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Abstract

The geodetic twin satellite mission GRACE delivers gravity field models of the Earth of unprecedented accuracy.

However, the originally defined mission baseline is not (yet) reached. Among others, deficiencies in the gravity

field sensor system or the related signal processing could be responsible for the degraded performance.

In this work the GRACE gravity field sensor system is subject to an integrated sensor analysis.

First, models of the satellites’ environment are derived, including models for the direct gravitational accelerations

caused by the Earth, the Sun and the Moon and indirect effects like Earth and ocean tides. Among the non-

gravitational forces air drag, solar radiation pressure and Earth albedo are investigated. The purpose of this

part of the work is to model what the gravity sensor system should ’feel’.

The second part contains mathematical models of the individual elements of the gravity field sensor system, the

star sensor, the accelerometer,the K-band ranging system and the GPS receiver, to derive an understanding of

how the sensors detect their environment.

The third part consists of the analysis of the raw instrument data. The real measurement signals are analyzed

and the measurement performance in terms of a noise level is derived. They are compared to the model output

and the derived noise level to the one specified by the instruments’ manufacturers.

Finally the processing of the raw instrument data to the level that is used for the gravity field determination

is investigated. A main processing step for all sensors is the application of an anti-aliasing low-pass filter.

Alternative filters are tested and evaluated against the filter used for the official data processing.

Zusammenfassung

Die Satellitenmission GRACE liefert Schwerefeldmodelle bisher nicht verfügbarer Qualität. Aber die vor dem

Start anvisierte Genauigkeit ist (noch) nicht erreicht worden. Neben anderen möglichen Ursachen könnten

Fehler im Schwerefeldmesssystem und in der dazugehörigen Signalverarbeitung für die reduzierte Genauigkeit

verantwortlich sein.

In dieser Arbeit wird das GRACE Schwerefeldmesssystem einer integrierten Sensoranalyse unterzogen.

Zunächst werden Modelle der Satellitenumgebung vorgestellt. Unter den direkten gravitativen Kräften wer-

den die Erdanziehung sowie die Anziehung von Sonne und Mond modelliert, unter den indirekten gravitativen

Kräften werden Erd- und Ozeangezeiten vorgestellt. Unter den nicht-gravitativen Kräften werden der Luftwider-

stand, der Strahlungsdruck der Sonne und Erdalbedo untersucht. Diese Modelle geben Auskunft darüber, was

das Schwerefeldmesssystem detektieren soll.

Im zweiten Teil werden mathematische Modelle der einzelnen Sensoren des Schwerefeldmesssystems erarbeitet.

Im einzelnen werden der Beschleunigungsmesser, der Sternsensoren, das K-band Abstandsmesssystem und

der GPS-Empfänger modelliert, um eine Vorstellung darüber zu erlangen, wie die Satelliten ihre Umgebung

wahrnehmen.

Im nächsten Teil werden die rohen Messdaten der Instrumente untersucht. Die Messsignale werden analysiert

und die Qualität der Sensoren, wie auch die der Messung, wird über das Fehlerniveau bestimmt. Die gemessenen

Signale werden mit den Erwartungen aus den Modellen verglichen, insbesondere wird das aus den Messungen

abgeleitete Rauschniveau mit den durch die Intrumentenhersteller gegebenen Spezifikationen verglichen.

Schließlich wird die Prozessierung von Rohdaten zu Daten, die für die Schwerefeldbestimmung verwendet wer-

den, untersucht. Ein Hauptschritt der Umwandlung ist die Anwendung eines Tiefpassfilters um die Datenrate

ohne das Auftreten von Aliasingeffekten reduzieren zu können. Verschiedene alternative Filter werden diskutiert

und miteinander verglichen.
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Part I.

Introduction
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1. Overview of the GRACE mission

GRACE (Gravity Recovery And Climate Experiment) is a joint project of the National Aeronautics and Space

Administration (NASA) and the German Space Center (DLR). The mission has been proposed in 1996 jointly

by the University of Texas at Austin, Center for Space Research (UTCSR), the GeoForschungsZentrum Potsdam

(GFZ), the Jet Propulsion Laboratories (JPL), Space Systems/Loral (SSL), the Deutsches Zentrum für Luft-

und Raumfahrt e.V. (DLR), and Astrium GmbH. The GRACE mission is successor to the CHAMP mission and

was selected as the second mission in NASA’s Earth Science System Pathfinder project (ESSP). The Principal

Investigator is Prof. Byron Tapley (UTCSR), the Co-Principal Investigator of the mission is Prof. Ch. Reigber

of the GeoForschungsZentrum Potsdam. The goal of the mission is to derive highly accurate models of the

Earth gravity field for a period of at least five years. As an additional goal, GPS measurements are used to

recover profiles of the ionosphere and the troposphere by limb sounding.

Unlike the single satellite mission CHAMP, the GRACE mission consists of two identical satellites, GRACE A

and GRACE B, resp. Tom and Jerry. The satellite constellation is depicted in figure 1.1.

Figure 1.1: Overview of the GRACE satellites configuration. Considering the satellite in the front, the GPS antenna and the star

sensor baffles are visible. The K-band microwave link is indicated as a blue ray. On the back side of the satellite, the ion thruster

used for orbit maintenance is visible.

Each satellite is equipped with a GPS Turbo Rogue Space Receiver that allows precise orbit determination. In

order to be able to take into account the effect of non-gravitational forces, both satellites are equipped with

ultra-sensitive Super STAR capacitive accelerometers.
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An absolute novelty is the use of a K-band microwave link between the satellites to measure the inter-satellite

distance with micrometer accuracy.

To guarantee sufficient power supply and to enable operation of the K-band system, the attitude of the satellites

is observed by star sensors and controlled by cold gas attitude thrusters and magnetic torque rods.

The GRACE satellites were successfully launched on March 17, 2002 from Plesetsk Cosmodrome in Russia.

The inclination of the satellites orbits is about 89◦ , the semi-major axis was about 6870 km, the eccentricity

was almost zero: 0.001. Since then the orbit decayed to an altitude of about 460 km. The nominal distance

between the two satellites is 220 ±50 km.
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2. Definition of integrated sensor analysis

The subject to the integrated sensor analysis is a complex system consisting of several individual sensors. The

purpose of the integrated sensor analysis is to understand

• the functionality of each individual sensor,

• the interaction between the individual sensors and their operation as a sensor system.

The former is achieved by deriving mathematical models of the measurement process of each sensor. A common

way is to model the signal that is to be sensed and then to model the error behavior of the sensor. The error

behavior of the sensor is usually given by the manufacturer. The combination of the simulated signal and

simulated error is a good approximation of the real measurement behavior.

The latter is reached by combining the individual models to form the ’integrated’ model: The signal flow in

the sensor systems is derived, thus the dependencies can be modeled. Also the processing steps necessary to

transform between the individual data levels are investigated.



13

3. Goals and topics of the work

This work consists of three parts:

• The description of the forces acting on the GRACE satellites,

• the description of the GRACE system simulator and

• the description of the real data processing and analysis.

The first part describes models for volume forces and surface forces that act on the GRACE satellites including

models for gravitational forces like the gravity of the Earth or the effects caused by third bodies like the Sun

or the Moon. Among the surface forces atmospheric drag models, models for solar radiation pressure and for

Earth albedo are analyzed. Special emphasis is put on the analysis of the atmospheric drag models, as at the

orbit height of GRACE air drag is the dominant surface force.

The second part describes how the GRACE gravity field sensor system ’feels’ its environment. Measurement

models for the sensors that constitute the gravity field sensor system, namely the star sensor, the accelerometer,

the K-band ranging system and the GPS receiver are derived as mathematical models.

The third part is devoted to the analysis of the real satellite data. Performance estimates for the individual

instruments are derived and compared to the theoretical performance estimated in the second part. Also the

transformation from raw satellite data to the data level that is used for the gravity field determination is

investigated.
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Part II.

Force models
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4. Gravitational forces

4.1. Introduction

The gravitational forces are by far the strongest forces that act on the satellites and mainly determine their

orbits and relative motion. In the following sections the different kinds of gravitational forces will be briefly

introduced. In terms of magnitude one expects that the gravitational forces of the Earth are strongest, followed

by the forces caused by Moon, Sun and the solid Earth and ocean tides.

4.2. Earth gravity field

The gravitational accelerations are the first derivative of the gravitational potential of the Earth. The potential

and its first order derivatives can be expressed in the following way:

Vi =
GM

r

lmax∑

l=0

λi

(
R

r

)l l∑

m=0

p (α cos(mλ) + β sin(mλ)), (4.1)

with

differentiation w.r.t λi p α β

none 1 P̄lm C̄lm S̄lm

r − (l+1)
r

P̄lm C̄lm S̄lm

θ 1 P̄ ′
lm C̄lm S̄lm

λ 1 mP̄lm S̄lm −C̄lm

The normalized associated Legendre functions and their derivatives are computed by recursive formulas. For

convenience, the following substitutions were made: Plm = P̄lm(cos θ), P ′
lm = ∂P̄lm(cos θ)

∂θ .

Plm = η cos θPl−1,m − σPl−2,m, (4.2)

Pl,l−1 = τ cos θPl−1,l−1, (4.3)

Pll = ν sin θPl−1,l−1, (4.4)

P ′
lm = η(cos θP ′

l−1,m − sin θPl−1,m) − σP ′
l−2,m, (4.5)

P ′
l,l−1 = τ(cos θP ′

l−1,l−1 − sin θPl−1,l−1), (4.6)

P ′
ll = ν(sin θP ′

l−1,l−1 + cos θPl−1,l−1), (4.7)

with the normalization factors:

η =

√
(2l + 1)(2l − 1)

(l + m)(l − m)
, σ =

√
(l + m)(l − m)

(2l + 1)(2l − 1)
, τ =

√
2l + 1, ν =

√
2l + 1

2l
. (4.8)
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The initial values are: P0,0 = 1, P1,0 =
√

3 cos θ, P1,1 =
√

3 sin θ, P ′
0,0 = 0, P ′

1,0 = −
√

3 sin θ,

P ′
1,1 =

√
3 cos θ.

To obtain the accelerations in cartesian coordinates, the first order derivatives in spherical coordinates have to

be transformed using the chain rule:

ẍe =
∂V

∂x
=

∂V

∂r

∂r

∂x
+

∂V

∂θ

∂θ

∂x
+

∂V

∂λ

∂λ

∂x
, (4.9)

ÿe =
∂V

∂y
=

∂V

∂r

∂r

∂y
+

∂V

∂θ

∂θ

∂y
+

∂V

∂λ

∂λ

∂y
, (4.10)

z̈e =
∂V

∂z
=

∂V

∂r

∂r

∂z
+

∂V

∂θ

∂θ

∂z
, (4.11)

where the partial derivations are simply derived from geometry:

∂r/∂x = sin θ · cos λ, (4.12)

∂r/∂y = sin θ · sinλ, (4.13)

∂r/∂z = cos θ, (4.14)

∂θ/∂x = cos θ · cos λ/r, (4.15)

∂θ/∂y = cos θ · sin λ/r, (4.16)

∂θ/∂z = − sin θ/r, (4.17)

∂λ/∂x = − sinλ/(r · sin θ), (4.18)

∂λ/∂y = cos λ/(r · sin θ). (4.19)

For simulation purposes or for orbit integration it is necessary to transform these accelerations from the earth-

fixed system to the inertial system.

Figure 4.1 shows the resulting accelerations in the Inertial Reference Frame (IRF). The magnitude is about

8.4 m/s2 or about 84% of the acceleration on the Earth’s surface. We notice a modulation with the orbit

frequency, as the distance from the satellite to the Earth and its velocity vary during a revolution. The first

term of the spherical harmonic expansion of the gravity field, i.e. l=0, accounts for 99% of the gravitational

acceleration, a expansion up to degree 2, i.e. including the effect of the Earth’s oblateness, represents about

99.99% of the characteristics of the gravitational acceleration of the Earth. Thus an expansion up to degree 2

seems to be sufficient for most purposes except gravity field determination studies of course.
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Figure 4.1: The top panel shows the gravitational accelerations induced by the Earth. The different lines show the accelerations

resulting from an evaluation of the spherical harmonic series up to a certain degree. The bottom panel shows the change in

acceleration from one evaluation level to the other. It seems that it is sufficient to evaluate the Legendre series up to degree 2 for

simulations, as the change for higher degrees is very small.
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4.3. Gravitational forces of third bodies

Gravitational forces caused by third bodies the gravitational forces caused by all other celestial bodies than the

Earth. In terms of magnitude the tidal forces of Sun and Moon are dominating.

4.3.1. Direct tides

The gravitational acceleration of a third body can be described as the acceleration of a point mass M , cf.

Montenbruck and Gill (2000):

r̈sat,i = GM · rbody − rsat

|rbody − rsat|3
, (4.20)

with

rbody the geocentric position vector of the body,

rsat the geocentric position vector of the satellite,

GM the gravitational constant times the mass of the attracting body.

In an earth-fixed coordinate system the acceleration of the satellite is derived as the difference between the

acceleration of the satellite caused by the body and the acceleration of the Earth caused by the body:

r̈sat,e = r̈sat,i − r̈Earth,i

= GM

(
rbody − rsat

|rbody − rsat|3
− rbody

|rbody|3
)

. (4.21)

rsat,e

-..

rEarth,i

-..

rsat,i

-..

rsat,e

-..
rsat,e

-..

rsat,e

-..

Earth 3rd body

Figure 4.2: Tidal ellipse of relative acceleration with respect to the center of an accelerated coordinate system. In this example the

resulting acceleration on a satellite caused by a third body like the Sun or the Moon in the earth-fixed coordinate system is shown.

Figure 4.2 shows the tidal acceleration of the ’satellite relative to the Earth’-two body system due to a third

body. It has the form of a tidal ellipse. We realize that the satellite is accelerated away from the Earth if it is

in front of or behind the Earth and that the resulting acceleration is directed towards the Earth if the satellite

is above or below the Earth.

This equation can not only be applied to a satellite orbiting the Earth, it also describes the relative acceleration

of mass elements of a body with respect to its center of mass. Equation (4.21) therefore also describes the solid

Earth tidal deformation due to Sun and Moon.
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4.3.2. Indirect tides of third bodies

As mentioned above, the tidal forces of the other planets of our solar system deform the Earth. The deformation

depends on the local properties of the Earth’s crust. The so called ’Love numbers’ reflect the elasticity of the

Earth’s crust. The deformation leads to a change of the mass distribution of the Earth in an earth-fixed

coordinate system and therefore has to be taken into account when modeling the forces acting on a satellite. As

this effect is not caused directly by the gravitating body, it is called indirect. In principle not only the Earth is

deformed by this effect, but also all the other planets. For satellites orbiting the Earth this effect is neglected,

as the other planets are assumed to be point masses.

The change in the mass distribution of the Earth causes a change of the geopotential. It is expanded in a series

of spherical harmonic coefficients and described in more detail e.g. in McCarthy (2006). We will give here only

a brief outline:

∆C̄nm − i∆S̄nm =
knm

2n + 1

3∑

j=2

GMj

GME

(
RE

Rj

)
P̄nm(sinΦj)e

−imλj , (4.22)

where

knm is the nominal Love number for degree n and order m,

RE is the equatorial radius of the Earth,

GMj is the gravitational parameter for the Moon (j = 2) and the Sun (j=3),

GME is the gravitational parameter for the Earth,

Rj is the distance from geocenter to Moon or Sun,

Φj is the body fixed geocentric latitude of the Moon or the Sun,

λj is the body fixed geocentric longitude of the Moon or the Sun,

and P̄nm are the normalized associated Legendre functions.

The redistribution of the masses depends also on the frequency band affected by the different tidal effects,

therefore a ’frequency dependent correction’ to the equation above has to be derived:

∆C̄nm − i∆S̄nm =
∑

f(n,m)

A(f(n, m)) · eiθf(n,m) , (4.23)

where

f(n, m) is the frequency of the excitation,

A(f(n, m)) is the amplitude of the excitation,

θf(n,m) accounts for the Earth rotation and the type of the tide.

The needed amplitudes and frequencies are tabulated in McCarthy (2006).

4.3.3. Ocean tides

The oceans react to the tidal forces as well. There are two effects:

1. the change in the mass distribution of the Earth due to the movement of the water,



20 4 Gravitational forces

2. the change in the mass distribution of the Earth due to the changed load on the Earth’s crust caused by

the changing water load.

The effect on the geopotential is again formulated as a change in the spherical harmonic coefficients:

∆C̄nm − i∆S̄nm = Fnm

∑

s(n,m)

−∑

+

(C±
snm ∓ S±

snm)e±iθsnm ), (4.24)

where

Fnm accounts for the changed load on the crust,

C±
snm, Spm

snm are the ocean tide coefficients for the tide type s,

θsnm is the argument of the tide type s.

The summation over + and - denotes the respective addition of the retrograde and prograde waves. The

interested reader may consult McCarthy (2006) for a more detailed description.

4.3.4. Solid Earth pole tides

The pole tides are generated by the centrifugal effect of the polar motion. They affect only the geopotential

coefficients C21 and S21:

∆C̄21 = C1 · (m1 − C2 · m2), (4.25)

∆S̄21 = C1 · (m1 + C2 · m2), (4.26)

where

C1 = 1.333 · 10−9,

C2 = 0.0115,

m1, m2 are the wobble variables directly related the polar motion variables (xp, yp).

A detailed description is to be found in McCarthy (2006).

Figure 4.3 shows the tidal accelerations on a GRACE satellite caused by Sun and Moon in an earth-fixed

inertial reference frame over one day. We notice a strong signal on twice per revolution for all constituents. The

direct tidal acceleration caused by the Moon is strongest at a level of 7 · 10−7 m/s2 followed by the direct tidal

acceleration caused by the Sun at a level of about 3 · 10−7 m/s2, i.e. the tidal force of the Moon is about three

times stronger than the tidal force caused by the Sun. The ratio between the forces of Sun and Moon depends

on the orientation of the orbit with respect to the positions of Sun and Moon. Here the orbit normal points

towards the Sun, i.e. the distance between the satellite and the Sun is almost constant, therefore the force is

also almost constant. The orbit plane is aligned with the direction to the Moon, therefore the exerted force by

the Moon varies strongly.

The magnitude of the indirect tidal accelerations caused by the Moon are at level of about 2 · 10−7 m/s2, those

caused by the Sun are at level of about 8 ·10−8 m/s2 . The accelerations caused by the ocean tides vary between
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Figure 4.3: Tidal accelerations due to Sun and Moon over one day for a GRACE satellite.
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Figure 4.4: Power spectral density of the tidal accelerations caused to Sun and Moon for a GRACE satellite.

1 ·10−8 m/s2 and 1 ·10−7 m/s2. The magnitude of the frequency dependent corrections is about 1.5 ·10−8 m/s2,

the pole tide varies between 3 · 10−9 m/s2 and 2 · 10−8 m/s2 and shows also a semidiurnal period. All effects

can be detected by the GRACE sensor system, as its sensitivity is about 3 · 10−10 m/s2.
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In order to compare the variations of the different effects, we consider figure 4.4, where the tidal accelerations

are displayed in the frequency domain as a power spectral density. We notice that the dominant frequencies

are harmonics of the orbit frequency. The dominant amplitudes are found on twice per revolution. Concerning

the magnitude of the different effects, the direct tides of the Moon are strongest, followed by the ocean tides,

the indirect tides of the Moon, the direct tides of the Sun, the indirect tides of the Sun, the pole tides and the

frequency dependent corrections. The ocean tides show a less strong correlation with harmonics of the orbit

frequency, they seem to be rather independent from the satellite’s position.
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5. Non-gravitational forces

5.1. Introduction

The non-gravitational forces acting on the satellites are significantly smaller than the major gravitational ones.

Depending on the orbit height, either the solar radiation pressure (as for high orbiting GPS satellites) or the

atmospheric drag and earth albedo (as for low orbiting satellites) have significant influence on the forces acting

on the satellites. As the GRACE satellites are low orbiting satellites, we expect dominant influence of the

atmospheric drag, followed by the earth albedo and the solar radiation pressure.

We did not investigate the effects of anisotropic thermal emission, the recoil from the radiowave beams used for

the data downlink, electrostatic effects and others that are considered negligible.

The main emphasis was put on the analysis of different air drag models, as the air drag is the dominant non-

gravitational force. A general idea was to assess if the accelerometer measurements can be replaced by model

outputs.

In the following sections we will first present a macro model of the GRACE satellites, that is a prerequisite for

all force models, and then present the individual models.

5.2. Macro-model of the GRACE satellites

Figure 5.1 shows an engineering drawing of the view from the front and figure 5.2 shows the view from the side

of a GRACE satellite.

Boom

Starboard inner

Starboard outer

Top

Bottom

Port outer

Port inner

Figure 5.1: Engineering drawing of the front of a GRACE satellite. Image from Bettadpur (2007).

Table 5.2 shows the properties of the individual surface elements of the used macro-model of the GRACE satel-

lites. The surface element location, area, normal vector in the SRF, the coefficients describing the interaction

with visible light and infra-red radiation and the type of material is given.
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Front Rear

Top

Bottom

Figure 5.2: Engineering drawing of the side of a GRACE satellite. Image from Bettadpur (2007).

Table 5.1: Parameters of the surface model of the GRACE satellites from Bettadpur (2007).

# location A[m2] n̂ Cs Cd Cir
s Cir

d material

1 Front 0.96




+1.00

+0.00

+0.00



 0.40 0.26 0.23 0.15 SiOx/Kapton

2 Rear 0.96




−1.00

+0.00

+0.00



 0.40 0.26 0.23 0.15 SiOx/Kapton

3 Starboard (outer) 3.16




+0.00

+0.77

−0.64



 0.05 0.30 0.03 0.16 Si Glass Solar Array

4 Starboard (inner) 0.23




+0.00

−0.77

+0.64



 0.40 0.26 0.23 0.15 SiOx/Kapton

5 Port (outer) 3.16




+0.00

−0.77

−0.64



 0.05 0.30 0.03 0.16 Si Glass Solar Array

6 Port (inner) 0.23




+0.00

+0.77

+0.64



 0.40 0.26 0.23 0.15 SiOx/Kapton

7 Nadir 6.07




+0.00

+0.00

+1.00



 0.68 0.20 0.19 0.06 Teflon

8 Zenith 2.17




+0.00

+0.00

−1.00



 0.05 0.30 0.03 0.16 Si Glass Solar Array

9 Boom 0.05
only for forces in

x and y direction
0.40 0.26 0.23 0.15 SiOx/Kapton
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5.3. Air drag

5.3.1. Introduction

Air drag is the force acting on the surface of a body caused by interaction with the surrounding gas mixture

consisting of one or more atomic or molecular species.

Both GRACE satellites are Low Earth Orbiters (LEOs) at an altitude of less than 500 km above the Earth’s

surface. In this case air drag is the major non-gravitational force acting on the satellites, cf. Klinkrad and

Fritsche (1998).

As both GRACE satellites are identical, the analysis is confined to one satellite, it is assumed that the results

are applicable to the other one as well. The potential effect of the leading satellite shielding the following one

is not investigated.

As a general formula we give according to e.g. Sagirov (1970):

Fdrag =
1

2
ρ V 2 A C, (5.1)

where

Fdrag is the air drag force vector,

A is the area of the surface,

C is the ballistic coefficient vector,

ρ is the density of the ambient air,

V is the magnitude of the velocity of the satellite relative to the atmosphere.

Figure 5.3: Depiction of the decomposition of the air drag force into a component dFp in opposite direction of the surface normal,

n̂ and a component dF t in the opposite direction of the tangent, t̂. The angle between the surface normal and the relative velocity

is φ, the angle between the relative velocity and the surface tangent is θ. It is also common to split up the force into a component

dFD in opposite direction of the relative velocity V and a component dFL perpendicular to V . The corresponding unit vectors

ûD and ûL have the opposite direction as the components of the acting force.

The ballistic coefficient vector C reflects the properties of the interaction of the incoming molecules with the

surface. It is the sum of two vectorial components defined either in the {pressure,shear} system with the unit

vectors {n̂, t̂} or in the system {drag,lift} defined by the unit vectors {ûD, ûL}:
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C = −(CD · ûD + CL · ûL) (5.2)

and
C = −(Cn · n̂ + Ct · t̂). (5.3)

The unit vectors for the decomposition of the forces are given as:

ûD =
V

V
= V̂, (5.4)

ûL =
n̂ − ûD · cos φ

sinφ
, (5.5)

t̂ = n̂ × (V̂ × n̂)

sin φ
, (5.6)

where

V̂ is the unit vector of the relative velocity,

n̂ is the surface normal unit vector,

t̂ is the surface tangent unit vector,

φ is the angle between the vector of relative velocity and the surface normal.

The different ballistic coefficients can be transformed from one system to the other by the following formulas:
(

CD

CL

)
=

(
cos(−φ) sin(−φ)

− sin(−φ) cos(−φ)

)
·
(

1 0

0 −1

)
·
(

Cn

Ct

)

=

(
Cn · cos φ + Ct · sin φ

Cn · sinφ − Ct · cos φ

)
, (5.7)

(
Cn

Ct

)
=

(
1 0

0 −1

)
·
(

cos(φ) sin(φ)

− sin(φ) cos(φ)

)
·
(

CD

CL

)

=

(
CD · cos φ + CL · sinφ

CD · sinφ − CL · cos φ

)
. (5.8)

Also by definition we get:

C =
Fdrag

1
2

ρ V 2 A
. (5.9)

The ballistic coefficients are thus just a scaling for the dynamic pressure 1
2 ρ V 2, that is well known from

Bernoulli’s equation.

As a first conclusion we see that the magnitude of the air drag depends on:

1. the density of the ambient air,

2. the velocity of the satellite with respect to the atmosphere,

3. the area of the surface,

4. and the ballistic coefficient vector.

In the following sections we give a detailed derivation of the involved quantities, except the area of the surface,

which does not need explanation.

5.3.2. Air density models

Air density models deliver the number densities of different atmospheric species as well as the ambient air

temperature. As an example for an air density model, MSIS 86 is briefly introduced.
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MSIS86

The Mass Spectrometer Incoherent Scatter Model 1986 (MSIS86) is an improved version of MSIS83 and is

described in Hedin (1987). Special emphasis is put on the representation of the morphology of the polar regions

under both quiet and disturbed magnetic conditions. MSIS86 computes the density of H , He, O, N2, O2, Ar

and N from the following quantities:

• time,

• altitude,

• longitude and latitude,

• solar flux (F107A and F107),

• geomagnetic activity (three hour AP-values.)

The data used for this model is derived from various satellites and also includes data from rocket probes and

ground stations.

Table 5.2: Relative density of the different atmospheric species delivered by MSIS86 at 500 km height.

Atmospheric species relative density [%]

H < 5%

He < 25%

O > 75%

N2 < 25%

O2 < 5%

Ar < 5%

N < 5%

The total air density at the height of GRACE is at a level of 0.2 to 1.4·10−12 kgm−3, which is very low compared

to the density at sea level of about 1 kgm−3. There is a seasonal as well as a daily period, as shown in figure 5.4

for the daily period and figure 5.5 for the seasonal period. It is interesting that the bulge of maximum density

arrives at about 14h local time, i.e. about two hours after noon. The temperature at satellite height varies

between 700 and 1300◦K, cf. figure 5.6. The relative densities of the different constituents are given in table

5.2. We notice that by far the most important contributor is atomic oxygen, followed by helium and nitrogen.

The contribution of each of the other atmospheric constituents to the total mass density is below 5 % for all

local times and seasons.

5.3.3. Velocity of the satellite relative to the atmosphere

The velocity of the satellite with respect to the atmosphere is defined by (cf. Gerstl (1998)):

V = Vsat − Vatmos = Vsat − (ω× xsat + Vwind), (5.10)

where

Vsat is the velocity of the satellite,

Vatmos is the velocity of the atmosphere,

ω is the vector of the angular velocity of the earth,

xsat is the position of the satellite,

Vwind is the wind vector.
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Figure 5.4: Total air mass density over one day at 500 km height at three hour intervals for 1st of January.
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Figure 5.5: Total air mass density over one year at 500 km height at 90 day intervals for 0 h local solar time.
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Figure 5.6: Ambient air temperature at 500 km height for 1st of January.
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The expression for the velocity of the atmosphere can be split up into two parts. The first arises from the

assumption that the atmosphere rotates with the Earth. The rotation velocity reaches its maximum at the

equator and decreases towards the polar regions. The second part takes into account that, in addition to this

rotation, there are also winds in the thermosphere. A common wind model is the Horizontal Wind Model 1993

(HWM93) described in Hedin et al. (1988), Hedin et al. (1991) and Hedin et al. (1996). HWM93 is an empirical

model. Data used for this model stem from Dynamics Explorer 2 and Atmosphere Explorer E as well as from

terrestrial data from incoherent scatter radar and Fabry-Perot optical interferometers.

HWM93 describes the wind vector field by a spherical harmonic expansion of two vector fields: an irrotational

field and an solenoidal field. Hence four coefficients are needed for each harmonic degree and order. Using these

coefficients, amplitude and phase of the meridional and zonal winds can be computed. Formulas are given in

the appendix of Hedin et al. (1988).

HWM93 computes the meridional (N-S) and the zonal (E-W) wind-speed from the same quantities as the air

density is derived from.

Vertical wind speed, which is generally less than 1 cm/s, see ESA (2000), can be neglected. The horizontal

winds show a strong daily variation but almost no seasonal variation. At the height of GRACE, the horizontal

wind speed can reach up to 300 m/s, cf. fig 5.7. The main effects take place at polar regions.

5.3.4. Force models for the derivation of the drag coefficient

Introduction

Before a force model is derived, some assumptions about the kind of flow regime the satellite encounters have

to be made. A characteristic quantity for separating the different kinds of flow regimes is the Knudsen number:

K =
λ

L
, (5.11)

where λ is the mean free molecular path and L is the characteristic length of the considered body. The

mean free molecular path is a measure of the path a molecule can travel after reflection without colliding with

other molecules. If K ≫ 1, the theory of free molecular flow is applicable. The GRACE orbit height fulfills

the conditions for the free molecular flow, cf. Koppenwallner (1988). In the free molecular flow regime the

molecular character of the air is pronounced. Additionally we make the following assumptions:

• There are no multiple reflections,

• the velocity of the satellite relative to the atmosphere molecules is V.

Interaction of a molecule with a surface element

Figure 5.8 shows the basic situation of all described force models: the impact of a molecule on a surface element

of the satellite. The molecule’s velocity is V, the relative velocity of the satellite with regard to the atmosphere.

There are two types of reflection which describe the extreme possibilities of the action after the impact. We have

diffuse reflection if the atmospheric molecule accommodates on the surface of the satellite and its kinetic energy

is transformed into heat until the residual kinetic energy equals the energy it would have at the temperature

of the surface element. The atmospheric molecule is then re-emitted in an arbitrary direction with a velocity

corresponding to the temperature of the surface element. In case of diffuse reflection, the force exerted on the

surface element has a component in the opposite direction of the surface normal (pressure) and in direction of

the surface tangent (shear). If no energy is transformed into heat, we have specular reflection, i.e. the tangential
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Figure 5.7: Meridional and zonal wind speed computed from HWM93 over one day at 500 km height
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Figure 5.8: Interaction of a molecule with a surface element. In the first row the decomposition of the force is depicted, in the

second row the case of specular reflection is displayed, in the third row the case of diffuse reflection is shown.

component of the velocity of the molecule remains unchanged, the normal component changes its sign as the

impacting molecule is instantly reflected at the surface element molecules. In case of specular reflection the

exerted force acts only in the opposite direction of the surface element normal.

Basic force model

For the most simplified and also most common force model it is assumed that the incoming particles are reflected

mainly diffusely. The force is split up into the direction of the relative velocity and perpendicular to it (drag

and lift), but it is assumed that the lift is zero. Furthermore it is assumed that the ballistic coefficient has a

fixed value and that for all molecules the relative velocity is V:

FSat =
1

2
ρV 2AC, (5.12)

C = −2.2 · cos φ · V̂. (5.13)

This very simple force model may not be sufficient to model all occurring effects, thus more complex models

are derived in the following subsections.
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Standard two parameter force model

In this subsection we derive a standard force model for both extreme possibilities of interaction of the incoming

molecule with the surface element:

• The molecule is reflected specularly or

• the molecule is reflected diffusely.

The derivation is based on Newton’s second law:

∆F =
∆p

∆t
(5.14)

and Newton’s third law

F = −F
′
. (5.15)

The first case is depicted in figure 5.9. For practical reasons the collision is split up into two parts: impact and

Figure 5.9: Specular reflection

reflection, i.e. we will derive the change of impulse from after the impact to before the impact and from after

the reflection to before the reflection:

∆pi = pai − pbi, (5.16)

∆pr = par − pbr, (5.17)

∆p = ∆pi + ∆pr. (5.18)

We get:

pbi =

(
−V · cos φ

−V · sin φ

)
m, (5.19)

pai =

(
0

0

)
m, (5.20)

=⇒ ∆pi =

(
+V · cos φ

+V · sin φ

)
m (5.21)
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and

pbr =

(
0

0

)
m, (5.22)

par =

(
+V · cos φ

−V · sin φ

)
m, (5.23)

=⇒ ∆pr =

(
+V · cos φ

−V · sin φ

)
m, (5.24)

which leads to

∆p =

(
+V · cos φ

+V · sin φ

)
m +

(
+V · cos φ

−V · sinφ

)
m, (5.25)

=

(
+2V · cos φ

0

)
m, (5.26)

with

V magnitude of the relative velocity vector,

φ angle between the relative velocity and the surface normal,

≡ angle of incidence,

m mass of the incoming molecule.

Equation (5.26) gives us the impulse change of one particle. To derive the total force, we first have to know

how many particles hit the satellite per unit time and per unit area. This number is given by:

Ninc = Nvol · V cos φ, (5.27)

with

Ninc the number of incoming molecules [ 1
s·m2 ],

Nvol the number of molecules per cubic meter [ 1
m3 ],

Nvol is given by the air density model.

As

∆F =
∆p

∆t
, (5.28)

we get for the total force exerted on the molecules:

∆F = +

(
2V · cos φ

0

)
m · Ninc · A (5.29)

= +

(
2V · cos φ

0

)
m · Nvol · V cos φ · A (5.30)

= +

(
2

0

)
(V · cos φ)2 · ρ · A, (5.31)
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with ρ the mass density of the incoming molecule species. The satellite exerts this force on the molecules.

According to Newton’s third law, the force on the satellite is the same as on the molecules but with opposite

sign:

∆Fsat = −
(

2

0

)
(V · cos φ)2 · ρ · A. (5.32)

For the vector C we get, if we use definition (5.3):

C = −4 · (cos φ)2 · n̂ + 0 · t̂. (5.33)

So for specular reflection the ballistic coefficients have a maximal value of 4, which is much higher than the

standard value of 2.2. It is to be noted that for this model no force in direction of the tangent is exerted, but

only in direction of the surface normal.

The second case of diffuse reflection is depicted in figure 5.10. We get:

Figure 5.10: Diffuse reflection

pbi =

(
−V · cos φ

−V · sin φ

)
m, (5.34)

pai =

(
0

0

)
m, (5.35)

=⇒ ∆pi =

(
V · cos φ

V · sin φ

)
m (5.36)

and

pbr =

(
0

0

)
m, (5.37)

par =

(
Vr

0

)
m, (5.38)

=⇒ ∆pr =

(
Vr

0

)
m, (5.39)
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which leads to

∆p =

(
V · cos φ

V · sin φ

)
m +

(
Vr

0

)
m (5.40)

=

(
V · cos φ + Vr

V · sin φ

)
m. (5.41)

For the force on the molecules we get:

∆F =

(
V · cos φ + Vr

V · sin φ

)
V cos φ · ρ · A (5.42)

and for the force on the satellite:

∆Fsat = −
(

(cos φ)2 + Vr
V

· cos φ

sinφ · cos φ

)
V 2 · ρ · A. (5.43)

This leads to a C:

C = −2 ·
[(

(cos φ)2 +
Vr

V
· cos φ

)
· n̂ + (sinφ · cos φ) · t̂

]
. (5.44)

We note that the ballistic coefficients in case of diffuse reflection are smaller than in case of specular reflection.

