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Abstract 

In this work a two-step strategy for traffic monitoring in urban areas by analysis of single-pass airborne laser 
scanning (ALS) data is presented and investigated. In the first step vehicles are extracted, and their states of 
motion are analyzed in the following step.  
 
For vehicle extraction, two methods are proposed. For the first method it is assumed that all road sections in 
the studied scene are component of the ground surface. The laser data are transformed from the point cloud 
into a grid representation. Based on analysis of the height distribution the ground surface included the 
vehicles is first separated from other objects such as buildings and vegetation by an iterative process. Then, a 
morphological segmentation is carried out to isolate the cars from the ground surface. The second method 
assumes that road sections are also located on bridges or overpasses. Through an adaptive "mean shift" a 3D 
segmentation of point clouds is performed. Based on local structure, point clouds, which could represent the 
vehicles, are immediately separated from all other objects. The distinction between vehicle and background 
is performed by a classification using a support vector machine. In scenes with dense placement of vehicles 
such as occurring in parking lots, a grouping of larger objects by "normalized cuts" is further conducted to 
enable a combination with the first method. 
 
In the step of motion analysis, based on the extracted point clouds of the vehicles a motion state is initially 
determined and subsequently for those classified as moving vehicles the velocity is estimated. To determine 
the motion state the shape of the vehicle point cloud is fitted by a parallelogram and classified on the basis of 
the parameters of the aspect ratio and shearing angle. The classification consists in a binary decision made by 
the evaluation with Lie Group metric. Finally, the velocity of moving vehicles is estimated based on the 
deformation structures. Fundamentally the moving direction of vehicles indicated by the road orientation can 
be considered as prior knowledge in the velocity estimation. With this information, three methods have been 
analyzed to determine the velocity. When it is lack of information about the road orientation, the velocity and 
direction can be simultaneously determined by solving a system of linear equations. 
 
The approaches were analyzed by four laser datasets of three different cities. For evaluation of the detection 
results reference data have been created manually. To evaluate the motion estimation video sequences 
concurrently recorded for two scenes were examined. The results of both methods for vehicle extraction have 
shown that a high completeness (up to ca.87%) of the detection of vehicle objects is reached by using the 
first method while the second method provides a high accuracy with respect to the vehicle geometry. 
Moreover, for the motion detection the recognition was investigated in dependence on the point density, 
intersection angle and vehicle velocity by simulated point clouds. Studies on the accuracy of velocity 
estimation show a strong dependence on the ratio of flight velocity to vehicle velocity and the intersection 
angle in between. The best estimate from the experiments show a deviation of about 10% compared to the 
video sequences. 
 
 
 
 



4              

Kurzfassung 

In dieser Arbeit wird eine zweistufige Strategie zur Verkehrsüberwachung in urbanen Bereichen durch 
Auswertung von Single-Pass Airborne Laserscanning (ALS)-Daten vorgestellt und untersucht. Dabei werden 
in der ersten Stufe zunächst die Fahrzeuge extrahiert und in der folgenden Stufe deren Bewegungszustand 
analysiert.  
 
Für die Fahrzeugextraktion werden zwei Methoden vorgeschlagen. Bei der ersten Methode wird davon 
ausgegangen, dass alle Straßenabschnitte in der untersuchten Szene Bestandteil der Bodenfläche sind. Die 
Laserdaten werden von der Punktwolke in eine Rasterdarstellung gewandelt. Basierend auf Analyse der 
Höhenverteilung wird zunächst durch ein iteratives Verfahren die Bodenfläche inklusiv der Fahrzeuge von 
anderen Objekten wie Gebäuden und Vegetation separiert. Anschließend erfolgt eine morphologische 
Segmentierung um die Fahrzeuge von der Bodenfläche zu isolieren. Bei der zweiten Methode wird davon 
ausgegangen, dass Straßenabschnitte auch auf Brücken oder Überführungen liegen. Durch einen adaptiven 
„Mean Shift“-Ansatz wird eine 3D-Segmentierung der Punktwolken durchgeführt. Dabei werden auf Basis 
der lokalen Struktur Punktwolken, die Fahrzeuge darstellen könnten, direkt von allen anderen Objekten 
getrennt. Die Unterscheidung von Fahrzeug und Hintergrund erfolgt durch eine Klassifikation mit einer 
Support Vektor Maschine. Bei  Szenen mit dichten Fahrzeuganordnungen wie sie bei Parkplätzen auftreten, 
wird weiterhin eine Gruppierung größerer Objekte durch „Normalized Cuts“ durchgeführt und eine 
Kombination mit der ersten Methode angewendet. 
 
Bei der Bewegungsanalyse wird basierend auf den extrahierten Punktwolken der Fahrzeuge zunächst ein 
Bewegungsstatus bestimmt und bei den als bewegt klassifizierten Fahrzeugen nachfolgend die 
Geschwindigkeit geschätzt. Zur Bestimmung des Bewegungsstatus wird die Form der Fahrzeugpunktwolke 
durch ein Parallelogramm approximiert  und aufgrund der Parameter aus Längen/Breitenverhältnis und 
Scherwinkel klassifiziert. Die Klassifikation besteht in einer Binärentscheidung die durch Auswertung mit 
einer Lie Group Metrik erfolgt. Schließlich wird die Geschwindigkeit der bewegenden Fahrzeuge auf 
Grundlage der Deformationsstruktur bestimmt. Prinzipiell kann bei dieser Schätzung die 
Bewegungsrichtung aus der Straßenanordnung als Vorkenntnis berücksichtigt werden. Mit dieser 
Information wurden drei Ansätze zur Geschwindigkeitsbestimmung untersucht. Liegen keine Information 
zur Straßenausrichtung vor, werden Geschwindigkeit und Richtung durch Lösung eines linearen 
Gleichungssystems ermittelt. 
 
Die Ansätze wurden mit vier Laserdatensätzen von drei verschiedenen Städten untersucht. Für die 
Bewertung der Detektionsergebnisse wurden Referenzdaten manuell erstellt. Um die Schätzung der 
Bewegung zu bewerten, wurden die bei zwei Szenen gleichzeitig aufgenommenen Videosequenzen 
ausgewertet. Die Ergebnisse der beiden Methoden zur Fahrzeugextraktion haben gezeigt, dass bei der ersten 
Methode eine hohe Vollständigkeit (bis 87%) bezüglich der Erkennung von Fahrzeugobjekten erreicht wird, 
während das zweite Verfahren eine hohe Genauigkeit bezüglich der Fahrzeuggeometrie liefert. Für die 
Bewegungsdetektion wurde durch simulierte Punktwolken die Erkennung in Abhängigkeit der Punktdichte, 
dem Beobachtungswinkel und der Geschwindigkeit untersucht. Untersuchungen zur Genauigkeit der 
Geschwindigkeitsschätzung zeigen eine starke Abhängigkeit von dem Verhältnis der Fluggeschwindigkeit 
zur Fahrzeuggeschwindigkeit und dem Beobachtungswinkel. Die besten Schätzungen aus den Experimenten 
zeigen eine Abweichung der Geschwindigkeit von ungefähr 10% im Vergleich zu den 
Geschwindigkeitsschätzungen aus den Videosequenzen. 
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1.  Introduction 

1.1 Motivation 

Transportation is one of indispensable pillars of modern society and economy. Traffic, however, is also a 
source of environmental pollution and a cause of injuries and deaths. Smart traffic management attempts to 
optimize vehicle throughput while still mitigating these adverse effects. And, traffic keeps on changing on 
short or long time scales. Road construction, major events, or disasters require rapid reaction and response. 
Political developments, like the expansion of the European Union have significantly changed the traffic 
scenarios in the member states. Therefore, data and models for traffic management have to be continuously 
updated. Today's road systems are equipped with a set of sensors for monitoring traffic status: induction 
loops, overhead radar sensors, video camera systems are the most prominent examples. They all deliver 
accurate, reliable, timely, yet merely point-wise ground-based measurements. Remote sensing systems on the 
other hand give us synoptic and extended views of complex traffic situations and the associated context 
(Hinz et al., 2006,). These data are complementary to the ones of the road sensors and can be used in 
research for improving traffic models and complement the accurate but sparsely sampled measurements of 
local fixed/floating sensors. The means of data acquisition via mobile remote sensing platforms can be 
rapidly deployed as needed and it does not interfere with the traffic on the road. 
 
With the recent advances in sensor technology, the automatic detection, characterization and monitoring of 
traffic using remotely sensed data from airborne/spaceborne platforms has become an emerging field of 
research (Stilla et al., 2005; Hinz et al., 2006; Stilla et al., 2009). Approaches for vehicle detection and 
motion estimation include not only video cameras but nearly the whole range of available sensors such as 
optical aerial and satellite sensors, infrared thermal cameras, Synthetic Aperture Radar (SAR) systems, and 
Airborne Laser Scanning (ALS), also referred to as airborne LIDAR. Although imaging sensors including 
optical cameras and SAR systems are already in use and seem to be an obvious and intuitive choice to 
provide data sources, airborne LiDAR systems have entered the sub-metric resolution era required for the 
detection and characterization of small targets such as vehicles. Airborne LiDAR is a young technology, 
which even can work in the night time. Yet there are also inherent difficulties in the ALS scanning process 
that must be overcome to design a reasonably reliable approach for traffic monitoring. 
 
LiDAR systems first came into operation at the beginning of 1990s. By virtue of the accurate and direct 
sensor orientation using GPS and INS, it allows to acquire detailed 3D data of the nature environment and 
man-made objects actively by emitting and receiving near infrared pulses. Apart from information about the 
geometric structure of the scanned earth’s surface, laser scanners can also record the pulse intensity of 
backscattered echoes, which represents physical properties of object’s surface. Consequently, laserscanning 
has become well established surveying techniques of the acquisition of geospatial information, as also 
summarized by several books (Vosselman and Maas, 2010; Shan and Toth, 2008). 
 
In last decade, major advances have been made in technological capabilities of commercial ALS systems, 
such as sampling density, footprint size, multiple pulses reflection, and positional accuracy. Nowadays, the 
high quality of obtained 3D point clouds are routinely used for a diversity series of purposes including the 
production of digital terrain models (Chen 2010), 3D city models (Sohn and Dowman, 2007; Sampath and 
Shan, 2007), forestry management and monitoring (Reitberger et al., 2009; Rutzinger et al., 2008), corridor 
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mapping (Alexander et al., 2010), and documentation of cultural heritage (Doneus et al., 2008). Usually, 
such applications build upon preprocessed rather than raw ALS data, which requires the raw point clods to 
undergo the physical (Kaasalainen et al., 2009) and geometric calibration (Skaloud and Lichti, 2008), 
sometimes also the registration (Bae and Lichti, 2008) operation due to multiple datasets acquired at differ 
time or from different perspectives. 
 
A key feature in current generation ALS systems is the possibility for digitizing and recording of the 
full-waveform of the echo signal of reflected laser pulses. Such so-called full-waveform ALS systems are 
helpful to extract and interpret quasi 3D vertical structure information of natural and artificial objects that 
are illuminated as volume-scattering objects, just like forested terrain, and building boundary. Since its first 
introduction in spaceborne platforms (Blair et al., 1999), the full waveform system opens up new 
possibilities for a more detailed description of object structures and more accurate range measurements by 
incorporating multiple intermediate pulse reflections and new physical feature of illumined surfaces such as 
pulse form and width (Lin and Mills, 2010). Moreover, according to Jutzi and Stilla (2006), capturing the 
complete waveform of laser pulses allows discriminating differences in a range smaller than the length of a 
laser pulse. It is especially useful for such critical measurement situations that surfaces are close to their 
edges or small objects within the beam footprint are closely located in range. Yao and Stilla (2010a) has 
recently proposed a new method of pulse detection by exploiting mutually enhanced information hiding in a 
group of LiDAR waveforms to recover or enrich 3D point clouds of severely occluded object surfaces. 
 
Recently, traffic monitoring applications using airborne LiDAR have received an increasing attention in our 
community. Toth and Grejner-Brzezinska (2006) initiated a research work which adopted an airborne laser 
scanner coupled with a digital frame camera to analyze transportation corridors and acquire traffic flow 
information. The traffic flow information is successfully obtained alongside with the topographic spatial data 
as an affiliated product. The testing of this system is limited to a section of motorway and its narrow 
surroundings; it is interesting to investigate the same problem in more challenging and broader regions using 
the system equipped solely with LiDAR sensor. Toth and Grejner-Brzezinska (2005) have compared airborne 
LiDAR with optical frame camera in view of the motion estimation task and suggested to ideally use a 
combined dataset, namely the fusion of simultaneously acquired imagery and laser data could produce better 
results. But, there is still the need to deepen the understanding concerning the capability and performance of 
the usage of airborne LiDAR to carry out the task of motion indication and estimation. 
 
Moreover, the research work dealing with the traffic analysis by airborne LiDAR in urban areas presented in 
this thesis are particularly motivated by following points: 
 

 the penetration ability of laser rays towards volume-scattering objects allows to improve the 
completeness of vehicle detection(Chang et al., 2010, Chevalier et al., 2007), see vehicles in red 
ellipses of Figure 1 as example 

 the motion artifacts generated (Figure 2) by the linear scanning mechanism used in airborne LiDAR 
allows to determine the object motion 

 the explicit extraction and modeling of vehicles can refine the result of operations such as DTM 
filtering and road detection where vehicles are regarded as stubborn disturbances. (Sithole and 
Vosselman, 2005; Clodea et al., 2007) 
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Figure 1: Airborne LiDAR range image illustrating the penetration ability of laser pulses through tree crowns to hit 

vehicles beneath, (a) first-pulse range image, (b) last-pulse range image (Stilla 2003) 

    

(a)          (b) 

Figure 2: Moving objects undergo the scanning process of airborne LiDAR, (a) a scenario of moving object captured 

by ALS, (b) generated motion artifact effects, green rectangle indicates the original shape and position of the vehicle 

1.2 Related works concerning traffic monitoring from ALS data 

Automatic traffic monitoring has evolved to an important and active research issue in the remote sensing 
community during the past years (Stilla et al., 2004; Hinz et al., 2006; Hinz et al., 2008). Transportation 
represents a major segment of the economic activities of modern societies and has been keeping increase 
worldwide which leads to adverse impact on our environment and society, so that the increase of transport 
safety and efficiency, as well as the reduction of air and noise pollution are the main task to solve in the 
future. On the one hand, today’s traffic monitoring systems are mainly equipped by a series of sensors like 
induction loops, overhead radar sensors and stationary video cameras, etc. They all deliver accurate, reliable, 
timely, yet merely point-wise measurement. On the other hand spaceborne and airborne sensors can 
complement the sparsely sampled ground-based collection and give us a synoptic view of complex traffic 
situations. With the recent advances in sensor technology, a number of approaches for automatically 
detecting vehicles, tracking vehicles and estimating velocity have been developed and intensively analyzed, 
using different air-and spaceborne remote sensing platforms (Lenhart et al., 2008), e.g. Synthetic aperture 
radar (SAR) (Meyer et al., 2006, Suchandt et al., 2010), thermal infrared(IR) cameras (Stilla and Michaelsen, 
2002; Hinz and Stilla,2006; Kirchhof and Stilla, 2006; Yao et al., 2009), frame and linear pushbroom optical 
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cameras (Zhao and Nevatia, 2003; Eikvil et al., 2009; Larsen et al., 2009; Leitloff et al., 2010). However, so 
far there have been few works conducted in relation to traffic analysis from laser scanners due to the special 
acquisition mechanism and data characteristics. The traffic monitoring remains as one of few fields which 
are still not intensively analyzed in the LiDAR community compared to other modern sensors used in 
remote sensing. The relevant works concerning traffic analysis from LiDAR data can be generalized into 
two aspects: 
 

1) Vehicle (target) extraction 

It is related to one of important research fields in laser data processing - 3D object recognition, which is 

primarily dedicated to Automatic Target Recognition (ATR) in military applications (e.g. Grönwall et al., 

2007; Steinvall et al., 2004; Grönwall, 2006; Ahlberg et al., 2003). The scene can be scanned from different 

platforms and perspectives, such as terrestrial or airborne platforms. The point which significantly 

distinguishes the use of laser sensor for urban traffic analysis from for military applications lies in data 

coverage and the application objective. The military applications often feature small field of view (FOV) and 

very high-resolution (very high density of laser points) with respect to data recording. The data acquisition 

process is target-orientated and limited to a relative small coverage, the interest region or object is scanned 

with very high resolution and concentrated energy. Most of algorithms developed within this scope aim at 

recognition of the object type (e.g. classification of military vehicles) and pose estimation (e.g. orientation of 

tank); someone even tried to detect fine sub-structures of object (e.g. barrel and turret of a tank). Among 

these algorithms, model-based shape matching or fitting strategies have been most frequently applied to the 

LiDAR data in order to find and recognize the corresponding object class and its state (Koksal et al., 1999; 

Zheng and Der, 2001; Johansson and Moe, 2005). More recently, Nieves and Reynolds, (2010) have 

proposed an efficient 3D spatial transformation that preserves the geometrical attributes of the LIDAR data 

in all its dimensions. This transformation permits the utilization of well established statistical and 

shape-based descriptors for the implementation of automatic target recognition. Grönwall et al, (2010) have 

utilized geometric features, shadow analysis and height-based detection in flash LiDAR data to detect partly 

occluded objects such as vehicles. It has been found that the range information is valuable for detection of 

small objects that are typically represented by 5-10 pixels in the dataset. Range information is also valuable 

in tracking problems when tracked objects are occluded under parts of its movement even if there are several 

objects in the scene. 

 

2) Motion indication and estimation  

The most relevant and up-to-date research is, to the best of our knowledge, contributed from Toth & 
Grejner-Brzezinska (2006) and Grejner-Brzezinska et al., (2004). In the work an airborne laser scanner 
coupled with digital frame imaging sensor was adopted to analyze transportation corridors and acquire 
traffic flow information automatically. They have tried to extract traffic-related static and dynamical 
information as part of the regular topographic mapping. Vehicle velocity can be estimated either by 
analyzing motion artefacts in LiDAR data or by vehicle tracking in image sequences acquired with 
reasonable acquisition rate. The experiences gained so far by their test flying campaigns showed that the two 
sensors have different strength and weakness for various data processing tasks and, in most cases, they 
complement each other. It is declared that the combination of airborne LiDAR and imaging sensors can 
provide valuable traffic flow data that can effectively support traffic monitoring and management. However, 
the extensive testing of this system is limited to highway, freeway and other heavily travelled roads where 
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occlusions cast by buildings, vegetations and some other anomalies (e.g. guild rails) are rare. In addition to 
directly related research topics devoted to traffic monitoring, there are some indirectly related research 
works reported in recent years, which deal with moving object detection and tracking using LiDAR data. For 
instance, Zhao and Shibasaki, (2005) presented a system for tracking pedestrians in a wide and open area. A 
simplified pedestrian's walking model based on the typical appearance of moving feet are defined and a 
tracker utilizing the Kalman filter is used to track pedestrian's trajectories and analyze the movement 
behavior pattern. Szarvas et al, (2006) used LiDAR-based detector and a convolutional neural network-based 
classifier to detect moving targets in real time. LIDAR-based detector can reduce the number of false 
positives by a factor of 2 and reduce the processing time by a factor of 4 thanks to its ability to automatically 
learn a small number of highly discriminating features. Mahlisch et al., (2006) proposed to incorporate 
multiple sensor data into detection and tracking framework for real-time vehicle detection and motion 
indication. It is intended for emergency breaking or ACC applications, which can benefit from the low level 
fusion and alignment of LiDAR and vision sensor measurements in discrimination performance and 
computational complexity. 
 

The existent approaches deal with the vehicle (target) tracking and velocity estimation process, but often 
manual work or the initial position of target is required to assist the processing or enable the tracking process 
in imaging data to work. The motion detection and estimation method used by these approaches are mostly 
built upon the combination of LiDAR and other data sources or only allow the motion analysis at 
single-object level. For urban traffic monitoring, in order to ensure the system efficiency and derive accurate 
traffic flow information, a much broader area is needed to be covered by laser scanner surveying and 
multiple instances of the vehicle object and their motion states have to be located and recognized 
simultaneously. It requires more advanced algorithms to separate 3D point sets of vehicles from complex 
surroundings and a new moving object model to allow extracting object motion directly and accurately from 
ALS data. Under this consideration, the operations used for pose estimation or geometric inference are not 
crucial as semantic decision of whether a vehicle exists or not (vehicle counting). Moreover, it must be 
examined that how the newly proposed method of motion detection and estimation can capture and exploit 
the essential shape features of moving objects in LiDAR data to enable and even improve the results 
regarding the traffic monitoring. 

1.3 Goals of the thesis 

The main goal of the thesis is the development of a framework for the detection and estimation of vehicle 
motion from single-path airborne LiDAR data of urban areas. It enables not only the extraction of as 
complete vehicles as possible but also the distinction and estimation of their motion state and the velocity of 
classified moving vehicles. Potential applications are the traffic monitoring using airborne LiDAR, even if 
the flight campaign is originally designed to accomplish the task of city mapping and modeling, and the 
quantitative and qualitative modeling and analysis of the impact of the transportation system on the urban 
environment and the air pollution. 
 
