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Abstract

The first step in this study is to review the properties of surface which are inherent to the surface and can be
described without referring to the embedding space. In other words, it is a method of differential geometry.
The methods of moving frames which allows deformation of surface could be described by its own rights as a
more reliable estimate of surface deformation measures. The method takes advantage of the simplicity of the
2D surface M

2 versus the 3D Euclidean spaces E
3 without losing or neglecting information about the third

dimension in the results. Based on this method, deformation can be described by using tangent vectors and the
unit normal basis vector (attached to the bodies before and after deformation). However, basis vectors of the
deformed configuration will need to complete information of intrinsic properties of the deformed surface.

Through this method, regularized Earth’s surface is considered as a graded 2D surface, namely a curved
surface, embedded in a Euclidean space E

3. Thus, deformation of the surface can be completely specified by
the change of the metric and curvature tensors, namely strain tensor and tensor of change of curvature (TCC).
The curvature tensor, however, is responsible for the detection of vertical displacements on the surface.

The next step of this study is to concentrate the local basis vectors of the deformed surface which can be
formulated in terms of the local basis vectors of undeformed surface and curvilinear components of displacement
vector. This will provide a representation of the intrinsic geometry of the deformed surface with deriving
information about the displacement field. The new formulation of base vectors (for the deformed body) produces
meaningful numerical results for the TCC and its associated invariants (mean and Gaussian curvatures). They
can propose a shape-classification of the deformed surface based upon signs of mean and Gaussian curvatures
which are new tools for studying the Earth’s deformation. To enhance our understanding of the capabilities
of the proposed method in defining new basis vectors (for deformed body), we present two examples, one with
a simulated data set and the other with a real data set. However, through a real data set we demonstrated a
comparison between the proposed method with the plane strain model (2D classical method).

Dealing with eigenspace components e.g., principal components and principal directions of 2D symmetric
random tensors of second order is of central importance in this study. In the third step of this research, we
introduce an eigenspace analysis or a principal component analysis of strain tensor and TCC. However, due to
the intricate relations between elements of tensors on one side and eigenspace components on other side, we will
convert these relations to simple equations, by simultaneous diagonalization. This will provide simple synthesis
equations of eigenspace components (e.g., applicable in stochastic aspects).

The last part of this research is devoted to stochastic aspects of deformation analysis. In the presence of
errors in measuring a random displacement field (under the normal distribution assumption of displacement
field), stochastic behaviors of eigenspace components of strain tensor and TCC are discussed. It is performed
by a propagation of errors from the displacement vector into elements of deformation tensors (strain and TCC).
However, due to the intricacy of the relations between tensor components (strain or TCC) and their eigenspace
components, we proceeded via simultaneous diagonalization. This part is followed by a linearization of the
nonlinear multivariate Gauss - Markov model, which links the elements of transformed tensors (obtained by
simultaneous diagonalization) with the eigenspace components. Then, we set up an observation model based
on a linearized model under a sampling of eigenspace synthesis.

Furthermore, we establish linearized observation equations for n samples of independent random vectors
from transformed tensor elements (under the normal distribution assumption), each with an individual covari-
ance matrix. This will provide us with the second-order statistics of the eigenspace components. Then we
estimate the covariance components between transformed tensor elements by Helmert estimator, based on prior
variance information. To enhance conceptual understanding of stochastic aspects of deformation analysis, the
method is applied to a real data set of dense GPS network of Cascadia Subduction Zone(CSZ). Comparing the
results showed that, in general, after estimating the covariance matrix of observations (transformed tensors via
simultaneous diagonalization), variances of eigenspace components become smaller. However, in some areas this
did not occur, which can be related to an incorrect description of initial accuracies, either too optimistic or too
pessimistic.
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Zusammenfassung

Der erste Schritt dieser Studie besteht darin, einen Überblick über die inhärenten Eigenschaften einer Oberfläche
zu geben, die ohne Betrachtung des umliegenden Raumes beschrieben werden können. In anderen Worten, es
ist eine Methode der Differenzial-Geometrie. Die Methode der beweglichen Rahmen, welche die Deformation
einer Oberfläche erlaubt, kann bedingt durch eigene Regeln als eine zuverlässigere Art der Schätzung von
Deformationsmaßen einer Oberfläche angesehen werden. Die Methode nutzt die Vorteile der Einfachheit der
2D-Oberfläche M

2 gegenüber dem 3D-Euklidischen Raumes E
3, ohne Information über die dritte Dimension in

den Ergebnissen zu verlieren oder zu vernachlässigen. Auf dieser Methode basierend kann die Deformation mit
Tangenten-Vektoren und Einheitsnormalenvektoren beschrieben werden, welche vor und nach der Deformation
am Körper angebracht werden. Es werden allerdings für die Basis-Vektoren der deformierten Konfiguration die
Erkenntnisse über die inneren Eigenschaften der deformierten Oberfläche benötigt.

Unter Verwendung dieser Methode wird die regularisierte Erdoberfläche als zwei - dimensionale, glatte
Oberfläche, genauer gesagt als gekrümmte Oberfläche, betrachtet, welche im Euklidischen Raum E

3 liegt.
Daher kann die Oberflächendeformation komplett durch die Veränderung der Metriktensoren und der Krümm-
ungstensoren, speziell des Verzerrungstensors und des Tensors der Krümmungsänderung, beschrieben werden.
Der Krümmungstensor ist jedoch verantwortlich für die Ermittlung von vertikalen Verschiebungen auf der
Oberfläche.

Der nächste Schritt der Studie besteht darin, die lokalen Basisvektoren der deformierten Oberfläche aus-
zurichten, welche unter Einbeziehung des lokalen Basisvektors der undeformierten Oberfläche und der krummlin-
igen Komponenten des Verschiebungsvektors formuliert werden können. Dies wird eine Vorstellung der inneren
Geometrie der deformierten Oberfläche und zusätzliche Informationen über ihr Verschiebungsfeld geben.

Die neue Formulierung der Basisvektoren (des deformierten Körpers) führt zu signifikanten numerischen
Ergebnissen für den Tensor der Krümmungsänderung und seine Invarianten (mittlere und Gauss’sche Krümm-
ungen). Eine Klassifizierung der Form der deformierten Oberfläche ist beruhend auf den Vorzeichen der mit-
tleren und Gauss’schen Krümmungen möglich, was somit ein neues Instrument für die Untersuchung der Erd-
Deformation darstellt. Für die Vertiefung unserer Kenntnisse über die Möglichkeiten dieser Methode, neue
Basisvektoren für einen deformierten Körper zu finden, geben wir zwei Beispiele an, eines mit simulierten Daten
und das andere mit echten Daten. Durch das Beispiel mit echten Daten können wir zusätzlich unsere Methode
mit dem ebenen Verzerrungsmodel (klassische 2D-Methode) vergleichen.

Die Behandlung von Eigenraum - Komponenten wie beispielsweise den Hauptkomponenten und - richtungen
der symmetrischen 2D - Zufallstensoren zweiter Ordnung ist in dieser Studie von zentraler Bedeutung . Im
dritten Teil dieser Studie führen wir eine Eigenraum - Analyse (oder : Analyse der Hauptkomponenten) des
Verzerrungstensors und des Tensors der Krümmungsänderung ein. Aufgrund der komplexen Beziehungen zwis-
chen den Elementen des Tensors auf der einen und den Eigenraum-Komponenten auf der anderen Seite, werden
wir diese komplexen Verhältnisse mittels simultaner Diagonalisierung in einfachen Gleichungen darstellen. Dies
liefert einfache Synthese - Gleichungen für die Eigenraum-Komponenten, welche beispielsweise für stochastische
Aspekte verwendbar sind.

Der letzte Teil dieser Studie ist den stochastischen Aspekten der Deformations-Analyse gewidmet. In der
Gegenwart von Messfehlern bei der Erfassung von zufälligen Verschiebungsfeldern (unter Annahme eines nor-
malverteilten Verschiebungsfeldes) wird das stochastische Verhalten der Eigenraum - Komponenten des Verz-
errungstensors und des Tensors der Krümmungsänderung diskutiert. Dies wird durch eine Fehlerfortpflanzung
von dem Verschiebungsvektor zu den Elementen des Deformationstensors (Verzerrungstensor und Tensor der
Krümmungsänderung) erreicht. Aufgrund der komplexen Verhältnisse zwischen Tensorkomponenten (Verzer-
rungstensor und Tensor der Krümmungsänderung) und ihren Eigenraum - Komponenten verwenden wir hi-
erfür simultane Diagonalisierung. Diesem Teil folgt eine Linearisierung des nichtlinearen multivariaten Gauss
- Markov Modells, welches die Elemente der durch simultane Diagonalisierung transformierten mit den Eigen-
raum - Komponenten verbindet. Anschliessend stellen wir ein Beobachtungsmodell auf, welches auf einem
linearisierten Modell der Eigenraum-Synthese basiert.

Desweiteren erstellen wir linearisierte Beobachtungsgleichungen für n Stichproben von unabhängig- en
Zufallsvektoren aus den transformierten Tensorelementen (unter Annahme der Normalverteilung), von denen
jeder eine eigene Varianzmatrix besitzt. Dadurch erhalten wir die Statistiken zweiter Ordnung der Eigenraum-
Komponenten. Anschliessend bestimmen wir die Kovarianzkomponenten zwischen den transformierten Ten-
sorelementen mittels eines Helmert - Schätzers basierend auf a-priori Varianzinformationen. Um die konzeptuelle
Kenntnis der stochastischen Aspekte der Deformationsanalyse zu verbessern, wird die Methode für reale Daten
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eines engmaschigen GPS Netzes der Cascadia Subduktionszone (CSZ) angewandt. Ein Vergleich der Ergebnisse
zeigt, dass im Allgemeinen nach der Schätzung der Kovarianzmatrix der Beobachtungen (mittels simultaner Di-
agonalisierung transformierte Tensoren) die Varianzen der Eigenraumkomponenten kleiner werden. In manchen
Regionen trat dies jedoch nicht ein, was an einer inkorrekten Beschreibung der anfänglichen Genauigkeiten
liegen kann, die entweder zu pessimistisch oder zu optimistisch waren.
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1 Introduction

1.1 Background

Following the classical separation of established geodetic techniques, namely triangulation and trilateration ver-
sus leveling, the deformation of the Earth’s surface has been separated into horizontal and vertical components
and has been treated individually. The main reason for this conventional separate procedure is due to the
horizontal and vertical networks in classical geodesy.

Later space geodesy, such as GPS, VLBI, SLR, and DORIS has changed the rules of the game of posi-
tioning essentially. Positions of network points, containing both horizontal and vertical components, could be
determined with high precision, enough to be used as an accurate and reliable source of information in Earth
deformation studies. The great number of studies of this type using displacement fields derived from repeated
observations of space geodetic networks indicates what an important role the space geodetic techniques play in
present and future states of geodynamics.

In this concept, we make use of continuous measurements over periods of several years for crustal deformation
studies. If we do not have continuous measurements over periods of several years, the crustal deformation studies
should be carried out under separation of horizontal and vertical components. The main reason of the separation
is claimed to be the non-sufficient accuracy of the height component of point positioning.

Crustal motions and deformations are embedded in Euclidean space E
3. Therefore, the modeling of the

problems connected with deformations in Euclidean space E
3 by computing separately the 2D planar defor-

mations and vertical motions cannot portray the real state of crustal deformations. Then, there have been
attempts to derive 3D deformation from surface data by forming tetrahedrons and using the 3D finite element
method where homogenous deformation is assumed within each tetrahedron, which is an extension of the sim-
ilar 2D approach where triangles are formed [Dermanis and Grafarend, 1993]. However, 3D methods of Earth
deformation analysis lose the simplicity of computations in 2D spaces.

These facts indicate the need for reevaluation of the theoretical foundations of the Earth deformation analysis
methods. Regarding these disadvantages and difficulties as well as the fact that we have only surface geodetic
measurements in our hands, it seems that a surface approach in the Earth’s surface deformation analysis based
on 3D displacement fields is an appropriate solution.

Applications of mathematical methods of surface deformation analysis can be seen in map projection stud-
ies. Interesting works have been investigated for the study of deformations induced when original figures on
a sphere or an ellipsoid, as 2D Riemann manifolds, M

2, are mapped on a plane, as a Euclidean space E
2 (see

e.g., Chovitz [1979]; Hojovec et al. [1981]; Dermanis and Livieratos [1983]). The development of all formulae for
the computation of internal and external deformation measures with Cartesian and ellipsoidal coordinates has
been performed by Altiner [1996, 1999]. Furthermore, he developed a method of analytical surface deformation
analysis of the Earth’s crustal movements. Later, Voosoghi [2000] presented an analytical formulation and
implementation of a method of Earth’s surface deformation analysis referring to the real surface of the Earth.
The Earth’s surface is considered as a curved surface, embedded in Euclidean space E

3. For description of
deformation tensors, he used tangent and normal basis vectors (attached to the bodies before and after defor-
mation). However, for the construction of basis vectors on the deformed configuration we will need to complete
information of intrinsic properties of deformed surface.

1.2 Objectives of Thesis

The surface deformation analysis, as described by Voosoghi [2000], is the basis for this study. Improvements
that are addressed in this study are related to the:

Basis Vectors. The local basis vectors of deformed surface are formulated in terms of the local basis vectors
of undeformed surface and curvilinear components of the displacement vector. This will provide a repre-
sentation to intrinsic geometry of the deformed surface with deriving information about the displacement
field.

Shape Classifications. The new formulation of base vectors (for deformed body) produces meaningful nu-
merical results for the tensor of change of curvature and its associated invariants (mean and Gaussian
curvatures). They can propose a shape-classification of deformed surface based upon signs of mean and
Gaussian curvatures which are new tools for studying the Earth’s deformation.
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A comparison with plane strain. Through a real data set we demonstrate a comparison between proposed
method with the plane strain model (2D classical method).

Eigenspace analysis. We introduce eigenspace analysis or principal component analysis of strain tensor and
tensor of change of curvature (TCC). However, due to the intricate relations between elements of tensors on
one side and eigenspace components on the other side, we will convert these relations to simple equations,
by simultaneous diagonalization. This will provide simple synthesis equations of eigenspace components
(e.g., applicable in stochastic aspects).

Stochastic Aspects In the presence of errors in measuring the random displacement field (under the normal
distribution assumption of the displacement field), the stochastic behavior of eigenspace components of
strain tensor and TCC is discussed. We divided the context into two parts : In the first, we considered
independent random vectors of repeated transformed tensor measurements. In the second step we con-
sidered correlations between repeated measurements (transformed tensors) and we estimated a covariance
matrix of measurements.

1.3 Outline of Thesis

This thesis is organized as follows :

Chapter 2 deals with deterministic aspects of deformation analysis. First, we reviewed differential geometry
to describe object deformation, including comparison of the first fundamental forms, deformation gradients,
Cauchy-Green deformation tensors and briefly account about polar decomposition and strain tensor. An ana-
lytical example will be given on the real surface of the Earth. Then we will discuss in eigenspace analysis, a
comparison of the second fundamental forms, mean and Gaussian curvatures and TCC. In the final section of
this chapter, we will represent two numerical examples : one with a simulated deformation model and one with
the crustal deformation field (through the continuous GPS data).

Chapter 3 describes the stochastic aspects of deformation analysis. In this chapter the process of error
propagations, in the presence of errors in measuring a random displacement field (under the normal distribution
assumption of a displacement field) to components of strain tensor and TCC are discussed. This chapter also
covers statistical inference of eigenspace components of deformation tensors based on random vectors of tensor
measurements. The last section of this chapter is devoted to presenting a numerical example with the crustal
deformation field (through the continuous GPS data) in Cascadia Subduction Zone (CSZ).

Chapter 4 reports the general results and conclusions, and gives recommendations for future research. Proof
of the first-partial derivatives of basis vectors is given in Appendix 4.2, and Appendix 4.2 describes briefly the
2D finite element approach.

To preserve the briefness in the symbols used, we shall denote the space coordinates with XK(K = 1, 2, 3)
and coordinates on the surface with ΘΛ (Λ = 1, 2). We shall also observe the rule that lower-case Latin indices
may take values 1, 2, 3 and the Greek indices values of 1, 2. In order to simplify the notation, partial derivatives
are often represented by a comma (e.g., u,Λ = ∂u

∂ΘΛ ). Also, the quantities associated with the undeformed body
will be denoted by capital letters and those associated with deformed body will be denoted by lowercase letters.
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2 Deformation

This chapter is concerned with an exposition of the geometry of deformation. It may be considered as a
discussion of differential geometry appropriate to deformable bodies. The main purpose is to connect the
elements of a deformable body to their original locations and measures. To describe the positions of material
points, we introduce, in section 2.1, two sets of curvilinear coordinate systems, one for the undeformed and one
for the deformed body. These coordinate systems are characterized through their relations to any rectangular
frame of reference. In this section, basis vectors essential to the representation of vectors are introduced.

In section 2.2, the first fundamental form (FFF) for both deformed and undeformed bodies is obtained.
In this section, we also give a brief account of tensor notations. The concepts of the deformation gradients
and deformation tensors of Cauchy and of Green are given in 2.3. Furthermore, in this section, the polar
decomposition of a deformation gradient tensor is discussed briefly.

The strain tensor, as a deformation tensor of first kind, and the displacement vector are introduced in the
subsequent section, followed by a curvilinear component of displacement vector and one analytical example in
section 2.4. In this section we also give a detailed discussion of eigenspace analysis and strain invariants. Due
to the intricate relations between elements of strain tensor on one side and eigenspace components on the other
side, we will present a discussion on how to transform these relations into simple equations, by simultaneous
diagonalization of strain tensor with associated metric tensor.

Comparing a second fundamental form (SFF) of deformed and undeformed bodies, likewise concepts of mean
and Gaussian curvatures are given in section 2.5. Tensor of changes of curvature (TCC), as the deformation
tensor of second kind is explained in section 2.6. This section is followed by giving an example and eigenspace
analysis of TCC. Section 2.7 is devoted to the changes in mean and Gaussian curvatures, due to the deformation.
In the final section we will present two numerical examples : one with a simulated deformation model and one
with the crustal deformation field (through continuous GPS measurements).

Using the simulated deformation model we will explain step-by-step how to create an algorithm based on
the proposed method for the analysis of deformation. Meanwhile, through a real data set we demonstrate a
comparison between proposed method with the plane strain model (2D classical method).

2.1 Concepts

We suppose that a surface M
2
l , at certain time e.g. t = 0, occupies a certain region of the physical space.

The position of a particle M ∈ M
2
l at this time can be described by a curvilinear coordinate system {Θ1,Θ2}

attached to the surface or by position vector X measured from an origin O of the orthogonal fixed frame
{J1,J2,J3 | O} to M . In the same manner, we assume that after deformation the position of a particle on the
deformed surface m ∈ M

2
r at time t is denoted by a new set of curvilinear coordinates {θ1, θ2} on a deformed

surface or by position vector x which extends from the origin o of the new orthogonal fixed frame {j1, j2, j3 | o}
to m.

Following the conventions of literature in deformation analysis, we shall call coordinates which refer to
undeformed surface material or Lagrangian coordinates and coordinates which refer to deformed surface spatial
or Eulerian coordinates. However, in map projection conventions, coordinates of surface before deformation are
so-called left coordinates, and coordinates of surface after deformation are so-called right coordinates.

Hence, the quantities associated with the undeformed body will be denoted by capital letters and those
associated with deformed body will be denoted by lowercase letters. The motion of the surface can carry
various material points through various spatial points. This is expressed by

θφ = θφ(ΘΦ, t) vs. ΘΦ = ΘΦ(θφ, t) (2.1)

Thus each point m on M
2
r at time t comes from a point M in M

2
l at time t = 0. We assume that the mappings

(2.1) are single-valued and have continuous partial derivatives with respect to their arguments. Furthermore
each member of (2.1) is the unique inverse of the order in a neighborhood of the material point M . A unique
inverse of the first part of (2.1) exists, at least in a δ neighborhood of m, if and only if the determinant of the
Jacobian matrix is not equal to zero, e.g.,

det[
∂θφ

∂ΘΦ
] := det





∂θ1

∂Θ1

∂θ1

∂Θ2

∂θ2

∂Θ1

∂θ2

∂Θ2



 6= 0 |θφ − Θφ| < δ



12 Deformation

Equation of motion (2.1) shifts every region into region, every surface into surface and every curve into curve.
Furthermore, it implies the indestructibility of matter as well as impenetrability of matter. No region of positive,
finite volume is deformed into one of zero or infinite volume. Also, one portion of a matter never penetrates
into another.

X

x

2

l
M

3A

t

M

1A

1a

3a
2a

2A

1J

1j
1

X

1
x

2
X

m

2
x

3
x

3
X

2J

2j

3J

3j

Q

q

q

Q
1

1

2

2

2

r
M

Figure 2.1: Deformation of surface M
2
l into another surface M

2
r.

Following the Fig. 2.1, the position vector X of a point M on surface M
2
l and position vector x of a point

m on deformed surface M
2
r , referred respectively to orthogonal fixed frames XK and xk, could be expressed by

X = JKX
K(Θ1,Θ2) vs. x = jkx

k(θ1, θ2)

where the summation convention over the repeated index K and k are applied. Here, the basis vectors of
rectangular coordinate systems XK and xk are specified by JK and jk, respectively.

Tangent basis vectors dX in M
2
l and dx in M

2
r may be expressed as

dX =
∂X

∂ΘΛ
dΘΛ = AΛdΘ

Λ vs. dx =
∂x

∂θλ
dθλ = aλdθ

λ (2.2)

where as

AΛ :=
∂X

∂ΘΛ
= JK

∂XK

∂ΘΛ
vs. aλ :=

∂x

∂θλ
= jk

∂xk

∂θλ
(2.3)

are the tangent basis vectors to the coordinates {Θ1,Θ2} and {θ1, θ2} respectively.

The unit normal vectors, often simply called the normals, to M
2
l and M

2
r can be expressed with cross products

of tangential basis vectors by

A3 =
A1 × A2

‖A1 × A2‖
vs. a3 =

a1 × a2

‖a1 × a2‖
(2.4)

2.2 Comparison of the First Fundamental Forms

The first fundamental form (FFF), or squares of infinitesimal lengths, in M
2
l and M

2
r are respectively

I(Θ1,Θ2) :=< dX, dX > vs. I(θ1, θ2) :=< dx, dx >

where the use of (2.2) yields

I(Θ1,Θ2) = AΛΦdΘ
ΛdΘΛ vs. I(θ1, θ2) = aλφdθ

λdθλ (2.5)

which

AΛΦ =< AΛ,AΦ > vs. aλφ =< aλ,aφ > (2.6)

in which AΛΦ and aλφ are the coordinates of the covariant metric tensor of the M
2
l and M

2
r respectively. The

matrix representation of these tensors can be expressed by
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Al := [AΛΦ] =

[

A11 A12

A21 A22

]

=

[

E F
F G

]

vs. Ar := [aλφ] =

[

a11 a12

a21 a22

]

=

[

e f
f g

]

(2.7)

where we set

E =< A1,A1 > vs. e =< a1,a1 >

F =< A1,A2 > vs. f =< a1,a2 >

G =< A2,A2 > vs. g =< a2,a2 >

The matrices [AΛΦ] and [aλφ] are symmetric and positive-definite [Visconti, 1992]. In general, curvilinear
coordinates are not mutually orthogonal since

< AΛ,AΦ >= AΛΦ 6= 0 vs. < aλ,aφ >= aλφ 6= 0 (2.8)

that means A12 and a12 are not zero. The reciprocal basis vectors AΛ and aλ are the solution of the systems

< AΦ,AΛ >= δΦΛ vs. < aφ,aλ >= δφ
λ (2.9)

where the Kronecker symbols δΦΛ and δφ
λ take value 1 or 0 depending on whether the indices are identical or

not. It can be verified that the unique solutions of (2.9) are

AΦ = AΦΛAΛ vs. aφ = aφλaλ (2.10)

are the coordinates of contravariant metric tensors associated with coordinates of covariant metric tensors. In
matrix form they can be represented by

[AΦΛ] = [AΦΛ]−1 vs. [aφλ] = [aφλ]−1

From (2.10), by taking the scalar product, we find that

AΦΛ =< AΦ,AΛ > vs. aφλ =< aφ,aλ >

When curvilinear coordinates are orthogonal, then the directions of AΦ and AΦ and similarly directions of aφ

and aφ will coincide. Hence, AΦΛ = AΦΛ = 0 as well aφλ = aφλ = 0.