In direction of the surface normal, the maximal value is four, however the ratio Vr

V is smaller than one if one

assumes realistic values for the temperature of the reflected stream. In direction of the tangent, the maximal

value is one for φ = 45◦ because of the cosφ · sin φ term. In contrast to the case of specular reflection the force

has also a component in the direction of the surface tangent.

These two extreme possibilities of reflection do not reflect reality. In reality, the reflection is partly specular

and partly diffuse. Let us now assume that a part (1 − σ) is reflected specularly and that a part σ is reflected

diffusely. σ is the accommodation coefficient and describes which part of the incoming particles takes part in

an energy exchange with the struck surface. We then get:

∆Fsat = −
[
(1 − σ)

(
2(cos φ)2

0

)
(5.45)

+ σ

(
(cos φ)2 + Vr

V
· cos φ

sin φ · cos φ

)]
V 2 · ρ · A, (5.46)

= −
[
(2 − σ)

(
(cos φ)2

0

)
+ σ

( Vr
V

· cos φ

sin φ · cos φ

)]
V 2 · ρ · A (5.47)

and

C = −2 ·
[(

(2 − σ)(cos φ)2 + σ
Vr

V
· cos φ

)
· n̂ + σ (sinφ · cos φ) · t̂

]
. (5.48)
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If we assume that there is a separate accommodation coefficient for the normal and the tangential energy

exchange, we get:

C = −2 ·
[(

(2 − σn)(cos φ)2 + σn
Vr

V
· cos φ

)
· n̂ + σt (sinφ · cos φ) · t̂

]
. (5.49)

This is identical to the formulation given in Mazanek et al. (2000). The given formulation does still not

take into account that the incoming molecules have, in addition to the macroscopic velocity V, a microscopic

velocity u. This velocity is different for each molecule, but the distribution is according to a Maxwell-Boltzmann

distribution:

f(u) =
ρ

mπ
3
2 ṽ3

exp

(
−mu2

2kT

)
, (5.50)

with

m molecule mass,

ṽ most probable velocity in the distribution,

k Boltzmann constant,

T ambient air temperature.

The velocity of the molecules relative to the surface element is then

w = V + u (5.51)

and

u = w − V. (5.52)

So the distribution function becomes:

f(w,V) =
ρ

mπ
3
2 ṽ3

exp

(
−m(w − V)2

2kT

)
(5.53)

=
ρ

mπ
3
2 ṽ3

exp

(
−w2 − V

2
+ 2 · w · V

ṽ2

)
(5.54)

=
ρ

mπ
3
2 ṽ3

exp

(
−w2

ṽ2

)
(5.55)

· exp
(
−S2

)
· exp

(
2

S

ṽ
· (wx cos φ + wy sinφ)

)
, (5.56)

with S the molecular speed ratio: S = V
ṽ , ṽ =

√
2kT
m and V =




V · cosφ

V · sin φ

0



.

The number of incoming particles is now given by:

Ninc =

∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · fdwx. (5.57)
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It is clear that only molecules that have a positive velocity component wx can hit the surface and only those

have to be accounted for. The force due to the incoming molecules in direction of the surface normal is then

given by:

dFi,n = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · wx · fdwx · A · m · n̂ (5.58)

= −ρV 2A

[
1

2
√

πS2
Π(S cos φ)

]
· n̂, (5.59)

where

Π(S cos φ) = S cos φ exp(−S cos φ2) +
√

π
(
0.5 + S cos φ2

)
[1 + erf(S cos φ)] (5.60)

is the pressure function. Note that as ρ is the total mass density the pressure function is a measure for that

fraction of the total number of molecules in a unit volume that hit the surface and have a velocity component

in direction of the surface normal. For the force in the direction of the tangent we get:

dFi,t = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wy · wx · fdwx · A · m · t̂ (5.61)

= −ρV 2A

[
S sin φ

2
√

πS2
χ(S cos φ)

]
· t̂, (5.62)

χ(S cos φ) = exp(−S cos φ2) +
√

π S cos φ [1 + erf(S cos φ)] (5.63)

is the particle flow function. Similarly to the pressure function, the particle flow function is a measure for the

fraction of the molecules that hit the surface and have a velocity component in direction of the surface tangent.

For the reflected molecules in case of specular reflection we get:

dFr,spec,n = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · wx · fdwx · A · m · n̂ (5.64)

= −ρV 2A

[
1

2
√

πS2
Π(S cos φ)

]
· n̂ (5.65)

and for the force in direction of the tangent:

dFr,spec,t = +

∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wy · wx · fdwx · A · m · t̂ (5.66)

= +ρV 2A

[
S sin φ

2
√

πS2
χ(S cos φ)

]
· t̂. (5.67)
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In the case of diffuse reflection we get:

dFr,diff,n = −
∫ +∞

−∞
dwz

∫ +∞

−∞
dwy

∫ +∞

0
wx · fdwx · Vr

V
· A · m · n̂ (5.68)

= −ρV 2A

[
S

2
√

πS2
· Vr

V
χ(S cos φ)

]
· n̂ (5.69)

and for the force in direction of the tangent:

dFr,diff,t = 0. (5.70)

In the case of diffuse reflection it is assumed that all reflected molecules have the same velocity Vr, the distribu-

tion function f is only required to get the number of the incoming molecules, which is the same as the number

of reflected molecules. Vr is identical to the most probable velocity in the Maxwellian velocity distribution. The

tangential force for diffusely reflected molecules is zero because in the sum the individual tangential effects of

the reflected molecules cancel themselves. If we again assume that a fraction of the particles is reflected diffusely

and the complement is reflected specularly, we get:

∆Fsat = −
{[(

(2 − σ)

2
√

πS2
Π(S cos φ)

)
+

σS

2
√

πS2
· Vr

V
· χ(S cos φ)

]
n̂ (5.71)

+

[
σS sinφ

2
√

πS2
· χ(S cos φ)

]
t̂

}
V 2 · ρ · A. (5.72)

Again assuming normal and tangential accommodation coefficients and knowing that

Vr

V
=

√
π

2S

√
Tw

T
, (5.73)

we get:

∆Fsat = −
{[(

(2 − σn)

2
√

πS2
Π(S cos φ)

)
+

σn

2S2
· 1

2

√
Tw

T
· χ(S cos φ)

]
n̂

+

[
σtS sinφ

2
√

πS2
· χ(S cos φ)

]
t̂

}
V 2 · ρ · A. (5.74)

So far the equations assumed only one atmospheric species and one surface element. From now on the notation

will take into account that there are several atmospheric constituents and surface elements. For the atmospheric

constituent i and the surface element k the total force is given by:

∆F
(i,k)
sat = −









(

(2 − σ
(i,k)
n )

2
√

πS2
(i)

Π(S(i) cos φ(k))

)
+

σ
(i,k)
n

2S2
(i)

· 1

2

√
T

(k)
w

T
· χ(S(i) cos φ(k))



 n̂(k)

+

[
σ

(k)
t S(i) sin φ(k)

2
√

πS2
(i)

· χ(S(i) cos φ(k))

]
t̂(k)

}
V 2 · ρ(i) · A(k). (5.75)
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For the vector of ballistic coefficients we find:

C
(i,k)

= −
(
C

(i,k)
n · n̂(k) + C

(i,k)
t · t̂(k)

)
, (5.76)

C
(i,k)
n = 2




(

(2 − σ
(i,k)
n )

2
√

πS2
(i)

Π(S(i) cos φ(k))

)
+

σ
(i,k)
n

2S2
(i)

· 1

2

√
T

(k)
w

T
· χ(S(i) cos φ(k))



 , (5.77)

C
(i,k)
t = 2

[
σ

(i,k)
t S(i) sin φ(k)

2
√

πS2
(i)

· χ(S(i) cos φ(k))

]
, (5.78)

which is identical to the formulation given in Schaaf and Chambre (1961).

Alternative two parameter force model

Another alternative is to decompose the force into the directions of the relative velocity and the surface normal.

We start from equation (5.74).

Let

t̂(k) sin φ(k) = V̂ − n̂(k) cos φ(k), (5.79)

S
(i,k)
n = S(i) cos φ(k), (5.80)

then

∆F
(i,k)
sat = −A(k) ρ(i)V 2

2








 2 − σ
(i,k)
n√

πS2
(i)

Π(S
(i,k)
n ) +

σ
(i,k)
n

2S2
(i)

√
T

(k)
w

T
χ(S

(i,k)
n )

− σ
(i,k)
t cos φ(k)

S(i)
√

π
χ(S

(i,k)
n )

]
n̂(k)

+

[
σt

(k)

S(i)
√

π
χ(S

(i,k)
n )

]
V̂

}
. (5.81)

Let

Γ1(S
(i,k)
n ) =

1

2
√

π

[
χ(S

(i,k)
n )

]
, (5.82)

Γ2(S
(i,k)
n ) =

1

2
√

π

[
Π(S

(i,k)
n )

]
, (5.83)

then

∆F
(i,k)
sat = −A(k) ρ(i)V 2








 2 − σ
(i,k)
n

S2
(i)

Γ2(S
(i,k)
n ) +

σ
(i,k)
n

2S2
(i)

√
T

(k)
w

T

√
π Γ1(S

(i,k)
n ) (5.84)

− σ
(i,k)
t cos φ(k)

S(i)
Γ1(S

(i,k)
n )

]
n̂(k) +

[
σ

(k)
t

S(i)
Γ1(S

(i,k)
n )

]
V̂

}
.
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Let

V
(i,k)
r

V
=

√
π

2

√
T

(k)
w

T

1

S(i)
, (5.85)

⇒

√
T

(k)
w

T
=

V
(i,k)
r

V

2√
π

S(i), (5.86)

then

∆F
(i,k)
sat = −A(k) ρ(i)V 2

{[
2 − σ

(i,k)
n

S2
(i)

Γ2(S
(i,k)
n ) +

σ
(i,k)
n

S(i)

V
(i,k)
r

V
Γ1(S

(i,k)
n )

− σ
(i,k)
t cos φ(k)

S(i)
Γ1(S

(i,k)
n )

]
n̂(k) +

[
σ

(i,k)
t

S(i)
Γ1(S

(i,k)
n )

]
V̂

}
. (5.87)

Equation (5.87) is identical to the formulation of the force due to air drag in Thalhammer (1989). In contrast

to the previous formulation the force is not split up into perpendicular components:

∆F
(i,k)
sat =

1

2
ρ(i)V 2 A(k) C

(i,k)
, (5.88)

where

C
(i,k)

= −
(
C

(i,k)
n n̂(k) + C

(i,k)
D V̂

)
, (5.89)

C
(i,k)
n = 2

[
2 − σ

(i,k)
n

S2
(i)

Γ2(S
(i,k)
n ) +

σ
(i,k)
n

S(i)

V
(i,k)
r

V
Γ1(S

(i,k)
n ) − σ

(i,k)
t cos φ(k)

S(i)
Γ1(S

(i,k)
n )

]
, (5.90)

C
(i,k)
D = 2

[
σ

(i,k)
t

S(i)
Γ1(S

(i,k)
n )

]
. (5.91)

Force model using only one accommodation coefficient

A more simplified form of the force model can be derived if it is assumed that the normal and tangential

accommodation coefficients are equal. We start again from equation (5.74).

Then, with

σ
(i,k)
n = σ

(i,k)
t = σ(i,k), (5.92)
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we find

∆F
(i,k)
sat = −A(k) ρ(i)V 2

2S2
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

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√
π

S
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t χ(S

(i,k)
n )

]
t̂(k)

}
. (5.93)

Now the acting force is decomposed into a part due to diffuse reflection and a part due to specular reflection.

We derive:

∆F
(i,k)
sat =

1

2
ρ(i)V 2 A(k)C

(i,k)
, (5.94)

C
(i,k)

= −
[
σ(i,k) C

(i,k)
d + (1 − σ(i,k)) C

(i,k)
s

]
, (5.95)

C
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(i)








 1√
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}
, (5.96)

C
(i,k)
s =

1

S2
(i)

{[
2√
π

Π(S
(i,k)
n )

]
n̂(k)

}
, (5.97)

which is identical to Klinkrad and Fritsche (1998).

Force model using the thermal accommodation coefficient

The following force model is based on a slightly different concept. To describe the interaction of the incoming

molecules and the surface element, only the thermal accommodation coefficient α is used:

α =
Ei − Er

Ei − Ew
=

Ti − Tr

Ti − Tw
. (5.98)

It is defined as the ratio between the amount of energy that has actually been exchanged between the surface

element and the incoming molecule and the amount of energy that could have been exchanged if perfect accom-

modation occurred (Tw is the wall temperature). For perfect accommodation, α = 1, all incoming molecules

are reflected diffusely; for the case of vanishing energy exchange, α = 0, all molecules are reflected specularly.

According to Gerstl (1998) the thermal accommodation coefficient α can be described in dependence of the

mass of the incoming molecule species and the mass of the surface element molecules:

α(i,k) =
4mimk

(mi + mk)2
, (5.99)

with

mk mass of the molecules of surface element k,

mi mass of the atmospheric constituent i impacting on surface element k.
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Figure 5.11: One parameter accommodation model. Diffuse reflection is assumed. The incoming molecule is reflected within a cone

of certain aperture. Depicted are the angle θ
(i,k)
I , the cone angle ν

(i,k)
r and the angle between the cone and the surface element

θ
(i,k)
R .

A molecule that hits the surface element k under an angle θ
(k)
I , that is defined as the angle between the relative

velocity and the surface tangent, is reflected diffusely inside a cone with a cone angle of ν
(i,k)
r . The angle between

the axis of the cone and the surface element is θ
(i,k)
R (see figure 5.11). It is

cos θ
(i,k)
R =

(
cos θ

(k)
I

)1/(1−α(i,k))
2

, (5.100)

ν
(i,k)
R ≈ cos(0.535185 arcsin αik). (5.101)

We get for the drag coefficient C
(i,k)
D :

C
(i,k)
D = 2

(
1 −

√
1 − α(i,k) ν

(i,k)
R cos(θ

(k)
I + θ

(i,k)
R )

)
. (5.102)

For the lift coefficient C
(i,k)
L we get:

C
(i,k)
L = 2

(√
1 − α(i,k) ν

(i,k)
R sin(θ

(k)
I + θ

(i,k)
R )

)
. (5.103)

Finally, we derive for the total force due to drag and lift ∆F
(i,k)

sat :

∆F
(i,k)
sat =

1

2
ρ(i) V 2A(k) · C(i,k)

, (5.104)

with

C
(i,k)

= −
(
C

(i,k)
D · ûD + C

(i,k)
L · ûL

)
. (5.105)
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Empirical model

The model formulation from Mazanek et al. (2000) has been derived before, we just repeat it for completeness:

∆F
(i,k)
sat =

1

2
ρ(i)V 2A(k)C

(i,k)
, (5.106)

C
(i,k)

= −
(

C
(i,k)
n n̂(k) + C

(i,k)
t t̂(k)

)
, (5.107)

C
(i,k)
n = 2

[
(2 − σ

(i,k)
n ) cos2 φ(k) + σ

(i,k)
n

V
(i,k)
r

V
cos φ(k)

]
, (5.108)

C
(i,k)
t = 2

[
σ

(i,k)
t cos φ(k) sinφ(k)

]
, (5.109)

where

σ
(i,k)
n = an − bn exp(−cnE(i) cos2 φ(k)), (5.110)

σ
(i,k)
t = at − bt exp(−ctE

(i) sin
3
4 φ(k)), (5.111)

with

an, bn, cn normal accommodation curve fit parameters -

nominally 1.0, 0.9, 0.28,

at, bt, ct tangential accommodation curve fit parameters -

nominally 1.67, 1.67, 0.147,

E(i) collision activation energy in [eV].

The collision activation energy is given by

E(i) =
1

2
m(i)V 2, (5.112)

where m(i) is the mass of the incoming particle species in [kg]. Equation (5.112) gives the energy in [J], to

get it in [eV] as required, the result has to be scaled by 1.6 · 10−19. The speciality of this model is that in

contrast to, e.g., the standard two parameter force model the numerical values for the normal and tangential

accommodation coefficients can be estimated and have not to be guessed.

Model comparison and discussion

We have derived now a series of drag models with different levels of sophistication and based on different

assumptions. Let us now compare them. The basic force model shall be denoted as simple model. The model

using the thermal accommodation coefficient from Gerstl (1998) shall be denoted model G, the model from

Schaaf and Chambre (1961) shall be denoted model S&C, the model from Thalhammer (1989) shall be denoted

model T, the model from Klinkrad and Fritsche (1998) shall be denoted model K and finally the model from

Mazanek et al. (2000) shall be denoted model M.
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Table 5.3: Different force models for air drag derivation.

model input quantities unknown inputs force split up velocity equations

distribution

simple V, A, ρ none drag and lift no (5.13)

G mi, V, mk , n̂, A, ρ none drag and lift no (5.102):(5.105)

S & C mi, V, n̂, A, ρ, σn, σt, Tw σn, σt, Tw pressure and shear yes (5.71):(5.78)

T mi, V, n̂, A, ρ, σn, σt, Tw σn, σt, Tw drag and pressure yes (5.87)

K mi, V, n̂, A, ρ, σ, Tw σ, Tw pressure and shear yes (5.94):(5.97)

M V, n̂, A, ρ, E, Tw Tw pressure and shear no (5.106):(5.109)

The derived models can be divided into three groups:

1. Models that require no unknown inputs like the simple model and model G,

2. analytical models like S & C, T and K that represent the standard two, respectively one parameter

accommodation models; they can be transformed into each other analytically and require the surface

reflection coefficients and the surface temperature as an input,

3. experimental models like model M that derives the surface reflection coefficients from experimental data.

It requires the surface temperature as input.

The comparison will be done in terms of the vector of ballistic coefficients. We will use the decomposition of

forces in the direction of the relative velocity and perpendicular to it, meaning drag and lift. The simple force

model introduced in the first place will also be included in the comparison. However as it assumes fixed values

for CD and CL, only differences to the other models will be shown. For the results presented here, T = 1100◦ K

and ρ = 10−12 kg/m3 was used.

Derivation of the surface temperature Tw

The derivation of the surface temperature is complicated as the GRACE satellites are not rotating but kept in

a nominal attitude, i.e. it is very likely that there will be temperature gradients. In this study this effect is

neglected. For the results in this subsection Tw = 450◦K will be used.

Derivation of the normal and tangential accommodation coefficients

For the models S & C, T and K the numerical values of the accommodation coefficients need to be defined.

In order to make the results comparable to the other models, the definition of the thermal accommodation

coefficient from model G is used. The normal and tangential accommodation coefficient are set equal to the

derived thermal accommodation coefficient for each atmospheric species.

Model G

Apart from the ’standard’ inputs, which are relative velocity, outward surface normal and density, model

G requires the atomic masses of the atmospheric molecules and the surface element material. These two

quantities m(i) and m(k) are then used to derive the thermal accommodation coefficient αik. Typically 7 types

of atmospheric constituents are considered: H , He, O, N2, O2, Ar and N . Atomic oxygen accounts for more

than 75 % of the constituents, followed by helium and nitrogen, that each contribute more than 20 %, see

table (5.2). Helium is a rather light species, its atomic mass is 4u, atomic oxygen and nitrogen are rather

heavy species with a mass of 16u and 28u per molecule. The GRACE surface elements consist of three different

kinds of materials: aluminium (front and rear), silicon dioxide (side panels and top) and teflon (bottom).
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Figure 5.12: Thermal accommodation coefficient αik depending on the surface type and the incoming molecule type.

Figure 5.12 shows the thermal accommodation coefficient for the three different kinds of surfaces and for all

atmospheric constituents in the order of their relative atomic mass. One notices that except for H , He and

Ar the accommodation coefficient has a value above 0.9 for all surfaces, i.e. the incoming molecules are mainly

reflected diffusely. For H the value of the accommodation coefficient is around 0.2, i.e. the incoming molecules

are mainly reflected specularly. For He the value of the accommodation coefficient is around 0.5-0.6, i.e. the

incoming molecules are reflected specularly and diffusely in equal parts. The next quantities that are derived

are the angle between the axis of the reflection cone and the surface element θ
(i,k)
R (shown on the left panel of

figure 5.13) and the cone angle ν
(i,k)
r (shown on the right panel of figure 5.13). Concerning θ

(i,k)
R it can be stated

that for an angle of incidence of 90◦ the value is zero regardless of the considered atmospheric constituent. For

angles of incidence between 0◦ and 90◦, θ
(i,k)
R varies depending the atmospheric constituents: Except for H

and He, θ
(i,k)
R is mostly 90◦, i.e. we have diffuse reflection. For these two atmospheric constituents θ

(i,k)
R is

proportional to the angle of incidence φ(k), as for them specular reflection is applicable. The cone angle ν
(i,k)
r

varies between 42◦ and 57◦, taking on its largest value for H (specular reflection) and its lowest value for O

(diffuse reflection). Based on these values CD and CL are derived, cf. figure 5.14.
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Figure 5.13: Left panel: Angle between the surface element and the reflection cone θ
(i,k)
R depending on the atmospheric constituents

and the angle of incidence φ(k). Right panel: Cone angle ν
(i,k)
r depending on the atmospheric constituents.
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Figure 5.14: Left panel: CD from model G, depending on the atmospheric constituent and the angle of incidence φ(k). Right panel:

CL from model G, depending on the atmospheric constituent and the angle of incidence φ(k).

We note that the CD values for H and He (specular reflection) are again proportional to the angle of incidence,

the maximum value being 4.0 for H and an angle of incidence of 90◦. We also note that for the other five

atmospheric constituents (diffuse reflection) the CD value ranges from 2.0 to 2.5, which agrees with the standard

value of 2.2 given e.g. in Sagirov (1970), except for angles of incidence above 80◦. The values of CL for all

angles of incidence are below 0.4 for all atmospheric constituents (diffuse reflection) except H and He (specular

reflection). For H, CL takes on values of up to 1.8 for angles of incidence between 30◦ and 60◦. The values of

H and He depend on the angle of incidence.

Models S & C, T and K
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Figure 5.15: Sn from model S & C, depending on the angle of incidence φ(k) and the atmospheric constituents

As the three models are identical in principle, we only show the results of the model from Schaaf and Chambre

(1961). The first quantity to be derived for these models is the molecular speed ratio Sn scaled by cosφ. It

is defined as the ratio between the magnitude of the relative velocity and the most probable velocity of the

incoming molecules, cf. figure 5.15. We note that Sn is proportional to the square root of the atomic mass of
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the atmospheric constituents and to the cosine of the angle of incidence φ. It takes on values from 0 to 12,

i.e. the satellite is up to 12 times faster than the molecules themselves. Sn is input for the next quantities to

be derived: the pressure function and the particle flow function, depicted in figure 5.16. The pressure function
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Figure 5.16: Left panel: Pressure function Π(S
(i,k)
n ) as a function of the angle of incidence φ(k) and the atmospheric constituents.

Right panel: Particle flow function χ(S
(i,k)
n ) as a function of the angle of incidence φ(k) and the atmospheric constituents

values range from 0 to 450 and show the same behavior as the S
(i,k)
n values: proportionality to the square root

of the atomic mass of the atmospheric constituents and to the cosine of the angle of incidence. The particle flow

function values magnitude is only one tenth of the magnitude of the values of the pressure function, they range

from 0 to 40 and show again the same behavior as S
(i,k)
n . From the pressure function and the particle function
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Figure 5.17: Left panel: C
(i,k)
D of model S & C, as a function of the angle of incidence φ(k) and of the atmospheric constituents.

Left panel: C
(i,k)
L of model S & C, as a function of the angle of incidence φ(k) and of the atmospheric constituents

the values of C
(i,k)
D and C

(i,k)
L can be derived. They are shown in figure 5.17. We note that the C

(i,k)
D vary

again from 0 to 4.0, taking on maximal values for low angles of incidence and for the constituents H and He

(specular reflection). For the remaining atmospheric constituents (diffuse reflection) the values are lower than

2.5 and decrease with increasing angle of incidence in contrast to the behavior of model G. The C
(i,k)
L values

are significantly smaller with a maximal value of 1.8 at 45◦ angle of incidence and decreasing towards 0◦ and

90◦. It is interesting that for the atmospheric constituents that are diffusely reflected (all but H and He), the

values are rather low (below 0.2) and seemingly independent from the angle of incidence.



5 Non-gravitational forces 49

Therefore it can be stated that the lift forces are about 10 % in magnitude of the drag forces. Here model S &

C and model G behave very similar.

Model M
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Figure 5.18: Left panel: σ
(i,k)
n for model M, as a function of the angle of incidence φ(k) and the atmospheric constituents. Right

panel: σ
(i,k)
t for model M, as a function of the angle of incidence φ(k) and the atmospheric constituents

For model M, the normal and tangential accommodation coefficients originally taken from Knechtel and Pitts

(1973) are determined empirically. The tangential accommodation coefficients have been corrected to yield a

C
(i,k)
D value of 2.2 for a spherical satellite.

The left panel of figure 5.18 shows the normal accommodation coefficients. As expected their maximum value

is one. In contrast to the previous models, they show a direct correlation to the angle of incidence and to the

mass of the atmospheric constituent. Only a rather small part of the particles is reflected mainly diffusely.

The right panel of figure 5.18 shows the tangential accommodation coefficients. Their maximum value is not

0 10 20 30 40 50 60 70 80 90
H 1u

He 4u

N 14u

O 16u

N2 28u

O2 32u

Ar 40u

at
m

os
ph

er
ic

 c
on

st
itu

en
t

angle of incidence φ(k)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90
H 1u

He 4u

N 14u

O 16u

N2 28u

O2 32u

Ar 40u

at
m

os
ph

er
ic

 c
on

st
itu

en
t

angle of incidence φ(k)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.19: Left panel: C
(i,k)
D from model M, depending on the angle of incidence φ(k) and the atmospheric constituents. Right

panel: C
(i,k)
L from model M, depending on the angle of incidence φ(k) and the atmospheric constituents

one, as expected, but about 1.4. The reason lies in the correction that was applied to the coefficients. For

the main contributor to the atmospheric drag, O, the values are smaller than one and consequently physically
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meaningful. For the constituents heavier than O, the accommodation coefficient is larger than one and thus no

longer physically meaningful.

The left panel of figure 5.19 shows the derived values for C
(i,k)
D . The maximal values are up to 4.0 again, they

are reached for H and He, similar to the other models. For the diffusely reflected species the C
(i,k)
D value is

smaller than 2.5. It decreases with increasing angle of incidence unlike model G. The right panel of figure 5.19

shows the derived values for C
(i,k)
L . The maximal values are up to 1.6, which is smaller than for model G and for

model S & C. There is no clear separation between the specularly reflected H and He and the other atmospheric

constituents, at least not as pronounced as for the other models.

Model differences
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Figure 5.20: Left panel: Comparison of C
(i,k)
D from model G with C

(i,k)
D from model S & C. Right panel: Comparison of C

(i,k)
D

from model G with C
(i,k)
D from model M.

In order to compare the output of the different models the differences between the C
(i,k)
D and C

(i,k)
L values as a

function of the angle of incidence φ(k) and of the atmospheric constituents are formed. The ballistic coefficients

are just a scaling of the dynamic pressure 1
2ρV 2. For GRACE, V = 7.3 km

s and ρ = 1 · 10−12 kg
m3 is assumed,

therefore the dynamic pressure is about 2.5 · 10−5 N
m2 , or, in terms of acceleration, if we assume a mass of 450

kg, it is about 6 · 10−8 m
s2

1
m2 .

The left panel of figure 5.20 shows the difference in the C
(i,k)
D value between model G and model S & C. We

notice that for angles of incidence up to 50◦, the differences are below 0.4, but start to rise to a level of up to

1.8 for large angles. Only for H the differences remain low, regardless of the angle of incidence. In terms of

acceleration the differences rise up to about 8.4 · 10−8 m
s2

1
m2 . The right panel of figure 5.20 shows the difference

in the C
(i,k)
D value between model G and model M. The differences are very similar to the differences between

model G and model S & C.

The left panel of figure 5.21 shows the difference in the C
(i,k)
L value between model G and model S & C. The

differences are throughout below 0.2 except for some higher differences for He at angles of incidence between

60◦ and 80◦ that amount to a maximum value of 0.8. So in terms of acceleration the differences are in essence

below 2.4 · 10−9 m
s2

1
m2 ; only for He they rise up to 4.8 · 10−8 m

s2
1

m2 . The right panel of the figure shows the

difference between models G and M for the value of C
(i,k)
L . It reaches its maximum of 1 for H at angles of

incidence between 60◦ and 80◦ .

The left panel of figure 5.22 shows the difference in the C
(i,k)
D value between model M and model S & C. The

differences are throughout below 0.2, except for H . At low angles of incidence the differences rise up to 0.8. Also
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Figure 5.21: Left panel: Comparison of C
(i,k)
L from model G with C

(i,k)
L from model S & C. Right panel: Comparison of C

(i,k)
L

from model G with C
(i,k)
L from model M.
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Figure 5.22: Left panel: Comparison of C
(i,k)
D from model S & C with C

(i,k)
D from model M. Right panel: Comparison of C

(i,k)
L

from model S & C with C
(i,k)
L from model M.

for high angles of incidence for N and O, the differences are up to 0.6. The differences in terms of accelerations

amount up to a level of 4.8 · 10−8 m
s2

1
m2 . The right panel of figure 5.22 shows the difference in the C

(i,k)
L value

between model M and model S & C. Maximum differences of up to 0.6 occur for an angle of incidence between

20◦ and 70◦ for N and O and for H for an angle of incidence between 50◦ and 90◦ . The acceleration differences

per unit area are at a level of 4.8 − 6 · 10−8 m
s2

1
m2 .

Conclusions:

• Concerning the C
(i,k)
D values, there are significant differences between model G and model S & C and

between model G and model M, mainly for larger angles of incidence. The differences between model S

& C and model M are much smaller despite the fact that different accommodation coefficients are used.

• Concerning the C
(i,k)
L values, there are again significant differences between model G and model S & C

and model G and model M, mainly for H and He. The differences between model S & C and model M

are smaller but none the less significant, as they reach a level of 4.8 · 10−8 m
s2

1
m2 for O and N .
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Table 5.4: Statistic parameters of the different air drag models.

model σ m/s2 mean m/s2 min m/s2 max m/s2

simple x: +5 · 10−08 x: −1 · 10−07 x: −2 · 10−07 x: −3 · 10−08

y: +3 · 10−10 y: −2 · 10−10 y: −1 · 10−09 y: +7 · 10−10

z: +6 · 10−10 z: +1 · 10−09 z: +3 · 10−10 z: +3 · 10−09

M x: +6 · 10−08 x: −2 · 10−07 x: −3 · 10−07 x: −5 · 10−08

y: +2 · 10−09 y: −3 · 10−10 y: −7 · 10−09 y: +5 · 10−09

z: +7 · 10−10 z: +9 · 10−10 z: −2 · 10−09 z: +6 · 10−09

S & C x: +7 · 10−08 x: −2 · 10−07 x: −4 · 10−07 x: −5 · 10−08

y: +6 · 10−09 y: −9 · 10−10 y: −2 · 10−08 y: +1 · 10−08

z: +5 · 10−09 z: +6 · 10−09 z: −1 · 10−08 z: +2 · 10−08

G x: +6 · 10−08 x: −1 · 10−07 x: −3 · 10−07 x: −4 · 10−08

y: +7 · 10−09 y: −1 · 10−09 y: −2 · 10−08 y: +1 · 10−08

z: +2 · 10−09 z: +2 · 10−09 z: −6 · 10−09 z: +2 · 10−08

In order to evaluate how close each model is to reality, their output together with the output of the other models

for non-conservative forces is compared to the real GRACE accelerometer measurements in section (5.6). In

the following we will also compare the model output in terms of the total force acting on the satellite.

Derivation of the total force on the satellite

The force models presented so far deliver the force per unit area and per particle species. In order to get the

total force on the whole satellite, one has to sum up the effects of the individual molecular species over all

areas. The surface model of the GRACE satellites was presented in section 5.2 and is used now to determine

the individual area. The total force is:

Ftotal =
1

2
ρ(i)V 2

∑

k

A(k) ·
∑

i

C
(i,k) ·

N
(i)
d∑

i N
(i)
d

. (5.113)

N
(i)
d is the number density of the constituent i and ρ is now the total mass density of all incoming molecules.

Figure 5.23 and table 5.4 show a comparison of the different models. Let us first take a look at the along-track

accelerations shown in the upper two panels of the figure. The top left panel shows the different model outputs

in the time domain. They behave similar in terms of magnitude, offset and variability: The magnitude varies

between −4 ·10−8 m/s2 and −3 ·10−7 m/s2. The standard deviation is about 6 ·10−8 m/s2 and the mean value is

−1 · 10−7 m/s2, cf. table 5.4. The top right panel shows the corresponding root PSD. Again the models behave

similar. It is interesting that a strong signal is not only visible at once per revolution (at 2 · 10−4 Hz), but also

at 1 · 10−4 Hz, that is caused by the air density variations. The signal at once per revolution is dominant. At

high frequencies all PSDs level out at about 1 · 10−7 m/s2/
√

Hz.

Now we take a look at the cross-track accelerations in the time domain shown in the middle left panel. Here

model G and model S & C agree well. The outputs of the simple model and model M are different from them

and from each other. Comparing table 5.4, we see that the simple model delivers the smallest output. Here

the mean value of −2 · 10−10 m/s2, as well as the variability of 3 · 10−10 m/s2 is smallest, followed by model

M showing a larger variability of 2 · 10−9 m/s2. The models G and S & C show a mean value of −1 · 10−9

m/s2 and a standard deviation of 6 · 10−9 m/s2. The maximal values for them range between −2 · 10−8 m/s2

and 1 · 10−8 m/s2. The middle right panel shows the root PSD of the model cross-track accelerations. Now all

models except the simple model show a dominant signal at once per revolution, as for the simple model only

forces in direction of the relative velocity are considered. The simple model shows the smallest signal, followed

by model M and then models G and S & C.
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Figure 5.23: Comparison of the different air drag models. The left panels show along-track, cross-track and radial component in the

time domain, the panels to the right show the corresponding root PSDs.

The radial model accelerations time series is shown in the lower left panel. Here the simple model and model

M agree well. Model G and model S & C behave differently than the simple model and model M. Among them,

they are similar, but the mean value is different. Concerning the variability, the simple model and model M

show a similarly small value of 6 · 10−10 m/s2, followed by model G with 2 · 10−9 m/s2. Model S & C shows the

largest standard deviation of 5 · 10−9 m/s2.
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The mean value of 6 · 10−9 m/s2 from model S & C is largest. The simple model and model M show mean

values around 1 · 10−09 m/s2.

Conclusions

In principle the different models agree well, especially for the dominant along-track component. Here the use

of more sophisticated models like model S & C or model G seems not be necessary, the difference to the most

simple model is small. Concerning the cross-track and radial components, the differences between the models

are more pronounced. During the comparison with the real measurements it will be difficult to decide which

one performs better, as here solar radiation pressure and earth albedo are the dominant effects.

5.4. Solar radiation pressure

5.4.1. Introduction

Solar radiation pressure is caused by the illumination of a body by the Sun. At a first glance it may sound

strange that the Sun’s light causes a significant pressure on such a relatively small object as a satellite, but

apart from the gravitational forces and the air drag, solar radiation pressure has a significant influence. The

measured accelerations are mainly due to air drag and solar radiation pressure.

We will first introduce a simple model of the shadow of the Earth, before we continue to present the model for

the solar radiation pressure induced accelerations on the satellite.