The research work in this thesis has been carried out with following sub-goals: 
 

 derivation of the mathematic model for motion artifacts effect in single-path airborne LiDAR data. 
The Model establishes the analytic functional relations between shape deformation parameters and 
velocity of moving objects to enable the qualitative and quantitative determination of object 
motion.  
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 development of a hybrid vehicle extraction strategy from ALS data which combines a 3D point 
cloud analysis method and a gridded data based method to achieve results. The 3D analysis method 
runs directly on 3D data space of LiDAR so as to avoid the unreliable determination of geometric 
features depending on local neighborhood selection and can cope with the undesirable complexity 
of urban scenes. The gridded data based method is designed to aim at the utilization of advanced 
methods from image processing and the detailed vehicle (context) model to attain the purpose. The 
control mechanism of the overall strategy can be switched between these two methods depending 
on the global context property of test scenes in order to optimize vehicle extraction results by 
fusion. 

 investigation and development of a classification framework of vehicle motion state based on 
parameterizing the shape deformations described in the motion artifacts model. The classifier 
should cope with the nonlinear variability of vehicles shapes represented in 3D point cloud, the 
high sensitivity to noise and uncertainty induced by the vehicle extraction as well as the 
parameterization process. 

 build up a velocity estimator for classified moving vehicles which contains different estimation 
methods derived based on analyzing respective shape deformations by solving the inverse problem 
of the motion artifacts model. The derivation of the theoretic accuracy of velocity estimates is 
investigated based on applying the error propagation principle to the functional model for deriving 
the velocity. It is needed to examine a criterion based on which the best estimation method is 
automatically selected for certain road sections in accord with conditions of flight campaign and 
indications of theoretic accuracy analysis. 

Consequently, the presented work in this thesis mainly deals with general methodological research and 
performance analysis of urban traffic monitoring based on analyzing airborne LiDAR data. By defining the 
moving model in ALS data analytically, the motion detection and estimation of traffic related objects 
becomes feasible and applicable. This work tends to demonstrate a possibility to improve the result of 
vehicle extraction and recover those vehicles that are partially occluded by tree leaves in point cloud and 
cannot be detected by optical sensors (camera). The potential information about traffic scenarios are 
expected to be gained through the proposed algorithm alongside with other common products for 
topographic mapping, even though configurations of ALS data acquisition are designed far from the 
optimization of traffic monitoring applications

1.4 Structure of the thesis 

The thesis is structured as follows: 
 
After this introduction, Chapter 2 explains the basics of vehicle and context models in short to provide the 
fundamentals required for the development of a vehicle extraction method. Then the basics and essential 
characteristics concerning Lie group theory and the principle geodesics analysis is introduced to outline the 
framework of 3D shape description and classification towards motion detection. 
 
Chapter 3 describes the complete strategy for monitoring urban traffic from airborne LiDAR in detail. At 
first, it gives an overview of the proposed strategy in which three modules corresponding to three different 
sub-tasks in the strategy are described while three routines towards vehicle extraction are defined. Then, the 
scheme of vehicle extraction is presented in which two extraction methods are developed and described. The 
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first method builds upon gridded data and makes use of local contexts and the vehicle model to concentrate 
the extraction on the ground surface and potential objects. The second method is performed based on an 
adaptive 3D segmentation based classification method which runs directly on raw point clouds. The global 
context characteristics of data are analyzed to determine the control mechanism of the module i.e. when and 
where these two methods are to be called respectively or even combined to perform the extraction. 
Afterwards, the mathematic model of the motion artifacts in airborne LiDAR data is defined and presented. 
Based on single vehicle points extracted by the last step, the development of a classification method of 
vehicle motion state by 3D shape categorization is described. Finally, for obtained moving vehicles, methods 
for velocity estimation with theoretic accuracy analysis are given where the decision to select the proper 
estimation methods is made according to data acquisition conditions and the numerical performance 
prediction. 
 
In Chapter 4 the used recording systems, flight campaigns and characteristics of the various ALS datasets are 
summarized. The method used to evaluate the results is introduced. Four different datasets are selected to 
undergo the experiment. Apart from reference data for the verification of vehicle extraction results for all the 
datasets, for certain datasets there also exist reference data for motion detection and velocity estimation 
which were provided by video sequences data acquired during the same flights. 
 
Chapter 5 is to apply the strategy proposed in Chapters 3 to the data of Chapter 4 to examine the 
effectiveness of these methods for traffic analysis from airborne LiDAR platform. The results obtained by 
performing experiments on the datasets are presented and evaluated. The parameters and thresholds need to 
be determined adaptively for every intermediate step, which are empirically determined by training data 
chosen from datasets of the same flight campaigns. The training and evaluation processes are based on 
objects where the interpretation was made unambiguously with the help of both geometric and spatial 
context information. For the detection of vehicle motion, the training data samples for moving and stationary 
vehicle classes are collected by areas chosen from the same flight campaigns as positive and negative 
samples, respectively. The velocity estimation method by combining two motion components is selected due 
to its reliability and generality. The results of three steps within the whole strategy – vehicle extraction, 
motion detection and velocity estimation are assessed by external evaluation whenever possible. 
 
Chapter 6 deals with the discussion of results of the performed experiments to analyze and predict the 
performance of the strategy. To this end, results obtained by two vehicle extraction methods is first assessed 
and compared to provide useful comments on the influence of the vehicle extraction method on motion 
analysis. Then, the performance of the designed motion detector is analyzed in both analytic and 
experimental manners based on simulations. Finally, the accuracy prediction for velocity estimation on 
real-life road networks is conducted by analytical calculations based on road maps and LiDAR flight 
configurations. 
 
In Chapter 7 the developed strategy of traffic monitoring using airborne LiDAR data is discussed in details 
to derive concluding remarks. Finally, it makes an outlook on open problems and research directions in 
future. 
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2.  Basics 

In this chapter the basic knowledge concerning vehicle extraction and motion estimation from airborne 
LiDAR data is given to provide the fundaments required for the developments of the complete strategy for 
traffic monitoring presented later in this thesis. First, the vehicle model in airborne LiDAR data are 
constructed to formalize and represent available knowledge about the object structure so as to reconstruct 
semantics and properties of the object using the stored data values solely based on algorithms. Additionally, 
it is necessary to incorporate the knowledge about the influence of surrounding objects and their appearance 
in the model, particularly for the treatment of complex scenes. This is done by a context model. Second, a 
nonlinear 3D shape classification framework based on the Lie group manifold is introduced and described. 
The mathematical basics and structure of Lie group theory and principal geodesics analysis are discussed in 
view of shape description and classification. 

2.1 Modeling 

2.1.1 Vehicle model 

The modeling of vehicles plays a central role in the extraction of traffic-related objects, regardless of the 
strategies and the data sources adopted. Research works on vehicle detection using the imaging sensors, such 
as optical camera, IR camera or SAR, usually are distinguished based on the underlying type of modeling. 
There are generally two types of vehicle models – appearance-based implicit model and explicit model. The 
latter one is, for instance, represented by 2D or 3D represented by a filter or wire-frame (Hinz, 2004). For 
the purpose of better understanding of the sensor scanning mechanism und data characteristics, it is assumed 
that the vehicle modeling is equally required for vehicle detection in the context of traffic monitoring from 
ALS systems, although the consistent object modeling in LiDAR data is very difficult. 
 

Here the vehicle model refers to summarizing all the vehicle instances appearing on the ground and road in 
the scene including parking vehicles, temporarily motionless ones (mainly cars in urban areas) and moving 
vehicles, which comprise an important vehicle category in terms of the motion state for deriving traffic 
information. The typical object model usually compiles knowledge about geometric, radiometric, and 
topological characteristics. To be in accordance with a diversity of motivations vehicle detection methods 
developed so far are very heterogeneous in their models and strategies (Bogenberger et al., 1999). Vehicles 
are geometrically modeled in remotely sensed imagery (Tan et al., 1998; Michaelsen et al., 1998; Haag and 
Nagel, 1999, Michaelsen and Stilla, 2000; Zhao and Nevatia, 2001) as 3D objects using a wire-frame 
representation where their substructures, such as windshield, hood, roof, etc, are included and described. The 
level of detail of such a description usually has the consequence that a large number of models are required 
to model different vehicle types and sizes. Sullivan et al. (1995) shows, however, by an eigenvalue-based 
investigation of geometric variations of car models that in the case of typical aerial recognition, a large 
majority of passenger cars can be described with relatively few models (e.g., four in Zhao and Nevatia, 
(2001)). Michaelsen and Stilla (2002) also reported a vehicle recognition system using articulated polyhedral 
models which is implemented in a data-driven voting scheme to search edge line in the image. Flexible or 
hierarchical models as shown in (Dubuisson-Jolly et al., 1996; Olson et al., 1996; Hinz and Baumgartner, 
2001) are not contained here. 
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For airborne LiDAR data, the geometric property is considered to be the essential part of a vehicle model 
(Figure 3), which is used to support the recognition task in point clouds. The intensity of received laser 
pulses is so far hardly utilized due to lack of the calibration and the insight into physical background. The 
model represents the standard case, i.e. the appearance of vehicles is not affected by relations to other 
objects, e.g. shadow cast by buildings, vegetation occlusion or laser reflections of clutters. Moreover, since 
the detection of vehicles beneath the vegetation is also important, the modelling scheme for such vehicles is 
needed to cope with a variety of appearance.
 

For ALS data the implicit model can be regarded as 3D point pattern (set) of vehicles (Figure 3(a)), whereas 
the explicit vehicle model makes use of the surfaces plus their boundaries or the height discontinuity as 3D 
representation (Figure 3(b) and (c)). It is difficult to strictly distinguish two models and to make a choice on 
their performances at first glance. Unfortunately, the shade silhouette which complements the geometric 
model by significantly contributing to inference of the presence of small objects such as vehicles is not 
always available in ALS data. Both models focus on the geometric shape features without radiometric 
properties, and in terms of our research objectives and data characteristics, fundamental and robust features 
of cars cannot always be summarized by only using the vehicle model due to random reflection property of 
laser pulses against vehicle surfaces and unfavourable contamination by clutters nearby. It demands the 
incorporation of more advanced knowledge, such as context relations to ground and road, intensity or global 
context model, into the detection strategy.  

 
(a) 

      

(b)          (c) 

Figure 3: Vehicle model and point cloud (green: ground, blue: vehicle), a) schematic 3D vehicle model. Measured point 

cloud in b) side view and c) oblique view 

2.1.2 Context model 

2.1.2.1 Local context 

Local context describes geometric and topological interactions of a vehicle with objects in their immediate 
surroundings. The need for local context modeling results from the fact that many objects of urban areas are 
in a confined space and thereby local relationships between vehicles and their so-called context objects 
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influence the interpretation of the scene strongly. The vehicle model above can be extended by knowledge 
about local context objects that contain background objects like roads, ground surfaces, buildings, trees or 
external data to substantially support vehicle extraction if their mutual relations are modeled appropriately. 
The model of local context relations between vehicles and urban primary objects are shown in Figure 4. This 
kind of knowledge can be incorporated into the extraction process to assist automatic inference in guiding 
weighting the order of processing steps. In dense settlements, many footprints of buildings are close to 
roadsides and give, therefore, strong hints for vehicles. Buildings or other high objects like trees potentially 
occlude parts of a vehicle or cast shadows on it. Hence, a context relation “occlusion” gives rise to the 
examination of possibly existent vehicles beneath thanks to the partial penetration ability of laser pulses 
against the volume-scatter objects, whereas a context relation “shadow” can tell an extraction algorithm to 
neglect these areas. Also, vehicles occlude the pavement of a lane segment and leave data gaps on it, but if 
an extraction system is able to identify them as such, they can be directly treated as vehicle. The ground 
surface is always under the vehicles which lie 0.3m- 3.5m higher and occlude the ground surface. Hence, 
calling a module that separate out ground level information is of top priority in the situation of intending to 
extract vehicles from ALS data. Furthermore, external GIS data like DTM is also able to be introduced into 
the context model since it usually almost approximates the ground level. Note, however, that the exploitation 
of specific context relations will be sensible to data acquisition configurations, and in most cases, be feasible 
in single-path ALS data with sufficient point density only (denser than about 4 points/m2), because the 
context objects like cars with sub-structures and other topological features which contribute to the local 
context relations are usually not reliable and consistent in low density or co-registered data yet. Therefore, 
the modeling of local contexts is more tightly connected with ALS data of high point density. 

 

Figure 4: Local context-relations model in urban areas 

 

2.1.2.2 Global context 

The coarse impression of vehicles can be recognized by the global context. It enables a focus on the typical 
characteristics in the respective global scene, local contexts and model of vehicles. Modeling this kind of 
context supports high flexibilization of a vehicle extraction strategy, since depending on different global 
contexts the extraction strategy can provide various alternative routines and thus allows a dynamic control of 
the extraction process. This can lead to that for each region an individual extraction system with specially 
adapted model and methods is available, so that large scenes of various characteristics can also be processed 
with manageable models and efficient strategies. 
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Depending on respective coarse environments with particular features the vehicle model could vary, e.g. 
there are normally a relative large distance between two vehicles on the road, whereas vehicles at parking 
lots in dense urban areas are placed very close to each other and become inseparable by modeling vehicles 
explicitly only. The closest mutual relation between vehicle and adjacent context objects could have a 
different focus confronted with different areas. The modeling of the global context provides a classification 
of the urban scene into area of different properties. In this work it is distinguished between areas of two 
global properties - area without elevated roads where all road networks adhere to ground surface and area 
with elevated roads where road sections are extended over ground surface such as bridge and overpass. For 
the vehicle extraction in areas without elevated roads, we could accordingly resort to bugled object models 
and blob detection strategies, as developed in (Soille and Pesaresi, 2002; Hinz, 2004; Stilla and Michaelsen, 
2002; Hinz and Stilla, 2006). In contrast to areas without elevated roads local contexts appear in urban areas 
with elevated roads need to be traced back to the spatial relation between vehicle and more generic 
background objects – road surface other than ground surface (Yao et al., 2008). Once the knowledge about 
the global property of an investigated area is acquired, the strategy to be adopted to extract vehicles will be 
adjusted in accordance to the corresponding global context.  

2.2 Lie Group metric for 3D shape categorization 

The vehicle database used in this thesis was constructed from the LIDAR scan of urban areas consisting of 

vehicles. The sparsity of points in point clouds can be observed from Figure 3 which makes it difficult to 

extract useful information, for example, learning the appearance model mentioned in Ferryman et al, (1998). 

Instead, the vehicle points are fitted with a shape representation called the spoke model in an automatic 

fitting procedure. The spoke models are subsequently used in a robust classification framework for 

distinguishing the motion state which is presented in Section 3.3.3. It introduces a 3D representation of 

vehicles as a space of scale and orientation transformations that define the shape space of individual vehicle 

instances. The property of this shape space is usually studied by the statistical shape analysis framework 

which is well understood when the parameters of the objects are elements of a Euclidean vector space. 

Although the shape description by the spoke model has proven to be effective, the model parameters are not 

naturally elements of a Euclidean space. It has been shown that spoke description of 3D vehicle points are in 

fact elements of a Lie group, since the airborne LiDAR can capture the nonlinear variability of the vehicle 

shape (Yalagadda et al, 2008). 

 

This section is to introduce the mathematical foundation for a representation framework of 3D vehicle shape 
– Lie group, based on which the distinction of the motion state is performed in the sense of shape 
classification and categorization. The basics of the classification scheme using the principle geodesics 
analysis (PGA) are also presented to facilitate the understanding of advantages using Lie group based metric 
to distinguish 3D vehicles points of two motion states. 

2.2.1 Lie Group theory 

Lie group theory is the fundamental representation of a space of transformations. A Lie group G is a 
differentiable manifold that also forms an algebraic group (Duistermaat and Kolk, 2000), where the two 
group operations, 
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are differentiable mappings. Many common geometric transformations of Euclidean space form Lie groups. 
For example, rotations, translations, magnifications, and affine transformations of all form Lie groups. More 
generally, Lie groups can be used to describe transformations of smooth manifolds. The group action could 
be thought of as a transformation of the manifold, whereas matrices are transformations of Euclidean space. 
A Lie algebra g is a vector space with a bilinear product [ , ]:  g g g , called the Lie bracket, for all X; Y; 
Zg satisfying  

Antisymmetry  [X; Y ] =  [Y;X] 
Jacobi Identity  [[X; Y ];Z] = [X; [Y;Z]] [Y; [X;Z]]               (2) 

Let e denote the identity element of a Lie group G. The tangent space at e, TeG, forms a Lie algebra, which 
we will denote by g. The exponential map, exp: g G, provides a method for mapping vectors in the tangent 
space TeG into G. Given a vector vg, the point exp(v)G is obtained by flowing to time 1 along the unique 
one-parameter subgroup emanating from e with initial velocity vector v. When the Lie group is given a 
compatible Riemannian metric, this one parameter subgroup is the unique geodesic at e with velocity v. The 
exponential map is a diffeomorphism of a neighborhood of 0 in g with a neighborhood of e in G. The inverse 
of the exponential map is called the log map. The geodesic distance between two points g; hG is given by 

1log( )g h , where . is the Frobenius norm of the resulting algebra element(Rossmann 2002). The spoke 
transformation matrix T is the Cartesian product of transformation matrices Mi acting on individual spokes. 
Each Mi is a Cartesian product of SO(2) which forms a Lie group. Since the Cartesian product of Lie 
group elements is a Lie group, T forms a Lie group und can be viewed as a point on a Lie Group space. 
 

2.2.2 Shape classification based on Lie group distance 

The examination of the similarity between 3D vehicle shapes can be formulated as a classification task on 
the manifold based on Lie group distance metric. This vehicle shape space forms a group, where the 
similarity of different vehicle observations can be evaluated using a distance measure defined by Lie group 
theory. A generic class of vehicles (e.g. Sport Utility Vehicle (SUV), van or passenger car) is represented by 
a set of curves on the Lie group manifold, called geodesics. The classification of any given vehicle instance 
is achieved by finding the class with the smallest Lie distance between the geodesics and the specific 
category of vehicle shape. To adapt common classification methods used in Euclidean feature space we need 
to extend statistical measures and methods to manifolds. 
 
A primary goal of the statistical shape analysis is to describe the variability of a population of geometric 
objects. The standard linear techniques, namely linear averaging and principle component analysis (PCA), 
do not apply. The standard shape analysis techniques can be generalized to handle manifold data by 
computing averages on a manifold and using a new method named principal geodesic analysis (PGA), a 
generalization of PCA, for describing the variability of data on a manifold. A principal geodesic is one that 
accounts for the maximum variation in a set of transformations along the path, analogous to principal 
component of a covariance matrix. Fletcher et al. (2003) used Lie group metric to measure the statistics of 
shapes on a Lie group manifold. They encode the shape of organs such as the human kidney as a set of 3D 
surface elements called an M-rep. The intrinsic variability in organ shape is represented by shortest curves 
(geodesics) on the Lie group manifold. Klassen et al. (2004) also used geodesic paths to span shape spaces 
and demonstrate their approach to generate a continuous family of shape prototypes within a category. 
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The three central statistical elements of the Lie group framework are: (i) Lie distance; (ii) intrinsic mean; (iii) 
principal geodesics. Lie distance is a measure of the similarity of two transformations. The intrinsic mean 
represents the average of a set of transformations, i.e. the transformation that minimizes the Lie distance to 
all the transformations in the set, which is defined as the minimizer in group G of the sum-of-squared 
Riemannian distances to each point on the Lie manifold (Srivastava and Klassen, 2002 and Grenander et al., 
1998). The methods for computing geodesics and distances on them arise naturally from Lie group actions 
on manifolds. The averaging methods on manifolds have previously been studied very well (Fletcher et al., 
2003); principal component analysis has recently been developed for manifolds and is to be reviewed here, 
as it is of great importance to the classification scheme on the Lie group manifold. 
 
Considering a set of points x1, ….xn on a manifold M. Our goal is to describe the variability of the xi in a way 
that is analogous to PCA. Thus, we will project the data onto lower dimensional subspaces that best represent 
the variability of the data. This requires first extending three important concepts of PCA into the manifold 
setting, namely (i) Variance, (ii) Geodesic subspaces, (iii) Projection 
 

 Variance: the sample variance of the data is defined as the expected value of the squared 
Riemannian distance from the mean. 
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where   is the intrinsic mean of the xi. 
 

 Geodesic subspaces: The lower dimensional subspaces in PCA are linear subspaces. For general 
manifolds the concept of a linear subspace is extended to that of a geodesic submanifold. A geodesic 
is a curve that is locally the shortest path between points (transformations in group) and is the 
generalization of a straight line. Thus, it is natural to use a geodesic curve as the one-dimensional 
subspace, i.e., the analog of the first principal component in PCA. The comparison of PCA and PGA 
is illustrated in Figure 5. Figure 5(a) shows the principle component in 2D Euclidean feature space 
while Figure 5b shows the principle Geodesics in 2D manifold of feature space. Submanifolds 
geodesic at x preserve distances to x. This is an essential property for PGA because the variance is 
defined as the average squared distance to the mean. Thus, submanifolds geodesic at the mean will 
be the generalization of the linear subspaces of PCA. 

