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Abstract

For thevalidation of a symmetric rank-two random tendor instance of strain and stress, gigenspace com-
ponents(principal components, principal directions) plakey role. They classify deformation and stress pat
terns in earthquake regions, of plate tectonicsargacially isostatic rebounds. The main purposthis study
is to develop the proper statistical inference tfo eigenspace components of a two- and three-giovea
symmetric deformation tensor. Let us assume thastilaén or stress tensor has been directly obseswéuldi-
rectly determined by other measurements. Accortiinthe Measurement Axiorauch a symmetric rank-two
tensor isandom.For itsstatistical inferencewe assume that the random tensdaefsor-valuedsauss-Laplace
normally distributed It is proven that the vectorized three-dimendiayanmetric random tensor = vech
T O R* has a BLUUE estimatg, 0 R®* which is multivariate normally distributed, 0 N (,, "L, n,),
wheren is the number of full tensor observations atjd= D{vechT}, the variance-covariance matrixyfThe
BIQUUE sample variance-covariance matlzigg is Wishart d|str|butedz O Ws(n-1, (n-1)'%,; £)). The
eigenspace synthegislates the eigenspace elements to the obsersemomeans of a nonllnear vector valued
function establishing apecial nonlinear multivariate Gauss-Markov modedr the linearized forms, we have
succeeded to construBLUUE (Best Linear Uniformly UnbiasedEstimation) of the eigenspace elemeratsd
BIQUUE (Best InvariantQuadraticUniformly UnbiasedEstimation) of its variance-covariance matrix foeth
two- and three-dimensional cases. The test statistiich aslotelling’s T2 Lawley-Hotellings trace test likeli-
hood ratio statistics and Growth-Curve mode¢ proposed. In two case studies both model gpdthesis tests
are applied to the two- and three-dimensional, sgtrimrank two strain rate tensor observationienregion of
central Mediterranean and Western Europe, whicllareed from ITRF92 to ITRF2000 series stationiiass
and velocities. The relatdihear hypothesis tedtas documented large confidence regions for thenspace
components, namebigenvalues and eigendirectigrmsed upon real measurement configurations. TEaelyto
the statemento be cautiouswith data of type extension and contraction ad a®lthe orientation of principal
stretches.

Numerical tests have documented that the esti&afetype BLUUEof the parameter vect@rwithin a linear
Gauss-Markowmode{AE =H }, X, =D{y}} isnotrobust againsutliersin the stochastic observation vector
y. Itis for this reason thate give ughe postulate of unbiasedness, but keeping thepsef alinear estimation

& = Ly of homogeneous type. According to best linear egtins of type homBLERest homogeneously Linear
Estimation), S-homBLE andi-homBLE of thefixed effect€ (Grafarend and Schaffrii993, Schaffrin 2000).
We have developed a new method of determining phienal regularization parameterin uniform Tykhonov-
Phillips regularizationd-weighted BLE) by minimizing the trace of the Me@guare Error matriMSE & (A-
optimal design) in the general case. Within twoecsisidies, the new method is tested and analyztukinni-
variate and the multivariate case with data whicherived from simulated observations of a randensdr of
type strain rate.

Zusammenfassung

Fir die Validierung eines symmetrischen Zufallsbesszum Beispiel der Spannung und Strain, spidien
Eigenkomponenten (Hauptverzerrungen und Orientga) eine Schlisselrolle. Mit ihnen lassen sichnSpa
nung und Strain in erdbebengefahrdeten RegionamnjdsePlattentektonik sowie bei isostatisch pogiglen
Hebungen klassifizieren. Die Entwicklung geeigneteathematisch-statistischer Verfahren zur Schéataierg
Eigenkomponenten eines zwei- oder dreidimensionajenmetrischen Deformationstensors ist der Hauptge-
genstand der vorliegenden Arbeit. Es wird angenommass der Spannungs- oder Straintensor entwéeeét d
beobachtet oder aus anderen Beobachtungen abgeleitde. Auf Grund deBeobachtungsaxiormist ein sol-
cher symmetrischer Tensor zweiter Stufe zufalligr Seine statistische Inferenz nehmen wir an, dassZu-
fallstensor Gaul3-Laplace normal verteilt ist. Esdvgezeigt, dass der vektorisierte dreidimensiosgtemetri-
sche Zufallstensoy = vech T 0 R®! eine beste lineare erwartungstreue uniforme SchgtZBLUUE)

n, O R®? hat. Diese ist multivariat normalverteilt mit, ON(n,, n7'E,; j,). n ist die Anzahl der Tensor-
BeobachtungenX, = D{vechT} die Varianz-Kovarianz-Matrix der BeobachtunggnDie BIQUUE (beste
invariante quadransche uniforme erwartungstreugaang) Varianz-Kovarianz- MatnE der Stichprobe ist
Wishartverteilt £, O W, (n-1, (n-1)"X; £ ). Da die Eigenraumsynthese eines symmetrlschenllﬂafa
sors beziglich tensorwertlger Beobachtungen nickdli ist, missen die jeweiligen Parameter innerbalbs
speziellen nichtlinearen multivariateBaul3-Markoff Modellsgeschatzt werden. Zur Stichprobenprifung der



Eigenraumsynthese wird dessen Linearisierung ansudgpriinglich nichtlinearen Beobachtungsgleichange
abgeleitet. Die SchatzungenX(-BLUUE) der Eigenraumbestandteile und die Schatzihmgr Varianz-
Kovarianzmatrix der Art BIQUUE werden fiir den zweird dreidimensionalen Fall entwickelt und entspre-
chende Teststatistiken wigotelling’s T, die Likelihood-Verhaltnisstatistiken und daSrpwth-Curvemodel*
generiert. In zwei Fallstudien werden sowohl Modals auch Hypothesentests auf zwei- und dreidifoaate,
symmetrische Tensor-Beobachtungen der Strainrateler zentralen Mittelmeerregion und Westeuropaeang
wendet, die von Stationspositionen und -geschwhwadign der Reihe ITRF92 bis ITRF 2000 abgeleitetden.
Die verwandten Hypothesentests liefern, basiererfidemlen Messkonfigurationen, grof3e Konfidenzivaiie

fur die Eigenwerte und Eigenrichtungen, so dasdmitinterpretation der GréRenausdehnung, Kontmakind
Hauptstreckungsrichtung auRlerst vorsichtig umgegiamgerden muss.

Numerische Tests haben dokumentiert, dass die ﬂn‘rga& des Typs BLUUE des Unbekanntenvektdrisn
linearen Gauss-Markowlodell {AE = H Yy, X, =D{y} nicht gegen Ausreil3er im stochastischen Beobach-
tungsvektor robust ist. Aus diesem Grund gebendad Postulat der Unverzerrtheit auf, behalten dbarAn-
satz der homogenen linearen Schatziirdy bei. Auf Grundlage bester linearer Schatzer vomp d-pomBLE
(beste homoge lineare Schatzung), S-homBLE asm@mBLE der fixen Effekte€ (Grafarend und Schaffrin
(1993),Schaffrin(2000)) haben wir eine neue Methode der Bestimnugsgoptimalen Regularisierungsparame-
tersa einer uniformeriTykhonov-PhillipsRegularisierungd-gewichtete BLE) fur den allgemeinen Fall entwi-
ckelt. Das Kriterium ist die Minimierung der SpwrdMatrix MSE & der mittleren Fehlerquadrata-pptimales
Design). Im Rahmen zweier Fallstudien wird die neue Mdthéir den univariaten und multivariaten Fall mit
Daten, die aus simulierten Beobachtungen einem&itantensors abgeleitet werden, getestet ungsiaetl
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Chapter O

Introduction

A central task of Geosciences, in particular of @y and Geophysics, is to determine the tempbeaige of
the Earth’s shape by observations and analysisofletic and geophysical global, regional or loegivorks.

With the new space geodetic techniques, such ag Mamg Baseline Interferometry (VLBI), Satellite $ex

Ranging (SLR), and Global Positioning System (GRi&ge-dimensional positions and velocities of in

these networks have been determined with high acgur- mm level) from relative regular measurentam-

paigns, which have become a key tool in plate téctstudies. These data have improved our knowleshge
understanding of (1) regional deformation and str@icumulation related to earthquakes, (2) conteanpo
relative plate tectonic motions of the North Amari¢ Pacific, South American, Eurasian, Australldazca, and
Caribbean plate, (3) internal deformation of lithlesric plates, and (4) crustal motion and deforomaticcurring
in the regions of high earthquake activity. ThesetdS suggest that the components of deformatiosumes such
as the symmetric stress or strain tensor can limastl from the highly accurate geodetic data amalyaed

through the proper statistical testing procedures.

Deformation tensors are practically random, siry tare either directly measured or indirectly imee from
other geo-measurements. The estimate of random egnnmank two tensors and associated statistidaténce
are usually based on the statistics, e.g., samplensmand sample variance-covariance. So we shosily f
derive the sampling distributions of sample meahthe random tensor. The values of any samplestitsi
depend on a particular samples one happens tanolttaiaries from sample to sample. Thus a statista ran-
dom variable. As such, it has a probability disttibn called sampling distribution. We owe the pakkvelop-
ment of sampling distributions under normalityRc5. Laplacg1812),Carl Friedrich Gausq1816),Friedrich

Robert Helmer{(1876a) for theHelmert distribution(which is highly valued as the starting point foodern
small sample theory)Thorvald N. Thielg1889, 1903)Karl Pearson(1900) for hisChi squaredistribution,

Sealy Goss€t1908a, b) for hisStudent t-distribution, Ronald A. Fish€r920, 1922) for thé&-distribution and
JohnWishart(1928) for theWishart distribution

The hypothesis test of sample mean vector and savaplance-covariance matrix of a symmetric randemsor
belongs to multivariate analysis which is the braatstatistics devoted to the study of randomalaés that are
not necessarily independent. Where inference isaroed several (generally correlated) measurenagatsiade
on every observed subject. Many current multivargthtistical procedures were developed durinditsiehalf
of the twentieth century. A reasonable completedfsthe developers would be voluminous. Howevefewa
individuals can be cited as having made importaitiai contributions to the theory and practicenuiltivariate
analysis.T. GaltonandK. Pearsondid pioneering work in the area of correlation aagression analysif.A.
Fisher'sderivation of the exact distribution of the sampterelation coefficient and related quantitiesvided
the impetus for multivariate distribution theofy. SpearmarandK. Pearsorwere amongst the first to work in
the area of factor analysis. Significant contribng to multivariate analysis were made during 9@0% by S. S.
Wilks (general procedures for testing certain multiariaypotheses)H. Hotelling ( Hotelling's T, principle
component analysis, canonical correlation analydis A. Fisher(discrimination and classificatignandP. C.
Mahalanobis(generalized distance, hypothesis testidg)Wishartderived an important joint distribution of
sample variance and covariance that bears his nzater.M. Bartlett and G. E. P. Bogontributed to the large
sample theory associated with certain multivartat statistics. The body of statistical methodgloged to
analyze simultaneous measurements on many varisbtadled multivariate analysis. Many multivariateth-
ods are based on an underlying probability modelmas the multivariate normal. The objectivesaigstific
investigations, for which multivariate methods moaturally lend themselves, include the following:

— Data reduction or structural simplification.
— Sorting and grouping.
— Investigation of dependence among variables.
— Predication.
— Hypothesis construction and testing.
In the deformation analysis in geosciences (geqdgyphysics and geology), we are often confromtitd the

problem of a two-dimensional (or planar and hortafn symmetric rank-two deformation tensor.digenspace
components (principal components, principal diree)iplay an important role in interpreting the geddet
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phenomena like earthquakes (seismic deformatiqade motions and plate deformations among othiith
the new space geodetic methods three-dimensiosélqts and velocities of points in these netwdrage been
determined with high accuracy (~ mm level) fromatige regular measurement campaigns, which haventiec
a key tool in plate tectonic studies. This factgegis that the components of a two-dimensionalrdefton
tensor can be estimated from the high accuracyejmodata and analyzed through the proper statlsisting
procedures. According to thdeasurement Axiorsuch a two-dimensional, symmetric (2, 0) tensa riandom
tensorT which we assume to be an element of the tensoet@auss-Laplace@ormal distribution oveR?? of
type independently, identically distributed (i.).densor-valued observations, but with identicatdidgonal
elements.

In reality, crustal motions and deformation arehw&e-dimensional nature and most deformation tsrderived
from geodetic, geological and seismological obg@a are three-dimensional, such as the seismitiano
tensors. In the last two decades some efforts haga made to formulate the problem in the threesdsional
space. A curvilinear three-dimensional finite elatnmethod has been introduced Gyafarend(1986) for the
representation of local strain and local rotatiensbrs in terms of ellipsoidaGauss-Kriigeror UTM coordi-
nates. More researches about the three-dimensitia@th and strain rate tensor analysis in geodesyederred
to the papers dBrunner(1979),Lichtenegger and Sinkgl989),Dermanis and Grafaren993) andwitten-
burg(1999). In comparison with the more complete solutind application about two-dimensional defornmatio
tensors on the Earth, there are three aspectirttiathe deformational analysis in three dimensiofl) there is
insufficient accuracy of vertical components ofrgiositions due to unresolved modeling errorsiti2)verti-
cal movements of the crust, whether uplift or sdésce, are generally an order of magnitude smiiéer hori-
zontal movements; (3) the restriction of the extengeodetic measurements to the earth’s surfade rirge
vertical gradient of the velocity vector generallyobservable. In addition to the analysis of tlggespace com-
ponents of three-dimensional deformation tensisrdifficult to uniquely determine the three eigardtions.

Random tensors, also called random matrices, virsteahalysed itNuclear PhysicgPorter 1965,Mehta1991),
independently inMlathematical Statistic§Anderson1984) in the context of multivariate modeling. Givihe
probability density functiorfpdf) of a random tensor of second order, it hesnbdocumented that apart from
special cases, the exgmbbability density functiof therandom eigenspace componeo#not be found in a
closed form. Accordingly, statistical analysts hdweussed on approximate and/or limit distributiofts in-
stance, of the products of random matrices ant@random eigenspace compone#tsdersonl1958; Mehta
1991;Girko 1979, 1990, 1995, 200Cohen, Kesten & Newmdr984).

In the Earth Science random tensors have only tigdegen investigated from the statistical poinvigw. Since
the tensors in the Earth Science are physical diggnand their dimensions are generally low (3fivess/strain
tensors and 6 for elastic material tensors), madhieaily approximate/limit distributions of the idm eigen-
space components are of limited practical valudatt, the study of random stress/strain has beeuastd on
the following four aspects: (1) the exact distribntof the random principal stress/strain compasiesince the
dimension of stress/strain tensors is not gredtan three and since the number of measurementwaysafi-
nite; (2) the accuracy of the random eigenspacepooents. The accuracy is generally not investigatetie
mathematical literature of rank-two random tensltiis. however a routine indicator that must baced to any
estimated/derived geo-quantity; (3) the biaseshef random eigenspace components. Since the mapping
tween a stress/strain tensor and its eigenspacpar@nts is nonlinear, the random eigenspace compoaee
biased. The biases of the eigenspace componegtpteor some inequality results on the biasefiefrandom
eigenvalues (see e.g. Cacoullos 1965), have notWwek investigated in the mathematical literatarerank-two
random tensors. They can have an important robdatpin correctly interpreting the estimated stfetsain field
geophysically, however; and (4) the eigendirectioftse eigendirections have been almost alwayseiteas
nuisance parameters in nuclear physics and mutiteaanalysis. Geophysically, the eigendirectiores \eery
important and thus cannot be ignor&a Gnd Grafarend 1996b).

The first work on the statistical analysis of ramdtensors in the Earth Sciences was to computértterder
accuracy of the principal eigenvalues of a symmgtank-two random tensofgelieret al 1982 as an appen-
dix, and probably independenti@oler & van Gelderl991).Kagan & Knopoff(1985) studied statistically the
first two moments of stochastic three-dimensio3&)(seismic moment tensor invariants, which weredu®
explain complex fault geometriKégan1992).

On the assumption that a strain tensor or stres®tdas been directly measured or derived frorerathserva-
tions, such a two-dimensional, symmetric rank-temsbr is a random tensérwhich we assume to be an ele-
ment of the tensor-valueBauss-Laplacenormal distribution oveR?? of type independently, identically dis-
tributed (i.i.d.) tensor-valued observations. Thstribution of theeigenspace components the rank-two
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random tensor (principal components, principal aioms) has been investigated ¥y and Grafarend(1996a;
1996b), which is significantly different from theramonly usedsauss-Laplac&ormal distribution. The possi-
ble bias terms of eigenspace components and tH@eanerror propagation are also studied in thesepa-
pers. By means of the numerical analysis with &gy series expansion, the marginal probabilitysitgriunc-
tion f, (11, A,) of random eigenvaluek, A, has been approximately computed@si (2001). In recent yeabsu
(1999a) ancKagan (2000) developed the general distribution of tlgeespace components of the symmetric,
rank-two random tensor, which can hardly be appliedctly to real Engineering and Earth Sciencebfmms,
since an exact distribution theory of eigenspacepments is almost always unavailable.

These reasons give rise to investigate the

Statistical inference of eigenspace componentg
of the two- and three-dimensional symmetric,
rank-two random tensor (“random matrix")

based upon a linearized multivari@auss-Markowmodel which will provide us with the second-ordéatistics
of eigenspace components. Such a statistical ilderen a random matrix is completed by the designlimear
hypothesis test.

With the benefit of the development of the spacedgsy and the continuous observations of the pentan
networks, such asnternational GPS Servic8GS) Network, International Laser Ranging Servi¢k.RS Net-
work, International VLBI Service for Geodesy and Astragn@vS Network andnternational DORIS Service
(IDS) Network and their combinatiolmternational Terrestrial Reference FrantdRF) by IERS, we can now
derive the strain rate tensor observation and estirthe eigenspace component parameters of thedenna
tensor samples, which address not only the pretsntieformation pattern but also their continucuange of
them. In two case studies both BLUUE and BIQUUE els@&nd hypothesis tests are applied to the eigeasp
components of two- and three-dimensional straia tahsor observations in the area of central Meditean
and Western Europe, which are derived from ITRF®2TRF2000 series station positions and velociities
Sections 6.6.and 6.7. The relatevkar hypothesis tedtas documented large confidence regions for thenei
space components, nhameligenvalues and eigendirectiorisased upon real measurement configurations. They
lead to the statemett be cautiousvith data of type extension and contraction ad aghwith the orientation of
principal stretches.

In the estimate of deformation tensor we oftenthaethe estimaté of type BLUUEof the parameter vectd
within a linearGauss-Markovmode{Ag =Ky, X, =D{)}} is not robust againsoutliersin the stochastic
observation vectoy. It is for this reason that we give up the poseutaf unbiasedness, but keeping the set-up of
alinear estimatiort =Ly of homogeneous type. The biased estimation is eiapeverse problem, also related
to Tykhonov-Phillips regulatoor ridge estimator Ever sinceTykhonov(1963) andPhillips (1962) introduced
the hybrid minimum norm approximation solutiiHAPS) of alinear improperly posed problethere has been
left the open problem to evaluate the weightingdaa between the least-squares norm and the minimum nor
of the unknown parameters. Since the 1960s thisl@mohas been studied intensively not only in mathtécal
statistical field but also in industry, see d4pcking (1976),Hoerl (1985),Hanke and Hanse(993) undengl
(1993). In most applications dfykhonov-Phillipdype of regularization the weighting factmris determined by
simulation studies, but according to the literatals® optimization techniques have been appliede Me aim at
an objective method to determine theighting factorx within a-HAPS.

Alternatively, improperly posed problems, which appin solving integral equations of the first kimddown-
ward continuation problems in potential theory, atégrom observations which are elements of a iiba
space. Accordingly, estimation techniques of typ&/BE (best linear uniformly unbiased estimationyé#een
implemented to estimatg as an unknown parameter vect(“fixed effects”) within a lineaiGauss-Markov
model Such an estimation rotrobust againsbutliersin the stochastic observation vectprlY.

The second method of regularizing an improperlyepgsroblem offers the possibility to determine tbgulari-
zation parametar in an optimal way. For instance, by an A-optimesign of type

"minimize the trace of théMlean Square
Error matrix tr MSE{¢} of & (a-hom BLE) to find
& = arg{tr MSE{g} =min}"

we are able to construct the regularization parametwhich balances the trace of the variance-covariance
matrix tr D{& and the trace of the quadratic biasp’ for thebias vectoy =l -LA]&.
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According to the facts and status introduced alibigedissertation presents the complete statistéinalysis of
random deformation tensor (case study: two- angetidimensional, symmetric rank two strain ratedenaith
emphasis on their eigenspace components. The roatriliutions of this study are:

« Determination of the sampling distribution of tieete-dimensional deformation tensor and development
the univariate and multivariate hypothesis testpeeially thesigen-inferencand test with &rowth Curve
mode]

« Derivation of the general sampling distributiortloé estimate within a Gauss-Markov linear model;

+ Derivation of the regularization parameter in umifioTykhonov-Phillips regularizatiorn¢weighted BLE)
by minimizing the trace of thean Square Error matrixMSE& (A-optimal desighin the general case
for the Gauss-Markov model;

e Linearization of the special nonlinear multivari@auss-Markov modeklated theensor elements and the
eigenspace components;

« Development of the BLUUE of the eigenspace elemeht&o-dimensional random tensor and BIQUUE of
its variance-covariance matrix for the linearizeodsl;

« Establishment of the uniquegenvalue-eigenvector analysis and synthetis three-dimensional symmet-
ric random matrix based on the review and choicertifogonal similarity transformation matrices, ohi
leads to the generalization of the BLUUE of theeeigpace elements of three-dimensional random tensor
and BIQUUE of its variance-covariance matrix in theee-dimensional case.

e The theorems and estimators are in closed fornpeaactical which bring a sound meaning to the statib
analysis of deformation tensor.

In this doctoral thesis the following topics wik Ipresented in detail:

Chapter 1 first discusses the normal distributioopprty of a three-dimensional, symmetric randomsoe.
Further it will derive the sampling distribution tife sample mean and sample variance with classiettiods.
Section 1.3 deals with a matrix method of derivimg sampling distribution directly from the proH#pidensity
function for the sample mean from the multivarintemal population of a three-dimensional, symmaetaick
two random tensor. Based on théshart distributionthe sampling distribution connected with samplearece-
covariance of symmetric random tensor is derivetitae independence between sample mean and saatple v
ance-covariance is studied in Section 1.4. As @gdization of the sampling distribution theorytire direct
observation case for a scalar or vectorized rantimrsor, Section 1.5 will develop the sampling disiion of
the estimate of the line&@auss-Markouynodel and the sampling distribution of the orthonal transformed
parameters.

Chapter 2 develops the testing hypotheses congethansample mean vector and the sample varian@ieo
ance matrix, i.e. the estimated parameters (meatoivand covariance matrix) of tensor-valued maliate
normal population of a three-dimensional, symmetaick-two random tensor, which are (1) Testspowith

T known (y’-test); (2) Tests om with £ unknown Hotelling's T?-test); (3) Test on equality of two mean
vectors with common variance-covariance matrrtelling's two-sampld 2test andVilks’ A test ); (4) Test on
variance-covariance matrix is equal to a given ixdtikelihood ratio statistick (5) Test on the equality of two
variance-covariance matricdik€lihood ratio statisticy (6) Tests on the mean vectors and variance-@vae
matrices are equal to a given vector and malikel(hood ratio statistick

Chapter 3 develops the optimafor Tykhonov-Phillips regularization by A-optiméksign. In Section 3.1 the
regularization parameter in uniform Tykhonov-Pb#liregularizationo(-weighted BLE) is determined by mini-
mizing the trace of th®leanSquare Error matrixMSEE& (A-optimal desighin the general case for the Gauss-
Markov model. With two comparisons it is shown tha optimal ridge parametkrin ridge regressiordevel-
oped byHoerl and Kennard1970a, 1970b) andoerl, Kennard and Baldwi(1975) are just the special case of
our general solution by A-optimal design. Basedtlom introduction of the multivariate —homBLEfor the
multivariate parameters, the determination of tpéneal weight factora is generalized to the multivariate
Gauss-Markov model, which we shall cathlltivariate ridge estimatdr In lieu of two case studies, these mod-
els are tested and analyzed with numerical resaltsputed from simulated direct observations of redoan
tensor of type strain rate in univariate and maltigte cases.

Chapter 4 deals with statistical inference of thygemespace components of a two-dimensional, symenetrik-
two random tensor. First, theigenspace analysis and synthesfisa symmetric random matrix are reviewed.
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Secondthe nonlinear function, which relates the tendements to the eigenspace components, is linearized
with respect to apecial nonlinear multivariate Gauss-Markov moddiird, for its linearized formBLUUE of

the eigenspace componeatsd BIQUUE of its variance-covariance matrix have been esstaddl successfully.
Fourth, thesampling distributiorof eigenspace components is derived. The tesstitati such aslotelling’s T,
likelihood ratio statistics anthe general linear hypothesis test wgtlowth curve modehre proposed. Hypothe-
sis tests for the random tensor sample means &gasvigd one variance component will be used inctee study

of validating a given random strain rate tenscChapter 6.

Chapter 5 deals with statistical inference of tiyespace components of a three-dimensional, syricmahk-
two random tensorFirst, based on the review and choice of orthogonallaiity transformation matricethe
eigenspace analysis and synthesisa three-dimensional symmetric random matrix established uniquely.
Secondthe nonlinear function that relates the tensomelgs to the eigenspace components is linearizéd wi
respect to &pecial nonlinear multivariate Gauss-Markov mqodehich enables thBLUUE of the eigenspace
elementandBIQUUE of its variance-covariance matrix, developedattiond.2 to be successfully applied in
the three-dimensional case. Third, the test sigjssuch asHotelling’s T? and likelihood ratio statisticsare
generated. Hypothesis tests for the random terssople means as well as its one variance componiértev
used in the case study of validating a given thliegensional random strain rate tensor in Chapter 6.

Chapter 6 begins with a discussion of the geodyoa®iting of the Earth and especially the seleitedsti-
gated regions: the central Mediterranean and Wed&arope. Then the space geodetic observationstace
duced. Thirdly the selection of ITRF sites is parfed after the history and quality of the ITRF ization series
and the related residual velocities of selectedABRes are computed. Further the methods of deiathe
two- and three-dimensional geodetic strain ratesimroduced and applied to derive the strain r&tms the
residual velocities, which are based on Hieite-Element-MethodFEM). For two case studies both BLUUE
and BIQUUE models and hypothesis tests are apptethe eigenspace components of two- and three-
dimensional strain rate tensor observations inatlea of central Mediterranean and Western Europ&hnare
derived from ITRF92 to ITRF2000 series station poss and velocities in Sections 6.6. and 6.7. Harrde-
tailed analysis of the results is also performetth wéspect to geodynamical and statistical aspects.

Chapter 7 concludes the main contributions andlteesuthis study and makes a prospect for furtyaplica-
tions of the developed theory and methods.

At last we summarize the statistical inference andlysis of two- and three-dimensional, symmetitkrtwo
deformation tensors as developed in Chapter 4d%an the following two schemas :

I. The scheme of inference and analysis of the
eigenspace components of a two-dimensional randornsor

Linearized with Taylor expansion

Box 4.3 by Jacobimatrix (Box 4.4 Box 4.5
Nonlinear > Linearized
G-M model G-M model
Theorem 4.3
BLUUE of eigenspace
Analysis and Section 4.3 Crc])mponents
Inference | Hypothesis tests of Theorem. 4.4
Case Study | ‘ | the estimates of ei- ‘ BIQUUE of variances
(Section 6.9 genspace componentg and covariances of a
symmetric random tensor
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Il. The scheme of inference and analysis of the
eigenspace components of a three-dimensional randdemsor

Linearized with Taylor expansion

Box 5.2 by Jacobimatrix (Box. 5.3 Box 4.5
Nonlinear > Linearized
G-M model G-M model
Theorem 4.3
BLUUE of eigenspace
Analysis and Section 5.3 Cﬁmponents
Inference | Hypothesis tests of Theorem. 4.4
Case Study II ‘ | the estimates of ei- ‘ BIQUUE of variances
(Section 6.7 genspace components and covariances of a
symmetric random tensor




Chapter 1

Sampling distributions of three-dimensional, symmeic rank-two
random tensor and the estimate of Gauss-Markov mode

In order to make the quality of the estimated randensors significant, statistical inference habecapplied,

which is usually based on the statistics, e.g.,p@ameans and sample variance. So we should dixgveam-

pling distributions of the symmetric rank-two ramaddensor. The values of any sample statistic depenthe

particular sample that one happens to obtain.riesdrom sample to sample. Thus a statistic igralom vari-

able. As such, it has a probability distributiodled sampling distribution. We owe the early deypsh@nt of

sampling distributions under normality BxS. Laplacg1812),Carl Friedrich Gausq1816), Friedrich Robert

Helmert(1876) for theHelmert distribution(which is highly valued as the starting point foodern small sam-
ple theory),Thorvald N. Thielg1889,1903)Karl Pearson(1900) for hisChi-squaredistribution Sealy Gosset
(19084, b) for hisstudent t-distribution, Ronald A. Fish@r920, 1922) for thé&-distribution andJohnWishart

(1928) for thewWishart distribution

In the following sections we will first discuss thermal distribution property of a three-dimensipggmmetric
random tensor. Further we will introduce the ddiora of the sampling distribution of the sample meand

sample variance with classic methods. Section éa8sdwith a matrix method of deriving the sampléitistribu-

tion directly from the probability density functidar the sample mean from the multivariate norn@yation

of a three-dimensional, symmetric rank-two randenmsbr. Based on th&ishart distributionthe sampling dis-
tribution connected with the sample variance-cararé matrix of a symmetric random tensor is deramed the
independence between sample mean and sample edanariance is studied in Section 1.4. As a gizer

tion of the sampling distribution theory in theatit observation case for a scalar or vectorizedaantensor,
section 1.5 will develop the sampling distributiohthe estimate of the lined@auss-Markovmodel and the
sampling distribution of the orthonormal transfothp@arameters.

1.1 The normal distribution of a symmetric randomtensor

A tensor is a mathematical quantity that can bel tsalescribe the state or the physical propediesmaterial.
We describe a tensor by a set of scalar componefeised to a particular coordinate system. A ram-tensor
in three-dimensional space has nine componentsntise important examples of these in geophysicsaess,
strain and strain rate. Rank-two tensors are useatkscribe physical quantities that have magnitahes are
associated with three directions. Any rank-two ¢ercan be defined as a sum of symmetric tensorsaarahti-
symmetric tensor. Here we will concern ourselve wie statistical properties of the symmetric tens

Since basic quantities to infer the stress tenedrsdrain tensor in Earth sciences are contaminagendom
errors, the tensor will be random. Before we disdhg statistical properties of a symmetric randensor, we
will first present the definitions and propertielsbmth random vector and matrix and the multivariabrmal
distribution of the random vector and matrix.

In multivariate analysis, each observation congi$ta vector or matrix. The elements of a randorctareor a
random matrix are random variables. Formally, aloam variable is a function defined for each elenafna
sample space. We shall generally define a randatorvand its moments.

Definition 1.1 (random vector)
A random rxlvectorx is a vector
%
X=|:

X,

of random variables, x,,..., %, , which are jointly distributed.
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Definition 1.2 (the first order moment - the mean or expectation)

The first order momerdf a randommx1 vectorx is defined to be the
vector of expectations

Bx | |4
B{xt ] L&

More generally, iZ=(z ) is a pxqrandom matrix then E£},
the expectation o is the matrix whosejth element is Eg; }.

Definition 1.3 (the centralized second order moment — the
dispersion matrix, also called variance-covariameyix)

The centralized second order momeha randomm xlvectorx
is defined to be thexn matrix

D{¥ =X, = B[ x-EM xABK "
=E(x-m(x-mw1
thei, jth off-diagonal element oE, is
a; =E{(x —#)(% —4)},
the covariance betweex andx and theith diagonal element o£, is
o =E{(x -4}

the variance ok . It is proved thatZ, is positive-definite.

(1.2)

The majority of multivariate inferential proceduieshased on the assumption that the random vetiaterest
has a multivariate normal distribution, which i® tirect generalization of the univariate normairitution.
Before developing the multivariate normal densitgdtion and its properties, we will first reviewethinivariate
normal distribution.

A normally distributed random variatsevith mean i and variances? is defined as

Definition 1.4 (univariate normal distribution)

A random variablex with mean 7 and variances? is said to have
a univariate normal distribution, in symbats- A/ (u,0?), if the
probability density function of is of the form
1 2202
f(X)=—=—=e*"/2 xOR. 1.3
() o (1.3)

The standardized variable= (x— &)/ o with mean 0 and variance 1
is said to have a standard normal distribution wighdensity

f(z):%e‘zz’z, IR . (1.4)

The multivariate normal distribution of the randeettor x =[x, X,,...,%,] can be generalized by the univariate
normal distribution (1.3) of one random variablegassented iefinition 1.5.
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Definition 1.5 (multivariate normal distribution)

Thenxl random vectox with meanp and variance covariance
matrix X, is said to have a nonsingular multivariate nordistribution,
in symbols

x~N,@x,) X, >0,
if (i) X, is positive-definite, andii) the probability density function
of x is of the form

f(Gp, Z,) = exp{-1 (x— ) ;1 (x—w}, X OR” (1.5)

(2m)"?* (detz, }'*

wherex =[x, X,,...,% ] and E }=p is the first order moment
(1.1) andD{% =%, = B[ x—EM x—{B]¥ ' isthe centralized

second order moment (1.2).

The matrix normal distribution is also importantdrder to express the multivariate normal distidrutDawid
(1981),Mardia (1979, 1993)Muirhead(1982),Rosen(1988) andBrown (1993) published different expressions,
however we prefer that dluirhead(1982).

We write that armr x srandommatrix Y is normally distributed, say isY ~ AN (M,C OD) whereE{Y}=M is
rxsmean value matrixz andD arerx r andsx s positive-definite matrices an@ O D is the variance covari-
ance matrix of the vectgr=vec(Y). The statementY'is Y ~ A/(M,C OD)" is equivalent to the statement that
"yisy~N(m,COD)," with m=vecM). The following result gives the joint density fiion of the ele-
ments ofY, which we name the matrix normal distribution.

Theorem 1.§multivariate matrix normal distribution)

Ther xsrandommatrix Y with mean matrixM and variance
covariance matrixC [0 D of the vector of/=vec(Y) is said to
have a multivariate matrix normal distribution, symbols,

Y~NM,COD)
if (i) C andD arer x r andsx s positive-definite matrices and
(ii) the probability density function of is of the form

f(Y)=(2m)™*(detC )*'? (deD )"'? etrffiC™' ¢ -M)D 'Y -M) '}Y OR™ (1.6)
where(8jr= exp{ tr Z}.

Proof:

Sincey=vec(Y) is y ~ M. (m, C O D), with m=vec(M), from (1.5) the joint density function of the mient ofy
is

f(y) =(2m)™'"*(detCOD))"* expf-5 ¢ -m)(COD)" ¢ —m)},y OR™ 1.7)
According to the properties of Kronecker products
detCOD)=(deCj (deD ) , iC isxr D isxs
(COD)*=Cc™OD™, if C andD are nonsingula
tr(PX'QXR) =(vecX )J RP 0 Q") vecK ),

and with respect to the corresponding itefs C™*, X' =Y -M,Q =D " ancR =I we can see that (1.7) is the
same as (1.6). This completes the proof.

With these definitions and the theorem we will nestablish the distribution of the symmetric randensor.

Let there be given a three-dimensional, symmetitkitwo random tensof which is either directly or indi-
rectly estimated from observations by a model ddjaat. The components dfcan be expressed in a matrix

by by Uy
T=lty b by (1.8)

l:31 32 t33
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Such a three-dimensional, symmetric (2, 0) tersarrandom tensdr which we assume to be an element of the
tensor-valued Gauss normal distribution o®&f° of type independently, identically distributed.¢.) tensor-
valued observations. The probability distributidrtiis random tensor can be presented in matrixnabform

of theorem1.6. In order to derive the sampling distributfrthe sample mean and sample variance covariance,
noting thatty; = t;5, t3; = t13 andts, = t,3 we can make a simplification: the symmetric randemsor (1.8) is
vectorized by (vech, vector-half)

y =vechT = |, t, tyst,,tt ], y0d R (1.9)

According to theDefinition 1.5we can get directly the joint multivariate normablpability density function
(p.d.f.) of the three-dimensional, symmetric ramo-random tensor, which is presentedfinition 1.7

Definition 1.7 (normal distribution of a symmetric random tensor)

The vectorized random tenspr= vechT =, t,, t; t,,t .t o],
y OR®with mean vectop and variance covarianc®, is said
to have a nonsingular multivariate normal distridut in symbols

y = NG (u! Z‘y)
if (i) X, is positive-definite, andi) the probability density function
of y is of the form

f(y;im, I,) = (27)°° (detz, )" expf 3 b -n 12, Iy —nlh, (1.10)
whereE {y} = n is the first order moment — the mean value vector,

D{y =X, =B[ y-EM y-{B} ' is the centralized second order
moment- the dispersion matrix, also called variacmeariance matrix

1.2 The sampling distribution of sample mean and saple variance of scalar

In this section we will derive the sampling distriion of the sample mean and sample variance oforarscalar
with the classical method, which is a direct ddfowa from its distribution density function. Let disst intro-
duce ondemmaabout the sampling distribution of the statisti€a candom scalar

Lemma 1.8(i.i.d. observation of type Gauss normal, disttidm

of the sample mean and sawval=ance)
Let (y1, Y2, ..., ¥n) O Y bea set of observationg,:= [y1, Y2,..., Yil',
dimY = n, a vector-valued independent, identically distiéoli(i.i.d.)
random variable from a Gauss normal distributitemoment
of first order as well as its central moments afosel order are
specified by := 1= o= [F phandd®:= 1= &% = [FE .
Then the sample meaia of type BLUUE

PR L ,
a= EZ 1y— y1 (1.11)
is an element of a specific Gauss normal distidim of type
1 N (g, <0?)
with the sample statistid® of type BIQUUE

. N 1 . N
g° ——12(y. A ==y =10 (y=14). (1.12)
—di=1 -
The random variable has aChi-squaredistribution withn-1 degrees
of freedom
& x?(n-1). (1.13)

Before proving thidemma,we should introduce the definition of chi-squarstidibution, which was first found
by Helmert(1876) anK. Pearson(1900, 1931) and plays a very important role imgléing theory.
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Definition 1.9 (centralchi-square distributioh

A random variableis said to have ehi-square distributionand
it is referred to as a chi-square random varidabbnd only if its

probability density function af is of the form

f ( ) 2U/2 r]i /2) (U—2)/2e—x/2 for x>0
X) = U
0 elsewher:

where the parameter is referred to as the degrees of freedom,

which is a positive integer. Therefore this also said to have a

chi-square distribution witlv degrees of freedom.
Proof:

The probability density function (p.d.f.) of thed. Gauss observations is

Fy¥a) = F(0)- F(y) = (27)"*0™" eXp{—%(y—lﬂ)'(y—lﬂ)/Uz}-

We shall find the p.d.f. ofz and 6°.
We have

(v ~1)'(y - 141) =é(yi % :g[(yi ~ D) ~(u- Q) =

= (=D + (=) + 2= P Y - )=

=(n-1)6% +n(Z- )
So with (1.15) and (1.16) we get

f(y)dy, - dy, = (2)™* (0*) " exp{- na_} @Xp{——( n-1)6*/0° dy--

We now perform thélelmert transformatiorfHelmert1876)

-2 Y1
N 213 Yz

Xor i
1 1 1 n-1

Jn-Dn  J(n-Dn J(n-Dn J(n-1)n|

where UOR™™" is a right orthogonal matrix, i.eJuU' =1, _,

. PV RN
The corresponding volume element transformatioh iit==>"y. is
Ni=1

and its inverse

= Uy,

dy

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)
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SinceU, is anxn orthogonal matrix, i.e., dél,= + 1, we get

3= %|detuz| :% (1.21)
and so
J= (9 =Vn. (1.22)
From the cumulative distribution function (c.déf) &, x, ---, x_,, F(Z, %, -, %_,) we have
dF(, X, oy %) = F0 X, ey %) 7 dxes diy (1.23)

and together with (1.16) we obtain
f( dy ---dy = -n/2 —-n 1 (/:\1_/'1)2 1 ~2 2]\/’
y)dy, - dy, =(2m) " 0" expl5 m—s—] expf-5 (- 15" lo" N ndl dx-- dx,.  (1.24)

We further perform the following transformatio@raémer, 1945)
X =Jn sz, i=1,2,...,n-1, (1.25)

wheres® = 1Z( y — )%, to replace the-1 variables; by n new variables andz, ..., ..
ni=1

Accordingly, there is a relation among the new atalgs, which is found by squaring and addingritieequa-
tions (1.25). We then obtain

n-1

3 z?=1. (1.26)
i=1
and thus one of , sayz,;, may be expressed as a function of the n-2 otBerthat the old variables,..., %.1
are replaced by the new variabeandz, ..., z,. For the Jacobiad, of the transformation we have since
azn—llaz == Z/ f11
Jis 0 0 Jnz Lo 0
0 x/ﬁs 0 \/T@ 0 1 0 a
nnb/2gn-2 %
‘]z: = =  |...
0 s Nz A o 0 w1z, oy
oy L N I -z -z - -7, 71
2 -1
(n-1)/2 n-2
=+ n s x1 .
\/1_212 e _Ziz

Thus we obtain the expression

A N2
f(y)dy, - dy, = 2x (27" expF-4 Nl af’) Jexpk3 (- 19° b0 K

pn-/2gn-2 (1.28)

xn'? dizdsdz--- dz,.
\/1_212_”'_ 212—2

. . . n-1. . . ap
With the relationshig’ =—=47, the Jacobiard ; of the transformation from the elemestb elements? is
n

J. = . (129)

The right side of (1.28) will be
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n(n—l)/an—Z 1 n_l
N-z2-..-7,2s

2
— (277.) n/20. n 1/2n(n71)/2( 1 A 2) (G 3)/2n eXp[ 2 (/1 ;U) ]exp[_% (n_ 1ﬁ.2 /0.2 ]
n g

N2
2(277.) n/20.—n expk%n(#aéu) ]eXpP% m_ 1)’7‘.2 b.z ]nl/Z dﬁ Cb’\'z d; dIZ—Z =

didd*dz - dz, _
N
(lu /'1) ]d,u ( )(nfl)/2(0".2)(n*3)/2exp[_% (n_ 1ﬁ.2 /0.2]@. 2><

o 1.30
x(n.)—(n—l)/z d71 d%—z ( )

— )2 _
— _ (/IU;U) Jdi (20_21)(n—1)/2 e )" 3)/2exp[_l (- 152/ 0%]d6?
X r(nzl) dzi d%—z

770D/2 ,—1_212_"'_4?,2

The p.d.f. of (1.15) appears as a product of theetors with the probability elemenfs d* and the joint prob-
ability elementsz,..., z».