5.4.2. Shadow of the Earth

We will model the shadow of the Earth in this work as simple as possible and therefore use a cylindrical shadow

model, cf. Wermuth (2000) and figure 5.24. Input quantities are the position vector of the satellite in the IRF

and the current position of the Sun in the IRF given as right ascension and declination. The distance to the Sun

is assumed to be infinite, therefore the incoming sunlight rays are parallel. The Earth then casts a shadow of a

cylindrical form and infinite extent. As a next step, the IRF satellite position is rotated by the right ascension

α of the Sun about the z-axis and then by the negative declination δ of the Sun about the (new) y-axis:

rsat⊙ = R2(−δ⊙ )R3(α
⊙ ) · rsat

i . (5.114)

The position of the satellite is now given in a coordinate system {e⊙=1, e
⊙

=2, e
⊙

=3} of which the positive

x-axis is pointing towards the Sun. Using simple conditions, it can now be determined wether the satellite is

inside or outside the shadow of the Earth: if xsat⊙ > 0, the satellite is between Earth and Sun and therefore not

inside the shadow. If the Earth is in front of the satellite (xsat⊙ < 0), we check if the satellite position is inside

the cylindrical Earth shadow, i.e. if

y2⊙
,sat + z2⊙

,sat ≤ r2
E . (5.115)

In reality, the transition between sunlight and shadow is smooth, because before entering the shadow, the

so-called penumbra is passed. Inside the penumbra, the satellite is illuminated by a part of the normal solar

radiation, as in these regions the Sun is only partly visible.
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Figure 5.24: Cylindrical Earth shadow model, cf. Wermuth (2000)

5.4.3. Force model

The model presented here can be found in Wertz (1991). The pressure acting on a sunlit surface is the solar

flux incident on the surface divided by the speed of light:

P =
Fe

c

[
kgm2

s3m2
· s

m
=

kg

ms2

]
, (5.116)

with

Fe the solar flux, Fe ≈ 1370W/m2 ,

c the velocity of light.

One part of the incoming radiation is absorbed, the other part is reflected. As for air drag, the reflection can

be either specular or diffuse. We first determine the force due to absorption as:

dF
(k)
abs = −PC

(k)
a cos φ(k) Ŝ dA(k) (0 ≤ φ ≤ 90◦)

[
kg

ms2
· m2 =

kgm

s2
= N

]
, (5.117)

where

Ŝ = rSun−rsat
|rSun−rsat|

is the unit vector pointing from the satellite to the Sun,

cos φ(k) = n̂(k) · Ŝ the cosine of the angle between the surface normal and the direction to the Sun,

C
(k)
a is the absorption coefficient,

dA(k) is the area of the surface element k.
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Figure 5.25: Impact geometry and reflection types for the solar radiation pressure. The second panel shows the case of specular

reflection, the third panel shows the case diffuse reflection.

If cosφ(k) is negative, the surface is not illuminated and the radiation pressure thus is zero. The force due to

specular reflection can be determined as:

dF
(k)
spec = −2PC

(k)
s cos2 φ(k) n̂(k) dA(k) (0 ≤ φ(k) ≤ 90◦). (5.118)

C
(k)
s is the fraction of the incoming radiation that is reflected specularly. For specular reflection, the incoming

radiation and the reflected radiation cause the same pressure in direction of the surface normal, but a pressure

opposite in sign in direction of the tangent. Therefore only two times the pressure in direction of the surface

normal remains. For the part that is reflected diffusely, there is a component acting in direction of the incident

radiation due to the impact and a component acting in direction of the surface normal:

dF
(k)
diff = PC

(k)
d

(
−2

3
cos φ(k) n̂(k) − cos φ(k) Ŝ

)
dA(k) (0 ≤ φ(k) ≤ 90◦). (5.119)

C
(k)
d is the diffusely reflected part of the incoming radiation. In reality, all three possibilities of reflection occur

simultaneously:

dF̄
(k)
total = −P

∫ [(
1 − C

(k)
s

)
Ŝ + 2

(
C

(k)
s cos φ(k) +

1

3
C

(k)
d

)
n̂(k)

]
cos φ(k) dA(k), (5.120)
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where C
(k)
a + C

(k)
s + C

(k)
d = 1. C

(k)
s and C

(k)
d are derived from the macro-model of the satellites. As the surface

elements are flat, the area is A(k) and the total force on the surface element k is:

F
(k)

= −P

[(
1 − C

(k)
s

)
Ŝ + 2

(
C

(k)
s cos φ(k) +

1

3
C

(k)
d

)
n̂(k)

]
cos φ(k) A(k). (5.121)

The total force on the satellite due to solar radiation is then given by:

Fsrad =
∑

k

F
(k)

. (5.122)

Figure 5.26 shows the solar radiation pressure converted to an acceleration over one day in the satellite fixed
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Figure 5.26: Solar radiation pressure over one day in the satellite body frame.

coordinate system. For this simulation, the orbit plane is aligned with the direction to the Sun. As expected,

then the radial component dominates, followed by the cross-track and along-track component. The magnitudes

are up to 7 · 10−8m/s2 for the radial component and around 3 · 10−8m/s2 for the along-track and cross-track

components. One can also identify the phases of shadow transit where the acceleration is zero.

5.5. Earth albedo

5.5.1. Introduction

In our albedo model we will consider Earth albedo as radiation re-emitted by the Earth. A comprehensive

description in given in Kandel (1980). Earth albedo is caused by short-wave radiation emitted by the Sun, cf.

figure 5.27. The radiation re-emitted by the Earth can be divided into short-wave radiation and long-wave or

infrared radiation. The short-wave radiation results from the part of incoming solar radiation, about 25 %,

that is reflected back to space at the clouds in the troposphere. The long-wave part of the re-emitted radiation

results from the part of the incoming solar radiation that has been transmitted to the Earth’s surface and

been absorbed there. After absorption, this radiation is then re-emitted to space as long-wave radiation in

the infrared part of the electromagnetic spectrum. In our model we will only consider these two main effects,

although reality is more complex. Parts of the short-wave as well as the long-wave radiation are absorbed in

the different layers of the atmosphere. Other parts are transmitted to ground and then reflected back at cloud

layers in the troposphere, there is also an energy flow between the short- and long-wave radiation, cf. Kandel

(1980) and figure 5.27 for more details. In the following we will present models for short- and long-wave albedo.
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Figure 5.27: Top panel: Global radiative equilibrium. The spectrum of the incoming solar radiation and the radiation emitted by

the Earth is shown. The energy of the re-emitted radiation is concentrated at longer wavelengths rather than that of the incoming

radiation. Also the spectrum of the re-emitted radiation does not fully correspond to a black body spectrum. Note that the

spectrum of the short-wave radiation that is reflected at the clouds of the troposphere is identical to the one of the incoming solar

radiation. Lower panel: Energy budget of the Earth as a three layer model. Both figures from Kandel (1980).

5.5.2. Force model

Short-wave albedo

Concerning the short-wave albedo, we will use the model described in Bhanderi and Bak (2005). First, the

amount of incoming radiation from the Sun has to be determined. It is modeled as the spectrum emitted by

a body with a surface temperature of 5777 K using Planck’s law. The main part of the resulting radiation’s

wavelength is smaller than 2 µm and covers the visible part of the spectrum up to UV radiation.

Ein =
r2
Sun

1AU2

∫ + inf

0
ESun(λ, T )dλ = 1366.5 W/m2, (5.123)

with rSun the Sun’s mean radius. The incoming radiation then hits a surface element on Earth. The situation

Figure 5.28: Principle albedo model. The amount of reflected radiation depends on the surface element area and the angles between

the directions to the Sun and the satellite and the surface normal.

is depicted in figure 5.28. The radiant flux of the incoming radiation depends on the surface area dA and the

angle β between the cell surface element normal n̂ and the direction to the Sun r̂Sun:

Pc = Ein · dA · cos β = Ein · dA · (̂rSun · n̂). (5.124)
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The reflection is assumed to be Lambertian, i.e. we have diffuse reflection that is independent of the incident

angle of the incoming reflection. The reflected radiant flux is a fraction of the incoming flux:

Pr = ρ · Pc. (5.125)

ρ is the mean reflectivity of the considered surface element. The irradiance of the surface element is then given

by:

Er =
Pr

π
. (5.126)

The irradiance that reaches the satellite depends on the angle between the cell normal vector and the vector

from the cell to the satellite as well as on the distance of the surface element from the satellite. The irradiance

decreases proportional to the square of the distance from the irradiance source:

E
sw
sat,c =

Er · cos α

|rc
sat|2

· r̂c
sat, (5.127)

where rc
sat is the vector from the cell c to the satellite position and cosα is the angle between the cell normal

vector n̂ and rc
sat. The total irradiance on the satellite is given as the sum of all cell irradiances that are in

daylight and visible from the satellite’s position:

E
sw
sat,total =

∑

c

E
sw
sat,c. (5.128)

The irradiance can be converted to a pressure by division by the velocity of light:

P
sw
alb =

E
sw
sat,total

c
. (5.129)

For the model computations, the mean reflectivity of the surface elements of the Earth’s surface is required.

Reflectivity data are available from the Total Ozone Mapping Spectrometer (TOMS) project and deliver ρ.

Long-wave albedo

The second constituent of the Earth albedo is the long-wave albedo. The Earth’s radiation can be modeled as

that of a black body with a surface temperature of 288 ◦K. The spectrum of the resulting radiation is different

from the one of the incoming radiation, it is mainly infrared. The radiation exitance for the Earth is about

Elw = Ein/4 = 410 W/m2, cf. Kim (2000). The irradiance on the satellite from one cell of the Earth’s surface

is then given as:

E
lw
sat,c =

edir · Elw · cos α · dA

|rc
sat|2

· r̂c
sat, (5.130)

cos α = n̂ · r̂c
sat. (5.131)

dA is the cell area. elw is the emissivity of the considered cell and is given as:

elw = e0 + e1(t)P10(sin φc) + e2P20(sinφc), (5.132)

e1(t) = ē + e1c cos(ωe · (t − t0)) + e1s sin(ωe · (t − t0)). (5.133)



60 5 Non-gravitational forces

The reference epoch t0 is the epoch at the beginning of the year for which the calculation is to be carried out.

e1(t) considers the annual variation of the Sun’s declination. ωe not the Earth rotation rate but the Earth

revolution rate. Pn0 are Legendre polynomials for m = 0. The numerical values for the used parameters are

presented in table 5.5.

Table 5.5: Numerical values for the parameters to be used in the long-wave albedo model, from Kim (2000).

Parameter value

e0 0.68

ē 0.00

e1c -0.07

e1s 0.00

e2 -0.18

The total irradiance on the satellite is then given as the sum of all cell irradiances that are visible from the

satellite’s position:

E
lw
sat,total =

∑

c

E
lw
sat,c. (5.134)

The irradiance can be converted to a pressure by division by the velocity of light:

P
lw
alb =

E
lw
sat,total

c
. (5.135)

Total albedo

The total albedo is given as the sum of the long- and the short-wave albedo. The resulting force on the satellite

is derived in the same way as for the solar radiation pressure:

F
(k)
sw = −P sw

alb

[(
1 − C

(k)
s,sw

)
P̂sw

alb + 2

(
C

(k)
s,sw cos φ(k) +

1

3
C

(k)
d,sw

)
n̂(k)

]
cos φ(k) A(k), (5.136)

F
(k)
lw = −P lw

alb

[(
1 − C

(k)
s,lw

)
P̂lw

alb + 2

(
C

(k)
s,lw cos φ(k) +

1

3
C

(k)
d,lw

)
n̂(k)

]
cos φ(k) A(k). (5.137)

The total force on the satellite due to albedo radiation is given by the sum over all satellite surface elements k:

Falb =
∑

k

(
F

(k)
sw + F

(k)
lw

)
. (5.138)

In equations (5.136) and (5.137), φ(k) is the angle between the incoming radiation and the surface element

normal; A(k) is the surface element area. The pressure vectors are usually given in the EFRF and have to

be transformed to the SRF. The reflectivity coefficients Cs/d,sw and Cs/d,lw are given in table 5.1, where the

values for the long-wave albedo are denoted with ir because the radiation takes place in the infrared part of

the electromagnetic spectrum. The values for the short-wave albedo are the same as for the solar radiation

pressure.

Let us now take a look at the short-wave albedo:
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Figure 5.29: Mean reflectivity for 2005.

Figure 5.30: Left panel: Solar field of view. Right panel: Satellite field of view
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Figure 5.29 shows the mean reflectivity for the year 2005. We notice higher reflectivity over the ice covered areas

of Antarctica and Greenland and lower reflectivity over the areas around the equator except for the intertropical

convergence.

Figure 5.30 shows the Sun’s field of view for an chosen epoch (left panel) and the corresponding satellites field

of view for a realistic GRACE orbit (right panel). Figure 5.31 shows the sunlit field of view of the satellite (left

panel) and the resulting albedo matrix (right panel). The contribution of each cell has to be added up. The

sunlit field of view is the intersection of the satellites field of view and the Sun’s field of view.

Figure 5.31: Left panel: Sunlit satellite field of view. Right panel: Short-wave albedo for a single epoch.

Figure 5.32 shows the resulting magnitude of the acceleration from the long-wave as well as the short-wave

albedo. We realize that the long-wave albedo is always present and has a mean value of about 1.4 · 10−8 m/s2.
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Figure 5.32: Left panel: Long-wave and short-wave albedo magnitudes. Right Panel: Earth albedo induced acceleration in the

satellite fixed body system.

The short-wave albedo is zero whenever the field of view of the satellite is in the shadow of the Earth.

Generally speaking the short-wave albedo is smaller by a factor of two approximately. Both effects show a strong

once per revolution signal. Figure 5.32 shows the resulting acceleration over one day given in the satellite fixed

body frame. The radial component is strongest and also biased because of the omnipresent long-wave radiation.
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Its magnitude is about 1.5 · 10−8 m/s2 with a variation of about 1 · 10−8 m/s2. The acceleration in along-track

direction or cross-track direction is smaller by about an order of magnitude and shows no bias.

5.6. Comparison of the model results with real data

In this section, two important questions shall be answered:

Can the measured accelerations be replaced by modeled ones?

Which models have to be improved and how can this be done?

Linear acceleration

Figure 5.33 gives the comparison of the modeled surface forces with actual accelerometer measurements. As the

results are similar for both satellites, the analysis is confined to the data of GRACE A. The left panels show the

time series of the measured L1b linear accelerations in blue and the output of the surface force models discussed

above. As we described only one model for solar radiation pressure and albedo, the use of the different air drag

models produces different model outputs.

If we take a look at the top left panel showing the along-track accelerations in the SRF, we realize that the general

features of the measured accelerations are reproduced and that the air drag magnitude is much higher those of

solar radiation and albedo. However, there remain significant differences. All models show extra oscillations at

frequencies of 2-4 cycles per revolution, not visible in the time series of the measured accelerations. The top

right panel that shows the root PSD of the difference to the measured signal that confirms the observations in

the time domain. The blue line represents the root PSD of the measurement. Only at the orbit frequency, the

difference between the models and the measurement is smaller than the measured signal, at all other frequencies

the models show effects that are not contained in the measurement. Although the models M and S & C perform

slightly better in terms of magnitude of the difference to the measurements at the orbit frequency than the

others, they perform slightly worse at the other frequencies.

The middle panel at the left shows the time series of the cross-track accelerations. The picture is the same as

for the along-track accelerations: The order of magnitude is correct. Important features like the entry and exit

of the Earth shadow seem to be modeled correctly, but significant differences remain. This is confirmed by the

root PSDs (right panel) of the differences between models and measurements. Again the differences are at the

level of the measurement, except at the orbit frequency. Here model M and model S & C show the smallest

differences to the measurement. At the other frequencies, the performance of the different models seems to be

similar.

The lower left panel shows the time series of the radial accelerations. Here the agreement between modeled

accelerations and measurements seems to be better. All models perform very similar, in general the model

values seem to be slightly too high. The root PSD of the differences confirms this assumption. The performance

of the different models is very similar, here the difference at harmonics of the orbit frequency is smaller than

the measurement itself. The difference at the other frequencies is again as large as the measured signal.

The statistic properties of the measured linear accelerations and modeled ones given in table 5.6 confirms these

results.

Differential acceleration

The large differences between the modeled linear accelerations and the measured ones may decrease when the

differential accelerations are analyzed. The differential acceleration magnitude should be smaller, as the two

satellites are close to each other and therefore the encountered environment should be similar.
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Figure 5.33: Comparison of the modeled surface forces and the actual measurement of the accelerometer. The left panels show time

series of modeled accelerations for the along-track, cross-track and radial axis of the SRF and the corresponding measurements.

The modeled surface forces have been derived using the different air drag models. The right panels show the root PSDs of the

measured accelerations (blue) and the difference between measured accelerations and the modeled ones.
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Figure 5.34: Comparison of the modeled differential acceleration and the actual measured differential acceleration. The left panels

show time series of the modeled differential accelerations for the along-track, cross-track and radial axis of the SRF and the

corresponding measurements. The right panels show the root PSDs of the measured differential accelerations (blue) and the

difference between measured differential accelerations and the modeled ones.
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Table 5.6: Statistic parameters for the measured linear acceleration on GRACE A and different models. The values are given in the

SRF.

model σ m/s2 mean m/s2 min m/s2 max m/s2

measured x: +6 · 10−08 x: +1 · 10−06 x: +1 · 10−06 x: +1 · 10−06

y: +8 · 10−09 y: −3 · 10−05 y: −3 · 10−05 y: −3 · 10−05

z: +2 · 10−08 z: +6 · 10−07 z: +5 · 10−07 z: +6 · 10−07

simple x: +6 · 10−08 x: +1 · 10−07 x: +2 · 10−08 x: +3 · 10−07

y: +1 · 10−08 y: −1 · 10−08 y: −3 · 10−08 y: +5 · 10−10

z: +3 · 10−08 z: +2 · 10−08 z: −2 · 10−08 z: +8 · 10−08

M x: +7 · 10−08 x: +2 · 10−07 x: +4 · 10−08 x: +4 · 10−07

y: +8 · 10−09 y: −1 · 10−08 y: −3 · 10−08 y: −1 · 10−10

z: +3 · 10−08 z: +2 · 10−08 z: −2 · 10−08 z: +8 · 10−08

S & C x: +8 · 10−08 x: +2 · 10−07 x: +5 · 10−08 x: +4 · 10−07

y: +5 · 10−09 y: −1 · 10−08 y: −2 · 10−08 y: −3 · 10−10

z: +3 · 10−08 z: +1 · 10−08 z: −3 · 10−08 z: +8 · 10−08

G x: +7 · 10−08 x: +1 · 10−07 x: +3 · 10−08 x: +3 · 10−07

y: +5 · 10−09 y: −1 · 10−08 y: −2 · 10−08 y: −8 · 10−10

z: +3 · 10−08 z: +2 · 10−08 z: −2 · 10−08 z: +8 · 10−08

Figure 5.34 gives the comparison of the measured differential acceleration and the modeled ones, using again

different air drag models.

The top panel at the left shows the time series of the along-track component. The mean values are smaller

by an order of magnitude, at a level of −3 · 10−10 m/s2 to 1 · 10−08 m/s2 for all models, cf. table 5.7. The

measurement’s true mean value is unknown, it has therefore been detrended. The main features are represented

by all models, but the simulated accelerations show additional oscillations. Concerning the variability, only

the simple model agrees with the measurement, the other models show a higher standard deviation. Among

themselves, the models G, S & C and M agree, but not with the simple model also in terms of mean, minimum

and maximum values. The top panel at the right shows the root PSD of the measured differential acceleration

and the difference to each model. All model differences show a signal slightly below once per revolution. It

originates from the density model. At once per revolution the simple model performs best, the difference to the

measured acceleration is lowest. The other model differences are at or above the magnitude of the measurement,

also for the remaining frequencies.

The middle left panel shows the time series of the cross-track component. Here the main difference results

from the fact that the models do not contain the thruster effects. The other features are reproduced well, but

there are again oscillations in the models that are not real. The middle right panel shows the root PSD of

the cross-track measurement and the corresponding differences between the models and the measurement. The

differences are almost identical to the measurement, meaning that the dominant thruster effects have to be

included in the models for a realistic model output. The models among themselves perform similar.

The lower panel at the left shows the time series of the radial component. There are significant differences

between models and measurement. Again the effect of thruster events is not contained in the models, but shows

up strongly in the measurement. There are also periods where the models show effects that are not contained

in the measurements. The lower right panel shows the corresponding root PSD. The differences to the models

are as large as the measurement itself.

The statistics of the comparison of the modeled differential acceleration and the measured one can be found in

table (5.7).

Conclusions

We can conclude that the model performance for the linear accelerations is poorest on the along-track axis,

followed by the cross-track axis and it is best for the radial axis. The signal on the along-track axis is mainly
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Table 5.7: Statistic parameters for the measured differential acceleration and different models. The values are given in the SRF.

model σ m/s2 mean m/s2 min m/s2 max m/s2

measured (detrended) x: +7 · 10−09 x: 0 x: −3 · 10−08 x: +5 · 10−08

y: +7 · 10−09 y: 0 y: −4 · 10−08 y: −6 · 10−08

z: +4 · 10−08 z: 0 z: −6 · 10−08 z: +1 · 10−07

simple x: +5 · 10−09 x: −3 · 10−10 x: −1 · 10−08 x: +2 · 10−08

y: +1 · 10−09 y: −3 · 10−10 y: −1 · 10−08 y: +7 · 10−09

z: +6 · 10−08 z: +4 · 10−08 z: −3 · 10−08 z: +2 · 10−07

M x: +1 · 10−08 x: +1 · 10−09 x: −5 · 10−08 x: +8 · 10−08

y: +8 · 10−10 y: −8 · 10−11 y: −9 · 10−09 y: +7 · 10−09

z: +6 · 10−08 z: +4 · 10−08 z: −3 · 10−08 z: +2 · 10−07

S & C x: +1 · 10−08 x: +1 · 10−08 x: −4 · 10−08 x: +6 · 10−08

y: +1 · 10−09 y: −3 · 10−10 y: −1 · 10−08 y: +1 · 10−08

z: +6 · 10−08 z: +4 · 10−08 z: −4 · 10−08 z: +2 · 10−07

G x: +8 · 10−09 x: +1 · 10−09 x: −4 · 10−08 x: +7 · 10−08

y: +1 · 10−09 y: −4 · 10−10 y: −9 · 10−09 y: +7 · 10−09

z: +6 · 10−08 z: +4 · 10−08 z: −3 · 10−08 z: +2 · 10−07

determined by air drag. The signal on the radial axis is mainly determined by solar radiation pressure for the

considered data. The signal on the cross-track axis contains both effects and they are of the same order of

magnitude. It seems that the model for the solar radiation pressure and Earth albedo are realistic and that

there are problems in the air drag models.

For the differential acceleration, the signal magnitude of effects common to both satellites (air drag, solar

radiation pressure and albedo) is reduced by a order of magnitude at least. The signal magnitude of effects

only affecting one satellite, like thruster events, is unchanged; they now dominate the measurement signal on

the cross-track and radial axis. The model performance is bad on all axes.

The first question posed at the beginning of this section, if the accelerometer measurements can be replaced

by model output, can be answered as no, at least not with the models in the current state. For the differential

acceleration to be modeled correctly, it is necessary to include a model of the thruster events effect on the linear

acceleration.

Concerning the second question, which models can be improved, it seems that the air drag models are primarily

the models to be improved.

The air drag models consist of two parts: the air density model and the model for the interaction of the

molecules with the surface. As the different models perform very similar when compared to the simple model,

it seems that the problem lies in the air density model. As a conclusion we find that for modeling air drag,

the most simple model is sufficient as long as the air density models are not improved. The more complicated

models deliver additional detail, that seems not to be exploitable at the moment, as the disagreement between

model and reality is still to large. Figure 5.35 shows the geographical distribution of the differences between

the model S & C as an example and the measurement. The difference magnitude seems to be increased at the

poles. The differences at northern latitudes higher than 60◦ are larger than the differences at the South Pole.

The results are similar for the other air drag models. This may indicate deficiencies in the air density model at

these regions.

Possible strategies for an improvement of the density models are discussed in the outlook at the end of the work.

Another candidate for improvement would be the wind model. It influences mainly the derivation of the relative

velocity for the air drag models. The simple model does not use the wind model and performs as well as the

other models, so it seems to be more promising to improve the density model first and then perhaps consider

an improvement of the wind model.
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Figure 5.35: Geographical distribution of the difference between model S & C and the measured accelerations.
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Part III.

Sensor models
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6. Introduction

So far we have described the forces that act on the satellites. Now we think about how the on-board sensor

systems detect these forces. The following sensors are modeled: the accelerometer, the star sensor, the K-band

measurement system and the GPS receiver.

The first chapter gives a brief overview of the relevant sensor systems and their interaction.

In the subsequent chapters, the sensors are described each separately in terms of mathematical and logical

measurement models.
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7. Overview of the relevant sensor systems

In figure 7.1 the overview of the sensor system is shown. We start from the top. There are two kinds of forces

that act on the satellite: the gravitational forces, denoted as GA (green), act on the center of mass of the

satellite causing linear accelerations. The gravitational forces also cause torques due to the inhomogeneous

mass distribution inside the satellite. As the gravitational forces are body forces, they act as well on the

proof mass of the accelerometer, i.e. an accelerometer placed at the center of mass of the satellite does not

’feel’ the gravitational forces. An accelerometer, that is not located exactly at the center of mass, measures

additional linear accelerations caused by gravity gradients. The surface forces, denoted as FA (blue), act on

the surface of the satellite. These forces can as well be imagined to act at the center of mass of the satellite.

They also act on the center of pressure of the satellites causing rotational torques (M). The torques result

in angular velocities (Ω) and angular accelerations (Ω̇), their magnitude depends on the inertia tensor (Iij).

Angular velocity and angular acceleration lead to a change in the orientation of the satellite, that is measured

by the star sensors. Angular velocity and the angular acceleration cause linear accelerations of the proof mass,

if the accelerometer is not perfectly placed at the center of mass. The star sensor measurements are input

to the attitude control system. It applies control torques via the cold-gas thrusters and the magnetic torque

rods. The linear accelerations measured by the accelerometer are downsampled as their bandwidth is limited,

corresponding to a sampling rate of 10 Hz by the application of a low-pass filter and are converted from analog

to digital. The position of the satellite is measured by the GPS receiver. Last but not least, the K-band system

measures the differential range between the two GRACE satellites.

Figure 7.1: Overview of GRACE sensor system.
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Figure 7.2 shows a detailed view of the satellite’s interior. The abbreviations have the following meaning:

Figure 7.2: Detailed view of the different sensor systems and their location inside the satellites.

ACC ICU SuperSTAR accelerometer interface control unit

ACC SU SuperSTAR accelerometer sensor unit

GPS NAV antenna GPS navigation antenna

GPS BKUP antenna GPS backup antenna

GPS OCC antenna GPS occultation antenna

IPU Instrument processing unit

KBR assembly K-band ranging system assembly

MTE Center of mass trim assembly electronics

MTM Center of mass trim assembly mechanism

MTQ Magnetorquers

OBDH On-board data handling

PCDU Power control and distribution unit

RFEA Radio frequency and electronics assembly

SCA +Y, SCA -Y Star camera sensor heads

USO-1 Ultra stable oscillator

The accelerometer is located at the center of mass of the satellite. Above the accelerometer, the star sensor

heads and the GPS navigation antenna is located. The mass trim mechanism and the magnetic torquers are

located at the front and back shear panel. The gas tanks for the cold gas thrusters are placed symmetrically

around the center of mass. At the front of the satellite, the equipment for the K-band ranging system are

located: the K-band ranging system assembly, the K-band horn and the ultra stable oscillator (USO). At the

back of the satellite, the on-board data handling unit, the radio frequency and electronics assembly and the

GPS occultation antenna are located.

In the following chapters we will present mathematical models for the sensors that form the gravity field sensor

system: the accelerometer, the star sensor, the K-band ranging system and the GPS receiver.
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8. Accelerometer

8.1. Introduction

Figure 8.1: Picture of the SuperSTAR accelerometer manufactured by ONERA (image courtesy of ONERA).

The SuperSTAR accelerometer is a three-axis capacitive accelerometer. There are two high-sensitive axes and

one less-sensitive axis. The proof mass is a gold-coated titan cube, its size is about 40 x 40 x 10 mm3, its mass

is 70 g. The purpose of the accelerometer is to measure the non-conservative forces acting on the satellites. If

the accelerometer is not located at the center of mass of the satellite, the measured linear accelerations also

contain contributions due to angular velocities, angular accelerations and gravity gradients. In principle the

accelerometer consists of two parts: a position detector, that detects the position of the proof mass inside the

cage and the servo mechanism, that keeps the proof mass at its nominal position.

In the following sections, the functionality for one axis will be explained, it is the same for the other two axes.

Table 8.1: Specifications of the SuperSTAR accelerometer from Hudson (2003).

Axis (SRF) range accuracy

x ±5 · 10−5 m/s2 1 · 10−10 m/s2/
√

Hz

y ±5 · 10−4 m/s2 1 · 10−9 m/s2/
√

Hz

z ±5 · 10−5 m/s2 1 · 10−10 m/s2/
√

Hz

ω̇x ±1 · 10−2 rad/s2 5 · 10−6 rad/s2/
√

Hz

ω̇y ±1 · 10−3 rad/s2 2 · 10−7 rad/s2/
√

Hz

ω̇z ±1 · 10−2 rad/s2 5 · 10−6 rad/s2/
√

Hz
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Figure 8.2: Three dimensional view of the proof mass and the electrodes. The axes refer to the accelerometer frame. Here the

less-sensitive axis is the X−axis (courtesy of ONERA).

8.2. Logical model

E1
E2

d

-V +V

control

actual position
nominal position

V =V +Vt d p

x

Figure 8.3: Concept of a capacitive accelerometer for one axis.

Figure 8.3 shows the schematic design for one axis. The proof mass is located between two electrodes, charged

with voltage +V and −V , respectively. The proof mass is charged with a voltage Vt consisting of the polarization

voltage Vp and an alternating current, the detection voltage Vd:

Vt = Vp + Vd(t). (8.1)

The frequency of the detection voltage is about 100 kHz, too high to affect the motion of the proof mass. The

nominal position of the proof mass is in the middle between the electrodes, with no off-set, i.e. x = 0. Between

the walls of the proof mass and the electrodes, two electric fields E1 and E2 are forming. If V and Vt are
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assumed to be positive and constant, the proof mass will start to move towards the electrode charged with −V .

The gap between proof mass and electrode reduces, increasing the field and the attraction. In this configuration

the accelerometer system is inherently unstable and servo control of the proof mass motion is mandatory. A

capacitive detector measures the position of the proof mass by comparing the capacitances. A feedback loop

including a PID (Proportional Integrative Derivative) controller determines the control voltage V and keeps the

proof mass motionless at its nominal position.

8.3. Mathematical model

In this section the equation of motion of the proof mass is derived. First, we have to find a linear expression

for the capacitive force acting on the proof mass. This expression can then be linked to the non-gravitational

forces acting on the satellite. For the capacitive force, according to Coloumb’s law, we have:

Fcap,i =
1

2
ǫ0AE2

i for i = 1, 2, (8.2)

where

ǫ0 the dielectric constant,

A electrode area [m2],

E electric field force [J].

As the attraction of field E1 is opposite to the attraction of field E2, the overall capacitive force is:

Fcap =
1

2
ǫ0A(E2

1 − E2
2). (8.3)

Considering E = U
s , where U is the voltage between proof mass and electrode and s = d + x is the distance

between proof mass and electrode, and averaging Vd(t) over time we get, according to Josselin et al. (1999) and

Touboul et al. (1999):

Fcap =
1

2
ǫ0A

(
(V 2 − 2V Vp + V̄ 2

t )

(d − x)2
− (V 2 + 2V Vp + V̄ 2

t )

(d + x)2

)
, (8.4)

with

V̄ 2
t = V 2

p + V̄ 2
d , (8.5)

V̄d =
max(Vd(t))√

2
. (8.6)

This expression is nonlinear both in the displacement x of the proof mass and in the control voltage V , but

becomes linear in the voltage V for x = 0. Expansion into a Taylor series for small x/d and neglecting higher

order terms yields:

Fcap(V, x) = −2ǫ0A

d2

[
V Vp − x

d
V̄ 2

t

]
. (8.7)
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As mentioned before, the control voltage V is not constant, it is controlled by a PID controller. After Smit

(2000) it is:

V (x) = KPID ω2
0(ẋ/ωd + x + ωi

∫ t

x dt), (8.8)

with

KPID overall gain,

ω2
0 natural frequency of PID-controller,

ωd characteristic frequency for derivative part,

ωi characteristic frequency for integral part.

The capacitive system is used as an accelerometer. It is exposed to an external force Fext, resulting from the

non-conservative forces acting on the satellite. The control voltage V is adjusted, so that the proof mass stays

in its nominal position. The equation of motion of the proof mass can now be stated as:

Mẍ = Fext + Fcap(V (x), x). (8.9)

Insertion of the linearized expressions from eqs. (8.7) and (8.8) yields:

ẍ = −2ǫ0AVpKPID

Md2
ω2

0

(
ẋ/ωd + x + ωi

∫
x dt

)

+
2ǫ0AV̄ 2

t

Md3
x + Fext/M. (8.10)

This expression is in agreement with the one given by Stanton et al. (1998).

The proof mass is kept almost motionless in the center of the electrode cage. We get:

ẍ = Fcap/M + Fext/M, (8.11)

≈ 0

⇒ Fcap/M ≈ −Fext/M. (8.12)

The actual measurement of the accelerometer is the control voltage that has to be applied on the proof mass to

keep it at its nominal position. The displacement x from the nominal position is very small, so we can say that:

Fcap/M ≈ −2ǫ0AVpKPID

Md2
ω2

0

(
ẋ/ωd + x + ωi

∫
x dt

)
≈ −Fext/M, (8.13)

meaning that the external force is related to the control voltage V (x) by:

Fext/M ≈ 2ǫ0AVp

Md2
V (x) ≈ Gel · V (x). (8.14)
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Gel is the so called electrostatic gain, i.e. the scale factor that has to be applied to the control voltage in order

to transform it into an acceleration. For each electrode pair, one control voltage is measured. The measured

voltages are transformed into accelerations by applying the appropriate electrostatic gains. In case there is

more than one electrode pair per degree of freedom, the individual values are averaged. We get for the vector

of measured linear accelerations γa in the accelerometer reference frame (ARF):

γa =




(GX1 · VX1 + GX2 · VX2 + GX3 · VX3)/3

(GY 1 · VY 1 + GY 2 · VY 2)/2

GZ · VZ



 ≈ γDrag. (8.15)

8.4. Measurement model

In the measurement model, we will first take a closer look at the effects contributing to the linear acceleration

measurement. If there is a displacement of the accelerometer relative to the center of mass of the satellite,

not only accelerations due to the nonconservative forces but also accelerations due to gravitational forces and

angular motion act on the proof mass. The basic equation is, cf. Hudson (2003):

γA = (Gij + ΩjkΩik + Ω̇ik)δr + γDrag, (8.16)

with

γA vector of measured accelerations,

Gij matrix of gravity gradients,

Ωik matrix of angular velocities of satellite,

Ω̇ik matrix angular accelerations of satellite,

δr vector containing the displacements of accelerometer

from center of mass,

γDrag vector of accelerations due to nonconservative forces (drag).

A time variability of the center of mass offset is neglected. The location of the center of mass varies in time due

to fuel consumption, but the rate of this variation is very slow. It is assumed that the mass trim assembly is

able to keep the center of mass within its specified range of 100 µm to the proof mass of the accelerometer, cf.

Stanton et al. (1998) and Wang (2003). The effects of the individual contributors are displayed in figure 8.4.

We realize that the acceleration caused by the gravity gradients and the angular velocity is smaller than the

specified measurement error of the accelerometer. The acceleration caused by the angular acceleration is larger

than the accelerometer measurement error but smaller than the K-band measurement error. Therefore it seems

that the displacement of the accelerometer proof mass from the satellite center of mass can be neglected. Thus

the acceleration on the proof mass caused by the external forces becomes:

γa = γDrag. (8.17)

Next the connection between external accelerations and the measurement of the accelerometer is investigated.

The assumption that the internal forces equal the external ones perfectly is not fully true. Oberndorfer (2000)

states as measurement model:

Fcap/M = K0,A + K1,AγA + Klm,AγA + K2,AγAγA + noise, (8.18)
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Figure 8.4: Influence of a 0.1 mm offset of the accelerometer proof mass from the satellite’s center of mass. The top row shows the

acceleration caused by the gravity gradient. The second row shows the acceleration caused by the angular velocity and the third

row shows the acceleration caused by the angular acceleration. All effects are below the specified error for the accelerometers resp.

for the K-band.
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with

K0,A bias,

K1,A scale factor (linear),

K2,A quadratic factor,

Klm,A coupling and misorientation matrix,

noise measurement noise.