 
 Projection: In PCA, the data is projected onto linear subspaces. For a projection operator defined for 

geodesic submanifolds, the projection of a point x M onto a geodesic submanifold H of M is 
defined as the point on that is nearest to x in Riemannian distance. Thus, the projection operator  H: 

M H as 

      2( ) arg min ( , )
H y H
x d x y                   (4) 

It can be assured that projection is unique for any submanifold geodesic at the mean by restricting to a 

small enough neighborhood. 
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(a)              (b)   

Figure 5: Comparison of PCA and PGA (only the first principle component is shown here), (a) PCA in 2D feature 

space, (b) PGA in 2D manifold of feature space, red line indicates the principal geodesics 

 
The computation of PGA is to find a sequence of nested geodesic submanifolds that maximize the projected 
variance of the data. These submanifolds are called the principal geodesic submanifolds. The principal 
geodesic submanifolds are defined by first constructing an orthonormal basis of tangent vectors v1,…,vd 
TuM that span the tangent space of M at the intrinsic mean u of xi. These vectors are then used to form a 
sequence of nested subspaces 

1
span({ ,... })

kk
V v v U  . The first principal direction is chosen to maximize 

the projected variance along the corresponding geodesic 
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where (span({ }) )H Exp v U  , is the exponential map and let U  TuM be a neighborhood of 0. The 
remaining principal directions are then defined recursively by spanning different basis vectors.  
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3.  Methodology 

This chapter is to present and describe the whole strategy for monitoring the urban traffic using ALS data in 
detail. At first, an overview of the complete strategy is given without going into algorithmic details. Second, 
the individual steps of the implementation of the vehicle extraction will be explained. The three Routes of 
the vehicle extraction strategy outlined in Section 3.1 are reflected in the outline of this chapter. The analysis 
of the global context is described at the beginning. Subsequently, it deals with the extraction of vehicle 
objects from data areas of the global context without elevated roads. Section 3.2.3 explains the object based 
point cloud analysis (OBPA) method used to deal with data areas of the global context with elevated roads, 
and if necessary, introduces generated intermediate results from the OBPA method into the local context 
guided method and finally fuses their extraction results for areas with dense placement of vehicles. The third 
part of this chapter is to first introduce and investigate the moving object model (motion artifacts effect) in 
single-path airborne LiDAR data, which lays down the theoretical foundation for LiDAR to monitor the 
traffic from airborne platforms. Furthermore, a scheme is proposed to distinguish the vehicle motion state 
from ALS data based on the extracted points of single vehicles using a binary shape classifier constrained by 
Lie group metrics. The shape parameters describing the vehicle geometric property in view of motion 
artifacts have been estimated in the shape parameterization process applied a-prior, where the vehicle points 
of ambiguous shapes are directly removed from the classification step of motion state and classified as 
uncertain moving class. Finally, the velocity of all moving vehicles can be quantitatively derived with 
knowledge about their shape deformations. Additionally, the velocity estimation accuracy will be 
extensively studied and evaluated for different estimation methods under error prorogation principle. 

3.1 Overview of the complete strategy 

The complete strategy lays down the essential fundament for the control of the extraction and analysis 
process. Through it the framework that when and what the knowledge about object is used for extraction and 
how the results from intermediate operations will be involved into the further procedure is given. Therefore, 
the strategy includes knowledge about the extractability of features or sub-objects as well as the efficiency of 
algorithms. The whole strategy consists of two main stages described in more detail in the next subsections: 
(1) vehicle extraction (Section 3.2), (2) Analysis and estimation of vehicle motion (Section 3.3),  
 
Because of the task and data complexity to be treated here, a hybrid strategy for vehicle extraction is to be 
applied - namely a model-driven approach alternating with a date-driven approach, controlled by global 
context analysis in the initial phase. At the start of the model-driven approach “Region of Interest” (RoI) for 
vehicle extraction, i.e. ground surface is extracted. Based on the generated hypotheses the extraction can 
now focus on the places where vehicles are able to be detected in a more reliable and easy way. 
Subsequently, series of operations including morphological reconstruction and watershed transformation 
lead to the accurate delineation of most vehicles. Since the vehicle and context model incorporates 3D 
information as well as spatial mutual relationships among objects in the scene, it is more beneficial to 
perform the vehicle extraction algorithm directly at 3D data level. To this end, a 3D segmentation-based 
classification approach is proposed to accomplish the vehicle extraction task too. In contrast to other 
approaches, it neither uses pulse intensity information for extraction nor extracts geometric features in 3D 
locality as, e.g. Gruen and Li (1997) or Zhang et al. (2001) did, by estimating and selecting local 
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neighborhoods using TIN model. These procedures are conceptually elegant, but they imply feature 
matching algorithms and geometrical/topological analysis in 3D during the extraction process, which 
becomes cumbersome for scenes of higher complexity. On the other side, it is desired to avoid feature 
extraction in point cloud of urban areas because inaccuracies of the estimated local geometry due to 
erroneous neighborhood selection could disturb shape properties of object structures. The strategy in this 
work is to stay in 3D raw data exclusive of pulse intensity as long as possible and to extract vehicle objects 
in large extent and other high semantics. It is assumed that geometric component of ALS data is more 
essential, since it involves most informative hypotheses and encodes significant information for semantic 
modeling. The concrete workflow of the complete strategy is illustrated in Figure 6. 

Stage 1: Vehicle extraction 

This step comprises a hybrid approach intended to detect all the points of vehicle instances which should 
serve as the data foundation for motion analysis. The approach combines a local context-guided method with 
the OBPA method to accomplish the task, the switch from one method to another within the framework is 
controlled depending on which kind of the global context exist in the data area to be analyzed. Therefore, 
this stage starts with exploiting global contextual knowledge to make this information available for 
following processing stages. After distinguishing between urban areas with elevated roads and urban areas 
without elevated roads, using global context as guide for automatic vehicle extraction in urban areas 
becomes a trivial thing and the judgment is to be made upon that which method is selected to proceed 
subsequently. The output of this operation gives a rough idea about the position of most potential vehicles 
that could appear as well as about method which is most likely to yield promising results. In this work there 
are totally three Routes to perform vehicle extraction from airborne LiDAR data depending on global 
context analysis, as depicted in Figure 6. The first Route dedicated to the dataset without elevated roads will 
apply the method of vehicle extraction based on exploiting the (local) context while the second Route is 
dedicated to the dataset with elevated roads using the OBPA method to extracted vehicles. For third Route, it 
is dedicated to a refinement of the OBPA method for vehicle extraction in areas with elevated road. 
Following an initial 3D segmentation it enables the context-guided method to extract vehicles from the large 
context objects such as ground (road) surface again, which is made available by introducing the grouping 
operation using normalized cuts to the results generated by OBPA method. The extracted vehicles obtained 
in the refinement process (Route 3b) are to be merged with extraction results obtained by the OBPA method 
performed previously (Route 3a) to form the final result. The combination of the OBPA and local 
context-guided method can make the extraction more complete for the vehicles which are located very close 
to each other such as in parking lots. 
 
The (local) context-guided method utilizes the fundamental contextual relation between vehicle and ground 
surface to reduce the problem domain and provide the RoI. Then, the vehicle height model generated by last 
step is to be utilized to delineate vehicle instances by advanced geodesic morphology. The OBPA method is 
directly performed on the ALS raw point cloud in genuine way. Local geometric modes are detected using 
mean shift clustering by varying the local bandwidth adaptively; the obtained point segments can give a 
sensible partition of scene to represent large-scale object (parts) while keeping small-scale objects remain. 
Finally, the binary SVM classifier is adopted to label the point segments as vehicle or non-vehicle objects 
based on the various geometric and shape features derived at object-level. Both methods utilize the 
geometric components of ALS data only. Especially for data areas with both elevated roads and parking lots 
delivered to the second Route, the combination of two methods by a refinement operation can not only 
guarantee a considerable completeness of vehicle extraction, but also for each vehicle provide higher 
geometric accuracy in terms of shape fidelity.
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Figure 6: Workflow of the strategy 
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Stage 2: Vehicle motion analysis  

After vehicles are extracted from ALS data as set of points each, the next step focuses on motion analysis. It 
consists of two sub-tasks – determination of vehicle motion state and velocity estimation. 
 
The motion state can be determined based on 3D shape classification of vehicle points subject to motion 
artifacts. To this end, each of extracted vehicle instances is firstly modeled by spoke model and then 
delivered to shape parameterization based on boundary tracing and regularization. The two controlling 
parameters describe the shape properties of vehicle spoke model in the point cloud – the aspect ratio and the 
shearing angle are obtained by the shape parameterization process and further delivered to motion 
classification process based on Lie group metric. The Lie group based classifier can essentially encode the 
nonlinear variability of vehicle shapes represented in ALS data and perform the binary classification task on 
distinguishing between moving and stationary vehicles more robustly and effectively compared to other 
common classification methods working on the linear Euclidean space only. Then, vehicle points can be 
classified into three categories concerning the motion state – moving, stationary and uncertain which is 
already detected in the boundary regularization process based on imposing the constraint on quadrilateral 
that every two sides should be mutually parallel. The vehicle instances of ambiguous shapes are excluded 
from the motion classification and directly labeled as uncertain class. 
 
From obtained vehicles of moving class, the velocity can be estimated based on the measuring the shape 
deformations by inverting the motion artifacts model of ALS data. In general, the velocity estimation 
concept can be divided into two categories depending on whether the moving directions of vehicles are 
known or not. Usually, the velocity of sensor flight can easily be known from on-line navigation system in 
advance while the intersection angle between the sensor flying path and vehicle moving direction has to be 
explicitly derived in addition. The moving direction can be indicated either by the principal axis for each set 
of vehicle points or by the road direction given as the a-prior knowledge. The correct moving direction is 
chosen from the two alternatives in accordance with of the parameterized shape of vehicle points or the 
shape deformation direction (elongated or shortened). Accordingly, the velocity of moving vehicle can be 
estimated independently based on either the along-track stretching or the across-track shearing effect. 
Moreover, the velocity can also be derived by combining along-track with across-track velocity components 
by the sum of squares operation which are estimated, respectively. However, if the moving direction of 
vehicles cannot accurately be estimated in advance, the velocity can be derived by uniting and solving the 
two bivariate equations in the moving object model directly while the intersection angle between the 
velocity vectors of flying sensor and moving vehicle is determined as a solution simultaneously. Finally, 
theoretic accuracy analysis of velocity estimation methods is to be performed in detail. The empirical 
relationships of error propagation between the estimated velocity and several observation parameters are to 
be specified in an analytic form. 

3.2 Vehicle extraction 

In this section, the individual steps of the implementation of the vehicle extraction will be explained. The 
three Routes in the strategy outlined in Section 3.1 are reflected in the outline of this section. Section 3.2.1 
describes the analysis of the global context at the beginning of the vehicle extraction. Subsequently, Section 
3.2.2 deals with the extraction of vehicle objects that correspond to data areas without elevated roads (Route 
1). Section 3.2.3 explains the OBPA method used to deal with data areas with elevated roads (Route 2), and 
if necessary, introduces generated intermediate results from the OBPA method into the local context guided 
method and finally fuses their extraction results for areas with presence of densely placed vehicles (Route 3). 
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3.2.1 Global context analysis 

After dividing the context model in Section 2.1.2 into a global and a local component, the global context is 
described here. Figure 7 summarizes the part of global context analysis. They serve primarily to focus the 
object extraction process to such areas that are likely to attract a good agreement between the object model 
and the actual object characteristics and thus make sure that the extraction is most successful. The extraction 
strategy presented in Section 3.1 regards the use of global contextual knowledge as a first step, since 
background information is obtained through this way, which is able to support the selection of vehicle 
extraction methods hereafter. The motivation for employing global context stems from the observation that it 
is possible to distinguish semantically meaningful data regions - so-called context regions - where vehicles 
show typical prominent features and certain relations to background objects have a similar importance in 
vehicle extraction. Consequently, the relevance of different components of the vehicle model and the 
importance of different context relations must be adapted to the respective context region. In urban areas, for 
instance, relations between vehicles and (elevated) roads are more important and elevated roads such as 
overpass and bridge are of a great significance due to their more frequent occurrence in city areas to make 
large quantity of traffic loads be dredged in an effective way, and henceforth, make vehicle extraction 
dependent on distinguishing different context regions. Actually, all the vehicles on elevated roads move at a 
considerable speed and usually are located not very close to each other but with a certain inter-object 
distance. Unlike other vehicles that move or park on ordinary roads, the position of these vehicles are no 
longer adhered to the context object – “ground surface”. Based on these facts, the method proposed to 
extract vehicles should be also adapted to tackling different situations in ALS data. Urban areas have been 
distinguished between contexts with elevated road and without elevated road. To this end, two vehicle 
extraction methods are proposed to solve the problems emerging in two global contexts, respectively. The 
distinction of an ALS dataset of dense urban areas from the region with elevated roads to the region without 
elevated roads can be performed by manual judgment.. Since the global context analysis performed here is 
only limited to distinguishing between two hypotheses, the automation of this process is not indispensable 
which can be easily replaced by a human intervention. Otherwise, the distinction of the global context 
regions can be automatically done by analyzing the statistical property of the height distribution of ALS 
point cloud based on histogram analysis. 

Analysis of global contexts

Areas without  elevated roads Areas with elevated roads

1 23

OBPA methodLocal context guided  method

 
Figure 7: Extraction strategy: part “global context analysis” (cf. Figure 6) 

 



32                         3. Methodology 

3.2.2 Local context guided method 

3.2.2.1 Ground surface separation 

The local context model from Section 2.1.2.1 describes relations between vehicle objects and context objects 
"road", "ground"," building footprint "and" tree" and derives certain conclusions on derivation of a 
extraction strategy. They serve primarily to focus the vehicle extraction to such areas, that a good accordance 
between the vehicle model and the actual vehicles is expected and thus can guarantee a successful 
extraction. 
 
The local contexts for vehicle that concern the buildings, ground surface and vegetation include the relations 
“is close to”, “lies above” and “hangs over and occludes”. For the analysis of these relations, the accurate 
reconstruction of the building or detailed extraction of vegetation needs to be carried out. However, they 
have established themselves as independent research topics for a long time. The automatic extraction of such 
objects in urban areas from airborne LiDAR data is itself not trivial task which has not become a solution 
mature enough and needs to be further investigated thoroughly. In contrary, the strong relation between 
vehicle and ground surface including road and other terrain surfaces is believed to be fundamental to the 
whole procedure of vehicle extraction. Meanwhile, the automatic extraction of ground point from ALS data 
has been well studied in the context of data filtering for terrain model generation and becomes an efficient 
and rapid solution to topographic information extraction for urban areas. Consequently, it is decided to start 
by exploiting the essential knowledge in the local context model to benefit all following processing stages. 
Therefore, the automatic separation of ground points from other object points in LiDAR data is used in this 
work to support the vehicle extraction. The output of these operations gives a rough idea about the position 
of potential vehicles as well as about regions where no vehicle is expected to appear, namely providing the 
RoI towards vehicle extraction. Section 4.2.1 outlines this algorithm. Moreover, information about the 
vehicle model itself such as area and eccentricity are to be drawn in the vehicle-tops selection process (cf. 
Section 4.2.3) to remove the false alarms within the detected vehicle-tops which are formulated as local 
maximum too. 
 
The ground points refer to the bare earth defined as by Sithole et al. (2003) plus vehicle. Object points 
comprise detached (buildings and trees) and attached objects (bridges). Hence, ground level separation is 
used to mask out background objects (e.g. buildings) to provide a compact dataset consisting only of 
vehicles, real ground and few disturbing objects above, e.g. pole or traffic signs, wall and tree stem etc. This 
step essentially facilitates the search process of vehicles by reducing the problem domain. 
 
An adaptive thresholding method based on height distribution proposed by Bartels et al. (2006) is selected to 
perform the task, which can directly implement the key contextual constraint on vehicle extraction. It is 
stated that naturally measured samples (ground terrain points) will lead to a normal distribution according to 
the central limit theorem. Thus, the assumption is that object points may disturb the normal distribution and 
ground points can be obtained by removing those from the raw point cloud. Vehicle points may bias the 
normal distribution of ground points, but meanwhile are compensated by many topographical features in 
cities, such as ramps, connection paths to tunnel or garage, therefore making the height of ground surface 
points including vehicles still obey the rule of normal distribution. Two meaningful measures of skewness sk 
kurtosis ku to describe degrees of asymmetry and peakedness of the sample distribution are applied, which 
are defined by 
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where N is the total number of the LiDAR points is ,  is the standard deviation and a is the arithmetic 
mean. 
 
For a normal distribution, sk is zero and ku is three. The algorithm balances the point’s distribution by 
iteratively removing the highest (maximal) value of the point cloud until the skewness and kurtosis of the 
rest points converges on zero and three simultaneously. The remaining points are supposed to be the ground 
surface, whose height obeys the normal distribution (c.f. Figure 9). For more hilly areas, an iterative 
implementation of the algorithm is used to overcome the undersegmentation by treating the imperfect set of 
object points (nDSM) again as a DSM and rerunning height distribution balancing. Finally, a refinement of 
ground points could be achieved by combining DTM filtering with layer-cutting operation (a layer of 3m 
thickness above the ground surface is to be cut out) in order to exclude small-size non-topographic effects 
and meanwhile preserve vehicle points (Yao et al., 2010a). Figure 8 shows one example of separation results 
distinguishing between ground (dark blue) and object (green) points. As depicted in Figure 8, detached 
objects were clearly detected, however, a few attached objects not, due to the complex scene. The first echo 
DSM of parts of Toronto in Canada in Figure 8 is constructed from 108, 790 LIDAR points. It shows a 
highly dense urban area with mostly detached objects, both with buildings and vegetation of various heights. 
Nearly all detached object points are correctly classified and removed from the ground. The histogram of the 
LIDAR data tile in Figure 9 is also noteworthy showing both classified ground (dark blue) and object (green) 
points. 

 

Figure 8: Separation of ground (green) and object (blue) points from ALS data of a city center. Black depicts non-point 

regions which are not acquired by scanning 

The algorithm to separate the ground points from objects has several advantages. First, it is a non-parametric 
unsupervised classification algorithm that requires neither a specified threshold nor a fudge factor prior to its 
execution. Furthermore, the separation of object and ground points preserves the original LIDAR data and 
hence avoid the loss of information due to manipulation. Moreover, the algorithm is applicable to every 
LIDAR echo, where the processing of last pulses of LIDAR data is the fastest. This is due to the laser’s 
ability to penetrate vegetation which results in less object points to be classified. The algorithm is therefore 
very flexible and can additionally be used for applications without restriction to the data format. 
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Figure 9: Height histogram of classified points in Figure 8 

 

3.2.2.2 Geo-tiling and filling missing data 

To make the vehicle extraction from ALS data greatly benefit from advanced operations of image processing, 
the raw ALS data has to be transformed into grid data. It is done here by geo-tiling process, where rather 
than interpolation only the correspondence relation between single points and grid cell is established. The 
geo-tiling process is originally developed to overcome the spatial complexity of ALS raw data and accelerate 
the data-access. A geo-tile index is generated by the grid subdivision method (Laszlo, 1996), by which the 
data space is formatted into n n  grid cells with size d d  and the spatial index information about 
single points is stored (Figure 10). Then, each cell records the lowest last return of all pulses falling in the 
cell. To simultaneously preserve the local details and make data storage acceptable (Chen et al., 2006), the 
cell size d is set according to  1d ;   is average point density (points/ 2m ). In practice, the pulse 
density varies owing to side overlaps between swaths. Therefore, a small cell size should be used when there 
are large pulse densities locally, which can be chosen by calculating the thp quantile of  . Using geo-tiling 
for LiDAR data gridding has several advantages. First, it speeds up the data searching mechanism; second, it 
enables a flexible and efficient interaction between gridded data and raw airborne LiDAR points, e.g. 
retrieving 3D vehicle points in ALS points can be achieved by outlining their boundaries in gridded data 
followed by hole-filling. 

 

Figure 10: Schema of geo-tiling for LiDAR points indexing 
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When the pulse spacing is greater than d , there are no values for some cells by sparsely sampling. The 
same situation also happens caused by absorptive materials, such as waters. A general surface fitting strategy 
is adopted to locate and fill the missing data simultaneously. It is not an interpolant and uses a modified 
ridge estimator (Marquardt, 1970) to generate the surface of the form z(x, y) that approximates scattered data 
 , ,i i ix y z  by successively resolving two coupled equation systems under a given constraint:  

 2 2min ( ) ( )
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x y x

x y x

     
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A B

A B
              (7)

 

where A  accounts for the interpolation system with plate-like metaphor; B  accounts for the 
regularization system added to solve the underdetermination;   is a parameter for controlling the plate 
“stiffness”. 
 
A nice feature of this surface fitting method is that it is able to smoothly extrapolate beyond the convex hull 
of data, something that interpolator cannot do. Since the object points rejected by the ground separation step 
presented in Section 3.2.2.1 is quite numerous and intendedly represented as blank areas (Figure 11), it is 
required to distinguish between unintended and intended data gaps. By adjusting two parameters of the 
estimator - tilesize and smoothness, the two situations can be handled very well simultaneously. The small 
data gaps are filled while the large data gaps are preserved. 

 
(a) 

 
(b) 

Figure 11: Filled height raster of ground points with surface fitting, black areas indicate object points masked out, (a) 

perspective-view; (b) top-view 



36                         3. Methodology 

3.2.2.3 Vehicle-top detection and selection 

Based on the results generated in Section 3.2.2.2 – gridded and filled LiDAR ground data f, the next step is 
to find vehicle-tops as the foreground markers for vehicle segmentation, which refers to the roofs of vehicles. 
Local maximum filtering is often used to find the object-tops in a height model accompanied with large 
commission errors. As indicated in Section 2.1.1 and inspired by Soille and Pesaresi (2002), the common 
vehicles can be modeled as bulges in the height data and the vehicle-top consists of connected blobs of 
pixels inside each of the foreground objects, extended-maxima transform of the filled ground height grid f, 
denoted as ( )

h
EMAX f , is computed to provide initial candidates for the vehicle-tops. ( )

h
EMAX f  is the 

regional maxima (RMAX) of the h-maxima transformation of f, which is to perform the reconstruction by 
dilation of f from f h , denoted as 

  
maxh f
f R f h                  (8) 

where 
maxh
f  is the h-maxima transformation of f (Soille, 2003). 