We thus see thall and §° are independent not only of one another, but afsihe combined variablez...,
Z.») and that the distributions gf and 62 are the following:

f(p):\/%mx/ﬁexp[—%n(ﬂ;zﬂ) ] (1.31)
f(6%) = (%b‘”‘””r =) (6% expl-1 (-5 210 7). (1.32)
f,(u) = ;u%1 exp(— u), (2.33)

2(n—1)/2r(n74)
which is the right form o€hi-squaredistribution with (-1) degree of freedom (1.14).

This completes the proof.

1.3 The sampling distribution of the sample meanf@ symmetric random tensor

The sampling distributions of the basic statistios important for the statistical inference of s#fyenmetric ran-
dom tensor. In this section we will discuss the @garg distribution of the sample mean of a symneetaindom
tensor.

Let us use the symmetric random tensor introduecedli8), which is vectorized by (vech, vector-half)
y=vechT = |, t,t, t,,t, .t ], yOR®. Thisis a random vector which is normally distitied according to
Definition1.7. We write it ay ~ Vg (u, Z, ).

Suppose that our sample mbbservations off is Ty T,,... , T,, Whose related vectorized formgyy, ..., Yn
are independently distributed accordingh@(p, X,). We may arrange the vectorized form matrix of obse
tions as

Yi
Y = yz ., YOR™,
Y
wherey, = vechT, . Then,
[
E{Y} = "2 =1p' where 1=[1,1,-,1] OR", (1.34)
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and for the dispersion we have the transposed édryh
Y’ :[ylv Yor s yn]’

where the columng,, y,, ..., y, are independentd random vectors, each with the same covariancexmga .
Wethen have

Y1
vecy'=|Yz|, veer'n R®™ (1.35)
Ya
whose covariance follows that
Zy o .. 0
0 Y 0
D(vecY')=| . 7V . _ |, D(vety')O RO™®
: oo (1.36)
0 0 0 X
=1,0Z%Z,.
Then the sample mean veclﬁ);of type BLUUE is
. 1o 1
==Yy ==Y1 1.37
B, ni;y. - (1.37)

Now we shall find the p.d.f. o, .

According to (1.6) ofTheorem 1.6he joint p.d.f. of the independently identicallistiibuted Gauss sampling
observatioryY can be written as

-6n 1 P
f(Y) =(2m)*"?[det(, O z, N2 etr{—E[Y —1p ]Z‘.y][Y -1n]% . (1.38)
With the properties of Kronecker products introdiigethe proof ofTheorem 1.6we can get
[det( I, 0%, V2 = (detl , y®'? (det, 2

tr (AB) =tr (BA).
So we have the reform of (1.38)

F(Y) = (27) ™" (detz, )" etrE-S 2 Y -1/ T[Y ~1p'T} (1.39)

Now we perform thédelmert transformatiorfHelmert1876)

1 1
iz iz ° °
1 1 _Z 0 :
V213 Jars Va3 )3;1
1 1 1 _ n-1 | Y
Jn-Dn J(n-)n J(n-Dn J(m1n I
1 1 1 1
Jn Vn oo Un |

The nx n matrix given in (1.40) is not only orthogonal,aiso has the property that all the rows sum to zero
except for the last ( and the last row has commements). Such an orthogonal matrix is calleddedmert ma-
trix (Lancaster, 1965)The Jacobian of this transformationlis= (detH § = I PartitionX as

Z
X :E'_}’ wherez OR"™™®  ank OR®* . (1.41)
X

then
Y'Y =XX =ZZ +xx . (1.42)
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The term[Y -1p']TY —1u] of (1.39) can be expanded as
[Y=1n]TY =1pn] =YY =Y 1p' =pl'Y + nup'

r 1] I r I AV 1 (1'43)
=ZZ +xx'=Y1p' = (Y'1p') +npp' .
Since the firstrf -1) rows ofH are orthogonal taIR", i.e.,
H1=[0, -, 0, +/n],
then
0
Y'1p'=XHip' =[Z" : ] (') p =+/nxp . (1.44)
Jn
Substituting back into (1.43) then gives
[Y =1p]TY =1p] = Z'Z +xx' —=/npx’ =/ nxp’ + mup’ (L.45)
=2Z +[x ][ x /"
Hence the joint p.d.f. & andx can be expressed by substituting (1.45) into {1.39
f(Y) = ()" (detz, ) " etrf- 12,127 x
(1.46)

(27)°*"*(detz, y"* expf3 k—~np ]2 i~}

This implies thaZ is distributed according W(n,l)v (0, 1,,0X )and independently of, which is distributed
according tQ/\fG(\/ﬁp, z).

Sincex’ =il'Y , SOX =iY'1 and withj, =£Y'1 of (1.37) we get
n

Jn Jn
x=nj, (1.47)
and the Jacobian of this transformation
J,=n. (1.48)
So the p.d.f. ofn,, f(,), can be derived from the second term of (1.46)(ardr).
Firstly, the exponential term of (1.46) is expresby i, of (1.47):
=0V 'E Tx = == ik, -Vl 'mt Vo, -V
=-Znli, -u'S 1R, -,
then we have
f(i,) = (271)° (detz, )"* expt 3, ~pIZ; ', ~pl}x| J, |
= (27" (detz, J** expt-3n R, ~n1x, i, ~plhx/n (1.49)
— _ -1/2 — 1A
= ([ detes, )] expt3 R, ~n]1 (7L, V[, -l
This shows immediately that the sample mean vegjarf the vectorized 83 symmetric random tensor is dis-
tributed according toV(n, n7E,; R,).
Now we can characterize these derivationstirorem 1.10

Theorem1.10 (the sampling distribution of the sample mean
vector of random tensor)

The sampling distribution of the sample mean veftpof the
vectorized 33 symmetric random tensor

. la _1,
i, :Eéyi =2v1 (1.37)

is distributed according td/s(u, N"E; A, )with the p.d.f.

f(i,) = (2m)*?[detE, )] expt3 i, —n](TE, )i, -nh (1.49)
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1.4 The sampling distribution of the sample variane-covariance of a symmetric random tensor

Now we shall derive the sampling distribution of ttample variance-covariance matrix of a symmediriclom
tensor in vectorized form. First of all let us makeeview of theNishartdistribution. The derivation dNishart
distribution, which is very fundamental in multiiete analysis, was a major breakthrough for theelbgment
of multivariate analysis. It is a multivariate matgeneralization of the univariatehi-squaredistribution. The
Wishartdistribution was first derived blyisher (1915) forp=2. Wishart(1928) gave a geometrical derivation of
this distribution for generagb in the general case. Other proofs were giverMahalanobis, Boseand Roy
(1937), Hsu (1939), James(1954), Olkin and Roy (1954) and othersAnderson(1958, 1984) andviuirhead
(1982) present the detailed treatment of both émdral and the noncentMlishartdistribution.

The followingtheoremshows the density function of the first term ofd). A =Z'Z . The derivation ofheo-
rem 1.11is due toJameg1954),0lkin andRoy(1954) andViuirhead(1982).

Theorem 1.1XWishartdistribution of the 86 random matrixA =Z'Z )

If A=2ZZ ,where therf-1)x6 matrixZ is N, (0, |, ,0X)
(n—1= 6), thenA is said to have the Wishart distribution with
n-1 degrees of freedom and variance-covariance xnaiyi denoted by

Wy(n-1, £,)
The density function oA is
[deta,z )(n—1—6—1)/2

f(A)=— —
(2)6( 1)/2r6(”7_1)(det2y )( 1)/2

wherel (%) denotes the multivariate gamma function.

etr{—%z;lz'Z} (1.50)

Proof:

SinceZ is distributed according t&/,,, (0, 1,.,0X ) from theTheorem 1.@he first derivation of the cumu-
lative distribution function (c.d.f.) df(Z) can be written

dF(Z) = fZ)& = (2m) "2 (detz, J © V' etr{—%):;lZ'Z}dZ, (1.51)
where the volume elemedl :/\i”:‘f/\f:ld% has been included to facilitate the calculatiodafobians of (1.40).
Sincen-12 6, Z has a rank of 6 with the probability 1. is#H,T,, whereH, is (n-1)x6 with HH, =1 _,(i.e.,
H, OV, _ , theStiefel manifoldconsisting of if-1)x6 matrix with orthonomal columns) ard is 6x6 upper-
triangular. ThenA =Z'Z =T,T, and the volume elemerdZ become

dzZ =(2)°(detA "V 2dAH [ dH |, (1.52)
so that the joint density & andH, is

(2m) V2 (detz, YO V2 etrf-L 570 }(2) S(detA )Tt & VHAH ' . (1.53)
y 27y 1 1

The marginal density function @& then follows from this by integrating with respeotH; over the Stiefel
manifoldV ., s Using

6 .6(n-1)/2
[ HiH, :2”5;_l (1.54)
Viss M (552

With (1.54) in (1.53) we have

-6(n-1)/2 (n-1)/2 1y -1 6 -6 1)l226 77.6(n—1)/2
(2m) (detz, Y etrE5 X, AJ2 *(detA ) e

re(nTﬂ) B (155)

6-1-6-1)/2
(deta ) etr(-1x,"A}cA .

(2)6(n—1)/2|—6 (”7'1)(det2 )(n—l)/2

This shows (1.50).
Further we show the density function of the sample vegiamvariance matri>iy of type BIQUUE
- 1 AT ~r 1 : ~ ~ r
Zy :_[Y _1uy] [Y _1uy] :_Z(yi _u'y)( yi _u'y) (156)
n-1 n-1=
Since
[Y =101TY ~1p] =Y -1) +T i, -w][( Y -16) +L iy -p)] =
= (Y =1fi5)'(Y ~1i8,) + (i, ~ )2 R, —p)'+(Y ~Li,) LR, —p)' + @, ~wL(Y ~1i),
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the last two terms of the equality being
(Y =14, 1, - R)' + @, ~WI(Y -1i;) =
=YL, — i, L1 - Y I+ Y I+ 1Y VI - pd'Y el ),
with o, = (@/n)Y'1, soYl=m, and'Y =m, andf1= r bring them into above, then we get
i, i, — i, Nty = L'+ i, R T — Ry -+ Ry = O,
So
[Y ~10]TY ~1n] =(Y ~18) (Y ~14) +(f, B T Li, -0
=Z'Z +n(p, —p)(p, -1
Compared with (1.56) we have the relat|onsh|pAefZ Z =(n 1)): By making the transformationA=
(n- 1)): in (1.50), whose Jacoblanjs:(n 1) e 2( Deemer and OIkn1951 alsdPress1972, p.45) it follows
(detA )(n 1-6-1)/2
(2)6(n—1)/2|—6 (%)(demy )(n—l)/2
_ (det(n _ lﬁ:y jn—l—e—l)/z
- (2)6(n—1)/2|— (Lﬂ)(detz )(n—l)/2
(N 1)6(n 1—6—1)/2(N 1)6(6— l)/2(det2 )(l 3 6 1)/2 1 . R
FFr (2 1) ez, Yo7z etr{- §):y A}dz, (1.57)
_ (N _1)6(n—1)12(detiy )(n—1—6—1)/2
(2)6(n—1)/2|—6(n7—1)(det2 )(n—l)/Z

etr{—%):;lA}dA =

etr{—%):;lA}J dE,

etr{—%):;lA} d=,

1 (n 1)6(n iz 1y (n-1-6-1)/2

etr{- ): ANdetZ d):
() (detz, f"2\ 2 { Jdetx,)

So the density function of the sample covarianctlri}?nz\;:y is

1
o (54 (detz, Y22

f(Z,)= (@5dee-vr2 etr{—%(n -, E HdetE, )=V, (1.58)

which is the right form of th@VishartdistributedZ, 0 Wy(n-1, (n-1'%,; E,).
Note that from (1.50) we havg, = A/(n-1) =Z'Z/(n-1) = Z'Z , where

Z=(n-0)""Z ~ Nyy 60, 1,,00-9'%) (1.59)
so thatZ, is distributed with Wishart distributed, ~ W, (n-1, (- 1'%, ; X, ).

This leads to another direct derivation of the dargpdistribution of a symmetric random tensor’sngde vari-
ance-covariance matrix.

From (1.46) and (1.47) we can find thatand f‘.y are independent. Now we can characterize theseatlens
in Theorem 1.12

Theorem1.12 (the sampling distribution of the sample variance-
covariance of a symmetric random tensor)

The sampling distribution of the sample varianCti.'arc'(;nnceﬁ:y
of the vectorized 83 symmetric random tensor

& = Ly CTY —1i =2 Sy~ (Y~
, =Y I TY —1ny] n_1;(3/. By —i,) (1.56)

is distributed according tﬁy ~Wh-1 (n- 1)‘1):y ; iy )and
independent ofi. The p.d.f. ofZ is

1
o () (detz, Y02

f(£,)= O 2etri-S(n-1)x,F, Y(det £, ) ", (1.58)
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1.5 Sampling distributions of the estimates withirthe Gauss-Markov model

The derivations of the sampling distribution abth& sample mean with the decomposition method arstlyn
discussed in the direct observation case. Here Weavelop the sampling theory in a more geneeale; which
includes (1) the sampling distribution within thpesial Gauss-Markovmodel; (2) the sampling distribution
within the linearGauss-Markovnodel and (3) the sampling distribution of thehortormally transformed pa-
rameters.

1.5.1 The sampling distribution of the estimas within a specialGauss-Markovmodel

In this section we shall derive the sampling disttion of the estimates within a sped&duss-Markovnodel.
We first introduceTheorem 1.13

Theorem 1.13marginal probability distributions, special linear
Gauss-Markov model):

E{y =A AOR™™ rkA =m, Ely} OR(A

4 5 , Subject t b} ORA)
D{y} =I,0 o’ 0OR*

defines a special Gauss-Markov model based up@perdient, identically

distributed (i.i.d.) Gaussnormally distributed observatioys= [y, ..., Ynl'.
& is BLUUE of § in thespecial linear Gauss-Markov model

A E: a =
E=(A'A)*AY| {3 =¢ (1.60)
D{& =(A'A)"o?
% is an element of a specific Gauss normal distidoubf typeé =
N{E,(A'A) o3} with the marginal probability density function
L& (AA) %) = (2m) ™20 " IA'A [ exptS -8 JA'A €-E)i0” ). (1.61)
G° is the estimate of the only variance componemymé BIQUUE
~ 1 2 2
g% = -Ag)'(y-A 1.62
— L (-AY (Y -AD) (1.62)
with the marginal probability density function
. 1 . 1 g°
f,(0%) =——————p"'?6" *exp{-= p—}, 1.63
»(07) apzp,zr(plz)p p{ 2paz} (1.63)
wherep:= n—rk A. The random variabbe has a chi-square distribution with
p degrees of freedom
G° o1 . -
x:=(n-kA) L =L 52 =2 (y - Ady(y-Ad) (1.64)
o° o o
with the probability density function
o T R L (1.65)
2 2”21 (p/2) 27 '

Before provingTheorem 1.13ve should introduce theemmal.14 about the transformatioof polar coordi-

nates (¢, @,.---.@_,,r]0Y as parameters ofan Euclidian observation spacéo Cartan coordinates
[y, ¥,]0Y . In addition we introduce the hypervolume elem&rd sphereS"™ 0 Y,dimY =n. First of all,

we give three exampleSecondwe summarize the general resulté@mma 1.14
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Lemma 1.14(polar coordinates, hypervolume element, hypeasarElement):

Let

Y1 cosy,_, CO%, , CO@y, ;--- CAB, COs

Y OS¢, COH),, COF 5+ CAB, SP
Ys cosg,, cowy,_, COg, ;- CUB,
Ya €0s¢,_, cowy,_, CO®,_ 5~ Si‘pz

/A cos@,_, cosy, , Sy, ,
yn—2 Cos¢n—l Cos@u—z

Yo cosy,_; sing, ,

Yn sing,_,

be a transformation of polar coordinates @,---,@._,.¢, ,.r ) to Cartesian
coordinates(y,, ¥,, -+, Y,_;» ¥, ), their domain and range given by

T T T
@.e @@ )0 [O:ZT}‘]‘E ’+E [x...x]—_2,+_2[x] T +—2[x]0, oof ,

then thdocal hypervolume elemerdse

dY1”' d)ﬁ = " drcos™ B CO§73¢I’F2'” CO%@ C%Wrrl 2" d,’02 dp: (1-67)
as well as thglobal hypersurface element
ZD\T(n—l)/z +71/2 B +77/2 2
n-1 :T:z J. cos™ %—1d(0n—1“' _[ CO$02d(02'[ d(”n—lv (1-68)
r(il) -l 2 -7l 2 0
2

wherel (X) is thegamma function

Proof:

The cumulative pdf of the multidimension@khuss-Laplaceprobability distribution of the observation vector
y=[yy- Y OY is

= = 1 - 1 - 'y —
f(y|E{(y}, O¥ =1,0f dy--dy, WXP[ ?(y E)(Cy-{B dy-d (169

We aim at splitting it into twanarginal pdfs f,(£) of &, BLUUE of &, and f,(6?) of 67, BIQUUE ofa?, i.e.
f(y|E, Oy =1,0f dy--dy=€§ §0F & &, &° (1.70)
First, let us decompose the quadratic folfyi— E{y}||* into estimatef/{ﬁ of E{y} .
y-E(} =y-Ey t Ey +By
y-El} =y-AS+AE-Y
and
(V-EON(y-EY £ y-EN( y+By (H{Ey EJEV{TEX P Ey +
+(y-E[W(EY €Y ¢{By {BY 'yFEY =
=(y-EW(y-EY t Ey 4BM {Ey FIEY
lly - EHIPly - EOHIZ +I| By - EYII 2
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(V-EOD(y-BY % y-ARCY-AE t E-E'AKE-E +
+Hy-AEYAG-E)+(E-&)A'(y ~AE) =
=(y-AY)(y-AE +E-EYAAE-?)

lly - EQHIPlly ~ASIF + [E-€ s (1.71)
Here, we took advantage of thehogonality relation
E-AW-AD=E-A(,~AQA)AY =
=E-g'(A'-AAQAA)AY =0.
Secongdwe implementd? BIQUUE of g? into the decomposed quadratic form.
lly-ASIt= ¢-AE Y -AL)=Y (,-ARA JA'Y =
=y'My =(n-rkA)g?

ly —E{}I?=(n-rk A)G2 +(§-&)'A'A(E—E)

lly ~EQHIP=y'My +(E~8)'NE-8) (1.72)
The matrix of thenormal equationdN:=A'A,rkN =rkA’A =rkA =m and the matrix of th@ariance compo-
nent estimatiorM =1, -A @A )"A ', rkM = =n-rkA = n-m have been introduced since their rank forms
the basis of thgeneral forward and backward Helmert transformation
HH' =1,
z=0H-Ey) =0 'Hy-A3 (1.73)
and
y-E{y} =oHZ (1.74)

—O-EW (y-§Y =ZHHz=72

L ly-EmirdizIf.
ag

whereH OR™" is the quadratic Helmert matrixalso called extended Helmert matriar augmented Helmert
matrix (Lancaster, 1965):

H:=
] . . _
NS Jip 0 0 0 0
1 21 __2 0 0 0
J203 J2B NERS
1 1 1 __3 0 0
V3 V3 NEW! J34
(1.75)
1 1 1 1 . n-1
Jn=-D(n-2) J(-D(n-2) (=D~ 2) () 2) J (F ) 2)
1 1 1 1 1 n
n(n-1) n(n—1) Jn(n-1) Jrn1) NEC J (R 2)
1 1 1 1 1 1
. n Jn Jn Jn Jn Jno
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Since thequadratic Helmert matrixs orthonormal,the absolute value of thlacobianof thegeneral backward
Helmerttransformatiorz — y— A =gH'zis

Jyone., =ldetd Fo"|H'|=0"H|=0". (1.76)
Therefore we have the transformation of b&ime elemerih (1.69)
dy,dy,--- dy =o" dz dz-- (. 1.77)
which generates thmumulative probability(1.69)
dF = f(%, Yooy W)Y dy= e, (2 2+, 2 dzdz g2

- L eprlias toexp-dzeze -
= P57 A = e d £k D) dzdz g

Third, the standard canonical variald€lR" has to be associated with norln‘vjs—AE Il and||£—§ [hn - We
take advantage of the eigenspace representatitwe ofiatricesNl, N) and their associated norms.

y'My =yV A, V'y versus(G-&)'N(E-&)=(E-&)UAU'(E-&)

AM = Diag(/'lll“'llun—m’ )" O} Versus D|a.g(V1, ] m)
DRI’] :Rn—mem

m eigenvalues of the matrid are zero, buh—rk A = n—mis the number of its non-vanishing eigenvalues
which we denote byy4,---,._.) . In contrastm=rk A is the number of eigenvalues of the maNixall non-
zero. Thecanonical random variables

Vy=y” = y=vy“and U'(§-§) =

(1.78)

lead to
SO-EDD (Y-8 = F 0 Ay E A-h A i)
~O-EDD (y-EY) :Uiz ¥ XA
BN (Y-BY =Z et fr Fyy et
subject to

m

14 1
ZE+---+zf_m==a— ) and 2.+ =52 Gmv,

lzlf=Zz=2+ 2+ 2+t iz%ymwa—i(é—@w(é—@:
= L ly-EMIP= 2 (y-EW (y-EY
ag ag

Obviously, theeigenspace synthesis the matricesN = A'’A andM =1, -A AA )A ' has guided us to the
proper structure synthesis of theneralized Helmert transformation

Fourth, the norm decomposition enables us to splitdlhmulative probability(1.78) into thepdf of theHelmert
random variablex := zf +o+ 2 =0} (n-rkA)6% =07 n- o ?and thepdf of the difference random pa-
rameter vectorz2 ., +---+ 2 =0 (& -E)AA(E-E) .

dF: f(zl;! Zq—m' Z‘rm*l’”" %) @ erm q‘;ml

—L —} 7| =
f(zl,----%)—(zﬂ)m e

(1.79)

n-m

=) 7 P (E 4t 2N ) P oyt )
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The partitioned vector of the standard random Wéeia is associated with the norfhz,_ |f and||z, If,
namely

Nzow P+ 112, A= 244 204 2+t (1.80)
Part A
Let us introducédelmert’spolar coordinatedq,---, @_..., I ) Which represent th€artesian coordinates
Z, = rcosg, ., COY, .., - CO®, Cap

Z, = rcosy,_,, , CO%, ., - CO®, Si@

(1.81)
Z_.,=rcosg, ., Sing, .,
Z, n=rsing, .,

The representation of the locah-ifn)-dimensional hypervolume elemenin terms of polar coordinates
(@, @, @_n.r) has already been given hgmma 1.14

dzdz-- dz,, dz,= T"" deosp, ., )" " (co®, ,, J "0 (1.82)
o CO§ @ Co%d%—m—ldqon— m2""" d¢3d¢z Ck”l
Here, we only transform the new random varialil#o Helmert'srandom variable.
x:= 1’ = dx=2rdr, dr S , rrh = x(mmz
2%
r" "y =%x“”“)’2dx (1.83)
Part Aconcludes with the representation of i pdfin terms ofHelmert’spolar coordinates
dF, = (i)%q exp{—i(zf +oo Zim)} dz-- dz .=
2 2
aaeEm o a L B e
- E (2_7T) eXp(__ZX)X dX(CO%—m—l 5 (Cown— m2 ’7 o C&% C@@d B 1d¢n— m2 " d¢3d¢zdﬂ:
(1.84)
Part B
Part Bfocuses on the representation of ight pdfin terms of the random variables.
1.7 1
dF = (—_ 2eX — + ...+ d d 185
: (271) p{ Z(Zf_m+1 Z)} 07y 7 (1.85)
1 e T I e
Az_m+'~+2§:?(€—§)AA(§-é) (1.86)

The computation of the locat-dimensional hypervolume elemedz,_, ., --- dz, could be derived in the follow-
ing way, which is based upon the matrix of the gt >A’A . Since the metricA’A is positive-definite
there exists a honsingularxm matrix B, such that

0?A'A =BB (1.87)
and we put
z,=BE-8). (1.88)
So (1.86) is equivalent to
z,2,=(E-8)B'BE-E). (1.89)

The Jacobian of the transformation (1.88) is
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e [—(;(1;1 ’))] detB = [detB'B ){? =

=[det@*A'A)"?* = o "[det@ A )['2 = (1.90)
=0 |AA 7

which brings
dz_...---d :—|AA[”2 (fl (fm. (1.91)

Thefirst representation of theght pdfis given by

dF, = )7 eXPE (Zepn -+ 20} U+ 0=
AA} 1 (1.92)
- PR L e L @-oyan@-opad dd,.

Part C
Part Cis an attempt to merge theft and right pdfaccording to

n-m

dF =dF dF. = ( ) = expE= x) X2 dxdy, %

5’ exp{- (%—&)'A'A E-g)dé - dé,.
The local f-m-1)-dimensional hypersurface element has been dérmtdw,_,., according td.emma 1.14
Fifth, we are going to compute thearginal pdfof é BLUUE of &.

dF, = f,&)dé-- dé,
includes thdirst marginal pdf f (%)

|AA1|’2 ETIPS

f (g) - J‘dx¢ da)n 1 ) 2 exp(__ X) )éﬂ m-2)/2 ( )2
subject to
K 1 1 nom 1 i
dxb do = (=) 2 expl= x) 22 =1,
.! @ n-m-1 2 ( 277') p( 2 )

This leads us to

AIA /2 1 ~ o ~
() = ( )2 :AAL l p{—a(é—é) AAE-S)}. (1.93)
Unfortunately, such a genenalultivariate Gauss-Laplace normal distributicannot be tabulated. An alterna-
tive is offered by introducing canonical unknowngaetersn as random variables, which will be discussed in
Section 4.3.3.

Sixth we shall compute thearginal pdfof Helmert's random variablex = (n-rkA)d?/o? = (n- mé?/o?,
with 2 as BIQUUE or?, and with

dF = f,(x¥) dx
including thesecond marginal pdf,(X) .
The definition
1,1.%2" 1 ot o, T 2JAA Y2
L=l * ey 6 dhe [ o PR et L Eepwn é-0)

subject to
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n-m-1)/2
_(ﬁdw _2n‘
n m-

according to Lemma 1.14

[~ [dé&--d&, (_)2 |AAmf exp{—zalz E-8AAGE-2)} =

+00 4o 1 E L )
::[Odzh—mq--..[ d%(gr) eXp{—E(%_nﬂ+...+ 2)}_1

—00

leads us to

p=n-rkA=n-m

n-m-1 _1_ n-m1 _ n m_
A (= = rr hor( =rcj

B [ S L (1.94)
2 2P (pl2) B '

which is the standard pdf of the normalized sammeiance, known asielmert's Chi-Squarey® with
p=n-rkA =n-m “degrees of freeddm If we substitute (1.64)x=(n-rkA)d*/c’=(n-md?/o?and
dx=(n-rkA)o?dd*=(n- mo? &?, we arrive at th@dfof the sample variancé?, in particular

dF, = f,(6%)da*?
R 1 . 1 4?2
f,(60%)=————— p"'26" 2expl= p—). 1.95
2(07) apzp,zr(plz)p p(zpaz) (1.95)

This concludes the proof.

1.5.2 The sampling distribution of the estimatewithin a linear Gauss-Markov model

In this section we shall derive the sampling digttion of the estimates within a linear Gauss-Markmdel.
First of all we introduc&heorem 1.15

Theorem 1.15

Let E{y} =Ag AOR™™ Ey} OR A),k A=m

D{yt =X, OR™ X positive-definite, kX, =n,

be a linear Gauss-Markov model based upon indepénidentically
distributed (i.i.d.)Gaussnormally distributed observations

Y =[YuYz2-.., Yol &is £, - BLUUE of § in thelinear
Gauss-Markov model

S A A E(§ =¢
E=(A'LA)A'LYy subjecto| . (1.96)
D{g =(AL'A ™

é is an element of a specific Gauss normal distidoudf type
&~ MV{& (A'E;'A)™} with the probability density function

FE e (AE A =)™ |OZAY [V expt 5 €-8JAZ A €-8)). (1.97)
Proof:
The probability density function (p.d.f.) of thed. Gauss normally distributed observatigris
f(y;E(, Z) =(2 75 "qdet Zy)'”zeXp{—%(y —EW) T ly-EY) (1.98)
We aim at deriving the marginal distributions f;)f

A first decomposition oy — E{\} is



Chapter 1. Sampling distributions of random terssuat the estimate of linear model 31

y-E{} =y-AE=y-AL+A§-3

(Y-EW) TAy-BY) % y-AE'Efy-AL € &-E AL A &% (1.99)
So with (1.98) and (1.99) we get
fy;E{\, &) dy,--- dy, =

(2m) ™2 (detx, 2 exp&% ( -A&)E, ¢ - AE )}@xp{—% G-EYAE'AG-E)}dy, - dy. (1.100)

E-statistic

Because of the general variance-covariance malyix (1.100), the methods used in the proofbéorem 1.13
can be hardly applied iderivation of the probability density function &. First we will simplify this problem
by the transformation of the linear Gauss-Markoweio

z=x%y, B=X A, (1.101)
The Jacobian of the transformation (1.101) is

3y, =dy/ =7 FIT, 17
so that the differential elements are connectethbeyelation
dy,dy-- dy =X, '* dzdz-- d,
and the probability density function ¢f(1.98) transforms to
f(y;EDh T dydy-- dy =27 "% £, | exp{-3(z~ €) ‘T, M z- @M I V2 dzdz
= (27" exp{-% (2~ E{#) (z- B }} dzdz- dg
(1.102)

So we get the probability density function (p.dofx as

f(zE3 ) =271 '”’Zexp{-%( z-E)( z- € (1.103)
which is a standard multivariate Gauss normalitistion.
Then the linear Gauss-Markov model will be simplifias

E{3 =B¢ BOR™ E¥ OR B,k B=m

(1.104)
D{z} =1, OR™.
The =, - BLUUE of £ , % , Will be represented as
~ E: a =
£=(B'B)'B'z . {3 =¢ . (1.105)
D{g§ «(BB

which reduces the derivation of the probability signfunction of% for the general variance-covariance matrix
x, to a special simple case that =1 in (1.61) of Theorem 1.13nd with respect to the probability density
function (p.d.f.) of the vectar (1.103) i.e.

&g B'B)")= (21" BB I expt3 €-2)BBE-2)) (1.106)

With the relation of (1.101) and from the probapiliensity function (p.d.f.) of (1.103)we get the probability
density function ofg for the general variance-covariance mattix

fE 8 (AEA)Y) = (m) ™ | e A T expb 5 E-EJA'E, A €-2)). (1.107)
This completes the proof that- N{E(A'E'A)™} of Theorem 1.15

1.5.3 The sampling distribution of the orthonornally transformed parameters

While deriving (1.93) for the proof cfheorem 1.13ve have mentioned thé},--~,3m are dependently distrib-
uted. In order to make the hypothesis tests alh@utlistinct elements more efficient and uncorrélatee could
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naturally transform the original parameters to cacel parameterg, of uncorrelated linear combinations of
&’s. This method uses a similar technique to thd twebwn principal component analysisvhich was intro-
duced byK. Pearson(1901) as a tool of fitting planes to a systenpoihts in space and were later generalized
by Hotelling (1931) for analyzing correlation structures anddaeonical form of a linear modeln fact princi-

pal components analysis is concerned fundamenaatly the eigenstructure of covariance matrices, idth
their eigenvalues and eigenvectors. Therefore iNdirstly make an orthonormal transformation bEtoriginal
parameters, then derive the p.d.f. of the transtorparameters and the related the variance-cocariaatrix of
them, and perform hypothesis test for them, whielmameeigen-inference

Let us introduce theanonical random variable§7,,---,77,,) which are generated by decorrelating the quadratic

form [1& = [k -
E-9ARE-9=E-Upiag( U E-D) (1.108)
Here, we took advantage of teégespace synthesid the matrleA :N and (A '‘A)*=N". Such an in-
verse normal matrix is representing thigpersion matnxD{&} = A'A 'c*=N"g?
UuU'=I_~U0SOm)= U OR™™|UU'=I U E+1}
N:=A'A =UDiag(v,, -,V ,J'

versus
= (A'A) "t =UDiag(A,-, A '
subject to
2 :Al’l,...,v :A’l or A :Vl’ll.../]m :V;]l
|AA |1/2 /
A-n=U'E-g) - é—¢:= U(ﬁ-n) (1.109)
-2 fa=:€-C)AA E-E)= G- n)Dlag )ﬁ n) (1.110)

The local mdimensional hypervolume elemedtfl-ndg‘m is transformed to the locah-dimensional hyper-
volume elemends, ---d7,,

dé--dé =3 dj,- di,, (1.111)
in which the Jocobian of the orthonormal transfd;ima\]éﬂﬁ U E1

Accordingly, with the orthonormal transformation{Q9) we get theumulative probabilityof the canonical
parametersy (73, 7,, -+, ,,) from (1.93)

dF = £(&, &, &)0EdE, - &= 3 L 1y i) B, &,

ie.,
1.7 1 1 . . 1 1. R .
dF =(—)?2 exp{- -n)'Diag(—,---,—)m - 1.112
(277) YR pf 2 (m-n) 91(/]1 Am)(n n)ids, - d, ( )
which alternatively leads us to
10 @, f7)
f(R) = (——)2 — i 1.113
=6 o ZJZZ_IJ 7 (1.113)

F (1) = £@1)--- £ (7,)

1 1 (/7 -n)?
f —_— |
)= g hexlo{ p

Obviously the transformed random variablgs,---,7,,) represent BLUUE of(,,---,77,,) and are mutually
independent following &Gauss-Laplace normal distributioi ~ A'(17,, oA ); in particular E{} =n and
D{# =o’°Diag(J,,---1,). Furthermorez = (7 -1 )/(c*A)"? are independently distributed A40, 1) andz’

has theHelmert Chi-squarelistribution with 1 degree of freedorg, ~ x;.

} for all i 0L, ---, n} (1.114)
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In summary of these derivations we can formulageftdilowing theorem which is complementaryTtheorem
1.16

Theorem 1.1@marginal probability distributions of the orthanwally
transformed parameters, special lig&auss-Markov model):

By means oPrincipal Component Analys{®CA), based on the call&ingular
Value DecompositioiSVD)or Eigenvalue Analysi¢EIGEN)of (A'A)™,

n=Ug UL (A'A) U, = A = Diag(A, A, Ay Ap)

R ~ Subjectto| °

q=UL% UU, =1,,detU, =+1
the canonicalixed effects7,,---.7,,) become BLUUE of(r,,---,17,,) can be
orthonormally transformed from the BLUUE,,---,¢,,) of thefixed effects
(&,---,¢&,,) within the speciaGauss-Markovmodel ofTheorem 1.11The
marginal pdf of the canonical paramet@rg,, /7,, -+, A,,) is represented by

1
(zﬂ)m/2(0.2)ml2

L@ InAG")= @) @) T )T ()

m & _ 2
Ay Ay A) ™ eXD{-%ZM} (1.115)
207 A

f,(n) =

Ay 1 1 (B -n) ——
f(”i)_aﬁﬁeXp{ 207 2 } for all i, -, n} (1.116)

and thetransformed fixed effectgj,,--,/7,,) are mutually independent, following
a Gauss-Laplace normal distribution
A~ N |o?A) foralli O{L,---,m}

;:%: fl(;)d,z:%exp(——; Z)dzforall M-, 1.



Chapter 2

Hypothesis tests of sample mean vector and samplariance-
covariance matrix of a three-dimensional, symmetricank-two
random tensor

The statistical inference includes the point ediomaderived in Chapter 1 and the hypothesis teatthe basis
of the sampling distributions derived in Chaptard will develop the distribution of multivariatestestatistics
for the testing of hypotheses concerning the sammglen vector and the sample variance covariancexmiat.
the estimated parameters (mean vector and variana@iance matrix) of a tensor-valued multivariatgmal
population of a three-dimensional, symmetric rank-tandom tensor, which include:

(1) Tests oru with X known (y*-test);

(2) Tests o with X unknown ( Hotelling'sT  -test);

(3) Tests on the equality of two mean vectors wimmon variance-covariance matrix
(Hotelling's two-sampld *test andWilks’ A test );

(4) Tests if the variance-covariance matrix is éqoa given matrixl{kelihood ratio statistick

(5) Tests on the equality of two variance-covareamatriceslikelihood ratio statisticl

(6) Tests if the mean vectors and variance-comaeianatrices are equal to a given vector
and matrix [jkelihood ratio statistick

(7) Tests on the equality of two mean vectors aed¢spective variance-covariance matrices
(likelihood ratio statistick

2.1 Hypothesis test of the sample mean vector obgmmetric random tensor

There is one major area of statistical inferenoe tésting of hypotheses, which relates to the nmésraf a prob-
ability distribution. In experimental research anay wish to compare the yield of the new line viliat of a
standard line, and perhaps recommend the newdimepiace the standard line, if it appears supetios is a
common situation in research.

Definition 2.1 (statistical hypothesis test of a statistical hiests)

A statistical hypothesi& is an assertion or conjecture about the distmiputi
of one or more random variables. A test of a statsishypothesis H is a rule
or procedure for deciding whether to rejett

Concerning the testing, two hypotheses are disdusdee first, the hypothesis to be tested, is datlee null
hypothesisdenoted byH,, and the second is called takernative hypothesjglenoted byH;. The thinking is
that if the null hypothesis i&lse then the alternative hypothesis is true, and varsa. We often say that, is
treated against, or versug;. If the null hypothesis is not rejected we sayt tHgis accepted. With this kind of
thinking, two types of errors can be made.

Definition 2.2 (types of errors, size of error)

Rejection ofHy when it is true is called Bype | error and acceptance &i,
when it is false an@#, is true instead, is calledTpe Il error The size of a
Type | erroris defined to be the probabilitythat aType | erroris made, and
similarly the size of &ype Il erroris the probability 18that aType Il erroris
made in regards Gf; .

