
 Deutsche Geodätische Kommission

bei der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 626

Jan-Henrik Haunert

Aggregation in Map Generalization

by Combinatorial Optimization

München 2008

Verlag der Bayerischen Akademie der Wissenschaften
in Kommission beim Verlag C. H. Beck

ISSN 0065-5325 ISBN 978-3-7696-5038-9

Diese Arbeit ist gleichzeitig veröffentlicht in:

Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover

ISSN 0174-1454, Nr. 276, Hannover 2008

 Deutsche Geodätische Kommission

bei der Bayerischen Akademie der Wissenschaften

Reihe C Dissertationen Heft Nr. 626

Aggregation in Map Generalization

by Combinatorial Optimization

Von der Fakultät für Bauingenieurwesen und Geodäsie

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Ing. Jan-Henrik Haunert

geboren am 9.5.1978 in Hannover

München 2008

Verlag der Bayerischen Akademie der Wissenschaften
in Kommission bei der C. H. Beck'schen Verlagsbuchhandlung München

ISSN 0065-5325 ISBN 978-3-7696-5038-9

Diese Arbeit ist gleichzeitig veröffentlicht in:

Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover

ISSN 0174-1454, Nr. 276, Hannover 2008

Adresse der Deutschen Geodätischen Kommission:

Deutsche Geodätische Kommission
Alfons-Goppel-Straße 11 ! D – 80 539 München

Telefon +49 – 89 – 23 031 1113 ! Telefax +49 – 89 – 23 031 - 1283 / - 1100
e-mail hornik@dgfi.badw.de ! http://www.dgk.badw.de

Prüfungskommission

Vorsitzender: Univ.-Prof. Dr.-Ing. Christian Heipke

Referentin: Univ.Prof. Dr.-Ing. Monika Sester

Korreferenten: PD Dr.rer.nat. Alexander Wolff

Univ.Prof. Dr.-Ing. Hansjörg Kutterer

Tag der mündlichen Prüfung: 17.09.2008

© 2008 Deutsche Geodätische Kommission, München

Alle Rechte vorbehalten. Ohne Genehmigung der Herausgeber ist es auch nicht gestattet,
die Veröffentlichung oder Teile daraus auf photomechanischem Wege (Photokopie, Mikrokopie) zu vervielfältigen

ISSN 0065-5325 ISBN 978-3-7696-5038-9

3

Summary

This thesis presents a new method for aggregating area objects in topographic databases. Aggregation is
an important sub-problem of automatic generalization, which in cartography and geoinformatics means to
derive representations of higher abstraction and smaller scale from given datasets. The developed method aims
to create results of maximum quality and to ensure standards like minimal dimensions that are given with
database specifications. Basically, two quality criteria are considered relevant: (1) Large-scale objects are to be
represented by small-scale objects of semantically similar classes – this aim is formalized by defining a semantic
distance between classes. (2) Areas in the smaller scaler need to have a geometrically simple, compact shape.
For the first time, this task is consequently formulated as an optimization problem and solved by applying
combinatorial optimization techniques. In a simplified form, the problem can be stated as follows:

Given a planar map with areas of different classes and a minimal allowed area size θ for the target scale,
combine the areas into contiguous regions and define a new class for each region, such that each region
has size at least θ and the area covered by objects whose classes change is minimized.

It will be proven that this simplified problem is already NP-hard. Therefore, it is unlikely that an exact
polynomial-time algorithm exists for its solution. This motivates an approach to the problem that is based on
mixed-integer linear programming and heuristics. The proposed methods allow semantic class distances and
different compactness measures to be considered. These criteria are incorporated into the cost function that is
minimized. Furthermore, it is possible to define size thresholds for different classes, in order to preserve objects
of high priority.

Due to the high complexity of the problem, the exact solution cannot be obtained for large problem instances.
Nevertheless, for small instances, the approach allows the results of heuristics to be compared with optimal
solutions. This enables the performance of heuristic methods to be assessed with respect to the quality of
the result. The development of the presented heuristics is motivated by two aims: Firstly, large problem
instances, for example, national topographic databases, need to be generalized. Secondly, local updates need
to be propagated into a previously derived small-scale map without processing the complete dataset again. In
addition to heuristics that eliminate certain variables in the mixed-integer programs, a heuristic is proposed
that decomposes a problem instance into smaller, independent instances. With this approach both aims are
achieved. Furthermore, a generalization workflow is presented that, in addition to the aggregation method,
comprises methods for area collapse and line simplification.

In order to prove the applicability of the proposed method in practice, it was applied to a dataset of the official
German topographic database ATKIS. A dataset of the ATKIS DLM 50 was processed, which contains similar
amounts of detail as the digital topographic map at scale 1:50 000 (DTK 50). The minimal allowed size θ was
defined according to existing specifications of the ATKIS DLM 250. A dataset of 22 km × 22 km with 5537 areas
(a map sheet of the DTK 50) was aggregated in 82 minutes. Compared to an existing iterative approach (the
so-called region-growing), the new method resulted in 20% less class change and 2% less cost for non-compact
shapes.

The developed method has several advantages, in particular, it offers results of high semantic accuracy. Further-
more, the proposed optimization method is deterministic and allows (hard) constraints to be handled. These
are advantages compared to existing optimization methods for map generalization, which are often based on
iterative meta-heuristics like simulated annealing. How to adapt the developed approach to other generalization
tasks – in particular to building simplification – is discussed as a question for future research.

Keywords: area aggregation, map generalization, mixed-integer programming

4

Zusammenfassung

Diese Arbeit präsentiert ein neues Verfahren zur Aggregation flächenhafter Objekte in topographischen Daten-
banken. Die Aggregation ist ein wichtiges Teilproblem der automatischen Generalisierung, die in der Kartogra-
phie und Geoinformatik die Generierung von Repräsentationen höherer Abstraktion und kleineren Maßstabs aus
gegebenen Datenbeständen umfasst. Das entwickelte Verfahren zielt darauf ab, Ergebnisse maximaler Qualität
zu generieren und zugleich Standards wie minimale Flächengrößen zu garantieren, die durch Datenbankspezifika-
tionen vorgegeben sind. Im Wesentlichen werden zwei Qualitätskriterien als relevant angesehen: (1) Objekte
im Ausgangsmaßstab sollen im kleineren Maßstab durch Objekte semantisch ähnlicher Klassen repräsentiert
werden; dieses Ziel wird durch die Definition einer semantischen Distanz zwischen Klassen formalisiert. (2)
Flächen im kleineren Maßstab sollen geometrisch einfache, kompakte Formen haben. Erstmals wird diese Auf-
gabe konsequent als Optimierungsproblem formuliert und durch Verfahren der kombinatorischen Optimierung
gelöst. Vereinfacht lässt sich das behandelte Problem folgendermaßen definieren:

Gegeben sei eine planare Karte mit Flächen unterschiedlicher Klassen sowie eine minimal zulässige
Flächengröße θ für den Zielmaßstab. Fasse die Flächen in zusammenhängende Regionen zusammen und
definiere für jede Region eine neue Klasse, so dass jede Region mindestens die Größe θ hat und die
Gesamtfläche, deren Klasse sich ändert, minimal ist.

Es wird bewiesen, dass bereits dieses vereinfachte Problem NP-schwer ist und somit kaum Hoffnung besteht,
einen exakten Algorithmus mit polynomieller Laufzeit zur Lösung zu finden. Dieses motiviert einen exakten
Lösungsansatz durch gemischt-ganzzahlige lineare Programmierung sowie verschiedene heuristische Verfahren.
Dabei werden auch die semantischen Klassendistanzen und verschiedene Kompaktheitsmaße berücksichtigt.
Außerdem können unterschiedliche Flächenschwellwerte für unterschiedliche Klassen definiert werden, um Ob-
jekte hoher Bedeutung zu erhalten.

Die exakte Lösung des Problems ist aufgrund der hohen Komplexität nicht für große Instanzen zu realisieren.
Dennoch ergeben sich neue Möglichkeiten, die Leistungsfähigkeit heuristischer Verfahren an exakten Lösungen
für kleine Instanzen zu messen. Die Entwicklung der vorgestellten Heuristiken wird durch zwei Ziele motiviert.
Erstens sollen auch große Probleminstanzen, etwa nationale topographische Datenbanken, verarbeitet werden
können. Zweitens sollen lokal begrenzte Aktualisierungen im Ausgangsmaßstab in den Zielmaßstab übertragen
werden können, ohne dass eine erneute Prozessierung des gesamten Datenbestandes nötig wäre. Neben Heuris-
tiken, welche die Anzahl der Variablen in den Probleminstanzen verringern, wird eine Heuristik eingeführt, die
es ermöglicht eine Probleminstanz in unabhängige Teilinstanzen zu zerlegen. Dadurch ist es gelungen beide Ziele
zu erreichen. Weiterhin wurde ein Ablaufplan für die Generalisierung entwickelt, der neben der Aggregation
auch den Geometrietypwechsel und die Liniengeneralisierung umfasst.

Um die Anwendbarkeit des Verfahrens in der Praxis nachzuweisen, wurde es am Beispiel des amtlichen
topographisch-kartographischen Informationssystems (ATKIS) getestet. Als Eingabe diente ein Datensatz des
ATKIS DLM 50, dessen Inhalt dem einer digitalen topographischen Karte im Maßstab 1:50 000 (DTK 50)
entspricht. Die minimal zulässigen Flächen θ wurden entsprechend bestehender Spezifikationen des ATKIS
DLM 250 definiert. Ein Datensatz der Größe 22 km × 22 km mit 5537 Flächen (ein Blatt der DTK 50)
wurde in 82 Minuten aggregiert. Im Vergleich zu einem weit verbreiteten iterativen Algorithmus (dem sogenan-
nten region-growing) ergab sich eine Reduktion der Klassenänderung um 20%. Die Kosten für nicht-kompakte
Regionen wurden um 2% reduziert.

Das vorgestellte Verfahren hat mehrere Vorteile, insbesondere liefert es Ergebnisse hoher semantischer
Genauigkeit. Darüber hinaus ist der gewählte Optimierungsansatz deterministisch und ermöglicht die Hand-
habung (harter) Nebenbedingungen. Dieses sind Vorteile im Vergleich zu bestehenden Optimierungsansätzen
durch iterative Metaheuristiken wie Simulated Annealing. Die gewählte Herangehensweise auf andere Genera-
lisierungsprobleme – insbesondere die Gebäudevereinfachung – zu übertragen, wird als Aufgabe für zukünftige
Forschung diskutiert.

Stichworte: Flächenaggregation, Generalisierung, gemischt-ganzzahlige Programmierung

5

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Generalization of land cover data . 10

1.3 Spatial allocation problems . 11

1.4 Goal of this thesis . 12

1.5 Outline . 13

2 Map Generalization 15

2.1 Generalization operators . 15

2.2 Model generalization and cartographic generalization . 16

2.3 Subjectivity, quality, and specifications . 17

2.4 Map generalization based on hard and soft constraints . 19

2.5 Map generalization by optimization . 20

2.5.1 Continuous optimization . 20

2.5.2 Discrete optimization . 20

2.6 Organizing the generalization workflow . 21

2.7 Aggregation . 22

2.7.1 Aggregation of spatially disjoint objects and line features 22

2.7.2 Aggregation of areas in a planar subdivision . 23

2.8 Multiple Representation Databases (MRDBs) and their update 24

2.8.1 MRDB set-up . 25

2.8.2 Incremental generalization for update . 26

2.9 General remarks . 26

3 Combinatorial Optimization 27

3.1 Combinatorial problems . 27

3.1.1 Graph definitions . 27

3.1.2 The shortest path problem . 28

3.1.3 The problem MINIMUMVERTEXCOVER . 28

3.2 Computational complexity theory . 29

3.2.1 Time complexity of algorithms . 29

3.2.2 Complexity of combinatorial problems . 30

3.3 Approaches to solve NP-hard optimization problems . 31

3.4 Approximation algorithms . 32

6 Contents

3.5 Linear programming . 33

3.5.1 The canonical form of linear programs . 33

3.5.2 The standard form of linear programs . 34

3.5.3 Basic feasible solutions . 35

3.5.4 The simplex algorithm . 35

3.6 Mixed-integer programming . 37

3.6.1 Approaches to solve mixed-integer programs . 38

3.6.2 Modeling with decision variables: an IP for MINIMUMVERTEXCOVER 40

3.7 Local search . 40

3.7.1 The neighborhood function and iterative improvement . 40

3.7.2 Simulated annealing . 41

3.7.3 Handling hard constraints . 42

3.8 Concluding remarks . 44

4 An Incremental Aggregation Algorithm for Efficient Updating 45

4.1 Requirements for an incremental approach . 45

4.2 An incremental aggregation algorithm . 46

4.3 Experiments with the incremental aggregation method . 49

4.4 Concluding remarks . 50

5 A Generalization Workflow Driven by Data Quality 53

5.1 Quality of spatial data . 53

5.2 Logical consistency . 54

5.2.1 Selected data model . 54

5.2.2 Implications for generalization . 55

5.3 Semantic accuracy . 56

5.3.1 Semantic distance between classes . 56

5.3.2 Semantic accuracy reflected by shape . 58

5.3.3 Implications for generalization . 59

5.4 Development of a generalization workflow . 60

6 Algorithms for Geometric Generalization 61

6.1 Area collapse . 61

6.1.1 Requirements . 61

6.1.2 Medial axis . 62

6.1.3 Triangulation-based skeleton . 63

6.1.4 Straight skeleton . 63

6.1.5 Treatment of single areas in a topographic database . 64

6.1.6 A global approach for the collapse of areas in a planar subdivision 66

6.2 Line simplification . 67

6.2.1 An existing optimization approach to line simplification 67

6.2.2 Line simplification with size constraints . 69

6.2.3 Summary of the developed line simplification method . 70

Contents 7

7 A new Approach to Area Aggregation by Optimization 73

7.1 Definition of the problem AREAAGGREGATION . 74
7.2 Compactness of shape . 75

7.2.1 A classical perimeter-area-measure . 75
7.2.2 The perimeter as a measure of compactness . 76
7.2.3 Measures based on distances to a center . 76

7.3 Complexity of AREAAGGREGATION . 78
7.4 A MIP with assignments of nodes to centers . 80

7.4.1 A heuristic approach: connectivity based on precedence relationship 81
7.4.2 An exact approach: connectivity based on a spanning tree 82
7.4.3 Expressing compactness according to the distance measure cdist 84
7.4.4 Expressing compactness according to the perimeter measure cperi 84
7.4.5 Optimizing multiple objectives . 84

7.5 An exact approach: a MIP of linear size based on a flow model 85
7.5.1 The flow model of Shirabe (2005b) . 85
7.5.2 A new flow model for AREAAGGREGATION . 86
7.5.3 Considering compactness according to cpath and cperi . 88
7.5.4 Summary and discussion of applicability . 89

7.6 Specialized heuristics . 90
7.6.1 Distance heuristic . 90
7.6.2 Center heuristic . 91
7.6.3 Introducing intermediate scales . 94

7.7 An alternative heuristic approach by simulated annealing . 96
7.7.1 A neighborhood based on swaps of nodes . 96
7.7.2 Asymptotic convergence . 97
7.7.3 Practical considerations . 98
7.7.4 Annealing schedule . 99

7.8 Possible combinations of the proposed methods . 100

8 Experimental Results 101
8.1 Performance tests of different MIPs . 102
8.2 Performance tests of different heuristic approaches . 105
8.3 Discussion of processed samples . 106
8.4 Quality assessment by visualization of cost and class distances . 111
8.5 Summary . 112

9 Conclusion and Outlook 115
9.1 Conclusion . 115
9.2 On-going research work . 117
9.3 General recommendations for future research . 119

A The P-R MIP for an Instance of AREAAGGREGATION 121

Bibliography 121

Acknowledgments 133

Curriculum Vitae 134

8

9

Chapter 1

Introduction

1.1 Motivation

Topographic maps are widely used for different applications, for example, land use planning, construction, earth
sciences, and recreation. Normally national mapping agencies (NMAs) provide them in different scales for the
whole extent of a country. Due to the increasing use of computers during the last 40 years, analog maps are
being increasingly replaced by digital maps and digital landscape models (DLMs). Automating the production
of these digital representations is a primary goal of cartographic research. Though most parts of the Earth
can be considered mapped, this task has not become less important: mainly due to human interactions, the
landscape is permanently changing. Therefore, keeping topographic databases up-to-date is also an important
task. A high degree of automation can be achieved through map generalization: instead of conducting redundant
field surveys for maps and DLMs of different scales, representations of a reduced scale are derived from a single
detailed source. This thesis contributes to the general objective of automating the generalization process.

Generalization must not be confused with pure data reduction or data compression. Instead, it aims at more
abstract representations of the same physical entities. In order to accomplish this task, generalization needs to
emphasize important characteristics and exclude unimportant features; programming computers to solve this
problem has proved to be difficult.

A perfect generalization method would create, without any human interaction, datasets that could be directly
delivered to users. Though many approaches to map generalization have found their way into applications,
such perfection has not been reached. In fact it is questionable whether this aim is realistic. Generally, good
experiences can support confidence in a certain generalization method, but the variability of maps is so high
that we cannot expect good results for all potential situations while serving all applications. At least a visual
inspection of the result is needed for quality assessment before delivering the produced maps; often manual
post-processing is required. In order to minimize the manual editing and to support human controllers in the
quality assessment, a generalization method should:

• guarantee results that satisfy given standards (for example, database specifications),

• offer results that are as good as possible with respect to clearly defined quality criteria, and

• include some kind of self-assessment concerning these quality criteria.

The first two aims can be achieved by finding the optimal solution subject to given constraints. This motivates
an approach to map generalization by optimization. Exact optimization approaches are needed to assess the per-
formance of heuristic methods in terms of quality. This can be measured according to the applied optimization
objective.

The quality criteria or optimization objectives that are applied in existing approaches are mainly based on
geometric measures. However, generalization also implies changes of semantics: in maps or DLMs of different
scales, the same physical entity can be represented by objects of different classes. This especially becomes rele-
vant in aggregation, which means that objects of potentially different classes are replaced by a single composite

10 Chapter 1. Introduction

object. To achieve that semantically similar objects are aggregated, measures of semantic accuracy need to be
defined and applied in an optimization approach.

The success of map generalization strongly depends on the capability and flexibility of the applied optimization
methods. Since map generalization includes discrete problems like aggregation, combinatorial optimization
techniques are needed. As a very flexible deterministic and exact approach, mathematical programming has
obtained attention in geographic information science. Shirabe (2003, 2005a) has concentrated on the integration
of mathematical programming techniques in geographic information systems. However, this approach has seldom
been addressed in the map generalization literature. This thesis presents a new optimization approach to map
generalization based on this technique.

1.2 Generalization of land cover data

Figure 1.1 shows a sample of areas from the German topographic database ATKIS DLM 50, which define a
planar subdivision, that is, a partition of the plane into areas such that different areas do not overlap and there
are no gaps in between. Each area belongs to a single land cover class. This kind of representation is very
commonly used to represent information about land cover or land use in a DLM. The ATKIS DLM 50 contains
a similar amount of detail as an analog map of scale 1:50 000 (AdV, 2003).

Forest

Farmland

Settlement

Grassland

Industry

Water

Sports
facilities

Heathland

Open forest

40 ha

Fig. 1.1: A sample of areas from the German topographic
database ATKIS DLM 50 displayed at scale 1:50 000. The leg-
end defines the encoding of land cover classes by colors, which is
used throughout this thesis. This particular clipping only contains
a subset of classes. For the scale 1:250 000, the minimal allowed
size for settlement, forest, and farmland areas is 40 ha, which is
given with the square above the legend.

Settl
ement

Forest
Farmland

Forest

Fig. 1.2: A manually generalized map, sketched
by a cartographer with a pencil on a trans-
parency on top of the sample from Fig. 1.1; tar-
get scale of generalization 1:250 000. Courtesy
of Dieter Heidorn, institute of cartography and
geoinformatics, Leibniz Universität Hannover.

The generalization of land cover data needs to be done according to multiple criteria. In order to provide users
with standardized products, we wish to derive a DLM of reduced scale that satisfies given requirements, for
example, areas must not be smaller than a certain size. Figure 1.2 shows a manually generalized map for the
sample in Fig. 1.1. An experienced cartographer was asked to derive a map at scale 1:250 000. In addition to
the sample in Fig. 1.1, he was given a set of areas that exactly achieved the minimally required size, to visually
compare the required area sizes (e.g., the square of 40 ha). He was asked to create contiguous areas that achieve
this size, but he was not restricted in how to do this, that is, he was only asked to use his own experience.
We observe that the main strategy for the defined aim was to aggregate areas of the same classes. In some
cases, areas of other classes were included in a region for the target scale, for example, to ensure the contiguity
of a region. Nevertheless, the class changes were kept small. The map is not cluttered with complex shapes,
original boundaries were simplified, and in some cases new boundaries were introduced. The emerging problem
is how to automate this process of combining areas in order to obtain such well-generalized maps and to ensure
contiguous regions of sufficient size.

1.3. Spatial allocation problems 11

In this thesis, we will elaborate on the aggregation problem in map generalization in detail. Our basic approach
is to consider areas in the input as minimal mapping units; each area in the target scale is defined as the union
of a subset of these units. However, as the generalization task allows more variability, we will also consider
other possibilities of manipulation, that is, collapse of areas and area parts to lines as well as line simplification.
Generally, we need to find strategies to attack the generalization problem in a comprehensive way. Multi-agent
systems are often used for this purpose (Barrault et al., 2001), especially to handle different generalization
methods together, which is often referred to as orchestration. Nevertheless, these multi-agent systems rely
on basic algorithms for different sub-problems. Therefore, a good solution of the aggregation problem is an
important achievement for generalization.

Since the aggregation of areas is primarily based on their classes, we will treat the definition and optimization
of a class-based measure for semantic quality as one of our main tasks. Furthermore, we consider compactness
of shapes to avoid cluttered maps. The aim for compactness complies with well-known principles of human
perception, that is, the human brain preferably groups objects that are close to each other (Wertheimer, 1938).

1.3 Spatial allocation problems

Though this thesis primarily aims at improvements in map generalization, its contributions can be seen in a
broader context. The aggregation of areas in a planar subdivision is closely related to spatial allocation problems,
which Shirabe (2003) defines as follows:

“Given a set of spatial units, such as land parcels and grid cells, how to allocate subsets of it to activities
of interest while satisfying certain criteria?”

The definition applies to spatial problems in the context of operations research and management science, which
includes districting problems. Usually, the “activities of interest” are political or economical in nature. Figure 1.3
shows a typical example:

(a) the 16 federal states of Germany (b) an aggregation result with 6 federal states

Fig. 1.3: A typical districting problem. Article 29 of the German constitution (Grundgesetz) regulates a potential
reorganization of the German federal territory. In order to reduce expenses for administration, the aggregation of federal
states has been discussed for several years. According to the web site of the German TV news “Tagesschau” a federal
state needs a population between 5 million and 18 million to operate economically (ARD, 2006). The aggregation result
in (b) is feasible according to that constraint. Among all feasible aggregations with 6 states it has a minimum boundary
length, which can be seen as a measure for region compactness.

12 Chapter 1. Introduction

Several spatial properties are relevant for most spatial allocation problems. This includes size, compactness,
and contiguity of shapes. Therefore, approaches to spatial allocation can often be adapted to diverse problems.
The problem instance in Fig. 1.3 was solved with a mixed-integer program (MIP) for map generalization that
we present in Sect. 7.4. Related problems are land acquisition (Wright et al., 1983), sales territory alignment
(Zoltners & Sinha, 1983), the definition of school districts (Caro et al., 2004), defining regions for nature
conservation (Fischer & Church, 2003), and electoral districting (Schröder, 2001). Generally meta-heuristics
(Aerts & Heuvelink, 2002; Tavares-Pereira et al., 2007) and mathematical programming techniques (Hess &
Samuels, 1971) have been applied to spatial allocation problems. The new generalization method by mixed-
integer programming presented in this thesis was influenced by formulations of Zoltners & Sinha (1983), Williams
(2002), and Shirabe (2005b). We will discuss the contributions of the authors when adapting components of
their methods for our own purposes. A more detailed review of approaches to spatial allocation problems is
given by Shirabe (2003).

1.4 Goal of this thesis

This thesis aims at high-quality aggregation for the creation of well-generalized digital landscape models. The
goal of this thesis is to answer the following research questions:

• How can we measure quality, in particular semantic accuracy, in generalization?

• According to these criteria, how can we approach generalization in order to create datasets of high quality,
that comply with database specifications?

• Which techniques for combinatorial optimization and spatial allocation can we apply for aggregation,
what are their benefits and limitations, and how can we improve on them?

• How competitive are these techniques under realistic conditions, that is, if large datasets need to be
processed and derived data needs to be frequently updated?

A number of novel contributions to map generalization are presented in the thesis, which can be seen in the
context of this general research goal. In addition to giving answers to the above general questions, we solve the
following concrete problems.

• We elaborate the definition of quality in the context of generalization, which leads to a precise definition
of the aggregation problem. We prove that this problem is NP-hard, meaning that there is little hope
that an efficient exact algorithm exists.

• We develop a mixed-integer programming approach to aggregation. Compared to other combinatorial
optimization approaches to map generalization, in particular randomized meta-heuristics like simulated
annealing, it has four main benefits: (1) hard constraints can easily be defined, (2) it is deterministic and
so results are reproducible, (3) it offers exact, that is, globally optimal solutions for small samples, which
allows the performance of heuristics to be assessed, and (4) the exact solution does not require tuning of
parameters that are not inherent to the problem.

• To process very large datasets and to efficiently process updates in the newly developed optimization
approach, we propose a heuristic that decomposes a dataset into independent problem instances. When
processing large datasets, these instances can be solved in parallel. When updating the source map, only
those problem instances that were affected by the update need to be solved again to derive the updated
generalized map.

• An existing approach to area aggregation in map generalization is based on iterative merging. We present
a new, incremental algorithm that guarantees to offer the same result as the existing iterative approach of
van Oosterom (1995). This method can be used for efficient updating if a change occurred in the source
dataset, since in this case only a limited set of objects has to be inspected.

1.5. Outline 13

In the general context of spatial allocation problems, this thesis introduces the following novelties:

• The number of variables and constraints in existing mixed-integer programs for districting problems is
quadratic in the number of minimal mapping units if the number of districts is unknown. The newly
developed flow-based MIP gets by with a linear number of variables and constraints. It allows optimally
compact and contiguous districts to be found that satisfy size constraints.

• Compactness of regions is often achieved by minimizing distances to a central facility, for example, cus-
tomers living in a sales district need fast access to the central store. The flow-based MIP allows to apply
a new version of this compactness measure: it minimizes travel distances along paths that are constrained
to the interior of a region. For example, if an enclosure for lions is planned, they probably need fast access
to their feeding trough, but they have to remain inside the enclosure.

1.5 Outline

The thesis is structured as follows. We first review basics of map generalization (Chapter 2). We put emphasis
on standardization and quality assessment (Sect. 2.3), existing optimization approaches (Sect. 2.5), and aggre-
gation (Sect. 2.7), which includes the review of an existing, iterative approach to the aggregation of areas in
a planar subdivision. Then we review the basics of combinatorial optimization with a focus on mathematical
programming (Chapter 3). Chapter 4 presents a new incremental version of the iterative aggregation algorithm.

The remaining part of the thesis concentrates on a new generalization method for areas that form a planar
subdivision and belong to different classes. We introduce basic ideas and define relevant elements of quality
(Chapter 5). This motivates a workflow that comprises collapse of areas to lines, aggregation, and line simpli-
fication. For this workflow, we developed a collapse procedure and a line simplification method, which extends
an existing optimization approach. We present both methods in Chapter 6.

Then we focus on the most important contribution of this thesis, that is, the optimization approach to area
aggregation (Chapter 7). We define the aggregation problem formally and present a proof that aggregating
areas with minimum class change is NP-hard, if we forbid aggregates of size smaller than a defined threshold.
Due to the NP-hardness of the problem it is unlikely that an efficient exact algorithm exists; therefore, we
focus on mixed-integer programming and heuristics, which can be used to process large datasets and to handle
updates.

We discuss results of the developed generalization approaches in Chapter 8, which also explains how the defined
measures can be used for quality assessment. Chapter 9 concludes the thesis and gives recommendations for
future research.

14

15

Chapter 2

Map Generalization

Map generalization is the process of deriving a map at a reduced scale from a given map. Since display devices
such as sheets of paper or computer screens have limited resolutions and sizes, only selected parts of the original
information can be shown. Also reading a map with too many details is difficult for users who generally intend
to draw conclusions for their personal decisions: For example, the best route from Berlin to Paris can be found
much faster on a map of important highways than on a map of the entire road network. Thus, the problem is to
distinguish unimportant details from important features, which also depends on the purpose of the map. This
work focuses on digital topographic databases, that is, digital landscape models, whose purpose is not only to
directly aid users in their applications, but also to define a foundation for diverse kinds of maps.

In order to explain the context of this work, this chapter summarizes the basics of map generalization. We
review common classifications of generalization sub-tasks into so-called generalization operators (Sect. 2.1) and
distinguish the problems of generating a database of reduced detail and a graphical map (Sect. 2.2). Section 2.3
discusses the influence of subjectivity in map generalization and approaches to define objective requirements
and quality measures. Section 2.4 explains the concept of constraints. This is an important prerequisite for
optimization approaches, which are reviewed in Sect. 2.5. Section 2.6 reviews approaches for organizing the
generalization workflow and Sect. 2.7 discusses approaches to aggregation, as solving this problem is the primary
concern of this thesis. Finally, we discuss methods for updating generalized data (Sect. 2.8).

Several textbooks exist, giving a more comprehensive overview of all important aspects of map generalization
(Buttenfield & McMaster, 1991; Müller et al., 1995; Mackaness et al., 2007). Weibel (1997) and Li (2007) focus
on algorithms used in automation.

2.1 Generalization operators

Eliminating map objects can be an appropriate solution to reduce the clutter on a map. The whole general-
ization problem, however, appears to be more complex, as maps of smaller scale usually allow for alternative
representations of the same physical entities. For example, a building that is too small to be displayed in the
smaller target scale may alternatively be enlarged or aggregated with others. Such basic generalization processes
are called generalization operators, which are classified by different authors. Rieger & Coulsen (1993) reveal
discrepancies among different terminologies. Figure 2.1 shows the taxonomy after Hake et al. (1994).

Simplification reduces the amount of detail, for example, by selecting a subset of line vertices. Enlargement
of objects can be performed to satisfy graphical limitations. This can result in graphical conflicts between
different objects; in this case we need to move objects, which is termed displacement. Aggregation means to
replace a group of objects by a composite object. Selection of important objects is a very common approach,
unimportant objects are eliminated. In the taxonomy of Hake, classification, typification, and symbolization are
subsumed by one generalization operator. Classification means, for example, that objects of type ‘post office’
and ‘school’ are replaced by objects of the more general type ‘public building’. Typification is often performed
to represent the patterns of objects, for example, five buildings in a row are replaced by a set of four buildings
that have a similar characteristic alignment. Symbolization means, for example, to replace an object that has

16 Chapter 2. Map Generalization

1.
Sim

pli
fic

at
ion

2.
Enla

rg
em

en
t

3.
Disp

lac
em

en
t

4.
Agg

reg
at

ion

5.
Se

lec
tio

n

6.
Clas

sifi
ca

tio
n,

7.
Exa

gg
era

tio
n

Generalized
representation

Original
representation

- original scale

- target scale

Typ
ific

at
ion

,

Sy
mbo

liz
at

ion

Fig. 2.1: Generalization operators after Hake et al. (1994).

a two-dimensional extent with a point symbol. It also comprises the collapse of areas to lines. Exaggeration is
applied to emphasize important or characteristic features.

Researchers have successfully automated generalization operators for certain types of objects. For example,
Staufenbiel (1973), Kada & Luo (2006) and Sester (2005) have developed generalization algorithms for the
simplification of building ground plans. Thomson & Richardson (1995), van Kreveld & Peschier (1998) and
Zhang (2005) present methods for the selection of roads. This thesis focuses on aggregation, taking multiple
classes into account. To automate the generalization process it does not suffice to propose algorithms for single
operators or single types of objects. We need to develop an appropriate workflow or an overall strategy to find
the right algorithm for a given situation. Existing approaches to handle multiple operators are reviewed in
Sect. 2.6.

In Fig. 2.1 we investigated the effects of generalization operators on samples with cartographic symbols, but
map generalization is not always applied for visualization. Though the classification of generalization operators
is a general concept, we need to distinguish different generalization tasks.

2.2 Model generalization and cartographic generalization

Map scale is the ratio of a distance on the map to the corresponding distance on the Earth. However, for a digital
representation of the world, this definition is inapplicable, unless the data is printed or rendered on a screen.
On the other hand, similarly to maps, digital landscape models are made for different purposes that require
different levels of abstraction. The level of detail of a DLM often corresponds to the content of a map with a
certain scale. Figure 2.2 shows the same scene in two different DLMs from the German ATKIS project. Both
samples are displayed in the same extent, using the same primitive symbols. We observe that the right sample
includes less details, yet preserves the most characteristic structures. In fact, the Basis DLM (Fig. 2.2(a)) is
used to derive the German topographic maps at scales 1:10 000 and 1:25 000; the DLM 250 (Fig. 2.2(b)) serves
as basis for the map at scale 1:250 000 (Grünreich, 2003). The ATKIS project also defines two more datasets,
the DLM 50 (1:50 000) and the DLM 1000 (1:1 000 000). National mapping agencies of many countries provide
similar datasets on nation-wide extents.

Though digital landscape models are related to map products, there are important differences: objects in DLMs
are kept without cartographic symbols, in order to allow for multiple applications. Some applications do not
require a cartographic visualization of the data, for example statistical analyses. Also a DLM can be used to
derive different maps that require different symbols. Due to this consideration, generalization is often done in
two steps (Brassel & Weibel, 1988):

1. Model generalization, also known as database generalization or statistical generalization, transforms a DLM
into a less detailed DLM.

2.3. Subjectivity, quality, and specifications 17

2. Cartographic generalization transforms a DLM into a digital cartographic model (DCM). A DCM is just
the digital equivalent of an analog paper map, meaning it has complete symbols and text labels at defined
positions.

Both model generalization and cartographic generalization are complex problems. The first is primarily con-
cerned with data abstraction, the second focuses more on graphical effectiveness. This distinction, however,
is not crisp: digital landscape models are mostly designed as basis for map products, so their content can be
defined with regard to graphical limitations. Often this definition is given with the database specifications.

The generalization operators enlargement and displacement are primarily important for cartographic general-
ization, as they can be used to cope with graphical limitations. However, if a minimal allowed object size or
a minimal allowed distance between objects is given with database specifications, they could also be used for
database generalization.

(a) ATKIS Basis DLM

1km

(b) ATKIS DLM 250

Fig. 2.2: The same scene in topographic databases of different resolutions.

2.3 Subjectivity, quality, and specifications

It is generally acknowledged that the map generalization problem allows multiple solutions: due to subjective
preferences, two cartographers will seldom come up with the same results (Spiess, 1983). This subjectivity leads
to inhomogeneous maps, for example, if multiple cartographers work on the same map sheet. In fact, in his
early work on line smoothing, Perkal (1966) focuses on the definition of an objective (manual) method without
commenting on the possible use of computers for its accomplishment. Töpfer & Pillewizer (1966) propose
empirically found rules for the number of objects that are to be selected for a reduced scale. The authors
comment on the usefulness of this criterion for automation, but also aim at more objectivity in the manual
processing.

The problem of how to measure the quality of a generalized dataset is still a major research issue. Usually, the
quality of map generalization is assessed by comparison of the input and the output map. For example, Bard
(2004) suggests measures to characterize the data before and after generalization and to assess the differences
between both datasets according to these measures. Cheng & Li (2006) compare the aggregation results of a
simple iterative algorithm. They consider the amount of class changes as an important quality measure. In
order to measure shape similarities, Frank & Ester (2006) and Podolskaya et al. (2007) compare the turning
functions of corresponding shapes in different datasets.

Often the problem of subjectivity and inhomogeneity is approached by standardization. National mapping
agencies of many countries have developed database specifications that rather clearly define the contents of
digital land scape models at different scales. Table 2.1 summarizes the definitions of two classes of the ATKIS
Basis DLM, namely grassland and river. The complete specifications in German language are accessible on the

18 Chapter 2. Map Generalization

Class Grassland River
Superclass Vegetation Water
Definition “Area of grass or lawn that is reg-

ularly grazed or mowed” (trans-
lated from German)

“Natural stream of water”
(translated from German)

Selection criterion area ≥ 1 ha permanently running OR length ≥ 500 m
Object type area IF width ≥ 12 m THEN area ELSE line

Table 2.1: Specifications of classes grassland and river in ATKIS Basis DLM.

Germany Canada Australia
ATKIS National Topographic Database National Topographic Database

(AdV, 2003) (Natural Resources Canada, 1996) (Geoscience Australia, 2006)
Wood, Forest Wooded Area Forest Or Shrub

“Area covered by forest plants
(forest trees and forest shrubs)”
(translated from German)

“An area of at least 35% covered
by trees or shrubs having a mini-
mum height of 2 m”

“An area of land with woody veg-
etation greater than 10% foliage
cover (includes trees and shrubs)”

scale selection criterion scale selection criterion scale selection criterion
1:25k area ≥ 0.1 ha 1:25k area ≥ 0.25 ha
1:50k area ≥ 1 ha 1:50k area ≥ 1 ha AND

width ≥ 50 m
1:100k area ≥ 4 ha

1:250k area ≥ 40 ha 1:250k area ≥ 25 ha AND
width ≥ 250 m

1:250k area ≥ 25 ha

1:1000k area ≥ 500 ha

Table 2.2: Definitions and selection criteria for forest areas in three different national databases. The Canadian
specifications use the term “Guaranteed size”. In the Australian specifications this is called “Minimum size for inclusion”.

Internet (AdV, 2003). Similar specifications can be found for national topographic databases of other countries,
for example Canada (Natural Resources Canada, 1996) or Australia (Geoscience Australia, 2006). In the US,
a huge project called “The National Map” is currently being realized (Kelmelis, 2003). Afflerbach et al. (2004)
report on differences in specifications of topographic databases in four different European countries.

Database specifications define which objects are to be included and how these are to be represented. For
example, forest areas in the ATKIS Basis DLM must not be smaller than 0.1 ha. Naturally, the minimal
allowed size is larger for a dataset of smaller scale. Table 2.2 shows the selection criteria for forest in the
German, Australian, and Canadian datasets. The term “Guaranteed size”, which is used in the Canadian
specifications, unmistakably states that the defined thresholds must not be violated in any case. In addition to
requirements for attributes and geometries of single objects, the specifications define requirements for relations
between multiple objects. For example, different areas must not overlap. Adhering to the database specifications
ensures logical consistency, which is an important element of spatial data quality (Kainz, 1995).

Though database specifications limit the freedom of action in the map generalization process, they do not suffice
to solve the generalization problem, as there remains ambiguity in the possible actions for their satisfaction.
For instance, a forest of 0.9 ha in the ATKIS Basis DLM must not be kept without change when applying a
generalization procedure to meet the specifications of the ATKIS DLM 50, as it does not meet the required
minimal size of 1 ha. However, the specifications do not define the action that is triggered if this requirement
is violated. In the example, we could enlarge the forest to achieve the required size or we could eliminate it, if
there are no other requirements that forbid this solution. Generally, this choice is left to the cartographer.

The requirements that are given by database specifications can be regarded as a certain type of constraints.
The next section explains this common concept of map generalization.

2.4. Map generalization based on hard and soft constraints 19

2.4 Map generalization based on hard and soft constraints

Map generalization is often based on rules, which define certain actions that are performed in given situations
(Shea, 1991; van Smaalen, 1996). Nickerson & Freeman (1986) specify an aggregation rule as follows:

“If a lake or a pond would have an area less than the minimum polygon area, do not include it, unless
there are five or more small lakes within a radius of ten mm, in which case replace these small lakes with
one small lake slightly larger than the minimum polygon area.”

Though this rule may be useful in practice, Beard (1991) reveals its inflexibility by showing illustrative examples.
Generally, a huge number of rules will be needed to consider all possible situations. Because of this, Beard
suggests the definition of constraints, which, in contrast to rules, are not bound to particular actions. The
generalization task is to satisfy all constraints, but this can be achieved with any sequence of the available
generalization operators. Weibel & Dutton (1998) distinguish five different types of constraints:

• Graphical constraints specify minimum size and proximity properties, which are due to graphic limits.

• Topological constraints define topological relationships, for example, network connectivity.

• Structural constraints express geometric characteristics and semantics of single features as well as struc-
tures of multiple features, for example, alignments and clusters.

• Gestalt constraints reflect human aesthetics and visual balance. They correspond to principles of Gestalt
theory, which was developed by Wertheimer (1938).

• Process constraints define constraints on the generalization process itself, for example, certain operators
need to be applied in a defined order. Though the definition of process constraints violates the indepen-
dence of constraints from generalization operators, they are often needed for an efficient workflow.

Weibel & Dutton (1998) point out that the distinction of structural constraints and Gestalt constraints is rather
vague. In Sect. 2.7 we review approaches to aggregation in map generalization that use structure or pattern
recognition techniques, also considering principles of Gestalt theory.

According to Weibel & Dutton (1998), constraints are often conflicting, thus can only be satisfied to a certain
degree. However, we should be aware of the fact that some constraints do not allow any compromise. This
especially concerns constraints that are given by database specifications. Such constraints can only be satisfied
or unsatisfied; there is no state in between. As a consequence we need the following distinction:

• Hard constraints must be satisfied in any case.

• Soft constraints allow for a trade-off if there are conflicts with other soft constraints.

Relaxing a hard constraint means to remove it or to replace it by a soft constraint.

Let’s consider a simple example. We are given a set of point symbols in the plane and the following set of
constraints:

(C1) The distance between two symbols must not be smaller than a given threshold.
(C2) The location of a symbol must not change.
(C3) A symbol must not be eliminated.

Obviously, if we define all three constraints as ‘hard’, we can end up with an over-constrained problem, that is,
the problem can become unsolvable. Therefore, we should be careful in defining hard constraints. Alternatively,
we can define a subset of constraints as ‘soft’. For a soft constraint we need to define a cost measure that expresses
its degree of satisfaction. For instance, we can relax constraint (C2) and define a cost for point movements.
In this case our example becomes a typical displacement problem. We can alternatively relax constraint (C3)
and charge a unit cost for each eliminated point; in this case we have a typical selection problem. If we relax
both constraints, we have more freedom of action. In this case we search for a solution that defines a good
trade-off: We can move a point, but if the cost for its movement exceeds a certain value, then it may be better
to eliminate it.

Generally, we are interested in the solution that satisfies all hard constraints and defines the best trade-off
between soft constraints, that is, the feasible solution with minimum cost. This naturally leads to the approach
by optimization.

20 Chapter 2. Map Generalization

2.5 Map generalization by optimization

When discussing optimization approaches to map generalization, we can distinguish discrete and continuous
optimization problems, that is, problems where the set of feasible solutions is discrete or not.

2.5.1 Continuous optimization

Problems that have been approached by continuous optimization are line smoothing (Burghardt, 2005) and
displacement (Bobrich, 1996; Bader, 2001). The latter problem requires proximity conflicts between different
objects to be resolved by small geometrical movements and distortions. Harrie (1999) and Sester (2005) propose
to solve this problem by least squares adjustment. In this approach soft constraints are defined by the equation:

A · x = l + v , (2.1)

where x denotes the real vector of unknown parameters (the point movements) and v denotes the real vector
of unknown residuals, that is, the degree of constraint satisfaction. Both, A (referred to as the design matrix)
and l (the vector of observations) need to be specified in advance to define the constraints. The constraints are
perfectly satisfied if v = 0. As this is generally not possible for all constraints, the function vT ·P ·v is minimized,
where P defines the weights between different constraints. If there are non-linear constraints, these are usually
replaced by their linear approximations. Sarjakoski & Kilpeläinen (1999) and Harrie & Sarjakoski (2002) show
how to solve the problem for large datasets, also considering other generalization operators. Applying the
same adjustment technique, Koch & Heipke (2005) and Koch (2007) additionally show how to cope with hard
inequality constraints that are needed to ensure consistency between DLMs and digital terrain models. Related
problems are discussed in the generalization domain, for example, a river must not run uphill (Gaffuri, 2007).
Least squares adjustment allows different generalization operators to be handled, yet the existing generalization
methods that are based on this technique do not take the discrete nature of map generalization into account.
Usually, continuous variables are used to model a problem. These are not suited, for example, to represent
whether a vertex of an original line is selected for its simplification. In their system, Sarjakoski & Kilpeläinen
(1999) define a constraint that attempts to pull an unwanted vertex onto the line connecting its predecessor
and successor. This is a smart workaround to also allow for line simplification, but of course it is not a solution
to the discrete problem of vertex selection, which only allows two stages and none in between. Sester (2005)
applies adjustment calculus to satisfy constraints in building simplification, but also points out that it does not
solve the whole problem: the elimination of details is done in a first step, which is not based on optimization.
The handling of hard constraints in optimization approaches is seldom addressed in the map generalization
literature. Often constraints are relaxed, as they are conflicting (Harrie & Weibel, 2007). A few exceptions exist
in the context of discrete optimization, which is addressed in the next section.

2.5.2 Discrete optimization

Discrete (also known as combinatorial) optimization problems in map generalization are mainly approached by
meta-heuristics that iteratively improve the map, such as hill climbing (Galanda, 2003), simulated annealing
(Ware & Jones, 1998; Ware et al., 2003; Hardy et al., 2007), genetic algorithms (Weibel et al., 1995), tabu
search (Ware et al., 2002), or neural networks, which are applied in self-organizing maps (Allouche & Moulin,
2005; Sester, 2005).

Also in these approaches, constraints are mostly relaxed (Galanda, 2003). Hill climbing and simulated annealing,
which has been introduced by Kirkpatrick et al. (1983), are briefly explained in Sect. 3.7 as most commonly
applied representatives of meta-heuristics. Section 7.7 presents an approach to area aggregation using simulated
annealing, in order to allow for a comparison with the newly developed method by mixed-integer programming.
Reeves (1993) gives a general introduction to meta-heuristics. To obtain an appropriate performance, problems
that appear to be continuous are often discretized and approached by iterative improvement. For example,
Mackaness & Purves (2001) define a finite set of possible object shifts that define candidate solutions for
cartographic displacement.

There are only a few non-heuristic and exact optimization approaches to combinatorial problems in map gener-
alization that cope with hard constraints. Often the generalization problem is considered too complex and the

2.6. Organizing the generalization workflow 21

algorithms are considered too inefficient. On the other hand, it is often possible to find approximation algo-
rithms or to introduce problem specific heuristics into exact algorithms. Chapter 3 presents the basics of these
deterministic combinatorial optimization techniques with a focus on mathematical programming, which includes
linear programming, integer programming, and mixed-integer programming. Especially for line simplification
combinatorial optimization methods have been successful. An existing approach of de Berg et al. (1998) to this
problem, which is based on a shortest path formulation, is reviewed and extended in Sect. 6.2. The method
copes with (hard) topological constraints that ensure the simplicity of a planar subdivision. Many problems
have been approached by combinatorial optimization that are related to map generalization. For example,
Cromley (1986) presents an approach to cartographic label placement by integer programming. Nöllenburg &
Wolff (2006) use mixed-integer programs to optimally draw metro maps, in which lines are restricted to certain
directions. In particular researchers in the field of computational geometry have focused on these approaches
to map generalization.