 
(a) 

 
(b) 

Figure 12: Detected vehicle-tops (white blobs) superimposed on Figure 11, (a) before refinement, (b) after refinement 
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The regional maximal considers the union of the maxima obtained at each level. Since the set union can be 
replaced by a summation and the image data type does not support negative values, it gives:  

maxmax max 1 max( ) ( ) 1 ( )
hh h h f hEMAX f RMAX f f R f

                 (9) 

Note that ( )
h

EMAX f  include the maxima not only caused by the vehicle-tops, but also ground irregularities 
and some anomaly objects which are not completely removed by the step presented in Section 3.2.2.1 
(Figure 12 (a)). The next step is to generate refined results by selecting the ( )

h
EMAX f  based on their shape 

measurements and local context relations. Since the vehicle-tops usually have a small blob-like shape in 
reality and nearby building foots might be detected incorrectly, the area  and eccentricity e  of the 
detected vehicle-tops are derived and examined with respect to the thresholds ( 1T , 2T , Te ) using the 
criterion: 1 2T T

    0
T

e e   , where 1T
 =4 pixels 2T

 = 25 pixels Te =0.68. 1T
 , 2T

 , T
e are derived by 

sample data given ahead. After refinement, spurious local maxima other than vehicle-tops were greatly 
reduced (Figure 12 (b)). The threshold h directly affects the performance of detecting vehicle-tops. However, 
the choice of h is less data-dependent and can be set by trial. Moreover, an optimal value of h can be 
obtained from training data given beforehand. According to experiments, the change of h would mostly 
affect the omission errors not the commission errors. It is due to the fact that vehicles usually have 
quasi-constant height of above the ground, whereas the area  and eccentricity e of the detected 
vehicle-tops are used to filter out spurious local maxima (i.e. false alarms) other than vehicle-tops with the 
quasi-same height. Applying such a strategy, both commission and omission errors for vehicle-top detection 
can be alleviated.  
 

3.2.2.4 Segmentation 

The marker-controlled watershed transformation is applied to segment vehicles and delineate their 
boundaries which are delivered to retrieving the points belonging to single vehicles. In marker-controlled 
watershed transformation, the segmentation function is first filtered by minima imposition so as to remove 
all irrelevant minima. Thus, basins are flooded from selected sources and over-segmentation is to be 
suppressed (Soille, 2003). 
 
Suppose the segmentation function is gradient magnitude of f, denoted as ( )G f , and a marker image fm has 
been specified at each pixel p: 

max

0, if  belongs to a marker,
( )

1,               otherwise.m

p
f p

t


  

           (10) 

where maxt  is the maximum value of the input image. Minima imposition is to first calculate a pixel-wise 
minimum between ( ) 1G f  and the marker image fm as   ( ) 1G f fm, and then perform a morphological 
reconstruction by erosion of   ( ) 1G f fm from the marker image fm. 

   
 


( ) 1 m

mp mG f f
f R f                   (11) 

where fmp is the resulted image by imposing minima and will be undergone the ordinary watershed 
transformation. 
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Figure 13: Thinned background markers 

 
(a) 

 
(b) 

Figure 14: Vehicle delineation results by marker–controlled watershed transformation (a) without background markers, 

(b) with background markers 
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To extract the vehicles as accurate and complete as possible, the marker image should contain the markers 
containing both foreground markers ─ vehicle-tops and background markers─ non-vehicle objects. The two 
markers enhance each other by simulating the flooding from two corresponding basin catchments to build a 
more balanced dam line. Therefore, they should not lie too close to each other and the background areas 
usually need to be thinned to the ridge lines of their distance-transformed version (Figure 13). Especially, it 
makes sense for places such as heavily traveled roads and parking lots. It has been verified by tests that the 
background markers should be considered here especially when we want to extract vehicles which are 
placed closely to each other. This situation usually appears in parking lots or heavily traveled road sections. 
The background markers can prevent the flooding simulation process in the watershed transformation from 
over-flooding effect. That means that the boundaries of adjacent objects to be segmented (each object has 
one boundary) can be flooded (approached) from two directions (basins), so that they can lead to building 
the watershed (dam) line by enforcing mutual constraints, corresponding to the vehicle outlines in real cases 
more accurately. Figure 13 has been created anew to avoid the computations occur in the no-data (NaN) 
regions. Minima imposition reconstructs the segmentation function ( )G f  in such way that there are only 
minima (flooding sources) corresponding to markers. This illustration highlights the importance of finding 
the correct vehicle-top/non-vehicle marker function when applying such a strategy to extract vehicles. 
Figure 14 shows two examples of vehicle extraction results when applying the proposed method to one 
dataset, the difference between which is only limited to whether the background marker for watershed 
transformation is used or not. This comparative illustration between Figure 14 (a) and (b) can obviously 
indicate the positive impact of the background marker on the vehicle delineation accuracy. 

 

3.2.3 Object-based point cloud analysis method 

3.2.3.1 Framework 

The adaption of the concept of object-based image analysis framework (OBIA) to the LiDAR data analysis is 
firstly restricted to approaches using rasterized 2.5D ALS data, which greatly facilitate the application of 
image analysis algorithms. However, ALS systems deliver (X, Y, Z) coordinates of the unevenly sampled 
points over the scene and their reflected intensities as measurement. To maintain the full resolution 
information in ALS data and to avoid the conversion to a 2.5D model, the object based point cloud analysis 
(OBPA) concept is introduced for object extraction from the raw product of LiDAR sensors – unorganized 
point cloud (Rutzinger et al., 2008; Yao et al., 2010b). Based on former studies the OBPA method was 
further developed and adapted to our task in this work. It is composed of segmentation (Section 3.2.3.2), 
object feature derivation and classification (Section 3.2.3.3) and refinement step (Section 3.2.3.4).  
 
Object extraction based on OBPA is substantially a strategy for object recognition by jointly employing 
segmentation and classification strategy, where the point cloud is firstly partitioned into significative 
segments to approximate the spatial extension of various object instances and then each segment is assigned 
a semantic label based on feature values derived on the segment-level. Generally, the point-based 
classification discriminates the dataset at class-level rather than instance-level due to the strong semantic 
orientation and the lack of the spatial awareness of the feature space used. That means that different 
object-instances within the same object-class need to be further separated for the purpose of object extraction. 
Consequently, the OBPA concept allows extracting various urban targets from ALS data simultaneously, 
when the 3D segmentation process is capable of giving a significative representation of the scanned scene. 
The step of segmentation plays a key role and becomes the core part of the whole strategy for extracting 
objects from ALS data. In addition, the partition of urban scene into various semantic object categories 
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provide the opportunity to make use of local context relations and apply to ground surface segment for anew 
detecting vehicles located on it. It can be expected that the completeness rate of vehicle extraction could be 
improved. 
Vehicle extraction using the OBPA method is based on an intelligent 3D segmentation approach working 
directly on point cloud. It deals with semantic inference in point cloud data, which has proved to be a very 
complicated task (Melzer, 2007). The segmentation process is performed in the sense of local mode detection 
by adaptive mean shift (MS). It allows a genuine clustering on raw ALS data and does a scale–aware 
mode-seeking process in the 3D geographic spatial feature space. The obtained segments can give a 
significative partition of scene to represent vehicle and non-vehicle objects, despite that they look like 
somehow fragmented. After achieving coherent point segments potentially corresponding to local entities, a 
binary classification based on Support Vector Machine (SVM) is performed to evaluate shape and positional 
features of point segments to extract vehicles. Moreover, a modified normalized cut (NCuts) can be used to 
group point segments to build large-scale objects (such as building, ground surface and road) in a sense of 
global optimization. For objects classified as ground (road) surface, the context-guided method is to be 
applied again to extract such vehicles that were missed by the OPBA method in areas of dense placement. 
Especially for data areas with global contexts in the Route 3 (Figure 6) where vehicles are placed very close 
to each other such as in parking lots, the combination of the OBPA and local context-guided method can 
make the extraction more successful for the vehicles. The extracted vehicles can be further delivered to 
motion analysis step based on the shape deformation features to infer the overall traffic situation by 
determining the motion state of each vehicle. 
 

3.2.3.2 3D segmentation by adaptive mean shift clustering 

Mean shift is an extremely versatile tool for feature-space clustering. So far, MS has been successfully 
applied to image segmentation tasks by exploiting the spectral feature space. The choice of feature-based 
analysis lies in the recognition that the integration of different cues into the analysis offers advantages of 
unveiling potential structures of data. As the feature-based analysis depends on the quality and reliability of 
selected features, the feature computation and selection should play a fundamental role in the design of a 
segmentation algorithm. Since the derivation of geometric features such as height textures, planarity and 
curvature is biased by neighborhood definition and we want to avoid this, the 3D geographic space spanned 
by (X ,Y ,Z) coordinates of point cloud is chosen here to explicitly represent the feature space which is 
dedicated to clustering.  

 

Thanks to its non-parametric and mode-seeking mechanism, MS is believed to have great potential with 
respect to flexibility and reliability in dealing with ALS data of complex urban areas. A remarkable feature is 
its ability to move the data points towards their respective modes of the empirical distribution. Given n laser 
data points 

i
x (i= 1, 2,…,n) in 3-D space, the kernel density estimator at point x can be written as 
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where ,k dc is a normalization constant, h is the bandwidth, and K(·) is the kernel, that models how strongly 
the data points are taken into account for the estimation. The objective of the feature-space analysis is to find 
the local maxima of the density f(x), i.e., the modes of the density, which are located among the zeros of the 
gradient   0 f x . The MS procedure is an efficient way to locate these zeros without having to estimate 
the underlying probability density model before (Comaniciu et al., 2002). The density-gradient estimator can 
be derived by differentiating Equation(12),  
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2, , ,
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where the profile of kernel G is defined as g( ) ( )x k x  , with c as its normalization parameter. In 
Equation (13), the first term is the density estimate at x with the kernel G and the second term is the MS 
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From Equation (14), it can be found that the MS is the difference between the weighted mean, using the 
kernel G for weights, and x, the center of the kernel. According to Equation (13), the MS can be written as 
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Equation (15) indicates that the MS vector at point x with kernel G is proportional to the normalized 
density-gradient estimate obtained with kernel K, and it thus always points toward the direction of maximum 
increase in the density. In other words, the local mean is shifted toward the region in which the majority of 
the points reside (Comaniciu et al., 2002). Once gets sufficiently close to a mode of the estimated density, it 
converges to it. The set of all locations that converge to the same mode defines the cluster of that model. 

cP
vh

hh

 

Figure 15: Left: cylindrical kernel for density estimation; Right: direction lines on the tiles of 2D projection of 

surrounding points around the centric point cP  

Based on the above analysis, MS can easily be adapted to the clustering task for laser point clouds intended 
for finding various geometric modes. It is intuitive for MS to obtain a genuine 3D clustering on unstructured 
ALS data without any pre-processing. It can be assumed that the density modes found in laser data tend to 
emerge around local distinct structures to form weak primitives for scene description. Airborne LiDAR data 
is represented as a spatial feature space denoting the coordinates and locations for different laser points. The 
multivariate cylinder-shaped kernel (Figure 15) is defined for density estimation  
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where C is a normalization parameter. vh  and hh are the kernel bandwidths for vertical and horizontal 
subdomains. Since the MS feature-space analysis is task-dependent and urban objects stretch across totally 
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different scales, the major challenge for applying the MS algorithm is to adaptively determine the 
bandwidths in the spatial domains based on different applications. For our application hh

 is assumed to 
vary and need to be determined at each point, whereas vh  is kept as a constant and set to 2m. 

 
There are two schemes of adaptive MS clustering – fixed bandwidth and variable-bandwidth (Comaniciu et 
al., 2003). One fixed bandwidth across the whole dataset can be determined according to the stability 
analysis of the decomposition (Fukunaga 1990). It is taken as the center of the largest operating range over 
which nearly the same number of clusters are obtained for the given data. However, the object-specific 
knowledge should be considered to control the kernel bandwidth. Therefore, a locally-adaptive MS scheme 
using variable bandwidth is proposed for airborne LiDAR data segmentation. It is based on exploiting local 
geometric homogeneity to search for the latent modes in a homogeneous area. Inspired by Zhang et al., 
(2006), a point shape index (PSI) is designed to measure the spatial structures and estimate the spatial 
bandwidth hh for each point. 
 
The point cloud is firstly spatially indexed by Geo-tiling process which can establish the corresponding 
relation between single points and the grid cell (Yao et al., 2010a). PSI is computed point by point by 
extending a number of direction lines radiating from the central point, which are used to detect the object’s 
overall contour. Firstly, the point homogeneity is defined as 

( , )  cen sur
d h hk xPH p p                        (17) 

where iPH represents the spatial homogeneity of the dth direction between the centric point k and its 
surrounding point x, ( )p  is the height value of the point within the kernel (Figure 15). 
 

Here, we use a hybrid rule that fuses the spatial edge and shape information when the direction lines are 
being extended to adaptively determine the bandwidth. Edge detection for the resulting height grid data is 
performed using the Canny filter; it is an optimal edge detector having a low probability of false or missing 
edges and a high accuracy of edge positioning. After applying the Canny detector, it results in binary edge 
map where each pixel [ ]edge x  is represented by a value of either 0 (non-edge) or 1 (edge). After 
introducing the spatial constraint, the condition for extension of direction lines can be formulated as: 

1 2[ ] 1 and ( , )  and ( )  d dedge x PH k x T L k T                 (18) 

where ( )dL k is the length of the dth direction-line, which is measured as  1 2 1 2( ) max ,d iL y y x x      . 
( 1x , 1y ) denotes the planimetric coordinate of the point in one end of the direction line, and ( 2x , 2y ) 
denotes the planimetric coordinates of the point in the other end. 1T  is a pre-defined threshold for 

( , )dPH k x  and 2T  is maximal number of points allowed in this direction line. If [ ] 1edge x  , it may show 
an obvious height discontinuity in the local area and hence the extension of direction-lines should be 
terminated there. 

 

The PSI-based bandwidth estimation can be obtained by 

  
2 ( ) 1 ( ) hh x PSI x                            (19) 

where ( )hh x denotes the horizontal bandwidth for each point x, 
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the shape index of the centric point and is the averaged length of D-direction lines, and its value represents 
the spatial dimensions of groups of spatially related points. In such way, the horizontal spatial scale is 
determined according to the averaged diameter of the homogeneous region around the current point. 
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(a) 

 
(b) 

   
(c) 

Figure 16: 3D segmentation of an ALS urban data by adaptive MS. (a) fixed-bandwidth (11m) MS, the number of 

objects = 592; the silhouette S =0.343; (b) zoom into the box areas of (a); (c) variable-bandwidth MS. The number of 

object = 478; the silhouette S =0.745; (d) zoom into the box areas of (c.) 
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(d) 

Figure 16 – cony’t  

 
The results of applying two schemes of MS clustering (T1=1.5 T2=25) to segmenting an example dataset are 
shown in Figure 16. First impression by visual analysis has inferred that the variable-bandwidth MS 
clustering using PSI gave a more natural and compact way concerning partition of the point cloud. The result 
obtained from the fixed MS analysis seems to be more fragmented in terms of representing significative 
objects, while the local details such as vehicle objects cannot be detected very well too (Figure 16(a) and 
(b)). It can be further seen in the enlargement of local section (Figure 16(b) and (d)) that several vehicles 
above the exit of the overpass can only be detected by variable-bandwidth MS. Furthermore, a clustering 
quality criterion named as silhouette S is used to quantitatively assess the intermediate segmentation results 
generated and thus enable us to gain an insight into the segmentation performance of AMS schemes from the 
viewpoint of clustering. The silhouette S is defined as  
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where ( )a i is average dissimilarity of i-point to all other points in the same cluster; ( )b i is minimum of 
average dissimilarity of i-point to all points in other cluster. m is the number of clusters while jn is the 
number of points in the cluster jC . The value of S ranges from -1 to 1. If silhouette value is close to 1, it 
means that dataset is well-clustered. 
 

For the fixed–bandwidth MS analysis, the obtained number of objects and the silhouette S respectively as a 
function of different bandwidths are plotted together in Figure 17. It can be seen that the compromise 
between the clustering quality and the number of clusters cannot be optimally achieved by the 
fixed–bandwidth MS analysis. The number of objects is far beyond the reasonable number of existent 
objects in the scene. On the contrary, the variable-bandwidth MS analysis based on PSI can give a more 
sensible partition of the scene with both rational number of objects and acceptable clustering accuracy. 
Adaptive MS segmentation enables the points to cluster and form large semantic objects while keeping small 
ones left alone. Consequently, large segments can be used to describe significative and distinct parts of 
large-size semantic objects such as ground, flyover and building, while small-size segments towards 
representing local details like vehicles are also preserved. 
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Figure 17: Plot of object number & validity as a function of the bandwidth for the fixed-bandwidth MS analysis on the 

same data as displayed in Figure 16 

 

3.2.3.3 Classification of point segments 

Classification is performed on the point segments resulting from the segmentation step. The objective is to 
assign semantic labels to data for extracting desirable urban objects. By adopting the point segments as the 
unit of classification, a large set of features can be calculated providing comprehensive information about 
their spatial, topological and contextual properties and the overall number of observations is dramatically 
reduced for a given dataset. Since urban areas usually feature heterogeneous objects and clutters, it is 
required to select the optimal object features for the discrimination of urban categories. Five object features 
were considered as potential sources of information for the classification (Table 1). 
 

Feature Abbreviation Description Formula 

Area A(i) 

Given by the number of 

points of which the object 

(i) consists. It is represented 

as polygon of n vertices 

   1 1
0

1
| |

2

K n

k k k k
k

A i x y x y


 


   

Elongatedness E(i) 

Ratio of the object (i) area 

and the square of its 

thickness d 

  2

( )

2

A i
E i

d
  

Planarity P(i) 
Eigenvalues analysis on 

3x3 covariance matrix of 

the object (i) 

  2 3

1

P i
 



  

Vertical position Vp(i) Height of centroid of the 

object (i) 
( ) ( ( ))Vp i Z centroid i  

Vertical range Vr(i) Extension of the object (i) 

in the Z-axis 
( ) max( ( )) min( ( ))Vr i Z i Z i   

Table 1: Features defined at object level for classification 
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In this work SVM is used to interpret and classify the ALS data with MS-based object-oriented feature space. 
This work utilizes SVM owing to its computational simplicity and superior accuracy when compared to 
conventional classifiers such as maximal likelihood classifier. It is not constrained to prior assumptions on 
the distribution of input data and is, hence, well suited for complex feature space. The SVM has advantages 
in nonlinear seperation problems. Moreover, because of the hybrid feature space and the spatially similar 
objects in the ALS data, the decision boundary should be nonlinear. The SVM was originally designed for 
binary classification; therefore, in this work, the binary SVM is directly implemented for our task in a 
genuine way (vehicle and non-vehicle) without handling the multiclass problem. 
 

A specific application using SVM needs to handle several issues. It is required to normalize all the features 
into a uniform interval (here is [0, 1]) in such a way that they can then be input into the classifier. The 
normalization method of spectral inputs differs from that of spatial ones because of the dissimilar range 
distribution of spatial feature values. The normalization methods can be formulated by the linear stretching: 

min

max min




 k
kd d

d dd                       (21) 

where k
d  denotes the original feature value of the point segment k, and accordingly mind , maxd  represent 

the minimum and maximum value in that feature, and kd   is the feature value after the normalization. 
The commonly used kernel functions are the radial basis function (RBF) and the polynomial function 
(POLY). For classification of VHR satellite images, the POLY kernel was found to be better than RBF, 
because the POLY kernel is a type of function with overall influence, whereas RBF mainly responds to local 
structures around the central value (Zhang et al., 2006). In this study, the RBF kernel is used. In addition, the 
kernel based implementation of SVM involves problems related to the selection of multiple parameters, 
including the kernel parameters (p) and the regularization parameter C. Some standard methods exist that 
can facilitate the selection of parameters in the SVM classifier design. In our case, these parameters were 
selected automatically based on the LOO (leave-one-out) algorithm (Chapelle et al., 2002). It is based on the 
idea that the expected generalization error is to be minimized where the optimization of the parameters is 
carried out by a gradient descent search over the parameter space. Thanks to the 3D segmentation process 
applied previously, where the substantial objects (-parts) are already segmented and delineated very well 
towards object recognition, the classification step can be realized in an efficient way to achieve promising 
results of vehicle extraction from complex backgrounds. 
 

3.2.3.4 Refinement  

The refinement step presented here allows to combine the OBPA method with the local-context guided 
method to form final vehicle results (Route 3), which are especially desirable for the data areas showing a 
dense placement of vehicles. The only usage of the OBPA method to such data areas could results in less 
promising results due to the lack of bandwidth for many vehicles such as those in parking lots. 

3.2.3.4.1 Global grouping of initial segments 

MS segmentation results in over-segmentation, which are merely meant to approximating the geometric (sub) 
primitives but can hardly represent perceivable object (-parts) of large-scale in the scene. Consequently, an 
enhanced segmentation step is introduced in the sense of perceptual organization, attempting to group the 
point segments generated by MS operation to form large semantic objects while keeping small ones towards 
local modes left alone. The NCuts method from image segmentation (Shi and Malik, 2000) has been chosen 
to accomplish the task in the context of global grouping.  
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Instead of the single points, the point segments produced by MS segmentation become the grouping unit and 
can be represented by a region adjacency graph (RAG) G={V, E, W} with V as the point segments 
representing the nodes and E as edges formed between every pair of nodes. The similarity between two 
nodes  ,i j V  is described by the weights ijw which are derived by features associated with the point 
segments and construct an edge affinity matrix W. The graph can be partitioned into two disjoint sets A and 
B = V−A by removing the edges connecting the two parts. This problem can be mathematically formulated 
as graph-cuts by minimizing the cut value.  