The point of departure for hypotheses testing ésdéfinition of atest quantity For instance, for a random sam-
ple {ys, ..., ¥} of size n from a known probability distribution charactedsby parameters like the non-
centralized statistical moments, ..., U, or the centralized statistical moments..., 77, of orderm, we may
choose a functional of the sample me@r= iz or of the sample variandg = d* as a test quantity which is in
general a function

t=t(Y, . Yookl JOT Or

t=t(y,,.... ¥, 74,...77, AT or (2.1)

E= (Y0 Yo s Ty ooy 7T T
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of the set ¥4, ...,yn} of observations and the sl ..., ym }, { 74 ..., 71 }, or {{1, 7B ..., Um-1, 7} Of parameters
of the probability distributionThe probability distribution of the test functions

f(t! Hay wesy Hm),

in short thetest statisticsis known. The test quantity is called a pivotahntity if its probability distribution
does not depend on the elements of the|sgt{, un } or { 7z ..., 7, } of parameters.

H,, 10 <U° versusH,,:v=uv">0°
H,,: 0= U° versusH,,: v =u' <u° (2.2)
H, -0 =U° versusH,,:v=u"#0°.

The null hypothesisH, is formulated by means of a choice of the non-nladee parameters, say, represent-
ing eitheran element of the set, ..., un } of parameters (non-centralized first order stital momentspr an
element of the set i ..., 77, } of parameters (centralized second order statisthoments). In short, we write

. 0 - 0 o= 9
Ho:USU , Hy, 020", HytU=0U".
Alternatively we choose
H,:0=0">0° H, v=0" <0’ Hv=0"#0°.

Accordingly, such a test is calledright one-sided testa left one-sided tesind atwo-sided testrespectively.
This notion will become more obvious when we deteenthe probabilitiesr and :/ of the Type | errors and
Type Il errors, for example for the two-sided test

Hys 2 0 =U° versusH,:v=uv"#u°.

The null hypothesig{ys is accepted if the test quantity t is an elemédnheacceptance region;<t< ¢, ¢ =
Ca2» C2= Crq2- Thecritical valuesc; and ¢, are determined from the probability identity

Plostscu} =RPtsguf —{Ptcigd® =

G G
= j o (t)dt—j fo(t)dt= (2.3)
—1-9y-9 -1
=@ 2) > l1-a

with respect to a significance lev&gl namely by a linea¥olterra integral equation of the first kinth contrast,
Hos Is rejected if the test quantity isut of the acceptance intervalt[c, c,], in particular ift is an element
of therejection region or critical regiorC, :={t| -~ <t<c,,, C_,,, < t<+o} . The probability to reject a true
null hypothesis, that is to makeTgpe | error is measured by therror probability a, e.g. 1%, 5%, or 10%,
respectively.

P{Typeleror} =L —-B g<t< ¢ ’}=a (2.4)
The specifialternative hypothesi&3 is validated by the probability identity
Plt<gul+Rt>¢gd 2 +Pt<icd {PK;gp' =

< G
-1+ j f, (t)dt- j . (t)dt= (2.5)

=1+ F,,l ©)- FU1 (c,)
::'8

which is called the power of the two-sided tgsis a measure of the probability to reject the hypothesisos
in favor of the specific alternative hypothesis; . In contrast,

P{Type llerrol =R t<c,;v'}-Rtsgu} 4 -4 (2.6)

is a measure for the probability to reject the #jmeloypothesisH; in favor of the false null hypothest#y, that
is to commit a Type Il error.

The following table illustrates the rationale ofdayhesis testing.
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Hy is true SpecifidH; is true
Acceptance correct decision Type Il error
of Hy P{correct decision}=1a P{ Type Il error}=1-8
Rejection of Type | error correct decision
Ho P {Type | error} =a P{correct decision}#3
significance level (power of test)

While P{Type | error } measures the probability to rejactruenull hypothesisi, , P{Type Il error } measures
the probability to reject the true alternative hipesisH,.

The hypothesis test of sample mean vector and savaplance-covariance matrix of a symmetric randemsor
belongs to multivariate analysis which is the braatstatistics devoted to the study of randomalaes that are
not necessarily independent. Where inference icaoed, several (generally correlated) measurensets
made on every observed subject.

Many current multivariate statistical proceduresemgeveloped during the first half of the twentiedntury. A
reasonably complete list of the developers wouldvblyiminous. However, a few individuals can be aites
having made important initial contributions to theory and practice of multivariate analysis.

T. GaltonandK. Pearsondid pioneering work in the areas of correlation aegression analysiR.A. Fisher's
derivation of the exact distribution of the sampderelation coefficient and related quantities jpded the impe-
tus for multivariate distribution theor. SpearmamndK. Pearsorwere among the first to work in the area of
factor analysis. Significant contributions to mudtiiate analysis were made during the 1930sShyS. Wilks
(general procedures for testing certain multivariaypothesesH. Hotelling ( Hotelling's T?, principle compo-
nent analysis, canonical correlation analysiR. A. Fisher(discrimination and classificatignandP. C. Maha-
lanobis (generalized distance, hypothesis testidgWishartderived an important joint distribution of sample
variance and covariance that bears his name. Mit@®artlettandG. E. P. Boxcontributed to the large sample
theory associated with certain multivariate teatistics.

The body of statistical methodology used to analyineultaneous measurements on many variables lesdcal
multivariate analysis. Many multivariate methods bBased on an underlying probability model knowrihas
multivariate normal distribution.

The objectives of scientific investigations, for ialih multivariate methods most naturally lend thelves in-
clude the following:

— Data reduction or structural simplification.

— Sorting and grouping.

— Investigation of the dependence among variables.
— Predication.

— Hypothesis construction and testing.

One of the central messages of multivariate armlgsihatp correlated variables must be analyzed jointly sThi
principle is exemplified by the methods presente8ection2.1 and 2.2. Inference, that is, reaching valid-co
clusions on the basis of sample information. Whilal data are never exactly multivariate normagd, lormal
density is often a useful approximation to theé&trpopulation distribution.

On the basis of the sampling distributions derire8ectionl.4 and 1.5 the distribution of multivariate tet-
tistics needed for testing hypotheses concerniagp#itameters (covariance matrix and mean vect@)tensor-
valued multivariate normal population, suchHazelling’s T?and likelihood ratio statistics, are developed.

At this point we shall concentrate on inferencesudla population mean vector and its componens parthis
section, although we introduce statistical analydishe component means based on simultaneousdenici
statements. Irsection2.2 we shall discuss the hypothesis test for #mpse variance-covariance matrix of a
symmetric random tensor. From the many books atbasie subjects, we refer to Grafarend (2000) feruthi-
variate hypothesis test a@iri (1977),Muirhead (1982), Rencher(1995, 1998) Anderson(1958, 1984) and
Srivastavg2002).
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2.1.1 Tests om with X known

Hypothesis testing has started with the test omtean with known or unknown variance, in particdtarthe
random sample of @aul3-Laplace normal distributioThe test on a sample mean vector assuming a kBasvn
introduced to illustrate the issues involved in twakiate testing and serve as foundation for th&nown
X case. We do not consider one-sided alternativethgges because they do not readily generalize tivanis
ate tests.

For the univariate case the hypothesis test ofdstds that the mean is equal to a given valyeversus the
alternative that it is not equal i@, .

Mot =ty VErSUSH,: (= [ # U,

Let {y4, ...,¥n} be a set of independently identically distribufgdd.) observations from a normal sample of size
n with the unknown mean valug and the known variance?.

_ A4, _n Pateat Yy

t(Yaseees Yo shdo Sl o — 1] (2.7)

g n

with respect to the sample meganof type BLUUE.t(Z; 4,) is GauR-Laplace standard normally distributed
with mean zero and variance one. The probabiliniiy

P{-c<t<+¢ = P - cisyosfﬁ A 2 -a=y (2.8)
Jn n

relates the error probability of the two-sided test to the confidence leyellf 1, is an element of the confi-
dence intervaL[l—ca/«/ﬁs,uo <+ w/+/n, the null hypothesisy, : ¢ = u, is accepted. We ejeét, if the
confidence interval does not contgip.

Equivalently, we can use the statisti€y,, ..., Y, ;4 )

(Voo Yo sHo ) = NI = 1o 1(0° ) 1A - 1), (2.9)
which is distributed asgy® with one degree of freedom. The probability idignti
P{tP<+¢ =R <y} & -a=y. (2.10)

In the multivariate analysis of the sample meartargfor a symmetric random tensor in vector formwish to
hypothesize the value of the mean vector jointhewthe variance-covariance matrix is known :

Hot m=pg Hyt p#p, with £ known
More explicitly, for the three-dimensional, symnietank-two random tensor discussediection 1.3ve have

/'11 /'101 /'11 /“101
Hoy: | 2 |=] ¢ |v Hy: | 2 |#] | with X, known.
/'16 /’106 /'16 /“106

The vector equality irf,, implies i = g, foralli =1,---, €. The vector inequality irf,, implies y, # u, for
at least oné {1, ---, 6}.

To test’H,,, we use a sample of observations oh, namelyt; t,... , t, whose related vectorized forrgs y,,
..., ynare distributed according W (n, X,) of Sectionl.3. The test statistic is

Zz(ylV'"yn ;“o) = n[iiy _uo]z;l[ﬁy ‘llo]1 (2.11)

which is distributed ag; by Lemma 1.8andTheorem 1.10.We rejectH,, if Z* > x¢ ... Thus, for one vari-
able, it will refer to (2.10), whereas for the ca$a 33 symmetric random tensoZ, of (2.11) has a chi-square
distribution with six degrees of freedom.

Since we cannot get the expectation of the vari@ogariance matrix from the observation of defoliomat
measures in our real experience, this test staisstiot very practical in our case.

2.1.2 Tests om with X unknown

Firstly let us review briefly the familiar one—salmptest in the univariate case.
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The hypothesis test of interest is that the meagisl to a given valug,, versus the alternative that it is not
equal to .

My [ =ty VersusHy: i1 = f1, #

Let {y1, ..., ¥} be a set of independently identically distributgdd.) observation from a normal sample of size
n with the unknown mean valyg and unknown variance?. The test statistic

. ._[I_luo _NnLy Y,
1Yy, ¥y iy ) = =~ - 2.12
(yl y //o) OA_/\/E & L n .uo] ( )

where /1, G° represent the sample mean, and sample variangp®BLUUE and type BIQUUE, respectively.
(2.12) has &tudent-distribution withn-1 degrees of freedom. The probability identity

P{-cst<+¢ = P a- ci_uosfﬁ c% i -a=y
Jn n

relates the error probability of the two-sided test to the confidence leyellf 4, is an element of the confi-
dence intervalz-cd//n< Uy < I+ & /+/n , the null hypothesisy, : i = 1, is accepted. We rejeé, if the
confidence interval does not contgip.

Secondly in the multivariate analysis of the samp&an vector for a symmetric random tensor in vefthon
we wish to hypothesize the value of the mean vgototly when the variance-covariance matrix is nown :

Hoyt m=ng Hyt p#p, with X unknown
More explicitly, for the three-dimensional, symnietank-two random tensor discussedbiection 1.3ve have

/'11 /'101 /‘Il /'101
Moot | 2 |=| ¢ | Mo | 2 |#] | with £, unknowr.
/‘16 /'106 /‘16 /'106

The vector equality i, implies ¢ = 14, foralli =1,---, € The vector inequality irt,, implies i # u, for
at least onéJ{L, ---, 6}.

To test’H,,, we use a sample &f observations oty namelyt; t,... , t, whose related vectorized forrgsg y,,
..., Yn are distributed according W (n, X,) giving rise to the sample mean vecfgrof Theorem 1.1@o the
sample covariance matri¥, of Theorem 1.12Hotelling'sT? statistic Hotelling 1931) is defined as

T2 := i, o £, —nd. (2.13)

which is distributed a3’ _,. Note, that for one variabl€? is the square of the usudtudent-statistic (2.12).
In general, it is clear thaT?> >0 and if p, =0 then ﬁy should be close t0, and so should b&?. This charac-
teristic is one of the most important propertieshefWishartdistribution Theorem 1.1} Now we should derive
its relationship with th& distribution.

With the sampling distribution qiy and )iy, and the independence of them , we WFit§n-1) as
T2 i T R ]
= y,\ $ ?/ _1y,\ [uy _HO] Zy l[p‘y _p‘(]]
n-1 (n-Dp, —p,J'T, [, —nJ
- n[l’iy _uo],z‘y_l[ ﬁy _"I'O]
(n_l)[l’i’y _uO]'Zyil[ﬁy _HO]/{[ ﬁy _ul) 'ny l’iy _HB

Note that a key assumption in tfié distribution is the independence pf and f‘.y , which holds when sampling
from a multivariate normal populatiofitjeorem 1.11

For the three-dimensional, symmetric rank-two random tecesse discussed Bection 1.land afteMuirhead
(1982, p.96) we have

[, -l 10, -nd
~ Io-1r ~ n-1-6+1
[, —nol E TR, —pd

i, —po) TR, —nd~ x&  (n-1)

Dividing them each by their respect degree of freedom and therdgfinition of thé= distribution shows that
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T2 n-1-6+1
n-1 6

~ Fg oo (2.14)
This is of great practical importance in testing hypothekesteghe mean vector of the vectorized random tensor
when the covariance matrix is unknown.

If the observedr? is too large — that iga, is "too far" fromp, - the hypothesigH, : p, = p,is rejected. Due to
the relationship (2.14) we can calculate the probability igent

2 (2D 1-a} =
= n_1_6+1 6, n—1—6+1( }

o _iisra g o (0=
=P, —pd I, ) <o

P{T
(2.15)
Fe, rreid=0) =l-a=y

whereF; ., .. ,(1-a) is the upper10Qx h percentile of the~; |, ., distribution. (2.15) leads immediately to
a test of the hypothesik, : ﬁy =p,versusH,,: ﬁy Zp,. At the error probabilityr, reject’H,,in favor of
H,, if
e e (n-1)(6
T? =i, —pl X, TR, —ng >m':e, -t e i1} (2.16)
It has been shown that Hotellingtest is a uniformly most powerful invariant test (Andersb®84, p.183).
Further it is also the likelihood ratio test.

This test is just our case of the repeated observationdahagion measures in one place or network with the
same technique and the same conditions, in which we h&wéherestimates of the sample mean vector and the
sample variance-covariance matrix. So we may use Hotelllifgi&atistic (2.13) to test the sample mean vector.

2.1.3 Tests on equality of two mean vectorstivcommon variance-covariance matrix

A T?test for testing the equality of the mean vectors from twitivariate populations can be developed by
analogy with univariate procedure. Skhnson and Wicher(i1988, p.221) andnderson(1984, p.167) in de-
tail.

In the multivariate case, we wish to compare the mean vectorsifrormpopulation. This is also called ad4d-
telling's two-samplél “test. We assume that two independent random sampley,,, -, Y, are distributed
according toN(p,, ;) andy,,, ¥,,,-*, Y 5, are distributed according /s (n,, X,) giving rise to the sample
mean vectorgi, andji, respectively, wher&Z, andX, are unknown. In order to obtainTd test, we must as-
sumeX, =X, , which is of importance for the small sample sizeandn,. From these two samples a pooled
estimator of the common covariance mattixs calculated as

_(n-DE +(n,-DE,

2.17
pl nl + nz -2 ( )
for which E{S;} =X . To test
Hos: my=mp Higt py#p, withX =X,
we use the test statistic
T = i il S T i (2.18)
which is distributed a§6?m+n2_2and its relationship with thie-Statisticis:
+n,-6-1
LNl I R (2.19)

3(n, +n, - 2)
We can use the same procedur&ettion2.1.2 to make hypothesis tedf;: p, =p,.

Now we discuss the second method of deriving HotellihgtssampleT *test, which is based on likelihood
ratio test. We develop the decomposition (1.573@&gtionl.4 for the sample of one population to our two popu-
lations test. First let us note that

i=13 i - 1% . _1& . _np+nj
N=n+n, f="2 Yy B,=—2 Y5 Rp=") Nk SSL AL 2
n = n = ni=; n
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D A R DS AP A S

W= Zi(yij _ﬁlz)’(yij _ﬁlz)

Since
2 0 2 0 2
W = ZZ(Y ulZ)(yu —Hy,) ZZ( -B )(yu -B ),+Zm(l’ii —“H)(1 By (2.20)
we note that for
A= ii(yij _ﬁi )(yij _ﬁi ), B :iﬂ‘ (ﬁ _ﬁ12)(ﬁ‘ _ﬁlz)' (2.21)

we have
W=A+B (2.22)

Under H,,: n, =p,, the corresponding random matricksB are independently distributed ¥8,(n—-2,%),
We(LX), andW is distributed asV,(n-1,X), from which we obtain the famous test statititks’ Lambda
statistic

A(B, n-2,1)=—JctA___ aelr (2.23)
detA+B) dew

which was first proposed bwilks (1932) and later bydsu (1941). We rejectH,, if the ratio of generalized
variances (2.23) is too small.

For the two sample case we have the likelihood function

Ly, 1y, E) = (277) V2 (detE )2 etr%lzlzz(y., —B); —R)'

i=1 j=1
The likelihood ratio statistic is

maxL (1 pu,X)
,E

maxL @, 1, %)

Bypp X
in which

maXL(u,u Z) (27.)—3n/2 (deW )n/2 -3n/2 é3’1/2

maxL (ul 1“22)= (ZT)—SnIZ (de’A )nlz -3n/2 é31/2

[CRIP

then for testingH,,: p, =p, the likelihood ratio statistic is

_ (detA Y2

This test is equivalent d/ilks’ A test of (2.23).

This test covers our case of repeated observatibdeformation measures of two places or two ndtaaevith
the same technique and the same conditions, inhviaec have only the estimates of the sample meatongec
and the sample variance-covariance matrices. Shave to use Hotelling§? two-sample statistic (2.18) to
test the sample mean vector.

When the variance-covariance matrices of two pdjmua are not equal, the two-samlé statistic in (2.18)
does not have @ distribution, which leads to the Behrens-Fishabpem Behrens1929,Fisher 1939). Since
this situation often takes place in the case ofadgd observations of deformation measures of tagep or two
networks with different techniques and under défere conditions. An optimal approximate solutionttof

problem remains under investigation.
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In this section we have so far discussed three thgses tests about the sample mean of a symmaetnidom
tensor, which are summarised in Box 2.1.

Box 2.1 (Hypothesis tests of the sample mean)
Hy: m=pg Hy: p#p, with X, known

Hpp: R=Rg Hyp: pER, with X unknowr
Hyy: pi=po Higt pZp, withX =%,

2.2 Hypothesis test of the sample variance-covariaa matrix of a symmetric random tensor

Now we consider the hypothesis test of the samat@&arce-covariance matrix of a symmetric randonsaen
These tests are often carried out to check thengstgans pertaining to other tests. We will covenrftypes of
hypotheses: (1) the variance-covariance matrixjisaketo a given matrix, (2) two variance-covariantgtrices
are equal, (3) the mean vector and the variancer@nce matrix are equal to a given vector andimatrspec-
tively, which is obviously the combination of thggothesis test about the mean vectoSeéttion 2.1.&nd (1)
of this section for the variance-covariance matiixg more generally (4) several mean vectors amddhance-
covariance matrices from several normal populatiesequal. In most cases we use the likelihodd eq-
proach. The resulting test statistics are ofterrd@hed by the ratio of determinants of the sanwaleance-
covariance matrix.

In the univariate test of variance we are intekstg1) test on the variance-covariance matrihwitean known
or unknown, which are related to the Chi-squargidigion, and (2) test on the mean differencenftwvo inde-
pendent normal samples, which are related toFikker F-distribution. For more detail we referred to Koch
(1997, 1999) and Grafarend (2000).

2.2.1 Tests if the variance-covariance maris equal to a given matrix
We are interested in testing if the variance-c@raré matrix is equal to a given matrix
Hyy: =Xy, Hyt Z#FX

Lety,,---,y, be independent/,(n, X)-distributed random vectors of vectorized randonstes with unknown
mean vectop and variance-covariance matiix and consider testing the null hypothekig: X =X, where
X, is a specified positive-definite matrix, agairigf, : X # X,.

At first we assume thaf, =1, then transform to the gener&). According to thédefinition 1.5the likelihood
function is

L, 2) = () (detz "7 expt > 6 W= (4 ~1))= -

= (271)°" (detz )" etrE- S ~1p TIY ~1p'])
inwhichY'=[y,, y,, -+ .y,]. With the decomposition introducesSection 1.4

[Y ~101TY ~1n] =(Y ~1A) (Y ~14) +(f, W VLf, -0
=27 +n(i, ~n)(i, )
=A+n(p, —p)(p, —p)
formula (2.25) will become
L(r, £) = (271)*"" (det= )" etrt- 32 A Yexp(li, ~n]'Z Ti, —ul}. (2.26)
The likelihood ratio statistic is
maxL @)
"

- maxL @.,X)

w2

2

in which
max L (u,1 )= (27) "2 etr{—%A}
n

maXL(u,Z): (ZT)—GNZ (deA )n/2n—6n/2 éGﬂ/Z
1))
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whereA = ¥ -1p; J ¥ -1, )= - 1)§y, then for testingH,,: X =X, =1 the likelihood ratio statistic is

A, =(8)"" (detay’? etr-5A) (2.27)

For the generaL, # |  let B be a &6 nonsingular matrix such thBZ B’ =1, and putx, =By, i =1,--,6, S0
X, ~N;(B™'n, B'Z(B™')). To hypothesize thé{,,: X =X is equivalent to testing{,,:B"X(B™")' =1,, and

now we have
6

A, =2 (% —R)(x —i,) =BTAB™)

i=1

By substitutingA, into (2.27) we get the likelihood ratio statistic

A, = (&)™ etz Ay etr-J2;'A}, whereA = (- 1E, (2.28)

So we havdheorem 2.3
Theorem 2.3

The likelihood ratio test of4,, : £ = X, with unknown mean vectqr and
unknown variance-covariance matikrejectsHy, whenever

A, =(R)"" (detzA Y er-3xA}< C,
where the constartt, is chosen in such a way that the test has gize

To evaluate the consta@f, we needhe distribution ofA, under null hypothesi&(y,, Which are given, e.g., by
Anderson(1958),Giri (1977): When the null hypotheses are tra2|log/\, is distributed as(§(6+l),2, whenn—
oo. Das Gupta(1969) has proved that the likelihood ratio test of §i2 biased, see al$d. Sugiura and H.
Nagao(1968).Muirhead(1982) has discussed the unbiased modified likelihatid statisticA; in detail

A =(78

3(n-1)/2
2 n—1)

(detztA Y2 etr{—%zg,lA}, whereA = (- 1E, (2.29)

and provided the tables of its asymptotic distribution.réject the null hypothesi o, for small enough\;.
2.2.2 Tests on the equality of two variancesvariance matrices

We consider testing the null hypothesis that the vari@ogariance matrices of two normal distributions are
equal, given independent samples from the two populatibesy,,,---,y,, be independentV,(p,,%,) -
distributed random vectors of vectorized random tensorsumithown mean vectqe, and variance-covariance
matrix X, and consider testing the hypothesis

Hys: X=X, His! X222,

Let p, and A, be, respectively, the mean vector and the matrix of sums afesjand products formed from the
ith sample; that is

R 1 n n R .y
By =szij’ A =200, )0 -y
=1 =1

and denoted =A +A,, n=n+n,.

The likelihood ratio test of,, first derived by Wilks (1932), is given in the fmlling theorem for the case of
two populations.

Theorem 2.4

The likelihood ratio test of,, : X, = X, with unknown mean vectqet and
unknown variance-covariance matikrejects H,, whenever
(detAl TIIZ (deﬂ2 )12/2n6nl2 (d%l I)/Z (de‘ ) r3/2n6n/2
3: 12 ~6ny /2 6n, /2 = +mn,)/2,.,6n /26 IZSCH (230)
(detA y"*n™ *ny" (deth, +A , J**™)Zn Pn)h
where the constar, is chosen in such a way that the test has@gize

When the null hypotheses are tru€logA, is distributed ag(g.,,, whenn — co. For the unbiasedness and
modified likelihood ratio statistic abot,, we refer toGiri (1977) andViurinead(1982) in detail.
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2.2.3 Tests if the mean vector and variance-cavance matrix are equal to a given vectoand matrix

We consider testing if the mean vector and the variance-emearimatrix are equal to a given vector and ma-
trix, respectively, which is obviously the combinatidrttee hypothesis teskt,, about the mean vector 8&ction
2.1.1and H,, of Section2.2.1for the variance-covariance matrix:

Hog: m=pg X, =X, Hygl pzp,0rL #X .
The likelihood ratio test is given in the following thenr from Anderson (1958)

Theorem 2.5
Given then independent 8l samples vectong,,---,y,, , all distributed as
Ne(n, X), the likelihood ratio test of size of Hy,: p=p, X, =X, is
based on

6n/2 _ 1_._ 1 . it 2
A, = (%) (detz*A "2 etr{—E):,olA}exp{—E (i, —pg'E o p,—pd} (2.31)
and rejectos if A\, <C,, where the constar@, is chosen in such a way that

the test has size . When the null hypothesis is true2log/, is asymptotically
distributed asyg e, 12

The likelihood ratio test (2.31) is unbiased, which has lestablished byugiura and Naga¢1968) andDas
Gupta(1969). Muirhead(1982) provided the tables of its asymptotic distributlMe reject the null hypothesis
Hos for small enough,,.

2.2.4 Tests on the equality of two mean vectoasid two variance-covariance matrices

Now we consider simultaneous testing for the equalith@fmean vectors and the variance-covariance matrices
from two populations, which is obviously the combinatifnthe hypothesis test, about the mean vector of
Section 2.1.2nd H,; of Section2.2.2for the variance-covariance matrix, which is our sevagfiothesis test:

Hyy: my=p, X,=X, H;i pFp,orX #¥ .
The likelihood ratio statistic for hypothesis;, is the product of theé\, of H,, and A, of H,y.
Ng =N\, =
_ (detA )" (detA, *'* (detA, J'*n*"'? _

= 2.32
(detw)n/Z (detA y]l2nfnl/2n23nzl2 ( )
_ (detA, /% (deA ,)™"?n*"?
- (detW T’znf”l’zng”“z
and the likelihood ratio test rejects, whenever
N, <C,,
where C, depends on the error probabilidy.
Box (1949) has derived the distribution of the modifi&elihood ratio statisticA
m-1)/2 n,—-1)/2 .3(n-2)/2
5 (detA,) (de®r, § n (2.33)

5 = (detW )(n—l)/2 (nl _1)3(q—1)/2(r12 _1)3(n2—1)/2
If the null hypothesis is true;2plogA; is distributed asg.s,,,, Whenn — co, where p is a numerical value
related to the sampling number, the dimension of the sagnpdictor, and the total number of populations.

In this section we have discussed four hypothesis testg #im sample variance-covariance matrix of a sym-
metric random tensor and the combination of mean vectorshwahécsummarised Box2.2.

Box 2.2 (Hypothesis tests of the sample variance-covariance)
Hy: X=X, H,t Z2X
Hos: Ei=XE, Higt 2 X,
Hog: R=Rg X, =X, Hyl pzp,0rE #X,
Hyy o By=p, 2,52, Hypt p#Fp,orx #X



Chapter 3

Optimal a for Tykhonov-Phillips regularization by A-optimal design
- a-weighted BLE, and a simulated case study for 2-0rain rate
tensors

Numerical tests have documented that the estir%laiétype BLUUEOof the parameter vectdy within a linear
Gauss-Markomode{AE =H }, X, =D{y}} isnotrobust againsutliersin the stochastic observation vector
y. It is for this reason thate give upthe postulate of unbiasedness, but keep the set-ufirgfea estimation

& =Ly of homogeneous type. Ever sintgkhonov(1963) andPhillips (1962) introduced thaybrid minimum
norm approximation solutio(HAPS) of ainear improperly posed problethere has been left the open problem
to evaluate the weighting factor between the least-squares -norm and the minimum length obthe un-
known parameters. In most applicationsTgkhonov-Phillipstype of regularization the weighting factaris
determined by simulation studies, but according to tkesalitire listed belowalso optimization techniques have
been applied. Here we aim at an objective method to deternaimethhting factorx within a-HAPS.

Alternatively, improperly posed problems which appear imisg integral equations of the first kind or down-
ward continuation problems in potential theory depanmnfiabservations which are elements of a probability
space. Accordingly, estimation techniques of type BLUUE (lnesar uniformly unbiased estimation) have been
implemented to estimatg as an unknown parameter vect(“fixed effects”) within a lineaiGauss-Markov
mode] such an estimation isot robust againsbutliers in the stochastic observation vectprlY. Here we
assume that the observation vegtds an element of thebservation spac®, dim Y= n, namely an observation
spaceY =R" equipped with a Euclidean metric. Due to possibly unstablutions of type BLUUE with re-
spect to the fixed effectslinear Gauss-Markov modete give upthe postulate ofinbiasednessout keep the
set-up of dinear estimationg =Ly of homogeneous type. According to Grafarend and Schdff883), up-
dated by Schaffrin (2000), the best linear estimation mé dyhomBLE @-weighted Best homogeneously Linear
Estimatior) which is based ohybrid norm optimizatiorof type (i) minimum varianceand (i) minimum bias
leads us to thequivalenceof a-homBLE and a-HAPS under the following conditiof we choose the weight
matrix in the least squares norm as the inverse matrikeofdriance covariance matrix of the observatass
well asthe weight matrix in the minimum norm acting on the unkm@arameter vector as the inverse substitute
bias weight matrixtheno-homBLE and a-HAPS areequivalent

The second method of regularizing an improperly poseblgmooffers the possibility to determine the regulari-
zation parametar in an optimal way. For instance, by an A-optimal desigtyjpé

"minimize the trace of théMlean Square
Error matrix tr MSE{¢} of € (a-hom BLE) to find
a = arg{tr MSE{g} =min} "

we are able to construct the regularization parametehich balances the trace of the variance-covariance
matrix tr D{& and the trace of the quadratic biasp’ for thebias vectofy = —{I -LA]&.

The biased estimation solves a special inverse problem, ansbigradwn asTykhonov-Phillips regulatoor
ridge estimator For a comprehensive discussion and review about the nsetficeblving the inverse problem
we refer to Allen, (1971, 1974), Arslan and Billor (2p0Bouman (1998), Chaturvedi and Singh (2000), Dona-
tos and Michailidis (1990), Draper, et al. (1979), Dr¢$@93), Engels, et al. (1993), Engl (1993), EL-Sayed
(1996), Farebrother (1975, 1976, 1978), Firingu&8B@), Firinguetti and Rubio (2000), Gibbons (19&9jub
Heath and Wahba (1979), Grafarend and Schaffrin (1998),eBal. (1998a, b, 2000, 2001), Gunst and Mason
(1977), Gunst and Mason (1980), Hanke and Hansen (1B@8)sen (1992,1993), Hansen (1993), Hemmerle
(1975), Hemmerle and Brantle (1978), Hocking (1976), Haed Kennard (1970a, 1970b), Hoerl, Kennard and
Baldwin (1975), Hoerl (1985), Hoerl, Schuenemeyer and HA&85), Ik (1986), Kacirattin, Sakalloglu and
Akdeniz (1998), Lawless and Wang (1976), Liu (1993)uis, Maass and Lowerre (1974), Mallows (1973),
Markiewicz (1996), Marquardt (1970,1974), Marquardt &mee (1975), Mayer and Willke (1973), McDonald
and Galarneau (1975), Nomura (1988, 1998), Ohtani (188#8), Phillips (1962), Rao (1975, 1976), Schaffrin,
Heidenreich and Grafarend (1977), Schaffrin and Midd@ebQ), Schaffrin (1995), Schaffrin (2000), Shalabh
(1998), Smith and Campbell (1980), Srivastava, et al. (198®0bald (1974), Tykhonov (1963), Tykhonov, et
al. (1977), Tykhonov and Arsenin (1977), Vinod andabll(1981), Xu (1992a, b, 1998), Xu and Rummel
(19944, b), Wang and Xiao (2001), Wenchenko (2000).
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Of those quoted references, Grafarend and Schaffrin (1293yell as Schaffrin (2000) have systematically
derived the best linear estimators of type homBBEst homogeneously Linear Estimajio®-homBLE andi-
homBLE of thefixed effect€, which turn out to enhance the best linear uniformly ueliasstimator of type
BLUUE, but suffer from the effect being biased. In this ¢baghe regularization parameter in uniform Tyk-
honov-Phillips regularizationatweighted BLE) is determined by minimizing the trace of Ktean Square
Error matrix MSE& (A-optimal desigh in the general case for the Gauss-Markov model. Throughcom-
parisons it is shown that the optimal ridge paramkter ridge regressiordeveloped byHoerl and Kennard
(1970a, 1970b) andloerl, Kennardand Baldwin (1975) is just the special case of our general solutyoA-b
optimal design. Based on the introduction of the maitate @ —homBLEfor the multivariate parameters, the
determination of the optimal weight factor are generalized to the multivariate Gauss-Markov model, which
we shall call fultivariate ridge estimatdr In lieu of a case study, both model and estimatordemsted and
analyzed with numerical results computed from simulated diresgtroltions of a random tensor of type strain
rate.

3.1 The optimal regularization parametera in uniform Tykhonov-Phillips regularization by
A-optimal design @-weighted BLE )

Let us first introduce thepecial Gauss-Markov modgl= A +e specified inBox 3.1 which is given for the
first order momentsn the form of aconsistent system of linear equations relatthg first non-stochastic
(“fixed”), real-valued vectok of unknownparametergdo the expectatiori{y} of the stochastic,real-valued
vectory of observationsAE = E{\} , sinceE{y} O R A is an element of the column spak€A) of the real-
valued, non-stochastiq"fixed") "first order design matrix A OR™™. The rank of the fixed matriR, rk A,
equals the numbem of unknowns&OR™. In addition, thesecond order central momerits the regular vari-
ance-covariance matrix,, also calleddispersion matriXD{y}, constitute the second matrix, OR™" of un-
knowngto be specified in a linear model furtheron.

Box 3.1
Special Gauss—Markov model
y=AS+e
1st moments
AE=E{y}, AOR™ Ey OR A rk A=m (3.2)
2nd moments
X, =D{y} OR™", X, positive definite, k=, =n

3.2
&€ y - E{y} =eunknown £, unknown but structurs (3-2)

Obviously a homogeneously linear foré:gn= Ly is sufficient to generat& - BLUUE (Best Linear Uniformly
Unbiased Estimation with respect to_the norm) for the special Gauss-Markov model (3.1), (3EXplicit
representations of - BLUUE of typeg as well as of its dispersion matr[i{§| & Y -BLUUE} generated by
solving the normal equations derived from the minimunhefguadratic constraihtigrangearare collected in

Theorem 3.](% BLUUE of §):

Let %= Ly be x, - BLUUE % of & in thespecial linear Gauss-Markov model
(3.1), (3.2). Then

= LyA= (A'ZSA)TAE Y (3.3)
= EEA'Z:;ly (3.4)

subject to the related dispersion matrix
D{g: =X, A'TIA) (3.5)

Apparently% of type £ - BLUUE of g is notrobust againsutliersin the stochastic vectgrof observations.
It is for this reason thawve give upthe postulate of unbiasedness, but keep the set-ugdiméaa estimation
& =Ly of homogeneous type, which turns out to better thabelselinear uniformly unbiased estimator of type
hom BLUUE, but suffers from the effect to be biased.eHee will focus on best linear estimators of type
homBLE of thefixed effect<€ . At first let us begin with a discussion of thias vectorand thebias matrixas



46 ChaperOptimala for Tykhonov-Phillips regularization by A-optimal desig

well as of theMean Square Error matrixl\/ISE{é} with respect to &aiomogeneously linear estima&e: Ly of
fixed effectsg based upomox 3.2

Box 3.2

Bias vector, bias matrix, Mean Square Error matrix
in the special Gauss—Markov model with fixed effect

E{yt =Ag (3.6)
D{y =%, (3.7)
“ansatz’
E=Ly (3.8)
bias vector
B=E(E-8 =K &-& (3.9)
B=LE{} -&=1I1n-LAI & (3.10)
bias matrix
B:=1,-LA (3.11)
decomposition
E-5=(E-E@) HEE % (3.12)
E-&=Ly -Ey}) {In-LA] & (3.13)
Mean Square Error matrix
- MSE(§:=E(&-8)E-9)) (3.14)
MSEE =LOQ yL'#1 L AJEETI - LA (3.15)

(E{- &} =0)
S-modified Mean Square Error
MSE{&: =LO YL Fl n+A B pn-LA' (3.16)
S - nonnegative definiteubstitutematrix.

Frobenius matrix norm

IMSE@ |:=tr B(&-8(§-9} (3.17)
IMSE&} ||=
=trLD{y}L " ++4r[l ,LA] & | ,-LA ' (3.18)
AL+ LA ) R
IMSE, & 1]:=
=trLD{y}L " Hr[l ,,LAS[l ,+A]’ (3.19)

SILIE, + LA ) 8
a-weighted hybrid minimum variance — minimum bias norm
IIMSE, < {&}[1:=
=trLD{y}L " #tr[l , LA] §[| SEAT (3.20)
=L, +2 LA ) B

special assumption
dimR(SA)=rk SA =rk A=m = rkS>m = S" exists (3.21)

The bias vectorp is conventionally defined bE{E;} —& subject to the homogeneous estimation fé,rmLy .
Accordingly, the bias vector can be representeB0) p = [l ,, ~LA]& . Since the vectof of fixed effectss
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unknown, there has been made the proposal to thstea the matrix ,, —LA as amatrix-valued measure of
bias A measure of the estimation error is Mean Squarderror matrlx MSE{&} of type (3.14). MSE{@} can
be decomposed into twaasic parts

* the dispersion matribD %{ ¥LD{yL’
¢ the dyadic bias produdip’

Indeed the vectoi & can be decomposed as well into two parts of typE2§3(3.13), namely (ii E{?,l Le

and (ii) E{é’;} —-&=p which may be called random estimation error (dueliservation noise) and bias, respec-
tively. The double decomposition of the vecﬁ)fg leads straightforwardly to the double represeoatif the
matrix MSE{&} of type (3.15). Such a representation suffers fiemeffects:Firstly the vectorg of fixed effects

is unknown,secondlythe matrix &' has only rank 1. In consequence, the mdlrix-LA]EET LA ]' has
only rank 1, too. In this situation the proposas heen made tmodify MSEE} with respect t&g' by ahigher
rank matrix S. A homogeneously lineas-weighted hybrid minimum variance-minimum bias mstiion (-
homBLE) is presented ibefinition 3.1which is based upon the weighted sum of two norintyme (3.20),
namely

* average variancéL’ ||Z =trLz L’
* Sweighted average b|eﬂ$| —LA ) ||S =trl AP tA ]
where we expécto belong to the column spade(S) .

The very important estimaterhomBLE s balancingvariance and bias by the weighting faatorhich is illus-
trated byFigure 3.1

N\

min bias balance min variance
between variance and bias

Figure 3.1 Balance of variance and bias by the weighting facto

Definition 3.2 ( % homBLE of§ ):

A mx1 vector% is called homogeneol®l_E of & in thespecial linear Gauss-Markov
model with fixed effectsf Box 3.1 if and only if

(1st) %is a homogeneously linear form

E=Ly, (3.22)
(2nd) in comparison to all other linear estimatid@nbas the minimunMeanSquare
Error in the sense of

IMSEE ||=
=trLD{y}L " +r[l ,LA] &g | LA '= (3.23)

=L IE, + LA ) o= min

Definition 3.3(% S-homBLE of§ ):

A mx1 vector% is called homogeneo®&homBLEof & in thespecial linear
Gauss-Markov model with fixed effeofBox 3.1 if and only if

(1sP) %is a homogeneously linear form

E=Ly, (3.24)
(2nd) in comparison to all other linear estimatidnbas the minimun$-modified
MeanSguareError in the sense of

IMSE, {&|=
=trLD{y}L ' #r[l , LAS[I ,+A]" (3.25)
=L, + 1m—LA ) B= min
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Definition 3.4( % homlineara-weighted hybrid min var-min bias solution,erhomBLE):

A mx1 vectoré is called homogeneously lineaweighted hybrid minimum variance-
minimum bias estimater{homBLE) of& in thespecial linear Gauss-Markov model
with fixed effect®f Box 3.1 if and only if

(1st) % is a homogeneously linear form

g=Ly, (3.26)
(2nd) in comparison to all other homogeneously Iirm'rmatei has the minimum
variance-minimum bias property in theseof thex-weighted hybrid norm

IIMSE, {81*=
:trLD{y}L'+%trq nLA) S( =LA’ (3.27)
=L, + 210 m LA Y]S =min
in particular with respect to the special assumption
aOR*, dmR(SA)=rkSA =rkA=m = S*' exists
The estimateé of typehomBLE S -homBLEanda-homBLE can be characterized by the followlrgmma

Lemma 3.5(homBLE,S-homBLE andy- homBLE):

A mx1 vectoré is homBLE S -homBLEanda - homBLEof & in thespecial linear
Gauss-Markov model with fixed effectsBbx 3.1 if and only if the matrixL fulfils
the normal equations

(s homBLE

(T, +ABEA')L =AEE (3.28)
(2nd) S-homBLE:

(T, +ASA)L' =AS (3.29)

(3rd) a- homBLE:

(SAZ'A+al L =SA'%!

or, if S is non-singular, (It is, if riSA = rkA=m) (3.30)

(AL A+aST)L=A'E"

Proof :

(i) homBLE:
The hybrid norm| MSE{%}llzestablishes the Lagrangean
LL)=twLx) "+tr( ,+A )EI( £ A) =mLin
for % ashomBLEof §. Thenecessary conditiorfer the minimum of thejuadratic Lagrangean/ (L) are
Z—f(ﬁ) =2[Z L +AEEAL -A L] =0
which agrees with the normal equations (3.28). The thebtiieoderivative of a scalar-valued function with

respect to a matrix is reviewedAppendix Aof the book by Grafarend and Schaffrin (1993).

