
∗ = =J U   (1.21)  

and so 

 1( ) n∗ −= =J J . (1.22) 

From the cumulative distribution function (c.d.f.) of 1 1 1 1ˆ ˆ, , , , ( , , , )n nx x F x xµ µ− −� �  we have 

 1 1 1 1 1 1ˆ ˆ ˆ( , , , ) ( , , , )n n ndF x x f x x d dx dxµ µ µ− − −=� � �  (1.23) 

and together with (1.16) we obtain  

 
2

/ 2 2 2
1 1 12

ˆ( )1 1 ˆ ˆ( ) (2 ) exp[ ] exp[ ( 1) / ]2 2
n n

n nf dy dy n n n d dx dx
µ µπ σ σ σ µ

σ
− −

−
−= − − −y � � . (1.24) 

We further perform the following transformation (Cramer, 1945) 

 i ix n s z= ,   i=1,2, …, n-1, (1.25)  

where 2 2

1

1
ˆ( )

n

i
i

s y µ
n =

= −∑ , to replace the n-1 variables xi  by n new variables s and z1, …, zn-1. 

Accordingly, there is a relation among the new variables, which is found by squaring and adding the n-1 equa-
tions (1.25). We then obtain 

 
1

2

1

1
n

i
i

z
−

=
=∑ . (1.26) 

and thus one of zi , say zn-1, may be expressed as a function of the n-2 others, so that the old variables x1,…, xn-1 
are replaced by the new variables s and z1, …, zn-2.  For the Jacobian Jz of the transformation we have since 

1 1/ /n i i nz z z z− −∂ ∂ = − , 

 

1

1

2
2( 1) / 2 2

1
2

2
21 1

1 2 1 11
1 1

( 1) / 2 2

2 2
1 2

0 0
1 0 0

0 0
0 1 0

0 0 0 1

1 .
1

n n

z
n

n
n

n nn
n n

n n

n

ns nz
z

ns nz
z

n s

zns nz z
z z z z z zns ns nz

z z

n s

z z

− −

−−
−

− −−
− −

− −

−

= =

− − −− −

= ± ×
− − −

J

�
�

�
�

� � � � �
� � � � �

� � �

�� �

�

 (1.27) 

Thus we obtain the expression 

 

2
/ 2 2 2

1 2

( 1) / 2 2
1/ 2

1 22 2
1 2

ˆ( )1 1 ˆ( ) 2 (2 ) exp[ ]exp[ ( 1) / ]2 2

ˆ .
1

n n
n

n n

n

n

f dy dy n n

n s
n d ds dz dz

z z

µ µπ σ σ σ
σ

µ

− −

− −

−

−

−= × − − − ×

×
− − −

y �

�
�

 (1.28) 

With the relationship2 21
ˆ

n
s

n
σ−= , the Jacobian σ̂J of the transformation from the element s to element 2σ̂  is 

 ˆ

1 1
  

2

n

s nσ
−=J . (1.29) 

The right side of (1.28) will be 
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2 ( 1) / 2 2
/ 2 2 2 1/ 2 2

1 22 2 2
1 2

22
/ 2 1/ 2 ( 1) / 2 2 ( 3) / 2 2 2 1 2

2

ˆ( ) 1 11 1 ˆ ˆ ˆ2(2 ) exp[ ]exp[ ( 1) / ]2 2 21
ˆ ˆˆ1 1 ( )1 1ˆ ˆ(2 ) ( ) exp[ ]exp[ ( 1) / ]2 2 1

n n
n n

n

n

n n n n n

n s n
n n n d d dz dz

s nz z

d d dz dzn n
n n n n

n n

− −
− −

−

−

− − − − −

− −− − − =
− − −

− − −= − − −

�
�

�

µ µπ σ σ σ µ σ
σ

µ σµ µπ σ σ σ σ
σ 2 2

1 2
2

( 1) / 2 2 ( 3) / 2 2 2 2
2 2

( 1) / 2 1 2

2 2
1 2

2
( 1) / 2 2 ( 3) / 2

2 2 1
2

ˆ1 ( ) 11 1ˆ ˆ ˆ ˆexp[ ] ( ) ( ) exp[ ( 1) / ]2 222

( )
1

ˆ1 ( ) 1 11 1ˆ ˆ ˆexp[ ] ( ) ( ) exp[ ( 1)2 2( )22

n

n n

n n

n

n n

n

z z

n
n n d n d

dz dz

z z

n
n n d n

−

− −

− − −

−

− −
−

=
− − −

− −= − − − ×

×
− − −

− −= − − −
Γ

�

�

�

µ µ µ σ σ σ σ
σ σπσ

π

µ µ µ σ
σ σπσ

2 2 2

1
1 22

( 1) / 2 2 2
1 2

ˆ/ ]

( )

1

n
n

n

n

d

dz dz

z z

−
−

−
−

×

Γ
×

− − −

�

�

σ σ σ

π

(1.30) 

The p.d.f. of (1.15) appears as a product of three factors with the probability elements 2ˆ ˆ,µ σ  and the joint prob-
ability elements  z1,…, zn-2.  

We thus see that ̂µ  and 2σ̂  are independent not only of one another, but also of the combined variable (z1,…,  
zn-2) and that the distributions of µ̂  and 2σ̂  are the following: 

 
2

2

ˆ1 ( )1ˆ( ) exp[ ]22
f n n

µ µµ
σπσ
−= −   (1.31) 

 2 ( 1) / 2 2 ( 3) / 2 2 2
2 1

2

1 1 1ˆ ˆ ˆ( ) ( ) ( ) exp[ ( 1) / ]2( )2
n n

n

n
f nσ σ σ σ

σ
− −

−

−= − −
Γ

. (1.32) 

With new variable 2
2

1
ˆ

n
u σ

σ
−=  we can get 

 
1

1
2

( 1) / 2 1
2

1 1( ) exp( ),22 ( )

n

u n n
f u u u

− −

− −
= −

Γ
 (1.33) 

which is the right form of Chi-square distribution with (n-1) degree of freedom (1.14). 

This completes the proof. 

1.3  The sampling distribution of the sample mean of a symmetric random tensor   

The sampling distributions of the basic statistics are important for the statistical inference of the symmetric ran-
dom tensor. In this section we will discuss the sampling distribution of the sample mean of a symmetric random 
tensor. 

Let us use the symmetric random tensor introduced in (1.8), which is vectorized by (vech, vector-half) 
6 1

11 12 13 22 23 33vech [ ] ,t t t t t t ×′= = ∈y T y R .  This is a random vector which is normally distributed according to 
Definition 1.7.  We write it as 6~ ( , )yy µ ΣN . 

Suppose that our sample of n observations on T is T1, T2,… , Tn, whose related vectorized forms y1, y2, …, yn  

are independently distributed according to 6( , )yµ ΣN . We may arrange the vectorized form matrix of observa-
tions as 

 

1

2 6,   n

n

×

′ 
 ′ = ∈
 
 ′  

y

y
Y Y

y

R
�

,   

where vechi i=y T . Then,  

 

1

2{ } , where  [1, 1, ,1]  n

n

E

′ 
 ′  ′ ′= = = ∈
 
 ′  

µ

µ
Y 1µ 1

µ

R�
�

,  (1.34) 
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and for the dispersion we have the transposed form of Y 

 [ ]1 2, , , n′ =Y y y y� ,   

where the columns y1, y2, … , yn  are independent 3×1 random vectors, each with the same covariance matrix yΣ . 
We then have   

 

1

6 12vec , vec n

n

×

 
 

′ ′= ∈ 
 
  

y
y

Y Y

y

R
�

  (1.35)  

whose covariance follows that 

 
6 6

0 0

0 0
(vec ) , (vec )

0 0 0

.

n n

n

D D ×

 
 
 ′ ′= ∈
 
 
 

= ⊗

y

y

y

y

Σ

Σ
Y Y

Σ

I Σ

R

�

�

� � � �  (1.36) 

Then the sample mean vector ˆ yµ of type BLUUE is 

 
1

1 1
ˆ

n

i
in n=

′= =∑yµ y Y 1  (1.37) 

Now we shall find the p.d.f. of ̂yµ . 

According to (1.6) of Theorem 1.6 the joint p.d.f. of the independently identically distributed Gauss sampling 
observation Y can be written as 

 6 / 2 1/ 2 11
( ) (2 ) [det( )] etr{ [ ] [ ] }

2
n

nf − − −′ ′ ′= ⊗ − − −y yY I Σ Y 1µ Σ Y 1µπ . (1.38) 

With the properties of Kronecker products introduced in the proof of Theorem 1.6  we can get  

 1/ 2 6 / 2 / 2[det( )] (det ) (det )n
n n

− − −⊗ =y yI Σ I Σ , 

 tr ( ) tr ( ).=AB BA  

So we have the reform of (1.38) 

 6 / 2 / 2 11( ) (2 ) (det ) etr{ [ ] [ ]}.2
n nf − − − ′ ′ ′= − − −y yY Σ Σ Y 1µ Y 1µπ   (1.39)  

Now we perform the Helmert transformation (Helmert 1876) 

 

1

2

1

1 1
0 0

1 2 1 2
1 1 2

0
2 3 2 3 2 3

: .
1 1 1 1

( 1) ( 1) ( 1) ( 1)
1 1 1 1

n

n

n

n n n n n n n n

n n n n

−

 − ⋅ ⋅ 
 − ′  ⋅ ⋅ ⋅ ′    = =   ′−   ′−   − − − − 
 
  

y
y

X HY
y
y

�

�

�� � � � �

�

�

 (1.40) 

The n n×  matrix given in (1.40) is not only orthogonal, it also has the property that all the rows sum to zero 
except for the last ( and the last row has common elements). Such an orthogonal matrix is called a Helmert ma-
trix (Lancaster, 1965).  The Jacobian of this transformation is 6  (det )  1= =J H . Partition X as 

 ( 1) 6 6 1, where and .n− × × 
= ∈ ∈ ′ 

Z
X Z x

x
R R  (1.41)  

then  

 ′ ′ ′ ′= = +Y Y X X Z Z xx . (1.42) 
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The term [ ] [ ]′ ′ ′− −Y 1µ Y 1µ  of (1.39) can be expanded as 

 
[ ] [ ]  

 ( ) .

n

n

′ ′ ′ ′ ′ ′ ′ ′− − = − − +
′ ′ ′ ′ ′ ′ ′ ′= + − − +

Y 1µ Y 1µ Y Y Y 1µ µ1 Y µµ

Z Z xx Y 1µ Y 1µ µµ
 (1.43) 

Since the first (n -1) rows of H are orthogonal to n∈1 R , i.e.,  

 [0, , 0, ]n ′=H1 � , 
then  

 [ ]

0

: .
0

n

n

 
 
 ′ ′ ′ ′ ′ ′ ′= = =
 
 
  

Y 1µ X H1µ Z x µ xµ
�

 (1.44) 

Substituting back into (1.43) then gives 

 
[ ] [ ]

 [ ][ ] .

n n n

n n

′ ′ ′ ′ ′ ′ ′ ′− − = + − − +

′ ′= + − −

Y 1µ Y 1µ Z Z xx µx xµ µµ

Z Z x µ x µ
 (1.45) 

Hence the joint p.d.f. of Z and x can be expressed by substituting (1.45) into (1.39) 

 

6( 1) / 2 ( 1) / 2

6 / 2 1/ 2

1( ) (2 ) (det ) etr{ }2
1(2 ) (det ) exp{ [ ] [ ]}.2

n nf

n n

− − − − −

− − −

′= − ×

′− − −

1
y y

1
y y

Y Σ Σ Z Z

Σ x µ Σ x µ

π

π
  (1.46)   

This implies that Z is distributed according to ( 1), 6 1( , )n n− − ⊗ y0 I ΣN and independently of x, which is distributed 
according to 6( , )n yµ ΣN .  

Since 
1

n
′ ′=x 1 Y , so 

1

n
′=x Y 1 and with 

1
ˆ

n
′=yµ Y 1  of (1.37) we get 

 ˆn= yx µ   (1.47) 

and the Jacobian of this transformation  
 n=Jµ . (1.48) 

So the p.d.f. of ̂ ˆ, ( )fy yµ µ , can be derived from the second term of (1.46) and (1.47).  

Firstly, the exponential term of (1.46) is expressed by ˆ yµ of (1.47): 

 

1 1

1

1 1 ˆ ˆ[ ] [ ] [ ] [ ]2 2
1 ˆ ˆ[ ] [ ],2

n n n n n n

n

− −

−

′ ′− − − = − − −

′= − − −

y y y y

y y y

x µ Σ x µ µ µ Σ µ µ

µ µ Σ µ µ
   

then we have 

 

6 / 2 1/ 2 1

6 / 2 1/ 2 1

1/ 26 / 2 1 1 1

1ˆ ˆ ˆ( ) (2 ) (det ) exp{ [ ] [ ]} | |2
1 ˆ ˆ(2 ) (det ) exp{ [ ] [ ]}2

1 ˆ ˆ(2 ) det( ) exp{ [ ] ( ) [ ]}.2

f n

n n

n n

− − −

− − −

−− − − −

′= − − − ×

′= − − − ×

′ = − − − 

y y y y y µ

y y y y

y y y y

µ Σ µ µ Σ µ µ J

Σ µ µ Σ µ µ

Σ µ µ Σ µ µ

π

π

π

  (1.49)   

This shows immediately that the sample mean vector ˆ yµ of the vectorized 3×3 symmetric random tensor is dis-
tributed according to 1

6 ˆ( , ; )n−
y yµ Σ µN .  

Now we can characterize these derivations in Theorem 1.10. 
 

Theorem 1.10  (the sampling distribution of the sample mean 
                           vector of random tensor) 

The sampling distribution of the sample mean vector ˆ yµ of the  
vectorized 3×3 symmetric random tensor 

 
1

1 1
ˆ

n

i
in n=

′= =∑yµ y Y 1  (1.37) 

is distributed according to 1
6 ˆ( , ; )n−

y yµ Σ µN with the p.d.f.  

 
1/ 26 / 2 1 1 11ˆ ˆ ˆ( ) (2 ) det( ) exp{ [ ] ( ) [ ]}.2f n n

−− − − −′ = − − − y y y y yµ Σ µ µ Σ µ µπ  (1.49) 
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1.4  The sampling distribution of the sample variance-covariance of a symmetric random tensor   

Now we shall derive the sampling distribution of the sample variance-covariance matrix of a symmetric random 
tensor in vectorized form. First of all let us make a review of the Wishart distribution. The derivation of Wishart 
distribution, which is very fundamental in multivariate analysis, was a major breakthrough for the development 
of multivariate analysis. It is a multivariate matrix generalization of the univariate Chi-square distribution. The 
Wishart distribution was first derived by Fisher (1915) for p=2. Wishart (1928) gave a geometrical derivation of 
this distribution for general p in the general case. Other proofs were given by Mahalanobis, Bose and Roy 
(1937), Hsu (1939), James (1954), Olkin and Roy (1954) and others. Anderson (1958, 1984) and Muirhead 
(1982) present the detailed treatment of both the central and the noncentral Wishart distribution.  

The following theorem shows the density function of the first term of (1.45) ′=A Z Z .  The derivation of theo-
rem 1.11 is due to James (1954), Olkin and Roy (1954) and Muirhead (1982). 

Theorem 1.11 (Wishart distribution of the 6×6 random matrix ′=A Z Z ) 

If ′=A Z Z , where the (n-1)×6 matrix Z is ( 1), 6 1( , )n n− − ⊗ y0 I ΣN   
( 1 6n− ≥ ), then A is said to have the Wishart distribution with   
n-1 degrees of freedom and variance-covariance matrix yΣ , denoted by  

 6( 1, )n− yΣW   

  The density function of A is  

 
[ ]( 1 6 1) / 2

1
6( 1) / 2 ( 1) / 21

6 2

det( ) 1( ) etr{ }2(2) ( )(det )

n

n nn
f

− − −
−

− −−

′
′= −

Γ y
y

Z Z
A Σ Z Z

Σ
 (1.50)  

   where 1
6 2( )n−Γ  denotes the multivariate gamma function.  

Proof: 

Since Z is distributed according to ( 1), 6 1( , )n n− − ⊗ y0 I ΣN  from the Theorem 1.6 the first derivation of the cumu-
lative distribution function (c.d.f.) of F(Z) can be written 

 6( 1) / 2 ( 1) / 2 11( ) ( ) (2 ) (det ) etr{ }2
n ndF f d d− − − − − ′= = −y yZ Z Z Σ Σ Z Z Zπ , (1.51) 

where the volume element 1 6
1 1

n
i j ijd dz−
= ==Λ ΛZ  has been included to facilitate the calculation of Jacobians of (1.40). 

Since 1 6n− ≥ , Z  has a rank of 6 with the probability 1. Put Z=H1T1, where H1 is (n-1)×6 with 1 1 1n−′ =H H I (i.e., 

1 1,6n−∈H V , the Stiefel manifold consisting of (n-1)×6 matrix with orthonomal columns) and T1 is 6×6 upper-
triangular. Then 1′ ′= = 1A Z Z T T  and the volume elements dZ become  

 6 ( 1 6 1) / 2
1 1(2) (det )nd d d− − − − ′=Z A AH H , (1.52) 

 so that the joint density of A and H1 is   

 6( 1) / 2 ( 1) / 2 1 6 ( 1 6 1) / 2
1 1

1(2 ) (det ) etr{ }(2) (det )2
n n n d d− − − − − − − − − ′−y yΣ Σ A A AH Hπ . (1.53) 

The marginal density function of A then follows from this by integrating with respect to H1 over the Stiefel 
manifold Vn-1, 6, using 

 
1,6

6 6( 1) / 2

1 1 1
6 2

2

( )n

n

nV
d

π
−

−

−
′ =

Γ∫ H H  (1.54) 

With (1.54) in (1.53) we have  

 

6 6( 1) / 2
6( 1) / 2 ( 1) / 2 1 6 ( 1 6 1) / 2

1
6 2

(6 1 6 1) / 2
1

6( 1) / 2 ( 1) / 21
6 2

21(2 ) (det ) etr{ }2 (det )2 ( )
(det ) 1etr{ } .2(2) ( )(det )

n
n n n

n

n nn

d

d

ππ
−

− − − − − − − − −
−

− − −
−

− −−

− =
Γ

= −
Γ

y y

y

Σ Σ A A A

A
Σ A A

Σ

 (1.55) 

This shows (1.50). 

Further we show the density function of the sample variance-covariance matrix ̂yΣ of type BIQUUE 

 
1

1 1ˆ ˆ ˆ ˆ ˆ[ ] [ ] (  )(  )
1 1

n

i i
in n =

′ ′ ′ ′= − − = − −
− − ∑y y y y yΣ Y 1µ Y 1µ y µ y µ  (1.56) 

Since  

 
ˆ ˆ ˆ ˆ[ ] [ ] [( ) ( )] [( ) ( )]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − = − + − − + − =
′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + − − + − − + − −

y y y y

y y y y y y y y

Y 1µ Y 1µ Y 1µ 1 µ µ Y 1µ 1 µ µ

Y 1µ Y 1µ µ µ 1 1 µ µ Y 1µ 1 µ µ µ µ 1 Y 1µ
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the last two terms of the equality being  

 
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

′ ′ ′ ′ ′− − + − − =
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y y y y
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Y 1µ 1 µ µ µ µ 1 Y 1µ
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ˆ ˆ ˆwith (1 ) , so  and  and /n n n n′ ′ ′ ′ ′= = = =y y yµ Y 1 Y 1 µ 1 Y µ 1 1  bring them into above, then we get  

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .n n n n n n n n′ ′ ′ ′ ′ ′ ′ ′− − + + − − + =y y y y y y y y y y y yµ µ µ µ µ µ µ µ µ µ µ µ µ µ µ µ 0  

So 
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Z Z µ µ µ µ
 

Compared with (1.56) we have the relationship of A= ′Z Z =(n -1) ˆ
yΣ . By making the transformation  A=         

(n-1) ˆ
yΣ in (1.50), whose Jacobian is ( )6(6 1) / 2

1n
+= −J ( Deemer and Olkin 1951, also Press 1972, p.45) it follows 
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 (1.57) 

So the density function of the sample covariance matrix ˆ
yΣ is 

 6( 1) / 2 1 ( 1 6 1) / 2
( 1) / 21

6 2

1 1 1ˆ ˆ ˆ( ) ( ) etr{ ( 1) }(det )2 2( )(det )
n n

nn

nf n− − − − −
−−

−= − −
Γy y y y

y

Σ Σ Σ Σ
Σ

. (1.58)  

which is the right form of the Wishart distributed 1
6

ˆ ˆ( 1, ( 1) ; )n n −∼ − −y y yΣ Σ ΣW . 

Note that from (1.50) we have ˆ
yΣ = A/(n -1) = Z’Z /(n -1) = ′Z Z� � ,  where  

 1/ 2 1
( 1), 6 1( 1) ~ ( , ( 1) )n nn n− −

− −= − ⊗ − yZ Z 0 I Σ� N   (1.59) 

so that ̂ yΣ  is distributed with Wishart distributed 1
6

ˆ ˆ~ ( 1, ( 1) ; )nn −− −y y yΣ Σ ΣW . 

This leads to another direct derivation of the sampling distribution of a symmetric random tensor’s sample vari-
ance-covariance matrix.  

From (1.46) and (1.47) we can find that µ̂  and ˆ yΣ  are independent. Now we can characterize these derivations 
in Theorem 1.12. 

Theorem 1.12  (the sampling distribution of the sample variance-  
                           covariance of a symmetric random tensor) 

The sampling distribution of the sample variance-covariance ̂ yΣ   
of the vectorized 3×3 symmetric random tensor 

 
1

1 1ˆ ˆ ˆ ˆ ˆ[ ] [ ] (  )(  )
1 1

n

i i
in n =

′ ′ ′ ′= − − = − −
− − ∑y y y y yΣ Y 1µ Y 1µ y µ y µ  (1.56) 

is distributed according to 1
6

ˆ ˆ~ ( 1, ( 1) ; )n n −− −y y yΣ Σ ΣW  and  
independent of ̂µ . The p.d.f. of ̂ yΣ is 

 6( 1) / 2 1 ( 1 6 1) / 2
( 1) / 21

6 2

1 1 1ˆ ˆ ˆ( ) ( ) etr{ ( 1) }(det )2 2( )(det )
n n

nn

nf n− − − − −
−−

−= − −
Γy y y y

y

Σ Σ Σ Σ
Σ

. (1.58) 
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1.5  Sampling distributions of the estimates within the Gauss-Markov model 

The derivations of the sampling distribution about the sample mean with the decomposition method are mostly 
discussed in the direct observation case. Here we will develop the sampling theory in a more general case, which 
includes (1) the sampling distribution within the special Gauss-Markov model; (2) the sampling distribution 
within the linear Gauss-Markov model and (3) the sampling distribution of the orthonormally transformed pa-
rameters. 

    1.5.1   The sampling distribution of the estimates within a special Gauss-Markov model 

In this section we shall derive the sampling distribution of the estimates within a special Gauss-Markov model. 
We first introduce Theorem 1.13 

 
Theorem 1.13 (marginal probability distributions, special linear 

          Gauss-Markov model): 

 
2

{ }

{ } n

E

D σ
=
=

y Aξ

y I
 subject  to 

2

, rk , { } ( )n m m E

σ

×

+

 ∈ = ∈


∈

A A y A�

�

R
 

defines a special Gauss-Markov model based upon independent, identically  
distributed (i.i.d.), Gauss normally distributed observations y := [y1, y2,…, yn]'.   
ξ̂ is  ΒLUUE of ξ in the special linear Gauss-Markov model 

  1

1 2

{ }
( )

{ ˆ} (

ˆ
ˆ

)

E

D σ
−

−

 =
= 

=

′ ′
′

ξ
A y

ξ

ξ A
ξ A A

A
 (1.60) 

ξ̂  is an element of a specific Gauss normal distribution of type ̂ ~ξ  
1 2{ ( ) }, −′Aξ A σN  with the marginal probability density function  

 1 2 / 2 1/ 2 2
1

1ˆ ˆ ˆ( ; , ( ) ) (2 ) | | exp{ ( ) ( ) / }2
m mf σ π σ σ− − − ′= − − −′ ′ ′A Aξ ξ A A ξ ξ A ξ ξA . (1.61) 

 2σ̂  is the estimate of the only variance component of type BIQUUE 

 2 1 ˆ ˆˆ ( ) ( )
rkn

σ ′= − −
−

y Aξ y Aξ
A

 (1.62) 

with the marginal probability density function 

  
2

2 / 2 2
2 / 2 2

ˆ1 1
ˆ ˆ( ) exp{ }

22 ( / 2)
p p

p p
f p p

p

σσ σ
σ σ

−= −
Γ

, (1.63) 

              where : rkp n= − A . The random variable x has a chi-square distribution with  
            p degrees of freedom 

 
2

2
2 2 2

ˆ 1 ˆ ˆˆ: ( rk ) ( ) ( )
p

x n
σ σ
σ σ σ

′= − = = − −A y Aξ y Aξ  (1.64) 

with the probability density function 

 
1

2
2 / 2

1 1
( ) exp( )

22 ( / 2)

p

p
f x x x

p

−
= −

Γ
. (1.65) 

 

Before proving Theorem 1.13 we should introduce the Lemma 1.14 about the transformation of polar coordi-
nates 1 2 1[ , , , , ]n rφ φ φ − ∈� Y as parameters of an Euclidian observation space to Cartan coordinates 

1[ , , ]ny y ∈� Y . In addition we introduce the hypervolume element of a sphere 1 ,dimn n− ⊂ =S Y Y . First of all, 
we give three examples. Second, we summarize the general results in Lemma 1.14. 
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Lemma 1.14 (polar coordinates, hypervolume element, hypersurface element): 
 
Let 

 

1 1 2 3 2 1

2 1 2 3 2 1

3 1 2 3 2

4 1 2 3 2

3 1 2 3

2 1

1

cos cos cos cos cos

cos cos cos cos sin

cos cos cos cos

cos cos cos sin

cos cos sin

cos

n n n

n n n

n n n

n n n

n n n n

n n

n

n

y

y

y

y

r

y

y

y

y

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ
φ φ φ φ

φ φ φ
φ

− − −

− − −

− − −

− − −

− − − −

− −

−

 
 
 
 
 
 
  =
 
 
 
 
 
 
 

�

�

�

�

� �

2

1 2

1

cos

cos sin

sin

n

n n

n

φ
φ φ
φ

−

− −

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (1.66) 

 
be a transformation of polar coordinates 1 2 2 1( , , , , , )n n rφ φ φ φ− −�  to Cartesian  
coordinates 1 2 1( , , , , )n ny y y y−� , their domain and range given by 

 1 2 2 1( , , , , , ) [0,2 ] ] , [ ] , [ ] , [ ]0, [ ,
2 2 2 2 2 2n n r
π π π π π πφ φ φ φ π− − ∈ × − + × × − + × − + × ∞� �  

then the local hypervolume elements are 

 1 2 3 2
1 1 2 3 2 1 2 2 1cos cos cos cosn n n

n n n n ndy dy r dr d d d dφ φ φ φ φ φ φ φ− − −
− − − −=� � �  (1.67)   

as well as the global hypersurface element 

 
/ 2 / 2 2( 1) / 2

2
1 1 1 2 2 1

/ 2 / 2 0

2
: cos cos

1
( )

2

n
n

n n n nd d d
n

π π π

π π

πω φ φ φ φ φ
+ +−

−
− − − −

− −

⋅= =
−Γ

∫ ∫ ∫� , (1.68) 

where ( )xΓ  is the gamma function. 
 
 

Proof: 

The cumulative pdf of the multidimensional Gauss-Laplace probability distribution of the observation vector 

1[ , , ]ny y ′= ∈y � Y  is 

 2
1 1/ 2 2

1 1
( | { }, { } ) exp[ ( { }) ( { })]

(2 ) 2n n nn n
f E D dy dy E E dy dyσ

π σ σ
′= = − − −y y y I y y y y� �  (1.69) 

We aim at splitting it into two marginal pdfs 1
ˆ( )f ξ  of ξ̂ , BLUUE of ξ , and 2

2 ˆ( )f σ  of 2σ̂ , BIQUUE of 2σ , i.e. 

 2 2 2
1 1 2 1

ˆ ˆ ˆˆ ˆ( | { }, { } ) ( ) ( )n n mf E D dy dy f f d d dσ σ ξ ξ σ= =y y y I ξ� �  (1.70) 

First, let us decompose the quadratic form 2|| { } ||E−y y  into estimates �{ }E y  of { }E y . 

 � �{ } { } ( { } { })E E E E− = − + −y y y y y y  

 ˆ ˆ{ } ( )E− = − + −y y y Aξ A ξ ξ  

and 

 

� � � �

� � � �

� � � �

( { }) ( { }) ( { }) ( { }) ( { } { }) ( { } { })

( { }) ( { } { }) ( { } { }) ( { })

( { }) ( { }) ( { } { }) ( { } { })

E E E E E E E E

E E E E E E

E E E E E E

′ ′ ′− − = − − + − − +

′ ′+ − − + − − =

′ ′= − − + − −

y y y y y y y y y y y y

y y y y y y y y

y y y y y y y y

 

 � �2 2 2|| { } || || { } || || { } { } ||E E E E− = − + −y y y y y y  
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ˆ ˆ ˆ ˆ( { }) ( { }) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

E E′ ′ ′ ′− − = − − + − − +
′ ′ ′+ − − + − − =
′ ′ ′= − − + − −

y y y y y Aξ y Aξ ξ ξ A A ξ ξ

y Aξ A ξ ξ ξ ξ A y Aξ

y Aξ y Aξ ξ ξ A A ξ ξ

 

 2 2 2ˆ ˆ|| { } || || || || ||E ′− = − + − A Ay y y Aξ ξ ξ  (1.71) 

Here, we took advantage of the orthogonality relation. 

 1ˆ ˆ ˆ( ) ( ) ( ) ( ( ) )n
−′ ′ ′ ′ ′ ′− − = − − =ξ ξ A y Aξ ξ ξ A I A A A A y  

 1ˆ( ) ( ( ) ) 0−′ ′ ′ ′ ′= − − =ξ ξ A A A A A A y . 

Second, we implement 2σ̂  BIQUUE of 2σ  into the decomposed quadratic form. 

 2 1ˆ ˆ ˆ|| || ( ) ( ) ( ( ) )n
−′ ′ ′− = − − = − =y Aξ y Aξ y Aξ y I A AA A y  

 2ˆ( rk )n σ′= = −y My A  

 2 2 ˆ ˆˆ|| { } || ( rk ) ( ) ( )E n σ ′ ′− = − + − −y y A ξ ξ A A ξ ξ  

 2 ˆ ˆ|| { } || ( ) ( )E ′ ′− = + − −y y y My ξ ξ N ξ ξ  (1.72) 

The matrix of the normal equations := , rk rk rk m′ ′= = =N A A N A A A  and the matrix of the variance compo-
nent estimation 1: ( ) ,n

− ′= −M I A AA A  rk =M  rkn n m= − = −A  have been introduced since their rank forms 
the basis of the general forward and backward Helmert transformation. 

  n′ =HH I  

 1 1( { }) ( )Eσ σ− −= − = −z H y y H y Aξ  (1.73) 

and 

 { }E σ ′− =y y H z  (1.74) 

 
2

1
( { }) ( { })E E

σ
′ ′ ′ ′− − = =y y y y z H Hz z z  

 2 2
2

1
|| { } || || ||E

σ
− =y y z , 

where n n×∈H �  is the quadratic Helmert matrix, also called extended Helmert matrix or augmented Helmert 
matrix (Lancaster, 1965): 

 

:

1 1
0 0 0 0

1 2 1 2
1 1 2

0 0 0
2 3 2 3 2 3
1 1 1 3

0 0
3 4 3 4 3 4 3 4

1 1 1 1 1
0

( 1)( 2) ( 1)( 2) ( 1)( 2) ( 1)( 2) ( 1)( 2)

1 1 1 1 1

( 1) ( 1) ( 1) ( 1) ( 1) ( 2)

1 1 1 1 1 1

n

n n n n n n n n n n

n

n n n n n n n n n n n n

n n n n n n

=

 − ⋅ ⋅ 
 − ⋅ ⋅ ⋅
 − ⋅ ⋅ ⋅

 − −
 − − − − − − − − − −

 − − − − − − −



 

H

�

�

�
i

� �

�

�

�

















(1.75) 
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Since the quadratic Helmert matrix is orthonormal, the absolute value of the Jacobian of the general backward 
Helmert transformation σ ′− =z y Aξ H z� is  

 | det | n n nJ σ σ σ− → ′= = = =y Aξ z J H H . (1.76)  

Therefore we have the transformation of the volume element in (1.69) 

 1 2 1 2
n

n ndy dy dy dz dz dzσ=� �  (1.77) 

which generates the cumulative probability (1.69) 

 
1 2 1 1 2 1 2

2 2 2
1 2 1 2/ 2 / 2

( , , , ) ( , , , )

1 1 1 1
exp{ } exp{ ( )}

2 2(2 ) (2 )

n n n n

n nn n

dF f y y y dy dy J f z z z dz dz dz

z z z dz dz dz
π π

− →= = =

′= − = − + +

y Aξ z

z z

� � � �

� �
 (1.78) 

Third, the standard canonical variable n∈z �  has to be associated with norms ˆ|| ||−y Aξ  and ˆ|| || ′− A Aξ ξ . We 
take advantage of the eigenspace representation of the matrices (M , N) and their associated norms. 

 ′ ′= My My yVΛ V y  versus ˆ ˆ ˆ ˆ( ) ( )=( ) ( )′ ′ ′− − − −Nξ ξ N ξ ξ ξ ξ UΛ U ξ ξ  

 1( , , ,0, ,0)n m
n n m m

Diag µ µ −
−

=
∈ = ×

MΛ � �

� � �
  versus  1( , , )m

m
Diag ν ν=
∈

NΛ �
�

  

m eigenvalues of the matrix M  are zero, but rkn n m− = −A  is the number of its non-vanishing eigenvalues 
which we denote by 1( , , )n mµ µ −� . In contrast, rkm = A  is the number of eigenvalues of the matrix N, all non-
zero. The canonical random variables  

 ∗ ∗′ = ⇔ =V y y y Vy  and ˆ ˆ( )′ − = −U ξ ξ η η  

lead to 

 
2 2 2

1 1 1
ˆ ˆ( { }) ( { }) ( ) ( ) ( )E E

σ σ σ
∗ ∗′− − = + − −M Ny y y y y Λ y η η Λ η η  

 2 2
2 2 2

1 1

1 1 1
ˆ( { }) ( { }) ( ) ( )

n m m

j j i i i
j i

E E y µ η η ν
σ σ σ

−
∗

= =

′− − = + −∑ ∑y y y y  

 2 2 2 2
1 12

1
( { }) ( { }) n m n m nE E z z z z

σ − − +′− − = + + + + +y y y y � �  

subject to 

2 2
1 n mz z −+ + =� 2

2
1

1
( )

n m

j j
j

y µ
σ

−
∗

=

= ∑   and  2 2 2
1 2

1

1
ˆ( )

m

n m n i i i
i

z z η η ν
σ− +

=

+ + = −∑�  

 

2 2 2 2 2
1 1 2 2

2
2 2

1 1 ˆ ˆ|| || ( ) ( )

1 1
|| { } || ( { }) ( { })

n m n m nz z z z

E E E

σ σ

σ σ

− − +′ ′ ′= = + + + + + = + − − =

′= − = − −

z z z y My ξ ξ N ξ ξ

y y y y y y

� �

 

Obviously, the eigenspace synthesis of the matrices ′=N A A  and 1( )n
−′ ′= −M I A A A A  has guided us to the 

proper structure synthesis of the generalized Helmert transformation. 

Fourth, the norm decomposition enables us to split the cumulative probability (1.78) into the pdf of the Helmert 
random variable 2 2 2 2 2 2

1 ˆ ˆ: ( rk ) ( )n mx z z n n mσ σ σ σ− −
−= + + = − = −A�  and the pdf of the difference random pa-

rameter vector 2 2 2
1

ˆ ˆ( ) ( )n m nz z σ −
− + ′ ′+ + = − −ξ ξ A A ξ ξ� . 

 1 1 1 1( , , , , , )n m n m n n m n m ndF f z z z z dz dz dz dz− − + − − += � � �  

 
1 / 2

2 2 2 22 2
1 1

1 1
( , , ) exp{ }

2(2 )

1 1 1 1
( ) exp{ ( )}( ) exp{ ( )}
2 2 2 2

n n

n m m

n m n m n

f z z

z z z z

π

π π

−

− − +

′= − =

= − + + − + +

z z�

� �

 (1.79) 
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The partitioned vector of the standard random variable z is associated with the norm 2|| ||n mz −  and 2|| ||mz , 
namely 

 2 2 2 2 2 2
1 1|| || || ||n m m n m n m nz z z z z z− − − ++ = + + + + +� � . (1.80) 

Part A 

Let us introduce Helmert’s polar coordinates 1 1( , , , )n m rφ φ − −�  which represent the Cartesian coordinates 

 

1 1 2 2 1

2 1 2 2 1

1 1 2

1

cos cos cos cos

cos cos cos sin

cos sin

sin

n m n m

n m n m

n m n m n m

n m n m

z r

z r

z r

z r

φ φ φ φ
φ φ φ φ

φ φ
φ

− − − −

− − − −

− − − − − −

− − −

=
=

=
=

�

�

�  (1.81) 

The representation of the local (n-m)-dimensional hypervolume element in terms of polar coordinates 

1 2 1( , , , , )n m rφ φ φ − −�  has already been given by Lemma 1.14.  

 
1 1 2

1 2 1 1 2

2
3 2 1 2 3 2 1

(cos ) (cos )

cos cos

n m n m n m
n m n m n m n m

n m n m

dz dz dz dz r dr

d d d d d

φ φ
φ φ φ φ φ φ φ

− − − − − −
− − − − − − −

− − − −

=� �

� �
 (1.82) 

Here, we only transform the new random variable r into Helmert’s random variable x. 

 2: 2 ,x r dx rdr= ⇒ =  
2

dx
dr

x
= , 1 ( 1) / 2n m n mr x− − − −=  

 1 ( 1) / 21

2
n m n mr dr x dx− − − −=  (1.83) 

Part A concludes with the representation of the left pdf in terms of Helmert’s polar coordinates 

 

2 22
1 1

2
1 2 22 2

1 2 3 2 1 2 3 2 1

1 1
( ) exp{ ( )}
2 2

1 1 1
( ) exp( ) (cos ) (cos ) cos cos

2 2 2

n m

n m n m

n m n m
n m n m

n m n m n m n m

dF z z dz dz

x x dx d d d d d

π

φ φ φ φ φ φ φ φ φ
π

−

− −

− − −
− − − −

− − − − − − − −

= − + + =

= −

	 � �

� �

  

  (1.84) 

Part B 

Part B focuses on the representation of the right pdf in terms of the random variables.  

 2 22
1 1

1 1
( ) exp{ ( )}
2 2

m

r n m n n m ndF z z dz dz
π − + − += − + +� �  (1.85) 

 2 2
1 2

1 ˆ ˆ( ) ( )n m nz z
σ− + ′ ′+ + = − −ξ ξ A A ξ ξ�  (1.86) 

The computation of the local m-dimensional hypervolume element 1n m ndz dz− + �  could be derived in the follow-
ing way, which is based upon the matrix of the metric, 2σ − ′A A . Since the metric 2σ − ′A A is positive-definite 
there exists a nonsingular m×m matrix B, such that  

 2σ − ′ ′=A A B B  (1.87) 

and we put 

 ˆ( )m = −z B ξ ξ . (1.88) 

So (1.86) is equivalent to  

 ˆ ˆ( ) ( )m m′ ′ ′= − −z z ξ ξ B B ξ ξ .  (1.89) 

The Jacobian of the transformation (1.88) is 
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�

 (1.90) 

which brings 

 1/ 2
1 1

1 ˆ ˆ| |n m n mm
dz dz d dξ ξ

σ− + ′= A A� � . (1.91) 

The first representation of the right pdf is given by 
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1 1

1/ 2
2

12

1 1
( ) exp{ ( )}
2 2

1 | | 1 ˆ ˆ ˆ ˆ( ) exp{ ( ) ( )} .
2 2

m
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m
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π

ξ ξ
π σ σ

− + − += − + + =
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� �

�

 (1.92) 

Part C 

Part C is an attempt to merge the left and right pdf according to 

  

( 2) / 22
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2

1

1 1 1
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2 2 2
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�

 

The local (n-m-1)-dimensional hypersurface element has been denoted by 1n mdω − −  according to Lemma 1.14. 

Fifth, we are going to compute the marginal pdf of ξ̂  BLUUE of ξ . 

 1 1 1
ˆ ˆ ˆ( ) mdF f d dξ ξ= ξ �   

includes the first marginal pdf 1
ˆ( )f ξ  

1/ 2
( 2) / 22 2

1 1 2 / 2
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1 1 1 1 | | 1ˆ ˆ ˆ( ) : ( ) exp( ) ( ) exp{ ( ) ( )}
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n m m
f dx d x xω
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∞ −
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− −

′ ′ ′= − − − −∫ ∫
A A

ξ ξ ξ A A ξ ξ
  

subject to 

 ( 2) / 22
1

0

1 1 1
( ) exp( ) 1

2 2 2

n m
n m

n mdx d x xω
π

∞ −
− −

− − − =∫ ∫
 . 

This leads us to 

 
1/ 2

2
1

1 | | 1ˆ ˆ ˆ( ) ( ) exp{ ( ) ( )}
2 2

m

m
f

π σ
′ ′ ′= − − −A A

ξ ξ ξ A A ξ ξ . (1.93) 

Unfortunately, such a general multivariate Gauss-Laplace normal distribution cannot be tabulated. An alterna-
tive is offered by introducing canonical unknown parameters ̂η  as random variables, which will be discussed in 
Section 4.3.3. 

Sixth, we shall compute the marginal pdf of Helmert’s random variable 2 2 2 2ˆ ˆ( rk ) / ( ) /x n n mσ σ σ σ= − = −A , 
with 2σ̂  as BIQUUE of 2σ , and with 

 2( )dF f x dx=  

including the second marginal pdf 2( )f x . 