 

 
,

( , ) ( , )
A Bu v

A Bcut w u v                       (22) 

NCuts is a new graph-cuts method and can jointly consider the intragroup and the intergroup similarity 
within the total measure defined as 

 
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cut A B cut A B
Ncut A B

assoc AV assoc B V
             (23) 

where ( , )assoc AV  denotes the sum of the weights of all edges from nodes in A to all nodes in the graph. 
The minimization of ( , )Ncut A B  is solved by the corresponding generalized eigenvalue problem. 
 

One key factor for achieving a good partition performance lies in how to construct RAG for nodes by 
determining the connectivity between every 3D point segments. A key novelty of the proposed approach 
using the NCuts to group 3D point segments is to introduce a non-planar RAG to describe 3D topological 
relations and spatial connectivity between every point segments (Figure 18), where the graph edges are 
divided into two types: 
 

Given the premise:   
2

min ( )i jdist DistThreshR R  

● Horizontal edges (HE), which connect two point segments mutually horizontally aligned. 
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● Spatial edges (SE), which connect two point segments mutually spatially aligned and contain all other 

edges that cannot fulfill the condition of HE.  

 

It is assumed here that the laser data was by MS segmented into n regions R ,( 1, 2, 3..., )i i n ; RijC is the 
difference vector between the centroids of two point segments; RiN is the normal vector of point segments; 
DistThresh is the predefined maximal distance allowed for connecting adjacent nodes and is uniformly set 
to 1.5  in this work, where   is the nominal point spacing of ALS data used. 
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(a) 

 

(b) 

Figure 18: RAG for point segments (a): Numbered point segments for the section (black dotted box) of Figure 16(b), 

(b): the corresponding non-planar RAG with multi child-nodes (within each black circle, for point segments 9, 15, 17, 

18, 19, respectively), each point segment is represented as a node in the graph 

 

Usually, NCuts algorithms try to find a “balanced partition” of a weighted graph via recursive cuts, which 

does not have a bias in favor of cutting small sets of isolated nodes in the graph (Tao et al., 2007). 

Unfortunately, small objects such as vehicle and tree crown belong to this class, which cannot be easily 

disconnected from other nodes to maintain as independent objects after graph cuts. To overcome this 

difficulty, a multi-child nodes strategy is applied to such nodes that each of which is connected to adjacent 

nodes by SE only to split each of them into multiple child nodes. Most of the isolated nodes corresponding 

to small objects are spatially aligned with neighboring ones and so connected by SEs. The edges connecting 

all the child nodes to adjacent ones are defined as child edge (CE) (Figure 18(b)). The weights between the 

child nodes within one segment are all one, whereas the weights of edges connecting child nodes to adjacent 

segments are all the same and equal to the weight between these two regions. This yields a new weight 
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matrix  c cW W E , where   denotes the Kronecker product operator, and cE is the c c matrix with 

all unit entries. For our case, the number of child nodes for each region is set to c = 3. 

 
The subdivision of the G into several segments is realized in the hierarchical procedure: 

Step 1: Create the non-planar RAG G by constructing two types of edge - SE and HE 

Step 2: Generate multi-child nodes for G and compute cW for all nodes. 

Step 3: Find the solution of the eigenvalue problem and cut the graph G into two subgraphs G1 and    

  G2 by binarizing the solution vector. 

Step 4: Apply step 3 to the graphs G1 and G2, respectively. Stop if the value for NCut exceeds the  

      threshold thresNCut . 

 
Another key point is to define similarity measures for adjacent segments. The similarity measures should 
reflect the likelihood that two segments belong together. The point segments of laser data allow us to use 
several geometric, shape and physical properties to construct a joint spatial-physical feature space, which 
can provide the significant and distinguishing features for the segmentation of urban areas. The weight 
matrix W of all point segments can be computed by introducing the weight function ( , )w m n to compute 
the similarities w m,n between two connected segments m and n,  
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where ( , )I m n  is the mean intensity difference between the point segments, ( , )Z m n is the quadratic vertical 
distance between the centroids of two point segments, ( , )P m n is the planarity difference between two point 
segments, ( , )N m n  is the intersection angle between the normal vectors of two point segments. In addition,
 i , Z , p and n are values controlling the sensitivity of four impact terms in Equation (24). The idea is to 
combine various impact factors into the similarity measure by exponential multiplication. 

 

Figure 19: Segmentation result after using the modified Ncuts grouping when 
thres

NCut =0.37 
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The segmentation result by performing the modified NCuts grouping based on the point segments is 
depicted in the Figure 19 as an example. Single large segments can be used to describe significative and 
distinct parts of large-size semantic objects such as ground, flyover and building, while many small-size 
segments towards local details like vehicles are also preserved. 
 

3.2.3.4.2 Classification of multiple urban objects 

A hierarchical rule-based classifier following a course to fine strategy is to be realized in the sense of 
classification tree. Development of classification trees is based on binary recursive splitting, which 
recursively partitions the dataset into homogeneous subsets by object attributes. The tree initially has one 
node, which is called the root node and contains all the observations in the data. The observation sets are 
divided into two groups whose nodes are each split into two child nodes alternately. The process of binary 
recursive splitting proceeds until either a maximal tree is built, where each terminal node is pure, or the node 
contains a number of observations equal to a predefined minimum. For each split, the best predictor variable 
for assigning the observations to one of the child nodes can be determined using the Gini index of impurity 
defined as 

2( ) 1 ( | )i t p j t                     (25) 

where ( | )p j t  is the proportion of class j at node t. 

 

Figure 20: Classification tree for assigning the urban categories to segments in Figure 19, the threshold values were 

learned by training data extracted from the same dataset 
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To avoid over-fitting of the tree, a pruning operation is followed. Branches of the generated maximal tree are 
cut off successively considering the minimum increase in the misclassification. A 5-fold cross-validation 
procedure is used to assess these errors. The ALS data to be assessed are divided into five sub-samples from 
which four are used to yield the tree models and the last subsample is used to assess the prediction errors. 
This process is repeated five times and chooses the optimal tree (Figure 20) as the simplest one among those 
with average cross-validation errors within one standard deviation of the minimal cross-validation errors 
(Mallinis et al., 2008). Thanks to the 3D segmentation process proposed above, where the substantial objects 
(-parts) in the urban scene are delineated very well, the classification step can be realized in a easy way to 
achieve promising results of object classification and extraction in view of urban scene description. The 
relevant objects selected from obtained classification results, such as road, flyover and ground, can be 
further delivered to the local-context guided method to extract vehicles again. Finally, the vehicles extracted 
by respective methods are fused to yield the  
 

3.3 Vehicle motion analysis  

This section is to introduce and investigate the moving object model (motion artifacts effect) in single-path 
airborne LiDAR data, which lays down the theoretical foundation for monitoring traffic from airborne 
LiDAR platforms. Furthermore, a scheme is proposed to distinguish the vehicle motion state based on the 
extracted points of single vehicle instances using a binary shape classifier constrained by Lie group metric. 
The parameters describing the vehicle geometric property in view of motion artifacts have been estimated in 
the shape parameterization process applied a-prior, where vehicles of ambiguous shapes are directly 
removed from the classification step of motion state and labeled as uncertain class. Finally, the velocity of 
all vehicles of moving class can be quantitatively derived with knowledge about their shape deformations. 
Additional, the velocity estimation accuracy will be extensively studied and evaluated for different 
estimation methods under error prorogation principle. 
 

3.3.1 Effects of moving objects in ALS data 

3.3.1.1 Model of motion artifacts  

In order to assess the feasibility of extracting dynamic information from modern LiDAR sensors installed in 
airborne platforms, the main characteristics of the sensors, including the data formation and composition 
method should be considered first. In most of airborne LiDAR scanning processes exclusive of flash LiDAR 
which are predominantly based on mechanical scanning, a rotating laser pointer rapidly scans the earth’s 
surface with continuous scan angles during its flight. While the sensor is moving it transmits laser pulses at 
constant intervals given by the Pulse Repetition Frequency (PRF) and receives the echoes. With respect to 
the objective of extracting moving objects, the fundamental difference between scanning and the frame 
camera model is the presence of motion artifacts in scanner data. Due to the relatively short sampling time 
(camera exposure), the frame imagery preserves the shape of moving objects; if the relative speed between 
the sensor and the object is significant then increased motion blur may occur. In contrast, scanning will 
always produce motion artifacts, since the distance between sensor and target is usually calculated based on 
the stationary-world assumption; significantly moving and even accelerating objects violate this assumption 
and therefore make the target be imaged ”incorrectly” depending on the relative motion of the sensor and the 
object. The dependencies can be seen by adding the temporal component into the range equation of LiDAR 
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sensor. Here, it is assumed that the sampling rate is consistent among all the vehicles independent of the scan 
angle. That is to say that all the vehicles are scanned with sufficient sampled points to represent their shape 
and artifacts.  
 
In Figure 21 the geometry of data acquisition is shown. The sensor is flying in a certain altitude along the 
dotted arrow called along-track direction. The direction which is oriented perpendicular to the flight path is 
referred to as across-track direction. An example of generated shape artifacts by moving objects is also 
depicted in Figure 21, where the black dotted box indicates the vehicle shape obtained in the scanning 
process of airborne LiDAR while the original vehicle is depicted as rectangle nearby. It can be perceived that 
the moving vehicle is imaged as stretched parallelogram in the ALS data. Let v  be the intersection angle 
between the moving directions of sensor and vehicle where v

 [0 , 360 ]   , vL and v the velocity of aircraft 
and vehicle respectively, sl  and vl  the sensed and original lengths of vehicle, respectively; and SA

  the 
shearing angle that accounts the deformation of a rectangle–shaped vehicle as parallelogram. The analytic 
relations between shape artifacts and object movement parameters can be derived as 
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where (0  180 )
SA
     and is found as the left-bottom angle of observed vehicle. For the sake of full 

understanding of the appearance of moving objects in airborne LiDAR data, object motions are to be divided 
into two components and investigated for their respective influences on the data artifacts generated. 

   

Figure 21: Moving objects undergo the scanning-over of airborne LiDAR 

 

 Along - track motion  

The target is now assumed to move with constant velocity a
v  following the along-track direction. The 

along-track motion changes the relative velocity between sensor and object compared to the surrounding 
stationary world which makes the laser footprints that hit upon target displaced consistently along the target 
moving direction. Therefore, along-track motion leads to the stretching or squeezing effect of the object 
shape depending on the relative velocity between target and sensor as illustrated in Figure 22. 
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The analytic relation between the object velocity in along-track direction av  and the observed stretched 
length sl  can be summarized in Equation (28). The fact that av  is the component of the vehicle velocity 
along the sensor track direction, not the modulus of av , should be noted. Therefore, if v  = 180°, it is sl < 

vl . Rather than the vehicle length that usually varies a lot and is not able to be exactly known in advance, the 
aspect ratio of vehicle is assumed to be easily determined due to its relative stability over one vehicle 
category. For this reason, the relation in Equation (28) is further modified to Equation (29) which explicitly 
connects av  with the variation in the aspect ratio of vehicle shape  in a mathematical way, thereby making 
motion state distinction and velocity estimation more feasible and reliable in view of applications in real-life 
scenes. 
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where sAr  is the sensed aspect ratio of vehicle in ALS data while Ar  is the original aspect ratio of 
vehicle. 

     
Figure 22: Along - track object motion, left: scanning scene, right: induced motion artifact 

 

 Across - track motion  

The target is now assumed to move in across-track with a constant velocity cv . It results in a scanline-wise 
linear shift of laser footprints that hit upon target towards the moving direction when sensor sweeping over, 
so that the observed vehicle shape in the ALS data is deformed (sheared) to certain extent depending on the 
relative velocity between target and sensor. In Figure 23 this is shown.  
 
In general, let cv  be the across - track motion component of the object velocity. Since cv  sin( )vv  , 
Equation (27) can be rewritten as Equation (30) for describing the analytic relation connecting the object 
velocity cv  with the observed shearing angle SA

  through the sensor velocity Lv  and the intersection 
angle v . 
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The shearing angle SA  is zero for stationary objects and those moving only in along-track. Moreover, if 
the vehicle moves only in across-track direction, it is simply arctan( ) 90   

SA Lcv v   
 

    
Figure 23: Across - track object motion, left: scanning scene, right: induced motion artifact 

 

 Acceleration 

In the majority of Ground Motion Target Indication (GMTI) applications except in highways, it is assumed 
that vehicles travel with constant velocity and along a straight path. However, within the scope of 
monitoring the traffic in urban areas, the effect of acceleration is weak and can be ignored by quantitative 
modeling; especially for airborne LiDAR data acquisition where sensor sweeps over vehicle bodies very fast 
during the scanning process. The produced deformation effects on vehicle point distribution could not play a 
distinct role. It can be easily seen and verified by substituting the acceleration into the terms in Equations 
(26) and (27). Theoretically, the acceleration could give rise to irregular shearing of the rectangle shape of 
vehicle in across-track direction if the object velocity is sufficiently high at the same time. As a consequence, 
actually occurring minor accelerations might cause an error in velocity estimates depending on the 
acceleration component. It can also be divided into two components as the object velocity. The along-track 
acceleration ax appears in the quasi-linear term of the deformation equations depending on the quantity of ax 
and could result in a nonlinearity of the vehicle shape stretching. For airborne LiDAR the deformation of the 
shape stretching effect is small even for strong and unrealistic ax. The acceleration in across-track direction 
(ay) causes a quadratic component in the range equation which results in a twist of the vehicle long/wide side 
(i.e. it happens when moving on curved roads and leads to the centripetal acceleration). Considering the 
common system parameters for city surveying tasks the amount of object shape distortion in airborne 
LiDAR data could be approximately calculated as a function of across-track acceleration ay. It can be 
inferred that the irregular vehicle shape deformation due to the across-track accelerations is significant only 
for ay > 2 2m s . Actually, it could even make the deformation effects too complex to be modeled in analytic 
form in a consistent way and could undermine the accuracy of velocity estimation. For typical accelerations 
in common traffic scenarios (a < 2 2m s ) the effect is assumed to be almost negligible according to the 
empirical study. 
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3.3.1.2 Quantification of the effects of motion components 

The above-mentioned effects can be exemplified for the case of a concrete airborne LiDAR configuration 
which is designed and applied to urban surveying task. Based on the formulas derived above, and by using 
the system parameters as specified in first row of Table 2, the quantitative impact of moving objects in ALS 
data can be estimated. These investigations help to derive boundary conditions for building up a strategy for 
detecting ground moving targets and estimating their velocities accurately using airborne LiDAR data which 
might be originally dedicated to a topographical mapping task. 
 
Along-track motion: The effect of stretching of the sampled target points due to the along-track component 
of the target velocity is calculated based on Equation (28) by using the target velocity v instead of the 
along-track velocity component va. The sensed aspect ratio of a moving object in an ALS point cloud is 
shown in Figure 24 as a 3-D function of the intersection angle v  and the vehicle velocity v where the 
original aspect ratio of vehicle Ar is assumed to be 2 for this simulation case. As can be seen, moving 
vehicles are stretched (elongated or shortened) significantly from their real shape even for moderate 
along-track velocities (e.g. ca. 60% for 50 km/h). This effect dose not hamper the recognition of cars from 
ALS data, since their stretched shapes are still related to semantic information and do not change essential 
geometric characteristics of vehicle used to distinguish it from other semantic objects in urban areas . Figure 
24 also shows that the sensed aspect ratio sAr  is becoming an ambiguous value for indicating the vehicle 
motion when the intersection angle v  equals to or approaches 90  or 270  regardless of the target 
velocity. The reason is that the stretching effect on the vehicle shape caused by the along-track velocity is 
almost zero under this condition where vehicles are travelling in across-track direction. 

  

(a)        (b) 

Figure 24: Stretching effect of a moving object in ALS data, (a) as function of v  and v while vL=100 km/h, (b) 

contour plot of (a) 

 
The sAr  f a moving target is symmetrically distributed around the axis of v =180 with a moderate basin in 
the middle being inclined towards the direction where the target velecity v increses. As observed in the right 
corners of Figure 24(b), s

Ar  has increased acutely as the velocity ratio of sensor flight to target comes near 
to 1. In this case, it is clear that motion indication become easier and meanwhile the velocity estimation 
could be more sensitive to noise or errors accompanying the determination of shape parameters .Moreover; 
the along-track velocity component of object can raise the ambiguity limit with respect to motion estimation, 
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since the original aspect ratio Ar of vehicle cannot accurately be determined for single vehicles beforehand. 
Figure 25 depicts the same function plot as in Figure 24 in the polar coordinate system but depending only 
on one varaible – intersection angle v . The velocity ratio of sensor flight to moving target vL/v must be 
specified in advance and has been selected as two different values. It even leads to giving more illustrative 
information which also confirmed the statement summarized above. In addition, it has further proved that 
the if the velocity of moving target is getting closer to that of sensor flight the stretching effect on the 
scanned vehicle shape in ALS data is becoming more distinct and hence make it beneficial to motion 
estimation tasks. 

   

Figure 25: Visualization of the sensed aspect ratio Ars in polar coordinate system as the function of the intersection 

angle v as the velocity ratio of sensor flight to moving target vL/v changes from 3 to 1.5 

 
Across-track motion: The shearing effect on the shape of vehicle points is triggered by the across-track 
component of the target velocity. Based on Equation (27) or (30) the shearing angle SA  of a target moving 
with velocity v can be calculated with respect to different intersection angles of v . The results are 
presented in Figure 26 as a 3D function of intersection angle v  and vehicle velocity v. 

  

(a)       (b) 
Figure 26: Shearing effect of a moving object in ALS data, (a) as function of v and v while vL=100km/h, (b) contour 

plot of (a) 
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Figure 27: Shearing effect of a moving object in ALS data as function of v , when the velocity ratio of sensor flight to 

moving target vL/v is fixed. Lines of different styles depict different velocity ratios used for simulation 

 
As can be seen, the effect of across-track object motion has significant influence on the geometric 
appearance of vehicles within ALS data. Moving vehicles are deformed (sheared) to parallelogram from 
their real shape (given as rectangle-shaped) even for small across-track velocities (e.g. by ca. 25  for 
velocity of 30 km/h). The distribution of shearing measure is inversely (odd) symmetric around the axis of 

v =180 . The shearing effect on vehicle shape facilitates motion indication and allows estimating the 
across-track velocity (also the velocity of vehicle if the intersection angle v  is known beforehand) without 
ambiguity, there by demonstrating the superiority to the method for along-track motion estimation. The 
minimal value of the measure for shearing effect happens in such cases that vehicles travel purely in 
along-track directions. This can be easily comprehended and corresponds to the ideal obtained by intuitive 
study. Nevertheless, it is worth to note that the occurrence of maximal shearing effect shifts from 90  to ca.
40  for the intersection angle v  between the moving paths of sensor and target as the target’s velocity 
increases from zero to approach that one of LiDAR sensor; this trend can be equivalently perceived from a 
plot of the 2-D function relating the shearing effect to the intersection angle which is deemed to explain the 
situation in a more illustrative way (Figure 27). It can also be found out clearly from Figure 27 that the 
maximum value of the shearing effect will intensify while shifting the moving direction from across-track to 
along-track (e.g. v vary from 90° to 0°). Consequently, for detecting all ground moving targets which 
suffer from this deformation effect, the theoretic analysis on quantification results such as depicted in Figure 
26 and Figure 24 could provide certain guidance on the planning of flight path and velocity of airborne 
sensor depending on the target velocities needed to be estimated. 

 

3.3.2 Vehicle motion classification 

3.3.2.1 Vehicle shape parameterization 

The whole strategy proposed in this thesis to detect the vehicles’ motion state and estimate their velocities 
follows the strategy of detecting all the vehicles in advance which has been already achieved by the 
approach presented in Section 3.2. The separation of vehicle detection from vehicle motion analysis enables 
us to detect not only moving vehicles but also stationary vehicles thereby giving an overview on the traffic 
scenario of large areas scanned by airborne LiDAR.  
 
It is desirable for the task of vehicle motion classification to represent the original shape of vehicles and 
their motion artifacts by a unified model. The spoke model for a set of vehicle points (Figure 31) is proposed 
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to be used as the general framework for modeling the vehicle shape due to its flexibility and efficiency. For 
the spoke model, the point cloud of single vehicles is fitted with multiple connected planes which are used to 
describe the vehicle shape by two controlling parameters of each spoke - the orientation and radius. The 
spoke model could consistently encode geometric information for the classification of vehicle category 
(Yarlagadda et al., 2008). However, the laser point density acquired under common conditions towards the 
surveying task is usually insufficient for modeling the vertical profile of vehicle body. The situation is even 
degraded by the appearance of motion artifacts and the variation of scan angle of LiDAR sensor. Since the 
motion artifacts generated for moving objects focus on the horizontal deformation of object’s shape, the 
spoke model of vehicles can be projected from original 3-dimension onto the horizontal plane to avoid the 
redundancy and unnecessary errors. Due to the limitation on the point density of ALS data, all vehicle 
categories might be modeled with one spoke plane in most real cases. Then, the shape parameterization is 
performed on the projected point sets of the vehicle spoke model by following two steps: 

 Boundary tracing: A modified convex-hull algorithm (Jarvis 1977) is used to determine the boundary 
of the point set of vehicle. Based on the classical convex-hull algorithm, the modification is made upon 
constraining the searching space of a convex hull formation to a local neighborhood which is defined 
beforehand. The study showed that the approach can yield satisfactory results if the point distribution is 
consistent throughout the whole dataset. Such condition could be fulfilled for the single-path ALS data 
which are especially considered for analyzing the object motion. The boundary tracing method for a set of 
vehicle points using the modified convex-hull starts with the left - most point P. Then, we use the convex 
hull algorithm to find the next boundary point by only considering the points within the neighborhood of P, 
which is defined as a rectangle region with the size corresponding to the point spacing of ALS data, being 
slightly larger than twice of the point spacing in the along and across scan directions. In this way, only 
immediate adjacent points at about one ground-spacing are taken into account for the convex hull algorithm, 
such that a compact boundary is found. The approach proceeds to the newly found boundary point and 
repeat the step mentioned above until the point P is selected again, as depicted in Figure 28. 