The second derivatives, namely
0°L ~
— = (L)>0
d(ved.)o (ved. )’

at the “point” L , constitute theufficient conditions

In order to compute suchnanxmnmatrix of second derivatives we have to vectorize the matrixal equation
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%6 (D)= 2L (z, + AGEA) - 25A,

0L  » -
L):=vec[2 (X, + AEE'A")—2EE'A'],
a(ved_)() [2 (Z, +ASEA) - 288A]
where vec denotes the vec-operation (vectorization of eay)arWith the property of the vec-opertation,
vecBC = C' U1, )ved for suitable matriceB and C, OBOR™™, JOCOR™* and theKronecker-Zehfuss
productB [0 C of two arbitrary matrices as well aB+C 00D =B D+C[O D of three arbitrary matrices sub-
ject to sizeB = sizeC we have

04 (L) =2[(z, +AZE'A) 01, Jved - 2veEE'A).
O(vecL)

With the theory of matrix derivatives: Derivatives of a mxavalued function of a matrix, namely
of (vecX )/a (veX ), we are now prepared to compute the second derivatives as

%4 - o
dvecL)d (veL )y ) = A&, TARA) Dl ).

SinceX, +AEE'A’ is apositive-definite matrihe second derivatives constitute the sufficient conditions

9L A .
FvecLyd ety ) T AE, FASAI Dl ] 0.

Thevec operationtheKronecker-Zehfuss produand thederivatives of a matrix-valued function with respect to
a matrixare also reviewed iAppendix Aof the book by Grafarend and Schaffrin (1993).

(i) ShomBLE:
The hybrid norn| MSES{%} |f establishes the Lagrangean
LL)y=trLx) "+tr( A St A)':mLin

for é asS- homBLEof & . Following the first part of the proof we are ledth@ necessary conditiorn®r the
minimum of thequadratic Lagrangean’, (L)

‘Z)—‘f?(ﬁ) =2 L' +ASAL'-AS] =0
as well as to theufficient conditions

L,

W(L) = 2[(Ey +ASA') 0l m] >0.

Thenormal equationsf S-homBLEJ.Z, /oL ([) =0 agree with (3.29)
(i) a-homBLE:
The hybrid norn| MSED,,S{é} |f establishes the Lagrangean
£(L)=trLE) '+%tr( LA I gLA ) =min

for% asa-honBLE of & . Following the first part of the proof we are ledth@ necessary conditionfor the
minimum of thequadratic Lagrangean;(L)

64 . 1 IAI Ar 1 r

S (L)=2[=ASAL'+X] '-=AS]'=0

SO =23 Fr-Las]
as well as to theufficient conditions

04 ()= 1 .
Sved)a (vey 1) = AE, + G ASAY Ol ml 0.

Thenormal equationsf a-homBLEJ.Z, /L (I:) =0 agree with (3.30) after the following transformation:
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L(aZ, +ASA) =SA'" = L=SA'(ax, +ASA’)" =SAL (al +ASA'L)") ' = (al +ASA'L, ") 'SA'L;’
-1y — v -1
~ (@l +ASA'T L =SA'T ™
L]

For anexplicit representation oé asa- homBLE of § in thespecial Gauss—Markov model with fixed effexts
Box 3.1 we solve the normal equations (3.28), (3.29) and Y3d30

L= arg{<(L)= mLin}.

Beside theexplicit representatiorof % of type homBLE,S -homBLE anda- homBLE we present the related
dispersion matrixD{§ , the Mean Square Error matrixMSHg, the modifiedMean Square Error matrices

MSE{g and MSE, (g in

R Theorem 3.6(% homBLE):
Let £ =Ly behomBLEof & in thespecial linear Gauss-Markov model with fixed
effectsof Box 3.1 Then equivalent representations of the solutions afidheal
equations (3.28) are

E=EEATE, +ABEATTY = EAE AL+ TEA'E,Y (3.31)
complemented by the dispersion matrix

D{§ =ECAl T, +AZEA] X[ £, +ALLA] ALY =

(3.32)
=E[EAE A+ TEAL A EAE A+ T,
by thebias vector(3.10)
B=E{g -&=11,-8&A(AEEA+XE) "A &= (3.33)
=l —EEATAL I AT AT
and by theMean Square ErromatrixMSE{&} :
MSEG:= H &-% &-%} ={D¢ +pp' = (3.34)

=D{g 1 | ;m ~EEA(AGEA'+X) A &Y | n~A(AEZA'+X) ALY,

At this point we have to comment whEtheorem 3.@ells us.homBLEhas generated the estimatii)rmf type
(3.31), the dispersion matri{g of type (3.32), the bias vector of type (3.33) andMe&n Square Error ma-
trix MSHE} of type (3.34)which all depend on the vectérand the matrixg' , respectively. We already men-
tioned that§ and the matrixXég’ arenot accessible from measurements. The situation is similar tonién the
theory of hypothesis testings shown later in this section we can produce only amagir& and consequently
can setup &ypothesisH, of the ‘fixed effects &. Indeed, a similar argument applies to skeond central mo-
mentD{y} =X, of the random effecCty, the gbservation vector. Such a dispersion matrix hae tenown in
order to be able to compuie D{g , and MSEE} . Again we have to apply the argument that we are only able t
construct an estimatg, and to set-up hypothesisboutD {}=X, .

Theorem 3.7 S-homBLE):

Let % =Ly beS-homBLEof § in thespecial linear Gauss- Markov model with
fixed effect®df Box 3.1 Then equivalent representations of the solutions of the
normal equations (3.29) are

§=SA(Z, +ASA)y (3.35)
E=(Im+SA'LA)'SA'S)Yy (3.36)
E=(ALA+SHTAEY (3.37)

complemented by the dispersion matrices
D{§ =SA(ASA+X) 'L (ASA'+X )’AS (3.38)
D{g =(A'LA+S) AT AAE,A +S} (3.39)
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by thebias vector(3.10)
B:=E{d -¢=
I ~SA'(ASA'+X ) "AJE =
1, (AT A+SH) AL ATE = (3.40)
—(A'LA+ST) IS e =
—(SATA+1 )7"¢E

and by theMean Square Erromatrix MSE{E} :
MSE: = B &-¥ &-3) ={DK +pp'=
=SA'(ASA'+X,)'E (ASA'+X ) 'ASH[| , ~SA'(ASA'+X, ) "AJEETI, -A(ASA'+X ) 'Ag = (3.41)
=(A'E]A+S ) TTAZAA'EA+STY) H[(A'E, A+ST) TS TEE[S (A, A+ST) ]
But theS- modifiedMean Square Erromatrix MSI@{?} :
MSE{§ { A'L'A+S (3.42)

The interpretation o6-homBLEis even more complex. In extension of the comméntsomBLEwe have to
live with another matrix-valued degree of freeddimf type (3.35), (3.36), (3.37) am{g of type (3.38),
(3.39) do no longer depend on the inaccessibleixnédf, rk(EE') =1, but on the Weight of the bias matrixS,

rk S =m. Indeed we can associate any element of the biagxmvth a particular weight which can bee-

signed by the analyst. Again thieias vectorp of type (3.40) as well as tHdean Square Erroof type (3.41)
depend on the vectdr which is inaccessible. Beside the dependence ofwibight of the bias matri’, the
quantmesg D{g,p and MSE{& are vector-valued or matrix-valued functions of ttlispersion matrix
D{y} =X, which is inaccessible. Byypothesis testingie may decide upon the constructiondofy £ ¥ from

an estimateXy .

Theorem 3(8:, a-homBLE, also known as: ridge estimator or TykhoRillips regulator)

Let % =Ly bea- homBLEof & in thespecial linear Gauss-Markov model with fixed
effectsof Box 31. Then equivalent representations of the solutartee normal
equations (3.30) are

§=(SAZLA+al ) 'SA'EYy
=(A'LA+aST) ALY
complemented by the dispersion matrix
D{g =
=(SAL/'A+al ) 'SA'E 'AS'(SAX,A+al )" (3.44)
= (AL A+aST) AL AA'E, A +aST) !

(3.43)

by thebias vector(3.10)
B:=E(G -¢=
={ln-(A'ZA+aSH) AL ALE
=-a(A'LA+aST) 'Sk
=-a(SALA+al )7

(3.45)

and by theMean Square Erromatrix MSE{%}
MSHS: = B &-¥ &3} ={DK +pp'=
=(A'LS'A+aST) AL AA'E, A+aS ) H(A'L, A+aS ) S teg[aS (AL, A+aS ) |'= (3.46)
=(A'LA+aS™) AL, A+aS )EE (aS))(AE, A+aS7) !
But the hybrida-weighted variance-bias norMSEnvs{é
MSE, {& =( AL A+aS) ! (3.47)
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The interpretation of the very important estimaxehromBLE% of € is as follows:% of type (3.43), also called
ridge estimatoior Tykhonov-Phillips regulatgrcontains theCayley inversef the normal equation matninhich

is additively composedf A’):;lA anda S™. The weight factorr balances the first observational weight and
the second bias weight within the inverse. While éxperiment informs us of the variance-covariamegrix

L , sayXy, theweight of the bias weight matrand theweight factora are at the disposal of the analyst. For
instance, by the choicg= Diag(s,...,S, , we may emphasize an increase or decrease ofrceita matrix ele-
ments. The choice of an equally weighted bias ma&rs = I,,. In contrast, the weight factar can be alterna-
tively determined by thA-optimal desigrof type

* tr D{?,} =min or
* trpp’ =min, or
o trMSE{é =min .

In thefirst casewe optimize thdrace of the variance-covariance matrD@ of type (3.44) . Alternatively by
means of tBp’ = min we optimize thequadratic biaswhere the bias vectdr of type (3.45) is chosen, regard-
less of the dependence &n Finally for thethird case- the most meaningful one — we minimize the ti@icée
Mean Square Erromatrix MSE& of type (3.46), despite of the dependencé&®n Here we concentrate on
the third case and the main result is summarized in

Theorem3.9 (A-optimal design ofx):
Let theMean Square Erromatrix MSE& of a- homBLE & with respect to the
linear Gauss Markov model be given by

trMSHE =
=tr(A'L'A+aST) AL A(A'E, A +aST)
+t[(A'L'A+aS™) oS EElaS AL, A+aS )},
then & follows by A-optimal design in the sense of
trMSE{g} =min
if and only if
trA'LAA'L'A+aST) S AL, A+aS ™) !

a=
ESHAL'A+aST) AL A(A'E,A+aS ) S ¢

(3.48)

The proof ofTheorem 3.9s given in theAppendix3-A. The subject obptimal desigrnwithin Mathematical Sta-
tistics has been studied since the nineteen si&msmore detall let us refer R.B. Bapa{1999),D.R. Coxand
N. Reid(2000),E. P. Liskj et al (2002),A. Pazmar(1986) and-. Pukelsheinf1993).

For the independent, identically distributed ().iatbservationgheorem 3.9vill be simplified as:

Corollary 3.10A-optimal design ofx for the special Gauss-Markov model
with i.i.d. observations):

For the special Gauss-Markov model

AE=E{W, |,0°= =0y l,0°=S (3.49)
of independent, identically distributed (i.i.d.)s@bvations with variance® and an
analogous substitute weight mat8wscaled by the variance?, an A-optimal choice
of the weighting factorr is
trAAAA +A )0®

TTrwAa AR BA +d )

(3.50)

For the case of i.i.d. observations of a randontasqaarameter case (direct observations)aH@mBLE ofé
and BIQUUE ofz? are summarized iBox 3.3andCorollary 3.11
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Box 3.3
Special Gauss-Markov model: direct observations
t€=Ey 1,0°=%,=0Y, t4..1,/S =10°=[0]
“a-homBLE of £ ”

~ 1 n 1 n —
= 'y = =NY'y)= 3.51
é Y nw(nEi Yi) n+a<‘ (3.51)

“dispersion matrix”
n

D{g =0 W (3.52)
“bias”
G
B= n+a5 (3.53)
MSH& = DF +pp' =
_ 2 N a’ 2 _
nra) +(n+a’)2£ = (3.54)
=n(@)+y,(a).
“BIQUUE of g”
— 1 . 1 0
o' =—y'(l,-=3,.)y,J, =71 (3.55)
n-1 n

In the case of thepecial Gauss-Markov model of direct observatithesfirst order design matri& is of full
rank 1. Accordingly, an estimatiofi of type BLUUE (Best Linear Uniformly Unbiased Estimation) exiatsd
may be used to replacg. Although we have so far treat€d [0%] as known, we note that, in this particular
case, we may treat the variance faatdras a common unknown and resort to a classicahatitin ° of type
BIQUUE (Best Invariant Quadratic Uniformly Unbiased Estiima), which is a useful substitute of in com-
puting the weightr.

Corollary 3.11( A-optimal design ofx for the special Gauss-Markov model
with diradtd. observations):

Let us replace (i} by &(BLUUE) and (ii) o® by &?(BIQUUE) within the
A-optimal choice of the weighting factar, Eq. (3.50), with respect to the special
Gauss- Markov model Eg. (3.49). Then an approximnafi of the A-optimal choice

@, namely
a’ o’
(3.56) a= 7 ima=d= = (3.57)
is obtained with
UMSEA|,. = MSEF| ., =0t 1+ @ o taél (3.58)
7t & 7 (n+a)® (n+a)? (n+a)? '

Now we would like to compare our solution with fiaenousridge regressiordeveloped byHoerl and Kennard
(1970a, 1970b). First, the A-optimal desigruaferived by (3.57) is just the same as the optimidge parame-
ter k (Hoerl and Kennard 1970a, b). Secomtherl, Kennard and Baldwir(1975) have suggested that if
A'A =1 _, then a minimum meansquare error (MSE) is obtaiheitige parametek = mo®/£'¢ for multiple
linear regression model= A¢+e where AOR™, rk A=m, Efeg}=0 andD{y} =1,0° with ¢* is chosen un-
known. This is just the special case of our gersshiltion (3.50) by A-optimal design und&fA =1, yielding

trAAAA +A )°0o? _ [ +& )°0° _
EAA+A )PAABA +d& )E E(,+d )T [ +d )E

2

a=

_m@+a)®o® _nmo

S gge+a)®  gg’
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3.2 The special multivariateGauss-Markovmodel and the multivariate a-BLE

For the case of a 2-D symmetric rank-two randomirstrate tensor we have to estimate as multivapatame-
ters, the three vectorized elements from the diobservations of them, namely via BLUUE tef, t;,, to, and
BIQUUE of the related variances, which are estimhatéh the multivariat&Gauss-Markovmodel. We shall first
generalize the speci@auss-Markovnodel to the multivariat€&auss-Markovmodel and derive the —BLE
for the multivariate estimation, which we cathtiltivariate ridge type estimation

Let us introduce the multivariat@auss-Markovmodel Y = AE +E in Box 3.4 which is given for thdirst order
momentsn the form of aconsistent system of linear equations relating first non-stochasti¢“fixed”), real-
valued matrixE of unknownsto the expectatiorE{Y} of the stochastic,real-valued matrixyY of observa-
tions, AE=E{V} , sinceR(E{Y}) OR A is a subspace of the column spaefA) of the real-valuednon-
stochastiq("fixed") "first order design matrix A OR™™, here, the symbols denote:

a, a, - &, 511 ,512 Elp
SR N Al AN o
By Bp G b G o
Yo Yo o Y y:
y=|2 Y2 Y laly oy, oy )= Y2l v or™e,
Yoo Yz v Yo Yn

In addition, thesecond order central momerivecY}, the regular variance-covariance matrig, , also
calleddispersion matridshould be defined in the multivariate case as ¥adlo_etY; be thenx1 random vectors
of observations op characteristics and l&fov{Y;, Y }=g;l, where the covariance matrix wid=(g;),
X ORPP is unknown and positive-definite. SinB§Y} =Cov{ Y, Y}= g, , the components of the vectofs
of observations are uncorrelated and have equene (i.i.d.). We have the vectorized formYof

Y1
Y2 npx1
vecY =| .|, vecr J R™,
YD
whose varoiance-covariance matrix follows as
2
Ulln UlJn Ul;! n
2
— 0-21I n 0’2' n o 0-2;! n|_ pnx pn
D{vecY} = N . |=xal, D{vecY} OR .
Uplln Upzl n 0-1 n

To better understand the meaning of the varianges@ance matrix of the observation matrix we stthuy trans-
posed form ofY

Y,:[yli Yar =0 s yn]’

where the columng,, y,, ..., y, are independemix1 random vectors, each with the same variance-zna
matrix £, = X. Wethen have thenx1 vectorized form of observations

Y1
vecY' = .yz , vedy'd RP™
Ya
whose variance-covariance matrix follows as
X, 0 - 0
, 0% - O :
D{vecY'}=| . A . |=1,0% D{vecY} O R (3.59)
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Box 3.4:
Multivariate Gauss-Markov model

Y =AE+E
1st moments

AZ=E{Y}, AOR™ Y OR™EY} ORA r kKA =m (3.60)
2nd moments

D{vecY}=X0OI ORP™™ X positive-definite, rkZ = p (3.61)
E, E{Y}, Y -EY} =E unknownX unknown '

With the notation introduced above the multivari@guss-Markowmodel (3.60xan be presented as
AL, & 8 1 =EY, Y, Y}, OvecY} =X01,
which can be further described as
Ag =E{Y}, @Y} =g1,Cov(Y,Y) =gl for j jOL.., B
If the observations are normally distributed, wedfivith Theorem 3.12
vecY ~N (vecQAE )x0Ol,)
and the vector¥; of observations are distributed as
Y, ~ N(Ag), g’l,), foriO{L,...,p},

for which thetheorem3.1 is valid. To study the estimation &fand £ , we will represent model (3.60) in the
form of a vector. Sinceec(AZ)= (1 ,0A)veE, (3.60) will become

(I, OA)vecE = E{vecY }, with D{vecY}=X01 . (3.62)

Applying the result (3.3) of the univaria@auss-Markovmodel and the Kronecker-Zehful3 product yields the
BLUUE of vecE as
vecE=[(, DAY @O,y ( ,0A)*( ,0A Y(EOI,) veey =
=(1,2M, 0AT A)( ZOAI ) veceY
=(ZTOAA)HZTOA) vecY (3.63)
=[1, O(AA) A Tvecy
=vec[(A’A)'AY ],

and with (3.5) the covariance matrix Df(vecé)is

D(vecE)=,0AA) A0 ,0AA) AT =X0(AA) ™ (3.64)
Thus the BLUUE of= is A
E=(AA)TAY, (3.65)
Hence
E =& &penG,] =S (AA)PATY, Yy, Y, (3.66)

These results are collected in
Theorem3.12(Z BLUUE of E):

The BLUUE Zof E in thespecial multivariate linear Gauss-Markov model
(3.60) and (3.61) is

vecE =]l ,O0AA)'ATvecY (3.63)
or
E=(A'A)AYY, (3.65)

with the related dispersion matrix
D(vecE)=X O (A'A)™. (3.64)



56 Charfde Optimala for Tykhonov-Phillips regularization by A-optimdésign

Note that, when we use the expression (3.59) oénee-covariance matrix, formula (3.62) will beleced by

(AO1 ) vecE = E{vecY'}, with D{vecY'}=I OX, (3.67)
since the Kronecker-Zehful3 produgtcE'A’ = A 01 ;) ve&' for the transposed form of (3.60) is
EA =EY}, AOR™Y OR™PR(EY}) ORA,rk A =m (3.68)
From (3.67) we can get the BLUUE g&cE' is
vecE' = [(A'’A)A' 0l ] ecY’ (3.69)
=vec[Y'AA'A)T],

with the related dispersion matrix
D(vecZ')= [(A'A)A" Ol OX)[(A'A)*A'OI ] =
(vecE)= (AA)A' I 10, OX)(AA) A DI ] (3.70)
=(A'A)OL

Since the variance-covariance mattbof the individual observation vectoysis unknown, it is to be estimated
empirically. We have therefore derived the samplBance-covariance matriX of type BIQUUE Best Invari-
ant Quadratic Uniformly Unbiased Estimatjowhich is collected imTheorem3.13 (without proof).

Theorem 3.13 The sample variance-covariance matiof type BIQUUB:

The sample variance-covariance mattixof type BIQUUE for thespecial
multivariate linear Gauss-Markov mod@.60) and (3.61) is

1
n-rk A

piE= Y'(I,-AAA)A 'Y . (3.71)

For the proof, we refer td. R. Koch(1997, 1999)

Now we shall derive ther —BLE for the multivariate estimation &, which we call “multivariate ridge type
estimation”. Following the derivation of the — BLE of Theorem 3.8or the univariate model and comparing the
generalization results (3.66) for the multivariateodel with (3.3) of the univariate model, we have t
a - BLE of the multivariate parameters readily in

Theorem 3.14multivariatea-homBLE, ormultivariate ridge estimatgr

The a —BLE of the multivariate parameters in thgecial multivariate linear
Gauss-Markov mod€B.60) and (3.61) is

vecE=[l ,OAA +a5™)"A"] vecy (3.72)
or
E=[&, &y 6,1 = (AA +aSTHIAYL, Y, Y L (3.73)

complemented by the dispersion matrix
D(vecE)=[,0AA +aS™) AN Z0I )] ,DAA +B A = (3.74)
=XO(A'A+aS™)'A'AAA +aS7Y)7,
by thebias vector
vecB = E{vecé}— VEeCE =
=[1,0AA +a5™)'A'lvecA E - vecE
=[1,0AA +aS™)7A'l(l ,0A)VecE - vecE
=~(l = ,OAA +B ")"AA )vecE
={I,0AA +a5™)"aS™|vecE
=, 0a(SA'A +1 ) ™]vecE
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or its bias matrix:
B=E{Z -E=1I_~«(AA +a57 AAJE
and the matrix of th&ean Square Estimation Errors
MSHvecE}:= E(vec E-vecE)(veE - veE )’
= D{vecZE} +vecB(vecB )
MSEvecE} =X O(A'A +aS™) TAAAA +a57) 1+
Hl I JOAA +B& ) "AA]vecE(vecE ), | ,OAA +B 7 )AA )]

(3.75)

(3.76)

(3.77)

With the results of the multivariateauss-Markowmodel and the multivariate — BLE derived above, we shall
now apply them in our special case: Direct obséaatof a two-dimensional, symmetric rank-two ramdo

tensor,
p:=E{y} =vecht =[t, t, t,] y OR>",

This is a random vector which is normally distriémitaccording t@efinition 1.7. We denote it ag~N\; (1, X, ).

Suppose our sampletindependent observation vectgisy,, ..., Y, are all distributed according t/;(s, Z,) .

We have the vectorized form matrix as
Y
v
Yn
which is just the case in (3.60) with=3, m=1 and
of
A=1=[1,1---1,11=n,E=[§,§,.&) 5, =0, 05 0,,S=1,
031 0-32 03

From (3.65) we have the BLUUE &:

=814 & &l=wyTLY=21v

and in transposed form

31 1 13

E':é: 52 =_Y'1== :
- n ni=
$

which represents the same estimate as that of)(lh &ction 1.3
The related dispersion matrix

2
0 0, O
1): =L o, 0: o
- - Y2 2 23 |+
n y n 1 3

- 1

—_—\ 1 =il — —
D(vecE) =X, [ (A'A) =2,0-=
2

0, 0, 05

With (3.72) and (3.73) we obtain tlee- BLE

and

E=8=[8, &, &l =M 1+al) LY, Y, Y] =(n+a) 1Y, Y,, Y]

(3.78)

(3.79)

(3.80)

(3.81)
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subject to the dispersion matrix with (3.74)

- n
D(vec2)=X 0O h+a)'n(h+a)*=x 0O =
( )=X, 0 ) n( ) v I nra)
o 0, 0O (3.82)
=_ " =" s 2 o
(n+a)2 y (n+a)2 21 2 223

031 0-32 0-3

In comparison with the results of the univariateec&3.51) and (3.52) we can see that (3.81) istlesgeneral-
ized from (3.51) and the dispersion matrix (3.82fiimportance since the variance and covarianogonents
of the three elements of the random tensor aralesdogether. With (3.71) we further have the dampri-
ance-covariance matrix of type BIQUUE

1 (h-* - (-1
£ =L va-tuyy =1y U S (3.83)
n-1 n n : : . :
(n-p* (-1 - 1

Now we shall be able to estimate thkean Square Estimation Error of thmultivariate o — BLE of random
tensor with (3.77)
MSEvecE} = Qvec B +vec B(vecB) =
= D{vecE} +{I, -1 ,0(n+a) *rvecE(vecE)[I, -1 ,0 (n+a) ™ N
n a a
= + |, vecE (ve& )l
(n+a)’ ™ (n+a)’ ( )3(n+a)

(3.84)

n 2

= > +
(n+a)” 7 (n+a)
n 0'12 0-12 013 2 q(21.2 5152 q(1{3
2 Oanl¥ & & &4

=——7-| 0. ag
(n+a)?| * 2 (n+a)?

0-3 1 0-32 Ug gC3<rl 53{2 fg

5 VECE (VeE )

The trace of it is

: 2 n a? .
trMSE§& =tr MSfvec 3 _(n+—a)2tr I +Wtr EE' = o5
a’ '

(n+a)’

(E2+E3+E)=y(a)+y fa).

2 2 2
g, to,+0;)+
(n )2( 1 2 3)

With the same condition that led to (3.57), we achithe optimalweight factorg for the multivariate
a - BLE by minimizing theMSEvecE} of type (3.77), yielding
trX, o’+oi+o}
wEE  FHEHE
Since& andZ, are not themselves available, we could achiegditht approximation t@ with the BLUUE
¢ and BIQUUEZ?, namely

G = (3.86)

trE, G2+G2+52

WEE & rETE

Alternatively, we can use an iterative procedureewh:r(k +D)=tr ﬁyk /tr%(k)%’ (k) with &(k) =é(c“r(k)) as the

a-BLE from (3.81) andZ, in modified form
2 1

— ' _
Ve (n

11
n-1 n+a (k)

Y (3.88)

N, - n+a(k)11

The iteration can be continued until there is ditgtachieved intr MSE{%( k+1)} from (3.86).
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3.3 Case study: 2-dimensional strain rate tensor

With these models developed above we are ablectessfully perform the-homBLE estimation to determine
the weighting factoo for the univariate and multivariate case. In l@fua case study, the model is applied to
simulated observations of a random tensor of typ@Ensrate based on the real estimate of one statidhe
Finnish Primary Geodetic Network (Kakkuri and CH&92). We will apply the three observation setstlfirto
the univariate case under the assumption thathttee tsets are independent, identically distrib(iied) obser-
vations. Secondly, the three set observationsheilapplied together in the multivariate case aedeflore the
correlations among them are considered.

Box 3.5provides the real estimated random strain ratsotewith the related standard deviations and theisi
lated observations in 11 epochs. We use the natafig ),y ,).Y s for the three i.i.d. univariate observations,
which are related to the multivariate notationadurced in section 3-2, i.e.

[ y y y
Yoy = [Vie Yo os Yod yll y12 y13
Yoy =iz Yoo Yoo s Y = :21 :22 ;23 =[y<1) Y y(s)], wheren= 11
y = [y y y TN yr| U . : :
’ o J ynl yn2 yn3
Box 3.5

Observations of a random tensor of type strain rate
(epoch 0: Kakkuri and Chen (1992))

: _{tm tm}_{ 0.236 -0.04
,= =

strain/year
-0.049 0.143 (u 4

t12.0 t22.0
T,,,=0.094,5,,,= 0.054 and ,,,= 0.0l

"the vectorized formh

y'U = [yl y2 yd 0 :[ tll.O tI.U tﬂﬂ] Wlth
0_—1_0 = 0'094!0_—20 = 0-05453.0 = O-OGE

"Observations of the distinct elemenys,, y,, ¥ 5 in 11 epochs”

epoch Yo Yo Ye)
' (1strain/yr) (ustrain/yr) (ustrain/yr)
1 0.1513 -0.0305 0.1615
2 0.2913 -0.0081 0.1624
3 0.2881 -0.0864 0.0826
4 0.1970 -0.0123 0.1186
5 0.2418 -0.1069 0.2390
6 0.2790 -0.0004 0.1180
7 0.2547 -0.1636 0.1501
8 0.2602 -0.0336 0.1999
9 0.4316 -0.0886 0.2063
10 0.0219 -0.0908 0.1570
11 0.2679 -0.0408 0.0428

In the univariate case we assume that the threeredifon sety ),y ,),Y s in Box 3.5 of the distinct elements
of strain rate tensors are independent and the leamgan (BLUUE),, &, andé&, , and the sample variances
(BIQUUE) 7, , 7, , 0, are estimated by (3.3) and (3.55), respectively:

& =1,= 0.2441 y strainly) andz; = 0.010168( strairiy

&, =1,=-0.0602 (1 strainly) andz; = 0.00258% ( strair/
0.00319f ( stra)i/

& =1, = 0.1489  strainly) and;,
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In the multivariate case the BLUUE &f, t;,, t» from (3.78) is identical, namely

AN 0.2441 4 strainly
g |=|1,|=| -0.0602 s strainly),
&l |6, 0.1489 {1 strainly,

and the full sample variance-covariance mafr'!xof type BIQUUE from (3.83) is

0.010168 -0.000024 0.000396
=[-0.000024 0.002585 -0.000740u ( strairi
0.000396 -0.000740 0.003195

while the related dispersion matrix 6fwith (3.79)is

0.000924 -0.000002 0.000036
D{g =X, =]-0.000002 0.000235 -0.000067 4( strair?
0.000036 -0.000067 0.0002

Now we shall be able to analyze theBLE estimate and the determination of the weight faatam both the
univariate and multivariate case as explainefigntion3.3.1 and 3.3.2.

3.3.1 Theunivariate a-BLE and the determination of the weight factora by A-optimal design

By means ofigure 32 we compar@-homBLE (@dashed ling and BLUUE estimatesf(ll line), in particular
we document the dependence on the uniform regularization param@&ased upon the results summarized in
Box 3.3 we havecomputedat first the trace of thdean Square Erro(MSE matrix, in particular the functions
y,(a) as variance term ang, (a) as bias term squared. Withiry{a) , y,(a)} we have substituteds, & by
{G(BIQUUE), & (BLUUE)}, i.e. the true valug and¢ with their estimatesr and & and plotted them in
Figure 3.3. The interrelation between the variances, squared biaséseandighting factor is evident. The vari-
ance termy,(a) (dashed ling decreases ag increases while the squared bias tgr(r) (dotted ling in-
creases witho . The dashdotted linewhich representg, (&) + y, (&) astrMSE{g -homBLE} is under the
level of tr MSEE: BLUUE} as expected. In summary, these estimates determine approximais whlthe
weighting factora of type A-optimum with respect tSE& as in (3.56) oCorollary 3.11 in particular

&,1)=0.171,4, I 0.714 andr, (® O.1.

Figure 3.4is a “zoom-in” version ofFigure 3.3 which illustrates the optimal values consistent with these
curves, respectivelyrMSE{g} at minimal points.

Secondly by an iterative procedure we have updated every element dirsh approximaté¢d, &, &3 by
means of

aj(k+1)=@'2(k), =123
gjz(k) (3.89)
where & k)=¢& @ )), 6, kK)=6, € @ K)).
and
1 2
oi(k) = y(,)( +c7.(k)J") Yo 2.90)
Z(yl' n+a, (k)f)

The sequential optimization ends at treproducing pointa; (k+1)=a, (k) in computer arithmetic where
trMSE{$,} reaches its minimum. Such an iterative procedure asraitasltlnFlgure 3.5supports the optimiza-
tion procedure to generafe= arg{tr MSE{E} min}.
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symmetric random tensor of type strain rate
functions of the balancing parametet
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Figure 3.3 Thetrace of theMlean Square Err¢
(MSB functions for the BLUUE and the-
homBLE estimates of the unknow(s, ¢,, &)
as functions ofa. Depicted arer MSH & =62
for the BLUUE andrMSEg =y(d +y{q for
thea-homBLE, as well as the separate part
variancey, (a) and bias squared (a).
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1.15f

11F
tr MSE{o }
1.05f

o—homBLE
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o
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2.3

2.28

2.26

2.241
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0

Figure 3.4 Thetrace of theMean Square Errc
(MSB functions tr MSE& for the a-homBLE
estimates of(¢,, &,,¢,), also depicted in Figu
3.3. Here the function graph is “zoomigd; in
order to emphasize the behavior of the fiorc
around its minimal point.
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Figure 3.5 Iteration steps for A-optimal, three sets
of direct observations

0] upper graph: the trace BfSEa} for the
estimatei(a) of typea-homBLE of the
first set of direct observations;

(i) middle graph: the trace 0iSHa} for
the estimaté (a) of typea-homBLE
of the second set of direct observations;

(iii) lower graph: the trace ofiSHa} for the
estimatei(a) of typea-homBLE of the
third set of direct observations.
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3.3.2 Themultivariate a-BLE and the determination of the weight factora by A-optimal design

We apply the multivariater - BLE from (3.87) to calculate the trace liean Square Estimation ErrdMSE)
and their two divided terms: variance tepg{a) and bias-squared term (a) after substitutingg andX, with
their estlmatei(k) é(a(k))of (3.81) and): =X y(@(k))of (3.88) and plotted them iRigure 3.6 WhICh
shows in qualitative form the relationship between the veesuiand the squared bias, and the weight factor
The variance terny,(a) decreases ag increases, while the bias-squared tgs(w) increases withr ; both are
plotted by the blue and green curves, respectively. Aslisated by the red curve, the traceMBEof a —BLE
which is the sum of,(a) and y,(a) , there exist several values af for which the trace oMSEof o —BLE is
less tharMSEof BLUUE .

With these estimates we are interested in the approximateadpiieight factorr from (3.87) for the multivari-
ate model by thé-optimal desigrthat minimizes of the trace 81SE& , which is

a=0.187
and generates the —BLE of tyy, t35, to, as
& t, 0.2400 f strainly
g@a)=|¢,| =|t,| =| -0.0592 f strainly
3 . t |, 0.1464 ( strain/y

As is shown irFigure 3.7 this optimal value for the weight factris consistent with the curve of the trace of
MSE{& where it reaches its minimum value.

With the iterative procedure introduced above we use theealsted optimal weight facta¥ as the initial
value, i.e.a(1) and iterates witld (k +1) = tr ): /trg(k)g (K). The iteration can be continued until there is sta-
bility achieved in@(k +1) or the minimum oitr MSE k+1)} . These iteration results are showrFigure 3.8,
from which we can see that the optimal weightdois at the first iteration for the direct observation 3&is
supports that our optimal estimate of the weight faatérom (3.87) within themultivariate modeby theA-
optimal designthat minimizes the trace 8MSE§& is also reasonable and meaningful in practical data analysis.

x10° g(oc)z[fn (@) gz(a) &3(“)],
2 T T T T T T T
18} gras
o—homBLE  _.--~
16 T .
L C e BLUUE
14f L L 1
12 Vanance:y]-(&)- ---- 1
tr MSE(a)

1 i
0.8 A
06l i
04} i
02 e e e

___________ Bias- Squared—y, ()
% 02 os 04 05 06 07 08 09 1

Figure 3.6 The trace of theISEfunctions for multivariatex -BLE é(a) :[31, 32, 33]',
their variance terpp(a) and bias-squared terp (a) with the choice ofo .
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. &) =[5, (@) &,(@) & @)]

o—~homBLE

Figure 3.7 The trace of thMSE{é of the multivariatea -BLE é(a) =[$1, 52, 33]'of the elements
t11, tia tp Of with the choice ofr . The optimal valuez = 0.187 of weight factom is
consistent with the minimum value of the curve for theetitagfdISE & .

A

. &) =[E @) &, (@) &, @)]

1.4274 T T

1.4272

1.427
1.4268 -
1.4266

tr MSE{a}

1.4264

T

1.4262

1.426

1.4258 -

1.4256 1 1 1 1 1 1 1 1
0.186 0.187 0.188 0.189 0.19 0.191 0.192 0.193 0.194 0.195

(x‘opt
Figure 3.8 The iteration of optimal estimates of the weight faattor the direct observation
set, where the inde>of &, represents the iterative steps.
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Appendix 3-A: Proof of Theorem 3.9

Before we provaheorem 3.9et us introduce auxiliary results which are used subsdguent

Lemma 3-Al (Cayley matrix inverse differentiation):
d(A'Z‘.;lA +aSH =

=—(AL/A+aST)'SHA'L,'A+aS ) da A1)
Proof:
MM7'=l = (MM *M Md H=0=>
dM™*=-M MM !
Example 3-A1 M =AX'A+aS™" =
= dM =S"da
dM ™ =—(A'L'A+aS ) IS AL, A +aST) da
g.e.d.

Lemma 3-A2differentiationof a scalar function of a matrix, such as the trace):

tr(A+B) =trA +trB
d(tr(A+B)) =trdA +tr B (A.2)
d(tr (XAX")) = tr(A +A 'X 'K

Lemma 3-A3(Cayley inverse: sum of two matrices)
(AEA+aS™) AL A =
=, ta(AESA) ST =

-1 -1\-1a-1 (A'3)
=l,—a(AX A+aS7) S =
=l,—aSALA+al )"
Lemma 3-A4:
, tr (I?B') : BB , (A4)
d(B'p) = (dB)'p +p'(dp) = 2p(dp)
Example 3-A2:

B=—lm—(A'EA+aS) AL 'AlE =
=-a(A'LA+aST) 'S E =
=-a(SALA+al )'E

dp=-da(A'E'A+aS) IS -ad[(A'E,'A+aS ) IS %
=-da(A'L/A+aS™) 'S+
+a(A'LA+aST)ISHAL, A+aS ™) daS €=
=—(A'LA+aS™) I, -aS AL, A+aST) ]S tda
~(A'LA+aST) AL AA'E A +aST) IS Eda
—(SAL'A+al )" SA'E'AGSAL'A+al ) Eda
(AL A+aS) AL Apdala

d(p'B) = 2p'(dB) = 2[~a (A'L,'A+aS™) 'SE[[<(A'L,'/A+aS ) AL AA'E, A+aS ) S ¢da] =
2B'(A'L'A +aST) AL 'AB da
a

=20E'ST(AL'A+aST) AL AR, A+aSTY) 'S Eda =

=2ag (SAL,'A +al ) SA'LIAGSAL'A +al ) e da = L B'(SAL;'A+al ) Bl dar
a
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Lemma 3-A5 (A-optimum):
trMSE{é = ext

=S

9 rmsHE) =
da
= 24A'E'AA'E,'A +aS ) S HAL, A+aS ) ]+ (A.5)
+208'ST(AL)A+aST) AL A AL, A +aS ) 'S &
=0
4=
_ t[AZAA'E'A+4ST) PSS AZ, A +4S7) 7 (A.6)
ESHALA+AS ) PAL AA'L,A+AS ) 'S E

Proof:
dtr MSE§ =
=t{d(AZ'A+aS™) AL AALA+aST) 1 +d BB
“the first term”
tr{d(A'L,'A+aS™) AL AA'L A+aS )} =
=tr2A'EAA'E'A+aS ) 'd(A'E,'A+aSTY) !
=—2U[A'L'AA'E,'A +aS ) S AL, A +aS ) da
“the second term”

d(p') =
=20¢'ST(AL,'A+aST) AL AA'S, A +aST) 'S Eda.