The definition 

 
1/ 2

( 2) / 22 2
2 1 1 2

1 1 1 1 | | 1 ˆ ˆˆ ˆ( ) : ( ) exp( ) ( ) exp{ ( ) ( )}
2 2 2 2 2

n m m
n m

n m m m
f x d x x d dω ξ ξ

π π σ σ

+∞ +∞−
− −

− −
−∞ −∞

′ ′ ′= − − − −∫ ∫ ∫
A A

ξ ξ A A ξ ξ�
  

subject to 
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( 1) / 2

1 1

2
1

( )
2

n m

n m n md
n m

πω ω
− −

− − − −= =
− −Γ

∫
  

according to Lemma 1.14 
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′ ′ ′− − − =
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∫ ∫

∫ ∫

A A
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leads us to 

 : rkp n n m= − = −A  

 
1 1 1

( ) ( ) ( ) ( ) ( )
2 2 2 2 2

n m n m n m pπ − − − − −Γ = Γ Γ = Γ = Γ  

 
1

2
2 / 2

1 1
( ) exp( )

22 ( / 2)

p

p
f x x x

p

−
= −

Γ
, (1.94) 

which is the standard pdf of the normalized sample variance, known as Helmert’s Chi-Square 2χ  with 
rkp n n m= − = −A  “degrees of freedom”. If we substitute (1.64) 2 2 2 2ˆ ˆ( ) / ( ) /x n rk n mσ σ σ σ= − = −A and  

2 2 2 2ˆ ˆ( rk ) ( )dx n d n m dσ σ σ σ− −= − = −A , we arrive at the pdf of the sample variance 2σ̂ , in particular 

 2 2
2 2 ˆ ˆ( )dF f dσ σ=  

 
2

2 / 2 2
2 / 2 2

ˆ1 1
ˆ ˆ( ) exp( )

22 ( / 2)
p p

p p
f p p

p

σσ σ
σ σ

−= −
Γ

. (1.95) 

This concludes the proof. 

   1.5.2    The sampling distribution of the estimates within a  linear Gauss-Markov model 

In this section we shall derive the sampling distribution of the estimates within a linear Gauss-Markov model. 
First of all we introduce Theorem 1.15  
 

Theorem 1.15 
 

Let  { } , , { } ( k)  , rn mE E m×= =∈ ∈y Aξ A y A A� R  
                                         { } , positive-definite, rk ,n nD n×= ∈ =y y yy Σ Σ Σ�     

be a linear Gauss-Markov model based upon independent, identically  
distributed (i.i.d.) Gauss normally distributed observations                                                  
y := [y1, y2,…, yn]',  ξ̂ is yΣ - ΒLUUE of ξ in the linear                                             
Gauss-Markov model 

  1 1 1

1 1

{ }
( ) subject t

ˆ
ˆ

ˆ
o

{ } ( )

E

D

− − −
− −

 =
=

=
′

′
′


y y

y

ξ
Σ

ξ
ξ A

AA
A Σ y

Σ
A

ξ
 (1.96) 

ξ̂  is an element of a specific Gauss normal distribution of type  
1 1{ (ˆ ) }, − −′ yξ ξ A Σ A∼ N  with the probability density function  

 1 1 / 2 1 1 1/ 2 11ˆ ˆ ˆ( ; , ( ) ) (2 ) | ( ) | exp{ ( ) ( )}2
mf π− − − − − − −′= − −′ ′ ′ −y y yξ ξ Σ A Σ A ξ ξ Σ A ξA ξA A . (1.97) 

Proof: 

The probability density function (p.d.f.) of the i.i.d. Gauss normally distributed observations y is  

 / 2 1/ 2 11( ; { }, ) (2 ) (det ) exp{ ( { }) ( { })}2
nf E E Eπ − − −′= − − −y y yy y Σ Σ y y Σ y y . (1.98) 

We aim at deriving the marginal distributions of  ξ̂ . 

A first decomposition of { }E−y y  is  
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 ˆ ˆ{ } ( )E− = − = − + −y y y Aξ y Aξ A ξ ξ  
i.e. 
 1 1 1ˆ ˆ ˆ ˆ( { }) ( { }) ( ) ( ) ( ) ( )E E− − −′ ′ ′ ′− − = − − + − −y y yy y Σ y y y Aξ Σ y Aξ ξ ξ A Σ A ξ ξ  (1.99) 

So with  (1.98) and (1.99) we get 

 

1

/ 2 1/ 2 1 1
1

ˆ

( ; { }, )

1 1ˆ ˆ ˆ ˆ(2 ) (det ) exp{ (( ) ( )} exp{ ( ) ( )} .
2 2
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n
n
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f E dy dy

dy dyπ − − − −

−
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′ ′ ′− − − ⋅ − − −

y

y y y

ξ

y y Σ

Σ y Aξ Σ y Aξ ξ ξ A Σ A ξ ξ

�

�
�




�




�

 (1.100) 

Because of the general variance-covariance matrix yΣ in (1.100),  the methods used in the proof of Theorem 1.13 
can be hardly applied in derivation of the probability density function of  ξ̂ . First we will simplify this problem 
by the transformation of the linear Gauss-Markov model 

 1/ 2 1/ 2, .− −= =y yz Σ y B Σ A  (1.101) 

The Jacobian of the transformation (1.101) is  

 1/ 2 1/ 2/ | | | |J d d→ = = =y z y yy z Σ Σ , 

so that the differential elements are connected by the relation 

 1/ 2
1 2 1 2| |n ndy dy dy dz dz dz= yΣ� � , 

and the probability density function of y (1.98) transforms to  

1/ 2/ 2 1/ 2 1 1/ 2 1/ 2
1 2 1 2

/ 2
1 2

1( ; { }, ) (2 ) | | exp{ ( { }) ( { })} | |2
1(2 ) exp{ ( { }) ( { })}2

n
n n

n
n

f E dy dy dy E E dz dz dz

E E dz dz dz

−− − − −

−

′ ′= − − −

′= − − −

y y y y y yy y Σ Σ z z Σ Σ Σ z z Σ

z z z z

� �

�

π

π
.

  (1.102) 

So we get the probability density function (p.d.f.) of z as 

 / 2 1( ; { }, ) (2 ) exp{ ( { }) ( { })}2
nf E E Eπ − ′= − − −zz z Σ z z z z  (1.103) 

which is a standard multivariate Gauss normal distribution. 

Then the linear Gauss-Markov model will be simplified as  

   
{ } , , { } ( k

}

)

.

r

{

,  n m

n
n

n

E E m

D

×

×

== ∈
∈=

∈z Bξ B z B B

z I

�

�

R
 (1.104) 

The yΣ - ΒLUUE of ξ , ξ̂ , will be represented as  

  1

1

ˆ
ˆ

ˆ

{ }
( )

{ } ( )

E

D

−

−

 =
′ ′= 

′=

ξ
B B B z

B
ξ

B

ξ

ξ
 (1.105) 

which reduces the derivation of the probability density function of  ̂ξ  for the general variance-covariance matrix 

yΣ  to a special simple case that 2 1σ =  in (1.61) of Theorem 1.13 and with respect to the probability density 
function (p.d.f.) of the vector z (1.103), i.e.  

 1 / 2 1/ 2 1ˆ ˆ ˆ( ; , ( ) ) (2 ) | | exp{ ( ) ( )}2
mf π− −′ ′ ′ ′= − − −ξ ξ B B B B ξ ξ B B ξ ξ  (1.106) 

With the relation of (1.101) and from the probability density function (p.d.f.) of z (1.103) we get the probability 
density function of  ̂ξ  for the general variance-covariance matrix yΣ  

 1 1 / 2 1 1 1/ 2 11ˆ ˆ ˆ( ; , ( ) ) (2 ) | ( ) | exp{ ( ) ( )}2
mf π− − − − − − −′= − −′ ′ ′ −y y yξ ξ Σ A Σ A ξ ξ Σ A ξA ξA A . (1.107) 

This completes the proof that 1 1{ (ˆ ~ , ) }− −′ yξ ξ A Σ AN  of Theorem 1.15 . 

    1.5.3    The sampling distribution of the orthonormally transformed parameters 

While deriving (1.93) for the proof of Theorem 1.13 we have mentioned that 1̂
ˆ, , mξ ξ�  are dependently distrib-

uted. In order to make the hypothesis tests about the distinct elements more efficient and uncorrelated, we could 
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naturally transform the original parameters to canonical parameters iη of uncorrelated linear combinations of 

iξ ’s. This method uses a similar technique to the well known principal component analysis, which was intro-
duced by K. Pearson (1901) as a tool of fitting planes to a system of points in space and were later generalized 
by Hotelling (1931) for analyzing correlation structures and the canonical form of a linear model. In fact princi-
pal components analysis is concerned fundamentally with the eigenstructure of covariance matrices, i.e., with 
their eigenvalues and eigenvectors.  Therefore we will firstly make an orthonormal transformation of the original 
parameters, then derive the p.d.f. of the transformed parameters and the related the variance-covariance matrix of 
them, and perform hypothesis test for them, which we name eigen-inference.  

Let us introduce the canonical random variables 1̂ ˆ( , , )mη η�  which are generated by decorrelating the quadratic 
form 2ˆ|| || ′− A Aξ ξ .  

 
1

1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , , ) ( )
m

Diag
λ λ

′ ′ ′ ′− − = − −ξ ξ A A ξ ξ ξ ξ U U ξ ξ�  (1.108) 

Here, we took advantage of the eingespace synthesis of the matrix :′ =A A N and 1 1( ) :− −′ =A A N . Such an in-
verse normal matrix is representing the dispersion matrix 1 2 1 2ˆ{ } ( )D σ σ− −′= =ξ A A N .  

 SO( ) : { | ,| | 1}n m
m mm ×′ ′= ∈ = ∈ = = +UU I U U UU I U∼ �  

 1: ( , , )mDiag ν ν′ ′= =N A A U U�  

versus 

 1 1
1: ( ) ( , , )mDiag λ λ− −′ ′= =N A A U U�  

subject to 

 1 1
1 1 , , m mν λ ν λ− −= =�  or 1 1

1 1 , , m mλ ν λ ν− −= =�  

 1/ 2
1

1

1
| | m

m

ν ν
λ λ

′ = =A A �
�

 

 ˆ ˆˆ ˆ: ( ) : ( )′− = − ⇔ − = −η η U ξ ξ ξ ξ U η η  (1.109) 

 2

1

1 1ˆ ˆ ˆ ˆ ˆ|| || : ( ) ( ) ( ) ( , , )( )
m

Diag
λ λ′ ′ ′ ′− = − − = − −A Aξ ξ ξ ξ A A ξ ξ η η η η�  (1.110) 

The local m-dimensional hypervolume element 1̂ m̂d dξ ξ�  is transformed to the local m-dimensional hyper-
volume element 1̂ ˆmd dη η�  
 ˆ1 1ˆ

ˆ ˆ ˆ ˆ ,m md d J d dξ ξ η η
→

=
ξ η

� �  (1.111) 

in which the Jocobian of the orthonormal transformation ˆ ˆ
| | 1J

→
= =

ξ η
U .  

Accordingly, with the orthonormal transformation (1.109) we get the cumulative probability of the canonical 
parameters 1 2ˆ ˆ ˆ ˆ( , , , )mη η ηη �  from (1.93) 

 ˆ1 2 1 2 1 2 1 2ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( , , , )m m m mdF f d d d J f d d dξ ξ ξ ξ ξ ξ η η η η η η

→
= =

ξ η
� � � �   

 i.e.,  

 2
12

11

1 1 1 1 1
ˆ ˆ ˆ ˆ( ) exp{ ( ) ( , , )( )}

2 2

m

mm
mm

dF Diag d dη η
π λ λσσ λ λ

′= − − −η η η η� �
�

 (1.112) 

which alternatively leads us to 
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ˆ( )1 1 1 1
ˆ( ) ( ) exp{ }

2 2

m m
i

m
i im

f
η η

π λσ σλ λ =

−
= − ∑η

�
 (1.113) 

 1 1ˆ ˆ ˆ ˆ( , , ) ( ) ( )m mf f fη η η η=� �  

 
2

2

ˆ( )1 1
ˆ( ) : exp{ } for all {1, , }

22
i

i
ii

f i m
η ηη

λσπσ λ
−

= − ∈ �  (1.114) 

Obviously the transformed random variables 1̂ ˆ( , , )mη η�  represent BLUUE of 1( , , )mη η�  and are mutually 
independent following a Gauss-Laplace normal distribution 2ˆ ( , );i i iη η σ λ∼ N  in particular ˆ{ }  E =η η and 

ˆ{ }D =η 2
1( , )mDiagσ λ λ� . Furthermore  2 1/ 2ˆ( ) /( )i i i iz = −η η σ λ  are independently distributed as N(0, 1) and 2

iz  
has the Helmert Chi-square distribution with 1 degree of freedom, 2 2

1~iz χ . 
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In summary of these derivations we can formulate the following theorem which is complementary to Theorem 
1.16. 

Theorem 1.16 (marginal probability distributions of the orthonormally  
            transformed parameters, special linear Gauss-Markov model): 

By means of Principal Component Analysis (PCA), based on the called Singular  
Value Decomposition (SVD) or Eigenvalue Analysis (EIGEN) of 1( )−′A A ,   
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the canonical fixed effects 1̂ ˆ( , , )mη η� become BLUUE of 1( , , )mη η�  can be  
orthonormally transformed from the BLUUE 1̂ ˆ( , , )mξ ξ�  of the fixed effects  

1( , , )mξ ξ�  within the special Gauss-Markov model of Theorem 1.11. The   
marginal pdf of the canonical parameters 1 2ˆ ˆ ˆ ˆ( , , , )mη η ηη �  is represented by 
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and the transformed fixed effects 1̂ ˆ( , , )mη η�  are mutually independent, following 
a Gauss-Laplace normal distribution 

 2ˆ ( | ) for all {1, , }i i i i mη η σ λ ∈∼ �N   
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Chapter 2 

Hypothesis tests of sample mean vector and sample variance-
covariance matrix of a three-dimensional, symmetric rank-two 
random tensor 

The statistical inference includes the point estimation derived in Chapter 1 and the hypothesis test. On the basis 
of the sampling distributions derived in Chapter 1 we will develop the distribution of multivariate test statistics 
for the testing of hypotheses concerning the sample mean vector and the sample variance covariance matrix, i.e. 
the estimated parameters (mean vector and variance-covariance matrix) of a tensor-valued multivariate normal 
population of a three-dimensional, symmetric rank-two random tensor, which include:  

(1) Tests on µ  with Σ known  ( 2χ -test); 
(2) Tests on µ  with Σ unknown ( Hotelling's 2T -test); 
(3) Tests on the equality of two mean vectors with common variance-covariance matrix                         

(Hotelling's two-sample 2T test and Wilks’ Λ test ); 
(4) Tests if the variance-covariance matrix is equal to a given matrix (likelihood ratio statistics); 
(5) Tests on the equality of two variance-covariance matrices (likelihood ratio statistics); 
(6) Tests if  the mean vectors and variance-covariance matrices are equal to a given vector                 

and matrix (likelihood ratio statistics); 
(7) Tests on the equality of two mean vectors and the respective variance-covariance matrices                         

(likelihood ratio statistics). 

2.1  Hypothesis test of the sample mean vector of a symmetric random tensor 

There is one major area of statistical inference, the testing of hypotheses, which relates to the moments of a prob-
ability distribution. In experimental research one may wish to compare the yield of the new line with that of a 
standard line, and perhaps recommend the new line to replace the standard line, if it appears superior; this is a 
common situation in research. 

   Definition 2.1 (statistical hypothesis test of a statistical hypothesis) 

A statistical hypothesis H is an assertion or conjecture about the distribution  
of one or more random variables. A test of a statistical hypothesis H is a rule  
or procedure for deciding whether to reject H . 

Concerning the testing, two hypotheses are discussed: The first, the hypothesis to be tested, is called the null 
hypothesis, denoted by H0, and the second is called the alternative hypothesis, denoted by H1. The thinking is 
that if the null hypothesis is false, then the alternative hypothesis is true, and vice versa. We often say that H0 is 
treated against, or versus, H1. If the null hypothesis is not rejected we say that H0 is accepted. With this kind of 
thinking, two types of errors can be made.  

   Definition 2.2 (types of errors, size of error) 

Rejection of H0 when it is true is called a Type I error, and acceptance of H0   
when it is false and H1 is true instead, is called a Type II error. The size of a  
Type I error is defined to be the probability α that a Type I error is made, and  
similarly the size of a Type II error is the probability 1-β that a Type II error is  
made in regards of H1  . 

The point of departure for hypotheses testing is the definition of a test quantity. For instance, for a random sam-
ple {y1, ..., yn} of size n from a known probability distribution characterised by parameters like the non-
centralized  statistical moments µ1, ..., µm or the centralized statistical moments π1 ..., πm of order m, we may 
choose a functional of the sample mean 1ˆ ˆµ µ=  or of the sample variance 2

2ˆ ˆπ σ=  as a test quantity which is in 
general a function 

 
1 1

1 1

1 1 2 1
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 (2.1) 
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of the set {y1, ..., yn} of observations and the set {µ1, ..., µm }, { π1 ..., πm }, or {µ1, π2  ..., µm-1, πm} of parameters 
of the probability distribution. The probability distribution of the test functions  

f (t, µ1, ..., µm), 

in short the test statistics, is known. The test quantity is called a pivotal quantity if its probability distribution 
does not depend on the elements of the set {µ1, ..., µm } or { π1 ..., πm } of parameters. 

 

0 1 0
01 11

0 1 0
02 12

0 1 0
03 13

: :

: :

: : .

versus

versus

versus

υ υ υ υ υ
υ υ υ υ υ
υ υ υ υ υ

≤ = >

≥ = <

= = ≠

H H

H H

H H

 (2.2)  

The null hypothesis H0 is formulated by means of a choice of the non-observable parameters, say0υ , represent-
ing either an element of the set {µ1, ..., µm } of parameters (non-centralized first order statistical moments) or an 
element of the set {{π1 ..., πm } of parameters (centralized second order statistical moments). In short, we write 

 0 0 0
01 02 03: , : , :υ υ υ υ υ υ≤ ≥ =H H H . 

Alternatively we choose 

 1 0 1 0 1 0
11 12 13: , : , :υ υ υ υ υ υ υ υ υ= > = < = ≠H H H . 

Accordingly, such a test is called a right one-sided test, a left one-sided test and a two-sided test, respectively.  
This notion will become more obvious when we determine the probabilities α and 1-β of the Type I errors and 
Type II errors, for example for the two-sided test 

  0 1 0
03 13: :versusυ υ υ υ υ= = ≠H H . 

The null hypothesis H03 is accepted if the test quantity t is an element of the acceptance region c1 ≤ t ≤ c2, c1 = 
cα/2,  c2 = c1-α/2. The critical values c1  and  c2  are determined from the probability identity 

 
2 1

0 0

0 0 0
1 2 2 1{ ; } { ; } { ; }

( ) ( )

(1 ) 1
2 2

c c

P c t c P t c P t c

f t dt f t dtυ υ

υ υ υ

α α α

−∞ −∞

≤ ≤ = ≤ − ≤ =

= − =

= − − = −

∫ ∫  (2.3) 

with respect to a significance level α,  namely by a linear Volterra integral equation of the first kind. In contrast, 
H03 is rejected if the test quantity is “out of the acceptance interval ” 1 2[ , ]t c c∉ , in particular if t is an element 
of the rejection region or critical region / 2 1 / 2: { | , }lr t t c c tα α−= − ∞ < ≤ ≤ < +∞C � . The probability to reject a true 
null hypothesis, that is to make a Type I error, is measured by the error probability α, e.g. 1%, 5%, or 10%, 
respectively. 

 0
1 2{ } 1 {Type ;I error }P P c t c υ α= − ≤ ≤ =  (2.4) 

The specific alternative hypothesis H13 is validated by the probability identity 
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1 1

1 1 1 1
1 2 1 2

1 2
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1 ( ) ( )
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c c
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F c F c
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= + − =
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=

∫ ∫  (2.5) 

which is called the power of the two-sided test. β  is a measure of the probability to reject the null hypothesis H03 
in favor of the specific alternative hypothesis H13 . In contrast, 

 1 1
2 1{ } {T ; } { ; } 1ype II error P P t c P t cυ υ β= ≤ − ≤ = −  (2.6) 

is a measure for the probability to reject the specific hypothesis H13 in favor of the false null hypothesis H03, that 
is to commit a Type II error.  

The following table illustrates the rationale of hypothesis testing. 
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 H0 is true Specific H1 is true 

Acceptance 
of H0 

correct decision 
P{correct decision}=1-α 

Type II error 
P{ Type II error}=1-β 

 

Rejection of 
H0 

Type I error 
P {Type I error} = α 
 significance level 

 

correct decision 
P{correct decision}=β 

(power of test) 

While P{Type I error } measures the probability to reject a true null hypothesis H0 , P{Type II error } measures 
the probability to reject the true alternative hypothesis H1. 

The hypothesis test of sample mean vector and sample variance-covariance matrix of a symmetric random tensor 
belongs to multivariate analysis which is the branch of statistics devoted to the study of random variables that are 
not necessarily independent. Where inference is concerned, several (generally correlated) measurements are 
made on every observed subject.  

Many current multivariate statistical procedures were developed during the first half of the twentieth century. A 
reasonably complete list of the developers would by voluminous. However, a few individuals can be cited as 
having made important initial contributions to the theory and practice of multivariate analysis. 

T. Galton and K. Pearson did pioneering work in the areas of correlation and regression analysis. R.A. Fisher's 
derivation of the exact distribution of the sample correlation coefficient and related quantities provided the impe-
tus for multivariate distribution theory. C. Spearman and K. Pearson were among the first to work in the area of 
factor analysis. Significant contributions to multivariate analysis were made during the 1930s by. S. S. Wilks       
(general procedures for testing certain multivariate hypotheses), H. Hotelling ( Hotelling's T2, principle compo-
nent analysis, canonical correlation analysis), R. A. Fisher (discrimination and classification), and P. C. Maha-
lanobis (generalized distance, hypothesis testing). J. Wishart derived an important joint distribution of sample 
variance and covariance that bears his name. Later M. Bartlett and G. E. P. Box contributed to the large sample 
theory associated with certain multivariate test statistics. 

The body of statistical methodology used to analyze simultaneous measurements on many variables is called  
multivariate analysis. Many multivariate methods are based on an underlying probability model known as the 
multivariate normal distribution. 

The objectives of scientific investigations, for which multivariate methods most naturally lend themselves, in-
clude the following: 

− Data reduction or structural simplification. 

− Sorting and grouping. 

− Investigation of the dependence among variables. 

− Predication. 

− Hypothesis construction and testing. 

One of the central messages of multivariate analysis is that p correlated variables must be analyzed jointly. This 
principle is exemplified by the methods presented in Section 2.1 and 2.2. Inference, that is, reaching valid con-
clusions on the basis of sample information. While real data are never exactly multivariate normal, the normal 
density is often a useful approximation to the "true" population distribution. 

On the basis of the sampling distributions derived in Section 1.4 and 1.5 the distribution of multivariate test sta-
tistics needed for testing hypotheses concerning the parameters (covariance matrix and mean vector) of a tensor-
valued multivariate normal population, such as Hotelling’s T2 and likelihood ratio statistics, are developed. 

At this point we shall concentrate on inferences about a population mean vector and its component parts in this 
section, although we introduce statistical analysis of the component means based on simultaneous confidence 
statements. In Section 2.2 we shall discuss the hypothesis test for the sample variance-covariance matrix of a 
symmetric random tensor. From the many books about these subjects, we refer to Grafarend (2000) for the uni-
variate  hypothesis test and Giri (1977), Muirhead (1982), Rencher (1995, 1998), Anderson (1958, 1984) and 
Srivastava (2002). 
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     2.1.1 Tests on µ  with Σ known 

Hypothesis testing has started with the test on the mean with known or unknown variance, in particular for the 
random sample of a Gauß-Laplace normal distribution. The test on a sample mean vector assuming a knownΣ is 
introduced to illustrate the issues involved in multivariate testing and serve as foundation for the unknown 
Σ case. We do not consider one-sided alternative hypotheses because they do not readily generalize to multivari-
ate tests. 

For the univariate case the hypothesis test of interest is that the mean is equal to a given value 0µ , versus the 
alternative that it is not equal to 0µ . 

 0 0 1 1 0: :versusµ µ µ µ µ= = ≠H H  

Let {y1, ..., yn} be a set of independently identically distributed (i.i.d.) observations from a normal sample of size 
n with the unknown mean value µ  and the known variance 2σ .   

 0 1
1 0 0

ˆ ...
( ,..., ; ) : [ ]

/
n

n

y yn
t y y

nn

µ µµ µ
σσ

− + +
= = −  (2.7) 

with respect to the sample mean µ̂  of type BLUUE. 0ˆ( ; )t µ µ  is Gauß-Laplace standard normally distributed 
with mean zero and variance one. The probability identity  

 0ˆ ˆ{ } { } 1P c t c P c c
n n

σ σµ µ µ α γ− ≤ ≤ + = − ≤ ≤ + = − =  (2.8) 

relates the error probability α  of the two-sided test to the confidence level γ . If 0µ is an element of the confi-
dence interval 0ˆ ˆ/ /c n c nµ σ µ µ σ− ≤ ≤ +  , the null hypothesis 0 0: µ µ=H  is accepted. We eject 0H  if the 
confidence interval does not contain 0µ . 

Equivalently, we can use the statistic 2
1 0( ,..., ; )nt y y µ  

 2 2 1
1 0 0 0ˆ ˆ( ,..., ; ) : [ ]( ) [ ],nt y y nµ µ µ σ µ µ−= − −  (2.9) 

which is distributed as 2χ  with one degree of freedom. The probability identity  

 2 2 2
1,1{ } { } 1P t c P t αχ α γ−≤ + = ≤ = − = . (2.10) 

In the multivariate analysis of the sample mean vector for a symmetric random tensor in vector form we wish to 
hypothesize the value of the mean vector jointly when the variance-covariance matrix is known : 

  01 0 11 0: , : with known= ≠ yµ µ µ µ ΣH H  

More explicitly, for the three-dimensional, symmetric rank-two random tensor discussed in Section 1.3 we have  

 
1 01 1 01

01 11

6 06 6 06

: , : with known

       
       = ≠       
              

yΣ� � � �

µ µ µ µ

µ µ µ µ
H H . 

The vector equality in 01H  implies 0  for all 1, , 6i i i= = �µ µ . The vector inequality in 11H  implies 0i iµ µ≠  for 
at least one {1, ,6}i ∈ � . 

To test 01H , we use a sample of N observations on t, namely t1, t2,… , tn, whose related vectorized forms y1, y2, 
…, yn are distributed according to 6( , )yµ ΣN  of Section 1.3. The test statistic is  

 2 1
1 0 0 0ˆ ˆ( ,..., ; ) : [ ] [ ],nZ n −= − −y y yy y µ µ µ Σ µ µ  (2.11) 

which is distributed as 26χ  by Lemma 1.8 and Theorem 1.10.  We reject 01H  if 2 2
6, 1Z −> αχ . Thus, for one vari-

able, it will refer to (2.10), whereas for the case of a 3×3 symmetric random tensor, 2Z of (2.11) has a chi-square 
distribution with six degrees of freedom. 

Since we cannot get the expectation of the variance-covariance matrix from the observation of deformation 
measures in our real experience, this test statistic is not very practical in our case.  

     2.1.2  Tests on µ  with Σ unknown 

Firstly let us review briefly the familiar one–sample t-test in the univariate case.  
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The hypothesis test of interest is that the mean is equal to a given value 0µ , versus the alternative that it is not 
equal to 0µ . 

 0 0 1 1 0: :versusµ µ µ µ µ= = ≠H H  

Let {y1, ..., yn} be a set of independently identically distributed (i.i.d.) observation from a normal sample of size 
n with the unknown mean value µ  and unknown variance 2σ . The test statistic  

 0 1
1 0 0

ˆ ...
( ,..., ; ) : [ ]

ˆˆ /
n

n

y yn
t y y

nn

µ µµ µ
σσ

− + +
= = −  (2.12) 

where 2ˆ ˆ,µ σ represent the sample mean, and sample variance of type BLUUE and type BIQUUE, respectively. 
(2.12) has a Student t-distribution with n-1 degrees of freedom. The probability identity  

 0

ˆ ˆ
ˆ ˆ{ } { } 1P c t c P c c

n n

σ σµ µ µ α γ− ≤ ≤ + = − ≤ ≤ + = − =  

relates the error probability α  of the two-sided test to the confidence level γ . If 0µ  is an element of the confi-
dence interval 0ˆ ˆ ˆ ˆ/ /c n c nµ σ µ µ σ− ≤ ≤ +  , the null hypothesis 0 0: µ µ=H  is accepted. We reject 0H  if the 
confidence interval does not contain 0µ . 

Secondly in the multivariate analysis of the sample mean vector for a symmetric random tensor in vector form 
we wish to hypothesize the value of the mean vector jointly when the variance-covariance matrix is unknown : 

  02 0 12 0: , : with unknown.= ≠ yµ µ µ µ ΣH H  

More explicitly, for the three-dimensional,  symmetric rank-two random tensor discussed in Section 1.3 we have  

 
1 01 1 01

02 12

6 06 6 06

: , : with unknown

       
       = ≠       
              

yΣ� � � �

µ µ µ µ

µ µ µ µ
H H . 

The vector equality in 02H  implies 0  for all 1, , 6i i i= = �µ µ . The vector inequality in 12H  implies 0i iµ µ≠  for 
at least one {1, ,6}i ∈ � . 

To test 02H , we use a sample of N observations on t, namely t1, t2,… , tn, whose related vectorized forms y1,  y2, 
…, yn   are distributed according to 6( , )yµ ΣN  giving rise to the sample mean vector ˆ yµ of Theorem 1.10 to the 
sample covariance matrix ˆ

yΣ of Theorem 1.12. Hotelling's 2T  statistic (Hotelling 1931)  is defined as  

 2 1
0 0

ˆˆ ˆ: [ ] [ ].T n −′= − −y y yµ µ Σ µ µ  (2.13) 

which is distributed as 26, 1nT − . Note, that for one variable 2T  is the square of the usual Student t-statistic (2.12). 
In general, it is clear that  2 0T ≥  and if 0 =µ 0  then ˆ yµ should be close to 0, and so should be 2T . This charac-
teristic is one of the most important properties of the Wishart distribution (Theorem 1.11). Now we should derive 
its relationship with the F distribution.  

With the sampling distribution of ˆ yµ  and ˆ yΣ , and the independence of them , we write T 2/(n-1) as  
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Note that a key assumption in the 2T distribution is the independence of ˆ yµ  and ˆ yΣ , which holds when sampling 
from a multivariate normal population (Theorem 1.11). 

For the three-dimensional, symmetric rank-two random tensor case discussed in Section 1.1 and after Muirhead 
(1982, p.96) we have  

 
1

0 01 2 2
0 0 6 1 6 11

0 0

( )
ˆ ˆ[ ] [ ]

ˆ ˆ[ ] [ ] ~ , 1 ~
ˆˆ ˆ[ ] [ ]
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χ χ  

Dividing them each by their respect degree of freedom and using the definition of the F distribution shows that  
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2

6, 1 6 1

1 6 1
~

1 6 n

T n
F

n − − +
− − +

−
. (2.14) 

This is of great practical importance in testing hypotheses about the mean vector of the vectorized random tensor 
when the covariance matrix is unknown.  

If the observed 2T  is too large – that is, ˆ yµ  is "too far" from 0µ - the hypothesis 02 0ˆ:H =yµ µ is rejected. Due to 
the relationship (2.14) we can calculate the probability identity  
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where 6, 1 6 1(1 )nF − − + −α  is the upper (100 )thα  percentile of the 6, 1 6 1nF − − +  distribution. (2.15) leads immediately to 
a test of the hypothesis 02 0ˆ: =yµ µH versus 12 0ˆ: ≠yµ µH . At the error probability α , reject 02H in favor of 

12H if  

 2 1
0 0 6, 1 6 1

ˆˆ ˆ[ ] [ ]
( 1) 6
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1 6 1

}1n
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n
n F−
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−= − ⋅
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+y y yµ µ Σ µ µ α  (2.16) 

It has been shown that Hotelling's 2T test is a uniformly most powerful invariant test (Anderson, 1984, p.183). 
Further it is also the likelihood ratio test. 

This test is just our case of the repeated observations of deformation measures in one place or network with the 
same technique and the same conditions, in which we have only the estimates of the sample mean vector and the 
sample variance-covariance matrix. So we may use Hotelling's 2T  statistic (2.13) to test the sample mean vector. 

     2.1.3  Tests on equality of two mean vectors with common variance-covariance matrix 

A 2T test for testing the equality of the mean vectors from two multivariate populations can be developed by 
analogy with univariate procedure. See Johnson and Wichern (1988, p.221) and Anderson (1984, p.167) in de-
tail. 

In the multivariate case, we wish to compare the mean vectors from two population. This is also called as “Ho-
telling's two-sample 2T test”. We assume that two independent random samples 

111 12 1, , , ny y y�  are distributed 
according to 6 1 1( , )µ ΣN  and 

221 22 2, , , ny y y�  are distributed according to 6 2 2( , )µ ΣN  giving rise to the sample 
mean vectors 1 22ˆ ˆandµ µ  respectively, where 1 2andΣ Σ  are unknown. In order to obtain a 2T test, we must as-
sume 1 2=Σ Σ , which is of importance for the small sample size n1  and n2. From these two samples a pooled 
estimator of the common covariance matrix Σ is calculated as 

 1 1 2 2

1 2

ˆ ˆ( 1) ( 1)

2pl

n n

n n

− + −=
+ −
Σ Σ

S  (2.17) 

for which { }plE =S Σ . To test  

 03 1 2 13 1 2 1 2: , : with .= ≠ =µ µ µ µ Σ ΣH H  
we use the test statistic 

 2 11 2
1 2 1 2

1 2

ˆ ˆ ˆ ˆ: [ ] [ ],pl

n n
T

n n
−′= − −

+
µ µ S µ µ  (2.18) 

which is distributed as 
1 2

2
6, 2n nT + − and its relationship with the F-Statistic is: 

 
1 2

21 2
6, 6 1

1 2

6 1

3( 2) n n

n n
T F

n n + − −
+ − −

=
+ −

. (2.19) 

We can use the same procedure of Section 2.1.2 to make hypothesis test 03 1 2: =µ µH . 

Now we discuss the second method of deriving Hotelling's two-sample 2T test, which is based on likelihood 
ratio test. We develop the decomposition (1.57) of Section 1.4 for the sample of one population to our two popu-
lations test. First let us note that 
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Since 
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we note that for 
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we have  

 = +W A B  (2.22) 

Under 03 1 2: =µ µH , the corresponding random matrices A, B are independently distributed as 6( 2, )n− ΣW , 

6(1, )ΣW , and W is distributed as 6( 1, )n− ΣW , from which we obtain the famous test statistic-Wilks’ Lambda 

statistic 

 
det det

(6, 2,1)
det( ) det

nΛ − = =
+
A A

A B W
 (2.23) 

which was first proposed by Wilks (1932) and later by Hsu (1941). We reject 03H  if the ratio of generalized 

variances (2.23) is too small. 

For the two sample case we have the likelihood function  
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The likelihood ratio statistic is  
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then for testing 03 1 2: =µ µH   the likelihood ratio statistic is  

 
/ 2

1 / 2

(det )

(det )

n

n
Λ = A

W
 (2.24) 

This test is equivalent to Wilks’ Λ test of (2.23).  

This test covers our case of repeated observations of deformation measures of two places or two networks with 
the same technique and the same conditions, in which we have only the estimates of the sample mean vectors 
and the sample variance-covariance matrices. So we have to use Hotelling's 2T  two-sample statistic (2.18) to 
test the sample mean vector.  

When the variance-covariance matrices of two populations are not equal, the two-sample 2T  statistic in (2.18) 
does not have a 2T  distribution, which leads to the Behrens-Fisher problem (Behrens 1929, Fisher 1939). Since 
this situation often takes place in the case of repeated observations of deformation measures of two places or two 
networks with different techniques and under difference conditions. An optimal approximate solution of this 
problem remains under investigation. 
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In this section we have so far discussed three hypothesis tests about the sample mean of a symmetric random 
tensor, which are summarised in Box 2.1. 

Box 2.1 (Hypothesis tests of the sample mean) 

 
01 0 11 0

02 0 12 0

03 1 2 13 1 2 1 2

: , : with known
: , : with unknown
: , : with

= ≠
= ≠
= ≠ =

y

y

µ µ µ µ Σ

µ µ µ µ Σ

µ µ µ µ Σ Σ

H H

H H

H H

 

  

2.2 Hypothesis test of the sample variance-covariance matrix of a symmetric random tensor   

Now we consider the hypothesis test of the sample variance-covariance matrix of a symmetric random tensor. 
These tests are often carried out to check the assumptions pertaining to other tests. We will cover four types of 
hypotheses: (1) the variance-covariance matrix is equal to a given matrix, (2) two variance-covariance matrices 
are equal, (3) the mean vector and the variance-covariance matrix are equal to a given vector and matrix, respec-
tively, which is obviously the combination of the hypothesis test about the mean vector of Section 2.1.3 and (1) 
of this section for the variance-covariance matrix, and more generally (4) several mean vectors and the variance-
covariance matrices from several normal populations are equal. In most cases we use the likelihood ratio ap-
proach. The resulting test statistics are often determined by the ratio of determinants of the sample variance-
covariance matrix. 

In the univariate test of variance we are interested in (1) test on the variance-covariance matrix with mean known 
or unknown, which are related to the Chi-square distribution,  and (2) test on the mean difference from two inde-
pendent normal samples, which are related to the Fisher F-distribution. For more detail we referred to Koch 
(1997, 1999) and Grafarend (2000). 

     2.2.1   Tests if the variance-covariance matrix is equal to a given matrix 

We are interested in testing if the variance-covariance matrix is equal to a given matrix  

      04 0 14 0: , := ≠Σ Σ Σ ΣH H  

Let 1, , ny y�  be independent 6( , )µ ΣN -distributed random vectors of vectorized random tensors with unknown 
mean vector µ  and variance-covariance matrix ,Σ  and consider testing the null hypothesis 04 0: , where=Σ ΣH  

0Σ  is a specified positive-definite matrix, against 14 0: ≠Σ ΣH .  

At first we assume that 0 3=Σ I , then transform to the general 0Σ . According to the Definition 1.5 the likelihood 
function is  
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in which [ ]1 2, , , n′ =Y y y y� . With the  decomposition introduces in Section 1.4     
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formula (2.25) will become  
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The likelihood ratio statistic is  
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ˆˆ ˆwhere ( ) ( ) ( 1)n′ ′ ′= − − = −y y yA Y 1µ Y 1µ Σ , then for testing 04 0 6: = =Σ Σ IH  the likelihood ratio statistic is 

 ( )6 / 2 / 2
2

1(det ) etr{ }2
n

ne
nΛ = −A A  (2.27) 

For the general 0 6≠Σ I  let B be a 6×6 nonsingular matrix such that 0 6′ =BΣ B I  and put 1 , 1, ,6i i i−= =x B y � , so 
1 1 1

6~ ( , ( ) )i
− − − ′x B µ B Σ BN . To hypothesize the 04 0: =Σ ΣH  is equivalent to testing 1 1

04 6: ( )− − ′ =B Σ B IH  , and 
now we have 
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By substituting xA into (2.27) we get the likelihood ratio statistic 

 ( )6 / 2 1 / 2 1
2 0 0

1 ˆ(det ) etr{ }, where ( 1)2
n

ne
n n− −Λ = − = − yΣ A Σ A A Σ  (2.28) 

So we have Theorem 2.3 

Theorem 2.3 

The likelihood ratio test of 04 0: =Σ ΣH  with unknown mean vector µ  and  
unknown variance-covariance matrix Σ rejects H 04 whenever  

 ( )3 / 2 1 / 2 1
2 0 0

1(det ) etr{ }2
n ne

n Cα
− −Λ = − ≤Σ A Σ A  

where the constant Cα is chosen in such a way that the test has size α . 

To evaluate the constant Cα, we need the distribution of 2Λ  under null hypothesis H04, which are given, e.g., by 
Anderson (1958), Giri  (1977): When the null hypotheses are true, 22log− Λ  is distributed as 2

6(6 1) / 2+χ , when n→ 
∞. Das Gupta (1969) has proved that the likelihood ratio test of (2.28) is biased, see also N. Sugiura and H. 
Nagao (1968). Muirhead (1982) has discussed the unbiased modified likelihood ratio statistic 2

∗Λ  in detail  
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−Λ = − = − yΣ A Σ A A Σ  (2.29) 

and provided the tables of its asymptotic distribution. We reject the null hypothesis H04 for small enough 2
∗Λ . 

     2.2.2   Tests on the equality of two variance-covariance matrices 

We consider testing the null hypothesis that the variance-covariance matrices of two normal distributions are 
equal, given independent samples from the two populations. Let 1, ,i iny y�  be independent 6( , )i iµ ΣN  -
distributed random vectors of vectorized random tensors with unknown mean vector iµ  and variance-covariance 
matrix iΣ  and consider testing the hypothesis  

 05 1 2 15 1 2: , : ≠=Σ Σ Σ ΣH H  

Let ˆ iyµ and iA be, respectively, the mean vector and the matrix of sums of squares and products formed from the 
ith sample; that is  
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and denote 1 2 1 2, n n n= + = +A A A . 

The likelihood ratio test of 05H , first derived by Wilks (1932), is given in the following theorem for the case of 
two populations. 

Theorem 2.4 

The likelihood ratio test of 05 1 2: =Σ ΣH  with unknown mean vector µ  and  
unknown variance-covariance matrix Σ rejects 05H  whenever  

 
1 2 1 2

1 2 1 2 1 2

/ 2 / 2 / 2 / 26 / 2 6 / 2
1 2 1 2

3 6 / 2 6 / 2 ( ) / 2 6 / 2 6 / 2/ 2
1 2 1 2 1 2

(det ) (det ) (det ) (det )

(det ) (det )

n n n nn n

n n n n n nn

n n
C

n n n n+Λ = = ≤
+

A A A A

A A A α  (2.30) 

where the constant Cα  is chosen in such a way that the test has size α . 