SA

W

L  

Figure 28: Vehicle shape parameterization. From left to right: stationary vehicle, moving vehicle, vehicle of ambiguous 

shape. Green points mark the boundary of extracted vehicle; red lines indicate the non-parallel sides of the fitted shape 

 
 Boundary regularization: Since the uneven point sampling is always present in ALS data, the traced 
boundary cannot be directly used to parameterize the vehicle shape due to its irregular shape and possible 
artifacts introduced by the former step. The two step boundary regularization is introduced to tackle the 
problem based on the fact that the vehicle point sets should appear as parallelogram having two mutually 
perpendicular orientations of boundaries. The first step is to extract the points that lie on line segments with 
identical directions. This is done by sequentially following the boundary points and locating positions where 
the slopes of two consecutive edges significantly differ. Points on these edges are grouped to one line 
segment. Therefore, a set of line segments  1 2,  ,  ...,  , 4nl l l n   from which four longest line segments 
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 1 2 3 4,  ,  ,  L L L L  are selected. Each of the selected line segments is fitted by the straight line. Based on the 
slope i i iM A B  obtained for each line segment, they are sorted into different groups, each of which 
contains quasi-parallel line segments. In this way, the long line segments of a vehicle boundary are grouped 
into two “horizontal” and “vertical” groups based on their slopes. The next step is to determine the least 
squares parallelogram fitting to these line segments under the constraint that the lines segments are parallel 
to each other within one group. The solution consists of sets of parameters required to describe four line 
segments, which are formulated as following line equations: 

1 0i j i jA x B y        i =1,2,3,4; j = j(i) =1,2,3, … in           (31) 

with the condition: 1 3 2 4 and  M M M M     1L  ( 2L ) and 3L  ( 4L )are opposite sides, where in is the 
number of points of each line segment. Once the spoke model of a set of vehicle points is parameterized 
(Figure 28, bottom row), two parameters describing the vehicle’s shape can be derived: 

1. The angle of shear 
SA
 of vehicle: 

2 1
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               (32) 

2. The aspect ratio Ar of the parameterized vehicle points: 

Ar L W                    (33) 

where 1M , 2M  are slopes of line segments of each group. 

   
(a)           (b) 

Figure 29: Example for vehicle shape parameterization: (a) boundary tracing, (b) boundary regularization 

For certain extracted vehicle point sets the parallelogram fitting could fail in the irregular shapes of 
boundary due to unstable sampling of LiDAR points or vehicle extraction inaccuracies. These vehicle points 
may emerge as e.g. trapezoid (Figure 28, third column) other than parallelogram. Such vehicle points deliver 
ambiguous shape features and make the motion state determination troublesome within the framework of the 
proposed motion artifact model, because they could e.g. belong to a stationary vehicle with missing parts but 
were misclassified as moving vehicle. Therefore, this category of vehicle points has to be excluded and 
attributed to uncertain motion status prior to the motion classification step. An example of applying the 
vehicle shape parameterization to extracted vehicles from real ALS data is shown in Figure 29. Figure 30 
further illustrates the enlargement of two labeled single vehicles in Figure 29, where the vehicle I is a 
moving one that is parameterized as parallelogram and vehicle II is parameterized as trapezoid and deemed 
to have uncertain motion state despite that it is actually motionless in a parking lot. 

2 

1 
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    (a)             (b) 

Figure 30: Zoom into the shape parameterization results of labeled single vehicles of Figure 29, (a) vehicle #1, (b) 

vehicle #2, top row is traced boundary while bottom row is regularized boundary 

 

3.3.2.2 Distinction of motion state by shape classification 

Once the vehicle shape parameterization is completed, a set of vehicle points can be geometrically described 
as spoke model with two parameters, whose configuration can be formulated as 
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where k denotes the number of spokes in the model. The vehicle shape variability caused by the motion 
artifacts effect is of nonlinear nature and thereby can be represented as a transformation space. To this end, 
the geometric similarity between vehicle instances can be measured by group distance metric. The 
classification framework for distinguishing different vehicle categories (pick-up, off-road, passenger car or 
SUV) based on examining the geometric features can be easily adapted to motion classification schema 
equivalently based on shape features extracted for each set of vehicle points. 

 

 
Figure 31: Vehicle spoke model and shape transformation between passenger car and pick-up (modified from 

Yarlagadda et al., (2008)) 

Consequently, a new vehicle shape configuration Y can be obtained by a transformation of a original vehicle 
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configuration X written in matrix form: Y = T(X), where 
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, iR denotes the 

2-D rotation acting on the angle of shear SA , aie denotes the scale acting on Ar. By varying T, any vehicle 

shape configuration X (motion state) may be represented in T as the transformation of an identity atom 

(Figure 31). Since the Cartesian product of Lie group elements is a Lie group and T is the Cartesian product 
of transformation matrices iM  acting on the individual spokes, T forms a Lie group G (Rossman 2002). The 

intrinsic mean   of a set of transformation matrices 1T , 2T ,…, nT  of vehicle shapes is defined as 
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where argmin(d) indicates the argument of the minimum of d, ( , )d    denotes Riemannian distance and 
1

1 2 1 2( , ) log( )d T T T T , where   is the Frobenius norm of the algebra elements, i.e. ( )HT Tr TT  with Tr 
trace of a matrix and TH indicates the conjugate transpose of T. Analogous to the principle components of a 
vector space, there exists 1-parameter sub-group ( )vH t  called the principle geodesic curve (Fletcher et al., 
2003) which describes the essential variability of the data points lying on the manifold. The parameter t 
sweeps out a 1-parameter sub-group ( )vH t  of the Lie group G. For any g G , the distance between g and 

( )vH t  is defined as 

 ( , ) min ( ,exp ( ) ),   v vd g H d g A t t                   (36) 

The first principle geodesic curve for elements of a Lie group G is defined as the 1-parameter subgroup

(1)( )vH t , where  
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Let ,1ip  be the projection of 1
ig  on and define (1) 1 1

,1i iig p g  . The higher k-th principle geodesic curve 
can be determined recursively based on Equation (37). It has been confirmed that principle component 
analysis on the Lie group, i.e. principle geodesic analysis (PGA) on the manifold, can better describe the 
variability of data that is inherently nonlinear (Fletcher et al., 2003). Figure 32 provides an intuitive 
schematic depiction of the beneficial effect toward the classification that the PGA could bring. Considering 
the feature spaces (Figure 32) as visualized in the 2D linear Euclidean space, by means of the PGA all the 
feature points representing vehicle shapes of two motion states are mapped into a new feature space with 
such configuration that tend to demonstrates better separability with quasi-linear boundary between two 
classes instead of the mutually interlaced distribution without clear boundary. 
 
The motion distinction task can then be formulated as a binary classification problem. The input to the Lie 
distance classifier comprises a set of labeled samples from two vehicle categories ( 1, 2)jC j  - moving and 
stationary. The intrinsic mean   and the principal geodesics ( )nv

H  are computed for each jC  using the 
samples. Once the principal geodesics are available, the classification of an unlabeled vehicle sample x can 
be performed by finding the category with the closest distance on the first principal geodesics 

(1)vH  to x. 
The corresponding motion status of a extracted vehicle j is found by 

(1)

1 1
,

argmin log( ) ,    {1,2}
j v

j H x j               (38) 
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The classification of vehicle motion state can successfully run based solely on the first principal geodesics. 
Although there are significant variations in shape over one vehicle category, the first principal geodesics 

(1)vH  is assumed to summarize essential shape features of vehicle points sampled by airborne LiDAR in 
view of distinguishing their motion states. 

     

(a)             (b) 

Figure 32: Transformation of a feature space of vehicle shapes of two motion states using PGA: (a) original feature 

space, (b) feature space after PGA. The shearing angle SA  for moving vehicle class is normalized into the acute 

angle range (<= 90°) for simplicity. Black dotted lines indicate the possible lines of separation 

 

3.3.3 Velocity estimation 

3.3.3.1 Estimation concept 

The estimation of the velocity of detected moving vehicles can be done based on all effects moving objects 
may cause in single-pass ALS data by inverting the analytic functions in the motion artifacts model to 
explicitly relate the velocity with other observed and known parameters, which were originally presented in 
the Section 3.3.1. Thus, the approaches may use different measurements and derivations to estimate the 
velocity, which can be initially divided into two main groups, depending on whether the moving direction of 
vehicles is known or not: 

i) Given the intersection angle v  which can be further separated into following three methods using 
respective observations to estimate the velocity 

 the measure for shearing angle of detected moving vehicles from their original orthogonal 

shape of rectangle 

 the measure for stretching effect of detected moving vehicles from their original size 

 the combination of the along-track and across-track velocity components which are estimated 

based on abovementioned effects, respectively 
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ii) Not given the intersection angle v  

 the solution to a system of bivariate equations constructed by uniting the two formulas 

 

The three methods in the first group assume that the moving direction of vehicles is given beforehand 
whereas the last one from the second group not. For the last case, the moving direction of vehicles can be 
estimated together with the velocity by uniting the variable of velocity with the variable of the intersection 
angle to build a system of bivariate equations and solving it, thereby giving the motion estimation from ALS 
data a great flexibility to deal with many arduous cases encountered in real-life scenarios. That means that 
not only the quantity of but also the direction of vehicles’ velocity can be derived from the motion artifacts. 
All possible methods have their advantages and disadvantages and differ in the accuracy of their results 
which are to be analyzed and evaluated in detail in following subsections, respectively. 

 

3.3.3.2 Velocity estimation based on the across-track deformation effect 

The shearing angle of moving vehicles caused by the across-track deformation effect allows for a direct 
access to the object’s velocity without the need of auxiliary information only except that the moving 
direction has to be assumed as known a-prior and input as an observation. Still, information about the 
relative orientation of the road axis corresponding to the particular motion of vehicle is needed in order to 
derive the real heading velocity of vehicles. If we assume that a detected moving vehicle originally acts as a 
rectangle object, the velocity estimate v of the detected moving vehicle based on the shearing effect of its 
shape is defined by 
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The value of intersection angle v  can be determined based on principal axis measurements of vehicle 
points as the flight direction of airborne LiDAR sensor can be always assumed to be known beforehand 
thanks to sustained navigation systems. Given Equation (39) which shows that the accuracy of the velocity 
estimate based on the across-track deformation effect c

v  is a function of the quality of the moving 
vehicle’s heading angle relative to the sensor flight track v and the accuracy of the shearing angle 
measurement SA , the standard deviation of the derived velocity estimate v is calculated using the error 
propagation law and derived as 
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with Lv  being the instantaneous flying velocity of the airborne senor system. 
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From empirical evaluations based on the analysis of the NavTeq road database the accuracy of the road 
heading direction is assessed to be σrhead = 1° (Meyer et al., 2006). According to the value range of the error 
matrix derived in the procedure of vehicle shape parameterization the standard deviation of the vehicle's 
heading direction and the accuracy of the determination of vehicle shearing angle can be here assessed to be 
σvhead = 3.5° and 

SA  = 2°, respectively. The accuracy of sensor flying direction is obtained via the 
navigation system output and assumed here to be σshead = 2°. The accuracy of the intersection angle v
between the moving directions of vehicle and LiDAR sensor can then be derived based on either the road 
heading direction or the vehicle's moving direction, since both of them could indicate the vehicle moving 
direction. Therefore, the accuracy of the intersection angle v  is assessed here to be v = 2°. 
 
Given the system parameters of airborne LiDAR and assuming the flying velocity of sensor Lv = 120km/h, 
the accuracy of velocity estimate c

v  based on the across-track deformation (shearing) effect is derived by 
inserting the empirical error measures for the observations into Equation (40). Although the accuracies of 
the derived estimates and v  are only directly related to two observed parameters describing the vehicle 
shape deformations - Ars and 

SA
  as shown in their error functions (Equation (40) and (42)), respectively, 

for motion estimation applications, it is more intuitive and reasonable to interpret their accuracy relations 
with the dependence on the generic variables that can be directly perceived and controlled such as vehicle 
velocity and moving direction relative to airborne sensor. Moreover, two observation parameters cannot be 
arbitrarily specified to build up the independent variables for the 3D accuracy function as their relationships 
are subject to the physical law governed by the moving model. Fortunately, by doing simple transformations 
of different functional relations one can relate the error measure of velocity estimate v  directly to the 
institutive variables v  and v v  by viewing v or v as dependent variable and v  and v (or v  and 

v v ) as independent variables. These configurations are valid for all the estimation methods. 
 
The resulting error c

v  is shown in Figure 33 as a function of real target velocity v and vehicle heading 
angle relative to the sensor flying path v  and normalized with v . The relative velocity error c

v v  is 
desirable to be used here to describe the accuracy, since the estimation accuracy only makes sense when the 
derived error is compared to the corresponding estimated velocity. It can be seen from Figure 33 that the 
heading velocity v of vehicles can be estimated with a high accuracy of c

v v   8% if they were moving 
on urban roads (e.g. speed limit vT = 50 km/h ) with an intersection angle relative to the sensor heading 
direction of v ≥ 18°. For vehicles running nearly in along-track direction ( v  < 10°) this approach fails 
to provide reliable velocity estimates. Additionally, one can get a standard deviation c

v of approximately 
5-10 km/h for the center part of the airborne LiDAR swath in urban areas no matter in which heading 
direction the vehicles travel. 
 
As explained in Section 3.3.1 both across and along-track acceleration axy may give rise to irregular shearing 
of the rectangle shape of vehicle in across-track. Usually, it is assumed that the acceleration of vehicles in 
urban areas is zero during the time of sweeping-over. As a consequence, actually occurring minor 
accelerations might cause an error in velocity estimates depending on the acceleration component. 
According to empirical studies based on Inertial Navigation System (INS) measurements with cars driving 
on city streets and highways, accelerations up to axy=2m/s2 are likely to happen, which lead to contributing 
to max. 10% of σv as a “worst case” error source for the accuracy calculations according to considerable 
theoretic and simulation studies. Therefore, it is stated here that the error component aroused by vehicle 
accelerations can be omitted without changing the result of accuracy analysis noticeably. Moreover, it is 
generally shown that the velocity of slow moving targets cannot be reliably estimated even for very large 
intersection angle v , whereas the speed of fast moving targets (approaching to the velocity of the airborne 
sensor platform) can be estimated with better relative accuracy. 
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(a)           (b) 

Figure 33: Accuracy of vehicle velocities estimated from the across-track shearing effect, (a) standard deviation c
v  

as a function of target velocity v and the intersection angle v , c
v is given in km/h. (b) Relative velocity error 

c
v v  

 
 

3.3.3.3 Velocity estimation based on the along-track stretching effect 

Besides of the above mentioned approach, the heading velocity of a moving vehicle can be derived by 
measuring its along-track stretching effect from its original vehicle size. The functional relation is given by 

(1 )
cos( )

 s L

v

Ar Ar v
v


                   (41) 

where sAr = sl w  is the sensed aspect ratio of the detected moving vehicle, while Ar is the original aspect 
ratio of the vehicle and assumed to be input as constant. The accuracy of the velocity estimate based on the 
along – track stretching effect a

v  is a function of the quality of the aspect ratio measurement for the 
detected moving vehicle and the accuracy of the vehicle's heading direction relative to the sensor flight track. 
 a

v can also be calculated by error propagation law as follows: 
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From empirical evaluations based on the analysis of the NavTeq road database the accuracy of the road 
heading direction is equivalently assessed to be σrhead = 1°. From the vehicle shape parameterization 
procedure the standard deviation of the vehicle's heading direction and the accuracy of the determination of 
vehicle aspect ratio can be assessed to be σvhead = 3.5° m and σArs = 2, respectively. The accuracy of sensor 
flying direction is obtained via the navigation system output and assumed here to be σshead = 2° too. 
Therefore, the accuracy of the intersection angle v  is assessed here to be v  = 2°. 
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(a)           (b) 

Figure 34: Accuracy of vehicle velocities estimated from the along-track stretching effect, (a) standard deviation a
v  

as a function of target velocity v and the intersection angle v , a
v is given in km/h; (b) Relative velocity error 

a
v v  

 
The accuracy of velocity estimates a

v  is derived by inserting the empirical error measures for the 
observations into Equation.(42). The resulting error a

v  is shown in Figure 34 as a function of real target 
velocity v and vehicle heading angle relative to the sensor flying path v  and normalized with v , 
respectively. It can be seen from that the heading velocity v of vehicles can be estimated with a high 
accuracy of a

v v   15% too, if they were moving on roads with an intersection angle relative to the 
sensor heading direction of v    35°. The estimation method based on the across-track shearing effect 
yields a wider and more robust range of the intersection angle for accurate velocity estimation than the 
method using along-track stretching shearing effect. The high accuracy of velocity estimation would happen 
at quasi along-track direction yet with a relative error value of ca. 10%, being a little bit worse than the 
highest accuracy of velocity estimation using the shearing effect. For vehicles running obviously in 
non-along-track direction ( v  > 45°) this approach fails to provide reliable velocity measures. 
 

  
(a)           (b) 

Figure 35: Accuracy of vehicle velocities estimated from the along-track stretching effect considering the error of the 

original aspect ratio Ar, (a) standard deviation a
v   as a function of target velocity v and the intersection angle v ,

a
v  is given in km/h, (b) Relative velocity error 

a
v v 
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As explained in Section 3.3.1 the proper estimation of the original aspect ratio Ar for each vehicle plays a 
key role in accurately determining the motion state and velocity of vehicles in ALS data. Usually, it is 
assumed that the aspect ratio of vehicles is two. As a consequence, actually inaccurately estimated aspect 
ratios cause an error in velocity estimates depending on the chosen original aspect ratio Ar. According to 
empirical studies based on random sampling measurements with real ALS datasets of various city areas, 
aspect ratios of vehicles Ar = 2 are mostly likely to happen for vehicles in city areas where passenger cars 
should represent the largest proportion of traffic flow. Since vehicles of the aspect ratios up to Ar = 3-5 such 
as trucks and buses are rare to see in urban areas. Thus, σAr = 0.5m is assumed as a “worst case” error source 
for the accuracy calculations of velocity estimates based on the vehicle aspect ratio. Considering this point, 
the standard deviation of this velocity estimate is also influenced by the accuracy of the original aspect ratio 
of vehicles which is specified independent on other measurements. Hence, for simplicity, the error formula 
can be newly formulated by inserting an additive error term σAr characterizing the influence of aspect ratio 
Ar into Equation (42) to obtain the accuracy measure for velocity estimation by taking the uncertainty of 
original vehicle aspect ratio into account as  

a a
v v Ark                    (43) 

where k is a multiplicative coefficient of the error term for the assumed aspect ratio, it is a sensitivity factor 
and controlled by the a-prior knowledge about vehicle size distribution in the test scene. The resulting error 

a
v   is shown in Figure 35, where it can be identified that the standard deviation a

v   of estimated 
velocities has increased by up to 10 km/h even for quasi along-track moving vehicles in urban areas, which 
correspond to an increase in the relative velocity error a

v v 
 of 10% at least. Moreover, it is generally 

shown that the velocity of slow moving targets cannot be reliably estimated even for very small intersection 
angle v , whereas the speed of fast moving targets (approaching to the velocity of the airborne sensor 
platform) can be estimated with better relative accuracy. 
 

3.3.3.4 Velocity estimation based on combing two velocity components 

Both of the above presented estimation methods might fail to give a reliable velocity estimate for vehicles, if 
they are moving in such direction that generated deformation effects for the vehicle shape are not dominated 
by either one of what two moving components account for(e.g. a moving vehicle with the intersection angle 

v = 35° and  the velocity v = 40km/h ). To fill this gap and make the velocity estimate in the arbitrarily 
complex environment more robust and repeatable, it is proposed to use both of shape deformation effects for 
estimating velocities. The functional dependence of the velocity estimate can be given by sum of squares of 
two motion components which are derived based on two shape deformation parameters Ars and SA , 
respectively: 
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va and vc are along-track and across-track motion components, respectively. The accuracy of the velocity 
estimate based on combing the two velocity components a c

v   is a function of the quality of the along-track 
and across-track motion measurements for the detected moving vehicle and a c

v  can be first calculated with 
respect to these two motion components by the error propagation law as: 
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where av and cv are the standard deviations of along-track and across-track motion derivations. They 
can be further decomposed into accuracy with respect to three observation measures concerning the vehicle 
shape and motion parameters based on the function relations presented in Equation (45). Using the error 

propagation law,  av and  cv are inferred as follows:  
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         (48) 

Finally, after substituting Equations (47) and (48) into Equation (46), then the error propagation relation for 
the velocity estimate based on combing the two velocity components with respect to the three 
observed/derived variables Ars, SA  and v  is derived. 