“differentiation”
d ~
—(trMSE3) =
da
2t[AZAAE'A+aST) IS AL A+aST) ]+
+208' ST (AL'A+aST) A A A'E, A +aSTY) IS §
9 rMSEE) =0 =
da
4=
_ [AESAAEA+AST) S AE A +4ST)
CESH(AZA+AS )AL AAE,A+4S ) S E

whered = 4(&,a,S) reaches a minimum indeed foMSEE .

g.ed



Chapter 4

Statistical inference of the eigenspace components of a two-
dimensional, symmetric rank-two random tensor

In the deformation analysis in geosciences (geqdg=yphysics and geology), we are often confrontéd the
problem of a two-dimensional (or planar and hortafn symmetric rank-two deformation tensor. Téigen-
space componen{grincipal components, principal directiprof it play an important role in interpreting the
geodetic phenomena like earthquakes (seismic daf@ns), plate motions and plate deformations anuihg
ers. With the new space geodetic methods threerdiimeal positions and velocities of points in thesévorks
have been determined with high accuracy (~ mm Jevein relative regular measurement campaigns, lwvhic
have become a key tool in plate tectonic studiéss Tact suggests that the components of a two-akineal
deformation tensor can be estimated from the hggluracy geodetic data and analyzed through theeprsip-
tistical testing procedures. According to tdeasurement Axiorauch a two-dimensional, symmetric rank-two
tensor is aandom tensofl which we assume to be an element of the tensoed&auss-Laplacenormal dis-
tribution overR*? of type independently, identically distributedi.@i.) tensor-valued observations, but with
identical off-diagonal elements. In this chaptéstf theeigenspace analysis and synthesfi@s symmetric ran-
dom matrix are reviewedsecondthe nonlinear function, which relates the tendements to the eigenspace
components, is linearized with respect tepecial nonlinear multivariate Gauss-Markov modetird, for its
linearized formBLUUE of the eigenspace elemeatsd BIQUUE of its variance-covariance matrix have been
established successfulllyourth, thesampling distributiorof eigenspace components is derived. The tess-stati
tics, such aslotelling’s T?, likelihood ratio statistics anthe general linear hypothesis test wgtowth curve
model,are proposed. Hypothesis tests for the randonotesasnple means as well as its one variance compone
are used in the case study of validating a givadom strain rate tensor in Chapter 6.

4.1 The eigenspace analysis ver sus eigenspace synthesis of a two-dimensional, symmetric rank-
two random tensor

Let there be given a two-dimensional, symmetric fami random strain tensdr 0T which is represented in a
commutative left or right orthonormal bagig, €%} , in shorte O¢' for all i,j 0{1,2}. " 0" denotes the tensor
product. According to (4.1);] OR*?is called thematrix representationf the two-dimensional rank-two ten-
sor. t; for all i,j {1, 2}, establishes the covariant coordinates of the-tamktensorT. The matrix, due to
t; =t;, is symmetric and of full rank twdl’ denotes the transpose of (4.2). By means of an orthonormal
matrix U OSO(2) ={UOR*?| U'U =1,, |U  +1} the symmetric matri¥ OSYM:={T OR*?*| T' =T} can be
transformed into the canonical form= Diag{A,, A,} , also called $pectral formi.

T=) €0et => e 0e (4.1)
i,j=1 ij=1
t11 t12 ]
T=[t]= =[t,] =T (4.2)
t21 t22
U: T+ A =Diag(A ,4,)=U'TU (4.3)
TU-AU =0 subjecttoU’'U =1, (4.4)
(T-Al,)u, =0 fori {1, 2} subject tc (4.5)
'u,=1L,uu,=1 : u,08",u,0S
uful_ ,'uzu_2 , | u, s ,u,0S (4.6)
uu, =uu, =0 : u,0u,
where
u u cosa | — sinx
U:|: 1 12:|:[u1,u2]:|: ) :| (47)
Uy | Uy, sing | cosx

cosa - siy
tana:h,foram]—l—fﬁz], u, =| . U, = (4.8)
" 2 2 sing cosy
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The formulae (4.3)-(4.8) establish teegenspace analysiShe diagonal matrixA contains thesigenvalues
A, A,, the orthonormal matri¥ the eigencolumnsalso called coordinates of teigenvectorsnamely{u,,, u,,]’
and[u,,, u,,]'. Since UOR*?is an orthonormal matrix, it enjoys thiégonometric representatioru,, = cosa

u,, =sina, andu,, = -sina, u,, = coxr. The angular parameter establishes theigenorientationnamely the
orientation of the eigendirections. The solutiorthad eigenvalue-eigencolumn equation is not unidhere are
four solutionsin general, generated by the quadratic equatidi®.(If we assume that the first element of the
eigencolumndas to be positiveGirko 1995,Metha1991), we arrive at (4.9) and (4.10), respectiviligte, that
we have defined the angular parameten ahalf-open domainn order to avoid any singularity.

Corollary 4.1 (eigenvalue-eigenvector analysis)

For a symmetric tensdf OR*? the eigenvalued,, andA, as well as
the orientation parameter, which constitutes the orthonormal matrix
U OR?*? of eigenvectors are analytically represented by

1
A OR, /]1:E(t11+t22+\/(t11_t292+4t221)
1 |
AZDRv /]Z:E(tll"'tzz_ ('[11_'[2)2'4'4t 221) (4'9)

mo i
abl=% Sl a=Zarctand, ft,~ty)

Corollary 4.2 (eigenvalue-eigenvector synthesis)

Given the eigenvalued, and A, as well as the orientation parameter
a , which constitute the orthonormal matiixOOR** of eigencolumns,
the symmetric tensof OR*?is synthetically represented by

t,=A,cosa+A,sita
ty =ty =3 (A= A)sin2 (4.10)

— il
t, =A;sifa+A,coda

On thebasis ofCorollary 4.1 (eigenspace analysis) afdrollary 4.2 (eigenspace synthesis) we are able to por-
tray the symmetric strain tens®r, which can be visualized asrain ellipsejf signA, = signl,, but as thetrain
hyperbola if signA, # signd,. Figure 4.1 illustrates thetrain ellipse, Figure 4.2 illustrates tisérain hyperbola.

In thefirst case the axes of the strain ellipse are directed akbiegeigenvectors of the strain tensor; $kheni-
major axesof the strain ellipse are identified with theaximum principal strairas well as with theninimum
principal strain constrained bysignA, = sign, If signA, = signl, =+ we speak ofextension if
signA, = signd, =— . of contractioninstead. Alternatively, in theecond casehe axes of the strain hyperbola
are directed along the eigenvectors of the stegisdr, indicated by the “real axis” showidgand the imagi-
nary axis with | A, |, for instance. The notation used in describingtith@dimensional strain tensor are defined
in Box4.1.

Box 4.1 (two-dimensional strain tensor)
Two-dimensional strain tensor components:

a) t, the normal strain along the 1-axis, positive faieasion, negative for
contraction.

b) t,, the normal strain along the 2-axis, positive fteasion, negative for
contraction.

c) t,, the shear strain (g ), positive for right lateral shear.

The principal components:

d) A, maximum principal strain, the greatest change gtle per unit length.

e) A, minimum principal strain, the smallest change afjid per unit length.

f) a bearing, or the direction of the maximum princiggis, counterclockwise
from the 1-axis (East).
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Figure 4.1: Strain ellipse,

sign A, =sign A,,
extension or contraction

A R0, eR* M eR, L, eR
M eR, A, eR MeR, A eR

X X

Figure 4.2 : Strain hyperbola,
sign A, #sign A,,
extension in one
direction, contraction
in the other direction
or vice versa

4.2 Thelinearized multivariate Gauss-Markov model for the estimation of eigenspace
components of atwo-dimensional, symmetric rank-two random tensor

Chapter4.1 has documented that the eigenspace synthesisyohmetric random tensor is nonlinear in terms of
the tensor-valued observations, and there is nplsiprobability density function of the distributi@f random
eigenspace components. Accordingly, we are unabidietive the exact sampling distribution directiere, we
will derive the linearized counterpart for samplitite eigenspace synthesis parameters from thenaliigi
nonlinear observation equations. Tle BLUUE of eigenspace components and their variamm&riance ma-
trix estimate of type BIQUUE will be developed iccardance with the formulas presented earlied.b@ai, E.
Grafarend and B. Schaffri(2001b).

Let us first review the eigenspace analy@ssuseigenspace synthesis of a symmetric rank-two rangomsor
as discussed i@hapter4.1. Here we have added the parameter grasiced quaternion elemeallowing an
algebraic representation 0f replacinga which is trigonometric.

Box 4.2:
Eigenspace analysi®rsuseigenspace synthesis
of a two-dimensional, symmetric rank-two randomnstan

T=[t]0 R*?

L%}
vechT =|t,, |=yOR*>,

t22

(read: vec half)
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Box 4.2 (cont.)

analysis synthesis
1st parameterization 1st parameterization

A=ttt ot +40) A sosaed sifa
1
:E(t11+t22_\/(t11_t292+4t ) o= 2(/] A )sinzy (4.11)

tan2r = 2,, /t,—t,,) t, =A, sifa+A, cosa
2nd parameterization 2nd parameterization
1 [ 2. . 2
/]l:E(tll+t22+ (1:11_1:2)2-'-4t Zi) t (1+ [A (1 q ) +4A g ]
1
=2ttty =y (tmt,)” + 4 tzfmtzul—wq(l—qﬂ] (4.12)
a 1 2t
q=tan—= = tan- ar@n—2—, ty, = ——5[4A0° + A,1-d*)*]
2 4 117t 2= (1+ ) ! ?
1 1-¢°
1+9° = , = cos
E cog @ /2) Hq°
1-¢° = coxa L = sina.

cos @ /2) Hq?

Suppose a sample pfobservations of , namelyT; T,... , T ywhose related vectorized forms &gy, ..., Yn.
Here we design an array of vectorized tensor coatdsy, := t;, ¥, = t,,, ¥,:= t,, indexed to the number of the
sample For instance vy, , denotes the tensor coordinaig=t,, in thethird sample

Yia 0 Y
Y=Y Yo o Vol = Yor 0 Yeo |0 YOR™, (4.13)
Yai 0 Yan
whose variance-covariance matrix foIIows whenys, ..., Yo are independerxl random vectors, each with
the 3x 3 variance-covariance matrix; , a
r, 0 -0
0 Zy2 0 %3
D(vecY)=| . O . |, D{vecy } O R™, (4.14)
0 0 0 X

yn

and when thgy, Y, ..., yn are i.i.d.3x1 random vectors, each with the same variance-@n@ matrixx, , we
have

X 0 - 0
= 0 Ey 0 = 3nx3n
D(vecY)=| . o .. |=1,0%,, D{vex}OR , (4.15)
0O 0 0 X

y

wherel] now denotes thikronecker —Zehfugsroduct of matrices (sd¢enderson, Pukelsheim and Sedr831;
or Grafarend and B. Schaffrjri993).

Using the eigenspace analysisrsuseigenspace synthesis we can define the nonli@aaiss-Markovmodel
which is presented by (4.16) - (4.19), whimenotes thex1 "summation vect8with all its entries being 1.
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Box 4.3:
Special nonlinear multivariatéauss-Markov
model for sampling the eigenspace synthesis
Y =FE)1 +E
1st moments

£ [AcoSa+i, sifa |

F

f
f

Y11
Y} =K| Y%,
Y31

.|=| S -A)sinz

sl |Asinfa+A,coda

Yin
Youll =F1
Yan
&, Co&é,+¢&, sifé,
= $¢-¢&)sinZ, |,
& Mg +E, 08’

(4.16)

(4.17)

G=A Vi =1,
G=A pand | %=ty
G=a Y3 =1l

2nd moments
"independent between observatibns

0O X
D(vecY )=| . e

yl
,  D{vecy} O R¥", (4.18)
0 0 0 %,

"i.i.d. observations

p)
D(vecY)=| . =1,0%,, D{vecy}O R™™, (4.19)

0 0 0%
D{vecY} =X OR**" X positive-definite, rk& = 8 ,

& E{Y}, Y-E ¥ =Eunknown, Zunknown (but patterned

In order to estimate the eigenspace componentssgfranetric rank-two random tensor, the nonlineaeoba-
tion equations will be linearized. The linearizatiprocess of nonlinear observation equations isiexppo the
nonlinear mapping — F(&). TheTaylor expansion

F(g) = F(‘go) +J(§o)(§_§o) +H(§o)(§_§o) U (é_‘go) +
+O(E-8p) U(E-8p) D(E-E)]

is truncated to the orde?[(§-&,) O (& —-&,) U(E-&)]; I(&,) and H §,) represent thdacobi matrixof the first
partial derivatives, and théesse matribof second derivatives, respectively, of the vevtlued functionF(§)
with respect to the coordinates of the vedototh taken at the evaluation poiff. In our study the linearized

nonlinear model is generated by truncating theoreealued functionF(§) to the order@[(&-¢&,) O(§-&,)] ,
namely

(4.20)

F(E)—F(E) =JIE)(E~8) +OI(E-8o) U(E-E] =
= J(go)Ag +(9[(§ _go) g (& _go)]-

The linearization of the nonlinear observation ¢igua (4.16) is presented in detailBox4.4:

(4.21)
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Box 4.4:
Linearization of nonlinear observation equations
yl.l t11.1
First set of obssion: Yor|=| tara
y3.1 t22.1

/]1.1 byttt \/(t uit 22.12 +4t 21%1

. 1
Define: &,:=|4,,|= E Gttt — \/(t uit 222 +4t 212.1 (4.22)
a, arctan 2,, /(11.1_t 22.1)

"Linearized nonlinear modegl
FE)—F (&) =J(E)AE+O[(§-8,) U(E-E] (4.23)

"Jacobi matrix

o, o, o]
04 04, 0a cosa, sifa, fh,~A,)sin,
IR A A A PP
W—J(&O)— 6_/11 0_/12 0_0' - jé'r:?a.l 75”127.1 @2.1 Al.l)(-:osa.l 0 (4-24)
o, o, o, sirfa, coda, -Q,,-A)sSn,
(04, 04, oa],.,

Based upon th&aylor series expansiofor F(§) we shall apply theGauss-Newton iteration schemath
&, =[A 14, a]; as the starting poing, is determined by solving once the eigenvalue ammgquations as indi-

cated by (4.22) for thsampleone. In this way, we have established the desigtribmef the first kind
o =J(&,) as theJacobi matrixJ at the points,. The special linearized multivaria@auss-Markov moddor

sampling the eigenspace of a symmetric random xniatsummarized by (4.25) ~ (4.30).
Box 4.5:

Special linearized multivariatBauss-Markowmodel
for sampling the eigenspace synthesis

Y =F()L +[eA (§-E,)]L +E (4.25)
"vectorized versidh
vecY =10F €, )+ 0 )E-E&, )+ veE (4.26)
with denotations:
vecY, =10FE,),A= (0 )
"1st moments
A(E-§,) +vecY, = E{vecY }, vecY OR*™ (4.27)
"2nd moments
D{vecY} =1 0%, :=XOR™™, X positive-definite, k& = 8 ;

(4.28)
& E{Y}, Y-BEY +d4( &§&-9, 0 &-8] }, =Enknown, ZXpnknow n.

With these definitions and the observations ofraloen tensor we cdirst estimate the eigenspace components
& of type X - BLUUE (Best Linear Uniformly Unbiased Estimatjomhich are collected in



Chapter 4. Statistical inference of the eigenspaoeponents of a 2-D random tensor 73

Theorem 4.3 (é T -BLUUE of &, the eigenspace components of a symmetric
random tensor):

The X - BLUUE é of & in thespecial linearized multivariate Gauss-Markov
Modelis

% = éo +Aé with
A& = (§-8,) = L (vecY — vecY, )=
=(A'’ZA)TA'E T (vecY - vecy, )

_rd. P S ; 4.29
=1 0(e" 2} o) "ol 2, |(vec - vecY, ) (4.29)

:l(gz!' el ) el " EY ~ X))
n
subject to the related dispersion matrix
2 - 1 . -
D{g:=0Q A§ = x :E(gz{ Z:yl@sz{) L (4.30)

Since the variance-covariance mattixof the observation vector is unknown we have torege such a disper-
sion matrix empmcally): as the BIQUUE Best Invariant Quadratic Uniformly Unbiased Estigjadf X, is
summarized imheoreny. 4 e.g. proven in Koch (1987; 1999).

Theorem 4.4 ( The sample variance-covariance matii%of type BIQUUE
of a symmetricandom tensor):

The sample variance-covariance matii% of type BIQUUE for the
vectorized observations of a symmetric rank-twaloan tensor is
1 1 1

Y o=——VY( -—11)Y'=—Q@. 4.31
’ n-1 (I n ) n-1 (4-31)

4.3 Hypothesistesting for the estimates of eigenspace components of a two-dimensional,
symmetric rank-two random tensor

In order for the estimated tensors to be significatatistical inference has to be applied. Basedhe three
elements of validation, namely sampling distribntiparameter estimation (point estimate and intexgtima-
tion) and hypothesis testing, we referkiendall and Stuart (1958) for the univariate hypothesis test &3id
(1977), Rencher(1995, 1998),Anderson(1958, 1984) anMuirhead(1982) for the multivariate hypothesis test.

The sampling distribution of the symmetric rank-ttamdom tensor has been derived in Chapter 1 a@a Zhe
basis of such a sampling distribution, the distitms of multivariate test statistics needed fatitey hypotheses
concerning the parameters (mean vector and cowvariaratrix) for a tensor-valued multivarigdauss-Laplace
normal population of a two-dimensional symmetrink-awo random tensor, such Bstelling’s T2, thelikeli-
hood ratio statistics anthe general linear hypothesis test with ghewth curve modehre proposed, too.

With the estimates of eigenspace components obrargdrain rate tensor and their dispersion matrxfollow-
ing multivariate hypothesis tests will be suggested

« Testfor the eigenspace parameter veg&te§, with £, unspecified;

* Test for a distinct element of the eigenspace paranvector witlStudent t- test

» Eigen inferencabout the orthonormally transformed parameigts

 Test for the variance-covariance mattiy = X ;

+ Test for the eigenspace parameter vector and va&rieovariance matridxé =&, £, =X, ;

« The general linear hypothesis test with the grosuitve model foeigenspace parameters.
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4.3.1 Test for the eigenspace parameter vector £ =&, with £, unspecified

Box 4.6:

Multivariate hypothesis test about the esperte parameter vectdr
assumingauss-Laplaceormally distributed observations of a two-
dimensional, symmetric rank-two random ¢ens

First Testfor H,, : £=8&,, Hy,: &#&, with X unspecifiec

<

Al AlO Al AlO
Hoyt | Ay | =| Az |y Haal | Ao # | A | With X unspecifiec
a a, a a,

"Hotelling's T statistic"
(Hotelling 1931 ,Muirhead1982,Rencher1 998)

T?:=[6-&]' £ €& (4.32)
Note that
n _3 2
(n-1)CB
is an element dFisher’s Fdistribution F,  _, .., (Rencherl998) and
pre< DB gy =
(n-13

=P{[E-&d 'E1E-¢] <

3 F,sl-a) =1-a=y
whereF, | _;(1-a) is the upper(10Qx xh percentile ofFisher’s Fdistribution. This immediately leads to a test
of the hypothesigt,, : § =&, versusH,, :§ Z&,. Atthe error probabilityr we reject’H,, in favor of H,;, if

(n-1)[B

n- F3, n-3 (1_ 0’)} = Tlga

T2 =[6-8&,) L' [E & >

4.3.2 Test for adistinct element of the eigenspace parameter vector with Student t- test
Box 4.7:
Separate Student t-testbout the eigenspace parameters in
Second Tesor H,, : A, = A, )Izzﬁzj a=a,
(separately) H,, (A, ZA|A,Z2A, aZza,

"two-sided tests witlthe test quantitie's

t = _ , b= (; , = P (4.33)

with respect tojl, jz, a of type X -BLUUE and their variances,, t, and &
are elements of th&tudent t-distribution with n-1 degrees of freedom

The probability identity
Plostsc=Rco+pusisco+ih, 2 —a=y

relates the error probability of the two-sided test to the confidence leyellf i is an element of the confi-
dence intervalcd + i, < 1< c,0 + i, , the null hypothesist, : i = 1, is accepted. We rejeét, if the confi-
dence interval does not contain.

As an example the 95%onfidence intervalfor the eigenvaluest, A, and the eigendirectiorn
[cG,+A,, CO+A,],[CT,+A,, CO,+A,] and[cd,+A,, c,F.+4,] are illustrated ifFigure 4.3, respectively.



Chapter 4. Statistical inference of the eigenspaoeponents of a 2-D random tensor 75

4 2 —axis (North)
s - - T~ ~o -
- ~
7/ ~
/ ~ .
o A Confidence interval of &,
! N\, ~
N
| S of
- N\, o ~
! 7 AN S~ SO
\ o ~ N S
\\ 1 AN ~ S
\ \ N ~o ~
\ - \ \\ = ~ N
\\ ~~~~ \ b \\\ ~o N N )
\ N T AN N . 1 —axis (East)
\ N TN Y N >
~ S ~ N
AN N AN N 0 \\\ [ C \\ \\
N Y \\\ ‘~“*‘~“ \\
AN S AN A e \
S . AN \\ \
o o AN | Confidence interval of A,
N - N
SN S~ \\\ A \\
RN S o 7
~ S — —
S~ N }\’1 ]
SS DN /
N
S N\,
o N
S~ N, /7
Sk N \ z
- 7
S~as -

Confidence interval of o

Figure4.3 The 95% confidence interval for the eigenvaldgsh, and eigendirection

4.3.3 Eigen-inference about the orthonormally transformed parametersn

From the dispersion matriX. , the variance-covariance matrix of the eigensgaceponent parameter vectt}r
estimated by (4.30), we can see that these eigeagmmponent parameters are correlated. In ordeat® the
hypothesis tests about the distinct elements mffigemt and uncorrelated, we could transform thagioal
parameters into new parametegsof uncorrelated linear combinations §fs. This method uses a similar tech-
nique as the well knowprincipal component analysisvhich was introduced big. Pearson(1901) as a tool of
fitting planes to a system of points in space atdrlgeneralized biotelling (1931) for analyzing correlation
structures. In fact principal component analysisoiscerned fundamentally with the eigenstructurecofariance
matrices, i.e., with their eigenvalues and eigetorsc Therefore in our study we will firstly make arthonor-
mal transformation of the original parameters, therive the covariance matrix of the transformerhpeeters
and perform a hypothesis test for them, which alkeigen-inference

FromTheorem 4.3ve have theX -BLUUE of eigenspace components of a symmetricsantensor

% = [jl jz ay’,
and the related dispersion matrixfpfof type BIQUUE
D{g = L.,

with the spectral decomposition of the dispersi@trin )A:%

I =UA Uz, (4.34)
where the orthogonal transformation mattix contains normalized eigenvectors as column vedias or-
thonormal basis, orthonormal matrix)

U, with UéUé =1, det@JE )=". (4.35)
Then we set the transformed parameter vector filmanoriginal parameter vector and find th&ir-BLUUE

estimates, respectively, as

n:=U% and 4=UE (4.36)
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which transforms the null hypothesis values of TestBox4.7:

n, = Ui, (4.37)
Then, from (4.34), we get
52 0 0
I,=UZU,=A;=| 0 &5 O | (4.38)
0 0 gJ;

from which we can see that the transformed paraseteare mutually independent and their standard devia-

tions are:
G, =4y G, =4, 6, =4A,.. (4.39)

With these orthonormally transformed results we aw perform thesigen-inferencelNote that the orthonor-
mally transformed parameterg are mutually independently, normally distribut&tudent t-testsould also be
used for every element of the transformed paraméieseparately .

The second hypothesis test performe@ax 4.7 will be equivalent to the new hypothesis test fog brthonor-
mally transformed parameters, i.e.,

Second Test fotH,, A, =A,[A,=Ala=a,
H,: LMZAJA,ZAJaza,
Eigen-Test forH,, :n,=n,,

7{12: ,71¢,710 I72¢,72 ,73¢,73(

f72=f72jf73=f73<

which means that, when we accept or reject the mgvothesis testse{gen-test we will accept or reject the
second hypothesis tests accordingly.

These procedurasill be summarized ifBox4.8.
Box 4.8:
Eigen-inference about the transformed parameters n
Eigen tests (alternative to the second tests)
My f71=/71j f72=f72jf73=/73(
Myt MENg 1,70 11717 4
"two-sided tests with thiest quantitie’s

/A :’710, t, = ’72:’720, t, = ’73;’730 (4.40)

J’71 J’l 2 U’7 3

with respect to?,, ,, /1, and their related variances,.t, and  are elements of
the Student t-distribution with n-1 degrees of freedom

t, =

The probability identity
Plosts+c} =R G0+ <f< co+rj 2 —a=y

relates the error probability of the two-sided test to the confidence leyel

If 77 is an element of the confidence intereg@ +77, </ < c,0 +1, , the null
hypothesisH,: 7 = 7, is accepted. We rejeé, if the confidence interval does
not containj. Accordingly, we accept the original null hypotisesbout the
eigenspace components.

This completes the developmentsien-inference.
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4.3.4 Test for thevariance-covariance matrix £, = X,
Box 4.9
Multivariate hypothesis tests about thearere-covariance matrix,
Third Tesffor H,,: X, =X,, Hy: I, #X

"unbiased modified likelihood ratio statistit, "
(Giri 1977,Muirhead1982, Koch 1999, Koch 2001)

3(n-1)/2 & e ~
A, = (ni_l) (detr— 1§, 5 " etr- 3 (0- 1E, %'} (4.41)
with respect to the sample variance—covarianceim;ﬁl; of type BIQUUE.

Since our sample size is relatively small we havese the exact

distribution of -2log/\, , whose upper 5 and 1 percentage points have been
provided byMuirhead (1982, p.360).

4.3.5 Test for the eigenspace parameter vector and variance-covariance matrix §=¢§, £, = X,
Box 4.10

Multivariate hypothesis tests about the eigenspacameter vecto& and
the variance-covariance matil

Fourth Testfor H,, : £€=&,, X, =X,, H,,: §#E,0r L #X
"unbiased likelihood ratio statisti6., "
(Andersonl984,Muirhead1982)

A, =(8)" (det- 18, 2 177 etre- L (- 1B, 25 Jexpt S -g,] 2[4 - 4.42
2=()  (deth— 1,25 et 5 (- 1, %o Jexpt- B -] 26 -4 (4.42)
with respect to the eigenspace components of BypBLUUE and variance-
covariance matrixZ, of type BIQUUE ands; | = (1/n)(e’ Xy'ef ) ™.

Since our sample size is relatively small we havese the exact distribution of

—-2log/A\,, whose upper 5 and 1 percentage points have beeited by
Muirhead(1982, p.371).

4.3.6 Thegeneral linear hypothesistest with growth curve model for eigenspace parameters

Consider apx n matrix of observations whose columns follow indegentp-variate Gauss-Laplace multivari-
ate normal distributionsvith the same unknown covariance matrix. Each calumay represent an individual
observation, each row a time when observations taien. The traditionapecial multivariate Gauss-Markov

model Y = A§+e is not adequate for dealing with polynomial tremtds$ime. The more genergtowth curve
model, introduced bfotthof and Roy1964), may be written as

Y =AEB+E (4.43)

whereA is a knownpx g non-random matrix of full rank < p; &, a gqxrmatrix of unknown parameterB,a
r xn design matrix of rank <n; E denotes a random error matrix, the columns beidgpendently distributed

N,(0, X), whereX is positive-definiteKhatri (1966) obtained the maximum likelihood estimateSoin the
form

E=(A'Q'A)A'QYYB'(BB) (4.44)
where
Q=Y(, -B'(BB)'B)Y', (4.45)

is the usual error sum of squares and productsixnathich could be considered proportional to amiased
estimate of. For testing the general hypothesis

7,: PEQ=0 versus %, : PEQ#0 (4.46)
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where thecx q matrix P has rankc < q, while Q has dimensions xg and rankg < r. The test consists of a
multivariate analysis of variance based on theremnad hypothesis matricesi¢rrison 1976)

Vv, = (PEQ)(Q'RQ)(PEQ), (4.47)
Ve =P(A'Q'A) P,
where

R =(BB')+(BB)'BY'Q'YB'(BB) '-E(A'Q A)E . (4.48)

Four tests of the hypothesis (4.46) undergrmvth curvemodel (4.43) could be applieBdtthof and Roy 964,
Siotani, M. et al1985): (1)Roy’s largest root teswith test statistidd, = A, /(1+A ), whereA ., is deter-
mined by|V,, —AV, |= G; (2) Lawley-Hotelling’s trace testith test statisticT,> = tr(V,,V:"); (3) Wilks’ likeli-
hood ratio teswith test statistit =|V,, |/ |V,, + V¢ |; and (4)Bartlett-Nanda-Pillai’s trace teswith test statistic
V =trV, (V, +V.)™". However,Roy's testhas the advantage that the distribution of thedtgistic under the
null hypothesis?z, : PEQ =0 is known exactly, and has been tabulated ($eek 1960, Pillai 1960 andKres
1983); also, associated confidence bounds aresdaibnly forRoy’s test

To test?,: PEQ =0 we calculate the greatest eigenvaldgs, of V,,VZ" and refe®, =A__ /(1+A ) to the
approximatedHeckchart andPillai table with parameters
$=min{c g, m=IC79I71 jonoropra-ed (4.49)
2 2
The100(1-a ) simultaneous confidence intervals on all bi-lineamponenta’PEQb are given by Nlorrison
1976)

aPEQb | 1?’ (a'V,8)(b'Q'RQb)]”? < aPEQb < aPEQD +[1+L(a'an)( b'Q'RQY]YZ  (4.50)
Xa Xy

wherex, =x . . . isthelO0 percent Heck or Pillai critical value. # =1, x, /(L+ x,)should be replaced by

the critical valug(m”+1) /(i +1)] F

a;2m+2, 2+ 2°

It is worth mentioning that the special linearizadltivariateGauss-Markowmodel for sampling the eigenspace
synthesis (4.25) is also a growth curve model spowading withe =A 1'=B an¢ =Z. This fact sug-
gested that the hypothesis (4.46) undergttoevth curvemodel can be applied to the testing for the edémaf
eigenspace parameters directly.



Chapter 5

Statistical inference of the eigenspace components of athree-
dimensional, symmetric rank-two random tensor

In Chapter 4 we have achieved the complete soldtidhe statistical inference efgenspace componerdsa
two-dimensional random tensor. The models are dlasel practical. In this chapter we will develomimoually
this solution for the three-dimensional case. llitg crustal motions and deformations are of éhdémensional
nature and most deformation tensor derived frondggo, geological and seismological observatioestaree-
dimensional, such as the seismic moment tensotkelfast two decades some efforts have been rogdenu-
late the problem in the three-dimensional spaceuwilinear three-dimensional finite element metiinad been
introduced byGrafarend(1986) for the representation of local strain &l rotation tensors in terms of ellip-
soidal,Gauss-Krugewor UTM coordinates. More papers about the three-dimeakgirain and strain rate tensor
analysis in geodesy are those Bryunner (1979), Lichtenegger and Siinké1989), Dermanis and Grafarend
(1993) andNittenburd1999).

The random principal eigenvalues and random eiggorv@arameters are of special importance for tiedip-
tion of seismic activity. In recent yeaxsl (1999a) andagan (2000) developed the general distribution of the
eigenspace components of the three-dimensional symennandom tensor of second order, which canljdrel
applied directly to real life engineering and Eastlience problems, because an exact distributieoryhof ei-
genspace components is almost always unavailahle.réason gives rise herewith to the subject gérespace
components of a three-dimensional, rank-two symmedndom tensor on the basis of a linearized nauitate
Gauss-Markovmodel, which will provide the statistical propediof these eigenspace components. With them
we can continue performing the hypothesis testsizthe deformation measures. On the assumptiorathixtin
tensor or stress tensor has been directly measurderived from other observations, such a thresedsional,
symmetric random tensor of second order is a ran@msorT which we assume to be a realization of the ten-
sor-valued Gauss normal distribution ot with independently, identically distributed (i.)densor-valued
observations, but with identical off-diagonal elertse Since thesigenspace synthesi$ a symmetric random
tensor is nonlinear in terms of the tensor-valubdeovations, the respective parameters have tctimated
within a special nonlinear multivaria@auss-Markowmodel.

In this chapterfirst, based on the review and choice of orthogonallaiity transformation matriceghe eigen-
space analysis and synthesisa three-dimensional symmetric random matrixestablished uniquelybecond,
the nonlinear function that relates the tensor et@sito the eigenspace components is linearizédresipect to

a special nonlinear multivariate Gauss-Markov mqgdehich enables thBLUUE of the eigenspace elements
and BIQUUE of its variance-covariance matrix, as develope€liapter4.2 to be successfully applied in the
three-dimensional case. Third, the test statissiash asHotelling’s T? andlikelihood ratio statisticsare gener-
ated. Hypothesis tests for the random tensor sampéns as well as its one variance component ackinghe
case study of validating a given three-dimensioaatiom strain rate tensor in Chapter 6.

5.1 The eigenspace analysis ver sus eigenspace synthesis of a three-dimensional, symmetric rank-
two random tensor

Let there be given a symmetric three-dimensionak+tavo random strain tensdr0 T which is represented in
a commutative left or right orthonormal bagis €’ e} , in shorte Oe€' for all i,j 0{1,2,3}. "O" denotes the
tensor product. According to (5.1}, ] OR*?is called thematrix representatiomf the 3-D rank-two tensort;

for all i, j 0{1, 2,3}, establishes the covariant coordinates of the-tawktensorT. The matrix, due t¢; =t; is
symmetric and of full rank thred." denotes the transpose Bfin (5.2). By means of an orthonormal matrix
UOSO@B)={UOR**| U'U =1, |U E+1 the symmetric matrix JSYM:={T OR>®| T'=T} can be trans-
formed into the canonical formx = Diag{A,, A,, 4.}, also called $pectral formi.

3 3
T=) €0et => te0e (5.1)
ij=1 ij=1
l:11 1:12 1"13
T :[tij] =L b, ty :[tji] =T (5.2)

l:31 t32 t33
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U: T A =Diag(, 1, 1,)=UTU (5.3)
TU-AU =0 subjecttoU'U =1, (5.4)
(T=Al,)u, =0 fori{L, 2, 3} subject tc (5.5)
uu, =L uu,=Luu,=1 : u,08" ,u,08" ,u,0S" (5.6)
uu, =uu,=u'y,=0 : u,0u,u,0u,u,0u '
where
u11 u12 u13
U=lUy Uy, Uyp|=[u,u,u]. (5.7)
u31 u32 u33

There are many methods to determine the orthonommaadix U for the spectral decomposition or the eigen-
value-eigenvector synthesis (5.3) of the three-dsimnal, rank-two strain tensor. Most of them asestructed
through three successive rotations, which will lIseassed herewith.

5.1.1 The choice of orthogonal similarity transformation matrices
5.1.1.1 Euler angles
Rotation and transformation wituler angles are the commonly used method.

[ cosy sir
R,(X) =| —sinx cos( (5.8)
0 0 1

[coss 0 - sire]
R,(= 0 1 0 (5.9)
|sine 0 cos

[ cosB s (
R,(®)=|-sin® coB O (5.10)
0 0 1

The total rotation is described by the triple magmioduct.
A(X.£,6)=R, B)R, €)R, (X) (5.11)

SinceA is an orthogonal matrix, the transformatigrAx is an orthogonal transformation (Rotation). The- col
umn and row vectors & are orthonormal, that is, when we repregeitt form

a; 8, 83

A=la, a, as|=[a;a,a] (5.12)
8 8y 8y

a.a —ac-a = 0 ifj#k (5.13)

1% T8¢ = 1 if j =k ,where j,k=1, 2, 3 '
Note the order :R,(x) operates first, theR (¢) and finallyR, (6) . Direct multiplication gives
CO cos cad3 -sjn shh g{n @s 6os +HgosbBsin &g
A(x,€,8) =| -cox cos sid -si cls -5in @s Bin +¢asfc  sirE sird (5.14)

CO Sirg Sil sia cas
EquationA(a;) with A(x,€,0), element by element, yields the direction cosineerms of the three Euler an-
gles.

The Euler angleslose their uniqueness far=0; x andB are then undetermined. In order to avoid this non-
uniguenesf£ardan anglehave been introduced.
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5.1.1.2 Cardan angles

Cardan angles., B, v , related to the xyz-axis, are uniquely determiagdollows:

1 0 0

R,(@)=|0 cosx sim (5.15)
|10 —sina coxx
[cosp 0 - sip

R,®= 0 1 0 (5.16)
|sinB 0 co$
[ cosy siny

R,(y) =| —siny cogy (5.17)

0 0 1
cos3 cog cds sin -gh

R=R, (0)R,(B)R,(y) = | sinsirP coy -cas sin sin §n gin +oa®y  sim coB (5.18)
cogu sifs cog +sim sin cas §in gin -@in gos ocasic
which consists of successive rotations{oyabout thez-axis, p about the new-axis,a about the new-axis. The

order of rotations is a matter of convention anel ¢ime used here is known as ¥y convention. The main
reason for the popularity of thiyzconvention is that it does successive rotatiomsiatinree different axes.

The meaning oR is that any vectox given with respect to axes fixed which are in spasthen represented by
Rx with respect to the rotated axes. Essentiallyetbenents oR', therefore, give the directional cosines of the
rotated axes relative to the fixed axes.

SinceR is an orthogonal matrix, the transformatiorRx is an orthogonal transformation (rotation). Theuoah
and row vectors dR are orthonormal, that is, when we represeir the form

l’ll r.12 r 13

R={1y Ty Tog|=[rir,r] (5.19)
f31 T3 Tag
L, ot j#k
rer, =reer; = Y o (5.20)
1if j=k,where k=1, 2,3

The Cardan angles can be obtained from the givation matrixR O R>?,

a=0
T

if r, =0andr,= 0, or equivalently cg&= 0, th P2
y= arctan& )
r22

a =arctan{Z ) (5.21)

r'33

_r13 )
2 2
r 23 +r 33

-r
otherwises (B = arctant—=—) orp = arcta
\Y rll + r12

y= arctan@ )
r11

The relationship between the three Euler anglegtathree Cardan angles has been given in Graf¢i&82).
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5.1.1.3 Thealternative choice

The simplest way to define three orthonormed divest i.e., an orthonormed basis of vectors in i3-» define
the three 3-D rotations that connect the givenshagth the natural basis {1, 0, 0}, {0, 1, 0} an@,{0, 1}. These
could, for instance, be the three angles, but thegées do not generalize up to higher dimensilmstead, we
choose three following rotationXi 1999b,Tarantola, et al.2000). These rotation matrices are also called

ens matricesind the operation of going froxto Ux is called aGivens transformatiofSearle1982, p.72).

The Givens matricewith the angléds, 05, 0,; related to the, yandz-axes are

[1 0 0
U,(0;,)=|0 cod,, sib,, (5.22)
|0 —sinB;, coH,,

cos9,, O sif, |
U,,(8,) = 0 1 0 (5.23)
| —sinB;; 0 cod,, |

cosd,, siB,, (
U,,(8,,) =|-sinB,, codb, 0 (5.24)
. 0 0 1
CO£31C0§21 C@l SB]Zl ml

U=U32(932)U31(9 3J)U 21(e 2) =| -sinB 3§il’9 3{:0@ 21"3(ﬁ 3259'1 21 -$in 32 én 31 ﬁnm +&)S32 eogl GSiI}z Bco
-co$,, si®,, co8,, +si,, sk, -cbs, €in, 8in, -8in, 6gscoD,,cos,,
(5.25)

which consists of successive rotations By: about thez-axis, 6,, about the new-axis, 8,, about the new-
axis and is presented Figure 5.1. The order of rotations is matter of convamtimd the one used here is known
as thexyz convention. The main reason for the popularityhi$ xyz convention is that it does successive rota-
tions about three different axes.

z Z z' Z" G 4
e31 n
! n 14
y y Y
!/
0 . 0 Y 0
Yy
0
X . / " , "
X X X x' g
(@ (b) (c)

Figure 5.1 (a) Rotation abomthrough angled,,; (b) Rotation abouty’ through angle-6,;; (c) Rotation about
X" through anglé,,.

The meaning ol is that any vectox, given with respect to axes which are fixed incgps again represented
by Ux with respect to the rotated axes. As above thaaiés ofU’, therefore, give the direction cosines of the
rotated axes relative to the fixed axes.