2.6 Organizing the generalization workflow

The existence of methods for different generalization operators raises the question whether the whole general-
ization problem can be modeled and solved in a comprehensive way. In fact the constraint-based modeling of
map generalization is presently seen as the most promising approach (Harrie & Weibel, 2007). Especially opti-
mization approaches by iterative improvement such as simulated annealing are considered capable of handling
diverse kinds of constraints (Ware & Jones, 1998). However, Galanda (2003) notes that simulated annealing
“is not suited as an approach to model a comprehensive generalization process”. A reason for this is seen in
its high computational costs. In recent years the application of multi-agent systems has become a popular ap-
proach to model the generalization problem in a comprehensive way. In this approach, geographic entities such
as buildings and roads are considered as communicating individuals (agents) that try to attain certain goals
and therefore satisfy constraints (Barrault et al., 2001). Galanda (2003) uses hill climbing for optimization
in a multi-agent system for polygon generalization. This optimization technique, however, only yields locally
optimal solutions. Generally, a trade-off needs to be found: An integrated approach allows a better respect of
the dependencies between different generalization operators. However, the problem needs to be decomposed
into subtasks, if more advanced optimization techniques than hill climbing are to be applied. Different general
approaches can be observed that are used to break down the high complexity of the generalization problem:

• Sequencing of different generalization operators: As explained in Sect. 2.1 many algorithms have been
developed for certain generalization operators, for example, selection and simplification. In the simplest
case we can apply the operators in sequence. For instance, we first select buildings for the target scale
and then simplify their outlines. Experts can often find appropriate sequences, yet we generally need to
be aware of possible dependencies between different operators. Imagine that we need to satisfy a size
constraint for buildings. If we first eliminate all buildings that are smaller than a given threshold, then in
a second step simplify their outlines, we can again end up with buildings below threshold, as simplification
may imply changes of sizes.

• Sequential processing of different types of objects : Similarly, we can apply the same operator in sequence
to different classes of objects. For example, in a first step, we resolve proximity conflicts between different
roads by displacement. Then we resolve conflicts between buildings and roads, and between different
buildings, with the same operator, this time keeping the roads fixed. In this example, we first process
those objects whose positional accuracy is of a higher importance.

• Spatial partition: A common approach is to partition a dataset into smaller, manageable patches. For
example, different tiles or map sheets are processed independently. However, this artificial separation will
result in inconsistencies between adjacent map sheets. A more appropriate method is to partition the
dataset according to existing structures of the landscape. Timpf (1998) introduced the trans-hydro graph,
which comprises roads, railways, and rivers. Its faces are often defined as independent generalization
zones.

• Different levels of analysis: Ruas (1999) proposes to define constraints on different levels of analysis, for
example, on single buildings (micro level), building blocks (meso level), and the set of all buildings on
the map (macro level). Constraints on higher levels of analysis are evaluated first to guide constraints on
component objects such as single buildings, which then ensure their constraints autonomously.

22 Chapter 2. Map Generalization

• Gradual reduction of scale: Usually, the complexity of a generalization problem increases with the differ-
ence between the original scale and the target scale. An obvious approach to process large differences in
scale is to proceed in multiple steps. In each step the constraints for an intermediate scale are satisfied.
This is done until the final scale is reached. This approach is commonly used for the aggregation of areas,
which is explained in Sect. 2.7.2.

Some of these general ideas were taken up to develop the generalization methods that are presented in this
thesis. A sequencing of different generalization operators is proposed in Sect. 5.4, comprising collapse of areas
to lines, aggregation, and line simplification. This workflow is similar to the workflow proposed by Jaakkola
(1998), which, however, was designed for the generalization of land cover data in the raster model. Furthermore,
Jaakkola (1998) did not apply optimization methods in his approach. Section 7.6.3 presents a heuristic aggrega-
tion method that spatially decomposes a problem instance into manageable pieces by introducing intermediate
scales.

2.7 Aggregation

Aggregation denotes generalization processes that result in “part-of” relationships between objects in the original
scale and the target scale. Figure 2.3 illustrates a typical aggregation problem in map generalization. The large-
scale map contains a set of spatially disjoint objects (buildings), which need to be aggregated to form composite
objects of another class (settlements) in the smaller scale. A second problem is shown in Fig. 2.4. In both
scales, objects form a planar subdivision. An object in the original scale can become part of a composite object
of any class in the target scale. For example, a lake can become part of a forest and a forest can become part of
a settlement. We discuss the first problem and the related problem of grouping lines in Sect. 2.7.1. Sect. 2.7.2
deals with the aggregation of areas in a planar subdivision.

Settlement

Building
1. . . *

1

(a) conceptual level (b) object level

Fig. 2.3: Aggregation of spatially disjoint
objects of a certain type.

Object

Settlement 1. . . *

1
Forest

Water

(a) conceptual level (b) object level

Fig. 2.4: Aggregation of areas in a planar subdivision (b).

2.7.1 Aggregation of spatially disjoint objects and line features

The aggregation of spatially disjoint objects of the same category is often divided into two parts: objects that
form groups are found, and composite objects for the target scale are defined from these groups, for example,
the geometric outlines of composite objects need to be defined. Generally, the detection of groups can be done
in a first step of generalization, which is often referred to as data enrichment (Neun et al., 2004; Lüscher et al.,
2007). Algorithms that are applied later need to preserve the structures that were found in the data enrichment
process. Grouping of objects is often done according to principles of human perception, which, in early works
of psychology, were subsumed by laws of Gestalt theory. For example, Wertheimer (1938) emphasizes the
importance of proximity and similarity for perceptual grouping. Though this gives ideas about important
criteria, their formalization for automated generalization and the definition of appropriate procedures for their
satisfaction are generally open problems. The grouping of buildings is investigated by Regnauld (1996), Boffet
& Serra (2001) and Yan et al. (2008). However, the problem also needs to be solved for other polygon or point
features that are distributed on the plane, for example, islands (Steiniger & Weibel, 2007). Anders (2003, 2004)
proposes a graph clustering method as a basic tool to find groups of points in map generalization. The extraction

2.7. Aggregation 23

of building groups based on their centroids is shown as an example. Ware et al. (1995) propose a so-called adopt
merge operator based on a conforming Delaunay triangulation to define the geometric outline of a composite
object that is defined by a set of disjoint polygons. Peter & Weibel (1999) use the term amalgamation for this
operator.

Another problem is the grouping of line features, for example, roads or rivers. This is often done according to
the principle of ‘good continuation’: consecutive line segments of a network are grouped into so-called strokes,
where the turning angles at junctions are kept small (Thomson & Brooks, 2002). Heinzle & Anders (2007)
apply pattern recognition techniques to find groups of roads that are important for a smaller scale, for example,
roads that form grid structures, star-like structures or ring structures. Considering the aggregation of areas in
a planar subdivision, the method of Heinzle et al. (2006) for the detection of ring structures is of particular
relevance, as their approach is based on properties of faces in the road network. According to their definition,
each contiguous shape without holes that contains a given center and that can be obtained by union of a subset
of road network faces is a feasible ring structure. Hence, the grouping of road segments is done by aggregation
of faces in the network. In order to obtain the most circular ring, a compactness measure based on geometric
moments is optimized. In fact, this is a special case of the spatial allocation problem discussed by Shirabe
(2005a). Heinzle et al. (2006) solve this combinatorial optimization problem by explicit enumeration, but only
handle a small number of faces. To obtain an acceptable performance, the road network is thinned out in a first
step, such that no more than an empirically determined number of faces persists.

2.7.2 Aggregation of areas in a planar subdivision

Different authors have proposed generalization methods for areas in a planar subdivision. This representation is
commonly used for areas of different land cover classes, for example, in the ATKIS datasets (recall Fig. 1.1). To
ensure size constraints for the target scale some areas need to be aggregated with others. The approach of van
Oosterom (1995) is most commonly applied; this is specified in Algorithm 1. We refer to this method as region-
growing. In each iteration, the smallest area is selected and merged with one of its neighbors. Figure 2.5 shows
a sample at different iterations. In fact, van Oosterom (1995) proposed to select areas according to a defined
importance value, which can be different from the size. However, we use size and importance synonymously, in
order to better demonstrate the approach.

The algorithm defines the generalization process as a gradual transformation in scale. At each step the map
satisfies a certain size threshold, which increases in each iteration. The algorithm stops, if defined thresholds
are reached. Alternatively, we can continue the process until only one area remains as it is shown in Fig. 2.5.

Algorithm 1 Iterative aggregation of areas (region-growing)

1: S ← set of areas below threshold
2: while S �= ∅ do
3: a← smallest area in S
4: merge a to most compatible neighbor
5: S ← set of areas below threshold
6: end while

(a) step 0 (b) step 1 (c) step 2 (d) step 3 (e) step 4 (f) step 5

Fig. 2.5: Six steps of Algorithm 1; graphics are modified after van Oosterom (2005).

24 Chapter 2. Map Generalization

Existing implementations mainly differ in the definition of compatibility, which is used to select the neighbor
in line 4. Cheng & Li (2006) compare two common settings. The first option is to select the neighbor with the
longest common boundary. The second option is to select the neighbor that is semantically most similar; in
their model, this criterion is based on fuzzy class membership values of areas. Different other models for the
treatment of semantics exist. Podrenek (2002) defines priority lists for class changes, for example, a farmland
area is rather merged with grassland than with water. Yaolin et al. (2002) define a semantic similarity matrix
for classes. A similar model is applied in Sect. 5.3, yet in a global approach.

Several variations of Algorithm 1 exist that apply a different order of merges. For example, Bobzien (2001)
defines an inner loop in Algorithm 1, such that the area resulting from the merge in line 4 is again merged
with a neighbor, until it satisfies the given area threshold. The approach of van Smaalen (2003) is to iteratively
treat pairs of classes, whose order is defined by a class adjacency index. This is based on the total length of
all boundaries separating the members of any given pair of classes. In each iteration, those adjacent objects of
both classes become merged that are selected according to a second measure, referred to as object aggregation
factor. This is based on boundary lengths and areas of single objects. As information on land cover is often
given in the raster data model, special generalization methods for raster data sets have been developed. In this
context, Schylberg (1993) and Jaakkola (1997a,c) apply iterative methods, which are similar to Algorithm 1.

The gradual transformation defined by Algorithm 1 can be used for zooming and progressive transmission of
datasets, for example, in web cartography (van Oosterom, 1995, 2005). Zooming from small to large scale, the
maps in Fig. 2.5 can be shown in succession, ordered from right to left. However, merging small areas to neighbors
is also commonly used to produce a single output dataset (Cheng & Li, 2006). A gradual transformation
between both datasets is not needed in this case. In Chapter 4 we will see an additional feature of the iterative
method: if a change happens to the original dataset, only certain parts of the generalized map will need to
be updated. Despite this benefit, we need to discuss the performance of this algorithm in terms of quality.
Clearly it satisfies the hard size constraints and produces contiguous regions, while ensuring that the output
is a planar subdivision. However, the rigid structure of the algorithm does not allow soft constraints to be
resolved optimally, for example, to minimize class changes. Figure 2.6 shows a second sample processed with
Algorithm 1. The dominating color in the input is green, yet the resulting area in step two is yellow. This result
does not depend on our definition of compatibility: in each iteration the smallest area has only one neighbor.

(a) step 0 (b) step 1 (c) step 2

Fig. 2.6: Three steps of Algorithm 1, leading to a large amount of class changes.

Cheng & Li (2006) use global quality measures to compare results that were obtained with two different defi-
nitions of compatibility. For example, they compare the results according to the amount of class change, which
they refer to as a measure of “semantic consistency”. However, the new method that is presented in Chapter 7
goes an important step further: A global quality measure is not only used for assessment, but for optimization,
in order to obtain results of maximum quality under given hard constraints. In Sect. 8.3 results of Algorithm 1
are compared with those of the newly developed aggregation method.

2.8 Multiple Representation Databases (MRDBs) and their update

So far we have considered datasets of different scales as products that are independently offered to support
different applications of users. However, to make the updating process efficient, datasets of different scales are
often maintained in the same database (Kilpeläinen, 2000). Also, for many applications there is not a single,
optimal scale. For example, Walsh et al. (2004) point out “that multithematic and multiscale perspectives are
essential to effectively address complex human-environment interactions and their linkage to landscape form

2.8. Multiple Representation Databases (MRDBs) and their update 25

and function”. Generally, a database that keeps datasets (layers) of different themes or scales for the same
spatial extent is referred to as multiple representation database. In the case of different scales, the term multiple
resolution database is often used. Correspondences between objects of different datasets are explicitly stored
as links in an MRDB. These can be exploited for multi-scale analyses; the updating problem can be seen as a
special analysis task, which is explained in Sect. 2.8.2. MRDBs are often designed with the architecture of a
federated database system (Anders & Haunert, 2004; Mantel & Lipeck, 2004). Generally, this is a collection of
cooperating but autonomous component database systems (Sheth & Larson, 1990).

Multiple resolution databases are often used for visualization tasks that require fast zoom functionalities. Cec-
coni (2003), Hampe et al. (2004), and Hampe (2007) present their application in web cartography. As previously
generalized results can be stored in an MRDB, the computational overhead during user interactions is greatly
reduced. The link structure can be used to query objects that appear when changing the level of detail. For
example, aggregation relationships of cardinality 1:m can explicitly be stored. When zooming in, components
of composite objects can be efficiently accessed.

Before reviewing methods for MRDB-update, we need to explain two different ways to set up an MRDB.

2.8.1 MRDB set-up

Hampe et al. (2003) distinguish two different ways to set up an MRDB:

• Set-up by generalization

• Set-up by matching

An MRDB with different DLMs can be set up by applying methods of model generalization; an MRDB with
different DCMs can be set up by cartographic generalization. Normally the dataset with the largest scale is
given as input; all other datasets are derived consecutively. In this case, correspondences between features result
as a byproduct of the generalization process and can be directly transferred to the link structure of the MRDB.
Furthermore, generalization rules and operators that are used for the MRDB set-up can be documented and
provided for later updates. Also the sequence in which generalization rules and operators are applied, as well
as the order in which different features are processed, can be recorded.

The second possibility for an MRDB set-up is to use existing datasets that were independently collected. In
this case, links can be acquired with automatic matching techniques. Before matching or linking homologous
objects of different datasets, correspondences between abstractions need to be found. This process often leads
to a global schema or multi-scale schema. Devogele et al. (1996) define a multi-scale schema by introducing scale
transition dependencies between classes from different schemata. For the matching task, attributes, geometric
properties and/or topological relationships between features of different datasets can be compared. These three
aspects are evaluated sequentially by Cobb et al. (1998) for each candidate match to exclude false matches.
Walter & Fritsch (1999) present a solution for the matching of roads in datasets of different thematic domains,
that is, a topographic database and a dataset for car navigation. Mustière & Devogele (2008) have developed a
matching method for networks of different levels of detail. We can exploit such links to define a rubber-sheeting
transformation between both representations, which allows objects to be transmitted from one representation
into the other (Haunert, 2005b).

Often inconsistencies between different datasets hinder their matching. This concerns geometrical distortions
and, which is a more severe problem, topological differences between both datasets, for example, there is no exact
isomorphism between different representations of the road network. Even correspondences between schemata
are often missing. Thus, links found by matching are less complete and more erroneous than links recorded
during generalization. Furthermore, the set-up by generalization allows to record “rich” links, which express
functional dependencies between different datasets and not only correspondences between objects. On the other
hand, generalization knowledge is implicitly given by links, which were found by matching. Sester et al. (1998)
and Dunkars (2004) apply data mining techniques to extract generalization rules from linked datasets.

26 Chapter 2. Map Generalization

2.8.2 Incremental generalization for update

The close connection between datasets of different scales in an MRDB can be used for incremental updating.
Normally it is assumed that changes in the physical world are captured in the largest scale and propagated
into the smaller scales in the MRDB. This can be done without processing the complete dataset, since only
directly changed and potentially influenced objects need to be generalized. This approach is generally called
incremental generalization (Kilpeläinen & Sarjakoski, 1995), which is in contrast to complete generalization.
Different types of updates need to be considered; Anders & Bobrich (2004) distinguish insertion, deletion and
change of objects.

Assuming that updates are permanently inserted into the most detailed layer of an MRDB, we could at any time
create updated layers of smaller scales, if we had an automatic method for complete generalization. Even then,
the complete generalization of large datasets is very time-consuming. Since updates usually have a limited spatial
extent, the computational effort can be reduced with an incremental generalization method. Skogan & Skagestein
(2005) claim: “The two methods, however, should produce identical target dataset[sic] using the same source
datasets as input.” Of course, in this case the result is independent of the order in which updates are processed.
Skogan and Skagestein present a system that records “productions” during an MRDB set-up by generalization.
Similarly to a link, a production stores correspondence relationships between objects. Additionally, it provides
information about an applied generalization rule, and thus defines functional dependencies. These are exploited
to find objects that need to be updated to accomplish the defined task. However, the presented system only
handles a small set of simple rules. It requires a large number of productions to be maintained; that might
become infeasible due to storage limitations.

The claim for identical outputs of incremental and complete generalization methods only makes sense, if a
complete generalization method is given that yields well-defined results. This, however, does not apply to an
MRDB that was set up by matching. Even in the case that the MRDB was set up by generalization, the derived
scales are not well-defined, for example, if nondeterministic methods like simulated annealing were applied.
For these cases, we need another notion of incremental generalization: we seek an updated dataset of reduced
scale that sufficiently satisfies the defined generalization constraints. In fact, most approaches to incremental
generalization do not satisfy the strict claim of Skogan & Skagestein (2005). For example, Harrie & Hellström
(1999) and Dunkars (2004) present prototype systems for incremental generalization of roads and buildings.
These use special rules for the update scenario. In both cases, the authors note that the result after several
updates depends on the order in which the updates were inserted. Though the authors consider this as a
deficit of their methods, their primary concern is to satisfy constraints. For example, Dunkars (2004) discusses
topological constraints and proximity conflicts.

2.9 General remarks

As we have seen, many researchers consider area aggregation in map generalization as an important problem.
Furthermore, optimization is generally considered as one of the most promising approaches to map generaliza-
tion. Surprisingly, the area aggregation problem has not been approached by optimization yet. This motivates
to develop a new aggregation method by optimization.

Hard constraints are relaxed in most optimization approaches to map generalization. Most researchers justify
this approach by stating that different constraints are conflicting, that is, without relaxing the constraints the
map generalization problem would be over-constrained. However, this argument does not legitimate a relaxation
of all hard constraints. In particular, constraints that express standards from database specifications must be
satisfied in any case.

Often we can easily satisfy such standards, for example, we can apply the simple iterative aggregation algorithm
to ensure that all areas have sufficient size. However, we need to handle hard constraints in optimization
approaches if we want to create high-quality maps. In the context of map generalization, this problem indeed
has not been investigated in sufficient depth. Solutions exist mainly for geometric problems that have been
addressed by researchers in the field of computational geometry.

Many researchers applied geometric measures as optimization objectives for map generalization, for example,
point movements should be small. In contrast we discuss how to optimize a measure of semantic accuracy that
is based on class distances.

27

Chapter 3

Combinatorial Optimization

In order to explain the theoretical background of the developed generalization methods, this chapter reviews
basics of combinatorial optimization. This includes general definitions and examples (Sect. 3.1), complexity
theory (Sect. 3.2), and general approaches to NP-hard problems (Sect. 3.3). Approximation algorithms are
explained in Sect. 3.4. Section 3.5 explains linear programming. Mixed-integer programming is explained in
Sect. 3.6. Section 3.7 presents the basics of local search. Section 3.8 concludes with a comparison of mixed-integer
programming and simulated annealing, since this thesis presents solutions for aggregation in map generalization
based on these approaches.

Comprising popular heuristic methods like hill climbing and simulated annealing, local search is considered
as the currently dominating optimization approach to map generalization (Galanda, 2003; Hardy et al., 2007;
Ware & Jones, 1998; Ware et al., 2003). Aerts & Heuvelink (2002) and Tavares-Pereira et al. (2007) apply local
search methods to spatial allocation problems.

A comprehensive introduction to combinatorial optimization is given by Papadimitriou & Steiglitz (1998). The
textbook of Garey et al. (1974) has become a definitive book on computational complexity theory. Michiels
et al. (2007) give a theoretical introduction to local search. More practical introductions are given by Reeves
(1993) and Michalewicz & Fogel (2004), who present popular heuristic approaches.

3.1 Combinatorial problems

Generally, an instance of an optimization problem is defined by a pair (S, f), with S being the set of feasible
solutions and f : S → R being the objective function. Assuming that the problem is a minimization problem, f
is also referred to as cost function. In this case, a solution s∗ ∈ S is globally optimal, if and only if f(s∗) ≤ f(s)
for all s ∈ S. An optimization problem is a set of problem instances. If S is finite or infinite countable
for all problem instances, the problem is usually called a combinatorial optimization problem. Combinatorial
optimization problems are often defined in terms of graphs. This section introduces some types of graphs and
two combinatorial problems, namely the shortest path problem and the problem MinimumVertexCover.

3.1.1 Graph definitions

A graph G(V, E) is defined by two sets: a node set or vertex set V and an edge set E ⊆ {{u, v} | u, v ∈ V , u �= v
}
,

meaning that an edge e ∈ E is an unordered pair of two distinct nodes. We call the nodes u and v of the edge
e = {u, v} endpoints of e. To illustrate a graph we can draw each node as a point at an arbitrary location in the
plane. An edge can be represented by a (not necessarily) straight line connecting both endpoints. A drawing of
a graph with no intersecting lines is called a planar drawing of the graph. If such a planar drawing exists for a
certain graph, the graph itself is called planar. Figure 3.1 shows two drawings of a planar graph. The graph in
Fig. 3.2 is non-planar. This graph is commonly referred to as K5. A graph that contains an edge for each pair
of nodes is called complete. Generally, the complete graph with n nodes is denoted by Kn.

A directed graph G(V, A) or simply digraph is defined by a node set V and a set A of directed edges or arcs,
that is, A ⊆ {

(u, v) | u, v ∈ V , u �= v
}
, see Fig. 3.3.

28 Chapter 3. Combinatorial Optimization

v2 v1

v3 v4

v1 v2

v3 v4

Fig. 3.1: Two drawings of the same planar graph. The
right drawing is planar.

v1

v5

v3 v4

v2

Fig. 3.2: A non-planar
graph.

v1 v2

v3 v4

Fig. 3.3: A digraph.

3.1.2 The shortest path problem

Obviously, the concepts of graphs and digraphs are useful for diverse network or routing tasks, for example, the
shortest path problem, which finds an application in car navigation systems. An instance of this problem is given
with a graph G(V, E), edge lengths l : E → R

+, an origin u ∈ V , and a destination v ∈ V . A path is defined as
a sequence of nodes p = (w1, w2, . . . , wk) without repetition, such that {wi, wi+1} ∈ E for i = 1 , 2 , . . . , k − 1.
The set of feasible solutions S contains all paths from u to v in G. The cost function f is defined as:

f(p) =
k−1∑
i=1

l({wi, wi+1}) . (3.1)

The graph representation allows a problem to be investigated on an abstract level, separated from the specific
application. Therefore, algorithms for the solution of the problem can easily be transferred to other domains.
In Sect. 6.2 we will formalize the line simplification problem in map generalization as a shortest path problem.
Though car navigation and line simplification do not seem to be related at first glance, both problems can be
solved with the same algorithms.

We know from experience that computers can efficiently solve shortest path problems: Modern web services
provide optimal nationwide routes within seconds. However, there are many other problems that are not as
good-natured. The next section introduces an example of such a problem.

3.1.3 The problem MINIMUMVERTEXCOVER

In order to introduce the problem MinimumVertexCover, let’s consider the following land surveying task:
We are asked to measure a certain set of distances (represented by edges E) between stations (vertices V). Our
equipment allows a distance to be measured between two stations by visiting only one of them, for example,
we use a laser range-finder and each station is permanently equipped with a reflector. We want to measure all
required distances, but, in order to minimize our workload, we aim to visit as few stations as possible.

The set S of feasible solutions of our problem contains those subsets of stations that correspond to a vertex
cover of the graph G(V, E). A vertex cover of G is a subset of V that contains at least one of both endpoints
of each edge in E. Figure 3.4 shows a graph with two different vertex covers.

The cardinality of a set X is the number of elements in X , which is denoted by |X |. The problem Mini-
mumVertexCover is to find a vertex cover of minimum cardinality, meaning that the cost function is defined
by f(C) = |C| for any subset C of V . The optimal solution for the example in Fig. 3.4(a) is the vertex cover
C = {v2, v4, v6, v8} in Fig. 3.4(c). Its cardinality is |C| = 4. It is not possible to find a vertex cover of G with
cardinality less than four. Accordingly, we need to visit at least four stations in our land surveying problem.

Often a combinatorial problem is expressed as a recognition problem or decision problem. For the optimization
problem MinimumVertexCover we define the related decision problem VertexCover. Given a graph G
and an integer c > 0, this problem is to answer the following question: Does there exist a vertex cover of G
with cardinality c or less? Thus, we just ask for a ‘yes’ (there exists a vertex cover of cardinality c or less) or a
‘no’. Obviously, we can solve the decision version of the problem by solving its optimization version.

3.2. Computational complexity theory 29

v1 v2 v3

v4 v5 v6

v7 v8 v9

(a) a graph G(V, E)

v2 v3

v4

v8 v9

(b) a vertex cover of G with cardinality 5

v2

v4 v6

v8

(c) a vertex cover of G with cardinality 4

Fig. 3.4: A graph with two vertex covers. Vertices included in vertex covers are displayed by black squares.

In contrast to the shortest path problem, VertexCover turns out to be very complex. We can solve the
problem in a naive way by explicitly enumerating and testing all subsets of V with cardinality c. However, the
number of such sets is

(|V |
c

)
, say |V | choose c, which even for small graphs can be extremely high. The next

section explains how problems are classified according to their complexity.

3.2 Computational complexity theory

According to Papadimitriou & Steiglitz (1998) algorithms are “precise and universally understood sequences of
instructions that solve any instances of rigorously defined computational problems.” Usually we are interested
in efficient algorithms, which we introduce in Sect. 3.2.1. However, we will fail to find efficient algorithms
for certain problems like VertexCover. Section 3.2.2 explains how this differs from ‘easy’ problems like the
shortest path problem.

3.2.1 Time complexity of algorithms

Generally, we assume that a problem instance is given by a string of a defined alphabet using a defined encoding
scheme. The length of this string is referred to as size of the instance. Usually, algorithms need more time
to solve a problem if we increase the size of the input, for example, the number of vertices in the problem
VertexCover. We could try to express the behavior of an algorithm by a function that, for each possible
input size, defines the maximal number of required basic processing steps, each of which takes one unit of time.
However, this function might depend on the computer that is used to run the algorithm and the way the input
is encoded. Therefore, the running-time behavior of an algorithm is commonly expressed by a class of functions
that expresses the growth rate of the running time.

Formally, we say a function f(x) is O(g(x)) as x → ∞, if and only if there are numbers x0 ∈ R and M ∈ R
+

such that |f(x)| ≤M · |g(x)| for each x > x0.

For example, the shortest path problem can be solved in time O(|V | log |V | + |E|) using the algorithm of
Dijkstra (1959). Hence, without knowing the exact values of M and x0, we know that there exists some pair
of numbers M and x0 such that the number of calculations for instances of size greater than x0 is bounded by
M · (|V | log |V |+ |E|).
In order to classify algorithms according to their efficiency, we distinguish algorithms whose required time is
bounded by a polynomial (polynomial time algorithms) and algorithms whose required time is not bounded by
a polynomial (exponential time algorithms). We know from demonstrative examples that exponential functions
grow extremely fast: If we put a grain of rice on the first square of a chess board and, for each subsequent square,
double the number of grains, we need more rice than there exists in the whole world. Of course, we could find
similar examples for polynomials of very high degree. However, time bounds for polynomial time algorithms
that appear in practice seldom exceed degrees two or three. Furthermore, for large arguments, an increasing
exponential function always surpasses a polynomial function, no matter how high we choose the degree of the
polynomial. Therefore, the definition of a polynomial time algorithm as being efficient, is widely accepted.

30 Chapter 3. Combinatorial Optimization

3.2.2 Complexity of combinatorial problems

In order to classify combinatorial problems according to their complexity, we could distinguish problems that
can be solved by polynomial time algorithms and problems that cannot be solved by polynomial time algorithms.
We can prove that a problem falls into the first class by finding an efficient algorithm. However, if we do not
find an efficient algorithm, this does not necessarily mean that no such algorithm exists. In fact, proving the
intractability of a problem in this sense is extremely difficult. Because of this, another classification is commonly
used.

Similar to our first idea, the complexity class P is defined to consist of all decision problems that can be solved by
a deterministic Turing machine in polynomial time. This formal mathematical model is close to our general idea
of a computer, meaning that the class P definitely contains the decision version of the shortest path problem. A
second class, the class NP , is defined to include all decision problems that can be solved by a non-deterministic
Turing machine in polynomial time. Formal definitions of both, deterministic and non-deterministic Turing
machines, are given by Garey & Johnson (1979).

For our discussion the following explanation of the classNP suffices, which uses the idea of a certificate-checking
algorithm: Let’s assume that an omniscient intelligence (an oracle) wants to convince us that the answer to our
problem instance is ‘yes’. In the example of the problem VertexCover it could provide us a set of vertices
V ′ that is a vertex cover with the required cardinality. We could easily convince ourselves that this vertex set
has indeed the demanded characteristics, or in other words, we could specify an efficient algorithm that checks
the given certificate. In order to do so, we would need to check two things: Firstly, we would need to check
whether V ′ contains no more vertices than the allowed number c. Secondly, we would need to check whether
V ′ contains an endpoint for each edge. To solve both problems, we first need to iterate over the vertices in V ′.
In each iteration, we increase a counter and mark the selected vertex as ‘visited’. After this loop, we iterate
over the edges in E to check whether each edge has a visited endpoint. If this is true and the counter does not
exceed c, the set V ′ meets our requirements. The algorithm requires O(E) time, that is, there is an efficient
certificate-checking algorithm for VertexCover.

Because of this positive characteristic of the problem VertexCover, it is included in the class NP . The class
NP seems to be very general; it is clear that all problems in P are included in NP , thus P ⊆ NP . However,
to date it is not known whether both classes are in fact the same, that is, whether P = NP or P �= NP .

So far we know that VertexCover is in NP . In order to explain the difference to the shortest path problem,
we need to introduce the concept of NP-hard problems. A problem is said to be NP-hard, if it has the following,
very interesting property: Finding an efficient algorithm for its solution would imply that all problems in NP
can be solved efficiently. Because of this, we can say that an NP-hard problem is at least as hard as any problem
in NP. An NP-hard problem that is in NP is said to be NP-complete. We can say that such a problem is among
the hardest problems in NP . As the set NP is only defined for decision problems, an optimization problem can
be NP-hard, but not NP-complete. Figure 3.5 illustrates the discussed complexity classes assuming P �= NP .

NP

NP-complete
problems

P

Fig. 3.5: The classes P and NP , assuming P �= NP.

In a fundamental proof, Cook (1971) showed that a certain combinatorial problem called Satisfiability is
NP-hard. With this achievement, proving NP-hardness for other problems has become much easier: it suffices
to show that efficiently solving the problem at hand allows one NP-hard problem to be solved efficiently, for
example, Satisfiability. In fact, the problem VertexCover was proven to be NP-hard using this approach.
Table 3.1 illustrates the history of proofs that led to this achievement. We say Satisfiability polynomially
reduces to 3-Satisfiability, 3-Satisfiability polynomially reduces to VertexCover and so on. The proof

3.3. Approaches to solve NP-hard optimization problems 31

by Garey et al. (1974) shows that VertexCover remains NP-hard in the case when the graph G is restricted
to be planar. We refer to this special version of the problem as PlanarVertexCover. In Sect. 7.3 we will
use the NP-hardness of PlanarVertexCover to prove that the discussed aggregation problem is NP-hard.
The presented proof is a typical example of such a reduction.

problem reference to reduction
general definition of NP

↓ Cook (1971)
Satisfiability (SAT)

↓ Cook (1971)
3-Satisfiability (3SAT)

↓ Karp (1972)
VertexCover

↓ Garey et al. (1974)
PlanarVertexCover

↓ Section 7.3
AreaAggregation

Table 3.1: Some NP-hard problems; the arrows represent reductions found by cited authors. The proofs for SAT, 3SAT
and VertexCover can all be found in the textbook by Garey & Johnson (1979).

3.3 Approaches to solve NP-hard optimization problems

If we can prove that a certain optimization problem is NP-hard, it is extremely unlikely that there is a polynomial
time algorithm for its solution. However, we can see such a proof as a success, since it shows that our failure
to find an efficient algorithm is not due to our personal inability! If we do not want to give up the attack on
the problem, we still have multiple options: we can apply (slow) exact algorithms, approximation algorithms,
or heuristics.

When applying exact algorithms, we can often solve problem instances that appear in practice, in modest
time. If we decide on this option, one possibility is to use mathematical programming, which allows existing
implementations of advanced algorithms to be applied. In this context, the term “programming” must not be
confused with the implementation of computer programs. Instead it is a general approach to formalize and
solve a combinatorial optimization problem. The general term “mathematical programming” comprises, among
others, linear programming and mixed-integer programming. The latter is of particular importance, as it allows
so solve NP-hard problems. An advantage of this approach is that once a problem has been transferred into the
required form existing software can be applied for the solution. The commercial solver CPLEX can be considered
as state-of-the art software for this task (ILOG, 2008). Also public-domain software exists, for example, the
free program lp solve (LPSolve, 2008). Formalizing a problem as a mathematical program is useful, as we will
directly profit from improvements to the general algorithms.

When giving up the claim for exact optimality, one option is to find an efficient approximation algorithm,
which guarantees a solution of cost within a certain factor of the minimum. This is probably the most elegant
approach to NP-hard problems. It is especially useful if an approximation factor close to one can be guaranteed.
In fact, some approaches allow a problem to be solved with an approximation factor arbitrarily close to one.
Unfortunately, some NP-hard problems are even hard to approximate.

If we completely give up the claim for a performance guarantee, we can apply heuristics, which often yield
relatively good solutions in reasonable time. Often we can agree on a ‘local’ optimum instead of insisting on a
globally optimal solution. However, unless we define a neighborhood of a solution, the term local does not have
any meaning.

The introduction of approximation algorithms will lead to the definition of another complexity class. Therefore,
we first address this approach in more detail (Sect. 3.4). Sections 3.5 and 3.6 introduce linear programming
and mixed-integer programming, respectively. Section 3.7 reviews some general concepts of local search and a
simulated annealing approach, which is often used to avoid getting stuck in poor local optima.

32 Chapter 3. Combinatorial Optimization

3.4 Approximation algorithms

This thesis does not present any new approximation algorithms for generalization. However, an overview of
combinatorial optimization should not leave this approach out. Approximation algorithms for line simplification
have been presented, among others, by Bose et al. (2006) and Gudmundsson et al. (2007).

In order to explain a simple approximation algorithm for MinimumVertexCover, we first need to define the
term matching: given a graph G(V, E), a matching of G is a subset of the edge set E that contains no two edges
with a common endpoint. A matching is called maximal if no edge of E can be added such that this property
persists. Note that this is not necessarily a maximum matching, which consists of as many edges as possible.
Figure 3.6 illustrates these definitions with examples.

(a) a Graph G(V, E) (b) a matching of G (c) a maximal matching of G (d) a maximum matching of G

Fig. 3.6: A graph and three matchings. Edges included in matchings are displayed by solid lines.

Obviously, if the matching E′ ⊆ E is maximal, then the endpoints of edges e ∈ E′ define a vertex cover of
G. This vertex cover has cardinality 2|E′|. As each vertex cover of G contains at least one endpoint of each
edge e ∈ E′, a vertex cover of G has cardinality at least |E′|. To conclude, a maximal matching E′ defines
a feasible solution to the problem MinimumVertexCover. Though this solution might not be optimal, we
know that such a vertex cover never contains more than twice as many nodes as the vertex cover of minimum
cardinality. Therefore, an algorithm that yields a maximal matching is a factor-2 approximation algorithm for
MinimumVertexCover. We can define this algorithm with a simple iteration through the edge set; in this
case it needs time O(|E|).
For many applications, an approximation factor of two is certainly rather meaningless. In our land surveying
problem from Sect. 3.1.3, we would possibly visit twice as many stations as necessary! On the other hand,
the results of heuristics, though often useful in practice, can be arbitrarily bad in theory. Certainly, we are
interested in finding efficient algorithms with approximation factors as close to one as possible. An interesting
fact is that many NP-hard problems can be approximated arbitrarily well, meaning that, for any ε > 0, we
can find a polynomial time algorithm that guarantees an approximation factor of (1 + ε). We can define a
general algorithm that requires ε and an instance of the optimization problem as input. If it ensures the
approximation factor of (1 + ε) and if the required time is bounded by a polynomial in the instance size, it is
called a polynomial-time approximation scheme (PTAS). Unfortunately, when providing a PTAS with a small
ε-value, the degree of the time bound is often extremely high. As we are concerned about the increase of the
time complexity with respect to ε, we also give the definition of a fully polynomial-time approximation scheme
(FPTAS): a PTAS is called FPTAS if its running time is bounded by a polynomial in the instance size and in
1/ε. Though PTAS and FPTAS are known for many NP-hard problems, it is also known that, unless P = NP ,
some NP-hard problems cannot be approximated arbitrarily well. Such problems are called APX-hard. For
example, it is NP-hard to approximate MinimumVertexCover with a factor smaller than 7/6 (H̊astad, 2001),
thus MinimumVertexCover is APX-hard.

3.5. Linear programming 33

3.5 Linear programming

Linear programming is a special optimization problem. An instance of this problem is called a linear program
(LP). In contrast to most other mathematical programming problems, linear programming can generally be
solved efficiently. The algorithm of Karmarkar (1984), for example, runs in polynomial time – assuming that
the input numbers are not too large. The set of feasible solutions S of an LP is neither finite nor countable,
thus it is questionable whether linear programming should be classified as a combinatorial problem. However,
some algorithms use the fact that there is an easily accessible, finite set of potentially optimal solutions. One
of these methods is the simplex algorithm by Dantzig (1963). Though it is not a polynomial time algorithm,
it usually performs well in practice. Linear programming is often seen as a sub-problem of integer and mixed-
integer programming. Therefore, the simplex algorithm is an important subroutine in algorithms for many
combinatorial problems. This section defines two different forms of LPs and sketches the simplex algorithm.

3.5.1 The canonical form of linear programs

The canonical form of an LP is defined as follows:

Given an m× n integer matrix A, an m-vector of integers b, and an n-vector of integers c,

minimize z = cT · x
subject to A · x ≥ b ,

x ≥ 0 ,

with x ∈ R
n.

The vector of variables x represents solutions to the problem in terms of positive real numbers. Constraints
being imposed on these variables define the set of feasible solutions. Each row of the matrix A defines a linear
combination of variables, which is bounded below by the value in the same row of vector b. Geometrically,
such a constraint defines a half space. Defining multiple constraints, the set of feasible solutions S becomes an
intersection of many half spaces. If this set is bounded and not empty, it is a convex polytope. The vector
c defines the optimization objective. Each value of this vector expresses a cost that is charged proportionally
to a corresponding variable. The cost f(x) of a solution x ∈ S is equal to z. Since all solutions on a line
perpendicular to c have the same cost, the aim is to find a feasible point on such a line closest to the origin.

Figure 3.7 shows a geometric interpretation of the example:

minimize z = x1 + 2x2 (3.2)
subject to −16x1 − 12x2 ≤ −35 , (3.3)

16x1 − 12x2 ≤ 17 , (3.4)
−2x1 + 8x2 ≤ 21 , (3.5)

with x1, x2 ∈ R
+
0 . (3.6)

c

x1

x2

s∗

S

(3.3) (3.4)

(3.5)

Fig. 3.7: A geometric interpretation of a linear program.

34 Chapter 3. Combinatorial Optimization

In this example, the vector x has two dimensions, that is, xT = (x1, x2). The set of feasible solutions is the
shaded polygon. The dashed gray lines in Fig. 3.7 are lines of equal cost.

It is easy to see that, if the set of feasible solutions is bounded and not empty, the optimal solution s∗ of an
LP can always be found in one of the vertices of the convex polytope, which is defined by the constraints: the
first vertex hit when sweeping the gray lines in the direction of c is the optimal solution. As the number of
vertices is finite, an LP can be considered as a combinatorial problem. A possible approach to solve an LP is
to enumerate all vertices. This, however, is very inefficient as the number of vertices increases exponentially in
the size of the LP. Section 3.5.4 explains the simplex algorithm, which searches more intelligently for the best
vertex.

The canonical form of an LP is very general. It also allows maximization problems, unbounded variables, and
equality constraints to be expressed:

• A maximization problem can be transformed into a minimization problem, simply by multiplying the
objective function by −1.

• A variable that is not restricted to positive numbers can be substituted by a difference of two variables,
each being bounded below by 0.

• An equality constraint can be expressed by two inequality constraints.

However, in order to explain the simplex algorithm, we introduce the standard form of an LP in the next section.

3.5.2 The standard form of linear programs

The standard form of an LP is defined as follows:

Given an m× n integer Matrix A, an m-vector of integers b, and an n-vector of integers c,

minimize z = cT · x
subject to A · x = b ,

x ≥ 0 ,

with x ∈ R
n.

In contrast to the canonical form, the standard form expresses constraints by equations and not by inequalities.
In Sect. 3.5.1 we introduced a transformation rule, which allows an equality constraint to be expressed by means
of two inequality constraints. In order to show that the standard form of an LP is as general as the canonical
form, we also need to introduce a rule for the opposite direction:

• A constraint a1 · x1 + . . . + an · xn ≤ b can be expressed by a1 · x1 + . . . + an · xn + s = b, with s ≥ 0 being
an additional variable, referred to as slack variable.

With this, our example from Sect. 3.5.1 becomes:

minimize z = x1 + 2x2

subject to −16x1 − 12x2 + x3 = −35 ,

16x1 − 12x2 + x4 = 17 ,

−2x1 + 8x2 + x5 = 21 ,

with x1, . . . , x5 ∈ R
+
0 .

In this case, the matrix A is defined by:

A =

⎛
⎝−16 −12 1 0 0

16 −12 0 1 0
−2 8 0 0 1

⎞
⎠ .

3.5. Linear programming 35

3.5.3 Basic feasible solutions

This section explains an important relationship between a basis of A and a solution of an LP in standard
form. We first define the matrix B to include all columns of such a basis, meaning that it includes m linear
independent columns of A. In our example, a basis is given with:

B =

⎛
⎝−16 −12 1

16 −12 0
−2 8 0

⎞
⎠ .

The matrix B is nonsingular and has dimension m×m. All columns that do not belong to this basis form the
matrix N , whose dimension is m × (n − m). Consequently, we reorder the variables x in the same way into
vectors xB and xN and their associated costs into vectors cB and cN . With this, we can write the equation
A · x = b as:

B · xB + N · xN = b

and the cost z as:
z = cT

B · xB + cT
N · xN .

We can now express the variables xB by:

xB = B−1 · b−B−1 ·N · xN . (3.7)

The cost z becomes:
z = cT

B · B−1 · b +
(
cT
N − cT

B ·B−1 ·N) · xN . (3.8)

A solution of Eq. (3.7) is found with:

xB = B−1 · b ,

xN = 0 .

Such a solution is called a basic solution; the variables xB are called basic variables. Note that a basic solution
may contain variables with negative values; in this case, it is not a feasible solution of the LP. We refer to a
basic solution x as a basic feasible solution if the inequalities xB ≥ 0 hold.

In our example we have:

xB =

⎛
⎝x1

x2

x3

⎞
⎠ = B−1 · b =

⎛
⎝0 1/13 3/26

0 1/52 2/13

1 19/13 48/13

⎞
⎠ ·

⎛
⎝−35

17
21

⎞
⎠ =

⎛
⎝ 97/26

185/52

876/13

⎞
⎠ ≈

⎛
⎝ 3.73

3.56
67.38

⎞
⎠ ,

which is basic feasible, as xB ≥ 0. The point (3.73, 3.56) with cost z = 141/13 ≈ 10.85, given by this solution,
turns out to be the upper right vertex of the feasible region S in Fig. 3.7. An important fact is that all vertices of
S correspond to basic feasible solutions like this. This fact is used by the simplex algorithm, which is explained
in the next section.

3.5.4 The simplex algorithm

In Sect. 3.5.1 we argued that an optimal solution of an LP can be found in one of the vertices of the convex
polytope that defines the set of feasible solutions. Hence, we proposed to solve an LP by searching through all
vertices. We can now alternatively think of this process as searching for an optimal basis of A. Starting from a
basic feasible solution, the simplex algorithm iteratively exchanges one column of the basis. In each iteration,
a non-basic variable enters the basis and and a basic variable leaves the basis. Geometrically, this pivoting step
means to move along an edge of the feasible region S to an adjacent vertex.

To refer to a single variable, let xu be the value in row u ∈ {0 , 1 , . . . , n} of vector x. We define β(v) such that
xβ(v) corresponds to row v ∈ {0 , 1 , . . . , m} of vector xB. We define μ(w) such that xμ(w) corresponds to row
w ∈ {0 , 1 , . . . , n−m} of vector xN .

36 Chapter 3. Combinatorial Optimization

Assume we try to increase the non-basic variable xμ(j). We can do this, remaining feasible, until one of the
basic variables becomes zero according to Eq. (3.7). At this point, we have found a new basic feasible solution.

In order to formalize this procedure, we introduce the m × (n −m) matrix X , whose values Xi,j express the
amount by which the basic variable xβ(i) decreases, if the non-basic variable xμ(j) increases by one. According
to Eq. (3.7), this is:

X = B−1 ·N . (3.9)

The amount θj by which xμ(j) maximally can be increased is then:

θj = min
{

xβ(i)

Xi,j

∣∣∣ i = 1 . . .m, Xi,j > 0
}

. (3.10)

This means that by setting xμ(j) := θj , one of the basic variables becomes zero and the constraint x ≥ 0 is still
satisfied. In our example we have:

X = B−1 ·N =

⎛
⎝ 1/13 3/26

1/52 2/13

19/13 48/13

⎞
⎠

and

θ1 = min
{

97
26

:
1
13

,
185
52

:
1
52

,
876
13

:
19
13

}
= min

{
97
2

, 185 ,
876
19

}
=

876
19

, (3.11)

θ2 = min
{

97
26

:
3
26

,
185
52

:
2
13

,
876
13

:
48
13

}
= min

{
97
3

,
185
8

,
219
12

}
=

219
12

. (3.12)

Equation (3.11) means that, if we increase the non-basic variable xμ(1) = x4, then xβ(3) = x3 is the first basic
variable that becomes zero. This happens at x4 = 876/19. According to Eq. (3.12), the same basic variable leaves
the basis when choosing xμ(2) = x5 for pivoting; x5 enters the basis at 219/12.