When the null hypotheses are true, 32log− Λ  is distributed as 2
6(6 1) / 2+χ , when n → ∞. For the unbiasedness and 

modified likelihood ratio statistic about 05H  we refer to Giri (1977) and Murihead (1982) in detail. 
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  2.2.3  Tests if the mean vector and variance-covariance matrix are equal to a given vector and matrix 

We consider testing if the mean vector and the variance-covariance matrix are equal to a given vector and ma-
trix, respectively, which is obviously the combination of the hypothesis test 01H about the mean vector of Section     
2.1.1 and 04H  of  Section 2.2.1 for the variance-covariance matrix: 

 06 0 0 16 0 0: , : or= ≠= ≠y yµ µ Σ Σ µ µ Σ ΣH H  

The likelihood ratio test is given in the following theorem from Anderson (1958) 

Theorem 2.5 
Given the n independent 3×1 samples vectors 1, , ny y�  , all distributed as  

6( , )µ ΣN ,  the likelihood ratio test of size α  of 06 0 0: , == yµ µ Σ ΣH  is  
based on  

 ( )6 / 2 1 / 2 1 1
4 0 0 0 0 0

1 1
ˆ ˆ(det ) etr{ }exp{ [ ] [ ]}

2 2

n n
ne

n
− − −′Λ = − − − −y yΣ A Σ A µ µ Σ µ µ  (2.31) 

and reject H06 if 4 CαΛ ≤ , where the constant Cα  is chosen in such a way that          
the test has size α . When the null hypothesis is true, 42log− Λ  is asymptotically 
distributed as 2

6(6 1) / 2 6+ +χ . 

The likelihood ratio test (2.31) is unbiased, which has been established by Sugiura and Nagao (1968) and Das 
Gupta (1969).  Muirhead (1982) provided the tables of its asymptotic distribution. We reject the null hypothesis 
H06 for small enough 4Λ . 

  2.2.4   Tests on the equality of two mean vectors and two variance-covariance matrices  

Now we consider simultaneous testing for the equality of the mean vectors and the variance-covariance matrices 
from two populations, which is obviously the combination of the hypothesis test 03H about the mean vector of 
Section 2.1.3 and 05H  of  Section 2.2.2 for the variance-covariance matrix, which is our seventh hypothesis test: 

 07 1 2 1 2 17 1 2 1 2: , : or= = ≠ ≠µ µ Σ Σ µ µ Σ ΣH H  

The likelihood ratio statistic for hypothesis 07H  is the product of the 1Λ of 03H  and  3Λ of 05H . 
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 (2.32) 

and the likelihood ratio test rejects 07H  whenever  

 5 CαΛ ≤ ,  

where Cα  depends on the error probability α . 

Box (1949) has derived the distribution of the modified likelihood ratio statistic 5
∗Λ   

 
1 2

1 2

( 1) / 2 ( 1) / 2 3( 2) / 2
1 2

3( 1) / 2 3( 1) / 2
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5 ( 1) / 2(

(det ) (det )

1) ( 1det ) ( )

n n n

n nn

n

n n
∗

−

− − −

− −Λ =
− −

A A

W
 (2.33) 

If the null hypothesis is true, 52 logρ ∗− Λ  is distributed as 2
6(6 1) / 2+χ , when n → ∞, where ρ  is a numerical value 

related to the sampling number, the dimension of the sampling vector, and the total number of populations.  

In this section we have discussed four hypothesis tests about the sample variance-covariance matrix of a sym-
metric random tensor and the combination of mean vectors, which are summarised in Box 2.2. 

   Box 2.2. (Hypothesis tests of the sample variance-covariance) 
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Chapter 3 

Optimal α for Tykhonov-Phillips regularization by A-optimal design   
- α-weighted BLE, and a simulated case study for 2-D strain rate     
tensors 

Numerical tests have documented that the estimate ξ̂  of type BLUUE of the parameter vector ξ  within a linear 
Gauss-Markov model { { },E=Aξ y  { }}y D=Σ y  is not robust against outliers in the stochastic observation vector 
y. It is for this reason that we give up the postulate of unbiasedness, but keep the set-up of a linear estimation 
ˆ =ξ Ly of homogeneous type. Ever since Tykhonov (1963) and Phillips (1962) introduced the hybrid minimum 
norm approximation solution (HAPS) of a linear improperly posed problem there has been left the open problem 
to evaluate the weighting factor α between the least-squares -norm and the minimum length norm of the un-
known parameters. In most applications of Tykhonov-Phillips type of regularization the weighting factor α is 
determined by simulation studies, but according to the literature listed below also optimization techniques have 
been applied. Here we aim at an objective method to determine the weighting factor α within α-HAPS. 

Alternatively, improperly posed problems which appear in solving integral equations of the first kind or down-
ward continuation problems in potential theory depart from observations which are elements of a probability 
space. Accordingly, estimation techniques of type BLUUE (best linear uniformly unbiased estimation) have been 
implemented to estimate ξ̂  as an unknown parameter vector ξ  (“fixed effects”) within a linear Gauss-Markov 
model, such an estimation is not robust against outliers in the stochastic observation vector .∈y Y� Here we 
assume that the observation vector y is an element of the observation space Y, dim Y= n, namely an observation 
space n=Y R  equipped with a Euclidean metric. Due to possibly unstable solutions of type BLUUE with re-
spect to the “fixed effects” linear Gauss-Markov model we give up the postulate of unbiasedness, but keep the 
set-up of a linear estimation ̂ =ξ Ly of homogeneous type. According to Grafarend and Schaffrin (1993), up-
dated by Schaffrin (2000), the best linear estimation of type α-homBLE (α-weighted Best homogeneously Linear 
Estimation) which is based on hybrid norm optimization of type (i) minimum variance and (ii) minimum bias 
leads us to the equivalence of α-homBLE and α-HAPS under the following condition. If we choose the weight 
matrix in the least squares norm as the inverse matrix of the variance covariance matrix of the observations as 
well as the weight matrix in the minimum norm acting on the unknown parameter vector as the inverse substitute 
bias weight matrix, then α-homBLE and α-HAPS are equivalent.  

The second method of regularizing an improperly posed problem offers the possibility to determine the regulari-
zation parameter α in an optimal way. For instance, by an A-optimal design of type 

"minimize the trace of the  Mean Square 

Error matrix  ˆtr MSE{ }ξ of ξ̂ (α-hom  BLE) to find  
ˆˆ arg{tr MSE{ } min}α = =ξ " 

we are able to construct the regularization parameter α which balances the trace of the variance-covariance 
matrix ˆtr D{ }ξ and the trace of the quadratic bias tr ′ββ  for the bias vector [ ]= − −β I LA ξ . 

The biased estimation solves a special inverse problem, and is also known as Tykhonov-Phillips regulator or 
ridge estimator. For a comprehensive discussion and review about the methods of solving the inverse problem 
we refer to Allen, (1971, 1974), Arslan and Billor (2000), Bouman (1998), Chaturvedi and Singh (2000), Dona-
tos and Michailidis (1990), Draper, et al. (1979), Droge (1993), Engels, et al. (1993), Engl (1993), EL-Sayed 
(1996), Farebrother (1975, 1976, 1978), Firinguetti (1996), Firinguetti and Rubio (2000), Gibbons (1981), Golub 
Heath and Wahba (1979), Grafarend and Schaffrin (1993), Gui, et al. (1998a, b, 2000, 2001), Gunst and Mason  
(1977), Gunst and Mason (1980), Hanke and Hansen (1993), Hansen (1992,1993), Hansen (1993), Hemmerle  
(1975), Hemmerle and Brantle (1978), Hocking (1976), Hoerl and Kennard (1970a, 1970b), Hoerl, Kennard and 
Baldwin (1975), Hoerl (1985), Hoerl, Schuenemeyer and Hoerl (1985), Ilk (1986), Kacirattin, Sakalloglu and 
Akdeniz (1998), Lawless and Wang (1976), Liu (1993), Louis, Maass and Lowerre (1974), Mallows (1973), 
Markiewicz (1996), Marquardt (1970,1974), Marquardt and Snee (1975), Mayer and Willke (1973), McDonald 
and Galarneau (1975), Nomura (1988, 1998), Ohtani (1986, 1998), Phillips (1962), Rao (1975, 1976), Schaffrin, 
Heidenreich and Grafarend (1977), Schaffrin and Middel (1990), Schaffrin (1995), Schaffrin (2000), Shalabh 
(1998), Smith and Campbell (1980), Srivastava, et al. (1983), Theobald (1974), Tykhonov (1963), Tykhonov, et 
al. (1977), Tykhonov and Arsenin (1977), Vinod and Ullah (1981), Xu (1992a, b, 1998), Xu and Rummel 
(1994a, b), Wang and Xiao (2001), Wenchenko (2000). 
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Of those quoted references, Grafarend and Schaffrin (1993) as well as Schaffrin (2000) have systematically 
derived the best linear estimators of type homBLE (Best homogeneously Linear Estimation), S-homBLE and α-
homBLE of the fixed effects ξ , which turn out to enhance the best linear uniformly unbiased estimator of type 
BLUUE, but suffer from the effect being biased. In this chapter the regularization parameter in uniform Tyk-
honov-Phillips regularization (α-weighted BLE) is determined by minimizing the trace of the Mean Square 
Error matrix ˆ{ }MSE ξ  (A-optimal design) in the general case for the Gauss-Markov model. Through two com-
parisons it is shown that the optimal ridge parameter k in ridge regression developed by Hoerl and Kennard  
(1970a, 1970b) and Hoerl, Kennard and Baldwin (1975) is just the special case of our general solution by A-
optimal design. Based on the introduction of the multivariate homBLEα − for the multivariate parameters, the 
determination of the optimal weight factor α  are generalized to the multivariate Gauss-Markov model, which 
we shall call "multivariate ridge estimator". In lieu of a case study, both model and estimators are tested and 
analyzed with numerical results computed from simulated direct observations of a random tensor of type strain 
rate.  

3.1   The optimal regularization parameter αααα in uniform Tykhonov-Phillips regularization by     
        A-optimal design (αααα-weighted BLE )  

Let us first introduce the special Gauss-Markov model = +y Aξ e specified in Box 3.1, which is given for the 
first order moments in the form of a consistent system of linear equations relating the first non-stochastic 
(“fixed”) , real-valued vectorξ of unknown parameters to the expectation { }E y of the stochastic, real-valued 
vector y of observations, { }E=Aξ y , since { } ( )E ∈y AR is an element of the column space( )AR of the real-
valued, non-stochastic ("fixed") "first order design matrix” .n m×∈A �  The rank of the fixed matrix , rk ,A A  
equals the number m of unknowns, .m∈ξ �  In addition, the second order central moments in the regular vari-
ance-covariance matrix ,yΣ  also called dispersion matrix { },D y constitute the second matrix n n×∈yΣ � of un-
knowns to be specified in a linear model furtheron.  

Box 3.1: 

Special Gauss–Markov model 

      = +y Aξ e    

1st moments 

 { }, , { } ( ), rk n mE E m×= ∈ ∈ =Aξ y A y A A� R      (3.1) 

2nd moments 

 
positivedefinite, rk 

, { } ,

{ }

.

,

,

n n n

E unknown unknown but structured

D ×=

−

∈ =

=
y y y

y

Σ Σ Σ

y y e Σ

y

ξ

�
   (3.2)       

Obviously a homogeneously linear form ˆ =ξ Ly is sufficient to generate Σ - BLUUE (Best Linear Uniformly 
Unbiased Estimation with respect to the Σ - norm) for the special Gauss-Markov model (3.1), (3.2). Explicit 
representations of Σ - BLUUE of type ̂ξ  as well as of its dispersion matrix ˆ ˆ{ |D ξ ξ Σ -BLUUE} generated by 
solving the normal equations derived from the minimum of the quadratic constraint Lagrangean are collected in 

 
Theorem 3.1 ( ξ̂  BLUUE of ξ ): 

Let ˆ =ξ Ly be yΣ - BLUUE  ξ̂  of ξ in the special linear Gauss-Markov model 
(3.1), (3.2). Then 

 1 1 1ˆ ( )− − −= = ′ ′y yL Ay AA Σξ Σ y  (3.3)  

 ˆ
1ˆ −′=

ξ yΣ A Σξ y  (3.4)  

subject to the related dispersion matrix  

 ˆ
1 1{ } : (ˆ )D − −′= = yξ

Σ A Σξ A . (3.5)   

Apparently ̂ξ  of type  yΣ - BLUUE  of ξ is not robust against outliers in the stochastic vector y of observations. 
It is for this reason that we give up the postulate of unbiasedness, but keep the set-up of a linear estimation 
ˆ =ξ Ly of homogeneous type, which turns out to better than the best linear uniformly unbiased estimator of type 
hom BLUUE, but suffers from the effect to be biased. Here we will focus on best linear estimators of type α-
homBLE of the fixed effectsξ . At first let us begin with a discussion of the bias vector and the bias matrix as 
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well as of the Mean Square Error matrix ˆ{ }MSE ξ with respect to a homogeneously linear estimateˆ =ξ Ly of 
fixed effectsξ based upon Box 3.2. 

Box 3.2: 

Bias vector, bias matrix, Mean Square Error matrix 
       in the special Gauss–Markov model with fixed effects  

 { }E =y Aξ  (3.6) 

 { }D = yy Σ  (3.7) 

“ansatz” 

 ˆ =ξ Ly  (3.8) 
 bias vector 

 { } {ˆ ˆ: }E E== − −β ξ ξ ξ ξ  (3.9) 

 { } [ ]mE − = −= −β L ξ I LAy ξ  (3.10) 

bias matrix 

 : m= −B I LA  (3.11) 

decomposition 

 ˆ ˆ ˆ{ }) ( { } )ˆ( E E+ −− = −ξ ξ ξ ξ ξ ξ  (3.12) 

 {ˆ }) [ ]( mE− = −− −ξ ξ L y y I LA ξ  (3.13) 

Mean Square Error matrix 

 ˆ ˆ{ } : {( ˆ() })M E ES ′= − −ξ ξ ξ ξ ξ  (3.14) 

 { } { } [ ]ˆ ] [m mDMSE ′ + ′ ′− −= L L I L ξA Iξ LAξ y  (3.15) 

 ( { {ˆ ˆ}} 0)E E− =ξ ξ  

 S-modified Mean Square Error 

 ˆ{ } : { } [ ] [ ]m mDMSE ′ ′+= − −S L L I LA Iy LAξ S  (3.16) 

S - nonnegative definite substitute matrix. 

 Frobenius matrix norm 

 ˆ ˆ ˆ|| { } ||: tr {( )( ) }MSE E ′= − −ξ ξ ξ ξ ξ  (3.17) 

 
2 2

'

ˆ|| { } ||

tr { } tr[ ] [ ]

|| || || ( ) ||

m m

m

MSE

D

Σ

=
′ ′ ′= + + − −
′ ′= + −

y ξξ

ξ

L y L I LA ξξ I LA

L I LA

 (3.18)  

 
2 2

ˆ|| { } ||:

: tr { } tr [ ] [ ]

|| || || ( ) ||

m m
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MSE

D

Σ

=
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L y L I LA S I LA

L I LA

 (3.19) 

α-weighted hybrid minimum variance – minimum bias norm  

 

,

2 2

ˆ|| { } ||:

1tr { } tr[ ] [ ]

1|| || || ( ) ||

m m

m

MSE

D

α

α

αΣ

=

′ ′= + − −

′ ′= + −
y

S

S

ξ

L y L I LA S I LA

L I LA

 (3.20) 

special assumption 

 1dim ( ) rk rk rk  exists.m m −′ ′= = = ⇒ ≥ ⇒SA SA A S SR  (3.21) 

The bias vectorβ is conventionally defined by { }̂E −ξ ξ  subject to the homogeneous estimation form ˆ =ξ Ly . 
Accordingly, the bias vector can be represented by (3.10) [ ]m− −= Iβ LA ξ . Since the vectorξ of fixed effects is 
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unknown, there has been made the proposal to instead use the matrix m −I LA  as a matrix-valued measure of 
bias. A measure of the estimation error is the Mean Square Error matrix { ˆ}MSE ξ of type (3.14). { ˆ}MSE ξ can 
be decomposed into two basic parts: 

• the dispersion matrix { }ˆ { }D D ′= Lξ y L  

• the dyadic bias product ′ββ  

Indeed the vector̂ −ξ ξ can be decomposed as well into two parts of type (3.12), (3.13), namely (i) ˆ ˆ{ }E− =ξ ξ Le  
and (ii) ˆ{ }E − =ξ ξ β  which may be called random estimation error (due to observation noise) and bias, respec-
tively. The double decomposition of the vector ˆ −ξ ξ  leads straightforwardly to the double representation of the 
matrix { ˆ}MSE ξ of type (3.15). Such a representation suffers from two effects: Firstly the vectorξ of fixed effects 
is unknown, secondly the matrix ′ξξ  has only rank 1. In consequence, the matrix [ ] [ ]m m ′− −′ξξI LA I LA has 
only rank 1, too. In this situation the proposal has been made to modify { ˆ}MSE ξ with respect to ′ξξ by a higher 
rank matrix S. A homogeneously linear α-weighted hybrid minimum variance-minimum bias estimation (α-
homBLE) is presented in Definition 3.1 which is based upon the weighted sum of two norms of type (3.20), 
namely  

• average variance 
2

tr′ ′=
y yΣ

L L Σ L   

• S-weighted average bias 
2

( ) tr [ ] [ ]m m m′ ′− = − −SI LA I LA S I LA   

                                where we expect ξ  to belong to the column space ( )SR . 

The very important estimator α-homBLE is balancing variance and bias by the weighting factor α which is illus-
trated by Figure 3.1. 

min bias balance
between variance and bias

min variance
 

Figure 3.1 Balance of variance and bias by the weighting factor α 
 

 
Definition 3.2 ( ξ̂ homBLE of ξ ): 

A m×1 vector ̂ξ is called homogeneous BLE of ξ in the special linear Gauss-Markov 
model with fixed effects of Box 3.1, if and only if 

(1st)  ξ̂ is a homogeneously linear form  

 ˆ =ξ Ly , (3.22) 

(2nd)  in comparison to all other linear estimations ξ̂  has the minimum Mean Square 
 Error in the sense of   

       
2 2

ˆ|| { } ||

=tr { } tr[ ] [ ]

|| || || ( ) || min

m m

m

MSE

D

′Σ

=
′ ′ ′+ − − =

′ ′= + − =
y ξξ L

ξ

L y L I LA ξξ I LA

L I LA

  (3.23) 

 
 Definition 3.3 ( ξ̂  S-homBLE of ξ ): 

A m×1 vector ̂ξ  is called homogeneous S-homBLE of ξ in the special linear 
Gauss-Markov model with fixed effects of Box 3.1, if and only if 

 (1st)  ξ̂ is a homogeneously linear form  

 ˆ =ξ Ly , (3.24) 

 (2nd)  in comparison to all other linear estimationsξ̂ has the minimum S-modified  
Mean Square Error in the sense of  

 
2 2

ˆ|| { } ||

tr { } tr [ ] [ ]

|| || || ( ) || min

m m
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 (3.25) 
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        Definition 3.4 ( ξ̂ homlinear α-weighted hybrid min var-min bias solution, or α- homBLE): 

A m×1 vectorξ̂ is called homogeneously linear α-weighted hybrid minimum variance-     
minimum bias estimate (α-homBLE) of ξ in the special linear Gauss-Markov model           
with fixed effects of Box 3.1, if and only if 

(1st)  ξ̂ is a homogeneously linear form  

 ˆ =ξ Ly , (3.26) 

(2nd)  in comparison to all other homogeneously linear estimateŝξ has the minimum   
           variance-minimum bias property in the sense of the α-weighted hybrid norm 

 

2
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ˆ||
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in

m m
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=

′ ′= + − −

′ ′= + − =
y S L
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ξ

y S LA

L I LA

α

α

α

 (3.27) 

in particular with respect to the special assumption  

 1, dim ( ) rk rk  exists.mα + −′ ′∈ = = = ⇒SA SA A S� R  

The estimateŝξ of type homBLE, S -homBLE and α-homBLE can be characterized by the following Lemma.  

Lemma 3.5 (homBLE, S-homBLE  and α- homBLE): 

A m×1 vectorξ̂ is homBLE, S -homBLE and α - homBLE of ξ in the special linear  
Gauss-Markov model with fixed effects of Box 3.1, if and only if the matrix ̂L fulfils  
the normal equations 

(1st)      homBLE: 

 ˆ)( ′ = ′′+ ′y ξξ AA L A ξΣ ξ  (3.28) 

(2nd)     S -homBLE:    

 ˆ( )′ ′+ =yΣ ASA L AS  (3.29) 

(3rd)      α- homBLE:    

                                               

1 1

1 1 1

ˆ( )

or, if  is non-singular, (It is, if rk rk )

ˆ( )

m

m

α

α

− −

− − −

′ ′+ =
′ = =

′ ′+ =

y y

y y

SA Σ A I L SA Σ

S SA A

A Σ A S L A Σ

 (3.30) 

Proof : 

(i)  homBLE: 

The hybrid norm 2ˆ| { ||| }MSE ξ establishes the Lagrangean  

 1 ) ) )( : tr tr ( min(m m′ ′+ − − =′=
LyL L L I LA I LΣ AξξL  

for ξ̂ as homBLE of ξ . The necessary conditions for the minimum of the quadratic Lagrangean 1 )(LL  are 

 1 ˆ ˆ ˆ)( ] 0: 2[ ′ ′+∂ ′ ′ ′ ′ ==
∂

−yL Σ ξξ A ξξL A L A
L
L

 

which agrees with the normal equations (3.28). The theory of the derivative of a scalar-valued function with 
respect to a matrix is reviewed in Appendix A of the book by Grafarend and Schaffrin (1993). 

The second derivatives, namely 

 
2

1 ˆ( )
(vec (

0
) )vec ′

∂ >
∂ ∂L L

L
L

 

at the “point” L̂ , constitute the sufficient conditions.  

In order to compute such a mn×mn matrix of second derivatives we have to vectorize the matrix normal equation 
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 1 ( : 2ˆ ˆ) ( ) 2
∂ ′ ′ ′ ′= +
∂

−yL Σ Aξ AL ξ ξ
L

ξ A
L

, 

 1 ˆ ˆ( : vec[2) ( ) 2 ]
)(vec

∂ ′ ′ ′ ′= +
∂

−yL L Σ Aξξ A ξξ
L

A
L

,  

where vec denotes the vec-operation (vectorization of an array). With the property of the vec-opertation, 
vec ( ) vecn′= ⊗BC C I B  for suitable matrices ΒΒΒΒ and C, ,n m m q× ×∀ ∈ ∀ ∈B CR R  and the Kronecker-Zehfuss 
product ⊗B C of two arbitrary matrices as well as ( )+ ⊗ = ⊗ + ⊗B C D B D C D of three arbitrary matrices sub-
ject to size B = size C we have 

 1 ˆ ˆ) 2[( ) ]vec 2ve( ).
(ve )c

c(m

∂ ′ ′ ⊗ − ′ ′
∂

= +yΣ Aξξ A ξξI L
L

AL
L

 

With the theory of matrix derivatives: Derivatives of a matrix-valued function of a matrix, namely 
(vec ) (vec )f ′∂ ∂X X , we are now prepared to compute the second derivatives as 

 
2

1 ˆ( ) 2[(
(vec (ve

) ]
) )c m

∂ ′ ′= + ⊗
∂ ∂ ′ yL Σ ξξ AA I

L L
L

. 

Since ′ ′+yΣ ξξA A  is a positive-definite matrix the second derivatives constitute the sufficient conditions  

 
2

1 ) ] 0
) )

ˆ( ) 2[(
(vec (vec m

∂ ′ ′=
∂ ∂

+ ⊗ >
′ yL A IΣ ξξ A

L L
L

. 

The vec operation, the Kronecker-Zehfuss product and the derivatives of a matrix-valued function with respect to 
a matrix are also reviewed in Appendix A of the book by Grafarend and Schaffrin (1993). 

(ii)  S-homBLE: 

The hybrid norm 2{ ˆ}|| ||MSEs ξ establishes the Lagrangean  

2( : t) ) ) mr t i( nr ( m m′ ′+ − == −
LyL L L I LA S I LΣ AL  

for ξ̂ as S- homBLE of ξ . Following the first part of the proof we are led to the  necessary conditions for the 
minimum of the quadratic Lagrangean 2 )(LL   

 2 ( ˆ ˆ ]2 ˆ) 0: [ ′ ′ ′ ′+∂ =
∂

− =yL L ASA L AS
L

Σ
L

 

as well as to the sufficient conditions  

 
2

2 ˆ( ) 2[(
(vec (vec

) ] 0
) ) m

∂ = ′+
∂

⊗ >
′∂ y ASAL I

L L
Σ

L
. 

The normal equations of S-homBLE 2 ( ˆ ) 0∂ ∂ =L LL  agree with (3.29) 

(iii)   α-homBLE: 

The hybrid norm 2
,

ˆ| }| ||{MSE S ξα  establishes the Lagrangean  

 3
1) ) ) m( : n( itr tr ( m m′ ′+= =y L

L L L I - LA S I - LAΣ αL  

for ξ̂ as α-homBLE of ξ . Following the first part of the proof we are led to the  necessary conditions for the 
minimum of the quadratic Lagrangean 3 )(LL   

 3 ˆ ˆ1 1( ˆ) ] 02[ ′∂ ′= − ′ =
∂

′+ yL L LASA Σ AS
L α α
L

 

as well as to the sufficient conditions   

 
2

3 ] 0
) )

1ˆ( ) 2[( )
(vec (vec m

∂
∂

>
∂ ′

′= + ⊗yL IA A
L

Σ S
L α

L
. 

The normal equations of α-homBLE 3 ( ˆ ) 0∂ ∂ =L LL  agree with (3.30) after the following transformation: 
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1 1 1 1 1 1 1

1 1

ˆ ˆ( ) ( ) ( ) ( )

ˆ( ) .

α α α α

α

− − − − − − −

− −

′ ′ ′ ′ ′ ′ ′ ′+ = ⇔ = + = + = +

′ ′⇔ + =
y y y y y y

y y

L Σ ASA SA L SA Σ ASA SAΣ I ASA Σ I ASA Σ SAΣ

I ASA Σ L SA Σ
 

♣ 

For an explicit representation of ̂ξ as α- homBLE of ξ in the special Gauss–Markov model with fixed effects of 
Box 3.1, we solve the normal equations (3.28), (3.29) and (3.30) for  

 (ˆ arg{ ) min}.==
L

L LL  

Beside the explicit representation of ξ̂ of type homBLE, S -homBLE and α- homBLE we present the related 
dispersion matrix ˆ{ }D ξ , the Mean Square Error matrix ˆ{ },MSE ξ the modified Mean Square Error matrices 

{ }̂MSES ξ and , { }̂MSEα S ξ in 

Theorem 3.6 ( ξ̂ homBLE): 
Let ˆ =ξ Ly be homBLE of ξ in the special linear Gauss-Markov model with fixed 
effects of Box 3.1. Then equivalent representations of the solutions of the normal  
equations (3.28) are 

 1 1 1 1ˆ [ ] [ ]− − − −′ ′ ′ ′ ′ ′ ′ ′= + = +y y yξ ξξ A Σ Aξξ A y ξ ξ A Σ Aξ I ξ A Σ y  (3.31) 

complemented by the dispersion matrix  

 
1 1

1 1 1 1 1

ˆ{ } [ ] [ ]

[ ] [ ] ,

D − −

− − − − −

′ ′ ′ ′ ′ ′ ′= + + =

′ ′ ′ ′ ′ ′ ′= + +
y y y

y y y

ξ ξξ A Σ Aξξ A Σ Σ Aξξ A Aξξ

ξ ξ A Σ Aξ I ξ A Σ Aξ ξ A Σ Aξ I ξ
 (3.32) 

by the bias vector (3.10) 

 
1

1 1 1

ˆ: { } [ ( ) ]

[ [ ] ]

m

m

E −

− − −

′ ′ ′ ′= − = − − + =

′ ′ ′ ′= − − +
y

y y

β ξ ξ I ξξ A Aξξ A Σ A ξ

I ξ ξ A Σ Aξ I ξ A Σ A ξ
 (3.33) 

and by the Mean Square Error matrix { ˆ}MSE ξ : 

 
1 1

ˆ ˆ ˆ ˆ{ } : {( )( ) } { }

ˆ{ } [ ( ) ] [ ( ) ].m m

MSE E D

D − −

′ ′= − − = + =

′ ′ ′ ′ ′ ′ ′ ′ ′= + − + − +y y

ξ ξ ξ ξ ξ ξ ββ

ξ I ξξ A Aξξ A Σ A ξξ I A A ξξ A Σ Aξξ
 (3.34) 

At this point we have to comment what Theorem 3.6 tells us. homBLE has generated the estimationξ̂ of type 
(3.31), the dispersion matrix{ }̂D ξ of type (3.32), the bias vector of type (3.33) and the Mean Square Error ma-
trix { ˆ}MSE ξ of type (3.34) which all depend on the vectorξ and the matrix ′ξξ , respectively. We already men-
tioned thatξ and the matrix ′ξξ are not accessible from measurements. The situation is similar to the one in the 
theory of hypothesis testing. As shown later in this section we can produce only an estimator ξ̂ and consequently 
can setup a hypothesis 0H  of the "fixed effects" ξ . Indeed, a similar argument applies to the second central mo-
ment { }D = yy Σ of the "random effect" y, the observation vector. Such a dispersion matrix has to be known in 
order to be able to computeξ̂ , { }̂D ξ , and { ˆ}MSE ξ . Again we have to apply the argument that we are only able to 
construct an estimate ˆ

yΣ  and to set-up a hypothesis about { }D = yy Σ . 

Theorem 3.7 ( ξ̂  S-homBLE): 

Let ˆ =ξ Ly be S-homBLE of ξ in the special linear Gauss- Markov model with  
fixed effects of Box 3.1. Then equivalent representations of the solutions of the 
normal equations (3.29) are 

 1ˆ ( )−′ ′= +ySA Σ ASAξ y  (3.35) 

 1 1 1ˆ ( )m
− − −′ ′= + Σy yI SA A SAξ Σ y  (3.36) 

 1 1 1 1( )ˆ − − − −′ ′= +y yA Σ A S A Σξ y  (3.37) 

complemented by the dispersion matrices  

 1 1{ } )ˆ )( (D − −′ ′ ′= + +y y ySA SA Σ Σ SA Σξ A A A S (3.38) 

 1 1 1 1 1 1 1{ } ) )ˆ ( (D − − − − − − −′= + +′ ′Σy y yΣ A S A A Σ SA A Aξ  (3.39) 
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by the bias vector (3.10) 

 

1

1 1 1 1

1 1 1 1

1 1

ˆ: { }

[ ( ) ]

[ ( ) ]

( )

( )

m

m

m

E
−

− − − −

− − − −

− −

= − =
′ ′= − − + =

′ ′= − − + Σ =

′= − + =

′= − +

y

y y

y

y

β ξ ξ

I SA ASA Σ A ξ

I A Σ A S A A ξ

A Σ A S S ξ

SAΣ A I ξ

 (3.40) 

and by the Mean Square Error matrix ˆ{ }MSE ξ : 

 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ{ }: {( )( ) } { }

( ) ( ) [ ( ) ] [ ( ) ]

( ) ( ) [( ) ] [ ( ) ].

mm

MSE E D
− − − −

− − − − − − − − − − − − − − −

′ ′= − − = + =
′ ′ ′ ′ ′ ′ ′ ′= + + + − + − + =

′ ′ ′ ′ ′ ′= + + + + +
y y y y y

y y y y y

ξ ξ ξ ξ ξ ξ ββ

SA ASA Σ Σ ASA Σ AS I SA ASA Σ A ξξ I A ASA Σ AS

A Σ A S A Σ A A Σ A S A Σ A S S ξξ S AΣ A S

 (3.41) 

But the S- modified Mean Square Error matrix { }̂MSEs ξ : 

 1 1 1ˆ{ } ( )MSE − − −′= +s yξ A Σ A S . (3.42) 

The interpretation of S-homBLE is even more complex. In extension of the comments to homBLE we have to 
live with another matrix-valued degree of freedom, ξ̂ of type (3.35), (3.36), (3.37) and{ }̂D ξ of type (3.38), 
(3.39) do no longer depend on the inaccessible matrix ′ξξ , rk( ) 1′ =ξξ , but on the "weight of the bias matrix" S, 
rk S = m.  Indeed we can associate any element of the bias matrix with a particular weight which can be "de-
signed" by the analyst. Again the bias vector β of type (3.40) as well as the Mean Square Error of type (3.41) 
depend on the vectorξ which is inaccessible. Beside the dependence on the "weight of the bias matrix S", the 
quantities ξ̂ , { }̂ ,D ξ β  and ˆ{ }MSE ξ are vector-valued or matrix-valued functions of the dispersion matrix 

{ }D = yy Σ  which is inaccessible. By hypothesis testing we may decide upon the construction of { }D = yy Σ  from 
an estimate � yΣ . 

                   Theorem 3.8 ( ξ̂ α-homBLE, also known as: ridge estimator or Tykhonov-Phillips regulator) 

Let ˆ =ξ Ly be α- homBLE of ξ in the special linear Gauss-Markov model with fixed 
effects of Box 3.1. Then equivalent representations of the solutions of the normal  
equations (3.30) are 

    
1 1 1

1 1 1 1

ˆ ( )

( )
mα

α

− − −

− − − −

′ ′= +
′ ′= +

y y

y y

ξ SAΣ A I SA Σ y

A Σ A S A Σ y
 (3.43) 

complemented by the dispersion matrix 

 1 1 1 1 1

1 1 1 1 1 1 1

{ }
( ) ( )

( ) ( )

ˆ

m m

D
− − − − −

− − − − − − −

=
′ ′ ′ ′= + +

′ ′ ′= + +
y y y

y y y

SAΣ A I SA Σ AS SAΣ A I

A Σ A S A Σ A A Σ

ξ

A S

α α
α α

 (3.44)  

by the bias vector (3.10) 

 
1 1 1 1

1 1 1 1

1 1

ˆ: { }

[ ( ) ]

( )

( )m

m

E

α

α α

α α

− − − −

− − − −

− −

= − =
′ ′= − − +

′= − +

′= − +

y y

y

y

β ξ ξ

I A Σ A S A Σ A ξ

A Σ A S S ξ

SAΣ A I ξ

 (3.45) 

and by the Mean Square Error matrix { ˆ}MSE ξ  

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ{ }: {( )( ) } { }

( ) ( ) [( ) ] [ ( ) ]

( ) [ ( ) ( )]( ) .

MSE E D

α α α α α α

α α α α

− − − − − − − − − − − − − − −

− − − − − − − − −

′ ′= − − = + =
′ ′ ′ ′ ′ ′= + + + + + =

′ ′ ′ ′= + + +
y y y y y

y y y

ξ ξ ξ ξ ξ ξ ββ

A Σ A S A Σ A A Σ A S A Σ A S S ξξ S AΣ A S

A Σ A S A Σ A S ξξ S AΣ A S

 (3.46) 

But the hybrid α-weighted variance-bias norm ,
ˆ{ }MSE S ξα  

 1 1 1
,

ˆ{ } ( ) .MSEα α− − −′= +S yξ A Σ A S  (3.47) 
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The interpretation of the very important estimator α-homBLE ξ̂ of ξ is as follows: ̂ξ of type (3.43), also called 
ridge estimator or Tykhonov-Phillips regulator, contains the Cayley inverse of the normal equation matrix which 
is additively composed of 1−′ yA Σ A  and 1α −S . The weight factorα balances the first observational weight and 
the second bias weight within the inverse. While the experiment informs us of the variance-covariance matrix 

yΣ , say � yΣ , the weight of the bias weight matrix and the weight factor α are at the disposal of the analyst. For 
instance, by the choice S= 1Diag( ,..., )ms s  we may emphasize an increase or decrease of certain bias matrix ele-
ments. The choice of an equally weighted bias matrix is m=S I . In contrast, the weight factor α can be alterna-
tively determined by the A-optimal design of type 

• tr { } m , orˆ inD
α

=ξ  

• mitr n, or=′ββ
α

 

• ˆtr { } minMSE
α

=ξ . 

In the first case we optimize the trace of the variance-covariance matrix { }̂D ξ  of type (3.44) . Alternatively by 
means of tr min=′ββ

α
 we optimize the quadratic bias where the bias vector β  of type (3.45) is chosen, regard-

less of the dependence on ξ . Finally for the third case – the most meaningful one – we minimize the trace of the 
Mean Square Error matrix ˆ{ }MSE ξ  of type (3.46), despite of the dependence on ′ξξ . Here we concentrate on 
the third case and the main result is summarized in  

Theorem 3.9 (A-optimal design of α): 
Let the Mean Square Error matrix ˆ{ }MSE ξ  of α- homBLE ξ̂  with respect to the  
linear Gauss Markov model be given by 

 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

ˆtr { }

tr( ) ( )

tr[( ) ] [ ( ) ],

MSE

α α

α α α α

− − − − − − −

− − − − − − − −

=
′ ′ ′= + + +

′ ′ ′+ + +
y y y

y y

ξ

A Σ A S A Σ A A Σ A S

A Σ A S S ξξ S AΣ A S

 

then α̂  follows by A-optimal design in the sense of  

ˆtr { } minMSE =ξ  

if and only if 

 
1 1 1 2 1 1 1 1

1 1 1 2 1 1 1 1 1

) )
ˆ

)

tr (

( )

(

(

− − − − − − − −

− − − − − − − − −

′ ′ ′
′ ′

+ +
′ ′

=
+ +

y y y

y y y

A A A

ξ A A

Σ A Σ A S S Σ A S

S Σ A S Σ A Σ A S ξSA

α α
α

α α
 (3.48)  

The proof of Theorem 3.9 is given in the Appendix 3-A. The subject of optimal design within Mathematical Sta-
tistics has been studied since the nineteen sixties. For more detail let us refer to R.B. Bapat (1999), D.R. Cox and 
N. Reid (2000), E. P. Liski, et al. (2002), A. Pazman (1986) and F. Pukelsheim (1993).  

For the independent, identically distributed (i.i.d) observations Theorem 3.9 will be simplified as: 

                            Corollary 3.10 ( A-optimal design of α for the special Gauss-Markov model  
                                                      with i.i.d. observations): 

For the special Gauss-Markov model  

      2 2{ }, { },n mE Dσ σ= = == yΣ y IAξ y I S  (3.49) 

of independent, identically distributed (i.i.d.) observations with variance 2σ  and an  
analogous substitute weight matrix S scaled by the variance 2σ , an A-optimal choice  
of the weighting factor α  is 

       
3 2

2 1

ˆtr ( )
ˆ

ˆ ˆ( ) ( )
m

m m

α σα
α α

−

− −

′ ′ +
=

′ ′ ′ ′+ +
A A A A I

ξ A A I A A A A I ξ
  (3.50) 

For the case of i.i.d. observations of a random scalar parameter case (direct observations) the α-homBLE ofξ  
and BIQUUE of 2σ  are summarized in Box 3.3 and Corollary 3.11.  
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Box 3.3: 

Special Gauss-Markov model: direct observations 

 2 2 2{ }, { }, [1,...,1] , S 1 [ ]nE Dξ σ σ σ′= = = = = =yτ y I Σ y τ     

“α-homBLE of ξ  ” 

 
1ˆ 1

( )i
i

n n
y

n n n n
′= = =

+ + +∑yτ
α α

ξ
α

ξ   (3.51) 

 “dispersion matrix” 

 2
2

ˆ{ }
( )

n
D

n
=

+
σ

α
ξ  (3.52) 

 “bias” 

 
n

αβ ξ
α

=−
+

 (3.53) 

 
2

2 2
2 2

1 2

ˆ ˆ{ } { }

( ) ( )
( ) ( ).

MSE D

n

n n

ξ ξ
ασ ξ

α α
γ α γ α

′= + =

= + =
+ +

= +

ββ

 (3.54)  

 “BIQUUE of 2σ ” 

 2 1 1
'( ) , .

1 n n nn n
σ ′= − =

−
y I J y J ττ  (3.55)  

In the case of the special Gauss-Markov model of direct observations the first order design matrix A is of full 
rank 1. Accordingly, an estimation ξ of type BLUUE (Best Linear Uniformly Unbiased Estimation) exists and 
may be used to replace ξ . Although we have so far treated 2S [ ]= σ  as known, we note that, in this particular  
case, we may treat the variance factor 2σ  as a common unknown and resort to a classical estimation 2σ  of type 
BIQUUE (Best Invariant Quadratic Uniformly Unbiased Estimation), which is a useful substitute of 2σ  in com-
puting the weight α.  

Corollary 3.11 ( A-optimal design of α for the special Gauss-Markov model  
                                        with direct i.i.d. observations): 

Let us replace (i) ξ  by (BLUUE)ξ and (ii) 2σ  by  2(BIQUUE)σ  within the  
A-optimal choice of the weighting factor α̂ , Eq. (3.50), with respect to the special  
Gauss- Markov model Eq. (3.49). Then an approximation α�  of the A-optimal choice  
α̂ , namely  

(3.56)        
2 2

2 2
ˆlim

n→∞
= = =� �

σ σα α α
ξ ξ

         (3.57) 

is obtained with 

  2 2

2 2 2
2 2 2

2 2 2, ,
ˆ ˆtr { } | { } |

( ) ( ) ( )

n n
MSE MSE

n n nσ ξ σ ξ

α α ξξ ξ σ ξ σ
α α α

+= = + =
+ + +

 . (3.58) 

Now we would like to compare our solution with the famous ridge regression developed by Hoerl and Kennard  
(1970a, 1970b). First, the A-optimal design of α derived by (3.57) is just the same as the optimum ridge parame-
ter k (Hoerl and Kennard 1970a, b). Second, Hoerl, Kennard and Baldwin (1975) have suggested that if 

m
′ =A A I , then a minimum meansquare error (MSE) is obtained if ridge parameter 2 /k m ′= σ ξ ξ  for multiple 

linear regression model = +y Aξ e where , rk ,  { }n m m E×∈ = =A A e 0�  and 2{ } nD = σy I  with 2σ  is chosen un-
known. This is just the special case of our general solution (3.50) by A-optimal design under m′ =A A I , yielding 

 

3 2 3 2

2 1 2 1

3 2 2

3

ˆ ˆtr ( ) tr ( )
ˆ

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ(1 )
.

ˆ(1 )

m m m m

m m m m m m m

m m

α σ α σα
α α α α

α σ σ
α

− −

− − − −

−

−

′ ′ + +
= = =

′ ′ ′ ′ ′+ + + +

+= =
′′ +

A A A A I I I I

ξ A A I A A A A I ξ ξ I I I I I ξ

ξ ξξ ξ
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3.2  The special multivariate Gauss-Markov model and the multivariate αααα-BLE 

For the case of a 2-D symmetric rank-two random strain rate tensor we have to estimate as multivariate parame-
ters, the three vectorized elements from the direct observations of them, namely via BLUUE of t11, t12, t22 and 
BIQUUE of the related variances, which are estimated with the multivariate Gauss-Markov model. We shall first 
generalize the special Gauss-Markov model to the multivariate Gauss-Markov model and derive the BLEα −  
for the multivariate estimation, which we call “multivariate ridge type estimation”.  