SinceU is an orthogonal matrix, the transformatioslx is an orthogonal transformation (rotation). Theuoah
and row vectors df) are orthonormal, that is, when we repredéir form
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U, Uy Uy
U=lUy Uy Uy|=[uu,u] (5.26)
Uy Up U
, , 0 if j £k
U\ sl SUpell; =4 7 _ (5.27)
1 if j=k,where k=1 2,3

The rotation angles can be determined from thengigéation matrixU 0 R>?

. . 0
if u,=0andu,= 0 or equivalently ca&, = 0, then**

~u
8,, =arctan{—2 )
u22

8, = arctan{2 ) (5.28)
u33

. _ U _ Us
otherwise {65, = arctanﬁ) ore,, = arctap:{ﬁ )
VU U, Uy t+ Uy,

8,, = arctan{2 ).
u11

In order that the spectral decomposition is unighe, three angle8s,, 63; and 0,; are all defined between
-1t/ 2 and 1t/ 2. Thus the two element,; andu,, of the orthogonal matrii should be positive.

With (5.22)~(5.28) we can establish the relatiopgifithe strain tensor with its eigenvalues ane@milyections
uniquely.

All the three slightly different representationstioé orthogonal matrik) are mathematically equivalent. Since it
is not convenient to generalize theler (5.8) ~ (5.14) andCardan (5.15) ~ (5.18) representations to the
dimensional case, and in order to take the advarmé&@ivensrepresentation (5.22) ~ (5.25) that does succes-
sive rotations about three different axes, we @olfine ourselves to th8ivens representatioim the study of a
three-dimensional rank-two random tensor.

5.1.2 The eigenspace analysis ver sus eigenspace synthesis of a three-dimensional, symmetric rank-two
random tensor

The formulae (5.3) ~ (5.7) and (5.25) ~ (5.28) lelith theeigenspace analysi$he diagonal matriA contains
theeigenvaluesi,, A,, A,, the orthonormal matrik) the eigencolumnsalso called coordinates of tegenvec-
tors, namely[u,,, Uy, Us]', [Up,, Uy, Usyl @nd[ug, Uy, Ud'. SinceU OR*?is an orthonormal matrix, it is con-
structed by thérigonometric representatiowith three rotational angular parameters. Theggilan parameters
establish thesigenorientation namely the orientation of the eigendirectionse ®olution of the eigenvalue-
eigencolumn equation is not unique, as it is gaedray the quadratic equations (5.6). If we asstimé the
elementay,,,andu,, of the eigencolumnisave to be positive&hen the three anglés,, 63, and6,; are all defined
between-1t/2 and 1t/ 2. we arrive at (5.30), (5.32) and (5.33), respetyivNote that we have defined the angu-
lar parameter8s,, 63, andf,; in a halfopen domainn order to avoid any singularity.

Corollary 5.1 (eigenvalue-eigenvector analysis)

For a symmetric tensdf OR*®the eigenvalued,, A, and A, as well as
the rotational parametebs,, 63; andf,;, which constitutes the orthonormal
matrix U OR*® of eigenvectors are analytically represented by

the characteristic equation
[T-A1,EC (5.29)
which is a cubic in\, namely:
=A2+1,A%=11 A+l , =0 (5.30)
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where
I, =t +, g, ) s o
I, =t g+t f +t Gt %3_t 13_§ 12
1l PRSLPE S 33"’2t bkt st bt G

The three rootd,, A,,4, are called principal components (eigenvalues) with

[, =A4+A,+ 1,
I, =AA+A A, +AA, (5.31)
I” A = 1772773
The related eigenvectots, (i =1,2,3) are solutions of the homogeneous equations:
(T=-Al)U; =0 Shiy

The rotation angles can be determined from thengiveations matrixy OR*® (5.25):
C0£31 Cogzl C@l 39}1 ml
U:U32(932)U 31(e 31)U 21(e 2) = | -sir@ 3§ir9 3P09 21'(-:(ﬁ 3259] 21 -dn 32 én 31 §n21 +ﬁ'.)S32 &O%l GSiQZ Bco
-co9,, sird,, coB,, +sih,, sth,, -cbs, €n, 8in, -8in, 6gscod,,cod,,

following (5.28):

if u,=0andu,= 0 or equivalently cd, = O, th

= 23
6, = arctanL )
u33

, — Uiy - Us
otherwise 46;, = arctan(ﬁ ) orf,, = arctap:(ﬁ )
\ Uy, + U, Uy + Us,

0,, = arctan@ ).
ull

In order that the spectral decomposition is unidgjue three anglels,, 65, andoy;
are alld] -77/2, i/ 2]. Thus, the two element,, andu,, of the orthogonal matrix

U should be positive.

Corollary 5.2 (eigenvalue-eigenvector synthesis)

Given the eigenvalue, A, and A, as well as the rotational parametéys 63, and6,;, which
constitute the orthonormal matrix JR**® of eigencolumns, the symmetric tenJorR>*?

is synthetically represented by

t,, =A,cos8 8., codf,,+ A, cosd,, sitd,+ A, shb

t, =A,cosf, cod, { sid,, sil, cd,- cés, g, +)
+A, cosd,, sirg,, ¢ sird,, sid,, Sifl,- cdd,, cés,+)
+A;sing,, sind, cod

t, = A,cosf,, cod, £ cob,, sifl, cosd, + sird., sid,, }
+A, cod,, sird,, ¢ cod,, s, sifl,- sk, cés, +)
+, cosb,, sirg,, cod,,

t,, = A,(-sind,,sind,, cod,— cob,, sifl A ,~ s, sth, $h,+ dds, s+ (5.33)
+ A, sin’ ,,c086,,

t23 :/]1(_Sin032 SineSl C0§21_ C0§32 Siaﬂ )( C&SZ %1 (@§i’- gi@z 3"31"' )
+A2 (_SinHSZ SingSl Sir9214- COQSZ C$21 )( C($32 ml gnZl_ gn&Z &§1+ )
+ ], sing,, codd,, co¥,,

t,, = A,(—cosd,, sind,, cod,+ sifl,, sifl ,)* +A,(—cosb,, sirg,, sid,,— sid,, cad, *}
+ ], cos 6,,c084,,
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On thebasis ofCorollary 5.1 (eigenspace analysis) abdrollary 5.2 (eigenspace synthesis) we are able to por-
tray the three-dimensional symmetric strain terispvhich can be visualized agrain ellipsoid,if A, A, andA,
are all positive, but as thetrain hyperboloidif signA, # signd, or sigm, # sigi, or sigh,# sigh. Figure
5.2 andFigure 5.3(a) illustrate thstrain ellipsoid Figure 5.3 (b) and (c) illustrate thatrain hyperboloidin the
first case(Figure 5.2 ofFigure 5.3(a)), the axes of the strain ellipsoid areae&d along the eigenvectors of the
strain tensor; theemi-major axesf the strain ellipse are identified with theaximum principal strain, interme-
diate principal strainas well as theninimum principal strain constrained bysignA, = sign, =sign, =+1.
Alternatively, in thesecond casé@igure 5.3 (b)), the axes of the strain hyperboloids ¢ sheet are directed
along the eigenvectors of the strain tensor, inditdy the “real axes” showingj, A, and the Imaginary axi$
with | A, |; and in thethird case(Figure 5.3 (c)), the axes of the strain hyperboloidsvad sheet are directed
along the eigenvectors of the strain tensor, inditdy the “real axis” showing, and the imaginary axes
with | A, | and }, , for instance. IsignA =+1we speak oéxtensionif signA =—1 of contractioninstead.

The notations used in describing the three-dimesadistrain tensor will be defined Box5.1.

Box 5.1: (three-dimensional strain tensor)
The representation of three-dimensional straindens

Three-dimensional strain tensor components

t,,,1,,,t5; the normal strain along the 1-, 2- and 3- axigz{axis), respectively;
t,,t,5,t 5 the shear strain between the respective pairsed. a

The principal components

A, maximum principal strain, the greatest changewgth per unit length;

A, intermediate principal strain, the intermediatendeaof length per unit length;
A, minimum principal strain, the smallest changeeoigith per unit length;

8,,.6,,.0,, the orientation of the three principal strainsxespectively.

n 4 2—axis ()

1—axis(x)

3—axis (2) ¢

Figure 5.2. The strain ellipsoid of a three-dimenai strain tensor
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Y=

{a) (b) le)

Figure 5.3. The strain ellipsoid and hyperboloicidhree-dimensional strain tensor:
(&) A>0,A> 0 andAz> 0, an ellipsoid;
(b) A>0,2> 0 and23< 0, a hyperboloid of one sheet; and
(chu< 0,A> 0 and A< 0, a hyperboloid of two sheet.

5.2 Thelinearized multivariate Gauss-Markov model for the estimation of eigenspace
components of athree-dimensional, symmetric rank-two random tensor

Chapter5.1 has documented that the eigenspace synthesisyohmetric random tensor is nonlinear in terms of
the tensor-valued observations, and there is nplsiprobability density function of the distributi@f random
eigenspace components. Accordingly we are unablietive the exact sampling distribution directherd, we
will derive the linearized counterpart for samplittte eigenspace synthesis parameters from thenalligi
nonlinear observation equations. Tle BLUUE of eigenspace components and their varianm&riance ma-
trix estimate of type BIQUUE will be developed iocardance with the formulas presented earlied.b@ai, E.
Grafarend and B. Schaffri2001b). Using the eigenspace analysssuseigenspace synthesis presented in
Chapter5.1 and the same notationrobbservations of , namelyT; T,... , T, whose related vectorized forms
arey; Y, ..., yn andy =[Yy Yaor s yn]DRBX", we can define the nonline&auss-Markovmodel which is
presented by (5.34) ~ (5.37) , whérdenotes thex1 "summation vect8iwith all its entries being 1.

Box 5.2:

Special nonlinear multivariateauss-Markov
model for sampling the eigenspace synthesis

Y =F(@E)1 +E (5.34)
1st moments
Yia 0 Yin
Bl : - ! }=F1 or EY =F1 (5.35)
Ys1 ' Yen

f1 fl(Al’AZ’/]yHSZ’eI%l'g 2]) f l({ I{ 25 35 4{ Eﬁ( 9
F=| i |= : = :

f6 fB(Al’/]Z’/]3’932’€31'9 2]) f 6({ I{ Zé 3{ 4{ fz ()

& =A== A, Yim Y=t Y=ty
$,=05,¢5=0,,6=0, and Y= 1 Y= Ty Yo 1

with the eigenvalue-eigenvector synthesis (5.33)



Chapter 5. Statistical inference of the eigensgaoeponents of a 3-D random tensor 87

f (A A0 A5,055,04,8 ,)= A ,€0$ 8 ,,c080 ,+ A , cL ,, sh F+A , sid
fo (A, A5,45,050,631,0 )= A ,€OL ;, €O .t Sif 5, Sl 5, CB5 ;7 OBS;, #nyit)
+A, cosd,, sird,, ¢ sid,, sid,, Sifl,- cad,, c6s,+)
+ A, sing,, sing,,co9,,
fg(/ll,/]z,/]3.932,531,92])=/\ 10039 31009 21'( cad 32 sth 31 C@Sﬂ- Eﬂn32 §n21+)
+A, cod,, sid,, ¢ cod,, sifl,, sifl,— sk, cés,+)
+ A, cosb,, sirg,, coé,,
f4(/\1!/]2*/]3’932'63110 21): A 1(_ sind 325"19 3103‘921 - CO§32 Singzl 3"’
+A,(-sind,, sind,, sind,,+ co¥,, cod, *}
+],sin’ 8,,cos6,,
f5(/\1,/12,/13,932,931,52])=/] 1(_ sind 325in9 31CO§ 21 cod 32 sth 213( Cessz Eﬂnsl (ﬁ)si’i Binaz $i')2'f
+A, (=sing,, sind,, sird,,+ co$,,coss,, )¢ cod,, sid,, sifl,— sifl,, cds, +
+],sing,, cod,, co¥,,
fo (A A2145,05,031,8 5) = A (- COD 5, Si 5, COB i sil ;, Sth 212 ¥
+A,(-cosd,, sirg,, sid,,— sid,, cod, *}

+ ], cos @,,codd,,
2nd moments
ifdependent between observatigns f.i.d. observations
X, 0 - 0 X, 0 - 0
|10 z, - O oz - 0
(5.36) D(vecY )= 3 Co | D (vecy ST =1,0%, (5.37)
0 0 02X, 0 0 0ZX

D{vecY} = X OR®*™®" ¥ positive-definite, (k= @ ,
& E{Y}, Y-E ¥ =Eunknown, Zunknown (but patterned

With the same linearization procedure as in (4tBg)linearized observation equations (5.35) arsqmied in
Box5.3 in detail:

Box 5.3:

Linearization of nonlinear observation equation

yl.l t11.1
First set of observation 2 1= ¢
y6.l t33.1
Deﬁne: %o = [Al.l' /] 2.1 A 3.2 9 32.10 31.19 21]1

"Linearized nonlinear model"
F(E) —F(&,) =J(E)AE+O[(E-Ep) U(§-EY] (5.38)
"Jacobi matrix"
of o of o o of,
04, 04, 04, 06,, 06, 06,
JE)=| : : : 2 : 2 (5.39)
o oy o Ay oy o,
04, 04, 04, 06,, 06, 06,

o =J(E) = I (A 1,45 143163210 3140 20)- (5.40)
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It is important to remark that the absolute valtithe Jacobian is:
[det £ 4,-A,)A,-1;)(@A,—A,)cod,, , wherd 21,21, alway (5.41)

which is useful in derivation of the probabilityrdgty function of the three-dimensional random terspectrum
(Xu, 19994, b).

Based upon th&aylor series expansidior F(&) we shall again apply th@auss-Newton iteration schemgéh
& =[MuAr0452604,0 51,8 1) as the starting poing, is determined by solving once the eigenvalue amsly
equations as indicated IBorollary 5.1 for thesampleone. In this way, we have established the designrat
the first kind o = J(§,) as theJacobi matrixJ at the point§,. The special linearized multivariat@auss-
Markov modefor sampling the eigenspace of a three-dimensionalpstnic random matrix is identical with
(4.25) ~ (4.30) in the two-dimensional case of Gaag.2.

With these definitions and the observations of redoan tensor we caagain estimate the eigenspace compo-
nents§ of type X - BLUUE (Best Linear Uniformly Unbiased Estimatjoand X, as the BIQUUE Best In-
variant Quadratic Uniformly Unbiased Estimatef the variance-covariance matik, as was summarized in
Theoremd.3 and 4.4.

5.3 Hypothesistesting for the estimates of eigenspace components of a three-dimensional,
symmetric rank-two random tensor

With the estimates of eigenspace components ofidora strain rate tensor and their dispersion matexfol-
lowing multivariate hypothesis tests are suggested:

» Test for the eigenspace parameter vegter§, with £, unspecified Box5.4);

e Test for a distinct element of the eigenspace paranvector wittStudent t- tegtBox5.5);

» Eigen-inferencabout the orthonormally transformed parametgf80x5.6);

+ Test for the variance-covariance mattix = £, (Box5.7);

 Test for the eigenspace parameter vector and wa&reovariance matrixé =§;, £, = X, (Box5.8).

Box 5.4:

Multivariate hypothesis test about the egpmce parameter vectbr
assumingauss-Laplac@ormally distributed observations of a three-
dimensional, symmetric rank-two random ¢ens

First Testfor H,, : =&, Hy,: §#&, with X, unspecifiec

_Al_ _/]10_ _/]1_ _/]10_
AZ /120 /]2 /120
A A A A
Hot| 1= 00| Hat| 0|2 L |, with £, unspecifiec
032 6320 032 6320
631 9310 631 9310
_021_ _0210_ _021_ _0210_
"Hotelling's T? statistic"
(Hotelling 1931,Muirhead1982,Rencherl998)
T2 =[E-&] £ [E &4 (5.42)
Note that
n-6 2
(n-1®

is an element dfisher’s FdistributionF . (Rencher 1998) and
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(n-1[6 -
P{T?< s Fe nsl—-a} =
(n-1®

n-6
whereF; ,_;(1-a) is the upper10Qx xh percentile oFisher’s Fdistribution.
This leads immediately to a test of the hypothégjs: & =&, versusH,, :§ # §,.

At the a error probability, we rejectt,, in favor of H,; if

(n-1)®
n —

= P{E-E] ' E;1&-¢] < Fo no-a) =1-a=y

T2 =[E-&)' I [E-E ] > Fo no(l-a) =T2,.
Box 5.5

Separate Student t-testbout the eigenspace parameter in

Second Tesor Hy, : A, =A,| 4,=1, /13=/13t932=93d931=9 A48 T ,
(Separately) 7112 :Ali/]lo A2¢A20 A3¢A3 632¢03053f0 Sﬁ 2%6 2

"two-sided tests witlthe test quantiti€'s

t = A —10 0 t, = /12?)[20, t, =
0-1 02

/13?/]30’ = 632?‘9320, o= 4 31?9 3101 = 4 229 21 (5.43)

3 4 5 6

with respect toil, flz, fl3, 6732, 6731, 672_, of type X -BLUUE and their variances.
ty, b, t3, t4, ts @andts are elements of th8tudent t-distribution with n-1 degrees
of freedom

The probability identity
Plostsct =Rco+u,sisco+ih 2 —a=y

relates the error probability of the two-sided test to the confidence leyel
If & is an element of the confidence interead + 4, < f1 < ¢,0 + U4, , the null
hypothesisH, : i = 1, is accepted. We rejeét, if the confidence interval
does not contain .

Box 5.6:
Eigen-inference about the transformed parameters n
Eigen-tests (alternative to the second tests)
Hao - f71=nlj /72=/721 f73=/73j/7 =1 4Jif7 &1 Tn SR
Myt MENGN7 Do 1570 o1 Z 1 ap] F11 b1 EN
"two-sided tests with thiest quantitie’s

= ’71:/710, = /72;’720' = /73,\_,730- = ’74:’7 40 = n 5?’7 50 ¢

0—']1 0—'7 2 J’7 3 0—'74 J’?

_N&hs
63

5 16

)m|

(5.44)

Q

with respect ta7,, 7,, 75, 74, /15 andrj, and their related variances. t,, ts, t4, ts
andtg are elements of th8tudent t-distribution with n-1 degrees of freedom

The probability identity
Plosts+c} =R qd+n,sis ci+if 2 ~a=y

relates the error probability of the two-sided test to the confidence leyel

If /7 is an element of the confidence intereg +7, </ < c,0 +1, , the null
hypothesisH,: 7 = 17, is accepted. We rejeét, if the confidence interval does
not containj. Accordingly, we accept the original null hypotisesbout the
eigenspace components.
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Box 5.7
Multivariate hypothesis tests about thearare-covariance matrix,
Third Tesffor H,,: X, =X,, Hy: I, #X

"unbiased modified likelihood ratio statistit, "
(Giri 1977, Muirhead 1982, Koch 1999, Koch 2001)

6(n-1)/2 Al e s

A, = (ni_ll) (detn— 1B, £5' "2 etrf-3 (- 18, 271 (5.45)
with respect to the sample variance—covarianceimit; of type BIQUUE.
Since our sample size is relatively small we havese the exact

distribution of —2log/\, ,whose upper 5 and 1 percentage points have been
provided byMuirhead (1982, p.360).

Box 5.8

Multivariate hypothesis tests about the eigenspacameter
vector § and the variance-covariance matiy

FourthTestfor H,, : £€=&,, X, =X,, H,,: E#E,0r L #X
"unbiased likelihood ratio statistid., "
(Andersonl984,Muirhead1982)
_eenlzd AW vl y/2 1/ 1% w-1 e o ooas
/\2 “\n ( et(n 1ﬁy20 )1 etl’{—? (n 1ﬂy20 }exp{ E[g &.,o] Zgo[g go]} (5-46)
with respect to the eigenspace components of BypBLUUE and variance-
covariance matrixt, of type BIQUUE andz, | = (1/n)(c’ Tl )
Since our sample size is relatively small we havese the exact distribution of

—-2log/\,, whose upper 5 and 1 percentage points have beeiled by
Muirhead(1982, p.371).



Chapter 6

The analysis of the eigenspace components of theagt rate tensor
in central Mediterranean and Western Europe, 1992200

We have achieved the complete solution to thessitzl inference ogigenspace componerbthe deformation
tensors. The models developed in the last two ensgire closed and practical. The results bringuacdsmean-
ing to the deformation analysis. With these mosascould successfully perform the statistical iefare of the
eigenspace componenisctor and the variance-covariance matrix of @auss-Laplacenormally distributed
observations of a random deformation tensor.

With the new space geodetic techniques, such as @B, SLR and DORIS, three-dimensional positiomsl a
change rates of network stations can be accurdetrmined from the regular measurement campaibithws
acknowledged as an accurate and reliable sourtgasfmation in Earth deformation studies. This fasggests
that the components of deformation measures (ssitheastress or strain tensor, etc.) can be estihfadm the
highly accurate geodetic data and analyzed by meftiwe proper statistical testing procedures. #hihation
velocity diagrams demonstrate relative motions agr&tations, strain rate diagrams show the in-g¢rairscon-
centration rate which is directly connected to I@steess concentration rates and possibly alseitrsc hazard
potentials (Ward, 1994). In strain analysis thepldisements are considered as continuously diffextelet ac-
cording to the surface coordinates. The straindleosmponents determined by means of the positicmahges
of the observation stations can be used for thepatetion of the stress tensors’ components, takittggaccount
the properties of the available materials withia thvestigation area. Therefore, the strain anslyah be con-
sidered as a basis of a dynamic model whereaddhsical deformation analysis is similar to a kia¢immodel
(see, e.gFluigge1972,Meansl1976,Grafarend1977,Brunner, 1979 andAltiner 1999).

The first geodetic deformation strain analysis basedhe geodetic horizontal displacement was plbtisby
Tsuboi(1932), who computed the strain pattern using thézbtntal displacement of control points in the Tang
area of Japan during the period 1900 to 1930, wbdigttains the Tango earthquake of magnitude 7.82Y1
The classic strain calculation methods from geodaiservations (distance, direction etc.) are cbuted to
Frank (1966),Savage and Hasti€1966) andPrescott(1976). Until now, more and more papers are pubtish
dealing with the stress, strain or strain rate deé&ion on the Earth’s surface, suchfagelier (2002),Haines
and Holt(1993),Kahle et al (1995),Kreemer et al(2000),Savage et al(2001),Scherneck et a(2002) and
Shen et al(1996).

The eigenspace components parameters (eigenvaldgsrianipal directions) are of special importanoethie
deformation tensor analysis, for instance, the iptieth of seismic activity. Due to the nonlineanétional rela-
tionship between the eigenvalues, the principadiion and the random tensbrthe variance-covariance of the
eigenspace components is commonly calculated @sfirgt-order approximatedfgelier et al.1982,Soler and
van Gelder1991 andreigl et al.1990). With the benefit of the development of spgeedesy and the continu-
ous observations of the permanent networks inctuttie International GPS ServicGS) Network,Interna-
tional Laser Ranging Service (ILRNgtwork, International VLBI Service for Geodesy and Astroméivs)
Network andnternational DORIS Service (ID8)etwork and their combinatidimternational Terrestrial Refer-
ence FramdITRF) by IERS, we can now derive the strain rates¢e observations and estimate the eigenspace
component parameters of these random tensor samitiiesur developed theory in the last two chaptessich
addresses not only the present-day deformatioerpatut also their continuous change of them.

In this chapter we begin with the discussion oé gfeodynamic setting of the Earth and especiallyséhected
investigated region- the central Mediterranean Afastern Europe. Then the space geodetic observaiens
introduced. Thirdly, the ITRF sites are selected ating to the history and quality of the ITRF realiaa se-
ries, and the related residual velocities of seltdTRF sites are computed. Further, the methodked¥ation
for the two- and three-dimensional geodetic staies are introduced and applied to derive thesénstates
from the residual velocities. In two case studiethtBLUUE and BIQUUE models and hypothesis tests are
applied to the eigenspace components of the twd-tlaree-dimensional strain rate tensor observatiortbe
area of the central Mediterranean and Western By pderived from ITRF92 to ITRF2000 series stgbiasi-
tions and velocities in Sections 6.6.and 6.7. Thetedlinear hypothesis testas documented large confidence
regions for the eigenspace components, namigignvalues and eigendirectioisased upon real measurement
configurations. They lead to the statem&nbe cautiousvith data of type extension and contraction ad a®l
with the orientation of principal stretches.
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6.1 Geodynamic setting of the investigated region

Planet Earth is a dynamic system that evolved withiinbillion years and continues this evolutiorddpends on
the way how heat "the geological lifeblood of planetss$ transferred out of the cooling Earth by theroti-
vection (hot stuff rises). Thermal convection cauglate tectonics: plates of the earth's surfaceemelatively
to each other at a few mm/yr, which causes earttegjasolcanoes, mountain building at plate boumrdari\s
the Earth’s most important tectonic process, platddion was first quantitatively described in thelgdr960s.
Conventional relative plate motion models are detifrom combining rates of plate motion, inferreshf mag-
netic anomalies at mid ocean ridges, with directioh plate motion, inferred from the azimuths @sform
faults, and earthquake slip vectors at plate baries. These data are systematically invertedetn ya global
model of the geologically “instantaneous” (coverthg past few million years) motion between platsch a
model is described by a set of angular velocitiagddr vectors) specifying the motion of each plate te arbi-
trarily fixed plate. The first plate motion modelsere presented bilinster and Jordan(1978) andChase
(1978). Many new high-quality plate motion modedséa become available since the publications ofetinesd-
els. The new data have been used to determine iegrgiobal models, for exampMUVEL-1 (DeMets et al.
(1990), Argus and Gordori991) and its successHiJVEL-1A(DeMets et al1994). These models can explain
the large-scale features of plate kinematics. Mdgformations only take place in the comparativedyrow
zones near the plate boundaries. Consequentlyga taumber of intense earthquakes occur near #ogsss. On
the other hand, there is a low level of seismitityhe interior of plates. Figure 6.1 shows thermaries of the
major plates and the tectonic activity of the Ed@hvidson, Reed and Dav2902).

EURASIAN
PLATE

NORTH,
AMERICAN.
PLATE ™

JUANDE - Pl L
FUCA —
PLATE ! i o

ATLANTIE T N i 5 o o pifie .| OCEAN
; OCEAN. 5 = A b N PLATE
.

Fpﬂﬂl;PEB
A
pACiFIc  SOS08 4

PLATE

15
5

1
T eAciFc A .

i OCEAN ATLANTIC -
DCEAN

ANTARCTIC
PLATE

EET Spreading ridge =
{cut by transform fautts) Transform faull  +  Earlhquake
et Subduction zone . Active volcano

Figure 6.1.Boundaries of the major plates and the tectoniwiacbf the Earth Davidson, Reed & Davig002)

From Figure 6.1 we can see that the recent magoriee processes occur within the large-scale katem
framework of active seafloor spreading (divergerioedhe Atlantic Ocean and the African—Eurasianvewn
gence (subduction) boundary in the Mediterranear Jpreading rate in the South Atlantic (~ 40 mm/yr)
higher than that of the North Atlantic (~ 20 mm/igads to a gradual counterclockwise rotation ef Alfrican
plate, resulting in a NNW-directed push against Eiasavhich in turn leads to a lithospheric shorgnof 5-6
mm/yr, increasing to 40 mm/yr in active subductrmmes Argus et al.1989). With NW-SE-oriented spreading
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in the North Atlantic, the whole region is expectede under compression, particularly the Meditegan area.
It is widely recognized that the Mediterranean ang@esents the collision zone between the Afriseatfian

and Eurasian plates, but the deformation pattethisfregion is characterized by a complex spave-tiistribu-

tion of compressional and tensional events. The@ethlcanoes and earthquakes in this region shadeetly a

high seismic activity due to relatively strong et forces that govern the compression zone. M@

widespread intraplate seismicity occurs in theargihich illustrates that the plate collision zasecomplex

and not sharply defined.

Therefore we would choose the Western European atitdfranean areas to perform the statistical arsabf
the eigenspace components of two- and three-dimealsstrain rate tensor observations.

As pointed out byGrafarend and Voosogh{2003), the European and Mediterranean area,ds/kras an ex-
traordinary natural laboratory for the study ofssabtectonic processes. This area is geologicadlgphysically,
and geodetically, one of the best-studied regianshe Earth’s surface. The research interest encesepahe
past 100 years and consequently a huge numbetbti€ations exists addressing local and regionabgeami-
cal processes. A list of sample references arem»dded in some papers, such lsigKenzie(1970),Cross et
al. (1987),Jackson and Mckenzig988), Argus et al.(1989), Smith et al.(1990), Castellarin et al.(1992),
Mueller et al.(1992),James and Lambe(1993),Ward (1994),Reilinger et al.(1997a, b)Clarke et al.(1998),
Kahle et al(1998), DeMets and Dixor(1999), Caporali et al.(2001). More recently, the present-day crustal
motions in central Mediterranean area and in Wadterrope, are studied #ynzidei et al(2001),Devotiet al
(20024, b)Grenerczy(2002),Caporali (2003a, b)Jimenez-Munt et a(2003) andNocquet and Calai$2003)
with the newly developed continuous observatioradaim space geodetic networks, such as permanest G
networks.

The European and Mediterranean area can be dividedhiree main subregions with distinct geodynafeé
tures, namely Western Europe, Northern Europe l@ditpine-Mediterranean sub-regions. Based on plaees
geodetic observations history (10 or more yearsywiidocus on the behaviour of significant actigeformation

in the North of the Western Mediterranean with ee$pto Europe, i.e. two of the subregions, Alpine-
Mediterranean and Western Europe. Within Western fgyraveak seismic activity is observed. The area is
characterized as a field of compressional tectorficgeneralized stress map of Europduéllier et al. 1992)
indicates a generally NW-SE uniform orientation flle maximum compressive horizontal principal stiiess
Western Europe. The Alpine-Mediterranean regionksa broad transformation zone between the African,
Arabian, and Eurasian plates. The region is expectdzk largely under compression. It is charactdriae a
region of intensive seismic activity. The tectoniolation of this region is strongly affected by thenvergence

of the microplates\(oosoghi2000). In order to get reliable observation ondhgoing tectonic processes in this
area we should select the sites (see ChaptertaBate not affected by local geophysical phenomena

6.2 Space geodetic data

According toF.R. Helmert(1880), the classic assignment of geodesy isuhgeging and mapping of the earth’s
surface and also of the gravitational field, endardpy the requirements of accuracy. Space geodeggodesy
by means of satellites, moon, planets, radio stats quasars, which has been developed since ert.186
present there are four widely used techniques atesmeodesyery Long Baseline Interferomety/LBI),
Satellite Laser Rangin(SLR), theGlobal Positing SystefGPS) and th®oppler Orbitography and Radioposi-
tioning Integrated Satellite Systef@ORIS). The strengths of the different observiaghniques include, for
example: VLBI has relationship to the inertial refece frame; SLR has relationship to the geocentertiza
Earth’s gravity field; GPS is a highly operationgstem for the densification of the terrestrial refece frame;
and DORIS has homogeneous global distribution efithcking stations.

These techniques combine precise satellite-basédgtimanging, and orbit estimation to measure th&itpns
and velocities of geodetic sites to centimeter @attimeter/yr or better accuracy. In the past ldrg¢he scope
and accuracy of space geodetic techniques has deghagreatly. In some regions geodetic measurenagats
probably more accurate than conventional globakeptaotion models, which gave the first in-situ meaments
of plate motion Beutler 2000). The present accuracy of geodetic VLBI hawedrat+5-20 mm for session
coordinates, the annual coordinate and velocityiaay ist+1-4mm andt0.1-1 mm/ yr, respectivelySchuh et
al. 2002). The new generation of SLR ranging accurasyréached mm level, which supports maintenance of a
centimenter accuracy position. Nowadays the estimatccuracy form ten years of accurate global ShEeo
vations ist6 mm for coordinates ant? mm/year for the velocitie®\Ggermann et a2001). With geodetic GPS
techniques the station coordinates can be detedmiith achievable accuracy, in genetdlcm and an annual
velocity accuracy can be reached of abtiliimm/yr. There are two services of DORIS: in opersl geodesy
with dedicated location beacons, any point on Eatrthny time can be determined with abt2® cm accuracy
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after a one-day measurement time aft@ cm after 5 days; the permanent beacon netwdikedg high preci-
sion 3D coordinates for geodetic and geodynamidiGgjpns. Positions and motions are availableetids than
+1cm andtlmml/yr, respectivelySeebe2003).

With the capacity of accuracy and the wide distidins of stations on the Earth, space geodetic tgaba pro-
vide measurements that can be used to infer crdefafmation over global scales and can be compaitd
predictions from conventional global plate motiondals. It is interesting to explore cases wheraisignt
differences exist, to determine whether they réflexcertainties and errors in one or both appraaabreinstead
reflect real differences in plate motions over alifnt scales. However, space geodetic velocitidgmibound-
ary zones often differ from the predictions of platotion models because geodetic velocities ofewayears
include the effects of transient elastic defornratissociated with the cycle of strain accumulagind release in
plate boundary earthquak8avagel983,Scholz1990), which is averaged out over the millionyedrs used in
global plate motion models. There are many compasisdout the different approaches, for instabrewes
(1999) derived arctual Plate Kinematic and Deformation Mo@aPKIM) from present day geodetic observa-
tions, such as VLBI, SLR and GPS. A series of sucldaimohas been developed. In the latest version, AP-
KIM2000, about 280 site velocities were used tingstie 12 plate rotation vectors. In general, theeagent
between APKIM2000 and NNR-NUVEL-1AA¢gus and Gordori991,DeMets et al1990) is very high. Sig-
nificant differences, however, are visible in platindary zones (Figure 6.2), where other platerkitic mod-
els based on the 405 ITRF 2000 geodetic site vedsditre also illustratedd(ewesand Angermani2001).
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Figure 6.2. Station motions derived from the APKIM2000 modetomparison with ITRF2000 and the NNR
NUVEL-1A model Drewesand Angermani2001)

Eventually, however, deformation becomes slow affflisé enough that it is more usefully regardedraisi
plate. Space geodesy is ideal for addressing $kisei because it can measure motions of a few midyn
result, there has been considerable interest imguspace geodesy to quantify the rigidity of thgamplates and
investigate how deviations from plate rigidity gitige to intraplate deformations and earthquakhs.first step
to estimate the rigidity of a plate using spaceetageodesy is to find the motions of sites withjrand to com-
pare these motions to those predicted, assuminghbalate is rigid and so can be described byngles Euler
vector. The next step is to use geodetic velocitiesstimate the intraplate strain rate fieldsanous areas, and
compare it to present-day seismicity, paleoseidmiand geologic data. This is in principle strafghward; the
strain field can be derived by forming least-sqaagstimates of the velocity gradient in variousiorg. The
studies with GPS have not yet detected intraplagénsaccumulation, but show that intraplate st@écumula-
tion rates are slow, which yields useful insighbiseismic hazards. Nonetheless, given the ramjdying
number of continuous GPS sites and the longer sp@$S data, it seems likely that the strain aadation
signal will soon “climb” above the noise and pravid valuable signal for investigation of intraplégetonics
(Stein and Sell2002).

Space geodetic data greatly simplify identificataord study of continental microplates. The datasaffcient
to estimate an Euler vector describing the micodat®tion relative to the major plates. During thst few
years, precision and accuracy of the space geddelgiques have been improved, and special effaxte been
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dedicated to the combination of their results, saghthose produced by the IERS (International Eaotiati®n
Service) and IGS (International GPS Service), whidh fortunately dense and accurate in Europe. Maag
stations in this region are fiducial stations ofsl@nd IERS global networks, and consequently thokitrg his-
tory is remarkable for quality and quantity of deBince the longer history of IERS and with beniiit combi-
nation of most of the space geodetic techniquesyill@eview it and choose the appreciated sitesoiar study
regions.

6.3 The selection of ITRF Sites and data preparatio

Before we begin to choose from the ITRF series tesauid the stations in the studied regions, letake a
review of the history of IERS and the realizatiod TRF.

6.3.1 The history of ITRF

The IERS was established as the International EarthtiBo Service in 1987 by the International Astnoncal
Union and the International Union of Geodesy an@pbgsics and it began operation on 1 January 1988.
2003 it was renamed laternational Earth Rotation and Reference Systema@gIERS 2003). The primary
objectives of the IERS are to serve the astronomgmddetic and geophysical communities by providhmng
International Celestial Reference System (ICRS)itmtkalization, the International Celestial Refese Frame
(ICRF); the International Terrestrial Reference 8yst(ITRS) and its realization, the International réstrial
Reference Frame (ITRF); Earth orientation parameggsired to study earth orientation variations snttans-
form between the ICRF and the ITRF; Geophysical taiaterpret time/space variations in the ICRF, FTét
earth orientation parameters, and model such i@mmi@and the standards, constants and modelso@even-
tions) encouraging international adherence.

The Conventional Terrestrial Reference System (CTB&pblished and maintained by the IERS, and nearly
exclusively used for today’s scientific and praatipurposes is the International Terrestrial RefezeBystem
(ITRS), which constitutes a set of prescriptions aadventions together with the modelling requiredléfine
origin, scale, orientation and time evolution d€anventional Terrestrial Reference System (CTRS).|TIRS

is an ideal reference system, as defined byW&G Resolution No. 2dopted in Vienna, 1991. The system is
realised by the International Terrestrial RefereR@me(ITRF) based upon estimated three-dimensional coor-
dinates and velocities of a set of stations obsebye/LBI, LLR, GPS SLR andDORIS The ITRS can be con-
nected to the International Celestial ReferencaeBy8CRS)by use of the IERS Earth Orientation Parameters
(EOP).The ITRS is defined as follows (McCarthy 2003)

— ltis geocentric, the center of mass being defiieedhe whole Earth, including oceans and atmosphere

— The unit of length is the meter (SI). This scaledasistent with the TCG time coordinate for a geecen
tric local frame, in agreement with IAU and IUG®@1) resolutions. This is obtained by appropriate
relativistic modeling;

— Its orientation was initially given by the Bureaudrnational de I'Heure (BIH) orientation at 1984.0

— The time evolution of the orientation is ensuredulsyng a no-net-rotation condition with regards to
horizontal tectonic motions over the whole Earth.

Realizations of the ITRS are produced by the IERBRS Product Center (ITRS-PC) under the name Interna-
tional Terrestrial Reference Frame (ITRF). The curprntedure is to combine individual TRF solutionsneo
puted by IERS analysis centers using observatiorspate geodesy techniques: VLBI, LLR, SLR, GPS and
DORIS. These individual ITRF solutions currentlyntain 3-dimensional Cartesian station positions aidci-

ties together with full variance-covariance matic€urrently, ITRF solutions are published nearlgwadly by

the ITRS-PC in the Technical Notes Bbucher et al.1999). The numbers (yy) following the designatioRF
specify the last year whose data were used indimedtion of the frame. Hence ITRF97 designatesrdmaé of
station positions and velocities constructed in9l@8ing all of the IERS data available until 1998.

Until now, 10 successive realizations of the ITRiéhaeen published, starting with ITRF88 and endirityy w
ITRF2000, each of which superseded its predecessor.

From ITRF88 till ITRF93, the ITRF Datum Definition $simmarized as follows:

— Origin and Scale: defined by an average of selestdrl solutions;

— Orientation: defined by successive alignment siBE&87 whose orientation was aligned to the BIH
EOP series. Note that the ITRF93 orientation andhttsswere again realigned to the IERS EOP series;

— Orientation Time Evolution: No global velocity fieldas estimated for ITRF88 and ITRF89 and so the
AMO-2 model of (Minster and Jordan, 1978) was recmnded. Starting with ITRF91 and till ITRF93,
combined velocity fields were estimated. The ITRF8igrdation rate was aligned to that of the NNR-
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NUVEL-1 model, and ITRF92 to NNR-NUVEL-1AAfgus and Gordon1991), while ITRF93 was
aligned to the IERS EOP series.

Since the ITRF94, full variance-covariance matrigethe individual solutions incorporated in the FRombi-
nation have been used. At that time, the ITRF94rdatas achieved as followBdgucher et al.1996):

Origin: defined by a weighted mean of some SLR aR& Golutions;

Scale: defined by a weighted mean of VLBI, SLR an&GBlutions, corrected by 0.7 ppb to meet the
IUGG and IAU requirement to be in the TCG (Geodernfioordinate Time) time-frame instead of TT

(Terrestrial Time) used by the analysis centers;

Orientation: aligned to the ITRF92;

Orientation time evolution: aligned the velocitglfi to the model NNR-NUVEL-1A, over the 7 rates of

the transformation parameters.