In tensor analysis, so-called mixed tensors exist also, which are neither covariant nor contravariant. At least
one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a
superscript (contravariant). These tensors could differ from each other by the covariant or contravariant of their
indices, e.g.

CΦ
Ψ = AΦΛCΛΨ vs. CΨ

Φ = AΦΛC
ΛΨ

2.3 Deformation Gradients

Through the equation of motion (2.1) we have

dθφ = θφ
,ΦdΘ

Φ vs. dΘΦ = ΘΦ
,φdθ

φ (2.11)

where

θφ
,Φ :=

∂θφ

∂ΘΦ
vs. ΘΦ

,φ :=
∂ΘΦ

∂θφ

are called deformation gradients. The set of deformation gradients can be described by the two Jacobian
matrices Jl and Jr, which obey the matrix relations

Jl := [
∂θφ

∂ΘΦ
] = J−1

r vs. Jr := [
∂ΘΦ

∂θφ
] = J−1

l

If we substitute (2.11) into (2.5)

I(Θ1
, Θ2) = AΛΦdΘΛ

dΦΛ = cλφdθ
λ
dθ

φ vs. I(θ1
, θ

2) = CΛΦdΘΛ
dΘΦ = aλφdθ

λ
dθ

λ (2.12)

where
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cλφ = AΛΦΘΛ
,λΘΦ

,φ vs. CΛΦ = aλφθ
λ
,Λθ

φ
,Φ

which are called respectively Cauchy’s deformation tensor and Green’s deformation tensor. Both of these tensors
are symmetric, and both are positive-definite. Corresponding to the Cauchy and Green deformation tensors,
new vectors cλ and Cλ may be defined by

cλ :=
∂X

∂θλ
=

∂X

∂ΘΛ

∂ΘΛ

∂θλ
= AΛΘΛ

,λ vs. CΛ :=
∂x

∂ΘΛ
=

∂x

∂θλ

∂θλ

∂ΘΛ
= aλθ

λ
,Λ (2.13)

from which it follows that

cλφ = cφλ =< cλ, cφ > vs. CΛΦ = CΦΛ =< CΛ,CΦ > (2.14)

Hence, we have two different representations for the differential vectors dX and dx, one in reference frame
XK and the other in xk, i.e.,

dX = AΛdΘ
Λ = cλdθ

λ vs. dx = CΛdΘ
Λ = aλdθ

λ

Similarly for the FFF of surfaces we have

I(Θ1,Θ2) = AΛΦdΘ
ΛdΘΦ = cλφdθ

λdθφ vs. I(θ1, θ2) = CΛΦdΘ
ΛdΘΦ = aλφdθ

λdθφ

In map projection literature, Green’s deformation tensor has been introduced as the left Cauchy-Green
deformation tensor and Cauchy’s deformation tensor as the right Cauchy-Green deformation tensor, which can
be represented by matrix notations [Grafarend and Krumm, 2006]

Cl := [CΦΛ] vs. Cr := [cφλ] (2.15)

By means of the left Cauchy-Green tensor, we have represented the right metric or the metric of the right surface
M

2
r in the coordinates of the left surface M

2
l . By means of the right Cauchy-Green tensor, we have represented

the left metric or the metric of the left surface M
2
l in the coordinates of the right surface M

2
r .

Theorem 2-1. (Polar Decomposition)

The deformation gradient matrix J can be decomposed using the polar decomposition theorem into a product
of two matrices

J = RU = VR (2.16)

The two matrices U and V in decomposition (2.16) are symmetric and positive definite

UT = U , VT = V

whereas R is a proper orthonormal matrix

RTR = RRT = I

The symmetric matrices U and V are called the right and left stretch matrices, and orthonormal matrix R is
called the rotation matrix. The stretch matrices are given in terms of J by

U = (JJT)
1

2 , V = (JTJ)
1

2 (2.17)

Then by comparing (2.16) and (2.17) the rotation matrix R can be derived by

R = JU−1 = V−1J

The physical interpretation of the polar decomposition (2.16) is : the deformation of an infinitesimal ball of
material surrounding a particle can be viewed either as a symmetric stretch U followed by a rigid rotation
R, or as a finite rotation R followed by a symmetric stretched V, which are illustrated by Fig. 2.2. The two
stretch matrices are rotated versions of each other, e.g., they are related by an orthogonal transformation :
U = RTVR.
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R

RU

V

Figure 2.2: Schematic description of the polar decomposition of the deformation matrix J = RU = VR.

2.4 Strain Tensor: deformation tensor of first kind

The first measure of deformation is based upon differences between FFF of surfaces M
2
l and M

2
r , namely

I(θ1, θ2)− I(Θ1,Θ2), which implies a length change due to the deformation. Hence, according to (2.12) we have

I(θ1, θ2) − I(Θ1,Θ2) = 2EΦΛdΘ
ΛdΘΦ = 2eφλdθ

λdθφ

where

EΛΦ = EΦΛ :=
1

2
(CΛΦ −AΛΦ) vs. eλφ = eφλ :=

1

2
(aλφ − cλφ) (2.18)

are respectively called Lagrangian and Eulerian strain tensors. Following the map projection conventions, the
Lagrangian strain tensor is called the left Euler-Lagrange strain tensor and the Eulerian strain tensor the right
Euler-Lagrange strain tensor. The matrix representation of them are given by

El := [EΛΦ] vs. Er := [eλφ]

Unlike the Cauchy-Green deformation tensors which are positive due to the positive-definite property of the
deformation tensors, the eigenvalues of the Euler-Lagrange deformation tensors can be negative or positive.

The displacement vector u is defined as the vector that extends from a material point in undeformed surface
M

2
l to the same material point in deformed surface M

2
r . Thus

u = x − X + t

X

x

2

l
M

3A

u

t

M

1A

1a

3a
2a

2A

1J

1j
1
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x

2
X

m

2
x

3
x

3
X

2J

2j

3J

3j

Q

q

q
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1

2

2

2

r
M

Figure 2.3: Displacement vector.

which is illustrated by Fig. 2.3. If we consider the translation vector t in order of magnitude to be smaller than
vectors x and X, namely t ≪ X and t ≪ x, then deformation tensors are insensitive to it. The displacement
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vector will have components ŨK referring to the curvilinear coordinate system {Θ1,Θ1} and ũk referring to the
{θ1, θ1} such that

u = ŨKAK = ŨKAK vs. u = ũkak = ũka
k (2.19)

or by splitting curvilinear basis vectors into a set of surface basis vectors and unit normal vectors, we find

u = ŨΦAΦ + Ũ3A3 = ŨΦAΦ + Ũ3A
3 vs. u = ũφaφ + ũ3a3 = ũφa

φ + ũ3a
3

Let us take the scalar product of (2.19) with AK and ak respectively

ŨK =< u,AK > vs. ũk =< u,ak > (2.20)

or by scalar multiplication of (2.19) with AK and ak we obtain

ŨK =< u,AK > vs. ũk =< u,ak > (2.21)

It is convenient for practical applications to express strain tensors (2.18) as a function of the displacement
vector [Sansour et al., 1997; Voosoghi, 2000; Pietraszkiewicz and Szwabowicz, 2007]

EΛΦ =
1

2
(< u,Λ,u,Φ > + < u,Λ,AΦ > + < AΛ,u,Φ >) vs. eλφ =

1

2
(< u,λ,u,φ > + < u,λ,aφ > + < aλ,u,φ >)

(2.22)

where

u,Λ =
∂u

∂ΘΛ
vs. u,λ =

∂u

∂θλ

are first-order partial derivatives of the displacement vector with respect to the material and spatial curvilinear
coordinates. A more detailed description of these derivatives and their relations is presented in Appendix 4.2.

2.4.1 An Analytical Example

Since the Earth is in fact flattened slightly at the poles and bulges somewhat at the equator, the geometrical
figure used in geodesy to most nearly approximate the shape of the Earth is an ellipsoid of revolution. It is
used to represent the Earth’s surface in geodetic calculations, because such calculations are simpler than those
with more complicated mathematical models. It can be used also for deformation analysis, in order to describe
crustal deformations.

Hence, the embedding of an ellipsoid-of-revolution with semi-major axis A1 and A2 as a semi-minor axis

and E2 =
A2

1
−A2

2

A2
1

as square of the first eccentricity, is governed by vector field [Grafarend and Engels, 1992]

X(Λ, Φ) = J1X
1(Λ, Φ) + J2X

2(Λ, Φ) + J3X
3(Λ, Φ) (2.23)

X(Λ,Φ) = [ J1 J2 J3 ]



















( A1√
1−E2 sin2 Φ

+H(Λ,Φ))) cos(Λ) cos(Φ)

( A1√
1−E2 sin2 Φ

+H(Λ,Φ))) sin(Λ) cos(Φ)

( A1(1−E2)√
1−E2 sin2 Φ

+H(Λ,Φ))) sin(Φ)



















(2.24)

and can be considered for the representation of Earth’s surface before deformation, as a left surface M
2
l . In

Eq.(2.24), the ellipsoidal height H(Λ,Φ) is described as a function of latitude and longitude.

We can get similar Eqs. (2.23) and (2.24) for the representation of Earth’s surface after deformation, as a
right surface M

2
r by

x(λ, φ) = j1x
1(λ, φ) + j2x

2(λ, φ) + j3x
3(λ, φ)

x(λ, φ) = [ j1 j2 j3 ]



















( A1√
1−E2 sin2 φ

+ h(λ, φ))) cos(λ) cos(φ)

( A1√
1−E2 sin2 φ

+ h(λ, φ))) sin(λ) cos(φ)

( A1(1−E2)√
1−E2 sin2 φ

+ h(λ, φ))) sin(φ)



















(2.25)
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respectively. The coordinates (X1, X2, X3) and (x1, x2, x3) of the placement vectors X(Λ,Φ) and x(λ, φ) are
expressed in the left and right orthogonal fixed frames {J1,J2,J3 | O} and {j1, j2, j3 | o} at their origins O and
o.

Next, we are going to construct the tangent basis vectors in M
2
l and M

2
r . The vector field X(Λ,Φ) is locally

characterized by the field of tangent basis vectors {∂X
∂Λ ,

∂X
∂Φ }, the Jacobi map with respect to the Λ and Φ.

Namely according to Eq. (2.3) and (2.24) we have

{∂X
∂Λ

,
∂X

∂Φ
} = [ J1 J2 J3 ]













X1
,Λ X1

,Φ

X2
,Λ X2

,Φ

X3
,Λ X3

,Φ













{∂X
∂Λ

,
∂X

∂Φ
} = [ J1 J2 J3 ]











cosΦ(H,Λ cos Λ − (N + H) sin Λ) cosΛ(H,Φ cos Φ − (M + H) sin Φ)

cosΦ(H,Λ sin Λ + (N + H) cosΛ) sin Λ(H,Φ cos Φ − (M + H) sin Φ)

sin Φ H,Λ H,Φ sin Φ + (M + H) cos Φ











in addition, the vector field x(λ, φ) is locally characterized by the field of tangent basis vectors {∂x
∂λ ,

∂x
∂φ}, the

Jacobi map with respect to the λ and φ, namely

{∂x
∂λ
,
∂x

∂φ
} = [ j1 j2 j3 ]













x1
,λ x1

,φ

x2
,λ x2

,φ

x3
,λ x3

,φ













{∂x
∂λ
,
∂x

∂φ
} = [ j1 j2 j3 ]











cos φ(h,λ cos λ − (n + h) sin λ) cos λ(h,φ cos φ − (m + h) sin φ)

cos φ(h,λ sin λ + (n + h) cos λ) sin λ(h,φ cos φ − (m + h) sin φ)

sin φ h,λ h,φ sin φ + (m + h) cos φ











where H,Λ, H,Φ and h,λ, h,φ denote first-order partial derivatives of the ellipsoidal height functions with respect
to the surface coordinates (Λ,Φ) and (λ, φ), respectively. The normal radiuses of curvatures N/n and meridional
radiuses of curvatures M/m of the reference ellipsoid are given by

N =
A1

(1 − E2 sin2 Φ)
1

2

vs. n =
A1

(1 − E2 sin2 φ)
1

2

M =
A1(1 − E2)

(1 − E2 sin2 Φ)
3

2

vs. m =
A1(1 − E2)

(1 − E2 sin2 φ)
3

2

Next, we are going to identify the coordinates of the left metric tensor AΛΦ and the right metric tensor aΛΦ,
in particular through Eq. (2.6), from the inner products

<
∂X

∂Λ
,
∂X

∂Λ
>= H2

,Λ + (N +H)2 cos2 Φ =: A11 vs. <
∂x

∂λ
,
∂x

∂λ
>= h2

,λ + (n+ h)2 cos2 φ := a11

<
∂X

∂Λ
,
∂X

∂Φ
>= H,ΛH,Φ := A12 vs. <

∂x

∂λ
,
∂x

∂φ
>= h,λh,φ := a12

<
∂X

∂Φ
,
∂X

∂Φ
>= H2

,Φ + (M +H)2 := A22 vs. <
∂x

∂φ
,
∂x

∂φ
>= h2

,φ + (m+ h)2 := a22

and FFF of surfaces

I(Θ1,Θ2) = (H2
,Λ + (N +H)2 cos2 Φ) dΛ2 + (H,ΛH,Φ) dΛdΦ + (H2

,Φ + (M +H)2) dΦ2

versus

I(θ1, θ2) = h2
,λ + (n+ h)2 cos2 φ) dλ2 + (h,λh,φ) dλdφ + (h2

,φ + (m+ h)2) dφ2

Resorting to this identification, we obtain the matrix form of the left metric tensor, i.e. Al, and the matrix
form of the right metric tensor, i.e. Ar, according to
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Al := [AΛΦ] = vs. Ar := [aλφ] =

=





H2
,Λ + (N +H)2 cos2 Φ H,ΛH,Φ

H,ΛH,Φ H2
,Φ + (M +H)2



 vs. =





h2
,λ + (n+ h)2 cos2 φ h,λh,φ

h,λh,φ h2
,φ + (m+ h)2





Hence, through Eqs. (2.13), (2.14) and (2.15), Cauchy-Green deformation tensors can be derived by

CΛΦ =< CΛ,CΦ >=<
∂x

∂ΘΛ
,
∂x

∂ΘΦ
> vs. cλφ =< cλ, cφ >=<

∂X

∂θλ
,
∂X

∂θφ
>

=<
∂(u + X− t)

∂ΘΛ
,
∂(u + X − t)

∂ΘΦ
> vs. =<

∂(x − u + t)

∂θλ
,
∂(x − u + t)

∂θφ
>

=< u,Λ,u,Φ > + < u,Λ,X,Φ > + vs. =< u,λ,u,φ > + < u,λ,X,φ > −
< X,Λ,u,φ > + < X,Λ,X,Φ > vs. < x,λ,u,φ > + < x,λ,x,φ > (2.26)

To complete this example we calculate Lagrangian and Eulerian strain tensors. Then according to Eqs. (2.18)
and (2.26) we have

EΛΦ =
1

2
(< u,Λ,u,Φ > + < u,Λ,AΦ > + < AΛ,u,Φ >) vs. eλφ =

1

2
(< u,λ,u,φ > + < u,λ,aφ > + < aλ,u,φ >)

(2.27)

Hence through this analytical example we proved Eq. (2.22).

Remark 2.1 Apart from the Cauchy-Green and Euler-Lagrange deformation tensors used to describe the
changes in the geometry of the deforming body induced by deformation, it is often convenient in deformation
analysis to employ other equivalent deformation measures. Tab. (2.1) collects the most common deformation
tensors of first kind and their definitions appearing in various applications in deformation analysis [Grafarend
and Krumm, 2006, page 38]

Table 2.1: Various measures for deformation (based on FFF).

Name Symbol Definitions

Left Cauchy − Green strain tensor E1 Cl

Right Cauchy − Green strain tensor E2 Cr

Piola E3 C−1
l

Finger E4 C−1
r

Hencky E5
1
2 lnCl

Hencky E6
1
2 lnCr

Left Euler − Lagrange strain tensor E7
1
2 (Cl − Al)

Right Euler − Lagrange strain tensor E8
1
2 (Ar − Cr)

Karni − Reiner E9
1
2 (C−1

l − Al)
Karni − Reiner E10

1
2 (Ar − C−1

r )

2.4.2 Eigenspace Analysis, Strain Tensor

Let us consider the matrix forms of left Euler-Lagrange strain tensor and left metric tensor are given by

El =

[

E11 E12

E12 E22

]

Al =

[

A11 A12

A12 A22

]

where both matrices are symmetric. Finding the eigenspectra elements of matrices {El,Al} leads us to obtaining
a general eigenvector-eigenvalue problem of type

ElFl = DΛAlFl (2.28)
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where Fl = [F1,F2] ∈ R
2×2 is the matrix of eigenvectors and DΛ is the diagonal matrix of eigenvalues, namely

DΛ = diag[Λ1,Λ2]. Through (2.28), eigenvalues and eigenvectors can be obtained by

ElFl − DΛAlFl = 0 =⇒ det(El − DΛAl) = 0 (2.29)

Solving (2.29) for eigenvalues of the matrices {El,Al} yields [Grafarend, 1995]

Λ1,2 =
1

2
{tr(ElA

−1
l ) ±

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l ) , Λ1,Λ2 ∈ R (2.30)

whereas here Λ1 and Λ2 are the principal stretches. A deformation portrait when signΛ1 = signΛ2 will be the
strain ellipse and as strain hyperbola if signΛ1 6= signΛ2.

In the first case, the axes of the strain ellipse are directed along the eigenvectors of the strain ellipse; the
semi-major axis of strain ellipse is identified with the maximum principal strain, the semi-minor axis with the
minimum principal strain, constrained by signΛ1 = signΛ2. If signΛ1 = signΛ2 = +1, we speak about extension
if signΛ1 = signΛ2 = −1, we will speak of contraction. Alternatively, in the second case, the axis of strain
hyperbola are directed along the eigenvectors of deformation tensors, indicated by the ”real axis” showing Λ1

and ’imaginary axis’ with |Λ2|, for instance [Grafarend and Krumm, 2006].

Inserting eigenvalues (2.30) into (2.28), we can get eigenvectors by

F1 = ((E22 − Λ1A22)
2A11 − 2(E12 − Λ1A12)(E22 − Λ1A22)A12 + (E12 − Λ1A12)

2A22)
−1/2

[

E22 − Λ1A22

−(E12 − Λ1A12)

]

F2 = ((E11 − Λ2A11)
2A22 − 2(E12 − Λ2A12)(E11 − Λ2A11)A12 + (E12 − Λ2A12)

2A11)
−1/2

[

−(E12 − Λ2A12)
E11 − Λ2A11

]

In general, on the surface M
2
l , we have non-orthogonal conjugate axis of quadratic forms < F1,F2 > 6= 0,

contrary to the ”plane” which has orthogonal conjugate of axis < F1,F2 >= 0. Since in E
2 or plane, metric is

unit A = diag(1, 1), while 2D Riemannian Manifold M
2 or 2D surface, equipped with natural metric which is

not unit (see Eq. (2.8)) .

The orientation of semi-major axis of quadratic forms on the surface M
2
l is represented by Ψ through

Eqs. (2.31) and (2.32). Its illustration in left Euclidean space E
2
l with basis {E1,E2} is anti-clockwise with

respect to the 1-axis, namely east direction [Eisele and Mason, 1970]

Ψ = arccos(
< F1,El >

‖F1‖
) = arccos(

F 1
1

‖F1‖
) subject to ‖F1‖2 = max{‖F1‖, ‖F2‖}, ∀Ψ ∈ [−π

2
,
π

2
] (2.31)

or

Ψ = arccos(
< F2,El >

‖F2‖
) = arccos(

F 1
2

‖F2‖
) subject to ‖F2‖2 = max{‖F1‖, ‖F2‖}, ∀Ψ ∈ [−π

2
,
π

2
] (2.32)

Then according to (2.30) and (2.31) or (2.32), for a symmetric strain matrix El with associated metric Al,
the eigenspace components will consist of : eigenvalues Λ1 and Λ2, as well the as orientation parameter Ψ

Y =





Λ1

Λ2

Ψ



 =
1

2

















tr(ElA
−1
l ) +

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

tr(ElA
−1
l ) −

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

arccos(<Fi,Ei>
‖Fi‖ )

















(2.33)

The similar procedure can be performed for the right-pair of matrices {Er,Ar}. Then right eigenspace
components will consist of
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y =





λ1

λ2

ψ



 =
1

2

















tr(ErA
−1
r ) +

√

(tr(ErA
−1
r ))2 − 4det(ErA

−1
r )

tr(ErA
−1
r ) −

√

(tr(ErA
−1
r ))2 − 4det(ErA

−1
r )

arccos(<fi,ei>
‖fi‖ )

















(2.34)

where {e1, e2} are basis in right Euclidean space E
2
r.

Invariants of Strain Tensor

In mathematics and theoretical physics, an invariant is that which remains unchanged under some transfor-
mation. The invariants do not change with rotation of the coordinate system (they are objective). Obviously,
any function of the invariants only is also objective. Examples of invariants in deformation analysis include the
eigenspace components of the strain tensor. The first properties of invariants are the sum of the eigenvalues of
the strain tensor; their sum defines the rate of surface dilatation as a surface invariant by

∆ = Λ1 + Λ2 = tr(ErA
−1
r ) vs. δ = λ1 + λ2 = tr(ElA

−1
l ) (2.35)

The surface dilatation is the relative change of area. The surface dilatation of zero corresponds to no change of
area, surface dilatation of positive values relates to expansion of the area and negative dilatations correspond
to a reduction of the area.

The second properties of invariants are the differences between a pair of eigenvalues, which is a so-called
surface maximum shear strain

Υ = Λ1 − Λ2 =
√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l ) vs. υ = λ1 − λ2 =

√

(tr(ErA
−1
r ))2 − 4det(ErA

−1
r ) (2.36)

where Υ and υ are the shear across the directions of their maximum values.

The third property of invariants is the rotation around the normal which is introduced in deformation
analysis [Pietraszkiewicz, 1977; Stein, 1980; Ernst, 1981; Voosoghi, 2000; Grafarend and Voosoghi, 2003]

Γ =
1

2
GΛΦRΛΦ vs. γ =

1

2
gλφrλφ (2.37)

where

[GΛΦ] =

[

0 1√
det Al

− 1√
det Al

0

]

vs. [gλφ] =

[

0 1√
det Ar

− 1√
det Ar

0

]

which matrix notation for rotation tensors RΛΦ and rλφ can be obtained via

Rl := [RΛΦ] =
1

2

[

0 ∂Ũ1

∂Θ2
− ∂Ũ2

∂Θ1

∂Ũ2

∂Θ1
− ∂Ũ1

∂Θ2
0

]

vs. Rr := [rλφ] =
1

2

[

0 ∂ũ1

∂θ2
− ∂ũ2

∂θ1

∂ũ2

∂θ1
− ∂ũ1

∂θ2
0

]

(2.38)

Simultaneous Diagonalization

Due to the intricate relations between elements of strain tensor on one side and eigenspace components on
the other side, which are established by Eqs. (2.33) and (2.34), we convert these relations to simple equations.
Hence, in conformity with standard lemma of matrix algebra both pair matrices {El,Al} and {Er,Ar} can
be simultaneously diagonalized, separately, one matrix form of associated metrics being the unit matrix. We
briefly outline the simultaneous diagonalization of the left symmetric matrix El relative to the left symmetric
positive-definite metric Al, then drawing the same conclusion about the right pair matrices.