Let us introduce the multivariate Gauss-Markov model = +Y AΞ E in Box 3.4, which is given for the first order 
moments in the form of a consistent system of linear equations relating the first non-stochastic (“fixed”) , real-
valued matrix Ξ of unknowns to the expectation { }E Y of the stochastic, real-valued matrix Y of observa-
tions, { }E=AΞ Y , since ( { }) ( )E ⊂Y AR R is a subspace of the column space( )AR of the real-valued, non-
stochastic ("fixed") "first order design matrix" n m×∈A � , here, the symbols denote: 

11 12 1

21 22 2

1 2

, ,

m

n mm

n n nm

a a a
a a a

a a a

×

 
 

= ∈ 
 
  

A A R

�

�

� � � �

�

   

11 12 1

21 22 2
1 2

1 2

,

p

p
p

m m mp

 
 
   = =   
 
 

Ξ ξ ξ ξ

�

�
�

� � � �

�

ξ ξ ξ
ξ ξ ξ

ξ ξ ξ

 

 

11 12 1 1

21 22 2 2
1 2

1 2

,

p

n pp
p

nn n np

y y y

y y y

y y y

×

  ′ 
   ′
   = = = ∈     
  ′   

y
y

Y Y Y Y Y

y

R

�

�
�

�� � � �

�

. 

In addition, the second order central moments {vec }D Y , the regular variance-covariance matrix vec ,yΣ  also 
called dispersion matrix should be defined in the multivariate case as follows: Let Y i be the n×1 random vectors 
of observations of p characteristics and let Cov{ , }= ,i j ij nσY Y I where the covariance matrix with ( ),ijσ=Σ  

p p×∈Σ R  is unknown and positive-definite. Since 2{ } Cov{ , }=i i i i nD σ=Y Y Y I , the components of the vectors Y i 
of observations are uncorrelated and have equal variance (i.i.d.). We have the vectorized form of Y 

 

1

12vec , vec np

p

×

 
 

= ∈ 
 
  

Y
Y

Y Y

Y

R
�

,  

whose varoiance-covariance matrix follows as 

 

2
1 12 1

2
21 2 2

2
1 2

{vec } , {vec }

n n p n

n n p n pn pn
n

p n p n p n

D D ×

 
 
 = = ⊗ ∈
 
 
  

I I I

I I I
Y Σ I Y

I I I

R

�

�

� � � �

�

σ σ σ
σ σ σ

σ σ σ

. 

To better understand the meaning of the variance-covariance matrix of the observation matrix we study the trans-
posed form of Y 
 [ ]1 2, , , n′ =Y y y y� ,   

where the columns y1, y2, … , yn  are independent p×1 random vectors, each with the same variance-covariance 
matrix =yΣ Σ . We then have the pn×1 vectorized form of observations  

 

1

2 1vec , vec pn

n

×

 
 
 ′ ′= ∈
 
 
  

y

y
Y Y

y

R
�

    

whose variance-covariance matrix follows as 

 

0 0

0 0
{vec } , {vec }

0 0 0

pn pn
nD D ×

 
 
 ′ ′= = ⊗ ∈
 
 
  

y

y

y

Σ

Σ
Y I Σ Y

Σ

R

�

�

� � � �
 (3.59) 
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 Box 3.4: 
Multivariate Gauss-Markov model 

 = +Y AΞ E  

1st moments 

 { }, , { } ( ) r  , kn m n pE E m× × == ∈ ∈ ∈AΞ Y A Y Y A AR� �  (3.60) 

2nd moments 

 
{vec } , positive-definite, rk 

, { }, { } , .

pn np
nD p

E E unknown unknown

×= ⊗ ∈ =
− =

Y Σ I Σ Σ

Ξ Y Y Y E Σ

�
 (3.61) 

With the notation introduced above the multivariate Gauss-Markov model (3.60) can be presented as 

 1 2 1 2[ , , , ] { , , , }, {vec }p p nE D= ⊗=A ξ ξ ξ Y Y IY ΣY� �  

which can be further described as  

 2{ }, { } , Cov( , ) , for , {1,..., }.i i i i n i j ij nE D i j pσ σ= = = ∈Aξ Y Y I Y Y I  

If the observations are normally distributed, we find with Theorem 3.12  

 vec ~ (vec( ), )n⊗ΣAΞ IY N  

and the vectors Y i of observations are distributed as  

 2 ), fo~ ( r ) {1,... }, ,i ni i i pσ ∈Y Aξ IN , 

for which the theorem 3.1 is valid.  To study the estimation of Ξ  and Σ , we will represent model (3.60) in the 
form of a vector. Since vec( ) e)( v cp= ⊗I AAΞ Ξ , (3.60) will become  

 ( vec {vec }, with {vec })p nE D=⊗ = ⊗Ξ Y YI A Σ I . (3.62)  

Applying the result (3.3) of the univariate Gauss-Markov model and the Kronecker-Zehfuß product yields the 
BLUUE of vecΞ  as 

 

1 1 1

1 1 1

1 1 1

1

1

ˆvec [( ) ( ) ( )] ( ) ( ) vec

( ) ( ) vec

( ) ( ) vec
[ ( ) ]vec

vec[( ) ],

p n p p n

p p n p n

p

− − −

− − −

− − −

−

−

′ ′= ⊗ ⊗ ⊗ ⊗ ⊗ =
′ ′= ⊗ ⊗

′ ′= ⊗ ⊗
′ ′= ⊗

′ ′=

Ξ I A Σ I I A I A Σ I Y

I Σ I A I A I Σ AI Y

Σ A A Σ A Y
I A A A Y

A A A Y

 (3.63) 

and with (3.5) the covariance matrix of ˆ(vec )D Ξ is 

 1 1 1( ) ]( ) ( ) ] ( )ˆ(vec ) [ [ .p n pD − − −′ ′ ′ ′ ′ ′⊗ ⊗ ⊗ = ⊗= I A A A Σ I I A A A Σ A AΞ  (3.64) 

Thus the BLUUE of Ξ  is 
 1ˆ ( ) ,−′ ′=Ξ A A A Y  (3.65) 

Hence  

 1 2 1 2
1ˆ ˆ ˆˆ [ , , , ] ,) [ ,( ],p p

−′= ′=Ξ ξ ξ ξ Y YA A A Y� � . (3.66)  

These results are collected in 

Theorem 3.12 ( Ξ̂  BLUUE of Ξ ): 

The BLUUE Ξ̂ of Ξ  in the special multivariate linear Gauss-Markov model  
(3.60) and (3.61) is 

 1ˆvec [ v) c( ] ep
−′ ′⊗= I A A AΞ Y  (3.63) 

or 

 1( )ˆ ,−′ ′= A AΞ A Y  (3.65) 

with the related dispersion matrix  

 1ˆ(vec ) ( )D −= ′⊗Σ A AΞ . (3.64)   
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Note that, when we use the expression (3.59) of variance-covariance matrix,  formula (3.62) will be replaced by 

 ( vec {vec }, with {vec })p nE D⊗ ′ = ⊗′ ′ =Ξ Y YA I I Σ , (3.67)  

since the Kronecker-Zehfuß product vec ( ) vecp′ ′ ′= ⊗Ξ A A I Ξ  for the transposed form of (3.60) is  

 { }, , ( { }) ( ), rk .n m n pE E m× ×′ ′ ′= ∈ ∈ ∈ =Ξ A Y A Y Y A A� � R R  (3.68) 

From (3.67) we can get the BLUUE of vec ′Ξ  is 

 
1

1

ˆvec [ v( ) ] e

( ) ]

c

vec[ ,

p
−

−

′ ′

=

′ ′=

′′

⊗Ξ Y

A A AY

A A A I
 (3.69) 

with the related dispersion matrix 

 
1 1

1

( ) ](ˆ(vec ) [ [) ( ) ]

( ) .

p n pD − −

−

′ ′ ′ ′ ′⊗ ⊗′ = ⊗ =

′= ⊗

A A A I I Σ A A A I

A A Σ

Ξ
   (3.70) 

Since the variance-covariance matrix Σ of the individual observation vectors yi is unknown, it is to be estimated 
empirically. We have therefore derived the sample variance-covariance matrix Σ̂ of type BIQUUE (Best Invari-
ant Quadratic Uniformly Unbiased Estimation) which is collected in Theorem 3.13 (without proof). 

 
Theorem 3.13 ( The sample variance-covariance matrix Σ̂ of type BIQUUE): 

The sample variance-covariance matrix Σ̂  of type BIQUUE for the special  
multivariate linear Gauss-Markov model (3.60) and (3.61) is 

 11ˆ ( ( ) )
rk nn

−′ ′ ′= −
−

Σ Y I A A A A Y
A

. (3.71) 

For the proof, we refer to K. R. Koch (1997, 1999) 

Now we shall derive the BLEα − for the multivariate estimation of Ξ , which we call “multivariate ridge type 
estimation”. Following the derivation of the BLEα − of Theorem 3.8 for the univariate model and comparing the 
generalization results (3.66) for the multivariate model with (3.3) of the univariate model, we have the 

BLEα − of the multivariate parameters readily in 
  

  Theorem 3.14 (multivariate α-homBLE, or multivariate ridge estimator) 

The BLEα − of the multivariate parameters in the special multivariate linear 
Gauss-Markov model (3.60) and (3.61) is 

 1 1( )ˆvec [ vec]p α − −′ ′⊗ += I A A S AΞ Y  (3.72) 

or 

 1 1
1 21 2

ˆ ˆ ˆˆ [ , ,... ( ) [ , ,., .] ., ].p pα − −′ ′= +=Ξ ξ ξ ξ A A S A Y Y Y  (3.73) 

complemented by the dispersion matrix  

 
1 1 1 1

1 1 1 1

ˆ(vec ) [ [( ) ]( ) ( ) ]

( ) ( ) ,

p n pD − − − −

− − − −

′ ′ ′ ′ ′⊗ + ⊗ ⊗ + =

′ ′ ′= ⊗ +

=

+

I A A S A Σ I I A A S A

Σ A A S A A A A S

Ξ α α

α α
 (3.74)  

by the bias vector  

 

1 1

1 1

1 1

1 1 1

1

ˆvec : {vec } vec

[ ( ) ]vec vec

[ ( ) ]( ) vec vec

( ( ) ) vec

[ ( ) ]vec

[ ( ) ]vec

p

p p

mp p

p

p m

E

α

α

α

α α

α

− −

− −

− −

− − −

−

= − =
′ ′= ⊗ + −

′ ′= ⊗ + ⊗ −

′ ′= − − ⊗ +

′= − ⊗ +

′= − ⊗ +

Β Ξ Ξ

I A A S A A Ξ Ξ

I A A S A I A Ξ Ξ

I I A A S A A Ξ

I A A S S Ξ

I SA A I Ξ
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or its bias matrix: 

 1 1{ } [ ( )ˆ: ]mE − −′ ′= − = − − +I A A SΒ Ξ ΞA AΞ α  (3.75) 

and the matrix of the Mean Square Estimation Errors : 

 
ˆ ˆ ˆ{vec } : {(vec vec )(vec vec ) }

ˆ{vec } vec (vec )

MSE E

D

′= − −

′= +

Ξ Ξ Ξ Ξ Ξ

Ξ Β Β
 (3.76) 

 
1 1 1 1

1 1 1 1

ˆ{vec } ( ) ( )

[ ( ) ]vec (vec ) [ ( ) )]mp p mp p

MSE α α
α α

− − − −

− − − −

′ ′ ′= ⊗ + + +
′ ′ ′ ′ ′ ′+ − ⊗ + − ⊗ +

Ξ Σ A A S A A A A S

I I A A S A A Ξ Ξ I I A A S A A
 (3.77) 

With the results of the multivariate Gauss-Markov model and the multivariate BLEα − derived above, we shall 
now apply them in our special case: Direct observations of a two-dimensional, symmetric rank-two random 
tensor,  
 3 1

11 12 22: { } vech [ ] ,E t t t ×′= = = ∈µ y t y R .                             

This is a random vector which is normally distributed according to Definition 1.7. We denote it as 3~ ( , )yy µ ΣN . 

Suppose our sampled n independent observation vectors y1, y2, …, yn  are all distributed according to 3( , )yµ ΣN . 
We have the vectorized form matrix as 

 

1

2 3,   n

n

×

′ 
 ′
 = ∈
 
 ′  

y

y
Y Y

y

R
�

,   

 which is just the case in (3.60) with 3, 1 and p m= =  

 

2
1 12 13

2
1 2 3 21 2 23 1

2
31 32 3

[1, 1, ,1] , , [ , , ], , : .n

σ σ σ
ξ ξ ξ σ σ σ

σ σ σ

 
 ′ ′= = = = = = 
 
 

yA 1 1 1 Ξ Σ S I�  

From (3.65) we have the BLUUE of Ξ : 

 1 2 3
1ˆ ˆ ˆ ˆˆ [ , , ] (

1
)

n
−′= = = ′ ′ ′=1 1 1 Y 1Ξ Yξ ξ ξ ξ  (3.78) 

and in transposed form  

 

1

2
1

3

ˆ

ˆ ˆˆ

ˆ

1 1 n

i
in n =

 

′
 

′ = = = 
 
  

= ∑Y yΞ ξ 1

ξ
ξ
ξ

  

which represents the same estimate as that of (1.37) in Section 1.3. 

The related dispersion matrix 

 

2
1 12 13

2
21 2 23

2
31 32 3

1ˆ(vec
1 1 1

( ))D
n n n

−

 
 = ′⊗ = 




⊗ =



=


y y yΣ A A ΣΞ Σ

σ σ σ
σ σ σ
σ σ σ

. (3.79) 

With (3.72) and (3.73) we obtain the BLEα −  

 

1

1 1 1 1
2 3 1 3

3

ˆ

ˆ ˆˆvec [ ( ) ]vec [ ( ) ]vec vec[( ) ]

ˆ

n n

ξ
ξ α α α
ξ

− − − −

 
 

′ ′ ′ ′= = = ⊗ + = ⊗ + = + 
 
  

Ξ ξ I 1 1 I 1 Y I 1 Y 1 Y  (3.80)  

and 

 1 1 1
1 1 2 32 3 21 1 3( ) [ , , ] ( ) [ˆ ˆ ˆ ˆˆ [ , , ] , , ]n− − −′ ′ +′ = == ′+ =1 1 I 1 Y Y Y 1 YΞ ξ ξ Yξ ξ Yα α  (3.81) 
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subject to the dispersion matrix with (3.74)  

 

1 1
2

2
1 12 13

2
21 2 232 2

2
31 32 3

ˆ(vec ) ( ) ( )
( )

.
( ) ( )

n
D n n n

n

n n

n n

α α
α

σ σ σ
σ σ σ

α α
σ σ σ

− −= ⊗ + + = ⊗ =
+

 
 = =  + +
 
 

y y

y

Ξ Σ Σ

Σ

 (3.82)   

In comparison with the results of the univariate case (3.51) and (3.52) we can see that (3.81) is just the general-
ized from (3.51) and the dispersion matrix (3.82) is of importance since the variance and covariance components 
of the three elements of the random tensor are rescaled together. With (3.71) we further have the sample vari-
ance-covariance matrix of type BIQUUE 

 

1 1

1 1

1 1

1 ( 1) ( 1)

( 1) 1 ( 1)1 1 1ˆ ( )
1

( 1) ( 1) 1

n n

n n

n n n

n n

− −

− −

− −

 − −
 − − ′ ′ ′= − =
 −
 

− −  

yΣ Y I 11 Y Y Y

�

�

� � � �

�

. (3.83) 

Now we shall be able to estimate the Mean Square Estimation Error of the multivariate BLEα − of random 
tensor with (3.77) 

 

1 1
3 3 3 3

3 32

2

2 2

2
1 12 13

2
21 2 232

2
31 32 3

ˆ ˆ{vec } {vec } vec (vec )

ˆ{vec } [ ( ) ]vec (vec ) [ ( ) )]

vec (vec )
( ) ( )( )

vec (vec )
( ) ( )

( )

MSE D

D n n n n

n

n nn

n

n n

n

n

α α
α α

α αα
α

α α
σ σ σ
σ σ σ

α
σ σ σ

− −

′= + =

′ ′= + − ⊗ + − ⊗ +

′= +
+ ++

′= +
+ +

 
 =  +  
 

y

y

Ξ Ξ Β Β

Ξ I I Ξ Ξ I I

Σ I Ξ Ξ I

Σ Ξ Ξ

2
1 1 2 1 32

2
2 1 2 2 32

2
3 1 3 2 3

.
( )n

ξ ξ ξ ξ ξ
α ξ ξ ξ ξ ξ

α
ξ ξ ξ ξ ξ

 
 +  +  
 

 (3.84) 

The trace of it is  

 

2

2 2

2
2 2 2 2 2 2
1 2 3 1 2 3 1 22 2

ˆ ˆtr { } tr {vec } tr tr
( ) ( )

( ) ( ) ( ) ( ).
( ) ( )

n
MSE MSE

n n

n

n n

α
α α

ασ σ σ ξ ξ ξ γ α γ α
α α

′= = + =
+ +

= + + + + + = +
+ +

yξ Ξ Σ ξξ

 (3.85)  

With the same condition that led to (3.57), we achieve the optimal weight factor α̂  for the multivariate 
BLEα − by minimizing the ˆ{vec }MSE Ξ of type (3.77), yielding  

 
2 2 2
1 2 3
2 2 2

1 2 3

tr
ˆ

tr

σ σ σα
ξ ξ ξ

+ +
= =

′ + +
yΣ

ξξ
 . (3.86)  

Since and yξ Σ  are not themselves available,  we could achieve the first approximation  to α  with the BLUUE 

iξ  and BIQUUE 2
iσ ,  namely  

 
2 2 2
1 2 3
2 2 2

1 2 3

tr 

tr 

σ σ σα
ξ ξ ξ

+ +
= =

′ + +
yΣ

ξ ξ
�  . (3.87)  

Alternatively, we can use an iterative procedure where ˆ ˆˆ ˆ( 1) tr / tr ( ) ( )
k

k k kα ′+ = yΣ ξ ξ�  with ˆ ˆ ˆ( ) ( ( ))k k=ξ ξ α  as the 
BLEα −  from  (3.81) and̂ 

kyΣ  in modified form 

 
1 1 1ˆ ( ) ( )

1 ( ) ( )k n nn n k n k
′ ′ ′= − −

− + +yΣ Y I 11 I 11 Y
α α

 (3.88) 

The iteration can be continued until there is stability achieved in ˆtr { ( 1)}MSE k+ξ  from (3.86).  
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3.3 Case study: 2-dimensional strain rate tensor 

With these models developed above we are able to successfully perform the α-homBLE estimation to determine 
the weighting factor α for the univariate and multivariate case. In lieu of a case study, the model is applied to 
simulated observations of a random tensor of type strain rate based on the real estimate of one station in the 
Finnish Primary Geodetic Network (Kakkuri and Chen 1992). We will apply the three observation sets firstly to 
the univariate case under the assumption that the three sets are independent, identically distributed (i.i.d) obser-
vations. Secondly, the three set observations will be applied together in the multivariate case and therefore the 
correlations among them are considered. 

Box 3.5 provides the real estimated random strain rate tensor with the related standard deviations and the simu-
lated observations in 11 epochs. We use the notation of (1) (2) (3), ,y y y  for the three i.i.d. univariate observations, 
which are related to the multivariate notation introduced in section 3-2, i.e.  

 

11 12 13
(1) 11 21 1

21 22 23
(2) 12 22 2 (1) (2) (3)

(3) 13 23 3
1 2 3

[ , , , ]

[ , , , ] , , where 11.

[ , , , ]

n

n

n
n n n

y y y
y y y

y y y
y y y n

y y y
y y y

 ′ =  
  ′  = = = =   
 ′=  

 

y

y Y y y y

y

�

�
� � �

�

 

Box 3.5: 

Observations of a random tensor of type strain rate 
(epoch 0: Kakkuri and Chen (1992)) 

 11 0 12 0
0

12.0 22.0

. . 0.236 0.049
( strain/year)

0.049 0.148

t t

t t

−   
= =   −  

t µ  

11.0 12.0 22.00.094, 0.054 and 0.065= = =σ σ σ  

"the vectorized form " 

 0 1 2 3 0 11.0 1

1.0 2.

2.0 2

3.0

2.0

0

[ ] [ ] with

0.094, 0.054, 0.065

y y y t t t=
=

′ =
= =

y

σ σ σ
 

"Observations of the distinct elements  (1) (2) (3), ,y y y  in 11 epochs" 

epoch 
i 

(1)

( strain/yr)µ
y  (2)

( strain/yr)µ
y

 
(3)

( strain/yr)µ
y

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0.1513 

0.2913 

0.2881 

0.1970 

0.2418 

0.2790 

0.2547 

0.2602 

0.4316 

0.0219 

0.2679 

-0.0305 

-0.0081 

-0.0864 

-0.0123 

-0.1069 

-0.0004 

-0.1636 

-0.0336 

-0.0886 

-0.0908 

-0.0408 

0.1615 

0.1624 

0.0826 

0.1186 

0.2390 

0.1180 

0.1501 

0.1999 

0.2063 

0.1570 

0.0428 

In the univariate case we assume that the three observation sets (1) (2) (3), ,y y y  in Box 3.5 of the distinct elements 
of strain rate tensors are independent and the sample mean (BLUUE) 1 2 3,  andξ ξ ξ  , and the sample variances 
(BIQUUE) 

1 2

2 2, ,y yσ σ  
3

2
yσ  are estimated by (3.3) and (3.55), respectively: 

 
1

2

3

2 2
1 11

2 2
2 12

2 2
3 22

0.2441 ( strain/y)  and 0.010168( strain/y);

-0.0602 ( strain/y) and 0.002585 ( strain/y) ;

0.1489 ( strain/y)  and  0.003195 ( strain/y) .

y

y

y

t

t

t

ξ µ σ µ

ξ µ σ µ

ξ µ σ µ

= = =

= = =

= = =
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In the multivariate case  the BLUUE of t11, t12, t22  from (3.78) is identical, namely 

 
1 11

2 12

3 22

  0.2441 ( strain/y)

  -0.0602 ( strain/y)

0.1489 ( strain/y)

t

t

t

     
     = =     
         

ξ µ
ξ µ
ξ µ

, 

and the full sample variance-covariance matrix ˆ
yΣ  of type BIQUUE from (3.83) is 

  2

0.010168 -0.000024 0.000396
ˆ -0.000024 0.002585 -0.000740 ( strain/y)

0.000396 -0.000740 0.003195

µ
 
 =  
  

yΣ  

while the related dispersion matrix of ξ̂  with (3.79) is 

2
ˆ

0.000924 -0.000002 0.000036

{ } -0.000002  0.000235 -0.000067 ( strain/y)

0.000036  -0.000067 0.00029

ˆ

0

D µ
 
 = =  
  

ξ
ξ Σ  

Now we shall be able to analyze the α-BLE estimate and the determination of the weight factor α in both the 
univariate and multivariate case as explained in Section 3.3.1 and 3.3.2. 

      3.3.1  The univariate αααα-BLE and the determination of the weight factor αααα by A-optimal design 

By means of Figure 3.2 we compare α-homBLE (dashed line) and BLUUE estimates ( full line),  in particular 
we document the dependence on the uniform regularization parameter α. Based upon the results summarized in 
Box 3.3  we have computed at first the trace of the Mean Square Error (MSE) matrix, in particular the functions 

1( )γ α  as variance term and 2( )γ α as bias term squared. Within {1( )γ α , 2( )}γ α  we have substituted { , }σ ξ  by 
{ (BIQUUE),σ  (BLUUE)}ξ , i.e. the true value σ  and ξ  with their estimates and  σ ξ  and plotted them in 
Figure 3.3. The interrelation between the variances, squared biases and the weighting factor is evident. The vari-
ance term 1( )γ α  (dashed line) decreases as α  increases while the squared bias term 2( )γ α  (dotted line) in-
creases with α . The dash-dotted line which represents 1( )γ α� + 2( )γ α�  as ˆtrMSE{ :ξ α� -homBLE} is under the 
level of tr { : BLUUE}MSE ξ  as expected. In summary, these estimates determine approximate values of the 
weighting factor α of type A-optimum with respect to ˆ{ }MSE ξ  as in (3.56) of Corollary 3.11, in particular 

 1 2 3(1) 0.171, (1) 0.714  and (1) 0.144= = =� � �α α α .  

Figure 3.4 is a “zoom-in” version of Figure 3.3, which illustrates the optimal values α�  consistent with these 
curves, respectively ˆtrMSE{ }ξ  at minimal points. 

Secondly, by an iterative procedure we have updated every element of the first approximate 1 2 3{ , , }� � �α α α  by 
means of  

 

2

2

ˆ ( )
( 1) , 1, 2, 3

ˆ ( )

ˆ ˆ ˆˆ ˆwhere ( ) ( ( )), ( ) ( ( ( )))

j
j

j

j j j j j j

k
k j

k

k k k k

+ = =

= =

�

� �

σ
α

ξ

ξ ξ α σ σ ξ α

 (3.89)  

 and   

 

2 2
( ) ( )

2

1

1 1
ˆ ( ) ( )

1 ( )

1
( ) .

1 ( )

j j n n j
j

n

ji j
i j

k
n n k

n
y

n n k

σ
α

ξ
α=

′= −
− +

= −
− +∑

y I J y
�

�

 (3.90)  

The sequential optimization ends at the reproducing point ( 1) ( )j jk k+� ��α α  in computer arithmetic where 
ˆtr MSE{ }kξ  reaches its minimum. Such an iterative procedure as illustrated in Figure 3.5 supports the optimiza-

tion procedure to generate ˆˆ arg{tr { }MSEα = =ξ  min}.   
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Figure 3.2  jξ (BLUUE) versus ̂ jξ (α -homBLE ), 
(j=1, 2, 3) of the direct observations {  t11,  t12,  t22 }, 
symmetric random tensor of type strain rate, as 
functions of the balancing parameter α . 

 

Figure 3.3  The trace of the Mean Square Error 
(MSE) functions for the BLUUE and the α-
homBLE estimates of the unknowns 1 2 3( , , )ξ ξ ξ
as functions of α. Depicted are 2ˆtr { }MSE ξξ = σ
for the BLUUE and 1 2

ˆtr { } ( ) ( )MSE ξ = γ α + γ α  for 
the α-homBLE, as well as the separate parts for 
variance 1( )γ α  and bias squared 2 ( )γ α . 
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Figure 3.4  The trace of the Mean Square Error 
(MSE) functions ˆtr { }MSE ξ  for the α-homBLE 
estimates of 1 2 3( , , )ξ ξ ξ , also depicted in Figure 
3.3. Here the function graph is “zoomed-in”, in 
order to emphasize the behavior of the function 
around its minimal point. 

Figure 3.5  Iteration steps for A-optimal α, three sets  
                    of direct observations 

(i)     upper graph: the trace of { }MSE α  for the 
          estimate 1ξ̂ (α) of type α-homBLE of the   
          first set of direct observations; 

(ii)     middle graph: the trace of { }MSE α  for    
          the estimate 2ξ̂ (α) of type α-homBLE    
          of the second set of direct observations; 

(iii)     lower graph: the trace of { }MSE α  for the  
          estimate 3ξ̂ (α) of type α-homBLE of the  
          third set of direct observations. 
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   3.3.2  The multivariate αααα-BLE and the determination of the weight factor αααα by A-optimal design 

We apply the multivariate BLEα − from (3.87) to calculate the trace of Mean Square Estimation Error (MSE) 
and their two divided terms: variance term 1( )γ α and bias-squared term 2( )γ α  after substituting and yξ Σ with 
their estimates ̂ ˆ( ) ( ( ))k k=ξ ξ α of (3.81) andˆ ˆ ( ( ))

k
k=y yΣ Σ α of (3.88) and plotted them in Figure 3.6, which 

shows in qualitative form the relationship between the variances and the squared bias, and the weight factor α . 
The variance term 1( )γ α decreases as α  increases, while the bias-squared term2( )γ α increases with α ; both are 
plotted by the blue and green curves, respectively. As is indicated by the red curve, the trace of MSE of BLEα −  
which is the sum of 1( )γ α and 2( )γ α , there exist several values of α  for which the trace of MSE of BLEα − is 
less than MSE of BLUUE . 

With these estimates we are interested in the approximate optimal weight factor α�  from  (3.87) for the multivari-
ate model by the A-optimal design that minimizes of the trace of ˆ{ }MSE ξ ,  which is 

 0.187α =�  

and generates the BLEα − of  t11, t12, t22  as 

 

1 11

2 12

223

ˆ ˆ   0.2400 ( strain/y)
ˆ ˆ ˆ( )   -0.0592 ( strain/y)

ˆˆ 0.1464 ( strain/y)

t

t

t αα

ξ µ
α ξ µ

µξ

          = = =              

ξ

��

�  

As is shown in Figure 3.7 this optimal value for the weight factor α is consistent with the curve of the trace of 
ˆ{ }MSE ξ , where it reaches its minimum value. 

With the iterative procedure introduced above we use the above listed optimal weight factor α�  as the initial 
value, i.e. ̂ (1)α  and iterates with ˆtr / tr ˆ ˆˆ( 1) ( ) ( )

k
k k k′+ = y ξ ξΣα . The iteration can be continued until there is sta-

bility achieved in ̂ ( 1)k +α  or the minimum of ˆtr { ( 1)}MSE k+ξ . These iteration results are shown in Figure 3.8, 
from which we can see that the optimal weight for α is at the first iteration for the direct observation set. This 
supports that our optimal estimate of the weight factor α from (3.87) within the multivariate model by the A-
optimal design, that minimizes the trace of ˆ{ }MSE ξ  is also reasonable and meaningful in practical data analysis.  

 
Figure 3.6  The trace of the MSE functions for multivariate α -BLE 1 2 3

ˆ ˆ ˆ ˆ( ) [ , , ]α ξ ξ ξ ′=ξ , 
                    their variance term 1( )γ α  and bias-squared term 2( )γ α with the choice of α . 
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Figure 3.7  The trace of the ˆ{ }MSE ξ  of the multivariate α -BLE 1 2 3

ˆ ˆ ˆ ˆ( ) [ , , ]α ξ ξ ξ ′=ξ of the elements    
t11,  t12,  t22 of with the choice of α . The optimal value ̂ 0.187α =  of weight factor α is 
consistent with the minimum value of the curve for the trace of ˆ{ }MSE ξ .   

 

Figure 3.8  The iteration of optimal estimates of the weight factor α for the direct observation  
set, where the index i of ˆiα  represents the iterative steps. 
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Appendix 3-A:  Proof of Theorem 3.9 

Before we prove Theorem 3.9 let us introduce auxiliary results which are used subsequently. 
 

Lemma 3-A1  (Cayley matrix inverse differentiation): 

  
1 1 1

1 1 1 1 1 1 1

(

( (

)

) ) d

d α
α α α

− − −

− − − − − − −

+ =
= − + +

′
′ ′

y

y y

Σ A S

Σ A S S SA Σ A

A

A
  (A.1) 

Proof: 

 1 1 1( ) ( ) 0d d− − −= ⇒ + = ⇒MM I M M M M  

 1 1 1d d− − −= −M M M M  

Example 3-A1:      1 1: α− −= ′ + ⇒yM Σ A SA  

 1d dα−⇒ =M S  

 1 1 1 1 1 1 1 1( ) ( )d dα α α− − − − − − − −= − + +′ ′y yM Σ A S S Σ AA SA         

                                                                                                                               q.e.d. 

  Lemma 3-A2 (differentiation of a scalar function of a matrix, such as the trace): 

 
tr ( ) tr tr

(tr ( )) tr tr
(tr ( )) tr( )
d d d

d d

+ = +
+ = +

′ ′ ′= +

A B A B
A B A B

XAX A A X X
 (A.2) 

Lemma 3-A3 (Cayley inverse: sum of two matrices) 

  

1 1 1 1

1 1 1 1

1 1 1 1

1 1

(

(

)

[

(

( ) ]

)

)

m

m

m m

α
α

α α
α α

− − − −

− − − −

− − − −

− −

+ =
= + =
= − + =
= − +

′ ′
′

′
′

y y

y

y

y

Σ A S Σ A

I Σ A S

I Σ A S S

I S Σ A I

A A

A

A

A

 (A.3) 

Lemma 3-A4 : 

 
)

) ( ) ( ) 2 ( )

tr (

(d d d d

′ ′=
′ ′ ′ ′= + =

ββ β β

β β β β β β β β
  (A.4) 

Example 3-A2:   

 

1 1 1 1

1 1 1 1

1 1

[ ( ) ]

( )

( )

:

m

m
− − − −

− − − −

− −

′ ′− − +

′− +
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= =
+=

y y

y

y
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A Σ A S S

SAΣ A
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ξ

ξI

α

α α
α α

 

 

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1
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( )

( ) ( )
( ) [ ( ) ]
( ) (

m

d d d
d

d
d

α α α α
α α

α α α α
α α α α
α

− − − − − − − −

− − − −

− − − − − − − −

− − − − − − − −

− − − − −
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y y y

β A Σ A S S ξ A Σ A S S ξ

A Σ A S S ξ

A Σ A S S AΣ A S S ξ

A Σ A S I S A Σ A S S ξ

A Σ A S A Σ A A Σ 1 1 1 1
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1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1 2 1 1 1 1 1

1 2

( ) 2 ( ) 2[ ( ) ] [ ( ) ( ) ]
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α α α α α
α
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Lemma 3-A5:  (A-optimum):  

 ˆtr { }MSE extr=ξ  

  ⇔   

 1 1 1 2 1 1 1 1

1 1 1 2 1 1 1 1 1

ˆ(tr { })

2 tr[ ( ) ( ) ]

2 ( ) ( )

0

d
MSE

dα
α α

α α α

− − − − − − − −

− − − − − − − − −

=

′ ′ ′= − + + +

′ ′ ′ ′+ + +

=

y y y

y y y

ξ

A Σ A A Σ A S S AΣ A S

ξ S AΣ A S A Σ A A Σ A S S ξ

 (A.5) 

 ⇔  

 1 1 1 2 1 1 1 1

1 1 1 2 1 1 1 1 1

ˆ

ˆ ˆtr[ ( ) ( ) ]

ˆ ˆ( ) ( )

α
α α

α α

− − − − − − − −

− − − − − − − − −

=
′ ′ ′+ +

=
′ ′ ′ ′+ +

y y y

y y y

A Σ A A Σ A S S AΣ A S

ξ S AΣ A S A Σ A A Σ A S S ξ

 (A.6) 

  Proof: 

 
1 1 1 1 1 1 1

ˆtr { }

tr{ [( ) ( ) ]} ( )

d MSE

d dα α− − − − − − −

=
′ ′ ′ ′= + + +y y y

ξ

A Σ A S A Σ A A Σ A S β β
 

  “the first term” 

 

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 2 1 1 1 1

tr{ [( ) ( ) ]}

tr 2 ( ) ( )

2 tr[ ( ) ( ) ]

d

d

d

α α

α α

α α α

− − − − − − −

− − − − − − −
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y y y
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A Σ A A Σ A S A Σ A S
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 “the second term” 

 1 1 1 2 1 1 1 1 1
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′ ′+ +′ ′= y y yS AΣ A S A
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 “differentiation” 
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where ˆ ˆ( , , )α α α= ξ S  reaches a minimum indeed for ˆtr { }MSE ξ .   

q.e.d 
 

 



 

Chapter 4 
Statistical inference of the eigenspace components of a two-
dimensional, symmetric rank-two random tensor  

In the deformation analysis in geosciences (geodesy, geophysics and geology), we are often confronted with the 
problem of a two-dimensional (or planar and horizontal), symmetric rank-two deformation tensor. The eigen-
space components (principal components, principal direction) of it play an important role in interpreting the 
geodetic phenomena like earthquakes (seismic deformations), plate motions and plate deformations among oth-
ers. With the new space geodetic methods three-dimensional positions and velocities of points in these networks 
have been determined with high accuracy (~ mm level) from relative regular measurement campaigns, which 
have become a key tool in plate tectonic studies. This fact suggests that the components of a two-dimensional 
deformation tensor can be estimated from the high accuracy geodetic data and analyzed through the proper sta-
tistical testing procedures. According to the Measurement Axiom such a two-dimensional, symmetric rank-two 
tensor is a random tensor T which we assume to be an element of the tensor-valued Gauss-Laplace normal dis-
tribution over R2×2 of type independently, identically distributed (i.i.d.) tensor-valued observations, but with 
identical off-diagonal elements. In this chapter, first, the eigenspace analysis and synthesis of a symmetric ran-
dom matrix are reviewed. Second, the nonlinear function, which relates the tensor elements to the eigenspace 
components, is linearized with respect to a special nonlinear multivariate Gauss-Markov model. Third, for its 
linearized form BLUUE of the eigenspace elements and BIQUUE of its variance-covariance matrix have been 
established successfully. Fourth, the sampling distribution of eigenspace components is derived. The test statis-
tics, such as Hotelling’s T2, likelihood ratio statistics and the general linear hypothesis test with growth curve 
model, are proposed. Hypothesis tests for the random tensor sample means as well as its one variance component 
are used in the case study of validating a given random strain rate tensor in Chapter 6. 

4.1 The eigenspace analysis versus eigenspace synthesis of a two-dimensional, symmetric rank- 
      two random tensor  

Let there be given a two-dimensional, symmetric rank-two random strain tensor 2
0∈T �
T  which is represented in a 

commutative left or right orthonormal basis 1 2{ , }e e , in short i j⊗e e  for all , {1,2}i j ∈ . " ⊗ " denotes the tensor 
product. According to (4.1), 2 2[ ]ijt ×∈ �

R is called the matrix representation of the two-dimensional rank-two ten-
sor. ijt  for all , {1,2}i j ∈ , establishes the covariant coordinates of the rank-two tensor T. The matrix, due to 

ij jit t= , is symmetric and of full rank two. ′T  denotes the transpose of T, (4.2). By means of an orthonormal 
matrix 2 2(2) : { |×∈ = ∈U USO R  2' , | | 1}= = +U U I U  the symmetric matrix 2 2SYM:={ | }× ′∈ ∈ =T T T TR  can be 
transformed into the canonical form 1 2Diag{ , }λ λ=Λ , also called “spectral form”. 

 
2 2

, 1 , 1

i j i j
ij ij

i j i j

t t
= =

= ⊗ = ⊗∑ ∑T e e e e  (4.1) 

 [ ] [ ]11 12
ij ji

21 22

t t
t t

t t

  ′= = = = 
 

T T  (4.2) 

 1 2: Diag( , )λ λ ′= =U T Λ U TU�  (4.3) 
 ⇔  

 20 subject to  ′− = =TU ΛU U U I  (4.4)  
 ⇔  

 2( ) 0 for {1, 2} subject toi i i− = ∈T I uλ  (4.5) 

 
1 1

1 1 2 2 1 2

1 2 2 1 1 2

1, 1, : ,

0 :

′ ′= = ∈ ∈
′ ′= = ⊥

u u u u u u

u u u u u u

S S
 (4.6) 

where  

 11 12
1 2

21 22

cos sin
[ , ]

sin cos

u u

u u

−   
= = =   

  
U u u

α α
α α

 (4.7) 

 21
1 2

11

cos sin
tan , for ] , ], , .

sin cos2 2

u

u

−   
= ∈ − + = =   

   
u u

α απ πα α
α α

 (4.8) 
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The formulae (4.3)-(4.8) establish the eigenspace analysis. The diagonal matrix Λ  contains the eigenvalues 

1 2,λ λ , the orthonormal matrix U the eigencolumns, also called coordinates of the eigenvectors, namely 11 21[ , ]u u ′  
and 12 22[ , ]u u ′ . Since 2 2×∈U

�

R is an orthonormal matrix, it enjoys the trigonometric representation  11 cos ,u α=   

21 sinu α= , and 12 22sin , cosu uα α= − = . The angular parameter α  establishes the eigenorientation, namely the 
orientation of the eigendirections. The solution of the eigenvalue-eigencolumn equation is not unique: There are 
four solutions in general, generated by the quadratic equations (4.6). If we assume that the first element of the 
eigencolumns has to be positive (Girko 1995, Metha 1991), we arrive at (4.9) and (4.10), respectively. Note, that 
we have defined the angular parameter α  in a half-open domain in order to avoid any singularity. 

 
Corollary 4.1 (eigenvalue-eigenvector analysis) 

For a symmetric tensor 2 2×∈T
�

R the eigenvalues 1 2, andλ λ � as well as                                            
the orientation parameter α , which constitutes the orthonormal matrix 

2 2×∈U
�

R  of eigenvectors are analytically represented by 

                                 

22
1 1 11 22 11 22 21

22
2 2 11 22 11 22 21

12 11 22

1
, ( ( ) 4 )

2
1

, ( ( ) 4 )
2

1
] , ], arctan 2 /( )

2 2 2

t t t t t

t t t t t

t t t

∈ = + + − +

∈ = + − − +

∈ − = −

λ λ

λ λ

π πα α

R

R    (4.9) 

 

Corollary 4.2 (eigenvalue-eigenvector synthesis) 

Given the eigenvalues 1 2, andλ λ �as well as the orientation parameter  
 α , which constitute the orthonormal matrix 2 2×∈U

�

R of eigencolumns, 
  the symmetric  tensor 2 2×∈T

�

R is synthetically represented by 

 

2 2
11 1 2

21 12 1 2

2 2
22 1 2

cos sin

1 ( )sin 22
sin cos

t

t t

t

= +

= = −

= +

λ α λ α

λ λ α

λ α λ α

 (4.10) 

On the basis of Corollary 4.1 (eigenspace analysis) and Corollary 4.2 (eigenspace synthesis) we are able to por-
tray the symmetric strain tensor T, which can be visualized as strain ellipse, if 1 2sign signλ λ= , but as the strain 
hyperbola, if 1 2sign signλ λ≠ . Figure 4.1 illustrates the strain ellipse, Figure 4.2 illustrates the strain hyperbola. 
In the first case, the axes of the strain ellipse are directed along the eigenvectors of the strain tensor; the semi-
major axes of the strain ellipse are identified with the maximum principal strain as well as with the minimum 
principal strain, constrained by 1 2sign sign .λ λ=  If 1 2sign sign 1λ λ= = +  we speak of extension, if 

1 2sign sign 1λ λ= = −   of contraction instead. Alternatively, in the second case, the axes of the strain hyperbola 
are directed along the eigenvectors of the strain tensor, indicated by the “real axis” showing 1λ  and the “imagi-
nary axis” with 2| |λ , for instance. The notation used in describing the two-dimensional strain tensor are defined 
in Box 4.1. 