The ITRF96 was then aligned to the ITRF94, and the BRI the ITRF96 using the 14 transformation pa-
rametersBoucher et a] 1998; 1999).

The ITRF network has improved with time in termsha humber of sites and collocations as well ag tisi
tribution over the globe. The ITRF88 network, havatgput 100 sites and 22 collocations (VLBI/SLR/LLR),
and the ITRF2000 network containing about 500 site 101 collocations (VLBI/SLR/GPS/DORIS), see Fig-
ure 6.3 McCarthy2003). With the improvements of the analysiatetyy by the IERS Analysis Centers and
the ITRF combination the ITRF position and velocitggqisions have also improved with time.
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Figure 6.3.The ITRF88 (left) and ITRF2000 (right)sites and ocdited techniques. (McCarthy 2003)
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As the current Reference Realization of the ITR& ITRF2000 is intended to be a standard solutiorgéo-
referencing and all Earth science applications.dditaon to primary core stations observed by VLBLR,
SLR, GPS and DORIS, the ITRF2000 is densified byorsgi GPS networks in Alaska, Antarctica, Asia,
Europe, North and South America, and the Pacific. ild&vidual solutions used in the ITRF2000 combioati
are generated by the IERS analysis centers usingviadite, loose or minimum constraints. In terms atuch
definition, the ITRF2000 is characterized by thédwing propertiesNlcCarthy2003)

— the scale is realized by setting to zero the saal scale rate parameters between ITRF2000 and a
weighted average of VLBI and most consistent SLRt&wig. Unlike the ITRF97 scale expressed in the
TCG-frame, that of the ITRF2000 is expressed in thdraimne;

— the origin is realized by setting to zero the ttaimsn components and their rates between ITRF2000
and a weighted average of most consistent SLR eokti

— the orientation is aligned to that of the ITRF97.887.0 and its rate is aligned, conventionallythtat
of the geological model NNR-NUVEL-1A. This is an ingit application of the no-net-rotation condi-
tion, in agreement with the ITRS definition. The ITRIPO orientation and its rate were established us-
ing a selection of ITRF sites with high geodeticlgyasatisfying the following criteria:

* continuous observation for at least 3 years;

* locations far from plate boundaries and deformioges;

* velocity accuracy (as a result of the ITRF2000 covation) better thatt3 mm/y;
* velocity residuals less that8 mm/y for at least 3 different solutions.

The ITRF2000 results show significant disagreemett trie geological model NNR-NUVEL-1A in terms of
relative plate motionsAltamimi et al. 2002). Although the ITRF2000 orientation rate atiggmt to NNR-
NUVEL-1A is ensured at th&l mm/y level, regional site velocity differencesdvaeen the two may excee
mm/y. Meanwhile it should be emphasized that thi#§erences do not at all disrupt the internal d¢stesicy of
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the ITRF2000, simply because the alignment definedTRF2000 orientation rate and nothing more. \uee,
angular velocities of tectonic plates which woulel éstimated using ITRF2000 velocities may signifilgan
differ from those predicted by the NNR-NUVEL-1A madenore details can be seen in Figure 6.3.

6.3.2 The realization of ITRF

The construction of ITRF is based on the combinatifosets of station coordinates (SSCs) and veleoitee
rived from observations of space geodetic techesgauch as VLBI, SLR, and LLR by various analysisersnt
In 1991, the IERS added GPS to this list of techeg and in 1994, it added DORIS. For the deterioinaf a
station’s position in an ITRF, the station is assijto a specific tectonic plate. The point positibthe station
at time,t, on the surface of the solid earth, is expressdBa@ucher and Altimini993):

X(t):Xo+Vo(t_to)+iZMi(t) (6.1)
where
AX.: corrections to the various time changing effects
X, : position at epoch,;
V, : velocity at epoclt,;
t, : initial reference epoch (i.e. 1988.0).

The coordinates of sites on the earth’s surfaocglglohange (by up to 10cm per year,or so) due ¢onlotion of
the tectonic plates — a component which is fanyliknown as “continental drift”. The velocity, should be
expressed as

VO = Vplate +V ice +V r (62)
where

Ve 1S the horizontal velocity due to plate tectomiotion, which can be described by a geophysical
and geological angular velocity vectax,, (a Cartesian rotation vector with componeaits,
w,, w,) of the absolute plate motion models, such asrnbiee recent NNR-NUVEL-1A,;

V.. : is the vertical velocity due to post gldcibound, to be computed from models such as ICE-

4QPeltier 1995);
V. : isthe residual velocity.

In the data analysiXo, andV, should be estimated parameters. When adjustirajrggers, in particular veloci-
ties, the IERS orientation should be kept at atlafys, which means to ensure the alignment at serefe epoch
and the time evolution through a no net rotationdition with regards to horizontal tectonic motiover the
whole Earth.

6.3.3. The selection of ITRF series resultad the stations

With the review of the history of IERS and the ization of ITRF we will further discuss the seleaotof ITRF
series results and the stations in our studieadnegi

Prior to ITRF91, no velocity field had been deriatheAMO-2 mode(Minister & Jordan1978) is applied to
account for the time evolution of ITRS. ITRF91 whes first realization of ITRS to derive a globalaaty field
by combining site velocities estimated by SLR arldBVanalysis centresBpoucher and Altamimi993). To
ensure the condition of no-net-rotation of ITRShaigéspect to the earth's crust, NNR-NUVEL1 wasctetbas
the reference motion model of ITRF92. NNR-NUVELaihorizontal motion model only. For the consistenc
of the three-dimensional nature of ITRS, the vattielocity is set to zero with an assumed errot afm/year
(Boucher and Altamimi993). The ITRF is a dynamic datum which was intizall in ITRF88 meaning that
every year there is a change. The change betwd®RIAT and ITRF92 was less than 2cm, and as morevabse
tion became available and computational technigmesoved, revised reference systems were produgmtbr-
ally on an annual basis (ITRF93, ITRF94, ITRFO&RIFB7 and ITRF2000). However, the change betweandt
subsequent ITRF's is only of the order of a cogfleentimeters. To the early ITRF realizations ¢hare some
facts that should be considered in our selection:

— The ITRF92 site velocities seem to be more realigith respect to ITRF91Bpucher and Altamini
1993) and ITRF93 is consistent with NNR-NUVEL-1A;.

— ITRF91 has less stations than ITRF92 and the fatigweries;

— The early realizations of ITRF are in lower accyrdor instance, the standard formal error of etati
coordinates: O ;gegg < £20CM, O 1ppq, < £ 10c @and SINCED 10, < £5cM. The standard formal error of
station velocitiesSo,rree; = Oyirreoz:
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— Early ITRFs accommodate the horizontal velocitysivdés on plate boundaries by assigning a larger a-
priori standard deviation:(0 cm/year) to the site’s velocity than for sitesdted on the rigid part of a
tectonic plate£3 mm/year) Boucher et al1994);

— Although the station coordinates are changed betwi&éerent epochs, there is no difference between
the velocity field of ITRF92 at epoch 88.0 and dp&894.0;

— Nonetheless, these are small differences which dstraie the excellent reliability of the ITRF vatgc
fields and the uniform motion hypothesis even avéirly long period of time.

In order to fulfil the quality requirements (in damnination of successful strain calculation in VdastEurope
and central Mediterranean our study), the ITRF sites are selected withhhigodetic quality, satisfying the
following criteria:

* itis a primary permanent station after the statslaf IERS since 1991 or collocated with sev-

eral observational techniques

* has continuous observation for at least 3 yeai99?;

e with station coordinate accuracy better th&8mm;

¢ and velocity accuracy better tha8 mmly.

Therefore we have chosen the 8 primary stationsoaedsecondary station (Noto) with all collocatddBVand
SLR techniques from ITRF92 and their following serin Western Europe and central Mediterranearuin o
study, which are listed in Table 6.1

Table 6.1Catalogue of selected IERS Sites based on ITRF&2iiope

DOVES NB. SI TE NAME TECH. |ID. Country Long. Lat. Pl ate (*)
d m d m
10002S001 GRASSE SLR 7835 France 6 55 43 45 EURA P C
10402S002 ONSALA VLBl 7213 Sweden 11 55 57 24 EURA P C
11001S002 GRAZ SLR 7839 Austri a 15 30 47 04 EURA P C
12711S001 BOLOGNA VLBI 7230 Italy 11 21 44 29 EURA P C
12717S001 NOTO VLBI 7547 Italy 14 59 36 53 AFRC/EURA S C
12734S001 MATERA SLR 7939 Italy 16 37 40 42 EURA PC
13407S010 MADRI D VLBI 1565 Spai n 355 44 40 26 EURA PC
14001S001 ZI MVERWALD SLR 7810 Swi t zer | and 7 28 46 53 EURA PC
14201S004 WETTZELL VLBl 7224 Ger many 12 53 49 09 EURA P C
(*) P: Primary S: Secondary C. Coll ocation

6.3.4 The computation of residual velocitiesf ITRF stations

Since we need the residual velocities in deterranadf the strain rate, the published ITRF velodfyshould
be converted to residual velociti&s with respect to e.g. the Eurasian fixed plateddytrsicting the rigid motion
of Eurasia, which is computed by the angular v&joeectorm,, of the Eurasian plate in the absolute plate mo-
tion models of every ITRF realizations:
Vo 0 Z -Y| w
=V,—owxX =V, |—-|-Z2 0 X || w,|, (6.3)
Vs Y -X0 ||l

Vr = VO _V plate

It should be noted that although the station Nstim¢ated on the African plate, the motion of Materas recog-
nized as neither purely Euro-Asiatic nor Africaior Ehe calculation of strain rate filed in the stdel region we
have to compute the residual velocity with respet¢he same rigid plate, e.g. Eurasia plate.

In the three-dimensional case the vertical velodiig to post glacial rebound should be consideratEriving
the residual velocitie¥, :

on 0 Z-Y Wy VXice

Vice:VO_(DYYxX_V ice: V‘O -1-20 X (*)Y - VYice' (64)
A2 Y -XO0 || w, V.

Zice

Vr = VO -V plate
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In ITRF92 the orientation time evolution was ensuby aligning the corresponding velocity fields NOIR-
NUVEL-1 model Argus and Gordori991,DeMets et al1990). So for ITRF92p»,, corresponds convention-
ally to the angular velocity of the Eurasian pliat&NR-NUVEL-1 model.

More recently, the geophysical model NNR-NUVEL-1BeMets et al1994) has been used as a reference in the
ITRF93 velocity field computation. It should be edtthat there is a rotation rate between the ITRFEISCity

field and the NNR-NUVEL-1A modelBoucher et g11994). Consequently for ITRF9&,, corresponds to the
angular velocity of the Eurasian plate in the NNRANEL-1A model to which we added the rotation rate b
tween the ITRF93 velocity field and the NNR-NUVEK-Inodel. As time evolution of ITRF94 is consistent
with the model NNR-NUVEL-1A Boucher et gl 1996), thuse,, corresponds conventionally to the angular
velocity of the Eurasian plate in this model.

The reference frame definition (origin, scale, otédion and time evolution) of the ITRF96 is acléévin such a
way that ITRF96 is in the same system as ITREuUCher et al1998). Consequentlyy,, is the same as for
ITRF94. This same statement is also valid for ITRF9

For the first time ITRF2000 combines individualgans that are free from any plate motion modsl.okigin
is defined by a weighted average of most consiss&mR solutions. Its scale is defined by most cdasisSLR
and VLBI solutions. Its orientation is aligned TRF97 at epoch 1997.0 and its orientation rat®Wad, conven-
tionally, that of NNR-NUVEL-1A model. The ITRF200&Ilocity field was used to estimate angular velesit
of 6 major plates, including Eurasia, showing digant disagreement with NNR-NUVEL-1A predictioritis
therefore recommended fam,, to use the components of the Eurasian angularcigl@stimated from
ITRF2000 velocities of 19 European sites with higgeodetic quality. For more details, s&gamimi et al.
(2002). Table 6.2 summarizes the component vaities, :

Table 6.2 The estimation ofo,,,

ITRF wy (masly) wy (masly) wz (Masly)
92 0.21 0.52 -0.68
93 0.32 0.78 -0.67
94 0.20 0.50 -0.65
96 0.20 0.50 -0.65
97 0.20 0.50 -0.65

2000 0.081 0.490 -0.792

In the two-dimensional case we need the surfacez@rdal) residual velocities. Since the residugbeity from
(6.3) is relatively small they can approximatelytlensformed from the global geocentric Cartesiaordinate
system to the local geodetic systeéde¢bel003) using

Ve, —-sinL cosL 0 ||V
Vy, |=| —sinBcosL - sinB sirL  co8|| \, (6.5)
Vi, cosBcod  co8 sih  siB||V,

where B, L) are the geodetic ellipsoidal coordinate of a used ITRF site, which are converted from the
global Cartesian coordinates of the ITRF sitesYXZ) with respect to the GRS80 reference ellipsdide local
geodetic system is defined as followsaticek and Krakiwsky986): it is topocentric (T) ; thg-axis is the
outward ellipsoid normal passing through T; thexis is directed towardgeodetic eastthe N-axis is directed
towardsgeodetic north Therefore two-dimensional surface (horizontalloeies are the first two elements of

Ve i)

Based on the procedures ((6.3) and (6.5) ) derama/e we can compute the horizontal residual vedscof
every ITRF realizations with respect to the "Euwaadixed’ plate motion model (see Table 6.3). They listed
in Table 6.3 together with the ITRF92 to ITRF2088ocity solutions of the selected stations in teatral
Mediterranean and Western Europe. The residuatitigde will be used to compute the strain ratethin next
section. Therefore, together with the principadistrrates for every epoch they are also illustratethe next
section.

For the three-dimensional case we would like tohagpectly the three dimensional Cartesian residigdoci-
ties in deriving the strain rate tensor for the s@xies of ITRF realizations in the selected suiwoek including
four sites : 1 -4 -8 - 9 (Grasse - Bologna - @ienwald - Wettzell). The three dimensional Cartesisidual
velocities of the four selected sites are computaded on (6.4) and listed in Table 6.4.
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Table 6.3 Horizontal station velocities

Velocity Resal velocity Velocity Residualegty Velocity Residual velocity
Site (mm/yr) (mmlyr) (mmlyr) (mmlyr) (mmlyr) (mmlyr)
East North asE North East North Eastorth East North East rilo
ITRF9 ITRF93 ITRF94
Grasse 20.52 12.05 -0.492.99 25.77 19.99 2.02.73 20.72 12.76 0.62 -1.43
Onsala 16.12 15.20 -3.30.97 21.05 23.11 -2.44.60 16.95 13.88 -1.69 0.26
Graz 22.04 16.37 0. 2.76 28.75 22.78 2.9.21 22.15 14.88 1.06 1.B6
Bologna 22.23 17.23 0.42.95 26.37 25.21 141623 | 22.38 16.14 1.60 247
Noto 2091 21.91 €.18.20 25.62 29.06 -0.48.35 20.88 19.39 -1.19  6.27
Matera 22.62 19.37 -0.46.98 28.78 26.88 2.44.65 2444 16.92 243 4.0
Madrid 19.71 16.82 0.23.44 21.09 25.49 0.09.73 18.68 16.12 0.06 0.44
Zimmerwald| 21.66 16.90 1.04.95 2594 25.15 235 2.5619.70 16.32 -0.02 201
Wettzell 19.46 15.77 -1.811.69 2424 2341 -0.63.14 19.66 14.16 -0.68 0.p9
ITRF96 ITRF97 RF2000
Grasse 20.21 14.32 0.10.07 19.79 13.06 -0.31.33 20.34 14.71 -0.35 -0.p1
Osala 17.34 1311 -1.30.51 17.19 13.18 -1.4%).44 17.25 1359 -0.66 -0.69
Graz 2213 14.29 1.04.27 21.89 13.46 0.80.43 22.14 14.46 0.72 0.55
Bologna 23.83 15.14 3.04.46 23.12 15.32 2.34.64 23.36 16.14 2.03 1.83
Noto 22.38 19.09 0.36.97 2196 17.73 -0.11.61 2128 18.05 -2.12 4.07
Matera 23.82 18.52 1.85.70 2353 17.36 1.52.55 23.70 18.09 0.71 432
Madrid 19.65 15.05 1.02.63 19.13 14.62 0.51.06 18.98 1568 -0.58 0.40
Zimmerwald| 18.60 15.01 -1.13 7. 19.04 13.96 -0.68 -0.35 20.14 15.07 0.13 0.39
Wettzell 20.51 13.37 0.170.10 20.19 1341 -0.16.06 20.27 14.37 -0.17 0.18
Table 6.4 Three-dimensional Cartesian station velocities
. Velocity Residual velocity Velocity Residual velocity
Site (mm/yr) (mm/yr) (mm/yr) (mm/yr)
Vy W \, VK A\ ¥ Vi, Vy W A VK A\ ¥ Vi,
ITRF92 ITRF93
Grasse -17.90 18.50 1.80 -5.08 -1.119.09 -17.80 23.80 13.50 0.61 2.12.96
Bologna -18.40 18,90 10.20 -4.24 -0.380.02 -26.30 2150 14.30 -6.49 0.11.14
Zimmerwald| -16.40 19.70 10.10 -2.93  0.6€0.16 -21.10 2340 17.70 -1.74 2.12.20
Wettzell -16.90 16.10 9.20 -1.81 -2.270.04 -25.20 19.10 12.30 -4.02 -1.59.67
ITRF94 ITRF96
Grasse -12.10 19.40 8.40 0.17 50.62.03 -12.00 1890 10.60 0.27 0.18.17
Bologna -18.70 19.00 8.40 -5.14 70.51.38 -14.20 2140 11.80 -0.64 2.92.02
Zimmerwald| -13.50 18.10 12.10 -0.61 -0.12.28 -11.10 17.30 12.60 1.79 -0.92.78
Wettzell -16.90 16.30 6.80 -2.46  61.2-2.05 -15.90 17.40 7.00 -1.46 €0.1-1.85
ITRF97 ITRF2000
Grasse -11.80 18.50 9.00 0.47 -0.251.43 -13.10 18,90 10.10 -0.54 20.40.57
Bologna -18.00 19.90 8.10 -4.44  1.471.68 -18.70  20.00 8.60 -4.60 121. -1.64
Zimmerwald| -11.50 17.70 10.70 1.39 -0.501.75 -13.80 18.50 10.00 -0.61 50.0-0.07
Wettzell -15.80 17.10 7.10 -1.36  -0.461.75 -15.70 17.20 8.70 -0.72 33. -0.62
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6.4 The computation of geodetic strain rate tensor

With the prepared residual velocity of every ITR¥igs realization in the central Mediterranean Whebstern
Europe we can now calculate and analyse the statentensor in the two- and three-dimensional gétiethe

methods introduced in the following sections.

6.4.1 The two-dimensional geodetic stain mtcase

The main objective of this study is to analyze #igenspace component parameters of the two-dimaaidsio
strain rate tensor, which are derived from the tiraensional horizontal residual velocities on thkested sites

of the ITRF92 to ITRF 2000.

When we select geodetic sites as vertices of copelpgons we can evaluate the strain tensor optiggon by
using the horizontal velocities. LBty V] be the known horizontal residual velocity vect®i5] of the poly-
gon vertex I’ along the East and North directions on the |lggpabdetic coordinate system; the following ap-

proximation can be writterDevotiet al. 2002a)

V. AV,
{VEHVEB} 9E  oN {AE}
Vi | [Va | [0Vy 0V, [[ON, [

9E  ON

<

(6.6)

VEN‘ :VENB +L X gy

where[Vg, V, ]' is the unknown velocity vector for a referenceintl point B, L the velocity gradient tensor,
[AE, AN]T', the coordinate difference between the gditarid the reference poinB*, computed, respectively, as
parallel and meridian arc length. For the infiriitesl strain rate we have the strain rate terer(L +L")/2
and the rotation rate tensds= (L -L")/2 (Dermanis2001).

The approximation assumes a linear variation ofvilecity components with respect to their coortbrdiffer-
ences. This holds true as long as the polygonpraperly chosen, not only in terms of area, bub alsexpected
tectonic behavior. The constant space gradientsgsson is just a first order approximation of tinederlying
tectonic settingSavage et al(2001) give the formulation for estimating straind rotation rates in a spherical
coordinate system. The spherical solution givegyimficantly different results compared to the @aian ap-
proximation (6.6) for networks, such as a triangatg which is several hundred kilometres in ayext

Since the continuous of velocity fiel, is unknown, but only the discrete values at poiiitare known, we
have to use an interpolation method to obtain #lecity field V, at any other point. There are many interpola-
tion methods, such a®érmanis2001): (a)Finite Element Method (FEM)inear interpolation within each
triangle Grafarend1986,Straub1996); (b)Interpolation using basis functiorfe.g.Haines and Holt1993) and
(c) Collocation (minimum norm interpolation with infinite basisrfctions) (e.gStraub and Kahle997). Here
we will apply the Finite Element Method to do tlimehr interpolation within each triangle, whichoigtimally
generated by thBelaunay-triangulation methodmong our selected 9 stations. The characteristibelaunay-
triangulation are that: (1) no triangle side is loytanother; and (2) no points are contained inathgr triangle's
circumscribed circle. The Delaunay-triangulatioroaf selected ITRF site is plotted in Figure 6.4.

For every triangle we select the centroid as tifereace point, from which it is very easy to congptlte veloc-
ity gradient tensor at the centroid in a very ginéfiorward way: in fact, dealing with three velgcitectors, the
problem is solved by inverting a system of lineguations with six unknowns (four tensor componehis two
velocity components):

Ve,
_VE 1 - VNB
Vl 10AE AN, 0 O | av,
b 01 0 0 AEAN | B
Ve, |_|1 0DE, AN, 0 0O | v, 6.7)
Vi, 01 0 0 AE AN,| 5N '
V. 1 0 AE;AN, O 0 (v,
V3 101 0 0 AE AN, || 5E
i Vv,
ON |
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Figure 6.4 The Delaunay-triangulation of the selected ITREssI

This approach was first proposed bgrada and Miyab€1929). With the velocity gradient tensor we canivke

the two-dimensional symmetric strain rate tenBaand the antisymmetric rotation rate tenBoat the centroid
of the discussed Delaunay-triangle network.

N 10V, v ]
r=leans| E 270N 0E’| ©8)
2 1N,y Y
[273E " oN oN
[ . E(OVE N
R=1(L-L)= 2 0N OE (6.9)
2 1Y oV,
270 oN ]

With (6.7), (6.8) and (6.9) we could compute the geodgtain rates of every Delaunay-triangle for six ITRF
relations, and successively the eigenspace components (eigenvalegegnirection) together with the maxi-
mum shear strain ratg —€, and the second strain rate invariget +¢€2)"'%. With reference to the continued
discussion in Section 6.6, we have only listed the refrltsvo of the 11 triangles in Table 6.4.
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Table 6.5 Strain rate tensor components, eigenspace components, maxsshin rates and second invariant

Strain rate tensor components Epace components  max. shear strain rate séwoeeiant
(nanostrain/yr) (nanostrain/yr)  (degree) (nanosty@)  (nanostrain/yr)
Epochs s 1 1 g g, a, g -¢, JE2+e2
Triangle 4 - 5 - 6 ( Bologna — Noto - Matera) (No0.10)

ITRF92 1.6621  2.4987 -5.7591 24125 -6.5220  16.9781 8.9470 6.9582
ITRF93 6.9357 3.3247 -4.8325 7810 -5.7068  14.7339 13.5168 9.6728
ITRF94 8.1550 2.4147 -4.8161 8(%90-5.2511  10.2108 13.8411 10.0679
ITRF96 0.5796 5.2419 -3.0502 4(B12 -6.7825  35.4514 11.0945 8.0371
ITRF97 15487 4.2150 -1.8819 4(B84 -4.7172  33.9280 9.1012 6.4398
ITRF2000 28365 5.3361 -1.0826 6561 -4.8076  34.9179 11.3691 8.1343

Triangle 1 - 4 - 8 ( Grass — Bologna - Zimmerwald) (No.6)

ITRF92 1.6460 8.5479 12.4127 17.13123.0725 61.1010 20.2037 17.4045
ITRF93 -1.8824 7.5296 13.2853 16.38834.9854  67.6029 11.4029 17.1298
ITRF94 3.0908 3.2370 9.2711 101656 1.7058  66.8353 8.9503 10.7918
ITRFO6 8.8276 -0.5745 1.6884 8B73 1.6424 -4.5712 7.2311 9.0242
ITRF97 7.4760 2.6775 1.7626 834 0.7040 21.5726 7.8306 8.5636
ITRF2000 6.1801 2.6301 0.4793 7208 -0.5488  21.3493 7.7569 7.2290

6.4.2 The three-dimensional geodetic stain rate eas

In fact, most tensors in Geodesy and Geophysics are dhmsmsional and have been derived from geodetic,
geological and seismological data. As most popular example ia-#itu measurements of the strain tensor by a
strain meter and seismic moment tensor by the seismometerwdewould like to directly apply the three di-
mensional Cartesian residual velocities of the six ITRF segi@izations in determining the three-dimensional
strain rate tensor and rotation rate tensor.

When we select geodetic sites as vertices of convex polygonswexaaate the strain tensor of the polygon by
using the residual velocities. LBt, V, V,]' be the known residual velocity vector of the polygon vettex
along the Cartesian coordinate directions (6.3); thevidhig approximation can be written:

oV, aV, 0V,

oX dY 0Z
Vo | [V AX
vl e N\ VAT
vY' VYB X 9y o0z A'
o) Ual lov, av, oy, 94

| oX  aY 07

= (6.10)
Vi =V, +L X,

where[V, V. V, ] is the unknown velocity vector for a referencesintl point B', L the velocity gradient
tensor, [AX, AY AZ]', the Cartesian coordinate difference vector betwtbe site i’ and the reference point
‘B'. For the infinitesimal strain rate we have theast rate tensoil =(L +L ')/2 and the rotation rate tensors
R =(L-L")/2 (Dermanis 2001).

The approximation assumes a linear variation ofvilecity components with respect to their coortirdiffer-
ences. This holds true as long as the polygonprageerly chosen, not only in term of area but aisexpected
tectonic behavior. The constant space gradientsygst®on is only a first order approximation of tikederlying
tectonic setting.

If we choose to work with a tetragon, and we etecthe reference point the barycenter, it is vagydo com-
pute the velocity gradient tensor at the baryceintarvery straightforward way: in fact, dealinghvfour veloc-

ity vectors, the problem is solved by invertingyatem of lineaequations with twelve unknowns (nine tensors
components plus three velocity components):
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V] [L00AX AY, AZ O 0 0 0 0 0]

V[ {010 0 o0 0 & &Y Az 0 0 Of,

V,[loo1 0 o o o o o ax av az|”

I T S S S N S | PR (R
V||t 0oo0max, ay, a2z o o o o o o’
V,[[010 0 0 o0 AX, AY, AZz 0 0 olved’

Vv, 001 0 0 0 0 0 0 AX, AY, AZ]

where

0V, 0V, 0V, 0V, 0\, 0V, 0V, 0V,0V,

vecL'= =% —* —L Y- Y- z- 2 2
X 9Y 9Z X Y AZAXAYD

With the velocity gradient tensor we can compute ttiree-dimensional symmetric strain rate teris@nd the
antisymmetric rotation rate tendRrat the barycenter of the discussed tetragonal mktwo

OVx E(%+%) 1(6\/ )
ax 2°9Y 9X° 29z 09X
__(L+L)_ 10V X) vV, 1,0V, av) ’ (6.12)
2°9x oy oY 2°0Z oY
1(av X) 1(av av) vV,
|2°0X 0z~ 2'9Y 4Z 0Z
i . 10V, 9V, 1 avx_avz)'
29y o9X’ 29z
R=1(L -L")= g(ai_avx) 0 1% _ a (6.13)
2 20X oY 292 aY
1.0V, 0V, 10V, _av)
29X 9z’ 2 9Y oz |

With (6.11), (6.12) and (6.13) we have computedstinain rate tensors for the six series of ITRHRizatons in
the selected sub-network of four sites: 1 - 4 98 Grasse - Bologna - Zimmerwald - Wettzell) ethare listed
in Table 6.6.

Table 6.6 Three-dimensional strain rate tensor componentiseofub-network
ofesil — 4 — 9 — 8 (Grass — Bologna - Wettzell - dienwald)

Epochs Strain rate tensor components (1%Xdrain/yr)
41 2 s ta2 1 kS
ITRF92 0.1746 0.9012 2.6401 0.2946 1.4380 5.4648
ITRF93 -2.4174 0.0574 0.2518 0.0558 0.6080 3.3212
ITRF94 -1.6029 -0.0626 0.4812 0.0478 0.3324 2.8452
ITRF96 1.1197 0.3782 2.0597 0.1845 0.5407 3.0706
ITRF97 -0.7771 0.1652 0.2373 0.1466 0.3868 1.3365
ITRF2000 -1.6829 0.2205 -0.9884 0.1735 0.3919 -0.2520

6.5 The representation of the numerical results oR2-D geodetic strain rate and its interpretation

Now we can present the horizontal residual velesitind the principal strain rates of every triarigtesix ITRF
realizations derived in the second phase. Thefrgation of the geodetic strain also results ftbese six ITRF
realizations, and a comparison with the geodyndrseting will follow.

The residual velocities and principal strain rétase to be represented in an appropriate way forfanrther
interpretations and comparisons. We used the MATIMd&pping Toolbox MathWorkd2000) to map the sur-
face deformation information. Theguidistant conic projectiomas described by the Alexandrian astronomer,
mathematician and geograph@audius Ptolemyabout A.D. 150. Improvements were developedlblyannes
Ruyschin 1508,Gerardus Mercatoin the late 16th century, amdicolas de I'lsldn 1745. It is also known as the
Simple Conior Conic projection The scale is true along all meridians and thedsted parallels. Itis constant
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along any parallel. This projection is free of ditibn along the two standard parallels. Distortisrconstant
along any other parallel. This projection providesompromise in distortion between conformal andaéqrea
conic projections, of which it is neither.

The pattern of the principal strain rates (eigem@aland eigendirections of the 2-D strain rateaies)sof 11
Delaunay-triangles and the associated residuatitigde of the selected ITRF92 to ITRF2000 siteshim study
region are illustrated in Figures 6.5 to 6.EQtensionis represented byrad symmetric arrow, andontraction
is represented byldue symmetric arrow. The residual velocities are atgresented blglackarrows.

First, let us shortly analyze the horizontal moveteef these selected sites with respect to thadtam fixed
plate. The selected six stations Grass, OnsalatzZ@lletMadrid, Graz and Zimmerwald belong to thebkta
European plate. They have smaller residual vetxitiith respect to the Eurasia plate describecelyy, the
NNR-NUVEL-1A model, i.e. the residual velocities tifese six sites in ITRF97 are below the level & 1
mm/yr; for more detail see Figure 6.9. The thradidh stations, Bologna (Medicina), Matera and Natbshow
motions with respect to stable Europe. The two faath sites, Bologna (Medicina) and Matera are eagtef
Apennine mountain chain and have north-east-trgndélocities with rates increasing southward freng. in
ITRF97, 2.9 mm/yr to 4.8 mm/yr. In contrast, Na&icily, just a few hundred km south-west of Matexaniov-
ing with rates of 4.6 mm/yr in north-west directiahan apparent angle to the other Italian sitbges& signifi-
cant residual velocities of the three Italy siteflect the fact that the movements of these sideatéd in the
plate boundary zone between Eurasia and Africatdaree with NNR NUVEL-1A.

Secondly let us analyze the strain rate solutiditte six epochs. From the derived strain ratemf(6.7) and
the visual patterns in Figures 6.5 ~ 6.10, we @mtbat the magnitude and direction of the straiasrin most
triangles are nearly consistent with each epocbepxfor the triangles 1-4-8 and 1-7-8. As we haxplained
above, the deformation pattern of this region iarahterized by a complex space-time distributiosahpres-
sional and tensional events.

We have to compare them with the geodynamic featireetail. Since this study is concentrated enstiatisti-
cal inference of the eigenspace components ohsteae tensors, we limit our comparison of therisiee seis-
mic activity in the Alpine-Mediterranean regionsthe result of ITRF2000.

From Figure 6.10 we can learn that the Bologna-Mabkésto triangle (4-5-6) suffers from ENE-WSW extens
strain with a rate of 5.29 nanostrain/yr, which giets of the seismic strain rate derived fré&entroid Moment
Tensor(CMT) solutions Pondrelli et al 1995) not only in the maximum principal seisnti@i rate of about 5
nanostrain/yr but also in the principal directidgturthermore, the direction of the extensional straite is in
accordance with the tectonic evolution of this oeg{Apenninicis), which is strongly affected by tbenver-
gence of the microplataMard 1994). Our geodetic strain rate results in thisregion are also in accordance
with other geodynamic solutions deduced from atfalaine solution of earthquakes that occurred duitire last
century (ackson & McKenzid988), historical seismicitySelvaggil998) and the newly published geodetic
results byAnzidei(2001),Devoti(2002a, b)Caporali (2003) andlimenez-Mun(2003).

In the Western Mediterranean area, which is covesethe triangle Grass-Noto-Madrid (1-5-7), compressi
predominates in the NNW direction, which is in gamteement with the observed stress datar 1994,Mon-
tone et al 1999,Jimenez-Munt et aP001). This compression is consistent with tlewihat it is induced by the
relative motion between Africa and EuradizeMets et all994). The geodetic E-W extension is in accordance
with the extensional tectonics perpendicular to Apenninic chain, indicated by the normal fault etge The
observed extension which is perpendicular to thenchould indicate that the subduction is alsovactinder-
nearth the central Apennines. This pattern is goetance with the radial stress regime proposeddhaiet al.
(1992).

The triangle Bologna-Matera-Graz (4-6-3) repres#msstrain across the Adriatic microplate. The gdicdlly
observed North and East contractions are in goodeagent with the northward motion of the Adriati¢- m
croplate with respect to EuropPdvoti et al.2002a), and they are also consistent with the cessponal stress
pattern in this regionMuller et al. 1992,Montone et al1999). The northern triangle Bologna (Medicina)-£sra
Wettzell (3-4-9) represents the strain across tisdfn Alps with a smaller strain rate. The obstrieNE con-
traction is in agreement with the main geologidalcures, i.e., the subduction of Adriatic micratel to the
Alpine front.

At the end of our comparison in the Alpine-Mediterean regions, we present two published figureagha in
Figure 6.11 which is a general geological mBe\oti et al.2002a), and Figure 6.12 which is the average of
active stress mapgVontone et al 1999) of the Alpine-Mediterranean regions; boté i agreement with our
geodetic strain rate results. On the other hatglshown that our results are good reproductionth@fgeody-
namical setting in this regions.
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6.6 Statistical inference of the eigenspace commpnts of 2-D strain rate tensor

In this section, as a case study, both model apdthgsis tests developed in Chapter 4 will be agpid the
observations of random strain rate tensors, derye for every Delaunay-triangles of the seletT&F sites
at six epochs.

6.6.1 The estimates of the eigenspace compais€rom the strain rates observations of six epoch

With the two-dimensional strain rate tensor obséowg, calculated by (6.7) with the six epoch ITRBidual
velocities, we can now estimate the eigenspace onemis (eigenvalues and eigendirections) of the two
dimensional strain rate tensors, variance-covagiasamponent matrix of type BIQUUE, and their estada
dispersion matrix with (4.29), (4.31) and (4.30)dasuccessively make hypothesis tests. The detakadts of

all 11 Delaunay-triangles in the study region ditestrated in Figure 6.13 together with their 95&nfidence
intervals. The estimates of the eigenspace compeiieigenvalues and eigendirection) and their stahdevia-
tions together with the maximum shear strain vgte A, and the second strain rate invarighf +A2)"?for
these triangles are listed in Table 6.7.
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Figure 6.13.Eigenspace components (eigenvalues and eigendirscof the two-dimensional strain rate ten-
sors and their 95% confidence intervals, estimétech the strain rate observations of ITRF92 to I'PRGO
series in the nine triangle sites in the studyaegtxtensions represented biyed symmetric arrow andontrac-
tion is represented bylue symmetric arrow.
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Table 6.7 The estimates of the eigenspace components amdstaedard deviations
togethéth the maximum shear strain rates and the setmadiant

Triangles Eigenspace components and standard dmviati max. shear strain rate second invarignt
(nanostrain/yr) (degree) (nanostrain/yrjnanostrain/yr)
\ A \ ~ A A D\ 2 432
" O;. A, o, a, Og AL —A, ,/)\1 +AS

No.1l: 8-2-7

(Zim - Ons - Mad) 1.6176 +1.3012 -1.2824 +0.2501 0.1681 +8.2284 2.9000 2.0642
No.2: 1-5-7

(Gras - Not - Mad)| -0.1637 +0.2973  -8.7116 +1.6321 9.9241 +1.4835 8.5479 8.7131
No.3: 1-8-7

( Gras - Zim - Mad) 8.7144 +2.8800 -0.6217 +0.4370 4.6D070 +3.3523 9.3361 8.7366
No.4: 9-8-2

( Wet - Zim- Ons) 0.2244 +0.6497 -2.0148 +1.1151 0.7307 +19.5934 2.2392 2.0273
No.5: 9-3-2

( Wet - Graz - Ons 7.3502 +2.0722 -0.6027 +0.14228.5718 +5.4747 7.9529 7.3749
No.6: 4-1-8

( Bol - Gras - Zim) 9.5173 +2.1984 1.1889 +1.5589 2.8833 +10.8772 8.3284 9.5913
No.7: 4-9-8

(Bol - Wet - Zim) 1.6742 +1.9740 -3.9692 +0.1628 1.6886 +6.4597 5.6434 4.3079
No.8: 4-9-3

( Bol - Wet - Graz) 3.3182 $1.9163 -4.0195 £0.2443 0.7389 *3.7226 7.3376 5.2121
No.9: 4-3-6

( Bol - Graz - Mat) -1.6041 +1.2931 -5.0069 +0.5130 0.1213 +6.5735 3.4028 5.2575
No.10: 4-5-6

( Bol - Not - Mat) 5.2837 £0.9064  -5.2345 +0.3867 3.4382 +5.1932 10.5182 7.4376
No.11: 4-1-5

( Bol - Gras - Not) 8.6068 +0.4504  -6.4977 +0.9156 7.1879 +3.8370 15.1045 10.7841

The 95% confidence intervals for the estimatesigxﬁra/aluesxl, ;\2 and eigendirection, illustrated in Figure
6.13 provide us with a visual presentation of tbhegible magnitude and the directions of the ex¢éenand con-
traction of the strain rate. This is important foe prediction of the tectonic activity, includitige possible de-
formation trend and its directions. For examplel#inger error (confidence interval) of eigenvalaes eigendi-
rection of strain rates, detected obviously in tifiengle 1-4-8 (Grasse-Bologna-Zimmerwald), restritsn the
variety of strain rates observations of the sixago As illustrated in Figures 6.5 to 6.10, thexpipal direction
of strain rate among the six epochs changes frork NNITRF92, 93 and to W-E in ITRF96 and to ENE in
ITRF97/ITRF2000, more detailed results are alsmdébin Table 6.5. This fact reflects that the defation
pattern in this triangle area which proves is tabke during the six epochs from 1992 to 2000.

It is necessary to note that, although the strai@ tensor observations are derived from the rilR¥FIsites ac-
cording to the criterion discussed above, in redltiey don’t satisfy all the conditions of i.i.dogervations, since
we have not yet found the right i.i.d. strain tangbservation sets, we apply strain rate tensoerwb$ions de-
rived from the nine ITRF stations in six serieslizdions, assuming approximately that they ard.iobserva-
tions in our study.

When we repeat the comparison of our strain ratenain Figure 6.13 with the geodynamic map, Eigures
6.11 and 6.12, it can be concluded in generaldhaestimates of eigenspace components of a twerdiional
strain rate tensors are consistent with the tectseiting. Furthermore we can benefit from theisttedl infor-
mation derived from the estimation procedure dgwedoin Chapter 4, which is presented in the necticre

6.6.2  Statistical inference of the estimates of @gspace component parameters

The estimates of the eigenspace component pararadrtheir related dispersion matrix from theistrate
observations of six epochs reflect the statisiésadrage information of the random strain rate tensiize the
advantage of the longer time span. With them westagessively perform the statistical inferenee, i.

Statistical Inference = Estimate +Hypothesis test.