The bias term is mainly caused by that term in equation (8.10) that only depends on the displacement of the

proof mass from its nominal position.

In this study, we neglected the quadratic factor and the coupling and misorientation of the accelerometer axes.

The quadratic factor is specified to be about 10 s2/m, cf. Stanton et al. (1998), assuming a variation of the linear

acceleration at a level of about 5 ·10−7 m/s2, the resulting error is below 2.5 ·10−12 m/s2. The misalignment and

coupling is specified to be below 1 ·10−4 rad, cf. Stanton et al. (1998), the resulting error is below 1 ·10−10 m/s2.

The noise consists of two terms: acceleration noise and position noise. Acceleration noise is white with an

additional 1/f component below a corner frequency f0:

noisea(f) = Aa

√
1 + f0/f

[
m/s2/

√
Hz
]

. (8.19)

f0 = 0.1 for the less-sensitive axis and f = 0.005 for the sensitive axes. Position noise is white:

noisep(f) = Ap

[
m/s2/

√
Hz
]

. (8.20)

Thus, we arrive at the simplified model:

Γa = K0,A + K1,AγA + noisea(f) + noisep(f). (8.21)

Table 8.2 shows the error specifications for the accelerometer. The noise term specified is the sum of position

and acceleration noise.

Table 8.2: SuperSTAR error specifications for the linear acceleration measurement.

parameter sensitive axes less-sensitive axis

bias < 2 · 10−6 m/s2 < 50 · 10−6 m/s2

scaling factor 1 ± 0.02 1 ± 0.02

noise
√

(1 + 0.005/f) · 10−10 m/s2
√

(1 + 0.1/f) · 10−9 m/s2

8.5. Dynamic measurement model

The above mentioned measurement model does not reflect the dynamics of the measurement process. To model

the dynamics, we have implemented eq. (8.10) in SIMULINK, a MATLAB toolbox used for the simulations.

Figure 8.5 shows the dynamic model. External accelerations enter to the left and are then passed to the block

denoted as ’TM’, that represents the proof mass dynamics, i.e. the transfer from accelerations on the proof mass

to a new position of the proof mass. The position detection mechanism is simulated by adding position noise

(’PN’) to the proof mass position. This position is then passed to the block denoted as ’PID’, that implements
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Figure 8.5: Dynamic measurement model for one axis.

the PID-controller. Via feedback the controller exerts a corrective acceleration on the proof mass to move it

back to its nominal position. The acceleration noise enters the model as white noise in the block ’AN’. The

block ’TFAN’ than transforms this white noise into colored noise fulfilling the specifications in table 8.2. At the

output of the accelerometer a third order butterworth filter (’BF’) is applied for the purpose of anti-aliasing.

Let us now have a look at the dynamic error due to noise, see Fig. 8.6. The rise at low frequencies is caused
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Figure 8.6: Root PSD of the dynamic acceleration measurement error due to noise. Upper line represents less-sensitive axis, lower

line sensitive axes. The vertical black line is the Nyquist frequency (5 Hz) corresponding to the accelerometer output sampling rate

(10 Hz). The error rises at high frequencies due to position noise and at low frequencies due to acceleration noise.

by acceleration noise. The acceleration noise of the sensitive axes is lower than that of the less-sensitive axis.

Acceleration noise combines all effects that induce parasitic accelerations on the proof mass: stiffness of the

gold wire, Lorentz force1, influence of the Earth’s magnetic field and others. The rise at high frequencies is

caused by position noise. We notice that the position noise of the sensitive axes is higher than that of the

less-sensitive axis. The black line indicates the Nyquist frequency (5 Hz) of the designated output frequency of

the accelerometer (10 Hz). We note that there is much energy in the error signal at frequencies of 5 Hz and

above. If the signal had been sampled unchanged, aliasing would occur and spoil the measurement. That is

the reason for the implementation of an anti-aliasing filter at the output of the accelerometer, a third order

butterworth filter with a cut-off frequency of 3 Hz. The effect of this filter is depicted in figure 8.7.

1The Lorentz force is the force exerted on a charged particle in an electromagnetic field. In this case the proof mass is the charged

particle moving in the magnetic field of the Earth.
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Figure 8.7: Root PSD of the dynamic measurement error at the output of the accelerometer. The blue line represents less-sensitive

axis, the red line the sensitive axes. The vertical black line is the Nyquist frequency (5 Hz) of the accelerometer output sampling

rate (10 Hz). In contrast to figure 8.6, the signal energy at frequencies of 3 Hz and above is diminished through the application of

the butterworth filter.

The anti-aliasing filter effectively reduces the signal energy at high frequencies, so that no degradation of the

measurement will occur. The resulting instrument noise rises at low frequencies with a rate of 1/
√

f in the

root PSD. At high frequencies, the noise is white at a level of 1 · 10−9 m/s2/
√

Hz for the less-sensitive axis and

1 · 10−10 m/s2/
√

Hz for the sensitive axes.
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9. Star sensor

9.1. Introduction

Figure 9.1: The star sensor, consisting of the two sensor heads and the processing unit.

The purpose of the star tracker is to determine the absolute orientation of the satellite with respect to an

inertial system. In order to accomplish this task, digital star images taken by each of the two sensor heads

are processed. The observed stellar constellations are compared to stellar maps and catalogues (e.g. the

HIPPARCOS catalogue) inside the processing unit by means of image processing. The derived orientation is

the orientation with respect to the reference frame of the used star catalogue. The star sensor or Advanced

Stellar Compass (ASC) used on the GRACE satellites is identical to the star sensor used for the CHAMP

mission. It is manufactured by the department of automation of the Technical University of Denmark (DTU).

It was used and tested for the missions Teamsat, ASTRID 2 und Ørsted. The database contains 13 000 of

the brightest stars from the HIPPARCOS catalogue. An orientation that deviates more than 10 arcseconds

from the star catalogue data is rejected. The typical duration of an attitude acquisition is about 200 ms. The

attitude is given as a set of quaternions.

9.2. Logical model

In this section we describe the logical measurement model of the star sensor. The described method corresponds

to the ’geometric method’ described in Wertz (1991). As described before, in principle the star sensor is a

digital camera taking images of its field of view. How are these images converted into an orientation of the

satellite? First of all, the star sensor does not deliver the orientation of the satellite fixed coordinate system

with respect to the inertial coordinate system, but the orientation of its own instrument coordinate system, the

star sensor reference system, with respect to the inertial coordinate system underlying the used star catalogue.

Consequently, as an additional measurement the orientation of the star sensor reference frame with respect to

the satellite fixed reference frame is required. This will introduce an additional error to be accounted for later

in the description of the level 1a to level 1b processing of the star sensor data.
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Let us now set up the logical steps that lead from the digital image of the sky to the derived orientation. The

first step consists in comparing the taken image to known patterns of star constellations from the star catalogue

contained in the star sensor processing unit. We will not go into details about the image recognition strategy,

cf. Wertz (1991), let us just assume that the stars on the taken image have been identified correctly. Assume

now that a set of inertial coordinates of the stars and a corresponding set of coordinates in the star sensor

reference frame in the form of pixel coordinates are available, see figure 9.2. The next step is to transform the

coordinates of the stars to angle measurements corresponding to the angle between the position vector of the

stars on a unit sphere and the z-axis of the SSRF. This transformation can only be achieved by an on ground

calibration of the star sensor cameras: The camera is rotated by a known angle and the coordinate change of a

target is recorded, see figure 9.2. With this set of angle measurements, the vector components of the z-axis of

the star sensor reference frame (SSRF) can be determined:

X^̂

aa

S

X

YY

Z

d

x s

y s

zs

yIRF

zIRF

zSSRF

CCD plane
g

dx-

Figure 9.2: Left panel: Overview of the star sensor reference frame and the inertial reference frame. Right panel: Mapping of the

coordinates of an observed star to an angle measurement.

X̂IRF
S1

· ẐIRF
SSRF = cos(γS1

),

X̂IRF
S2

· ẐIRF
SSRF = cos(γS2

),

X̂IRF
S3

· ẐIRF
SSRF = cos(γS3

), (9.1)

...
...

X̂IRF
Sn

· ẐIRF
SSRF = cos(γSn )

or writing explicitly the dot products:

XS1
· Xz + YS1

· Yz + ZS1
· Zz = cos(γS1

),

XS2
· Xz + YS2

· Yz + ZS2
· Zz = cos(γS2

),

XS3
· Xz + YS3

· Yz + ZS3
· Zz = cos(γS3

), (9.2)

..

.
..
.

XSn · Xz + YSn · Yz + ZSn · Zz = cos(γSn ),
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where we define:

X̂IRF
Sn

=




XSn

YSn

ZSn



 =




cos(δSn ) cos(αSn )

cos(δSn ) sin(αSn )

sin(δSn )



 , (9.3)

ẐIRF
SSRF =




Xz

Yz

Zz



 , (9.4)

where αSn and δSn are the azimuth and declination of the observed stars given in the inertial reference frame.

The equations can then be rewritten as a standard linear least squares estimation problem:

A · x = y, (9.5)

with the matrix of the partial derivatives

A =




cos(δS1
) cos(αS1

) cos(δS1
) sin(αS1

) sin(δS1
)

cos(δS2
) cos(αS2

) cos(δS2
) sin(αS2

) sin(δS2
)

cos(δS3
) cos(αS3

) cos(δS3
) sin(αS3

) sin(δS3
)

...
...

...

cos(δSn ) cos(αSn ) cos(δSn ) sin(αSn ) sin(δSn )




, (9.6)

the vector of unknowns

x =




Xz

Yz

Zz



 (9.7)

and the vector of observations

y =




cos(γS1
)

cos(γS2
)

cos(γS3
)

...

cos(γSn )




. (9.8)

The unknown components of the Z-axis of the SSRF are then given by:

x =
(
AT · A

)−1
· AT · y. (9.9)

Now the Z-axis of the SSRF is defined. In order to define the full orientation of the SSRF with respect to the

IRF, we have to derive the components of either the X- or Y-axis of the SSRF in the IRF, as the third axis can

be derived through completion of the orthonormal system. We follow the same approach as before: we derive

angles between the position vectors to stars and the coordinate axis whose components we want to derive. As

both the X- and Y-axis lie in the plane of the CCD-Sensor, it is not possible, as for the Z-axis, to measure the
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angles directly through the measured coordinates of the digital image, we have to derive virtual measurements

by forming the cross product between the Z-axis and the position vectors of the detected stars, thus creating a

set of vectors that all lie in the CCD plane, see figure 9.3. The cross products are formed in the SSRF using

the measured CCD coordinates and in the IRF:

zssrf
^

S1̂S1
^ ẑssrfzssrf

^xx S1
-

S1

-

S1
^

S1
-

S1

-
xx ẑssrfzssrf

^

Figure 9.3: Derivation of the virtual vectors in the CCD plane for the derivation of the X- and Y-axis of the SSRF

V
SSRF
S1

= X
SSRF
S1

× ẐSSRF
SSRF ,

V
SSRF
S2

= X
SSRF
S2

× ẐSSRF
SSRF ,

V
SSRF
S3

= X
SSRF
S3

× ẐSSRF
SSRF , (9.10)

.

..
.
..

V
SSRF
Sn

= X
SSRF
Sn

× ẐSSRF
SSRF

is the set of virtual vectors in the SSRF and

V̂IRF
S1

= X̂IRF
S1

× ẐIRF
SSRF ,

V̂IRF
S2

= X̂IRF
S2

× ẐIRF
SSRF ,

V̂SIRF
3

= X̂IRF
S3

× ẐIRF
SSRF , (9.11)

...
...

V̂IRF
Sn

= X̂IRF
Sn

× ẐIRF
SSRF

is the set of virtual vectors in the IRF. Now the angles between the X- or Y-axis and the virtual vectors in

the SSRF can be derived by forming the dot products between the virtual axes and the coordinate axis whose

components are to be derived:

V
SSRF
S1

|VSSRF
S1

|
· X̂SSRF

SSRF = cos(γS1
),

V
SSRF
S2

|VSSRF
S2

|
· X̂SSRF

SSRF = cos(γS2
),

V
SSRF
S3

|VSSRF
S3

|
· X̂SSRF

SSRF = cos(γS3
), (9.12)

...
...

V
SSRF
Sn

|VSSRF
Sn

|
· X̂SSRF

SSRF = cos(γSn ).
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The derived angles can then be used to set up a system of equations similar to the one used for the derivation

of the components of the Z-axis in the IRF. From this system of equations, the components of the coordinate

axis to be determined can be estimated as described above, here as an example for the X-axis. Finally the third

missing coordinate axis is derived by forming the cross product between the two already derived ones:

ŶIRF
SSRF = −(X̂IRF

SSRF × ẐIRF
SSRF ), (9.13)

here as an example for the Y-axis. The reason why the orientation of the Z-axis of the SSRF can be determined

much more accurately than the orientation of the X- or Y-axes is that their orientation is determined using the

described virtual vectors. The accuracy of these vectors is depending not only on the accuracy of the derived

star coordinates but also on the accuracy of the derived Z-axis components. But there is an additional aspect to

be considered: if you imagine that the star sensor is rotated about its line of sight, it is clear that the position

change of the observed stars depends on their distance from the line of sight. This means that it makes a

difference which stars are used for the derivation of the virtual vectors and thus the X- and Y-axes; preferably

stars at the border of the image should be used. This is in contrast to the derivation of the Z-axis orientation;

there the position of the observed stars has no influence, as the position change due to a rotation about either

the X- or Y-axis of the SSRF is the same for all observed stars.

9.3. Measurement model

The actual measurement of the star sensor are the pixel coordinates of the observed stars, that are then

transformed into the orientation of the SSRF with respect to the IRF as described above. The orientation can

be parameterized as a Direction Cosine Matrix (DCM) , that has the following properties:

XSSRF = RIRF SSRF · XIRF , (9.14)

i.e. it transforms a vector from the IRF to the SSRF. According to Wertz (1991) we get for RIRF SSRF :

RIRF SSRF =




X̂SSRF · X̂IRF X̂SSRF · ŶIRF X̂SSRF · ẐIRF

ŶSSRF · X̂IRF ŶSSRF · ŶIRF ŶSSRF · ẐIRF

ẐSSRF · X̂IRF ẐSSRF · ŶIRF ẐSSRF · ẐIRF


 , (9.15)

where

X̂IRF , ŶIRF , ẐIRF are the base vectors of the source system, here the IRF,

X̂SSRF , ŶSSRF , ẐSSRF are the base vectors of the target system, here the SSRF.

We will think of X̂SSRF , ŶSSRF , ẐSSRF , the base vectors of the target system in the source system, as the

actual measurements. The base vectors of the source system given in the source system have the simple form:

X̂IRF =




1

0

0



 , ŶIRF =




0

1

0



 , ẐIRF =




0

0

1



 . (9.16)
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Thus equation (9.15) simplifies to:

RIRF SSRF =




x1 x2 x3

y1 y2 y3

z1 z2 z3



 , (9.17)

when

X̂SSRF =




x1

x2

x3



 , ŶSSRF =




y1

y2

y3



 , ẐSSRF =




z1

z2

z3



 . (9.18)

The star sensor delivers the measured orientation not as a DCM but in terms of a quaternion (cf. Wertz (1991)):

q4 = ±1

2

√
(1 + x1 + y2 + z3), (9.19)

q1 =
1

4q4
(y3 − z2), (9.20)

q2 =
1

4q4
(z1 − x3), (9.21)

q3 =
1

4q4
(x2 − y1). (9.22)

9.4. Error model

Figure 9.4: Star sensor error model, picture of the measured and true coordinate axes.

As demonstrated before, the measured orientation can be represented as a measurement of the coordinate axes

of the SSRF in the IRF. A measurement error can thus be represented as a deviation of the measured coordinate

axes from the true axes:
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X̂meas = X̂true + δx. (9.23)

It is to be noted that the measured vector as well as the true vector are unit vectors, but the error vector is not

a unit vector. Thus we get for the DCM:

RIRF SSRF =




(
X̂true + δx

)
· X̂IRF

(
X̂true + δx

)
· ŶIRF

(
X̂true + δx

)
· ẐIRF(

Ŷtrue + δy
)
· X̂IRF

(
Ŷtrue + δy

)
· ŶIRF

(
Ŷtrue + δy

)
· ẐIRF(

Ẑtrue + δz
)
· X̂IRF

(
Ẑtrue + δz

)
· ŶIRF

(
Ẑtrue + δz

)
· ẐIRF


 . (9.24)

Again we can simplify to:

RIRF SSRF =




(x1 + δx1) (x2 + δx2) (x3 + δx3)

(y1 + δy1) (y2 + δy2) (y3 + δy3)

(z1 + δz1) (z2 + δz2) (z3 + δz3)



 , (9.25)

where

X̂true =




x1

x2

x3



 , Ŷtrue =




y1

y2

y3



 , Ẑtrue =




z1

z2

z3



 (9.26)

and

δx =




δx1

δx2

δx3



 , δy =




δy1

δy2

δy3



 , δz =




δz1

δz2

δz3



 . (9.27)

q4 = ±1

2

√
(1 + x1 + δx1 + y2 + δy2 + z3 + δz3), (9.28)

q1 =
1

4q4
(y3 + δy3 − z2 − δz2), (9.29)

q2 =
1

4q4
(z1 + δz1 − x3 − δx3), (9.30)

q3 =
1

4q4
(x2 + δx2 − y1 − δy1). (9.31)

The requirements for the star sensor derived orientation are given in Stanton et al. (1998) in terms of pointing

accuracy of the measured coordinate axes. The requirement for the roll axis is tighter than for the pitch/yaw

axis, as it is crucial for the K-band measurement quality that the two K-band horns point at each other as

accurately as possible. The influence of a misalignment of the pitch/yaw axis on the K-band measurement

quality is significantly smaller resulting in a less tight requirement. Let us now discuss the contributors to

the star sensor measurement error. Considering figure 9.5, it is clear that first of all the measurement error

depends on the accuracy of the star positions. By taking the image, an additional error arises, because each

optical system is subject to image errors that result from imperfections of the used optical components. This

abberation can be corrected for, as it is systematic, but there remains an error. The analog image delivered by
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CCD

lens

zSSRF

star

Figure 9.5: Overview of the star camera and image taking process.

the optical system is digitized by the CCD sensor, that has only a finite resolution. Therefore an additional

error arises. The total measurement error can thus be described as:

δx = δxSC + δxOS + δxCCD , (9.32)

where

δxSC is the error component due to the position errors in the star catalogue,

δxOS is the error component due to the optical system,

δxCCD is the error component due to the image digitization of the image by the CCD sensor.

This error is then propagated depending on the method used for the determination of the orientation, that

has not necessarily to be the same as the one outlined in the logical model section. Therefore no full error

propagation from the level of the pixel coordinates to the derived orientation will be conducted. We will assume

that the star sensor just delivers an orientation with a certain error. According to Jørgenson (1999), the error

term can also be characterized in the following way:

• Noise Equivalent Angle (NEA): this is the RMS noise of successive attitude updates when the star tracker

is repeatedly taking the same image,

• relative accuracy: the accuracy of the star tracker taking an image series obtained from a known attitude

motion pattern,

• absolute accuracy: long term accuracy

and in its combination is assumed to be white noise. There is certainly a correlation between the subsequently

derived attitudes, but this correlation is neglected in this work.

For error simulation, the measurement error can be treated as the angle ε between the true and the measured

axis, and thus the error vectors δx, δy, δz can be determined as

cos ε = X̂true · (X̂true + δx) = X̂true · X̂meas, (9.33)

where the true axes are known. Figure 9.4 depicts the measured and the true axes.

From the instrument manufacturer only the maximum values for the angles between the true and measured

axes, εx, εy and εz are known. The direction towards which the measured axis is tilted is arbitrary. We will
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Figure 9.6: Geometric relations between measured and true axes, shown here for the x-axis.

now show the derivation of the error vectors δx, δy, δz. Considering figure 9.6, the following vectors can be

derived:

δx′ =




0

tan εx · cos αx

tan εx · sinαx



 , (9.34)

δy′ =




tan εy · cos αy

0

tan εy · sin αy



 , (9.35)

δz′ =




tan εz · cos αz

tan εz · sin αz

0



 . (9.36)

Now the measured axes can be derived as:

X̂meas =
X̂true + δx′

|X̂true + δx′|
, (9.37)

Ŷmeas =
Ŷtrue + δy′

|Ŷtrue + δy′|
, (9.38)

Ẑmeas =
Ẑtrue + δz′

|Ẑtrue + δz′|
(9.39)

and

δx =
X̂true + δx′

|X̂true + δx′|
− X̂true, (9.40)

δy =
Ŷtrue + δy′

|Ŷtrue + δy′|
− Ŷtrue, (9.41)

δz =
ẑtrue + δz′

|Ẑtrue + δz′|
− Ẑtrue. (9.42)

For error simulation we can assume that the axes of the true system and the IRF are collinear, meaning

X̂IRF = X̂true =




1

0

0



 , ŶIRF = Ŷtrue =




0

1

0



 , ẐIRF = Ẑtrue =




0

0

1



 . (9.43)
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Thus we derive:

δx =
1√

1 + tan2 εx




1 −
√

1 + tan2 εx

tan εx · cos αx

tan εx · sinαx


 , (9.44)

δy =
1√

1 + tan2 εy




tan εy · cos αy

1 −
√

1 + tan2 εy

tan εy · sinαy



 , (9.45)

δz =
1√

1 + tan2 εz




tan εz · cos αz

tan εz · sinαz

1 −
√

1 + tan2 εz


 . (9.46)

The pointing accuracy requirements for GRACE are 30 µrad or 6 arcseconds for the x-axis and 240 µrad or 50

arcseconds for the orientation of the y- and z-axis, i.e. εx = 30 µrad and εy = εz = 240 µrad.

The measured quaternions are then given as:

q4 = ±1

2

√√√√
(

4 +
1 −

√
1 + tan2 εx√

1 + tan2 εx

+
1 −

√
1 + tan2 εy√

1 + tan2 εy

+
1 −

√
1 + tan2 εz√

1 + tan2 εz

)

= ±1

2

√√√√
(

1 +
1√

1 + tan2 εx

+
1√

1 + tan2 εy

+
1√

1 + tan2 εz

)
, (9.47)

q1 =
1

4q4

(
(tan εy sin αy)√

1 + tan2 εy

− (tan εz sinαz)√
1 + tan2 εz

)
, (9.48)

q2 =
1

4q4

(
(tan εz cos αz)√

1 + tan2 εz

− (tan εx sin αx)√
1 + tan2 εx

)
, (9.49)

q3 =
1

4q4

(
(tan εx cos αx)√

1 + tan2 εx

− (tan εy cos αy)√
1 + tan2 εy

)
. (9.50)

Since for small angles tanx ≈ x, we can simplify the above equations without loss of generality to:

q4 = ±1

2

√√√√√√


1 +

1√
1 + ε2

x

+
1√

1 + ε2
y

+
1√

1 + ε2
z


, (9.51)

q1 =
1

4q4




(εy sinαy)√
1 + ε2

y

− (εz sin αz)√
1 + ε2

z


 , (9.52)

q2 =
1

4q4

(
(εz cos αz)√

1 + ε2
z

− (εx sinαx)√
1 + ε2

x

)
, (9.53)

q3 =
1

4q4




(εx cos αx)√
1 + ε2

x

− (εy cos αy)√
1 + ε2

y


 . (9.54)

Figure 9.7 gives an example of simulated star sensor noise. The component q4 is cos(Φ) and the other three

components q1 to q3 are the rotation vector. For q4 an error angle can be derived directly, for the vector

components the angle between the true and measured vector is derived. The figure shows the component error

angle in arc seconds. We notice that the error is about 1 · 10−8 rad for cos(Φ) or about 11 arcseconds for the

rotation angle Φ and 1 · 10−4 rad or about 9 arcseconds for the rotation vector elements.
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Figure 9.7: Simulated quaternion noise expressed in arcseconds resp. arcseconds/
√

Hz. For all components the noise is similar in

the spectral and in the time domain.

Table 9.1: Standard deviation of the simulated quaternion components expressed in arc seconds.

component σ [arcseconds]

q4 11

q1 9

q2 9

q3 9
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10. K-band system

Figure 10.1: Schematic view of the K-band microwave-link system, Thomas (1999)

10.1. Introduction

The K-band ranging system (KBR) is the key instrument of the GRACE mission. A schematic overview is shown

in figure 10.1. Each satellite is equipped with a horn used for transmission and reception of the intersatellite

dual-band µ-wave signals at 24 GHz for K-band and 32 GHz for Ka-band. The horns are based on the type of

feed horns used in JPL’s Deep Space Network. The transmitted signals on the K- and Ka-band are sinusoidal.

On each band there is a frequency offset between the two satellites signals of 0.5 MHz. The signals are generated

by an ultra stable oscillator (USO). Upon reception the signals of each band are down-converted to 0.5 MHz

using the transmitted signal of the same band as a reference. In the instrument processing unit (IPU) the phase

is extracted and delivered to the on-board data handling (OBDH) computer at a nominal sample rate of 10 S/s.

10.2. Logical model

The purpose of the phase measurements is to measure the biased distance between the two GRACE satellites.

The phase measurement itself is the measurement of the phase difference between the signal received from

satellite B and a reference signal at satellite A or vice versa. But how can this phase difference be used to derive

the range between two satellites? Let us assume that the two satellites are separated by a certain distance. On

each satellite there is an oscillator. Let us further assume that the two oscillators are perfectly synchronized,

i.e. their phases agree perfectly, and that they run at identical frequencies. If now the signal from the oscillator

on satellite A is sent over the distance A/B and received at satellite B, the phase difference between signal A

and signal B will give information about the distance: If the phase difference was zero, we would know that the

distance is an integer multiple of the wavelength of the sent signal, if the difference was different from zero, we

would know that the separation distance is an integer multiple of the signal wavelength plus the measured phase

difference converted into a residual distance using the velocity of light. This would require that somehow the

integer number of wavelengths is known, in order to derive an absolute value for the inter-satellite distance. In

reality this value is not known, i.e. using only the phase measurement, one can only determine a biased range.
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In addition, the assumptions made before do not hold in reality: The oscillators of the two satellites are not

perfectly synchronized, there is an offset (clock error), which leads to a systematic phase difference between the

two satellite signal phases. In addition, the frequencies of the oscillators are not constant, there are frequency

errors that also lead to unwanted phase differences. Also the travel through the medium from one satellite to

the other influences the phase of the emitted (received) signal: Depending on the amount of electrons along the

signal path, the phase is changed more or less. The received signal consists not only of the directly received

signal, but contains contributions from reflections at the satellites surfaces, which also leads to unwanted phase

alterations. Additionally, there are errors resulting from the necessary analog to digital conversions, the phase

extraction itself and the cable delay. These considerations are formulated mathematically in the next section

in order to arrive at the measurement model.

10.3. Measurement model

The measurement model formulation is given in Kim (2000). We get for the extracted phase values at a nominal

epoch t:

φB
A = φA(t + ∆tA) − φB(t + ∆tA) + NB

A + IB
A + dB

A + ǫB
A , (10.1)

φA
B = φB(t + ∆tB) − φA(t + ∆tB) + NA

B + IA
B + dA

B + ǫA
B, (10.2)

with

φB
A differential phase measurement at GRACE A,

φA
B differential phase measurement at GRACE B,

t nominal reception time,

∆tA, ∆tB clock errors on GRACE A and GRACE B,

φA(t + ∆tA) GRACE A receiver reference phase,

φB(t + ∆tA) GRACE B transmitted phase received by GRACE A,

φB(t + ∆tA) GRACE B receiver reference phase,

φA(t + ∆tB) GRACE A transmitted phase received by GRACE B,

NB
A , NA

B integer ambiguities,

dB
A , dA

B phase shift due to neutral atmosphere, instrument offset, multipath a.s.o.,

ǫB
A , ǫA

B random measurement noise.

GRACE A is the leading satellite and GRACE B is the trailing satellite. The unit of the phase measurement

is cycles. Each reference phase consists of the true reference phase φ̄ and the phase error δφ due to oscillator

drift:

φA = φ̄A + δφA, (10.3)

φB = φ̄B + δφB . (10.4)

The received phase can also be described in terms of the transmitted phase using the transmission time τA
B from

satellite A to satellite B:

φA(t) = φA(t − τA
B ). (10.5)
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The transmission time is different for each satellite, as they are moving: the leading satellite flies ’away’ from

the signal, the trailing satellite flies ’into’ the signal wave. Substitution of eq. (10.3) to (10.5) into eq. (10.1)

and (10.2) yields:

φB
A = φ̄A(t + ∆tA) + δφA(t + ∆tA) − φ̄B(t + ∆tA − τB

A ) − δφB(t + ∆tA − τB
A )

+ NB
A + IB

A + dB
A + ǫB

A , (10.6)

φA
B = φ̄B(t + ∆tB) + δφB(t + ∆tB) − φ̄A(t + ∆tB − τA

B ) − δφA(t + ∆tB − τA
B )

+ NA
B + IA

B + dA
B + ǫA

B . (10.7)

The phase at measured reception time t + ∆tA can be linearized at the nominal time t as:

φ̄A(t + ∆tA) ≈ φ̄A(t) + ˙̄φA(t) · ∆tA. (10.8)

Also the phase at the transmit time t + ∆tA − τA
B can be linearized at the nominal time t as:

φ̄A(t + ∆tB − τB
A ) ≈ φ̄A(t) + ˙̄φA(t) · ∆tB − ˙̄φA(t) · τA

B . (10.9)

The phase error can be linearized in the same way:

δφA(t + ∆tA) ≈ δφA(t) + δφ̇A(t) · ∆tA,

δφA(t + ∆tB − τA
B ) ≈ δφA(t) + δφ̇A(t) · ∆tB − δφ̇A(t) · τA

B . (10.10)

The rate of phase change ˙̄φA(t) is equivalent to the nominal frequency fA, the rate of phase change error δφ̇A(t)

is therefore equivalent to the frequency error δfA. These results lead to:

φB
A = φ̄A(t) + fA · ∆tA + δφA(t) + δfA · ∆tA − φ̄B(t) − fB · ∆tA + fB · τB

A

− δφB(t) − δfB · ∆tA + δfB · τB
A + NB

A + IB
A + dB

A + ǫB
A

= φ̄A(t) − φ̄B(t) + δφA(t) − δφB(t) + (fA − fB) · ∆tA + (δfA − δfB) · ∆tA

+ (fB + δfB) · τB
A + NB

A + IB
A + dB

A + ǫB
A , (10.11)

φA
B = φ̄B(t) + fB · ∆tB + δφB(t) + δfB · ∆tB − φ̄A(t) − fA · ∆tB + fA · τA

B

− δφA(t) − δfA · ∆tB + δfA · τA
B + NA

B + IA
B + dA

B + ǫA
B

= φ̄B(t) − φ̄A(t) + δφB(t) − δφA(t) + (fB − fA) · ∆tB + (δfB − δfA) · ∆tB

+ (fA + δfA) · τA
B + NA

B + IA
B + dA

B + ǫA
B. (10.12)

The time tag error ∆tA can be expressed in terms of the phase error δφA as, cf. Kim (2000):

∆tA = − δφA(t)

fA
, (10.13)
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which yields:

φB
A = φ̄A(t) − φ̄B(t) + fB · τB

A +

(
1 − fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) − δφB(t),

+ δfB · τB
A + ǫA

system + NB
A + IB

A + dB
A (10.14)

= φ̄A(t) − φ̄B(t) + fB · τB
A + ǫA,B

uso + ǫA
system + NB

A + IB
A + dB

A . (10.15)

The measured phase value consists of the difference of the two reference phases, a term depending on the

transmission time and error terms. The phase error consists of five terms:

1. Error due to USO instability,

2. error due to system noise,

3. error due to phase ambiguity,

4. error due to Ionosphere delay,

5. error due to phase shift due to atmosphere, multipath and others.

10.4. Error model

Error due to USO instability

ǫA,B
uso =

(
1 − fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) − δφB(t) + δfB · τB

A . (10.16)

The error due to USO instability consists of five terms. The first three terms are a scaling of the phase error

δφA(t) of the receiving satellite, depending on the phase error itself, the frequency difference fA − fB of the

two satellites USOs and the frequency error difference δfA − δfB. The error due to frequency difference and

frequency error difference is expected to be smaller than the phase error itself, as they are scaled by the nominal

frequency. As fourth term, the phase error δφB(t) due to USO instability from the sending satellite enters the

error equation linearly. The last term consists of the frequency error δfB of the sending satellite’s USO times

the transmission time τB
A .

Usually the error behavior of an oscillator is specified in terms of an Allan variance, but it is more convenient

to specify the error in terms of a power spectral density. From Thomas (1999) we get for the phase noise of the

oscillators in terms of [rad2/Hz]:

Sδφ = 3.16 · 10−16 +
8.38 · 10−13

f2
+

5.74 · 10−14

f3
+

6.39 · 10−17

f4
. (10.17)

The frequency error is the time derivative of the phase error, as

δf = δφ̇(t) = 2πfδφ. (10.18)
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So we get for the frequency error PSD:

Sδω = (2πf)2 · (Sδφ)

= (2πf)2 ·
(

3.16 · 10−16 +
8.38 · 10−13

f2
+

5.74 · 10−14

f3
+

6.39 · 10−17

f4

)
. (10.19)

The phase and frequency error pertain to the USO normal frequency f0. To scale them to K resp. Ka Band

and to transform from [rad2] to [cycle2], we get:

S
fK/Ka

δφ =

(
fK/Ka

2π · f0

)2

· Sδφ, (10.20)

S
fK/Ka

δf =

(
fK/Ka

2π · f0

)2

· (2πf)2 · (Sδφ). (10.21)

As the error is random, differentiation of the phase errors of the two satellites does not cancel but double them,

thus we can rewrite eq. (10.16) and specify the PSD of the phase error:

S
K/Ka
ǫuso =


2 +

(
∆f

fK/Ka

)2

+



 2S
fK/Ka

δf

fK/Ka




2

 · SfK/Ka

δφ + S
fK/Ka

δf · τB
A . (10.22)
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Figure 10.2: Root PSD of the phase noise due to USO instability. The phase noise shows a 1
f 2 behavior at low frequencies and then

converges into white noise at high frequencies.

Figure 10.2 shows the root PSD of the phase noise due to the USO error. As expected, it increases strongly

at low frequencies and levels out to white noise at high frequencies. Figure 10.3 shows the root PSD of the

frequency noise due to the USO error. As the frequency noise is the time derivative of the phase noise, it shows

a 1
f behavior at low frequencies and also rises proportional to f at high frequencies. Figure 10.4 shows the

root PSD of the contributions of all phase noise sources. It can be stated that the largest contributor by far is

the phase noise itself, only at frequencies above 100 Hz the frequency error scaled by the transmission time is

dominating. The error due to the frequency offset of the two satellites oscillators is five orders of magnitude

smaller than the phase error, the error due to the frequency error is even ten orders of magnitude smaller. For

error simulations, it is sufficient to consider the phase noise and the frequency error scaled by the transmission

time.



98 10 K-band system

10
−6

10
−4

10
−2

10
0

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

frequency [Hz]

F
re

qu
en

cy
 e

rr
or

 [c
yc

le
s/

s/
sq

rt
(H

z)
]

 

 

USO @ 5 MHz
KA−Band @ 32 GHz
K−Band @ 24 Ghz

Figure 10.3: Root PSD of the frequency noise due to USO instability. The frequency noise is the time derivative of the phase noise.

The frequency error increases at low as well as at high frequencies.
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Figure 10.4: Root PSD of the phase measurement error contributors due to USO noise. The largest contributors are the phase errors

and the frequency errors scaled by the transmission time between the two satellites, followed by the error contribution dependent

on the frequency offset between the two satellites. The contribution of the frequency errors is smallest.
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Error due to system noise

The system noise consists mainly of two effects: the background noise and the thermal noise, i.e. the mea-

surement error caused by the K-band system itself due to ,e.g., the analog to digital conversion, the phase

measurement process and the error caused by temperature variations. According to Thomas (1999), the system

noise is white and can be approximated by the following equation:

ǫsystem =
1

2πSNR
[cycles], (10.23)

in units of cycles, which corresponds to a system noise error of 53 µcycles 1-σ standard deviation for 1 s data

with a typical value for the Signal to Noise Ratio (SNR) of SNR = 2800.