Box 4.1 (two-dimensional strain tensor) 

  Two-dimensional strain tensor components: 

a) 11t  the normal strain along the 1-axis, positive for extension, negative for  
      contraction. 

b) 22t  the normal strain along the 2-axis, positive for extension, negative for  
      contraction. 

c) 21t  the shear strain (=12t ), positive for right lateral shear.  

The principal components: 

d) 1λ �maximum principal strain, the greatest change of length per unit length. 
e) 2λ �minimum principal strain, the smallest change of length per unit length. 
f) α  bearing, or the direction of the maximum principal axis, counterclockwise  
            from the 1-axis (East). 
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4.2 The linearized multivariate Gauss-Markov model for the estimation of eigenspace  
      components of a two-dimensional, symmetric rank-two random tensor 

Chapter 4.1 has documented that the eigenspace synthesis of a symmetric random tensor is nonlinear in terms of 
the tensor-valued observations, and there is no simple probability density function of the distribution of random 
eigenspace components. Accordingly, we are unable to derive the exact sampling distribution directly. Here, we 
will derive the linearized counterpart for sampling the eigenspace synthesis parameters from the originally 
nonlinear observation equations. The Σ -BLUUE of eigenspace components and their variance-covariance ma-
trix estimate of type BIQUUE will be developed in accordance with the formulas presented earlier by J. Cai, E. 
Grafarend and B. Schaffrin (2001b). 

Let us first review the eigenspace analysis versus eigenspace synthesis of a symmetric rank-two random tensor 
as discussed in Chapter 4.1. Here we have added the parameter q as a reduced quaternion element allowing an 
algebraic representation of U, replacing α  which is trigonometric.  

Box 4.2: 
Eigenspace analysis versus eigenspace synthesis 

of a two-dimensional, symmetric rank-two random tensor 

 

2 2

11
3 1

21

22

[ ]

vech :

( : vec half)

ijt

t

t

t

read

×

×

= ∈

 
 = = ∈ 
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T

T y R

R
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Box 4.2 (cont.) 

                                    analysis                                       synthesis 
1st parameterization                              1st parameterization                             

                                

22 2 2
1 11 22 11 22 21 11 1 2

22
2 11 22 11 22 21 21 1 2

2 2
21 11 22 22 1 2

1
( ( ) 4 ) cos sin

2
1 1( ( ) 4 ) ( )sin 222

tan 2 2 /( ) sin cos

t t t t t t

t t t t t t

t t t t

= + + − + = +

= + − − + = −

= − = +

λ λ α λ α

λ λ λ α

α λ α λ α

  (4.11)    

2nd parameterization                              2nd parameterization                             

  

22 2 2 2
1 11 22 11 22 21 11 1 22 2

22 2
2 11 22 11 2

21

11 22

2 21 21 1 22 2

2 2 2
22 1 22 2

1 1
( ( ) 4 ) [ (1 ) 4 ]

2 (1 )

1 1
( ( ) 4 )

21
tan tan arct

[2( ) (1 )]
2

a

(1 )

1
[4 (1 ) ],

4 )2 (
n

1

t t t t t t q q
q

t t t t t t q q
q

t q q
t

q
t t q

= + + − + = − +
+

= + − − + = − −
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1 1
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cos ( / 2) 1
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1 , sin .

cos ( / 2) 1

q
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q

q
q

q

−+ = = α
α +
α− = = α

α +

 

Suppose a sample of n observations of T, namely T1, T2,… , T n whose related vectorized forms are y1, y2, …, yn.  
Here we design an array of vectorized tensor coordinates 1 11 2 21 3 22: , : , :y t y t y t= = =  indexed to the number of the 
sample. For instance,  2.3y  denotes the tensor coordinate 2 21y t=  in the third sample 

  
1.1 1.

2.1 2.

3.1 3.

3
1 2[ , , , ] ,   n

n

n

n

n

y y

y y

y y

×

 
 
 
 

= ∈



=



Y y y y Y

�

�

�

�

���� �
R , (4.13)    

whose variance-covariance matrix follows when y1, y2, … , yn  are independent 3×1 random vectors, each with 
the 3 3×  variance-covariance matrix iyΣ , as 

 

1

2 3 3

0 0

0 0
(vec ) , {vec }

0 0 0

n n

n

D D ×

 
 
 = ∈
 
 
  

y

y

y

Σ

Σ
Y Y

Σ

�

�

� � � �
R ; (4.14)  

and when the y1, y2, … , yn  are i.i.d. 3×1 random vectors, each with the same variance-covariance matrix yΣ , we 
have  

 3 3

0 0

0 0
(vec ) , {vec }

0 0 0

n n
nD D ×

 
 
 = = ⊗ ∈
 
 
  

y

y
y

y

Σ

Σ
Y I Σ Y

Σ

�

�

� � � �
R , (4.15) 

where ⊗ now denotes the Kronecker –Zehfuss product of matrices (see Henderson, Pukelsheim and Searle 1981; 
or Grafarend and B. Schaffrin, 1993). 

Using the eigenspace analysis versus eigenspace synthesis we can define the nonlinear Gauss-Markov model 
which is presented by (4.16) - (4.19), where 1 denotes the 1n×  "summation vector" with all its entries being 1. 
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Box 4.3: 
Special nonlinear multivariate Gauss-Markov 
model for sampling the eigenspace synthesis 

 ( ) ′= +Y F ξ 1 E  (4.16) 

1st moments 
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F
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, (4.17) 
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2nd moments 

 "independent between observations" 
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 "i.i.d. observations" 

 3 3

0 0

0 0
(vec ) , {vec }

0 0 0

n n
nD D ×

 
 
 = = ⊗ ∈
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3 3 positive-definite, rk 3 ,

, { }, { } unknown, unknown (but patterned).

{vec } ,n n n

E E

D × =
−

= ∈
=

Σ Σ Σ

ξ Y Σ

Y

Y Y E

�
 

In order to estimate the eigenspace components of a symmetric rank-two random tensor, the nonlinear observa-
tion equations will be linearized. The linearization process of nonlinear observation equations is applied to the 
nonlinear mapping ( )ξ F ξ� . The Taylor expansion 

 0 0 0 0 0 0

0 0 0

( ) ( ) ( )( ) ( )( ) ( )

[( ) ( ) ( )]

= + − + − ⊗ − +
+ − ⊗ − ⊗ −

F ξ F ξ J ξ ξ ξ H ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξO
 (4.20)  

is truncated to the order 0 0 0 0 0[( ) ( ) ( )]; ( ) and ( )− ⊗ − ⊗ −ξ ξ ξ ξ ξ ξ J ξ H ξO  represent the Jacobi matrix of the first 
partial derivatives, and the Hesse matrix of second derivatives, respectively, of the vector-valued function ( )F ξ  
with respect to the coordinates of the vector ξ , both taken at the evaluation point 0ξ . In our study the linearized 
nonlinear model is generated by truncating the vector-valued function ( )F ξ  to the order 0 0[( ) ( )]− ⊗ −ξ ξ ξ ξO , 
namely 

 0 0 0 0 0

0 0 0

( ) ( ) ( )( ) [( ) ( )]

( ) [( ) ( )].

− = − + − ⊗ − =
= ∆ + − ⊗ −

F ξ F ξ J ξ ξ ξ ξ ξ ξ ξ

J ξ ξ ξ ξ ξ ξ

O

O
 (4.21)  

The linearization of the nonlinear observation equations (4.16) is presented in detail in Box 4.4:    
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Box 4.4: 
Linearization of nonlinear observation equations 

                                 First set of observation:            
1.1 11.1

2.1 21.1

3.1 22.1

y t

y t

y t

   
   =   
      

    

                                 Define:        

22
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1.1
22
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t t t t t
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 + + − +   
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  −  

  

ξ

λ
λ
α

 (4.22) 

"Linearized nonlinear model" 

 0 0 0 0( ) ( ) ( ) [( ) ( )]− = ∆ + − ⊗ −F ξ F ξ J ξ ξ ξ ξ ξ ξO  (4.23) 

"Jacobi matrix" 
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AAAA  . (4.24)  

Based upon the Taylor series expansion for ( )F ξ  we shall apply the Gauss-Newton iteration scheme with 

0 1 2 1[ , , ]′=ξ λ λ α  as the starting point. 0ξ  is determined by solving once the eigenvalue analysis equations as indi-
cated by (4.22) for the sample one. In this way, we have established the design matrix of the first kind 

0( )= J ξAAAA  as the Jacobi matrix J at the point 0ξ . The special linearized multivariate Gauss-Markov model for 
sampling the eigenspace of a symmetric random matrix is summarized by (4.25) ~ (4.30).  

Box 4.5: 

Special linearized multivariate Gauss-Markov model 
for sampling the eigenspace synthesis 

 0 0( ) [ ( )]′ ′= + − +Y F ξ 1 ξ ξ 1 EAAAA  (4.25) 

"vectorized version" 

 0 0vec ( ) ( )( ) vec= ⊗ + ⊗ − +Y 1 F ξ 1 ξ ξ EAAAA  (4.26) 

 with denotations:  

0 0vec ( ), ( )= ⊗ = ⊗Y 1 F ξ A 1 AAAA  

"1st moments" 

 3 1
0 0( ) vec {vec }, vec nE ×− + = ∈A ξ ξ Y Y Y �  (4.27)  

"2nd moments" 
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= y y

y

I Σ Σ Σ Σ

ξ Y Y Y ξ ξ ξ ξ 1 E Σ

Y �

O��
 (4.28) 

With these definitions and the observations of a random tensor we can first estimate the eigenspace components 
ξ of type Σ - BLUUE (Best Linear Uniformly Unbiased Estimation) which are collected in  
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Theorem 4.3 ( ξ̂  −Σ BLUUE of ξ , the eigenspace components of a symmetric 
                        random tensor): 

The Σ - BLUUE  ξ̂  of ξ in the special linearized multivariate Gauss-Markov  
Model is  

 0
ˆ ˆ= ∆+ξ ξ ξ    with 
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 (4.29) 

subject to the related dispersion matrix  

 1
ˆ

11
{ } : { }ˆ ˆ )(D D

n
− −= ∆ = ′=

ξ yΣξ ξ Σ A AA AA AA A . (4.30) 

Since the variance-covariance matrix yΣ of the observation vector is unknown we have to estimate such a disper-
sion matrix empirically. ̂ yΣ  as the BIQUUE (Best Invariant Quadratic Uniformly Unbiased Estimate) of yΣ  is 
summarized in Theorem 4.4, e.g. proven in Koch (1987; 1999). 

Theorem 4.4 ( The sample variance-covariance matrix ˆ
yΣ of type BIQUUE  

        of a symmetric random tensor): 

The sample variance-covariance matrix ˆ
yΣ  of type BIQUUE for the  

vectorized observations of a symmetric rank-two random tensor is 

 
1 1 1ˆ ( ) .

1 1nn n n
′ ′= − =

− −yΣ Y I 11 Y Ω  (4.31) 

 

4.3 Hypothesis testing for the estimates of eigenspace components of a two-dimensional,            
      symmetric rank-two random tensor 

In order for the estimated tensors to be significant, statistical inference has to be applied. Based on the three 
elements of validation, namely sampling distribution, parameter estimation (point estimate and interval estima-
tion) and hypothesis testing, we refer to Kendall and Stuart (1958) for the univariate hypothesis test and Giri 
(1977),  Rencher (1995, 1998),  Anderson (1958, 1984) and Muirhead (1982) for the multivariate hypothesis test. 

The sampling distribution of the symmetric rank-two random tensor has been derived in Chapter 1 and 2. On the 
basis of such a sampling distribution, the distributions of multivariate test statistics needed for testing hypotheses 
concerning the parameters (mean vector and covariance matrix) for a tensor-valued multivariate Gauss-Laplace 
normal population of a two-dimensional symmetric rank-two random tensor, such as Hotelling’s T2 , the likeli-
hood ratio statistics and the general linear hypothesis test with the growth curve model, are proposed, too. 

With the estimates of eigenspace components of random strain rate tensor and their dispersion matrix the follow-
ing multivariate hypothesis tests will be suggested: 

• Test for the eigenspace parameter vector 0 with= yΣξ ξ  unspecified;  

• Test for a distinct element of the eigenspace parameter vector with Student t- test; 

• Eigen inference about the orthonormally transformed parameters η ;  

• Test for the variance-covariance matrix 0=yΣ Σ ; 

• Test for the eigenspace parameter vector and variance-covariance matrix  0 0,= =yΣ Σξ ξ ; 

• The general linear hypothesis test with the growth curve model for eigenspace parameters. 
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4.3.1  Test for the eigenspace parameter vector 0 with= yΣξ ξ  unspecified  

Box 4.6: 

        Multivariate hypothesis test about the eigenspace parameter vectorξ  
        assuming Gauss-Laplace normally distributed observations of a two- 
        dimensional, symmetric rank-two random tensor    

 01 0 11 0 for  : , : with unspecified;First Test = ≠ yξ ξ ξ ξ ΣH H  
⇔  

 
1 10 1 10

01 2 20 11 2 20

0 0

: , : with unspecified

       
       = ≠       
              

yΣ

λ λ λ λ
λ λ λ λ
α α α α

H H  

 "Hotelling's 2T  statistic"  

(Hotelling 1931, Muirhead 1982, Rencher 1998) 

 2 1
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ˆ ˆˆ: [ ] [ ]T −′= − −
ξ

ξ ξ Σ ξ ξ  (4.32) 

Note that  
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is an element of Fisher’s F-distribution 3, 1 3 1nF − − +  (Rencher 1998) and 
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where 3, 3(1 )nF − −α  is the upper (100 )thα  percentile of Fisher’s F-distribution. This immediately leads to a test 
of the hypothesis 01 0: =ξ ξH versus 11 0: ≠ξ ξH .  At the error probability α  we reject 01H in favor of 11H if  

 2 1 2
ˆ 3 10 30 ,

ˆ ˆ ( 1) 3
(1ˆ [ )

3
[ ] ] }n

n

n
T F T−

−
−′= − − −

−
> ⋅ − =

ξ
ξ ξ Σ ξ ξ αα  

4.3.2  Test for a distinct element of the eigenspace parameter vector with Student t- test 

Box 4.7: 

Separate Student t-tests about the eigenspace parameters inξ  

 02 1 10 2 20 0

12 1 10 2 20 0

 for  :

(separately) :

Second Test λ λ λ λ α α
λ λ λ λ α α

= = =
≠ ≠ ≠

H

H
 

 "two-sided tests with the test quantities" 

 1 10 2 20 0
1 2 3

1 2 3

ˆ ˆ ˆ
: , : , :

ˆ ˆ ˆ
t t t

− − −
= = =

λ λ λ λ α α
σ σ σ

 (4.33) 

with respect to 1 2
ˆ ˆ ˆ, ,λ λ α  of type Σ -BLUUE and their variances. t1, t2 and t3  

are elements of the Student t-distribution with n-1 degrees of freedom. 

The probability identity  

 1 2 1 0 2 0ˆ ˆ ˆ{ } { } 1P c t c P c c≤ ≤ = + ≤ ≤ + = − =σ µ µ σ µ α γ  

relates the error probability α  of the two-sided test to the confidence level γ . If µ̂  is an element of the confi-
dence interval 1 0 2 0ˆ ˆ ˆc cσ µ µ σ µ+ ≤ ≤ +  , the null hypothesis 0 0: µ µ=H  is accepted. We reject 0H  if the confi-
dence interval does not contain µ̂ .  

As an example the 95% confidence interval for the eigenvalues 1,λ  2λ  and the eigendirection α 

1 1 10 2 1 10ˆ ˆ[ , ]c cσ λ σ λ+ + , 1 2 20 2 2 20ˆ ˆ[ , ]c cσ λ σ λ+ +  and 1 3 30 2 3 30ˆ ˆ[ , ]c cσ λ σ λ+ +  are illustrated in Figure 4.3, respectively. 
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Figure 4.3  The 95% confidence interval for the eigenvalues 1 2,λ λ  and eigendirection α   

4.3.3  Eigen-inference about the orthonormally transformed parameters ηηηη  

From the dispersion matrix ̂ˆ
ξ
Σ , the variance-covariance matrix of the eigenspace component parameter vector ξ̂  

estimated by (4.30), we can see that these eigenspace component parameters are correlated. In order to make the 
hypothesis tests about the distinct elements more efficient and uncorrelated, we could transform the original 
parameters into new parameters iη  of uncorrelated linear combinations of iξ ’s. This method uses a similar tech-
nique as the well known principal component analysis, which was introduced by K. Pearson (1901) as a tool of 
fitting planes to a system of points in space and later generalized by Hotelling (1931) for analyzing correlation 
structures. In fact principal component analysis is concerned fundamentally with the eigenstructure of covariance 
matrices, i.e., with their eigenvalues and eigenvectors. Therefore in our study we will firstly make an orthonor-
mal transformation of the original parameters, then derive the covariance matrix of the transformed parameters 
and perform a hypothesis test for them,  which we call eigen-inference.  

From Theorem 4.3 we have the Σ -BLUUE of eigenspace components of a symmetric random tensor  

 1 2
ˆ ˆ ˆ ˆ[ ] ′=ξ λ λ α  , 

and the related dispersion matrix of ξ̂  of type BIQUUE 

 ˆ
ˆ{ ˆ}D =
ξ
Σξ , 

with the spectral decomposition of the dispersion matrix ˆ
ˆ
ξ
Σ  

 ˆ ˆ ˆ ˆ
ˆ ′= ηξ ξ ξ
Σ U Λ U , (4.34) 

where the orthogonal transformation matrix 
ξ̂

U  contains normalized eigenvectors as column vectors (i.e., or-
thonormal basis, orthonormal matrix) 

 ˆ ˆ ˆ ˆ with , det( ) 1′ = =
ξ ξ ξ ξ

U U U I U . (4.35) 

Then we set the transformed parameter vector from the original parameter vector and find their Σ -BLUUE 
estimates, respectively, as 

 ˆ ˆ
ˆˆ: and′ ′= =

ξ ξ
η U ξ η U ξ  (4.36)  
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which transforms the null hypothesis values of Test 2 in Box 4.7: 

 ˆ0 0′=
ξ

η U ξ  (4.37) 

Then, from (4.34), we get  
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2

3

2
ˆ

2
ˆ ˆ ˆ ˆ ˆ ˆ

2
ˆ

ˆ 0 0
ˆ ˆ ˆ0 0

ˆ0 0

 
 ′= = =  
 
 

η ηξ ξ ξ
Σ U Σ U Λ

η

η

η

σ
σ

σ
, (4.38) 

from which we can see that the transformed parameters iη  are mutually independent and their standard devia-

tions are: 

 
1 1 2 2 3 3ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ, ,= = =η η η η η ησ λ σ λ σ λ . (4.39) 

With these orthonormally transformed results we can now perform the eigen-inference. Note that the orthonor-
mally transformed parameters iη  are mutually independently, normally distributed. Student t-tests could also be 
used for every element of the transformed parameters ˆiη  separately .  

The second hypothesis test performed in Box 4.7 will be equivalent to the new hypothesis test for the orthonor-
mally transformed parameters, i.e., 

 02 1 10 2 20 0

12 1 10 2 20 0

Second Test for  :

:

λ λ λ λ α α
λ λ λ λ α α

= = =
≠ ≠ ≠

H

             H
 

 02 1 10 2 20 3 30

12 1 10 2 20 3 30

Eigen-Test for  :

:

η η η η η η
η η η η η η

⇔
= = =
≠ ≠ ≠

H

             H

 

which means that, when we accept or reject the new hypothesis tests (eigen-test), we will accept or reject the 
second hypothesis tests accordingly.  

These procedures will be summarized in Box 4.8. 

Box 4.8: 

Eigen-inference about the transformed parameters η   

 Eigen tests (alternative to the second tests) 

 02 1 10 2 20 3 30

12 1 10 2 20 3 30

:

:

η η η η η η
η η η η η η

′ = = =
′ ≠ ≠ ≠
H

H
 

 "two-sided tests with the test quantities" 

 
1 2

1 10 2 20 3 30
1 2 3

3

ˆ ˆ ˆ
: , : , :

ˆ ˆ ˆ
t t t

η η η

η η η η η η
σ σ σ
− − −

= = =  (4.40) 

with respect to 1 2 3ˆ ˆ ˆ, ,η η η  and their related variances . t1, t2 and t3 are elements of  
the Student t-distribution with n-1 degrees of freedom. 

The probability identity  

 1 2 1 0 2 0ˆ ˆ ˆ{ } { } 1P c t c P c c≤ ≤ + = + ≤ ≤ + = − =σ η η σ η α γ  

relates the error probability α  of the two-sided test to the confidence level γ .  
If η̂  is an element of the confidence interval 1 0 2 0ˆ ˆ ˆc c+ ≤ ≤ +σ η η σ η  , the null 
hypothesis 0 0: =η ηH  is accepted.  We reject 0H  if the confidence interval does  
not contain ̂η . Accordingly, we accept the original null hypothesis about the  
eigenspace components. 

This completes the development of eigen-inference. 
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4.3.4  Test for the variance-covariance matrix 0=yΣ Σ  

Box 4.9 

        Multivariate hypothesis tests about the variance-covariance matrix yΣ   

 03 0 13 0for  : ,  :Third Test = ≠y yΣ Σ Σ ΣH H  

"unbiased modified likelihood ratio statistic 1Λ " 
(Giri  1977, Muirhead 1982, Koch 1999, Koch 2001) 

 ( )3( 1) / 2
1 ( 1) / 2 1

1 0 01
1ˆ ˆ(det( 1) ) etr{ ( 1) }2

n
n

n n ne −
− − −

−Λ = − − −y yΣ Σ Σ Σ  (4.41) 

with respect to the sample variance-covariance matrix ˆ
yΣ  of type BIQUUE .   

Since our sample size is relatively small we have to use the exact    
distribution of 12log− Λ , whose upper 5 and 1 percentage points have been 

   provided by Muirhead (1982, p.360). 

 

4.3.5  Test for the eigenspace parameter vector and variance-covariance matrix  0 0,= =yΣ Σξ ξ  

Box 4.10 

Multivariate hypothesis tests about the eigenspace parameter vector ξ and  
        the variance-covariance matrix yΣ   

 04 0 0 14 0 0 for  : , ,  :Fourth Test or= = ≠ ≠y yξ ξ Σ Σ ξ ξ Σ ΣH H  

"unbiased likelihood ratio statistic 2Λ " 
(Anderson 1984, Muirhead 1982) 

 ( )3 / 2
1 / 2 1 1

ˆ2 0 0 0 00

11 ˆ ˆˆ ˆ(det( 1) ) etr{ ( 1) }exp{ [ ] [ ]}2 2

n
n

n
n ne − − −′Λ = − − − − − −y y ξ

Σ Σ Σ Σ ξ ξ Σ ξ ξ  (4.42) 

with respect to the eigenspace components of type Σ -BLUUE  and variance- 
covariance matrix ̂ yΣ  of type BIQUUE and 1 1

ˆ 00
(1/ )( )n − −′=

ξ
Σ ΣA AA AA AA A .   

Since our sample size is relatively small we have to use the exact distribution of  

22log− Λ , whose upper 5 and 1 percentage points have been provided by  
Muirhead (1982, p.371). 

 

       4.3.6  The general linear hypothesis test with growth curve model for eigenspace parameters 

Consider a p n×  matrix of observations whose columns follow independent p-variate Gauss-Laplace multivari-
ate normal distributions with the same unknown covariance matrix. Each column may represent an individual 
observation, each row a time when observations were taken. The traditional special multivariate Gauss-Markov 
model = +Y Aξ e  is not adequate for dealing with polynomial trends in time. The more general growth curve 
model, introduced by Potthof and Roy (1964), may be written as  

 = +Y AΞB E (4.43) 

where A is a known p q×  non-random matrix of full rank q p≤ ; Ξ , a q r× matrix of unknown parameters, B a 
r n×  design matrix of rank r n≤ ; E denotes a random error matrix, the columns being independently distributed 

( , )p 0 ΣN , where Σ  is positive-definite. Khatri (1966) obtained the maximum likelihood estimate of Ξ  in the 
form 

 1 1 1 1ˆ ( ) ( ) ,− − − −′ ′ ′ ′=Ξ A Ω A A Ω YB BB  (4.44) 

where 

 1( ( ) ) ,n
−′ ′ ′= −Ω Y I B BB B Y  (4.45) 

is the usual error sum of squares and products matrix, which could be considered proportional to an unbiased 
estimate of Σ .  For testing the general hypothesis  

 0 01: :versus= ≠PΞQ 0 PΞQ 0H H  (4.46) 
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where the c q×  matrix P has rank c q≤ , while Q has dimensions r g×  and rank g r≤ . The test consists of a 
multivariate analysis of variance based on the error and hypothesis matrices (Morrison 1976) 

 
1

H

1 1
E

( )( ) ( ) ,

( ) ,

−

− −

′ ′=
′ ′=

V PΞQ Q RQ PΞQ

V P AΩ A P
 (4.47) 

where  
 1 1 1 1 1( ) ( ) ( ) ( )− − − − −′ ′ ′ ′ ′ ′ ′= + −R BB BB BYΩ YB BB Ξ AΩ A Ξ . (4.48) 

Four tests of the hypothesis (4.46) under the growth curve model (4.43) could be applied (Potthof and Roy 1964, 
Siotani, M. et al. 1985):  (1) Roy’s largest root test with test statistic max max/(1 )sθ = λ + λ , where maxλ  is deter-
mined by H E| | 0− λ =V V ; (2) Lawley-Hotelling’s trace test with test statistic 2 1

0 H Etr( )T −= V V ; (3) Wilks’ likeli-
hood ratio test with test statistic H H E| | / | |Λ = +V V V ; and (4) Bartlett-Nanda-Pillai’s trace test with test statistic 

1
H H Etr ( )V −= +V V V .  However, Roy’s test has the advantage that the distribution of the test statistic under the 

null hypothesis 0 : =PΞQ 0H is known exactly, and has been tabulated (see Heck 1960, Pillai 1960 and Kres 
1983); also, associated confidence bounds are available only for Roy’s test.  

To test 0 : =PΞQ 0H  we calculate the greatest eigenvalues maxλ  of 1
H E

−V V  and refer max max/(1 )sθ = λ + λ  to the 
approximated Heck chart and Pillai table with parameters 

  
| | 1 1

min{ , }, ,
2 2

c g n r p q c
s c g m n∗ ∗ ∗− − − − + − −= = =  . (4.49) 

 The 100(1 )− α  simultaneous confidence intervals on all bi-linear components ′a PΞQb are given by (Morrison 
1976) 

 1/ 2 1/ 2
E E

ˆ ˆ[ ( )( )] [ ( )( )]
1 1

x x

x x
α α

α α

′ ′ ′ ′ ′ ′ ′ ′ ′− ≤ ≤ +
+ +

a PΞQb a V a b Q RQb a PΞQb a PΞQb a V a b Q RQb  (4.50) 

where 
; , ,s m n

x x ∗ ∗ ∗α α
≡  is the 100α  percent Heck or Pillai critical value. If 1s∗ = , /(1 )x xα α+ should be replaced by 

the critical value 
; 2 2, 2 2

[( 1) /( 1)]
m n

m n F ∗ ∗
∗ ∗

α + +
+ + . 

It is worth mentioning that the special linearized multivariate Gauss-Markov model for sampling the eigenspace 
synthesis (4.25) is also a growth curve model corresponding with , and ′ = =A 1 B ξ ΞA =A =A =A = . This fact sug-
gested that the hypothesis (4.46) under the growth curve model can be applied to the testing for the estimates of 
eigenspace parameters directly. 



 

Chapter 5 

Statistical inference of the eigenspace components of a three-
dimensional, symmetric rank-two random tensor 

In Chapter 4 we have achieved the complete solution to the statistical inference of eigenspace components of a 
two-dimensional random tensor. The models are closed and practical. In this chapter we will develop continually 
this solution for the three-dimensional case. In reality, crustal motions and deformations are of three-dimensional 
nature and most deformation tensor derived from geodetic, geological and seismological observations are three-
dimensional, such as the seismic moment tensors. In the last two decades some efforts have been made to formu-
late the problem in the three-dimensional space. A curvilinear three-dimensional finite element method has been 
introduced by Grafarend (1986) for the representation of local strain and local rotation tensors in terms of ellip-
soidal, Gauss-Krüger or UTM coordinates. More papers about the three-dimensional strain and strain rate tensor 
analysis in geodesy are those by Brunner (1979), Lichtenegger and Sünkel (1989), Dermanis and Grafarend 
(1993) and Wittenburg(1999). 

The random principal eigenvalues and random eigenvector parameters are of special importance for the predic-
tion of seismic activity. In recent years Xu (1999a) and Kagan (2000) developed the general distribution of the 
eigenspace components of the three-dimensional symmetric random tensor of second order, which can hardly be 
applied directly to real life engineering and Earth science problems, because an exact distribution theory of ei-
genspace components is almost always unavailable. This reason gives rise herewith to the subject of eigenspace 
components of a three-dimensional, rank-two symmetric random tensor on the basis of a linearized multivariate 
Gauss-Markov model, which will provide the statistical properties of these eigenspace components. With them 
we can continue performing the hypothesis tests about the deformation measures. On the assumption that a strain 
tensor or stress tensor has been directly measured or derived from other observations, such a three-dimensional, 
symmetric random tensor of second order is a random tensor T which we assume to be a realization of the ten-
sor-valued Gauss normal distribution over R3×3 with independently, identically distributed (i.i.d.) tensor-valued 
observations, but with identical off-diagonal elements. Since the eigenspace synthesis of a symmetric random 
tensor is nonlinear in terms of the tensor-valued observations, the respective parameters have to be estimated 
within a special nonlinear multivariate Gauss-Markov model.  

In this chapter, first, based on the review and choice of orthogonal similarity transformation matrices, the eigen-
space analysis and synthesis of a three-dimensional symmetric random matrix are established uniquely. Second, 
the nonlinear function that relates the tensor elements to the eigenspace components is linearized with respect to 
a special nonlinear multivariate Gauss-Markov model, which enables the BLUUE of the eigenspace elements 
and BIQUUE of its variance-covariance matrix, as developed in Chapter 4.2 to be successfully applied in the 
three-dimensional case. Third, the test statistics, such as Hotelling’s T2 and likelihood ratio statistics, are gener-
ated. Hypothesis tests for the random tensor sample means as well as its one variance component are used in the 
case study of validating a given three-dimensional random strain rate tensor in Chapter 6. 

5.1 The eigenspace analysis versus eigenspace synthesis of a three-dimensional, symmetric rank- 
      two random tensor  

Let there be given a symmetric three-dimensional rank-two random strain tensor 2
0∈T T  which is represented in 

a commutative left or right orthonormal basis 1 2 3{ , , }e e e , in short i j⊗e e  for all , {1,2,3}i j ∈ . " ⊗ " denotes the 
tensor product. According to (5.1), 3 3[ ]ijt ×∈ �

R is called the matrix representation of the 3-D rank-two tensor. ijt  
for all , {1,2,3}i j ∈ , establishes the covariant coordinates of the rank-two tensor T. The matrix, due to ij jit t=  is 
symmetric and of full rank three. ′T  denotes the transpose of T in (5.2). By means of an orthonormal matrix 

3 3(3) : { |×∈ = ∈U USO R  3' , | | 1}= = +U U I U  the symmetric matrix 3 3SYM:={ | }× ′∈ ∈ =T T T TR  can be trans-
formed into the canonical form 1 2 3Diag{ , , }=Λ λ λ λ , also called “spectral form”. 

 
3 3

, 1 , 1

i j i j
ij ij

i j i j

t t
= =

= ⊗ = ⊗∑ ∑T e e e e  (5.1) 

 
13

3

3 3 33

[ ] [ ]
11 12

ij 21 22 2 ji

1 2

t t t

t t t t t

t t t

 
  ′= = = = 
  

T T  (5.2) 
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 1 2 3: Diag( , , ) ′= =U T Λ U TU� λ λ λ  (5.3) 

 ⇔  

 30 subject to  ′− = =TU ΛU U U I    (5.4)  
 ⇔  

 3( ) 0 for {1, 2, 3} subject toi i iλ− = ∈T I u  (5.5) 

 
1 1 1

1 1 2 2 3 3 1 2 3

1 2 1 3 2 3 1 2 1 3 2 3

1, 1, 1 : , ,

0 : , ,

′ ′ ′= = = ∈ ∈ ∈
′ ′ ′= = = ⊥ ⊥ ⊥

u u u u u u u u u

u u u u u u u u u u u u

S S S
 (5.6) 

where  

 
11 12 13

21 22 23 1 2 3

31 32 33

[ , , ]

u u u

u u u

u u u

 
 = = 
  

U u u u . (5.7) 

There are many methods to determine the orthonormal matrix U for the spectral decomposition or the eigen-
value-eigenvector synthesis (5.3) of the three-dimensional, rank-two strain tensor. Most of them are constructed 
through three successive rotations, which will be discussed herewith.  

5.1.1  The choice of orthogonal similarity transformation matrices  

        5.1.1.1 Euler angles 

Rotation and transformation with Euler angles are the commonly used method.  

 

cos sin 0

( ) sin cos 0

0 0 1
z

χ χ 
 χ = − χ χ 
  

R  (5.8) 

 

cos 0 sin

( ) 0 1 0

sin 0 cos
y

ε − ε 
 ε =  
 ε ε 

R  (5.9) 

 

cos sin 0

( ) sin cos 0

0 0 1
z

θ θ 
 θ = − θ θ 
  

R  (5.10) 

The total rotation is described by the triple matrix product. 

 z y z( , , )= ( ) ( ) ( )χ ε θ θ ε χA R R R   (5.11) 

Since A is an orthogonal matrix, the transformation y=Ax is an orthogonal transformation (Rotation). The col-
umn and row vectors of A are orthonormal, that is, when we represent A in form 

 
11 12 13

21 22 23 1 2 3

31 32 33

[ ]
a a a
a a a
a a a

 
 = =
 
 

A a a a  (5.12)  

 
0

1 , , 1, 2, 3.j k k j

if j k

if j k where j k

≠′ ′= =  = =
a a a ai i  (5.13) 

Note the order :  z ( )χR  operates first, then y ( )εR  and finally z ( )θR . Direct multiplication gives 

    

cos cos cos  -sin sin   sin cos cos +cos sin -sin cos

( , , ) = -cos cos sin -sin cos   -sin cos sin  +cos cos  sin sin

cos sin sin sin  cos  

χ ε θ χ θ χ ε θ χ θ ε θ 
 χ ε θ χ ε θ χ θ χ ε θ χ θ ε θ 
 χ ε χ ε ε 

A  (5.14) 

Equation ( ) with ( , , )ija χ ε θA A , element by element, yields the direction cosines in terms of the three Euler an-
gles. 

The Euler angles lose their uniqueness for 0;  and ε = χ θ are then undetermined. In order to avoid this non-
uniqueness Cardan angles have been introduced. 
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        5.1.1.2 Cardan angles  

Cardan angles α, β, γ , related to the xyz-axis, are uniquely determined as follows: 

 x

1 0 0

( ) 0 cos sin

0 sin cos

 
 α = α α 
 − α α 

R  (5.15) 

 y

cos 0 sin

( ) 0 1 0

sin 0 cos

β − β 
 β =  
 β β 

R  (5.16) 

 z

cos sin 0

( ) sin cos 0

0 0 1

γ γ 
 γ = − γ γ 
  

R  (5.17) 

 x y z

cos cos  cos sin -sin

= ( ) ( ) ( ) = sin sin cos -cos sin   sin sin sin  +coscos  sin cos  

cos sin cos  +sin sin  cos sin sin  -sin cos  cos cos  

β γ β γ β 
 α β γ α β γ α γ α β γ α γ α β 
 α β γ α γ α β γ α γ α β 

R R R R  (5.18)  

which consists of successive rotations by: γ  about the z-axis, β about the new y-axis, α about the new x-axis. The 
order of rotations is a matter of convention and the one used here is known as the xyz convention. The main 
reason for the popularity of this xyz convention is that it does successive rotations about three different axes.  

The meaning of R is that any vector x given with respect to axes fixed which are in space, is then represented by 
Rx with respect to the rotated axes. Essentially the elements of ′R , therefore, give the directional cosines of the 
rotated axes relative to the fixed axes.               

Since R is an orthogonal matrix, the transformation y=Rx is an orthogonal transformation (rotation). The column 
and row vectors of R are orthonormal, that is, when we represent R in the form 

 
11 12 13

21 22 23 1 2 3

31 32 33

[ ]

r r r

r r r

r r r

 
 = = 
  

R r r r  (5.19)  

 
0

1 , , 1, 2, 3.j k k j

if j k

if j k where j k

≠′ ′= =  = =
r r r ri i  (5.20) 

The Cardan angles can be obtained from the given rotation matrix 3 3×∈R R . 
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33
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2 2 2 2
11 12 23 33
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: 0

if 0 and 0, or equivalently cos 0, then ,  2

arctan( )

arctan( )

arctan( ) or arctan( )otherwises  

arctan( )

r r

r

r

r

r

r r

r r r r

r

r

α =
 πβ == = β = 


γ =


α =

 − −β = β = + +

γ =


 (5.21) 

The relationship between the three Euler angles and the three Cardan angles has been given in Grafarend (1982). 
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        5.1.1.3  The alternative choice  

The simplest way to define three orthonormed directions, i.e., an orthonormed basis of vectors in 3-D is to define 
the three 3-D rotations that connect the given basis with the natural basis {1, 0, 0}, {0, 1, 0} and {0, 0, 1}. These 
could, for instance, be the three angles, but these angles do not generalize up to higher dimensions. Instead, we 
choose three following rotations (Xu 1999b, Tarantola, et al. 2000). These rotation matrices are also called Giv-
ens matrices and the operation of going from x to Ux is called a Givens transformation (Searle 1982, p.72).  

The Givens matrices with the angle θ32  θ31  θ21  related to the x,  y and z-axes are 

 32 32 32 32

32 32

1 0 0

( ) 0 cos sin

0 sin cos

 
 θ = θ θ 
 − θ θ 

U  (5.22) 

 
31 31

31 31

31 31

cos 0 sin

( ) 0 1 0

sin 0 cos

θ θ 
 θ =  
 − θ θ 

U  (5.23) 

 
21 21

21 21 21 21

cos sin 0

( ) sin cos 0

0 0 1

θ θ 
 θ = − θ θ 
  

U  (5.24) 

 

31 21 31 21 31

32 32 31 31 21 21 32 31 21 32 21 32 31 21 32 21 32 31

32 31 21 32 21 32 31 21 32 2

cos cos  cos sin sin

= ( ) ( ) ( ) = -sin sin cos -cos sin   -sin sin sin +cos cos  sin cos

-cos sin cos +sin sin -cos sin sin - sin cos

θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ
U U U U

1 32 31 cos cos

 
 
 
 θ θ 

  (5.25) 

which consists of successive rotations by: 21θ  about the z-axis, - 31θ  about the new y-axis, 32θ  about the new x- 
axis and is presented in Figure 5.1. The order of rotations is matter of convention and the one used here is known 
as the xyz convention. The main reason for the popularity of this xyz convention is that it does successive rota-
tions about three different axes.  

 

(a)                                                   (b)                                                      (c) 

Figure 5.1 (a) Rotation about z through angle 21θ ; (b) Rotation about  y′  through angle 31θ− ; (c) Rotation about  
                  x′′  through angle 32θ . 

The meaning of U is that any vector x, given with respect to axes which are fixed in space is again represented  
by Ux with respect to the rotated axes. As above the elements of ′U , therefore, give the direction cosines of the 
rotated axes relative to the fixed axes.               

Since U is an orthogonal matrix, the transformation y=Ux is an orthogonal transformation (rotation). The column 
and row vectors of U are orthonormal, that is, when we represent U in form 
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11 12 13

21 22 23 1 2 3

31 32 33

[ ]

u u u

u u u

u u u

 
 = = 
  

U u u u  (5.26) 

 
0

1 , , 1, 2, 3.j k k j

if j k

if j k where j k

≠′ ′= =  = =
u u u ui i  (5.27) 

The rotation angles can be determined from the given rotation matrix 3 3×∈U R  
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u
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u

θ =
 πθ == = θ = 
 −

θ =


 θ =

θ = θ = + +

 θ =


 (5.28) 

In order that the spectral decomposition is unique, the three angles θ32, θ31 and θ21 are all defined between 
/ 2 −π and / 2π . Thus the two element  11 33 and u u  of the orthogonal matrix U should be positive. 

With (5.22)~(5.28) we can establish the relationship of the strain tensor with its eigenvalues and eigendirections 
uniquely.  

All the three slightly different representations of the orthogonal matrix U are mathematically equivalent. Since it 
is not convenient to generalize the Euler (5.8) ~ (5.14) and Cardan (5.15) ~ (5.18) representations to the n-
dimensional case, and in order to take the advantage of Givens representation (5.22) ~ (5.25) that does succes-
sive rotations about three different axes, we will confine ourselves to the Givens representation in the study of a 
three-dimensional rank-two random tensor.  

        5.1.2 The eigenspace analysis versus eigenspace synthesis of a three-dimensional, symmetric rank-two  
       random tensor  

The formulae (5.3) ~ (5.7) and (5.25) ~ (5.28) establish the eigenspace analysis. The diagonal matrix Λ  contains 
the eigenvalues 1 2 3, ,λ λ λ ,  the orthonormal matrix U the eigencolumns, also called coordinates of the eigenvec-
tors, namely 11 21 31[ , , ]u u u ′ , 12 22 32[ , , ]u u u ′  and 13 23 33[ , , ]u u u ′. Since 3 3×∈U

�

R is an orthonormal matrix, it is con-
structed by the trigonometric representation with three rotational angular parameters. These angular parameters 
establish the eigenorientation, namely the orientation of the eigendirections. The solution of the eigenvalue-
eigencolumn equation is not unique, as it is generated by the quadratic equations (5.6). If we assume that the 
elements 11 33,and u u  of the eigencolumns have to be positive when the three angles θ32, θ31 and θ21 are all defined 
between / 2 −π and / 2π . we arrive at (5.30), (5.32) and (5.33), respectively. Note that we have defined the angu-
lar parameters θ32, θ31 and θ21 in a half open domain in order to avoid any singularity. 