In order to decide which of the non-basic variables to choose for entering the basis, we need to find out whether
our choice will result in a reduction of cost. We introduce the 1 × (n −m) matrix C whose value C1,j is the
derivative of z with respect to the non-basic variables xμ(j). According to Eq. (3.8) this is:

C = cT
N − cT

B · B−1 ·N . (3.13)

For our example we obtain:

C1,1 = 0− 1
13
− 2 · 1

52
= − 3

26
.

C1,2 = 0− 3
26
− 2 · 2

13
= −11

26
.

We can now choose any non-basic variable xμ(j) with C1,j < 0 to enter the basis. This step changes the cost
by θj · C1,j . Let’s first neglect the degenerated case θj = 0, that is, we assume θj > 0. In this case, the pivot
results in a basic feasible solution of less cost. If we iteratively perform such improvements until no variable
with C1,j < 0 exists we obtain the globally optimal solution.

In our example, both possible pivots result in a decrease of cost. We are free to choose one of them. As usual
we choose the non-basic variable with smallest value C1,j , that is the variable xμ(2) = x5. We can now calculate
the new basic feasible solution according to Eq. (3.7). This leads to:

x′
B =

⎛
⎝x1

x2

x5

⎞
⎠ =

⎛
⎝13/8

3/4

73/4

⎞
⎠ =

⎛
⎝1.625

0.75
18.25

⎞
⎠ .

Applying Eq. (3.13) with (x′
N)T = {x3, x4}, we obtain:

C′
1,1 =

11
96

,

C′
1,2 =

5
96

.

3.6. Mixed-integer programming 37

As both values are greater than zero, no pivot will result in reduced cost. Therefore, the solution is optimal.
This can also be seen in Fig. 3.7: The point (1.625, 0.75) is optimal with cost z = 25/8. Note that, choosing the
pivot x4 instead of x5 we would first reach the vertex (0.18, 2.67). However, we would find the optimum after
one more iteration.

To process the iterations efficiently, it is very convenient to maintain the coefficients in Equations (3.7) and (3.8)
in a table: the simplex tableau. For our example, the first basic feasible solution corresponds to the following
tableau:

−141/13 0 0 0 −3/26 −11/26

97/26 1 0 0 1/13 3/26

185/52 0 1 0 1/52 2/13

876/13 0 0 1 19/13 48/13

If we numerate the rows by 0 to 3, row 1 corresponds to the equation 97/26 = x1 + 1/13 · x4 + 3/26 · x5, which
is equivalent to the first row in Eq. (3.7). Rows 2 and 3 of the tableau complete this vector equation. Row 0
contains the matrix C, that is, it can be read as z − 141/13 = −3/26 · x4 − 11/26 · x5 according to Eq. (3.8). If we
wish to pivot on x5, we simply need to multiply the last row with 13/48, yielding 1 in the bottom right cell. We
can multiply the obtained row with 11/26 and add it to the zeroth row. If we do the same with values −3/26 and
−2/13 for the first row and second row, respectively, we obtain the final tableau:

−25/8 0 0 11/96 5/96 0
13/8 1 0 −1/32 1/32 0
3/4 0 1 −1/24 −1/24 0
73/4 0 0 13/48 19/48 1

We directly obtain the solution of the LP in the left column and see that it is optimal as all values in C′ are
greater than zero.

Let’s now consider the case that, for some j, Eq. (3.10) results in θj = 0. This means that one of the basic
variables is smaller than zero. The current basic feasible solution is called degenerate. Though the derivation
of cost C1,j might be smaller zero, choosing the non-basic variable xμ(j) for pivoting does not reduce the cost,
as θj · C1,j = 0. In fact, by accepting a sequence of such steps, we might return to our starting point. The
algorithm will cycle and never terminate. A simple rule for pivoting that guarantees to avoid cycling is given
by Bland (1977): Always choose the non-basic variable xμ(j) with C1,j < 0 in the lowest numbered column of
the tableau to enter the basis. If there is a tie in the calculation of θj , that is, the minimum in Eq. (3.10) is
obtained for more than one basic variable, remove from the basis the basic variable among them that is in the
lowest numbered column.

Finally we need to discuss how to generally find an initial basic feasible solution to start the simplex algorithm.
For this we introduce artificial variables xa ∈ R

m. In a first step the following LP can be solved:

minimize za = eT · xa subject to
[
A I

] · [x
xa

]
= b , x, xa ≥ 0 , x ∈ R

n , xa ∈ R
m , (3.14)

with I being an m×m identity matrix and e being an m-vector of ones. If b ≥ 0 the solution x = 0 , xa = b is
basic feasible, thus we can start to solve this LP with the simplex algorithm. Otherwise we can simply ensure
this condition by multiplying some constraint equations by −1. If we obtain the optimum za = 0 with xa = 0,
we have found a feasible solution for the original LP. We can then use this to start the simplex algorithm again,
this time without the artificial variables. Note that we do not need this two-stage procedure if we obtained the
LP in standard form from an LP in canonical form, since the slack variables always constitute a basic feasible
solution.

3.6 Mixed-integer programming

An integer linear program or simply integer program looks very similar to an LP:

minimize bT · x
subject to A · x ≥ r ,

x ≥ 0 ,

with x ∈ Z
n.

38 Chapter 3. Combinatorial Optimization

s̄
c

x1

x2

S

s∗

Fig. 3.8: A geometric interpretation of an integer linear program.

In contrast to the continuous variables in an LP, the variables in an IP are restricted to integer values. A
graphical interpretation is depicted in Fig. 3.8; the solution s̄ is globally optimal. Though the definitions of IPs
and LPs are very similar, the computational complexity of integer programming is much higher. In fact the
problem of solving IPs is NP-hard. However, a lot more problems can be expressed as IPs. Despite the high
complexity, several general algorithms have been developed for the solution of IPs, which have been found to
be useful for applications. This section explains the ideas behind some of these methods and presents an IP for
MinimumVertexCover. First however we define the term mixed-integer program (MIP) as a combination of
an LP and an IP. It may contain continuous as well as integer variables. Basically, a MIP can be solved with
the same techniques as an IP.

3.6.1 Approaches to solve mixed-integer programs

Most approaches to solve mixed-integer programs can be subsumed by the term implicit enumeration. This
means that all possible solutions are systematically evaluated without explicitly evaluating all of them. Usually
the first step to solve an IP is to solve its LP relaxation. This is obtained from the IP by relaxing the integrality
requirements for the variables, meaning that fractional values are allowed. Like any other LP the obtained
problem can be solved, for example, with the simplex algorithm. Obviously, the optimum of an IP is found
with this approach, if the optimal solution of its LP relaxation is integer. However, this case only occurs for
special problems. Usually, rounding the values of the LP solution does not directly lead to the optimal solution
of the IP, as can be seen in Fig. 3.8. The four integer solutions next to the optimal solution s∗ of the LP are
not even feasible. However, rounding is often used to divide a problem into two subproblems; this procedure is
called branching.

A branching step means to select one variable xi with fractional value x0
i in the solution of the LP relaxation

and to split the original problem into two subproblems, each being defined by addition of one of the constraints
xi ≤ x0

i � and xi ≥ �x0
i �, meaning that the value x0

i is rounded down and up, respectively. Again, the LP
relaxations of both subproblems are solved. The branching procedure continues until each leaf node of the
resulting tree represents an IP whose LP relaxation is either infeasible or has an optimal solution that is integer.
Figure 3.9 illustrates this approach. In our example we obtain two subproblems, each by adding one of the
constraints:

x1 ≤ 1 and (3.15)
x1 ≥ 2 . (3.16)

The branching routine terminates at a finite number of iterations but requires an enormous computational
effort. In order to avoid the tree becoming too large, we can use the fact that the LP relaxation offers a lower
bound for the IP. Suppose that at a certain node of the branching tree, an integer solution with objective value
z0 is found, each tree node with lower bound greater or equal z0 can be killed, which means that the branching

3.6. Mixed-integer programming 39

s̄
c

x1

x2

s∗

(3.15) (3.16)

Fig. 3.9: The optimal solution of the LP relaxation s∗ and
the resulting sub problems when branching at variable x1.

s̄
c

x1

x2

s∗
(3.17)

Fig. 3.10: The MIP after addition of the cut in
Eq. (3.17).

process can be terminated in these nodes. This is simply because the bound guarantees that no solution better
than z0 can be reached when branching at such a node. The term branch-and-bound is used for the general
approach of dividing a problem into subproblems and finding bounds for their costs. Since in the explained
example a bound is found by solution of the LP relaxation, this special version of the approach is often referred
to as LP-based branch-and-bound. The success of this method clearly depends on whether the bounds are tight
or not, which means that the solution of the LP relaxation needs to be a good approximation for the solution
of the IP.

Another approach to solve IPs and MIPs is based on cutting plane algorithms. A cutting plane or simply a cut is
an additional constraint, that is, an inequality, that removes the solution of the LP relaxation from the feasible
region of the IP, but does not exclude any integer solution. An example of a cut is shown in Fig. 3.10. The
general approach of cutting plane algorithms is to iteratively solve the LP relaxation and to add a cut, until the
solution of the LP relaxation satisfies the integrality constraints. In this case, the optimal solution of the MIP
is found. Different methods exist to find cuts; one of the most prominent is the algorithm of Gomory (1958).
We briefly explain this approach for the given example. In Sect. 3.5.4 we obtained the following equation in
the final simplex tableau:

z =
25
8

+
11
96
· x3 +

5
96
· x4.

As x3 and x4 are positive numbers, rounding their coefficients down leads to:

z ≥ 25
8

and so
x1 + 2x2 ≥ 25

8
.

As the variables x1 and x2 are restricted to integer values, the expression on the left side is integer. So, we can
round the right side up, yielding the constraint:

x1 + 2x2 ≥ 4 , (3.17)

which turns out to be the cut in Fig. 3.10. We could find additional cuts by proceeding in a similar way with the
other rows of the simplex tableau. We can also solve the more constrained LP to find more cuts. An important
fact is that we do not need to restart the simplex algorithm for this, though the current solution becomes
infeasible. This is because the new simplex tableau gives a feasible solution to the dual LP, which is closely
related to the primal LP that actually is to be solved. If we continue to solve the dual LP, we will obtain the
optimal solution of the primal LP as well. More information on duality is given by Papadimitriou & Steiglitz
(1998). Cutting plane algorithms usually have a slow convergence. Often a more efficient approach is to combine
branch-and-bound and cutting plane algorithms in a method termed branch-and-cut (Mitchell, 2002). Adding
cuts, the LP relaxation becomes tighter, thus applying branch-and-bound on the more constrained problem can

40 Chapter 3. Combinatorial Optimization

result in a significantly smaller branching tree. Currently, this method is implemented in the most powerful
general purpose optimizers such as the software CPLEX (ILOG, 2008).

As the solution of a MIP is generally NP-hard, existing solvers have an exponential-time performance. Thus,
problems that allow better solutions should not be approached by (mixed-)integer programming. Also there
are often several alternatives to express the same problem as a mathematical program; choosing among them
can result in significant differences in terms of performance. Generally the number of variables and constraints
should be kept small. However, the tightness of the LP relaxation is often considered as a more important
criterion.

3.6.2 Modeling with decision variables: an IP for MINIMUMVERTEXCOVER

In order to demonstrate how easily combinatorial problems can be modeled as integer programs, this section
presents a simple IP for the problem MinimumVertexCover from Sect. 3.1.3. In fact, we only need binary
variables or decision variables to model the problem. This special case of an IP appears very often and it is
sometimes referred to as a binary program. We can express a binary variable simply by an integer variable x ∈ Z

with constraints x ≥ 0 and x ≤ 1. In our example, the following variables express the solution:

xv ∈ {0, 1} , with xv = 1 if and only if node v ∈ V is included in the vertex cover .

In our land surveying application, xv = 1 would denote a visit to station v. In order to express our aim for a
minimum number of selected vertices, we need to count the number of variables that are set to one. This is
done by summing the values of all variables. The objective becomes:

minimize
∑
v∈V

xv. (3.18)

It remains to ensure that the selected vertices indeed define a vertex cover of G. For this, we need constraints
that ensure one selected endpoint for each edge:

xu + xv ≥ 1 for all {u, v} ∈ E. (3.19)

This avoids that both variables, xu and xv, are set to 0. The IP formulations that appear in Chapter 7 are
based on the same principles.

3.7 Local search

Local search is often used to attack NP-hard optimization problems. It is widely applied as a heuristic method,
that is, there is no guarantee of performance. Nevertheless, there are well known facts about the performance of
certain local search methods. For example, it is known that simulated annealing converges to the set of optimal
solutions if certain conditions are satisfied. This section briefly reviews theoretical aspects of local search in
general (Sect. 3.7.1) and simulated annealing in particular (Sect. 3.7.2). Section 3.7.3 discusses the handling of
hard constraints in local search methods.

3.7.1 The neighborhood function and iterative improvement

A fundamental concept of local search is the neighborhood function N : S → 2S . The set N(s) ⊆ S of
a solution s ∈ S is called the neighborhood of s. For example, the neighborhood of a feasible solution of
MinimumVertexCover can be defined as the set of feasible solutions that can be obtained by adding or
removing a single node.

Similar to our definition of a globally optimal solution in Sect. 3.1, a solution s∗ ∈ S is called locally optimal
with respect to N , if and only if f(s∗) ≤ f(s) for all s ∈ N(s∗). The neighborhood graph is a directed graph
whose node set is defined by S and whose arc set contains an arc (s1, s2) for a pair s1, s2 ∈ S if and only
if s2 ∈ N(s1). Algorithm 2 defines a simple iterative improvement procedure that yields a local optimum.
The algorithm requires an initial feasible solution, which can even be NP-hard to find. Though a trivial start

3.7. Local search 41

Algorithm 2 Iterative improvement.

1: s← some initial solution
2: loop
3: s′ ← s̄ ∈ N(s) such that f(s̄) is minimal
4: if f(s′) < f(s) then s← s′

5: else return s
6: end if
7: end loop

solution often exists, there is no general answer to this problem. The rule in line 3 to select a solution from
the neighborhood is known as best improvement. Also the procedure is often referred to as steepest-ascent hill
climbing, though this term rather implies a maximization problem.

Usually, the neighborhood function is not given with the problem statement. If we wish to develop a local
search method for a problem, it is our task to find an appropriate neighborhood function. Sometimes an exact
neighborhood can be defined, which means that each local optimum is globally optimal as well. This special
case applies to the simplex algorithm, as it finds the global optimum by iteratively moving to a more profitable
adjacent vertex. The neighborhood N(s) = S is exact for all problems. However, finding a local optimum would
have the same complexity as the original problem. As an exact neighborhood for an NP-hard problem implies
an exponential running time of local search, we give up the claim for global optimality. In this case, designing
a neighborhood function is mainly based on practical considerations. Generally, a trade-off needs to be found:
A large neighborhood may be hard to explore, but a too small neighborhood can produce many poor local
optima. At least we should require that the neighborhood size is polynomial in the size of the problem instance.
Otherwise it may require exponential time to attest that a solution is locally optimal. Furthermore, a good
solution (preferably the optimal solution) should be reachable from any initial solution via the neighborhood
graph. This condition is ensured, if the neighborhood graph is strongly connected, meaning that each two
solutions can be reached from each other. The maximal distance on the graph between two nodes (the diameter
of the graph) should be small.

3.7.2 Simulated annealing

The problem with iterative improvement is that we can get trapped in poor local optima. Several meta-heuristics
exist, which use different ideas to escape them. An overview is given by Reeves (1993). Often these methods
are inspired by phenomena in physics or biology. A typical example is simulated annealing, which simulates
a controlled cooling process that is applied in metallurgy to minimize the number of defects in a material
(Kirkpatrick et al. (1983)). Simulated annealing is a randomized algorithm, which extends Algorithm 2. This
is specified by Algorithm 3.

Algorithm 3 Simulated annealing algorithm according to Michiels et al. (2007).

1: s← some initial solution
2: k ← 1
3: repeat
4: generate an s′ ∈ N(s)
5: if f(s′) ≤ f(s) then s← s′

6: else if exp
(

f(s)−f(s′)
Tk

)
> random[0, 1) then s← s′

7: end if
8: k← k + 1
9: until stop criterion

Instead of selecting the best neighbor, in each iteration a neighbor is selected at random (line 4). Normally
the selection is made according to an equal distribution. The generated neighbor is generally accepted if this

42 Chapter 3. Combinatorial Optimization

improves the solution (line 5), but even if it means an increase of cost, it is accepted with a certain probability
(line 6). The parameter Tk defines the temperature at iteration k. For large values of Tk the probability of
accepting a more expensive neighbor is relatively high. The temperature Tk is decreased during the simulation,
for example by defining:

Tk = αk · c0 , (3.20)

with constants α ∈ (0, 1) and c0 ∈ R
+. If Tk approaches zero, only improvements are accepted.

As explained by Michiels et al. (2007), a run of simulated annealing can mathematically be modeled as a Markov
chain. Given that i ∈ S is the solution in step k ∈ N, we can express the probability that the neighbor j ∈ N(i)
is generated and the probability that this move is accepted. Consequently, if we are given an initial solution,
we can express the probability that the algorithm arrives in a given step at a certain solution. This idea has led
to a proof that, under certain conditions, simulated annealing converges to the set of globally optimal solutions
S∗. Formally this can be expressed by:

lim
k→∞

P{X(k) ∈ S∗} = 1 , (3.21)

with X(k) being the solution in step k. Four conditions suffice to ensure this result (Michiels et al., 2007):

(S1) The neighborhood graph must be finite.
(S2) The neighborhood graph must be strongly connected.
(S3) The neighborhood graph must be symmetric, meaning that s′ ∈ N(s) implies s ∈ N(s′).
(S4) The control parameter Tk needs to be cooled down slowly enough.

A formal definition of the last requirement is given by Hajek (1988).

Of course, explicitly enumerating all solutions to find the global optimum would be still better than an infinite
run of simulated annealing. However, Michiels et al. (2007) note: “The relevance of the convergence result
for simulated annealing is more subtle, however. It states that, when moving through a neighborhood graph,
simulated annealing searches its way to the set of globally optimal solutions”. It is therefore believed that the
above requirements should be respected when designing a neighborhood function.

3.7.3 Handling hard constraints

In many optimization problems the set of feasible solutions is implicitly given with a set of (hard) constraints.
The handling of hard constraints by meta-heuristics is a difficult problem. Michalewicz & Fogel (2004, Chapter 9)
discuss this problem in detail for evolutionary algorithms. Most of the considerations can be generalized, that
is, they also apply to simulated annealing and other local search methods.

Figure 3.11(a) displays the neighborhood graph for an instance I = (S, f) of a combinatorial optimization
problem. The black nodes in Fig. 3.11(a) form the set of feasible solutions S. Arcs display the neighborhood
function N that was defined in order to approach the problem by local search. Apparently, the graph is not
connected: given the start solution s0 we cannot reach the globally optimal solution s∗ via a feasible path. We
may end up with a poor locally optimal solution, for example, s1.

s∗

s0

s1

(a) original problem

s∗

s0

s1

s2

(b) relaxed problem

Fig. 3.11: Solutions (nodes) and their neighborhoods (arcs directed to neighbors) for an instance of a combinatorial
optimization problem. Originally, the neighborhood graph is not connected (a). Relaxing a constraint the neighborhood
graph becomes connected (b). Now the optimal solution s∗ can be reached from s0.

3.7. Local search 43

Finding a neighborhood that connects all feasible solutions can be difficult. Therefore, a hard constraint often
needs to be relaxed, which means that additional solutions are permitted. Relaxing a certain constraint in the
example of Fig. 3.11 yields the new solution set S′ with S′ ⊇ S. The two additional solutions that are in S′ but
not in S are displayed as gray nodes in Fig. 3.11(b). We introduce the cost function f ′ and the neighborhood
function N ′ for the relaxed problem. Normally, the definitions of f and N are simply generalized to define the
functions f ′ and N ′, that is, f ′(s) = f(s) and N ′(s) ⊇ N(s) for s ∈ S. We call (S′, f ′) the instance of the relaxed
problem. Now, in the instance of the relaxed problem, there is a path from s0 to s∗, that is, (s0 , s1 , s2 , s∗).
However, though s2 is not a feasible solution of I, it could be locally or even globally optimal in S′ according
to the cost function f ′. In conclusion: if we relax a hard constraint, we run the risk of generating infeasible
solutions. Else we run the risk to end up with poor local optima. There are two approaches to this dilemma:

1. We can define the cost function f ′ such that infeasible solutions (solutions in S′ \ S) are penalized, thus
it becomes more likely to end up with a feasible solution in S.

2. We can define a ‘repair’ procedure that, for any solution in S′ \ S, yields a feasible solution in S.

In both approaches, we need to make crucial design decisions. Which penalty should we charge for an infeasible
candidate? How should we repair an infeasible candidate, in order to obtain a good feasible solution? When
should we invoke the repair procedure, for example, each time an infeasible candidate becomes selected or only if
our final solution is infeasible? Abramson et al. (1996) discuss these design decisions for a simulated annealing
approach to the general problem of solving binary programs. However, though the authors emphasize the
generality of their approach, simulated annealing is usually more efficient when tailored to a specific problem.

Let’s discuss these design issues in the context of generalization. In this application, local search methods are
usually applied to iteratively improve the input map (Ware & Jones, 1998). However, as database specifications
often define hard size constraints for the target scale, the input map is not a feasible solution. Hence, we can
only start our local search method with the input map, if we relax these hard constraints. Additional costs or
penalties need to be charged instead, for example, if a region is smaller than its required size. We can put high
weights on such soft constraints, but this approach does not guarantee compliance with database specifications.
Alternatively, we could apply a repair procedure to the input map that yields a feasible initial solution. For
example, an empty map or a map that only contains one big area of a single class will usually comply with
database specifications. The disadvantage is that such a solution will be poor in terms of quality, that is, the
cost for the solution would be extremely high. Consequently, our search will require many iterations to find a
good result. Furthermore, even if we find a feasible start, it can be impossible to reach good feasible solutions:
again, if we reject infeasible candidates during the search, there may be no feasible path to the optimal solution.

These considerations become apparent if we take a look at the label placement problem in Fig. 3.12. In the
input map (Fig. 3.12(a)), each label clearly corresponds to a location in the road network: a user will certainly
understand that all facilities are on the left road, close to the road junction. If we generalize this map to a smaller
scale, we aim to preserve clear correspondences between labels and the actual facility locations. Furthermore,
for the sake of clarity, we do not allow intersections of labels and roads. In terms of constraints, we could define
a soft constraint (“correspondences between labels and locations need to be clear”) and a hard constraint (“a
label and a road must not intersect”).

����

(a) an input map of large scale

����

(b) an initial solution for a smaller scale

�� ��

(c) a potentially optimal solution

Fig. 3.12: Cartographic label placement in map generalization is often approached by iterative improvement. Labels
and roads must not intersect. Let’s assume that we somehow find the initial solution in (b) and that the neighborhood
is defined by small incremental label shifts, which, for one label, are illustrated by gray arrows. With this approach, the
result (c) cannot be obtained when rejecting infeasible candidates during the simulation. This is because some labels
need to cross a road in order to reach their optimal position.

44 Chapter 3. Combinatorial Optimization

Let’s assume that we somehow found a cost function f that expresses the aim for clear correspondences, that
is, the degree of non-satisfaction of the soft constraint. Furthermore, we have a repair procedure that yields
a feasible start solution s0 (Fig. 3.12(b)). In this solution, the correspondences of labels and locations are not
clear: is the gas station on the left road or on the right road? Consequently, the cost for this feasible solution
would be high. We can now try to iteratively improve the map. For example, we can pick a label at random
and apply a small shift to a new location. The neighborhood N(s0) contains all maps that can be produced by
applying such a move to the current map s0. For a similar problem, Monnot et al. (2007) apply a neighborhood
structure, which is also based on small incremental shifts of labels.

The map in Fig. 3.12(c) is a good solution, supposably the optimal solution s∗ of the problem: the correspon-
dences are clear. However, with our definition of the neighborhood, we cannot reach this solution without
accepting infeasible candidates during our search. This is because two labels need to cross a road, in order to
reach their optimal position. Again, this raises several questions. How should we penalize a map with inter-
secting labels and roads? How and when should we repair a map with intersecting labels and roads? As there
are no general answers, the idea of a perfect general-purpose heuristic for map generalization is an illusion.

3.8 Concluding remarks

Mixed-integer programming and simulated annealing are two very different approaches to combinatorial opti-
mization problems. As this thesis presents the application of both approaches to aggregation in map general-
ization, we recap their main differences.

Simulated-annealing is an iterative meta-heuristic. Though it theoretically converges to the set of globally
optimal solutions, it only offers local optima in practice. A general drawback of simulated annealing is the
tuning of parameters that are not inherent to the problem (we call such parameters “tuning parameters”). For
example, a cartographer is probably able to specify parameters expressing his preferences for generalization,
but setting up an annealing schedule and finding an appropriate design for the neighborhood function requires
much experimentation. In contrast to simulated annealing, mathematical programming does not require tuning
parameters. Furthermore, it is an exact approach, that is, it offers the globally optimal solution. Though we
cannot sustain this statement under time constraints (solving a MIP is generally NP-hard), we can summarize
the general advantages of mixed-integer programming compared to simulated annealing as follows:

+ Optimally solving small problem instances by mixed-integer programming allows the performance of
heuristics to be assessed.

+ Mixed-integer programming does not require tuning parameters, that is, parameters that are not inherent
to the problem.

+ Mixed-integer programming allows linear constraint equations and inequalities to be introduced. In con-
trast, simulated annealing often requires hard constraints to be relaxed, in order to produce solutions
sufficiently close to the optimum.

+ The approach by mathematical programming is deterministic. Randomized algorithms like simulated
annealing are not. Using a pseudo-random number generator, each time with the same initiation, would
ease this problem. However, a reproduction of experimental results is still hard for other researchers.

+ Mixed-integer programming allows existing software to be applied.

On the other hand, the mathematical programming approach has a severe limitation:

− The possibility of expressing constraints and objectives is limited, often restricted to linear expressions.

We will see in Sect. 7.2 that this limitation especially affects the possibility of expressing the compactness of a
shape.

45

Chapter 4

An Incremental Aggregation Algorithm
for Efficient Updating

This chapter presents an incremental version of Algorithm 1 (see page 23), that is, the region-growing procedure
for aggregation of areas in a planar subdivision. It summarizes the results of three publications (Haunert &
Sester, 2005; Haunert, 2006; Haunert et al., 2006). The presented method yields the same result as Algorithm 1,
but allows updates to be efficiently propagated. This means that, if the large-scale map changes and we
previously aggregated certain areas of the map, we do not need to re-generalize the whole map. Instead, we can
retain most parts of the previously derived small-scale map without changes. The method copes with a general
definition of compatibility of two adjacent areas, which subsumes existing definitions based on classes, sizes and
lengths of common boundaries.

In Sect. 2.7.2 we argued that the region-growing procedure does not allow high-quality results to be produced.
Nevertheless, due to the popularity and frequent application of the algorithm, the incremental version is an
important achievement. In some applications the quality of the generalized map is not the primary concern.
For example, if we want to support a method for progressive data submission, we might favor the algorithm, as
it defines a gradual reduction of detail. The incremental approach can be used to update data structures that
are designed for this problem, for example, the tGAP data structure of van Oosterom (2005).

Later in this thesis, we will concentrate on the problem of how to create aggregation results of high quality. The
approach by combinatorial optimization that will be developed is fundamentally different to the iterative region-
growing procedure. It is important not to extend the results of this chapter to the combinatorial optimization
approach: applying the incremental algorithm does not generally yield the same result as re-generalizing the
updated map by optimization. We will discuss in Sect. 7.6 how to also deal with updates in the optimization
approach.

The chapter first explains requirements that need to be satisfied to allow for the developed incremental approach
(Sect. 4.1). Section 4.2 introduces the new algorithm. Section 4.3 presents results that were obtained with this
method, applying a definition of compatibility according to Podrenek (2002). Finally, Sect. 4.4 concludes with
general remarks on incremental generalization.

4.1 Requirements for an incremental approach

To develop an incremental version of Algorithm 1, we need to insist on several basic requirements. This includes
the following specifications of the ‘smallest area’ and the ‘most compatible neighbor’:

• The ‘smallest area’ is defined according to a strict total order ‘<’ on the set of input areas and their
potential aggregates. This implies that, given any two areas a and b, we can unambiguously decide
whether a < b or b < a.

• The compatibility of area a to its neighbors N(a) is given with a strict total order ‘≺a’ on N(a). This
means that, given two neighbors b, c ∈ N(a), we can unambiguously decide whether b is more compatible
with a than c. This case can be expressed by c ≺a b.

46 Chapter 4. An Incremental Aggregation Algorithm for Efficient Updating

Obviously, without ensuring that the ‘smallest area’ and the ‘most compatible neighbor’ are well-defined, we
cannot even ensure that Algorithm 1 produces the same results when applied twice to the same input map. For
example, if we select the areas according to their sizes, we need to consider the unlikely case that two areas have
exactly the same size. For this purpose, it is useful to define an ID for each area. If we cannot decide according
to the size which area to select first, we can simply select the one with the smaller ID. In any case, the orders
≺a and < that are applied by Algorithm 1 need to be known. The incremental method uses the same criteria
to select and merge objects.

In order to ensure that an update has a limited effect on the target dataset, we add two requirements:

• If we change another area c, this must not influence whether a < b or b < a.

• If we change another area d, this must not influence whether b ≺a c or c ≺a b.

If we define how to resolve ambiguous cases, then our model allows different methods to be subsumed, for
example, the method of van Oosterom (1995) who proposes to use an importance function and a collapse function
that yields local compatibility measures. Selecting a neighbor according to class similarities or boundary lengths
as proposed by Cheng & Li (2006) also satisfies the requirements.

However, we can imagine a setting that does not satisfy the requirements: Let’s assume that we defined that an
area is preferably merged with the most frequent class in the dataset. If we change the class of area d, the new
class may globally become the most frequent one. This can imply that, instead of c, area b becomes the most
compatible neighbor of a. In other words, b ≺a c changes to c ≺a b, which does not satisfy the last requirement.
Criteria for iterative merging that are based on a global analysis of the dataset are proposed by van Smaalen
(2003). Obviously, under such conditions, it would be extremely difficult to define an incremental method that
offers the same result as a complete processing of the dataset. However, if the compatibility is defined according
to rules that depend on global properties of the dataset, it would be reasonable to update the rules only after
large changes. If we do not change the rules that define the compatibility and if the compatibility only depends
on local properties, then we can apply the incremental approach.

4.2 An incremental aggregation algorithm

Let’s assume that we are given two datasets: a planar subdivision of areas at large scale (dataset d1) and a
generalized planar subdivision (dataset d2) that was obtained by applying Algorithm 1 to d1, see Fig. 4.1(a).
In each iteration, the area with minimum size was selected and merged with its most compatible neighbor.
If we observe a change in the physical world we first update d1, which yields dataset d∗1. Generally, this can
include insertions and deletions of objects as well as changes of geometries and classes. In any case we want to
propagate the updates to the smaller scale. We could apply Algorithm 1 again to the whole large scale map,
which yields the updated generalized dataset d∗2 in Fig. 4.1(b). However, we should avoid this approach if we
wish to keep the processing time short. Presumably, the influence of the update is restricted to a certain region.
Therefore, we can define a more efficient, incremental version of Algorithm 1.

In order to do so, we define two regions of influence (see Fig. 4.2):

• The interior region R1 is the union of areas in d2 that have an outdated component in d1, for example,
in the more recent dataset d∗1, a component’s class was changed.

• The boundary region R2 is the union of areas in d2 that share a boundary with the interior region but do
not belong to the interior region.

Algorithm 4 defines the incremental approach. Let’s first consider the case that the lines (7)–(21) are ignored.
In this case, the algorithm performs exactly the same steps as Algorithm 1 when applied to the areas in the
region R1∪R2. We now explain that this approach does not guarantee the same result as a complete processing.

Applying Algorithm 1 only to R1 ∪R2 while keeping the rest of the map unchanged, we can obtain results that
differ from the result of a complete processing. For example, area d in Fig. 4.1(b) is not contained in R1 ∪R2;
nevertheless, it is influenced by the update: c and d are merged. This, however, is only possible, as an area

4.2. An incremental aggregation algorithm 47

d1

d2

(a) two datasets of different scales before update: dataset d2 was derived with Algo-
rithm 1 from dataset d1

ba dc e
d∗
1

d∗
2

(b) two areas changed (marked with X), which yields the updated input map d∗1;
applying Algorithm 1 to the complete dataset d∗1 yields d∗2

Fig. 4.1: Influence of an update to the result of Algorithm 1. The bold lines define trees, which reflect how the areas
are merged. Due to the update of area a, area c is no longer the most compatible neighbor of b in dataset d∗

1. Hence, b
is merged with a and not with c. As a consequence, c does not reach the required size for the target scale and needs to
be merged with its right neighbor, that is, area d.

R1R2 R2

d∗
1

d2

Fig. 4.2: Definition of influence regions R1 (interior region) and R2 (boundary region) in Algorithm 4. Both regions
are shown in the dataset d∗

1 (bottom) and the dataset d2 (top).

Algorithm 4 Iterative aggregation in case of update (incremental version of Algorithm 1)

1: R1 ← union of areas in d2 whose components have changed //Interior region
2: R2 ← union of areas in d2 that are adjacent to R1 but not contained in R1 //Boundary region

3: u← smallest area of d∗1 in region R1 ∪R2 below threshold for target scale
4: while u is not Null do
5: v ← most compatible neighbor of u in R1 ∪R2

6: merge u with v

7: if (u in R1 and v in R2) or (u in R2 and v in R1) then //Separation of R1 and R2 violated
8: if u in R2 then
9: w← area in dataset d2 containing u

10: else
11: w← area in dataset d2 containing v
12: end if
13: R3 ← union of neighbors of w in d2 that are not contained in R1 ∪R2

14: t← smallest area of d∗1 in R3 below threshold for target scale
15: while t is not Null and t < u do
16: merge t with most compatible neighbor in R3

17: t← smallest area of d∗1 in region R3 below threshold for target scale
18: end while
19: R1 ← R1 ∪ {w} //Expand interior region
20: R2 ← (R2 \ {w}) ∪R3 //Expand boundary region
21: end if

22: u← smallest area of d∗1 in region R1 ∪R2 below threshold for target scale
23: end while

48 Chapter 4. An Incremental Aggregation Algorithm for Efficient Updating

R1R2 R2

line 6

line 6

line 16

line 6

line 6

line 6

line 16

line 16

data set d∗2
(updated part)

data sets:
d∗1 (thin lines),
d2 (bold lines)ba

Fig. 4.3: Different steps of Algorithm 4 (from bottom to top). Each merge is labeled with the line number in the
algorithm that defines the merge. The algorithm starts to aggregate areas of dataset d∗

1 in the same way as Algorithm 1.
However, instead of considering all areas, only the areas in the regions R1 and R2 are considered. This restriction is
valid, until an area from R1 is merged with an area of R2. In the second step of the example, area b (contained in R2) is
merged with area a (contained in R1). Consequently, the regions need to be expanded. The result equals the result of
Algorithm 1, but only a subset of areas is evaluated.

from R1 was earlier merged with an area from R2 (b was merged with a). In other words, the update in the
interior region R1 first needs to influence the merges in the boundary region R2 before it can affect how the
areas in the exterior of R1 ∪ R2 are merged. Hence, we need to expand the regions, whenever we observe that
an area from R1 is merged with an area from R2.

The lines (7)–(21) handle this case, that is, a merge violates the separation of R1 and R2. We can say with
certainty that, before this merge happens, all areas outside of R1∪R2 are merged in the same way as before the
update. This is assured by our requirements in Sect. 4.1: a change of an area can influence how its neighbors
are merged. Other areas can only become affected if their neighbors were affected earlier.

If we observe that a merge of two areas u and v violates the separation of R1 and R2, we cannot guarantee
anymore that the areas outside of R1 ∪ R2 are merged in the same way as before the update. To handle this
case, we first select the composite area w in region R2 that was affected by this merge (lines (8)–(12)). We
will need to expand the region R1 to w and the region R2 to the neighbors of w, which define the region R3

(line (13)). Before we continue to merge the areas in R1 ∪R2, we need to make sure that the areas in the added
region satisfy the size threshold for the current aggregation level. This means, we need to catch up with merges
in R3 that, when applying Algorithm 1, would happen earlier than the merge of u and v. This is performed in
an interior loop (lines (15)–(18)). Figure 4.3 illustrates this process with an example. We needed to expand the
regions R1 and R2 two times. However, we still needed to process only a part of the whole dataset.

Obviously, we can construct examples with small updates that imply large changes of the generalized map.
In theory, Algorithm 4 can require the same computational effort as Algorithm 1, that is, the final extent of
the region R1 can cover the whole dataset. Generally, there are O(n) merges to perform, with n being the
number of areas in the input. In each step, the most compatible neighbor of a selected area needs to be found,
which takes O(n) time, if the neighbors are explicitly enumerated. Hence, both algorithms require O(n2) time.
Nevertheless, in practice the set of influenced areas is hopefully small if we only apply small updates.

Finally, we explain a small improvement of Algorithm 4 that can be applied if the history of merges is stored in
a database. More precisely, if the tree in Fig. 4.1(a) is explicitly given. In this case, we can replace the interior
loop (lines (15)–(18)) with a select statement that returns the areas in the added region R3 at the current
level of aggregation. For example, this is useful for efficiently updating the tGAP structure that is used for
progressive submission of vector data.

4.3. Experiments with the incremental aggregation method 49

4.3 Experiments with the incremental aggregation method

We applied the iterative algorithms for area aggregation to an existing dataset of the ATKIS DLM 50. We defined
the importance of an area according to its size and applied size thresholds according to existing specifications
of the ATKIS DLM 250 (AdV, 2003). In this experiment, we defined the compatibility of neighbors based on
classes, using a priority list for class changes; this approach was proposed by Podrenek (2002). The priority list
for the class ‘open forest’ defines the following rules:

• An open forest area is preferably merged with another open forest area.

• If there is no such neighbor, then it is merged with a forest area.

• If there is neither an adjacent open forest area nor an adjacent forest area, then it is merged with a
grassland area (and so on).

• In the case that there are several neighbors of the most compatible class, the selected area is merged with
the largest among them.

Remaining ambiguities are resolved by selecting the area with the smallest ID. However, it is very unlikely
that there are two areas of exactly the same size. We do not further discuss this set-up in detail, as the next
chapter introduces a new approach that applies a global measure of semantic accuracy instead of a priority list
for merges. At this point, it is sufficient to see that the approach of Podrenek (2002) allows our incremental
method to be applied: the priority list defines the order ≺a.

Figure 4.4 shows a sample that was processed with the developed method. To find this illustrative example we
tried to achieve a maximum impact in the target scale with a small change in the source dataset. Figure 4.4(a)
shows the sequence of merges that are applied by Algorithm 1, which yields the result in Fig. 4.4(b). The same
is shown for the dataset after adding a hypothetical update (Figures 4.4(c) and 4.4(d)). In this example, a small
grassland area changed to open forest. Consequently, before and after update, the same area is merged with
different neighbors (step 2). Merging the area to a forest in the updated map implies that the forest to its right
side gets a neighbor of the same class. Hence, also this area is handled differently (step 3). In the fourth step
of both examples, the same forest area is merged to different neighbors. In both cases, the largest neighbor of
class ‘farmland’ was chosen. The example shows that a small change in the input map can indeed imply large
changes in the result: only changing the class of a small area caused four composite regions to change their
shapes. However, changes of similar extent did usually not influence more than two composite areas.

3
1

2

4

(a) dataset d1: ATKIS DLM
50 before update

(b) dataset d2: result of Algo-
rithm 1 when applied to d1

3

1

2

4

(c) dataset d∗1: ATKIS DLM
50 after update

(d) dataset d∗2: result of Algo-
rithm 1 when applied to d∗1

Fig. 4.4: Influence of an update to the result of Algorithm 1. A grassland area in d1 (bold outline) changed to open
forest in d∗

1. The blue arrows display merges that are applied by Algorithm 1 in increasing order of numbers (not all
merges shown). The result satisfies given size thresholds for the ATKIS DLM 250.

50 Chapter 4. An Incremental Aggregation Algorithm for Efficient Updating

The significance of the incremental algorithm becomes apparent with Fig. 4.5, which shows a dataset that
corresponds to a sheet of the German topographic map at scale 1:50 000. Figure 4.5(a) shows the input data set
(ATKIS DLM 50) and Fig. 4.5(b) shows the result of the iterative procedure together with the final influence
regions R1 and R2 that resulted from the update in Fig. 4.4. Together, both regions contain 348 areas of the
ATKIS DLM 50. Only these areas were evaluated by Algorithm 4. The whole dataset contains 5461 areas.
Hence, though the update had a relatively high influence, only 6% of the map needed to be processed. In
particular, the result allows an assumption to be made that processing updates of limited size takes constant
time in practice.

(a) a dataset of the ATKIS DLM 50 that corresponds to the
map sheet “Buchholz in der Nordheide” of the topographic map
at scale 1:50 000; the dataset has an extent of 22 km × 22 km
and contains 5461 areas.

(b) a dataset that was derived with Algorithm 1 from
the ATKIS DLM 50, applying specifications of the
ATKIS DLM 250; the update in Fig. 4.4 is propagated with
Algorithm 4, yielding the influence regions R1 (blue hatched)
and R2 (yellow hatched)

Fig. 4.5: A worked example of the incremental area aggregation method (Algorithm 4). Applying the update in Fig. 4.4
to the source map (a) implies that four composite areas change in the target scale (b). The resulting influence regions R1

and R2 are shown at their final extents. The region R1 contains all composite areas that were actually affected by the
update, that is, it contains four areas in the example. The region R2 contains 21 additional composite areas that were
considered as potentially affected. Algorithm 4 only processed the areas in R1 and R2; other areas were not evaluated.

4.4 Concluding remarks

The definition of an incremental version of the iterative area aggregation algorithm is an important achievement.
Since it guarantees the same result as the original algorithm, the result is independent of the order of updates.
Though an update of the large-scale map can imply that the whole small-scale map needs to be changed, we
argued that there is reasonable hope for an influence region of limited extent. In this case, the incremental
algorithm allows the map to be updated without considering the whole dataset. This is of particular importance
if large databases are to be updated, for example, digital landscape models of a national extent. In practice we
can expect a constant-time performance with the incremental method. However, tests with realistic updates
are needed to find out the usual running time of the method, for example, updates that occur when a new road
is built.

An interesting question is whether the proposed approach can be generalized, in order to also develop other
incremental generalization algorithms. Of course, Algorithm 4 is designed only for the aggregation of areas.

4.4. Concluding remarks 51

However, the definition of two zones, that is, an interior region that contains obviously influenced objects and a
boundary region that contains potentially influenced objects could be a useful idea for other problems. Probably,
for other generalization operators, we cannot achieve an incremental method that guarantees the same result
as the global method. However, this requirement could be relaxed: often we would agree with a result that is
of a similar quality to the output of a global method. With this concession, we can imagine several applications
of our two-zone approach.

Let’s consider a displacement operator that aims to satisfy proximity constraints with minimum movements
of objects, for example, the distance between two buildings must exceed a given threshold. If we modify a
set of buildings, other buildings may need to move to satisfy the constraint. Again, these movements can
imply conflicts with other buildings, which might cause the whole map to change. In this case, it is certainly
reasonable to first operate with the set of modified buildings and the buildings in a certain surrounding. As
long as we do not observe an influence to the buildings in this surrounding, we may assume that also other
buildings are not affected. Otherwise, we could simply restart the method with a larger set of buildings. Defining
such an incremental method requires appropriate influence regions to be defined, which depends on the specific
generalization algorithm that is to be applied. In order to define appropriate influence regions we could employ
the partition defined by roads, rivers, and railways, which is proposed by Timpf (1998).

If we require that the result of an incremental method is to be of similar quality to the result of an existing
global method, we need to answer the following question: How can we compare the results of two generalization
methods with respect to their quality? We could answer this question if we had quantitative measures that
express the quality of a generalized dataset. We introduce a quantitative measure of semantic accuracy in the
next chapter. This will be applied as cost function in an optimization approach to find a solution of maximum
quality. However, we could apply the same measure to compare the results that were obtained with different
generalization methods.

52

53

Chapter 5

A Generalization Workflow
Driven by Data Quality

To formalize the requirements of the generalization problem under examination, we discuss the relevant elements
of spatial data quality. We assume that all constraints in generalization are needed to ensure quality. A similar
view was chosen by Jaakkola (1997b,c) to introduce requirements for the generalization of land cover data in
the raster model. However, Jaakkola did not apply optimization techniques in his generalization system. A
summary of this discussion on relevant quality aspects has been published (Haunert & Sester, 2008b). This
chapter explains general notions and quality criteria for the generalization of areas in a planar subdivision and
presents a workflow comprising collapse, aggregation, and line simplification.

5.1 Quality of spatial data

According to Morrison (1995) there are seven elements of spatial data quality: lineage, positional accuracy,
attribute accuracy, completeness, logical consistency, semantic accuracy, and temporal information. Most of
these are affected by map generalization, for example, when applying displacement or simplification algorithms
to lines, their positional accuracy is reduced. Selection of objects affects completeness. Concerning the general-
ization of areas in a planar subdivision, we especially need to consider logical consistency and semantic accuracy.
We will discuss these elements in detail in Sect. 5.2 and Sect. 5.3, respectively. First, however, let’s discuss the
other elements of data quality and possible implications for generalization.

Lineage is meta-information about the history of a dataset, for example, concerning its source and transforma-
tions that have been applied. For map generalization this means that we should provide information about the
algorithms that have been applied and their parameters together with the generalized data. However, this also
has implications on how to generalize. We can conclude that we should favor deterministic approaches, which
allow a dataset to be reproduced, if the set of parameters is known. Otherwise the content of a dataset will be
influenced by chance. The reason for changes between the small-scale map and the large-scale map will be hard
to understand, even if information about the algorithms that have been applied is provided.

Positional accuracy is most often defined by standard deviations of coordinates. Ensuring positional accuracy in
map generalization is an important problem, as coordinates of points can change, for example by displacement.
We can extend positional accuracy to a geometrical accuracy, which also comprises accuracy of angles and
distances. The objective for a minimal standard deviation leads to the optimization approach by least squares
adjustment, which we reviewed in Sect. 2.5.1. We do not approach the displacement of objects, but consider
the simplification of lines, which also affects the positional accuracy. A common approach is to introduce a
maximal allowed error, which means that the old line needs to be within a defined buffer of the generalized line.
This is a hard constraint in the optimization approach of de Berg et al. (1998) for the simplification of lines
that define a planar subdivision. We review and extend this method in Sect. 6.2.