Two matrices are said to be simultaneously diagonalizable if they are diagonalized by a same invertible matrix.
In other words, if El and Al commute ElAl = AlEl then El and Al can be simultaneously diagonalized. In
mathematical terms, we want to find a matrix F that simultaneously diagonalizes both Al and El

FTAlF =

[

1 0
0 1

]

FTElF =

[

Λ1 0
0 Λ2

]
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We express the construction of simultaneous diagonalization through the sequence of three steps which are
illustrated by Fig. 2.4.

Step 1. Let us consider two quadratic forms relative to strain and metric matrices, e.g., Q1 and Q2 respec-
tively. A Geometrical representation of Q1 can be performed using an ellipse, in the left top side Fig. 2.4 (a),
based on the fact that the associated matrix form is positive definite. In Fig. 2.4 (b), we represented Q2 related
to symmetric matrix El, which can be illustrated by an ellipse or hyperbola.

Note that, illustrated Figs. 2.4 (a) and 2.4 (b) neither have oriented axes with respect to each other nor are
they aligned with coordinate axes, corresponding to the fact that neither El nor Al are diagonal matrices.

Continuing the first step by finding the eigenvalue-eigenvector of matrix Al, on domain of left Euclidean
space E

2
l

AlVl = ΛAVl

where columns of matrix Vl are eigenvectors

Vl =
[

V1 V2

]

where V1 ⊥ V2

Since Vl is an orthonormal matrix, it can be represented by

Vl =

[

cosϕ − sinϕ
sinϕ cosϕ

]

, ∀ϕ ∈ [−π
2
,
π

2
]

which, indeed is a rotation matrix by a counterclockwise angle ϕ in a fixed coordinate system.

Step2. Diagonalization of matrix Al , under the rotation matrix (orthonormal) Vl. Hence, under this
diagonalization, strain and its associated metric will convert to

A′
l = VT

l AlVl E′
l = VT

l ElVl

which are illustrated by Figs. 2.4 (c) and 2.4 (d).

Step3. Transform A′
l to become a unit circle, namely converting A′

l to unit matrix. Hence, E′
l will change

correspondingly by

A
′′

l = MA
′

lM = (VlM)TAl(VlM) = I E
′′

l = ME
′

lM = (VlM)TEl(VlM) (2.39)

or in matrix notations

A′′
l =

[

1 0
0 1

]

E′′
l =

[

E′′
11 E′′

12

E′′
12 E′′

22

]

where in (2.39) matrix M is obtainable by

M = diag(
1

√

A′
11

,
1

√

A′
22

)

which are illustrated by Figs. 2.4 (e) and 2.4 (f). The effect of this transformation is to expand or contract
length along the coordinate axes so that the metric ellipse is deformed into a unit circle.

Among three components of eigenspace, eigenvalues of matrix E′′
l with unit metric A′′

l = I, are equal to
the eigenvalues of El with associated metric Al in (2.33), respectively [Aravind, 1988]. However, orientation
parameters in two cases are different. There is relation between two orientation parameters by

tan Θ =

√
det Al

A11 +A12 tan Ψ
tan Ψ (2.40)

where the orientation parameter of the maximum principal axis of the strain matrix El with corresponding
metric Al is considered by Ψ, while the orientation parameter of the matrix E′′

l with corresponding unit metric
is considered by Θ (see Fig. 2.5).

Hence, without loss of generality, by means of Eqs. (2.39) and (2.40), we are able to have mapping from
eigenspectra components of {El,Al}, Eq. (2.33), onto eigenspectra components of {E′′

l , I}. Namely
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



Λ1

Λ2

Θ



 =
1

2















E′′

11 + E′′

22 +
√

(E′′

11 − E′′

22)
2 + 4E′′2

12

E′′

11 + E′′

22 −
√

(E′′

11 − E′′

22)
2 + 4E′′2

12

arctan
2E′′

12

E′′

11
−E′′

22















=
1

2



















tr(ElA
−1
l ) +

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

tr(ElA
−1
l ) −

√

(tr(ElA
−1
l ))2 − 4det(ElA

−1
l )

arctan(

√
det Al

A11+A12 tan Ψ
tan Ψ)



















(2.41)

Figure 2.4: Geometrical representation of simultaneous diagonalization of matrices {El,Al}. The left side is related to
the geometrical representation of left metric, which is symmetric and positive definite. Then it can be presented by an
ellipse. The right side is related to matrix form of left Euler-Lagrange strain tensor, which is symmetric. Illustration of
it can be an ellipse or hyperbola, however we chose to present it as an ellipse.

after simultaneously diagonalization with
l l

A E

after simultaneously diagonalization with
l l

E A

1Direction of F

2Direction of F

a
b

Q
Y

Figure 2.5: Illustrates the orientation of major eigenvector of left Euler-Lagrange strain tensor on surface M
2
l by Ψ, and

on plane by Θ.

Similar type of procedures can be carried out as simultaneous diagonalization of the right pair of matrices
{Er,Ar}, in order to convert metric matrix into unit matrix.
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Remark 2.2 This problem arises in the study of map projections, when one intends to learn about the distor-
tion of mapping from one surface onto another surface. In particular, Tissot [1881] published an analysis of the
distortion that occurs on map projections. He devised Tissot’s Indicatrix, or the distortion circle, which when
plotted on a map will appear as an ellipse whose elongation depends on the amount of distortion by the map
at that point. The angle and extent of the elongation represents the amount of angular distortion of the map.
The size of the ellipse indicates the amount that the area is distorted.

Figure 2.6: Albers conical equal area on a reference ellipsoid with coastlines and Tissot ellipses of distortions. The
projection is free of distortion along the standard parallels. Distortion is constant along any other parallel. This
projection is neither conformal nor equidistant.

When the Tissot’s indicatrix reduces to a circle it means that, at that particular point, the scale is inde-
pendent of direction. In conformal projections, where angles are preserved around every location, the Tissots
indicatrix are all circles, with varying sizes. In equal-area projections, where area proportions between ob-
jects are conserved, the Tissots indicatrix have all unit area, although their shapes and orientations vary with
location.

2.5 Comparison of Second Fundamental Forms

In deformation analysis the second fundamental form (SFF) is a symmetric bilinear form defined on the differ-
entiable surfaces M

2
l and M

2
r , which in some sense measure the curvatures of M

2
l and M

2
r in embedding spaces,

respectively. Meanwhile, the construction of the SFF of surfaces, requires a small digression. Afterwards we
will discuss how they relate to the curvatures of M

2
l and M

2
r.

We suppose that surfaces M
2
l and M

2
r which are governed by X = X(Θ1,Θ2) and x = x(θ1, θ2), are surfaces of

class Cm(m ≥ 2). Then for each surface point exist associated unit normal vectors A3 and a3, with differentials
dA3 = A3,1dΘ

1 + A3,2dΘ
2 and da3 = a3,1dθ

1 + a3,2dθ
2, separately. Here, vectors A3,1, A3,2 and a3,1, a3,2

denote to first-order partial derivatives of unit normal vectors with respect to curvilinear coordinates {Θ1,Θ2}
and {θ1, θ2} respectively.

Differential forms of unit normal vectors dA3 and da3 are separately orthogonal over the unit normal vectors
A3 and a3, likewise they are parallel to tangent plane of the surfaces M

2
l and M

2
r . Now, we consider the quantities

II(Θ1,Θ2) =: − < dX, dA3 > vs. II(θ1, θ2) =: − < dx, da3 >

By using Eq. (2.3), we obtain
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II(Θ1,Θ2) = − < A1dΘ
1 + A2dΘ

2,A3,1dΘ
1 + A3,2dΘ

2 >

vs.

II(θ1, θ2) = − < a1dθ
1 + a2dθ

2,a3,1dθ
1 + a3,2dθ

2 >

According to this definitions, the SFF captures second derivative information. It can be computed easily from
Eq. (2.42) that

II(Θ1
, Θ2) = L(dΘ1)2 + 2M(dΘ1)(dΘ2) + N(dΘ2)2 vs. II(θ1

, θ
2) = l(dθ

1)2 + 2m(dθ
1)(dθ

2) + n(dθ
2)2 (2.42)

where

L = − < A1,A3,1 > vs. l = − < a1,a3,1 >

M = −1

2
(< A1,A3,2 > + < A2,A3,1 >) vs. m = −1

2
(< a1,a3,2 > + < a2,a3,1 >) (2.43)

N = − < A2,A3,2 > vs. n = − < a2,a3,2 >

Left and right hand sides of the Eq. (2.43) are called SFF of corresponding surfaces M
2
l and M

2
r at coordinates

{Θ1,Θ2} and {θ1, θ2}, respectively. Since < A1,A3 >= 0 and < A2,A3 >= 0 , as well as < a1,a3 >= 0 and
< a2,a3 >= 0, it can be shown that [Prakash, 1981]

< A3,AΦ,Λ >= − < A3,Φ,AΛ > vs. < a3,aφ,λ >= − < a3,φ,aλ >

These give alternative expressions for L, M , N and l, m, n. Namely from (2.43)

L =< A1,1,A3 > vs. l =< a1,1,a3 >

M =< A1,2,A3 > vs. m =< a1,2,a3 >

N =< A2,2,A3 > vs. n =< a2,2,a3 >

Compare with the tensor notation

II(Θ1,Θ2) = BΛΦdΘ
ΛdΘΦ vs. II(θ1, θ2) = bλφdθ

λdθφ (2.44)

where coefficients BΛΦ and bλφ are coordinates of the surface symmetric tensor and given by

Bl := [BΛΦ] =

[

B11 B12

B21 B22

]

=

[

L M
M N

]

vs. Br := [bλφ] =

[

b11 b12
b21 b22

]

=

[

l m
m n

]

which is comparable to Eq. (2.7). The SFF is invariant under a coordinate transformation in the same sense that
the FFF is invariant. It should be noted that the SFF remains invariant as long as the coordinate transformation
preserves the direction of unit normal vector, otherwise the SFF changes its sign.

2.5.1 Mean and Gaussian Curvatures

For a M2
l surface embedded in E

3, we consider the intersection of the surface with a plane containing the
normal vector and one of the tangent vectors at a particular point. This intersection is a plane curve and has a
curvature. This is the normal curvature, and it varies with the choice of the tangent vector, which is illustrated
by Fig. (2.7). The maximum and minimum values of the normal curvature at a point are called the principal
curvatures, κ2 and κ1. The directions of the corresponding tangent vectors are always perpendicular, and are
therefore called principal directions.

The principal curvatures measure the maximum and minimum bending of a surface at each point. The
Gaussian curvature K and mean curvature H are related to κ1 and κ2 by [Gray, 1997, pages:363-367]

K = κ1κ2 =
LN −M2

EG− F 2
=

det[Bl]

det[Al]
:=

det[BΛΦ]

det[AΛΦ]
(2.45)

H =
1

2
(κ1 + κ2) =

EN − 2FM +GL

2(EG− F 2)
=

1

2
(BΛΦA

ΛΦ) (2.46)
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Normal Vector

Tangent Plane

Planes of Principal
Curvatures

Figure 2.7: Surface with normal planes in directions of principal curvatures.

This can be written as a quadratic equation

κ2 − 2Hκ+K = 0 (2.47)

which has solutions

κ1 = H +
√

H2 −K

κ2 = H −
√

H2 −K

The metric tensor is positive-definite EG − F 2 > 0, then in Eq. (2.45) the sign of K agrees with the sign
of LN −M2. In the same manner, in Eq. (2.46) sign of H agrees with the sign of EN − 2FM + GL. Here
we adopt the convention that a curvature is taken to be positive if the curve turns in the same direction as
the surface’s chosen normal, otherwise negative. Furthermore, surface points can be labeled as belonging to a
viewpoint independent surface shape class type based on the combination of the signs from the Gaussian and
mean curvatures [Koenderink and Lisowski, 1992], as shown in Tab. (2.2) and Fig. 2.8.

These curvatures are independent of the parametrization used, and are important tools for analyzing the
surface. A wide range of their applications can be found in engineering subjects (e.g. in shell theory, image
processing, computer vision, etc). A very nice application of mean and Gaussian curvature in studying the
structure of Earth’s mantle and crust is given by Bursa and Pec [1993].

Table 2.2: Shape classification based on the signs of mean and Gaussian curvatures.

K < 0 K = 0 K > 0
H < 0 Saddle Valley Concave(Cylinder) Concave(Ellipsoid)
H = 0 Minimal Plane Impossible
H > 0 Saddle Ridge Convex(Cylinder) Convex(Ellipsoid)

Finally, comparing the left and right mean and Gaussian curvatures, yields

K =
LN −M2

EG− F 2
=

det[Bl]

det[Al]
:=

det[BΛΦ]

det[AΛΦ]
vs. k =

ln−m2

eg − f2
=

det[Br]

det[Ar]
:=

det[bλφ]

det[aλφ]

(2.48)

H =
EN − 2FM +GL

2(EG− F 2)
=

1

2
(BΛΦA

ΛΦ) vs. h =
en− 2fm+ gl

2(eg − f2)
=

1

2
(bλφa

λφ)
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Figure 2.8: Eight basic visible-invariant surface types. The surfaces are oriented by their upward normals.

2.6 Tensor of Changes of Curvature (TCC): deformation tensor of
second kind

Establishing a comparison between left- and right hand sides of the Eq. (2.42), measures the deformation based
upon differences between SFF of surfaces M

2
l and M

2
r , namely II(θ1, θ2)− II(Θ1,Θ2), which implies a curvature

change due to the deformation. Hence, according to (2.44) we have

II(θ1, θ2) − II(Θ1,Θ2) = KΦΛdΘ
ΛdΘΦ = kφλdθ

λdθφ (2.49)

where

KΛΦ = KΦΛ := bλφ
∂θλ

∂ΘΛ

∂θφ

∂ΘΦ
−BΛΦ vs. kλφ = kφλ := bλφ −BΛΦ

∂ΘΛ

∂θλ

∂ΘΦ

∂θφ
(2.50)

are respectively called Lagrangian and Eulerian portrait of tensor of changes of curvatures (TCC). Following
the map projection conventions, they are called left Euler-Lagrange deformation of second kind and right Euler-
Lagrange deformation of second kind, respectively. The matrix representation of them are given by

Kl := [KΛΦ] vs. Kr := [kλφ]

Correspondent to Eq. (2.22), it is more adequate to express TCC as set a of functions of the displacement
vector. Similar relations could be formulated for the TCC, but they are more complicated [Ernst, 1981]. We
can overcome this problem by using a difference vector of unit normal vectors w in addition to the displacement
vector [Stein, 1980]. The vector w is defined as the difference of a unit normal vector on a material point
(located at the undeformed surface) M

2
l and a unit normal vector on the same material point (located at the

deformed surface) M
2
r . Thus

w = a3 − A3 (2.51)

which is illustrated by Fig. 2.9. Similar to the displacement vector, difference vector of unit normal vectors w
will have surface components W̃K referred to the curvilinear coordinate system {Θ1,Θ1} and w̃k referred to
the {θ1, θ1} given by

w = W̃KAK = W̃KAK vs. w = w̃kak = w̃ka
k (2.52)

or
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w = W̃ΦAΦ + W̃ 3A3 = W̃ΦAΦ + W̃3A
3 vs. w = w̃φaφ + w̃3a3 = w̃φa

φ + w̃3a
3

Hence, performing scalar products of (2.52) with AK and ak, respectively, define

W̃K =< w,AK > vs. w̃k =< w,ak >

or under scalar multiplication of (2.52) by AK and ak, separately, we obtain

W̃K =< w,AK > vs. w̃k =< w,ak >

X
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Figure 2.9: Difference of unit normal vectors w which is illustrated by dashed line.

Similar to Eq. (2.22), the expression of Eq. (2.49) as a function of displacement vector can be described by
[Sansour et al., 1997; Voosoghi, 2000]

KΛΦ = − < w,Λ,AΦ > − < w,Λ, u,Φ > − < u,Φ,A3,Λ > vs. kλφ = − < w,λ, aφ > − < w,λ,u,φ > − < u,φ,a3,Λ > (2.53)

where

w,Λ =
∂w

∂ΘΛ
vs. w,λ =

∂w

∂θλ

are first-order partial derivatives of w with respect to the material and spatial curvilinear coordinates (see
Appendix 4.2).

2.6.1 An Analytical Example

In reference to example (2.4.1), which deals with the determination of the TCC, from the embedding of an
ellipsoid-of-revolution as a representation of the Earth’s surface before deformation, namely by Eq. (2.24), and
consideres the representation of the Earth’s surface after deformation by Eq. (2.25). In example (2.4.1) the
tangent basis vectors, {A1,A2} and {a1,a2}, through Eqs. (2.3) were determined. Using Eq. (2.4) we can
demonstrate unit normal vectors A3 and a3, namely

A1 =











cos Φ(H,Λ cosΛ − (N + H) sin Λ)

cos Φ(H,Λ sin Λ + (N + H) cos Λ)

sin Φ H,Λ











vs. a1 =













cosφ(h,λ cosλ− (n+ h) sinλ)

cosφ(h,λ sinλ+ (n+ h) cosλ)

sinφ h,λ













(2.54)

A2 =











cos Λ(H,Φ cosΦ − (M + H) sin Φ)

sin Λ(H,Φ cos Φ − (M + H) sin Φ)

H,Φ sin Φ + (M + H) cosΦ











vs. a2 =













cosλ(h,φ cosφ− (m+ h) sinφ)

sinλ(h,φ cosφ− (m+ h) sinφ)

h,φ sinφ+ (m+ h) cosφ













(2.55)
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Then unit normal vectors can be obtained by

A3 =
A1 × A2

‖A1 × A2‖
vs. a3 =

a1 × a2

‖a1 × a2‖
The Cartesian coordinates of A3 and a3 can be determined in terms of geodetic longitudes and latitudes of the
points, at the left and right surfaces, respectively [Voosoghi, 2000; Grafarend and Voosoghi, 2003]

A3 =
1

√

det(Al)













(sinΛ(M + H)H,Λ + cos Φ cosΛ(N + H)(sinΦH,Φ + cos Φ(M + H)))

cos Φ sin Λ(N + H)(sinΦH,Φ + cos Φ(M + H)) − cos Λ(M + H)H,Λ

cos Φ(N + H)(sin Φ(M + H) − HΦ cos Φ)













(2.56)

versus

a3 =
1

√

det(Ar)













(sin λ(m + h)h,λ + cos φ cos λ(n + h)(sin φh,φ + cos φ(m + h)))

cos φ sin λ(n + h)(sin φh,φ + cos φ(m + h)) − cos Λ(m + h)h,λ

cos φ(n + h)(sin φ(m + h) − hφ cos φ)













(2.57)

Using (2.51), we can compute the difference vector of unit normal vectors w. Hence, by having w and
using Eq. (2.50) we compute the left and right TCC [Sansour et al., 1997; Voosoghi, 2000; Pietraszkiewicz and
Szwabowicz, 2007], namely

KΛΦ = bλφ
∂θλ

∂ΘΛ

∂θφ

∂ΘΦ
−BΛΦ vs. kλφ = bλφ −BΛΦ

∂ΘΛ

∂θλ

∂ΘΦ

∂θφ
(2.58)

where

BΛΦ = − <
∂A3

∂ΘΛ
,AΦ > vs. bλφ = − <

∂a3

∂θλ
,aφ > (2.59)

Eq. (2.59) is the so-called Weingarten equation, for which analytical proof is given in Appendix 4.2. Therefore,
by inserting Eq. (2.59) into Eq. (2.58) we have

KΛΦ = − ∂θλ

∂ΘΛ

∂θφ

∂ΘΦ
<
∂a3

∂θλ
,aφ > −BΛΦ vs. kλφ = bλφ +

∂ΘΛ

∂θλ

∂ΘΦ

∂θφ
<
∂A3

∂ΘΛ
,AΦ >

KΛΦ = − <
∂(w + A3)

∂ΘΛ
,
∂(X + u)

∂ΘΦ
> −BΛΦ vs. kλφ = bλφ− <

∂(w − a3)

∂ΘΛ
,
∂(x − u)

∂θφ
> (2.60)

After some simple computations on Eq. (2.60) we can get

KΛΦ = − < w,Λ, AΦ > − < w,Λ,u,Φ > − < u,Φ, A3,Λ > vs. kλφ = − < w,λ,aφ > − < w,λ, u,φ > − < u,φ, a3,λ > (2.61)

Hence, according to this example proof of Eq. (2.53) is completed.

2.6.2 Basis Vectors on Deformed Surface in Terms of Lagrangian Coordinates

Eqs. (2.56) and (2.57) are fundamental equations for the computations of TCC, which represent the unit
normal vectors as functions of latitudes and longitudes in the left and right surfaces, respectively. The important
restriction about Eq. (2.57) is that computations need the first-order partial derivatives of ellipsoidal height(after
deformation), h(φ, λ) with respect to (φ, λ), namely h,φ and h,λ. Hence, we shall need to have continuous
function of ellipsoidal height in deformed surface M

2
l , which we have not. Ernst [1981] proposed equations

based on which, we can compute the surface basis vectors on deformed surface {a1,a2,a3} based upon basis
vectors of undeformed surface {A1,A2,A3} directly. Namely

aλ = ℓα·λAα + ζλA3 (2.62)

where the components of the surface tensors ℓα·λ and ζλ can be given in terms of contravariant components of

displacement vector {Ũ1, Ũ2, Ũ3} by

ζλ = Ũ3
,λ +BλϑŨ

ϑ = Ũ3
,λ +Bϑ

λ Ũϑ (2.63)
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ℓα·λ = δα
λ + Ũα

,λ +

{

α

λγ

}

Ũγ −Bα
λ Ũ

3 (2.64)

Hence, unit normal vector a3 can be obtained by cross production of tangent basis vectors {a1,a2}

a3 =
a1 × a2

‖a1 × a2‖
=

(ℓα·1Aα + ζ1A3) × (ℓβ·2Aβ + ζ2A3)

‖(ℓα·1Aα + ζ1A3) × (ℓβ·2Aβ + ζ2A3)‖
(2.65)

where the coefficient
{

α
λγ

}

are so-called Christoffel symbols of the second kind. They are also known as affine

connections [Weinberg, 1972, page 71] or connection coefficients [Minster et al., 1973, page 210]. A general de-
scriptions of Christoffel symbols are presented in Appendix 4.2, but more detailed information about application
requirements can be find in Voosoghi [2000, chap. 4].