 
Corollary 5.1 (eigenvalue-eigenvector analysis) 

For a symmetric tensor 3 3×∈T
�

R the eigenvalues 1 2 3, andλ λ λ � as well as                                            
the rotational parameters θ32, θ31 and θ21, which constitutes the orthonormal  
matrix 3 3×∈U

�

R  of eigenvectors are analytically represented by  

the characteristic equation 

 3| | 0λ− =T I . (5.29) 

which is a cubic in λ, namely: 

 3 2 0I II III− + − + =λ λ λλ λ λ  (5.30) 
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where 

 
11 22 33

2 2 2
22 33 33 11 11 22 23 13 12

2 2 2
11 22 33 12 23 13 11 23 22 13 33 122

I t t t
II t t t t t t t t t

III t t t t t t t t t t t t

λ

λ

λ

= + +
= + + − − −
= + − − −

  

The three roots 1 2 3, ,λ λ λ  are called principal components (eigenvalues) with 

 
1 2 3

2 3 3 1 1 2

1 2 3

I
II

III

= + +
= + +
=

λ

λ

λ

λ λ λ
λ λ λ λ λ λ
λ λ λ

 (5.31) 

The related eigenvectors ( 1,2,3)i i =U  are solutions of the homogeneous equations: 

 3( )i iλ− =T I U 0  (5.32) 

The rotation angles can be determined from the given rotations matrix 3 3×∈U R  (5.25): 

31 21 31 21 31

32 32 31 31 21 21 32 31 21 32 21 32 31 21 32 21 32 31

32 31 21 32 21 32 31 21 32 2
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 
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 θ θ 

 

following (5.28): 
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 θ =

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In order that the spectral decomposition is unique, the three angles θ32, θ31 and θ21  
are all ] / 2, / 2]∈ −π π . Thus, the two element  11 33 and u u  of the orthogonal matrix  
U should be positive. 

Corollary 5.2 (eigenvalue-eigenvector synthesis) 

Given the eigenvalues 1 2 3, andλ λ λ �as well as the rotational parameters θ32, θ31 and θ21, which  
constitute the orthonormal matrix 3 3×∈U

�

R  of eigencolumns, the symmetric  tensor 3 3×∈T
�

R  
is synthetically represented by 
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On the basis of Corollary 5.1 (eigenspace analysis) and Corollary 5.2 (eigenspace synthesis) we are able to por-
tray the three-dimensional symmetric strain tensor T, which can be visualized as strain ellipsoid, if 1 2 3,  and λ λ λ  
are all positive, but as the strain hyperboloid, if 1 2 1 3 2 3sign sign or sign sign or sign sign≠ ≠ ≠λ λ λ λ λ λ . Figure 
5.2 and Figure 5.3(a) illustrate the strain ellipsoid, Figure 5.3 (b) and (c) illustrate the strain hyperboloid. In the 
first case (Figure 5.2 or Figure 5.3(a)), the axes of the strain ellipsoid are directed along the eigenvectors of the 
strain tensor; the semi-major axes of the strain ellipse are identified with the maximum principal strain, interme-
diate principal strain as well as the minimum principal strain, constrained by 1 2sign sign= =λ λ 3sign 1= +λ . 
Alternatively, in the second case (Figure 5.3 (b)), the axes of the strain hyperboloids of one sheet are directed 
along the eigenvectors of the strain tensor, indicated by the “real axes” showing 1 2,λ λ  and the “imaginary axis” 
with 3| |λ ; and in the third case (Figure 5.3 (c)), the axes of the strain hyperboloids of two sheet are directed 
along the eigenvectors of the strain tensor, indicated by the “real axis” showing 2λ  and the “imaginary axes” 
with 1 3| |  and | |λ λ , for instance.  If sign 1i = +λ  we speak of extension, if sign 1i = −λ   of contraction instead.  

The notations used in describing the three-dimensional strain tensor will be defined in Box 5.1. 

Box 5.1: (three-dimensional strain tensor)                            

The representation of three-dimensional strain tensor 

Three-dimensional strain tensor components: 

 11 22 33, ,t t t  the normal strain along the 1-, 2- and 3- axis  (xyz-axis), respectively; 

 12 13 23, ,t t t  the shear strain between the respective pairs of axes. 

The principal components: 

 1λ � maximum principal strain, the greatest change of length per unit length; 

 2λ �intermediate principal strain, the intermediate change of length per unit length; 

 3λ � minimum principal strain, the smallest change of length per unit length; 

32 31 21, ,θ θ θ , the orientation of the three principal strain axes, respectively. 
 
 

 

 

Figure 5.2. The strain ellipsoid of a three-dimensional strain tensor 
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Figure 5.3. The strain ellipsoid and hyperboloid of a three-dimensional strain tensor: 
(a)   λ1> 0, λ2> 0 and  λ3> 0, an ellipsoid;  
(b) λ1> 0, λ2> 0 and  λ3< 0, a hyperboloid of one sheet; and  

                                (c)   λ1< 0, λ2> 0 and  λ3< 0, a hyperboloid of two sheet.   

5.2 The linearized multivariate Gauss-Markov model for the estimation of eigenspace  
      components of a three-dimensional, symmetric rank-two random tensor 

Chapter 5.1 has documented that the eigenspace synthesis of a symmetric random tensor is nonlinear in terms of 
the tensor-valued observations, and there is no simple probability density function of the distribution of random 
eigenspace components. Accordingly we are unable to derive the exact sampling distribution directly. Here, we 
will derive the linearized counterpart for sampling the eigenspace synthesis parameters from the originally 
nonlinear observation equations. The Σ -BLUUE of eigenspace components and their variance-covariance ma-
trix estimate of type BIQUUE will be developed in accordance with the formulas presented earlier by J. Cai, E. 
Grafarend and B. Schaffrin (2001b). Using the eigenspace analysis versus eigenspace synthesis presented in 
Chapter 5.1 and the same notation of n observations of T, namely T1, T2,… , T n  whose related vectorized forms 
are y1, y2, …, yn, and 6

1 2[ , , , ]  n
n

×= ∈Y y y y � �
R� , we can define the nonlinear Gauss-Markov model which is 

presented by (5.34) ~ (5.37) , where 1 denotes the 1n×  "summation vector" with all its entries being 1. 

Box 5.2: 

Special nonlinear multivariate Gauss-Markov 
 model for sampling the eigenspace synthesis 

 ( ) ′= +Y F ξ 1 E  (5.34) 

1st moments 
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with the eigenvalue-eigenvector synthesis (5.33) 
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 2nd moments 

                                  "independent between observations",               "i.i.d. observations" 

(5.36)  
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6 6 positive-definite, rk 6 ,

, { }, { } unknown, unknown (but patterned).
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With the same linearization procedure as in (4.21) the linearized observation equations (5.35) are presented in 
Box 5.3 in detail:    

Box 5.3: 

Linearization of nonlinear observation equation 

                                   First set of observation:        
1.1 11.1

6.1 33.1

y t

y t

   
   =   
      

� �  

                                  Define:  0 1.1 2.1 3.1 32.1 31.1 21.1[ , , , , , ]=ξ λ λ λ θ θ θ  

"Linearized nonlinear model" 

 0 0 0 0( ) ( ) ( ) [( ) ( )]− = ∆ + − ⊗ −F ξ F ξ J ξ ξ ξ ξ ξ ξO  (5.38) 

"Jacobi matrix" 
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 (5.39)  

 1.1 2.1 3.1 32.1 31.1 21 10 ., , ,( ) ( ), ,= =J ξ J λ λ λ θ θ θAAAA . (5.40) 
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It is important to remark that the absolute value of the Jacobian is: 

 2 3 1 3 1 2 31 1 2 3| det | ( )( )(( )cos , where  always, λ λ λ λ λ λ θ λ λ λ= − − − ≥ ≥J  (5.41) 

which is useful in derivation of the probability density function of the three-dimensional random tensor spectrum 
(Xu, 1999a, b). 

Based upon the Taylor series expansion for ( )F ξ  we shall again apply the Gauss-Newton iteration scheme with 

0 1.1 2.1 3.1 32.1 31.1 21.1[ , , , , , ]=ξ λ λ λ θ θ θ  as the starting point. 0ξ  is determined by solving once the eigenvalue analysis 
equations as indicated by Corollary 5.1 for the sample one. In this way, we have established the design matrix of 
the first kind 0( )= J ξAAAA  as the Jacobi matrix J at the point 0ξ . The special linearized multivariate Gauss-
Markov model for sampling the eigenspace of a three-dimensional, symmetric random matrix is identical with 
(4.25) ~ (4.30) in the two-dimensional case of Chapter 4.2.  

With these definitions and the observations of a random tensor we can again estimate the eigenspace compo-
nents ξ of type Σ - BLUUE (Best Linear Uniformly Unbiased Estimation) and ˆ

yΣ  as the BIQUUE (Best In-
variant Quadratic Uniformly Unbiased Estimate) of  the variance-covariance matrix yΣ , as was summarized in 
Theorem 4.3 and 4.4. 

5.3 Hypothesis testing for the estimates of eigenspace components of a three-dimensional,  
      symmetric rank-two random tensor 

With the estimates of eigenspace components of a random strain rate tensor and their dispersion matrix the fol-
lowing multivariate hypothesis tests are suggested: 

• Test for the eigenspace parameter vector 0 with= yΣξ ξ  unspecified (Box 5.4);  

• Test for a distinct element of the eigenspace parameter vector with Student t- test (Box 5.5);  

• Eigen-inference about the orthonormally transformed parameters η (Box 5.6);   

• Test for the variance-covariance matrix 0=yΣ Σ (Box 5.7);  

• Test for the eigenspace parameter vector and variance-covariance matrix  0 0,= =yΣ Σξ ξ (Box 5.8). 

Box 5.4: 

        Multivariate hypothesis test about the eigenspace parameter vectorξ  
        assuming Gauss-Laplace normally distributed observations of a three- 
        dimensional, symmetric rank-two random tensor    

 01 0 11 0 for  : , : with unspecified;First Test = ≠ yξ ξ ξ ξ ΣH H  
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 "Hotelling's 2T  statistic"  

(Hotelling 1931, Muirhead 1982, Rencher 1998) 
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is an element of Fisher’s F-distribution 6, 6nF −  (Rencher 1998) and 
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where 6, 6(1 )nF − −α  is the upper (100 )thα  percentile of Fisher’s F-distribution.  
This leads immediately to a test of the hypothesis 01 0: =ξ ξH versus 11 0: ≠ξ ξH .  
 At the α  error probability,  we reject 01H in favor of 11H if  

 2 1 2
ˆ 6 10 60 ,
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Box 5.5 

Separate Student t-tests about the eigenspace parameters inξ  

 02 1 10 2 20 3 30 32 320 31 310 21 210

12 1 10 2 20 3 30 32 320 31 310 21 210

 for  :

(separately) :

Second Test λ λ λ λ λ λ θ θ θ θ θ θ
λ λ λ λ λ λ θ θ θ θ θ θ
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≠ ≠ ≠ ≠ ≠ ≠

H

H
 

 "two-sided tests with the test quantities" 
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 (5.43)  

with respect to 1 2 3 32 31 21
ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,λ λ λ θ θ θ  of type Σ -BLUUE and their variances.  

t1, t2, t3,  t4,  t5  and t6 are elements of the Student t-distribution with n-1 degrees 
of freedom. 

The probability identity  

 1 2 1 0 2 0ˆ ˆ ˆ{ } { } 1P c t c P c c≤ ≤ = + ≤ ≤ + = − =σ µ µ σ µ α γ  

relates the error probability α  of the two-sided test to the confidence level γ .  
If µ̂  is an element of the confidence interval 1 0 2 0ˆ ˆ ˆc cσ µ µ σ µ+ ≤ ≤ +  , the null  
hypothesis 0 0: µ µ=H  is accepted. We reject 0H  if the confidence interval  
does not contain ̂µ .  
 

Box 5.6: 

Eigen-inference about the transformed parameters η   

 Eigen-tests (alternative to the second tests) 
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12 1 10 2 20 3 30 4 40 5 50 6 60
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 (5.44) 

with respect to 1 2 3 4 5 6ˆ ˆ ˆ ˆ ˆ ˆ, , , , andη η η η η η  and their related variances. t1, t2, t3,  t4,  t5 

                     and t6 are elements of the Student t-distribution with n-1 degrees of freedom. 

The probability identity  

 1 2 1 0 2 0ˆ ˆ ˆ{ } { } 1P c t c P c c≤ ≤ + = + ≤ ≤ + = − =σ η η σ η α γ  

relates the error probabilityα  of the two-sided test to the confidence level γ .  
If η̂  is an element of the confidence interval 1 0 2 0ˆ ˆ ˆc c+ ≤ ≤ +σ η η σ η  , the null 
hypothesis 0 0: =η ηH  is accepted. We reject 0H  if the confidence interval does  
not contain ̂η . Accordingly, we accept the original null hypothesis about the  
eigenspace components. 



                                    Chapter 5.  Statistical inference of the eigenspace components of a 3-D random tensor 
 
90

 

Box 5.7 

        Multivariate hypothesis tests about the variance-covariance matrix yΣ   

 03 0 13 0for  : ,  :Third Test = ≠y yΣ Σ Σ ΣH H  

"unbiased modified likelihood ratio statistic 1Λ " 
(Giri 1977, Muirhead 1982, Koch 1999, Koch 2001) 

 ( )6( 1) / 2
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1 0 01
1ˆ ˆ(det( 1) ) etr{ ( 1) }2

n
n

n n ne −
− − −

−Λ = − − −y yΣ Σ Σ Σ  (5.45) 

with respect to the sample variance-covariance matrix ˆ
yΣ  of type BIQUUE .   

Since our sample size is relatively small we have to use the exact    
distribution of 12log− Λ ,whose upper 5 and 1 percentage points have been 

   provided by Muirhead (1982, p.360). 
 

Box 5.8 

Multivariate hypothesis tests about the eigenspace parameter  
vector ξ and the variance-covariance matrix yΣ   

 04 0 0 14 0 0 for  : , ,  :Fourth Test or= = ≠ ≠y yξ ξ Σ Σ ξ ξ Σ ΣH H  

"unbiased likelihood ratio statistic 2Λ " 
(Anderson 1984, Muirhead 1982) 
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with respect to the eigenspace components of type Σ -BLUUE  and variance- 
covariance matrix ̂ yΣ  of type BIQUUE and 1 1

ˆ 00
(1/ )( )n − −′=

ξ
Σ ΣA AA AA AA A .   

Since our sample size is relatively small we have to use the exact distribution of  

22log− Λ , whose upper 5 and 1 percentage points have been provided by  
Muirhead (1982, p.371). 
 
 



 

 

Chapter 6 

The analysis of the eigenspace components of the strain rate tensor   
in central Mediterranean and Western Europe, 1992-2000 

We have achieved the complete solution to the statistical inference of eigenspace components of the deformation 
tensors. The models developed in the last two chapters are closed and practical. The results bring a sound mean-
ing to the deformation analysis. With these models we could successfully perform the statistical inference of the 
eigenspace components vector and the variance-covariance matrix of the Gauss-Laplace normally distributed 
observations of a random deformation tensor.  

With the new space geodetic techniques, such as GPS, VLBI, SLR and DORIS, three-dimensional positions and 
change rates of network stations can be accurately determined from the regular measurement campaign, which is 
acknowledged as an accurate and reliable source of information in Earth deformation studies. This fact suggests 
that the components of deformation measures (such as the stress or strain tensor, etc.) can be estimated from the 
highly accurate geodetic data and analyzed by means of the proper statistical testing procedures. While station 
velocity diagrams demonstrate relative motions among stations, strain rate diagrams show the in-situ strain con-
centration rate which is directly connected to local stress concentration rates and possibly also to seismic hazard 
potentials (Ward, 1994). In strain analysis the displacements are considered as continuously differentiable ac-
cording to the surface coordinates. The strain tensor components determined by means of the positional changes 
of the observation stations can be used for the computation of the stress tensors’ components, taking into account 
the properties of the available materials within the investigation area. Therefore, the strain analysis can be con-
sidered as a basis of a dynamic model whereas the classical deformation analysis is similar to a kinematic model 
(see, e.g. Flügge 1972, Means 1976, Grafarend 1977, Brunner, 1979 and  Altiner 1999).  

The first geodetic deformation strain analysis based on the geodetic horizontal displacement was published by 
Tsuboi (1932), who computed the strain pattern using the horizontal displacement of control points in the Tango 
area of Japan during the period 1900 to 1930, which contains the Tango earthquake of magnitude 7.4 in 1927. 
The classic strain calculation methods from geodetic observations (distance, direction etc.) are contributed to 
Frank (1966), Savage and Hastie (1966) and Prescott (1976). Until now, more and more papers are published  
dealing with the stress, strain or strain rate deformation on the Earth’s surface, such as Angelier (2002), Haines 
and  Holt (1993), Kahle et al. (1995), Kreemer et al. (2000), Savage et al. (2001), Scherneck et al. (2002) and 
Shen et al. (1996). 

The eigenspace components parameters (eigenvalues and principal directions) are of special importance in the 
deformation tensor analysis, for instance, the prediction of seismic activity. Due to the nonlinear functional rela-
tionship between the eigenvalues, the principal direction and the random tensor T, the variance-covariance of the 
eigenspace components is commonly calculated using a first-order approximate (Angelier et al. 1982, Soler and 
van Gelder 1991 and Feigl et al. 1990). With the benefit of the development of space geodesy and the continu-
ous observations of the permanent networks including the International GPS Service (IGS) Network, Interna-
tional Laser Ranging Service (ILRS) Network,  International VLBI Service for Geodesy and Astrometry (IVS) 
Network and International DORIS Service (IDS) Network and their combination International Terrestrial Refer-
ence Frame (ITRF) by IERS, we can now derive the strain rate tensor observations and estimate the eigenspace 
component parameters of these random tensor samples with our developed theory in the last two chapters, which 
addresses not only the present-day deformation pattern but also their continuous change of them.  

In this chapter we begin with the discussion of  the geodynamic setting of the Earth and especially the selected  
investigated region- the central Mediterranean and Western Europe. Then the space geodetic observations are 
introduced. Thirdly, the ITRF sites are selected according to the history and quality of the ITRF realization se-
ries, and the related residual velocities of selected ITRF sites are computed. Further, the methods of derivation 
for the two- and three-dimensional geodetic stain rates are introduced and applied to derive these strain rates 
from the residual velocities. In two case studies both BLUUE and BIQUUE models and hypothesis tests are 
applied to the eigenspace components of the two- and three-dimensional strain rate tensor observations in the 
area of the central Mediterranean and Western Europe, as derived from ITRF92 to ITRF2000 series station posi-
tions and velocities in Sections 6.6.and 6.7. The related linear hypothesis test has documented large confidence 
regions for the eigenspace components, namely eigenvalues and eigendirections, based upon real measurement 
configurations. They lead to the statement to be cautious with data of type extension and contraction as well as 
with the orientation of principal stretches. 
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6.1 Geodynamic setting of the investigated region  

Planet Earth is a dynamic system that evolved within 4.6 billion years and continues this evolution. It depends on 
the way how heat - "the geological lifeblood of planets" is transferred out of the cooling Earth by thermal con-
vection (hot stuff rises). Thermal convection causes plate tectonics: plates of the earth's surface move relatively 
to each other at a few mm/yr, which causes earthquakes, volcanoes, mountain building at plate boundaries. As 
the Earth’s most important tectonic process, plate motion was first quantitatively described in the early 1960s. 
Conventional relative plate motion models are derived from combining rates of plate motion, inferred from mag-
netic anomalies at mid ocean ridges, with directions of plate motion, inferred from the azimuths of transform 
faults,  and earthquake slip vectors at plate boundaries. These data are systematically inverted to yield a global 
model of the geologically “instantaneous” (covering the past few million years) motion between plates. Such a 
model is described by a set of angular velocities (Euler vectors) specifying the motion of each plate to one arbi-
trarily fixed plate. The first plate motion models were presented by Minster and Jordan (1978) and Chase 
(1978). Many new high-quality plate motion models have become available since the publications of these mod-
els. The new data have been used to determine improved global models, for example NUVEL-1 (DeMets et al. 
(1990), (Argus and Gordon 1991) and its successor NUVEL-1A (DeMets et al. 1994). These models can explain 
the large-scale features of plate kinematics. Major deformations only take place in the comparatively narrow 
zones near the plate boundaries. Consequently, a large number of intense earthquakes occur near these zones. On 
the other hand, there is a low level of seismicity in the interior of plates. Figure 6.1 shows the boundaries of the 
major plates and the tectonic activity of the Earth (Davidson, Reed and Davis 2002).  

 

Figure 6.1. Boundaries of the major plates and the tectonic activity of the Earth (Davidson, Reed & Davis 2002)  

From Figure 6.1 we can see that the recent major tectonic processes occur within the large-scale kinematic 
framework of active seafloor spreading (divergence) in the Atlantic Ocean and the African–Eurasian conver-
gence (subduction) boundary in the Mediterranean. The spreading rate in the South Atlantic (~ 40 mm/yr), 
higher than that of the North Atlantic (~ 20 mm/yr) leads to a gradual counterclockwise rotation of the African 
plate, resulting in a NNW-directed push against Eurasia, which in turn leads to a lithospheric shortening of 5–6 
mm/yr, increasing to 40 mm/yr in active subduction zones (Argus et al. 1989). With NW–SE-oriented spreading 
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in the North Atlantic, the whole region is expected to be under compression, particularly the Mediterranean area. 
It is widely recognized that the Mediterranean area represents the collision zone between the African/Arabian 
and Eurasian plates, but the deformation pattern of this region is characterized by a complex space-time distribu-
tion of compressional and tensional events. The active volcanoes and earthquakes in this region show evidently a 
high seismic activity due to relatively strong tectonic forces that govern the compression zone. Moreover, a 
widespread intraplate seismicity occurs in the region which illustrates that the plate collision zone is complex 
and not sharply defined.  

Therefore we would choose the Western European and Mediterranean areas to perform the statistical analysis of 
the eigenspace components of two- and three-dimensional strain rate tensor observations.  

As pointed out by Grafarend and Voosoghi  (2003), the European and Mediterranean area, is known as an ex-
traordinary natural laboratory for the study of seismotectonic processes. This area is geologically, geophysically, 
and geodetically, one of the best-studied regions on the Earth’s surface. The research interest encompasses the 
past 100 years and consequently a huge number of publications exists addressing local and regional geodynami-
cal processes. A list of sample references are also provided in some papers, such as, McKenzie (1970), Cross et 
al. (1987), Jackson and Mckenzie (1988), Argus et al. (1989), Smith et al. (1990), Castellarin et al. (1992), 
Mueller et al. (1992), James and Lambert (1993), Ward (1994), Reilinger et al. (1997a, b), Clarke et al. (1998), 
Kahle et al.(1998), DeMets and Dixon (1999), Caporali et al. (2001). More recently, the present-day crustal 
motions in central Mediterranean area and in Western Europe, are studied by Anzidei et al. (2001), Devoti et al. 
(2002a, b), Grenerczy (2002), Caporali (2003a, b), Jimenez-Munt et al. (2003) and Nocquet and Calais (2003) 
with the newly developed continuous observation data from space geodetic networks, such as permanent GPS 
networks. 

The European and Mediterranean area can be divided into three main subregions with distinct geodynamic fea-
tures, namely Western Europe, Northern Europe and the Alpine-Mediterranean sub-regions. Based on the space 
geodetic observations history (10 or more years) we will focus on the behaviour of significant active deformation 
in the North of the Western Mediterranean with respect to Europe, i.e. two of the subregions, Alpine-
Mediterranean and Western Europe. Within Western Europe, weak seismic activity is observed. The area is 
characterized as a field of compressional tectonics. A generalized stress map of Europe (Mueller et al. 1992) 
indicates a generally NW-SE uniform orientation for the maximum compressive horizontal principal stress in 
Western Europe. The Alpine-Mediterranean region marks a broad transformation zone between the African, 
Arabian, and Eurasian plates. The region is expected to be largely under compression. It is characterized as a 
region of intensive seismic activity. The tectonic evolution of this region is strongly affected by the convergence 
of the microplates (Voosoghi  2000). In order to get reliable observation on the ongoing tectonic processes in this 
area we should select the sites (see Chapter 6.3) that are not affected by local geophysical phenomena.   

6.2 Space geodetic data 

According to F.R. Helmert (1880), the classic assignment of geodesy is the surveying and mapping of the earth’s 
surface and also of the gravitational field, enlarged by the requirements of accuracy. Space geodesy is geodesy 
by means of satellites, moon, planets, radio stars and quasars, which has been developed since end 1960s. At 
present there are four widely used techniques in space geodesy, Very Long Baseline Interferometry (VLBI), 
Satellite Laser Ranging (SLR), the Global Positing System (GPS) and the Doppler Orbitography and Radioposi-
tioning Integrated Satellite System (DORIS). The strengths of the different observing techniques include,  for 
example: VLBI has relationship to the inertial reference frame; SLR has relationship to the geocenter and the 
Earth’s gravity field; GPS is a highly operational system for the densification of the terrestrial reference frame; 
and DORIS has homogeneous global distribution of the tracking stations.  

These techniques combine precise satellite-based timing, ranging, and orbit estimation to measure the positions 
and velocities of geodetic sites to centimeter and centimeter/yr or better accuracy. In the past 10 years the scope 
and accuracy of space geodetic techniques has expanded greatly. In some regions geodetic measurements are 
probably more accurate than conventional global plate motion models, which gave the first in-situ measurements 
of plate motion (Beutler 2000). The present accuracy of geodetic VLBI has arrived at ±5-20 mm for session 
coordinates, the annual coordinate and velocity accuracy is ±1-4mm and ±0.1-1 mm/ yr, respectively (Schuh et 
al. 2002). The new generation of SLR ranging accuracy has reached mm level, which supports maintenance of a 
centimenter accuracy position. Nowadays the estimation accuracy form ten years of accurate global SLR obser-
vations is ±6 mm for coordinates and ±2 mm/year for the velocities (Angermann et al. 2001). With geodetic GPS 
techniques the station coordinates can be determined with achievable accuracy, in general ±1 cm and an annual 
velocity accuracy can be reached of about ±1 mm/yr. There are two services of DORIS: in operational geodesy 
with dedicated location beacons, any point on Earth at any time can be determined with about ±20 cm accuracy 
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after a one-day measurement time and ±10 cm after 5 days; the permanent beacon network delivers high preci-
sion 3D coordinates for geodetic and geodynamic applications. Positions and motions are available to better than 
±1cm and ±1mm/yr, respectively (Seeber 2003). 

With the capacity of accuracy and the wide distributions of stations on the Earth, space geodetic techniques pro-
vide measurements that can be used to infer crustal deformation over global scales and can be compared with 
predictions from conventional global plate motion models. It is interesting to explore cases where significant 
differences exist, to determine whether they reflect uncertainties and errors in one or both approaches, or instead 
reflect real differences in plate motions over different scales. However, space geodetic velocities within bound-
ary zones often differ from the predictions of plate motion models because geodetic velocities over a few years 
include the effects of transient elastic deformation associated with the cycle of strain accumulation and release in 
plate boundary earthquake (Savage 1983, Scholz 1990), which is averaged out over the millions of years used in 
global plate motion models. There are many comparisons about the different approaches, for instance, Drewes 
(1999) derived an Actual Plate Kinematic and Deformation Model (APKIM) from present day geodetic observa-
tions, such as VLBI, SLR and GPS. A series of such models has been developed. In the latest version, AP-
KIM2000, about 280 site velocities were used to estimate 12 plate rotation vectors. In general, the agreement 
between APKIM2000 and NNR-NUVEL-1A (Argus and Gordon 1991, DeMets et al. 1990) is very high. Sig-
nificant differences, however, are visible in plate boundary zones (Figure 6.2), where other plate kinematic mod-
els based on the 405 ITRF 2000 geodetic site velocities are also illustrated (Drewes and Angermann 2001).  

Figure 6.2. Station motions derived from the APKIM2000 model in comparison with ITRF2000 and the NNR 
NUVEL-1A model (Drewes and Angermann 2001) 

Eventually, however, deformation becomes slow and diffuse enough that it is more usefully regarded as intra-
plate. Space geodesy is ideal for addressing this issue because it can measure motions of a few mm/yr. As a 
result, there has been considerable interest in using space geodesy to quantify the rigidity of the major plates and 
investigate how deviations from plate rigidity give rise to intraplate deformations and earthquakes. The first step 
to estimate the rigidity of a plate using space-based geodesy is to find the motions of sites within it, and to com-
pare these motions to those predicted, assuming that the plate is rigid and so can be described by a single Euler 
vector. The next step is to use geodetic velocities to estimate the intraplate strain rate fields in various areas, and 
compare it to present-day seismicity, paleoseismicity, and geologic data. This is in principle straightforward; the 
strain field can be derived by forming least-squares estimates of the velocity gradient in various regions. The 
studies with GPS have not yet detected intraplate strain accumulation, but show that intraplate strain accumula-
tion rates are slow, which yields useful insight into seismic hazards. Nonetheless, given the rapidly growing 
number of continuous GPS sites and the longer spans of GPS data, it seems likely that the strain accumulation 
signal will soon “climb” above the noise and provide a valuable signal for investigation of intraplate tectonics 
(Stein and Sella 2002).  

Space geodetic data greatly simplify identification and study of continental microplates. The data are sufficient 
to estimate an Euler vector describing the micoplate’s motion relative to the major plates. During the last few 
years, precision and accuracy of the space geodesy techniques have been improved, and special efforts have been 
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dedicated to the combination of their results, such as those produced by the IERS (International Earth Rotation 
Service) and IGS (International GPS Service), which are fortunately dense and accurate in Europe. Many fixed 
stations in this region are fiducial stations of IGS and IERS global networks, and consequently the tracking his-
tory is remarkable for quality and quantity of data. Since the longer history of IERS and with benefit the combi-
nation of most of the space geodetic techniques, we will review it and choose the appreciated sites for our study 
regions.  

6.3 The selection of ITRF Sites and data preparation  

Before we begin to choose from the ITRF series results and the stations in the studied regions, let us make a 
review of the history of IERS and the realization of ITRF. 

6.3.1  The history of ITRF 

The IERS was established as the International Earth Rotation Service in 1987 by the International Astronomical 
Union and the International Union of Geodesy and Geophysics and it began operation on 1 January 1988. In 
2003 it was renamed to International Earth Rotation and Reference Systems Service (IERS, 2003). The primary 
objectives of the IERS are to serve the astronomical, geodetic and geophysical communities by providing the 
International Celestial Reference System (ICRS) and its realization, the International Celestial Reference Frame 
(ICRF); the International Terrestrial Reference System (ITRS) and its realization, the International Terrestrial 
Reference Frame (ITRF); Earth orientation parameters required to study earth orientation variations and to trans-
form between the ICRF and the ITRF; Geophysical data to interpret time/space variations in the ICRF, ITRF or 
earth orientation parameters, and model such variations and the standards, constants and models (i.e., conven-
tions) encouraging international adherence.  

The Conventional Terrestrial Reference System (CTRS), established and maintained by the IERS, and nearly 
exclusively used for today’s scientific and practical purposes is the International Terrestrial Reference System 
(ITRS), which constitutes a set of prescriptions and conventions together with the modelling required to define 
origin, scale, orientation and time evolution of a Conventional Terrestrial Reference System (CTRS). The ICRS 
is an ideal reference system, as defined by the IUGG Resolution No. 2 adopted in Vienna, 1991. The system is 
realised by the International Terrestrial Reference Frame (ITRF) based upon estimated three-dimensional coor-
dinates and velocities of a set of stations observed by VLBI, LLR, GPS, SLR, and DORIS. The ITRS can be con-
nected to the International Celestial Reference System (ICRS) by use of the IERS Earth Orientation Parameters 
(EOP). The ITRS is defined as follows (McCarthy 2003)  

− It is geocentric, the center of mass being defined for the whole Earth, including oceans and atmosphere;  
− The unit of length is the meter (SI). This scale is consistent with the TCG time coordinate for a geocen-

tric local frame, in agreement with IAU and IUGG (1991) resolutions. This is obtained by appropriate 
relativistic modeling;  

− Its orientation was initially given by the Bureau International de l'Heure (BIH) orientation at 1984.0;  
− The time evolution of the orientation is ensured by using a no-net-rotation condition with regards to 

horizontal tectonic motions over the whole Earth.  

Realizations of the ITRS are produced by the IERS’s ITRS Product Center (ITRS-PC) under the name Interna-
tional Terrestrial Reference Frame (ITRF). The current procedure is to combine individual TRF solutions com-
puted by IERS analysis centers using observations of space geodesy techniques: VLBI, LLR, SLR, GPS and 
DORIS. These individual ITRF solutions currently contain 3-dimensional Cartesian station positions and veloci-
ties together with full variance-covariance matrices. Currently, ITRF solutions are published nearly annually by 
the ITRS-PC in the Technical Notes (cf. Boucher et al., 1999). The numbers (yy) following the designation ITRF 
specify the last year whose data were used in the formation of the frame. Hence ITRF97 designates the frame of 
station positions and velocities constructed in 1999 using all of the IERS data available until 1998.  

Until now, 10 successive realizations of the ITRF have been published, starting with ITRF88 and ending with 
ITRF2000, each of which superseded its predecessor.  

From ITRF88 till ITRF93, the ITRF Datum Definition is summarized as follows:  

− Origin and Scale: defined by an average of selected SLR solutions;  
− Orientation: defined by successive alignment since BTS87 whose orientation was aligned to the BIH 

EOP series. Note that the ITRF93 orientation and its rate were again realigned to the IERS EOP series;  
− Orientation Time Evolution: No global velocity field was estimated for ITRF88 and ITRF89 and so the 

AM0-2 model of (Minster and Jordan, 1978) was recommended. Starting with ITRF91 and till ITRF93, 
combined velocity fields were estimated. The ITRF91 orientation rate was aligned to that of the NNR-
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NUVEL-1 model, and ITRF92 to NNR-NUVEL-1A (Argus and Gordon, 1991), while ITRF93 was 
aligned to the IERS EOP series.  

Since the ITRF94, full variance-covariance matrices of the individual solutions incorporated in the ITRF combi-
nation have been used. At that time, the ITRF94 datum was achieved as follows (Boucher et al., 1996):  

− Origin: defined by a weighted mean of some SLR and GPS solutions;  
− Scale: defined by a weighted mean of VLBI, SLR and GPS solutions, corrected by 0.7 ppb to meet the 

IUGG and IAU requirement to be in the TCG (Geocentric Coordinate Time) time-frame instead of TT 
(Terrestrial Time) used by the analysis centers;  

− Orientation: aligned to the ITRF92;  
− Orientation time evolution: aligned the velocity field to the model NNR-NUVEL-1A, over the 7 rates of 

the transformation parameters.  

The ITRF96 was then aligned to the ITRF94, and the ITRF97 to the ITRF96 using the 14 transformation pa-
rameters (Boucher et al., 1998; 1999).  

The ITRF network has improved with time in terms of the number of sites and collocations as well as their dis-
tribution over the globe. The ITRF88 network, having about 100 sites and 22 collocations (VLBI/SLR/LLR), 
and the ITRF2000 network containing about 500 sites and 101 collocations (VLBI/SLR/GPS/DORIS), see Fig-
ure 6.3 (McCarthy 2003).  With the improvements of the  analysis strategy  by the IERS Analysis Centers and 
the ITRF combination the ITRF position and velocity precisions have also improved with time. 

 
Collocation techniques � 20                                2                                            Collocation techniques � 70                               25                                     5 

Figure 6.3. The ITRF88 (left) and ITRF2000 (right)sites and collocated techniques. (McCarthy 2003) 

As the current Reference Realization of the ITRS,  the ITRF2000 is intended to be a standard solution for geo-
referencing and all Earth science applications. In addition to primary core stations observed by VLBI, LLR, 
SLR, GPS and DORIS, the ITRF2000 is densified by regional GPS networks in Alaska, Antarctica, Asia, 
Europe, North and South America, and the Pacific. The individual solutions used in the ITRF2000 combination 
are generated by the IERS analysis centers using removable, loose or minimum constraints. In terms of datum 
definition, the ITRF2000 is characterized by the following properties (McCarthy 2003) 

− the scale is realized by setting to zero the scale and scale rate parameters between ITRF2000 and a 
weighted average of VLBI and most consistent SLR solutions. Unlike the ITRF97 scale expressed in the 
TCG-frame, that of the ITRF2000 is expressed in the TT-frame;  

− the origin is realized by setting to zero the translation components and their rates between ITRF2000 
and a weighted average of most consistent SLR solutions;  

− the orientation is aligned to that of the ITRF97 at 1997.0 and its rate is aligned, conventionally, to that 
of the geological model NNR-NUVEL-1A. This is an implicit application of the no-net-rotation condi-
tion, in agreement with the ITRS definition. The ITRF2000 orientation and its rate were established us-
ing a selection of ITRF sites with high geodetic quality, satisfying the following criteria:  

• continuous observation for at least 3 years;  
• locations far from plate boundaries and deforming zones;  
• velocity accuracy (as a result of the ITRF2000 combination) better than ±3 mm/y;  
• velocity residuals less than ±3 mm/y for at least 3 different solutions.  

The ITRF2000 results show significant disagreement with the geological model NNR-NUVEL-1A in terms of 
relative plate motions (Altamimi et al. 2002). Although the ITRF2000 orientation rate alignment to NNR-
NUVEL-1A is ensured at the ±1 mm/y level, regional site velocity differences between the two may exceed ±3 
mm/y. Meanwhile it should be emphasized that these differences do not at all disrupt the internal consistency of 
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the ITRF2000, simply because the alignment defines the ITRF2000 orientation rate and nothing more. Moreover, 
angular velocities of tectonic plates which would be estimated using ITRF2000 velocities may significantly 
differ from those predicted by the NNR-NUVEL-1A model,  more details can be seen in Figure 6.3. 

      6.3.2  The realization of ITRF  

The construction of ITRF is based on the combination of sets of station coordinates (SSCs) and velocities de-
rived from observations  of space geodetic techniques, such as VLBI, SLR, and LLR by various analysis centers. 
In 1991, the IERS added GPS to this list of techniques; and in 1994, it added DORIS. For the determination of a 
station’s position in an ITRF, the station is assigned to a specific tectonic plate. The point position of the station 
at time, t, on the surface of the solid earth, is expressed as (Boucher and Altimini 1993): 

 0 0 0( ) ( ) ( )i
i

t t t t= + − + ∆ΣX X V X  (6.1) 

where 

i∆X :  corrections to the various time changing effects; 

0X   :  position at epoch to; 

0V    :  velocity at epoch to;  
 to    :  initial reference epoch (i.e. 1988.0). 

The coordinates of sites on the earth’s surface slowly change (by up to 10cm per year,or so) due to the motion of 
the tectonic plates – a component which is familiarly known as “continental drift”. The velocity 0V  should be 
expressed as  

 0 plate ice r= + +V V V V  (6.2) 

where 

 plateV :   is the horizontal velocity due to plate tectonic motion, which can be described by a geophysical  
and geological angular velocity vector YYω  (a Cartesian rotation vector with components ,Xω  

,Y Zω ω ) of the absolute plate motion models, such as the more recent NNR-NUVEL-1A; 
  iceV    :   is  the vertical velocity due to post glacial rebound, to be computed from models such as ICE- 
                           4G (Peltier 1995); 
 rV      :  is the residual velocity. 

In the data analysis X0, and rV  should be estimated parameters. When adjusting parameters, in particular veloci-
ties, the IERS orientation should be kept at all epochs, which means to ensure the alignment at a reference epoch 
and the time evolution through a no net rotation condition with regards to horizontal tectonic motion over the 
whole Earth.  

      6.3.3. The selection of ITRF series results and the stations 

With the review of the history of IERS and the realization of ITRF we will further discuss  the selection of ITRF 
series results and the stations in our studied region. 

Prior to ITRF91, no velocity field had been derived so the AMO-2 model (Minister & Jordan 1978) is applied to 
account for the time evolution of ITRS. ITRF91 was the first realization of ITRS to derive a global velocity field 
by combining site velocities estimated by SLR and VLBI analysis centres (Boucher and Altamimi 1993). To 
ensure the condition of no-net-rotation of ITRS with respect to the earth's crust, NNR-NUVEL1 was selected as 
the reference motion model of ITRF92. NNR-NUVEL1 is a horizontal motion model only. For the consistency 
of the three-dimensional nature of ITRS, the vertical velocity is set to zero with an assumed error of 1 cm/year 
(Boucher and Altamimi 1993). The ITRF is a dynamic datum which was introduced in ITRF88 meaning that 
every year there is a change. The change between ITRF91 and ITRF92 was less than 2cm, and as more observa-
tion became available and computational techniques improved, revised reference systems were produced, gener-
ally on an annual basis (ITRF93, ITRF94, ITRF96, ITRF97 and ITRF2000). However, the change between it and 
subsequent ITRF’s is only of the order of a couple of centimeters. To the early ITRF realizations there are some 
facts that should be considered in our selection:  

− The ITRF92 site velocities seem to be more realistic with respect to ITRF91 (Boucher and Altamini 
1993) and ITRF93 is consistent with NNR-NUVEL-1A;. 

− ITRF91 has less stations than ITRF92 and the following series; 
− The early realizations of ITRF are in lower accuracy, for instance, the standard formal error of station 

coordinates:  88 9120 , 10ITRF ITRFcm cmσ ≤ ± σ ≤ ±  and since 92 5ITRF cmσ ≤ ± . The standard formal error of 
station velocities: 91 92VITRF VITRFσ ≥ σ ; 
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− Early ITRFs accommodate the horizontal velocity of sites on plate boundaries by assigning a larger a- 
priori standard deviation (±10 cm/year) to the site’s velocity than for sites located on the rigid part of a 
tectonic plate (±3 mm/year) (Boucher et al. 1994);  

− Although the station coordinates are changed between different epochs, there is no difference between 
the velocity field of ITRF92 at epoch 88.0 and epoch 1994.0; 

− Nonetheless, these are small differences which demonstrate the excellent reliability of the ITRF velocity 
fields and the uniform motion hypothesis even over a fairly long period of time.  

In order to fulfil the quality requirements (in determination of successful strain calculation in Western Europe 
and central Mediterranean in our study), the ITRF sites are selected with high geodetic quality, satisfying the 
following criteria:  

• it is a primary permanent station after the standards of IERS since 1991 or collocated with sev-
eral observational techniques  

• has continuous observation for at least 3 years in 1992;  
• with station coordinate accuracy better than ±8 mm; 
• and velocity accuracy better than ±3 mm/y. 