Attribute accuracy can be an important objective for map generalization. When aggregating objects with differ-
ent values for the same quantitative attribute, we probably would like to minimize the mean of the differences or
the mean of the squared differences between the original values and the value for the composite object. Similarly,

54 Chapter 5. A Generalization Workflow Driven by Data Quality

the accuracy of a qualitative attribute could be measured based on semantic distances to the original attribute
values. Section 5.3 explains a measure based on semantic distances between land cover classes. Though this is
seen in the context of semantic accuracy, the accuracy of attributes could be defined in a straightforward way.
An aggregate can be composed of objects that belong to different classes with different attribute definitions.
However, for areas of different land cover classes, we require that an aggregate at least partly corresponds to
a large-scale object of the same class. Otherwise it is questionable whether attribute values for the small-scale
object can reasonably be defined at all.

Completeness could be defined for a data model (to what degree is the reality reflected by the model?) and
for the data itself (is the data complete with respect to the model?). Usually the data model for the target
scale is given in map generalization. However, we need to take care of the completeness of data, for example,
when applying a selection operator. Excerpts from typical data models were shown in Table 2.2 (page 18).
We interpreted the selection criteria as a prohibition to keep small areas in the target scale. Additionally, we
can understand the given thresholds as instruction to keep areas that have sufficient size, meaning that their
classes must not be changed. As we will see in Sect. 7.6.2, the proposed approach allows hard constraints to
be introduced that ensure completeness in this sense. However, the basic approach is to define soft constraints
that hinder the changes of classes. This is discussed in the context of semantic accuracy in Sect. 5.3.

Temporal information is needed to inform users about the currency of the dataset. This element of quality is
related to the updating task from Sect. 2.8, which stated that the currency of all layers in an MRDB should be
the same. If we additionally assume that each object has an individual time stamp that defines the date of its
acquisition, we need to consider how to represent this information in the generalized map. Normally, this does
not have any consequence on how to generalize, but we can define the currency of a composite object simply
according to its most dated component.

5.2 Logical consistency

Kainz (1995) defines logical consistency as follows:

“A spatial dataset is said to be logically consistent when it complies with the structural characteristics of
the selected data model and when it is compatible with the attribute constraints defined for the set.”

We first select an appropriate data model and then discuss the implications for generalization.

5.2.1 Selected data model

A planar subdivision is a suitable and common data model to represent land cover in topographic databases.
This is defined as follows:

• A planar subdivision is an exhaustive partition of the plane into non-overlapping regions.

Though the extent of a spatial dataset is limited, we can define an exterior region to satisfy the requirement of
being exhaustive. The specifications of the German ATKIS datasets allow a few exceptions from the definition
of a planar subdivision. For example, the space between a pair of carriageways is an undefined area. If a pond
lies within a park, the polygons representing both features can intersect. We ignore these exceptions in the
sequence to find a common basis. Generally, we can define a default class to fill up holes and new classes, if
areas of different classes overlap. For example, if areas of classes ‘park’ and ‘lake’ overlap, their intersection is
defined as a new area of class ‘park lake’.

The German ATKIS specifications allow multi-part shapes in special cases. Again we neglect these exceptions
and claim that regions need to be contiguous, which is defined as follows:

• A region is said to be contiguous, if it contains a path between each two interior points.

Figure 5.1 illustrates this definition. Figure 5.1(c) shows a region of two parts that only touch each other in a
common point. Each path between points in different parts intersects the boundary of the region. According
to the definition of containment by Egenhofer (1989), such a path is not contained in the region. Consequently
the region is not contiguous.

5.2. Logical consistency 55

(a) a contiguous region (b) a non-contiguous region (c) a non-contiguous region

Fig. 5.1: Definition of contiguity using a path between two interior points.

In a topographic database each region of the planar subdivision belongs to a single land cover category (or
class). In the following discussion we denote the set of classes by Γ. We assume that this is the same in both the
input map and the output map. In addition to the structural characteristics of the data model, the definition
of Kainz (1995) claims to satisfy attribute constraints. This includes any hard size constraints defined in the
database specifications (recall Table 2.2). We simply define area thresholds θ as a function of the category,
that is θ : Γ → R

+. Note that without the requirement for contiguity, the definition of a minimal object size
becomes almost meaningless. An object could have sufficient size even in the case that each component part is
smaller than the allowed threshold. These parts could be scattered over the whole dataset; of course, this is not
intended by generalization.

Finally, we need to discuss two different types of maps with areas of different categories: categorical coverages
and choropleth maps. Their distinction can be summarized as follows (Frank et al., 1997):

• A categorical coverage is a planar subdivision solely defined by categories of a theme over the plane. A
category is given for each point, then contiguous regions are defined to be as large as possible under the
restriction that each region contains points of only one category.
• A choropleth map is a planar subdivision whose regions are mapped on the categories of a theme. The

regions are given mapping units, for example, political districts. These are assigned to categories.

Galanda (2003) points out that categorical coverages are commonly used in topographic databases for the
representation of land cover classes. However, if we inspect the sample in Fig. 1.1, we observe adjacent areas
having the same class. By definition, these do not exist in a categorical coverage. The additional boundaries
are useful, as they represent entities in the physical world, for example, roads. Consequently, each area is a
reasonably defined object that has a relatively compact shape. Similar conditions were found in a digital dataset
of OS MasterMap from Great Britain: according to Revell (2007) regions of the same class are not merged if
they are separated by a river or a fence. In order not to loose the information given by additional boundaries,
we do not insist on the strict definition of a categorical coverage.

The developed methods were not tested for a dataset that satisfies the strict definition of a categorical coverage.
However, if the input meets this definition, we probably can produce conditions that are similar to our setting by
splitting polygons at roads. As we can apply the developed method for both kinds of maps, that is, categorical
coverages and choropleth maps, we only assume that the input dataset is a planar subdivision, each of its regions
belonging to a single class. The same characteristic is required for the target dataset, in which each region must
satisfy the size threshold defined for its class.

5.2.2 Implications for generalization

When generalizing topographic information in the defined data model we need to take care that the subdivision
remains exhaustive. This implies that we cannot apply a selection operator without refilling the free space that
is left by eliminated objects. Secondly, we need to ensure that the regions of the subdivision do not intersect.
This problem occurs when applying standard line simplification routines, for example the algorithm of Douglas
& Peucker (1973). Figure 5.2 shows an example with resulting intersections. More advanced line simplification
methods exist, which ensure that no intersections occur in the generalized map. We review and extend the
approach of de Berg et al. (1998) in Sect. 6.2.

With the requirement for simplicity of the subdivision, it is also clear that a certain area aggregation approach
does not work: we cannot solve the problem independently for objects of different classes. For example, if we
independently group forest areas and settlement areas, we will end up with intersections between forests and
settlements. Therefore, the areas in the subdivision need to be handled in a more comprehensive approach.

56 Chapter 5. A Generalization Workflow Driven by Data Quality

(a) original map (b) map after line simplification

Fig. 5.2: Line simplification violating simplicity of the subdivision.

As we will see in Sect. 7.4, it is not trivial to express the requirement for contiguous regions in an optimization
approach. A graph-theoretic, general solution to this problem is presented. However, a stricter definition of
contiguity is introduced and applied to obtain an acceptable performance.

To satisfy the hard size constraints, we could apply existing methods, for example Algorithm 1, which iteratively
merges areas. Alternatively, we could apply a collapse routine that divides an area among its neighbors, for
example the method proposed by Bader & Weibel (1997). A similar method is presented in Sect. 6.1. Though
these methods produce logically consistent results, we should define some additional aims for generalization
before deciding on a certain solution. More precisely, the requirement for logical consistency defines hard
constraints, but the formalization of soft constraints is still needed to approach the problem by optimization.
As discussed in Sect. 3.7.3, the satisfaction of hard constraints is problematic with most optimization approaches
in map generalization. This, however, is essential to produce logically consistent results.

5.3 Semantic accuracy

Semantic accuracy is an essential element of quality. It ensures that the meaning and function of geographic
objects is correctly reflected in the dataset. Salgé (1995) gives the following definition:

“The purpose of Semantic Accuracy is to describe the semantic distance between geographical objects and
the perceived reality.”

This definition is very general, but we can take the idea of a semantic distance literally: we introduce a distance
function to measure semantic changes caused by generalization. This approach is similar to those of Bard (2004)
and Frank & Ester (2006) who generally propose measures to evaluate the similarity of the input map and the
output map. In other words, the input map is considered to be a sufficiently good reference of the “perceived
reality”. As semantics of objects are mainly given by class memberships, we introduce a semantic distance
between classes in Sect. 5.3.1. Additionally we consider the shapes of objects in Sect. 5.3.2.

5.3.1 Semantic distance between classes

We use ‘semantic distance’ synonymously with ‘semantic dissimilarity’. Consequently, we could derive semantic
distances from semantic similarity measures, which have been proposed by different authors. Yaolin et al.
(2002) introduce a symmetric semantic similarity matrix to compare object types of areas before and after
reclassification in generalization. Rodŕıguez & Egenhofer (2004) propose an asymmetric similarity measure for
classes of geographic objects. In both approaches, semantic similarity values ρ : Γ2 → [0, 1] for classes are
automatically derived from the given data model, taking class hierarchies into account and comparing attribute
definitions. Ahlquist (2005) uses a similarity measure based on fuzzy membership functions to assess land cover
changes over time. Schwering (2008) reviews different approaches for defining semantic similarity measures.
She also discusses whether a semantic distance should have the properties of a metric (identity, symmetry, and
triangle inequality) and concludes that the definition of a metric would be too restrictive. We adhere to this
position, which we will support with examples from the context of map generalization later in this section.

We formally define the function d : Γ2 → R
+
0 as the semantic distance between classes in the set Γ. Our only

assumption about this function is that d(γ1, γ2) = 0 if γ1 = γ2. A high value d(γ1, γ2) means that the classes

5.3. Semantic accuracy 57

γ1 ∈ Γ and γ2 ∈ Γ are dissimilar, which for example applies to settlement and grassland. Instead, farmland and
grassland are semantically close as they are both classes of vegetation. Since we aim for semantic accuracy in
map generalization, we would rather accept a change of a grassland area into farmland than into settlement.
In order to define a global measure of semantic accuracy, it is most natural to associate a cost with such basic
change operations. We define this cost to be proportional to the size of the area that changed its class and the
distance between the classes before and after generalization. The total cost for class change fclass is the sum of
these cost terms:

fclass =
∑
v∈V

w(v) · d(γ(v), γ′(v)) , (5.1)

with V being the set that contains an element for each area in the overlay of the input map and the generalized
map, w : V → R

+ being their sizes, γ : V → Γ being their classes in the input map, and γ′ : V → Γ being their
classes in the generalized map. Our aim is to minimize the cost fclass. Dividing fclass by the size of the dataset,
we obtain the average class distance:

d̄ =
∑

v∈V w(v) · d(γ(v), γ′(v))∑
v∈V w(v)

. (5.2)

This measure is useful since it allows the following interpretation without knowing the size of the dataset: Let’s
assume that we obtain d̄ = d0 for our generalized dataset. We can say that our dataset is of the same quality
as a hypothetical dataset, each of its areas having a class at semantic distance d0 from the original class.

Allowing d to be asymmetric or to violate the triangle inequality can be useful in several applications: in map
generalization we often want to exaggerate objects of important or infrequent classes. We can express this
objective by defining a long distance from an important class to a less important one and a short distance for
the opposite direction. This would imply that changes of important classes into unimportant classes result in a
relatively low semantic accuracy compared to changes in the other direction. Consequently, we do not insist on
symmetric semantic distances. Furthermore, for example we could imagine a map of three classes: ‘playground’,
‘traffic’ and a class ‘default’. Confusing any class with the default class (or vice versa) might be unproblematic,
thus we would define a relatively short semantic distance. However, ‘playground’ and ‘traffic’ should not be
mixed up, thus we would define a very long distance in between. In this example, the triangle inequality does
not hold, since d(playground, default) + d(default, traffic) may be less than d(playground, traffic).

Let’s assume that for each area v ∈ V we are given a quantitative attribute. This case can be subsumed by our
model, for example, by defining Γ ⊂ Z. In this case, we can define d(γ(v), γ′(v)) = |γ(v)− γ′(v)|, which means
that we wish to minimize the average difference between attributes of the input map and the generalized map.
However, we can also define d(γ(v), γ′(v)) = (γ(v)− γ′(v))2 in order to charge higher costs for large differences.
Hence, the definition of d allows different definitions to be subsumed. However, in the case that Γ contains
qualitative classes, the distances d cannot be defined by differences of quantitative values. We now discuss how
to find an appropriate setting for d in practice.

Of course the class distance values could be directly defined by experts. This, however, requires values to be
specified in a matrix of |Γ| × |Γ| elements, which can be difficult, even for experts. Alternatively, the values of
d could be derived from a given data model, for example, using the method of Rodŕıguez & Egenhofer (2004).
The obtained similarity values could be translated into distances, for example, by defining d = 1/ρ − 1. This
yields the distance d = 0 if ρ = 1 (perfect similarity). If ρ approaches zero, the distance d approaches positive
infinity. The special case ρ = 0 (no similarity at all) can be treated as a hard constraint, that is, class γ1 ∈ Γ
must never change to γ2 ∈ Γ. The method yields objective class distance values. However, it requires a rich data
model and a detailed class hierarchy to accurately distinguish different classes. Because of this, the following
mixed approach is chosen, which exploits class hierarchies in a given data model, but also requires input of
expert knowledge.

Figure 5.3(a) shows a class hierarchy from the ATKIS specifications. We consider the diagram as a graph
whose nodes correspond to classes and whose edges correspond to links, that is, class inheritance relationships.
Defining unit edge lengths, the distance value d(γ1, γ2) can be defined as the length of the shortest path in this
graph from γ1 ∈ Γ to γ2 ∈ Γ. This method yields the class distances in Fig. 5.3(b). The approach is reasonable,
since similar classes have common superclasses. Accordingly, we assign short distances to such pairs.

In order to further differentiate between different classes, experts can incorporate additional knowledge. In
Fig. 5.4(a) we have introduced an additional class ‘open vegetation’ to express that farmland and grassland have

58 Chapter 5. A Generalization Workflow Driven by Data Quality

ForestFarmland

Vegetation area

Industry Settlement

Built up area

Object

Grassland

(a) class hierarchy defined in the ATKIS specifications

Se
tt

le
m

en
t

In
du

st
ry

Fa
rm

la
nd

G
ra

ss
la

nd

Fo
re

st

Settlement 0 2 4 4 4
Industry 2 0 4 4 4

Farmland 4 4 0 2 2
Grassland 4 4 2 0 2

Forest 4 4 2 2 0

(b) semantic distance matrix that can be derived from class
hierarchies in (a)

Fig. 5.3: A class hierarchy that was given in the database specifications and a derived distance matrix.

ForestFarmland

Vegetation area

Industry Settlement

Built up area

Object

Grassland

Open vegetation

10 15

5 5

10 10

25 50

(a) class hierarchy from Fig. 5.3(a) after augmentation with expert
knowledge; numbers in circles refer to the degrees of specialization,
which are exploited to calculate class distances

Se
tt

le
m

en
t

In
du

st
ry

Fa
rm

la
nd

G
ra

ss
la

nd

Fo
re

st

Settlement 0 20 100 100 100
Industry 20 0 100 100 100

Farmland 100 100 0 10 30
Grassland 100 100 10 0 30

Forest 100 100 30 30 0

(b) semantic distance matrix that can be derived from
class hierarchy and degrees of specialization in (a); the
results in this thesis were obtained using this setting

Fig. 5.4: A more sophisticated class hierarchy and the derived distance matrix.

a common property that is not shared by forest. Additionally, non-uniform edge lengths have been defined;
these express the degree of specialization between a superclass and a subclass. Again, we could exploit the
data model to define these values, for example, we could set the edge length equal to the number of additional
attributes in the subclass. However, in this example, the edge lengths were defined according to experiences.
Figure 5.4(b) shows the resulting class distances. These were used for all our experiments.

Note that, when using the proposed approach to derive class distances, the function d will satisfy the definition
of a metric. To model appropriate distances for the examples that motivated our more general definition of d,
further tuning of the values in the obtained matrix is needed.

5.3.2 Semantic accuracy reflected by shape

In order to take semantic accuracy into account, we should not only focus on classes of objects but also consider
their shapes. An area may belong to the class forest, but does it also have the shape of a forest? This question
is indeed difficult to answer. In the quality assessment for generalization this issue is often considered by
measures that compare a shape before and after generalization (Frank & Ester, 2006). This approach requires
correspondences of cardinality 1:1, which generally do not exist in aggregation.

Figure 5.5(a) shows an input map including two areas that are smaller than the required threshold for the target
scale. There are multiple logically consistent generalization results; two of them are shown in Figures 5.5(b)
and (c). If we just evaluate class changes, we need to attest a high semantic accuracy for the result in (b).
However, we might feel cheated, since the hard constraint for contiguous shapes was only satisfied with an
extremely long and narrow bridge between both forest areas (green) of the input. To formally express what is
wrong with this result, we need to penalize untypical shapes. As a general rule these are non-compact shapes.

5.3. Semantic accuracy 59

(a) a hypothetical input map (b) a logically consistent result (c) another logically consistent result

Fig. 5.5: A planar subdivision that is to be generalized (a). Areas marked with a red X are too small for the target
scale. The results obtained by aggregation in (b) and (c) are both feasible. Though the semantic class distance to the
input map is smaller for the result in (b), we would prefer the more compact result in (c).

Compactness is related to the principles of Gestalt theory, which was introduced in Sect. 2.7.1: as proximity is an
important criterion for perceptual grouping, different parts of a composite object should be close to a common
center. Consequently, the compactness of a shape is most commonly measured by comparison of its properties
with those of a circle. Measures for compactness are discussed in detail in Sect. 7.2. Generally, we need to
charge a cost for each region in the output map. A region is defined by a subset of V and a class in Γ. Therefore,
we measure the non-compactness of a region with a function c : 2V ×Γ→ R

+
0 . The generalized map consists of

multiple regions, that is, it is a partition of V into subsets {V1 , V2 , . . . , Vk} with classes γ′
1 , γ′

2 , . . . , γ′
k, where

k is the number of regions in the generalized map. The total cost for non-compactness becomes:

fcomp =
k∑

i=1

c(Vi, γ
′
i) . (5.3)

We do not consider the aim for compactness as a new element of data quality, but as another aspect of semantic
accuracy. In fact, referring to the “perceived reality”, the definition of semantic accuracy by Salgé (1995)
suggests that principles of human perception should be comprised.

5.3.3 Implications for generalization

As discussed in Sect. 5.1, another aim of generalization is positional accuracy. If we require that the boundaries
in the generalized map are a subset of the boundaries in the input map, the positional accuracy in the result
will be perfect. Under this restriction, hard size constraints can only be satisfied by aggregation. The set V will
contain an element for each area in the original map. Both remaining aims, class similarity and compactness,
can be conflicting. We need to find a trade-off, which we express as a weighted sum. For this we introduce the
weight factor s ∈ [0, 1], which defines the generalization objective as follows:

minimize f = s · fclass + (1− s) · fcomp . (5.4)

With respect to this objective and with the restriction to the original boundaries, the aggregation method
presented in Chapter 7 yields results of maximum semantic accuracy, subject to hard constraints that ensure
logical consistency.

We can also apply the function f in Algorithm 1 (region-growing): given that a is the smallest area, we can
define that the neighbor b is more compatible with a than the neighbor c, if merging a to b implies a lower
increase of f than merging a to c. This means, the function f defines the order ≺a that we introduced in
Sect. 4.1. Of course, the iterative approach does not produce an optimal solution. Nevertheless, this definition
of compatibility is reasonable if we decide to apply Algorithm 1 instead of our new optimization approach.

Aggregation is the most important approach to satisfy size constraints. However, the assumption that general-
ization does not change region boundaries is too restrictive. Figure 5.6(a) shows an input map with two areas
that fall below the required threshold. Figure 5.6(b) shows the semantically most accurate aggregation result,
that is, a planar subdivision that is solely defined by a subset of the original boundaries.

We would prefer the map in Fig. 5.6(c), but this cannot be obtained by aggregation alone. The problem in
this example is that the forest areas in the input are not adjacent. In order to combine them into a contiguous
shape, the separating corridor needs to be collapsed first, such that the bone-shaped farmland area (light color)

60 Chapter 5. A Generalization Workflow Driven by Data Quality

(a) a hypothetical input map; areas marked
with X are too small for the target scale

(b) a logically consistent result that
can be obtained by aggregation

(c) a logically consistent result that can-
not be obtained by aggregation

Fig. 5.6: A map that is to be generalized (a). The result (c) is semantically more accurate than (b).

is split into two parts. A similar problem appears in the example in Figures 1.1 and 1.2. New boundaries were
introduced to allow a combination of the three settlement areas.

Generally, we could ask for the logically consistent planar subdivision that minimizes the objective (5.4). In
this case we would need to allow new boundaries. However, to develop a comprehensive optimization approach
for this general problem seems too ambitious. An approach to the problem with iterative meta-heuristics would
imply the disadvantages discussed in Sect. 3.7. We cannot obtain optimal results and it would be difficult to
generate near-optimal results subject to hard constraints. Therefore, we divide the generalization task into
different parts, which we solve in succession.

5.4 Development of a generalization workflow

When applying the proposed generalization methods, the first step is to ensure our assumptions about the input
data. Conflicts with the requirement for simplicity of the subdivision need to be resolved. Furthermore, objects
need to be reclassified if classes in the input scale are subsumed by more general classes in the target scale. For
example, objects of type deciduous forest and coniferous forest need to be reclassified into forest.

Before aggregating areas we need to remove disturbing details such as the narrow polygon part in Fig. 5.6(a).
Otherwise, we cannot obtain the wanted result in Fig. 5.6(c). For this purpose Sect. 6.1 presents an approach
based on skeletonization of areas. This method collapses narrow polygons and polygon parts and ensures
that the subdivision remains simple. Thereafter, the aggregation of areas can be performed, assuming that all
disturbing details were removed. Finally, we need to consider the simplification of lines, which is needed to adapt
the map to the reduced level of detail. In contrast to collapse, line simplification does not change the topology
of the subdivision (if performed appropriately). Thus the decision about its position in the generalization
workflow is less critical. Most line simplification approaches for planar subdivisions keep vertices of degree
higher than two. In other words, vertices shared by more than two regions remain in the generalized map.
As area aggregation greatly reduces the number of such vertices, the simplification of lines should be the last
operator in the generalization workflow. This implies that we need to ensure size constraints for the areas during
line simplification. In Sect. 6.2 the method of de Berg et al. (1998) is extended to meet this requirement.

We illustrate the functionality of our generalization workflow, before presenting its modules and results in detail:
Figure 5.7 shows a small example and gives references to detailed explanations of the processing steps.

Collapse
(Section 6.1)

Aggregation
(Chapter 7)

Simplification
(Section 6.2)

Fig. 5.7: The proposed generalization workflow applied on a sample of the ATKIS DLM 50 (left). The result (right)
satisfies specifications for the DLM 250.

61

Chapter 6

Algorithms for Geometric Generalization

This chapter presents two new generalization methods: A method for collapsing areas and area parts to lines
(Sect. 6.1) and a line simplification method that ensures the size constraints that are defined for areas (Sect. 6.2).
Both methods can be classified as geometric generalization operators, that is, they mainly influence the shapes
of objects.

6.1 Area collapse

As discussed in the previous section, the collapse of narrow polygons or polygon parts is needed to remove
disturbing details before applying an aggregation procedure. In some cases the collapse of areas is necessary
to comply with database specifications. Recall the definition of a river in Table 2.1: depending on its width
the river either needs to be represented by an area (width ≥ 12 m) or by a line (width < 12 m). Usually a
greater width threshold is defined for the smaller target scale, thus map generalization requires some areas to
be collapsed to lines. The collapse procedure that is presented in this section has been presented in detail,
focusing on the derivation of road centerlines from a cadastral dataset of polygons (Haunert & Sester, 2004,
2008a; Haunert, 2005a). Collapse is not explicitly mentioned in the terminology of generalization operators by
Hake et al. (1994) (recall Fig. 2.1). However, it can be seen as a certain form of symbolization, since a physical
entity of a two-dimensional extent becomes represented by a line symbol.

Section 6.1.1 lists requirements for the collapse task. Different skeleton structures that can be applied are shown
in Fig. 6.1 and explained in Sections 6.1.2 to 6.1.4. Raster-based methods are explicitly excluded from the
discussion, since the existing input as well as the demanded output for this work is vector-based. Nevertheless,
raster-based skeleton operators are often used for cartographic applications (Su et al., 1998). A basic method
based on straight skeletons is shown in Sect. 6.1.5, which handles single areas. Section 6.1.6 presents a global
approach for areas in a planar subdivision.

6.1.1 Requirements

We define the following requirements for the collapse of areas:

1. A collapsed area needs to be distributed to its neighbors, such that the subdivision remains simple.
2. The shapes of neighbors should be modified as little as possible.
3. Semantic distances should be considered, such that relatively large parts of the collapsed area change to

similar classes.
4. Boundaries of high priority need to be preserved.
5. A partial collapse must be possible, such that a feature keeps its two dimensional representation in parts

that exceed a certain width.

In the case that a line representation is to be created, the following requirement needs to be added:

6. The derived centerline must reflect the major elongations of the polygon and ignore small anomalies.

62 Chapter 6. Algorithms for Geometric Generalization

(a) medial axis (b) skeleton based on conforming Delaunay triangulation

(c) straight skeleton (d) straight skeleton with additional polygon edge

Fig. 6.1: Comparison of skeleton operators (centerlines bold).

The following additional requirement was not considered in our previous publication (Haunert & Sester, 2008a):

7. When processing multiple areas the result should not depend on the definition of an order.

For specific problems we need to make these requirements concrete and add further requirements. For example,
in the case that a line representation needs to be derived for rivers, other geometric characteristics may be
favorable than for road centerlines. In a previous work we presented an algorithm that eliminates skeleton edges
corresponding to polygon parts that do not conform to a defined object model (Haunert & Sester, 2008a). We
applied a model for roads to derive road centerlines and we defined rules to reshape the centerlines at road
junctions. In the following sections, however, we focus on possibilities to satisfy the general requirements stated
above.

6.1.2 Medial axis

Figure 6.1(a) shows the medial axis, which is defined as the locus of points that have more than one closest
neighbor on the polygon boundary. The bold centerline in the figure is defined by those points of the medial
axis whose closest neighbors do not belong to adjacent edges of the polygon. This skeleton is widely used in
geographic information sciences for the analysis of shapes. It consists of straight lines and second order lines,
which result from reflex angles of the polygon. An algorithm of linear time was found by Chin et al. (1995).
For practical reasons often approximations of medial axes are used, which only consist of straight segments.
Since the medial axis is equal to the line Voronoi diagram of the polygon edges, it can be approximated by the
Voronoi diagram of a discrete set of boundary points. To generate a good approximation the vertices of the
polygon need to be densified first. This technique is used by Roberts et al. (2005) to derive street centerlines.
Since the Voronoi diagram for a set of points is the dual graph of the Delaunay triangulation, the approximated
medial axis can be derived by connecting the circumcenters of adjacent triangles of the triangulation. Here a
constrained Delaunay triangulation can be used to ensure that the triangulation covers the same area as the
polygon. The medial axis has a very smooth appearance.

6.1. Area collapse 63

6.1.3 Triangulation-based skeleton

Another skeleton, which is also based on a constrained Delaunay triangulation of the polygon, was presented
by Chithambaram et al. (1991). Alternatively a conforming Delaunay triangulation can be applied (Bader &
Weibel, 1997). The basic procedure for the skeleton construction from the triangulation does not differ for
both cases and is defined as follows: For each triangle that shares one edge with the polygon a skeleton edge is
constructed by connecting the centers of both other triangle edges. Note that connecting the centers of triangle
edges is not the same as connecting the circumcenters of triangles, which is the approach used to approximate
the medial axis.

Triangles that do not share any edge with the polygon (0-triangles) need to be handled specially. A common
approach is to introduce three skeleton edges that connect the triangle’s centroid with each center of its edges.
The result of this procedure is shown in Fig. 6.1(b) using a conforming Delaunay triangulation. Penninga et al.
(2005) discuss its advantages compared to the constrained Delaunay triangulation. Since 0-triangles with very
obtuse angles can be avoided, unwanted shifts of the skeleton can be reduced. Another problem that is presented
by Penninga et al. is the possible generation of unwanted spikes in 0-triangles. Figure 6.1(b) shows that the
small disturbance in the polygon boundary has a significant effect on the major axis of the skeleton; a spike
is produced. For a better appearance of the skeleton, additional rules for the handling of 0-triangles can be
defined. However, very difficult cases can appear like multiple adjacent 0-triangles. The occurrence of these
spikes is the biggest disadvantage of the triangulation-based skeleton. The conforming Delaunay triangulation
is not unique and so the triangulation-based skeleton is not well-defined. This is a disadvantage if results need
to be reproduced.

6.1.4 Straight skeleton

Figure 6.1(c) shows the straight skeleton, which was presented by Aichholzer et al. (1995). It can be imagined
as a roof that covers the polygon ground plan and consists of planes that arise with constant slope from each
polygon edge. Each skeleton edge is a bisector of two polygon edges. The construction of the straight skeleton
is based on a stepwise shrinking process of the polygon, that can be performed by simultaneous parallel offsets
of the polygon edges. During this offset two different types of events need to be handled: edge events, which
mean that a polygon edge is omitted, and split events, which mean that a polygon edge is split in two.

An important geometric property is that the skeleton mostly consists of long straight lines that reflect the major
axes of the polygon. The geometrical anomaly on the lower right side still has an effect on the shape of the
skeleton in Fig. 6.1(c). Yet the generated spike is much less dominant than in the triangulation-based skeleton
and is comparable to the medial axis. We can define the centerline of the skeleton as the union of all skeleton
edges that are not incident to a vertex of the polygon. This centerline is depicted with a bold line.

We can alter the straight skeleton by assigning slopes to certain roof planes that differ from the default value.
With this variation we can shift the centerline in certain directions. This has been applied in a different domain,
namely for the three-dimensional reconstruction of buildings from ground plans and laser scanning data (Haala
& Brenner, 1997). In Sect. 6.1.5 we use this technique for the collapse of areas in a topographic database.
Eppstein & Erickson (1998) describe a sub-quadratic algorithm for the straight skeleton. They also consider
the case of different roof slopes. Felkel & Obdržálek (1998) present an implementation of the straight skeleton
and discuss special cases.

A disadvantage of the straight skeleton is its sensitivity to reflex angles close to 360◦. In these cases the skeleton
will not be situated close to the center of the polygon. The uppermost bend of the polygon in Fig. 6.1(c) is a
typical example of this case. We can solve this problem by introducing additional polygon edges of zero length
in reflex vertices. Consequently, an additional roof plane arises from each of these vertices. We define the
orientation of such a plane as follows: the projection of the plane’s normal vector to the horizontal plane must
be collinear with the bisector of the original edges incident to the reflex vertex. Its slope is defined to be the
same as the slope of the other roof planes. To select the vertices that are treated like this, we define a threshold
for the maximum allowed angle between two polygon edges. Tănase & Veltkamp (2004) use this technique to
approximate the medial axis with the straight skeleton. Figure 6.1(d) shows the straight skeleton after the
insertion of an additional edge. This skeleton has the same advantages as the standard straight skeleton. In
addition the effect of centerline shifts at reflex vertices is reduced.

64 Chapter 6. Algorithms for Geometric Generalization

(a) initial situation (b) straight skeleton

(c) different weights to assign more area
to the left neighbors

(d) result of (b) after assignment of ar-
eas to neighbors

Fig. 6.2: Collapse operator based on straight skeleton.

6.1.5 Treatment of single areas in a topographic database

Ai & van Oosterom (2002) approach the collapse task with the triangulation-based skeleton. It allows different
weights to be applied to different polygon edges, and so the centerline can be shifted such that a greater portion
of the area is assigned to semantically similar neighbors. However, the risk of obtaining unwanted spikes or
zigzagging boundaries is a disadvantage. The medial axis is less sensitive to these disturbances, but the exact
algorithms are hard to adapt to special problems like the partial collapse or the collapse with different weights.

In contrast, we can apply the straight skeleton to all stated problems with some simple modifications to the
original algorithm. With the straight skeleton extension presented by Tănase & Veltkamp (2004), that is,
with multiple additional edges in the reflex vertices, no significant geometric difference exists in comparison
with other approximations of the medial axis. However, the smooth skeleton that is produced by the medial
axis sometimes does not correspond to the level of granularity of the original object, especially when straight
man-made objects such as roads or buildings are involved. Here we need a less smooth skeleton that can be
achieved adding maximally one edge to a reflex vertex as was shown in Fig. 6.1(d). Figure 6.2(a) shows a
planar subdivision with a gray polygon that is to be collapsed. The edges of the straight skeleton define a
decomposition of the original polygon (Fig. 6.2(b)). Each fragment of this decomposition is incident to only
one polygon edge. Therefore it can be unambiguously assigned to one of the neighbors. Fragments that result
from artificially added planes in reflex vertices can simply be separated by the original bisector into two parts,
in order to assign the area to the original polygon edges. Figure 6.2(d) shows the resulting map after the
application of the collapse operator based on the straight skeleton with equal inclinations of planes. The area
was assigned to its neighbors leading to only small changes of their shapes. In Fig. 6.2(c) we assigned a larger
weight and accordingly a larger part of the eliminated area to the neighbors on the left side.

Figure 6.3(a) shows a lake and an incoming river as one area. The partial collapse task requires that this area
is split into lines and areas according to a given width threshold. A solution with the straight skeleton can be
found that takes advantage of the shrinking process on which the skeleton construction is based. The proposed
method is very similar to the morphologic opening operator, which is often applied to raster data (Gonzalez

6.1. Area collapse 65

(a) (b) (c) (d) (e)

Fig. 6.3: Partial collapse of a river and a lake. (a) Initial polygon. (b) Uncompleted straight skeleton and offset polygon
at 20 m. (c) After application of the inverse parallel offset to the remaining polygon in (b). (d) As (b) but with additional
edges in reflex vertices. (e) After application of the inverse parallel offset with additional edges in reflex vertices to the
remaining polygon in (d).

(a) river polygon touching boundary
of lake

(b) collapse without consideration of
the boundary of high priority

(c) collapse with consideration of the
boundary of high priority

Fig. 6.4: Straight skeleton that preserves a boundary of high priority.

& Woods, 2002). More precisely, the events described in Sect. 6.1.4 will be performed only if they happen
within half of the width threshold. Events which happen later are not to be processed. Figure 6.3(b) shows
the skeleton after its termination at an early stage. We applied a width threshold of 40 m. In some parts the
original polygon has shrunk to lines. Here we need to derive the centerline of the constructed skeleton, which we
can do in the same manner as in the case of a complete collapse. In other parts a shrunken polygon is left. Here
we need to recover the extent of the original polygon boundary by offsetting the shrunken polygon as shown
in Fig. 6.3(c). After constructing the offset, we need to clip edges of the derived centerline that intersect the
resulting polygon. In order to avoid the unwanted effects of sharp reflex vertices, we can introduce additional
edges as shown in Fig. 6.1(d). This approach should be used for both the offset of the polygon to its interior
(Fig. 6.3(d)) and the inverse offset in the second step of the procedure (Fig. 6.3(e)). With this method, the
spike in the upper right corner of Fig. 6.3(c) is avoided.

Often we need to perform an area collapse, but certain topological relationships must not be lost and boundaries
of high priority must not be changed. An example is a river that flows into a lake (Fig. 6.4(a)). The derived
linear representation for the river must still be connected to the lake, but a modification of the lake boundary
is not allowed. Applying a naive collapse operator does not assure this. Figure 6.4(b) shows the straight
skeleton of the river polygon using default settings. The topological relationship is lost. We can solve the task
by modifying the inclinations of the planes that define the skeleton. Increasing the inclinations of planes in
polygon edges that are shared by the river and the lake causes the skeleton to move in the direction of the
lake. Defining vertical planes would mean that the skeleton touches these edges. In order to get along with the
existing algorithms and implementations that rely on offsets in two dimensions, we can define a plane with a
very high inclination, for example 1000%, instead of a vertical plane. In practice both definitions do not result
in visual differences; small topological errors can easily be cleaned with a snapping routine. Figure 6.4(c) shows
the result of this collapse operator.

66 Chapter 6. Algorithms for Geometric Generalization

6.1.6 A global approach for the collapse of areas in a planar subdivision

We can apply the proposed operator from Sect. 6.1.5 for the collapse or partial collapse of single areas. If we
consider a planar subdivision that consists of multiple areas, we would need to define which areas are to be
collapsed and in which order this is done. Generally, we will not obtain the same result, if we apply the collapse
procedure on the same areas in a different order. To avoid a large set of required parameters, we can use the
following procedure that handles all areas of a planar partition at the same time. Similarly to the proposed
partial collapse method for a single area, the procedure only requires a single offset parameter. Figure 6.5
illustrates the approach.

(a) original dataset ATKIS DLM 50 in-
cluding narrow polygons, for example the
river in the upper right corner

(b) polygons after offset to their inte-
rior by 25 m and straight skeleton of free
space (white polygon)

(c) resulting map after merging frag-
ments of the white polygon in (b) to their
neighbors

Fig. 6.5: Collapse of areas in a planar partition by offset and skeleton construction.

In a first step, we apply the offset of each polygon to its interior. A polygon or a polygon part whose width
falls below the offset does not survive the procedure. In a second step, we use the straight skeleton to collapse
the resulting free space. Again, to avoid that sharp reflex vertices have high influences on the result, we can
use the straight skeleton with additional edges of zero length, which was shown Fig. 6.1(d).

The original map in Fig. 6.5(a) contains multiple small or narrow polygons, for example, the river in the upper
right corner or the narrow connection between the large settlement and the small annex on its left side. In
Fig. 6.5(b) we applied an offset of 25 m and we constructed the skeleton for the resulting free space (white). The
straight skeleton partitions the free space into small fragments. For each of these fragments, there is only one
adjacent offset polygon (classified areas). Merging each fragment into its classified neighbor, we obtain the map
in Fig. 6.5(c). Small polygons and polygon parts of width less than 50 m are eliminated and the subdivision
remains simple. Polygon parts whose widths exceed 50 m survive the procedure. This corresponds to 0.2 mm
in scale 1:250 000. According to Hake et al. (1994, page 110), two thin lines should not be closer to each other
in a colored map. We term this minimum distance of 0.2 mm as the map resolution.

In some cases, polygons are fragmented into several parts. For example, the big settlement is fragmented into five
parts, four of them forming a contiguous region. The straight skeleton has been used before for the decomposition
of shapes into natural parts (Tănase & Veltkamp, 2003; Tănase, 2005). However, the new approach allows the
collapse, partial collapse, and decomposition of multiple areas to be performed comprehensively.

We will use the result after this global procedure as input for the aggregation method presented in Chapter 7.
We therefore should be concerned about a possible increase of the number of polygons. The collapse of small
areas results in a decrease of the number of polygons (some river polygons have vanished). The decomposition
of polygons results in an increase of the number of polygons (the big settlement area has been split into five
parts). With both effects, however, we only obtain a marginal increase of 1% for our dataset.

6.2. Line simplification 67

6.2 Line simplification

This section presents a line simplification method that can be used in a workflow for the generalization of a
planar subdivision, together with the developed methods for area collapse and aggregation. The simplification
of lines is a well-known problem that has found much attention before. For the simplification of lines that
define a planar subdivision, we can apply an existing method after de Berg et al. (1998), which is reviewed in
Sect. 6.2.1. However, we need to modify this method, in order to ensure size constraints for areas. That is, if
we simplify the boundary of a region, its area must not fall below the required size threshold. Section 6.2.2
deals with this problem. Section 6.2.3 summarizes the method and presents results of a test.

6.2.1 An existing optimization approach to line simplification

Usually, a cartographic line is given with a sequence of line vertices s = (v1 , v2 , . . . , vn). For example, the
line in Fig. 6.6(a) is defined as s = (v1 , v2 , v3 , v4 , v5 , v6); each pair of consecutive vertices is connected by
a straight line. Most line simplification methods yield a simplified line s′ that is a subsequence of s, that is,
s′ = (vi1 , vi2 , . . . , vik

) with i1 = 1, ik = n, 1 < k ≤ n, and ij+1 > ij for j = 1 , 2 , . . . , k − 1. An example of
such a method is the algorithm of Douglas & Peucker (1973). Though it is not based on global optimization,
we briefly review the method, as it is very often applied in practice.

In addition to the line s, the method of Douglas & Peucker (1973) requires a single parameter ε ∈ R
+ as input,

which defines the degree of simplification. More precisely, it defines an error tolerance. The requirement not to
exceed this tolerance is often referred to as the bandwidth criterion:

• For each line segment (vij , vij+1) of the simplified line s′, the vertices vij , vij+1, . . . , vij+1 of s must be
within ε-distance.

We call any simplification that satisfies this criterion ε-feasible. In terms of quality, the bandwidth criterion
ensures positional accuracy of the simplified line.

The algorithm of Douglas & Peucker (1973) starts with the simplified line s′0 = (v1, vn) and iteratively adds
vertices from s until the bandwidth criterion is satisfied. Generally, for a line segment (va, vc) that does not
satisfy the bandwidth criterion, the vertex vb with a < b < c that has maximal distance from the line (va, vc)
is selected. The segment (va, vc) is replaced by the two segments (va, vb) and (vb, vc). For our example, the
result of this procedure is shown in Fig. 6.6(b). Vertex v3 was added first, then also v2 and v5 needed to be
added.

v1

v2

v3
v5

v6

v4

ε

(a) a line s and an error tolerance ε for the
bandwidth criterion, which defines the ε-
feasible simplifications of s

v1

v2

v3
v5

v6

(b) the simplification of s obtained with
the method of Douglas & Peucker (1973),
which guarantees an ε-feasible solution

v1

v2 v5

v6

(c) the ε-feasible simplification of s with
minimum number of vertices

v1 v2 v3 v4 v5 v6

(d) the shortcut graph Gscut(V, A) for the
line s and the error tolerance ε

v1 v2 v3 v5 v6

(e) a path in Gscut, which corresponds to
the simplified line in (b)

v1 v2 v5 v6

(f) the shortest path in Gscut from v1 to
v6, corresponding to simplification (c)

Fig. 6.6: Two simplifications of a cartographic line and their corresponding paths in the shortcut graph Gscut. The
simplification in (c) is optimal according to the objective for a minimum number of vertices, which was proposed by
Deveau (1985). This solution is given with the shortest path in Gscut from v1 to v6, see (f).

68 Chapter 6. Algorithms for Geometric Generalization

Deveau (1985) proposed another approach that also ensures the bandwidth criterion. In contrast to the algo-
rithm of Douglas & Peucker (1973) it is based on global optimization: Among the ε-feasible simplifications of s,
a search is performed for the solution with the minimum number of vertices. Figure 6.6(c) shows the solution
that is optimal according to this criterion. It only contains four vertices instead of five vertices, which is the
result of the algorithm of Douglas & Peucker (1973).

To solve this optimization problem we can define the shortcut (di)graph Gscut(V, A) with V being the set of
vertices of s and A including an arc for a pair of vertices of V if the connecting line segment satisfies the
bandwidth criterion. Figure 6.6(d) shows the graph Gscut for our example. Each ε-feasible simplification of
s corresponds to a path in Gscut; two paths are shown in Figures 6.6(e) and 6.6(f). Selecting an arc (vi, vj)
implies that vertices vi+1 , vi+2 , . . . , vj−1 are ommited. Therefore, we call an arc in A a shortcut. Defining unit
lengths for arcs, that is, unit costs for shortcuts, the ε-feasible simplification of s with the minimum number of
vertices corresponds to the shortest path from v1 to vn in Gscut.

We can solve the line simplification problem in two steps: first we construct the shortcut graph Gscut and
secondly we search for the shortest path from v1 to vn in Gscut. In the first step all feasible shortcuts need to be
found, which requires O(|V |2) time (Chan & Chin, 1996). The second problem can be solved with any algorithm
for the general shortest path problem, for example, the method of Dijkstra (1959). However, the graph Gscut

has a special property that we can exploit to define a more efficient solution: it does not contain any cycle. In
this case, we can solve the problem with a simple dynamic programming method (Papadimitriou & Steiglitz,
1998). Generally, this approach allows the shortest path in an acyclic digraph to be found in O(|V |+ |A|) time.
In conclusion, constructing the shortcut graph Gscut is more complex than finding the shortest path in Gscut.
Solving the whole simplification problem requires O(|V |2) time.

Certainly, the aim for a minimum number of vertices is reasonable if the general objective is data compression.
Furthermore, minimizing the number of vertices will reduce the clutter on the map and improve its legibility.
However, in the context of spatial data quality, the approach of Deveau (1985) is of particular interest as it can
be extended to consider other performance measures and additional constraints. Campbell & Cromley (1991)
define a general model that allows different optimization criteria to be incorporated. With some measures and
constraints the problem becomes more involved. However, solutions have been found for the preservation of
angles (Chen et al., 2005) and distances (Gudmundsson et al., 2007), which both can be seen as criteria of
geometrical accuracy.

The problem of how to avoid self-intersecting lines in the generalized map has been investigated in detail.
Estkowski & Mitchell (2001) proved that it is NP-hard to reduce a planar subdivision to a minimum number
of vertices while ensuring the bandwidth criterion and keeping the subdivision simple. de Berg et al. (1998)
developed an efficient heuristic that guarantees results without self-intersections. We do not review the proof
of Estkowski & Mitchell (2001) and the method of de Berg et al. (1998) in detail, but discuss a simple example
to illustrate why the simplicity requirement renders the problem combinatorially hard and how we can tackle
the problem with a simple heuristic.

v1 v3

v2

v10 v4v5v9

v6v8
v7

ε

(a) a line s with tolerance ε
for the bandwidth criterion

v1 v3

v10 v4v5v9

v6v8

v7

(b) a simplification of s with
self-intersections

v1 v3

v10 v4v5v9

v6v8

(c) the optimal feasible sim-
plification

v1 v3

v2

v10 v4v5v9

v6v8

(d) a feasible simplification
that is not optimal

Fig. 6.7: A line with three simplifications.

Figure 6.7(a) defines an instance of the simplification problem: The aim is to find the ε-feasible, not self-
intersecting simplification s′ of the polygonal line s that has a minimum number of vertices. In order to apply
our approach based on a shortest path formulation, we would like to decide independently for each pair of vertices
whether it defines a feasible simplification. Applying shortcut (v1 , v3) results in a self-intersecting polygon (see
Fig. 6.7(b)). Hence, we might conclude that the shortcut is not allowed. This conclusion, however, is wrong:

6.2. Line simplification 69

Applying (v1 , v3) together with the shortcut (v6 , v8) results in a feasible simplification, which actually is the
optimal solution (see Fig. 6.7(c)). Such dependencies between shortcuts render the problem NP-hard (Estkowski
& Mitchell, 2001). If we forbid the shortcut (v1 , v3) and apply the method based on shortest path formulations,
we will find the solution in Fig. 6.7(d). Though this is not optimal, it is at least a feasible solution. In fact,
de Berg et al. (1998) propose a heuristic method for the simplification of a planar subdivision that is based on
this approach: shortcuts that potentially violate the simplicity constraint are excluded in advance from the arc
set A. Then, the shortest path in Gscut offers a feasible, but not the optimal simplification of a line. To simplify
all lines of the planar subdivision, the boundaries between each two adjacent areas are processed in succession.