2.6.3 Eigenspace Analysis, TCC

In comparison to eigenspace analysis in strain tensor, which is mentioned in subsection 2.4.2, the general
eigenvector-eigenvalue problem can also be applied to the pair of symmetric matrices {Kl,Al} or {Kr,Ar},
in order to obtain the eigenspace components of TCC. Let us consider the matrix forms of left TCC and its
associated metric tensor, which are given by

Kl =

[

K11 K12

K12 K22

]

Al =

[

A11 A12

A12 A22

]

where both matrices are symmetric. Finding the eigenspectra elements of matrices {Kl,Al} leads us to obtaining
a general eigenvector-eigenvalue problem of the type

KlF
′
l = DΛ′AlF

′
l (2.66)

where Fl = [F′
1,F

′
2] ∈ R

2×2 is the matrix of eigenvectors and DΛ′ is the diagonal matrix of eigenvalues, namely
DΛ′ = diag[Λ′

1,Λ
′
2]. Using (2.66), eigenvalues and eigenvectors can be obtained by

KlF
′
l − DΛ′AlF

′
l = 0 =⇒ det(Kl − DΛ′Al) = 0 (2.67)

Finding eigenvalues of the matrices {Kl,Al}, by (2.67), through

Λ′
1,2 =

1

2
{tr(KlA

−1
l ) ±

√

(tr(KlA
−1
l ))2 − 4det(KlA

−1
l ) , Λ′

1,Λ
′
2 ∈ R (2.68)

where Λ′
1 and Λ′

2 are change of the principal curvatures [Hontani and Deguchi, 1997]. A deformation portrait
when signΛ′

1 = signΛ′
2 will be an ellipse and will be a hyperbola if signΛ′

1 6= signΛ′
2.

Inserting eigenvalues (2.68) into (2.66), we can obtain eigenvectors

F′
1 = ((K22 − Λ′

1A22)
2A11 − 2(K12 − Λ′

1A12)(K22 − Λ′
1A22)A12 + (K12 − Λ′

1A12)
2A22)

−1/2

[

K22 − Λ′

1A22

−(K12 − Λ′

1A12)

]

F′
2 = ((K11 − Λ′

2A11)
2A22 − 2(K12 − Λ′

2A12)(K11 − Λ′
2A11)A12 + (K12 − Λ′

2A12)
2A11)

−1/2

[

−(K12 − Λ′

2A12)
K11 − Λ′

2A11

]

where they can prescribe the principal directions of curvature. The orientation parameter can be obtained by

Ψ′ = arccos(
< F′

1,Kl >

‖F′
1‖

) = arccos(
F ′1

1

‖F′
1‖

) subject to ‖F′
1‖2 = max{‖F′

1‖, ‖F′
2‖}, ∀Ψ′ ∈ [−π

2
,
π

2
]

or

Ψ′ = arccos(
< F′

2,Kl >

‖F′
2‖

) = arccos(
F ′1

2

‖F′
2‖

) subject to ‖F′
2‖2 = max{‖F′

1‖, ‖F′
2‖}, ∀Ψ′ ∈ [−π

2
,
π

2
]

Hence, eigenspace components consists of
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Y′ =





Λ′
1

Λ′
2

Ψ′



 =
1

2



















tr(KlA
−1
l ) +

√

(tr(KlA
−1
l ))2 − 4det(KlA

−1
l )

tr(KlA
−1
l ) −

√

(tr(KlA
−1
l ))2 − 4det(KlA

−1
l )

2 arccos(
<F′

i,Ei>
‖F′

i
‖ )



















A similar procedure can be performed for the right-pair of matrices {Kr,Ar}. Therefore, the right eigenspace
components can be written as

y′ =





λ′1
λ′2
ψ′



 =
1

2



















tr(KrA
−1
r ) +

√

(tr(KrA
−1
r ))2 − 4det(KrA

−1
r )

tr(KrA
−1
r ) −

√

(tr(KrA
−1
r ))2 − 4det(KrA

−1
r )

2 arccos(
<f ′i ,ei>
‖f ′

i
‖ )



















A mapping process from eigenspace components of {Kl,Al} and {Kr,Ar} to eigenspace components in
Euclidean space E

2
l and E

2
r , respectively, can be carried out, as described in Eq. (2.41). So we do not intend to

repeat the procedure here.

2.7 Changes in Mean and Gaussian Curvatures

We calculated TCC, namely KΛΦ and kλφ in section 2.6. Hence, we can calculate the curvature tensor after
deformation based on Eq. (2.50), and finally computing the changes of mean and Gaussian curvatures, which
are introduced by Eq. (2.48), due to the deformation [Altiner, 1999; Voosoghi, 2000; Grafarend and Voosoghi,
2003] by

k −K =
det[bλφ]

det[aλφ]
− det[BΛΦ]

det[AΛΦ]
=

det[BΛΦ +KΛΦ]

det[AΛΦ + 2EΛΦ]
− det[BΛΦ]

det[AΛΦ]
(2.69)

h−H =
1

2
(bλφa

λφ) − 1

2
(BΛΦA

ΛΦ) =
1

2
((BΛΦ +KΛΦ)(AΛΦ + 2EΛΦ) − 1

2
(BΛΦA

ΛΦ) (2.70)

Remark 2.3 In addition to the Euler-Lagrange deformation of second kind or TCC which is used to describe
the changes in the curvature of the deforming body induced by the deformation, Tab. (2.3) collects the most
common measures for deformation (based on SFF) and their definitions which appear in various applications
in deformation analysis [Stein, 1980, page 511]

Table 2.3: Various measures for deformation (based on SFF).

Name Symbol Definitions

Left Euler − Lagrange strain tensor of second kind K1 Kl

Right Euler − Lagrange strain tensor of second kind K2 Kr

Difference vector of the unit normal vectors K3 a3 − A3

Difference of mean curvatures K4 h−H
Difference of Gaussian curvatures K5 k −K

Difference of determinants of curvature tensors K6 det(Br) − det(Bl)
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2.8 Numerical Examples

Here, to enhance our understanding of the capabilities of the proposed method which is presented in this chapter,
we present two examples, one with a simulated data set and the other with a real data set.

2.8.1 Application Using Simulated Data

As mentioned in this chapter, we suppose that surfaces (before and after deformation) are both embedded in a
3D Euclidean space E

3. Here we do not a consider 3D deformation field, and we define the simulated vertical
displacement field without horizontal displacements, in particular, for the following two reasons

i. To gain a closer understanding of the displacement field. Moreover, it allows an easy visualization and
evaluation of how our method can detect deformation patterns.

ii. Simplicity in comparing the 2D classical method, as due to the lack of horizontal components of the
displacement field, the results of 2D classical methods are zero.

The simulated deformation field which is embedded in 3D Euclidean space E
3 is illustrated in Fig. 2.10.
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Figure 2.10: Rates of simulated vertical displacement field in units of m.yr−1. Note that, the values of simulated
vertical deformation are not realistic to the selected geographical areas, we used these particular latitudes and longitudes
just for governing a deformation field.

In this example, an area from N45◦ to N47◦ (latitude), and from E140◦ to E142◦ (longitude) is chosen as the
test area just for generating a deformation field. We suppose that observation points are distributed in a regular
grid over the selected latitude and longitude in resolution of, i.e., 17

′

regular grid points over the area. Hence,
we follow the procedure of intrinsic approach in deformation analysis, using the main eleven steps:

step 1. Computing surface basis vectors {A1,A2,A3} through Eqs. (2.54) and (2.55).

step 2. Conversion of the displacement vector u to curvilinear components ŨK and ŨK , by Eqs. (2.20) and
(2.21).

step 3. Use of two-dimensional finite element method (2D-FEM) in order to find approximate solutions of
first-order partial derivatives of covariant and contravariant elements of displacement vector, namely ŨK

and ŨK , with respect to ellipsoidal latitude and longitude (Φ,Λ). The optimal finite element meshes can
be generated by the Delaunay triangulation over the test area (see Fig. 2.11 (a)). Appendix 4.2 provides
a quick reference to the 2D-FEM.

step 4. Obtaining curvature tensor, for left surface M
2
l , through left side of Eq. (2.59) for every triangle.
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step 5. Obtaining Lagrangian strain tensor, through left side of Eq. (2.27).

step 6. Getting the eigenvalues of Lagrangian strain tensor by Eq. (2.30), and computing the dilatation rates,
through Eq. (2.35), which is illustrated by Fig. 2.11 (b).

step 7. Computing the difference vector of unit normal vectors w, based on Eq. (2.65) and (2.51).

step 8. Conversion of the spatial difference vector of unit normal vectors w with respect to curvilinear com-
ponents W̃K and W̃K , by Eqs. (2.20) and (2.21).

step 9. Use of the 2D-FEM for finding approximate solutions of first-order partial derivatives of covariant and
contravariant elements of w, with respect to ellipsoidal latitude and longitude, namely W̃K

,Λ and W̃K,Λ.
Hence, similar to step 1, the optimal finite element meshes can be produced by the Delaunay triangulation
over the test area.

step 10. Obtaining Lagrangian TCC, through left side of Eq. (2.61).

step 11. Computing changes in Gaussian and mean curvatures, through Eqs. (2.69) and (2.70) and finally
illustration of them by Figs. 2.11 (c) and 2.11 (d).

Discussion of Results :

i. The pattern of the dilatation rate is illustrated by Fig. 2.11(b). Positive dilatation corresponds to an
increase in the occupied area (expansion), while negative dilatation corresponds to a decrease in the
occupied area (compression). A comparison of this pattern with Fig. 2.10 shows the ability of the invariants
of the surface strain tensor to uncover deformation features.

ii. Fig. 2.11(c) shows the pattern of a change of mean curvature, due to deformation, in units of 10−7

m−1.yr−1. In this figure, positive values are associated to rising regions whereas negative values occur for
sinking regions.

iii. The pattern of change of Gaussian curvature is illustrated by Fig. 2.11(d), in units of 10−9 m−2.yr−1.
A comparison of these results with Fig. 2.11(c) shows that, according to Tab. 2.2, we can have a shape-
classification based upon a sign of mean and Gaussian curvatures. However, the difference in patterns of
Gaussian and mean curvatures, reflects that the pattern of Gaussian curvature is so sensitive to height
variations rather that mean curvature.

Through this example we could compare the exact pattern of the deformation field, which we have created,
with various resulting strain tensor invariants, and patterns of changes in mean and Gaussian curvatures. Results
show the ability of the patterns to uncover the upward and downward motions of the deformed surface. It seems
to be that only one of the deformation measures, namely invariants of strain tensor or TCC, can not portray
the deformation signals and must be considered together in order to perform a deformation analysis.

2.8.2 Application Using Real Data

This part has been dedicated to the application of the proposed model for deformation analysis, by a real
data set. The study area chosen for this research is Southern California, an area with high seismic activities.
Moreover, there exist also dense networks of GPS stations in order to monitor real-time crustal deformations.

Plate-tectonic setting of Southern California

Southern California is a region of high seismicity and widely distributed active faulting. The relative plate
motion between the Pacific and North American cause a highly complex system of sub-parallel transform faults
to accommodate the right lateral motion of 50 mm.yr−1 (see Fig. 2.12).

A model of global plate motions ranges from 48 mm.yr−1 in terms of right lateral shear in Central California,
namely parallel to the Central San Andreas Fault [Demets et al., 1987] to only 38 mm.yr−1 on or near San
Andreas Fault. Another result of about 8 mm.yr−1 (15% of the relative plate motion) is documented by the
50-100 km wide Eastern California Shear Zone (ECSZ) which extends N35W from the eastern end of the Big
Bend to the Owens Valley along a small circle about the Pacific-North American pole of rotation [Savage et al.,
1990].

The Southern part of the ECSZ is the site of largest seismic events, which in recent years has hit Southern
California strongest. The largest recent earthquakes occurred in the ECSZ of strength Mw 7.3 (Landers 1992),
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Figure 2.11: (a) Optimal Delaunay triangulation, (b) dilatation in units of yr−1, (c) change of mean curvature in units
of 10−7 m−1.yr−1, (d) change of Gaussian curvature in units of 10−9 m−2.yr−1 over the test area. Figures are illustrated
in the Albers equal-area conic projection.
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and Mw 7.1 (Hector Mine 1999). Both of them were right lateral strike-slip events in the direction of NNW,
trending subvertical faults, close in space and time, especially in a region where earthquakes recur every thou-
sand years. The Landers and Hector Mine earthquakes have indeed provided important data on post-seismic
deformation.

Viscoelastic models have been proposed to explain the post-seismic relaxations following the Landers [Pollitz
et al., 2000] and Hector Mine [Politz et al., 2001] earthquakes. However, any extrapolation of the available post-
seismic earthquake data does not suggest that the velocities in the Landers array will return to their pre-Landers
values soon [Savage et al., 2003].
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Figure 2.12: Southern California Fault summarizes: San Andreas Fault (SAF), the Garlock fault (GF), the San Jacinto
fault, the San Gabriel fault (SGF), the Elsinore fault (EF). The mountain range extend from San Bernardino Mtns.
Regions referenced in the text are the Eastern California Shear Zone (ECSZ), the Owens Valley (OV), the Western
Transverse Ranges (WTR), the Ventura Basin (VB), the Los Angeles Basin (LAB). The figure is illustrated in Albers
equal-area conic projection.

On January 17th in 1994, Northridge Mw 6.7 earthquake produced the largest ground motions in the Los
Angeles region. The E-W striking sedimentary basin lies just south of the Western Transverse Ranges, a region
influenced by the Big Bend in the north and characterized by E-W striking thrust faults, N-S shortening,
and substantial uplift [Namson and Davis, 1998]. Unlike the most strike-slip earthquakes along the Northwest
trending faults in ECSZ, the Northridge earthquake was a deep thrust-type event with a strike of 122◦ and a
substantial up-dip component of slip [Wald et al., 1996].

However, Stein et al. [1994] investigated possible stress triggering of the Northridge event by previous
earthquakes. Imperial Valley extends from the southern end of the San Andreas Fault (SAF) to the United
States-Mexico border. It is one of the most seismically active portions of the Pacific -North American plate
boundary.

On October 15th in 1979, a Mw 6.9 earthquake occurred in this region. A relatively fast moving fault
of estimated average slip rate along the Imperial Fault ranges from 15-20 mm.yr−1 based on shoreline de-
posits [Thomas and Rockwell, 1996] to 35-43 mm.yr−1 based on conventional geodetic surveys [Bennett et al.,
1996; Wdowinski et al., 2001] was documented. Geodetic investigations indicate that a rate of imperial Fault
accommodates nearly 80% of the total plate motion between the North American and Pacific Plates.

InSAR has also been used to land subsidence associated with geothermal fields in Imperial Valley [Massonnet
et al., 1997]. Fig. 2.13 illustrates the seismicity map of Southern California during the range of four years
between January 2001 and January 2005, which can be obtained from the Southern California Earthquake
Center (SCEC) (http://www.scec.org). This figure shows earthquakes with magnitude bigger than three.
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Figure 2.13: Southern California seismic events with Mw ≥ 3 extracted from the Southern California Earthquake Center

(January 2001 and January 2005) which are scaled by magnitude. The figure is illustrated in Albers equal-area conic
projection.

GPS Arrays

GPS data are collected from Scripps Orbit and Permanent Array Center (SOPAC), which include archive
high-precision GPS data particularly for the monitoring of earthquake hazards, tectonic plate motion, crustal
deformation (http://sopac.ucsd.edu/).
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Figure 2.14: Sites of SOPAC network by individual solutions between 2001 and 2005. The figure is illustrated in Albers
equal-area conic projection.

Given positions by SOPAC are provided in ITRF2000 and WGS84, and include both horizontal and vertical
velocities and their accuracies. All the chosen stations have individual and continuous solutions up to 4 years,
between January 2001 and January 2005 and take into account the linear velocity between those epochs. Fig. 2.14
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illustrates the sites of SOPAC across Southern California. We have chosen a dense network of stations to get
various surface deformation patterns of Southern California, which include 218 permanent GPS stations. The
two factors are considered in the selection of the GPS points on the network :

i. Average distance between the GPS points (distance between neighbor stations vary from 3 to 340 km),
while the whole region should be covered by points of the network.

ii. A sufficient period of time for modeling and removing offsets and seasonal effects from the GPS time series
(specially in height component) and finally the detection of a deformation signal from the measurements
[Nikolaidis, 2002, page 16]. In the current network we have used four years GPS measurements (between
January 2001 and January 2005).

Fig. 2.15 illustrates horizontal velocity rates across Southern California. The horizontal velocity field reaches
a value of approximately 48 mm.yr−1 in terms of right lateral shear in the central and western part of California,
roughly parallel to the central San Andreas Fault [Demets et al., 1987].
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Figure 2.15: Horizontal velocity field in units of mm.yr−1 across Southern California. The figure is illustrated in Albers
equal-area conic projection.

Horizontal velocity field are well documented in the Coast Ranges, namely larger than in the central parts.
We have made an alternative, interpreting the Earth’s discrete surface by adopting Fig. 2.16, which illustrates
the rates of vertical crustal motion in Southern California.

A maximum magnitude of the subsidence of the order -10 mm.yr−1 is shown for the Los Angeles Basin area.
Another land subsidence has been observed in Western Transverse Ranges, rather across the Coso Range and
the North West of Salton Sea, (namely) due to the geothermal activity in those regions. Notable upward motions
can be seen in the Landers and Hector Mine, probably due to post-seismic effects.

Results

Steps in computations in this subsection are similar to the steps we followed in subsection 2.8.1, except that
the deformation field is inferred from the GPS observations. Assuming that a sufficient number of the discrete
data (appropriately distributed) is available, we apply 2D-FEM for finding approximate solutions of partial
derivatives of curvilinear elements (either covariant or contravariant) of u and w, with respect to (Φ,Λ) (for
more details refer to subsection 2.8.1). Hence, optimal finite element meshes can be generated by the Delaunay
triangulation across the current GPS network of Southern California (see Fig. 2.17).

As we mentioned in this chapter, for the proposed method of deformation analysis, to obtain first-order
partial derivatives of GPS height (H(Λ,Φ)), we need to attempt to find a continuous function of GPS height
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Figure 2.16: Vertical velocity field in units of mm.yr−1 across Southern California. The figure is illustrated in Albers
equal-area conic projection.

(see subsections 2.4.1 and 2.6.1). The ellipsoidal height (GPS height) is the sum of the geoid height N(Λ,Φ)
and an orthometric height H̃(Λ,Φ), namely H(Λ,Φ) = H̃(Λ,Φ)+N(Λ,Φ). Hence, using a geoidal height model
and orthometric height model, we can compute ellipsoidal height. Namely

i. Obtaining orthometric height, through the National Elevation Dataset (NED) across Southern California,
which can be freely downloaded (http://seamless.usgs.gov/website/seamless/). As a higher-resolution
product, we made use of NED 1/9 arc second, which has a resolution of approximately 10 meters.

ii. Obtaining geoidal height N(Λ,Φ), through geoid model for United States (GEOID03), which is freely
available(http://www.ngs.noaa.gov/GEOID/GEOID03/). The GEOID03 model is known as a hybrid
geoid model, combining gravimetric information with GPS ellipsoidal heights on leveled benchmarks. It
includes combining gravimetric information with GPS ellipsoidal heights on leveled benchmarks.

Hence, in every triangle, around the computational point we set up a grid of points of ellipsoidal heights
H(Λ,Φ). Then, the fitting surface of lowest possible degree (linear surface fitting), yields continuous ellipsoidal
height as a function of longitude and latitude.

Remark 2.4 Gridding and contouring of the data for mapping applications, is performed by MATLAB. The
gridding methods in MATLAB allow us to produce a reliable contour and surface from the data. The data
can be randomly dispersed over the map area, and MATLAB’s script for gridding, namely ”Griddata”, will
interpolate data onto a grid. ZI = griddata (x, y, z,XI, Y I) fits a surface of the form z = f(x, y) to the
data in the (usually) non-uniformly spaced vectors (x, y, z). Griddata interpolates this surface at the points
specified by (XI, Y I) to produce ZI. The surface always passes through the data points. XI and Y I usually
form a uniform grid (as produced by meshgrid). XI can be a row vector, in which case it specifies a matrix
with constant columns. Similarly, Y I can be a column vector, and it specifies a matrix with constant rows.
[XI, Y I, ZI] = griddata (x, y, z,XI, Y I) returns the interpolated matrix ZI as above, and also returns the
matrices XI and Y I formed from row vector XI and column vector yi. These latter are the same as the
matrices returned by meshgrid. It uses the specified interpolation method:

i. Linear : Triangle-based linear interpolation

ii. Cubic : Triangle-based cubic interpolation

iii. Nearest : Nearest neighbor interpolation
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Figure 2.17: Delaunay triangulation of permanent GPS network across Southern California. The figure is illustrated in
Albers equal-area conic projection.

The method defines the type of surface fit to the data. The ’cubic’ methods produce smooth surfaces while
’linear’ and ’nearest’ have discontinuities in the first and zero’th derivatives, respectively. All the methods are
based on a Delaunay triangulation of the data. However it fails when there are replicates or when the data has
many collinear points. ”Gridfit” solves all of these problems, although it is not an interpolant. It builds a surface,
by 2D splines, over a complete lattice, extrapolating smoothly into the corners. This script is freely available at
Matlab’s ”Central File Exchange” (http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do).

Fig. 2.18 (a) represents the maximum geodetic strain-rate Λmax, in units of yr−1 as obtained from (2.30).
The maximum geodetic strain-rate

Λmax = max(|Λ1|, |Λ2|)

has the largest eigenvalue (Λ1 or Λ2 in absolute value) of the strain-rate tensor. In general, Λ1 + Λ2 6=
0, so Λmax ≥ |Λ1−Λ2

2 |, the maximum horizontal shear strain-rate Λmax offers a good representation of total
deformation where only horizontal motions are available (or accurate)[Ward, 1998a,b].

The strongest maximum of geodetic strain-rates is related to Landers area at rates of 4.7 × 10−7 yr−1,
Southern part of SGF at rates of 4 × 10−7 yr−1, Salton Sea and Imperial Valley at rates of 3.8 × 10−7 yr−1.
Most of the peaks are appearing near the SAF. However, Los Angeles and east-central Ventura Basin also
exhibit a high maximum geodetic strain-rate of the order 4.2 × 10−7 yr−1.

The pattern of surface maximum shear strain-rate in units of yr−1 is illustrated in Fig. 2.18 (b). The surface
maximum shear strain represents the anisotropic part of the strain tensor (see Eq. (2.36), which is considered
as a measure in crustal deformation. Its rate, in general, is similar to maximum geodetic strain-rates. The
surface maximum shear strain-rates have greater values than the maximum geodetic strain-rates, due to their
mathematical formulations.

The highest surface maximum shear strain-rate lies in the area containing the creeping segments of SAF
and Salton Sea area at rates of 6 × 10−7 yr−1. High surface maximum shear strain-rates are also observed at
the Southern SGF, Hector Mine, Landers, Los Angeles Basin, Ventura Basin and Owens Valley. The regions of
highest surface maximum shear strain-rate are not on the major faults as would be expected, but rather in the
regions surrounding previous earthquakes. Earthquakes in 1999 (Hector Mine, Mw 7.1), 1994 (Northridge, Mw

6.7), 1992 (Landers, Mw 7.3), 1992 (Big Bear, Mw 6.4), 1979 (Imperial Valley, Mw 6.4), 1971 (San Fernando,
Mw 6.6), 1952 (Kern County, Mw 7.7), 1942 (Salton Sea aftershock, Mw 6.4), 1933 (Los Angeles Basin, Mw 6.4)
and 1872 (Owens Valley, Mw 7.6) have apparently caused the largest strain reactions.
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Figure 2.18: (a) Maximum geodetic surface strain-rate (b) Maximum shear strain-rate in units of yr−1 over Southern
California. Faults are represented by white dashed lines, coastlines are represented by bold solid lines and triangles
denote the permanent GPS stations. Figures are illustrated in Albers equal-area conic projection.
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The monitoring of this pattern at regions with high seismic activity confirms the key role of the surface
maximum shear strain-rate in earthquake studies.
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Figure 2.19: Surface dilation in units of yr−1 across Southern California. Faults are represented by white dashed lines,
coastlines are represented by bold solid lines and triangles denote the permanent GPS stations. The figure is illustrated
in Albers equal-area conic projection.