Error due to phase ambiguity

From the incoming signal not only the phase with respect to the internal signal is derived, but there is also

a counter that counts the integer number of cycles received. The distance between the two satellites can be

expressed as an integer number of cycles plus the length corresponding to the phase difference. The recorded

number of cycles differs from the true number of cycles by an integer number, the so-called integer phase

ambiguity NA.

Error due to ionosphere delay

On its way between the two satellites, the K-band signal is delayed depending on the density of free electrons

along the signal path. The Total Electron Content (TEC) is a measure for this quantity. The electrons lead to

a phase shift, i.e. a phase error that is inversely proportional to the carrier frequency and directly proportional

to the TEC along the signal path:

IA =
TECA

B

fB
[cycles]. (10.24)

The error varies from epoch to epoch and is dependent on the actual state of the ionosphere. As the actual

frequencies of the satellite oscillators can be estimated, a ionosphere free linear combination can be formed and

thus the error can be eliminated, see chapter 15, and is therefore not explicitly modeled here.

Error due to phase shift caused by the atmosphere and multipath

According to Kim (2000), the error due to multipath can be neglected, as it is well below the level of one

micrometer. This is only true if the mutual orientation of the GRACE satellites stays within certain boundaries.

For this work, it is assumed that the attitude control system fulfills the requirements and that the effect of multi-

path can therefore be neglected.

Total phase error

Figure 10.5 shows the total phase error. The total phase error is the sum of the above discussed individual error

sources; here the error is specified as a root PSD, thus the error due the phase ambiguity does not contribute as

it is a constant that is visible on the zero frequency of the PSD. The error due to the ionosphere is not included.

We note that at low frequencies the error due to USO instability dominates and leads to a 1/f2 rise. At high

frequencies the system noise dominates as white noise with a level of about 53 ·10−6 cycles/
√

Hz. Especially the
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Figure 10.5: Total phase measurement error due to the phase noise and system noise. The USO noise dominates at low frequencies

and rises with a 1
f2 slope, i.e. it causes a strong drift in the phase measurements. At high frequencies, the white system noise is

the dominating phase error contributor.

strong rise at low frequencies in the total error would deteriorate the use of the phase measurements for range

determination; only through the combination of the phase measurements of the two satellites an inter-satellite

range of a considerable quality can be derived, see chapter 15.
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11. GPS Receiver

Figure 11.1: Black-Jack GPS receiver flight model, from www.gfz-potsdam.de.

11.1. Introduction

On both GRACE satellites a space approved Black-Jack Global Positioning System (GPS) receiver is installed,

see figure 11.1. In contrast to the K-band ranging system, the GPS receiver is a passive ranging system, i.e.

it does no emit electromagnetic signals, it only receives them via the GPS antenna. The signal source are the

GPS satellites. We will not give a detailed description of the GPS, the interested reader may consult Rothacher

(2001), also for additional literature. We will only give a brief overview of the different available signals and

give simple measurement models for the code and phase measurements. Figure 11.2 shows an overview of the

different signals emitted by the GPS satellites. All signals are driven by an oscillator running at a frequency

of 10.23 MHz. The two carrier signals L1 at 1575.42 MHz and L2 at 1227.60 MHz are generated by a scaling

of the oscillator frequency. The L1 and L2 signals are used for the phase measurements. Both carrier signals

are modulated by the code signals: L1 is modulated by the Clear Access / Coarse Aquisition (C/A) code at

1.023 MHz and the Protected/Precise code P1 at 10.23 MHz. L2 is modulated by the P2 code at 10.23 MHz.

There is no C/A code on L2. The satellite message contains additional information needed for the position

determination process: the GPS satellite position, the satellite clock error, the health status of the satellite and

others.
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Figure 11.2: Overview of the Signal emitted by the GPS satellites, from Rothacher (2001).

11.2. Measurement models

We will now give the measurement models for the pseudorange and phase measurements from Rothacher (2001).

11.2.1. Pseudorange measurements

Figure 11.3: Pseudorange or Code measurement, from Blewitt (2006).

The measurement principle of the pseudorange measurements is shown in figure 11.3. The received signal from

the GPS satellite is compared to a reference signal generated by the receiver. Assuming that both the receiver

and the satellite clock are perfectly synchronized and that the signal travels through vacuum, the time shift

between the two signals determined by the receiver correlator is the transmission time of the received signal

from the GPS satellite to the receiver. The signal speed is the velocity of light, so the distance between satellite

j and the receiver A is given by:

P j
A = c · (Tr − T s), (11.1)

with

P j
A measured range between satellite j and the receiver A,

c velocity of light,

Tr epoch of signal reception,

T s sending epoch.
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In reality, the satellite and receiver clock are not synchronized, the signal travels not through vacuum and there

are additional error sources including the measurement noise. The measured range is not the true one and is

therefore called pseudorange. A more realistic measurement model is:

P j
A = ρj

A − δρj
A,ion + δρj

A,rel + δρj
A,mul,C + cδtA + cδtj + cβj + cβA + ǫj

A,C , (11.2)

with

P j
A pseudorange measurement between satellite j and the receiver A,

ρj
A geometric distance between satellite j and the receiver A,

δρj
A,ion influence of the ionosphere,

δρj
A,rel relativistic correction due to the velocity and potential difference between receiver and satellite,

δρj
A,mul,C the influence of multipath on the code measurement,

cδtA range error due to the receiver clock error,

cδtj range error due to the satellite clock error,

cβj signal delay on satellite j (from signal generation until emission),

cβA signal delay in the receiver (from the antenna to the correlator),

ǫj
A,C code measurement error.

11.2.2. Carrier phase measurements

Figure 11.4: Carrier phase measurement, from Blewitt (2006).

During a uniform rotation with the frequency f , the phase angle or phase increases linearly with time (cf. figure

11.4):

Φ = f · t + Φ0, (11.3)

where Φ0 is the unknown initial phase. The carrier phase measurement of the receiver is the phase difference

between the receiver reference phase and the received phase from satellite j:

φj
A = Φ0,r − Φj

GPS,r , (11.4)

with

φj
A phase measurement of the receiver A to satellite j,

Φ0,r reference phase at signal reception time Tr ,

Φj
GPS,r received phase from GPS satellite j at signal reception time Tr.

The receiver can only measure the fractional phase of the received signal from the GPS satellite, therefore the

emitted signal differs from the receipt signal by an integer number of cycles:
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Φj
GPS,r = ΦGPS,s

j − Nj
A, (11.5)

with

ΦGPS,s
j GPS phase (cycles) emitted by satellite j at Ts,

Nj
A integer number of full cycles contained in ΦGPS,j

j , so called ’integer phase ambiguity’.

The phase ambiguity has to be solved, if the true distance between satellite and receiver is to be derived,

otherwise the phase measurement delivers only a biased range.

Using equation (11.3), we rewrite the expressions for the reference phase of the receiver and the phase received

from the GPS satellite:

Φ0,r = fTr + αA,

Φj
GPS,r = fT s + αj − Nj

A,

where αj is the signal delay on satellite j from generation till emission and αA is the signal delay in the receiver

from the antenna to the correlator.

The measurement model then becomes:

φj
A = Φ0,r − Φj

GPS,r

= fTr + αA − (fT s + αj − Nj
A)

= f(Tr − T s) + αA − αj + Nj
A. (11.6)

We can transform the phase measurement in cycles into a distance measurement by multiplication by the

nominal wavelength λ = c/f :

Lj
A = λφj

A

= c(Tr − T s) + λ(αA − αj + Nj
A). (11.7)

This measurement model is again not realistic as it makes the same assumptions as the simple model for the

pseudorange measurement. A realistic model is given by:

Lj
A = ρj

A + δρj
A,ion + δρj

A,rel + δρj
A,mul,φ + cδtA + cδtj + λ(Nj

A − αj + αA) + ǫj
A,φ, (11.8)

with

Lj
A measured range between satellite j and the receiverA,

ρj
A geometric distance between satellite j and the receiver A,

δρj
A,ion influence of the ionosphere,

δρj
A,rel relativistic correction due to the velocity and potential difference between receiver and satellite,

δρj
A,mul,φ the influence of multipath on the phase measurement,

cδtA range error due to the receiver clock error,

cδtj range error due to the satellite clock error,

ǫj
A,φ phase measurement error.
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11.3. Error model

The error model we will use for the data analysis is simple, we model the phase measurement error and the

code measurement error as white noise of a certain power. The other error sources are neglected as they are

not random but systematic, at least over short time intervals. During the real data analysis, only consecutive

epochs, where the same satellite has been tracked, are used. The noise specifications are given in table (11.1).

Table 11.1: Noise level specifications for the Black-Jack GPS receiver from Stanton et al. (1998).

observation type noise level 1σ [cm] 10 s sampling error [
√

PSD cm/s2/
√

Hz]

code measurements 100 400

phase measurements 1 4
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Part IV.

Real data processing and analysis



12 Data levels overview 107

12. Data levels overview

Figure 12.1: Overview of the different data levels

In figure 12.1 an overview over the different data levels is shown. In principle, there are three data levels:

level 0, level 1 and level 2. Level 0 corresponds to the raw instrument data, level 2 corresponds to the level of

products like gravity fields for a large user community. The intermediate level 1 can be split up into level 1a

and level 1b. Level 1a represents the calibrated instrument data given in their native coordinate frames, see

section D.5, and at their original sample rate. Here ’calibrated’ means converted into engineering units and

arranged to cover one day per file. The original level 0 data is dumped by the satellites at each fly-by at the

ground stations in Weilheim and Neustrelitz and therefore available in chunks covering about one revolution of

the satellites. Several processing steps are necessary to transform the calibrated instrument data (level 1a) to

the gravity field determination input data (level 1b).
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13. Data products overview

13.1. Science data products

Figure 13.1: Overview of the GRACE data products of the main elements of the sensor system.

The description of the GRACE data products can be found in Bettadpur (2007). In figure 13.1, the data

products for the science data stream are depicted. The accelerometer data products for level 1a are labeled

ACC1A, the products for level 1b are labeled ACC1B. As there is one accelerometer on each satellite, there

is a separate product for each satellite. The star sensor data are labeled SCA1A for level 1a and SCA1B for

level 1b. Each satellite possesses two star sensor heads. The data from the two heads are contained separately

in the level 1a product. The level 1b product contains the orientation resulting from the combination of the

two sensor heads. Again there is one product for each satellite. The K-band ranging data products are labeled

KBR1A for the level 1a and KBR1B for the level 1b. The level 1a contains the phase measurements for the Ka

and the K-band, there is one product for each satellite. The level 1b product contains the derived intersatellite

range, range rate and range acceleration. Therefore there is only one product for the two satellites.

13.2. Housekeeping data products

The housekeeping data products contain ancillary data. For this work, the following housekeeping products

were used, description from Bettadpur (2007):

Name Description

TIM1B On-board data handler to GPS time mapping

CLK1B Precise clock solution

USO1B Ultra stable oscillator frequency estimate

THR1B Thruster activation data

MAG1B Magnetometer and magnetotorquer data
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13.3. Data set description

The data set investigated covers August in 2003. For the star tracker, the accelerometer and the K-band ranging

system, L1a data as well as L1b data were available. For the GPS receiver data, only L1b data were available.

Concerning auxiliary data like thruster activation data, magnetic torque rods activation data and others, only

the L1b data are considered.
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14. Level 1a data analysis

The measurements of each instrument are analyzed in order to identify the performance of the instrument.

The analysis also aims at a thorough understanding of the instruments’ data. Unexpected behavior shall be

identified and, if possible, also the underlying reasons. For the GPS receiver no L1a data were available for

analysis.

14.1. Analysis of the star tracker data

The L1a star tracker data product contains the data from both sensor heads of the star tracker of each satellite.

The delivered quaternions represent the transformation from the inertial reference frame (IRF) to the star sensor

reference frame (SSRF). In order to compare the measurements of both heads, it is necessary to transform them

into quaternions representing the rotation from the IRF to the science reference frame (SRF):

Q
srf
irf = Q

ssrf
irf ⋆ Q

srf
ssrf . (14.1)

The information about the orientation of the SSRF w.r.t. the SRF is derived pre-launch, as well as post-launch,

during calibration maneuvers. It is also interesting to analyze the angular rates derived from the quaternions

and to assess their performance, as they may be combined with the accelerometer measurements in the L1a to

L1b processing. For details about the derivation of the angular rates from an orientation representation, see

appendix Annex C for more details.

Figure (14.1) shows the time series of the star tracker measurements of GRACE A and B for a sample day. Let

us first take a look at the data from GRACE A shown in the left panels. First we realize that the data delivered

by head 2 show a sinusoidal behavior. The period of the oscillation is about once every two revolutions. At

a first glance this may seem strange, as usually all the sensor measurements show a strong signal at the orbit

frequency. The reason lies in the definition of the quaternions. They depend on the square root of the change

of the coordinate axes. The axes change with the orbit frequency, the square root of this change is then an

oscillation at half the orbit frequency. The data of head 1 are different. Once every revolution all quaternion

elements change their sign simultaneously and have the opposite sign of the data delivered by head 2 until the

next change happens. Then the signs of the data agree until the next change and so on. The reason is that

for this sample day the orbit of GRACE A is oriented towards the Sun/Moon in such a way, that once every

revolution the sunlight/moonlight blinds head 1 and interrupts the data delivery, marked as invalid data in

the figure. When the data delivery recommences, the quaternions have either the same or the opposite sign as

the quaternions from head 2. A change of sign of all quaternion components does not change the represented

orientation, therefore head 1 and 2 give the same orientation during times of simultaneous data delivery.

The right panels of figure 14.1 show the same period for the data delivered by the star sensor heads of GRACE

B. As GRACE B is rotated by 180◦ about the z-axis compared to GRACE A, head 1 delivers data continuously

and head 2 is blinded by the Sun/Moon every revolution, interrupting the data delivery (marked again as invalid

data).

The top panels of figure 14.2 show the root PSD of the star tracker quaternions of GRACE A. Let us first take

a look at the root PSD of the data from head 1 (top left panel). The frequency range at low frequencies is

limited because of the multiple Sun/Moon intrusions. At high frequencies, the root PSD becomes white noise
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Figure 14.1: Left panels: Time series of the star tracker quaternions of GRACE A, head 1 and head 2, for a sample day. Right

panels: Time series of the star tracker quaternions of GRACE B.

at a frequency of about 2−3 ·10−2 Hz. The noise level seems to be slightly better than specified. The frequency

range at low frequencies of the root PSD of the data from head 2 (top right panel) is larger, as for this example

head 2 is not blinded by the Sun/Moon and delivers data continuously. Therefore we note a strong signal on

half the orbit frequency at about 9 − 10 · 10−5 Hz. Concerning the behavior at high frequencies, the same

conclusions hold as for the data from head 1: The noise level is slightly better than specified.

The two lower panels show the root PSD of the data delivered from the star sensor heads on GRACE B. As here

head 1 (lower left panel) delivers data continuously and head 2 (lower right panel) is blinded regularly by the

Sun/Moon, the frequency range of the root PSD of the data from head 2 is limited and therefore the signal at

half the orbit frequency is not resolved. Concerning the noise level, it seems that the data delivered from head

1 do not meet the required noise level. The reason is that the data from head 1 are interrupted due to invalid

measurements, although this occurs much less often than on head 2. In order to derive the root PSD for a full

day, the gaps were filled by interpolation. The interpolated data differ significantly from the measured ones and

cause a noise level that is higher than specified. We will determine the noise level later, when we analyze the

difference of both heads.

Let us take a look at the angular rates derived from the quaternions in figure 14.3.

First, we analyze the angular rates on GRACE A in the time domain, shown in the top left three panels.

As expected, the rates about the x- and the z-axis show no bias, but the y-axis does show a bias of about

1.1 · 10−3 rad/s, that corresponds to a full rotation about the y-axis during one revolution. The satellites rotate

about their y-axis once per full revolution, as the attitude control maintains the satellite earth pointing. Intervals

of invalid data exhibit strong oscillations. The noise of the rate about the x-axis is significantly smaller than the

noise of the angular rates about the y- and z-axis. It is smaller because this rotation is perfectly perpendicular

to the line of sight of each star camera head. The rotations about the y- and z-axis are only partly perpendicular

to the line of sight of the camera heads and therefore determined less well.

The root PSD of the angular rates on GRACE A are shown in the top right panel. For all axes, there is peak

at the orbit frequency. The x- and z-axis show a second peak at about 1 · 10−3 Hz. A third peak is visible at

about 5 − 6 · 10−3 Hz, that is most prominent for the y-axis and less pronounced for the x- and z-axis. The

cause seems to lie in the attitude control system, that causes angular accelerations through the magnetic torque

rods and the cold gas thrusters, we will investigate this later. The constant angular velocity about the y-axis

does not show up in the root PSD. Starting from about 1 · 10−2 Hz, noise starts to dominate the spectrum and

rises to a level of about 5 · 10−4 rad/s/
√

Hz. The noise level at the high frequencies is higher than the signals

from the attitude control system, therefore one recognizes only noise in the time series of the angular rates.
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Figure 14.2: Top panels: root PSD of the star tracker quaternions of GRACE A, head 1 (left) and head 2 (right), for a sample day.

Bottom panels: root PSD of the star tracker quaternions of GRACE B, head 1 (left) and 2 (right).

The time series of the angular rates on GRACE B is shown in the lower left three panels. The observations

made for GRACE A seem also to be true for GRACE B. The noise level of the angular rate about the x-axis is

significantly smaller than that of the rates about the other axes. It is interesting that it seems as if the noise

level of the rates derived from head 2, that is regularly blinded by the Sun/Moon, is significantly lower than

that of the rates derived from head 1. That is not true, the reason lies in different sampling rates: the data

from head 1 are sampled at 1 Hz, the data from head 2 at 0.2 Hz. Due to the reduced bandwidth of the data

from head 2, its noise level is also reduced significantly.

The root PSD of the angular rates from GRACE B in the lower right panel shows the same behavior as the

root PSD of the angular rates from GRACE A.

Another possibility to assess the performance of the star sensor heads is to compare their data directly. In prin-

ciple they should provide the same orientation, if one neglects systematic errors resulting, e.g., from imperfect

knowledge of the orientation of the respective sensor head with respect to the satellite body frame. The differ-

ence of the sensor head measurements should give an indication of an upper limit of the sensor error, as random

noise adds up when being subtracted. Figure 14.4 shows the difference of the sensor head measurements.

The top left panel shows a period where data from both heads on GRACE A are available. It seems that the

difference depends on the time difference to the epoch where the Sun/Moon blinds sensor head 1. The closer the

Sun/Moon intrusion, the larger the oscillation of the difference. We assume that the data quality of the sensor

head that is not blinded regularly by the Sun/Moon remains constant. It seems then sensible to assume that
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Figure 14.3: Top left three panels: time series of the star tracker derived angular rates of GRACE A, head 1 and head 2. Top right

panel: root PSD of star tracker derived angular rates of GRACE A. Lower left three panels: time series of the star tracker derived

angular rates of GRACE B, head 1 and head 2. Lower right panel: root PSD of star tracker derived angular rates of GRACE B.

the data quality of the sensor had that is blinded regularly varies with time. For a possible sensor head’s data

combination, only epochs at a certain distance from Sun/Moon intrusions should be used or the data should be

weighted accordingly.

The top right panel shows the root PSD of the difference. The observations made in the time domain are

confirmed. One would expect only white noise for the difference, assuming a white noise behavior of the sensor

error. But the PSD shows a slight rise towards low frequencies. This drift results from the deterioration of the

data of the regularly blinded sensor head towards the full Sun/Moon intrusions. The noise level is estimated to

be lower than 2 · 10−4 rad/s/
√

Hz, which agrees with the specification.

The comparison of the data of both sensor heads on GRACE B (see lower left and lower right panel of figure

14.4) delivers the same results.
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Figure 14.4: Top left panel: Difference of the measurements of sensor head 1 and 2 on GRACE A in the time domain. Top right

panel: root PSD of the difference of the measurements of sensor head 1 and 2 on GRACE A. Lower left panel: Difference of the

measurements of sensor head 1 and 2 on GRACE B in the time domain. Lower right panel: root PSD of the difference of the

measurements of sensor head 1 and 2 on GRACE B.
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14.2. Analysis of the accelerometer data

The purpose of the accelerometers is to measure the surface forces that act on the satellites. The K-band

measurements, that contain both the effects of the gravitational forces and the surface forces, can then be

corrected for the latter. From the surface force models for air drag, solar radiation pressure and albedo, we

know that air drag is the dominating surface force with a magnitude of several 1 · 10−7 m/s2 for the along-track

component, one order of magnitude less for the cross-track component and the radial component for an orbit

height between 450 and 500 km. The analysis of the accelerometer data will be conducted in two steps:

• Comparison of the measurements with drag models.

• Analysis of different events like twangs, peaks and thruster firings.

The accelerometer measurements consist of the measured linear accelerations and the measured angular accel-

erations. Let us first take a look at the linear accelerations. One would expect the signal shown in the two top

panels of figure 14.5 from simulations: In terms of magnitude, the along-track component should be strongest,

followed by the radial component and the cross-track component. All components should show a strong once

per revolution signal in the root PSD. In addition, the along-track component should be biased at a level of

about 2 · 10−7 m/s2. The measurements seem to be different, cf. the two middle and bottom panels of figure

14.5.

Concerning the cross-track component, it can be stated that the increased magnitude is caused by the effect of

the thruster events.

We also notice that the radial component’s magnitude is larger by far than the magnitude of the along-track or

cross-track components. Apart from linear accelerations acting on the satellite surface, any effect that causes

a movement of the accelerometer cage against the proof mass is a possible candidate to explain the difference

between model and actual measurement:

• Angular accelerations and velocities: they map into the linear accelerations as Coriolis and centrifugal

accelerations, if the accelerometer is not perfectly placed at the center of mass. In this category the

attitude control system is included as well. The thruster firings play a dominant role, as they cause the

strongest and abrupt angular accelerations of all types of attitude control.

• Vibrations of the satellite body due to thermal effects. During the design of the satellite structure, great

efforts were made to minimize the thermal expansivity of the satellite structure, but remaining effects

could be detected by the accelerometers, assuming a sufficient magnitude of the vibrations.

• Electromagnetic effects resulting from the operation of heater switches of the satellite.

The effects dominating the radial component seem to be irregular and not correlated with thruster events. So

we can exclude angular effects to be the cause. The large magnitude suggests that the reason lies in the second

candidate and that the origin of the effects lies in vibrations of the satellite. Taking a closer look in figure 14.6,

the dominating feature, so called twangs, are visible. They are strongest on the radial component of the linear

accelerations.

The situation is similar for GRACE B, see lower panels in figure 14.5. We can draw the same conclusions

as for GRACE A: The signal of the radial component is dominating and larger than the signal of the other

components. Concerning the root PSD, the signal at 1 Hz, that is very pronounced for GRACE A, is less

pronounced. When we take a closer look at the features of the radial component in figure 14.6, we realize that

again the twangs are likely the dominant effect.

Therefore, we will now investigate the ’twangs’ in more detail.
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Figure 14.5: Upper left panel: Time series of simulated surface forces including air drag, solar radiation pressure and Earth albedo.

Upper right panel: root PSD of the simulated surface forces. Middle left panel: Time series of the measured linear accelerations on

GRACE A. Middle right panel: Root PSD of the linear accelerations on GRACE A. Lower left panel: Time series of the measured

linear accelerations on GRACE B. Lower right panel: Root PSD of the linear accelerations on GRACE B.
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Figure 14.6: Close-up of the measured linear accelerations on GRACE A and B. The measurement is dominated by ’twangs’, that

are analyzed in a separate section. The twangs occur mainly on the radial component of the linear accelerations, but also on the

along and cross-track components.

14.2.1. Twangs

In Hudson (2003) and in Flury (2004), this phenomenon has been investigated in detail. Figure 14.7 shows
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Figure 14.7: Examples for ’twangs’ on GRACE A (upper three rows) and GRACE B (lower three rows). The left panels show the

linear accelerations, the right panels show the angular accelerations.

some examples of twangs. In general, they look like a damped oscillation, their duration is about 5 s, their

magnitude varies from 1 · 10−5 − 1 · 10−7 m/s2. According to Flury (2004), about 30 % of the observed radial

accelerations, about 3 % of the cross-track accelerations and about 1% of the along-track observations are

affected by twangs. Figure 14.8 shows the root PSD of the sample twangs. We notice that there is a maximum

at about 4 Hz, that was also seen by Hudson (2003). It is assumed that the rise at low frequencies is due to

the underlying acceleration signal. The relevant question is: are the twangs actual accelerations acting on the

satellites or not. In Hudson (2003) it is assumed that the reason for the twangs are thermal effects of the foil

that covers the bottom of the satellites. The thermal effects could consist in an expansion or contraction of the

foil caused by solar illumination, that would cause vibrations of the satellite frame and thus show up in the
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Figure 14.8: Root PSD of sample twangs. We notice a large maximum at 4 Hz, a smaller one between 1 and 2 Hz and a rise at low

frequencies. The signal power is about 1 · 10−6 m/s2/
√

Hz

accelerometer measurements. As the vibrations are not caused by surface forces acting on the satellite, these

signals can be seen as a measurement error affecting the measurement performance. For the determination of

the accelerometer performance, only periods can be used where no twangs occur.
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Figure 14.9: Correlation of twang events with Earth albedo for GRACE A and B. Direct albedo is the IR radiation emitted by

the Earth, short-wave albedo is the radiation caused by diffuse reflection of solar radiation incident on the Earth. The satellite is

outside the Earth shadow if the green stars are on the zero line.

As the foil covers the bottom of the satellites that always points towards the Earth, the Earth radiation variation

could be correlated with the twang events. In order to test this hypothesis, the Earth albedo model described

earlier was used to simulate long and short-wave albedo for a given GRACE orbit. The result is shown in

figure 14.9. There seems to be a correlation between the maxima of the long-wave albedo, the Earth shadow

exit and entry and the twang events. Considering table (5.1), one realizes that about 80 % of the IR radiation

are absorbed by the bottom, i.e. are transformed into heat. At the maxima of the long-wave albedo, the

foil temperature should also be increased. This seems to agree with the observation in Hudson (2003), where

increased twang activity has been observed during periods of increased foil temperature. This assumption is

very speculative however.
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14.2.2. Peaks

Twangs are not the only disturbance visible in the acceleration measurements, that is supposedly not caused

by real accelerations. Figure 14.10 shows examples of peak effects for GRACE A and B.
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Figure 14.10: Close-up of linear acceleration measurements on GRACE A and B showing the peak effects. We notice that the effects

are visible on all axes. The magnitudes seem to be equal on all axes. In the considered period no thruster events occur.

We notice that all axes are affected equally and that also the magnitudes are equal: about 4 − 6 · 10−8 m/s2.

According to Flury et al. (2007), these effects are correlated with switches of the heating system of the satellites.

They affect about 40% of the along-track measurements and about 30 % of the cross-track and radial mea-

surements. The assumption is that the change in the current of the heater circuits has an effect on the linear

acceleration measurement. This would mean that the effects are again not caused by surface forces acting on

the satellites and would then contribute to the measurement error budget. For the accelerometer performance

determination, periods containing the peaks should not be used.

14.2.3. Thruster events

Thruster events are part of the angular control system. Therefore thruster events map into the measured linear

accelerations only if:

• the proof mass of the accelerometer is not perfectly placed in the center of mass,

• there is a misalignment between the thrusters of a thruster pair, different thrust forces or reaction times.
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Figure 14.11: Thruster events in the time domain (left panels) and in the frequency domain (right panels) for GRACE A and B.

We notice that the cross-track linear accelerations are affected most, followed by the radial linear accelerations and the along-track

linear accelerations. Taking a look the root PSD, we realize that the magnitude of the effects of the thruster events range from

1 · 10−8 m/s2 /
√

Hz to 1 · 10−7 m/s2 /
√

Hz , significantly above the error specifications of the accelerometer. The peaks in the

time domain show up as horizontal lines in the frequency domain as expected. The decay starting at about 2-3 Hz is due to the

on-board butterworth filter.

In the first case, the effect visible in the measurement is not caused by a real acceleration on the satellite, in

the second case, there is an actual linear acceleration on the satellite. Figure 14.11 shows the time series and

the root PSD of sample thruster events on GRACE A and B. The thruster events show up as a sudden spike in

the accelerometer measurements. The magnitudes are about 1 − 2 · 10−6 m/s2 for the cross-track component,

followed by about 2 − 4 · 10−7 m/s2 for the radial component and about 2 − 4 · 10−8 m/s2 for the along-track

component. The mass trim assembly and regular center of mass determination calibration maneuvers ensure

that the offset of the center of mass of the GRACE satellites to the accelerometer proof mass stays within 100

micrometers, cf. Wang (2003). Therefore it can safely be assumed that the mapping of the thruster events

into the linear accelerations is due to thruster misalignment. The measured signal then represents an actual

acceleration and it is necessary that it is measured as it will be contained in the K-band measurements as well.

In order to understand not only the effect of the thruster events on high frequencies of the spectrum of the

measurements, but also the long term effects, a time series of thruster events was generated from the thruster

activation data of a sample day and then passed through a filter that is similar to the on-board filter that is

applied in course of the analog to digital conversion process. Figure 14.12 shows the time domain representation

and the root PSD of the filtered and unfiltered thruster events time series. We realize that the filter increases
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Figure 14.12: Left panel: thruster events in the time domain before and after the filtering of the on-board anti-aliasing filter. Right

panel: root psd of thruster events before and after the application of the anti-aliasing filter.

Table 14.1: Estimated single accelerometer errors for GRACE A and B and estimated error of the differential acceleration

measurements.

observation type σ [m/s2] σ spec. [m/s2] PSD [m/s2/sqrtHz] PSD spec. [m/s2/
√

Hz]

GRACE A

along-track 1 · 10−09 2 · 10−10 5 · 10−10 1 · 10−10

cross-track 2 · 10−09 2 · 10−09 9 · 10−10 1 · 10−09

radial 1 · 10−09 2 · 10−10 6 · 10−10 1 · 10−10

GRACE B

along-track 9 · 10−10 2 · 10−10 4 · 10−10 1 · 10−10

cross-track 2 · 10−09 2 · 10−09 1 · 10−09 1 · 10−09

radial 1 · 10−09 2 · 10−10 6 · 10−10 1 · 10−10

Differential

acceleration 1.4 · 10−09 6 · 10−10 6 · 10−10 3 · 10−10

the interval of the thruster events and also alters the amplitudes. When we analyze the root PSD, a prominent

peak at 1 Hz is visible, that is also visible in the accelerometer measurements. It seems that this peak is caused

by the thruster events mapping into the linear accelerations. The thruster events occur always at the same

fractional epoch, i.e. the time difference between two thruster events is an integer number of seconds. At low

frequencies, the signal caused by the thruster events is white noise at a level of about 1 · 10−8 m/s2
√

Hz. At

frequencies higher than 3 Hz, the signal amplitude is damped by the applied anti-aliasing filter.

14.2.4. Accelerometer performance estimation

For the performance determination of the accelerometers itself, only periods where no twangs, peaks or thruster

events occur can be used. The analysis of periods that supposedly are only affected by the accelerometer noise

delivers the results presented in table (14.1).

As for the gravity field determination the differential acceleration is needed, we present an estimate of its

performance as well. It seems that the accelerometer performance on the sensitive axes (along-track and radial)

is about 5 times worse than specified, the performance of the less-sensitive axes (cross-track) seems to agree

with the specified performance. The performance of the differential acceleration measurement should be about√
2 times the performance of the along-track components, which approximately seems to be the case, its overall
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performance is about two times the specified level. Of course the selected periods may be affected by other

effects than only the measurement noise, so the numbers presented are only estimated and should be considered

as an upper limit.

14.2.5. Linear acceleration measurement performance estimation
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Figure 14.13: Left panel: Time series of the differential accelerations for a sample day. Right panel: Root PSD of the differential

acceleration and the major constituents arising not from surface forces.

For the determination of the performance of the linear acceleration measurement, the differential linear ac-

celeration is investigated, as it is used later for the gravity field determination, cf. figure 14.13. The signal

looks very noisy and there seems to be no clear once per revolution signal. The order of magnitude is about

2−4 ·10−7 m/s2. The right panel shows the root PSD of the differential acceleration and the major constituents

arising not from surface forces. We notice a peak at once per revolution that is less prominent as for the linear

accelerations themselves. The signal then decreases to about 2−3 ·10−2 Hz, where the signal seems to level out

into white noise. Looking at the root PSD of the thruster events of the same day, one realizes that the thruster

events seem to be responsible for the flat spectrum. The characteristic peak at 1 Hz and multiples is also caused

by the thruster events. The peak effects mainly cause an effect at frequencies higher than 2 − 3 · 10−2 Hz and

rise to a level of about 1 ·10−8 m/s2/
√

Hz. At frequencies lower than 2−3 ·10−2 Hz the peak effect is below the

specified measurement accuracy. The twangs seem to affect high frequencies mainly as well. The magnitude

of their effect rises to a level of about 1 · 10−8 m/s2/
√

Hz. At frequencies lower than 2 · 10−1 Hz, the twang

effect is below the specified measurement accuracy. One should also keep in mind that during the L1a to L1b

processing the bandwidth of the measurement is reduced to about 0.1 (5 s sampling) resp 0.5 Hz (1 s sampling).

The effects visible in the differential acceleration measurement caused by the thruster events represent real

accelerations, assuming the K-band measurements contain them as well, they do not contribute to the error

budget of the measurement. The peak and twang effects contribute to the error budget of the measurement,

as they are supposedly no real accelerations. As their influence for a 5 s sampling is below the measurement

error specification, it seems that they can be neglected. For a 1 s sampling however, it seems that they would

rise the measurement error to a level of about 1 · 10−9 m/s2/
√

Hz, so it may be worthwile to think about a

way of correcting these effects. As conclusion, we can state that the performance of the linear acceleration

measurement is about 6 · 10−10 m/s2/
√

Hz, i.e. about 2 times higher than the performance specification, if 5 s

data is used. If 1 s data is used and the effects of the twangs and peaks are not corrected for, the performance

is estimated to be about 1 · 10−9 m/s2/
√

Hz or about 3 times the specified performance.
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14.2.6. Angular accelerations

The angular accelerations are measured by forming differences between the control voltages of the individual

electrode pairs and scaling the difference with the appropriate electrostatic gain that transforms from [V] to

[rad/s2].
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Figure 14.14: Top left panel: Time series of the rotational acceleration measurement on GRACE A. Top right panel: Root PSD of

the rotational acceleration measurement on GRACE A. Bottom left panel: Time series of the rotational acceleration measurement

on GRACE B. Bottom right panel: Root PSD of the rotational acceleration measurement on GRACE B.

The angular acceleration measurements will not be investigated as thoroughly as the linear acceleration mea-

surements, as their role for the gravity field determination process is limited to the attitude determination.

Figure 14.14 shows the time series of the angular acceleration measurements on GRACE A and B. We notice

many spikes caused by thruster events, but also effects that are caused by the magnetic torquers. The root PSD

is almost flat, apart from peaks at once and twice per revolution and at about 5 · 10−3 Hz, the latter one is

caused by the magnetic torquers, cf. figure 14.15. At high frequencies, the signal decreases and reaches minima

at 1 Hz and multiples. This seems to be caused by the fact that the original sampling rate of the rotational

accelerations is 1 Hz and not 10 Hz as for the linear acceleration measurements, cf. Bettadpur (2007). The

two lower panels show the time series and root PSD of the angular accelerations measurements on GRACE B.