6.2.2 Line simplification with size constraints

Let’s assume that we wish to simplify the boundary s between areas � (the area to the left of s) and r (the area
to the right of s). We can do this by searching for the shortest path in a shortcut graph. However, with the
basic approach, we run the risk that one of the areas � or r becomes too small, that is, the area � falls below a
required size threshold θ� ∈ R

+ or the area r falls below its threshold θr ∈ R
+. To avoid these cases, we can

introduce hard constraints into the shortest path formulation.

For this, we define the function Δw : A → R such that applying shortcut (vi, vj) ∈ A implies that the size
of � increases by Δw(vi, vj) as it is shown in Fig. 6.8. If applying shortcut (vi, vj) implies that the size of �
decreases, then Δw(vi, vj) is negative. We define our problem as follows:

Problem (Line simplification with size constraints). Given a
line s = (v1 , v2 , . . . , vn), the original area sizes w� , wr ∈ R

+,
the required sizes θ� , θr ∈ R

+, and the tolerance ε ∈ R
+, find

an ε-feasible simplification s′ = (vi1 , vi2 , . . . , vik
) with i1 = 1,

ik = n, 1 < k ≤ n, and ij+1 > ij for j = 1 , 2 , . . . , k − 1,
such that the line has a minimum number of vertices and the
following constraints are satisfied:

• Area � must not become too small, i.e.,

w� +
k−1∑
j=1

Δw(vij , vij+1) ≥ θ� .

• Area r must not become too small, i.e.,

wr −
k−1∑
j=1

Δw(vij , vij+1) ≥ θr .

v1

v2

v3

v4

�

r

Fig. 6.8: Applying shortcut (v2 , v4), the
shaded region is added to �. The size of �
increases by Δw(v2, v4).

Bose et al. (2006) investigated a similar problem, which is to answer the following question:

Given a line s = (v1 , v2 , . . . , vn) does there exist a simplification s′ = (vi1 , vi2 , . . . , vik
) with k < n such

that
∑k−1

j=1 Δw(vij , vij+1) = 0 ?

Obviously, this is a special decision version of line simplification with size constraints: It is the special version
where w� = θ�, wr = θr, and ε is set so high that any simplification is ε-feasible. Bose et al. (2006, Theo-
rem 7) proved that their problem is NP-hard; therefore, we can conclude that the more general problem line
simplification with size constraints is NP-hard, too. We cannot hope for an efficient and exact solution to the
problem.

Bose et al. (2006) also discussed an optimization version of their problem where the aim is to minimize∣∣∑k−1
j=1 Δw(vij , vij+1)

∣∣ and the number of edges in the simplified line must not exceed a given value. The
authors presented an efficient algorithm for this problem that guarantees a solution with a bounded additive
error, that is, the cost of the obtained solution never exceeds the cost of the optimal solution by more than a

70 Chapter 6. Algorithms for Geometric Generalization

user-defined value δH > 0. However, this does not allow our general problem to be solved, that is, to cope with
hard size constraints.

To solve line simplification with size constraints, we consider the problem in the general context of weight-
constrained shortest path problems. In addition to edge lengths l these require an additional weight for each
edge. The problem is to find the shortest path whose weight is within given bounds. Many non-efficient exact
algorithms and heuristics exist to solve this problem, which we can adopt. A review of methods is given by
Dumitrescu & Boland (2001), which includes an approach by integer programming. Dumitrescu & Boland
(2001) also discuss a simple approach that uses algorithms for the K shortest path problem. This approach is
interesting, as it allows the problem to be solved mainly by reusing code for the unconstrained shortest path
problem. We now discuss the basic idea of this approach.

If we remove the size constraints, we can solve our line simplification problem with an efficient algorithm for the
shortest path problem. We can do this in a first step. If we obtain a solution that satisfies the size constraints,
we have the optimal solution to the constrained problem. If we obtain a solution that does not satisfy the size
constraints, we can search for the second shortest path in the graph and again check whether the size constraints
are satisfied. We can simply continue with this routine, until we find the first feasible path, that is, we search
the third, fourth, and fifth shortest path in the graph and so on. After a finite number of iterations we gain the
optimal solution of the line simplification problem with size constraints. Hopefully, there is a feasible solution
that requires the addition of only a few additional edges, compared with the optimal solution of the relaxed
problem. In this case, the method will find the optimal solution in relatively short time.

Normally, the K shortest path problem requires an instance of the shortest path problem (G , l , u , v) and the
parameter K as input. The problem is to find a set of K paths, each being at least as short as any other path
that is not included in the set. However, we do not know how many paths we need to investigate, in order to
find a feasible one. This means, we cannot specify the parameter K in advance. Nevertheless, we can apply
the existing algorithm of Hoffman & Pavley (1959) for our problem. It defines a simple procedure that allows
a given path to be deviated, such that each Nth shortest path pN with N > 1 can be obtained by deviating
one of the paths p1 , p2 , . . . , pN−1. The algorithm starts with the shortest path p1 and adds all deviations of
p1 to a list, ordered by their lengths. Consequently, the first path in this list is the second shortest path p2.
Its deviations are added to the list in the correct order, which implies that the next path in the list is p3. This
procedure can be continued without specifying the number of paths in advance. The list will simply grow until
we find a feasible path.

If we are unlucky, we need to process many iterations until we find a feasible path. As the list can grow extremely
fast, we might wish to abort the procedure after a certain number of iterations. In this case, we could still
apply the approach by integer programming, using the formulation of Dumitrescu & Boland (2001). However,
this approach was not tested. The next section presents the results that were obtained using the algorithm of
Hoffman & Pavley (1959).

6.2.3 Summary of the developed line simplification method

The line simplification method based on the shortcut graph Gscut(V, A) was implemented in a C++ program.
The developed method was implemented to simplify a boundary that separates two areas. To simplify the whole
planar subdivision, such boundaries are simplified in succession. For this purpose it is practical to maintain the
polygons in a topological data structure that explicitly represents incidence relationships between nodes and
arcs as well as arcs and faces. The doubly-connected edge list, which is explained by de Berg et al. (2008), was
applied for this task.

The basic optimization criterion was applied, that is, the length of each arc was defined by 1. However, several
hard constraints were considered to ensure quality. These are summarized by the following list:

• The simplified lines must satisfy the bandwidth criterion. The parameter ε is defined according to the
typical resolution of a paper map, which is 0.2 mm. Hence, for the target scale 1:250 000, we need to
define ε = 50 m.

• The simplified lines must not intersect. In order to ensure this requirement, the heuristic approach of
de Berg et al. (1998) is applied, i.e., shortcuts that potentially violate the simplicity requirement are
excluded in advance from the arc set A.

6.2. Line simplification 71

• Size thresholds for areas are ensured applying the newly developed method.

Initial tests with these requirements revealed that the method often produces unwanted sharp corners. Therefore,
we add the following requirement for shortcuts, which is illustrated in Fig. 6.9:

• A shortcut (vi, vj) is only allowed if the angle α between the corresponding line and the line segment
(vi, vi+1) does not exceed a user-defined threshold αmax. The same requirement must hold for the angle
between (vi, vj) and (vj−1, vj). By experiments, a setting of αmax = 30◦ was found to give satisfactory
results.

v1 v6

v3 v4

v2 v5

(a) an input line

v1 v6

v3

v2 v5

α

(b) the result of applying shortcut (v3 v5)

Fig. 6.9: A shortcut that does not satisfy the angle constraint with αmax = 30◦: The angle α between lines (v3 v4) and
(v3 v5) is too wide.

Figure 6.10 shows a result that was obtained with this setting. The sample is a small part of a planar subdivi-
sion that contains 733 areas and 52832 vertices. The accuracy of the lines corresponds to scale 1:50 000. The
simplification of the whole subdivision took 6 minutes on a computer having 1 GB RAM and a 2.8 GHz In-
tel Pentium 4-CPU. This also includes the time that was needed to read the set of input polygons, to build the
topological data structure from the geometries, and to write the polygons to a file. The simplified subdivision
has 10413 vertices, which means that the number of vertices was reduced by 80%.

ε = 50 m

(a) input dataset with the error tolerance ε (b) the dataset after line simplification (c) result in (b) at
scale 1:250 000

Fig. 6.10: A result of the developed line simplification method. The sample in (a) was obtained by aggregating areas
of the ATKIS DLM 50 to satisfy size thresholds for the ATKIS DLM 250, using the method that is presented in the next
chapter. It is part of the sample in Fig. 8.8.

72

73

Chapter 7

A new Approach to Area Aggregation
by Optimization

We now concentrate on the aggregation of areas in a planar subdivision. Section 7.1 gives a general, graph-
theoretical problem statement that builds on our definitions of logical consistency and semantic accuracy.
Section 7.2 specifies the problem with respect to different compactness measures. Section 7.3 proves that the
area aggregation problem is NP-hard. As we cannot hope for an efficient and exact algorithm, we turn to
mixed-integer programming and heuristics.

We introduce different MIPs for the aggregation problem, which were inspired by formulations of Zoltners &
Sinha (1983), Williams (2002), and Shirabe (2005b) for spatial allocation problems. We have presented this
new approach to generalization by mixed-integer programming in two publications (Haunert & Wolff, 2006;
Haunert, 2007b). Similarities and differences of the developed MIPs and the existing MIPs for spatial allocation
will be explained. We classify the developed formulations according to two different models:

• The MIP in Sect. 7.4 defines each composite region by selecting a node as a center. The region’s com-
ponents are explicitly assigned to the center of the region. There are different possibilities to ensure
contiguous regions in this model; we will discuss two of them in detail. The number of variables and
constraints in this MIP is O(|V |2) with V being the set of areas in the input map.

• A different approach is presented in Sect. 7.5. We will introduce a MIP that also selects nodes as centers of
regions. However, the assignments of components to centers will not explicitly be expressed by variables.
Instead, we define a flow on the adjacency graph of the planar subdivision that implies to which center a
node belongs. As a consequence we get by with a linear number of variables and constraints.

Both approaches only allow subsets of the compactness measures that we discuss. We will discuss in detail
which combinations of measures can be applied.

Section 7.6 presents heuristics that can be used in conjunction with the presented MIPs to speed up the
processing. This includes a technique that decomposes a problem instance into smaller instances and so allows
large datasets to be processed and updates to be handled efficiently. For the first presentation of this method
refer to Haunert (2007a). Section 7.7 defines a neighborhood function for the problem and presents an alternative
heuristic approach by simulated annealing that uses this neighborhood definition. For the original presentation
of the simulated annealing method, refer to Haunert (2007c). Sect. 7.8 discusses possible combinations of the
proposed methods.

74 Chapter 7. A new Approach to Area Aggregation by Optimization

7.1 Definition of the problem AREAAGGREGATION

We define G(V, E) to be the adjacency graph (the dual graph) of the planar subdivision, which contains a node
for each region of the input map and an edge between two nodes, if the corresponding regions share a common
boundary. A region in the target scale is defined by a pair (V ′, γ′) with V ′ ⊆ V and γ′ ∈ Γ. Its class is defined
by γ′ and its shape can be obtained by union of shapes that correspond to nodes in V ′. To aggregate the nodes
into multiple regions we search a partition of V referred to as P = {V1, V2, . . . , Vk} with k ∈ {1 , 2 , . . . , |V |}.
The term partition implies that different parts do not intersect and the union of all parts equals V . Note that
we do not assume that the number of output regions k is given in advance. We now give the formal problem
statement. Figure 7.1 shows an example.

Problem (AreaAggregation). Given a tuple (G, w, γ, θ, d, c, s) where:

• G(V, E) is a planar graph,
• w : V → R

+ refers to node weights, i.e., area sizes,
• γ : V → Γ represents classes of nodes and Γ refers to the set of all classes of the map,
• θ : Γ→ R

+ refers to weight thresholds corresponding to minimal allowed sizes for classes,
• d : Γ2 → R

+
0 expresses the semantic distance between classes,

• c : 2V × Γ→ R
+
0 expresses the non-compactness of a composite region, and

• s ∈ (0, 1) is a weight factor that expresses the trade-off between the objectives for minimum class change
and compactness,

find a partition P = {V1 , V2 , . . . , Vk} of V and classes γ′
1 , γ′

2 , . . . , γ′
k ∈ Γ with k ∈ {1 , 2 , . . . , |V |}, such that

• for each i = 1 , 2 , . . . , k (i.e., for each composite region) the following three requirements hold:
(R1) the graph induced by Vi is connected (i.e., the composite region is contiguous),
(R2) there is a node v ∈ Vi with unchanged class, i.e., γ′

i = γ(v), which we call the center, and
(R3) Vi has total weight at least θ(γ′

i),

• and the cost f = s · fclass + (1 − s) · fcomp is minimized, where:

fclass =
∑k

i=1

∑
v∈Vi

w(v) · d(γ(v), γ′
i) is the cost for class change and

fcomp =
∑k

i=1 c(Vi, γ
′
i) is the cost for non-compact shapes.

(a) map representation

v1 v2 v3

v4 v5 v6

v7 v9v8

(b) graph representation

Fig. 7.1: An instance of AreaAggregation and a solution P =
{{v1, v2, v4}, {v3, v5, v6}, {v7, v8, v9}

}
, both displayed

in map and graph representation. Assuming that all areas in the input have unit size, all aggregates satisfy the weight
threshold θ = 3.

In the following we call any region that fulfills the requirements (R1)–(R3), feasible. We call any region that
fulfills requirement (R3), weight-feasible. Note that, according to the problem definition, each node is free to
become a center of a region or not. The term connectivity is used instead of contiguity when discussing the
problem in terms of graphs: a region with node set V ′ ⊆ V is contiguous if and only if the subgraph of G induced
by V ′ is connected. The cost function f corresponds to the objective (5.4), which was defined in Sect. 5.3.3 to
express semantic accuracy. This combines the cost for class changes fclass, which is based on the function d,
and the cost for non-compact shapes fcomp, which is based on the function c.

7.2. Compactness of shape 75

7.2 Compactness of shape

In Sect. 7.1 we expressed the objective for compact shapes in a very general way by the function c. We specify
this definition here, in order to model the preferences of cartographers with respect to compactness. MacEachren
(1985) gives a detailed discussion of different compactness measures. These could be expressed as objectives
to be optimized in the area aggregation problem. However, we need to be careful in selecting a measure, as
our choice will affect the solvability of the problem: with most measures, certain approaches, in particular
mixed-integer programming, will become impossible. This is because most measures contain non-linear terms.

Due to this reason, only one of MacEachren’s measures, which is based on the perimeter and the area of a
shape, will be reviewed in Sect. 7.2.1. We will simplify this measure by neglecting the influence of the area
(Sect. 7.2.2). In Sect. 7.2.3 we discuss another approach, which is based on distances to a center. This has been
used to model compactness in several mixed-integer programs for districting problems. However, we define a
new version of this measure that is based on shortest path lengths, instead of direct distances.

7.2.1 A classical perimeter-area-measure

The first measure investigated by MacEachren (1985) is:

c1 =
perimeter

2 · √π · area
. (7.1)

This results in c1 = 1 for circles and in higher values for more complex shapes. Another important feature
of this measure is its size invariance, which means that the value of c1 does not change if a shape is scaled.
These characteristics remain when applying an exponent to c1, which is often done to charge very high costs
for non-compact shapes.

Let’s now discuss the setting c := c1 for our global optimization problem: for each composite region we charge
an individual cost equal to c1. We consider two different solutions for the same instance, both containing regions
that only differ in size. For example, one solution contains 4 square-shaped regions of size 2 m × 2 m, and
the other solution contains 16 squares of size 1 m × 1 m (Fig. 7.2). If we now charge the same cost for the
non-compactness of each composite region, the first solution with few large regions will be preferred, simply
because a smaller number of equal penalties is charged.

(a) a partition with 4 shapes (b) a partition with 16 shapes

Fig. 7.2: Two partitions with shapes that only differ in size.

To define a measure that results in equal costs for the discussed partitions, we can charge an individual cost
proportional to the size of a region, that is:

c2 = area · c1 =
1

2
√

π
· √area · perimeter . (7.2)

Indeed, setting c := c2 seems to be a good choice, as the shapes in both solutions do not differ in terms of
compactness. However, the equation contains a square root of a variable measure (the area of a region in the
output) in a product with another variable (the perimeter). Unfortunately, we cannot express this using linear
terms only. At this point, our problem clearly exceeds the possibilities of mixed-integer linear programming.
However, in the next section we will simplify the measure, in order to get along with this technique.

76 Chapter 7. A new Approach to Area Aggregation by Optimization

Another possible approach would be to define the cost for a region by:

c3 = perimeter2. (7.3)

As c2, the measure c3 is neutral with respect to the size of the shapes in the resulting partition. This measure
could be expressed in a mixed-integer quadratic program, which consists of a quadratic objective function and
linear constraints. General solutions techniques also exist for this class of problems (Lazimy, 1982). Their
complexity, however, is much higher than in the linear case. Therefore, we do not follow this approach.

7.2.2 The perimeter as a measure of compactness

In order to introduce a linear approximation of the measure c2, let’s assume that the resulting regions in the
output have a reasonable and constant size. In this case we can simply define:

cperi = perimeter , (7.4)

and set c := cperi. Certainly our assumption is not very realistic, because, when minimizing the perimeter of
areas, the method will prefer results with few large regions. In the extreme example that the objective for class
change is neglected, the optimal result would be one big region containing all nodes. It is clear that this result
is not wanted.

To cope with this, we could introduce additional requirements like an upper bound for the size of regions or a
lower bound for the number of elements in the partition P . In Sect. 7.6.2 we propose an alternative heuristic
approach that is based on a set of nodes that are predefined as centers. With this approach, we can avoid
regions that are too large by defining that a region must not contain more than one center. Our assumption
becomes much more realistic with this requirement, since a region cannot become too small due to the hard
size constraints, and not too large, if the centers are appropriately defined.

To formally express cperi as a function of a node set V ′ ⊆ V , we define the function λ : E → R
+, such that λ(e)

with e = {u, v} ∈ E is equal to the length of the common boundary between the areas corresponding to u and
v. The measure cperi becomes:

cperi(V ′) =
∑
e∈E′

λ(e) , (7.5)

with V ′ ⊆ V and E′ being the set of edges with one endpoint in V ′, that is:

E′ =
{{u, v} ∈ E

∣∣ u ∈ V ′ ∧ v �∈ V ′}. (7.6)

We neglect boundaries to the exterior of the dataset in this definition, simply because these boundaries are
constant and cannot be optimized.

Though measures of compactness are often applied as rather abstract driving forces towards simpler shapes,
the measure cperi has a very concrete meaning: in case boundaries are drawn with dark color, minimizing the
boundary length of the partition can be regarded as reducing the clutter on the map. This is a common aim of
map generalization (Jansen & van Kreveld, 1998). Also the previously discussed iterative approaches to area
aggregation in map generalization consider the length of boundaries as criterion when choosing a neighbor for
merging (van Oosterom, 1995).

We can define a reasonable variant of the measure cperi by setting λ(e) equal to the number of line segments of
the boundary. With this we can minimize the number of line segments in the partition, which is relevant for
data compression. However, to produce well-generalized maps, we consider the length of the boundary to be
more important.

7.2.3 Measures based on distances to a center

A measure of compactness that is commonly applied to districting problems is based on Euclidean distances
between centroids (Cloonan (1972), Zoltners & Sinha (1983), Schröder (2001)). The region defined by the set
V ′ ⊆ V contains a node u ∈ V ′ whose corresponding shape defines the reference point of the region by its
centroid. The region is considered to be compact, if the centroids of all other nodes in V ′ are close to this.

7.2. Compactness of shape 77

(a) based on direct distances (cdist) (b) based on shortest path lengths (cpath)

Fig. 7.3: Compactness of a typical region based on distances to a center.

To respect different weights of nodes, a penalty is charged for each node, which is equal to the product of the
node’s weight and the distance of its centroid from the reference point. Figure 7.3(a) illustrates this measure
for a region with several components. For each component, a line connecting the centroid with the reference
point is displayed.

The measure is often applied to the problem of minimizing average travel distances to certain facilities like
stores. For this problem, the measure has a very concrete meaning. Though the issue of travel distances is not
relevant for the area aggregation problem, we can apply the measure here as well, yet with a more abstract
meaning. Hess & Samuels (1971) use a similar compactness measure based on squared Euclidean distances.
With this measure, higher penalties are charged for long distances.

To use the distance-based measures for the area aggregation problem, we define the reference point by the
centroid of an area that corresponds to a node of unchanged class. In other words, we enforce that the center,
according to the problem definition and the reference point, are defined by the same node. This definition
will slightly ease the problem: we will need less variables to express the model. Nevertheless, the approach is
reasonable, since it is undesirable for nodes with an unchanged class to only appear on the margin of a region. In
contrast, it is preferable for nodes to ‘gather around’ the center of an unchanged class. If there are several nodes
with this class, then among these the center is defined by the node for which the overall penalty is minimal.

It is clear that, according to this definition, the compactness for the same subset of nodes V ′ ⊆ V is measured
differently, if the corresponding region receives different classes. Because of this, we define c not only as a
function of subsets of nodes, but also of classes.

To formalize this measure in a general way, we define the distance function δ : V 2 → R
+
0 between pairs of nodes.

With this, we define the measure cdist : 2V × Γ→ R
+
0 as:

cdist(V ′, γ′) = min

{ ∑
v∈V ′

w(v) · δ(v, u)
∣∣∣ u ∈ V ′ ∧ γ(u) = γ′

}
. (7.7)

Defining δ(v, u) to be the Euclidean distance between the centroids, cdist models the commonly applied measure
to minimize travel distances. We will always use this setting when applying cdist. To formalize the measure of
Hess & Samuels (1971), we can define δ(v, u) as the squared Euclidean distance. Generally, any other function,
for example, polynomials of higher degree, can be applied.

We can define another variant of cdist with lengths of shortest paths instead of direct distances. For this, we
embed the graph G in the plane such that each node is located at the centroid of the corresponding area and
each edge is drawn with a straight line segment. The distance δV ′ between two nodes u and v of the same
region V ′ ∈ P is measured on this geometric graph. It is defined as the length of the shortest path connecting
u and v without leaving the region V ′. With this definition, the distance between two nodes depends on the
set of nodes that is assigned to the same region, that is, it is different for different sets V ′. However, we can
formalize the measure in a straightforward way, replacing δ in Eq. (7.7) with δV ′ . This yields:

cpath(V ′, γ′) = min

{ ∑
v∈V ′

w(v) · δV ′(v, u)
∣∣∣ u ∈ V ′ ∧ γ(u) = γ′

}
. (7.8)

78 Chapter 7. A new Approach to Area Aggregation by Optimization

(a) based on direct distances (cdist) (b) based on shortest path lengths (cpath)

Fig. 7.4: Compactness of a hypothetical region based on distances to a center; squares depict optimal centers.

Figure 7.3(b) illustrates this measure. A black line between two nodes is drawn if the corresponding edge
belongs to a shortest path between a node of the region and the center. Together these edges define the shortest
path tree. The measure cpath is not defined if the center cannot be reached from a node of the same region via
such a path. We can neglect this case, since connectivity is a hard constraint in the area aggregation problem.

Figure 7.4 illustrates the measures cdist with direct distances (a) and cpath with shortest path lengths (b) for
two hypothetical, spiral regions. Since average travel distances to the center are small when measured on direct
lines, the regions will be considered relatively compact with cdist. Conversely, the average length of the shortest
path to the center is very high when allowing only for connections within regions. In the presented example,
the measure cpath certainly better reflects the aim for compactness in map generalization. We will present a
possibility to model this measure by means of linear expressions in Sect. 7.5.

Complex cases like the example in Fig. 7.4 will seldom appear in practice. The example that was presented in
Fig. 7.3 certainly presents a much more realistic case. Because of this, we consider the measures cdist and cpath

similarly relevant.

Like cperi, the measures cdist and cpath are not size invariant, since distances to centers are shorter for smaller
shapes. Nevertheless, the functions cdist and cpath will attain high values for complex shapes. Presumably, both
measures will only coarsely reflect the geometrical characteristics of a shape. However, we can combine them
with cperi. We suggest a combination of cdist with cperi, by introducing another weight factor s′ ∈ [0 , 1]. With
this we define a trade-off by:

c(V ′, γ′) = s′ · cdist(V ′, γ′) + (1− s′) · cperi(V ′) . (7.9)

7.3 Complexity of AREAAGGREGATION

We now assess the complexity of AreaAggregation. We show that the problem is NP-hard even if we define
certain simplifications. A simpler proof for a less restricted problem is given by Haunert & Wolff (2006).

First we define the decision version of AreaAggregation: Given an instance of AreaAggregation
(G, w, γ, θ, d, c, s) and an integer C, does there exist a solution with cost C or less? If we can prove that
this problem is NP-hard we also know that the optimization version of the problem is NP-hard.

Theorem 1. Given an instance of AreaAggregation (G, w, γ, θ, d, c, s) and an integer C, it is NP-hard to
decide whether a solution with cost at most C exists. This is still true if the number of classes is restricted to
two, the threshold θ is defined to be the same for all classes, all nodes have equal weights, the distance between
each two different classes is the same, and the compactness of shapes is not considered, that is, s = 1.

As usual we prove NP-hardness by reduction from a problem that is known to be NP-hard. In our proof we
reduce from PlanarVertexCover, which is known to be NP-complete (Garey et al., 1974). We need to
show that, for each instance of PlanarVertexCover (G , C), we can construct an instance of the decision
version of AreaAggregation, that is, (G∗ , w , γ , θ , d , c , s) and the maximally allowed cost C∗, such that the
answer to the second problem is ‘yes’ if and only if the answer to the first problem is ‘yes’. This means that,
if there was an efficient algorithm for AreaAggregation, we could efficiently solve PlanarVertexCover

7.3. Complexity of AREAAGGREGATION 79

as well. In other words, solving AreaAggregation is at least as hard as solving PlanarVertexCover. As
PlanarVertexCover is NP-hard, AreaAggregation is NP-hard, too.

Certainly, there are other possibilities to prove NP-hardness of the area aggregation problem. To understand
the proof it is not essential to comprehend how this particular reduction was found. In fact, several attempts
were needed to develop the presented proof. For inexperienced readers it is advisable to first accept the way
the instance of AreaAggregation is constructed and then to follow the reasoning why this approach works.

Proof. Given an instance of PlanarVertexCover, that is, a planar graph G(V, E) and an integer C, we
construct the input graph G∗(V ∗, E∗) for the aggregation problem as shown in Fig. 7.5. We define the set of
classes Γ = {black , white}. For each node v ∈ V , we add three black nodes to V ∗. We refer to an arbitrary
one of them as the node corresponding to v. The three nodes are connected by edges forming a triangle. For
each edge {u, v} ∈ E, we add |V | white nodes to V ∗. We connect each of these nodes by edges with the nodes
corresponding to u and v. We define a unit weight w = 1 for each node and the threshold θ = 2 for each class. For
changing the class of a node, we charge one unit of cost, that is, we define d(white, black) = d(black, white) = 1
and d(white, white) = d(black, black) = 0. The maximally allowed cost is defined by C∗ = C.

We now prove that there is a solution of the instance of AreaAggregation with cost C∗ if and only if there
is a vertex cover of G with cardinality C.

For each vertex cover of G with cardinality C̄, there is a corresponding solution of the aggregation problem with
cost C̄: in G∗, we simply need to change the black nodes that correspond to the nodes in the vertex cover of G
into white nodes. As the vertex cover includes an endpoint for each edge in E, all white nodes will get a white
neighbor. For each triangle of black nodes, at least two adjacent nodes will remain black. Thus the subgraphs
induced by the white and by the black nodes are all weight-feasible.

It remains to show that, for any solution of the aggregation problem with cost C̄, there is a vertex cover of G
with cardinality C̄. Let’s assume that no such vertex cover exists, that is, the cardinality of a minimum vertex
cover of G is larger than C̄. This implies that there is at least one edge {u, v} in E such that the black nodes in
V ∗ corresponding to u and v keep their colors (classes). In this case, we can only satisfy the weight thresholds
by changing the color of all white nodes in V ∗ that were added for the edge {u, v}. This, however, is very
expensive, that is, we need to spend a cost of |V |. As |V | is the cardinality of a trivial vertex cover of G, that
is, the one including all nodes in V , we have found a contradiction to our assumption.

Note that our reduction can be done in polynomial time. Therefore, we can say that PlanarVertexCover
polynomially reduces to AreaAggregation.

G G∗

Fig. 7.5: Proof of hardness by reduction: An instance of
PlanarVertexCover (left) and the corresponding in-
stance of AreaAggregation.

G G∗

Fig. 7.6: A vertex cover of the graph G (square vertices,
left) and the graph G∗ with a corresponding solution of
the AreaAggregation instance (right).

Again, Figures 7.5 and 7.6 show how the reduction works: let’s assume that we want to know whether there is
a vertex cover of G (Fig. 7.5, left) that has cardinality C = 2 or less. In order to solve this original problem
we could construct the corresponding instance of AreaAggregation (Fig. 7.5, right) and ask whether it can
be solved with cost C∗ = 2. Indeed, there is such a solution (Fig. 7.6, right): exactly two nodes needed to
change their class from black to white. Consequently, a hypothetical algorithm for AreaAggregation would

80 Chapter 7. A new Approach to Area Aggregation by Optimization

return the answer ‘yes’ and a list of re-colored nodes. This implies that there is also a vertex cover of G with
cardinality 2 (Fig. 7.6, left), which is equal to the set of re-colored nodes in V ∗. Thus, we can answer our original
question with ‘yes’. The solution of AreaAggregation implies a solution of PlanarVertexCover.

Since NP-hardness is proven for equal distances between classes, it is also assured for symmetric distances, that
is, if d(γ1, γ2) = d(γ2, γ1) for all γ1 and γ2 in Γ. In Sect. 5.3 we argued that the distance function d is indeed
symmetric if we define its values based on lengths of shortest paths in a graph. The proof shows that the
problem does not become easier in this case.

To show that the decision version of AreaAggregation is NP-complete, it remains to show that it is in
NP . Recall from Sect. 3.2.2 that problems in NP are in a way easier than other problems: if we had a
procedure for guessing a solution, we could apply an efficient algorithm to verify this solution. Verifying a
solution of AreaAggregation implies to check its feasibility and to calculate its costs. If this can be done in
polynomial time, the problem is in NP . The complexity of calculating the costs depends on the definition of
the compactness function c. However, it is reasonable to assume that this can be assessed efficiently. This is
certainly true for all compactness measures that were introduced in Sect. 7.2.

Proposition 1. Given that, for any feasible region, the value of the function c can be calculated in polynomial
time, the decision version of AreaAggregation is NP-complete.

Proof. Assuming that we guessed a partition and new classes for the obtained regions, we can efficiently check
whether this solution is feasible and we can efficiently calculate its cost. Consequently, the decision version of
AreaAggregation is in NP . Since it is NP-hard and in NP , it is NP-complete.

Since there is no hope of finding an exact polynomial time algorithm for AreaAggregation, we focus on
heuristics and mixed-integer programming.

7.4 A MIP with assignments of nodes to centers

In order to introduce a MIP for AreaAggregation, we first consider a simplified problem. We neglect the
hard constraint for contiguity of regions (requirement (R1)) and the objective for compact shapes, that is, we
define s := 1. The remaining problem demands a partition of V into weight-feasible parts of uniform class, such
that each part contains at least one node with its class unchanged. A solution of this problem can be defined
by assigning nodes to centers. In this model the meaning of a center is twofold: it defines the new class for all
its assigned nodes and, by this, also fixes the class-dependent weight threshold. Initially, all nodes are assumed
to be potential centers, resulting in variables:

xuv ∈ {0, 1} , with xuv = 1 if and only if node v ∈ V belongs to center u ∈ V.

With these variables, we define the basic IP as follows:

minimize
∑
u∈V

∑
v∈V

w(v) · d(γ(v), γ(u)) · xuv (7.10)

subject to ∑
u∈V

xuv = 1 for all v ∈ V , (7.11)

∑
v∈V

w(v) · xuv ≥ θ(u) · xuu for all u ∈ V , (7.12)

xuv ≤ xuu for all u , v ∈ V , u �= v. (7.13)

Constraint (7.11) ensures that each node is assigned to exactly one center. Constraint (7.12) enforces that all
nodes that are assigned to the same center define a weight-feasible region. The last constraint is needed to allow
only assignments to nodes that are assigned to themselves, in other words, to those that are selected as centers.

The basic IP has O(|V |2) variables and constraints. Note that, by assigning nodes to classes and not to centers,
a more compact formulation of the simplified problem would be possible. However, the extensibility of the
model would be limited.

7.4. A MIP with assignments of nodes to centers 81

7.4.1 A heuristic approach: connectivity based on precedence relationship

In this section we discuss an extension of the basic IP that ensures connectivity, that is, contiguity of regions.
The method is adopted from Zoltners & Sinha (1983) who investigated the problem of defining contiguous
sales territories by assigning geographic units to given centers. Caro et al. (2004) use this method for school
redistricting. In contrast to these approaches, the method will be applied here to solve the problem for an
unknown set of centers.

Evidently, in order to end up with contiguous regions, a node can only be assigned to a distinct center, if at
least one of its neighbors is assigned to the same center. This requirement is emphasized by Wright et al.
(1983). However, it is important to note that this does not suffice. Consider two adjacent nodes being assigned
to the same center: both nodes will mutually satisfy their requirements, without ensuring the connectivity to
the center. To cope with this, we introduce an acyclic precedence relationship. With this, it will be possible to
ensure connectivity.

We first define a directed graph G′(V, A) with two converse arcs for each edge in E, that is,

A =
{
uv

∣∣ {u, v} ∈ E
}

. (7.14)

Additionally, we introduce arc lengths l : A → R
+
0 . Given a center u ∈ V and a node v ∈ V , such that u �= v,

we define the set of predecessors of v with respect to center u as:

Predu(v) :=
{
w ∈ V

∣∣ L(u , w) < L(u , v) ∧ {v, w} ∈ E
}

,

with L : V 2 → R
+
0 being the length of the shortest path in G′ between two nodes using arc lengths l.

Note that this definition of L is different from the definition of δV ′ in Sect. 7.2.3, because shortest paths are
not constrained to be within regions of the resulting map. In contrast, L(u, v) is constant for given nodes u
and v and can be computed in advance for all pairs of nodes. This problem is commonly referred to as the “All
Pairs Shortest Path Problem”. A simple solution of this problem is to apply |V | times the algorithm of Dijkstra
(1959). With this approach, we can solve the problem in O(|V |2 log |V |) time.

Different possibilities exist for defining the edge lengths. The simplest is to define l(a) := 1 for all a ∈ A. An
example of the precedence relationship with this setting is illustrated in Fig. 7.7(a). Arcs are drawn from each
node to its predecessors. The resulting directed graph is acyclic and the center is the only sink. For some edges
of the adjacency graph, both endpoints have the same distance to the center. These edges are displayed as
dashed lines. However, when defining non-uniform arc lengths, these cases are rare exceptions.

(a) precedence relationship with respect
to a center (displayed as square)

(b) a feasible region (c) a non-feasible region

Fig. 7.7: Precedence relationship and the feasibility of regions with constraint (7.15).

Before defining our setting for l, we introduce the constraint for connectivity. The basic IP from Sect. 7.4 can
be modified by replacing constraint (7.13) with the constraint:

xuv ≤
∑

w∈Predu(v)

xuw for all u , v ∈ V , u �= v . (7.15)

82 Chapter 7. A new Approach to Area Aggregation by Optimization

This constraint means that a node v can only be assigned to a center u, if at least one of its predecessors with
respect to u is also assigned to this center. The constraint clearly forbids disconnected regions, since the center
can be reached from any assigned node via predecessors without leaving the region. Figure 7.7(b) shows an
example that satisfies constraint (7.15).

In addition, by applying constraint (7.15), several contiguous regions will be excluded. An example of this
is displayed in Fig. 7.7(c). The region does not contain any predecessor of the node located in the lower left
corner. By defining another center, the same set of nodes might constitute a feasible region, since the precedence
relationship is defined individually for each potential center. Nevertheless, we cannot guarantee the feasibility
of contiguous regions. Zoltners & Sinha (1983) legitimate the restriction of their model with their preference for
compact sales districts: the non-feasible contiguous regions are likely to be non-compact. So, they can probably
be excluded without loosing good solutions. As compactness is also an objective of map generalization, the
application of this strong connectivity definition is a promising approach. Since the optimal solution might be
missed using this, we will refer to it as a heuristic approach.

The definition of the arc lengths certainly affects the validity of this method. A reasonable definition is:

l(uv) = w(v) . (7.16)

With this definition, the size of the smallest contiguous region containing two nodes can be expressed by a
function wmin : V 2 → R

+
0 , with:

wmin(i, j) = w(i) + L(i, j) . (7.17)

Since the first summand w(i) is constant for a fixed center i, Eq. (7.16) defines a node to be close to the center,
if its minimum region with i is small.

Estimating the consequences of the requirement for strong connectivity is very difficult. Because of this, we
will introduce a model in the next section that guarantees connectivity in a general sense. Comparisons of the
results obtained with the proposed methods will show whether the restrictions are acceptable, when applying
the defined setting. These tests will be presented in Chapter 8.

In the following sections, the MIP made up by the objective function in (7.10) and the constraints in (7.11),
(7.12), and (7.15) will be called the P-R MIP. It only comprises binary variables, but we will introduce continuous
variables in Sect. 7.4.4 to factor in compactness. Appendix A shows the P-R MIP for a small problem instance.

7.4.2 An exact approach: connectivity based on a spanning tree

This section introduces an extension to the basic IP that models connectivity in a general sense. The method
is based on an idea of Williams (2002) for the problem of optimally selecting a set of nodes from a planar graph
such that the selected node set induces a connected subgraph. In contrast to this problem, area aggregation
aims to group all nodes into several parts, each defining a contiguous region. We show that an extension of the
method by Williams is possible, but the size of the IP will be quadratic and not linear in the number of nodes.

The method of Williams can be outlined as follows: the selected nodes define the node set of a digraph. In
order to ensure connectivity, this digraph is enforced to be a subtree of a spanning tree T of G. Cycles in this
spanning tree are forbidden by introducing a spanning tree T̄ on the dual graph Ḡ of G. By claiming that either
an edge is part of T , or its dual edge is part of T̄ , cycles in T and T̄ become impossible.

To explain the approach for the area aggregation problem in detail, we apply the definition of arcs A according
to Eq. (7.14). Evidently, a region with nodes V ′ ⊆ V is contiguous, if and only if there is a subset A′ ⊆ A, such
that A′ defines a spanning tree of V ′. To express the selection of an arc a for the spanning tree of the region
with center u, variables tua ∈ {0, 1} are introduced. Constraints will be imposed on these variables to ensure
that arcs with tua = 1 form a tree with root u and that all nodes of the tree are assigned to u.

Constraint (7.18) ensures that, if and only if a node v is assigned to center u with v �= u, then there is one
outgoing arc of v that is selected for the center’s tree. Constraint (7.19) defines that, if node v does not belong
to center u, there is no incoming arc that is selected for the tree with root u.∑

a=vw∈A

tua = xuv for all u , v ∈ V , u �= v (7.18)

tua ≤ xuv for all u , v ∈ V, a = wv ∈ A (7.19)

7.4. A MIP with assignments of nodes to centers 83

r

r̄

(a) initial setting: displayed arcs can be
selected for spanning trees on G (black)
and its dual Ḡ (red)

r

r̄

(b) a spanning tree T (arcs with Ta = 1 bold
black) and its corresponding tree T̄ on the
dual graph (arcs with T̄ā = 1 bold red)

(c) a partition of V with selected arcs,
i.e., arcs with tua = 1 for centers u
(squares); constraint (7.24) restricts
selectable arcs to T (dashed)

Fig. 7.8: Reduction of G to a spanning tree T according to Williams (2002) and a partition of T into subtrees.

It remains to forbid cycles in the digraphs of arcs that are selected for the same center. We can exclude cycles
by defining a spanning tree T on G and a spanning tree T̄ on the dual graph Ḡ(V̄ , Ē) of G. Two arbitrary nodes
r ∈ V and r̄ ∈ V̄ are defined as roots of T and T̄ , respectively. Variables Ta ∈ {0, 1} with a = uv ∈ A , u �= r, are
introduced to express whether arc a is selected for T or not. The same is done for the dual tree, that is, variables
T̄ā ∈ {0, 1} with ā = ūv̄ ∈ Ā , ū �= r̄ and Ā = {ūv̄ | {ū, v̄} ∈ Ē} are introduced. Similar to constraint (7.18),
constraints (7.20) and (7.21) claim that, for each node in V \ {r} there is one outgoing arc in T and for each
node in V̄ \ {r̄} there is one outgoing arc in T̄ .∑

a=uv∈A

Ta = 1 for all u ∈ V \ {r} (7.20)

∑
ā=ūv̄∈Ā

T̄ā = 1 for all ū ∈ V̄ \ {r̄} (7.21)

Constraint (7.22) expresses that, for each edge e = {u, v} ∈ E, one of the arcs a = uv and b = vu belongs to T ,
or one of the arcs ā = ūv̄ and b̄ = v̄ū belongs to T̄ , with ē = {ū, v̄} being the dual edge of e.

Ta=uv + Tb=vu + T̄ā=ūv̄ + T̄b̄=v̄ū = 1 for all e = {u, v} ∈ E, ē = {ū, v̄} = Dual(e) (7.22)

This ensures that neither T nor T̄ contain any cycle. The effect of this constraint is illustrated in Figures 7.8(a)
and 7.8(b). We define the expressions Ta and T̄ā with a = ru ∈ A and ā = r̄ū ∈ Ā, which appear in this
constraint, as constants with value zero. This means that we cannot select arcs leaving the roots for the trees.

Finally, constraints (7.23) and (7.24) exclude cycles in the digraphs that were defined by variables tua in the
beginning. The first expression explicitly forbids cycles that only consist of two converse arcs. The second
expression forbids bigger cycles by claiming that an arc a = uv can only be selected, if itself or its opponent
b = vu belongs to the tree T . By this, we assure that the selected arcs form subtrees of T as being shown in
Fig. 7.8(c).

tua + tub ≤ 1 for all u ∈ V, a = vw ∈ A, b = wv (7.23)
tua ≤ Ta + Tb for all u ∈ V, a = vw ∈ A, b = wv (7.24)

Expressions (7.10)–(7.12) and (7.18)–(7.24) constitute an IP for the area aggregation problem that allows for
connectivity in a general sense. We refer to this IP as the Tree MIP. Just as the P-R MIP it only contains
binary variables, but again we will introduce continuous variables to model compactness. The Tree MIP required
the introduction of many auxiliary binary variables, but still it has a quadratic size. In order to reduce the
computation time, we will introduce a MIP of linear size in Sect. 7.5. First, however, we discuss how to express
compactness in the P-R MIP and the Tree MIP.

84 Chapter 7. A new Approach to Area Aggregation by Optimization

7.4.3 Expressing compactness according to the distance measure cdist

To minimize direct distances to centers, we get along with the variables of the basic IP. With the variables xuv

we can express the measure cdist from Eq. (7.7) simply as follows:

minimize
∑
u∈V

∑
v∈V

w(v) · δ(v, u) · xuv . (7.25)

For a single node v, a cost equal to w(v) · δ(v, u) is charged, with u being the center to which v is assigned, that
is, xuv = 1. Given a region V ′ ∈ P and a class γ′ ∈ Γ, one is free to choose any node u ∈ V ′ with γ(u) = γ′ as
center. By minimizing the expression in Eq. (7.25), the center will be chosen among them, such that the overall
penalty is minimal. Therefore, this formulation correctly reflects cdist. Since w(v) · δ(v, u) is constant for given
nodes u and v, the requirement for linear terms in the objective function is clearly satisfied. This is also true
for direct distances with exponents different to one. However, to define the length of the shortest connecting
path within the region, we need to know which other nodes belong to the same region. Therefore, we cannot
simply adapt the model to express the measure cpath.

7.4.4 Expressing compactness according to the perimeter measure cperi

To express the cost for perimeters of regions, we need additional auxiliary variables:

yue ∈ [0, 1] , with yue = 0, if at least one endpoint of e ∈ E does not belong to center u ∈ V .

We define constraint (7.26) to ensure this property of the variables yue, that is, yue with e = {v, w} is set to 0,
if xuv = 0 or xuw = 0:

yue

yue

≤
≤

xuw

xuv

}
for all u ∈ V, e = {v, w} ∈ E (7.26)

Charging a cost for the perimeters of regions can also be regarded as giving a benefit to edges contained in
regions. With the variables yue we can choose this approach. Let’s first express this alternative view for the
total cost for perimeters. The sum of perimeters in the result is equal to the sum of perimeters in the input
minus twice the length of boundaries that are eliminated by the aggregation, that is,

k∑
i=1

cperi(Vi) =
∑
v∈V

cperi({v})− 2 ·
∑

e∈E∗
λ(e) , (7.27)

with E∗ ⊆ E being the set of edges that are contained in a region and the boundary lengths λ : E → R
+
0

according to the definition in Sect. 7.2.2. As the first term on the right-hand side of Eq. (7.27) is constant, we
only need to minimize the second term. This can be expressed by:

minimize − 2 ·
∑
u∈V

∑
e∈E

λ(e) · yue . (7.28)

Since a benefit (a negative cost) is given proportional to yue, the variable yue always attains the value of its
upper bound. Hence yue is one for edges e ∈ E included in the region with center u. We keep the factor 2 in
objective (7.28). This allows the combination of cdist and cperi (Eq. (7.9)) to be expressed using a combination
of the objectives (7.25) and (7.28), simply by applying the weight factor s′.

7.4.5 Optimizing multiple objectives

In order to find a good solution, we need to apply a combination of multiple objectives. We choose the
combination of cdist and cperi in Eq. (7.9) to measure compactness. The resulting cost for non-compact shapes

7.5. An exact approach: a MIP of linear size based on a flow model 85

fcomp is combined with the cost for class change fclass as defined in Eq. (5.4). We can express this combined
objective in the P-R MIP and the Tree MIP as follows:

minimize s·
∑
u∈V

∑
v∈V

w(v) · d(γ(v), γ(u)) · xuv

+(1− s) · s′·
∑
u∈V

∑
v∈V

w(v) · δ(v, u) · xuv

−2 · (1− s) · (1− s′)·
∑
u∈V

∑
e∈E

λ(e) · yue.

(7.29)

Obviously, the first line and the second line in objective (7.29) can be summarized, since both contain the same
variables. However, we leave the formulation in the presented form to better distinguish different objectives.
Since the formulation includes binary and fractional variables, it defines a mixed-integer program. The objective
(7.29) is a fundamental part of the proposed aggregation method. It has been tested using different settings
for s and s′. The results of these tests will be presented and discussed in Chapter 8. First, however, we discuss
another MIP, which has a linear size.