Fig. 2.19 illustrates the surface dilation rates, in units of yr−1. The positive value denotes to extension and
negative value represents compression. Surface dilation represents the isotropic part of the deformation tensor.
In the surface dilatation field, notable areas of compression are documented in the Los Angeles area about
−3.2 × 10−7 yr−1 and for Ventura Basin about −4.2 × 10−7 yr−1. This contraction extends into the Santa
Barbara channel, where its rate is −2 × 10−7 yr−1.

Another series of compressions appear in Southern Owens Valley at rates of −2 × 10−7 yr−1. Negligible
compression can be seen in the southern part of SAF Indio at rate of −1× 10−7 yr−1, possibly associated with
after-effects of the 1940 Imperial Valley earthquake. Notable extensions appear in Landers with the rate of
4.3×10−7 yr−1, across Southern San Gabriel Fault with the rate 2×10−7 yr−1, and the last one is distributed
between the Southern Elsinore, San Jacinto faults and northern Imperial Valley fault with rate 3.5×10−7 yr−1.

Moreover, the pattern of surface dilatation over Southern California is generally consistent with previous
studies [Johnson et al., 1994; Snay et al., 1996; Shen et al., 1996; Shen-Tu et al., 1999]. Many local peaks (or
valleys) in the dilatation rate field occur in vicinities of recent earthquakes, which implies that much of the
rapid spatial variation in strain rate field is probably caused by transient deformation associated with recent
earthquakes [Shen et al., 1996].

The pattern of the rotation around the normal (see Eq. (2.37)) in unit of rad.yr−1 is illustrated by
Fig. 2.20 (a). The positive values indicate clockwise rotation around the normal (to the surface) and the
negative values indicate counter clockwise rotation. The pattern can detect signals of current kinematics of the
area. Large rotation rates are found along the SAF and the SJF, as expected from active wrenching dislocations
along the two faults. The highest positive rotation signals are detected over the Landers at rates of 2.7 × 10−7

rad.yr−1 and Imperial Valley at rates of 2.3 × 10−7 rad.yr−1.

The highest rotation rates in the Landers and Imperial Valley rupture areas are consistent with post-seismic
motions with the same sense as the main rupture. In the Ventura Basin region, it is monitored that the clockwise
rotation are in the range between 0.1 × 10−7 and 1.5 × 10−7 rad.yr−1.

Other studies support this idea e.g., [Donnellan et al., 1993]. The eastern segment of Garlock fault rotates
clockwise at rates 1.5×10−7 rad.yr−1. A very limited area in Sierra-Nevada shows a negligible counter clockwise
rotation at rates of 0.1 × 10−7 rad.yr−1.
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Figure 2.20: (a) Rotation around the normal (b) absolute rotation around the normal in units of rad.yr−1 over Southern
California. Faults are represented by white dashed lines, coastlines are represented by bold solid lines and triangles denote
the permanent GPS stations. Figures are illustrated in Albers equal-area conic projection.
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Rather in the remote eastern part of Mojave Desert and the Southern Mojave region, counter clockwise rotation
is documented at rates of −0.5 × 10−7 rad.yr−1.

Fig. 2.20 (b) illustrates rates of absolute rotation around the normal. Comparison between this figure and the
seismicity map of the area (see Fig. 2.13) proves that the rotation around the normal as a deformation tool can
play a desirable role in earthquake investigations.

The pattern of difference between eigenvalues of TCC over Southern California is illustrated by Fig. 2.21 (a).
Referring to its definition, Eq. (2.68), the difference is almost positively like the surface maximum shear strain
rates. In general, this pattern is similar to the pattern of surface maximum shear strain rates and can detect
areas with high surface deformations. Along ECSZ in Landers and Hector Mine at rates of 1 × 10−7 yr−1 is
documented.

The Salton Sea area and Imperial Valley areas are covered by peaks with the rate 1.2 × 10−7 yr−1. Other
notable patterns are observed in Los Angeles areas, eastern of San Gabriel fault and Owens Valley. Interesting
features are the peak of values around the southeastern part of Basin and Range, which could not be detected by
the surface maximum shear strain rates. Moreover, a pattern of the sum of the eigenvalues of TCC is illustrated
by Fig. 2.21 (b), where the pattern could be made either positive or negative.

Fig. 2.22 (a) and 2.22 (b) illustrate changes of mean and Gaussian curvatures in units of m−1.yr−1 and
m−2.yr−1, respectively. Positive and negative values of mean curvature are related to upward and downward
motions of the Earth’surface. Based on Fig. 2.22 (a) lands are undergoing subsidence in many areas (e.g.,
southern part of Owens Valley, southwestern part of Sierra-Nevada, southeastern part of Great Valley and Los
Angeles). Notable rising features appear in ECSZ and the north-eastern part of the Mojave Desert.

Fig. 2.22 (c) illustrate patterns of GPS height components (in ITRF2000) over Southern California in units of
mm.yr−1. These patterns are obtained via the Delaunay triangulation of GPS network over Southern California
(see Fig. 2.17). Positive values are connected to upward motions of the Earth’s surface whereas negative values
are related to downward motions of the Earth’s surface.

The significant subsidences are apparent in the north-western part of Salton Sea and Los Angeles Basin with
rates -2.4 mm.yr−1 and the southern part of Owens Valley with rates of -1.5 mm.yr−1. The strongest rising
peaks appear in the ECSZ and in the north part of Mojave Desert with rates of 1 mm.yr−1.

Comparisons of Figs. 2.22 (a), 2.22(b) and 2.22(c) indicate the ability which changes of mean and Gaussian
curvatures for describing the motion of the Earth’s surface. They can represent a more reliable portraits of the
deformed areas due to the following reasons:

i. As mentioned in subsection 2.5.1, as well in section 2.7, through Gaussian curvature and mean curvature
we can have a shape-classification based upon signs of mean and Gaussian curvatures. For instance, in
Southern California, consistency in sign of mean and Gaussian curvatures when both are negative means
the deformed shape is convex (ellipsoid) and consistency in sign of mean and Gaussian curvatures when
both are positive means the deformed shape is Saddle Valley (see Fig. 2.8 and Tab. 2.2). This description
of shape properties of the crust might provide new ways of studying the structure of the Earth’s crust and
its deformation.

ii. Mean and Gaussian curvatures are invariants, they do not change under a set of transformations. In
other words they reflect the inherent properties of the surface, and have geometrical meaning. How-
ever the pattern of GPS height components (see Fig. 2.22 (c)) is variant, and will change under set of
transformations.

A Comparison with Horizontal Strain

The objective of this part is devoted to the comparison between the classical computation (plane strain analysis)
and our proposed method. The classical method of deformation analysis (2D) is based upon extrinsic geometry
which deals with the study of geometry relative to embedding spaces.

We assumed that in 2D classical method, undeformed surface and deformed surface are planes. Hence,
briefly, we describe the geometry of deformation (in plane)

i. Base vectors of undeformed surface {J1,J2} are mutually orthogonal, as well as basis vectors of deformed
surface {j1, j2} (contrary to basis vectors in proposed method which are not orthogonal). Therefore,
every vector can be described through material coordinates u = U1J1 + U2J2 or by spatial coordinates
u = u1j1 + u2j2.
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Figure 2.21: (a) Difference between eigenvalues of TCC in units of yr−1 (b) Sum of the eigenvalues of TCC in units
of yr−1 over Southern California. Faults are represented by white dashed lines, coastlines are represented by bold solid
lines and triangles denote the permanent GPS stations. Figures are illustrated in Albers equal-area conic projection.
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Figure 2.22: (a) Change of mean curvature in units of m−1.yr−1, (b) change of Gaussian curvature in units of
m−2.yr−1, (c) patterns of GPS height components (in ITRF2000) in units of mm.yr−1 over Southern California. Faults
are represented by white dashed lines, coastlines are represented by bold solid lines and triangles denote the permanent
GPS stations. Figures are illustrated in Albers equal-area conic projection.
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ii. Metric tensors before deformation and after deformation are the same and matrix forms of them are equal
to the identity matrix or unit matrix (contrary to the metric tensor in the proposed method which is not
diagonal).

iii. Local coordinates of an undeformed body can be illustrated by {X1, X2}, while the coordinates system
of a deformed body can be illustrated by {x1, x2}.

Based upon these assumptions, and referring to definitions of Cauchy-Green deformation tensors (Eq. 2.15) we
have

Cl =

[

< ∂x

∂X1 , ∂x

∂X1 > < ∂x

∂X1 , ∂x

∂X2 >

< ∂x

∂X2 , ∂x

∂X1 > < ∂x

∂X2 , ∂x

∂X2 >

]

vs. Cr =





< ∂X
∂x1 ,

∂X
∂x1 > < ∂X

∂x1 ,
∂X
∂x2 >

< ∂X
∂x2 ,

∂X
∂x1 > < ∂x

∂x2 ,
∂X
∂x2 >





Using u = x − X and recalling the basis vectors ∂X
∂XΦ = JΦ and ∂x

∂xφ = jφ in which Φ, φ ∈ {1, 2}, we have
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
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∂x1

0 − ∂u2

∂x1 − ∂u1

∂x2 1 − 2∂u2

∂x2



 (2.71)

which is based on the dropping or approximating of nonlinear terms ∂UΦ

∂XΦ

∂UΛ

∂XΛ and ∂uφ

∂xφ
∂uλ

∂xλ , in left and right
sides , respectively. Hence, using Eqs. (2.18) and (2.71) we can obtain strain tensors

El =
1

2
(Cl − Al) =

1

2
(Cl − I) vs. Er =

1

2
(Ar − Cr) =

1

2
(I − Cr)

El =





∂U1

∂X1

1
2 ( ∂U1

∂X2 + ∂U2

∂X1 )

1
2 ( ∂U2

∂X1 + ∂U1

∂X2 ) ∂U2

∂X2



 vs. Er =





∂u1

∂x1

1
2 (∂u1

∂x2 + ∂u2

∂x1 )

1
2 (∂u2

∂x1 + ∂u1

∂x2 ) ∂u2

∂x2





which are called infinitesimal strain tensors. Infinitesimal rotation tensors can be obtained by

Rl =





0 1
2 ( ∂U1

∂X2 − ∂U2

∂X1 )

1
2 ( ∂U2

∂X1 − ∂U1

∂X2 ) 0



 vs. Rr =





0 1
2 (∂u1

∂x2 − ∂u2

∂x1 )

1
2 (∂u2

∂x1 − ∂u1

∂x2 ) 0





Application of this method in geodetic and geodynamic networks can be found in Vanicek et al. [1981]; Argus
et al. [1989]; Ahjos and Uski [1992]; Dermanis and Grafarend [1993]; Heck et al. [1995]; Bada et al. [1999]; Heck
[1999]; Adam et al. [2002]; LaFemina et al. [2005]; Mazzotti et al. [2005]; Walpersdorf et al. [2006]; Cai and
Grafarend [2007a,b] and many other papers that couldn’t be included in the print.

In order to compare our proposed method and the plane strain, we consider

i. Local Cartesian terrestrial frame (e.g., ITRF, WGS84)

ii. Infinitesimal displacements vector

Hence, we apply the plane strain method over Southern California, through the same GPS arrays which are
used in subsection 2.8.2. The principal quantities of the strain tensor (maximum shear strain rate, dilation rate
and rotation rate) are illustrated by Figs. 2.23 (a), 2.23(b) and 2.23(c), respectively, which are derived by the
plane strain method. The comparison can be divided into three categories:

i. Comparison of the maximum shear strain rate in the classical method (Figs. 2.23 (a)) with maximum
shear strain rate by our proposed method (Fig. 2.18 (b)) suggests that along the ECSZ, Hector Mine,
Landers and Imperial Valley, roughly in eastern parts of SAF, our method represents a high magnitude
of the maximum shear-strain rate.
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ii. Comparison of the dilatation rate in the classical method (Figs. 2.23 (b)) with the dilatation rate by our
proposed method (Fig. 2.19) shows additional extensions in particular areas along the eastern parts of
SAF (e.g., Landers, eastern Mojave Desert and east of the southern Sierra Nevada).

iii. Comparison of the rotation rate in the classical method (Figs. 2.23 (c)) with the rotation rate by our
proposed method (Fig. 2.20 (a)) shows additional rotations in imperial valley and ESCZ.

It seems that the differences between corresponding patterns of two methods could be discussed from the two
points :

i. Modeling of the displacement problem which we solved the problem on the real surface of the Earth (see
Eq. (2.23) through (2.27))

ii. Effect of ignoring the height components of the deformation field in horizontal strain rates.



Deformation 47

 120oW  119oW  118oW  117oW  116oW  115oW  114oW 

  33oN 

  34oN 

  35oN 

  36oN 

  37oN 

 

 

0

0.4

0.8

1.2

1.6

2
x 10

−6

(a)

 120oW  119oW  118oW  117oW  116oW  115oW  114oW 

  33oN 

  34oN 

  35oN 

  36oN 

  37oN 

 

 

−4

−2

0

2

4

6

8
x 10

−6

(b)

 120oW  119oW  118oW  117oW  116oW  115oW  114oW 

  33oN 

  34oN 

  35oN 

  36oN 

  37oN 

 

 

−3

−2

−1

0

1

2

3
x 10

−7

(c)

Figure 2.23: Principal quantities of strain tensor derived by 2D classical method : (a) Maximum shear strain rate in
units of yr−1, (b) dilatation in units of yr−1, (c) rotation in units of rad.yr−1 over Southern California. Faults are
represented by white dashed lines, coastlines are represented by bold solid lines and triangles denote the permanent GPS
stations. The figure is illustrated in Albers equal-area conic projection.
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3 Stochastic Aspects

Stochastic behavior of eigenspace components (in strain tensor and TCC) in the presence of errors in measuring
a random displacement field (under the normal distribution assumption of displacement field) is discussed in this
chapter. The propagation of errors from the displacement vector into elements of strain tensor are formulated
in section 3.1. In section 3.2 a propagation of errors from the displacement vector into elements of TCC are
discussed.

In section 3.3 we deal with error propagation for eigenspace components, using dispersion matrices of tensor
components (strain or TCC) which we derived in the previous two sections. However, due to the intricacy of
the relations between tensor components (strain or TCC) and their eigenspace components, we proceeded via
simultaneous diagonalization.

This section is followed by the linearization of the nonlinear multivariate Gauss- Markov model, which
links the elements of transformed tensors (obtained by simultaneously diagonalization) with the eigenspace
components. Then, we set up an observation model based on a linearized model under sampling of eigenspace
synthesis. Furthermore, we establish linearized observation equations for n samples of independent random
vectors from transformed tensor elements (under the normal distribution assumption), each with individual
variance matrix. This will provide us with the second-order statistics of the eigenspace components.

In section 3.4, we estimate the covariance components between transformed tensor elements by Helmert
estimator, based on prior information of variance components (given from section 3.3). Section 3.5 is devoted
to presenting a numerical example with the crustal deformation field (through the continuous GPS data) in
Cascadia Subduction Zone (CSZ).

In this chapter, for simplicity, we will use Lagrangian coordinates (or material coordinates) and the discussion
would be the same in Eulerian coordinates.

3.1 Error Propagations for Strain Components

In the presence of errors in measuring the random displacement vectors (e.g., by GPS), we assume that Qu be
a covariance matrix of random observations in which Qu ∈ R

3×3 (under the normal distribution assumption
of displacement field). Therefore, the over all aim of this section is to discuss the propagation of errors from
displacement vector into elements of strain tensor.

Recalling the strain tensor, whose components are dependent on the first-order partial derivatives of the
displacement vector with respect to material coordinates u,Λ, then dealing with dispersion matrixD{u,Λ} makes
an essential part of this section.

In the previous chapter, we could described a displacement vector u in terms of linear combinations of vector
space {A1,A2,A3} or {A1,A2,A3}. Namely

u = ŨKAK = ŨKAK =⇒ u,Λ =
∂u

∂ΘΛ
=
∂(ŨKAK)

∂ΘΛ
=
∂(ŨKAK)

∂ΘΛ
, u ∈ R

1×3 , AK ,AK ∈ R
3×1

or, in matrix notations

u,Λ =
[

A1 A2 A3

]













Ũ1
,Λ

Ũ2
,Λ

Ũ3
,Λ













+
[

A1,Λ A2,Λ A3,Λ

]





Ũ1

Ũ2

Ũ3



 =

=
[

A1 A2 A3
]













Ũ1,Λ

Ũ2,Λ

Ũ3,Λ













+
[

A1
,Λ A2

,Λ A3
,Λ

]





Ũ1

Ũ2

Ũ3





Notice that, following convention, a comma indicates partial derivatives namely ŨK
,Λ = ∂UK

∂ΘΛ , ŨK,Λ = ∂ŨK

∂ΘΛ ,

AK
,Λ = ∂AK

∂ΘΛ and AK,Λ = ∂AK

∂ΘΛ , where obtaining the first-order partial derivatives of local base vectors with
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respect to the curvilinear coordinates, namely AK
,Λ and AK,Λ are described in Appendix 4.2. Now, dispersion

matrix of u,Λ is

D{u,Λ} =
[

A1 A2 A3

]

QŨK
,Λ

[

A1 A2 A3

]T
+

+
[

A1,Λ A2,Λ A3,Λ

]

QŨK

[

A1,Λ A2,Λ A3,Λ

]T
= Qu,Λ

, D{u,Λ} ∈ R
3×3 (3.1)

where

ŨK =< u,AK >⇒ D{ŨK} =
[

A1 A2 A3
]

Qu

[

A1 A2 A3
]T

= QŨK , D{ŨK} ∈ R
3×3 (3.2)

However, covariance matrix of first-order partial derivatives of contravariant elements with respect to the ma-
terial coordinates QŨK

,Λ
can be obtained by propagation of errors from ŨK or ŨK into their first-order partial

derivatives (according to modeling of displacement field). More detailed discussion is presented in Appendix
4.2.

Analogous to Eq. (3.1), we can obtain the dispersion matrix of u,Λ through covariant components

D{u,Λ} =
[

A1 A2 A3
]

QŨK,Λ

[

A1 A2 A3
]T

+

+
[

A1
,Λ A2

,Λ A3
,Λ

]

QŨK

[

A1
,Λ A2

,Λ A3
,Λ

]T
(3.3)

where

ŨK =< u,AK >⇒ D{ŨK} =
[

A1 A2 A3

]

Qu

[

A1 A2 A3

]T
= QŨK

, D{ŨK} ∈ R
3×3 (3.4)

Hence, using Eq. (3.1) or (3.3), dispersion matrix of strain components can be obtained by

EΛΦ =
1

2
(< u,Λ,u,Φ > + < u,Λ,AΦ > + < AΛ,u,Φ >)

D{p̃} =





A1 + u,1 0
1
2
(A2 + u,2)

1
2
(A1 + u,1)

0 A2 + u,2)





[

Qu,1 0
0 Qu,2

]





A1 + u,1 0
1
2
(A2 + u,2)

1
2
(A1 + u,1)

0 A2 + u,2)





T

= Qp̃ , D{p̃} ∈ R
3×3 (3.5)

where vector p̃ denotes to the vector-half form of symmetric strain tensor

p̃ := vh(El) =
[

E11 E12 E22

]T ∈ R
3×1

Remark 3.1 Definition (vh-operator): Let E be an arbitrary symmetric matrix of size u. The vh-operator of
E will contain 1

2u(u+ 1) distinct elements of Eij .

3.2 Error Propagations for TCC Components

In previous chapter, in section 2.6, the tensor of changes of curvature (TCC) was stated in terms of difference
across the unit normal vectors in undeformed and deformed surfaces, namely w = a3 −A3. On the other hand,
we have observed how the unit normal vectors on surfaces (deformed and undeformed) can be constructed by
cross product of tangent basis vectors. Likewise, through Eq. (2.62), we showed that tangent basis vectors on
deformed surface depend on material basis vectors {A1,A2,A3} and curvilinear components of displacement
vector.

Then, at the first stage, existing errors in curvilinear components of displacement vector (see Eqs. (3.2) and
(3.4)) will propagate to the tangent basis vectors on a deformed surface, then to the unit normal vectors on a
deformed surface and finally will propagate to the TCC elements. First, we deal with the error propagation in
tangent basis vectors (on a deformed surface) in the presence of errors in curvilinear components of displacement
vector. Namely:
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aλ = ℓα·λAα + ζλA3 =
[

A1 A2 A3

]





ℓ1·λ 0 0
0 ℓ2·λ 0
0 0 ζλ



 , AK ∈ R
3×1

D{aλ} =
[

A1 A2 A3

]







σ2
ℓ1
·λ

0 0

0 σ2
ℓ2
·λ

0

0 0 σ2
ζλ







[

A1 A2 A3

]T
= Qaλ

, D{aλ} ∈ R
3×3

where covariance components σ2
ℓ1
·λ

, σ2
ℓ2
·λ

, σ2
ζλ

could be achieved by variance propagation of curvilinear coordinates

in Eqs. (2.63) and (2.64). Hence, dispersion matrices of tangent basis vectors Qa1
and Qa2

could be propagated
to unit normal vector a3 through linearization technique

a3 = a1×a2

‖a1×a2‖ , ak ∈ R
3×1

a3
.
= ∂a3

∂a1
a1 + ∂a3

∂a2
a2 =

[

∂a3

∂a1

∂a3

∂a2

]

[

a1

a1

]

D{a3} =
[

∂a3

∂a1

∂a3

∂a2

]

[

Qa1
0

0 Qa2

]

[

∂a3

∂a1

∂a3

∂a2

]T

Then, dispersion matrix D{a3} can be transferred to the difference vector of unit normal vectors w, through

w = a3 − A3 ⇒ D{w} = D{a3} , D{w} ∈ R
3×3

Now, we recall the tensor of changes of curvature (TCC), which is influenced by the first derivatives of w with
respect to material coordinates w,Λ. Hence, in order to achieve dispersion matrix of TCC components, as a first
step, we should deal with the dispersion matrix D{w,Λ}. Namely, by splitting w into its curvilinear coordinates
we have

w = W̃KAK = W̃KAK ⇒ w,Λ =
∂w

∂ΘΛ
=
∂(W̃KAK)

∂ΘΛ
=
∂(W̃KAK)

∂ΘΛ
, w ∈ R

1×3

or through matrix notations

w,Λ =
[

A1 A2 A3

]













W̃ 1
,Λ

W̃ 2
,Λ

W̃ 3
,Λ













+
[

A1,Λ A2,Λ A3,Λ

]





W̃ 1

W̃ 2

W̃ 3



 =

=
[

A1 A2 A3
]













W̃1,Λ

W̃2,Λ

W̃3,Λ













+
[

A1
,Λ A2

,Λ A3
,Λ

]





W̃1

W̃2

W̃3





Therefore, dispersion matrix of w,Λ can be obtained by

D{w,Λ} =
[

A1 A2 A3

]

QW̃ K
,Λ

[

A1 A2 A3

]T
+

+
[

A1,Λ A2,Λ A3,Λ

]

QW̃ K

[

A1,Λ A2,Λ A3,Λ

]T
= Qw,Λ

(3.6)

where we have

W̃K =< u,AK >⇒ D{W̃K} =
[

A1 A2 A3
]

Qw

[

A1 A2 A3
]T

= QW̃ K , D{W̃K} ∈ R
3×3
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Correspondent to Eq. (3.6), we can obtain dispersion matrix of w,Λ through covariant elements

D{w,Λ} =
[

A1 A2 A3
]

QW̃K,Λ

[

A1 A2 A3
]T

+

+
[

A1
,Λ A2

,Λ A3
,Λ

]

QW̃K

[

A1
,Λ A2

,Λ A3
,Λ

]T
= Qw,Λ

(3.7)

where

W̃K =< w,AK >⇒ D{W̃K} =
[

A1 A2 A3

]

Qw

[

A1 A2 A3

]T
= QW̃K

, D{W̃K} ∈ R
3×3

Hence, using Eqs. (3.6) or (3.7), dispersion matrix of TCC elements can be obtained by

KΛΦ = − < w,Λ,AΦ > − < w,Λ,u,Φ > − < u,Φ,A3,Λ >

D{q̃} = T









Qu,1 0 0 0
0 Qu,2 0 0
0 0 Qw,1 0
0 0 0 Qw,2









T
T = Qq̃, D{q̃} ∈ R

3×3 (3.8)

where matrix T is

T =





A3,1 + w,1 0 A1 + u,1 0
1
2 (A3,2 + w,2)

1
2 (A3,2 + w,2)

1
2 (A2 + u,2)

1
2 (A1 + u,1)

0 A3,2 + w,2 0 A2 + u,2



 , T ∈ R
3×12 (3.9)

Likewise, vector q̃ indicates the vector-half form of symmetric curvature tensor

q̃ := vh(Kl) =
[

K11 K12 K22

]T ∈ R
3×1

3.3 Error Propagations for Eigenspace Components

In this section we evaluate the dispersion effect of strain- tensor elements and TCC elements, which are obtained
through Eqs. (3.5) and (3.8), on their eigenspace components. Due to the intricacy of relations between eigenval-
ues of strain tensor (or TCC) and their eigenspace components, which are established through Eqs. (2.30)- (2.32)
as well (2.68)- (2.6.3), we performed the simultaneous diagonalization of quadratic forms for pairs {El,Al} and
{Kl,Al}. Summarizing briefly :

Al El

⇓ ⇓ (3.10)

(VlM)TAl(VlM) = I E′′
l = (VlM)TEl(VlM)

and

Al Kl

⇓ ⇓ (3.11)

(VlM)TAl(VlM) = I K′′
l = (VlM)TKl(VlM)

where Vl is the matrix of eigenvectors of metric, and M is the positive definite matrix (see Eq. (2.4.2)).
Hence, without loss of generality, using simultaneous diagonalization we mapped the eigenspectra components
of {El,Al} and {Kl,Al} into eigenspectra of {E′′

l , I} and {K′′
l , I}, respectively. Namely

Analysis vs. Synthesis











Λ1

Λ2

Θ











=
1

2













E′′

11 + E′′

22 +
√

(E′′

11 − E′′

22)
2 + 4E′′2

12

E′′

11 + E′′

22 −
√

(E′′

11 − E′′

22)
2 + 4E′′2

12

arctan
2E′′

12

E′′

11
−E′′

22













vs.