  

(a)            (b) 

Figure 36: Accuracy of vehicle velocities estimated based on combing the two velocity components, (a) standard 

deviation a c
v   as a function of target velocity v and the intersection angle v , a c

v  is given in km/h; (b) Relative 

velocity error 
a c
v v 

 
 
Based on the analysis of the NavTeq road database, the result of vehicle shape parameterization procedure 
and the navigation system output, the empirical error values for various observation measures including 
σrhead, σArs v and

SA can be assessed equivalently as in the preceding two methods presented above. The 
accuracy of velocity estimates a c

v   based on combing the two velocity components is derived by inserting 
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the empirical error measures for the observations into Equation (46). The resulting error a c
v   is shown in 

Figure 36 as a function of real target velocity v and relative angle between vehicle heading direction and the 
sensor flying path v  and normalized with v  - namely as relative velocity error. It can be seen from the 
error relation plot that the heading velocity v of moving vehicles can be estimated with a high accuracy of 

a c
v v    8% whatever heading angle relative to the vehicle moving direction roads have on which they are 

moving. For vehicles running nearly in across-track direction with a relatively high velocity (e.g. v > 60 
km/h) this approach tends to provide less reliable velocity measures, whereas those running with a relatively 
low velocity (e.g. v < 40 km/h) could only obtain reliable velocity measures by adjusting the moving 
direction to be in accordance with the sensor heading. 
 

3.3.3.5 Joint estimation of moving velocity and direction 

All of the already presented estimation methods are not able to give velocity estimates for vehicles if they 
are moving in an unknown direction or their moving detections cannot be accurately determined in advance. 
To solve this problem we propose to jointly consider estimated velocities and the intersection angle v  as 
the unknown parameters simultaneously while the variables describing the deformation effects caused by the 
motion components as observed. Actually, two analytic formulas describing the relations between motion 
artifacts and other parameters can be directly viewed as an equation system to which the velocity and the 
intersection angle are formulated as a set of solution. The system of bivariate equations for the velocity 
estimate relating unknown parameters to observations is given by: 
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The system of bivariate equations is to be solved using the substitution method. Firstly, transform second 
sub-equation of Equation (49) into  

1
cos( )

( )L

v s

v Ar

Ar
v


                    (50) 

and substitute it into first sub-equation of Equation (49), which has been converted into a more 
solution-friendly expression in advance:  

tan( 90 ) (tan( 90 ) cos( ) sin( ))SA L SA v vv v                          (51) 

After substitution, the expression of Equation (51) can be rewritten as  
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Further do transformations to facilitate the solution and get 
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              (53) 

Finally, substitute the second sub-equation in Equation (53) into Equation (50) again and the velocity 
estimate of moving vehicle v̂ can be derived as follows 
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It can be seen that the velocity of a moving vehicle can be directly estimated based on the shape deformation 
parameters without the need to assume the intersection angle v  as known a-prior. The intersection angle 

v  can be estimated as an intermediate variable solely based on two shape deformation parameters Ars, and 

SA
  and is independent on the sensor flight velocity vL. For accuracy analysis, two accuracy measures can be 
estimated for the intersection angle, namely the moving direction and the velocity values. The accuracies of 
the intersection angle v  and the velocity estimate v  can be derived as functions of the quality of the 
along-track stretching and across-track shearing measurements for the detected moving vehicle shape. 
Equivalently, v and v can be calculated with respect to these two deformation parameters by the error 
propagation law as: 
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The empirical error values for two observation measures σArs and 
SA  were also assessed according to 

results of the vehicle shape parameterization procedure and can be assigned to the same values as used in the 
preceding estimation methods. The accuracy of derived intersection angle v  and velocity estimates v  
based on the joint estimation of moving velocity and direction is derived by inserting the empirical error 
measures for the observations into Equation (55) and (56). The error of intersection angle v  is shown in 
Figure 37(a) as a function of real target velocity v and relative angle between vehicle heading direction and 
the sensor flying path v , the relative error is indicated in Figure 37(b). The resulting (relative) velocity error 

v  and v v  are shown in Figure 38 as a function of real target velocity v and intersection angle v . It 
can be seen from the plots that most of vehicles on road sections of urban areas could not allow for a high 
accuracy of moving direction estimation (  v v  > 25%) unless they move very fast (> 80 km/h). The high 
accuracy of velocity estimates could be only guaranteed for vehicles which obviously don’t travel in 
across-track direction ( v < 75%). The overall accuracy of velocity estimates derived in this way is slightly 
degraded compared to other solutions where the moving direction is given.  

  

(a)            (b) 

Figure 37: Accuracy of the intersection angle obtained based on the joint estimation of velocity and heading, (a) 

standard deviation v  as a function of target velocity v and the intersection angle v , v is given in degree; (b) 

Relative error of the intersection angle  v v  

  

(a)           (b) 

Figure 38: Accuracy of vehicle velocities obtained based on the joint estimation of velocity and heading, (a) standard 

deviation v  as a function of target velocity v and the intersection angle v , v is given in km/h; (b) Relative 

velocity error v v  
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Sections 3.3.3.2 – 3.3.3.5 show that there are several possibilities to estimate the velocity of moving vehicles 
from single-pass airborne LiDAR data. According to the quality analysis of the velocity estimates the 
combined usage of the along- and across track deformations is the most promising and reliable approach for 
a large variation range of heading angles. If vehicles move neither in along-track nor in across-track 
direction (e.g. 35°< v < 50°), the standard deviation of velocity estimates is almost fair for all estimators. 
However, the usage of joint estimation of motion direction and velocity establishes the unique solution to the 
generic case where the moving direction of target is unknown and can give fair results. Clearly, although the 
accuracy analysis is performed under the theoretic framework where the error sources are assumed to be 
independent to each other and the values of some errors are given empirically, for an analysis of traffic 
behavior and dynamics this accuracy analysis level is more than marginally sufficient and could give the 
valuable guidance on the selection of the proper method for vehicle estimation by using airborne LiDAR to 
monitoring specific traffic scenarios. 
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4.  Experimental data 

This chapter introduces the experimental data and evaluation scheme used to assess the results. All the used 
datasets of real-life scenarios were acquired under common conditions which are not optimized for detection 
of moving objects. The evaluation is conducted based on an established scheme for the external assessment 
of results of both vehicle extraction and motion detection. 

4.1 Airborne LiDAR data 

Five experimental datasets used in this thesis stem from three flight campaigns with airborne LiDAR 
systems which were conducted over city areas in North America and Europe. The main properties and 
parameters of these three ALS observations (flight velocity, point density, flight height, swath, and view 
mode) are summarized in Table 2. The experiments based on these datasets were conducted to validate the 
theory in real conditions. Please note that the conducted experiments are intended to yield comprehensive 
performance characterization of the proposed strategy to monitoring traffic when applied to real-life 
scenarios scanned by ALS under common conditions. That means that all the datasets are supposed to be 
acquired initially for the 3D city mapping tasks instead of the detection of moving objects. Since the 
nominal point density of the data is known, a vehicle is supposed to consist of ca. 20-64 laser points. 
Furthermore, the claimed vertical accuracy for the first flight campaign is 18 cm with 95 percent confidence 
and the horizontal accuracy is 1/3000 of the flying height. One example of test datasets – dataset Toronto I is 
displayed in Figure 39. 

 

Sensor 

Pulse 

repetition 

rate [kHz] 

Flying 

height 

[m] 

Flying 

velocity 

[km/h] 

Point 

density 

[points/m2] 

Swath 

[m] 

View 

mode 

Toronto I II III 
Optech  

ALTM-200 
90 520 120 4 650 nadir 

TUM 
Riegl  

LMS-Q560 
110 480 140  5  480 

forwar

d 

Enschede FLI-MAP-400 75 275 100  10 420 nadir 

Table 2: Acquisition configurations of airborne LiDAR campaigns 

The first three experimental datasets -Toronto I, II and III were acquired covering the study area of Canadian 
metropolis - Toronto, located near the downtown area. The site is characterized by relatively high traffic 
density, with mutually intersected main roads and even city express road such as flyovers. ALS data 
recorded both first and last returns for each laser pulse. The scanning pattern was parallel line. To meet the 
requirements of traffic monitoring applications addressed in this thesis test datasets used are chosen from 
such sites that were flown only once. 
 
Dataset Toronto I: The dataset Toronto I was acquired from first flight campaign and covers a flat urban 
area of ca. 400 600 m2 with few large building blocks and a mixture of high and low vegetation. The terrain 
in this dataset is characterized by less varying topography with height difference of about 10 m between the 



74                    4. Experimental data 

lowest and highest terrain points. The challenging elements here are the two express roads as flyover across 
over the area, some under passing roads, and several large parking lots around building and main roads. 
 
Dataset Toronto II: The dataset Toronto II was acquired from first flight campaign over a flat urban area of 
ca. 400   600 m2 with several large buildings and open yard with a mixture of high and low vegetations. 
The terrain in this dataset is characterized by less varying topography with height difference of about 20 m 
between the lowest and highest terrain points. The challenging elements here are the express road as a large 
flyover across over the test site and some under passing roads. 
 

   

Figure 39: One example of test datasets: dataset Toronto I(left); Right: zoom-in of the data area marked by the dotted 

box 

 
Dataset Toronto III: The dataset Toronto III was also acquired from first flight campaign in Toronto over a 
flat urban area of ca. 320   400 m2 with several connected building blocks and open yard (parking lots) 
with a mixture of high and low vegetations. The terrain in this dataset is characterized by less varying 
topography with height difference of about 10 m between the lowest and highest terrain points. There are no 
elevated roads in the dataset. The challenging elements here are the complicated building structures and 
surrounding clutters.  
 
The fourth and fifth datasets – TUM and Enschede were acquired over two European cities – Munich and 
Enschede, also located around the downtown area. The sites are characterized by relatively low traffic 
density, with fewer mutually intersected main roads of small width upon which few vehicles were observed 
to be traveling. ALS data recorded both first and last returns for each laser pulse, for second flight even 
full-waveform LiDAR data. The scanning pattern of both flights was parallel line.  
 
Dataset TUM: The TUM dataset was acquired from the second flight campaign over a dense urban area of 
ca. 400   480 m2 with densely connected buildings blocks with low vegetations on the road sides and in 
courtyards of building blocks. The terrain in this dataset is characterized by flat topography with height 
difference of about 5 m between the lowest and highest terrain points. The challenging elements here are 
densely constructed building blocks, a large amount of vegetations along road sides, and the oblique-view 
geometry of airborne LiDAR over the test site. The point density of this dataset is moderate compared to 
others. 

 
Dataset Enschede: The Enschede dataset was acquired from the third flight campaign over Enschede with 
an area of ca. 200   280 m2.  It consists of connected buildings blocks with low vegetations on the road 
sides and in courtyards of building blocks. The terrain in this dataset is characterized by flat topography with 
height difference of about 8 m between the lowest and highest terrain points. The challenging elements here 
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are densely constructed buildings, a large amount of vegetations along road sides and in the middle part. The 
point density of this dataset is the highest among the five test datasets and the data quality is assumed to be 
best as well. 

4.2 External evaluation 

4.2.1 Reference data 

The external evaluation is used for the quantitative description of the quality of vehicle extraction and 
motion analysis. The quality is determined by comparing extraction/classification results with a reference 
dataset that is a record corresponding to the desired result. Even if the statement of quality is in the strict 
sense only valid for the subject of dataset used in the evaluation, it can nevertheless be estimated with them 
how an extraction/classification algorithm suitable for other datasets is, in which the objects to be extracted 
are marked with similar characteristics as in the evaluated dataset. Another advantage of an external 
evaluation is the possibility of systematic analysis of strengths and weaknesses of an approach (Hinz, 2003). 
Reference data are often created manually and supposed to be characterized by a high quality than the 
automatic extraction, so that the comparison of extraction with the reference can be deemed to be an 
objective assessment. However, they are usually not completely error-free. On the one side, errors can be 
concerned with geometry of the reference object with incomplete parts, e.g. the vehicle underneath trees, or 
its correct connection to the surroundings. On the other side, the semantics of objects with similar geometric 
properties in ALS data cannot be clarified in the recording of the references, e.g. ambiguous objects above 
ground like flowerbeds and low vegetations, traffic signs. The regions handled by these semantic 
uncertainties are excluded from the references for the evaluation. 

 

Figure 40: One example for the reference data for vehicle extraction – dataset Toronto I with 317 vehicles, every 

vehicle object is indicated by a color  
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If the references were created with the help of other (higher quality) data sources or instruments, they can be 
captured based on the information, which are not included in the data base of extraction and hence they are 
also available for the assessment of the extraction procedures. To avoid potential confusion it is 
distinguished between real and recordable reference (Klausmann et., 1999), where the recordable reference 
is created by a skilled human operator who is trained before. This implies that the human capability 
represents an upper bound on the achievable quality of the automatic extraction/classification. All the 
reference data used in this work are obtained based on the human inspection on either the original ALS 
datasets or ancillary data acquired simultaneously such as video data, namely corresponding to the 
recordable reference. However, even human observation is quite difficult in the unstructured ALS point 
cloud, making the reference data particularly for vehicle extraction more challenging and less accurate. This 
kind of reference data correspond to the so-called minimal reference (Hinz, 2003). The minimal reference 
includes objects whose semantics or dynamical state could be definitely determined, and therefore should be 
extracted or determined in any case. The focus is thus put on the completeness of extraction. 

 

Figure 41: Video reference data for motion analysis displayed on a composite of two video frames, green: stationary 

vehicles, red: trajectories of moving vehicles 

In summary, for vehicle extraction there is a minimum reference available which is created by a human 
operator via visual analysis to mask out single vehicles in point cloud of ALS data. One example of the 
reference data for vehicle extraction is shown in Figure 40. During last two campaigns for data acquisition 
the video camera data were also made. For both of flights, an optical/infrared video camera mounted on the 
same airborne platform was used to provide concurrent observations. They could exhibit the reference data 
for dynamical traffic situation at the time of acquisition. For the first flight, there is unfortunately no 
concurrent additional sensor mounted on the platform, thereby making the direct comparison impossible. 
However, the vehicle movement can be empirically inferred by spatial contexts involved in data to enable 
the assessment of motion classification results. For both the distinction of vehicle motion state and velocity 
estimation, analogous to the evaluation of vehicle extraction, the evaluation is based on the reference data 
which are also minimum reference. The velocities of extracted moving vehicles can be accurately estimated 
by vehicle tracking in concurrently acquired video data und viewed as ground truth for velocity estimation. 
One example of such reference data for motion analysis is shown in Figure 41. The following section 
describes a well-established scheme for the external evaluation of vehicle extraction and motion analysis in 
short. 
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4.2.2 Evaluation schema 

The method used for the external assessment evaluates extracted vehicles by the criteria of completeness, 
reliability and geometric accuracy. These can be calculated by the local allocation of object-parts of the 
extraction to the reference. On the other hand, by the measures of commission and omission errors, the 
properties of the distinction of vehicle motion state within the context of the traffic monitoring are evaluated. 
The determination of evaluation results for the whole strategy is divided into two steps: (1) The evaluation 
of vehicle extraction with reference, and (2) the calculation of quality measurements for motion analysis. 
Apart from algorithmic differences, the assignment of the two vehicle objects is a conceptually identical 
approach, as to be described in the section below. The calculation of the assessment is done based on the 
object-parts appropriately assigned together or with discrete points affiliated to the objects. Note, however, 
that there exists a relation between assignment and evaluation criteria. For instance, a tolerant assignment 
leads to less geometric precision of the extraction result. This threshold for data assignment needs to be 
determined according to application purposes. 
 

 Vehicle extraction 

Detection quality measure - The object-based evaluation scheme is used to assess the vehicle extraction 

algorithm in the sense of detection quality, which measures the ability of the algorithm to resolve semantic 

information. For this reason, the Absolute/Relative Accuracy for Object Extraction - AAOE and EAOE are 

implemented for measuring the completeness and correctness at object level, respectively, which are derived 

by 

 
 1,1 1,1,    

r s

N NAAOE EAOE
N N

             (57) 

where 1,1N is the number of vehicles which has one-to-one relationship with the reference data, rN is the 
true number of vehicles in the field, sN is the total number of automatically extracted vehicles. One-to-one 
relationship means that the area ratio of one point segment to a reference object is within the range of [80% 
120%], where the object area is established by corresponding the point with the pixel by the geo-tilling 
processing. 
 

Geometric preservation accuracy – The shape delineation accuracy, which measures the shape accuracy of 
extracted points of vehicle objects compared to their true shape.  
To particularly guarantee that the extracted vehicle points can be delivered to the motion analysis and obtain 
the rational velocity based on the moving vehicle model presented in Section 3.3.1 (Yao et al., 2008), the 
assessment of extracted vehicle points with respect to the shape accordance is necessary. The Hausdorff 
distance ( , )H E R  is devoted to expressing the similarity measure. The two sets of vehicle points are 
delivered to the comparison by calculating the ( , )H E R  by 

      
( , ) max( ( , ), ( , ))H E R h E R h R E                      (58) 

where 

( , ) max min ,
b Ra E

h E R a b


    

and E, R are the extracted and reference vehicles, respectively; A schematic description for deriving the 
delineation accuracy by shape comparison is denotes in Figure 42. 
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

 

Figure 42: Shape comparison for a moving vehicle. Left: extracted points, right: corresponding reference vehicle points, 

i.e. ( , ) 0.38 .H E R m  

 Motion state distinction 

The moving objects represent the most important proportion of traffic flow information and play a key role 
in the traffic monitoring for urban areas. Therefore, it is decided to evaluate the motion analysis results based 
on examining the classified moving objects. 
 
Since the motion state analysis is a binary classification process and an uncertain motion category is 

excluded in advance, the evaluation of results is primarily focused on the classification of data. 

Classification can be divided into two main categories: correct classification of moving and stationary 

vehicles, and incorrect classification. The incorrect classification can be further divided into two groups: 

classification of moving vehicle points as stationary vehicle points (termed Error type I), which is defined as 

omission errors 

,
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                 (59) 

where NM,S is the number of vehicles which should be moving but are classified as stationary class. NM,M is 
the number of vehicles which should be moving and are also classified as moving class. 
 
and the classification of stationary vehicle points as moving vehicle points (termed Error type II), which is 

defined as commission error: 

,
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Error
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 


                   (60) 

where NS,M is the number of vehicles which should be stationary but are classified as moving class. NM,M is 
the number of vehicles which should be moving and are also classified as moving class. 
 
Based on this terminology, type II errors have a greater effect than type I errors, since missing a few moving 
vehicle points is not equivalent to inserting non-moving elements into the moving vehicle representation. 
Most classification algorithms focus on reducing the type II errors, sometimes at the cost of a larger amount 
of type I errors. The results will show that the applied algorithm intends to minimize types II error, while 
keeping type I error negligible or at a low level. 
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5.  Experimental results 

This Chapter is to apply the proposed strategy to the datasets of Chapter 4 to examine the effectiveness of 
these methods for traffic analysis from airborne LiDAR platform. Five different datasets are selected to 
undergo the experiment. The content is organized according to the sequence of applied datasets. The 
parameters and thresholds for every intermediate step are adaptively determined by empirically examining 
training data chosen from different data areas but of the same flight campaign. The training and evaluation 
processes were based on objects where the interpretation was made unambiguously with the help of both 
geometric and context information. For the distinction of vehicle motion state, moving and stationary 
vehicles are collected to serve as positive and negative training samples, respectively. The velocity 
estimation method by combining two motion components presented in Section 3.3.3.4 is selected for the test 
datasets due to its reliability and generality, the original aspect ratio of vehicles Ar is assumed = 2. 

5.1 Dataset Toronto I 

Since the dataset Toronto I is characterized by the large parking lots and elevated road, it will undergo the 
third processing Route defined in the whole strategy (Figure 6) by combing the OBPA method with local 
context-guided method to extract vehicles. Parameter settings are chosen as follows: T1= 1.5, T2 = 25, 

thres
NCut = 0.35. In Figure 43 the results of vehicle motion analysis are visualized. The result of vehicle 
extraction is not presented along, because it is believed to be able to be perceived and indicated within the 
motion analysis results too. The results are also reflected in the quantitative external evaluation (Table 3). 
Both travelling vehicles on roads and parking ones are successfully extracted prior to be delivered to motion 
state analysis, particularly including many vehicles that were placed in the large parking lots. The extraction 
achieved a vehicle extraction completeness of about 76% and a reliability of near 85%. A RMS{H(E,R)} of 
0.41m implies a mean geometric inaccuracy of the value corresponding to the data resolution. 

 
 

AAOE EAOE RMS{H(E,R)} 

78.5% 85.1% 0.41m 

(a) 

 
 

Classified

Stationary Moving Uncertain Errors 

Reference Stationary 232 7 45 284   

Moving 8 28 2 38 Type I 22% 

 322 Type II 20% 

(b) 

Table 3: Evaluation for dataset Toronto I: (a) vehicle extraction, (b) motion state classification 
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Nearly 80% of moving vehicles from extracted vehicles have been detected correctly while 20% of detected 

moving vehicles are false alarms and should be motionless. The velocities of moving vehicles derived based 

on the motion artifacts effect are shown as color-coded in Figure 43(b). 