7.5 An exact approach: a MIP of linear size based on a flow model

An approach to the problem of selecting an optimal, connected subset of nodes from a graph is given by Shirabe
(2005b). After a brief explanation of this method, a new approach is presented that takes up the general idea.

7.5.1 The flow model of Shirabe (2005b)

The method of Shirabe (2005b) is based on the definition of arcs in Eq. (7.14). Instead of binary variables that
express whether an arc is selected, nonnegative fractional variables are introduced that define a flow on an arc.
This flow can be regarded as the amount of a commodity being transported between two nodes. Connectivity
can be ensured with the following constraints that control the incoming and outgoing flow for each node:

• The center of the selected region is defined to be the only sink in the network, meaning that there is more
incoming than outgoing flow.
• All other nodes that are selected for the region are sources that contribute a positive amount of flow.
• Other nodes do not receive any flow.

Figure 7.9 shows an example of a resulting network. The network of arcs with positive flow can contain cycles
and does not necessarily define a tree. However, connectivity is ensured since all inserted flow will reach the
center without leaving the selected region.

1

1

1

1

2

3

3

Fig. 7.9: Connectivity based on the flow model of Shirabe (2005b). Each source (circles) contributes a flow of one unit.
There is a single sink (square), that is, a node that consumes a positive amount of flow.

86 Chapter 7. A new Approach to Area Aggregation by Optimization

The method of Shirabe (2005b) can be adopted for the area aggregation problem, that is, to produce multiple
connected regions: multiple variables could be defined for each arc, here, to express a separate flow for each
potential center. With this multi-commodity flow model, the basic IP from Sect. 7.4 could be extended, again
resulting in an IP of quadratic size. Since this extension of Shirabe’s model is rather straightforward, it will not
be presented here in detail. However, there is a more interesting extension of this model, which manages with a
single-commodity flow. It is very likely that this will result in a significant decrease of computation time, since
the resulting MIP has a linear size.

7.5.2 A new flow model for AREAAGGREGATION

The newly developed MIP presented in this section uses the definition of flow on the graph G. However, in
contrast to the approach of Shirabe (2005b), this is not only used to ensure connectivity, but also to ensure
weight-feasible regions and to express the objective of compact shapes. In order to achieve a MIP of linear
size, nodes will be assigned to classes and not to centers. This does not allow the compactness measure cdist

from Sect. 7.4.4 with direct distances, but it is possible to express the similar measure cpath with shortest path
lengths. Before discussing this possibility, let’s investigate the special case when the sole objective is to minimize
changes of classes. After a brief explanation of the idea, the formulation is presented in detail. Figure 7.10
illustrates this flow model.

1

4

2

3

4

2

3

142 2

3 2 2 3

1
4 2

2

6

Fig. 7.10: Connectivity based on our flow model. Arcs with positive flow (fa > 0 and Fa = 1) are displayed in bold
black. Node weights are displayed by bold numbers, values of the flow variables fa by italic numbers. Sinks (sv = 1) are
displayed by squares, sources (sv = 0) by circles. All aggregates exactly satisfy the weight threshold θ = 7.

Flow variables fa ∈ R
+ define the amount of a commodity being transported on arcs a ∈ A, with A = {uv |

{u, v} ∈ E}. The arcs with positive flow define a directed graph. The weakly connected components of this
graph yield the regions in our model. To indicate whether an arc carries a positive flow, a binary variable Fa

is introduced for each arc a ∈ A. The variable Fa is set to 1, if fa > 0. Introducing binary variables bvc, we
express whether a node v ∈ V receives class c ∈ Γ. To ensure that all nodes in a region receive the same class,
we enforce that two adjacent nodes should receive the same class, if a connecting arc carries positive flow. For
each node v ∈ V , a binary variable sv is introduced, to express whether it is a sink or a source of the network.
Sources contribute a positive amount of flow to the network that is equal to their weight. Thus, it is not possible
to create a connected component that only contains sources, and so, fixing the class of a sink, we are sure to
have at least one node of unchanged class in each region. Regions of sufficient size are obtained by claiming
that a sink receives a certain amount of flow: the sum of this flow and the sink’s own weight must not fall below
the weight threshold defined for the class of the sink.

Let’s investigate the defined requirements for the flow in the example of Fig. 7.10: the node in the upper left
corner is a sink, whose own weight is two. In order to satisfy the weight threshold of seven, the incoming flow
needs to exceed the outgoing flow by at least five units. In this example, the requirement is exactly fulfilled.
The node in the second row and third column of the grid-like graph is a source. It receives a flow of four and

7.5. An exact approach: a MIP of linear size based on a flow model 87

emits a flow of six, thus its net outflow is two, which equals its weight. Since these constraints are fulfilled for
all nodes, the resulting partition is feasible.

The following list summarizes the introduced variables:

fa ∈ [0, M] flow on arc a ∈ A, with M =
∑

v∈V w(v) being the total weight of the graph.
Fa ∈ {0, 1} Fa = 1 if arc a ∈ A carries positive flow.
bvc ∈ {0, 1} bvc = 1 if and only if node v ∈ V receives class c ∈ Γ.

sv ∈ {0, 1} sv = 1 if and only if node v ∈ V is a sink.

With the variables bvc, the objective for minimum class change is defined as follows:

minimize
∑
v∈V

∑
c∈Γ

w(v) · d(γ(v), c) · bvc. (7.30)

To link the variables Fa and fa, such that Fa = 1 if fa > 0 we add the following constraint:

M · Fa ≥ fa for all a ∈ A . (7.31)

The next constraint is similar to constraint (7.11) in the basic IP. Instead of claiming that each node is assigned
to one center, each node is assigned to one class:∑

c∈Γ

bvc = 1 for all v ∈ V (7.32)

Constraint (7.33) ensures that two adjacent nodes receive the same class if a connecting arc carries positive
flow.

buc ≥ bvc + (Fuv − 1) for all uv ∈ A, c ∈ Γ (7.33)

To ensure that a sink keeps its original class, the following constraint is added:

bv,γ(v) ≥ sv for all v ∈ V (7.34)

The next two constraints ensure the connectivity and weight-feasibility of regions with equal class. We will
discuss their effect in detail.∑

a=vu∈A

fa −
∑

a=uv∈A

fa ≥ w(v) − sv ·M for all v ∈ V (7.35)

∑
a=vu∈A

fa −
∑

a=uv∈A

fa ≤ w(v) − sv · θ(γ(v)) for all v ∈ V (7.36)

We consider first the case that node v is a source, meaning sv = 0. Then, the two inequalities can be summarized
by one equation: ∑

a=vu∈A

fa −
∑

a=uv∈A

fa = w(v) for all v ∈ V

This means just that the net outflow from a source equals the node’s weight. In the case that sv = 1, meaning
that v is a sink, constraint (7.35) is relaxed and constraint (7.36) becomes:∑

a=uv∈A

fa −
∑

a=vu∈A

fa + w(v) ≥ θ(γ(v)) for all v ∈ V,

meaning that the sum of the net inflow to a sink and its own weight, is not smaller than the threshold. So, the
requirement for the weight of a contiguous region with equal class is fulfilled.

Figure 7.11 shows a second, more complex feasible solution of the MIP with constraints (7.31)–(7.36), revealing
two facts: the arcs with positive flow can define cycles and a region can contain more than one sink, if it includes
more than one node of unchanged class. Regions with multiple centers which have different classes, are not
feasible. A region with K sinks is at least K times larger than the weight threshold for its class. However, such

88 Chapter 7. A new Approach to Area Aggregation by Optimization

1

4

3

3

4 2

3

3

142 2

3 2 2 3

1
4 2

2

1

1

18

3

Fig. 7.11: Connectivity based on our flow model without
constraint (7.37). The graph induced by arcs with positive
flow can contain cycles; a region can contain more than one
center. Labels have the same meaning as in Fig. 7.10.

1

4

2

3

4

2

3

142 2

3 2 2 3

1
4 2

2

6

Fig. 7.12: Definition of the aggregation result from a MIP
solution, when expressing compactness by the boundary
length. Though there is no exchange of flow between two
blue components, both components define a single region.

a region cannot necessarily be split into K feasible regions, which is simply because the flow coming from a
source can be split and run into different sinks.

Cycles and multiple sinks in a single region are unproblematic, because, in any case, the resulting partition
defines a feasible solution to the area aggregation problem. However, we define one more constraint, ensuring
that, for each region, the arcs with positive flow define a tree whose root is the only sink of the region. A simple
possibility to ensure this is to require that, for each source, there is at most one outgoing arc with positive flow
and, for each sink, there is none: ∑

a=uv∈A

Fa ≤ 1 for all u ∈ V. (7.37)

The solution presented in Fig. 7.10 satisfies this constraint. Adding constraint (7.37), we observed a small
improvement in terms of performance. The feasibility of potential aggregation results is not affected.

7.5.3 Considering compactness according to cpath and cperi

The flow variables fa can be used to express the compactness measure cpath, which is based on lengths δV ′ of
shortest paths that are constrained to a region V ′. To explain this, let’s observe a flow from its source v to the
sink: for each arc a of the taken path, the variable fa increases by w(v). With constraint (7.37) there is only
one sink per region. Because of this, we can express the aim for compactness as follows:

minimize
∑

a=uv∈A

δ(u, v) · fa. (7.38)

Optimally solving the MIP with this objective, the selected tree of arcs with positive flow will automatically
become equal to the region’s shortest path tree – otherwise the solution will not be optimal. The resulting cost
for a region is just the same as cpath as defined in Eq. (7.8).

To also measure the boundary length cperi in Eq. (7.5), we need to detect whether or not two adjacent nodes
belong to the same region. Generally, the variables bvc do not allow this question to be answered: in the optimal
solution two adjacent nodes can belong to different regions, though they receive the same class. In other words,
the case bvc = buc = 1 for some c ∈ Γ does not tell us whether the boundary corresponding to the edge {u, v}
remains in the generalized map. We could use the variables xuv from Sect. 7.4 instead, but with these variables
the resulting MIP would again have a quadratic size, meaning that the advantage of the presented formulation
would be lost.

However, for the special case when cperi is applied as the only compactness measure, that is, it is not combined
with cpath, a simpler extension is possible. In this case, we can assume without loss of generality that, in the

7.5. An exact approach: a MIP of linear size based on a flow model 89

optimal aggregation result, no two adjacent regions have the same class. When merging such regions, the cost
for the boundary length will always decrease, while the cost for class change will not change. This approach
requires a slightly different translation of the optimal MIP-variables into the optimal aggregation result. The
optimal partition is defined by the connected components of the graphs that are induced by nodes of equal
class, as shown in Fig. 7.12.

The formulation of this objective is very similar to the formulation in Sect. 7.4.4. Instead of variables yue, we
introduce variables b′ce:

b′ce ∈ [0, 1] , with b′ce = 0, if at least one endpoint of e ∈ E does not receive class c ∈ Γ.

Note that for a constant number of classes, the number of variables b′ce is linear, while the number of variables
yue was quadratic in the input size. The variables b′ce can be linked to the variables buc, as it was done in (7.26).

b′ce ≤ bvc

b′ce ≤ bwc

}
for all c ∈ Γ, e = {v, w} ∈ E. (7.39)

We can formalize the objective of shortest boundaries as follows:

minimize − 2 ·
∑
c∈Γ

∑
e∈E

λ(e) · b′ce. (7.40)

7.5.4 Summary and discussion of applicability

The presented formulation can be applied to optimize class change in combination with one of the two com-
pactness measures cpath or cperi.

In the case that c = cpath is applied, the objective is defined by:

minimize s·
∑
v∈V

∑
c∈Γ

w(v) · d(γ(v), c) · bvc

+(1− s)·
∑

a=uv∈A

δ(u, v) · fa.
(7.41)

In this case, the regions of the solution are defined by connected components of the graph that is comprised of
arcs with Fa = 1. We refer to this objective, together with constraints (7.31)–(7.37), as the Flow MIP.

The following expression defines the objective for the case that cperi is applied:

minimize s·
∑
v∈V

∑
c∈Γ

w(v) · d(γ(v), c) · bvc

−2 · (1− s)·
∑
c∈Γ

∑
e∈E

λ(e) · b′ce.
(7.42)

Here, the regions of the solution are defined by connected components of the graphs induced by nodes of the
same class.

In the case that both compactness measures are to be combined, the presented formulation is not sufficient to
model the problem. In this case, we need to model explicitly whether or not a node belongs to a region. This
can be achieved with the variables xuv from Sect. 7.4, but will result in a MIP of quadratic size.

However, the Flow MIP is an important achievement, since it can be used to test the effects of heuristics for
certain settings of the objective function. Both the P-R MIP and the Flow MIP can be used to solve the
aggregation problem with the aim of minimum class change. The results will give insight about the effects of
the requirement for strong connectivity and other heuristics.

Additionally, the Flow MIP presents a novel solution for other problems, for example, the minimization of travel
distances that are constrained to the interior of districts.

90 Chapter 7. A new Approach to Area Aggregation by Optimization

7.6 Specialized heuristics

Due to the NP-hardness of the area aggregation problem, we cannot hope for an efficient and exact algorithm.
This section presents heuristics that have been developed to solve problem instances of considerable size, and to
update the generalized dataset without processing the entire dataset again. A heuristic approach has already
been introduced in Sect. 7.4.1, with the definition of a strong connectivity requirement based on a precedence
relationship. We define additional heuristics in this section to eliminate certain variables in the developed
mixed-integer programs and to decompose a problem instance into smaller instances. The independent prob-
lem instances can be solved in parallel, for example, in order to speed up the processing of large datasets.
Furthermore, if the source dataset is updated, only the affected problem instances need to be solved again.

The first heuristic is to assume that two areas will not become part of the same region if their distance is
large (Sect. 7.6.1). The second heuristic is to assume that centers of regions and consequently their classes are
defined by dominant, large areas (Sect. 7.6.2). This heuristic allows a dataset to be decomposed into independent
problem instances. The definition of centers also leads to an idea for an iterative algorithm, which is explained
in Sect. 7.6.3.

7.6.1 Distance heuristic

To eliminate variables xuv in the Tree IP and the P-R MIP, we can use the fact that it is very unlikely that two
nodes are merged in the same region, if their distance is large.

For this we use the minimum weight wmin of a region containing two nodes; this was introduced in Eq. (7.17)
to define the distance for the precedence relationship. For each node i ∈ V , we define the set of nodes

Si =
{

j ∈ V
∣∣∣ wmin(i, j) < θ(γ(i))

}
. (7.43)

This definition implies the following: if a node v is not contained in Si, then each contiguous region that contains
i and v satisfies the threshold for the class of i. We define S′

i to be the set of nodes in Si and their neighbors. If
Si = ∅, we define S′

i = {i}. In Fig. 7.13(a), these sets are displayed for two nodes, u and v, of the same graph.
We observe:

Proposition 2. If the sets S′
u and S′

v do not intersect, then each contiguous region that contains the nodes u
and v can be separated into two feasible regions with centers u and v.

Proof. Let V ′ ⊆ V be a contiguous region such that u, v ∈ V ′ and S′
u ∩ S′

v = ∅. Since V ′ is contiguous, it
contains a path p from u to v. Let i be the first node of p that is not contained in Su. Let j be the last node
of p that is not contained in Sv. Let p1 be the subpath of p from u to i. Let p2 be the subpath of p from j to
v. Since S′

u ∩ S′
v = ∅, the two paths do not intersect and each of them contains at least one node. Let w1 be

the total weight of p1. Since wmin(u, i) is the minimum weight of a path from u to i, we have w1 ≥ wmin(u, i).
Since i /∈ Su, Eq. (7.43) implies wmin(u, i) ≥ θ(γ(u)). This implies w1 ≥ θ(γ(u)), which means that the region
with center u that contains the nodes of p1 is weight-feasible. Similarly, the region with center v that contains
the nodes of p2 is weight-feasible, too. It remains to assign each node of V ′ that is not contained in p1 or p2 to
one of the two regions such that both regions remain contiguous. In order to do this, we can iteratively extend
the region with center u to its neighbors in V ′ that have not yet been assigned to one of both region. If we
cannot extend this region any further, we apply the same procedure to the region with center v. We end up
with a partition of V ′ into two contiguous weight-feasible regions.

Figure 7.13(b) and (c) show an example of this separation. Each region containing u and v has a weight of at
least wmin(u, v) = 6. Since S′

u and S′
v do not intersect, such a region can be split into two parts, each having a

weight of at least three.

Note that for a variant of the aggregation problem, we can achieve this separation without risking to loose
optimality. Without the requirement of one node with unchanged class per region and with equal thresholds for
different classes, both regions are feasible without changing the classes of the result. So, in the case that the aim
for compactness is neglected, the cost of the solution is not affected by this separation. However, for the area
aggregation problem defined in Sect. 7.1, the separation may imply additional cost: one part can be infeasible

7.6. Specialized heuristics 91

u

v

Su

S ′u

S ′v

Sv

(a) nodes u and v with sets Su, Sv,
S′

u, and S′
v according to Eq. (7.43)

u

v

(b) the smallest contiguous region
containing u and v

u

v

(c) the region from (b), after separa-
tion into two feasible regions

Fig. 7.13: An example of the distance heuristic with w(v) = 1 for all v ∈ V and θ(γ) = 3 for all γ ∈ Γ: each contiguous
region containing the two nodes u and v can be split into two feasible regions, since S′

u ∩ S′
v = ∅. Therefore, we set xuv

and xvu to 0.

when fixing its class. Also, the sum of costs of both parts can be higher than the cost of their aggregate, as
the aggregate may be more compact. Nevertheless, we apply the reduction discussed above, knowing that it is
a heuristic that can theoretically affect the quality of our solution. We summarize.

Distance Heuristic:

• A node u is not assigned to a center v if S′
u ∩ S′

v = ∅.
This heuristic is reasonable, since S′

u ∩ S′
v = ∅ implies that each contiguous region containing u and v can be

split into two weight-feasible parts. Assuming that for a given center u the number of nodes v with S′
u ∪S′

v �= ∅
is constant, the number of remaining variables in the MIP becomes linear. This is an improvement, as the P-R
MIP and the Tree MIP originally had a quadratic number of variables.

7.6.2 Center heuristic

A very common approach to speed up the solution of districting problems is to predefine the set of centers (Hess
& Samuels (1971), Hojati (1999), Schröder (2001)). We choose this approach to reduce the number of variables
in our problem instances. For the aggregation problem, the concept of centers was introduced in our problem
definition (Sect. 7.1) and used for the definition of the compactness measures cdist and cpath (Sect. 7.2.3). We
recapitulate:

• Each region contains exactly one center that defines both the class of the region and the reference point
for measuring its compactness.

Our idea is to predefine heavy nodes as centers, as the weight of a node is a multiplier for costs that are charged
for its class change, and its distance to the center. So, it is likely that solutions with large centers are good
according to the objective function. Consequently, we exclude nodes with low weights from the set of potential
centers.

When defining a set of nodes as centers, we need to ensure that the problem does not become over-constrained.
We can guarantee the feasibility of the problem if we maximally fix one node with unchanged class, for each

92 Chapter 7. A new Approach to Area Aggregation by Optimization

region in a feasible start solution. To find a start solution we apply Algorithm 1, that is, region-growing. As
the quality of this solution is relatively low, we choose a rather conservative approach, that is, the majority of
nodes will not be constrained. We define the center heuristic as follows.

Center Heuristic:

(H1) For each region obtained with Algorithm 1, the largest area with unchanged class is a center and
(H2) each other area of size less than 10% of the threshold is excluded from the set of potential centers.

The first part of the center heuristic (H1) implies that, among other areas, all areas that are sufficiently large for
the target scale are predefined as centers. About 7% of all areas in our input dataset at scale 1:50 000 fall into
this category when applying the specifications for the target scale 1:250 000. Predefining these nodes as centers
does not necessarily need to be regarded as a deficit. Recall our notion of completeness from Sect. 5.1: an area
that is large enough for the target scale must not be lost, that is, its class must not change. This is ensured by
fixing such nodes as centers. However, other nodes will be additionally constrained with the defined heuristic,
which is necessary to obtain an acceptable performance. Applying the second part of the center heuristic (H2)
to our dataset, 61% of all areas are excluded from the set of potential centers. Despite this high percentage,
these areas make up only 9% of the total area of the dataset.

The center heuristic allows certain variables to be eliminated. However, it also allows a problem instance to be
decomposed into smaller instances. Figure 7.14 illustrates an example of such a decomposition.

1.2

0.7

0.6

0.3 1.1 0.8

1.4

0.7

0.8

1.3

1.1

0.8

1.2

0.7

0.6

0.3 1.1 0.8

1.4

0.7

0.8

1.3

1.1

0.8

Fig. 7.14: An instance of the aggregation problem (left) that can be decomposed into two independent problem instances
(right). Node weights are displayed as numbers, centers with w(v) ≥ θ(γ(v)) as squares. The threshold is defined by
θ(γ) = 1 for all γ ∈ Γ. Arrows illustrate that predefined centers cannot be assigned to other nodes, but unconstrained
nodes can be assigned to predefined centers.

We specify the decomposition as follows:

Proposition 3. Let Vθ = {v ∈ V | w(v) ≥ θ(γ(v))}. Under the condition that each node in Vθ is fixed as a
center and the subgraph of G induced by V \ Vθ is not connected, the AreaAggregation instance with any
of the compactness measures cdist, cpath, and cperi decomposes into several (that is, two or more) independent
problem instances. Each such problem instance comprises a connected component of the subgraph of G that is
induced by nodes V \ Vθ and the centers surrounding this component.

Proof. Let G(V, E) be a connected input graph for the aggregation problem. We consider the case that the
subgraph of G that is induced by nodes u ∈ V with w(u) < θ(γ(u)) has two connected components. However,
the proof can easily be generalized to the case that there are more of such components.

Let V1 and V2 be the node sets of the connected components after adding their surrounding nodes. Furthermore,
let G1(V1, E1) and G2(V2, E2) be the subgraphs of G that are induced by V1 and V2, respectively. For each
node u in the intersection I = V1 ∩ V2 we have w(u) ≥ θ(γ(u)), that is, u is a predefined center. Let V ∗ be a
subset of V that contains exactly one fixed center v ∈ I. Let V ∗

1 = V ∗ ∪ V1 and V ∗
2 = V ∗ ∪ V2. We will prove

that V ∗ defines a feasible region for the aggregation problem if and only if V ∗
1 and V ∗

2 define feasible regions.
Furthermore, we will prove that the cost of the region defined by V ∗ is equal to the sum of costs of the regions
defined by V ∗

1 and V ∗
2 . This allows the aggregation problem to be independently solved for G1 and G2. The

final region for the fixed center v is the union of regions that, in the solutions of the independent sub-instances,
have the same center v.

7.6. Specialized heuristics 93

Since v ∈ V ∗, v ∈ V ∗
1 , v ∈ V ∗

2 , and w(v) ≥ θ(γ(v)), each of the regions defined by V ∗, V ∗
1 , and V ∗

2 is weight-
feasible and contains a node of unchanged class (that is, the center v). Since V ∗

1 ∩V ∗
2 = {v} and V ∗

1 ∪V ∗
2 = V ∗,

the set V ∗ defines a contiguous region if V ∗
1 and V ∗

2 define contiguous regions. Since there is no edge {v1, v2} ∈ E
with v1 ∈ V ∗

1 \ {v} and v2 ∈ V ∗
2 \ {v}, the set V ∗ does not define a contiguous region if one of the sets V ∗

1 or
V ∗

2 does not define a contiguous region. Therefore, V ∗ defines a feasible region if and only if V ∗
1 and V ∗

2 define
feasible regions.

We now show for different measures that the cost of the region defined by V ∗ is equal to the sum of costs of
the regions defined by V ∗

1 and V ∗
2 .

Both the cost for the class change fclass and the compactness measure cdist are defined as the sum of terms that
are individually charged for each node; these terms only depend on properties of the node and the center to
which the node is assigned. The same center v is defined for the regions V ∗

1 , V ∗
2 , and V ∗. Furthermore, each

other node of V ∗ is contained either in V ∗
1 or V ∗

2 , but not in both. Therefore, according to fclass and cdist, the
regions defined by V ∗

1 and V ∗
2 together imply the same cost as the region defined by V ∗.

The measure cpath additionally depends on the length of the shortest path that is contained in a region and
connects a node with the center. For a region V ∗ that contains a fixed center, such a path will always be
contained in one of the regions V ∗

1 or V ∗
2 . Again, this is because there is no edge {v1, v2} ∈ E with v1 ∈ V ∗

1 \{v}
and v2 ∈ V ∗

2 \ {v}. Therefore, also the measure cpath for V ∗ is equal to the sum of cpath for V ∗
1 and V ∗

2 .

Finally, we discuss the measure cperi. In Sect. 7.4.4 we argued that a cost for the perimeter of a region can be
alternatively expressed as a benefit (i.e., a negative cost) that is given for edges contained in a region. Again,
we choose this perspective. Each edge contained in the region defined by V ∗ is either contained in the region
defined by V ∗

a or in the region defined by V ∗
b , but not in both. Consequently, the benefit given for V ∗ is equal

to the sum of benefits for V ∗
a and V ∗

b . In conclusion, the cost of the region V ∗ is equal to the sum of costs of
the regions V ∗

a and V ∗
b .

The decomposition of a problem instance into smaller, independent problem instances can be used for the
following two tasks. (1) If we wish to process large datasets, we can solve the independent problem instances
either in succession or in parallel. Both approaches reduce the processing time. (2) If we wish to propagate an
update that was inserted into the source dataset, we only need to resolve those problem instances that contain
updated areas. This also reduces the processing time since we do not need to process the whole map again.

(a) applying thresholds for target scale 1:250 000 (b) applying half thresholds corresponding to intermediate scale

Fig. 7.15: Independent problem instances resulting from center heuristic (different gray shades). The largest problem
instance is displayed with the darkest shade. White areas have sufficient size.

94 Chapter 7. A new Approach to Area Aggregation by Optimization

7.6.3 Introducing intermediate scales

Figure 7.15 shows the independent problem instances that result from the center heuristic for our dataset at
scale 1:50 000 (recall Fig. 4.5). After applying the collapse procedure the dataset contains 5537 areas. In
Fig. 7.15(a) we applied the thresholds according to the existing specifications for the target scale 1:250 000.
Though the original problem instance decomposes into 145 smaller instances, one huge connected component
remains that contains 4226 areas; this is far too large to be processed at once. We therefore suggest the definition
of intermediate scales, that is, to satisfy smaller thresholds first. In Fig. 7.15(b) we applied thresholds of half
value, yielding much smaller independent problem instances. If we know that we can solve instances with a
number of K nodes, we can further decrease the thresholds until no instance is larger than this. Hence, we can
translate the capability to solve problem instances of limited size into the capability to handle limited differences
in scale.

Certainly, the number of scale steps that are needed to reach the target scale is different for different parts of
the dataset. Our dataset contains large forest areas that have a separating effect, however, in other parts there
are many small areas. We therefore suggest using Algorithm 5 to locally introduce intermediate thresholds,
whenever they are needed to restrict the size of the resulting instances. Figure 7.16 illustrates the algorithm
using a one-dimensional example.

Throughout the algorithm, we maintain a set of problem instances, that is, connected components (defined
in line 1). We let them grow by iteratively adding the smallest area that falls below the required threshold
(lines 2–18). If we obtain a connected component containing K areas, we define and solve a problem instance
as in Fig. 7.14, that is, we allow the contained areas to be aggregated with each other or to assign them to
one of the adjacent areas (line 9). We need to define the intermediate thresholds θ′ for this step such that
all areas in the neighborhood of the component (that is the centers) have sufficient weight; thus we define
θ′(γ) = min{θ(γ) , Wmin}, with Wmin being the smallest area in the neighborhood. To ‘solve’ the problem also
means that we update the map by replacing areas with the composite regions we found. In lines 14–15 we
handle the case that different components may unite when adding a single area, thus we might end up with
instances of more than K areas. To avoid this, we solve the largest involved component. Finally, we solve the
remaining instances in succession applying the thresholds for the target scale (line 19).

We now argue that Algorithm 5 generalizes both: the original iterative approach as well as the optimization
approach with the center heuristic. Let’s first discuss the special setting of K := 1. In this case the algorithm
iteratively selects the smallest area and assigns it to one of its neighbors, which is identical to the approach of
Algorithm 1. If we set K := |V |, we solve the problem in a single step without intermediate thresholds. Our
assumption is that we obtain better results if we choose K to be as high as possible, thus we allow as many
merges to be planned ahead as possible.

We can apply Algorithm 5 to the complete dataset in order to create datasets at smaller scales. For example,
we can choose this approach for the set-up of a multiple representation database (MRDB). If the source data set
is updated, we also need to update the derived small-scale datasets. Recall from Sect. 2.8 that we should avoid
a complete re-generalization of the most detailed layer of an MRDB. Instead, we should apply incremental
generalization methods (Kilpeläinen & Sarjakoski, 1995). Our problem decomposition based on the center
heuristic indeed allows such an approach: we only need to apply Algorithm 5 to those problem instances again
that were affected by the update. However, if a change affects a large problem instance, for example, the
component of 4226 areas in Fig. 7.15(a), we would still need to apply Algorithm 5 to the whole component.

As processing the affected problem instances can take a lot of time, it is reasonable to define and to permanently
maintain datasets of intermediate scales in the MRDB. For example, we can define an intermediate scale with half
thresholds, yielding the problem instances in Fig. 7.15(b). If wish to create a new small-scale dataset, we create
the intermediate scale first and then derive the small-scale map from this intermediate representation. We can
update the intermediate scale by considering only a relatively small subset of areas, since the potentially affected
problem instances are relatively small. In the same way we can propagate the update from the intermediate
scale to the small scale. In any case we can apply Algorithm 5 to ensure that the occurring problem instances
are small enough to be solved.

7.6. Specialized heuristics 95

Algorithm 5 Iterative aggregation of areas in big scale steps

1: Π← a set of connected components, initially empty
2: a← smallest area below threshold for the target scale
3: while a is not Null do
4: Π′ ← the set of connected components in Π containing a neighbor of a
5: if total number of areas contained in Π′ < K then
6: Remove all components in Π′ from Π.
7: Create a new component p comprising all areas in Π′ as well as a.
8: if p contains K areas then
9: Solve p.

10: else
11: Insert p to Π.
12: end if
13: else
14: Solve the instance that corresponds to the component in Π′ having most areas.
15: Remove this component from Π.
16: end if
17: a← smallest area below threshold for the target scale, not contained in Π
18: end while
19: Solve all problem instances corresponding to the remaining components in Π.

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

Line 14

Line 9

Line 9

Fig. 7.16: Several steps of Algorithm 5 with K = 4 (from bottom to top). The optimization method was applied three
times; both cases that are defined in lines 9 and 14 of the algorithm occurred. Areas that were added to components in
Π are displayed in dark gray. Among the other areas (light gray), the smallest area is selected in each iteration (marked
with X). The connected components in Π are updated by adding this area, if this does not imply a connected component
of more than four areas. If a connected component of exactly four areas is created, the corresponding problem instance
is solved. In the example, this happens in steps 9 and 14. If adding an area would imply a connected component with
more than four areas, the problem instance corresponding to the largest adjacent component is solved. In the example,
this happens in step 11: adding the smallest area in step 10 to Π would imply a connected component of six areas.

96 Chapter 7. A new Approach to Area Aggregation by Optimization

7.7 An alternative heuristic approach by simulated annealing

This section introduces an alternative method for AreaAggregation, which instantiates the general simulated
annealing approach defined in Algorithm 3 on page 41. In order to find the initial feasible solution we simply
apply Algorithm 1, that is, region-growing. The ‘least important area’ is defined according to size; the ‘most
compatible neighbor’ is defined to be the neighbor that results in minimal costs when merging the selected area.
In the remainder of this section we define a neighborhood function and detail our additional problem-specific
design decisions. Results of this simulated annealing approach will be presented in Chapter 8, together with
results that were obtained by mixed-integer programming.

7.7.1 A neighborhood based on swaps of nodes

The neighborhood structure is the most important issue in the development of a simulated annealing method.
In particular, we need to ensure that the solution space is connected (see requirement (S2) on page 42). The
neighborhood structure defined in this section is similar to the one used by Tavares-Pereira et al. (2007) in a
hybrid evolutionary optimization approach for districting problems. Basically we define the neighborhood N(s)
of a feasible solution s ∈ S as the set of solutions that can be obtained by removing a single node from a region
and assigning this node to an adjacent region. Additionally, we allow that the removed node defines a new
region. We restrict the set of feasible classifications to those that are optimal for a partition. This means that
each change of the partition triggers an update of the centers (and thereby the classes) of the involved regions,
such that the cost for the resulting partition is minimized. We refer to this procedure as a swap, which we now
define formally.

We define a swap for each ordered node pair ab where a and b belong to two different regions of the partition
and {a, b} ∈ E. We denote the region containing a by V a and the region containing b by V b. Let W a = V a \{a}
and W b = V b ∪ {a}. Furthermore, let W a

1 , W a
2 , . . . , W a

q be the node sets of the connected components of the
subgraph of G induced by W a. Applying the swap ab implies that the region defined by V a is replaced by
regions W a

1 , W a
2 , . . . , W a

q . The region defined by V b is replaced by W b. For examples, see Figures 7.17(a), (b),
and (d). In Fig. 7.17(b) the set W a is empty. The region V a = {a} completely merges into the region V b.

Additionally, we define a swap for each single node a in a contiguous region. Again we denote the node set of
this region by V a and we apply the definitions of W a and W a

1 , W a
2 , . . . , W a

q as before. Applying the swap a
implies a new region with node set {a}. The region with node set V a is replaced by new regions with node sets
W a

1 , W a
2 , . . . , W a

q . Figure 7.17(c) shows a swap that is defined by a single node.

We call a swap simple if the subgraph of G induced by W a does not have more than one connected component.
This definition applies to both a swap defined by a pair ab and a swap defined by a single node a. The swaps
in Figures 7.17(a)–(c) are simple. In contrast, the swap in Fig. 7.17(d) is non-simple, since it implies that the
region of four nodes is split into two contiguous regions.

If we apply a swap, a solution can become infeasible. This is because a region can become too small if we remove
a node. However, it is critical to restrict the set of swaps to those that keep regions weight-feasible. Consider
an initial solution containing only regions that exactly satisfy their weight thresholds. Removing any node from
its region creates an infeasible solution. The initial solution represents an isolated point in the solution space.
Therefore, the requirement for connectivity of the solution space would be violated. In order to ensure the
connectivity of all solutions via the defined neighborhood, we relax the constraint for weight-feasibility during
the simulation, which is illustrated in Fig. 7.18.

Our relaxation is based on a penalty p′ : 2V × Γ→ R
+
0 , which we define as follows:

p′(V ′, γ′) =

⎧⎨
⎩

θ(γ′)−
∑
v∈V ′

w(v) , if
∑
v∈V ′

w(v) < θ(γ′),

0 , else .
(7.44)

We define the cost for the relaxed problem by:

f ′ = r ·
k∑

i=1

p′(Vi, γ
′
i) + (r − 1) · f , (7.45)

7.7. An alternative heuristic approach by simulated annealing 97

with f = s · fclass + (1 − s) · fcomp being the cost for the original problem in Eq. (5.4) and r ∈ [0, 1] being the
weight of the penalty for regions that are too small. We refer to the problem of minimizing this cost function
as relaxed aggregation problem.

A drawback of the relaxation is that the simulated annealing algorithm may terminate with regions that do
not satisfy the originally hard size constraint. We need to define an algorithm that repairs infeasible solutions.
Again we apply the iterative algorithm for this. We select the smallest infeasible region and merge it with the
best neighbor until the result is feasible. However, we apply this procedure only if the final solution is infeasible.

(a) (b) (c) (d)

Fig. 7.17: The swap neighborhood. Solutions before (top) and after application of a swap (bottom).

Fig. 7.18: If we define the size threshold θ = 2 and a unit weight to each node, there is no feasible path from the left
solution to the right solution. Relaxing the size constraint, the graph defined by the neighborhood function becomes
connected. The right solution can be reached via the solution in the center.

7.7.2 Asymptotic convergence

We now investigate the theoretical aspects of our simulated annealing method. In particular, we show that with
a certain setting it converges to optimality.

Theorem 2. The simulated annealing algorithm converges with probability 1.0 to the set of globally optimal
solutions of the relaxed aggregation problem if the annealing is performed slowly enough and if we only allow
simple swaps.

Proof. We now prove that the requirements (S1)–(S3) on page 42 are satisfied. According to Michiels et al.
(2007), this implies that the simulated annealing algorithm convergences to the set of globally optimal solutions.

Requirement (S1) states that the neighborhood graph must be finite. This is the case since the set of partitions
is finite.

Requirement (S2) states that the neighborhood graph must be strongly connected. This is ensured since the
trivial partition P0 = {{v1} , {v2} , . . . , {vn}} can be reached from any other partition P1 by applying maximally

98 Chapter 7. A new Approach to Area Aggregation by Optimization

n = |V | swaps that are defined by a single node (see Fig. 7.17(c)). Similarly, any other partition P2 can be
reached from P0 by applying a sequence of swaps, each of them merging a region of a single node into an
adjacent region (see Fig. 7.17(b)). Consequently there is a path from P1 to P2, and furthermore the diameter
of the neighborhood graph is at most 2|V |.
Requirement (S3) states that the neighborhood graph must be symmetric. This is the case if we only allow
simple swaps, that is, if we do not allow a region to be split as shown in Fig. 7.17(d). For each simple swap that
does not change the number of regions (see Fig. 7.17(a)), there is an inverse swap of the same type. For each
simple swap that reduces the number of regions by one (see Fig. 7.17(b)) there is an inverse swap that increases
the number of regions by one (see Fig. 7.17(c)) and vice versa.

Note that the neighborhood graph is not symmetric if we allow non-simple swaps, that is, if we allow a region
to be split into multiple regions, as shown in Fig. 7.17(d). There is no inverse operation for this example.

Our proof shows that the algorithm converges to the global optimum of the relaxed area aggregation problem.
This can be different from the optimum of the original problem. For this reason, let’s discuss a relaxation of the
area aggregation problem that is different from the relaxation defined in Equations (7.44) and (7.45). Again we
define a penalty for regions that are too small:

p′′(V ′, γ′) =

⎧⎨
⎩

f0 + 1 , if
∑
v∈V ′

w(v) < θ(γ′)

0 , else ,
(7.46)

with f0 being the total cost of the initial feasible solution according to the original cost function f . As an
alternative to f ′ we could apply the cost function f ′′ in the relaxed area aggregation problem, which we define
as follows:

f ′′ =
k∑

i=1

p′′(Vi, γ
′
i) + f. (7.47)

Applying the cost function f ′′ implies that a solution with regions that are too small is always more expensive
than the initial feasible solution. Consequently, the best feasible solution will always be cheaper than the best
infeasible solution. The simulated annealing method will converge to an optimal feasible solution.

7.7.3 Practical considerations

In practice we need to define a finite and preferably small number of iterations. Occasionally we need to accept
regions that are too small, in order to escape local optima. However, with the large constant penalty p′′, this
would require an extremely high initial temperature and a slow cooling process. Therefore we apply the cost
function f ′ with the penalty p′ in Eq. (7.44), which better reflects the degree of how much the constraint
for weight-feasibility is violated. For similar practical reasons, we allow non-simple swaps. The neighborhood
becomes asymmetric with this definition, but we obtain more possibilities of variation without any additional
effort.

An important requirement for the success of local search is that candidates can efficiently be generated and
tested. To efficiently generate solutions we define a vector of arcs Ω = (ω0, ω1, . . . , ωp). We define the vector
Ω to contain all arcs of the set A = {uv | {u, v} ∈ E}. These arcs correspond to swaps defined by two nodes.
Furthermore, we define Ω to contain a self arc uu for each node u ∈ V . These arcs correspond to swaps defined
by a single node. To generate candidate solutions at random, we define ω : [0, 1)→ Ω as the mapping of random
numbers to the swaps. This is specified by:

ω(x) = ωi(x) with i(x) = x · (p + 1)� . (7.48)

In each iteration of the simulated annealing algorithm we randomly generate a number x uniformly distributed
in [0, 1). This number yields the arc uv = ω(x). If the node u and v belong to different regions then the arc uv
indeed defines a swap. This is also true if u = v and u is not the only node in its region. In both cases, the
swap is applied: the new partition is generated and tested. Otherwise, we select the next arc by generating a
random number.

7.7. An alternative heuristic approach by simulated annealing 99

Constructing and testing the new solution for a selected arc ab ∈ Ω includes several steps. Let V a ∈ P and
V b ∈ P be the node sets of the original regions that contain a and b, respectively. We first need to find
the connected components W a

1 , W a
2 , . . . , W a

q of the graph induced by W a = V a \ {a} to consider the case in
Fig. 7.17(d), that is, the case that one region is split into multiple regions. This is achieved with a breadth first
expansion from an arbitrary node, which generally allows the connected components to be found in a planar
graph in O(|V |) time. The connected components W a

1 , W a
2 , . . . , W a

q and the set W b = V b ∪ {a} define new
regions. For each new region we need to find the optimal center, which defines the cost for the region. This can
be done in O(|V |2) time. The cost of other regions does not need to be computed, as it remains unchanged.
The difference in cost between the new and the old solution becomes:

q∑
i=1

ϕ(W a
i) + ϕ(W b)− ϕ(V a)− ϕ(V b) , (7.49)

with ϕ : 2V → R
+
0 being the cost f ′ in Eq. (7.45) that is charged for a single region. Note that ϕ(V a) and

ϕ(V b) in Eq. (7.49) have been computed before. To avoid these costs being computed again, we store the cost
for each region.

The proposed method often selects an arc uv from the set Ω that does not correspond to a swap. For instance,
in the current partition, both nodes u and v belong to the same region. We also tested a version of the proposed
method where Ω only contains those arcs that indeed correspond to swaps. However, this approach requires
the vector Ω to be updated after each iteration. The approach proposed above turned out to be much more
efficient: we need to reject more candidate arcs, but we do not need to update the vector Ω.

Note that the uniform distribution of arcs Ω does not exactly imply a uniform distribution of solutions in the
defined neighborhood. This is because multiple arcs can correspond to the same solution. For instance, the
new solution in Fig. 7.17(b) can be obtained from the original solution by selecting two different arcs. We could
insist that Ω must not contain two arcs that correspond to the same solution. This however would again imply
that we need to update the vector Ω.

7.7.4 Annealing schedule

A problem of simulated annealing is that several tuning parameters need to be defined. For our application
we define the stop criterion in Algorithm 3 by the number of iterations κ, which we increase linearly according
to the number of nodes of the problem instance. This definition respects the requirement to perform longer
runs of simulated annealing to obtain high-quality results, for larger problem instances. In contrast, the initial
temperature T0 and the final temperature TE are defined to be fixed for all problem instances. With this we
can find the annealing parameter α for Eq. (3.20) by:

α = κ
√

TE

T0
. (7.50)

As κ is defined depending on the number of nodes, also α depends on the input size. This means that the
temperature is cooled down more slowly for larger problem instances. Figure 7.19 illustrates this approach.

Finally we need to set the parameter r, that is, the weight of the penalty for regions that are too small. In
contrast to the weight factor s in Eq. (5.4), this does not reflect the preferences of cartographers with respect
to different solutions. Instead it needs to be defined such that the complete method (including the repair
procedure) yields feasible results with low cost f . In other words, r is a tuning parameter that is not inherent
to the problem. If we set r too high, we run the risk of getting trapped in local optima. Contrarily, if we set
r too low, we often obtain infeasible results, which need to be repaired with the simple iterative aggregation
algorithm. As a consequence we may end up with costly solutions as well.

Normally, the tuning parameters for simulated annealing are found by experiments. The parameters in Table 7.1
were found using this approach. These were used to produce the results in Chapter 8, if not explicitly stated
differently.

100 Chapter 7. A new Approach to Area Aggregation by Optimization

T0 = 100

TE = 1

κ = 40000 κ = 80000 κ = 120000
Iteration

Temperature

Fig. 7.19: Principle of the definition of an annealing schedules. Three schedules are shown, which all have the same
start and end temperatures but different numbers of iterations.

name of parameter symbol value
initial temperature T0 109

final temperature TE 104

weight of penalties for areas that are too small r 0.9999
number of iterations κ 1000 · |V |

Table 7.1: Experimentally found parameters for simulated annealing.

7.8 Possible combinations of the proposed methods

We conclude this chapter by discussing possible combinations of the proposed aggregation methods.

We can use the distance heuristic to eliminate variables in the P-R MIP or the Tree MIP. The center heuristic
can be used to eliminate variables in all the MIP formulations that were presented. Moreover, it implies a
decomposition of a large problem instance into smaller, independent instances – there is no assumption about
the optimization method that is used to solve these instances. For example, we can also combine this method
with the simulated annealing approach. The same is true for the method with intermediate scale steps. We can
solve the occurring problem instances by mixed-integer programming or alternatively by simulated annealing.

The center heuristic and the idea of defining intermediate scales are especially interesting. Together, both
approaches allow very large datasets to be partitioned into manageable subsets. We can generalize these subsets
in parallel and, in the update scenario, we only need to handle those parts that include a changed object.

Probably, the best decision is to combine different heuristics. For example, if we apply the distance heuristic to
eliminate variables in the MIPs, we can solve larger problem instances in the same time. This means that we can
consider more areas in each step of Algorithm 5, that is, we can choose a higher value for the parameter K. The
next chapter presents experimental results with our methods, which includes tests with different combinations
of the proposed heuristics.

101

Chapter 8

Experimental Results

This chapter presents experimental results with the developed generalization workflow of collapse, aggregation,
and line simplification. This workflow was applied to the dataset “Buchholz in der Nordheide” in the ATKIS
DLM 50, which was introduced in Fig. 4.5 on page 50. The method was employed to satisfy specifications of
the ATKIS DLM 250, that is, the target scale of generalization is 1:250 000.

With respect to the target scale, the offset for the collapse procedure was defined to be 25 m: only polygon
parts of width greater than 50 m survive this collapse, which corresponds to 0.2 mm in the target scale, that
is, the resolution of a printed map. Originally, the dataset contained 5461 areas. After the collapse procedure
the number of areas increased to 5537 because some polygons were split into several parts. The size threshold
θ for the aggregation problem was taken from the database specifications and the class distance d was applied
according to the table in Fig. 5.4(b) on page 58. The tolerance ε for the line simplification problem was set to
50 m, which again corresponds to the map resolution.

When discussing the tests we mainly focus on the aggregation methods, which constitute the major contribution
of this thesis. We distinguish the following problems:

• What is the performance of the presented aggregation methods, that is, how much time do the methods
need to solve the problem and do the heuristics offer near-optimal solutions? We answer these questions
in Sections 8.1 and 8.2.

• How well does the defined objective function reflect the aims of map generalization? We deal with this
issue in Sect. 8.3.

• How can we assess the quality of the result? We discuss this problem in Sect. 8.4.

We summarize the most important results in Sect. 8.5.