They are similar to those on GRACE A, except for the peak at about 0.1 Hz in the root PSD of the cross-track

component. Its origin is unknown. Figure 14.16) shows a close-up of the angular accelerations. The peaks are

caused by thruster events.
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Figure 14.15: Root PSD of the angular accelerations induced by the magnetic torquers on the cross-track axis. It seems that the

torquer activities are responsible for the characteristic peak at 5 · 10−3 Hz. It is suspected that the discrepancy of the torquer

induced angular accelerations and the measured ones results from the fact that also the surface forces and gravitational torques

cause angular accelerations. The measurement is the sum of all effects.
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Figure 14.16: Close-up of the angular acceleration measurements. We notice that mainly the accelerations about the along-track

axis are affected by thruster events, followed by the accelerations about the radial axis. The number of thruster events on the

cross-track axis is significantly smaller as mainly the magnetic torquers are used to control the rotation about this axis.

The thruster events’ effect on the angular accelerations is strongest for rotations about the along-track axis,

followed by the angular accelerations about the radial axis. The rotation about the cross-track axis is controlled

almost entirely by the magnetic torquers, cf. table 14.2. The rotations about the cross-track and the radial

axis can be controlled by the magnetic torquers due to the orientation of the magnetic field of the Earth. The

magnetic torquers exert the following torque on the satellite:

Tm = D × B, (14.2)



14 Level 1a data analysis 125

with

Tm the resulting torque,

D the dipole moment of the torquer,

B the field vector of the magnetic field.

The magnetic field vector is usually oriented parallel to the along-track direction, therefore most of the time

only the rotations about the y- and the z-axis can be controlled by the magnetic torquers.

Table 14.2: Thruster activation times on GRACE A and GRACE B for a sample day. Most thruster events occur on the along-track

axis, followed by the radial axis and the cross-track axis. The cross-track axis is controlled by the magnetic torquers.

Thruster pair # Rotation axis On time [ms]

GRACE A

1 - radial 8000

2 + cross 50

3 + radial 6500

4 - cross 180

5 - along 28000

6 + along 23000

GRACE B

1 - radial 6000

2 + cross 30

3 + radial 6500

4 - cross 30

5 - along 43500

6 + along 43500

14.3. Analysis of the K-band and Ka-band ranging data

The K-band and Ka-band measurements are the principal measurements of the GRACE satellites. K-band and

Ka-band phases are measured separately on each satellite and then combined in the ground processing to form

the ionosphere-free dual one-way biased range. The phase measurement consists of the full number of incoming

waves received plus the measurement of the actual phase angle, i.e. one expects that the phase measurement is

a straight line, its magnitude increasing towards infinity. As the numerical resolution of the receiver is limited, a

wrap around occurs when the phase measurements magnitude exceeds a certain value, meaning that the phase

counter is reset to the smallest resp. largest number the receiver can represent. The wrap around value is usually

an integer number of cycles, for the GRACE receivers it is 108 cycles. A wrap around occurs usually every 200

seconds. Figure 14.17 shows the time series and the root PSD of the phase measurements for both satellites. As

expected the phase measurements are a straight line in the time domain, after the receiver wrapping is removed.

But the root PSD reveals more. It shows a peak at once per revolution, but there are also peaks at 4 · 10−2 Hz

and multiples. In order to display this effect, the first and second time derivative of the phase measurements

are investigated. Figure 14.18 shows the first derivative of the phase measurements. There is no effect visible,

that could cause a peak at 4 · 10−2 Hz, so we take a look at the second derivative, the phase acceleration.

Figure 14.19 shows a close-up of the K-band and Ka-band phase acceleration. The effect causing the signal

at 4 · 10−2 Hz or every 25 seconds is visible there. It is contained in the data of both satellites on both the

K-band and the Ka-band measurements. The magnitude of the effect on one band seems to be the same on

both satellites, but the sign is opposite. The possible cause is a regular deviation of the USO of one satellite

from its nominal frequency: A clock error will affect both, the K-band and Ka-band, as the USO drives both of

them and would show up in the measurements of both satellites with opposite sign, as from the incoming phase

the reference phase is subtracted.



126 14 Level 1a data analysis

0 1 2 3 4 5 6 7 8 9

x 10
4

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

10

time [s]

ph
as

e 
[c

yc
le

s]

GRACE A K−Band
GRACE B K−Band

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−10

10
−5

10
0

10
5

10
10

frequency [Hz]

[r
ad

/s
qr

tH
z]

GRACE A K−Band
GRACE B K−Band
noise spec

0 1 2 3 4 5 6 7 8 9

x 10
4

−6

−5

−4

−3

−2

−1

0
x 10

10

time [s]

ph
as

e 
[c

yc
le

s]

GRACE A Ka−Band
GRACE B Ka−Band

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

frequency [Hz]

[r
ad

/s
qr

tH
z]

GRACE A Ka−Band
GRACE B Ka−Band
noise spec

Figure 14.17: Left panels: Time series of K- and Ka-band measurements, where the receiver wrapping has been removed. As

expected, the measurements look like a straight line. The contained variation due to the relative motion of the satellites is not

visible. Right panels: Root PSD of the K-band and the Ka-band measurements. The green line represents the respective error

specification. We notice a peak at once per revolution. As the time series, that can be analyzed, is rather short due to phase

breaks, the frequency resolution is limited. At high frequencies, the root PSD should approach the error specification, but at about

4 · 10−2 Hz and multiples, peaks are visible.

Phase measurement performance assessment

In order to assess the performance of the phase measurements, only periods shorter than 25 seconds can be used,

because of the regular clock jump contained in the measurements. The requirement of about 1 ·10−4 cycles/
√

Hz

derived from Thomas (1999) is met for both K- and Ka-band measurements on both satellites, actually they

seem to perform slightly better. A thorough performance analysis will be conducted on the level 1b data, as

there the range, range rate and range acceleration is available for analysis.
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Figure 14.18: Time series of the K-band (left panel) and Ka-band (right panel) phase rate. No effect at 4 · 10−2 Hz is visible.
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Figure 14.19: Close-up of the second derivative of the K-band and Ka-band phase measurements. The effect causing the signal at

4 · 10−2 Hz is visible in the measurements of both satellites. The magnitude is identical, the sign opposite.
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15. Level 1a to level 1b processing

In this part of the work, the processing steps from level 1a to level 1b are reviewed for each instrument and

possible alternatives are evaluated. The propagation of the original instrument errors into the derived products

is investigated as well, in order to yield a realistic error budget for each instrument. The processing steps and

algorithms that are applied by JPL are described in Wu et al. (2006).

15.1. K-band

The principal processing steps are shown in figure 15.1. First, the time tags of the measurements have to be

Figure 15.1: Processing steps for the derivation of L1b K-band data from L1a K-band data.

corrected for various effects:

• Missed interrupts,

• constant offsets,

• satellite clock errors.

Missed interrupts

Missed interrupts can occur for both K-band and Ka-band measurements on both satellites independently. If

the IPU misses a hardware interrupt, it causes a constant time tag error. In the so called Sequence of Events

File (SOE), the offset due to missed interrupts for both K- and Ka-band measurements is recorded.

Constant offsets

Due to a software problem in the onboard software until version 147 (cf. Wu et al. (2006)), there is an additional

constant offset to be accounted for in the time tag correction.
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Satellite clock errors

As the satellite clock is driven by the USO, the derived time tags are erroneous due to the frequency instability

of the USO. The corresponding corrections are determined during the precise orbit determination process. The

clock corrections are given typically at a sampling rate of 5 minutes and have thus to be interpolated to the

corresponding measurement epochs. It is important to apply first the corrections for the missed interrupts

and the constant offsets to the original time tags and then these ’corrected’ time tags can be used for the

interpolation.

The corrected time tags are thus derived as:

tcorr = tmeas + ∆tmi + ∆toffset + ∆tclock. (15.1)

The next processing step is the interpolation to multiples of 0.1 s. The following steps are conducted:

• Unification of the receiver wrapping,

• Identification of outliers and phase breaks.

Unification of the receiver wrapping

The onboard receiver of the GRACE satellites can only store values within ±108 cycles. This leads to a wrap

around of the phase measurements every 200 seconds. The wrap around is corrected by comparing the difference

of two consecutive phase measurements against a threshold. If the threshold is reached, 108 cycles are either

added or subtracted. The phase measurements then fulfill the condition:

−0.5 · 108 ≤ (φn − φn−1) ≤ 0.5 · 108. (15.2)

Identification of outliers and phase breaks

An outlier occurs, if the measurement of a single epoch is an anomalous value. Outliers can be identified in the

case of two frequency measurements by analyzing the so called ’range free’ observation:

φtest = φK − fK

fKa
· φKa. (15.3)

The phase measurements are the fractional number of received cycles. Depending on the frequency of the signal,

the slope of the phase measurement varies. By scaling the Ka-band measurement to the K-band frequency, the

slope of the scaled Ka-band measurements is adopted to that of the K-band measurements. The difference of

the two should then be only a constant, as the individual initial phase counter values are different. Outliers are

identified by comparing the first derivative to a threshold.

Phase breaks are a different matter. During a phase break, the signal is lost and the cycle counter is reset to an

arbitrary value, resulting in a step in the measured data. In order to identify phase breaks, the data is separated

into subsets of a certain length. The first value of the subset is selected as a reference. The difference to the

other values in the chunk is formed. If the difference is larger than a threshold, starting from a certain epoch

until the end of the chunk, a phase break has been identified. Again the ’range free’ observation is used. As the

range free observation is a combination of the K-band and the Ka-band observation, it can not be identified if
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the outlier or phase break occurs in both bands. In order to correct for the effects of the ionosphere, a ionosphere

free linear combination of the K-band and Ka-band observables has to be formed at a later stage. Therefore

always both measurements have to be available.

As a next step, the data from GRACE A and B is combined through the following substeps:

• Derivation of the DOWR for K- and Ka-band,

• elimination of the influence of the ionosphere.

Derivation of the DOWR for K- and Ka-band

In order to derive the dual one way range, the phase measurements of the same band from both satellites are

added. We continue from equation (10.12):

ΦAB = φB
A + φA

B = φ̄A(t) − φ̄B(t) + fB · τB
A + ǫA

uso + ǫA
system + NB

A + IB
A + dB

A

+ φ̄B(t) − φ̄A(t) + fA · τA
B + ǫB

uso + ǫB
system + NA

B + IA
B + dA

B

= (fB · τB
A + fA · τA

B ) + (ǫA
uso + ǫB

uso) + (ǫA
system + ǫB

system)

+ (NB
A + NA

B ) + (IB
A + IA

B ) + (dB
A + dA

B). (15.4)

Note that fA and fB are either the K-band or the Ka-band frequency of satellite A or B, i.e. the formulation

is applicable to both the K-band and the Ka-band measurements. We notice that the phases themselves cancel

out and that, as the measurement, the frequencies times the transmission time remain plus the sums of the

individual error terms. The sum of the phase measurements is still a phase measurement. To transform it into

a range measurement, the following step is necessary, cf. Kim (2000):

RAB =
c

fA + fB
· ΦAB . (15.5)

Let us take a closer look at the range term and neglect the error terms for the time being:

RAB =
c

fA + fB
· (fB · τB

A + fA · τA
B ) =

1

fA + fB
· (fB · ρB

A + fA · ρA
B). (15.6)

The range ρB
A is the magnitude of the vector between the position of satellite B at the epoch t − τB

A and the

position of the satellite A at epoch t, the range ρA
B is the magnitude of the vector between the position of

satellite A at the epoch t− τA
B and the position of satellite B at epoch t. Both differ from the range ρ between

the positions at epoch t, the so called ’instantaneous range’, that is the observable desired for the gravity field

determination. ρB
A is too short, as satellite B is moving towards the signal emitted by satellite A during the

measurement, ρA
B is too long, as satellite A is moving away from the signal emitted by satellite B. Figure 15.2

shows the geometric situation between the instantaneous range and the measured ranges. In order to derive
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Figure 15.2: Geometric relations between the instantaneous Range and the measured ranges from Kim (2000).
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the instantaneous range, a straightforward idea would be to directly derive it using GPS derived positions. The

position accuracy of the GPS based GRACE orbits are on the level of about 1 cm, cf. Kim (2000), and therefore

not accurate enough to be used directly. Using the geometric situation, we can define the measured ranges as:

ρA
B =

√
(ρ − ∆A)T · (ρ − ∆A), (15.7)

ρB
A =

√
(ρ + ∆B)T · (ρ + ∆B). (15.8)

The vectors ∆̄A and ∆̄B are the position differences between the satellites positions at the sending epochs t−τA
B

resp. t − τB
A and the nominal epoch t. In reality, their magnitude is about 15 m compared to a mean distance

between the satellites of 200 km. The right hand side can be expanded into a Taylor series around ∆̄A = 0,

resp. ∆̄B = 0:

ρA
B =

√
ρ2 +

∂

∂∆A

[√
(ρ − ∆A)T · (ρ − ∆A)

]

∆A=0

· ∆A

= ρ +




1
2
· 2 · (ρ − ∆A) · −1

√
(ρ − ∆A)T · (ρ − ∆A)




∆A=0

· ∆A

= ρ − ρ

ρ
· ∆A

= ρ − êAB · ∆A, (15.9)

ρB
A = ρ + êAB · ∆B . (15.10)

The displacement vectors ∆̄A and ∆̄B can be approximated using the satellite velocity vectors:

∆̄A = ṙA · τA
B , (15.11)

∆̄B = ṙB · τB
A . (15.12)

So we get for the measured range:

RAB =
1

fA + fB
· (fB · ρB

A + fA · ρA
B)

=
1

fA + fB
·
(
fB · (ρ + êAB · ṙB · τB

A ) + fA · (ρ − êAB · ṙA · τA
B )
)

= ρ −
(

fA

fA + fB
· êAB · ṙA · τA

B − fB

fA + fB
· êAB · ṙB · τB

A

)

= ρ − ∆Rttc,

⇒ ρ = RAB + ∆Rttc, (15.13)

êAB =
rB − rA

|rB − rA|
. (15.14)

In order to derive the instantaneous range ρ, we have to add the transmission time correction ∆Rttc to the

measured range RAB. The transmission time correction has to be derived from positions and velocities derived in

the precise orbit determination. These quantities can be seen as observations with a corresponding observation

error. We will now estimate the magnitude of the error using the assumptions about the quality of the derived

positions and velocities displayed in table 15.1.
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Table 15.1: Magnitudes and accuracies of the input quantities used for the derivation of the transmission time correction.

quantity magnitude accuracy (σ)

line of sight unit vector êAB 1.0 < 5.0 · 10−8

velocity of satellite A,B ṙA,B < 7700 m/s < 0.1 · 10−3 m/s

transmission time τA,B
A,B < 2 · 10−3 s < 1 · 10−11 s

In order to estimate the magnitude of the error, it is assumed that fA = fB. So we get for the error of the

transmission time correction:

δ∆Rttc ≃ 2 · 1

2
·
(
δêAB · |ṙB| · |τB

A | + |̂eAB | · δṙB · |τB
A | + |̂eAB | · |ṙB| · δτB

A

)
(15.15)

≃ 2 · 1

2
·
(
8.0 · 10−7 + 2.0 · 10−7 + 1.0 · 10−14

)
m

≤ 1.0 µm.

As the error is below the micrometer level, it is assumed that the correction can be derived in post processing

with sufficient accuracy. It can be neglected in the error model. The transmission time correction we derived

differs from the one given in Kim (2000). There, the range rate derived from GPS observations is used. The

formulation provided here has the advantage that it is based on quantities that are given in the L1b orbit files

(GNV1B).

The transmission times are derived using the given positions and velocities: From the positions at the nominal

epochs, a transmission time is derived. Using the given velocities and the transmission time, a new position

is derived and so on. This iterative procedure converges very fast, as the velocity of the satellites is relatively

small compared to the velocity of light.

Let us now take a closer look at the range noise resulting from the USO noise. The resulting range noise is the

sum of the USO noise given in equation (10.16):

δRuso =
c

fA + fB
· (εA

uso + εB
uso)

=
c

fA + fB
·
[(

1 − fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) − δφB(t) + δfB · τB

A

+

(
1 − fB − fA

fB
− δfB − δfA

fB

)
· δφB(t) − δφA(t) + δfA · τA

B

]

=
c

fA + fB
·
[(

−fA − fB

fA
− δfA − δfB

fA

)
· δφA(t) + δfB · τB

A

+

(
−fB − fA

fB
− δfB − δfA

fB

)
· δφB(t) + δfA · τA

B

]
. (15.16)

It is noteworthy that the combination of the two phase measurements eliminates the direct influence of the phase

error; only the phase error scaled by the carrier frequency difference, the phase error scaled by the frequency

error and the frequency error scaled by the transmission time remains. As shown in figure 10.4, the contribution

of the phase error scaled by the frequency error can be neglected without loss of generality. In addition, we

neglect the difference in the times of flight. We examine now the range error due to one oscillator:

δRuso =
c

fA + fB
·
(

δf · τ − fA − fB

fA
· δφ

)
. (15.17)
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In analogy to Kim (2000) and Thomas (1999), we can now derive the transfer function G(f) from the oscillator

phase noise to the range noise, i.e. we examine the influence of the derivation of the range on the resulting

range error. A transfer function is defined as the ratio of the spectrum of the output and the spectrum of the

input, in our case the ratio of the spectra of the range noise and the phase noise:

√
G(f) =

F(δRuso)

F(δφ)

=
F
[

c
fA+fB

·
(
δf · τ − fA−fB

fA
· δφ

)]

F(δφ)
(15.18)

=
c

fA + fB
·




F(δφ̇) · τ − fA−fB

fA
· F(δφ)

F(δφ)



 (15.19)

=
c

fA + fB
·




i2πf · F(δφ) · τ − fA−fB

fA
· F(δφ)

F(δφ)



 (15.20)

=
c

fA + fB

[
fB

fA
− (1 − i2πf · τ)

]
, (15.21)

which is identical to the formulation given by Kim (2000) and Thomas (1999), they give for the transfer function:

√
G(f) =

c

fA + fB

[
fB

fA
− (e−i2πf ·τ )

]
. (15.22)

As τ is very small (< 1 · 10−3) and the considered frequency range is below 5 Hz, the exponential function can

be approximated as

e−ix = cos(x) − i sin(x) = 1 − ix. (15.23)

Insertion yields then

√
G(f) =

c

fA + fB

[
fB

fA
− (1 − i2πf · τ)

]
, (15.24)

which is identical to the result we derived. The transfer function for the oscillator error PSD is the square of

the transfer function for the spectrum, so we get for the range error PSD due to the oscillator noise, assuming

the same phase noise for both satellites:

SδRuso = 2 · G(f) · S
fK/Ka

δφ

= 2 ·
(

c

fA + fB

)2

·
[

fB

fA
− (1 − i2πf · τ)

]2
· SfK/Ka

δφ . (15.25)

If the time tag errors of both satellite clocks are corrected and thus the time scales of the satellites are syn-

chronized to a common time scale like the IGS time scale, the time tag error difference can assumed to be zero,

meaning that in the above equation the frequencies fB and fA can be assumed to be identical:
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fA = fB and

SδRuso = 2 ·
(

c

fA + fB

)2

· [1 − (1 − i2πf · τ)]2 · S
fK/Ka

δφ

= 2 ·
(

c

fA + fB

)2

· [+(i2πf · τ)]2 · SfK/Ka

δφ . (15.26)
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Figure 15.3: Transfer function that is applied to the oscillator phase noise by the combination of the phase measurements of the

individual satellites. The pink curve shows the error of the approximate form of the transfer function.

For error simulations, we may neglect the frequency offset ∆f = fA − fB and assume fA = fB, but only for the
c

fA+fB
term. Then the expressions of the range error due to the oscillator noise simplify to:

SδRuso =

(
c√

2 · fK/Ka

)2

·
[

fB

fA
− (1 − i2πf · τ)

]2
·
(

fK/Ka

2π · fo

)2

Sδφ

=

(
c√

2 · 2π · fo

)2

·
[

fB

fA
− (1 − i2πf · τ)

]2
· Sδφ, (15.27)

for the use of USO time tags and

SδRuso =

(
c√

2 · 2π · fo

)2

· [+(i2πf · τ)]2 · Sδφ, (15.28)

for the use of GPS time tags, i.e. in this approximated form the range error due to oscillator noise is the same

for both K-band and Ka-band measurements, which is important in the next processing step.

Figure 15.3 shows the transfer function that is applied to the oscillator noise by the combination of the phase

measurements for the use of USO time tags and for the use of GPS derived time tags. We notice that the

combination reduces the phase noise substantially at low frequencies. The reduction is much stronger, if GPS

derived time tags are used, i.e. the time tag errors of the satellites are derived in the course of the orbit

determination. In this case only the frequency error remains. Therefore the transfer function is a straight

line corresponding to 2πf . If the USO time tags are used, the transfer function converges to fB/fA at low

frequencies. We also notice that the quality of the approximated transfer function is sufficient for the purpose



15 Level 1a to level 1b processing 135

of error simulations. Regardless which time tags are used, the reduction of the phase error is significant and

without this reduction the quality of the phase measurements would be degraded at low frequencies. For the real

data processing the GPS time tags will be applied; therefore the corresponding error will be used subsequently.

Elimination of the influence of the ionosphere

After the previous processing step, we have now derived a range for each the K-band and the Ka-band. The

advantage of a two frequency measurement is that the influence of the ionosphere can be eliminated.

The phase delay due to the influence of the ionosphere is given by

IA =
TECA

B

fB
, (15.29)

for the received signal at satellite A. In principal the TEC is different for both satellite signals, as they move

during the measurement, but we will neglect this small effect here, so we can say that:

TECA
B = TECB

A . (15.30)

For the range error due to ionosphere we get:

δRiono =
c

fA + fB
·
(

TEC

fA
+

TEC

fB

)

=
c

fA + fB
·
(

(fA + fB) · TEC

fA · fB

)

= c · TEC

f̄2
, where f̄2 = fA · fB . (15.31)

f is either the K-band or the Ka-band effective frequency. Reconsidering eq. (15.29) we see that

IK =
TEC

f̄2
K

, (15.32)

IKa =
TEC

f̄2
Ka

. (15.33)

So there is a relation between IK and IKa,

IK =
f̄2

Ka

f̄2
K

· IKa, (15.34)

that enables us to form the so called ’ionosphere free’ linear combination:

R =
f̄2

K · RK − f̄2
KaRKa

f̄2
K − f̄2

Ka

. (15.35)
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Insertion yields:

R =
1

(f̄2
K − f̄2

Ka)
·
[
(f̄2

K − f̄2
Ka) · ρ − (f̄2

K · ∆RK
tof − f̄2

Ka · ∆RKa
tof )

+ (f̄2
K ·

f̄2
Ka

f̄2
K

· IKa − f̄2
Ka · IKa) + (f̄2

K − f̄2
Ka) · δRuso + (f̄2

K · δRK
system − f̄2

Ka · δRKa
system)

]

= ρ − ∆Riono free
ttc + δRuso +

(f̄2
K · δRK

system − f̄2
Ka · δRKa

system)

(f̄2
K − f̄2

Ka)
, (15.36)

with

∆Riono free
ttc = (f̄2

K · ∆RK
ttc − f̄2

Ka · ∆RKa
ttc ), (15.37)

the for the effect of the ionosphere corrected transmission time correction. The oscillator noise passes the

ionosphere correction unaffected, as it is independent of the carrier frequency using the above described simpli-

fications.

Let us now take a closer look at the range error due to the system noise:

δRsystem =
(f̄2

K · δRK
system − f̄2

Ka · δRKa
system)

(f̄2
K − f̄2

Ka)
. (15.38)

For the error PSD for both satellites, assuming the same system noise, we get:

SδRsystem = 2 ·

[
(f2

K)2 ·
(

c
2·fK

)2
+ (f2

Ka)2 ·
(

c
2·fKa

)2
]
· Ssystem

(
f2

K − f2
Ka

)2

=

[
f2

K + f2
Ka

]
(
f2

K − f2
Ka

)2 ·
(

c√
2

)2

· Ssystem, (15.39)

which gives a standard deviation of about 1 µm for a 1 s sampling.

Figure 15.4 shows the resulting overall range error after the ionosphere correction. We notice that the error

resulting from the phase noise has been efficiently reduced by the combination of the satellite measurements

forming the dual one way range. At high frequencies the error is dominated by the system noise.

Application of the low-pass filter

As the original data rate of 10 Hz for the K-band measurements is much higher than the desired output data

rate of 0.2 Hz (5 s data), a low-pass filter has to be applied to the data in order to prevent aliasing effects on

the resampled data. Moreover, not only the range derived from the K-band measurements, but also the range

rate and range acceleration are to be derived. This is the reason why an analytic form of the applied filter is

chosen, that can be differentiated in a closed form. We will briefly describe the derivation of the filter presented

in Thomas (1999), but also discuss possible alternatives.

As the derived ranges are filtered during post-processing on ground, there are no restrictions on the used filter

type, i.e. also filters that require ’future’ measurements can be used. For the design of the required low-pass
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Figure 15.4: Total range error after the ionosphere free linear combination.

Figure 15.5: Impact of the chosen window function on the realization of a low-pass filter with the window method. Here, as an

example, the window function chosen to limit the extend of the sinc-function is a rectangle. The left hand side shows the operation

in the time domain, the right hand side the operation in the frequency domain.

filter, the window method is used. We want a filter with a linear phase delay. A linear phase delay means that

the filtered data is shifted by half the filter length in time compared to the unfiltered data. Therefore a FIR

(Finite Impulse Response) filter is designed.

Filtering a signal in the time domain corresponds to a multiplication of the signal spectrum with the spectrum

of the desired filter in the frequency domain. An optimal low-pass filter spectrum is a rectangle, meaning that

up to a certain frequency, the so called ’cut-off frequency’, the spectrum of the original signal is left unchanged.

For frequencies larger than the cut-off frequency, the original spectral coefficients are set to zero. In the time

domain, this operation corresponds to the convolution of the signal time series with the inverse Fourier transform

of the rectangle, the sinc-function. Such a perfect low-pass filter cannot be realized, because the sinc-function

is defined for the interval [−∞, +∞], i.e. in order to conduct the filtering properly, it would be necessary to

have a time series of infinite length. This is neither possible nor desirable for the practical data processing.

In order to limit the sinc-function to an interval of finite extent, it is multiplied by a window function, that

is zero outside the chosen interval and not zero inside the chosen interval. The length of this interval is the
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chosen filter length. A multiplication in the time domain corresponds to a convolution in the frequency domain,

i.e. our optimal filter, the rectangle, is convolved with the Fourier transform of the window function, that was

chosen to limit the width of the sinc-function in the time domain. Figure 15.5 shows the effect of the chosen

window function on the optimal filter realization: As an example, a rectangle is chosen as the window function.

The Fourier transform of the rectangle is again the sinc-function, so, if we consider the frequency domain, the

optimal filter, the rectangle, is convolved with the sinc-function. Clearly the result is no longer a rectangle;

there are unwanted oscillations in the pass-band as well as in he stop-band. This effect is well known as ’Gibbs

effect’. Thus the deviation of the resulting filter from the optimal filter directly depends on the chosen window

function. As we see with this example, the rectangle seems not to be suited as a window function, at least not

for the K-band processing, as we want to preserve the high accuracy of the measurement, i.e. any oscillations

due to filtering in the pass-band (also called ’ripple’) should be as small as possible.

As the measurements are discrete and not continuous, a Discrete Fourier Transform (DFT) is applied and a

rectangular window is not transformed into a sinc function but into a function of the kind of sin x
sin y (cf. Best

(1991), for details see appendix Annex A. Let us now return to the problem of choosing a window function in

order to limit the width of the time domain representation of the optimal low-pass filter.

In Thomas (1999), the chosen window function used to limit the time response of the ideal low-pass filter is a

rectangle of width TR that is convolved with itself Nc times. If TR is chosen in a way that NR, the number

of samples of the basic rectangle, is odd, then the filter length Tf becomes NR · Nc/dt = Nf/dt, where dt is

the sampling interval. The ’Nc times self convolution’ in the time domain can be expressed as a ’Nc times

multiplication’ in the frequency domain:

W [ω] = W [k · 2π/Tf ] =




sin
(
k · 2 · π · TR

2·Tf

)

sin
(
k · 2 · π · dt

2·dt·Nf

)




Nc

=




sin
(
k · 2 · π · Tf

2·Tf ·Nc

)

sin
(
k · π · 1

Nf

)




Nc

=




sin
(
k · π · 1

Nc

)

sin
(
k · π · 1

Nf

)




Nc

, (15.40)

with TR = Tf/Nc. Thereby is ω the frequency in [rad/s] and W [ω] is the frequency response of the window

function, that has to be multiplied with the time domain representation of the optimal low-pass filter. In

Thomas (1999) and Wu et al. (2006) it is suggested to conduct this operation in the spectral domain as a

convolution, we suggest to conduct it as multiplication in the time domain. We get for the filter representation

HLP [n] in the time domain:

HLP [n] = W [n] · LP [n]

HLP [n] = W [n] ·
sin
(
n · dt · B

2

)

sin
(
n · dt · dω

2

) · 1

Nf

= W [n] ·
sin
(
n · dt · B

2

)

sin
(
n · dt · π

Tf

) · 1

Nf
. (15.41)

The time domain representation of the window function W [n] is derived as the inverse discrete Fourier transform

of the frequency response of the window function:

W [n] = IDFT [W [ω]]. (15.42)
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Let us now take a closer look at the window function, that has been chosen in Thomas (1999). As said before,

in the time domain the window function is generated by a Nc times self convolution of a rectangle of width

TR. The final window function then has a width of Nc · TR and is shown in blue in the upper panel of figure

15.6. This convolution is a multiplication in the spectral domain, multiplication in the spectral domain means

filtering, i.e. this window function evolves from a rectangular window that is low-pass filtered by a cascade of

filters with the DFT of a rectangle, namely the
(

sin x
sin y

)Nc

-function. The window function we propose is the

Kaiser window. It has the advantage that the drop-off level of the first side lobe can be selected as well as the

transition width between pass-band and stop-band.

In order to assess the quality of the filter proposed by Thomas (1999) or our proposed filter, we first have to

define the requirements for the filter. For the K-band measurements, the requirement is that the filter error

should be smaller or equal to the measurement error we derived. Figure 15.6 shows a comparison of different
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Figure 15.6: Comparison of the different window functions in order to limit the time response of the sinc function.

window functions. In order to assess the performance of the window functions, we take a look at their frequency

response. The perfect window would have a frequency response that consists of a Dirac function, the neutral

element of convolution. This would require a rectangle of unlimited extend in the time domain, which is not

realistic. So what we hope to achieve is a narrow and steep main lobe and well attenuated side lobes. When we

take a look at the figure, we realize that in terms of a narrow and steep main lobe, the hamming and hanning

window perform very well. They reach their first minimum at about 2 · 10−3 Hz and therefore perform better

in this respect than the Kaiser window or the convoluted rectangle window, but their side-lobe attenuation is

much too high. So only the Kaiser window remains as candidate for an alternative filter. Figure 15.7 shows the

relative filter error of the filter candidates. We notice that the Kaiser filter performs significantly better than

the convoluted rectangle filter. We also notice that our assumptions about the performance of the hamming

and hanning filter are confirmed. Their performance is significantly worse than that of the Kaiser filter or the

convoluted rectangle filter. The last step now consists in deriving the absolute error of the different filters. This

is done by multiplying the relative filter error with the signal magnitude. Figure 15.8 shows the absolute filter

error of the Kaiser filter and the convoluted rectangle filter. The black line represents the nominal K-band

measurement performance for the range measurement. We notice that the original filter performs sufficiently,

its absolute filter error is below the measurement error. Only at frequencies around once per revolution, where

the signal is strongest, the filter error is close to the instrument error. The Kaiser filter performs significantly

better, as its error is several orders of magnitude smaller than the nominal instrument error. The instrument

error around frequencies of once per revolution is mainly determined by the phase noise of the oscillators, if
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Figure 15.8: Absolute filter error of the Kaiser filter and the convoluted rectangle filter.

they would perform better than specified, an improvement in data quality could be expected from the use of

the Kaiser filter. The drawback of the Kaiser filter is the increased filter length, its length is twice that of the

convoluted rectangle filter. A larger filter length means that more data is lost in case of gaps, as half the filter

length has to be discarded if a gap is encountered. As conclusion, we state that the convoluted rectangle filter

is adequate and efficient.

Derivation of the range rate and range acceleration

The range measurement is the basic quantity provided by the K-band system. As additional measurement

types, the range rate and the range acceleration are provided by differentiation of the range measurement:

Ṙfilt =
dRfilt

dt
= IDFT

[
HD [ω] · DFT [R]

]
, (15.43)

R̈filt =
dṘfilt

dt
=

d2Rfilt

dt2
= IDFT

[
HDD[ω] · DFT [R]

]
. (15.44)
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The theoretical derivation of a first and second order differentiator is given in appendix Annex A. We will now

compare the convoluted rectangle single differentiator filter with the Kaiser single differentiator filter. The filter

quality will not only be assessed in terms of the filter magnitude, but also in terms of the filters’ phases. For a

first order differentiator, the inflicted phase-angle change is expected to be +π/2.
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Figure 15.9: Comparison of the Kaiser and the convoluted rectangle filter in term of absolute filter error (left) and inflicted phase-

angle change (right).

The comparison is shown in figure 15.9. We notice that for the absolute error magnitude the same observations

hold as for the low-pass filter: the Kaiser filter performs better than the convoluted rectangle filter, but also

the absolute error of the convoluted rectangle filter is still below the expected measurement error. Only for

frequencies around once per revolution there might be some improvement from the use of the Kaiser filter,

depending on the actual oscillator performance. Concerning the inflicted phase change, both filters perform

equally well, in both cases it is exactly as expected. The results for the double differentiator are similar and are

therefore not shown explicitly.

As a conclusion, we find that the Kaiser filter performs significantly better than the convoluted rectangle filter,

but only at the cost of an increased filter length, which results in an increased data loss in case of gaps. The

absolute filter error for both filters is below the specified instrument error and may therefore be neglected for

the derivation of the error budget.

In order to filter the input signal, the derived ranges, with the filters LP [n], D[n] and DD[n], there are again

two possibilities: a convolution in the time domain or a multiplication in the frequency domain. We suggest to

conduct the operation in the spectral domain. So we get for an input time series of range measurements R[n]

after the application of the respective filter:

Rfilt[n] = IDFT

[
HLP [ω] · DFT [R[n]]

]
, (15.45)

Ṙfilt[n] = IDFT

[
HD [ω] · DFT [R[n]]

]
, (15.46)

R̈filt[n] = IDFT

[
HDD[ω] · DFT [R[n]]

]
. (15.47)
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Figure 15.10: Reduction of the measured range to the distance between the centers of mass of the two GRACE satellites.

Reduction of the measurements to the center of mass

The actual range measurement is the length (magnitude) of the vector between the KBR antenna phase centers

of both satellites. For the gravity field determination, the magnitude (and its first and second derivative) of the

vector between the centers of mass of both satellites is required. Therefore derived range, range rate and range

acceleration have to be corrected. The situation is depicted in figure 15.10. The range between the centers of

mass of the two satellites is given as:

RCoM = drA + drB + rAB , (15.48)

where

drA is the projection of the vector between the center of mass of satellite A

and the phase center of the K-band horn of satellite A on the line connecting

the centers of mass of both satellites,

drB is the projection of the vector between the center of mass of satellite B

and the phase center of the K-band antenna of satellite B on the line connecting

the centers of mass of both satellites,

rAB the projection of the measured range between the two satellites K-band antennas

on the line connecting the centers of mass of both satellites.

The individual quantities are given as:

drA = |PCA| · cos α, (15.49)

drB = |PCB| · cos β, (15.50)

rAB = Rfilt · cos γ. (15.51)

For the derivation of the angles α, β, γ, the satellites’ positions rA and rB are needed:
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cos α = êAB · P̂CA, (15.52)

cos β = êAB · P̂CB, (15.53)

cos γ = êAB · P̂CAB (15.54)

êAB =
rB − rA

|rB − rA|
, (15.55)

P̂CAB =
rB + PCB − rA − PCA

|rB + PCB − rA − PCA|
. (15.56)
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Figure 15.11: Variations of the different corrections to be applied on the measured range to derive the range between the CoM.

In order to perform these operations, the different vectors have to be available in the same coordinate system.