Therefore we have chosen the 8 primary stations and one secondary station (Noto) with all collocated VLBI and 
SLR techniques from ITRF92 and their following series in Western Europe and central Mediterranean in our 
study, which are listed in Table 6.1 

Table 6.1 Catalogue of selected IERS Sites based on ITRF92 in Europe 

DOMES NB. SITE NAME      TECH. ID.    Country      Long.  Lat.   Plate   (*) 
                                                   d  m  d  m 
10002S001 GRASSE         SLR 7835  France        6 55  43 45  EURA      P C 

10402S002 ONSALA        VLBI 7213    Sweden       11 55  57 24  EURA      P C 

11001S002 GRAZ           SLR 7839    Austria      15 30  47 04  EURA      P C 

12711S001 BOLOGNA       VLBI 7230    Italy        11 21  44 29  EURA      P C 

12717S001 NOTO          VLBI 7547    Italy        14 59  36 53  AFRC/EURA S C 

12734S001 MATERA         SLR 7939    Italy        16 37  40 42  EURA      P C 

13407S010 MADRID        VLBI 1565    Spain       355 44  40 26  EURA      P C 

14001S001 ZIMMERWALD     SLR 7810    Switzerland   7 28  46 53  EURA      P C 

14201S004 WETTZELL      VLBI 7224    Germany      12 53  49 09  EURA      P C 

       (*)    P: Primary         S: Secondary         C: Collocation 

      6.3.4  The computation of residual velocities of ITRF stations 

Since we need the residual velocities in determination of the strain rate, the published ITRF velocity V0 should 
be converted to residual velocities rV  with respect to e.g. the Eurasian fixed plate by subtracting the rigid motion 
of Eurasia, which is computed by the angular velocity vector YYω  of the Eurasian plate in the absolute plate mo-
tion models of every ITRF realizations: 
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It should be noted that although the station Noto is located on the African plate, the motion of Matera was recog-
nized as neither purely Euro-Asiatic nor African. For the calculation of strain rate filed in the selected region we 
have to compute the residual velocity with respect to the same rigid plate, e.g. Eurasia plate. 

In the three-dimensional case the vertical velocity due to post glacial rebound should be considered in deriving 
the residual velocities rV : 
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In ITRF92 the orientation time evolution was ensured by aligning the corresponding velocity fields to NNR-
NUVEL-1 model (Argus and Gordon 1991, DeMets et al. 1990). So for ITRF92, YYω  corresponds convention-
ally to the angular velocity of the Eurasian plate in NNR-NUVEL-1 model. 

More recently, the geophysical model NNR-NUVEL-1A (DeMets et al. 1994) has been used as a reference in the 
ITRF93 velocity field computation. It should be noted that there is a rotation rate between the ITRF93 velocity 
field and the NNR-NUVEL-1A model (Boucher et al, 1994). Consequently for ITRF93, YYω  corresponds to the 
angular velocity of the Eurasian plate in the NNR-NUVEL-1A model to which we added the rotation rate be-
tween the ITRF93 velocity field and the NNR-NUVEL-1A model. As time evolution of ITRF94 is consistent 
with the model NNR-NUVEL-1A (Boucher et al, 1996), thus YYω  corresponds conventionally to the angular 
velocity of the Eurasian plate in this model. 

The reference frame definition (origin, scale, orientation and time evolution) of the ITRF96 is achieved in such a 
way that ITRF96 is in the same system as ITRF94 (Boucher et al. 1998). Consequently, YYω  is the same as for 
ITRF94. This same statement is also valid for ITRF97. 

For the first time ITRF2000 combines individual solutions that are free from any plate motion model. Its origin 
is defined by a weighted average of most consistent SLR solutions. Its scale is defined by most consistent SLR 
and VLBI solutions. Its orientation is aligned to ITRF97 at epoch 1997.0 and its orientation rate follows, conven-
tionally, that of NNR-NUVEL-1A model. The ITRF2000 velocity field was used to estimate angular velocities 
of 6 major plates, including Eurasia, showing significant disagreement with NNR-NUVEL-1A predictions. It is 
therefore recommended for YYω  to use the components of the Eurasian angular velocity estimated from 
ITRF2000 velocities of 19 European sites with higher geodetic quality. For more details, see Altamimi et al. 
(2002).  Table 6.2 summarizes the component values of YYω : 

Table 6.2   The estimation of YYω  

ITRF    ωX (mas/y)   ωY (mas/y)   ωZ (mas/y) 

92 
93 
94 
96 
97 

2000 

0.21   
0.32   
0.20   
0.20 
0.20  

  0.081  

0.52  
0.78   
0.50   
0.50   
0.50   

  0.490   

-0.68 
-0.67 
-0.65 
-0.65 
-0.65 

  -0.792 

In the two-dimensional case we need the surface (horizontal) residual velocities. Since the residual velocity from 
(6.3) is relatively small they can approximately be transformed from the global geocentric Cartesian coordinate 
system to the local geodetic system (Seeber 2003) using 

  

sin cos 0

sin cos sin sin cos
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ZrUr
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−    
    = − −    
        

 (6.5) 

where (B, L) are the geodetic ellipsoidal coordinate of a discussed ITRF site, which are converted from the 
global Cartesian coordinates of the ITRF sites (X, Y, Z) with respect to the GRS80 reference ellipsoid. The local 
geodetic system is defined as follows (Vanicek and Krakiwsky 1986): it is topocentric (T) ; the U-axis is the 
outward ellipsoid normal passing through T; the E-axis is directed towards geodetic east; the N-axis is directed 
towards geodetic north; Therefore two-dimensional surface (horizontal) velocities are the first two elements of 
( )E NV V . 

Based on the procedures ((6.3) and (6.5) ) derived above we can compute the horizontal residual velocities of 
every ITRF realizations with respect to the "Eurasian fixed’ plate motion model (see Table 6.3). They are listed 
in Table 6.3 together with the  ITRF92 to ITRF2000 velocity solutions of the selected stations in the central 
Mediterranean and Western Europe. The residual velocities will be used to compute the strain rates in the next 
section. Therefore, together with the principal strain rates for every epoch they are also illustrated in the next 
section.  

For the three-dimensional case we would like to apply directly the three dimensional Cartesian residual veloci-
ties in deriving the strain rate tensor for the six series of ITRF realizations in the selected sub-network including 
four sites :  1 - 4 - 8 - 9 (Grasse - Bologna - Zimmerwald - Wettzell). The three dimensional Cartesian residual 
velocities of the four selected sites are computed, based on (6.4) and listed in Table 6.4. 
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Table 6.3   Horizontal station velocities     

 
                               Velocity        Residual velocity          Velocity          Residual velocity         Velocity       Residual velocity  
       Site                 (mm/yr)              (mm/yr)                   (mm/yr)                 (mm/yr)                 (mm/yr)              (mm/yr) 
                            East    North         East    North           East    North          East    North          East    North          East    North 

                                              ITRF92                                                    ITRF93                                             ITRF94 

  Grasse               20.52     12.05        -0.49    -2.99         25.77     19.99          2.02   -2.73         20.72    12.76        0.62   -1.63 

  Onsala               16.12     15.20        -3.39     0.97         21.05     23.11         -2.44    1.60         16.95    13.88       -1.69     0.26 

  Graz                  22.04     16.37         -0.02     2.76        28.75     22.78           2.97    2.21         22.15    14.88        1.06     1.86 

  Bologna            22.23     17.23          0.49     2.95         26.37     25.21           1.41    3.62        22.38    16.14        1.60     2.47 

  Noto                  20.91     21.91        -2.16     8.20         25.62     29.06          -0.40    8.35        20.88    19.39       -1.19     6.27 

  Matera               22.62     19.37        -0.40     5.98         28.78     26.88           2.41    6.65        24.44    16.92        2.43     4.10 

  Madrid              19.71     16.82          0.23     0.44         21.09     25.49           0.09    0.73        18.68    16.12        0.06     0.44 

  Zimmerwald     21.66     16.90          1.04     1.95         25.94     25.15           2.35    2.56        19.70    16.32       -0.02     2.01 

  Wettzell            19.46     15.77         -1.81     1.69         24.24     23.41          -0.65    2.14        19.66    14.16       -0.68     0.69 

                                           ITRF96                                                       ITRF97                                           ITRF2000 

  Grasse              20.21     14.32          0.11    -0.07          19.79     13.06          -0.31   -1.33       20.34    14.71       -0.35    -0.01 

  Osala               17.34      13.11        -1.31    -0.51          17.19     13.18          -1.45    -0.44       17.25    13.59      -0.66    -0.69 

  Graz                 22.13     14.29         1.04     1.27           21.89     13.46           0.80     0.43        22.14    14.46       0.72     0.55 

  Bologna           23.83     15.14         3.04     1.46           23.12     15.32           2.34     1.64        23.36    16.14       2.03     1.83 

  Noto                 22.38     19.09         0.30     5.97           21.96     17.73          -0.11     4.61       21.28    18.05      -2.12     4.07 

  Matera              23.82     18.52         1.81     5.70           23.53     17.36           1.52     4.55       23.70    18.09       0.71     4.32 

  Madrid             19.65     15.05         1.02    -0.63           19.13     14.62            0.51    1.06       18.98    15.68      -0.58     0.40 

  Zimmerwald    18.60     15.01        -1.13     0.70           19.04     13.96          -0.68   -0.35        20.14    15.07       0.13     0.39 

  Wettzell           20.51     13.37         0.17    -0.10           20.19     13.41          -0.15   -0.06        20.27    14.37      -0.17     0.18 

 Table 6.4  Three-dimensional Cartesian station velocities 

Site 
   Velocity                      Residual velocity 

             (mm/yr)                               (mm/yr) 
    VX         VY        VZ             VrX        VrY      VrZ         

Velocity                       Residual velocity 
            (mm/yr)                                (mm/yr) 
    VX         VY        VZ             VrX        VrY      VrZ  

 ITRF92 ITRF93 

Grasse  

Bologna    

Zimmerwald 

Wettzell  

  -17.90     18.50       1.80       -5.08     -1.11     -9.09 

  -18.40     18.90     10.20       -4.24     -0.38     -0.02 

  -16.40     19.70     10.10       -2.93      0.66     -0.16 

  -16.90     16.10       9.20       -1.81     -2.27     -0.04 

  -17.80     23.80     13.50          0.61     2.11    -2.96 

  -26.30     21.50     14.30         -6.49     0.11    -1.14 

  -21.10     23.40     17.70         -1.74     2.14     2.20 

  -25.20     19.10     12.30         -4.02    -1.59    -1.67 

 ITRF94 ITRF96 

Grasse  

Bologna    

Zimmerwald 

Wettzell  

  -12.10     19.40      8.40           0.17     0.65    -2.03 

  -18.70     19.00      8.40         -5.14      0.57    -1.38 

  -13.50     18.10    12.10         -0.61     -0.10     2.28 

  -16.90     16.30      6.80         -2.46     -1.26    -2.05 

  -12.00     18.90     10.60         0.27      0.15     0.17 

  -14.20     21.40     11.80        -0.64      2.97     2.02 

  -11.10     17.30     12.60         1.79     -0.90     2.78 

  -15.90     17.40       7.00        -1.46     -0.16    -1.85 

 ITRF97 ITRF2000 

Grasse  

Bologna    

Zimmerwald 

Wettzell  

 -11.80     18.50     9.00           0.47     -0.25     -1.43 

 -18.00     19.90     8.10          -4.44      1.47     -1.68 

 -11.50     17.70   10.70           1.39     -0.50     -1.75 

 -15.80     17.10     7.10          -1.36     -0.46     -1.75 

  -13.10     18.90     10.10         -0.54     -0.42    -0.57 

  -18.70     20.00       8.60         -4.60      1.12    -1.64 

  -13.80     18.50     10.00         -0.61      0.05    -0.07 

  -15.70     17.20       8.70         -0.72     -0.33    -0.62 
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6.4  The computation of geodetic strain rate tensor 

With the prepared residual velocity of every ITRF series realization in the central Mediterranean and Western 
Europe we can now calculate and analyse the strain rate tensor in the two- and three-dimensional case with the 
methods introduced in the following sections. 

       6.4.1 The two-dimensional geodetic stain rate case 

The main objective of this study is to analyze the eigenspace component parameters of the two-dimensional 
strain rate tensor, which are derived from the two-dimensional horizontal residual velocities on the selected sites 
of the ITRF92 to ITRF 2000.  

When we select geodetic sites as vertices of convex polygons we can evaluate the strain tensor of the polygon by 
using the horizontal velocities. Let [ ]

i iE NV V ′ be the known horizontal residual velocity vector (6.5) of the poly-
gon vertex ‘i’ along the East and North directions on the local geodetic coordinate system; the following ap-
proximation can be written (Devoti et al. 2002a) 
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⇔
= + ∆V V L X

 (6.6) 

where [ ]
B BE NV V ′  is the unknown velocity vector for a reference internal point ‘B’, L  the velocity gradient tensor,  

[ ]i iE N ′∆ ∆ , the coordinate difference between the site ‘i’ and the reference point ‘B’, computed, respectively, as 
parallel and meridian arc length. For the infinitesimal strain rate we have the strain rate tensor ( ) / 2T= +T L L  
and the rotation rate tensors ( ) / 2T= −R L L  (Dermanis 2001). 

The approximation assumes a linear variation of the velocity components with respect to their coordinate differ-
ences. This holds true as long as the polygons are properly chosen, not only in terms of area, but also of expected 
tectonic behavior. The constant space gradients assumption is just a first order approximation of the underlying 
tectonic setting. Savage et al. (2001) give the formulation for estimating strain and rotation rates in a spherical 
coordinate system. The spherical solution gives insignificantly different results compared to the Cartesian ap-
proximation (6.6) for networks, such as a triangulation,  which is several hundred kilometres in aperture.  

Since the continuous of velocity field Vr is unknown, but only the discrete values at points ’ i’ are known, we 
have to use an interpolation method to obtain the velocity field Vr at any other point. There are many interpola-
tion methods, such as (Dermanis 2001): (a) Finite Element Method (FEM)-Linear interpolation within each 
triangle (Grafarend 1986, Straub 1996); (b) Interpolation using basis functions (e.g. Haines and Holt 1993) and 
(c) Collocation (minimum norm interpolation with infinite basis functions) (e.g. Straub and Kahle 1997). Here 
we will apply the Finite Element Method to do the linear interpolation within each triangle, which is optimally 
generated by the Delaunay-triangulation method among our selected 9 stations. The characteristics of Delaunay-
triangulation are that: (1) no triangle side is cut by another; and (2) no points are contained in any other triangle's 
circumscribed circle. The Delaunay-triangulation of our selected ITRF site is plotted in Figure 6.4. 

For every triangle we select the centroid as the reference point, from which it is very easy to compute the veloc-
ity gradient tensor at the centroid in a very straightforward way: in fact, dealing with three velocity vectors, the 
problem is solved by inverting a system of linear equations with six unknowns (four tensor components plus two 
velocity components): 
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Figure 6.4  The Delaunay-triangulation of the selected ITRF sites 

This approach was first proposed by Terada and Miyabe (1929). With the velocity gradient tensor we can derive 
the two-dimensional symmetric strain rate tensor T and the antisymmetric rotation rate tensor R at the centroid 
of the discussed Delaunay-triangle network. 
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With (6.7), (6.8) and (6.9) we could compute the geodetic strain rates of every Delaunay-triangle for six ITRF 
relations, and successively the eigenspace components (eigenvalues and eigendirection) together with the maxi-
mum shear strain rate 1 2ε − ε  and the second strain rate invariant 2 2 1/ 2

1 2( )ε + ε . With reference to the continued 
discussion in Section 6.6, we have only listed the results for two of the 11 triangles in Table 6.4.  
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Table 6.5   Strain rate tensor components, eigenspace components, max. shear strain rates and second invariant 

 

Epochs  

   Strain rate tensor components              Eigenspace components     max. shear strain rate  second invariant 
             (nanostrain/yr)                           (nanostrain/yr)     (degree)         (nanostrain/yr)      (nanostrain/yr)      

        t11            t12             t22                     1ε               2ε            1α                    1 2ε − ε              2 2
1 2ε + ε  

 Triangle  4 - 5 - 6 ( Bologna – Noto - Matera)  (No.10) 

ITRF92 

ITRF93 

ITRF94 

ITRF96 

ITRF97 

ITRF2000   

    1.6621      2.4987     -5.7591            2.4250      -6.5220      16.9781             8.9470                6.9582 

    6.9357      3.3247     -4.8325            7.8100      -5.7068      14.7339           13.5168                9.6728 

    8.1550      2.4147     -4.8161            8.5900      -5.2511      10.2108           13.8411              10.0679 

    0.5796      5.2419     -3.0502            4.3120      -6.7825      35.4514           11.0945                8.0371 

    1.5487      4.2150     -1.8819            4.3840      -4.7172      33.9280             9.1012                6.4398 

    2.8365      5.3361     -1.0826            6.5615      -4.8076      34.9179           11.3691                8.1343 

 

Triangle  1 - 4 - 8 ( Grass – Bologna - Zimmerwald) (No.6) 

ITRF92 

ITRF93 

ITRF94 

ITRF96 

ITRF97 

ITRF2000   

    1.6460     8.5479    12.4127            17.1312      -3.0725      61.1010         20.2037                17.4045 

   -1.8824     7.5296    13.2853            16.3883       4.9854      67.6029         11.4029                17.1298   

    3.0908     3.2370      9.2711            10.6561       1.7058      66.8353           8.9503                10.7918 

    8.8276    -0.5745     1.6884              8.8735        1.6424      -4.5712            7.2311                 9.0242 

    7.4760     2.6775     1.7626              8.5346        0.7040      21.5726           7.8306                  8.5636 

    6.1801     2.6301     0.4793              7.2081       -0.5488      21.3493           7.7569                  7.2290 

    
 
       6.4.2 The three-dimensional geodetic stain rate case 

In fact, most tensors in Geodesy and Geophysics are three-dimensional and have been derived from geodetic, 
geological and seismological data. As most popular example is the in-situ measurements of the strain tensor by a 
strain meter and seismic moment tensor by the seismometer. Here we would like to directly apply the three di-
mensional Cartesian residual velocities of the six ITRF series realizations in determining the three-dimensional 
strain rate tensor and rotation rate tensor. 

When we select geodetic sites as vertices of convex polygons we can evaluate the strain tensor of the polygon by  
using the residual velocities. Let [ ]

i i iX Y ZV V V ′ be the known residual velocity vector of the polygon vertex ‘ i’ 
along the Cartesian coordinate directions (6.3); the following approximation can be written: 
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⇔
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 (6.10) 

where [ ]
B B BX Y ZV V V ′ is the unknown velocity vector for a reference internal point ‘B’, L  the velocity gradient 

tensor,  [ ]i i iX Y Z ′∆ ∆ ∆ , the Cartesian coordinate difference vector between the site ‘i’ and the reference point 
‘B’. For the infinitesimal strain rate we have the strain rate tensor ( ) / 2′= +T L L  and the rotation rate tensors 

( ) / 2′= −R L L  (Dermanis  2001). 

The approximation assumes a linear variation of the velocity components with respect to their coordinate differ-
ences. This holds true as long as the polygons are properly chosen, not only in term of area but also of expected 
tectonic behavior. The constant space gradients assumption is only a first order approximation of the underlying 
tectonic setting.  

If we choose to work with a tetragon, and we elect as the reference point the barycenter, it is very easy to com-
pute the velocity gradient tensor at the barycenter in a very straightforward way: in fact, dealing with four veloc-
ity vectors, the problem is solved by inverting a system of linear equations with twelve unknowns (nine tensors 
components plus three velocity components): 
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where 
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With the velocity gradient tensor we can compute the three-dimensional symmetric strain rate tensor T and the 
antisymmetric rotation rate tensor R at the barycenter of the discussed tetragonal network. 
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With (6.11), (6.12) and (6.13) we have computed the strain rate tensors for the six series of ITRF realizations in 
the selected sub-network  of four sites:  1 - 4 - 8 - 9 (Grasse - Bologna - Zimmerwald - Wettzell) which are listed 
in Table 6.6.  

Table 6.6   Three-dimensional strain rate tensor components of the sub-network  
                                              of site 1 –  4 – 9 – 8 (Grass – Bologna - Wettzell - Zimmerwald)  

Epochs  Strain rate tensor components  (1×10-7 strain/yr) 
              t11                t12                t13                       t22                t23                 t33           

ITRF92 

ITRF93 

ITRF94 

ITRF96 

ITRF97 

ITRF2000   

          0.1746         0.9012          2.6401         0.2946         1.4380         5.4648 

         -2.4174         0.0574         0.2518         0.0558         0.6080         3.3212 

         -1.6029        -0.0626         0.4812         0.0478         0.3324         2.8452 

          1.1197          0.3782         2.0597         0.1845         0.5407         3.0706 

         -0.7771         0.1652         0.2373         0.1466         0.3868         1.3365 

         -1.6829         0.2205        -0.9884         0.1735         0.3919        -0.2520 

    
6.5  The representation of the numerical results of  2-D geodetic strain rate and its interpretation  

Now we can present the horizontal residual velocities and the principal strain rates of every triangle for six ITRF 
realizations derived in the second phase. The interpretation of the geodetic strain also results from these six ITRF 
realizations, and a comparison with the geodynamical setting will follow. 

The residual velocities and principal strain rates have to be represented in an appropriate way for any further 
interpretations and comparisons. We used the MATLAB Mapping Toolbox (MathWorkd 2000) to map the sur-
face deformation information. The equidistant conic projection was described by the Alexandrian astronomer, 
mathematician and geographer Claudius Ptolemy about A.D. 150. Improvements were developed by Johannes 
Ruysch in 1508, Gerardus Mercator in the late 16th century, and Nicolas de l'Isle in 1745. It is also known as the 
Simple Conic or Conic projection. The scale is true along all meridians and the standard parallels. It is    constant 
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along any parallel. This projection is free of distortion along the two standard parallels. Distortion is constant 
along any other parallel. This projection provides a compromise in distortion between conformal and equal-area 
conic projections, of which it is neither. 

The pattern of the principal strain rates (eigenvalues and eigendirections of the 2-D strain rate tensors) of 11 
Delaunay-triangles and the associated residual velocities of the selected ITRF92 to ITRF2000 sites in the study 
region are illustrated in Figures 6.5 to 6.10. Extension is represented by a red symmetric arrow, and contraction 
is represented by a blue symmetric arrow. The residual velocities are also represented by black arrows. 

First, let us shortly analyze the horizontal movements of these selected sites with respect to the Eurasian fixed 
plate. The selected six stations Grass, Onsala, Wettzell, Madrid, Graz and Zimmerwald belong to the stable 
European plate. They have smaller residual velocities with respect to the Eurasia plate described by, e.g., the 
NNR-NUVEL-1A model, i.e. the residual velocities of these six sites in ITRF97 are below the level of 1.5 
mm/yr; for more detail see Figure 6.9. The three Italian stations, Bologna (Medicina), Matera and Noto, all show 
motions with respect to stable Europe. The two mainland sites, Bologna (Medicina) and Matera are east of the 
Apennine mountain chain and have north-east-trending velocities with rates increasing southward from, e.g. in 
ITRF97, 2.9 mm/yr to 4.8 mm/yr. In contrast, Noto, Sicily, just a few hundred km south-west of Matera is mov-
ing with rates of 4.6 mm/yr in north-west direction at an apparent angle to the other Italian sites. These signifi-
cant residual velocities of the three Italy sites reflect the fact that the movements of these sites located in the 
plate boundary zone between Eurasia and Africa don’t agree with NNR NUVEL-1A. 

Secondly let us analyze the strain rate solutions of the six epochs. From the derived strain rates from (6.7) and 
the visual patterns in Figures 6.5 ~ 6.10, we can see that the magnitude and direction of the strain rates in most 
triangles are nearly consistent with each epoch, except for the triangles 1-4-8 and 1-7-8. As we have explained 
above, the deformation pattern of this region is characterized by a complex space-time distribution of compres-
sional and tensional events.  

We have to compare them with the geodynamic features in detail. Since this study is concentrated on the statisti-
cal inference of the eigenspace components of strain rate tensors, we limit our comparison of the intensive seis-
mic activity in the Alpine-Mediterranean regions to the result of ITRF2000.  

From Figure 6.10 we can learn that the Bologna-Matera-Noto triangle (4-5-6) suffers from ENE-WSW extension 
strain with a rate of 5.29 nanostrain/yr, which consists of the seismic strain rate derived from Centroid Moment 
Tensor (CMT) solutions (Pondrelli et al. 1995) not only in the maximum principal seismic strain rate of about 5 
nanostrain/yr but also in the principal direction. Furthermore, the direction of the extensional strain rate is in 
accordance with the tectonic evolution of this region (Apenninicis), which is strongly affected by the conver-
gence of the microplate (Ward 1994). Our geodetic strain rate results in this subregion are also in accordance 
with other geodynamic solutions deduced from a fault plane solution of earthquakes that occurred during the last 
century (Jackson & McKenzie 1988), historical seismicity (Selvaggi 1998) and the newly published geodetic 
results by Anzidei (2001), Devoti (2002a, b), Caporali (2003) and Jimenez-Munt (2003).  

In the Western Mediterranean area, which is covered by the triangle Grass-Noto-Madrid (1-5-7), compression 
predominates in the NNW direction, which is in good agreement with the observed stress data (Ward 1994, Mon-
tone et al. 1999, Jimenez-Munt et al. 2001). This compression is consistent with the view that it is induced by the 
relative motion between Africa and Eurasia (DeMets et al.1994). The geodetic E-W extension is in accordance 
with the extensional tectonics perpendicular to the Apenninic chain, indicated by the normal fault events. The 
observed extension which is perpendicular to the chain could indicate that the subduction is also active under-
nearth the central Apennines. This pattern is in accordance with the radial stress regime proposed by Rebai et al. 
(1992). 

The triangle Bologna-Matera-Graz (4-6-3) represents the strain across the Adriatic microplate. The geodetically 
observed North and East contractions are in good agreement with the northward motion of the Adriatic mi-
croplate with respect to Europe (Devoti et al. 2002a), and they are also consistent with the compressional stress 
pattern in this region (Müller et al. 1992, Montone et al. 1999). The northern triangle Bologna (Medicina)-Graz-
Wettzell (3-4-9) represents the strain across the Eastern Alps with a smaller strain rate. The observed  NNE con-
traction is in agreement with the main geological structures, i.e., the subduction of Adriatic microplate to the 
Alpine front.  

At  the end of our comparison in the Alpine-Mediterranean regions, we present two published figures, namely  in 
Figure 6.11 which is a general geological map (Devoti et al. 2002a), and Figure 6.12 which is the average of 
active stress map (Montone et al. 1999) of the Alpine-Mediterranean regions; both are in agreement with our 
geodetic strain rate results. On the other hand it is shown that our results are good reproductions of the geody-
namical setting in this regions. 
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Figure 6.5. Pattern of the principal 
strain rates of nine triangles and the 
associated residual velocities of the 
selected ITRF92 sites in the study-
ing region. Extension is represented 
by symmetric arrows pointing out 
and contraction is represented by  
symmetric arrows pointing in. The 
residual velocities are represented 
by single arrows. 

Figure 6.6. Pattern of the principal 
strain rates of nine triangles and the 
associated residual velocities of the 
selected ITRF93 sites in the study-
ing region. Extension is represented 
by symmetric arrows pointing out 
and contraction is represented by  
symmetric arrows pointing in. The 
residual velocities are represented 
by single arrows. 
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Figure 6.7. Pattern of the principal 
strain rates of nine triangles and the 
associated residual velocities of the 
selected ITRF94 sites in the study-
ing region. Extension is represented 
by symmetric arrows pointing out 
and contraction is represented by  
symmetric arrows pointing in. The 
residual velocities are represented 
by single arrows. 

Figure 6.8. Pattern of the principal 
strain rates of nine triangles and the 
associated residual velocities of the 
selected ITRF96 sites in the study-
ing region. Extension is represented 
by symmetric arrows pointing out 
and contraction is represented by  
symmetric arrows pointing in. The 
residual velocities are represented 
by single arrows. 
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Figure 6.9. Pattern of the principal 
strain rates of nine triangles and the 
associated residual velocities of the 
selected ITRF97 sites in the study-
ing region. Extension is represented 
by symmetric arrows pointing out 
and contraction is represented by  
symmetric arrows pointing in. The 
residual velocities are represented 
by single arrows. 

Figure 6.10. Pattern of the principal 
strain rates of nine triangles and the 
associated residual velocities of the 
selected ITRF2000 sites in the 
studying region. Extension is repre-
sented by symmetric arrows point-
ing out and contraction is repre-
sented by  symmetric arrows point-
ing in. The residual velocities are 
represented by single arrows. 
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Figure 6.11 Simplified geological 
structural map of the central Mediterra-
nean region showing the main tectonic 
domains (Devoti et al. 2002b) 

Figure 6.12 The average active stress 
map of Italy. The structural arcs with 
shaded triangles indicate the active 
compressional fronts; solid triangles 
show active oceanic subduction; open 
triangles delineate the location of Pilo-
Pleistocene thrust front, presently   
affected by prevalent extension (Mon-
tone et al. 1999) 
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6.6   Statistical inference of the eigenspace components of 2-D strain rate tensor 

In this section, as a case study, both model and hypothesis tests developed in Chapter 4 will be applied to the 
observations of random strain rate tensors, derived above for every Delaunay-triangles of the selected ITRF sites 
at six epochs.  

    6.6.1   The estimates of the eigenspace components from the strain rates observations of six epochs 

With the two-dimensional strain rate tensor observations, calculated by (6.7) with the six epoch ITRF residual 
velocities, we can now estimate the eigenspace components (eigenvalues and eigendirections) of the two-
dimensional strain rate tensors, variance-covariance component matrix of type BIQUUE, and their estimated 
dispersion matrix with (4.29), (4.31) and (4.30), and successively make hypothesis tests. The detailed results of 
all 11 Delaunay-triangles in the study region are illustrated in Figure 6.13 together with their 95% confidence 
intervals. The estimates of the eigenspace components (eigenvalues and eigendirection) and their standard devia-
tions together with the maximum shear strain rate 1 2

ˆ ˆλ − λ  and the second strain rate invariant 2 2 1/ 2
1 2

ˆ ˆ( )λ + λ for 
these triangles are listed in Table 6.7. 
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Figure 6.13. Eigenspace components (eigenvalues and eigendirections) of the two-dimensional strain rate ten-
sors and their 95% confidence intervals, estimated from the strain rate observations of ITRF92 to ITRF2000 
series in the nine triangle sites in the study region. Extension is represented by red symmetric arrow and contrac-
tion is represented by blue symmetric arrow. 
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Table 6.7   The estimates of the eigenspace components and their standard deviations  
                                          together with the maximum shear strain rates and the second invariant 

Triangles          Eigenspace components  and standard deviations      max. shear strain rate   second invariant 
                        (nanostrain/yr)                               (degree)         (nanostrain/yr)     (nanostrain/yr)      

        1λ̂           
1

ˆˆ
λ

σ                  2λ̂        
2

ˆˆ
λ

σ                  1α̂      
1ˆˆ ασ             1 2

ˆ ˆλ − λ              2 2
1 2

ˆ ˆλ + λ  

No. 1:    8 - 2 – 7 
( Zim - Ons - Mad) 

No. 2:    1 - 5 – 7 
( Gras - Not - Mad) 

No. 3:    1 - 8 - 7 
( Gras - Zim - Mad) 

No. 4:    9 - 8 - 2  
( Wet - Zim- Ons) 

No. 5:    9 - 3 - 2  
( Wet - Graz - Ons ) 

No. 6:    4 - 1 - 8  
( Bol - Gras - Zim) 

No. 7:    4 - 9 - 8  
( Bol - Wet  - Zim) 

No. 8:    4 - 9 - 3  
( Bol - Wet - Graz) 

No. 9:    4 - 3 – 6 
 ( Bol - Graz - Mat) 

No. 10:    4 - 5 – 6 
( Bol - Not - Mat) 

No. 11:   4 - 1 - 5  
( Bol - Gras - Not) 

      1.6176  ±1.3012      -1.2824  ±0.2501        0.1681  ±8.2284          2.9000             2.0642 

    -0.1637   ±0.2973      -8.7116  ±1.6321        9.9241  ±1.4835          8.5479             8.7131 

      8.7144   ±2.8800      -0.6217  ±0.4370     -74.6070  ±3.3523         9.3361             8.7366 

      0.2244   ±0.6497      -2.0148  ±1.1151     -50.7307  ±19.5934        2.2392            2.0273 

      7.3502   ±2.0722      -0.6027  ±0.1422       8.5718   ±5.4747          7.9529             7.3749 

      9.5173   ±2.1984       1.1889  ±1.5589      52.8733  ±10.8772         8.3284            9.5913 

      1.6742   ±1.9740      -3.9692  ±0.1628     -21.6686  ±6.4597          5.6434            4.3079 

      3.3182   ±1.9163      -4.0195  ±0.2443     -20.7389  ±3.7226          7.3376            5.2121 

     -1.6041   ±1.2931      -5.0069  ±0.5130      10.1413  ±6.5735          3.4028            5.2575 

      5.2837   ±0.9064      -5.2345  ±0.3867      23.4382  ±5.1932        10.5182            7.4376 

     8.6068   ±0.4504      -6.4977   ±0.9156      37.1679  ±3.8370        15.1045          10.7841 

The 95% confidence intervals for the estimates of eigenvalues 1 2
ˆ ˆ,λ λ  and eigendirection 1α̂  illustrated in Figure 

6.13 provide us with a visual presentation of the possible magnitude and the directions of the extension and con-
traction of the strain rate. This is important for the prediction of the tectonic activity, including the possible de-
formation trend and its directions. For example the larger error (confidence interval) of eigenvalues and eigendi-
rection of strain rates, detected obviously in the triangle 1-4-8 (Grasse-Bologna-Zimmerwald), results from the 
variety of strain rates observations of the six epochs. As illustrated in Figures 6.5 to 6.10, the principal direction 
of strain rate among the six epochs changes from NNE in ITRF92, 93 and to W-E in ITRF96 and to ENE in 
ITRF97/ITRF2000, more detailed results are also found in Table 6.5. This fact reflects that the deformation 
pattern in this triangle area which proves is not stable during the six epochs from 1992 to 2000. 

It is necessary to note that, although the strain rate tensor observations are derived from the nine ITRF sites ac-
cording to the criterion discussed above, in reality they don’t satisfy all the conditions of i.i.d. observations, since 
we have not yet found the right i.i.d. strain tensor observation sets, we apply strain rate tensor observations de-
rived from the nine ITRF stations in six series realizations, assuming approximately that they are i.i.d. observa-
tions in our study. 

When we repeat the comparison of our strain rate pattern in Figure 6.13 with the geodynamic map, e.g. Figures 
6.11 and 6.12, it can be concluded in general that our estimates of eigenspace components of a two-dimensional 
strain rate tensors are consistent with the tectonic setting. Furthermore we can benefit from the statistical infor-
mation derived from the estimation procedure developed in Chapter 4, which is presented in the next section. 

6.6.2 Statistical inference of the estimates of eigenspace component parameters  

The estimates of the eigenspace component parameters and their related dispersion matrix from the strain rate 
observations of six epochs reflect the statistical average information of the random strain rate tensor, utilize the 
advantage of the longer time span. With them we can successively perform the statistical inference, i.e. 

Statistical Inference = Estimate +Hypothesis test. 

Since we are interested in testing our statistical method, we would like to perform all the hypothesis tests dis-
cussed in Section 4.3 in detail for just one triangle 4-5-6 (Bologna-Noto-Matera). Using the strain rate observa-
tions in Table 6.5 we have estimated the eigenspace component parameters of a rank-two symmetric random 
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tensor, their related dispersion matrix with Theorem 4.3, and the sample variance-covariance matrix ˆ
yΣ  of type 

BIQUUE with Theorem 4.4; they are summarized in the following Box 6.1. 

Box 6.1 
Case study: Hypothesis test with a 2-dimensional strain rate tensor in  

Triangles 4-5-6 of sites Bologna-Matera-Noto 

"the Σ -BLUUE of eigenspace components of a two-dimensional,  
symmetric rank-two random tensor with Theorem 4.3" 

 

1

2

ˆ   5.2837 ( strain/y) 5.2837 ( strain/y)
ˆ ˆ   -5.2345 ( strain/y) -5.2345 ( strain/y)

ˆ    0.409074      (arc) +23 .4382              

n n     
     = = =     
     °     

ξ

λ
λ µ µ
α

  

 "the sample variance-covariance matrix ˆ
yΣ  of type BIQUUE with Theorem 4.4" 

 2

+9.908347 -2.351484 -2.515398
ˆ -2.351484 +1.688078 +2.089224 ( strain/y)

-2.515398 +2.089224 +3.449229

n

 
 =  
  

yΣ  

"the related dispersion matrix of ξ̂  with Theorem 4.3" 

 ˆ

+0.821618 +0.208317 -0.040791

{ } +0.208317 +0.149544 +0.000599

-0.040791 +0.000599 +0.008215

ˆD

 
 = =  
  

ξ
Σξ  

With these estimates of the eigenspace components of the random strain rate tensor and their dispersion matrix, 
and under the assumption that the observations of a symmetric rank-two random strain rate tensor are Gauss-
Laplace normally distributed, the following univariate and multivariate hypothesis tests, discussed in Section 
4.3, will be performed: 

(1) Test for the eigenspace parameter vector 0 with= yΣξ ξ  unspecified (see Box 6.2);  

(2) Test for a distinct element of the eigenspace parameter vector with Student t- test (see Box 6.3); 

(3) Eigen inference about the orthonormal transformed parameters η (see Box 6.4); 

(4) Test for the variance-covariance matrix 0=yΣ Σ  (see Box 6.5); 

(5) Test for the eigenspace parameter vector and variance-covariance matrix 0 0,= =yΣ Σξ ξ (see Box 6.6); 

(6) The general linear hypothesis test with the growth curve model for eigenspace parameters  
        (see Box 6.7). 

(1) Test for the eigenspace parameter vector 0 with= yΣξ ξ  unspecified with Hotelling's 2T -test  
 

Box 6.2: 
Multivariate hypothesis test about the eigenspace parameter vectorξ assuming Gauss-Laplace  

normally distributed observations of a symmetric rank-two random strain rate tensor 

 01 0 11 0 for  : , : with unspecified;First test = ≠ yξ ξ ξ ξ ΣH H  
⇔  

 
1 10 1 10

01 2 20 11 2 20

1 10 1 10

  4.3840   4.3840 

: -4.7172 , : -4.7172 with unspecified

 0.5922  0.5922

           
           = = ≠ =           
                      

yΣ

λ λ λ λ
λ λ λ λ
α α α α

H H  

 "Hotelling's 2T  statistic"  (Hotelling 1931, Muirhead 1982, Rencher 1998) 

 2 1
ˆ0 0

ˆ ˆˆ: [ ] [ ]T −′= − −
ξ

ξ ξ Σ ξ ξ  

with respect to the eigenspace components of type Σ -BLUUE and the dispersion matrix ̂ˆ
ξ
Σ   

 
1

ˆ2

1

ˆ    5.2837 ( strain/y) +0.821618 +0.208317 -0.040791
ˆ ˆ ˆ  -5.2345 ( strain/y) , +0.208317 +0.149544 +0.000599 .

ˆ    0.409074      (arc) -0.040791 +0.000599 +0.008215

n
n

     
     = = =     
      

ξ
ξ Σ

λ
λ
α
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According to the design of the test for the eigenspace parameter vector in Section 4.3.1 at the error probability α  
we reject 01H in favor of 11H if  

 2 1 2
ˆ 3 10 30 ,

ˆ ˆ ( 1) 3
(1ˆ [ )

3
[ ] ] }n

n

n
T F T−

−
−′= − − −

−
> ⋅ − =

ξ
ξ ξ Σ ξ ξ αα . 

With error probability α =5% and n=6 the critical value 

 3, 3(1 )nF − −α = 9.28,  2
1 46.38T − =α .  

Since Hotelling's statistic 2T = 7.32 < 2
1 46.38T − =α , accordingly we accept the null hypothesis 01 0: =ξ ξH  with 

the risk of α =5% of a Type I error. 

(2)    Test for a distinct element of the eigenspace parameter vector with Student t- test  

Box 6.3 

Separate Student t-tests about the eigenspace parameters inξ  

 02 1 10 2 20 1 10

12 1 10 2 20 1 10

 for  : 4.3840 4.7172 0.5922

(separately) : 4.3840 4.7172 0.5922

Second test λ λ λ λ α α
λ λ λ λ α α

= = = = − = =
≠ = ≠ = − ≠ =

H

H
 

 "two-sided tests with the test quantities" 

 1 10 2 20 1 10
1 2 3

1 2 3

ˆ ˆ ˆ
: , : , :

ˆ ˆ ˆ
t t t

− − −
= = =

λ λ λ λ α α
σ σ σ

 

with respect to 1 2 1
ˆ ˆ ˆ, ,λ λ α  of type Σ -BLUUE and their variances from Box 6.1. 

t1, t2 and t3 are elements of the Student t-distribution with n-1 degree of freedom. 

With error probability α =5% we derive 

 
1,1 / 2 2,1 / 2 3,1 / 2

1, / 2 2, / 2 3, / 2

2.57

2.57.

t t t

t t t

α α α

α α α

− − −= = = +

= = = −
 

The critical values 

 
1 1 1 1

2 2 2 2

1 1 1 1

, / 2 1, / 2 10 ,1 / 2 1,1 / 2 10

, / 2 1, / 2 20 ,1 / 2 2,1 / 2 20

, / 2 1, / 2 10 ,1 / 2 3,1 / 2 10

ˆ ˆ,

ˆ ˆ,

2.0539 6.7141

-5.7113 -3.7231

0.3592 0.8251ˆ ˆ,

c t c t

c t c t

c t c t

− −

− −

− −

= + = = + =

= + = = + =

= + = = + =

λ α λ α λ α λ α

λ α λ α λ α λ α

α α α α α α α α

σ λ σ λ
σ λ σ λ
σ α σ α

 

indicate the confidence intervals 

 

1 1

2 2

1 1

1 1

, / 2 ,1 / 2

, / 2 ,1 / 2

, /

1

2

12 ,1 / 2

, / 2 21 ,1 /

= ,

,

ˆ2.0539 5.2837  < 6.7141  
ˆ-5.7113 -5.2345 < -3.7231

ˆ0.3592 0.409074 < 0.8251
ˆ 20 34 50 .32  < 23 26 17 .52 < 

,

( 47

c c

c c

c c

c c

−

−

−

−

< =
< =

< =
′ ′′ ′ ′′° = °

=
= =
= =

= = °

λ α λ α

λ α λ α

α α α α

α α α α

λ
λ

α
α 16 29 .09),′ ′′

 

thereby suggesting the acceptance of all three null hypotheses. 