The aggregation methods were first tested without the objective of compact shapes, that is, the sole objective
was to minimize the cost fclass that expresses class changes. In Sect. 8.1 we discuss results of different MIP
formulations with this setting. This simplification of the problem is due to two reasons: firstly, the developed
MIP formulations do not allow the same compactness measures to be applied – we should only compare their
performance when applying the same objective. Secondly, when applying the presented methods, we first need to
find an appropriate setting of weights for different objectives. Presumably, there is no perfect setting that serves
all purposes, since the definition of weights depends on personal preferences and the purpose of the generalized
dataset. The objective for minimum class change can be considered a basic setting. Starting with this, we can
increase the weight of the cost for non-compact regions fcomp until we visually perceive that the shapes are
compact enough. We also discuss results of our heuristics in a setting where we did consider compactness, see
Sections 8.2 and 8.3.

102 Chapter 8. Experimental Results

8.1 Performance tests of different MIPs

The P-R MIP, the Tree MIP, and the Flow MIP were tested for problem instances of different sizes that were
taken from the ATKIS DLM 50. For these tests we used the Interactive Optimizer of the software ILOG CPLEX
9.100 on a Linux server with 4 GB RAM and a 2.2 GHz AMD-CPU. The optimizer reads a MIP from a text file
(in the so-called CPLEX LP format), solves the MIP, and writes another text file with the result (in CPLEX
MST format). A C++ program was implemented to create the input files for CPLEX. It requires a file with
input polygons, their classes, sizes, and the values of the threshold function θ (in ESRI SHP format). The class
distance matrix, that is, the values of d, need to be provided in a text file. The user needs to specify the weights
of different objectives and select the method to apply, together with the heuristics that are to be used. The
program analyzes the dataset, for example, it derives the adjacency graph G from the given geometries. It also
reduces the set of variables according to the selected heuristics before writing the MIP to the file. Appendix A
shows a small problem instance with the P-R MIP, which was output by the program. A second program is
used in a post-process to generate a shape file from the solution found by the optimizer.

The time to analyze the dataset and to generate the MIP formulations is negligible compared to the time that
is needed to solve the MIPs; therefore, we only assess the time that CPLEX needed for the MIP solutions.
Basically, the solver applied the branch-and-cut method from Sect. 3.6.1: if the solver finds a new feasible
solution that is better than the current incumbent solution, it still needs to prove the optimality of this solution
by raising the lower bound for the objective function.

We also implemented Algorithm 1 (region-growing) in order to compare its results with those of the newly
developed optimization methods. For all experiments with this method, the most compatible neighbor was
defined according to the cost function f . This means that, in each step, the smallest area is merged with a
neighbor such that the cost after this merge is minimal. In the case that there are several neighbors that imply
a minimal cost, we select the largest among them. Obviously, this approach generally does not yield the globally
optimal solution. If we compare the performance of different methods in terms of running time or cost values
we always apply the same cost function f . As we neglect compactness in this section, the function f equals
fclass. In this case, the cost only depends on the classes of areas and the semantic distances d.

Using the Tree MIP from Sect. 7.4.2 the solver could only handle very small problem instances. The largest
instance that was solved with proof of optimality contained 15 nodes; these were aggregated into two regions
of different classes. The solver needed 654 seconds for this processing. Usually, finding good solutions did not
require so much time, for example, the optimal solution to the instance with 15 nodes came out after 5 seconds.
However, the remaining time (649 s) was needed to certify optimality, that is, to raise the lower bound until it
was equal to the cost of the integer solution. Apparently, the bounds that are found by solving the LP-relaxation
of the Tree MIP are not tight enough to keep the branching tree small. The solver performed better with the
P-R MIP from Sect. 7.4.1 and the Flow MIP from Sect. 7.5. We focus on tests with these MIP formulations.

Table 8.1 summarizes the results for problem instances with different sizes that were solved with different
methods. Figure 8.1(a) displays the input dataset of 50 areas that was processed in these tests. Figures 8.1(b)–
(d) show results that were obtained with different methods. Figure 8.1(b) shows the result of Algorithm 1.
Applying Equation (5.2) we obtain an average class distance d̄ = 15.30 for this result. Results for different
instances that were obtained with this method are summarized in the first column of Table 8.1. All computations
took less than a second on a standard desktop PC. The best solution found is shown in Fig 8.1(c), which has
an average class distance d̄ = 5.18. This was obtained by applying the exact Flow MIP. However, even after
20 hours of processing, there remained a gap of 15% between the cost of the solution and the certified lower
bound. We did not continue to prove the optimality of this solution, but assume that the solution is optimal.
The running time for solving this instance is marked with an asterisk in Table 8.1. All other instances were
solved with proof of optimality. Figure 8.2 illustrates the resulting class distances for the solutions in Fig. 8.1.

Though the Flow MIP allows larger instances to be solved than the Tree MIP, the required time is still very high
and increases rapidly. Certainly, a method that requires 20 hours to solve a small instance is not appropriate
for cartographic production. However the obtained results allow the results of other methods to be assessed.
For example, we can say that the region-growing method fails to find near-optimal solutions: applying the Flow
MIP, the average class distance d̄ was reduced by two-thirds. In the example, this difference is due to some
settlement areas in the input whose size is not sufficient for the target scale. These areas are lost with the
region-growing approach. In contrast, the optimization method changes small forest and grassland areas into
settlement, yielding one large, contiguous settlement for the target scale: the settlement areas are saved.

8.1. Performance tests of different MIPs 103

Alg. 1 Flow MIP P-R MIP
pure center heuristic pure dist. heuristic center heuristic center + dist. heur.

nodes d̄ time d̄ time d̄ time d̄ time d̄ time d̄ time d̄
30 29.30 90.2 9.20 10.3 9.20 4.6 9.20 8.5 9.20 0.01 12.81 0.01 12.81
40 22.31 12.7h 6.97 620.0 6.97 26.6 7.34 32.7 7.34 0.03 7.59 0.03 7.59
50 15.30 ∗20.0h 5.18 2.7h 5.18 62.2 5.18 95.2 5.18 0.45 5.64 0.24 5.64
60 15.49 570 5.85 416.5 5.85 0.79 6.66 0.76 6.66

100 12.48 21.6 5.93 21.5 5.93
200 9.85 100.4 4.68 202.9 4.68
300 6.92 714.7 4.50 444.8 4.50
400 7.04 1366.9 4.64 1032.2 4.64

Table 8.1: Experimental results with our MIPs, neglecting compactness. Computation times are in seconds of CPU
time unless marked with h, which stands for hours. All instances were solved to optimality except ∗. The average class
distance d̄ is equal to the cost for class change per area as defined in Eq. (5.2). Class distances are defined according to
Fig. 5.4(b).

(a) input from ATKIS DLM 50 (b) result of Algorithm 1 (region-growing)

(c) best solution found (gap of 15%) (d) result of P-R MIP with center and distance heuristic

Fig. 8.1: An instance with 50 nodes. The average class distances and the computation times for this instance are listed
in line 3 of Table 8.1.

104 Chapter 8. Experimental Results

The computation time can be reduced with the center heuristic from Sect. 7.6.2. In our examples no differences
to the optimal solution arise. Also by definition of the precedence relationship in Sect. 7.4.1 the computation
time is reduced while the solution is only marginally affected. The computation time is greatly reduced by
applying the center heuristic to the P-R MIP. Still the effects on the obtained results are acceptable. The
distance heuristic is effective only for relatively large instances. This is plausible since long distances that allow
variables to be eliminated, hardly exist in small datasets. Figure 8.1(d) shows the result of applying the P-R
MIP with both heuristics. The average class distance is d̄ = 5.64, which is an increase of 9% compared to the
exact solution to the Flow MIP. In order to identify the reason for the difference in cost, we can visualize the
differences of semantic distances for single areas. Figure 8.2 displays distances of class changes as gray shades of
areas, dark gray corresponds to expensive changes. In Fig. 8.2(d) we see the difference of both solutions: there
are only four small areas whose classes differ from the classes of the optimal result. Comparing Fig. 8.1(c) and
Fig. 8.1(d) we observe that an increase of cost by 9% only marginally affects the visual appearance of the map;
we consider the result of the P-R MIP with the center and distance heuristic near-optimal.

With applicability on datasets of 400 areas the approach by mixed-integer programming becomes relevant for
cartographic production. However, without additional heuristics, the developed MIP formulations do not allow
a whole map sheet or a national database to be processed.

(a) class distances d for result of Algorithm 1
(see Fig. 8.1(b))

(b) class distances d for best solution found (see
Fig. 8.1(c))

(c) class distances d for result with P-R MIP,
center and distance heuristic (see Fig. 8.1(d))

(d) differences of class distances d for solution
of P-R MIP and optimal result ((c) minus (b))

50

30

20

70

10

0

Legend
(class distances d)

100

Fig. 8.2: Obtained class distances for the result in Fig. 8.1.

8.2. Performance tests of different heuristic approaches 105

8.2 Performance tests of different heuristic approaches

As we cannot solve the developed MIPs for large problem instances, that is, thousands of polygons, we now
discuss results of simulated annealing and results of the approach in several scale steps (Algorithm 5). Table 8.2
summarizes the results of simulated annealing for the instances that we discussed in the last section. These
tests were performed on another computer with 1 GB RAM and a 2.8 GHz Intel Pentium 4-CPU, thus the
results are not directly comparable to those in Sect. 8.1. However, the tests show that the quality of the results
is similar to those obtained with the P-R MIP in combination with the center and distance heuristic. For small
instances, we observe that the solution time is much lower with the mixed-integer programming approach. For
the instance with 400 nodes, the simulated annealing method results in a solution with 5% higher cost, but it
requires less time than is needed to solve the MIP.

We now discuss the results of our method with intermediate scale steps. Our basic assumption in Sect. 7.6.3
was that we obtain results of higher quality if we increase the number of areas that are evaluated in each step of
an iterative merge procedure. This assumption motivated to extend Algorithm 1 by introducing an additional
parameter K, that is, the number of areas that we evaluate in each iteration. This approach led to Algorithm 5.

To verify our basic assumption, we implemented Algorithm 5. For this we used the application programming
interface of CPLEX (the ILOG CPLEX Callable Library). This allows the CPLEX optimization software to be
embedded in Java applications. We tested this implementation with different settings of the parameter K. In a
first test we solved the instance of 5537 nodes (the whole map sheet) with the objective of minimal class change.
Setting K = 1 we obtained a solution with d̄ = 6.14. With this setting the method produces the same result
as the iterative algorithm that selects the most compatible neighbor according to the defined cost function.
The average class distance was reduced to d̄ = 4.46 when setting K = 200, which is a reduction by 37.5%. In
this case the processing took 106 minutes. We also processed the same instance with simulated annealing. We
set κ, the number of iterations, to κ = 25 000 000; with this we expected a similar running time. The actual
running time was 92 minutes; the average class distance of the solution was d̄ = 4.63. This test shows that both
methods perform similarly for large datasets, however, the deterministic method (Algorithm 5) still produces
better results than simulated annealing.

We also tested a cost function that combines both objectives: class change and compactness. This means that
we applied the combined cost function f = s ·fclass +(1−s) ·fcomp. We introduced this cost function in Eq. (5.4)
to measure the semantic accuracy. Furthermore, we expressed the objective for compact shapes by combining
the measures cdist and cperi with the additional weight factor s′, that is, we set c = s′ · cdist + (1 − s′) · cperi as
defined in Eq. (7.9). For our test we applied the setting s = 0.000715 and s′ = 0.000015 (given that areas are
measured in m2 and distances in m); these values resulted from tests that we discuss in the next section.

We applied Algorithm 5 with the combined cost function and five different values for K. Table 8.3 lists the
results. It shows the average class distance d̄ as well as the cost for class change, non-compact shapes, and
their sum (normalized to 100). The resulting costs for non-compactness are very similar for different values of
K. With K = 200 we only have 1.8% less costs than with K = 1. It seems that, concerning this objective,

nodes iterations time (s) d̄SA d̄SA/d̄MIP

30 30000 4.7 9.36 0.73
40 40000 5.4 7.26 0.96
50 50000 7.0 7.11 1.26
60 60000 8.1 6.21 0.93

100 100000 14.7 7.41 1.25
200 200000 33.9 7.85 1.68
300 300000 48.5 5.27 1.17
400 400000 61.3 4.88 1.05

Table 8.2: Experimental results with simulated an-
nealing. Problem instances are the same as in Ta-
ble 8.1. Column d̄SA contains the average class dis-
tances obtained by simulated annealing. The last col-
umn contains the quotients of d̄SA and d̄MIP, which
refers to the average class distances obtained with the
P-R MIP with the distance and center heuristic (last
column of Table 8.1).

K 1 50 100 150 200

time (min) 3.86 2.05 8.66 26.06 82.27

d̄ 6.54 5.88 5.67 5.61 5.24
cost for class change 100 90.0 86.8 85.8 80.2

cost for non-compactness 100 99.4 98.0 98.8 98.2
total cost 100 96.2 94.3 94.5 92.2

Table 8.3: Experimental results with intermediate scales
according to Sect. 7.6.3, considering class change and com-
pactness of shapes. The processed dataset covers an area of
22 km × 22 km and contains 5537 polygons (nodes). The
parameter K defines the maximal number of nodes v with
w(v) < θ(γ(v)) that are processed in a single iteration by ap-
plication of the P-R MIP with heuristics. Computation times
are in minutes CPU time. Objective values (costs) are nor-
malized with respect to the results for K = 1.

106 Chapter 8. Experimental Results

the iterative algorithm does quite well by greedily choosing a neighbor. However, the decrease of costs for class
change is still considerable (19.8% for K = 200 compared to K = 1). Combining both objectives, we obtain
an improvement by 7.8%. These tests clearly confirm the assumption that we obtain results of higher quality if
we consider more areas in a single iteration. Consequently, the parameter K should be set as high as possible
under given time constraints.

Comparing the average class distance for both experiments with K = 200 we see that, in order to consider
compactness according to the defined weight setting, we need to accept an increase of d̄ by 17%.

8.3 Discussion of processed samples

We now discuss generalized datasets that were obtained with the developed aggregation method. Sections 8.1
and 8.2 have shown that the proposed heuristic methods produce near-optimal results, where ‘optimal’ refers to
the defined objective function. However, the appropriateness of this objective function cannot be verified without
visually inspecting and discussing various samples. As the approach with intermediate scales (Algorithm 5)
allows large datasets to be processed, we discuss the results of this method, applying the parameter K = 200.
We solved the occurring independent sub-instances with the P-R MIP and applied both the center as well
as the distance heuristic. We compare the results of this optimization approach with those of the iterative
region-growing procedure (Algorithm 1).

To define the trade-off between fclass and fcomp, as well as the trade-off between the compactness measures
cdist and cperi, we tested ten different settings for the parameters s and s′. The setting s = 0.000715 and
s′ = 0.000015 satisfied our personal preferences best (given that areas are measured in m2 and distances in
m). In this case the average class distance d̄ (and thus the cost for class change fclass) increased by 17% when
compared to the result that was obtained without considering compactness. Of course our choice was influenced
by subjective preferences, that is, other cartographers may apply different parameters. We first discuss the
results that were obtained with the proposed setting, but then also discuss another setting.

Figures 8.3–8.6 show different samples from the ATKIS DLM 50. Each figure shows

• in subfigure (a) the sample after pre-processing with the collapse procedure,
• in subfigure (b) an aggregation result obtained by region-growing,
• two aggregation results of the optimization approach, namely

– in subfigure (c) the result of minimizing class change and
– in subfigure (d) the combined cost, and

• in subfigure (e) the result of applying the line simplification method to the latter aggregation result, shown
at the target scale 1:250 000.

Figure 8.3 shows the same clipping as Fig. 1.1. There are some differences between Fig. 1.1 and Fig. 8.3(a)
since the collapse procedure eliminated some narrow polygon parts. The pre-processed dataset in Fig. 8.3(a) is
the input for the aggregation method. Applying Algorithm 1 results in the settlement being lost, as the input
does not contain any sufficiently large, contiguous region of settlement areas (Fig. 8.3(b)). In contrast, the
optimization approach allows most settlements to be saved by changing the classes of some connecting areas
into settlement. This leads to a region of sufficient size for the target scale (Fig. 8.3(c)). However, minimizing
changes of classes does not suffice to produce good generalization results: the small rectangular settlement in
the right part of Fig. 8.3(a) was included in the region by creating a long, narrow corridor. This was needed
to satisfy the constraint for connectivity. Obviously such complex shapes are not intended. Minimizing the
combination of fclass and fpath leads to a better result (Fig. 8.3(d)). Including the rectangular settlement in the
region would be too expensive, as the resulting boundary would be relatively long. Hence, the method produces
a smaller and more compact region. The result is very similar to the manually generalized map in Fig. 1.2.

Figure 8.4 shows a sample with several forest areas. Algorithm 1 eliminates all forest areas in the upper part
of the sample, as their size is insufficient for the target scale. This, however, results in relatively large amounts
of class change. Applying the optimization method with the objective of minimum class change, leads to the
result in Fig. 8.4(c). Now there is a forest of sufficient size in the upper part of the sample. This result is only
possible as the forest includes parts that, in the input dataset, belong to other classes. Again the total change
of classes is much lower than with Algorithm 1. However, we also find non-compact shapes in the result, for
example, the forest in the lower left corner of the sample. Figure 8.4(d) shows the trade-off of minimum class
change and maximum compactness; the result does not contain as many narrow polygon parts as before.

8.3. Discussion of processed samples 107

(a) ATKIS DLM 50 after collapse procedure (b) output of Algorithm 1

Forest

Farmland

Settlement

Grassland

Industry

1 km

(c) minimizing class change (d) optimizing class change and compactness (e) lines simplified

Fig. 8.3: Input (a) and three aggregation results (b)–(d). The results in (c) and (d) were obtained using Algorithm 5,
that is, applying the optimization approach with several scale steps.

(a) ATKIS DLM 50 after
collapse procedure

(b) output of Algorithm 1 (c) result of minimizing
class change

(d) optimizing class change
and compactness

(e)

Fig. 8.4: The optimization approach saves a forest that is slightly too small, by including areas belonging to other
classes. Figure 8.4(e) shows the result in Fig. 8.4(d) after simplification of lines at scale 1:250 000.

108 Chapter 8. Experimental Results

(a) ATKIS DLM 50 after
collapse procedure

(b) output of Algorithm 1 (c) result of minimizing
class change

(d) optimizing class change
and compactness

(e)

Fig. 8.5: The optimization approach saves a set of forests by including a connecting grassland area into the forest
aggregate. Figure 8.5(e) shows the result in Fig. 8.5(d) after simplification of lines at scale 1:250 000.

(a) ATKIS DLM 50 after
collapse procedure

(b) output of Algorithm 1 (c) result of minimizing
class change

(d) optimizing class change
and compactness

(e)

Fig. 8.6: The optimization approach saves a settlement by ‘stealing’ smaller forest areas. Figure 8.6(e) shows the result
in Fig. 8.6(d) after simplification of lines at scale 1:250 000.

Figure 8.5 shows a similar example. The forest areas in the right part of Fig. 8.5(a) are lost when applying the
simple iterative method (Fig. 8.5(b)), but can be saved using our approach by combinatorial optimization. The
results with and without consideration of compactness (Figures 8.5(c) and 8.5(d), respectively) mainly differ in
the left part of the sample. However, the forest in the right part appears slightly different in both results. In
Fig. 8.5(d) two small forests were ‘sacrificed’: they changed into other classes, in order to create a short and
simple outline.

The sample in Fig. 8.6 shows another interesting case. The settlement in the center is too small for the target
scale, but can be saved by creating a connection to another settlement (Fig. 8.6(c)). This, however, results
in a non-compact shape. Another possibility to save the settlement is to include small adjacent forest areas
(Fig. 8.6(d)). This latter result reflects the idea of exaggerating important map features, which is a common
approach in map generalization.

Next we discuss the results with different settings for the weight factors s and s′, which were introduced to
define the overall cost f = s · fclass + (1− s) · fcomp (see Eq. 5.4) and the cost c = s′ · cdist + (1− s′) · cperi for the
non-compactness of a single region (see Eq. 7.9). Figure 8.7 shows a sample with three results of the optimization
approach, each being obtained using different weights. Again, minimizing class change results in non-compact
shapes (Fig. 8.7(b)). One settlement has an extremely long and narrow appendix and a non-compact grassland
area separates two settlements. With the standard weights for different objectives (s = 0.000715, s′ = 0.000015)
we obtain, on the whole, more compact shapes (Fig. 8.7(c)). However, with this setting, the settlement in the

8.3. Discussion of processed samples 109

upper part of the sample gets a small appendix. Both parts of the settlement are connected only via a narrow
constriction. We can avoid this problem by assigning higher weights to the objective for compactness. By setting
s = 0.000340 and s′ = 0.000005 we obtain very compact shapes (Fig. 8.7(d)). The decrease of s implies a higher
preference for compactness; the decrease of s′ means that the perimeter of a shape has a higher influence on the
cost for compactness fcomp. Though the setting leads to more compact shapes it is questionable whether the
result is an improvement. Of course, the compactness was improved at the expense of increasing class changes.
For example, applying the higher weight for compactness to the sample in Fig. 8.6 led to a result similar to
Fig 8.6(b), that is, the settlement was lost. For the complete map the higher weight for compactness leads to
an increase of the average class distance d̄ by 37.8%. On the whole, the setting that was used for the result in
Fig. 8.7(c) was perceived to offer the best trade-off. In order to avoid two parts of the same aggregate being
connected by only a narrow constriction, we could strictly forbid this case. For this we could simply exclude
an edge from the adjacency graph G(V, E) if the length of the corresponding boundary falls below a defined
threshold. When applying the aggregation procedure to this graph, two areas can only be aggregated if they
share a sufficiently long boundary. However, as compactness is not a hard constraint given by the database
specifications, we did not follow this approach.

(a) input (ATKIS DLM 50 after
pre-processing)

(b) minimizing class change
(s = 1)

(c) standard weight setting
(s = 0.000715, s′ = 0.000015)

(d) more compact shapes
(s = 0.000340, s′ = 0.000005)

Fig. 8.7: A sample with results that were obtained by optimization of different objective functions.

Finally, Fig. 8.8 shows a larger sample that was processed using the developed method. To give an impression
of the effectiveness of the proposed workflow of collapse, aggregation and simplification methods, it shows
the original areas at scale 1:50 000 in Fig. 8.8(a), that is, the dataset before applying the collapse to narrow
polygons. The output satisfies our idea of a good topographic database, which not only can be used to derive
graphical maps, but is also suitable for applying analyses in a digital environment. The aim for a more abstract
representation is clearly satisfied. The most dominant objects of the input dataset still exist in the result.

To improve the proposed method we could also consider additional classes of map objects, for example, roads
that are represented by lines. As we generally aim to reduce the clutter on the map, we would probably prefer
that region boundaries and roads are defined by the same lines. We could define this aim as a soft constraint in
our mixed-integer programs: Based on the variables yue in the P-R MIP, we defined a benefit (a negative cost)
for edges that are contained in regions. We could reduce this benefit (increase the cost) for edges that represent
roads. Hence, it becomes more expensive to merge areas across roads. Furthermore, we could introduce hard
constraints to forbid that two adjacent areas become part of the same region, if they are separated by a road.

Certainly, the result is not a perfect map for visualization, but this is not the aim of model generalization or
database generalization. To derive a graphical map we would need to continue with methods for cartographic
generalization. For example, we can apply a smoothing of lines to create a map that is visually more pleasing.

110 Chapter 8. Experimental Results

(a) input: areas from ATKIS DLM 50. (b) output: areas satisfying specifications of ATKIS DLM 250.

4km

Fig. 8.8: A sample processed using the presented methods for collapse, aggregation and line simplification. The
aggregation was achieved using Algorithm 5, applying K = 200. The P-R MIP was used in conjunction with the center
heuristic and the distance heuristic to solve the occurring problem instances. The clipping shows about 20% of the whole
dataset. For the whole dataset, the aggregation required 82.27 min. Compared to the result with K = 1, the cost for
class change fclass was reduced by 19.8%, the cost for non-compact shapes fcomp was reduced by 1.8%, and the overall
cost f was reduced by 7.8%.

8.4. Quality assessment by visualization of cost and class distances 111

8.4 Quality assessment by visualization of cost and class distances

The proposed method yields generalized datasets together with costs that allow the quality of the result to be
analyzed. In Fig. 8.2 we have already seen that the visualization of class distances helps the results of different
methods to be compared. In this section we discuss further possibilities to make use of the defined quality
measures.

Figure 8.2 showed class distances d for each area of the input dataset. If we wish to investigate the combined
cost f for a solution, we need to do this on another level of abstraction. This is because the cost for non-compact
shapes fcomp is charged for each region in the target scale. It is not reasonable to break this cost down into
smaller parts. Figure 8.9(a) shows the result of applying Eq. (5.4) to each individual aggregate, that is, each
area in the aggregation result for the sample in Fig. 8.8. The total cost f for the dataset equals the sum of
these values. Now we can divide these costs into two parts: costs for class changes fclass (Fig 8.9(b)) and costs
for non-compact shapes fcomp (Fig 8.9(c)). As dark shades correspond to high costs, expensive regions attract
our attention. Especially concerning the cost for class change, a few regions make up most of the costs: for
75% of areas the cost for class change is below 0.5 – the remaining 25% of all regions make up 69% of the
total cost for class change fclass. This does not allow us to conclude that the aggregation method failed to find
near-optimal solution in these parts of the dataset. Nevertheless, we may agree on a result unless the absolute
cost does not exceed a certain limit. Because of this, the visualization of costs supports the quality assessment.
We can now focus on expensive parts of the dataset and optionally try to find better solutions. For example, we
could apply the exact optimization method for this part of the dataset, that is, the method without heuristics.
Alternatively, we could manually edit the data.

(a) total cost (b) cost for class change (c) cost for non-compactness
with c = s′ ·cdist+(1−s′)·cperi

(d) cost for non-compactness
according to Eq. (7.2)

0.5

Legend (a) – (c)

1.0 1.5 2.0 2.5 3

Legend (d)

5 7 9 11

Fig. 8.9: Areas from Fig. 8.8 classified according to their costs. The areas in (d) were classified according to the
compactness measure c2. In contrast to the measures cperi and cdist (which can be expressed using linear terms and were
therefore applied in the optimization method) the measure c2 would not affect the size of aggregates.

112 Chapter 8. Experimental Results

In Fig. 8.9(d) the regions are classified according to the compactness measure c2 in Eq. (7.2), that is, the
product of the perimeter of a shape and the square root of its area. In Sect. 7.2 we argued that applying this
measure would be favorable, since it does not affect the size of composite regions. However, we defined the
cost for non-compact shapes fcomp by combining cperi and cdist – in contrast to c2, these measures allowed
mixed-integer programming to be applied. This is because cperi and cdist can be modeled using linear terms.
We can now compare the actually applied combination of cperi and cdist (Fig. 8.9(c)) with the favored measure
c2 (Fig. 8.9(d)). We observe that both definitions of compactness have similar effects: in both figures the same
regions appear in dark shades. In fact, the correlation coefficient between both measures is 0.81, that is, they
are highly correlated. We can consider the applied cost for non-compact shapes as a good approximation of c2.

Finally, we visually compare results of Algorithm 5 that were obtained with K = 200 (Fig. 8.10(b)) and K = 1
(Fig. 8.10(c)). The sample is part of the dataset in Fig. 8.8. For each obtained region, Figures 8.10(d) and 8.10(e)
show the average class distance d̄. The distances d can be compared using the most detailed level, that is, for
each area of the original dataset (Fig. 8.10(f)). Areas whose classes were kept more similar when setting K = 1
are green; red means that the classes were kept more similar with K = 200. Since we have seen earlier that a
higher value of K yields a better solution, it is clear that red colors dominate the figure. Nevertheless, the figure
reveals an interesting pattern: usually, red and green areas are in close vicinity to each other. In these parts
of the dataset the optimization approach was able to keep the class of relatively large areas (red) by sacrificing
smaller ones (green). Normally, such areas form isolated groups that have a limited extent. This indicates that
good solutions can be obtained by optimally handling configurations with a small number of areas. Handling
several hundreds of areas at a time, as done by Algorithm 5, is certainly a reasonable approach to find such
solutions.

8.5 Summary

We summarize the most important results from this chapter:

• For samples of up to 50 areas the exact optimization approach (the Flow MIP) reduces the average class
distance d̄ by 64% compared to simple region-growing.

• An exact solution to larger instances is not possible as the time consumption increases exponentially.

• The P-R MIP in conjunction with the center heuristic and the distance heuristic can be solved for instances
of several hundred areas (approx. 400) in modest time; the average class distance d̄ increases only by
approx. 9%, compared to the optimal solution.

• For large instances (a whole map sheet) we can apply simulated annealing or the iterative approach in
several scale steps (Algorithm 5). With K = 200 the method with intermediate scales turned out to
perform slightly better (−4% for d̄).

• Optimizing class change, the iterative method consumes 37.5% less cost than region-growing. Optimizing
a combined objective, it reduces the class change by 19.8% and the cost for non-compact shapes by 1.8%.

• In order to obtain reasonably compact shapes, we need to accept an increase of class change by 17.8%.

We discussed the effect of applying different methods and different objective functions on examples. Further-
more, we have seen that classifying areas and composite regions according to the defined objective functions
helps to visually assess the quality of the result. The advantage of the developed optimization approach is due
to its capability of sacrificing unimportant areas (that is, allowing their classes to be changed), in order to save
more important ones (that is, to avoid expensive class changes).

8.5. Summary 113

(a) input dataset ATKIS DLM 50 (pre-
processed)

(b) result of Algorithm 5 with considera-
tion of compactness (K = 200)

(c) result of Algorithm 1 (region-growing)
with consideration of compactness

(d) average class distances d̄ for regions in
result (b)

(e) average class distances d̄ for regions in
result (c)

(f) differences of distances d (d for re-
sult (c) minus d for result (b))

Legend (d) – (e)

1 5 9 18 383 7 13 26

Legend (f)

−45 −25 −5

5 25 45

Fig. 8.10: A sample from the ATKIS DLM 50 with results of two different aggregation methods and resulting average
class distances d̄ for the obtained regions.

114

115

Chapter 9

Conclusion and Outlook

9.1 Conclusion

In order to conclude the thesis we repeat and answer our research questions from Sect. 1.4.

How can we measure quality, in particular semantic accuracy, in generalization?

We have seen that two main criteria are important for good aggregation results: class changes should be
small and shapes should be compact. To quantify class change, a general distance measure between classes
was proposed. We did not require symmetric distances, which was motivated by examples. A set-up of class
distance measures was proposed, which incorporates expert knowledge and the class hierarchy given with the
data model. Compactness was expressed by two sub-objectives, that is, shapes should have a short outline and
distances to a center should be small. The defined cost function allows a quality assessment on three levels of
aggregation: for each area in the input map, for each composite area in the output and, as a global measure
of quality, for the entire dataset. Initial tests of the developed method showed that minimizing class change as
the sole objective results in unwanted long and narrow connections. In order to define a good trade-off between
the aims of compactness and minimal class change, an increase of class change by 17.8% was required.

For land cover data in a planar subdivision, the defined criteria are good indicators of spatial data quality.
If we consider other generalization problems, additional criteria become important. However, these still can
be subsumed by the known elements of spatial data quality. As discussed in the context of related work on
aggregation and grouping, preserving patterns of objects is important, for example, alignments of houses and
grid structures in road networks. Whether a map correctly reflects such patterns is also a matter of semantic
accuracy. For this, additional quantitative measures are needed, which we discuss as an aim for future research.

According to these criteria, how can we approach generalization in order to create datasets of
high quality, that comply with database specifications?

Obviously, this question can be answered briefly: by optimization. However, we need to specify this answer and
put it into perspective. In order to approach the problem by optimization we need a clear distinction of soft
constraints and hard constraints. The minimal dimensions given with database specifications, the contiguity
of composite regions, and the simplicity of the subdivision are examples for hard constraints, which have been
discussed in detail. Semantic accuracy is a soft constraint, which needs to be expressed by the objective function.
As generalization includes discrete tasks like selection it is a constrained combinatorial optimization problem.
Handling the whole generalization problem with all possibilities of data manipulation in one comprehensive,
global optimization approach seems too ambitious. Because of this, three generalization operators have been
independently developed: (1) collapse of areas and area parts to lines, (2) aggregation, and (3) line simplification.
Though the developed algorithms were applied in succession, the same components could be used in other
workflows. In particular, existing approaches for the integration of different generalization operators could be
used to decide when to apply one of the developed methods, for example, the multi-agent approach of Barrault
et al. (2001). Though the problem is broken down into three generalization operators, optimization is the most
promising approach to obtain results of high quality.

116 Chapter 9. Conclusion and Outlook

Which techniques for combinatorial optimization and spatial allocation can we apply for aggre-
gation, what are their benefits and limitations, and how can we improve on them?

To answer this question we first investigated the complexity of area aggregation. Due to its NP-hardness we
focused on mixed-integer programming and heuristics. Two different heuristic approaches have been developed:
a method by simulated annealing and a method that uses specialized heuristics in conjunction with the developed
MIPs. Table 9.1 compares the mixed-integer programming approach and the approach by simulated annealing,
according to their advantages and disadvantages.

Mixed-integer programming Simulated annealing
+ allows all relevant hard constraints to be modeled. – requires size constraint to be relaxed.
– restricts to linear objective functions. + allows non-linear objective functions.
+ is deterministic; results are reproducible. – is randomized; results are influenced by chance.
+ offers exact optima for small samples. – does not offer globally optimal solutions.
+ allows an exact solution without tuning parameters. – requires definition of an annealing schedule.

Table 9.1: Advantages and disadvantages compared for the developed aggregation approaches by mixed-integer pro-
gramming and simulated annealing.

The restriction of mixed-integer programming to linear objective functions is problematic, since size-invariant
compactness measures cannot be applied. The problem was handled by fixing a set of region centers. With this
approach, the alternative compactness measures had a limited influence on the size of regions.

Several components of existing MIPs for spatial allocation could be adapted; however, the newly developed
Flow MIP turned out to be the best performing exact method. To improve the performance of these methods,
several new heuristics have been developed. In conjunction with the center heuristic and the distance heuristic,
the P-R MIP allowed near-optimal solutions to be produced for instances of approximately 400 areas, in modest
time. Applying the P-R MIP in conjunction with the heuristic method that uses intermediate scale steps, we
still obtain better results than with simulated annealing. Due to this reason and the majority of benefits in
Table 9.1 on side of the mixed-integer programming approach, this method should be favored. Furthermore,
the mixed-integer programming approach allows existing optimization software to be used.

How competitive are these techniques under realistic conditions, that is, if large datasets need to
be processed and derived data needs to be frequently updated?

Firstly, we have seen that region-growing, that is, iteratively merging areas while only considering their direct
neighbors, is not sufficient to find good results. We need to accept that high-quality digital landscape models
cannot be produced in seconds. Hence, whether we can produce well-generalized DLMs is also a question of
whether we are willing to spend additional minutes or hours for data processing. If we consider the time and
the effort that is needed to collect the data, the processing time should not be our major concern. However, due
to the NP-hardness of the aggregation problem and the exponential time performance of MIP solvers, we can
only solve very small problem instances exactly (about 50 areas), even if we wait for several days; of course, this
is not acceptable. Therefore, good heuristics are needed for map generalization. In order to process very large
datasets, we need to define some kind of partitioning scheme that allows the aggregation method to be applied
to independent subsets. Supposably, partitioning the dataset into arbitrary grid cells would be too rigorous.
In contrast, when applying the center heuristic, a problem instance directly decomposes into several smaller
instances, which means that the partitioning scheme is inherent to the data. The obtained problem instances
can be processed independently, that is, in parallel. When allowing intermediate scale steps to further decrease
the size of the occurring problem instances, the method scales well with the size of the input. Processing a
complete map sheet (22 km × 22 km, 5537 areas) required 82 minutes, which we consider appropriate for
applications. Compared to the pure region-growing approach, it consumed 37.5% less costs when defining class
change as the sole objective. Optimizing a combined objective, it reduced class change by 19.8% and the cost
for non-compact shapes by 1.8%.

We can solve the updating problem with the same approach, that is, we can use the partitioning scheme based on
the center heuristic. Among the independent problem instances, we only need to solve those instances again that

9.2. On-going research work 117

contain updated areas, for example, areas whose classes have changed. This incremental approach guarantees a
result that equals the result of processing the whole dataset. However, as the occurring problem instances can
be large, it is reasonable to permanently maintain an intermediate scale. In this case, the occurring problem
instances become smaller. We conclude that the developed method not only allows toy problems to be solved,
but also copes with realistic conditions.

In conclusion, the developed aggregation method by mixed-integer programming guarantees results that satisfy
requirements from database specifications. With respect to a cost-based measure of semantic accuracy, it offers
optimal solutions for small samples. Large datasets can be processed by applying specialized heuristics; the
obtained results are clearly better than those from the existing iterative algorithm. The defined quality measures
allow the quality of the result to be assessed, both on the object level and for the whole dataset.

9.2 On-going research work

Several directions can be explored to continue this work. Two concrete problems are addressed by on-going
research. For both problems, initial solutions were obtained that encourage further developments into similar
directions: quality measures need to be defined and optimization approaches need to be developed, in order to
obtain generalization results of high quality.

Figure 9.1 illustrates one of these two problems. A common approach to submit a spatial dataset from a
server to a mobile client is to send a coarse representation first, which then is gradually refined. With this
approach, users have fast access to coarse representations, which they can use, for example, to browse to their
area of interest. This problem not only requires well-generalized datasets at a particular scale, but also asks for
intermediate representations. When loading more detailed data, the already sent data should be reused. The
simple iterative algorithm (Algorithm 1) has the nice property that it defines a gradual reduction of detail. The
reversed sequence of operations defines a gradual refinement, which can be used for progressive data submission
and zooming (van Oosterom, 2005). Unfortunately, we have seen that the simple algorithm does not produce
generalization results of high quality. In contrast, the optimization approach produces better results for a
particular scale, but does not define a sequence of incremental refinement operations. We therefore aim to
combine the benefits of both methods (Haunert et al., 2008).

A simple approach is to proceed in two steps. Firstly, a small-scale representation is generated using the gener-
alization method that was developed in this thesis. Secondly, an iterative procedure similar to Algorithm 1 is
provided with the detailed dataset and the result that was obtained by optimization. In contrast to Algorithm 1
it is constrained to apply merge operations that yield the given result. Again, the procedure yields a sequence
that can be used for gradual refinement. However, we are sure that we have a well-generalized map at smallest
scale. The result in Fig. 9.1 was obtained with this approach.

Fig. 9.1: A sequence of representations that can be used for progressive data submission via the Internet. The least
detailed dataset (right) was obtained by generalization of the most detailed dataset (left), using the methods that were
developed in this thesis. To generate intermediate representations, we defined a simple algorithm, which is similar to
Algorithm 1 (Haunert et al., 2008).

118 Chapter 9. Conclusion and Outlook

A problem of this simple method is that we may produce improper intermediate levels of generalization, that
is, we optimally generated the representation at smallest scale, but there are still several possibilities to define
a sequence that yields this result. Hence, we should also clearly define the quality of a generalization sequence.
For example, we certainly would prefer generalization sequences in which each scale-step implies a similar cost
for class change. If we obtained the cost for class change fclass for the smallest scale, then a sequence of n
scale-steps would be perfect, if each of them implies a class change of (fclass)/n. This would reflect the idea of a
gradual reduction of detail. However, with our approach it is possible that a single step implies a relatively high
cost for class change. To avoid this problem, it would be reasonable to define a sequence that yields the optimal
result at smallest scale and, subject to this hard constraint, minimizes the maximal cost for class change that
is charged in a single step. The current method does not allow such a sequence to be produced, but again the
problem could be approached by optimization.

Figure 9.2 shows a second problem, the simplification of building ground plans. Though several approaches exist
to attack this task we have started to develop a new approach (Haunert & Wolff, 2008). However, we do not
aim at yet another building simplification method. In contrast to other methods, our method allows different
optimization objectives and constraints to be applied. We assume that comparing the results will help to better
understand the criteria that make up a well-generalized building. So, in addition to a new simplification method,
we will gain measures for quality assessment.

ε

(a) an input polygon
and its shortcut graph

(b) a solution and its
corresponding cycle in
the shortcut graph

(c) another solution and
its corresponding cycle

10m

(d) a more complex
input polygon

ε

(e) building (d) af-
ter simplification

Fig. 9.2: Building simplification based on a shortest cycle formulation after Haunert & Wolff (2008). The parameter ε
defines the error tolerance.

Our approach is similar to the optimization approach to line simplification from Sect. 6.2. In contrast, we reduce
a building outline to a subsequence of its edges and not to a subsequence of its vertices. We allow the selected
edges to be shortened or extended in order to generate a closed outline. With this approach we keep the edge
slopes fixed and so give consideration to shape regularities. For example, if the original building is rectilinear,
the simplified building will automatically be rectilinear, too. Certain requirements must hold for the simplified
building, in particular, we do not allow self-intersections and we require a limited positional error ε. Our basic
approach is to minimize the number of edges in the simplified building. To solve this problem we introduced a
shortcut (di)graph. This contains an arc for each potential shortcut, which is a pair of edges that can become
consecutive edges in the simplified building. The shortest cycle in the graph that satisfies a certain set of hard
constraints defines the optimally simplified building. In our first publication of this approach (Haunert & Wolff,
2008), we also proved that the problem is NP-hard if the original building contains multiple holes and if we
require simple polygons in the output. Therefore, we again proposed solutions by integer programming and
heuristics.

A minimum number of edges can be important for data compression. However, to produce well-generalized
building outlines, other quality criteria are important. Corners with 90 degree angles are typical for buildings,
and so they should be preferred. Our model allows non-uniform costs to be introduced for arcs in the shortcut
graph. A shortcut that implies a corner of 90 degrees should be relatively cheap. However, future research is
still needed to find an appropriate cost setting.

9.3. General recommendations for future research 119

9.3 General recommendations for future research

Though many generalization methods exist, still little is known about how to quantify the quality of the obtained
results. Recent developments of pattern recognition techniques for vector data, for example, the approaches of
Heinzle & Anders (2007) and Lüscher et al. (2007), will certainly improve the results of automatic generalization
methods. However, we need to find good measures to appropriately characterize patterns. For example, rather
than defining ad hoc solutions to find grid structures in road networks, a measure of ‘grid-likeness’ should be
introduced. Then, similar to our optimization approach to find optimally compact shapes, we can also imagine
optimization methods to find maximally ‘grid-like’ subsets of roads in the road network. To improve the
proposed aggregation method, we could introduce shape measures of ‘grassland-likeness’, ‘settlement-likeness’,
and ‘lake-likeness’ rather than a general shape measure for compactness. However, in order to quantify changes
that are due to generalization, we must not only describe characteristic features in one representation, but
also need to define additional similarity or distance measures to compare representations. For example, we
could quantify the differences of two datasets with respect to the similarity of the contained grid structures.
Such approaches will have impact beyond automatic map generalization. They will also be useful for related
problems like data matching and integration and, furthermore, support more general spatial analysis and data
mining tasks. For example, different designs of a planned road network could be compared with respect to their
grid-likeness, in order to decide on one option.

Ideally, the definition of appropriate measures is independent from the selection of a particular optimization
technique. However, when formalizing the aggregation problem, the difficulty to express size-invariant compact-
ness measures by mixed-integer programming has guided our choice to a less perfect measure. When approaching
any real-world problem by optimization we need to be aware that a model can only reflect parts of the real-
ity. Such simplifications are justifiable if they prevent a problem from becoming intractable or severely more
difficult. Nevertheless, they need to be laid open. In order to allow for a high flexibility in handling hard and
soft constraints, research on map generalization requires more insight into theoretical aspects of optimization.
Further research is needed to elaborate the applicability of different optimization approaches.

Probably, the most explored optimization approach to map generalization is the application of meta-heuristics,
for example, simulated annealing. However, often it is difficult to find an appropriate neighborhood that
allows hard constraints to be handled. Furthermore, it is questionable whether the non-deterministic nature of
simulated annealing is acceptable. With respect to the quality element lineage, we need to provide users with
meta-information about applied map transformations such that reasons for changes are comprehensible. If we
consider map generalization as a special map transformation we must not allow the results to be influenced by
chance. Of course map generalization is more difficult to formalize than other map transformations, for example,
geometric map projections. However, with deterministic optimization approaches to map generalization, we can
concisely define how a database of reduced scale was derived from a given source. For example, as dependencies
between both datasets become well-defined, we have the possibility of finding incremental methods for updating,
that offer the same result as the complete generalization method. Therefore, these approaches need to be further
developed.

Since quality assurance in map generalization is an important problem, we should not only consider heuristic
approaches. Especially, the development of approximation algorithms and approximation schemes is promising.
These give a performance guarantee, but also allow NP-hard combinatorial problems to be tackled. In particular,
this thesis may encourage other researchers to find good approximation algorithms for AreaAggregation.

120

121

Appendix A

The P-R MIP for an Instance of
AREAAGGREGATION

To simplify the reproduction of the developed method, this appendix presents the P-R MIP for a simple
instance of the aggregation problem. Figure A.1(a) shows this instance, which includes six areas of two different
classes. The areas need to be aggregated, in order to satisfy the defined thresholds θ for the target scale. The
optimization objective is to minimize class change. Figure A.1(b) shows the optimal solution: Only two small
areas needed to change their classes, in order to end up with weight-feasible and contiguous regions.

v1

v2

v3

v4

v5

v6

w(v1) = w(v6) = 3

w(v2) = w(v5) = 2

w(v3) = w(v4) = 1

d(gray, white) = d(white, gray) = 1

θ(gray) = θ(white) = 6

(a) an instance of AreaAggregation (b) the optimal solution for the instance in (a)

Fig. A.1: A processed example.

Table A.1 shows the P-R MIP for this instance in CPLEX LP file format, which can be read by the optimizers
CPLEX and lp solve. Only the definition of binary variables was truncated, in order to save space. The variable
x_i_j refers to the variables xvivj according to the definition in Sect. 7.4. The constraints con1–con30 ensure
the connectivity according to the precedence relationship, that is, they are equivalent to the constraint in
Eq. (7.15). Constraints con31–con36 ensure that a node is assigned to exactly one center, which corresponds to
Eq. (7.11). Finally, constraints con37–con42 ensure that the regions are weight-feasible, that is, the constraints
are equivalent to Eq. (7.12).

Assuming that this IP is stored in a file ‘input.lp’, the following command can be used to solve the problem
with lp solve:

lp_solve -rxli xli_CPLEX input.lp > output.txt

The solution is written to file ‘output.txt’, which is shown in Table A.2. The values of the variables correspond
to the solution in Fig. A.1(b). The centers according to this solution are displayed as squares.

122 Appendix A. The P-R MIP for an Instance of AREAAGGREGATION

Table A.1: The P-R MIP for the instance in Fig. A.1(a), formatted
according to CPLEX LP file format.