E′′
11

E′′
12

E′′
22













=













Λ1 cos2 Θ + Λ2 sin2 Θ

1
2 (Λ2 − Λ1) sin 2Θ

Λ1 sin2 Θ + Λ2 cos2 Θ













(3.12)
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and

Analysis vs. Synthesis











Λ′

1

Λ′

2

Θ′











=
1

2













K′′

11 + K′′

22 +
√

(K′′

11 − K′′

22)
2 + 4K′′2

12

K′′

11 + K′′

22 −
√

(K′′

11 − K′′

22)
2 + 4K′′2

12

arctan
2K′′

12

K′′

11
−K′′

22













vs.













K ′′
11

K ′′
12

K ′′
22













=













Λ′
1 cos2 Θ′ + Λ′

2 sin2 Θ′

1
2 (Λ′

2 − Λ′
1) sin 2Θ′

Λ′
1 sin2 Θ′ + Λ′

2 cos2 Θ′













(3.13)

where {Λ1,Λ2} are eigenvalues of E′′
l with related orientation parameter Θ, although {Λ′

1,Λ
′
2} are eigenvalues

of K′′
l with related orientation parameter Θ′.

Hence, considering the dispersion matrices of vector-half forms of El and Kl on one side (see Eqs. (3.5)
and (3.8)) and transformed matrices (via simultaneously diagonalization) on the other side (see Eqs. (3.10)
and (3.11)), we can obtain the dispersion matrices of elements of transformed matrices in terms of dispersion
matrices of strain tensor and TCC, respectively. Namely

D



































E′′
11

E′′
12

E′′
22



































=





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22



Qp̃





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22





T

(3.14)

and

D



































K ′′
11

K ′′
12

K ′′
22



































=





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22



Qq̃





S2
11 2S11S21 S2

21

S11S12 S11S22 + S12S21 S21S22

S2
12 2S12S22 S2

22





T

(3.15)

where

S =

[

S11 S12

S21 S22

]

subject to S = VlM

Our aim was the computing of dispersion matrices of eigenvalues of strain tensor and TCC. It can be obtained
by propagating dispersion matrices (3.14) and (3.15) into their eigenvalues through the right sides of Eqs.(3.12)
and (3.13). However, due to the nonlinearity of equations, propagation of dispersion matrices into eigenvalues
will need linearization in equations, which following subsection covers.

3.3.1 Setup of Linear Observation Model

This section is devoted to :

i. Linearization of the nonlinear equation between elements of transformed matrix (E′′
l ) and its eigenspace

components, which has already been established by Eq. (3.12). In this case we set up an observation
model based on a linearized model under the sampling eigenspace synthesis.

ii. Establishing linearized observation equations for n samples of independent random vectors from trans-
formed tensor elements (under the normal distribution assumption), each with an individual variance
matrix. Then we estimate the eigenspace component and dispersion matrix of eigenspace component.

Let us start this section by recalling the vector-half form of symmetric matrix E′′
l.i which could be represented

as [Xu and Grafarend, 1996a,b]

y′′
i := vh(E′′

l.i) =













E′′
11.i

E′′
12.i

E′′
22.i













=













Λ1.i cos2 Θ + Λ2.i sin2 Θ

1
2 (Λ2.i − Λ1.i) sin 2Θ

Λ1.i sin2 Θ + Λ2.i cos2 Θ













, y′′
i ∈ R

3×1
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with the first- and second moments

E{y′′
i } = E



































E′′
11.i

E′′
12.i

E′′
22.i



































, D{y′′
i } = D



































E′′
11.i

E′′
12.i

E′′
22.i



































= Qy′′

i

where second moments can be obtained by Eq.(3.14).

Suppose that n samples of E′′
l , namely E′′

l.1, E′′
2.1, . . ., E′′

n.1 have been observed, where vector-half forms of
them are y′′

1 , y′′
2 , . . ., y′′

n. Then we can design an array of of vector-half forms of y′′1.i = E′′
11.i, y

′′
2.i = E′′

12.i and
y′′3.i = E′′

22.i indexed to the number of samples. Namely by

Y′′ = [y′′
1 ,y

′′
2, . . . ,y

′′
n] =













y′′1.1 . . . y′′1.n

y′′2.1 . . . y′′2.n

y′′3.1 . . . y′′3.n













, Y′′ ∈ R
3×n (3.16)

with the first- and second moments

E{Y′′} = E{[y′′
1 y′′

2 . . . y′′
n]} , E{Y′′} ∈ R

3×n

D{vec(Y′′)} =











Qy′′

1
0 . . . 0

0 Qy′′

2
. . . 0

...
...

. . .
...

0 0 . . . Qy′′

n











, D{vec(Y′′)} = Qvec(Y′′) ∈ R
3n×3n (3.17)

where y′′
1 y′′

2 . . . y′′
n are considered independent 3 × 1 random vectors, each with the 3 × 3 variance matrix

Qy′′

i
.

Remark 3.2 Definition (vec-operator): In mathematics, especially in linear algebra and matrix theory, the
vectorization of a matrix is a linear transformation which converts the matrix into a column vector. Specifically,
the vectorization of an mn matrix A, denoted by vec(A), is the mn× 1 column vector obtained by stacking the
columns of the matrix A on top of one another: vec(A) = [A11, ..., Am1, A12, ..., Am2, ..., A1n, ..., Amn]T . For

example, for the 2 × 2 matrix A =

[

A11 A12

A21 A22

]

, the vectorization is vec(A) = [ A11 A12 A21 A22 ].

Let us consider a special nonlinear multivariate Gauss- Markov model for sampling the eigenspace synthesis
[Cai, 2004]

Y′′ = F(ξ)1T + VY′′ (3.18)

where 1 denotes the n× 1 ”summation vector” consisting of ones and

F :=





f1
f2
f3



 =













Λ1 cos2 Θ + Λ2 sin2 Θ

1
2 (Λ2 − Λ1) sin 2Θ

Λ1 sin2 Θ + Λ2 cos2 Θ













=













ξ1 cos2 ξ3 + ξ2 sin2 ξ3

1
2 (ξ2 − ξ1) sin 2ξ3

ξ1 sin2 ξ3 + ξ2 cos2 ξ3













(3.19)

where













ξ1

ξ2

ξ3













:=













Λ1

Λ2

Θ













,













f1

f2

f3













:=













E′′
11

E′′
12

E′′
22













Moreover, parameters ξ, E{Y′′} and Y′′ −E{Y′′} = VY′′ are unknown. Hence, by the Taylor series lineariza-
tion of nonlinear model Eq. (3.4), up to order one
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F(ξ) = F(ξ0) + J(ξ0)(ξ − ξ0) +O[(ξ − ξ0) ⊗ (ξ − ξ0)] (3.20)

where ⊗ denotes to Kronecker-Zehfuss product [Grafarend, 2004]. For the first set of observations [y′′1.1 y′′2.1 y′′3.1]
T =

[E′′
11.1 E′′

21.1 E′′
22.1]

T we have

ξ0 :=













Λ1.1

Λ2.1

Θ.1













=
1

2















E′′
11.1 + E′′

22.1 +
√

(E′′
11.1 − E′′

22.1)
2 + 4E′′2

21.1

E′′
11.1 + E′′

22.1 −
√

(E′′
11.1 − E′′

22.1)
2 + 4E′′2

21.1

arctan
2E′′

21.1

E′′

11.1
−E′′

22.1















(3.21)

and the Jacobi matrix is

J(ξ0) =















∂f1

∂Λ1

∂f1

∂Λ2

∂f1

∂Θ

∂f2

∂Λ1

∂f2

∂Λ2

∂f2

∂Θ

∂f3

∂Λ1

∂f3

∂Λ2

∂f3

∂Θ















ξ=ξ0

=













cos2 Θ.1 sin2 Θ.1 (Λ2.1 − Λ1.1) sin 2Θ.1

1
2 sin 2Θ.1 − 1

2 sin 2Θ.1 −(Λ2.1 − Λ1.1) cos 2Θ.1

sin2 Θ.1 cos2 Θ.1 −(Λ2.1 − Λ1.1) sin 2Θ.1













The above results are based on the assumption of using the Taylor series linearization, then we will apply
the Gauss- Newton iteration scheme with an initial point ξ0. The term ξ0 is determined by solving once the
eigenvalue analysis through the Eq. (3.21) for the first sample. Based on Eq. (3.20 ) we establish a special
linearized multivariate Gauss- Markov model for the eigenspace synthesis

Y′′ = F(ξ0)1
T + [J(ξ0)∆ξ]1

T + VY′′ (3.22)

which in vectorized form is

vec(Y′′) = vec(Y′′
0 ) + A∆ξ + vec(VY′′) , A = [1 ⊗ J(ξ0)] (3.23)

vec(Y′′
0 ) = 1⊗ F(ξ0) (3.24)

First moments :

E{vec(Y′′)} = A∆ξ + vec(Y′′
0 ) , vec(Y′′) ∈ R

3n×1

Second moments :

D{vec(Y′′)} = Qvec(Y′′) , rank Qvec(Y′′) = 3n

With the assumption of observation of random tensors, we will estimate the eigenvalue components ξ of the
type ”Best Linear Uniformly Unbiased Estimator” (Σ − BLUUE) in the special linearized multivariate Gauss-
Markov model [Grafarend, 2006]

∆ξ̂ = ξ̂ − ξ0 = L(vec(Y) − vec(Y′′)) = (ATQ−1
vec(Y′′)A)−1ATQ−1

vec(Y′′)(vec(Y) − vec(Y′′)) (3.25)

subjected to the related dispersion matrix

D{ξ̂} = (ATQvec(Y′′)A)−1 = Qξ̂ (3.26)

Then, estimated residual vectors and observations are:

vec(Ŷ′′) = A(ATQ−1
vec(Y′′)A)−1ATQ−1

vec(Y′′)vec(Y′′) (3.27)

vec( ˆVY′′ ) = vec(Y′′) − vec(Ŷ′′) = D(σ) vec(Y′′) (3.28)

D(σ) = (I − A(ATQ−1
vec(Y′′)A)−1ATQ−1

vec(Y′′)) (3.29)
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However, an estimation of eigenspace components TCC and their dispersion matrix can be performed in a
similar approach, while the dispersion matrix of tensor elements can be obtained by Eq. (3.15) .

Hence, by the estimation of eigenspace components of random deformation tensors and their dispersion
matrices, we are able to start the statistical validation of eigenspace components based upon the assumption of
a Gauss- Laplace normal distribution of the observed (or derived) deformation tensor elements.

Remark 3.3 Two sets of statistical tests are performed for testing results :

i. Multivariate test for all eigenspace components : tests for eigenspace parameter ξ = ξ0 with estimated
covariance matrix Qξ̂. The quadratic form φ = (ξ̂− ξ0)

TQ−1

ξ̂
(ξ̂− ξ0) represents an equation of ellipsoidal,

centered at ξ̂. Its distribution can be approximated by Fisher’s distribution : (ξ̂ − ξ0)
TQ−1

ξ̂
(ξ̂ − ξ0) ∼

3
n−3F3,n−3 and hypothesis test can be performed using the tabulated F values. For example, for H0 : ξ =

ξ0 vs H1 : ξ 6= ξ0 we would reject H0 if computed φ exceeds 3
n−3Fα,3,n−3 at the α level of significancy

[Mikhail and Ackermann, 1976, page 299].

ii. Test for a distinct element of eigenspace components : Let us consider diagonal elements of estimated
covariance matrix Qξ̂ with σ̂2

1 , σ̂
2
2 , σ̂2

3 as estimated variances for Λ1, Λ2 and Θ, respectively. Separate

tests about the eigenspace components in ξ0 = [Λ1.1 Λ2.1 Θ.1]
T with associated statistics : t1 = Λ̂1−Λ1.1

σ̂1
,

t2 = Λ̂2−Λ2.1

σ̂2
and t3 = Θ̂−Θ.1

σ̂3
can be performed. Under the null hypothesis, these statistics follow t-

distributions with n− 1 degrees of freedom.

Therefore, α confidence intervals for the eigenvalues and orientation parameter of semi-major axis could be
obtainable through the estimated values and suitable statistical tests (see Fig. 3.1).

3.4 Variance-Covariance Estimation of Helmert type

The eigenspace components are typically processed using the least-squares method (e.g., which we have per-
formed in the previous section). To obtain reliable least-squares estimates, however, both the functional model
and the stochastic model must be adequately defined. In the previous section we developed a functional model
between the transformed strain tensor or TCC obtained by simultaneous diagonalization (such as observations),
and eigenspace components (unknowns). We used n samples of independent 3 × 1 random vectors y′′

1 , y′′
2 , . . .,

y′′
n, each with the 3 × 3 variance covariance matrix Qy′′

i
.

Hence, the covariance matrix of observations (components of transferred tensors) is partly known, and
incomplete knowledge of the covariance matrix of the observations may lead to unreliable results. An appropriate
statistical model is needed to arrive at a proper description of the estimator quality. Methods for estimating
covariance components have been intensively investigated in the statistical and geodetic literatures (e.g., Helmert
[1907]; Grafarend et al. [1980]; Hartung [1981]; Persson [1981]; Grafarend [1984]; Malley [1986]; Rao and Kleffe
[1988]; Rao [1997]; Satirapod et al. [2001]). The PhD Thesis of Shaffrin [1983] gives a critical review of a
state-of-the-art in (co)variance component estimation.

Let us consider the special linearized multivariate Gauss- Markov model with n measurements and three
unknowns, which is established in the previous section (Eqs. (3.23)) :

vec(Y′′) = vec(Y′′
0 ) + A∆ξ + vec(VY′′ )

where vec(Y′′) ∈ R
3n×1 and VY′′ ∈ R

3n×1 are the vector measurements (of the random tensor) and residuals,
respectively; A = [1 ⊗ J(ξ0)] ∈ R

3n×3 is the design matrix; vec(Y′′
0 ) = [1 ⊗ F(ξ0)] ∈ R

3n×1 is the vectorized
version of tensor values at evaluation point ξ0; ∆ξ ∈ R

3n×1 is a vector of unknowns.

Partitioning the full covariance matrix of measurements into p groups of matrices by

D{vec(Y′′)} =

p̄
∑

j=1

Qjjσ
2
j +

p̄−1
∑

j=1

p̄
∑

k=j+1

Qjkσjk =























σ2
1Q11 σ12Q12 . . . σ1p̄Q1p̄

σ12Q
T
12 σ2

2Q22 . . . σ2p̄Q2p̄

...
...

. . .
...

σ1p̄Q
T
1p̄ σ2p̄Q

T
2p̄ . . . σ2

p̄Qp̄p̄























= Qvec(Y′′) ∈ R
3n×3n (3.30)
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Figure 3.1: (a) The α confidence intervals for the eigenvalues Λ1 and Λ2. (b) The α confidence intervals for the
eigen-direction Θ.
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with p = p̄(p̄+1)
2 variance and covariance components. Here, we assumed that symmetric matrix Qjk is known

and has order 3n× 3n. We can design an array consisting of matrices Qjk by

Q :=
[

Q11 Q12 Q22 Q13 Q23 Q33 . . . Qp̄−1p̄ Qp̄p̄

]

(3.31)

=
[

Q1 Q2 . . . Qp

]

in which D{vec(Y′′)} is positive definite and its diagonal elements priority are given (e.g., by Eq. (3.17)). We

consider that p̄ second moments σ2
j of type variance and the p̄(p̄−1)

2 second moments of type covariance are
unknown, which are collected in the array

σ =
[

σ2
1 σ12 σ2

2 σ13 σ23 σ2
3 . . . σp̄−1p̄ σ2

p̄

]T
(3.32)

Then, Eq.(3.30), will be represented by

Qvec(Y′′) =

p
∑

j=1

Qjσj

Now, let us set up an estimator of Helmert type [Helmert, 1907], based upon the idea that least squares residuals

vec( ˆVY′′ ) are invariant with respect to the transformation vec(Y′′) → vec(Y′′) + Aξ. The shifting variate is
the squared norm of the least-squares residuals. Its expectation , through Eqs .(3.27), can be given as

E{vec( ˆVY′′ )TQ−1
vec(Y′′)vec(VY′′)} = E{vec(VY′′ )TDT

(σ)Q
−1
vec(Y′′)D(σ)vec(VY′′ )} =

= tr(DT
(σ)Q

−1
vec(Y′′)D(σ)Qvec(Y′′))

Grafarend et al. [1980] used a block-structured covariance matrix: Qvec(Y′′) =
∑p

j=1 Qjσj with the multinomial

inverse of the form : Q−1
vec(Y′′) =

∑p
i=1 Kiσi. He gave a simple example how to obtain Ki’s. When the

covariance matrix D{vec(Y′′)} has a block-diagonal structure one can also simply obtain Ki’s. Substituting
these two terms in the proceeding equation yields

p
∑

i=1

E{vec( ˆVY′′)TKivec( ˆVY′′)} =

p
∑

i=1

p
∑

j=1

tr(DT
(σ)KiD(σ)σjQj)

From the expectation of the ith term one obtains

E{vec( ˆVY′′)TKivec( ˆVY′′)} =

p
∑

j=1

tr(DT
(σ)KiD(σ)Qj)σj , i = 1, . . . , p.

The proceeding equation can be written in a compact form as E{q} = Hσ with the p × p matrix H (Helmert
matrix) and p-vector q as

hij = tr(DT
(σ)KiD(σ)Qj) , i, j = 1, . . . , p

qi = vec( ˆVY′′)TKivec( ˆVY′′)

If H is regular, an unbiased estimator of (co)variance components reads

σ̂ = H−1q (3.33)

If the Helmert matrix is a regular matrix then it has the block structure and estimated variances are unbiased
and invariant [Grafarend et al., 1980; Grafarend, 1984]. However, Crocetto et al. [2000] stated that since the
(normal) matrix may not have full rank, the pseudo-inverse can be used to solve the system. Recently, Xu
et al. [2006] extended the estimation of variance components in linear models to that of linear inverse ill-posed
problems. The most clearly stated results may be found in Qu [1989] and later in Xu et al. [2007] who found
that if r2 ≥ p, all the variance and covariance components are estimable, where r is the number of redundant
measurements and n the numbers of all measurements.
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Remark 3.4 The selection of estimator and appropriate technique should be based on the desired estimator
properties, namely translation invariance, unbiasedness, minimum variance, non-negativeness, computational
efficiency and fluency of implementation. In some cases, not all of these properties can be retained for a particular
estimator. A prevalent example can be found in Hartung [1981], where the property of unbiasedness was
sacrificed for a guaranteed estimation of non-negative variances. In Persson [1981], the existence of simultaneous
non-negative estimates of variance components was investigated and it was demonstrated that one reason for
a non-negative minimum norm of quadratic unbiased estimators is limited knowledge of the magnitude of the
variance components. Another relevant reason, probably, is that the assumed variance component model is not
correct or the observation vector contains gross errors. In a realistic model with a large number of degree of
freedom negative estimates seldom occur.

In general, the decisions which estimator properties to retain must be made on a case-by-case basis depending
on the data and the specific application. The over-riding property that is usually sought after is computational
efficiency, which arises due to the massive quantities of data that are used for the estimation of many (co)variance
components. In fact, the main criticism of traditional (co)variance estimation, VCE, methods is that they
involve repeated inversions of large matrices, intensive computational efforts and large storage requirements
for lots of unknowns. For these reasons, one may opt for entirely different estimation procedures. In other
cases, mathematical manipulations or simplifications are made to the rigorous algorithm in order to reduce the
computational burden involved with inverting large dimensional matrices [Satirapod et al., 2001].

3.5 A Numerical Example

In this section, the proposed methodology (in this chapter) is illustrated using a real data set. It is performed
under the normal distribution assumption of tensor measurements (strain and TCC). Moreover, we present a
numerical solution of the statistical induction of eigenspace components.

The geodynamic setting of the Cascadia Subduction Zone (CSZ) is briefly reviewed in this section. In ad-
dition, we investigate the network of permanent GPS stations covering our study area, called PANGA (Pacific
Northwest Geodetic Array), which carries information in the observed horizontal and vertical displacements.
Hence, we illustrate the patterns of the eigenspace components associated with random deformation tensors
(strain and TCC) based on both the a-priori variance component information and a posteriori variance infor-
mation of tensor measurements.

3.5.1 Tectonic Setting of the Cascadia Subduction Zone

The Cascadia Subduction Zone (CSZ), located between two migrating triple junctions, deforms in response to
superimposed forces of North America, Juan de Fuca, and Pacific boundary interactions which is illustrated
by Fig. 3.2. It is generally accepted that a potential megathrust earthquakes would be the result of a slip on
a locked portion of the subduction interface, although the size and location of the seismogenic zone is unclear
[Verdonck, 2005].