 02 1 10 2 20 1 10: 4.3840, 4.7172, 0.5922= = = = − = =λ λ λ λ α αH  

with the risk of α =5% of a Type I error.  

The 95% confidence interval for the eigenvalues 1 2,λ λ  and the eigendirection a1 are  

 

[2.0539, 6.7141] ( strain/y);

[-5.7113, -3.7231] ( strain/y);

[ 20 34 5 470 .32, 16 29 .09]′ ′′ ′ ′′° °

µ
µ    

respectively.  
 
(3) Eigen inference about the orthonormally transformed parameters η with Student t- test  
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From the dispersion matrix ̂ˆ
ξ
Σ -the variance covariance matrix of the eigenspace component parameter vector ξ̂  

given in Box 6.1, we can see that these eigenspace component parameters are correlated. In order to make the 
hypothesis tests about the distinct elements more efficient and uncorrelated, we perform the eigen-inference 
derived in Section 4.3.3. 

Using the orthogonal transformation (4.34) with normalized eigenvectors as column vectors (i.e., orthonormal 
basis, orthogonal matrix) 

 ˆ ˆ ˆ ˆ

0.079763 -0.264891 -0.960974

-0.11894 0.954630 -0.273014 , with , det( ) 1

0.989693 0.136071 0.044639

 
  ′= = = 
  

ξ ξ ξ ξ
U U U I U  

we set the transformed parameter vector (4.36) from the original parameter vectors and their Σ -BLUUE esti-
mates, respectively, which transform the null hypothesis values of Test 2 in Box 6.3 and the estimates into new 
values : 

 ˆ ˆ0 0

1.4968 1.4489
ˆˆ-5.5839 and -6.3409

-2.8986 -3.6301

   
   ′ ′= = = =   
      

ξ ξ
η U ξ η U ξ , 

then we get 

 ˆ ˆ ˆ ˆ ˆ

0.0049 0 0
ˆ ˆ 0 0.0918 0

0 0 0.8827

 
 ′= = =  
  

η ηξ ξ ξ
Σ U Σ U Λ ,  

from which we can see that the transformed parameters iη  are mutually independent and their estimated stan-

dard deviation are: 
 

1 1 2 2 3 3ˆ ˆ ˆˆ ˆ ˆ0.0697, 0.3030, 0.9395= = = = = =η η η η η ησ λ σ λ σ λ . 

With these orthonormally transformed results we can now perform the eigen-inference. Note, that the orthonor-
mally transformed parameters iη  are mutually independently normally distributed. Student t-tests could also be 
used for every transformed parameter ˆiη .  

The second hypothesis test performed in Box 6.3 will be equivalent to the new hypothesis test for the orthonor-
mally transformed parameters, i.e., 

 02 1 10 2 20 1 10

12 1 10 2 20 1 10

 for  : 4.3840 4.7172 0.5922

                 : 4.3840 4.7172 0.5922

Second test λ λ λ λ α α
λ λ λ λ α α

= = = = − = =
≠ = ≠ = − ≠ =

H

H
 

 03 1 10 2 20 3 30

13 1 10 2 20 3 30

  for  : 1.4968 -5.5839 -2.8986

: 1.4968 -5.5839 -2.8986

Third Test η η η η η η
η λ η λ η η

⇔
= = = = = =
≠ = ≠ = ≠ =

H

             H

 

which means that when we accept or reject the new third hypothesis tests, we will accept or reject the second 
hypothesis tests accordingly.  

These procedures will be summarized in Box 6.4. 

Box 6.4: 

Eigen inference about the transformed parameters η   

 02 1 10 2 20 3 30

12 1 10 2 20 3 30

  for  : 1.4968 -5.5839 -2.8986

: 1.4968 -5.5839 -2.8986

Third Test η η η η η η
η λ η λ η η

= = = = = =
≠ = ≠ = ≠ =

H

             H
 

 "two-sided test with test quantities" 

 
1 2

1 10 2 20 3 30
1 2 3

3

ˆ ˆ ˆ
: , : , :

ˆ ˆ ˆ
t t t

η η η

η η η η η η
σ σ σ
− − −

= = =  

with respect to 1 2 3ˆ ˆ ˆ, ,η η η  and their related variances . t1, t2 and t3 are elements of  
the Student t-distribution with n-1 degree of freedom. 
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With error probability α =5% 

 
1,1 / 2 2,1 / 2 3,1 / 2

1, / 2 2, / 2 3, / 2

2.57

2.57.

t t t

t t t

α α α

α α α

− − −= = = +

= = = −
 

The critical values 

 
1 1 1 1

2 2 2 2

3 3 3 3

, / 2 1, / 2 10 ,1 / 2 1,1 / 2 10

, / 2 2, / 2 20 ,1 / 2 2,1 / 2 20

, / 2 3, / 2 30 ,1 / 2 3,1 / 2 30

1.3177 1.6759,

-6.3628 -4

ˆ ˆ,

ˆ ˆ,

ˆ ˆ,

.8049,

-5.3137 -0.4835,

c t c t

c t c t

c t c t

− −

− −

− −

= + = = + =

= + = = + =

= + = = + =

η α η α η α η α

η α η α η α η α

η α η α η α η α

σ η σ η
σ η σ η
σ η σ η

 

indicate  

 
1 1

2 2

3 3

, / 2 ,1 / 2

, / 2 ,1 / 2

, / 2 ,1 /

1

2

23

ˆ1.3177 1.4968  < 1.6759

ˆ-6.3628 -5.5839  < -4.8049

ˆ-5.3137 < -2.8986 < -0.4835

=c c

c c

c c

−

−

−

< =

<

=

=

= ==

= =
η α η α

η α η α

η α η α

η
η
η

 

a result which leads us to accept the null hypothesis 

 03 1 10 2 20 3 30 : 1.4968, -5.5839, -2.8986= = = = = =η η η η η ηH  

with the risk of α =5% of a Type I error. 

Accordingly we accept the original null hypothesis about the eigenspace components 

 02 1 10 2 20 1 10: 4.3840, 4.7172, 0.5922= = = = − = =λ λ λ λ α αH . 

This completes the example of eigen inference. 

(4)   Test for the variance-covariance matrix 0=yΣ Σ  with the likelihood ratio test 

Box 6.5 

        Multivariate hypothesis tests about the variance-covariance matrix yΣ   

 04 0 14 0for  : ,  :Fourth test = ≠y yΣ Σ Σ ΣH H  

"unbiased modified likelihood ratio statistic 1Λ " 
(Giri 1977, Muirhead 1982, Koch 1999, Koch 2001) 

 ( )3( 1) / 2
1 ( 1) / 2 1

1 0 01
1ˆ ˆ(det( 1) ) etr{ ( 1) }2

n
n

n n ne −
− − −

−Λ = − − −y yΣ Σ Σ Σ  

 with respect to the sample variance-covariance matrix ˆ
yΣ  of type BIQUUE in  

Table 2.  Since our sample size is relatively small we have to use the exact    
distribution of 12log− Λ ,whose upper 5 and 1 percentage points have been 

   provided by Muirhead (1982, p.360). 

With α =5% the critical value is 

 1 12log (1 ) 15.508L α α− = − Λ − =   

Let us perform this test with three different variance-covariance matrices 01 02 03, andΣ Σ Σ , namely 

 01

1 0 0

0 1 0

0 0 1

 
 =  
  

Σ , 

 02

2.033987 0.444505 0.033115

0.444505 0.982429 0.585175

 0.033115 0.585175 1.02023

,

 
 =  
  

Σ  

 03

9.808347 -2.351484 -2.515398

-2.351484 1.588078 2.089224

-2.515398 2.089224 3.349229

 
 =  
  

Σ , 
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which are chosen according to the hypotheses that the variance-covariance component matrix yΣ  is equal to (1) 
a unit matrix 01Σ ; (2) 02Σ - the variance-covariance matrix of the strain rate observations derived from ITRF97 
residual velocities; and (3) a matrix 03Σ  whose diagonal elements are 0.1 smaller than the estimated variance-
covariance component matrix ˆ

yΣ  as given in Box 6.1. 

With respect to the likelihood ratio statistics 1Λ  and the related 1 12log :L− Λ =  we find: 

  11Λ = 2.264853 1110−×     11 112logL = − Λ = 49.021852 

  12Λ = 1.117952 610−×      12 122logL = − Λ = 27.408023 

  13Λ = 0.694227               13 132logL = − Λ =   0.729913 

Since 11L = 49.021852 >1 15.805L − =α , we reject the null hypothesis 03 01: =yΣ ΣH  with the risk of α =5% of a 
Type I error. 

Since 12L = 27.408023 >1 15.805L − =α , we reject the null hypothesis 03 02: =yΣ ΣH  with the risk of α =5% of a 
Type I error. 

Since 13L = 0.729913 < 1 15.805L − =α , we accept the null hypothesis 04 03: =yΣ ΣH  with the risk of α =5% of a 
Type I error. 

 
(5)  Test for the eigenspace parameter vector and variance-covariance matrix 0 0,= =yΣ Σξ ξ  likelihood ratio test 

Box 6.6 

Multivariate hypothesis tests about the eigenspace parameter vector ξ and  
        the variance-covariance matrix yΣ   

 05 0 0 15 0 0 for  : , ,  :Fifth test or= = ≠ ≠y yξ ξ Σ Σ ξ ξ Σ ΣH H  

"unbiased likelihood ratio statistic 2Λ " 
(Anderson 1984, Murihead 1982) 

 ( )3 / 2
1 / 2 1 1

ˆ2 0 0 0 00

11 ˆ ˆˆ ˆ(det( 1) ) etr{ ( 1) }exp{ [ ] [ ]}2 2

n
n

n
n ne − − −′Λ = − − − − − −y y ξ

Σ Σ Σ Σ ξ ξ Σ ξ ξ  

with respect to the eigenspace components of type Σ -BLUUE  and variance- 
covariance matrix ̂ yΣ  of type BIQUUE in Box 6.1 and 1 1

ˆ0 0
1 (1/ )( )n −− −′=
ξ

ΣΣ A AA AA AA A .   
Since our sample size is relatively small we have to use the exact distribution of  

22log− Λ ,whose upper 5 and 1 percentage points have been provided by  
Murihead (1982, p.371). 

With α =5% the critical value is derived 

 1 22log (1 ) 24.431L α α− = − Λ − = . 

Choose 0ξ  as in the hypothesis test one and 0Σ as 03Σ in the fourth hypothesis test, namely 

 
10

0 20

10

0

4.3840 9.808347 -2.351484 -2.515398

-4.7172 , -2.351484 1.588078 2.089224 .

 0.5922 -2.515398 2.089224 3.349229

   
   = =   
    

 
 = 

 


  

ξ Σ

λ
λ
α

 

With respect to the likelihood ratio statistics 2Λ  and related 2 22log L− Λ = data we are led to  

         2Λ = 0.008752               2 22logL = − Λ = 9.476949 

Since 2L = 9.476949 < 1 24.431L α− = , we accept the null hypothesis 05 0 0: ,= =yξ ξ Σ ΣH  with the risk of α = 
5%  of a Type I error. 
 
(6)   The general linear hypothesis test with a growth curve model for eigenspace parameters  

As it is mentioned in Section 4.3.6, the special linearized multivariate Gauss-Markov model for sampling the 
eigenspace synthesis in Box 4.5  

 0 0( ) [ ( )]′ ′= + − +Y F ξ 1 ξ ξ 1 EAAAA  (4.25) 

is also a growth curve model  
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 = +Y AΞB E (4.43)  

with the correspondences , and ′ = =A 1 B ξ ΞA =A =A =A = . This fact suggests that the hypothesis (4.46) under the 
growth curve model can be  applied to the testing of the eigenspace parameter directly. 

For the general linear hypothesis test with a growth curve model for eigenspace parameters we test three cases in 
Box 6.7. The second case is just for testing the difference of the two eigenvalue parameters, since 

2 5.2345 0λ = − <   we have to rewrite it as 1 2 0λ + λ = . 

Box 6.7 

The general linear hypothesis test with a growth curve model 

 1 1
06 16

2 2

0 0
: :

0 0
Sixth test versus

λ λ      
= ≠      λ λ      

H H  

                  06 1 2 16 1 2: 0 : 0versus′ ′λ + λ = λ + λ ≠H H  

                        
10 101 1

06 2 20 16 2 20

1 130 30

: :versus

ξ ξλ λ      
      ′′ ′′λ = ξ λ ≠ ξ      
      α αξ ξ      

H H   

For the first case,  

 1 1
06

2 2

0 0
:

0 0

λ ξ      
= ⇔ =      λ ξ      

H  

i.e. 

 
1

2

3

1 0 0 0
1

0 1 0 0

ξ 
    ξ × =    
    ξ 

 

which is corresponding to (4.46):  

 
1

2

3

1 0 0
, 1 and

0 1 0

ξ 
   ξ= = =   
   ξ 

P Q Ξ  . 

With (4.47) and (4.48) we get:  
  
 1 1 1 1 1( ) ( ) ( ) ( ) 0.1667− − − − −′ ′ ′ ′ ′ ′ ′= + − =R BB BB BY Ω YB BB Ξ A Ω A Ξ .  

 1
H

167.5049  -165.9452
( )( ) ( )

-165.9452   164.3999 
−  ′ ′= =  

 
V PΞQ Q RQ PΞQ  

 1 1
E

24.6486    6.2495
( )

  6.2495    4.4863
− −  ′ ′= =  

 
V P A Ω A P   

and the greatest eigenvalue of 1
H E

−V V   

 -1
max H E( ) 96.1606λ = =V V . 

Since p=3, q=3, r=1, c=2, g=1, with (4.49) we get 1s∗ = , 0, 1m n∗ ∗= = , and the test statistic 

 max

1
192.3212

1

n
t

m

∗

∗

+= λ =
+

 

can be compared with the critical values of the F-distribution with 2 and 4 degrees of freedom. The hypothesis 
of zero would of course, be rejected at any reasonable level. For example, at 95% confidence level, 

0.95, 2,9 6.9443F = ,  thus 0.95,2,4t F> , and we reject the null hypothesis of  
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 1
06

2

0
:

0

λ   
=   λ   

H . 

For the second case,  

 06 1 2 1 2: 0 0′ λ +λ = ⇔ ξ + ξ =H  

i.e. 

 [ ]
1

2

3

1 1 0 1 0

ξ 
 ξ × = 
 ξ 

 

which is corresponding to (4.46):  

 [ ]
1

2

3

1 1 0 , 1 and

ξ 
 ξ= = =  
 ξ 

P Q Ξ  

and with (4.47) and (4.48), we get 0.1667=R ,  H 0.0145=V  and E 41.6339=V  and the “greatest eigenvalues” 

of 1
H E

−V V  as 1
H E

−V V  itself: 

 -1 H
max H E

E

( ) 0.000348λ = = =
V

V V
V

. 

Since p=3, q=3, r=1, c=1, g=1, with (4.49) we get 1s∗ = , 1/ 2, 3/ 2m n∗ ∗= − =  and the test statistic 

 -1
H E

1
0.0017

1

n
t

m

∗

∗

+= =
+

V V  

which is smaller than the quantile at 95% confidence level, 0.95, 1,5 6.6079F = ; accordingly, we accept the null 
hypothesis of 06 1 2: 0′ λ + λ =H . 

Here we note that the 95% simultaneous confidence interval for 1 2( )λ + λ  can be computed from (4.50) with a = 
b =1 and /(1 )x xα α+ = 0.95;1, 5;2 2, 2 2

[( 1) /( 1)] [( 1/ 2 1) /(5 1)]
m n

m n F F∗ ∗
∗ ∗

α + +
+ + = − + +  to be 

 

1/ 2
1 E;2 2, 2 2

1/ 2
2 E;2 2, 2 2

1ˆ ( ) -1.8060
1

1ˆ ( )  1.9044,
1

m n

m n

m
c F

n

m
c F

n

∗ ∗

∗ ∗

∗

∗ α + +

∗

∗ α + +

+ ′= − =
+
+ ′= + =
+

PΞQ V Q RQ

PΞQ V Q RQ

  

i.e.                                                           

 1 21.8060 1.9044− ≤ λ + λ ≤ . 

From the actual estimates of 1 2
ˆ ˆandλ λ  we have 

 1 2
ˆ ˆ+ 5.2837 5.2345 0.0492λ λ = − =  

which is an element of the confidence interval [c1, c2]; the null hypothesis of the second case is therefore ac-
cepted. 

For the third case of the sixth test 

 
10 1011

06 20 2 202

330 30

:

1

ξ ξξλ      
     ′′ = ξ ⇒ ξ = ξλ      
      ξξ ξα      

H   

i.e. 

 
101

202

3 30

1 0 0   4.3840 

0 1 0 1 -4.7172

0 0 1  0.5922

ξξ      
     ξξ × = =     
     ξ ξ      
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which is the same as in our first hypothesis test in Box 6.2 and corresponding to (4.46):  

 
1

2

3

1 0 0

0 1 0 , 1 and

0 0 1

ξ  
   ξ= = =   
   ξ   

P Q Ξ  

With (4.47) and (4.48) we get:  
  
 1 1 1 1 1( ) ( ) ( ) ( ) 0.1667− − − − −′ ′ ′ ′ ′ ′ ′= + − =R BB BB BY Ω YB BB Ξ A Ω A Ξ .  

 1
H

    4.8568   -2.7925   -0.9883

( )( ) ( )    -2.7925    1.6056    0.5682

   -0.9883    0.5682    0.2011

−

 
 ′ ′= =  
  

V PΞQ Q RQ PΞQ  

 1 1
E

24.6486    6.2495   -1.2237

( )   6.2495    4.4863    0.0180

 -1.2237    0.0180    0.2465

− −

 
 ′ ′= =  
  

V P A Ω A P   

and the greatest eigenvalue of 1
H E

−V V   

 -1
max H E( ) 0.6695λ = =V V . 

Since p=3, q=3, r=1, c=3, g=1, with (4.49) we get 1s∗ = , 1/ 2, 1/ 2m n∗ ∗= =  and the test statistic 

 max

1
0.6695

1

n
t

m

∗

∗

+= λ =
+

 

which is smaller than the quantile 95% confidence level 0.95, 3,3 9.2766F = ; accordingly we accept the null hy-
pothesis of  

 
101

06 202

30

  4.3840 

: -4.7172

 0.59221

ξλ     
    ′′ = ξ =λ     
     ξα    

H  . 

Finally we would like to briefly discuss the statistical property of the trace of 1
H E

−V V . Lawley (1938) and Hotel-
ling (1947, 1951) have proposed the trace of 1

H E
−V V  as a test criterion, the so called Lawley –Hotelling Trace 

Test. The exact distribution of  

 2 1
0 H Etr( )T −= V V  

was obtained by Hotelling (1951) for p = 2 in the central case. For 3p ≥ , the distribution of 2
0T  is generally quite 

complicated. Several authors, Constantine (1966), Davis(1968,1970a, b) Muirhead (1972), Pillai and Sampson 
(1959), Pillar and Sudjana (1974), Pillai and Young (1971) and Siotani, Hayakawa and Fujikoshi (1985) con-
sidered the central and noncentral distribution of 2

0T . Some tables of the approximate percentage point of 2
0T  are 

available in Davis (1972), Pillai  (1960) and Kres (1983). Its relationship with Hotelling’s 2T test used in the first 
test is given by the expression 

 2 2
0

1

1
T T

n
=

−
. 

In the third case we have 2 1
0 H E 1.4641T −= =V V , which is equal to 2/(6-1)=7.32/5T  in the first hypothesis test. 

Since we have accepted the null hypothesis 06′′H , this comparison also supports our first hypothesis test- Hotel-
ling’s T2 test. 

From the analysis above we can summarize that our estimation theory about the two-dimensional, symmetric 
rank-two random tensor, developed in Chapter 4 is practical to be applied and produces not only estimates con-
sistent with the tectonic setting, but also successive hypothesis tests which complete the statistical inference of 
eigenspace component parameters of a two-dimensional, symmetric rank-two strain rate tensor.  
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6.7  Statistical inference of the eigenspace components of 3-D strain rate tensor 

As second case study, both model and hypothesis tests developed in Chapter 5 will be applied to the observations 
of three-dimensional strain rate tensors derived in Section 6.4 for the sub-network of sites 1 –  4 – 9 – 8 (Grass – 
Bologna - Wettzell - Zimmerwald) in the studying region, see Figure 6.14,  at six epochs.  
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Figure 6.14 The sub-network of sites 1- 4 - 9 - 8 (Grasse-Bologna-Wettzell-Zimmerwald) in the study region  

  6.7.1 Estimation of the eigenspace components of the 3-D strain rate tensor 

With the three-dimensional strain rate tensor observations (Table 6.6) calculated by (6.11) with the six epoch 
ITRF residual velocities (Table 6.4), we can now estimate the eigenspace components (eigenvalues and eigendi-
rections) of the three-dimensional strain rate tensor, variance-covariance component matrix of type BIQUUE, 
and their dispersion matrix with (4.29), (4.30) and (4.31), and successively make hypothesis tests. The detailed 
estimates of eigenspace components (eigenvalues and eigendirections) and the associated standard deviations of 
the sub-network of the sites 1 –  4 – 9 – 8 are listed in Table 6.8.  

Table 6.8. The estimates of the eigenspace components and their standard deviations 
 

Eigenvalues and standard deviation (10-7 strain/yr ) 
       

1
ˆ1

ˆ ˆ
λ

λ σ                          
2

ˆ2
ˆ ˆ

λ
λ σ                      

3
ˆ3

ˆ ˆ
λ

λ σ  

              -1.049206  ±0.3611                0.013154  ±0.0213             2.953239  ±0.9910 
 

Orthonormal orientation parameters and standard deviation (degree ) 
     

32
ˆ32

ˆ ˆ
θ

θ σ                         
31

ˆ31
ˆ ˆ

θ
θ σ                      

21
ˆ21

ˆ ˆ
θ

θ σ  

 

             13.592942  ±2.6163              12.172197  ±6.7498             4.739774  ±3.4609 
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In order to get a visual presentation of the possible magnitude and the directions of the extension and contraction 
of the strain rate that is important to predict the tectonic activity, including possible deformation trend and direc-
tions, let us first introduce the determination of the eigendirections and their 95% confidence intervals from the 
orthonormal transformation (rotation) matrix U, whose elements are functions of the three rotation angles 32θ , 

31θ  and 21θ , see (5.25). With the Jacobi matrix for the transformation of three rotation angles 32θ , 31θ  and 21θ  to 
the eigenvectors u1, u2 and u3 of U, the variance-covariance matrix of ui is transformed from the variance-
covariance matrix of the orthonormal orientation parameter vector 32 31 21

ˆ ˆ ˆ[ ] ′θ θ θ : 

 ˆ
ˆ ˆ , 1, 2, 3

i i ivec vec i′= =u θ
Σ J Σ J ,  

with 

 

1 1 1

32 31 21

2 2 2

32 31 21

3 3 3

32 31 21

i

i i i

i i i
vec

i i i

u u u

u u u

u u u

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂

=  ∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂  

J

θ θ θ

θ θ θ

θ θ θ

 . 

The detailed results are: 

ˆ

0.002085  -0.000535   0.002642

-0.000535   0.013878   0.001192

 0.002642   0.001192   0.003649

 

{ }̂D

 
 = =  
  

θ
Σθ ,      1 2 3

0.974175    0.080773    0.210850 

-0.129701    0.964571    0.229739 

-0.184824   -0.251153    0.950138

 

[ ]

 
 = = 
  

U u u u , 

1

0.000677  0.001234  0.002702

0.001234  0.005617  0.002564

0.002702  0.002564  0.012445

ˆ
 
 =  
  

uΣ ,
2

0.003426 -0.001125 -0.003217

-0.001125  0.000371  0.001062

-0.003217  0.001062  0.003046

 
ˆ

 
 =  
  

uΣ ,
3

 0.013261 -0.001169 -0.002660

-0.001169  0.001967 -0.000216

-0.002660 -0.000216  0.000643

ˆ
 
 =  
  

uΣ . 

Second, we are able to illustrate the eigenspace and the confidence region of the three-dimension strain rate 
tensor. The three eigendirections determined by u1, u2 and u3 of the orthonormal transformation (rotation) matrix 
U are presented on the unit sphere in Figure 6.15,  together with their 95% confidence regions.  

 u
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Figure 6.15. The eigendirections of the 3-D strain rate tensor, with their 95% confidence regions 
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The 95% confidence regions are determined as follows: (1) The variance-covariance matrix ˆ
iuΣ with respect to 

the  Cartesian coordinates XYZ is transformed to the eigenspace by u1, u2 and u3 with orthonormal transforma-
tion (rotation): ˆ ˆ

i iEig ′=u uΣ UΣ U ; (2) We consider the standard deviations 
1 2 3

ˆ ˆ ˆ[ ]
i i iu u u ′σ σ σ , the square roots of the 

diagonal elements of ˆ
i EiguΣ , as the total angular displacement of the ith eigendirection and they are projected on 

the tangent surface at the end of the unit eigen vector iu  on the unit sphere. For the vector 1u  the possible error 
regions is determined only by the two standard deviations 

21 31
ˆ ˆ[ ]u u ′σ σ , similarly  2u  by 

12 32
ˆ ˆ[ ]u u ′σ σ  and 3u  by 

13 23
ˆ ˆ[ ]u u ′σ σ . (3) Using the α/2 and (1-α/2) quantiles / 2 1 / 2andt tα −α  of the Student distribution with α=5% and these 

standard deviations, the 95% confidence region of the eigendirections of 3-D strain rate are determined by 

 / 2 / 2 1 / 2 1 / 2ˆ ˆ,
ij iju uc t c tα α −α −α= σ = σ . 

This brings us the 95% confidence region (with / 2tα =2.57) for every eigenvector of the strain rate tensor in arc 
length and angle on the unit sphere in Table 6.9, and is projected onto the surface of a unit sphere in Figure 6.15. 

Table 6.9. 95% confidence regions for the eigenvectors of the strain rate tensor 

                           Principal axes             Length            Angle on the unit sphere  
                                             (i, j)                 ( / 2 / 2ˆ

jiuc tα α= σ )     ( / 2 / 2ˆ
jiuc tα α= σ  in degree)  

1, 2                        0.207756                      11°.903555 
1, 3                        0.250465                      14°.350605 

2, 1                        0.112777                        6°.461661 
2, 3                        0.149905                        8°.588900 

3, 1                        0.126935                      15°.626844 
3, 2                        0.117323                        7°.272837    

 

6.7.2   Statistical inference of the estimates of eigenspace component parameters of the 3-D strain rate     
                tensor 

The estimates of the eigenspace component parameters and their related dispersion matrix from the three-
dimensional, symmetric rank-two strain rate observations of six epochs reflect the statistical average information 
of the random strain rate tensor, utilizing the advantage of the longer time span. With them we can successively 
perform the statistical inference, i.e. 

Statistical Inference = Estimate +Hypothesis test. 

The estimates of type BLUUE of the eigenspace component parameters of a three-dimensional, symmetric rank-
two random strain rate tensor in the sub-network, their related dispersion matrix with Theorem 4.3 and the sam-
ple variance-covariance matrix ˆ

yΣ  of type BIQUUE with Theorem 4.4 are summarized in the following Box 6.8. 

Box 6.8 

Case study: Hypothesis test with a 3-dimensional strain rate tensor in  
sub-network of sites 1– 4 – 9 – 8 (Grass-Bologna-Wettzell-Zimmerwald)  

"the Σ -BLUUE of eigenspace components of a three-dimensional,  
symmetric rank-two random tensor with Theorem 4.3" 

 

-7 -71

-7
2

-7
3

32

31
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ˆ
-1.049206 (10 strain/y) -1.049206 (10 strai

ˆ
 0.013154(10 strain/y)

ˆ  2.953239(10 strain/y)ˆ
ˆ  0.237242 (arc)
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 0.082725 (arc)ˆ

 
  
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  
  = = =  
  
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  
    

ξ

λ
λ

λ
θ

θ
θ

-7

-7
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 0.013154(10 strain/y)

 2.953239(10 strain/y)

 13 .592942 

   12 .172197   

   4 .739774 
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 "the sample variance-covariance matrix ˆ
yΣ  of type BIQUUE with Theorem 4.4" 

 

1.7301    0.2955    1.3825    0.0842    0.2180    0.9666

0.2955    0.1158    0.3337    0.0296    0.1284    0.3793

1.3825    0.3337    1.7775    0.0707    0.4085    2.2412ˆ
0.0842    0.0296    0.0707  

=yΣ
7 2(10 strain/y)

  0.0084    0.0283    0.0549

0.2180    0.1284    0.4085    0.0283    0.1729    0.6346

0.9666    0.3793    2.2412    0.0549    0.6346    3.7467

−

 
 
 
 
 
 
 
 
  

 

"the related dispersion matrix of ξ̂  with Theorem 4.3" 

 ˆ

0.1304    0.0054    0.0872    0.0022    0.0346    0.0063

0.0054    0.0005   -0.0077   -0.0001    0.0006   -0.0001

0.0872   -0.0077    0.9820   -0.0160    0.0889   -0.0050
{ }

0.0022   -0.0001
ˆ

   -0.
D = =

ξ
Σξ

0160    0.0021   -0.0005    0.0026

0.0346    0.0006    0.0889   -0.0005    0.0139    0.0012

0.0063   -0.0001   -0.0050    0.0026    0.0012    0.0036

 
 
 
 
 
 
 
 
  

 

With these estimates of the eigenspace components of the random strain rate tensor and their dispersion matrix 
the following multivariate hypothesis tests discussed in Section 5.3 can be performed: 

• Test for the eigenspace parameter vector 0 with= yΣξ ξ  unspecified;  

• Test for a distinct element of the eigenspace parameter vector with Student t- test (see Box.6.9); 

• Eigen-inference about the orthonormally transformed parameters η ;  

• Test for the variance-covariance matrix 0=yΣ Σ ; 

• Test for the eigenspace parameter vector and variance-covariance matrix  0 0,= =yΣ Σξ ξ ; 

• The general linear hypothesis test with a growth curve model for eigenspace parameters. 

Here we just make the second one - the Student t- test - for the distinct element of the eigenspace parameter 
vector. 

  Box 6.9 

Separate Student t-tests about the eigenspace parameters inξ  
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 "two-sided tests with the test quantities" 
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t t t

− − −
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with respect to 1 2 3 32 31 21
ˆ ˆ ˆ ˆ ˆ ˆ, , , , andλ λ λ θ θ θ  of type Σ -BLUUE and their variances from Box 6.8. 

t1, t2 t3, t4 t5 and t6  are elements of the Student t-distribution with n-1 degrees of freedom. 

The probability identity  

 1 2 1 0 2 0ˆ ˆ ˆ{ } { } 1P c t c P c c≤ ≤ = + ≤ ≤ + = − =σ µ µ σ µ α γ  
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relates the error probability α  of the two-sided test to the confidence level γ . If µ̂  is an element of the confi-
dence interval 1 0 2 0ˆ ˆ ˆc cσ µ µ σ µ+ ≤ ≤ +  , the null hypothesis 0 0: µ µ=H  is accepted. We reject 0H  if the confi-
dence interval does not contain µ̂ .  

With error probability α =5% we derive 

 
1,1 / 2 2,1 / 2 6,1 / 2

1, / 2 2, / 2 6, / 2

2.57

2.57.

t t t
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�

α α α

α α α

 

The critical values 

 

1 1 1 1

2 2 2 2

3 3 3 3

32

, / 2 1, / 2 10 ,1 / 2 1,1 / 2 10

, / 2 2, / 2 20 ,1 / 2 2,1 / 2 20

, / 2 3, / 2 30 ,1 / 2 3,1 / 2 30

, / 2

-1.7482 0.1083

-0.0134 0.0962

-1.0627 4.0319

ˆ ˆ,

ˆ ˆ,

ˆ ˆ,

c t c t

c t c t

c t c t

c

− −

− −

− −

= + = = + =

= + = = + =

= + = = + =

λ α λ α λ α λ α

λ α λ α λ α λ α

λ α λ α λ α λ α

θ α

σ λ σ λ
σ λ σ λ
σ λ σ λ

32 32 32

31 31 31 31

21 21 21 21

4, / 2 320 ,1 / 2 4,1 / 2 320

, / 2 5, / 2 310 ,1 / 2 5,1 / 2 310

, / 2 6, / 2 210 ,1 / 2 6,1 / 2 210

0.1785 0.4132

-0.1818 0.

ˆ ˆ

4239

-0.0506 0.2

,

ˆ ˆ,

ˆ 9ˆ, 5

t c t

c t c t

c t c t

− −

− −

− −

= + = = + =

= + = = + =

= + = = + =

θ α θ α θ α

θ α θ α θ α θ α

θ α θ α θ α θ α

σ θ σ θ
σ θ σ θ
σ θ σ θ 9

 

indicate the confidence intervals 
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thereby suggesting the acceptance of all six null hypotheses. 
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with the risk of α =5% of a Type I error.  

The 95% confidence intervals for the eigenvalues 1 2 3, ,λ λ λ  and the three rotation angles 32θ , 31θ  and 21θ  are  
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Chapter 7 

Conclusions 

This chapter will conclude the main contributions and results in this study and makes a prospect of more possible 
applications of the developed theory, methods and further investigations.  

With the new space geodetic techniques such as GPS, VLBI, SLR and DORIS, three-dimensional position and 
change rate of network stations can be highly accurately determined from regular measurement campaigns, 
which have became an accurate and reliable source of information in Earth deformation studies. This fact sug-
gests that the components of deformation measures, for instance the stress or strain tensor, can be estimated from 
the highly accurate geodetic data and analyzed through the proper statistical testing procedures. The eigenspace 
components of these random deformation tensors (principal components, principal directions) are of focal inter-
est in geodesy, geology and geophysics. They play an important role in interpreting the geodetic-geological-
geophysical phenomena such as earthquakes (seismic deformations), plate motions, and plate deformations 
among others.  

Having recognized the facts that an exact distribution theory of eigenspace components of a symmetric random 
tensor is almost always unavailable, i.e. the distributions of the eigenvalues and eigendirections of a symmetric 
random tensor is different from the normal distribution, and a direct statistical inference of them in real Engi-
neering and Earth Science problems can hardly be performed. We have investigated the statistical inference of 
eigenspace components of a 2-D and 3-D symmetric rank-two random tensor based upon a linearized multivari-
ate Gauss-Markov model, which could provide us with the second-order statistics of eigenspace components. 
Such a statistical inference on the estimates of eigenspace components of a random tensor is completed by the 
design of a linear hypothesis test. For this purpose first in Chapter 1 we have systematically studied the sampling 
distribution of the sample mean vector and sample variance-covariance of the direction observation of a random 
tensors, which proves that the vectorized three-dimensional symmetric random tensor y = vech T ∈ R6×1 has a 
BLUUE estimate ̂ yµ ∈ R6×1 which is multivariate normally distributed, ˆ yµ ∼ 1

6 ˆ( , ; )n−
y y yµ Σ µN , where n is the 

number of full tensor observations and {vech },D=yΣ T  the variance-covariance matrix of y. The BIQUUE sam-
ple variance-covariance component matrix ˆ

yΣ is Wishart distributed 1

6 ; )ˆ ˆ( 1, ( 1)n n −∼ − − y yyΣ Σ ΣW . Further in 
Chapter 2 we have proposed the multivariate testing of hypotheses concerning the sample mean vector and the 
sample variance-covariance component matrix, i.e. the estimated parameters (mean vector and covariance ma-
trix) of tensor-valued multivariate normal population of a two and 3-D, symmetric rank-two random tensor. 

For its linearized form of a special nonlinear multivariate Gauss-Markov model for sampling the eigenspace 
synthesis of a two-dimensional, symmetric rank-two random tensor, the BLUUE of the eigenspace elements and 
BIQUUE of its variance-covariance component matrix have been established successfully in Theorem 4.3 and 
4.4. The proper test statistics, such as Hotelling’s T2, likelihood ratio statistics and the general linear hypothesis 
test with a growth curve model, are proposed. For the three-dimensional symmetric random tensor we have 
uniquely established the eigenspace analysis and synthesis in Corollary 5.2 of a three-dimensional symmetric 
random tensor based on the choice of the orthogonal similarity transformation matrices in (5.22) to (5.28). This 
leads to the generalization of the BLUUE of the eigenspace elements of three-dimensional random tensor and 
BIQUUE of its variance-covariance component matrix in three-dimensional case. 

As two case studies both estimates BLUUE and BIQUUE and hypothesis tests have been applied successfully to 
the eigenspace components of 2-D and 3-D strain rate tensor observations in the area of the central Mediterra-
nean and Western Europe, which are derived from ITRF92 to ITRF2000 series station positions and velocities in 
Sections 6.6.and 6.7. The analysis with respect to geodynamical and statistical aspects shows that, in general, our 
estimates of the eigenspace components of a two-dimensional strain rate tensors is consistent with the tectonic 
setting in the area of the central Mediterranean and Western Europe. Furthermore we can benefit from the statis-
tical information derived from the estimation procedure. For example the 95% confidence intervals for the esti-
mates of eigenvalues 1 2

ˆ ˆ,λ λ  and eigendirection 1α̂  illustrated in Figure 6.13, provides us with a visual presenta-
tion of the possible magnitude and the directions of the extension and contraction of the strain rate, which is 
important for the prediction of the tectonic activity including the possible deformation trend and directions. 

Thanks to the uniquely established eigenspace analysis and synthesis we have estimated the eigenspace compo-
nent parameters and their dispersion matrix from the 3-D, symmetric rank two strain rate observations of six 
epochs. These estimates reflect the statistical average information of the random strain rate tensor, utilizing the 
advantage of the longer time spanner. With them we can successively perform the statistical inference. The 95% 
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confidence regions illustrated on the unit sphere in Figure 6.15 provides us with the three-dimensional visual 
presentation of the possible magnitude and the directions of the extension and contraction of the strain rate, 
which is also important for the prediction of the three-dimensional deformation. 

The related linear hypothesis tests in these two case studies in Section 6.6 and 6.7 have documented large confi-
dence regions for the eigenspace components, namely eigenvalues and eigendirections, based upon real meas-
urement configurations. They lead to the statement to be cautious with data of type extension and contraction as 
well as with the orientation of principal stretches. 

It is necessary to note that, although the strain rate tensor observations are derived from the nine ITRF sites ac-
cording to the criterion discussed above, in reality they don’t satisfy the all conditions of i.i.d. observations. 
Since we have not yet found the right i.i.d. strain tensor observation sets, we apply strain rate tensor observations 
derived from the nine ITRF stations in six series realizations, assuming approximately that they are i.i.d. obser-
vations in our study.  

Since numerical tests have documented that the estimate ̂ξ  of type BLUUE of the parameter vector ξ  within a 
linear Gauss-Markov model { { },E=Aξ y  { }}D=yΣ y  is not robust against outliers in the stochastic observation 
vector y, we give up the postulate of unbiasedness, but keep the set-up of a linear estimation ̂ =ξ Ly of homoge-
neous type. According to best linear estimators of type homBLE (Best homogeneously Linear Estimation), S-
homBLE and α-homBLE of the fixed effects ξ  (Grafarend and Schaffrin 1993, Schaffrin 2000), we have devel-
oped a new method of determining the optimal regularization parameter α in uniform Tykhonov-Phillips regu-
larization (α-weighted BLE) by minimizing the trace of the Mean Square Error matrix ˆ{ }MSE ξ  (A-optimal de-
sign) in the general case. This estimation formula is closed, which provides us not only with the optimal regu-
larization parameter but also with more quicker and more practical solutions than by other methods such as by 
means of L-Curve (Hansen 1992) or the Cp-Plot (Mallows 1973). Further, it has been shown that the optimal 
ridge parameter k in ridge regression as developed by Hoerl and Kennard (1970a, 1970b) and Hoerl, Kennard 
and Baldwin (1975) is just the special case of our general solution by A-optimal design. Based on the introduc-
tion of the multivariate homBLEα − for the multivariate parameters, the determination of the optimal weight 
factor α  has also been generalized to the multivariate Gauss-Markov model, which we shall call "multivariate 
ridge estimator".  

Through the above six chapters of this dissertation we have achieved the complete solution to the statistical in-
ference of eigenspace components of the deformation tensors. The models developed in the last two chapters are 
closed and practical. The results bring a sound meaning to the deformation analysis. With these models we could 
successfully perform the statistical inference of the eigenspace components and the variance-covariance matrix 
of the Gauss-Laplace normally distributed observations of a random deformation tensor (case study: two- and 
three-dimensional, symmetric rank two strain rate tensor).  

Beyond the two case studies in Chapter 6 there are surely further applications and investigations of statistical 
inference for the eigenspace components of a deformation tensor.  

As we have mentioned before, for the estimation of eigenspace components of type BLUUE, we need the obser-
vations of random tensors. Except for our case study with strain rate tensor observations derived from the ITRF 
station coordinates and their velocities in six series realizations, there are other types of symmetric rank-two 
random tensors such as stress and strain. Especially with benefit to the new development of space geodetic tech-
niques such as GPS, the time series observations of a network can be achieved with higher accurate. The time 
series observations as samples enable us to apply the estimate BLUUE of the eigenspace components of 2-D or 
3-D random tensors and BIQUUE of their variance-covariance components matrix in a more practical way and 
could be more realistic results.  

Regarding the facts in reality, crustal motions and deformations are of three-dimensional nature. Most tensors in 
Geodesy and Geophysics are three-dimensional having been derived from geodetic, geological and seismological 
data. Our estimation theory as developed in Chapter 5 can also be applied to the statistical analysis of the esti-
mates of the eigenspace components of the three-dimensional stress/strain or seismic moment tensors with in situ 
measurements by strain meter and by seismometer, respectively, which are of focal interest in geophysics and 
seismology. 

The new method of determining the optimal regularization parameter α in uniform Tykhonov-Phillips regulari-
zation (α-weighted BLE) by minimizing the trace of the Mean Square Error matrix ˆ{ }MSE ξ  (A-optimal design) 
can be applied in the general case not only to replace the simple BLUUE of direct observations but also the gen-
eral BLUUE in a linear Gauss-Markov model. It can bring also a sound solution to the improperly posed prob-
lems which appear in solving the downward continuation problems in potential theory. 
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