Since we are interested in testing our statisticedhod, we would like to perform all the hypothesists dis-
cussed in Section 4.3 in detail for just one trlargt5-6 (Bologna-Noto-Matera). Using the straiterabserva-
tions in Table 6.5 we have estimated the eigenspangonent parameters of a rank-two symmetric nrando
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tensor, their related dispersion matrix witheoren¥.3, and the sample variance-covariance maﬁ(jxof type
BIQUUE with Theorem4.4; they are summarized in the followiBgx 6.1.

Box 6.1
Case study: Hypothesis test with a 2-dimensiomairstate tensor in
Triangles 4-5-6 of sites Bologna-Matera-Noto

"the X -BLUUE of eigenspace components of a two-dimendjona
symmetric rank-two random tensor witheorem4.3"

A 5.2837 ( strainfy) | 5.2837( strain/
%: /TZ =| -5.2345 fi strain/y)=| -5.234%( strain
a 0400074 (arc) | +23 .4382

"the sample variance-covariance matfl% of type BIQUUE withTheoren#.4"
+9.908347 -2.351484 -2.515398

T, =| -2.351484 +1.688078 +2.089224 ( straif
-2.515398 +2.089224 +3.449229

"the related dispersion matrix éfwith Theorem4.3"

+0.821618 +0.208317 -0.0407
D{& =X, =[+0.208317 +0.149544 +0.00059!
-0.040791 +0.000599 +0.0082

With these estimates of the eigenspace componétiie eandom strain rate tensor and their dispergiatrix,
and under the assumption that the observationssyfranetric rank-two random strain rate tensor Gaglss-
Laplace normally distributed, the following univariate anaultivariate hypothesis tests, discussed in Sectio
4.3, will be performed:

(1) Test for the eigenspace parameter vegtek, with X, unspecified (seBox 6.2;

(2) Test for a distinct element of the eigensparameter vector witBtudent t- tesfseeBox 6.3;

(3) Eigen inferencabout the orthonormal transformed parametgfseeBox 6.5,

(4) Test for the variance-covariance matix = £, (seeBox 6.5;

(5) Test for the eigenspace parameter vector andnee-covariance matrig=_¢ ,x, =X, (seeBox 6.6;

(6) The general linear hypothesis test with thenginocurve model foeigenspace parameters

(sedBox 6.7.

(1) Test for the eigenspace parameter vegtok, with £, unspecified wittHotelling's T?-test

Box 6.2:

Multivariate hypothesis test about the eigenspacarpeter vectof assumingsauss-Laplace
normally distributed observations of a symmetritkréwwo random strain rate tensor

First testfor H,, : €=8&,, H,;: £#&, with X  unspecified

<

A Ao 4.3840 A Ao 4.384
Hor i | Ay |=| Ago |=| 47172 [Hyy | A|#| Ap|=| -4.7172 wittE, unspecifit
a, a5, 0.5922 a, a5, 0.592

"Hotelling's T? statistic" {Hotelling 1931,Muirhead1982,Rencherl998)
T2 =[5~ £;1E -
with respect to the eigenspace components of EpBLUUE and the dispersion matr&é

R 5.2837 strainfy) +0.821618 +0.2083170.040791
&=|J,|=| -5.23450 strainfy) I, =| +0.208317 +0.1495440.80059
@, 0.409074  (ard) -0.040791  +0.00059+0.00821
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According to the design of the test for the eigenspace paawestor in Section 4.3.1 at the error probabiity
we reject’H,, in favor of H,, if

(n-1)CB
n—

T2 =[E &' ;' [E &) > Fy (-0} =T2,.
With error probabilitya =5% andn=6 thecritical value
Fans(l-a)=9.28, T?, = 46.3¢.
SinceHotelling'sstatistic T>= 7.32 <T?, = 46.3€, accordingly we accept the null hypothesis, : & =&, with
the risk of @ =5% of aType | error.
(2) Test for a distinct element of the eigenspace paramatrwithStudent t- test
Box 6.3
Separate Student t-testbout the eigenspace parameter in
Second testor H,y, : A, =A,,=4.38401,=4,,=- 471720 ,=a ,,= 0.592
(separately) H, A, #ZA,= 4.3840,7A,=- 4712 #a,= 0.5
"two-sided tests witlthe test quantiti€'s
jl_/]lo t = jz_/]zo
1 2 " ~ ’
al 0—2

_ 0,70y

t = t,:

O3

with respect toil, /iz, a, of type T -BLUUE and their variances froBox 6.1.
t;, b and g are elements of th®tudent t-distribution with n-1 degree of freedom

With error probabilitya =5% we derive

Ui T tora 2= Uase 2= 12,57

Lon Tl =lg,,, =-2.57.

The critical values
Chrarz = JAltl,a/2+/]10: 2.0539 €, 1y 12= 0y t1an 7t A = 6.714
C/lz,alz = OA-/lzti,a/2+A20: -5.7113 C/lz ta 12— a-ﬂztz,-la /2+/] 20 -3.723

Copaiz = Oalignt010=0.3592 G, 14,20 ta4s 15t @ o= 0.825

indicate the confidence intervals

Car2 = 2.053%K /Tl = 5.2837 <, . ,,= 6.7141

Ch a2 =9.7113< A, = -5.2345 <, , ,,, = -3.7231

Cy 0> =0.3592< @, = 0.409074 ¢, ,,,, = 0.8251

(Copar2 = 2003450 .32 €@, = 23 26 17 .52¢5 ., =47°16 29 .09)
thereby suggesting the acceptance of all threehyplbtheses.
Hy,: A, =A,=4.3840,4,=4,,=-4.7172¢a =a ,,= 0.59.

with the risk ofa =5% of aType | error
The 95%confidence intervafor the eigenvalued,, A, and the eigendirectiom, are

[2.0539, 6.7141] g strain/y
[-5.7113, -3.7231] 4 strainly

[20°34 2".32, 47 16 29 .0¢
respectively.

(3) Eigen inferencabout the orthonormally transformed parameigmsith Student t- test
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From the dispersion matnE -the variance covariance matrix of the eigenspaceponent parameter vectér
given inBox 6.1 we can see that these eigenspace component pararaee correlated. In order to make the
hypothesis tests about the distinct elements mffi@est and uncorrelated, we perform teéen-inference
derived in Section 4.3.3.

Using the orthogonal transformation (4.3#4ith normalized eigenvectors as column vectors, (oehonormal
basis, orthogonal matrix)
0.079763 -0.264891 -0.960974
U, =|-0.11894 0.954630 -0.273014 , witlU'%U% = ,dhkg( =)
0.989693 0.136071 0.044639
we set the transformed parameter vector (4.36) ftoenoriginal parameter vectors and thEirBLUUE esti-

mates, respectively, which transform the null hiesis values of Test 2 Box 6.3 and the estimates into new
values :

1.4968| 1.448
M, = U, =| 55839 andij=UE=| -6.340F,
-2.8986 -3.630
then we get
[0.0049 0 0
T, = U?,ZEUE =A; = 0 0.0918 o |,
0 0 0.882

from which we can see that the transformed parasigteare mutually independent and their estimated stan-

dard deviation are:
= ,/)lq1 :0.0697,(3,72 = ‘//1,72 = 0.3030,6% = ,//1,73 = 0.93¢

With these orthonormally transformed results we waw perform thesigen-inferenceNote, that the orthonor-
mally transformed parameters are mutually independently normally distribut&tudent t-testsould also be
used for every transformed paramefer

The second hypothesis test performe®@ax 6.3will be equivalent to the new hypothesis test fag brthonor-
mally transformed parameters, i.e.,

Second testor H,y, : A, =A,,=4.38401,=4,,=- 4.7172a ,=a ,,= 0.59;
Hy, AZEA,= 43840 ,21,,=- 47112 #a = 0.5¢

<

Third Testfor Hy, : 1, =n,,=1.4968n,=n,,= -5.583P7,=1 ;.= -2.89¢
7_£13 : ,71 z Alo _1 496 ,72¢ /1 20 '5 583 3¢ /7 30: '2892

which means that when we accept or reject the g hypothesis tests, we will accept or reject $beond
hypothesis tests accordingly.

These proceduresill be summarized iBox 6.4.
Box 6.4:

Eigen inferencabout the transformed parametars

Third Testfor H,, : 77, =1,,=1.49687,=1,,= -5.58397,=1,,= -2.89¢
H,: n#2A,,=1.4968n,%A,,= -5.583% 277 ,,= -2.89¢

"two-sided test withest quantitie’s

= ’ 2 3 . =
J’71 0-’12 0-’73
with respect to7,, 77,, 7, and their related variances,.t; and § are elements of

the Student t-distribution with n-1 degree of freedom

t = M=o t ’72 ’720 = 15713
29
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With error probabilitya =5%

til—a/Z:IZI—GIZ t3ia 12— +2 57

Yoo =loun =ty =257
Thecritical values
Cparz =Optiainto= 13177 G, 1y =0, tiag 15711 1= 1.6759
Cpoai2 = g, Yowiat20=-6.3628 ¢, ., = G, oy 15t o= -48049
Cpaiz =0y ta0 2T M30=-5.3137 G, 14 2= 0, tass 5717 5= -0.4835
indicate
Cparz = 1.3177< fjy= 14968 <, ,,,= 1.67¢
C,.q12 =-6.3628< 7, = -55839 < ,,,= -4.80
Cpoarn =-5.3137 < /j;= -2.8986 <, ., = -0.48

a result which leads us &xcept the null hypothesis
Hys: 17,=1,,=1.4968,n,=1 ,,= -5.583947 ,=17 ;,.= -2.89¢

with the risk ofa =5% of aType | error
Accordingly we accept the original null hypothesi®ut the eigenspace components

Hy,: A, =A,=4.3840,1,=1,,=-47172a ,=a ,= 0.59.
This completes the example @ifjen inference.
(4) Test for the variance-covariance mattix= £, with thelikelihood ratio test

Box 6.5
Multivariate hypothesis tests about theareze-covariance matrix,
Fourthtestfor H,,: X, =X, H,: X, #X,

"unbiased modified likelihood ratio statistit, "
(Giri 1977, Muirhead 1982, Koch 1999, Koch 2001)

3(n-1)/2 ~ _ = 2 _
A, = (ni_l) (detr— 1§, 5 " etr- 3 (0- 1E, %'}

with respect to the sample variance—covarianceeixnély of type BIQUUE in
Table 2. Since our sample size is relatively small we havase the exact
distribution of -2log/\, ,whose upper 5 and 1 percentage points have been
provided byMuirhead (1982, p.360).

With a =5% thecritical value is
L_, =-2logA\, (1-a )= 15.50i
Let us perform this test with three different vaga-covariance matrices,;, X,, andX ;, namely

100
2,=(0 1 0],
001

2.033987 0.444505 0.03311!
X, =| 0.444505 0.982429 0.5851Y;
0.033115 0.585175 1.02023

9.808347 -2.351484 -2.5153
Y. =|-2.351484 1588078 2.08922,
-2.515398 2.089224 3.3492
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which are chosen according to the hypotheses ieatariance-covariance component mati is equal to (1)
a unit matrixX,,; (2) X,,- the variance-covariance matrix of the strain @iservations derived from ITRF97
residual velocities; and (3) a matrk,, whose diagonal elements are 0.1 smaller than dtimaed variance-
covariance component matrkx as given irBox 6.1.

With respect to the likelihood ratio statistiés and the relatee2logA, =:L, we find:
N, =2.264853x10" L, =-2logA,,= 49.021852

A, =1.117952x10° L, =—2logA,,= 27.408023
Ay, = 0.694227 L, = —2logA ;= 0.729913

Since L, =49.021852 *,_, =15.80%, we reject thewull hypothesisH,,: X, =X, with the risk ofa =5% of a
Type | error.

Since L, =27.408023 *,_ , =15.80%, we reject thewull hypothesisH,,: X, =X, with the risk ofa =5% of a
Type | error.

Sincel; =0.729913 <L_, =15.80%, we accept thaull hypothesist,,: X, =X with the risk ofa =5% of a
Type | error.

(5) Test for the eigenspace parameter vector aridnce-covariance matr&=_¢,,x, =X, likelihood ratio test

Box 6.6

Multivariate hypothesis tests about the eigenspacameter vectog and
the variance-covariance matix
Fifthtestfor Hy @ £=8&,, X, =X,, Hy;s: E#E,0r X #X
"unbiased likelihood ratio statisti@., "
(Andersonl984,Murihead1982)

Ao =(8)" (et~ 18,2217 e § - 8,2, Yexpt S B- ol ZE -6

with respect to the eigenspace components of BypBLUUE and variance-
covariance matrixz, of type BIQUUE inBox 6.1and X = (1/n)(c/' £,'c%/) ™.
Since our sample size is relatively small we havese tEhe exact distribution of

-2log/\,,whose upper 5 and 1 percentage points have beeited by
Murihead(1982, p.371).

With a =5% thecritical valueis derived
L_, =—2logA,(1-a)= 24.43.

Chooseg, as in the hypothesis test one aligas X ,in the fourth hypothesis test, namely

Ao 4.3840 9.808347 -2.351484 -2.51539
& =| Ay |=| -4.7172] , X, =| -2.351484 1.588078 2.0892p:
a, 0.5922 -2.515398 2.089224 3.3492p!

With respect to the likelihood ratio statistids and related-2logA, = L,data we are led to

A, =0.008752 L, =-2logA,=9.476949
Sincel, =9.476949 4, , =24.43;, we accept thewull hypothesisH,;: £=&,, X, =X, with the risk of a =
5% of aType | error.
(6) The general linear hypothesis test witfravth curve moddbr eigenspace parameters

As it is mentioned in Section 4.3.6, the speciaédirized multivariaté&sauss-Markovmodel for sampling the
eigenspace synthesis in Box 4.5

Y =FE)L +[e(E-&)IT +E (4.25)

is also a growth curve model
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Y =AEB+E (4.43)

with the correspondencesy =A 1'=B  agd&E. This fact suggests that the hypothesis (4.46)eurie
growth curvemodel can be applied to the testing of the eigacs parameter directly.

For the general linear hypothesis test with a gnosurve model foeigenspace parameters we test three cases in
Box 6.7. The second case is just for testing thiéerdince of the two eigenvalue parameters, since
A, =-5.2345< ( we have to rewrite it ag, +A, = 0.

Box 6.7

The general linear hypothesis test with a growtlvemodel

Sixth test %, : Aj_ O Versus ... : A # 0
%1, “lo 1671, 0

Tl A +tA,=0 versus ;. A, +A,Z0

)\1 E10 )\1 E10
e | Ny | =| &0 | Versus 7 | A,|#| & 5
al 230 al E‘30

For the first case,

which is corresponding to (4.46):

P= 100 Q=1 and"—él

o1 0 < R
&
With (4.47) and (4.48) we get:

R =(BB)™+(BB)'BY'Q'YB'(BB') '-E'(A'Q 'A)E = 0.1667.

v [167.5049 -165.945
V,, =(PEQ)(Q'RQ) " (PEQ) { i

-165.9452 164.399
., [24.6486 6.249

V. =P(A'QA) P’ =
6.2495 4.486¢

and the greatest eigenvalue\Gfv "
A, =(V.V) =96.160¢
Since p=3, 9=3, r=1, c=2, g=1, with (4.49) we get1, m” =0, ' =1, and the test statistic

_n"+1

(]

Ay =192.3215
m+1

can be compared with the critical values of Exdistribution with 2 and 4 degrees of freedom. The hypothesis
of zero would of course, be rejected at any redsenéevel. For example, at 95% confidence level,
Foos, 20— 6.944¢, thust > F ., ,, and we reject the null hypothesis of
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For the second case,
7o Ay tA,=0 = &+&,=0

ie.
&
[110|¢&,|x1=C
€3
which is corresponding to (4.46):
&
P=[110,Q=1 andE=|§,
€s

and with (4.47) and (4.48), we gBt=0.1667, V,, =0.014F andV. =41.633¢ and the “greatest eigenvalues”
of V, V' asV,V ' itself:

NETAYE )—VH =0.00034¢,

E

Since p=3, g=3, r=1, c=1, g=1, with (4.49) we get1, m” =-1/2, i’ = 3/2 and the test statistic

n“+1 a_ -
t :mVHVEl =0.0017
which is smaller than the quantile at 95% confidetevel, F, 4 , ;= 6.607¢; accordingly, we accept the null
hypothesis of7 :A, + A, =0.

Here we note that the 95% simultaneous confidemeegvial for (A, +A,) can be computed from (4.50) with=
b =1 andx, /(1+ %, )=[(m"+1)/(n’+1)] F =[(-1/2+1)/(5+ 1)] K45, . to be

a;2m’+2, 2+ 2
m"” 1

¢, =PEQ- (D 1 Fesamie a2 V.Q'RQ)"?=-1.8060
m 1 1/2

¢, =PEQ+(—— 1 Fosniva, 22 VeQRQ)? = 1.0044

-1.8060< A, +\, < 1.904.
From the actual estimatesfalf andA , we have
A, +A, =5.2837- 5.2345 0.04¢

which is an element of the confidence interval [g]; the null hypothesis of the second case is tloeectic-
cepted.

For the third case of the sixth test

>\1 E].O Zl E10
710’(’3 }\2 = EZO = EZ = E 20
al E30 ES ESO

ol[&, &0 4.3840
0| &, |x1=| &, |=| -4.7172
1|l¢, Ea0 0.5922
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which is the same as in our first hypothesis te&ax 6.2 and corresponding to (4.46):

1 00 &,
P=|0 1 0/,Q=1 andE=|¢&,
0 01 &,

With (4.47) and (4.48) we get:
R=(BB')™"+(BB)'BY'Q'YB'(BB') '-E'(A'Q 'A)= =0.1667.

4.8568 -2.7925 -0.98
V, = (PEQ)(Q'RQ)(PEQ) =| -2.7925 1.6056 0.56
-0.9883 0.5682 0.20

24.6486 6.2495 -1.22
V. =P(A'Q'A)'P' =| 6.2495 4.4863 0.01
-1.2237 0.0180 0.24

and the greatest eigenvalue\Gfv "
A =(V.V2)=0.669E
Since p=3, g=3, r=1, ¢=3, g=1, with (4.49) we get1, m” =1/2, i’ = 1/2 and the test statistic

O
+
t="*1y\ | =0.660:
m +1

which is smaller than the quantile 95% confider®eel F, o, , ;=9.276€, accordingly we accept the null hy-
pothesis of

R 4.3840
e h, =] &, | =] -4.7172]
al| |&,| | 05922

Finally we would like to briefly discuss the stéitial property of the trace of V. Lawley(1938) ancHotel-
ling (1947, 1951) have proposed the trace/Q¥/.* as a test criterion, the so calledwley —Hotelling Trace
Test The exact distribution of

To2 =tr(V,V r;l)

was obtained by Hotelling (1951) fpr= 2 in the central case. Foe 3, the distribution off is generally quite
complicated. Several authoGpnstanting(1966),Davig1968,1970a, bMuirhead (1972), Pillai and Sampson
(1959), Pillar and Sudjana(1974),Pillai and Young(1971) andSiotani, Hayakawa and Fujikosl1985) con-
sidered the central and noncentral distributio,ofSome tables of the approximate percentage pbifif @re

available inDavis (1972),Pillai (1960) andKres (1983). Its relationship witklotelling’s T?testused in the first
test is given by the expression

T? = T2
n-1
In the third case we havE’ =V, V' =1.464., which is equal tar ?/(6-1)=7.32/% in the first hypothesis test.
Since we have accepted the null hypothégjs this comparison also supports our first hypothésst-Hotel-
ling’s T? test.

From the analysis above we can summarize that stimation theory about the two-dimensional, symioetr
rank-two random tensor, developed in Chapter 4astjal to be applied and produces not only esémaon-
sistent with the tectonic setting, but also sudeessypothesis tests which complete the statistidfgrence of
eigenspace component parameters of a two-dimensgymametric rank-two strain rate tensor.
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6.7 Statistical inference of the eigenspace compants of 3-D strain rate tensor

As second case study, both model and hypothesssdeseloped in Chapter 5 will be applied to theestbations
of three-dimensional strain rate tensors derive8iantion 6.4 for the sub-network of sites 1 — 91—8 (Grass —
Bologna - Wettzell - Zimmerwald) in the studyingjien, see Figure 6.14, at six epochs.

o

oU N

2/\ONSALA

94\ WETTZELL

3 /AGRAZ

£\ BOLOGNA
] M—.
40° 7 /N MADRID 6 /\MATERA
5 /A NOTO
- 20|E
v 10 E

Figure 6.14The sub-network of sites 1- 4 - 9 - 8 (Grasse-Bo&Wettzell-Zimmerwald) in the study region

6.7.1 Estimation of the eigenspace componentstbé 3-D strain rate tensor

With the three-dimensional strain rate tensor ola@ns (Table 6.6) calculated by (6.11) with tlte epoch
ITRF residual velocities (Table 6.4), we can nowneste the eigenspace components (eigenvaluesigende
rections) of the three-dimensional strain rate dengariance-covariance component matrix of typ©BUE,
and their dispersion matrix with (4.29), (4.30) g4d31), and successively make hypothesis tests.dEtailed
estimates of eigenspace components (eigenvaluesigaadirections) and the associated standard titesaof
the sub-network of the sites 1 — 4 — 9 — 8 atedign Table 6.8.

Table 6.8 The estimates of the eigenspace components aidtandard deviations

Eigenvalues and standard deviation {&@rain/yr )

A 05, A, g;, As 0;.

-1.049206 +0.3611 1R054 +0.0213 2.953239 +0.9910

Orthonormal orientation parameters and standarahtien (degree )

% G, % G, 01 G,

13.592942 +2.6163 121092 +6.7498 4739774 +3.4609
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In order to get a visual presentation of the pdssiagnitude and the directions of the extensiahamtraction
of the strain rate that is important to predict tibetonic activity, including possible deformatisand and direc-
tions, let us first introduce the determinatiortloé eigendirections and their 95% confidence irgisrirom the
orthonormal transformation (rotation) mattix whose elements are functions of the three rotadioglesé,,,
6,, andg,,, see (5.25). With the Jacobi matrix for the transfation of three rotation anglés,, ,, andg,, to
the eigenvectorsi;, u, and uz of U, the variance-covariance matrix of is transformed from the variance-
covariance matrix of the orthonormal orientationgpaeter vectofd,, 6,, 8,]":

ZuI :‘Jvegzé‘yvepv [ :11 21 ::1
with

du, du, dy, |
06,, 06, 099,
3 |9 9y, oy,
106, 06, 006,
du, Ay, Ay,
|06, 06, 06, |

The detailed results are:

0.002085 -0.000535 0.0026 0.974175 0.080773 0.2108%0
D{6 = 2, =|-0.000535 0.013878 0.0011f, =|-0.129701 0.964571 0.22973%[u, u, u,],
0.002642 0.001192 0.0036 -0.184824 -0.251153 0.950138

0.000677 0.001234 0.0027 0.003426 -0.001125 -0.0032 0.013261 -0.001169 -0.0026
=|0.001234 0.005617 0.0025 ,)A:uz =|-0.001125 0.000371 0.0010 ,ius =|-0.001169 0.001967 -0.00021.
0.002702 0.002564 0.0124 -0.003217 0.001062 0.0030 -0.002660 -0.000216 0.0006

p¥

up

Second, we are able to illustrate the eigenspadettan confidence region of the three-dimensionirstrate
tensor. The three eigendirections determined;bwy, andus; of the orthonormal transformation (rotation) matrix
U arepresented on the unit spherdrigure 6.15 together with their 95% confidence regions.

Figure 6.15 The eigendirections of the 3-D strain rate tenaith their 95% confidence regions
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The 95% confidence regions are determined as fsligt) The variance-covariance matfbg‘ with respect to
the Cartesian coordinates XYZ is transformed todlgenspace by, u, andusz with orthonormal transforma-
tion (rotation): X, ., = UX, U'; (2) We consider the standard deviati([)ﬁa 6u2i 6%]', the square roots of the
diagonal elements dt, ., as the total angular displacement of itheeigendirection and they are projected on
the tangent surface at the end of the unit eigetove;, on the unit sphere. For the vectgrthe possible error
regions is determined only by the two standard at@ns[G, G, ], similarly u, by [6, 6, ] andu, by
[6,,0,,]"- (3) Using thew/2 and (1&/2) quantiles,,, andt,, ,, of theStudent distributiomwith 0=5% and these
standard deviations, tf85% confidence region of the eigendirections of 3tlain rate are determined by

Culz :o-u“tulzl c.l.—u/2 :O-qJ tl—u /2"

This brings us the 95% confidence region (Wjth=2.57) for every eigenvector of the strain ratesterin arc
length and angle on the unit spherf able 6.9 and is projected onto the surface of a unit spireFigure 6.15.

Table 6.9.95% confidence regions for the eigenvectors of thersrate tensor

Principal axes Length Angle on the unit spherg
I!JO (:a/z :O-uiitalz) (Ca/2 :O-uiitalz in dEgree)
1,2 0.207756 11°.903555
1,3 0.250465 14°.350605
2,1 0.112777 6°.461661
2,3 0.149905 8°.588900
3,1 0.126935 15°.626844
3,2 0.117323 7°.272837

6.7.2 Statistical inference of the estimates oigenspace component parameters of the 3-D strainte
tensor

The estimates of the eigenspace component paramatel their related dispersion matrix from the dhre
dimensional, symmetric rank-two strain rate obst@nma of six epochs reflect the statistical avermfermation
of the random strain rate tensor, utilizing theadage of the longer time span. With them we ca&cessively
perform the statistical inference, i.e.

Statistical Inference = Estimate +Hypothesis test.

The estimates of type BLUUE of the eigenspace carepbparameters of a three-dimensional, symmerik-r
two random strain rate tensor in the sub-netwdréirtrelated dispersion matrix wittheoren4.3 and the sam-
ple variance-covariance matrx, of type BIQUUE withTheoremt.4 are summarized in the followipx 6.8.

Box 6.8

Case study: Hypothesis test with a 3-dimensional strain ratéensor in
sub-network of sites 1- 4 — 9 — 8 (Grass-Bologna-\tzell-Zimmerwald)

"the X -BLUUE of eigenspace components of a three-dimexasjo
symmetric rank-two random tensor witheorem4.3"

A | [1.049206 (16 straink)) [ -1.049206 (10 stig)]
0.013154(18 strain/y) | 0.013154(10 strainfy|

>
~—
1

N

~ | A | | 2.953239(13 strainly) | 2.953239(13 strain/y,
== 6,| | 0.237242 (arc) 13 592942
5 | | 0212445 (arc), 12172197
5 | | 0.082725 (arcy | #.739774 |
21
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"the sample variance-covariance mafii;( of type BIQUUE withTheoren#.4"

[1.7301 0.2955 1.3825 0.0842 0.21806EH]
0.2955 0.1158 0.3337 0.0296 0.12843798
~ 1.3825 0.3337 1.7775 0.0707 0.4082412 = .
5, = élo strain/yy
0.0842 0.0296 0.07070.0084 0.0283 0.054

0.2180 0.1284 0.4085 0.0283 0.172%346

10.9666 0.3793 2.2412 0.0549 0.6346746|

"the related dispersion matrix éfwith Theorem4.3"

[0.1304 0.0054 0.0872 0.0020.0346 0.006
0.0054 0.0005 -0.0077 -0.0000.0006 -0.000
5 0.0872 -0.0077 0.9820 -0.0160.0889 -0.005
¢ 10.0022 -0.0001-00160 0.0021 -0.0005 0.00
0.0346 0.0006 0.0889 -0.0008.0139 0.001
| 0.0063 -0.0001 -0.0050 0.0026.0012 0.003

With these estimates of the eigenspace componétite sandom strain rate tensor and their dispereiatrix
the following multivariate hypothesis tests dis@agss Section 5.3 can be performed:

+ Test for the eigenspace parameter vegte§, with £, unspecified;

« Test for a distinct element of the eigenspace paranvector wittStudent t- tegseeBox.6.9;
* Eigen-inferencabout the orthonormally transformed parameigrs

+ Test for the variance-covariance mattix = X ;

+ Test for the eigenspace parameter vector and w&rieovariance matrix€ =§;, £, =X, ;

« The general linear hypothesis test withrawth curve moddbr eigenspace parameters.

Here we just make the second ontle Student t- testfor the distinct element of the eigenspace paramet
vector.

Box 6.9
Separate Student t-testbout the eigenspace parameter in
Second testor H,, : A, =A,,=-0.8199,4,=1,,= 0.04141.,=1,= 1.4846 (10 strain/
(separately) 6,=0,,= 02958, =6,, =0.1212,=6, =0.1047 (arc)
Hy,: A #Ap=-0.8199,1,% 1,,= 0.04141 .# A = 1.4846 (10train/yr)
0., # 0, =0.2958,0,,# 6,, = 0.12114 ,,# 6 ,, =0.1047 (arc)

"two-sided tests witlthe test quantiti€'s

t = A=A t. = A=Ay t ::/13_/]30
' g, e g, e 7,
t = Oy, — O t = 0y-03 t = Gy~ A5
Yoa T 6 s

with respect toil, /TZ, /T3, é32, 5’31 andé2 of type X -BLUUE and their variances froBox 6.8.
t1, b ta, &4 ts and § are elements of th&tudent t-distribution with n-1 degrees of freedom

The probability identity
Plostsct =R ci+u,siisco+ih, 2 —a=y



124 Chapter 6. Analysis of the eigenspasegmnents of the strain rate tensor

relates theerror probability @ of the two-sided test to the confidence leyellf i is an element of the confi-

dence intervalc 6 + 1, < 1< c,0 + i, , the null hypothesist, : i = 1, is accepted. We rejeét, if the confi-
dence interval does not contain.

With error probability a =5% we derive
Yiaro = lhna o= T lesg 12~ +2.57
tarn =Sloy = =tg,, =—2.57.
The critical values
Charz =0, bai2tAp=-1.7482 C, 1, ,,=0, 14, 5t A o= 0.1083
Charz =03 tantA%=-0.0134 ¢C, ., ,,=0, t,4, stA = 0.0962
Choarz = O tapnt A3p=-1.0627 C, ., ,=0, L4, 5+ A 5= 4.0319
Coparz = Og tuaintOs0= 0.1785 Cy 1y 5= 0 tusq 15+ 50= 0.413.
Coarz = g tsq /2t 0510=-0.1818, G ., ;=0 Loy, 50 5= 04239
Coarz = O, t6a12t0210=-0.0506 Gy ., /=0y tesy 150 50= 0.B99

indicate the confidence intervals
Cparp =-1.7482< J, = -1.049206 €, ,,,= 0.108:
C\.0r2 =-0.0134< 4, = 0.013154 ¢, ,,,= 0.096
Cparr =-1.0627< A, = 2953239 <, ., = 4.031
Co,qr2 =0.1785< 8, = 0.237242 <, ,,,,= 0.413
Coar2 =-0.1818< 6, = 0.212445 <, .., = 0.423
Cy,..ar2 =-0.0506< 6, = 0.082725 <, ,,,= 0.259
thereby suggesting the acceptance of all six nydbtheses.
Hyp: A=A, =-0.8199,1,=1,,= 0.0414) =1 ,= 1.4846 (10 strain/
6,, =0,, =0.2958,0,,=6,, =0.12119 ,=6 ,, =0.1047 (arc)
with the risk of @ =5% of aType | error
The 95%confidence intervalfor the eigenvalued,, A,, A, and the three rotation anglég, &,, andg,, are

[-1.7482, 0.1083] (I8 strain/
[-0.0134, 0.0962] (10 strain/
[-1.0627, 4.0319] (10 strain/
[10°.2245 23 .6754]
[-10°.4145 24 .2872]
[ -2°.9003 1% .8930]
respectively.



Chapter 7
Conclusions

This chapter will conclude the main contributionsl @asults in this study and makes a prospect oémossible
applications of the developed theory, methods arttiér investigations.

With the new space geodetic techniques such as @HES, SLR and DORIS, three-dimensional position and
change rate of network stations can be highly atelyr determined from regular measurement campaigns
which have became an accurate and reliable sodircdoomation in Earth deformation studies. Thistfaag-
gests that the components of deformation measiareig,stance the stress or strain tensor, can trmated from

the highly accurate geodetic data and analyzedigitréhe proper statistical testing procedures. digenspace
component®f these random deformation tensors (principal maments, principal directions) are of focal inter-
est in geodesy, geology and geophysics. They ptaymportant role in interpreting the geodetic-ggidal-
geophysical phenomena such as earthquakes (seiffocmations), plate motions, and plate deformation
among others.

Having recognized the facts that an exact distidinutheory of eigenspace components of a symmegridom
tensor is almost always unavailable, i.e. the ithigtions of the eigenvalues and eigendirectiona symmetric
random tensor is different from the normal disttibn, and a direct statistical inference of thenréal Engi-
neering and Earth Science problems can hardly Herpged. We have investigated the statistical imfiee of
eigenspace components of a 2-D and 3-D symmetmictao random tensor based upon a linearized naultiv
ate Gauss-Markovmodel, which could provide us with the second-orstatistics of eigenspace components.
Such a statistical inference on the estimates gdresipace components of a random tensor is comigtéoke
design of a linear hypothesis test. For this pugdost in Chapter 1 we have systematically studiedsampling
distribution of the sample mean vector and samal@xce-covariance of the direction observatioa aindom
tensors, which proves that the vectorized threeedsional symmetric random tensor vechT O R%* has a
BLUUE estimatej, (] R®! which is multivariate normally distributegs, O N (n,, N™'E,; i, ), wheren is the
number of full tensor observations alig=D{vechT}, the variance-covariance matrixypfThe BIQUUE sam-
ple variance-covariance component matixis Wishart distributed, WV, (n-1,(n-1)"X ;X ). Further in
Chapter 2 we have proposed the multivariate tesifigypotheses concerning the sample mean vectbthen
sample variance-covariance component matrix, he.estimated parameters (mean vector and covariaaee
trix) of tensor-valued multivariate normal poputatiof a two and 3-D, symmetric rank-two random ¢ens

For its linearized form of a special nonlinear nwvaltiate Gauss-Markov model for sampling the eiges
synthesiof a two-dimensional, symmetric rank-two randomstar, theBLUUE of the eigenspace elemeatsl
BIQUUE of its variance-covariance component matrix hagenbestablished successfullyTheorem4.3 and
4.4. The proper test statistics, suctHaselling’s T2, likelihood ratio statistics anthe general linear hypothesis
test with agrowth curve modelare proposed. For the three-dimensional symmediiclom tensor we have
uniquely established theigenspace analysis and synthdgisCorollary 5.2 of a three-dimensional symmetric
random tensor based on the choice of the orthogoméllarity transformation matricaa (5.22) to (5.28). This
leads to the generalization of the BLUUE of theeeigpace elements of three-dimensional random temsbr
BIQUUE of its variance-covariance component matrithree-dimensional case.

As two case studies both estimates BLUUE and BIQWid& hypothesis tests have been applied succeskfull
the eigenspace components of 2-D and 3-D straitesisor observations in the area of the centralitelea-
nean and Western Europe, which are derived fronFBRo ITRF2000 series station positions and vétxin
Sections 6.6.and 6.7. The analysis with respegetalynamical and statistical aspects shows thgemeral, our
estimates of the eigenspace components of a twerdiibnal strain rate tensors is consistent withtelstonic
setting in the area of the central Mediterraneah\&festern Europe. Furthermore we can benefit fitoerstatis-
tical information derived from the estimation prduoee. For example the 95% confidence intervaldtferesti-
mates of eigenvalugs, A, and eigendirection, illustrated in Figure 6.13, provides us with auakpresenta-
tion of the possible magnitude and the directiohthe extension and contraction of the strain rateich is
important for the prediction of the tectonic adivincluding the possible deformation trend anecliions.

Thanks to the uniquely establisheigenspace analysis and synthegeshave estimated the eigenspace compo-
nent parameters and their dispersion matrix froe@3fD, symmetric rank two strain rate observatiohsix
epochs. These estimates reflect the statisticabgeeinformation of the random strain rate tenstlizing the
advantage of the longer time spanner. With thentavesuccessively perform the statistical infereiite 95%
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confidence regions illustrated on the unit sphearé&igure 6.15 provides us with the three-dimendiosual
presentation of the possible magnitude and thectilires of the extension and contraction of theirstrate,
which is also important for the prediction of theete-dimensional deformation.

The relatedinear hypothesis tesia these two case studies in Section 6.6 and ®/& documented large confi-
dence regions for the eigenspace components, naiggnvalues and eigendirectigrizased upon real meas-
urement configurations. They lead to the statertebt cautiousvith data of type extension and contraction as
well as with the orientation of principal stretches

It is necessary to note that, although the straie tensor observations are derived from the niRd-Isites ac-
cording to the criterion discussed above, in ngdliey don't satisfy the all conditions of i.i.dbservations.
Since we have not yet found the right i.i.d. stteimsor observation sets, we apply strain rateotesisservations
derived from the nine ITRF stations in six seriealizations, assuming approximately that they ek bbser-
vations in our study.

Since numerical tests have documented that thmmﬁ of type BLUUE of the parameter vectdr within a
linear Gauss-Markovmode{AE = H '}, X, =D{y}} isnotrobust againsbutliersin the stochastic observation
vectory, we give upthe postulate of unb|asedness but keep the set-afinear estlmatlon§ Ly of homoge-
neous type. According to best linear estimatorsypé homBLE Best homogeneously Linear Estimaj}io8-
homBLE anda-homBLE of thefixed effect€ (Grafarend and Schaffrin993,Schaffrin2000), we have devel-
oped a new method of determining the optimal regdtion parametea in uniform Tykhonov-Phillips regu-
larization @-weighted BLE) by minimizing the trace of the MeBquare Error matriMSEE& (A-optimal de-
sign) in the general case. This estimation fornisilelosed, which provides us not only with the oyati regu-
larization parameter but also with more quicker amate practical solutions than by other method$ asby
means ofL-Curve Hansen1992) or theC,-Plot Mallows 1973). Further, it has been shown that the optimal
ridge parametek in ridge regressioras developed bioerl and Kennard1970a, 1970b) andoerl, Kennard
and Baldwin(1975) is just the special case of our generaltsol by A-optimal design. Based on the introduc-
tion of the multivariater —homBLEfor the multivariate parameters, the determinatiérihe optimal weight
factor @ has also been generalized to the multivariate &S&askov model, which we shall caliilultivariate
ridge estimatat.

Through the above six chapters of this dissertatierhave achieved the complete solution to thésttatl in-
ference ofeigenspace componentsthe deformation tensors. The models developetédrast two chapters are
closed and practical. The results bring a sounchingao the deformation analysis. With these modeiscould
successfully perform the statistical inferencelaf éigenspace componerdad the variance-covariance matrix
of the Gauss-Laplacenormally distributed observations of a random defttion tensor (case study: two- and
three-dimensional, symmetric rank two strain ratesor).

Beyond the two case studies in Chapter 6 theresanaly further applications and investigations tattistical
inference for the eigenspace components of a defivmtensor.

As we have mentioned before, for the estimatioaigénspace components of type BLUUE, we need teereb
vations of random tensors. Except for our caseystith strain rate tensor observations derived ftbm ITRF
station coordinates and their velocities in sixieserealizations, there are other types of symmetmnk-two
random tensors such as stress and strain. Espewithl benefit to the new development of space géodech-
niques such as GPS, the time series observatioamefwork can be achieved with higher accurate. firhe
series observations as samples enable us to dmplystimate BLUUE of the eigenspace componentsfo?
3-D random tensors and BIQUUE of their varianceac@nce components matrix in a more practical way a
could be more realistic results.

Regarding the facts in reality, crustal motions detbrmations are of three-dimensional nature. Nassors in
Geodesy and Geophysics are three-dimensional haeieg derived from geodetic, geological and seisgical
data. Our estimation theory as developed in Chaptan also be applied to the statistical analgbihe esti-
mates of the eigenspace components of the threendiomal stress/strain or seismic moment tensdlsiwsitu
measurements by strain meter and by seismomesgreatively, which are of focal interest in geophbgsand
seismology.

The new method of determining the optimal reguéion parametea in uniform Tykhonov-Phillips regulari-
zation @-weighted BLE) by minimizing the trace of the Me&quare Error matriMSE & (A-optimal desigh
can be applied in the general case not only taoepthe simple BLUUE of direct observations bub dte gen-
eral BLUUE in a linear Gauss-Markov model. It caing also a sound solution to the improperly pogesb-
lems which appear in solving the downward contiifmmaproblems in potential theory.
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