This area is known to be one of the most seismically active areas in western Canada and on the north-
west Pacific coast of North America. There is strong evidence supporting the claim that major megathrust
earthquakes repeatedly occurred throughout history in this region [Chen, 1998]. To help assess the potential
major earthquake hazard and study the tectonic mechanisms in the region, many geodetic measurements have
been conducted in the past, ranging from conventional techniques to GPS. These measurements, combined with
theoretical deformation models, provide the means and foundation for earthquake studies.

Geodetic, GPS, and strain data provide evidence for active crustal strain build up throughout the region.
Based on the models of crustal deformation, the potential for an earthquake with magnitude 9 event has been
suggested [Hyndman, 1995]. Historically, as inferred from paleoseismicity data, major megathrust earthquakes
have occurred on the Cascadia margin at irregular intervals ranging from 300 to 600 years, most recently about
300 years ago [Meghan-Miller et al., 2001].

However, although low-level seismicity is extensive in the entire region and two major (Mw > 7) earthquakes
have been observed on central Vancouver Island during this century (1918 and 1946), there have been no
megathrust earthquakes on the Cascadia margin, not even small ones, during the past 200 year written historical
period [Dragert, 1987; Wang et al., 1987]. In a comparison between the Cascadia margin and other convergent
margins around the world, Rogers [1988] noted that this unusual lack of seismicity might well imply a potential
risk for forthcoming megathrust earthquakes. This being the case, the Cascadia margin has entered the second
half of an earthquake cycle or perhaps even has approached the recurrence of the very large event.



Stochastic Aspects 59

 129oW  126oW  123oW  120oW  117oW 

  39oN 

  42oN 

  45oN 

  48oN 

  51oN 

Pacific Plate

Juan De Fuca

Plate

Biritish

Columbia
Vancouver

Seattle

Portland

C
as

ca
de

 V
ol

ca
no

es

Victoria

Vancouver Is.

North American Plate

Oregon

California

San Andreas

Fault

C
ascadia S

ubduction Z
one

Figure 3.2: Tectonic map of the Cascadia Subduction Zone. The figure is illustrated in Albers equal-area conic projec-
tion.

Fig. (3.3) illustrates the seismicity map of the in the Pacific Northwest Seismic events with Mw ≥ 3 from
the Northern California Earthquake Catalog Search (http://www.ncedc.org/ncedc/catalog-search.html) during
1969 to 2006 which are scaled by magnitude.
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Figure 3.3: Pacific Northwest seismic events with M ≥ 3 from the Northern California Earthquake Catalog Search
(1969 to 2006) which are scaled by magnitude. The figure is illustrated in Albers equal-area conic projection.
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3.5.2 GPS Arrays

GPS measurements to determine crustal strain rates were initiated in the Cascadia region (US Pacific Northwest
and south-western British Columbia, Canada) more than a decade ago, with the first campaign measurements
in 1986 [Kleusberg et al., 1988] and the establishment of permanent stations in 1991 [Dragert et al., 1994, 1995].

Nowadays, continuous GPS data from the Pacific Northwest Geodetic Array is processed by the geodesy
laboratory (at Central Washington University Research), which serves as the data analysis facility for the Pacific
Northwest Geodetic Array (PANGA). This organization has deployed an extensive network of continuous GPS
sites aim to measure crustal deformation along the CSZ. Considered network includes 33 permanent GPS
stations, which have nearly daily solutions through the period January 1996 to January 2006. The current
network of stations along CSZ area is illustrated through Fig. (3.4).

Fig. (3.5) illustrates the horizontal velocity field along the Cascadia margin assuming a stable North Ameri-
can plate. Continuous GPS results in the Pacific Northwest provide a remarkably coherent view of along-strike
variation in Cascadia margin deformation, which is characterized by different tectonic domains. Coastal stations
in the northern and central parts of the margin are strongly entrained in the JDF-North America convergence
direction, although the northward component of station velocities increases from north to south. Inland sta-
tions show smaller motions; consistent with their structural domains from south to north while the California-
southern Oregon boundary reflects a composite velocity model.

Fig. (3.6) illustrates the estimated rates of vertical deformation (i.e., after removing the seasonal variation)
throughout the CSZ, which is derived from the GPS arrays. The vertical deformation rate varies significantly
along the coast with the highest deformation occurring to the north. At latitude 450N, there is little vertical
deformation at either the coast or inland.

The lack of the vertical deformation across central Oregon represent a transition in subduction behavior
between northern and southern segments [Verdonck, 2004]. In addition, the pattern of the vertical deformation,
which is derived from permanent GPS in the period of 1996-2006, is consistent with vertical crustal deformation
from leveling data by [Verdonck, 2004]. There are some minor differences, which seem to be related to lack of
dense networks of permanent GPS stations in that area.
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Figure 3.4: Pacific Northwest Geodetic Array (PANGA) which have nearly daily solutions through the period of 1996-
2006. The figure is illustrated in Albers equal-area conic projection.
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Figure 3.5: GPS-determined horizontal velocity field by Pacific Northwest Geodetic Array (PANGA). Velocity vectors
plotted with respect to the station at Calgary (PRDS). The figure is illustrated in Albers equal-area conic projection.
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Figure 3.6: GPS-determined vertical velocity field by Pacific Northwest Geodetic Array (PANGA). Velocity vectors
plotted with respect to the station at Calgary (PRDS). The figure is illustrated in Albers equal-area conic projection.
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3.5.3 Data Processing Strategy

In this subsection, a central requirement is the numerical solution of statistical induction of eigenspace com-
ponents, while the deterministic part of model is discussed in detail through two numerical examples in the
previous section. Suppose that we have a certain number of permanent GPS stations, and each of them has
observed n samples of velocities. Note that, we assume the recording of observations is performed at the same
time for all the stations.

Hence, performing the following steps to estimate the eigenspace components and their dispersion matrices
(in strain tensor) for ith set of GPS velocities and their error variances (over a certain time):

step 1. Computing the curvilinear coordinates of the displacement vector ŨK and ŨK and deriving their
covariance matrices QŨK

or QŨK , in the presence of GPS velocity errors, though Eqs. (3.2) or (3.4) for
every station.

step 2. Using the Delaunay triangulation method for solving ŨK
,Λ or ŨK,Λ as well as finding their dispersion

matrices D{ŨK
,Λ} or D{ŨK,Λ}, based on the error propagation law (see Appendix 4.2), for kth triangle

(see Fig. 3.7)

step 3. Computing the local basis vectors based on centroid coordinates of the kth triangle and deriving the
metric tensor Al, based upon the height information in the associated triangle.

step 4. Computing first-order partial derivatives of the displacement vector u,Λ and its dispersion matrix
D{u,Λ} through Eqs. (3.1) and (3.1), for the kth triangle.

step 5. Obtaining strain tensor El and the dispersion matrix of its components by Eqs.(2.22) and (3.5), for
the kth triangle.

step 6. Simultaneous diagonalization of {El,Al} according to Eq. (3.10), deriving the vector-half form of the
transformed strain tensor y′′

i = [E′′
i.1 E′′

i.2 E′′
i.3]

T and its dispersion matrix through Eq. (3.14) for the kth
triangle.

step 7. Repetition of the algorithm from Step 1 until the step 6, for the whole set of measurements n in the
kth triangle.

step 8. Setup of an observation model based on the linearized multivariate Gauss- Markov model for eigenspace
synthesis (see Eq. (3.23)), namely a system of 3×n equations and three unknowns (eigenspace components).

step 9. Estimation of eigenspace components and their dispersion matrices by Eqs. (3.25) and (3.26) for the
kth triangle. This step is performed based upon n samples of independent 3 × 1 random vectors y′′

1 , y′′
2 ,

. . ., y′′
n, each with the 3 × 3 variance covariance matrix Qy′′

i
.

step 10. Estimation of the covariance matrix for n set of measurements y′′
1 , y′′

2 , . . ., y′′
n and repeating the

estimation of eigenspace components and their dispersion matrix for the kth triangle.

The above algorithm can be applied to the estimation of eigenspace components of TCC and their dispersions.
In this case we should deal with the difference vector of unit normal vectors w and its dispersion matrix (see
section 3.2).

Remark 3.5 As we mentioned in previous chapter, for the proposed method of deformation analysis, we
should construct the real surface of the Earth. Similar the previous chapter, it could be performed through the
combination of geoid height N(Λ,Φ) and orthometric height H̃(Λ,Φ), namely H(Λ,Φ) = H̃(Λ,Φ) + N(Λ,Φ).
Hence, using a geoidal height model and orthometric height model, we could computed ellipsoidal height which
closely fit the Earth’s surface. These computations are performed by:

i. Obtaining orthometric height, through the Centre for Topographic Information over the western Canada,
which can be freely downloaded (http://www.cits.rncan.gc.ca). As a higher-resolution product, we made
use of a resolution of approximately 20 meters (1:50 000 based on a collection of ground or reflective
surface elevations.).

ii. Obtaining geoidal height N(Λ,Φ), through the Canadian Gravimetric Geoid 2005 (CGG05), which is
freely available(http://www.geod.nrcan.gc.ca/). The Canadian Gravimetric Geoid 2005 (CGG05) is based
on GRACE data up to degree 90 and supplemented with terrestrial information for the higher frequencies.
A GPS-leveling comparison indicates a standard deviation of 10.2 cm for CGG05 [Huang and Véronneau,
2005].
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Figure 3.7: Optimal Delaunay triangulations over the Pacific Northwest Geodetic Array (PANGA). The figure is
illustrated in Albers equal-area conic projection.

3.5.4 Results

The numerical results of the above algorithm for k = 1, 2, ..., 58 triangles over CSZ area are performed for the
strain tensor and TCC which are shown in the following parts:

Estimated eigenspace components of strain tensor based on a-priori variance component infor-
mation of transformed strain tensor

The Pattern of eigenspace components, namely eigenvalues and eigendirections, of the surface strain-rate tensor
and their 95% confidence intervals, in unit of 10−7 yr−1 is illustrated in Fig. 3.8.

Extensions are represented by solid lines (red color) and contractions are illustrated by dashed lines (blue
color). Tab. 3.1 also shows numerical results of estimated eigenspace components for the strain tensor (based
on a-priori variance component information).

The highest contraction regions are in the forearc nearly parallel to the plate convergence. In other words,
contraction rates are highest in networks close to the CSZ deformation front, namely: on the northern Cal-
ifornia coast, north of Cascadia also Vancouver Island, Seattle and decrease with distance from it becoming
indistinguishable to zero at the most distant networks in the east of Oregon.

An interesting feature of the pattern is a peak of high values around regions in the vicinity of JDF plate with
North American plate in northern California. According to our model, perhaps both horizontal and vertical
deformations of these regions are responsible for the high values of strain rate in these regions. The pattern of
the surface strain rate confirms that most of areas are under contraction except regions in the west of Oregon
which are under the extension. Perhaps additional deformations are responsible for these anomalies, such as
post-eruption volcanic deformation [Murray and Lisowski, 2000].

The larger errors, namely 95% confidence intervals of eigenvalues and eigendirections of the surface strain
rate is detected obviously in Seattle and west of Portland. That in return results from the variety of surface
strain- rate observations in nearly daily solutions through the period of 1996-2006.

These effects also reflect that the deformation patterns in those triangulations were not stable during the
period of 1996-2006. By comparing the surface strain-rate pattern in Fig. 3.8 with seismicity maps (see Fig. 3.3),
it can be concluded that in general our estimation of eigenspace components of surface strain-rate tensors are
consistent with the tectonic setting.
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Table 3.1: Estimated eigenvalues and eigendirections of the strain tensor in 95% confidence intervals based on a-priori
variance component information. The eigenvalues and related accuracies are given in units 10−8 yr−1 and orientation
parameter and its standard deviation is given in degree.

N Triangles Λ̂1 σ̂Λ1
Λ̂2 σ̂Λ2

Θ̂ σ̂Θ

1 nano-will-holb -7.95 0.91 0.64 0.57 43.59 4.76
2 uclu-nano-holb -20.11 1.41 0.97 0.78 33.02 3.03
3 pabh-uclu-chzz -1.30 1.27 0.69 1.13 41.24 20.63
4 wslr-nano-will -76.77 5.44 3.99 3.38 44.30 3.85
5 wslr-chwk-will 29.27 1.76 -18.93 0.75 11.26 2.95
6 cabl-cme1-holb -32.14 2.69 1.08 1.67 19.33 2.35
7 cabl-uclu-holb -8.31 0.52 1.97 0.79 28.34 3.52
8 cabl-uclu-chzz -5.55 1.79 2.51 1.95 39.60 8.78
9 shin-shld-garl 9.94 0.69 -1.15 0.69 -33.14 5.82
10 shin-cme1-garl -6.33 2.44 0.64 4.08 33.46 14.32
11 shin-ybhb-cme1 -9.82 0.79 1.03 0.55 -30.99 3.49
12 neah-uclu-nano -39.50 2.07 0.47 2.73 5.72 6.03
13 neah-pabh-uclu -27.52 3.13 9.42 4.00 3.64 6.44
14 albh-wslr-nano -75.38 3.23 1.57 1.46 28.79 15.62
15 albh-neah-nano -70.20 2.44 18.19 2.41 26.64 3.73
16 albh-neah-pabh -20.23 1.07 0.08 1.14 38.12 2.70
17 redm-shin-shld -0.97 0.19 0.51 0.27 22.62 6.75
18 redm-shin-ybhb 6.03 0.43 -3.63 0.44 -6.53 2.27
19 fts1-pabh-chzz -38.98 15.52 1.62 5.58 1.29 29.87
20 burn-shld-garl 15.15 1.80 -4.87 2.24 -19.37 6.64
21 burn-redm-shld 4.30 0.28 -0.77 0.40 -1.67 8.84
22 burn-redm-gobs -3.96 0.52 0.41 0.55 42.79 3.07
23 drao-will-prds -3.05 0.10 -0.43 0.09 38.96 1.31
24 drao-chwk-will -11.67 0.24 1.28 0.26 37.99 0.81
25 drao-burn-prds 1.46 0.07 0.19 0.09 -15.05 2.61
26 drao-burn-gobs 8.43 -0.41 -0.42 0.26 -19.41 3.22
27 ptsg-cabl-cme1 -33.84 1.90 -4.49 29.53 -22.35 6.78
28 ptsg-cabl-ybhb 20.82 1.02 -8.98 1.71 3.43 4.62
29 whd1-wslr-chwk -1.00 0.46 0.20 0.76 11.68 17.29
30 whd1-albh-wslr -16.74 1.37 4.88 2.00 26.21 2.76
31 burn-redm-gobs -10.93 0.91 5.03 0.65 21.29 2.36
32 trnd-ybhb-cme1 -41.02 5.79 1.92 6.08 41.78 10.23
33 trnd-ptsg-cme1 -16.87 1.91 4.81 2.75 -34.74 5.92
34 trnd-ptsg-ybhb 5.29 0.34 -0.70 0.52 -32.56 8.32
35 seaw-drao-gobs 9.80 0.39 -2.48 0.38 -2.06 2.99
36 corv-gwen-redm -1.78 0.41 0.32 0.25 30.86 9.32
37 corv-cabl-chzz -9.42 0.48 0.73 0.53 41.03 1.73
38 corv-cabl-ybhb 17.81 0.67 -9.78 0.61 17.04 1.20
39 corv-redm-ybhb -17.24 1.82 0.57 1.47 30.65 6.32
40 sedr-whd1-chwk -3.27 6.04 0.90 8.22 5.26 12.88
41 sedr-seaw-whd1 -5.08 1.68 0.15 1.25 20.58 7.38
42 sedr-drao-chwk -0.54 0.31 0.41 0.11 21.17 18.02
43 sedr-seaw-drao -17.51 0.53 3.26 0.90 6.04 2.39
44 jro1-corv-gwen 36.07 0.58 1.68 0.60 -16.58 0.74
45 rpt1-whd1-albh -6.15 0.61 0.71 0.69 11.93 3.93
46 rpt1-albh-pabh -12.22 1.15 1.11 0.64 23.57 3.15
47 rpt1-jro1-gwen -14.47 2.73 8.83 2.05 8.03 6.40
48 rpt1-gwen-gobs -12.54 2.62 0.58 2.64 38.99 3.65
49 rpt1-seaw-gobs -12.04 2.10 4.39 1.90 25.88 5.52
50 kels-corv-chzz -17.90 0.77 8.72 0.67 17.65 1.16
51 kels-jro1-corv 79.79 2.08 4.64 2.34 -41.37 1.11
52 kels-fts1-chzz -14.93 1.08 5.31 1.55 27.16 11.07
53 kels-rpt1-jro1 -2.24 0.66 1.75 1.54 6.62 9.48
54 kels-fts1-pabh -17.23 1.52 11.54 1.59 6.84 3.29
55 kels-rpt1-pabh -13.90 0.77 1.00 1.31 13.16 2.13
56 seat-seaw-whd1 -18.92 6.02 5.10 5.05 25.43 3.72
57 seat-rpt1-whd1 -13.99 6.84 8.71 6.22 25.10 2.44
58 seat-rpt1-seaw -113.44 7.92 21.22 6.17 -5.37 20.55
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Figure 3.8: Pattern of eigenspace components of the surface strain-rate tensor and their 95% confidence intervals, in unit
of 10−7 yr−1. Extensions are represented by solid lines (red color) and contractions are illustrated by dashed lines (blue
color) and triangles denote the permanent GPS stations. The figure is illustrated in Albers equal-area conic projection.

Estimated eigenspace components of TCC based on a-priori variance component information of
transformed TCC

A pattern of eigenspace components namely eigenvalues and eigendirections, of TCC and their 95% confidence
intervals is illustrated by the Fig. (3.9).
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Figure 3.9: Pattern of eigenspace components of TCC and their 95% confidence intervals, in unit of 10−7 m−1.yr−1.
Positive eigenvalues are represented by solid lines (red color) and negative eigenvalues are represented by dashed lines
(blue color). Triangles denote the permanent GPS stations. The figure is illustrated in Albers equal-area conic projection.
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The estimated confidence intervals of eigenvalues and eigendirections of TCC over Pacific Northwest region
indicates that deformation is spread over the whole region along the CSZ from the north of the California to the
north of Vancouver Island, but along the coasts has highlighted values. The pattern indicates that, in general,
Inland stations have insignificant deformations. However, the rates appear to vary significantly along the coast
with the highest deformation occurring in the northern California and southern Oregon boundary, which is the
most significant zone of seismicity in this region.

Estimated eigenspace components of strain tensor based on estimated covariance matrix of trans-
formed strain tensor (via simultaneous diagonalization)

The estimated eigenspace components of strain tensor based on estimation of covariance matrix of transformed
strain tensor (via simultaneous diagonalization) are illustrated in Fig. 3.10. Also, numerical values of them are
presented in Tab. 3.3. A comparison of Figs. 3.10 and 3.8 shows that, in general after estimating the covariance
matrix of transformed strain tensor (via simultaneous diagonalization) variances of eigenspace components
become smaller.

In general, estimating the covariance matrix of observations (transformed strain tensor), should lead us to
minimum variance, but in some triangles it did not occur. To discuss the effect of unspecific results, let Qvec(Y′′)

be the correct covariance matrix of observations (transformed strain tensor) and Q′
vec(Y′′) be an incorrect one.

If the least-squares estimation of ξ is done with the Q′
vec(Y′′), then ξ̂ = (ATQ′−1

vec(Y′′)A)−1ATQ′−1
vec(Y′′)vecY

is still an unbiased estimator of ξ and

ξ̂ = (ATQ′−1
vec(Y′′)A)−1ATQ′−1

vec(Y′′)Q
−1
vec(Y′′)Q

′−1
vec(Y′′)A(ATQ′−1

vec(Y′′)A)−1

is the correct covariance matrix of estimator ξ̂. Therefore, if one uses Q′
ξ̂ = (ATQ′−1

vec(Y′′)A)−1 as the matrix

of estimator ξ̂ one will have an incorrect precision of ξ̂ description which can be too optimistic if Qξ̂ ≥ Qξ̂′ ,

but also too pessimistic if Qξ̂ ≤ Qξ̂′ . For a more detailed discussion see Amiri-Simkooei [2007, page 135].
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Figure 3.10: Pattern of eigenspace components of the surface strain-rate tensor and their 95% confidence intervals, in
unit of 10−7 yr−1 based on estimated covariance matrix of transformed strain tensor (via simultaneous diagonalization).
Extensions are represented by solid lines (red color) and contractions are illustrated by dashed lines (blue color). Triangles
denote the permanent GPS stations. The figure is illustrated in Albers equal-area conic projection.
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Table 3.2: Estimated eigenvalues and eigendirections of TCC in 95% confidence intervals based on a-priori variance
component information. The eigenvalues and related accuracies are given in units 10−8 yr−1 and orientation parameter
and its standard deviation is given in degree.

N Triangles Λ̂′

1 σ̂Λ′

1
Λ̂′

2 σ̂Λ′

2
Θ̂′ σ̂Θ′

1 nano-will-holb -19.27 0.60 4.01 0.64 34.09 1.62
2 uclu-nano-holb -25.59 1.34 3.18 0.86 45.29 2.14
3 pabh-uclu-chzz -1.42 0.58 0.22 0.30 15.41 0.89
4 wslr-nano-will -96.03 10.59 59.17 8.93 5.19 2.49
5 wslr-chwk-will 17.79 0.09 -6.13 0.24 -2.01 0.22
6 cabl-cme1-holb -49.43 0.67 0.86 0.58 6.00 1.13
7 cabl-uclu-holb -19.44 0.40 1.46 0.35 45.01 0.85
8 cabl-uclu-chzz -8.57 0.58 0.98 0.44 44.87 1.83
9 shin-shld-garl 0.47 0.16 -0.23 0.16 -31.13 1.35
10 shin-cme1-garl -3.58 0.01 0.03 0.50 -29.00 24.36
11 shin-ybhb-cme1 -2.49 0.15 0.17 0.05 -2.18 1.10
12 neah-uclu-nano 3.78 0.03 -0.56 0.04 -10.62 0.65
13 neah-pabh-uclu -5.00 0.37 3.78 0.10 15.16 0.40
14 albh-wslr-nano 2.17 0.00 -0.59 0.01 -5.76 1.76
15 albh-neah-nano 5.69 0.46 -0.27 0.03 -21.06 2.11
16 albh-neah-pabh 5.31 0.19 -0.17 0.68 -23.73 2.52
17 redm-shin-shld -2.37 0.12 1.12 0.08 0.12 0.33
18 redm-shin-ybhb 0.14 0.08 -0.13 0.27 -42.53 2.69
19 fts1-pabh-chzz -48.98 7.85 9.98 5.95 24.67 2.32
20 burn-shld-garl 27.64 0.39 -0.52 0.31 -44.36 0.24
21 burn-redm-shld 4.92 0.27 -0.12 0.24 -44.34 1.05
22 burn-redm-gobs -1.93 0.17 0.87 0.04 20.77 1.78
23 drao-will-prds -21.29 0.03 -0.74 0.03 0.32 0.16
24 drao-chwk-will -3.19 0.11 0.43 0.26 37.36 2.08
25 drao-burn-prds 2.41 0.02 0.08 0.02 -6.76 0.92
26 drao-burn-gobs 6.89 0.20 -0.98 0.16 -19.07 2.35
27 ptsg-cabl-cme1 -48.55 8.14 -4.14 22.52 -4.89 1.00
28 ptsg-cabl-ybhb 19.52 0.35 -9.96 0.28 3.27 2.34
29 whd1-wslr-chwk -3.86 0.37 0.06 0.17 40.00 4.49
30 whd1-albh-wslr -6.34 3.19 5.77 3.40 29.72 0.47
31 burn-redm-gobs -9.39 0.43 3.89 0.46 25.72 1.52
32 trnd-ybhb-cme1 -48.78 0.82 0.81 0.76 35.00 0.14
33 trnd-ptsg-cme1 -28.08 6.71 -13.03 5.09 -20.78 1.44
34 trnd-ptsg-ybhb 6.86 0.29 -0.37 0.32 -41.07 2.64
35 seaw-drao-gobs 7.66 0.76 -6.58 0.07 12.63 2.13
36 corv-gwen-redm -4.05 0.38 0.55 0.23 33.93 1.71
37 corv-cabl-chzz -9.61 0.21 0.92 0.29 40.27 1.06
38 corv-cabl-ybhb 11.75 0.41 -4.22 0.22 23.63 1.02
39 corv-redm-ybhb -0.53 0.54 0.13 0.29 37.06 1.67
40 sedr-whd1-chwk -32.08 1.53 2.88 1.53 30.00 2.51
41 sedr-seaw-whd1 -11.32 0.29 1.66 0.08 30.01 2.34
42 sedr-drao-chwk -1.85 0.11 0.07 0.04 32.00 2.95
43 sedr-seaw-drao -5.62 0.45 5.60 0.26 10.11 1.52
44 jro1-corv-gwen 4.70 0.36 1.16 0.93 -2.43 1.00
45 rpt1-whd1-albh -0.15 0.43 0.05 0.11 40.00 1.32
46 rpt1-albh-pabh -5.74 0.08 0.35 0.18 46.61 1.94
47 rpt1-jro1-gwen -17.39 0.31 9.77 1.04 26.15 3.91
48 rpt1-gwen-gobs -3.35 0.88 0.62 2.63 20.00 1.51
49 rpt1-seaw-gobs -19.98 1.10 16.03 2.24 13.60 1.83
50 kels-corv-chzz -23.42 0.70 6.05 0.34 27.73 1.47
51 kels-jro1-corv 27.31 2.35 14.42 0.63 -4.15 1.15
52 kels-fts1-chzz -23.76 0.78 0.30 0.61 15.00 3.51
53 kels-rpt1-jro1 -20.07 0.36 5.07 0.77 31.89 1.73
54 kels-fts1-pabh -1.77 0.88 1.17 1.20 20.00 1.31
55 kels-rpt1-pabh -18.91 1.30 4.75 0.12 20.02 1.78
56 seat-seaw-whd1 -100.90 6.77 4.23 4.68 25.02 1.16
57 seat-rpt1-whd1 -1.92 2.17 0.75 2.00 25.72 1.79
58 seat-rpt1-seaw -113.44 7.12 21.22 6.17 -11.10 2.05



68 Stochastic Aspects

Table 3.3: Estimated eigenvalues and eigendirections of strain tensor in 95% confidence intervals based on estimated
covariance matrix of transformed strain tensor (via simultaneous diagonalization). The eigenvalues and related accuracies
are given in units 10−8 yr−1 and orientation parameter and its standard deviation is given in degree.