It seems to be straightforward to use the IRF for the derivation of the correction. We will now assess the

magnitude of the different corrections in order to determine their relevance. For the derivation of the correction,

real GRACE L1b data, orbits and star sensor data was used. Figure 15.11 shows the variations of the different

corrections. As the measured range is biased, not the mean value of the corrections, but only the variation is of

importance. We realize that only the correction drA and drB have to be applied, the variation of the difference

between rAB and Rfilt is well below the error of the measured range. Let us now determine the influence of

these corrections on the error budget. Table 15.2

Table 15.2: Accuracies and magnitudes of the input quantities used for the derivation of the center of mass reduction.

quantity magnitude accuracy (σ)

line of sight unit vector êAB 1.0 < 5.0 · 10−8 m

unit vector between the phase centers P̂CAB 1.0 < 5.0 · 10−8 m

shows the assumed accuracies of the relevant input quantities. We get for the errors of the angles α and β:

δ(cos α) ≈ δ(̂eAB) · |P̂CA| + |̂eAB| · δ(P̂CA) ≈ 1.5 · 10−7, (15.57)

δ(cos β) ≈ δ(̂eAB) · |P̂CB| + |̂eAB| · δ(P̂CB) ≈ 1.5 · 10−7. (15.58)
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We get for the errors of the range corrections:

δdrA ≈ δ|PCA| · cos α + |PCA| · δ cos α ≈ 5 · 10−7 m, (15.59)

δdrB ≈ δ|PCB| · cos β + |PCB| · δ cos β ≈ 5 · 10−7 m. (15.60)

Again, it seems that the corrections can be derived accurately enough and therefore they will not be included in

the error budget. The corrections can only be derived with sufficient accuracy, if the variations of the K-band

antennas phase center position is below one micrometer.
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15.2. Accelerometer

The processing steps for the accelerometer data are shown in figure 15.12. First, the time tags have to be

corrected for different errors.

Figure 15.12: Processing steps for the derivation of L1b accelerometer data from L1a accelerometer data.

Correction of the accelerometer clock

The accelerometer data is time tagged using the time derived from the On Board Data Handler (OBDH) One

Pulse Per Second (1PPS) generator, cf. Wu et al. (2006). This time scale is also used to derive the time tags

of the housekeeping data. In order to convert the OBDH time tags to receiver time, it is necessary to apply a

correction to the original accelerometer time tags. In general the OBDH time is synchronized to the receiver

time, meaning that the correction then is zero. Only during reboots of the IPU, the synchronization between

the OBDH time and the receiver time is lost, then correction has a non-zero value:

ttrec
acc = ttOBDH

acc + corrrec
OBDH . (15.61)

The correction is derived from the product TIM1B.

Correction of the satellite clock

The accelerometer time tags are now converted to receiver time. In order to convert them to GPS time, the

receiver clock error has to be corrected. In addition, the delay of the butterworth low-pass filter used in the

on-board processing has to be considered:

ttgps
acc = ttrec

acc + corrgps
rec + corrbutter. (15.62)

The corrections are derived via linear interpolation of the clock corrections given in CLK1B. The correction of

the butterworth delay is a constant: 0.14 s.

The data is then interpolated to time tags that are integer multiples of 0.1 s. In the course of this interpolation,

also data gaps are filled, using a cubic interpolation.
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Application of the low-pass filter

For the accelerometer data processing, the same low-pass filter can be used as for the K-band processing.

The requirements on the accuracy inside the pass-band are lower than for the K-band measurements, as the

amplitudes of the accelerometer signal are significantly smaller. Assuming a maximum amplitude of 1·10−6 m/s2

and a measurement error of 1·10−10 m/s2 for the sensitive axes, a relative error of about 1·10−4 is the requirement

for the accuracy in the pass-band for the low-pass filter. This requirement can easily be met by the filter we

proposed for the K-band data processing. In Wu et al. (2006) the bandwidth of the low-pass filters (35 mHz)

differs from the one used for the K-band data (0.1 Hz). This seems to be inconsistent. For the gravity field

determination, the K-band data has to be corrected for the effect of the non-gravitational forces using the

accelerometer data. In our opinion, the accelerometer data should be provided with the same bandwidth as the

K-band data. Again it is suggested to conduct the filtering in the frequency domain:

afilt = IDFT

[
HLP [ω] · DFT [araw]

]
. (15.63)

The filtered data are compared to the unfiltered data and epochs, where the residuals are larger than a threshold,

are marked.

The data is then resampled at intervals of 5 s. The last processing step consists of a transformation from the

accelerometer frame to the satellite body fixed frame by switching the coordinate axes:

X̂srf = Ẑarf , (15.64)

Ŷsrf = X̂arf , (15.65)

Ẑsrf = Ŷarf . (15.66)
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15.3. Star Sensor

Figure 15.13 shows the processing steps for the star sensor data.

L1a star sensor data @ 10 Hz

Correction of the satellite clock

Interpolation to integer multiples
of  1 s

Apply low pass to prevent aliasing

Resample to 5 s data interval

L1b star sensor data @ 0.2 Hz

Linear
interpolated clock
corrections

Combination of the two sensor
heads

Figure 15.13: Processing steps for the derivation of L1b SCA data from L1a SCA data.

Conversion to the Satellite Reference Frame

The measured quaternions represent the orientation of the respective Star Sensor Reference Frame (SSRF)

of each sensor head with respect to the Inertial Reference Frame (IRF), i.e. they represent a rotation that

transforms from the IRF to a SSRF. For the data processing, the orientation of the Satellite Reference Frame

(SRF) is desired. Therefore the measured quaternions have to be transformed, cf. equation (14.1):

Q
srf
irf = Q

ssrf
irf ⋆ Q

srf
ssrf . (15.67)

The quaternions Q
srf

ssrf , describing the orientation of the SSRF w.r.t. SRF, are derived during calibration

maneuvers resp. have been determined pre flight on ground and are given in the Sequence of Events file (SOE).

It is assumed that the accuracy of these quaternions is sufficient in order to neglect them in the error budget.

Outlier detection

In order to detect outliers in a measurement, a reference to which the measurements can be compared to has

to be available. For the star sensor measurements, a reference can be generated using the orbit information, cf.

appendix (D.2). The general idea is that there are no abrupt changes in the attitude data, so that any sudden

change of the attitude exceeding a threshold is considered as an outlier.

Retain continuity

A simultaneous change in the sign of all quaternions does not change the orientation they represent. Discon-

tinuities of this kind have to be removed. They are identified by formation of the first time derivative. An

identified discontinuity is removed by multiplying the identified quaternion and all following ones by -1.
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Apply time tag correction

The star sensor time tags are given in receiver time. In order to convert them to GPS time, the receiver clock

error has to be corrected:

ttgps
str = ttrec

str + corrgps
rec . (15.68)

The corrections are derived via linear interpolation of the clock corrections given in CLK1B.

Combination of the data of the two sensor heads

Each of the two star tracker camera heads data is used to derive an orientation of the satellite, i.e. there are two

time series of the satellite’s orientation available. In order to exploit this redundancy, the data of both sensor

heads are combined. The algorithm of the combination is described in Wu et al. (2006), the theory is discussed

in Romans (2003). It is based on the fact that both star sensor heads should deliver the same orientation. The

difference between both orientations is used to derive a correction for each orientation delivered by head 1 or

head 2 in a least squares sense. The correction takes into account, that rotations about the line of sight of

the star sensor are determined less accurate than rotations perpendicular to the line of sight. The ’difference’

quaternion is:

∆Q12 =
(
Q

(1)
irf,srf

)−1
⋆ Q

(2)
irf,srf =

(
1,

1

2
∆12

)
. (15.69)

The corrected quaternion is, cf. Wu et al. (2006):

Q
corr
irf,srf = Q

(1)
irf,srf ⋆

(
1, M · 1

2
∆12

)
, (15.70)

M =
1

2




1 0 0

0 1 −λ

0 −λ 1



 , (15.71)

λ =
κ2 − 1

κ2 + 1
, κ = 8. (15.72)

The formal error for rotations about the boresight of the sensor heads is about a factor κ greater than for

rotations perpendicular to the boresight. The matrix M is a scaling of the difference vector 1
2∆12, whose

components can be interpreted as difference angles δφx

2 ,
δφy

2 , δφz

2 between the orientation delivered by head 1

and head 2, as the difference is assumed to be small. The scaling matrix M takes also into account that the

z-axes of the star sensor reference frames are orthogonal. For κ = 1, the correction is just the mean of the

difference of the quaternions. This combination strategy does not take into account a possible degradation of

data quality of a sensor head in the vicinity of Sun/Moon intrusions.

Combination with accelerometer data

The official data processing described in Wu et al. (2006) does not foresee the combination of the star sensor

data and the accelerometer data. The general idea is to take advantage of the fact that the accelerometers not
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Figure 15.14: Overview of the combination of star sensor data with accelerometer data.

only measure linear accelerations, but also angular accelerations. To use this information for the orientation

determination, a relation between angular acceleration and quaternions has to be established. The first step is

to integrate the angular acceleration to get the angular velocity:

ωacc =

∫
ω̇accdt. (15.73)

From the level of angular velocities, the quaternions can be derived using the formulas given in appendix (Annex

C). The combination with the information from the star tracker takes place on the level of the angular rate.

We start with a comparison of the angular rates from star tracker and accelerometer. Figure 15.15 (left panel)

shows the time series of the angular rate about the x-axis of the SRF derived from the star tracker (red) and

the accelerometer. The angular rate of the star tracker is noisy, but shows the expected behavior: a zero mean

value. The angular rate derived from the accelerometer (green) behaves differently, it shows a long periodic

signal but is less noisy. These observations are confirmed when we consider the right panel of the figure, that

shows the root PSD of the angular rate. The PSD of the angular rate from the accelerometer (green) behave

more or less like a straight line rising at low frequencies and dropping at high frequencies. The one from the star

tracker is different: it is horizontal until it starts to rise at about 1 · 10−2 Hz. The PSDs agree in a region from

5 · 10−4 Hz to about 3 · 10−2 Hz. It is known that the accelerometer drifts, i.e. that the quality of accelerometer

data decreases at low frequencies. The star sensor data are reliable at low frequencies but show low quality at

high frequencies in terms of an increased noise level. The idea of the combination is to take the information at

low frequencies from the star tracker and to take the information at high frequencies from the accelerometer by

application of a high-pass respectively low-pass filter. The spectra of the filtered data are then added to yield

the spectrum of the improved angular rate. The vertical black line in the right panel of the figure shows the

proposed cut-off frequency: 3 · 10−2 Hz. The principle is shown in figure 15.14.

The results of this procedure are shown in figure 15.16. The left panel shows the original measurements and

the combined angular rate in blue. The filtered data from the star tracker (black) and from the accelerometer

(magenta) are displayed as well. The combined angular rate is very similar to the filtered rate from the star

tracker and is less noisy. The right panel shows the root PSDs. The filtered data show the effect of the applied

low-pass respectively high-pass filter: for the star tracker data, only the low-frequency part of the spectrum

remains, for the accelerometer, only the high-frequency part of the spectrum. The spectrum of the combined

angular rate is the sum of both spectra.

For the resulting quaternion, we could expect that its spectrum shows the same behavior as the altered angular

rate: a reduced noise level and therefore a damping of the high frequencies of its spectrum. This is not the case,

as quaternions are not simply the integral of the angular rate, the relation between them is more complicated,

compare appendix (Annex C) for details.

The left panel of figure 15.17 shows the time series of one component of the resulting quaternion. The results

for the other components are similar, they are therefore not shown. The difference (green) between the original

(blue) and the combined (red) quaternion is small, it is at a level of 1 · 10−4 rad. The right panel shows the
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Figure 15.15: Left panel: Time series of the angular rate about the x-axis of the SRF derived from the star tracker measurements

(red) and from the accelerometer measurements (green).
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Figure 15.16: Left panel: Time series of the combined angular rate about the along-track axis in comparison to the original and

filtered one. Right panel: Root PSD of the combined angular rate and the angular rates from the star tracker and the accelerometer

before and after application of the high-pass and low-pass filter.

root PSD of the resulting quaternion, the original one and the difference. The difference is larger than the

quaternion noise level of about 1 · 10−4 rad/
√

Hz only between 5 · 10−5 and 1 − 2 · 10−4 Hz. At frequencies

higher than 3 · 10−2 Hz, the noise level is reduced.

As conclusion, we find that the combination of star tracker and accelerometer data improves the derived orien-

tation at low as well as at high frequencies of the spectrum. The resulting orientation is smoother than the one

derived from the star tracker measurement.
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Figure 15.17: Left panel: Time series of the star tracker delivered quaternion (blue), the quaternion derived from the combined

angular rate (red) and their difference scaled by a factor of 1000 (green). Right panel: Root PSD of the quaternions from the star

tracker (blue) and the one derived from the combined angular rate (red) and their difference (green). Only at low frequencies the

difference is larger than the quaternion noise level.

Application of the low-pass filter

For the star sensor data processing the same low-pass filter as the one that is used for the K-band processing can

be used. The requirements on the accuracy inside the pass-band are lower than for the K-band measurements, as

the amplitudes of the quaternions are significantly smaller than those of the K-Band measurements. Assuming

a maximum amplitude of 1 and a measurement error of 1 · 10−4 rad, a relative error of about 1 · 10−4 is the

requirement for the accuracy in the pass-band for the low-pass filter. This requirement can easily be met by

the filter we proposed or by the convoluted rectangle filter. Again it is suggested to conduct the filtering in the

frequency domain:

Qfilt = IDFT

[
HLP [ω] · DFT [Qraw]

]
. (15.74)
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16. Level 1b analysis

In this chapter the L1b data are analyzed. For the accelerometer data, the difference between L1a data and

L1b data consists mainly in a reduced bandwidth. For the K-band data, the bandwidth has been reduced, but

also range rate and range acceleration have been derived from the range measurements. The L1b star sensor

data also has a reduced bandwidth compared to the L1a star sensor data. In addition, the data from the sensor

heads has been combined.

For the K-band, it will be tested if the difference in the pass-band of the applied low-pass filter is smaller than

the specified measurement error. Especially for the accelerometer data, we will investigate if the peak and

twang effects are still present in the L1b data. For the star sensor data, we will investigate the effect of the

combination of the data from the two sensor heads. In addition, the performance of the K-band measurements

and of the star sensor data will be assessed.

16.1. GPS receiver

We will give only a very brief analysis of the GPS data. For a thorough quality assessment, it would be

necessary to conduct a precise orbit determination in order to correct the measurements for the error terms

in equations (11.2) and (11.8) in chapter (11). There are six available observables: the C/A, P1 and P2 code

measurements and the C/A, L1 and L2 phase measurements. By forming the difference between the C/A and

P1 range measurements, respectively the C/A and L1 phase measurements, the noise level for the code and

phase measurements can be assessed, cf. Jäggi and Svehla (2007). In order to assess the quality of the GPS

measurements, we will estimate a noise level from their root PSD and compare it to the specification from

Stanton et al. (1998), see table 16.1. The noise time series are derived from the following differences:

Table 16.1: Noise level specifications for the Black-Jack GPS receiver from Stanton et al. (1998).

observation type noise level 1σ [cm] 10 s sampling error
√

PSD cm/s2/
√

Hz

code measurements 100 400

phase measurements 1 4

noiseL1
code = P L1

C/A − P L1
P1 , (16.1)

noiseL1
phase = LL1

C/A − LL1
P1. (16.2)

It is to be noted, that by the subtraction of the observations the derived noise level is increased by a factor of

two on the level of the PSD, respectively by a factor of
√

2 on the level of the root PSD.

The right panel of figure 16.1 shows the root PSD for GPS measurements on GRACE A to GPS satellite 11 as

an example. The results for other satellites are similar. The root PSDs level out into what seems to be white

noise at about 3 · 10−3 Hz. The assumed noise levels are about 10 cm/
√

Hz for the range measurements and
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Figure 16.1: Left panel: Root PSD of the GPS measurements on GRACE A. Right panel: Root PSD of the GPS measurements on

GRACE B.

about 1 mm/
√

Hz for the phase measurements and therefore significantly below the requirements. The situation

is the same for the measurements on GRACE B, displayed in the right panel of figure 16.1.

From Jäggi and Svehla (2007), it is known that the measurement performance derived from precise orbit

determination is similar, it seems therefore that the derived noise level is realistic.

Conclusion

We can state that the performance of the GPS measurements fulfils the requirements, as the assumed noise

level is considered as an upper limit for the real measurement noise. A noise level could be derived only for the

measurements on the L1 carrier. It is not possible to derive a realistic noise level for the measurements on the

L2 carrier, as on this frequency only one phase respectively code measurement is available. The measurement

performance on L2 can only be determined in the course of a precise orbit determination.
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16.2. K-band

The L1b K-band range measurements evolve from the combination of the L1a phase measurements of both

satellites on both the K-band and the Ka-band. Therefore, there is only one product for both satellites. The

range rate and the range acceleration are derived from the measured range in the course of the L1a to L1b

processing, therefore they can not be compared with corresponding L1a data. Figure 16.2 shows the comparison

of the L1a and L1b data. The upper left panel shows the time series of the range measurement. We recognize

that the range measurement is very smooth. It varies with a magnitude of about 2.5 km. At a first glance, no

difference between the L1a range and the L1b range is visible. The upper right panel shows the corresponding

root PSD. As expected, the root PSD of the L1a and L1b range are almost identical up to the cut-off frequency

of the applied low-pass filter. The filter proposed by Thomas (1999) has been applied. The difference inside

the pass-band is slightly below the error specification for the range measurement. The peaks at 4 · 10−2 Hz

and 8 · 10−2 Hz identified also in the L1a phase data is still visible, but with a reduced magnitude of about

4 · 10−5 m/
√

Hz. That means that the combination of the measurements during the L1b processing diminishes

this effect but does not fully remove it. At frequencies of about 2 · 10−2 Hz, noise seems to dominate the

measurement. The noise agrees well with the error specification, except for the peaks mentioned before. The

peaks increase the standard deviation from the specified 3 · 10−7 m to 4 · 10−7 m or by 33% for 5 s data. As the

effect is limited to two frequencies, the impact on the gravity field model determination is to be investigated.

The middle left panel shows the range rate, that varies with a magnitude of about 2.5 m/s. The middle right

panel shows the corresponding root PSD, that is just the root PSD of the range multiplied by ω.

The lower left panel shows the range acceleration, the second derivative of the range. It varies with a magnitude

of about 3 · 10−3 m/s2. The lower right panel shows the corresponding root PSD.

Performance assessment

Concerning the measurement performance, it can be stated that the K-band data fulfils the requirements, except

for the effect at 4 · 10−2 Hz and 8 · 10−2 Hz. This effect deteriorates the performance, as if the noise would be

higher by 33 % than specified or about 1.3 · 10−6 m/
√

Hz for 5 s data. We conclude that it may be sensible to

reduce the bandwidth of the applied low-pass filter to about 2 − 3 · 10−2 Hz and thus remove this effect from

the data. The findings for the measurement performance of the range measurement are applicable to the range

rate and the range acceleration measurement as well, as they are just derivatives of the range measurement.
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Figure 16.2: Comparison of the L1a and L1b K-band data. The left panels show the time series of the range, range rate and range.
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16.3. Accelerometer

As the results for the analysis of the L1b data are similar for GRACE A and GRACE B, this analysis is

restricted to the data from GRACE A. The L1b accelerometer data mainly evolves from the L1a accelerometer

data through the application of an anti-aliasing low-pass filter. Therefore, one expects the L1b data to be a

smoothed version of the L1a data. Figure 16.3 shows the comparison of the L1a and L1b data. The top row shows

the measured along-track linear accelerations. The L1a data are dominated by the peak effects and thruster

events. In this time series, no periodic behavior is visible. The magnitude is about 3 · 10−7 m/s2. The L1b data

however show a periodic signal with a period of one revolution with a magnitude smaller than 2 · 10−7 m/s2.

The periodicity is caused by the fact that all surface forces are caused by effects that are stationary compared

to the motion of the satellite relative to the Earth. From one revolution to the other, the satellite encounters

almost the same environment and therefore the measured acceleration is periodic with the orbit frequency. The

top right panel shows the root PSD of the L1a and L1b data. There is no difference between the two up to

the cut-off frequency of the low-pass filter. The signals are strongest at once and twice per revolution, then

decaying until at about 2 · 10−2 Hz the signal of the thruster events dominates the measurement. The signal at

1 Hz and multiples caused by the thruster events is slightly visible. The middle left panel shows the time series

of the measured cross-track linear accelerations. The L1a signal is dominated by the twang effects and thruster

events, its magnitude reaching up to 3 · 10−6 m/s2. That is one order of magnitude larger than the supposedly

stronger signal of the along-track component. The L1b data is smaller by two orders of magnitude, reaching up

to 0.2 · 10−7 m/s2, cf. figure 16.4. The middle panel at the right shows the root PSD of the cross-track linear

accelerations. Again there is no difference between L1a and L1b data until the cut-off frequency of the applied

low-pass filter. In both data, a strong once per revolution signal is visible. At about 2 · 10−2 Hz, the signal

seems to evolve into white noise at a level of about 1 · 10−7 m/s2/
√

Hz. In the L1a data, the signal at 1 Hz and

multiples caused by the thruster events is visible.

The lower left panel shows the time series of the L1a and L1b radial linear acceleration measurements. Here,

the L1a data’s magnitude is largest, reaching up to 2 · 10−5 m/s2. The L1b signal magnitude is significantly

smaller, reaching up to 0.5 · 10−7 m/s2, cf. figure 16.4. The L1a data is completely dominated by the twang

effect and therefore shows no periodicity. In the L1b data, the orbital period is clearly visible, as expected. The

lower left panel shows the root PSD of the measured radial accelerations. In both data, the signal at once per

revolution is visible. At high frequencies, the L1a data is dominated by the twangs, reaching magnitudes of up

to 1 · 10−6 m/s2/
√

Hz. The signal caused by the thrusters is not visible.

In section 14.2, we showed that the peaks and the twangs may have no effect on the lower frequencies, but the

thrusters have. We will now compare sample periods of L1a data containing these effects with corresponding

epochs of L1b data.

16.3.1. Disturbance effects: peaks, twangs and thruster events

We start with the peak effects. Figure 16.5 shows an example. It looks as if the peaks disappear after the

low-pass filtering. The underlying long periodic signal is present, both in the L1a and L1b measurements. The

results from section 14.2 confirm this assumption. The possible cause of the peak effects is the operation of

switches used for the heating of the accelerometer, cf. Flury et al. (2007).

For the twangs, the findings of the section 14.2 concerning the influence on the lower frequencies of the ac-

celerometer measurements are confirmed. The low-pass filtered L1b data seems not to show the twang effects,

cf. figure 16.6.

As discussed in section 14.2, the thruster events influence the total spectrum, i.e. there should be an effect

visible after the low-pass filtering. Figure 16.7 seems to confirm this assumption. The sharp peaks of the

thruster events visible in the L1a data are still visible, but smoothed and smeared out in the L1b data. There

is a part of the thruster events signal affecting only low frequencies that is preserved in the L1b data.
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Figure 16.3: Comparison of L1a and L1b accelerometer data for GRACE A. The top row shows the measured along-track accelera-

tions in the time and frequency domain, the middle row the measured cross-track accelerations and the bottom row the measured

radial accelerations.

16.3.2. Performance assessment

Since the two effects that represent no actual acceleration on the satellites, the peaks and the twangs, are removed

almost completely through the application of the low-pass filter, they do not contribute to the measurement
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Figure 16.4: L1b accelerometer data for GRACE A.
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Figure 16.5: Comparison of a period of L1a along-track data containing the peak effect with the corresponding period of the L1b

along-track data.

error significantly. The signal introduced into the linear acceleration measurement by the thruster activations

represents an actual acceleration on the satellites, therefore it is desired that the accelerometers measure it. It

does not contribute to the measurement error budget. In conclusion, the L1b measurement performance is close

to the accelerometer performance derived during the L1a data analysis in table 14.1.
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Figure 16.6: Comparison of a period of L1a radial data containing a twang with the corresponding period of the L1b radial data.
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Figure 16.7: Comparison of a period of L1a radial data containing thruster events with the corresponding period of the L1b radial

data.

16.4. Star Sensor

The star sensor L1b data is derived from the star sensor L1a through the combination of the data of both sensor

heads if possible. The combination takes into account, that the orientation measurement is more accurate for

rotations perpendicular to the line of sight of the star tracker. Figure 16.8 shows the comparison of the L1a and

L1b data. On the left hand, the time series is shown. The blue lines represent original data from the two sensor

heads. The red line represents the mean of both observations. We notice that if the scaling factor κ = 1, the

mean values and the combined values agree, as described in section (15.3). The difference visible in the figure

results from the different sampling rates of the L1a data (1 Hz) and the L1b data (0.2 Hz).

The black line represents the combined data for a realistic value of κ = 8. We realize that the combined data

is different from the simple mean. We observe that for some time the combined data is more close the data of

head 1, for other times, it is closer to the data of head 2.
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Figure 16.8: Comparison of the L1a and L1b star tracker data. The left panel shows the comparison in the time domain, the right

panel shows the comparison in the frequency domain. The original data from both star sensor heads is compared to a simple mean

and the result for different values of κ.

The right panel shows the root PSD. As the extent of the analyzed time series is limited, the resolution at low

frequencies is limited. When we compare the root PSD of the simple mean with the original spectra, we realize

that the measurement noise could be reduced by a factor of about
√

2 as expected. When we compare the root

PSD of the combined data with the spectra of the original data, we realize that the noise reduction reduction

factor is about 5 times that of the simple mean.

Performance assessment

The specified performance for the star sensor data before the combination is about 1 · 10−4 rad/
√

Hz for

quaternion components. The use of the most simple combination method, the derivation of the mean, would

improve it to 1√
2
·10−4 rad/

√
Hz. The optimal combination seems to reduce the measurement noise to a level of

about 1·10−5 rad/
√

Hz at frequencies above 10−2 Hz. This noise level can be reduced further by the combination

of the star tracker measurements with the accelerometer measurements, that is not applied during the standard

data processing.
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16.5. Combined analysis
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Figure 16.9: Combined analysis showing the differential linear acceleration and the K-band range acceleration measurement and

models.

For gravity field analysis, the primary observable, the range / range rate / range acceleration, has to be corrected

for the non-gravitational effects from the differential accelerometer measurements. The differential accelerometer

measurement vector is derived as the difference of the measurements of GRACE B and A:

ad = aB − aA. (16.3)

Range, range rate and range acceleration are scalar measurements defined along the line between the mass

centers of the two satellites. Therefore the differential acceleration vector measurement has to be projected on

the line between the mass centers as well:

ac = |ad| · (̂eAB · âd) . (16.4)

êAB is the unit vector between the mass centers.

Figure 16.9 shows the comparison of the measured K-band observation, the measured differential acceleration,

the corresponding models and error specifications on the level of the differential acceleration, i.e. the K-band

observable used is the range acceleration.

Concerning the K-band, we realize that the model and the measurement agree very well, except for the peaks

at 4 − 5 · 10−2 Hz and 9 · 10−2 Hz. The order of magnitude of the differential acceleration measured by the

K-band instrument is about 1 · 10−1 m/s2/
√

Hz. The signal to noise ratio of 1 is reached at about 2 · 10−2 Hz,

from there on the noise dominates the measurement. The noise of the real measurement seems to agree well

with the specification.

Concerning the differential acceleration, we realize that the model and the measurement do not agree well. The

magnitude of the differential acceleration is about five orders of magnitude smaller than that of the K-band

measurements. It is about 1 · 10−6 m/s2/
√

Hz. The signal to noise ratio of 1 is reached at about 2 · 10−2 Hz.

The disagreement of the measured differential acceleration noise level and the specified noise is related to the

thruster events mainly. It is assumed that the measurement performance agrees with the specification. The
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reason for the difference between the modeled acceleration measurement and the real one is twofold: on the one

hand, the thruster events are not included in the model, on the other hand it seems that the used air density

model is not accurate enough.

The curve of the specified error for the K-band intersects the differential acceleration measurement signal also at

about 2 · 10−2 Hz, i.e. the accelerometer measurements can contribute up to this frequency to the reduction of

the K-band measurement for the surface forces. This frequency corresponds to resolution in terms of spherical

harmonics of up to degree and order 100. In order to eliminate the influence of the supposedly erroneous effect

on the K-band measurements at 4 − 5 · 10−2 Hz and 9 · 10−2 Hz, it is suggested to apply a low-pass filter with

a cut-off frequency of 2 · 10−2 Hz to both the accelerometer and the K-band data. Currently, filters with a

different cut-off frequency are applied (cf. Wu et al. (2006)).

The conclusion of the combined analysis is that the K-band measurements as well as the accelerometer mea-

surements provide meaningful information up to a frequency of about 2 · 10−2 Hz over one day. During static

gravity field analysis, when time series spanning months or years are used, the resolution may be improved, but

it seems that it makes no sense to provide data with a higher sampling rate than the standard sampling rate of

0.2 Hz of the L1b products. We recommend to use the same cut-off frequency for the low-pass filter applied to

the K-band data as for the filter applied to the accelerometer measurements: 2 · 10−2 Hz.

Concerning the peak and twang effects, it can be concluded that they are not significant if the accelerometer

data is used in combination with the K-band data as the K-band measurement noise level is higher than the

magnitude of these effects.
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17. Conclusions and discussion

In the following conclusions are drawn for each part of the work.

17.1. Gravitational forces on the satellites

Concerning the acceleration of the satellites caused by gravitational forces, the acceleration caused by the Earth

is strongest, followed by the acceleration caused by the Moon, the Sun, the indirect tides by the Sun and the

Moon, the ocean and pole tides and the frequency-dependent corrections to the solid Earth tides in terms of

the mean value of the acceleration. An analysis in the frequency domain shows that the main power is at twice

per revolution, as the satellites pass through the tidal ellipse. Only for the gravitational acceleration caused by

the Earth, the main power is on once per revolution. Table 17.1 shows a comparison of the magnitude of the

different effects in terms of an acceleration.

Table 17.1: Comparison of the gravitational accelerations caused by different sources.

Source mean power on σ

twice per rev

[m/s2] [m/s2/
√

Hz] [m/s2]

Earth 8.4 3 · 10−2 (on 1cpr) 2 · 10−2

Direct Sun 4.5 · 10−7 1 · 10−5 1 · 10−8

Direct Moon 5.5 · 10−7 4 · 10−6 2 · 10−7

Indirect Sun 1.3 · 10−7 5 · 10−6 2 · 10−9

Indirect Moon 1.6 · 10−7 8 · 10−5 6 · 10−8

Ocean 5 · 10−8 2 · 10−6 2 · 10−8

Pole 1 · 10−8 6 · 10−7 5 · 10−9

Freq. dep. corr. 1 · 10−8 5 · 10−9 2 · 10−9

17.2. Non-gravitational forces on the satellites

The non-gravitational forces, that act on the satellites, directly affect the K-band measurement as differential

accelerations. As for gravity field determination only the gravitational forces by the Earth are the desired

quantity, the non-gravitational forces are measured by the accelerometers in order to correct the K-band ob-

servations. In this work the forces caused by air drag, solar radiation pressure and Earth albedo have been

investigated. The analysis in the spectral domain shows that, apart from a mean value, the main power is at

once per revolution. Table 17.2 shows a comparison of the different effects in the satellite fixed reference frame.

Air drag is the most dominant source of non-gravitational accelerations, followed by solar radiation pressure

and by Earth albedo. Air drag causes a constant acceleration in the along-track direction plus a variation that

is dependent on the air density and the satellite’s velocity. Solar radiation pressure acts strongest in direction of

the radial axis, as the orbit plane was aligned with the direction to the Sun for the analyzed time span. There is

no bias due to the Earth shadow entry and exit of the satellite. Earth albedo also acts strongest in direction of

the radial axis, there is a constant acceleration due to the long-wave albedo caused by the IR radiation emitted

by the Earth.
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Table 17.2: Comparison of the non-gravitational accelerations caused by different sources.

Source along cross-track radial

[m/s2] [m/s2] [m/s2]

Air drag (−1.5 ± 1) · 10−7 (0 ± 1) · 10−8 (0.25 ± 1) · 10−8

Solar drag (0 ± 2) · 10−8 (0 ± 3) · 10−8 (0 + 7) · 10−8

Albedo (0 ± 1) · 10−9 (0 ± 1) · 10−9 −(1.5 + 1) · 10−8

The comparison with the accelerometer measurements shows significant differences between the models and the

measurement, regardless of the used air drag models. It is assumed that the challenge lies not in the force models

themselves, i.e. the physical model describing the interaction of the atmospheric species and the satellite, but

in the used air density model. Of course, there could also be a problem in the solar radiation pressure or the

albedo model, but the magnitude of these effects is one order of magnitude smaller than that of the effects

caused by the air drag and therefore of less concern.

Concerning the differential acceleration, it seems necessary to include the effect of the thruster events into the

drag models, as this effect is a major constituent of the differential acceleration measurement. At low frequencies,

the error of the air drag models and the air density model is responsible for the occurring differences.

The magnitude of the difference between the models and the measurement varies geographically. It seems that

the largest differences occur close to the polar regions at latitudes higher respectively lower than ±60◦.

A way to improve the air density model would be to estimate the air density from the accelerometer measure-

ments. They have to be corrected for bias, scale factor and the influence from the thruster events. It may also

be worthwhile to estimate the accommodation coefficients of the force models. The bias and scale factor of the

accelerometers has to be determined during the orbit determination process: first the true orbit is determined,

then a second orbit is determined by numerical integration of gravitational accelerations provided by models

and of the accelerometer acceleration measurements. The accelerometer scale factor and bias can be determined

from the difference of these two orbits.

17.3. Gravity field sensor system

The elements of the mathematical model of the gravity field sensor system are the GPS receiver, the K-band

measurement system, the star sensor and the accelerometer.

For data analysis, there are two types of data available: the L1a data and the L1b data.

The L1a data is the unprocessed instrument data at the original sample rates of the corresponding instruments.

The high data rate is used to identify the dominant effects in the measurements as well as the measurement

and instrument performance.

The L1b data is the processed instrument data given at a reduced sample rate of 0.2 Hz. The sample rate is

reduced to smooth the data and thereby remove effects that would deteriorate the quality of the derived gravity

fields. A practical aspect is that the required storage space is reduced drastically by about 80 %.

Star sensor

For the star sensor, the measurement noise is assumed to be white. The noise magnitude depends on the

direction of the observed rotation: rotations perpendicular to the line of sight of a star camera are determined

more accurately than rotations about the line of sight. The measurement itself is delivered as quaternions.

Their noise level is about 10 as/
√

Hz.
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The star sensor measurement performance was found to be nominal. Depending on the orbit geometry,

Sun/Moon intrusions occur once per revolution on one of the two sensor heads. It seems that the quality

of the data from the blinded sensor head deteriorates in the vicinity of the Sun/Moon intrusions.

The processing of the star sensor data offers an interesting opportunity: Both sensor heads of one star sensor

deliver the same orientation. Therefore it is possible to combine these measurements. The data from both

sensor heads is combined in an optimal way, taking into account the difference in data quality for the derived

orientation about the line of sight and perpendicular to the line of sight of the sensor head. The proposed

combination method assumes constant data quality.

The L1b star sensor data evolves from this combination of data. It seems that the combination can reduce the

noise level by a factor of 5-10 to a level of 10−5 rad/
√

Hz compared to the noise level of the original measurement

of 10−4 rad/
√

Hz.

We could also show that by combination of the accelerometer and the star sensor data, the noise level could

be reduced and that also at lower frequencies an improvement at the order of some 1 · 10−4 rad/
√

Hz could be

achieved.

Accelerometer

For the accelerometers, there are two dominant noise sources: the acceleration noise, i.e. parasitic accelerations

on the proof mass of the accelerometers and the position noise due to deficiencies in the position detection of the

proof mass. The accelerometer has two sensitive axes with a noise level of 10−10 m/s2/
√

Hz and a less-sensitive

axis with a noise level of about 10−9 m/s2/
√

Hz.

The analysis shows that the linear accelerometer measurements are dominated by three effects, apart from the

’normal’ linear accelerations:

• thruster events,

• peaks,

• twangs.

The thruster events have the strongest impact on the measurement, followed by the peaks and the twangs.