Minimize

obj:

+ 3 x_2_1 + 3 x_4_1 + 3 x_6_1

+ 2 x_1_2 + 2 x_3_2 + 2 x_5_2

+ 1 x_2_3 + 1 x_4_3 + 1 x_6_3

+ 1 x_1_4 + 1 x_3_4 + 1 x_5_4

+ 2 x_2_5 + 2 x_4_5 + 2 x_6_5

+ 3 x_1_6 + 3 x_3_6 + 3 x_5_6

Subject To

con1: x_1_2 - x_1_1 <= 0

con2: x_1_3 - x_1_2 <= 0

con3: x_1_4 - x_1_1 <= 0

con4: x_1_5 - x_1_2 - x_1_4 <= 0

con5: x_1_6 - x_1_3 - x_1_5 <= 0

con6: x_2_1 - x_2_2 <= 0

con7: x_2_3 - x_2_2 <= 0

con8: x_2_4 - x_2_5 <= 0

con9: x_2_5 - x_2_2 <= 0

con10: x_2_6 - x_2_3 - x_2_5 <= 0

con11: x_3_1 - x_3_2 <= 0

con12: x_3_2 - x_3_3 <= 0

con13: x_3_4 - x_3_5 <= 0

con14: x_3_5 - x_3_2 - x_3_6 <= 0

con15: x_3_6 - x_3_3 <= 0

con16: x_4_1 - x_4_4 <= 0

con17: x_4_2 - x_4_1 - x_4_5 <= 0

con18: x_4_3 - x_4_2 <= 0

con19: x_4_5 - x_4_4 <= 0

con20: x_4_6 - x_4_5 <= 0

con21: x_5_1 - x_5_2 - x_5_4 <= 0

con22: x_5_2 - x_5_5 <= 0

con23: x_5_3 - x_5_2 <= 0

con24: x_5_4 - x_5_5 <= 0

con25: x_5_6 - x_5_5 <= 0

con26: x_6_1 - x_6_2 - x_6_4 <= 0

con27: x_6_2 - x_6_3 - x_6_5 <= 0

con28: x_6_3 - x_6_6 <= 0

con29: x_6_4 - x_6_5 <= 0

con30: x_6_5 - x_6_6 <= 0

con31: + x_1_1 + x_2_1 + x_3_1 + x_4_1 + x_5_1 + x_6_1 = 1

con32: + x_1_2 + x_2_2 + x_3_2 + x_4_2 + x_5_2 + x_6_2 = 1

con33: + x_1_3 + x_2_3 + x_3_3 + x_4_3 + x_5_3 + x_6_3 = 1

con34: + x_1_4 + x_2_4 + x_3_4 + x_4_4 + x_5_4 + x_6_4 = 1

con35: + x_1_5 + x_2_5 + x_3_5 + x_4_5 + x_5_5 + x_6_5 = 1

con36: + x_1_6 + x_2_6 + x_3_6 + x_4_6 + x_5_6 + x_6_6 = 1

con37: 3 x_1_1 - 2 x_1_2 - 1 x_1_3 - 1 x_1_4 - 2 x_1_5 - 3 x_1_6 <= 0

con38: 4 x_2_2 - 3 x_2_1 - 1 x_2_3 - 1 x_2_4 - 2 x_2_5 - 3 x_2_6 <= 0

con39: 5 x_3_3 - 3 x_3_1 - 2 x_3_2 - 1 x_3_4 - 2 x_3_5 - 3 x_3_6 <= 0

con40: 5 x_4_4 - 3 x_4_1 - 2 x_4_2 - 1 x_4_3 - 2 x_4_5 - 3 x_4_6 <= 0

con41: 4 x_5_5 - 3 x_5_1 - 2 x_5_2 - 1 x_5_3 - 1 x_5_4 - 3 x_5_6 <= 0

con42: 3 x_6_6 - 3 x_6_1 - 2 x_6_2 - 1 x_6_3 - 1 x_6_4 - 2 x_6_5 <= 0

Binaries

x_1_1

[...]

x_6_6

End

Table A.2: Output of the optimizer lp solve
for the input in Table A.1.

set_XLI: Successfully loaded ’xli_CPLEX’

Value of objective function: 2

Actual values of the variables:

x_2_1 0

x_4_1 0

x_6_1 0

x_1_2 0

x_3_2 0

x_5_2 0

x_2_3 1

x_4_3 0

x_6_3 0

x_1_4 0

x_3_4 0

x_5_4 1

x_2_5 0

x_4_5 0

x_6_5 0

x_1_6 0

x_3_6 0

x_5_6 0

x_1_1 0

x_1_3 0

x_1_5 0

x_2_2 1

x_2_4 0

x_2_6 1

x_3_1 0

x_3_3 0

x_3_5 0

x_4_4 0

x_4_2 0

x_4_6 0

x_5_1 1

x_5_5 1

x_5_3 0

x_6_2 0

x_6_4 0

x_6_6 0

123

Bibliography

Abramson, D., Dang, H., & Krishnamoorthy, M. 1996. A comparison of two methods for solving 0–1 integer
programs using a general purpose simulated annealing algorithm. Annals of Operations Research, 63(1),
129–150.

AdV. 2003. ATKIS-Objektartenkatalog. http://www.atkis.de (2007/11/09).

Aerts, J. C. J. H., & Heuvelink, G. B. M. 2002. Using simulated annealing for resource allocation. International
Journal of Geographical Information Science, 16(6), 571–587.

Afflerbach, S., Illert, A., & Sarjakoski, T. 2004. The harmonisation challenge of core national topographic data
bases in the EU-project GiMoDig. Pages 129–134 of: Proceedings of the XXth ISPRS Congress, July 12–23,
2004, Istanbul, Turkey. International Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, no. XXXV(Part B4:IV).

Ahlquist, O. 2005. Using semantic similarity metrics to uncover category and land cover change. Pages 107–119
of: Proceedings of the 1st International Conference on GeoSpatial Semantics (GeoS’05), November 29–30,
2005, Mexico City, Mexico. Lecture Notes in Computer Science, vol. 3799. Springer, Berlin, Germany.

Ai, T., & van Oosterom, P. J. M. 2002. GAP-tree extensions based on skeletons. Pages 501–513 of: Proceedings
of the 10th International Symposium on Spatial Data Handling (SDH’02), July 9–12, 2002, Ottawa, Canada.

Aichholzer, O., Aurenhammer, F., Alberts, D., & Gärtner, B. 1995. A novel type of skeleton for polygons.
Journal of Universal Computer Science, 1(12), 752–761.

Allouche, M. K., & Moulin, B. 2005. Amalgamation in cartographic generalization using Kohonen’s feature
nets. International Journal of Geographical Information Science, 19(8–9), 899–914.

Anders, K.-H. 2003. A hierarchical graph-clustering approach to find groups of objects. In: Proceedings of
the 5th Workshop on Progress in Automated Map Generalization, ICA Commission on Map Generalization,
April 28–30, 2003, Paris, France.

Anders, K.-H. 2004. Parameterfreies hierarchisches Graph-Clustering Verfahren zur Interpretation raumbezo-
gener Daten. Dissertation, Universität Stuttgart, Germany.

Anders, K.-H., & Bobrich, J. 2004. MRDB approach for automatic incremental update. In: Proceedings of the
7th ICA Workshop on Generalisation and Multiple Representation, August 20–21, 2004, Leicester, UK.

Anders, K.-H., & Haunert, J.-H. 2004. MRDB to connect 3D city models, cadastral, and topographic data
together. In: Proceedings of the 24th Urban Data Management Symposium (UDMS’04), October 27–29,
2004, Chioggia (Venice), Italy.

ARD. 2006. Bundeslandkalkulator. http://www.tagesschau.de/bundeslandkalkulator (2006/07/18).

Bader, M. 2001. Energy Minimization Methods for Feature Displacement in Map Generalization. Ph.D. thesis,
Universität Zürich, Switzerland.

Bader, M., & Weibel, R. 1997. Detecting and resolving size and proximity conflicts in the generalization
of polygonal maps. Pages 1525–1532 of: Proceedings of the 18th International Cartographic Conference
(ICC’97), June 23–27, 1997, Stockholm, Sweden.

Bard, S. 2004. Quality assessment of cartographic generalization. Transactions in GIS, 8(1), 63–81.

124 Bibliography

Barrault, M., Regnauld, N., Duchêne, C., Haire, K., Baeijs, C., Demazeau, Y., Hardy, P., Mackaness, W., Ruas,
A., & Weibel, R. 2001. Integrating multi-agent, object-oriented, and algorithmic techniques for improved
automated map generalisation. Pages 2110–2116 of: Proceedings of the 20th International Cartographic
Conference (ICC’01), August 6–10, 2001, Beijing, China, vol. 3.

Beard, M. K. 1991. Constraints on rule formulation. Chap. 7, pages 121–149 of: Buttenfield, B. P., & Mc-
Master, R. B. (eds), Map Generalization: Making Rules for Knowledge Representation. Longman Scientific
& Technical, Harlow, UK.

Bland, R. G. 1977. New finite pivoting rules for the simplex method. Mathematics of Operations Research,
2(2), 103–107.

Bobrich, J. 1996. Ein neuer Ansatz zur kartographischen Verdrängung auf der Grundlage eines mechanischen
Federmodells. Dissertation, Technische Universität Darmstadt, Deutsche Geodätische Kommission, Reihe C,
vol. 455, Munich, Germany.

Bobzien, M. 2001. Flächenzusammenfassungen in der Modellgeneralisierung. Pages 19–29 of: Mitteilungen
des Bundesamtes für Kartographie und Geodäsie, Band 20: Arbeitsgruppe Automation in der Kartographie –
Tagung 2000. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, Germany.

Boffet, A., & Serra, S. R. 2001. Identification of spatial structures within urban blocks for town characterisation.
Pages 1974–1983 of: Proceedings of the 20th International Cartographic Conference (ICC’01), August 6–10,
2001, Beijing, China, vol. 3.

Bose, P., Cabello, S., Cheong, O., Gudmundsson, J., van Krefeld, M., & Speckmann, B. 2006. Area-preserving
approximations of polygonal paths. Journal of Discrete Algorithms, 4(4), 554–556.

Brassel, K. E., & Weibel, R. 1988. A review and conceptual framework of automated map generalization.
International Journal of Geographical Information Systems, 2(3), 229–244.

Burghardt, D. 2005. Controlled line smoothing by snakes. GeoInformatica, 9, 237–252.

Buttenfield, B. P., & McMaster, R. B. 1991. Map Generalization: Making Rules for Knowledge Representation.
Longman Scientific & Technical, Harlow, UK.

Campbell, G. M., & Cromley, R. G. 1991. Optimal simplification of cartographic lines using shortest-path
formulations. The Journal of the Operational Research Society, 42(9), 793–802.

Caro, F., Shirabe, T., Guignard, M., & Weintraub, A. 2004. School redistricting: embedding GIS tools with
integer programming. Journal of the Operational Research Society, 55(8), 836–849.

Cecconi, A. 2003. Integration of Cartographic Generalization and Multi-Scale Databases for Enhanced Web
Mapping. Ph.D. thesis, Universität Zürich, Switzerland.

Chan, W. S., & Chin, F. Y. 1996. Approximation of polygonal curves with minimum number of line segments
or minimum error. International Journal of Computational Geometry and Applications, 6(1), 59–77.

Chen, D., Daescu, O., Hershberger, J., Kogge, P., Mi, N., & Snoeyink, J. 2005. Polygonal path simplification
with angle constraints. Computational Geometry, 32(3), 173–187.

Cheng, T., & Li, Z. 2006. Toward quantitative measures for the semantic quality of polygon generalization.
Cartographica, 41, 135–147.

Chin, F. Y., Snoeyink, J., & Wang, C. A. 1995. Finding the medial axis of a simple polygon in linear time. Pages
382–391 of: Proceedings of the 6th International Symposium on Algorithms and Computation (ISAAC’95),
December 4–5, 1995, Cairns, Australia. Lecture Notes in Computer Science, vol. 1004. Springer, Berlin,
Germany.

Chithambaram, R., Beard, M. K., & Barrera, R. 1991. Skeletonizing polygons for map generalization. Pages
44–55 of: Auto-Carto 10: Technical papers of the 1991 ACSM-ASPRS Annual Convention, March 25–28,
1991, Baltimore, MD, USA, vol. 2.

Cloonan, J. B. 1972. A note on the compactness of sales territories. Management Science, 19(4), 469–470.

Bibliography 125

Cobb, M. A., Chung, M. J., Foley, H., Petry, F. E., Shaw, K. B., & Miller, H. V. 1998. A rule-based approach
for the conflation of attributed vector data. GeoInformatica, 2(1), 7–35.

Cook, S. A. 1971. The complexity of theorem-proving procedures. Pages 151–158 of: Proceedings of the 3rd
annual ACM symposium on theory of computing, May 3–5, 1971, Shaker Heights, OH, USA.

Cromley, R. G. 1986. A spatial allocation analysis of the point annotation problem. Pages 38–49 of: Proceedings
of the 2nd International Symposium on Spatial Data Handling (SDH’86), July 6–10, 1986, Seattle, WA, USA.

Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, USA.

de Berg, M., van Kreveld, M., & Schirra, S. 1998. Topologically correct subdivision simplification using the
bandwidth criterion. Cartography and Geographic Information Systems, 25(4), 243–257.

de Berg, M., Cheong, O., van Kreveld, M., & Overmars, M. 2008. Computational Geometry: Algorithms and
Applications. Springer, Berlin, Germany.

Deveau, T. 1985. Reducing the number of points in a plane curve representation. Pages 152–160 of: Proceedings
of Auto-Carto VII, March 11–14, 1985, Washington D.C., USA.

Devogele, T., Trevisan, J., & Raynal, L. 1996. Building a multi-scale database with scale-transition relationships.
Pages 19–33 of: Proceedings of the 7th International Symposium on Spatial Data Handling (SDH’96), August
12–16 , 1996, Delft, The Netherlands, vol. I:6.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

Douglas, D. H., & Peucker, T. K. 1973. Algorithms for the reduction of the number of points required to
represent a digitized line or its character. The Canadian Cartographer, 10(2), 112–122.

Dumitrescu, I., & Boland, N. 2001. Algorithms for the weight constrained shortest path problem. International
Transactions in Operational Research, 8(1), 15–29.

Dunkars, M. 2004. Multiple Representation Databases for Topographic Information. Ph.D. thesis, Royal Institute
of Technology (KTH), Stockholm, Sweden.

Egenhofer, M. J. 1989. A formal definition of binary topological relationships. Pages 457–472 of: Proceedings
of the 3rd International Conference on Foundations of Data Organization and Algorithms (FODO’89), June
21–23, 1989 Paris, France. Lecture Notes in Computer Science, vol. 367. Springer, Berlin, Germany.

Eppstein, D., & Erickson, J. 1998. Raising roofs, crashing cycles, and playing pool: applications of a data
structure for finding pairwise interactions. Pages 58–67 of: Proceedings of the 14th Annual Symposium on
Computational Geometry (SCG’98), June 7–10, 1998, Minneapolis, MN, USA.

Estkowski, R., & Mitchell, J. S. B. 2001. Simplifying a polygonal subdivision while keeping it simple. Pages
40–49 of: Proceedings of the 17th Annual Symposium on Computational Geometry (SCG’01), June 3–5, 2001,
Medford, MA, USA.

Felkel, P., & Obdržálek, Š. 1998. Straight skeleton implementation. Pages 210–218 of: Proceedings of Spring
Conference on Computer Graphics, April 22–24, 2004, Budmerice, Slovakia.

Fischer, D. T., & Church, R. L. 2003. Clustering and compactness in reserve site selection: an extension of the
biodiversity management area selection model. Forest Science, 49(4), 555–565.

Frank, A. U., Volta, G. S., & McGranaghan, M. 1997. Formalization of families of categorical coverages.
International Journal of Geographical Information Science, 11(3), 215–231.

Frank, R., & Ester, M. 2006. A quantitative similarity measure for maps. Pages 435–450 of: Riedl, A., Kainz,
W., & Elmes, G. A. (eds), Progress in Spatial Data Handling: Proceedings of the 12th International Symposium
on Spatial Data Handling (SDH’06), July 12–14, 2006, Vienna, Austria. Springer, Berlin, Germany.

Gaffuri, J. 2007. Outflow preservation of the hydrographic network on the relief in map generalisation. In:
Proceedings of the 23rd International Cartographic Conference (ICC’07), August 4–10, 2007, Moscow, Russia.

126 Bibliography

Galanda, M. 2003. Automated Polygon Generalization in a Multi Agent System. Ph.D. thesis, Universität
Zürich, Switzerland.

Garey, M. R., & Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman & Co. New York, NY, USA.

Garey, M. R., Johnson, D. S., & Stockmeyer, L. 1974. Some simplified NP-complete problems. Pages 47–63 of:
Proceedings of the 6th annual ACM symposium on theory of computing, April 30 – May 02, 1974, Seattle,
WA, USA.

Geoscience Australia. 2006. Topographic data and map specifications. http://www.ga.gov.au/mapspecs/
250k100k/ (2007/11/09).

Gomory, R. E. 1958. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American
Mathematical Society, 64(5), 275–278.

Gonzalez, R. C., & Woods, R. E. 2002. Digital Image Processing. 2nd edn. Addison-Wesley, Boston, MA, USA.

Grünreich, D. 2003. The decentralised approach to mapping of the Federal Republic of Germany – a model for
establishing the European Spatial Data Infrastructure (ESDI)? In: Proceedings of Cambridge Conference,
July 21–25, 2003, Cambridge, UK.

Gudmundsson, J., Narasimhan, G., & Smid, M. H. M. 2007. Distance-preserving approximations of polygonal
paths. Computational Geometry, 36(3), 183–196.

Haala, N., & Brenner, C. 1997. Generation of 3D city models from airborne laser scanning data. In: Proceedings
of the 3rd EARSeL Workshop on Lidar Remote Sensing of Land and Sea, July 17–19, 1997, Tallinn, Estonia.

Hajek, B. 1988. Cooling schedules for optimal annealing. Mathematics of Operations Research, 13(2), 311–329.

Hake, G., Grünreich, D., & Meng, L. 1994. Kartographie. Visualisierung raum-zeitlicher Informationen. Walter
de Gruyter & Co, Berlin, Germany.

Hampe, M. 2007. Integration einer multiskaligen Datenbank in eine Webservice-Architektur. Dissertation,
Leibniz Universität Hannover, Deutsche Geodätische Kommission, Reihe C, vol. 605, Munich, Germany.

Hampe, M., Anders, K.-H., & Sester, M. 2003. MRDB applications for data revision and real-time generalisation.
Pages 192–202 of: Proceedings of the 21st International Cartographic Conference (ICC’03), August 10–16,
2003, Durban, South Africa.

Hampe, M., Sester, M., & Harrie, L. 2004. Multiple representation to support visualisation on mobile devices.
Pages 135–140 of: Proceedings of the XXth ISPRS Congress, July 12–23, 2004, Istanbul, Turkey. International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XXXV.

Hardy, P. J., Monnot, J.-L., & Lee, D. 2007. An optimization approach to constraint based generalization in
a commodity GIS framework. In: Proceedings of the 23rd International Cartographic Conference (ICC’07),
August 4–10, 2007, Moscow, Russia.

Harrie, L. 1999. The constraint method for solving spatial conflicts in cartographic generalization. Cartography
and Geographic Information Science, 26(1), 55–69.

Harrie, L., & Hellström, A.-K. 1999. A prototype system for propagating updates between cartographic data
sets. The Cartographic Journal, 36(2), 133–140.

Harrie, L., & Sarjakoski, T. 2002. Simultaneous graphic generalization of vector data sets. GeoInformatica,
6(3), 233–261.

Harrie, L., & Weibel, R. 2007. Modelling the overall process of map generalization. Chap. 4, pages 67–88 of:
Mackaness, W., Ruas, A., & Sarjakoski, T. L. (eds), Generalisation of geographic information: Cartographic
modelling and applications. Elsevier, Oxford, UK.

H̊astad, J. 2001. Some optimal inapproximability results. Journal of the ACM, 48(4), 798–859.

Bibliography 127

Haunert, J.-H. 2005a. Geometrietypwechsel in einer Multi-Resolution-Datenbank. In: Mitteilungen des Bun-
desamtes für Kartographie und Geodäsie, Band 34: Arbeitsgruppe Automation in der Kartographie – Tagung
2004. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, Germany.

Haunert, J.-H. 2005b. Link based conflation of geographic datasets. In: Proceedings of the 8th ICA Workshop
on Generalisation and Multiple Representation, July 7–8, 2005, A Coruña, Spain.

Haunert, J.-H. 2006. Aktualisierung von Geodaten in einer Multiple Representation Database. In: Publika-
tionen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V., DGPF
Jahrestagung 2006, Berlin, Germany.

Haunert, J.-H. 2007a. Efficient area aggregation by combination of different techniques. In: Proceedings of the
10th ICA Workshop on Generalisation and Multiple Representation, August 2–3, 2007, Moscow, Russia.

Haunert, J.-H. 2007b. A formal model and mixed-integer program for area aggregation in map generalization.
Pages 161–166 of: Photogrammetric Image Analysis (PIA’07), September 19–21, 2007, Munich, Germany. In-
ternational Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XXXVI(Part
3/W49A). ISPRS.

Haunert, J.-H. 2007c. Optimization methods for area aggregation in land cover maps. In: Proceedings of the
23rd International Cartographic Conference (ICC’07), August 4–10, 2007, Moscow, Russia.

Haunert, J.-H., & Sester, M. 2004. Using the straight skeleton for generalisation in a multiple representation
environment. In: Proceedings of the 7th ICA Workshop on Generalisation and Multiple Representation,
August 20–21, 2004, Leicester, UK.

Haunert, J.-H., & Sester, M. 2005. Propagating updates between linked data sets of different scale. In:
Proceedings of the 22nd International Cartographic Conference (ICC’05), July 11–16, 2005, A Coruña, Spain.

Haunert, J.-H., & Sester, M. 2008a. Area collapse and road centerlines based on straight skeletons. GeoInfor-
matica, 12(2), 169–191.

Haunert, J.-H., & Sester, M. 2008b. Assuring logical consistency and semantic accuracy in map generalization.
Photogrammetrie - Fernerkundung - Geoinformation (PFG), 2008(3), 165–173.

Haunert, J.-H., & Wolff, A. 2006. Generalization of land cover maps by mixed integer programming. Pages 75–
82 of: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information
Systems (GIS’06), November 11–16, 2006, Arlington, VA, USA.

Haunert, J.-H., & Wolff, A. 2008. Optimal simplification of building ground plans. In: Proceedings of the XXIst
ISPRS Congress, July 3–11, 2008, Beijing, China.

Haunert, J.-H., Anders, K.-H., & Sester, M. 2006. Hierarchical structures for rule-based incremental generali-
sation. Pages 49–57 of: Proceedings of the ISPRS Workshop on Multiple Representation and Interoperability
of Spatial Data, February 22–24, 2006, Hannover, Germany. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, no. XXXVI(Part 2/W40).

Haunert, J.-H., Dilo, A., & van Oosterom, P. 2008. Constrained set-up of the tGAP structure for progressive
vector data transfer. Under review at Computers & Geosciences.

Heinzle, F., & Anders, K.-H. 2007. Characterising space via pattern recognition techniques: Identifying pat-
terns in road networks. Chap. 12, pages 233–254 of: Mackaness, W., Ruas, A., & Sarjakoski, T. L. (eds),
Generalisation of geographic information: Cartographic modelling and applications. Elsevier, Oxford, UK.

Heinzle, F., Anders, K.-H., & Sester, M. 2006. Pattern recognition in road networks on the example of circular
road detection. Pages 153–167 of: Proceedings of the 4th International Conference on Geographic Information
Science (GIScience’06), September 20–23, 2006, Münster, Germany. Lecture Notes in Computer Science,
vol. 4197. Springer, Berlin, Germany.

Hess, S. W., & Samuels, S. A. 1971. Experiences with a sales districting model: Criteria and implementation.
Management Science, 18(4, Part II), 41–54.

128 Bibliography

Hoffman, W., & Pavley, R. 1959. A method for the solution of the Nth best path problem. Journal of the ACM,
6(4), 506–514.

Hojati, M. 1999. Optimal political districting. Computers & Operations Research, 23(12), 1147–1161.

ILOG. 2008. ILOG CPLEX: High-performance software for mathematical programming and optimization. http:
//www.ilog.com/products/cplex/ (2008/01/15).

Jaakkola, O. 1997a. Automatic iterative generalization for land cover data. Pages 277–286 of: AutoCarto
13: Proceedings of the 13th International Symposium on Computer-Assisted Cartography, April 5–10, 1997,
Seattle, WA, USA.

Jaakkola, O. 1997b. Multi-scale land cover databases by automatic generalization. Pages 709–716 of: Proceed-
ings of the 18th International Cartographic Conference (ICC’97), June 23–27, 1997, Stockholm, Sweden.

Jaakkola, O. 1997c. Quality and Automatic Generalization of Land Cover Data. Ph.D. thesis, Department of
Geography, University of Helsinki, Finland.

Jaakkola, O. 1998. Multi-scale categorical data bases with automatic generalization transformations based on
map algebra. Cartography and Geographic Information Systems, 25(4), 195–207.

Jansen, M., & van Kreveld, M. 1998. Evaluating the consistency of cartographic generalization. Pages 668–678
of: Proceedings of the 8th International Symposium on Spatial Data Handling (SDH’98), July 11–15, 1998,
Vancouver, Canada.

Kada, M., & Luo, F. 2006. Generalisation of building ground plans using half-spaces. In: Proceedings of
the International Symposium on Geospatial Databases for Sustainable Development, September 25–30, 2006,
Goa, India. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,
no. XXXVI(Part 4). ISPRS Technical Commission IV.

Kainz, W. 1995. Logical consistency. Chap. 6, pages 109–137 of: Guptill, S. C., & Morrison, J. L. (eds),
Elements of spatial data quality. Elsevier Science, Oxford, UK.

Karmarkar, N. 1984. A new polynomial time algorithm for linear programming. Combinatorica, 4(4), 373–395.

Karp, R. M. 1972. Reducibility among combinatorial problems. Pages 85–103 of: Miller, R. E., & Thatcher,
J. W. (eds), Complexity of Computer Computations. Plenum Press, New York, NY, USA.

Kelmelis, J. 2003. To The National Map and beyond. Cartography and Geographic Information Science, 30(2),
185–198.

Kilpeläinen, T. 2000. Maintenance of multiple representation databases for topographic data. The Cartographic
Journal, 37, 101–107.

Kilpeläinen, T., & Sarjakoski, T. 1995. Incremental generalization for multiple representations of geographic
objects. Pages 209–218 of: Müller, J.-C., Lagrange, J.-P., & Weibel, R. (eds), GIS and Generalization -
Methodology and Practice. GISDATA, no. 1. Taylor & Francis, London, UK.

Kirkpatrick, S., Jr., C. D. Gelatt, & Vecchi, M. P. 1983. Optimization by simulated annealing. Science,
220(4598), 671–680.

Koch, A. 2007. Semantische Integration von zweidimensionalen GIS-Daten und Digitalen Geländemodellen.
Dissertation, Universität Hannover, Deutsche Geodätische Kommission, Reihe C, vol. 601, Munich, Germany.

Koch, A., & Heipke, C. 2005. Semantically correct 2.5D GIS data – the integration of a DTM and topographic
vector data. Pages 509–526 of: Fisher, P. F. (ed), Developments in Spatial Data Handling: Proceedings of
the 11th International Symposium on Spatial Data Handling (SDH’04), August 23–25, 2004, Leicester, UK.
Springer, Berlin, Germany.

Lazimy, R. 1982. Mixed-integer quadratic programming. Mathematical Programming, 22(1), 332–349.

Li, Z. 2007. Algorithmic Foundation of Multi-Scale Spatial Representation. CRC Press, Taylor & Francis Group,
Boca Raton, Florida, USA.

Bibliography 129

LPSolve. 2008. lp solve reference guide. http://lpsolve.sourceforge.net/5.5/ (2008/01/15).

Lüscher, P., Burghardt, D., & Weibel, R. 2007. Ontology-driven enrichment of spatial databases. In: Proceedings
of the 10th ICA Workshop on Generalisation and Multiple Representation, August 2–3, 2007, Moscow, Russia.

MacEachren, A. M. 1985. Compactness of geographic shape: Comparison and evaluation of measures. Ge-
ografiska Annaler. Series B, Human Geography, 67(1), 53–67.

Mackaness, W. A., & Purves, R. S. 2001. Automated displacement for large numbers of discrete map objects.
Algorithmica, 30, 302–311.

Mackaness, W. A., Ruas, A., & Sarjakoski, L. T. 2007. Generalisation of Geographic Information: Cartographic
Modelling and Applications. Elsevier, Oxford, UK.

Mantel, D., & Lipeck, U. W. 2004. Matching cartographic objects in spatial databases. Pages 172–176 of:
Proceedings of the XXth ISPRS Congress, July 12–23, 2004, Istanbul, Turkey. International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, no. XXXV(Part B4).

Michalewicz, Z., & Fogel, D. B. 2004. How to Solve It, Modern Heuristics. Springer, Berlin, Germany.

Michiels, W., Aarts, E., & Korst, J. 2007. Theoretical Aspects of Local Search. Monographs in Theoretical
Computer Science. Springer, Berlin, Germany.

Mitchell, J. E. 2002. Branch-and-cut algorithms for combinatorial optimization problems. Pages 65–77 of:
Pardalos, P. M., & Resende, M. G. C. (eds), Handbook of Applied Optimization. Oxford University Press,
Oxford, UK.

Müller, J. C., Lagrange, J. P., & Weibel, R. 1995. GIS and Generalisation. GISDATA, no. 1. Taylor & Francis,
London, UK.

Monnot, J.-L., Hardy, P., & Lee, D. 2007. Topological constraints, actions and reflexes for generalization by
optimization. In: Proceedings of the 10th ICA Workshop on Generalisation and Multiple Representation,
August 2–3, 2007, Moscow, Russia.

Morrison, J. L. 1995. Spatial data quality. Chap. 1, pages 1–12 of: Guptill, S. C., & Morrison, J. L. (eds),
Elements of Spatial Data Quality. Elsevier Science, Oxford, UK.

Mustière, S., & Devogele, T. 2008. Matching networks with different levels of detail. GeoInformatica, 12(4),
435–453.

Natural Resources Canada. 1996. National topographic data base: data dictionary. http://ftp2.cits.rncan.
gc.cs/pub/bndt/doc/dictntd3_en.pdf (2007/11/09).

Neun, M., Weibel, R., & Burghardt, D. 2004. Data enrichment for adaptive generalisation. In: Proceedings of
the 7th ICA Workshop on Generalisation and Multiple Representation, August 20–21, 2004, Leicester, UK.

Nickerson, B. G., & Freeman, H. 1986. Development of a rule-based system for automatic map generalization.
Pages 537–556 of: Proceedings of the 2nd International Symposium on Spatial Data Handling (SDH’86), July
5–10, 1986, Seattle, WA, USA.

Nöllenburg, M., & Wolff, A. 2006. A mixed-integer program for drawing high-quality metro maps. Pages 321–
333 of: Healy, P., & Nikolov, N. S. (eds), Proceedings of the 13th International Symposium on Graph Drawing
(GD’05), September 12–14, Limerick, Ireland. Lecture Notes in Computer Science, vol. 3843. Springer,
Berlin, Germany.

Papadimitriou, C. H., & Steiglitz, K. 1998. Combinatorial Optimization. Dover Publications, Inc., Mineola,
NY, USA.

Penninga, F., Verbree, E., Quak, W., & van Oesterom, P. 2005. Construction of the planar partition postal
code map based on cadastral registration. GeoInformatica, 9(2), 181–204.

Perkal, J. 1966. An attempt at objective generalization. In: Nystuen, J. D. (ed), Michigan Inter-University
Community of Mathematical Geographers, Discussion Paper 10. Ann Arbor, MI, USA: Department of Geog-
raphy, University of Michigan.

130 Bibliography

Peter, B., & Weibel, R. 1999. Using vector and raster-based techniques in categorical map generalization. In:
Proceedings of the 3rd ICA Workshop on Progress in Automated Map Generalization, August 12–14, 1999,
Ottawa, Canada.

Podolskaya, E. S., Anders, K.-H., Haunert, J.-H., & Sester, M. 2007. Quality assessment for polygon gener-
alization. In: Proceedings of the 5th International Symposium on Spatial Data Quality, June 13–15, 2007,
Enschede, The Netherlands.

Podrenek, M. 2002. Aufbau des DLM50 aus dem Basis-DLM und Ableitung der DTK50 – Lösungsansatz in
Niedersachsen. Kartographie als Baustein moderner Kommunikation, Kartographische Schriften, Band 6,
126–130, Kirschbaum Verlag, Bonn, Germany.

Reeves, C. R. 1993. Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Press,
Oxford, UK.

Regnauld, N. 1996. Recognition of building clusters for generalization. Pages 1–14 of: Proceedings of the 7th
International Symposium on Spatial Data Handling (SDH’96), August 12–16 , 1996, Delft, The Netherlands,
vol. I:4B.

Revell, P. 2007. Generic tools for generalising ordnance survey base scale landcover data. In: Proceedings of
the 10th ICA Workshop on Generalisation and Multiple Representation, August 2–3, 2007, Moscow, Russia.

Rieger, M. K., & Coulsen, M. R. C. 1993. Consensus or confusion: cartographers’ knowledge of generalization.
Cartographica, 30(2 & 3), 69–80.

Roberts, S. A., Hall, G. B., & Boots, B. 2005. Street centerline generation with an approximated area Voronoi
diagram. Pages 435–446 of: Fisher, P. F. (ed), Developments in Spatial Data Handling: Proceedings of
the 11th International Symposium on Spatial Data Handling (SDH’04), August 23–25, 2004, Leicester, UK.
Springer, Berlin, Germany.

Rodŕıguez, M. A., & Egenhofer, M. J. 2004. Comparing geospatial entity classes: an asymmetric and context
dependent similarity measure. International Journal of Geographical Information Science, 18(3), 229–256.

Ruas, A. 1999. The role of meso level for urban generalisation. In: Proceedings of the 3rd ICA Workshop on
Progress in Automated Map Generalization, August 12–14, 1999, Ottawa, Canada.

Salgé, F. 1995. Semantic accuracy. Chap. 7, pages 139–151 of: Guptill, S. C., & Morrison, J. L. (eds), Elements
of spatial data quality. Elsevier Science, Oxford, UK.

Sarjakoski, T., & Kilpeläinen, T. 1999. Holistic cartographic generalization by least squares adjustment for
large data sets. In: Proceedings of the 19th International Cartographic Conference (ICC’99), August 14–21,
1999, Ottawa, Canada.

Schröder, M. 2001. Gebiete optimal aufteilen. Dissertation, Universität Karlsruhe, Germany.

Schwering, A. 2008. Approaches to Semantic Similarity Measurement for Geo-Spatial Data: A Survey. Trans-
actions in GIS, 12(1), 5–29.

Schylberg, L. 1993. Computational Methods for Generalization of Cartographic Data in a Raster Environment.
Ph.D. thesis, Royal Institute of Technology (KTH), Stockholm, Sweden.

Sester, M. 2005. Optimization approaches for generalization and data abstraction. International Journal of
Geographical Information Science, 19(8–9), 871–897.

Sester, M., Anders, K.-H., & Walter, V. 1998. Linking objects of different spatial data sets by integration and
aggregation. GeoInformatica, 2(4), 335–358.

Shea, K. S. 1991. Design considerations for an artificially intelligent system. Chap. 1, pages 121–149 of: But-
tenfield, B. P., & McMaster, R. B. (eds), Map Generalization: Making Rules for Knowledge Representation.
Longman Scientific & Technical, Harlow, UK.

Sheth, A. P., & Larson, J. A. 1990. Federated database systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys, 22(3), 183–236.

Bibliography 131

Shirabe, T. 2003. Decomposing Integer Programming Models for Spatial Allocation. Ph.D. thesis, University of
Pennsylvania, USA.

Shirabe, T. 2005a. Classification of spatial properties for spatial allocation modeling. GeoInformatica, 9(3),
269–287.

Shirabe, T. 2005b. A model of contiguity for spatial unit allocation. Geographical Analysis, 37, 2–16.

Skogan, D., & Skagestein, G. 2005. An automated incremental generalization method. In: Multi-Resolution
Geographic Data and Consistency (Dissertation by David Skogan). University of Oslo, Norway.

Spiess, E. 1983. Revision of topographic maps: photogrammetric and cartographic methods of the Fribourg
test. The Photogrammetric Record, 11(61), 29–42.

Staufenbiel, W. 1973. Zur Automation der Generalisierung topographischer Karten mit besonderer
Berücksichtigung großmaßstäbiger Gebäudedarstellungen. Ph.D. thesis, Technische Universität Hannover,
Deutsche Geodätische Kommission, Reihe C, vol. 51, Munich, Germany.

Steiniger, S., & Weibel, R. 2007. Relations among map objects in cartographic generalization. Cartography and
Geographic Information Science, 34(3), 175–197.

Su, B., Li, Z., & Lodwick, G. 1998. Morphological models for the collapse of area features in digital map
generalization. GeoInformatica, 2(4), 359–382.

Tănase, M. 2005. Shape Decomposition and Retrieval. Ph.D. thesis, Universiteit Utrecht, The Netherlands.

Tănase, M., & Veltkamp, R. C. 2003. Polygon decomposition based on the straight line skeleton. Pages 221–
244 of: Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol. 2616.
Springer, Berlin, Germany.

Tănase, M., & Veltkamp, R. C. 2004. A straight skeleton approximating the medial axis. Pages 809–821
of: Proceedings of the 12th Annual European Symposium on Algorithms (ESA’04), September 14–17, 2004,
Bergen, Norway. Lecture Notes in Computer Science, vol. 3221. Springer, Berlin, Germany.

Tavares-Pereira, F., Figueira, J. Rui, Mousseau, V., & Roy, Bernard. 2007. Multiple criteria districting problems:
The public transportation network pricing system of the Paris region. Annals of Operations Research, 154,
69–92.

Thomson, R. C., & Brooks, R. 2002. Exploiting perceptual grouping for map analysis, understanding and
generalization: The case of road and river networks. Pages 148–157 of: Graphics Recognition. Algorithms and
Applications: Proceedings of the 4th International Workshop, GREC 2201, September 7–8, 2001, Kingston,
Ontario, Canada. Lecture Notes in Computer Science, vol. 2390. Springer, Berlin, Germany.

Thomson, R. C., & Richardson, D. E. 1995. A graph theory approach to road network generalization. Pages
1871–1880 of: Proceedings of the 17th International Cartographic Conference (ICC’95), September 3–9, 1995,
Barcelona, Spain.

Timpf, S. 1998. Hierarchical Structures in Map Series. Ph.D. thesis, Technical University Vienna, Austria.

Töpfer, F., & Pillewizer, W. 1966. The principles of selection. The Cartographic Journal, 3(1), 10–16.

van Kreveld, M., & Peschier, J. 1998. On the automated generalization of road network maps. In: Proceedings
of the 3rd International Conference on GeoComputation, September 17–19, 1998, Bristol, UK.

van Oosterom, P. J. M. 1995. The GAP-tree, an approach to ‘on-the-fly’ map generalization of an area parti-
tioning. In: Müller, J.-C., Lagrange, J.-P., & Weibel, R. (eds), GIS and Generalization - Methodology and
Practice. GISDATA, no. 1. Taylor & Francis, London, UK.

van Oosterom, P. J. M. 2005. Variable-scale topological data structures suitable for progressive data transfer:
The GAP-face tree and GAP-edge forest. Cartography and Geographic Information Science, 32(4), 331–346.

van Smaalen, J. W. N. 1996. A hierarchic rule model for geographic information abstraction. Pages 31–41 of:
Proceedings of the 7th International Symposium on Spatial Data Handling (SDH’96), August 12–16, 1996,
Delft, The Netherlands, vol. I:4B.

132 Bibliography

van Smaalen, J. W. N. 2003. Automated Aggregation of Geographic Objects. Ph.D. thesis, Wageningen University,
The Netherlands.

Walsh, S. J., Crews-Meyer, K. A., Crawford, T. W., & Welsh, W. F. 2004. Population and environment
interactions: Spatial considerations in landscape characterization and modeling. Chap. 2, pages 41–65 of:
Sheppard, E., & McMaster, R. B. (eds), Scale and Geographic Inquiry: Nature, Society, and Method. Blackwell
Publishing, Malden, MA, USA.

Walter, V., & Fritsch, D. 1999. Matching spatial data sets: A statistical approach. International Journal of
Geographical Information Science, 13(5), 445–473.

Ware, J. M., & Jones, C. B. 1998. Conflict reduction in map generalization using iterative improvement.
GeoInformatica, 2(4), 383–407.

Ware, J. M., Jones, C. B., & Bundy, G. L. 1995. A triangulated spatial model for cartographic generalisation of
areal objects. Pages 173–192 of: Proceedings of the International Conference COSIT ’95, Spatial Information
Theory, a Theoretical Basis for GIS, September 21–23, 1995, Semmering, Austria. Lecture Notes in Computer
Science, vol. 988. Springer, Berlin, Germany.

Ware, J. M., Wilson, I. D., Ware, J. A., & Jones, C. B. 2002. A tabu search approach to automated map
generalisation. Pages 101–106 of: Proceedings of the 10th ACM International Symposium on Advances in
Geographic Information Systems (GIS’02), November 8–9, 2002, McLean, VA, USA.

Ware, J. M., Jones, C. B., & Thomas, N. 2003. Automated map generalization with multiple operators: a
simulated annealing approach. International Journal of Geographical Information Science, 17(8), 743–769.

Weibel, R. 1997. Generalization of spatial data: Principles and selected algorithms. Pages 99–152 of: van Krev-
eld, M., Nievergelt, J., Roos, T., & Widmayer, P. (eds), Algorithmic Foundations of Geographic Information
Systems. Lecture notes in computer science, vol. 1340. Springer, Berlin, Germany.

Weibel, R., & Dutton, G. 1998. Constraint-based automated map generalization. Pages 214–224 of: Proceed-
ings of the 8th International Symposium on Spatial Data Handling (SDH’98), July 11–15, 1998, Vancouver,
Canada.

Weibel, R., Keller, S., & Reichenbacher, T. 1995. Overcoming the knowledge acquisition bottleneck in map
generalization: The role of interactive systems and computational intelligence. Pages 139–156 of: Proceed-
ings of the International Conference COSIT ’95, Spatial Information Theory, a Theoretical Basis for GIS,
September 21–23, 1995, Semmering, Austria. Lecture Notes in Computer Science, vol. 988. Springer, Berlin,
Germany.

Wertheimer, M. 1938. Laws of organization in percetional forms. Pages 71–88 of: Ellis, W. (ed), A source book
of Gestalt psychology. Routledge & Kegan Paul, London, UK. English translation.

Williams, J. C. 2002. A zero-one programming model for contiguous land acquisition. Geographical Analysis,
34(4), 330–349.

Wright, J., ReVelle, C., & Cohon, J. 1983. A multiobjective integer programming model for the land acquisition
problem. Regional Science and Urban Economics, 13, 31–53.

Yan, H., Weibel, R., & Yang, B. 2008. A multi-parameter approach to automated building grouping and
generalization. GeoInformatica, 12(1), 73–89.

Yaolin, L., Molenaar, M., & Kraak, M.-J. 2002. Semantic similarity evaluation model in categorical database
generalization. In: Proceedings of the ISPRS Commission IV Symposium ”Geospatial Theory, Processing
and Applications”, July 9–12, 2002, Ottawa, Canada. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, no. XXXIV(Part 4).

Zhang, Q. 2005. Road network generalization based on connection analysis. Pages 343–353 of: Fisher, P. F.
(ed), Developments in Spatial Data Handling: Proceedings of the 11th International Symposium on Spatial
Data Handling (SDH’04), August 23–25, 2004, Leicester, UK. Springer, Berlin, Germany.

Zoltners, A. A., & Sinha, P. 1983. Sales territory alignment: A review and model. Management Science, 29(11),
1237–1256.

133

Acknowledgments

I thank Prof. Dr. Monika Sester for her excellent mentoring. Throughout the last four years I could always
rely on her support in my research, even when the actual value of a new idea was still uncertain.

It was Dr. Alexander Wolff who opened the door to the world of combinatorial optimization for me – thank
you, Sascha!

I also express my sincere thanks to Prof. Dr. Hansjörg Kutterer for his comments and our discussions.

At the beginning of my research work, Dr. Karl-Heinrich Anders was my first contact person for any problems
related to my tasks. His advice had a major influence on the direction of my research. Many thanks, Charly!

Many thanks to Patrick Revell, who helped me to improve the English language in this thesis, and as an expert
in map generalization, contributed with his very useful comments.

To perform the experimental tests presented in this thesis, I used computing resources of the Faculty of Infor-
matics at University of Karlsruhe. I would like to thank Prof. Dr. Dorothea Wagner for the opportunity.

For the most part, my dissertation presents results of the project “updating of geographic data in a multiple
representation database”, which was funded by the German Research Foundation (DFG), grant SE 645/2-1. I
gratefully acknowledge this support. Without it, this thesis would not have been possible.

The project was part of a larger bundle project entitled “abstraction of geographic information within multi-
scale acquisition, administration, analysis, and visualization”. Thanks to all the project members for our regular
discussions!

I very much appreciate to work at the institute of cartography and geoinformatics of Leibniz Universität Han-
nover and do enjoy to be a member of its innovative and creative research group. Thanks to the whole team
for letting me be a part of it.

Finally, I want to thank my family and all my friends who have encouraged and supported me in following my
research interests.

134

Curriculum Vitae

Personnel Details

Name Jan-Henrik Haunert

Address Alte Döhrener Straße 27
30173 Hannover
Germany

Date and Place of Birth 1978/05/09, Hannover

Citizenship German

Education

1984/08 – 1988/06 Elementary school in Hannover

1988/07 – 1997/06 Carl-Friedrich-Gauß-Schule in Hemmingen, graduated with high school
diploma (Abitur)

1998/10 – 2002/08 and
2003/01 – 2003/12

Studies in the degree program ‘geodesy and geoinformatics’,
Leibniz Universität Hannover, graduated with engineering diploma (Dipl.-Ing.)

2002/08 – 2003/01 Guest studies in the degree program ‘surveying’,
Helsinki University of Technology, Finland

Research Work

2001/11 – 2002/07 Student assistant at the Institute of Photogrammetry and GeoInformation,
Leibniz Universität Hannover

Since 2004/01 Scientific assistant at the Institute of Cartography and Geoinformatics,
Leibniz Universität Hannover

2006/08/13 – 2006/08/16 Research guest of Dr. Alexander Wolff, Universität Karlsruhe, Germany

Since 2007/03 Secretary of the ISPRS Working Group II/3 – Multiple Representation of Image
and Vector Data

2007/03/04 – 2007/03/08 Research guest of Dr. Alexander Wolff, TU Eindhoven, The Netherlands

2007/06/18 – 2007/07/13 Research guest of Prof. Dr. Peter van Oosterom, TU Delft, The Netherlands

Other Work Experience

1997/07 – 1998/07 Civilian service at the German Red Cross, Hannover

1998/07 – 1998/09 Internship at the engineering company ÖbVI Heubner/Rohardt, Hannover