N Triangles Λ̂1 σ̂Λ1
Λ̂2 σ̂Λ2

Θ̂ σ̂Θ

1 nano-will-holb -3.62 0.82 0.64 0.82 -24.10 1.85
2 uclu-nano-holb -7.06 2.42 0.62 2.92 11.67 1.91
3 pabh-uclu-chzz 14.82 2.78 -9.22 2.32 41.41 6.31
4 wslr-nano-will -2.20 5.87 1.61 6.24 37.51 3.34
5 wslr-chwk-will 4.56 1.55 -4.05 0.96 43.43 6.97
6 cabl-cme1-holb -26.29 15.71 17.17 13.29 40.52 1.99
7 cabl-uclu-holb -4.96 3.29 4.32 2.93 -41.98 1.79
8 cabl-uclu-chzz -4.39 0.29 2.44 0.62 36.45 3.27
9 shin-shld-garl 4.98 0.27 -3.42 0.58 -45.03 3.70
10 shin-cme1-garl -18.32 27.37 3.56 0.00 17.86 25.36
11 shin-ybhb-cme1 -16.37 2.18 4.75 3.14 26.92 2.45
12 neah-uclu-nano -6.52 3.17 15.81 2.77 28.21 4.97
13 neah-pabh-uclu -4.94 4.11 0.86 4.33 28.07 2.06
14 albh-wslr-nano -2.13 4.38 2.49 2.78 43.36 2.11
15 albh-neah-nano -9.88 2.42 6.83 3.58 52.22 6.57
16 albh-neah-pabh -10.01 2.18 5.36 1.98 34.36 1.98
17 redm-shin-shld -2.31 0.31 2.17 0.50 37.14 2.68
18 redm-shin-ybhb -1.77 0.38 1.46 0.56 35.25 2.55
19 fts1-pabh-chzz 6.91 4.25 -5.31 6.45 -41.72 4.14
20 burn-shld-garl 0.86 0.75 -0.24 0.48 -40.11 3.85
21 burn-redm-shld 1.25 0.27 -0.36 0.25 -45.64 2.67
22 burn-redm-gobs 1.36 0.24 -0.83 0.24 41.68 1.96
23 drao-will-prds -1.62 0.26 1.76 0.27 38.78 1.25
24 drao-chwk-will 0.38 0.37 0.07 0.31 -37.31 4.72
25 drao-burn-prds 1.33 0.09 -0.84 0.24 -45.81 1.84
26 drao-burn-gobs 1.03 0.17 -0.21 0.18 -36.34 5.11
27 ptsg-cabl-cme1 -68.03 33.70 57.24 25.60 44.19 5.05
28 ptsg-cabl-ybhb 6.04 1.57 -5.72 1.37 -40.20 5.13
29 whd1-wslr-chwk -5.44 1.88 4.52 0.90 45.50 10.68
30 whd1-albh-wslr -1.57 1.83 1.25 0.46 38.09 3.21
31 burn-redm-gobs 1.06 0.75 -0.61 0.83 40.03 8.26
32 trnd-ybhb-cme1 -23.14 9.47 0.91 10.37 -16.96 3.39
33 trnd-ptsg-cme1 -44.45 41.66 33.82 29.09 40.72 4.35
34 trnd-ptsg-ybhb -10.60 3.03 3.10 1.78 28.23 4.35
35 seaw-drao-gobs 2.14 0.70 -1.28 0.36 -43.00 1.82
36 corv-gwen-redm 4.17 0.61 -4.12 0.56 45.03 1.47
37 corv-cabl-chzz -8.37 2.64 7.05 1.70 40.92 3.22
38 corv-cabl-ybhb -8.62 1.35 7.58 1.53 43.96 1.90
39 corv-redm-ybhb 4.18 0.41 -4.58 0.69 -40.60 3.02
40 sedr-whd1-chwk 12.79 4.25 -7.22 2.56 -41.60 3.56
41 sedr-seaw-whd1 -8.17 3.06 5.53 5.21 35.38 3.23
42 sedr-drao-chwk -0.42 0.94 0.30 0.44 -22.29 11.95
43 sedr-seaw-drao -2.37 0.82 0.69 0.81 -18.13 1.79
44 jro1-corv-gwen 4.48 0.78 -4.45 0.78 -44.34 1.06
45 rpt1-whd1-albh -1.26 1.16 1.16 0.90 38.85 2.49
46 rpt1-albh-pabh -11.27 1.92 5.77 1.82 35.39 1.90
47 rpt1-jro1-gwen -5.53 2.60 5.46 2.97 39.92 1.87
48 rpt1-gwen-gobs 2.23 0.82 -0.39 1.05 -29.64 12.58
49 rpt1-seaw-gobs -7.84 2.45 5.15 1.22 42.38 6.69
50 kels-corv-chzz 6.91 0.53 -6.65 1.36 41.08 3.37
51 kels-jro1-corv -2.52 1.79 2.00 1.67 43.54 1.16
52 kels-fts1-chzz 9.24 1.64 -7.01 1.49 -45.69 3.67
53 kels-rpt1-jro1 2.76 1.77 -2.47 1.65 44.54 2.66
54 kels-fts1-pabh 8.58 1.88 -7.15 1.59 -43.00 1.83
55 kels-rpt1-pabh 8.83 1.61 -6.72 1.69 -41.45 1.85
56 seat-seaw-whd1 4.06 13.37 -1.17 12.25 31.24 3.72
57 seat-rpt1-whd1 -11.28 3.99 16.09 3.61 40.23 4.31
58 seat-rpt1-seaw -16.67 39.50 8.47 35.32 -36.27 2.32
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Estimated eigenspace components of TCC based on estimated covariance matrix of transformed
TCC (via simultaneous diagonalization)

In the same manner we perform the illustration of eigenspace components of TCC and their 95% confidence
intervals, based on estimation of covariance matrix of transformed TCC (via simultaneous diagonalization) by
Fig. 3.11. Also, numerical values of them are presented in Tab. 3.4. Comparing Figs. 3.11 and 3.9 shows the
estimated covariance components have influence on the confidence intervals of eigenspace components.

 129oW  126oW  123oW  120oW  117oW  114oW 
  40oN 
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  52oN 

Figure 3.11: Pattern of eigenspace components of the TCC and their 95% confidence intervals, in unit of 10−7 yr−1

based on estimated covariance matrix of transformed TCC (via simultaneous diagonalization). Positive eigenvalues are
represented by solid lines (red color) and negative eigenvalues are represented by dashed lines (blue color). Triangles
denote the permanent GPS stations. The figure is illustrated in Albers equal-area conic projection.
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Table 3.4: Estimated eigenvalues and eigendirections of TCC in 95% confidence intervals based on estimated covariance
matrix of transformed TCC (via simultaneous diagonalization). The eigenvalues and related accuracies are given in units
10−8 yr−1 and orientation parameter and its standard deviation is given in degree.

N Triangles Λ̂′

1 σ̂Λ′

1
Λ̂′

2 σ̂Λ′

2
Θ̂′ σ̂Θ′

1 nano-will-holb -2.25 0.64 0.70 0.06 -23.68 1.44
2 uclu-nano-holb -8.24 0.59 0.62 0.03 13.76 3.04
3 pabh-uclu-chzz 11.95 3.26 -9.07 0.31 41.40 0.17
4 wslr-nano-will -2.16 0.37 1.98 0.42 40.02 0.05
5 wslr-chwk-will 4.36 0.28 -4.08 0.20 44.47 0.64
6 cabl-cme1-holb -26.64 6.47 17.46 6.38 39.30 9.02
7 cabl-uclu-holb -4.90 0.43 4.39 4.18 -42.50 0.14
8 cabl-uclu-chzz -4.15 0.29 2.69 0.62 38.33 3.27
9 shin-shld-garl 4.89 0.27 -3.61 0.58 -42.73 3.70
10 shin-cme1-garl -18.15 1.91 3.59 0.25 24.13 1.52
11 shin-ybhb-cme1 -16.56 0.86 4.16 0.13 27.00 6.06
12 neah-uclu-nano -6.23 6.26 1.56 6.26 25.39 18.96
13 neah-pabh-uclu -4.95 1.01 0.99 0.81 23.29 1.18
14 albh-wslr-nano -2.14 13.84 2.05 15.04 41.27 0.71
15 albh-neah-nano -9.61 0.48 6.78 0.86 39.63 0.71
16 albh-neah-pabh -10.56 6.55 5.25 6.54 35.09 28.64
17 redm-shin-shld -2.51 0.29 2.24 0.10 40.23 2.14
18 redm-shin-ybhb -1.55 0.24 1.39 0.22 39.00 4.24
19 fts1-pabh-chzz 6.90 6.17 -5.59 0.61 -42.23 0.62
20 burn-shld-garl 0.87 0.06 -0.21 0.06 -43.42 14.45
21 burn-redm-shld 1.23 0.06 -0.39 0.24 -40.27 2.19
22 burn-redm-gobs 1.32 0.06 -0.84 0.05 44.02 0.80
23 drao-will-prds -1.17 0.09 1.01 0.11 35.41 2.06
24 drao-chwk-will 0.40 0.03 0.07 0.26 -39.73 37.14
25 drao-burn-prds 1.62 0.13 -0.84 0.15 -42.87 3.30
26 drao-burn-gobs 1.09 0.06 -0.27 0.05 -39.47 0.57
27 ptsg-cabl-cme1 -66.73 1.63 56.05 1.65 42.84 0.92
28 ptsg-cabl-ybhb 6.96 1.57 -5.07 1.37 -41.29 5.13
29 whd1-wslr-chwk -5.51 0.50 4.95 0.50 42.37 7.48
30 whd1-albh-wslr -1.51 0.08 1.25 0.02 37.85 0.97
31 burn-redm-gobs 1.05 1.11 -0.64 1.18 43.11 0.25
32 trnd-ybhb-cme1 -27.52 37.99 1.00 29.39 -11.84 2.37
33 trnd-ptsg-cme1 -47.39 5.69 35.40 5.41 41.19 0.22
34 trnd-ptsg-ybhb -11.31 0.54 3.35 4.43 28.36 1.83
35 seaw-drao-gobs 2.13 0.11 -1.13 0.83 -40.85 2.67
36 corv-gwen-redm 4.16 1.15 -4.12 0.03 43.45 0.15
37 corv-cabl-chzz -8.01 0.42 7.38 0.49 43.53 6.70
38 corv-cabl-ybhb -8.04 0.42 7.93 0.42 44.23 2.88
39 corv-redm-ybhb 4.09 0.70 -3.35 0.66 -43.89 0.08
40 sedr-whd1-chwk 11.10 8.06 -8.92 7.91 -42.61 0.06
41 sedr-seaw-whd1 -8.16 18.36 6.42 18.42 40.70 25.22
42 sedr-drao-chwk -0.43 0.01 0.32 0.11 -17.23 1.80
43 sedr-seaw-drao -2.59 1.46 0.63 1.40 -20.68 0.23
44 jro1-corv-gwen 4.95 0.53 -4.45 0.62 -44.66 0.04
45 rpt1-whd1-albh -1.53 0.05 1.15 0.05 36.47 0.09
46 rpt1-albh-pabh -10.37 0.09 5.27 0.24 35.08 1.73
47 rpt1-jro1-gwen -5.53 0.04 5.50 0.57 44.23 0.52
48 rpt1-gwen-gobs 2.35 0.07 -0.39 0.40 -28.97 1.51
49 rpt1-seaw-gobs -7.32 2.41 5.66 0.02 40.24 1.47
50 kels-corv-chzz 6.93 0.09 -6.77 0.11 44.73 2.04
51 kels-jro1-corv -2.59 2.14 1.96 2.15 37.84 1.17
52 kels-fts1-chzz 8.84 6.40 -7.44 0.07 -43.00 4.39
53 kels-rpt1-jro1 2.67 4.10 -2.49 4.11 42.89 10.24
54 kels-fts1-pabh 8.90 1.93 -7.91 1.63 -43.70 1.37
55 kels-rpt1-pabh 8.79 0.89 -7.20 0.83 -42.72 6.15
56 seat-seaw-whd1 4.04 0.63 -1.21 6.69 31.88 2.61
57 seat-rpt1-whd1 -13.28 0.92 10.44 9.29 41.00 4.20
58 seat-rpt1-seaw -15.00 2.35 8.31 0.24 -35.91 0.04
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4 Concluding Remarks

4.1 Discussion

Intrinsic deformation analysis with aspects of deterministic and stochastic models has been shown to be a
reliable and powerful tool for detecting deformation patterns. On the basis of the presented theory and the
numerical results obtained with simulated and real data-set, the following conclusions can be drawn:

i. The local basis vectors of deformed surface are formulated in terms of the local basis vectors of undeformed
surface and curvilinear components of the displacement vector. This will provide a representation to
intrinsic geometry of a deformed surface with deriving information about the displacement field.

ii. According to differential geometry, Gaussian and mean curvatures are invariants under the transformation
of coordinate systems. Hence, intrinsic geometric properties of the deformed surface can be described in
terms of changing mean and Gaussian curvatures. They can propose a shape classification of a deformed
surface based upon signs of mean and Gaussian curvatures which are new tools for studying the Earth’s
deformation.

iii. Employing simultaneous diagonalization to pairs of strain and metric tensors or pairs of tensor of change of
curvature (TCC) with associated metrics leads to establishing a mapping between eigenspace components
and transformed tensors (suitable for statistical inference of eigenspace components).

iv. Comparison of the proposed method with plane strain, shows capabilities of this method in areas with high
variations in vertical components (height components). The differences between corresponding patterns
of two methods could be discussed from the modeling of the displacement problem which we refereed to
the real surface of the Earth as well as the effect of ignoring the height components of the deformation
field in horizontal strain rates.

v. In the presence of errors in measuring a random displacement field (under the normal distribution as-
sumption of displacement field), stochastic behaviors of eigenspace components of strain tensor and TCC
are discussed. We divided the context into two parts : In the first, we considered independent random
vectors of repeated tensor measurements. In the second step we considered correlations between repeated
measurements and we estimated a covariance matrix of measurements.

Stochastic behaviors of eigenspace components with repeated measurements are applied by a numerical example
with the crustal deformation field (through the continuous GPS data) in Cascadia Subduction Zone (CSZ). It is
performed based on a-priori given variance component information (which we derived based on propagation of
variances from GPS velocity to tensor elements) and a posteriori (co)variance information (through a estimated
covariance matrix) of tensor measurements. Comparing the results showed that, in general after estimating the
covariance matrix of observations (transformed tensors via simultaneous diagonalization) variances of eigenspace
components become smaller. However, in some areas it did not occur. They can be related to incorrect
descriptions of initial accuracies, either too optimistic or too pessimistic.

4.2 Outlook

Mathematically, the FEM is used for finding an approximate solution of partial differential equations (PDE). It
is a good choice for solving partial differential equations over scattered domains. For instance, in simulating the
deformation field of crust, it is more important to have reliable predictions over the areas which we have dense
networks of GPS stations than over less dense areas, a demand that is achievable using the FEM. The optimal
finite element meshes can be generated by Delaunay triangulation over the test area. However, in some cases,
the biggest disadvantage of this method is producing a subdivision made of triangles with elongated shapes that
leads to inaccuracies in numerical interpolation. An undesirable feature of these types of implementation, can
be verified by using other methods of interpolations and modelings. An example could be the use of smooth
surface splines on deformation field instead of using FEM.

Further efforts should be undertaken to establishment of stress-strain relations in Earth surface deformation
analysis based on the theoretical foundation provided here. Such verification points can be used in dealing with
seismic activities, while seismic sources are governed by the stress tensor field.
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Appendix A- Partial Derivatives of Local Basis Vectors

We assume a surface M
2 of class Cm(m ≥ 2) which is governed by vector X = X(Θ1,Θ1). Then base vectors

AK are functions of class C1 and have continuous derivatives AK,Λ. The base vectors are linearly independent,
then we can write

AΦ,Λ =

{

Ψ

ΦΛ

}

AΨ + αΦΛA3 (A.1)

A3,Λ = βΨ
Λ AΨ + γΛA3 (A.2)

where coefficients
{

Ψ
ΦΛ

}

, γΛ, αΦΛ, βΨ
Λ are to be determined. Since A3 is of unit length, A3,Λ is orthogonal to

A3. From Eq. (A.2) we clearly have

< A3,Λ,A3 >= βΨ
Λ < AΨ,A3 > +γΛ < A3,A3 >= 0

Hence γΛ = 0. It can be easily verified from Eq. (A.2) that

−BΩΛ =< AΩ,A3,Λ >= βΨ
Λ < AΩ,AΨ >=⇒ βΨ

Λ = −BΩΛA
ΩΨ (A.3)

Therefore, Eq. (A.2) will be obtained through

A3,Λ = −BΩΛA
ΩΨAΨ = −BΨ

Λ AΨ (A.4)

Eq. (A.4) is called Weingarten equation which expresses that the first derivatives of the unit normal vector
depend on both the first and second fundamental coefficients.

Consequently, taking a scalar product of both sides of the Eq. (A.1) with the vector A3, we can derive coefficients
αΦΛ. Namely

BΦΛ =< AΦ,Λ,A3 >= αΦΛ

Hence, Eq. (A.1) will be denoted by

AΦ,Λ =

{

Ψ

ΦΛ

}

AΨ +BΦΛA3 (A.5)

Eq. (A.5) is called the Gauss equation. It remains to determine the coefficients
{

Ψ
ΦΛ

}

. Hence, from Eq. (A.5)
we have

< AΦ,Λ,AΩ >=

{

Ψ

ΦΛ

}

< AΨ,AΩ > +BΦΛ < A3,AΩ > (A.6)

Using the Eq. (A.6) and the fact that vectors A3 and AΩ are orthogonal to each other, we obtain

{

Ψ

ΦΛ

}

= AΨΩ < AΦ,Λ,AΩ >=
1

2
AΨΩ(AΩΛ,Φ +AΦΩ,Λ −AΦΛ,Ω) (A.7)

The coefficients
{

Ψ
ΦΛ

}

are so-called Christoffel symbols of the second kind. We can see in Eq. (A.7) that the
{

Ψ
ΦΛ

}

depend only upon the FFF coefficients and their derivatives. It can be verified that
{

1
21

}

=
{

1
12

}

and
{

2
12

}

=
{

2
21

}

, then
{

Ψ
ΦΛ

}

=
{

Ψ
ΛΦ

}

. The Christoffel symbols may be used for performing practical calculations in
differential geometry (e.g., solving the geodesic equations).
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Appendix B- 2D Finite Element Method

A method for solving an equation by approximating continuous quantities as a set of quantities at discrete
points (on the surface), often regularly spaced into a so-called grid or mesh. The optimal finite element meshes
can be generated by Delaunay triangulation over the data set. The algorithm creates triangles by drawing lines
between data points. The original points are connected in such a way that no triangle edges are intersected
by other triangles. The result is a patchwork of triangular faces over the extent of the grid. This method is
an exact interpolator. Each triangle defines a plane over the grid nodes lying within the triangle, with the tilt
and elevation of the triangle determined by the three original data points defining the triangle. All grid nodes
within a given triangle are defined by the triangular surface. Because the original data are used to define the
triangles, the data are honored very closely.

In deformation analysis we use the Delaunay triangulation (in finite element scope) for approximating dis-
crete displacement field. The sparse points(e.g., GPS stations) could be connected with a Delaunay triangulation
within each triangle reconstructed by interpolation. Then in every triangle (element), we have linear interpola-
tion of velocity field with respect to the local coordinates {L,B}. Let us assume that a triangle is constructed
by three vertices (coordinates) : {LK , BK} where K ∈ {1, 2, 3}. Then for every triangle we consider a centroid
(as a reference point {L0, B0}), from which

U(L1, B1) = U(L0, B0) +
∂U

∂L
(L1 − L0) +

∂U

∂B
(B1 −B0)

U(L2, B2) = U(L0, B0) +
∂U

∂L
(L2 − L0) +

∂U

∂B
(B2 −B0) (B.1)

U(L3, B3) = U(L0, B0) +
∂U

∂L
(L3 − L0) +

∂U

∂B
(B3 −B0)

then

X =

















U(L0, B0)

∂U
∂L

∂U
∂B

















=





1 L1 − L0 B1 −B0

1 L2 − L0 B2 −B0

1 L3 − L0 B3 −B0





−1 



U(L1, B1)
U(L2, B2)
U(L3, B3)



 (B.2)

In the presence of errors in the measurements, we assume that QU be a covariance matrix of measurements,
then the covariance matrix of unknown coefficients can be obtained by

D{X} =





1 L1 − L0 B1 −B0

1 L2 − L0 B2 −B0

1 L3 − L0 B3 −B0





−1

QU











1 L1 − L0 B1 −B0

1 L2 − L0 B2 −B0

1 L3 − L0 B3 −B0





−1






T

(B.3)
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