Only the thruster events seem to have an influence also on the lower frequencies of the measurement spectrum,

while the effect of the peaks and twangs seems to be limited to frequencies above 10−2 Hz. As conclusion, we

can state that the performance of the linear acceleration measurement is about 6 · 10−10 m/s2/
√

Hz, i.e. about

2 times higher than the performance specification, if 5 s data is used. If 1 s data is used and the effects of the

twangs and peaks are not corrected, the performance is estimated to be about 1 · 10−9 m/s2/
√

Hz or about 3-4

times above the specified performance. The effect on monthly gravity field models is estimated to be larger

than that for static gravity field models, as there a longer time span is analyzed.

Concerning the rotational acceleration measurement, it was discovered that the thruster events and the magnetic

torquers are the main contributors to the measured signal. The rotation about the along-track axis of the SRF

is mainly controlled by the thrusters, followed by the rotation about the radial axis. The rotation about the

cross-track axis - the highest rotational component - is mainly controlled by the magnetic torquers using the

Earth’s magnetic field.

The requirements for the accelerometer data for the data processing are not very high, the signal magnitude

is several 10−7 m/s2, the instrument accuracy about 10−10 m/s2, i.e. a relative accuracy of about 10−4 is

sufficient. If the peaks and twangs had an effect on the lower frequencies of the measurement, sophisticated

processing algorithms would be needed in order to remove them in a sensible way, but it seems that their effect

is limited to the frequencies higher than 1 − 2 · 10−2 Hz, at least at a level significant above the instruments

accuracy.
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The L1b accelerometer data differs from the L1a data mainly in terms of its reduced bandwidth. Concerning

the three dominant effects, the thruster events, the peaks and the twangs, it seems that only the thruster

events have an effect on the L1b linear acceleration measurement. The effects of the twangs and the peaks

seem to be smaller or at maximum at the level of the accuracy specified for the sensitive axes. For the official

data processing, the bandwidth of the accelerometer data is different from the bandwidth of the K-band data:

3.5·10−2 Hz vs. 0.1 Hz. The measurement performance is estimated to be about 3-4 times the error specification

of 10−10 m/s2/
√

Hz for the sensitive axes and in agreement with the error specification of 10−9 m/s2/
√

Hz for

the less-sensitive axis. This measurement performance assessment assumes that both the twangs and peaks are

no real accelerations acting on the satellites and therefore have to be considered as an error. The performance

of the accelerometers themselves seems to be significantly better but still slightly above the specifications.

K-band measurement system

For the K-band measurement system the phase noise and the system noise are the dominant noise sources.

Concerning the K-band measurement system, the performance was found to be nominal except for an periodic

effect occurring about every 25 s. This effect is visible in the data of both satellites. The origin is unknown,

it is assumed that a frequency change in the USO of one satellite is responsible for this effect. Concerning the

measurement performance, the standard deviation is increased by 33%.

The K-band data is subject to the most demanding requirements for the data processing in terms of accuracy

due to the large dynamic range (several km) and the high accuracy (1 µm). The K-band and Ka-band mea-

surements of both satellites are combined in order to form a ionosphere-free biased range. Range rate and range

acceleration are derived through application of a differentiator respectively double differentiator filter on the

original range measurement. In order to reduce the bandwidth, the design of low-pass filters and single and

double differentiators was investigated. As a filter type, the FIR filter was chosen and the window method for

the design. It seems that the Kaiser window performs best as a window function. The relative accuracy of the

derived filter is about 10−15, but at the cost of an increased filter length, which means an increased amount of

data loss in case of gaps. The filter, that is used for the official processing, performs worse but still sufficient,

as the absolute filter error is just below the measurement accuracy. An important point for the reduction of

the measurement to the line between the mass centers of the satellites is the knowledge of the phase center

variations of the K-band antennae. It is assumed that the variation is below 1 µm.

The L1b K-band data still show the effect with a period of 25 s, although it is smaller than in the L1a data.

Apart from it, the performance is slightly better than the expected 1 · 10−6
µm/

√
Hz. Including this effect, the

performance would correspond to a noise level of about 1.3 ·10−6
µm/

√
Hz. The performance for the range rate

and the range acceleration is similar, as they are just the derivatives of the measured range, their error level is

also increased by 33%.

The combined analysis of the accelerometer and the K-band data showed that the accelerometer measurements

can be used to reduce the K-band measurements for the effects of non-gravitational accelerations up to a

frequency of about 2 · 10−2 Hz.

The peak and twang effect seem to be not significant for the combination of the accelerometer data with the

K-band data as the measurement noise of the K-band is higher than the magnitude of these effects.

GPS receiver

The noise level we derived is significantly below the requirements: about 1 mm/
√

Hz for the phase measurement

on L1 and about 10 cm/
√

Hz for the code measurement on L1. A realistic measurement performance for the

L2 measurements can only be derived in the course of a precise orbit determination.
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18. Outlook

We close with some suggestions for future research.

18.1. Non-gravitational forces on the satellites

It seems that concerning the non-gravitational forces, the quality of the available air density models might not

be sufficient. A possible solution could be to use the accelerometer measurements to estimate the air density

together with the accommodation coefficients for each surface element. First, the accelerometer bias and scale

factor have to be determined in the course of the orbit determination. An improved model for the air drag

could be used to fill data gaps in the accelerometer measurements in a sensible way.

18.2. Level 1a to level 1b data processing

Applied low-pass filter

In order to eliminate the effect in the K-band measurements at 4·10−2 Hz we suggest to use a low-pass filter with

a cut-off frequency of 2 · 10−2 Hz. We also suggest to use the same filter for all observation types, especially for

the accelerometer measurements and the K-band measurements, as they are combined directly for the gravity

field determination. The filter we derived is very accurate at the cost of an increased filter length. It might be

worthwile to investigate a different filter type, e.g. IIR filters. They would have the advantage that they usually

require a smaller filter length for achieving the same results as a FIR filter.

Attitude determination

The algorithm used in the official processing of the star sensor data does not take into account that the data

from the head which is occasionally blinded by the Sun/Moon is degraded in the vicinity of the Sun/Moon

intrusions. It does not use the possibility to combine the star tracker measurements with the accelerometer

angular acceleration measurements. The method we used for the combination is simple, it might be worthwhile

to investigate more elaborate methods, e.g. using a kalman filter. It would then be sensible to conduct both, the

combination of the data from the two sensor heads and of the data from the accelerometer, inside one process.

The advantage of the kalman filter would be that the current quality of the input data is estimated as well

and the weighting is adjusted accordingly, so that the effect of the Sun/Moon intrusions or any other perhaps

unknown effects deteriorating the data quality could be considered.
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Annex A. Discrete Fourier transform and discrete

filters

A.1. Discrete Fourier Transform (DFT)

The discrete spectrum X [k] of a time series x[n] of N elements given at sampling intervals dt and spanning the

interval T = N · dt is given by the Discrete Fourier Transform (DFT):

X[k] =

Nh∑

n=−Nh

x[n] · e−i2π· k
T

·n·dt. (A.1)

Nh = (N − 1)/2 for odd N and Nh = N/2 for even N is half the number of samples. The time series x[n]

corresponding to a spectrum X [k] is given by the Inverse Discrete Fourier Transform (IDFT):

x[n] =
1

N

Nh∑

k=−Nh

X[k] · ei2π· k
T

·n·dt. (A.2)

A.2. Discrete filters

Figure A.1: Impact of the chosen window function on the realization of a low-pass filter with the window method. Here, as an

example, the window function chosen to limit the extent of the sinc-function is a rectangle. The left hand side shows the operation

in the time domain, the right hand side the operation in the frequency domain.
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There are several filter types and design methods, cf. e.g. Best (1991). We use only FIR filters designed with

the Window method, as there is no need for real-time processing and a linear phase delay, i.e. a constant time

delay corresponding to half the filter length for the filtered data is required. The principle is shown in figure A.1.

The desired frequency response of the filter is designed in the frequency domain. The corresponding function

in the time domain usually has an unlimited extent. In order to limit the time response of the ideal filter, it is

multiplied by a window function. In the figure, an ideal low-pass filter is designed in the frequency domain as

a rectangle. The corresponding time domain representation is a function similar to sin x
sin y with unlimited extent.

The window function chosen to limit the time response is a rectangle. A multiplication in the time domain is a

convolution in the frequency domain, i.e. the DFT of the rectangle is convolved with the ideal low-pass filter.

The resulting filter deviates from the ideal one depending on the chosen window function.

In the following sections ideal low-pass, differentiator and double differentiator filters are derived.

A.3. Low-pass filter

Let us assume that the desired bandwidth of the low-pass filter is B and that the frequency sampling is dω = 2π
Tf

where Tf = Nf ·dt is the length of the filters’ time response. The rectangle representing the filter shall be centered

around the zero frequency. The time response of the filter LP [n] at sample n can then be described as:

LP [n] =
1

Nf

Nh∑

k=−Nh

1 · e
i2π· k

Tf
·n·dt

, (A.3)

where B = (2 · Nh + 1) · dω. This equation can be rewritten as:

LP [n] =
1

Nf




Nh∑

k=0

1 · e−ik·dω·n·dt +

Nh∑

k=0

1 · eik·dω·n·dt − 1



 . (A.4)

Both series in the above equation are limited geometric series:

N∑

n=0

xn =
xN+1 − 1

x − 1
. (A.5)

Therefore we get:

LP [n] =
1

Nf

[
ein·dt·dω·(Nh+1) − 1

ein·dt·dω − 1
+

e−in·dt·dω·(Nh+1) − 1

e−in·dt·dω − 1
− 1

]

=
1

Nf

[ [
ein·dt·dω·(Nh) − ein·dt·dω·(Nh+1) − e−in·dt·dω + 1

]

1 − ein·dt·dω − e−in·dt·dω + 1

+

[
e−in·dt·dω·(Nh) − e−in·dt·dω·(Nh+1) − ein·dt·dω + 1

]

1 − ein·dt·dω − e−in·dt·dω + 1

+

[
−1 − 1 + ein·dt·dω + e−in·dt·dω

]

1 − ein·dt·dω − e−in·dt·dω + 1

]

=
1

Nf

[ [
ein·dt·dω·(Nh) + e−in·dt·dω·(Nh) −

(
ein·dt·dω·(Nh+1) + e−in·dt·dω·(Nh+1)

)]

2 −
(
ein·dt·dω + e−in·dt·dω

)
]

. (A.6)

Using Euler’s identity eiφ = cos(φ) + i sin(φ), we see that the imaginary parts cancel out and that two times

the real parts remain. The time response of the optimal low-pass filter becomes purely real, as expected:
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LP [n] =
1

Nf

[
2 · cos(dω · (Nh) · n · dt) − 2 · cos(dω · (Nh + 1) · n · dt)

2 − 2 cos(n · dt · dω)

]

=
1

Nf

[
cos(dω · (Nh) · n · dt) − cos(dω · (Nh + 1) · n · dt)

1 − cos(n · dt · dω)

]
. (A.7)

Knowing that cos(x) − cos(y) = −2 sin(x+y
2 ) · sin( (x−y)

2 ) and 1 − cos(2x) = 2 sin2(x), we get:

LP [n] =
1

Nf

[
−2 sin( 2Nh+1

2
· dω · n · dt) · sin(−1 · dω

2
· n · dt)

2 sin2(n · dt · dω
2

)

]

=
1

Nf

[
sin(n · dt · (2Nh+1)·dω

2
)

sin(n · dt · dω
2

)

]

=
1

Nf

[
sin(n · dt · B

2
)

sin(n · dt · dω
2

)

]
. (A.8)

This result differs significantly from the results given e.g. in Meyer (1998), where as the inverse discrete Fourier

transformation of the optimal low-pass filter the sinc-function is given. There it is assumed that the time series’

extent is unlimited, which is never the case for practical applications.

The derived expression has a singularity for n = 0. As sin(x) = x for small x we get:

lim
n→0

(
1

Nf

[
sin(n · dt · B

2
)

sin(n · dt · dω
2

)

])
=

1

Nf

[
n · dt · B

2

n · dt · dω
2

]
=

1

Nf

[
B

dω

]
. (A.9)

The derived expression for the inverse discrete Fourier transform of a rectangle in the spectral domain allows

us to derive the expression for the discrete Fourier transform of a rectangle in the time domain because of the

duality of the frequency and the time domain by exchanging dt with dω and B with TR, the time span of the

rectangle:

RECT [k] =

Nh∑

n=−Nh

1 · e−i·kdω·ndt =
sin(k · dω · TR

2
)

sin(k · dω · dt
2

)
, (A.10)

RECT [0] =
TR

dt
. (A.11)

The time domain representation of the filter is derived by multiplication with the chosen window function:

HLP [n] = W [n] · LP [n]. (A.12)

A.4. High-pass filter

The high-pass filter can be specified easily in the frequency domain:

HHP [k] = 1 − HLP [k]. (A.13)
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The high-pass filter is kind of an inverse of the low-pass filter. The pass-band of the low-pass filter is the

stop-band of the high-pass filter and vice versa.

The time domain representation can be derived in the following way, using equation (A.4):

HP [n] =
1

Nf




−Nh−1∑

k=−Nhf

1 · e
i2π· k

Tf
·n·dt

+

Nhf∑

k=Nh+1

1 · e
i2π· k

Tf
·n·dt





=
1

Nf




Nhf∑

k=−Nhf

1 · e
i2π· k

Tf
·n·dt

−
Nh∑

k=−Nh

1 · e
i2π· k

Tf
·n·dt





=
1

Nf



 sin(n · dt · (2Nhf +1)·dω

2
) − sin(n · dt · B

2
)

sin(n · dt · dω
2

)



 , (A.14)

HP [0] =
1

Nf

[
2Nhf + 1 − B

dω

]
= 1 − 1

Nf

[
B

·dω

]
. (A.15)

and the other results derived for the low-pass filter. 2Nh + 1 is the number of samples contained in the stop

band of the filter, 2Nhf + 1 = Nf is the number of samples of the spectrum/time response of the filter. The

time domain representation of the filter is derived by multiplication with the chosen window function:

HHP [n] = W [n] · HP [n]. (A.16)

A.5. Differentiator

Differentiation in the time domain corresponds to a multiplication in the frequency domain with iω. We will

now use the same approach as for the design of the low-pass filter: First, the time domain representation of the

’optimal’ differentiator will be derived.

D[n] = IDFT [D[ω]] =
1

Nf
·

Nh∑

k=−Nh

1 · ik · dω · eik·dω·n·dt

=
d

d(n · dt)
[LP [n]] =

d

dt
[LP [n]], (A.17)

which is the time derivative of the optimal low-pass filter. The time domain representation of the optimal

differentiator is then given by:

D[n] =
d

d(n · dt)




sin
(
n · dt · B

2

)

sin
(
n · dt · dω

2

)



 · 1

Nf

=
B
2

cos(n · dt · B
2

) · sin(n · dt · dω
2

) − dω
2

· cos(n · dt · dω
2

) · sin(n · dt · B
2

)

sin2(n · dt · dω
2

)
· 1

Nf
, (A.18)

D[0] =
B
2
· 1 · n · dt · dω

2
− dω

2
· 1 · n · dt · B

2

(n · dt · dω
2

)2
· 1

Nf
= 0. (A.19)
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As a second step, this time domain representation will again be limited by a multiplication with a window

function:

HD[n] = W [n] · D[n]. (A.20)

A.6. Double differentiator

A double differentiator is derived in the same way: First, we get the time domain representation of the optimal

double differentiator as the derivative of the optimal differentiator:

DD[n] =
1

Nf
· d

d(n · dt)

(
B
2

cos(ndt · B
2

) · sin(ndt · dω
2

) − dω
2

· cos(ndt · dω
2

) · sin(ndt · B
2

)

sin2(ndt · dω
2

)

)

=
1

Nf
·

(
dω2

4
− B2

4

)
· sin(ndt · B

2
) · sin(ndt · dω

2
) · sin2(ndt · dω

2
)

sin4(ndt · dω
2

)

− 2 sin(ndt · dω

2
) · cos(ndt · dω

2
) · dω

2

·

(
cos(ndt · B

2
) · sin(ndt · dω

2
) · B

2
− dω

2
· cos(ndt · dω

2
) · sin(ndt · B

2
)
)

sin4(ndt · dω
2

)

=
1

Nf
·

(
dω2

4
− B2

4

)
· sin(ndt · B

2
)

sin(ndt · dω
2

)

−
2 · cos(ndt · dω

2
) · dω

2
·
(
cos(ndt · B

2
) · sin(ndt · dω

2
) · B

2
− dω

2
· cos(ndt · dω

2
) · sin(ndt · B

2
)
)

sin3(ndt · dω
2

)
.

(A.21)

The value for n = 0 is then given by:
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DD[0] =
1

Nf
·

(
dω2

4
− B2

4

)
ndt · B

2

ndt · dω
2

−

(
2 ·
(

cos(ndt · B
2

) · sin(ndt · dω
2

) · B
2
· dω

2
−
(

dω
2

)2
· cos(ndt · dω

2
) · sin(ndt · B

2
)

))′

(
sin3(ndt · dω

2
)
)′

=
1

Nf
·
([

dω

2

]2
−
[

B

2

]2)
· B

dω

−
2 ·
(
− sin(ndt · B

2
) · sin(ndt · dω

2
) ·
(

B
2

)2
· dω

2
+
(

dω
2

)3
· sin(ndt · dω

2
) · sin(ndt · B

2
)

)

3 sin2(ndt · dω
2

) · cos(ndt · dω
2

) · dω
2

=
1

Nf
·
([

dω

2

]2
−
[

B

2

]2)
· B

dω

− 2

3
·
(ndt)2 ·

(
dω
2

)4
·
(

B
2

)
− (ndt)2 ·

(
B
2

)3
·
(

dω
2

)2

(ndt)2 ·
(

dω
2

)3

=
1

Nf
·
([

dω

2

]2
−
[

B

2

]2)
· B

dω

− 2

3

[(
dω

2

)
·
(

B

2

)
−
(

B

2

)3

·
(

2

dω

)]

=
1

Nf
· 1

3
·
([

dω

2

]2
−
[

B

2

]2)
· B

dω
. (A.22)

The time domain representation of the filter is derived by multiplication with the chosen window function:

HDD[n] = W [n] · DD[n]. (A.23)
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Figure A.2: Optimal low-pass filter, differentiator and double differentiator in the time and the frequency domain. The left hand

panels show the time domain representation of the optimal low-pass filter, differentiator and double differentiator. The right hand

panels show the corresponding representation in the frequency domain. Differentiation in the frequency domain corresponds to a

multiplication with a straight line, double differentiation corresponds to a multiplication with a parabola.
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A.7. Filter scaling

So far an important problem has not been addressed: the derived filters have to be scaled in order to approximate

the optimal filters as good as possible. The scaling has to be a constant and independent of the frequency, as

otherwise the multiplication by a frequency dependent scaling function would result in an undesired convolution

of the time domain representation of the filter.
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Figure A.3: Convolution of the optimal low-pass filter with the spectrum of the chosen window function. The rightmost figure shows

the resulting spectrum (red) after the convolution.

Let us first return to the optimal low-pass filter. In the frequency domain, it is a rectangle of a certain extent

with height one, cf. figure A.2. When the extent in the time domain is limited to the desired filter length, this

rectangle is convolved with the frequency representation of the chosen window function. It is now assumed that

the window function is symmetric and that the number of epochs covered is odd. Then the spectrum of the

unscaled filter is given as:

HLP [ω] =

Nh∑

j=−Nh

LP [ω + j · dω] · W [j · dω]. (A.24)

During this convolution, the spectrum of the window function is moved against the spectrum of the low-pass

filter. There are two principal situations, cf. figure A.3:

• The spectrum of the window function is completely inside the pass-band.

• The spectrum of the window function is partly outside the pass-band.

The speciality of the low-pass filter is that its value inside the pass-band is independent of the frequency, as it

is one. So we get for frequencies where the first case is true:

HLP [ω] = 1 ·
Nh∑

j=−Nh

W [j · dω]

= LP [ω] ·
Nh∑

j=−Nh

W [j · dω]. (A.25)

That means that the correct value, one, is replaced by the sum of the spectrum of the window function. The

correct scaling factor is then just this number.

SFLP =

Nh∑

j=−Nh

W [j · dω], (A.26)

Hs
LP [ω] =

HLP [ω]

SFLP
. (A.27)
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For the second case, where the spectrum of the window function is partly outside of the pass-band, the correct

scaling becomes frequency dependent and is therefore not applied.

The spectrum therefore deviates from one in the frequency range close to the cut-off frequency, compare figure

A.3.

For the high-pass filter, the same scaling factor as for the low-pass filter is applicable.
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Figure A.4: Convolution of the optimal differentiator filter with the spectrum of the chosen window function. The rightmost figure

shows the resulting spectrum (red) after the convolution.

Let us now derive the optimal scaling factor for the differentiator. As for the low-pass filter, only the case where

the window function spectrum fully covers the pass-band has to be considered. If we now consider the spectrum

of the optimal differentiator inside the pass-band across the window width, we realize that it is symmetric, as

it is a linear function of the frequency, cf. figure A.4:

HD [ω] =

Nh∑

j=−Nh

D[ω + j · dω] · W [j · dω]

=

Nh∑

j=−Nh

ω · W [j · dω] + j · dω · W [j · dω]

=

Nh∑

j=−Nh

ω · W [j · dω]

= D[ω] ·
Nh∑

j=−Nh

W [j · dω]. (A.28)

The scaling factor is the same as for the low-pass filter:

SFD = SFLP =

Nh∑

j=−Nh

W [j · dω], (A.29)

Hs
D [ω] =

HD [ω]

SFD
. (A.30)
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Things are different for the double differentiator filter:

HDD[ω] =

Nh∑

j=−Nh

DD[ω + j · dω] · W [j · dω]

=

Nh∑

j=−Nh

−(ω + j · dω)2 · W [j · dω]

= −
Nh∑

j=−Nh

ω2 · W [j · dω] −
Nh∑

j=−Nh

2 · ω · j · dω −
Nh∑

j=−Nh

(j · dω)2

= DD[ω]

Nh∑

j=−Nh

W [j · dω] −
Nh∑

j=−Nh

(j · dω)2

= DD[ω]

Nh∑

j=−Nh

W [j · dω] − 1

3
(d ω)2 · (Nh(Nh + 1)(2Nh + 1)). (A.31)

It is not possible to correct the effect of the application of the window function by a simple scaling:

Hs
DD[ω] =

HDD[ω] + 1
3
(d ω)2 · (Nh(Nh + 1)(2Nh + 1))
∑Nh

j=−Nh
W [j · dω]

. (A.32)

Although the applied corrections are constants, the values of the corrected filter in the stop band are no longer

zero. A possible solution is to low-pass filter the corrected filter, but this seems not to be straightforward. The

window method itself might not be suited ideally to design a double differentiator. In Wu et al. (2006) and

Thomas (1999), the design of the differentiator and the double differentiator is proposed differently. There, the

idea is to apply the derived low-pass filter on the ideal differentiator and the ideal double differentiator:

HD[n] = IDFT [HLP [ω] · iω], (A.33)

HDD[n] = IDFT [HLP [ω] · −ω2]. (A.34)

These operations are the same as taking the first respectively second order time derivative of the windowed

low-pass filter.
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Annex B. Power spectral density (PSD) and

standard deviation

The Power Spectral Density (PSD) of a discrete signal can be derived from its spectrum by, cf. Müller (2001),

Oppenheim and Schafer (1989), Oppenheim and Schafer (1975) and Stoica and Moses (1997):

P [k · ∆f ] = X[k · ∆f ]2 · ∆t

SF
, k = [−N/2; N/2], (B.1)

for a two-sided PSD and

P [k · ∆f ] = X[k · ∆f ]2 · 2∆t

SF
, k = [0; N/2], (B.2)

for a one-sided PSD. The unit of the PSD is unit2

Hz , where unit is the physical unit of the input signal. Two-sided

means that also negative frequencies are considered, one-sided means that only the positive frequencies are

considered. In this latter case, the spectrum has to be multiplied by two in order to obtain the full power. SF

is a scaling factor depending on the chosen window function that is used to scale the time series. Usually a

rectangle with height one and length N · ∆t is used, then

SF =

N−1∑

n=0

|window[n · ∆t]|2 =

N−1∑

n=0

|RECT [n · ∆t]|2 = N. (B.3)

The square of the standard deviation or variance of a certain bandwidth is approximated by the discrete integral

over this band:

σ2
bw =

k=b∑

k=a

P [k · ∆f ] · ∆f. (B.4)

Two practical issues occur in the error modeling of sensors:

1. The standard deviation shall be approximated from a given (white) noise PSD.

2. The (white) noise PSD shall be approximated from a given standard deviation.

Now the considered band is the Nyquist interval, i.e. k = [0; N ] for the two-sided PSD respectively k = [0; N/2]

for the one-sided PSD, disregarding the difference between odd or even N , as a large N is assumed. We will

only consider the commonly used one-sided PSD. From a given (white) noise PSD with a noise level of A[unit2

Hz ],

we estimate the variance and standard deviation as:

σ2
A =

N/2∑

k=0

A[k · ∆f ] · ∆f =
N

2
· A · 1

N · ∆t
=

A

2∆t
, (B.5)

σA =

√
A

2∆t
. (B.6)
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The PSD corresponding to a given standard deviation of σB can be approximated by the inverse relation as:

PB [k · ∆f ] = 2∆t · σ2
B . (B.7)

In MATLAB, the function randn can be used to simulate white noise with a certain standard deviation. As an

example, let us assume that we want to simulate white noise with a power of 1 · 10−18 m2

s4Hz with a 1 s sampling.

The corresponding standard deviation would then be σ ≈ 7 · 10−10m/s2. The corresponding noise time series

of length N can then be generated by

noise=7e-10*randn(N,1).

If one forms the difference between two uncorrelated noise signals, the noise does not cancel out but adds up in

terms of noise power. If one considers the root PSD, the noise is increased by a factor of
√

2.
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Annex C. Orientation representations and

coordinate transforms

Direction cosine matrix

An orientation representation is the description of the orientation of a coordinate system (target system) with

respect to another coordinate system (source system). A very common way of representation is the direction

cosine matrix (DCM). It is defined as (cf. Wertz (1991)):

Rt
s =




X̂s′

t

Ŷs′

t

Ẑs′

t


 =




Xs
t,1 Xs

t,2 Xs
t,3

Y s
t,1 Y s

t,2 Y s
t,3

Zs
t,1 Zs

t,2 Zs
t,3


 , (C.1)

where

X̂s
t =




Xt,1

Xt,2

Xt,3



 , (C.2)

Ŷs
t =




Yt,1

Yt,2

Yt,3



 , (C.3)

Ẑs
t =




Zt,1

Zt,2

Zt,3



 (C.4)

are the unit base vectors of the target coordinate system expressed in the source coordinate system. If the

vectors are arranged row wise as described above, the resulting matrix Rt
s transforms a vector from the source

system to the target system by a multiplication from the left:

Vt = Rt
s · Vs. (C.5)

The inverse transformation is given by:

Vs = (Rt
s)

−1 · Vt, (C.6)

where

(Rt
s)

−1 = (Rt
s)

′ =




Xs
t,1 Y s

t,1 Zs
t,1

Xs
t,2 Y s

t,2 Zs
t,2

Xs
t,3 Y s

t,3 Zs
t,3


 . (C.7)
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The inverse of the rotation matrix is just its transpose as it is orthonormal. Consecutive rotations can be

represented as a single rotation matrix:

Rc
a = Rc

b · Rb
a. (C.8)

Quaternions

The quaternion representation of a rotation involves the Euler symmetric parameters. Originally they were

introduced by Hamilton and Whittaker; the following description is from Wertz (1991). A quaternion is a

hypercomplex number, having one real part and three complex parts:

Q
t
s = (q0 + iq1 + jq2 + kq3)

= (cos(
Φ

2
) + sin(

Φ

2
) · ex + sin(

Φ

2
) · ey + sin(

Φ

2
) · ez), (C.9)

(Q
t
s)

−1 = (−q0 + iq1 + jq2 + kq3) = (q0 − iq1 − jq2 − kq3). (C.10)

q0 = cos(Φ/2) depends on the rotation angle Φ and q1 to q3 on the axis of the rotation. ex, ey, ez are the

components of the rotation axis. Consecutive rotations are represented by the multiplication of the quaternions

representing the rotations from the right, not from the left as for the representation by the DCM:

Q
′′

= Q ⋆ Q
′
, (C.11)




q′′1
q′′2
q′′3
q′′0


 =




q′0 q′3 −q′2 q′1
−q′3 q′0 q′1 q′2

q′2 −q′1 q′0 q′3
−q′1 −q′2 −q′3 q′0


 ·




q1

q2

q3

q0


 . (C.12)

The transformation of a vector can be accomplished by the following operation:

Vt = (Q
t
s)−1 ⋆ Vs ⋆ Q

t
s, (C.13)

where

Vs =




xs

ys

zs

0


 , Vt =




xt

yt

zt

0


 . (C.14)

Direction cosine matrix to quaternion

From a direction cosine matrix Rt
s, the corresponding quaternion Q

t

s can be derived in the following way, cf.

Wu et al. (2006) and Wertz (1991):
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q0 =
√

1 + R1,1 + R2,2 + R3,3/2, (C.15)

q1 = −(R2,3 − R3,2)/4q0, (C.16)

q2 = −(R3,1 − R1,3)/4q0, (C.17)

q3 = −(R1,2 − R2,1)/4q0, (C.18)

Q
t
s =




q1

q2

q3

q0


 . (C.19)

Quaternion to direction cosine matrix

From a given quaternion Q
t

s, the corresponding direction cosine matrix Rt
s can be derived in the following way,

cf. Wu et al. (2006) and Wertz (1991):

Rt
s =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3



 . (C.20)

Attitude dynamics

The dynamics of a body’s attitude are reflected in the time dependency of its orientation. There are two

possibilities for representing a change in the orientation:

• the source system changes,

• the target system changes.

The logic of dealing with changes of orientation depends on the application: If the source system changes, one

transforms first back from the changed, ’new’ source system to the original,’old’ source system and then, using

the original orientation, to the target system. If the target system changes one transforms to the ’old’ target

system by using the original orientation and then to the changed, ’new’ target system.

Here, we will consider only the option of changing the target system. There are in principal two practical

applications:

• The angular rates of the target system (satellite fixed body system) are known and the change in the

orientation is to be derived,

• The time series of the orientation of the target system is given and the corresponding angular rates are

to be derived.

Both aspects are treated by the ’kinematic equations’ describing the connection between the orientation of a

body and its angular velocity.

First, we will give formulations for the change in orientation resulting from known angular rates. If the orien-

tation is represented by quaternions, we get the following formulation, cf. Wertz (1991):

Q(t + ∆t) =





cos

∆Φ

2
· 1 + sin

∆Φ

2
·




0 ez −ey ex

−ez 0 ex ey

ey −ex 0 ez

−ex −ey −ez 0








· Q(t)

=





cos

∆Φ

2
· 1 +

sin ∆Φ
2

ω
·




0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0








· Q(t). (C.21)
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∆Φ =
√

ω2
x + ω2

y + ω2
z ·∆t = ω ·∆t is the rotation angle during ∆t and 1 is a 4×4 identity matrix. The angular

velocities ωx, ωy, ωz refer to the respective body axes. We simplify to get:

Q(t + ∆t) = Q(t) ⋆




sin(∆Φ
2

) · ωx
ω

sin(∆Φ
2

) · ωy

ω
sin(∆Φ

2
) · ωz

ω
cos(∆Φ

2
)




= Q(t) ⋆ Υ(t). (C.22)

From a given time series of quaternions, the angular rates can be derived in the following way:

Υ(t) = Q(t)−1 ⋆ Q(t + ∆t) =




υ1

υ2

υ3

υ4


 , (C.23)

∆Φ = 2 · arccos(υ4), (C.24)

ω = ∆Φ/∆t, (C.25)

ωx = υ1 · ω

sin(∆Φ
2

)
, (C.26)

ωy = υ2 · ω

sin(∆Φ
2

)
, (C.27)

ωz = υ3 · ω

sin(∆Φ
2

)
. (C.28)

If we assume ∆t and/or ω is small, we can use the small angles approximations

cos(
∆Φ

2
) ≈ 1,

sin(
∆Φ

2
) ≈ 1

2
ω · ∆t

to obtain

Q(t + ∆t) =





1 +

1

2
· ∆t ·




0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0








· Q(t)

= Q(t) +
1

2
· ∆t · Q(t) ⋆




ωx

ωy

ωz

0




=
1

2
· ∆t · Q(t) ⋆




ωx

ωy

ωz
2

∆t




=
1

2
· ∆t · Q(t) ⋆ Ω(t). (C.29)
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For the inverse task, the derivation of angular rates from a time series of quaternions, we obtain:

Ω(t) = 2 · Q−1
(t) ⋆

Q(t + ∆t)

∆t
. (C.30)

For the orientation representation by DCM, we get:

R(t + ∆t) = Rω · R(t)

=








1

∆t
ωz −ωy

−ωz
1

∆t
ωx

ωy −ωx
1

∆t



 · ∆t



 · R(t)

=
[
Ω′(t) · ∆t

]
· R(t). (C.31)

The angular rates can then be obtained from:

Ω′(t) =
R(t + ∆t)

∆t
· R−1(t) =

R(t + ∆t)

∆t
· R′(t). (C.32)
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Annex D. Coordinate frames

D.1. Inertial reference frame (IRF)
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Figure D.1: Earth centered inertial reference frame

The origin of the inertial reference frame is the mass center of the Earth. The x-axis is defined by the Vernal

Equinox, the z-axis is the rotation axis of the Earth at a reference epoch. The y-axis completes the right hand

triad.

D.2. Orbit fixed reference frame (ORF)

Figure D.1 also shows the orbit fixed reference frame (in red). There are two types of ORFs:

1. Nadir/radial pointing ORF

2. Velocity pointing ORF
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Both types can be derived from a orbit given in the IRF in the following way:

Nadir/radial pointing ORF

ẐORF = −X̂sat
IRF , (D.1)

ŶORF = ẐORF × ˙̂
X

sat

IRF , (D.2)

X̂ORF = ẐORF ×−ŶORF . (D.3)

Velocity pointing ORF

X̂ORF =
˙̂
X

sat

IRF , (D.4)

ŶORF = Ẑsat
IRF × X̂ORF , (D.5)

ẐORF = X̂ORF × ŶORF . (D.6)

D.3. Earth-fixed reference frame (EFRF)
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Figure D.2: Earth-Fixed Reference Frame (EFRF).

The origin of the earth-fixed reference frame is the mass center of the Earth. The direction of the x-axis is

defined by the Greenwich meridian. The z-axis is the current rotation axis of the Earth. The y-axis completes

the right hand triad. The transformation between EFRF and IRF is described e.g. in McCarthy (2006) and is

not described here.
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D.4. Satellite fixed reference frame (SRF)

Figure D.3: Satellite fixed reference frame (SRF). The frame of GRACE A and B are oriented towards each other.

The Satellite fixed reference frame has its origin in the center of mass of the satellite. The x-axis is defined by

the direction to the K-band horn, the z-axis is positive towards the radiator/nadir, the y-axis completes the

right hand triad, cf. Bettadpur (2007). The relative orientation of the SRF of GRACE A and B is shown in

the upper panel of figure D.3. For the leading satellite, the x-axis of the SRF is oriented opposite to the flight

direction, for the trailing satellite, the x-axis points into flight direction. The lower panel of figure D.3 shows

that the x-axes of the SRF of each satellite are not perfectly parallel to their velocity vectors. As the distance

between the satellites is smaller than 200 km, this deviation is small.

D.5. Instrument frames

The accelerometer frame (AF) is derived from the SRF only by a switching of axes, see figure D.4:

X̂srf = Ẑarf ,

Ŷsrf = X̂arf ,

Ẑsrf = Ŷarf .

The star sensor reference frames (SSRF) are identical to the SRF, except for a rotation by ±45◦ about the

x-axis. The z-axis of the SSRF defines the line of sight of the individual star sensor head.
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Figure D.4: Star sensor reference frame (SSRF) and accelerometer reference frame (AF).
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