 
(a) 

   
(b) 

Figure 43: Vehicle motion analysis results for dataset Toronto I: (a) motion state classification, (b) velocity estimation 

5.2 Dataset Toronto II 

Since the Toronto dataset II is characterized by the elevated road, it will undergo the third processing Route 
defined in the whole strategy by using the OBPA method only to extract vehicles. Parameter settings are 
chosen as follows: T1= 1.5, T2 = 25. In Figure 44 the results of vehicle motion analysis are visualized. Both 

km/h 

Stationary 
Moving 
Uncertain 

Flight  heading 
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travelling vehicles on roads and parking ones are successfully extracted, including many vehicles that were 
placed along the road margins. The visual results are also reflected in the quantitative external evaluation 
(Table 4). The extraction achieved a vehicle extraction completeness of about 80% and a reliability of near 
84%. The extraction shows its geometric precision with a RMS{H(E,R)} of 0.36m implying a mean 
geometric inaccuracy of the value corresponding to less than the data resolution. Nearly 80% of moving 
vehicles from extracted vehicles have been detected correctly while 15% of detected moving vehicles are 
false alarms and should be motionless. The velocities of moving vehicles derived based on the motion 
artifacts effect are shown as color-coded in Figure 44(b). 

 

(a) 

   

(b) 

Figure 44: Vehicle motion analysis results for dataset Toronto II: (a) motion state classification, (b) velocity estimation 

 
 

km/h 
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AAOE EAOE RMS{H(E,R)} 

80.3% 84.5% 0.36m 

(a) 

 
 

Classified

Stationary Moving Uncertain Errors 

Reference 
Stationary 57 5 12 74  

Moving 6 23 4 33 Type I 21% 

 107 Type II 18% 

(b) 

Table 4: Evaluation for dataset Toronto II: (a) vehicle extraction, (b) motion state classification 

5.3 Dataset TUM  

Since the TUM dataset is characterized by no elevated road, it will undergo the first processing Route 
defined in the whole strategy by using the local context guided method only to extract vehicles. On the other 
side, this dataset is used to assess the boundary conditions of the proposed strategy to extracting urban traffic 
information when applied to common airborne LiDAR data, as the oblique-view airborne LiDAR data has 
proven to be unsuitable for vehicle extraction task due to the unstable laser reflection properties against the 
mental surface of vehicle body under this view angle (Yao et al., 2008). Parameter settings are chosen as 
follows: h = 0.5.
 

AAOE EAOE RMS{H(E,R)} 

68.3% 78.3% 0.43m 

(a) 

 
 

Classified

Stationary Moving Uncertain Errors 

Reference 
Stationary 57 2 8 67  

Moving 3 4 1 8 Type I 38% 

 75 Type II 34% 

(b) 

Table 5: Evaluation for TUM Dataset: (a) vehicle extraction, (b) vehicle motion classification 

 
In Figure 45 the results of vehicle motion analysis are visualized. The quantitative external evaluation is 
summarized in Table 5. The result achieved a vehicle extraction completeness of about 69% and a reliability 
of near to 80%. The extraction shows its geometric precision with a RMS{H(E,R)} of 0.43m implying a 
mean geometric inaccuracy of the value corresponding to less than the data resolution. Nearly 62% of 
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moving vehicles from extracted vehicles have been detected correctly while 34% of detected moving 
vehicles are false alarms and should be motionless. The velocities of moving vehicles derived based on the 
motion artifacts effect are listed in Table 6 in comparison to the ground truth data obtained by the 
concurrently acquired video data. 

 

Figure 45: Vehicle motion analysis result for dataset TUM (displayed as overlaid on the DSM exclusive of trees) 

 

Target # rv km/h ev km/h v km/h 

1 28.6 20.7 5.1 

2 24.9 21.3 3.6 

3 15.7 23.1 7.4 

4 12.5 20.1 7.6 

5 10.3 18.5 8.2 

Table 6 Comparison of estimated velocities ve with reference vr for TUM dataset 

5.4 Dataset Enschede 

Since the Enschede dataset is also characterized by no elevated road, it will undergo the first processing 
Route defined in the whole strategy (Figure 6) by using the local context guided method only to extract 
vehicles. Parameter settings are chosen as follows: h = 0.5. 
 

To enhance the visual impression on vehicle extraction in this dataset, the results of vehicle extraction and 
motion analysis are illustrated in Figure 46, respectively. The quantitative external evaluation is summarized 
in Table 7. The result achieved a vehicle extraction completeness of about 87% and a reliability of nearly 
83%. The extraction shows its geometric precision with a RMS{H(E,R)} of 0.23m implying a mean 
geometric inaccuracy of the value corresponding to less than the point spacing. Nearly 80% of moving 
vehicles from extracted vehicles have been detected correctly while 30% of detected moving vehicles are 
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false alarms and should be motionless. The velocities of moving vehicles derived based on the motion 
artifacts effect are listed in Table 8 which are compared to the reference data obtained by the concurrently 
acquired video data. 
 

 

(a) 

 
(b) 

Figure 46: Vehicle analysis results for dataset Enschede: (a) vehicle extraction, (b) vehicle motion analysis (displayed 

as overlaid on the DSM without trees) 
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AAOE EAOE RMS{H(E,R)} 

87.2% 86.5% 0.23m 

(a) 

 
 

Classified

Stationary Moving Uncertain Errors 

Reference 
Stationary 68 2 7 77   

Moving 2 7 2 11 Type I 22% 

 88 Type II 27% 

(b) 

Table 7: Evaluation for Enschede dataset: (a) vehicle extraction, (b) distinction of motion state. 

 

Target # rv km/h ev km/h v km/h 

1 61.2 64.3 3.1 

2 62.2 58.6 3.6 

3 54.6 57.3 2.7 

4 46.5 51.6 5.1 

5 58.7 54.5 4.6 

6 57.7 55.6 2.1 

7 62.9 59.7 3.2 

Table 8: Comparison of estimated velocities with reference for Enschede dataset 

5.5 Comparison of vehicle extraction methods towards motion 

analysis 

Initially, different procedures were adopted to deal with traffic scenes of two global contexts via two 
methods of vehicle extraction, as shown in Chapter 3. However, from technical viewpoints, it could be 
argued that the OBPA method (vehicle extraction method II) can also be independently applied to the test 
datasets of the global context regions without elevated roads, which are normally processed by the local 
context guided method (vehicle extraction method I) to extract vehicles (Yao and Stilla 2010b). In this 
section, it is desirable to evaluate and compare the performances of these two vehicles extraction methods 
when applied to the same datasets, especially with respect to the extraction of vehicle dynamical information. 
Given same ALS datasets (where the quality of vehicle extraction is comparable between two methods, so it 
has to exclude elevated roads in the dataset) we would like to see the respective strongnesses and 
shortcomings of two vehicle extraction methods in the context of urban traffic monitoring by using airborne 
LiDAR. 
 
To realize the comparative study between two methods raised above, two datasets with unbiased global 
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context relations are selected here to undergo the experiment. It should make sure that the datasets to be used 
for comparison study are equivalent with respect to data characteristics and context relations, thereby 
ensuring comparability of the results. The first test dataset used to be comparative study is dataset Toronto 
III while the second test dataset is dataset Enschede used in the experiments presented in Section 5.4, as it 
also shows a balanced data conditions for two vehicle extraction methods. Both datasets are to undergo the 
first and second processing Routes defined in the whole strategy by using either the local context guided or 
the OBPA methods to extract vehicles. 

 

(a) 

  
(b) 

Figure 47: Vehicle motion analysis results for first dataset based on vehicle extraction method I; (a), motion detection 

(b) velocity estimation of moving vehicles  

In Figure 47, Figure 48 and Figure 49 the results of vehicle motion analysis for both datasets using two 
different vehicle extraction methods are visualized (the result for dataset Enschede using vehicle extraction 
method I can be found in Figure 46(b)). The quantitative external evaluation of the results can be found in 
the Table 9 and Table 10. It is to be found out that the strategy based on method I to extract vehicles 
achieved a better vehicle detection rate, e.g. for dataset Toronto III, with the completeness of ca. 79%, being 

km/h 
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6 percentage points higher than that achieved by the OBPA method, while the reliability is almost equivalent 
for both methods. However, the method II shows a high geometric precision of extracted vehicles with a 
RMS{H(E,R)} of 0.34m implying a increase in shape preservation accuracy by 15%. For both datasets there 
is a better agreement between the motion classification results and the reference for most of vehicles when 
using method II (e.g. approx. 83% vs. 87% for detection rate of moving class in dataset Toronto III). The 
detection reliability has also increased to some extent (e.g. approx. 74% vs. 82% for detection rate of 
moving class in dataset Toronto III). Both travelling vehicles on roads and parking ones are successfully 
extracted (e.g. approx. up to 80% of moving vehicles in dataset Enschede have been detected), including 
those that were placed along the road margins or in parking areas. 
 

The velocities of moving vehicles of two datasets derived based on two vehicle extraction methods are 
denoted or listed in Figure 47(b), Figure 48(b) and Table 11, respectively. For dataset Toronto III, moving 
vehicles derived based on method I has the mean velocity of ca.45 km/h and the velocity range of 15 - 79 
km/h; moving vehicles derived based on method II has the mean velocity of ca.52 km/h and the velocity 
range of 25-66 km/h. For dataset Enschede, the mean error of estimated velocity for moving vehicles has 
reduced from ca. 3.9km/h using method I to ca. 3.5 km/h using method II. 

 

 AAOE EAOE RMS{H(E,R)} 

Method I 78.8% 78.1% 0.39m 

Method II 73.2% 79.8% 0.34m 

(a) 

 
 

Classified

Stationary Moving Uncertain Errors 

Reference 
Stationary 48 8 9 65   

Moving 5 23 4 32 Type I 17% 

  97 Type II 26% 

(b) 

 
 

Classified

Stationary Moving Uncertain Errors 

Reference 
Stationary 34 6 5 45   

Moving 4 27 2 32 Type I 13% 

 77 Type II 18% 

(c) 

Table 9: Evaluation for dataset Toronto III: (a) vehicle extraction, (b) motion classification using vehicle extraction 

method I, (c) motion classification using vehicle extraction method II 
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(a) 

  
(b) 

Figure 48: Vehicle motion analysis results for dataset Toronto III based on vehicle extraction method II: (a) vehicle 

motion classification, (b) velocity estimation of moving vehicles 

 AAOE EAOE RMS{H(E,R)} 

Method II 82.1% 85.6% 0.19m 

(a) 

 
 

Classified

Stationary Moving Uncertain Errors 

Reference 
Stationary 61 2 5 68  

Moving 2 8 2 12 Type I 20% 

  80 Type II 20% 

(b) 
Table 10 Evaluation for vehicle motion analysis from dataset Enschede based on vehicle extraction method II: (a) 
vehicle extraction, (b) vehicle motion classification 

km/h 
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Figure 49: Vehicle motion analysis results for dataset Enschede using vehicle extraction method II 

Target # rv km/h ev km/h v km/h 

1 61.2 63.3 2.1 

2 62.2 57.1 5.1 

3 54.6 57.8 3.2 

4 46.5 50.1 3.6 

5 58.3 55.3 3.0 

6 57.7 55.5 2.2 

7 62.9 59.5 3.4 

8 22.9 29.4 6.5 

Table 11: Comparison of estimated velocities with reference for dataset Enschede based on vehicle extraction method II 
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6.  Discussion and performance analysis 

In this chapter the performance of the proposed strategy for traffic monitoring will be discussed and 
analyzed. The first part of this chapter (Section 6.1) is directly dedicated to the discussion of the 
experimental results obtained in Chapter 5, and the rest parts (Section 6.2 - 6.4) are further dedicated to the 
essential aspects of the analytic and empirical accuracy analysis for both motion classification (detection) 
and velocity estimation based on simulated and real data. It is helpful to understand inherent relations 
between respective acquisition parameters and predict the performances of future airborne LiDAR 
campaigns towards traffic monitoring. The preferences and weaknesses of each method are identified. The 
different properties of the datasets also allow an analysis of the methods with respect to their requirements 
for the data. 

6.1 Discussion of experimental results  

6.1.1 Dataset Toronto I 

Through the visual analysis in Figure 43, the overall performance of the strategy seems to be encouraging. 
Both travelling vehicles on roads and parking ones are successfully extracted prior to be delivered to motion 
state analysis, particularly including many vehicles that were placed in the large parking lots. Those vehicles 
which are not extracted or extracted as false alarms are usually caused by ambiguous laser reflection against 
certain objects’ surface or deficient topological relation to the surroundings. Most of these vehicles are 
stationary and would appear in the parking lots where they are located very close to each other. Some bulged 
objects above the ground such as flowerbeds and traffic signs are also incorrectly detected as vehicle due to 
the similar height relation to the ground surface. 

 
The 3D segmentation step can increase the extraction completeness by introducing the constraint on height 
discontinuity, while the extraction correctness has been kept on a high level. The misdetection is greatly 
alleviated by adaptively determining the bandwidth for the MS operation controlled by the spatial edge. An 
abrupt change in the extraction correctness seems not to exist. Additionally, the refinement step by 
introducing the local context analysis into the classified results can further notably increase the completeness. 
Especially, small vehicles located densely to each other in the parking lots or on the roads can be detected 
(Figure 43(a)). Actually, this dataset is characterized by the most challenging scene among the test datasets, 
as its point density is relatively low and it features a high probability of occurrence of objects with unstable 
laser sampling. It is found out that the strategy tends to work well with these vehicles showing significant 
height boundary to surroundings. There could be a higher accuracy of geometry preservation for large and 
high vehicles such as bus, truck and those vehicles which are located sparsely to each other. For those small 
vehicles placed close to each other, the geometric accuracy could be degraded. This is the reason why the 
dataset Toronto I shows a relatively poor performance concerning vehicle shape preservation in comparison 
to others. Equivalently, the point density seems to have an impact on resolving the accurate outlines of 
vehicles. The proposed OBPA method can generate a vehicle-oriented partition of urban areas from airborne 
LiDAR data by using adaptive MS clustering, though which vehicle instances can be extracted. In addition, 
the approach can achieve an improved classification performance on ALS data towards semantic object 
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extraction, because MS is able to provide more robust and expressive features at object level considered. 
As can be seen in Table 3(b) and Figure 43(a), there is an overall good agreement between the motion 
classification result and the reference measurement for most of vehicles (approx. 80% detection rate for 
moving class), so that the theoretical background of motion detection seems justified. It can also be found 
from the evaluation results that most of moving vehicles were detected in flyovers and main roads of the city 
and the vehicles classified as motionless are primarily found in the parking lots or along road margins. The 
red class indicates the vehicles of uncertain status subject to the shape ambiguity. They are mostly placed 
densely to each other in parking lots or contaminated by neighboring clutter objects. Misdetections and false 
alarms for the moving class usually appear either when vehicles travel very slowly in the along-track 
direction or they consist of ambiguous sampled points caused by unstable laser reflection. However, it is 
noteworthy that both of commission and omission errors of motion classification for the moving class have 
already been greatly alleviated by identifying and removing the uncertain class prior to the classification step. 
This kind of vehicles primarily corresponds to those extracted vehicles whose shape cannot be modeled as 
parallelogram. They usually appear amid parking lots and are false alarms for vehicle extraction (red points 
in Figure 43 (a)). 
 
As shown in the Figure 43(b), for dataset Toronto I the mean speed of moving vehicles travelling on the 
flyover on the top is about 75 km/h, which corresponds to the velocity limit on the city express road very 
well. It is noted that some vehicles on the flyover on the bottom were moving at speeds being quite different 
from the mean value. Actually, it is found that most of the vehicles with slow velocity on the flyover were 
either turning at the sharp curve or just leaving the exit of. For other moving vehicles, the slow ones were 
either on the road shoulder or in the slow lane; the fast ones either were passing other vehicles or had just 
passed on other vehicle. It is interesting to note that some vehicles were in the slow lane, but moving at high 
speed. 
 

6.1.2 Dataset Toronto II 

Through the visual analysis in Figure 44, the overall performance of the strategy seems to be promising. The 
good visual impression of the results is also reflected in the quantitative external evaluation (Table 4). The 
extraction achieved a vehicle extraction completeness of about 80% and a reliability of near 84%. The 
extraction shows its geometric precision with a RMS{H(E,R)} of 0.36m implying a mean geometric 
inaccuracy of the value corresponding to less than the data resolution. The ambiguous laser reflection against 
certain objects’ surface and deficient topological relation to the surroundings still result in the misdetection 
and false alarms for vehicle extraction. Most of these vehicles are small-sized or would appear densely in the 
parking lots. Some bulged objects above the ground such as low trees and traffic signs are incorrectly 
detected as vehicle due to the similar height relation to the ground surface. 

 
The 3D segmentation based classification method is used to extract vehicles only, which provides high 
extraction completeness and correctness rates except for some small-sized vehicles above the open areas in 
the middle part of the test site whose height edges in relation to ground surface are vague. Actually, this 
dataset is characterized by the same challenging scene as the dataset Toronto I, apart from the similar 
properties concerning vehicle extraction, however, it can be found out that the strategy tends to work well 
with this dataset and provide an even better result. Moreover, there is overall a higher accuracy of geometry 
preservation for extracted vehicles in dataset Toronto II. The reason why this situation could come out may 
remain in the fact that much fewer vehicles in dataset Toronto II appear in the large parking lots which make 
the occurrence of vehicles with unstable laser sampling and deficient topological relations less probably. The 
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proposed OBPA method can be directly performed on the dataset to generate a vehicle-oriented partition of 
urban areas, though which vehicle instances can be distinguished from other objects.  
 
As can be seen in Table 4(b) and Figure 44(a), there is a good agreement between the motion classification 
results and the reference for most of vehicles (approx. 78% detection rate for moving class). It can also be 
found from the evaluation results that most of moving vehicles were detected on the flyover and the main 
road on the southern side of the major buildings and the vehicles classified as motionless are primarily found 
along the road margins or underneath the flyover. The red vehicles of uncertain motion state are found to be 
placed densely to each other in parking lots and contaminated by neighboring objects, while some small 
vehicles on the flyover are also classified as uncertain. Misdetection (e.g. vehicles just passing through the 
tunnel underneath the flyover surface with a cautious velocity, on the right border of the test site) and false 
alarms (e.g. vehicles located along road margins occluded by vegetation on the bottom part or contaminated 
by closely adjacent objects on the top-right part ) for the detected moving class appear either when vehicles 
travel very slowly in the (near) along-track direction or they consist of ambiguous sampled points caused by 
unstable laser reflection or undersized vehicle. However, the commission error of motion classification for 
the moving class have been greatly alleviated by identifying and removing the uncertain class prior to the 
classification step, while the omission error has been slightly uplifted by identifying the moving vehicles on 
the flyover as uncertain class. However, since missing a few moving vehicle points is not equivalent to 
inserting non-moving elements into the moving vehicles and the commission error has obviously more 
impact on the results in view of traffic monitoring, it can be still justified to identify vehicles of uncertain 
motion class and remove them prior to performing motion classification. 

 
According to Figure 44(b), the velocities of moving vehicles derived based on the motion artifacts effect are 
representative for the cars travelling either on the road or on the flyover. Especially, the values for the 
moving vehicles on the main carriageways are reasonable for this section of the urban express road and 
correspond very well to the speed limit allowed for moving vehicles. Although there might be some 
inaccuracies included in the measurements the results show a good match of theory and real measurements. 
There are only two anomalies among the moving vehicles on the flyover which were travelling with a 
distinctly slow velocity (<= 50km/h). By further observation it can be found that the two vehicles were 
leaving the main carriageways of the flyover and diverted to the side way. At the time when the airborne 
LiDAR sweeping over, they were slowing down for changing the lanes and thus show the different to others 
on the same flyover. Additionally, the moving vehicles on the normal urban road (across the bottom part) 
show a moderate velocity or a bit beyond the velocity maximum allowed in urban areas such as Toronto. It is 
assumed that those vehicles were heading for a traffic intersection and wanted to pass through it as quickly 
as possible. It can also be noted that the vehicle estimated with slow velocity is found to appear in the 
margin area of the road. 
 

6.1.3 Dataset TUM 

Through the visual analysis in Figure 45, the overall performance of the strategy still seems to be 
encouraging. It is observed that many vehicles parked on the margins of the roads that are oriented toward 
the flight direction and few ones on the road lanes are successfully extracted. Even several vehicles beneath 
the trees are recovered, which are usually unable to be detected in optical data. However, further inspection 
of the result could indicate that still many vehicles on the along-track roads are not detected probably 
because of the lack of sufficient sampled points for each vehicle object. Most energy of the laser pulses 
which were emitted out and hit these vehicles were finally scattered away due to the oblique incidence angle. 
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The vehicles on the road that is oriented perpendicular toward the flight direction and behind the building 
are completely missed. The ambiguous laser reflection against certain objects’ surface and deficient 
topological relation to the surroundings still result in the misdetection and false alarms for vehicle extraction. 
Most of these vehicles are small-sized or would appear very close to adjacent clutters. The bulged objects 
above the ground such as traffic signs are incorrectly detected as vehicle due to the similar height relation to 
the ground surface as described in the vehicle model. 
 
The visual impression of the results can be reflected in the quantitative external evaluation (Table 5) to some 
extent. The extraction achieved a vehicle extraction completeness of about 70% and a reliability of near 78%, 
which is the worst among the five test datasets. The extraction shows its geometric precision with a 
comparable RMS{H(E,R)} of 0.43m implying a relative stability of geometric outlining capability of the 
proposed vehicle extraction methods against ALS data acquired under different conditions. The local context 
guided method is used to extract vehicles only, which provides moderate extraction completeness and 
correctness rates. However, it can be found out that the strategy tends to work well with many parking 
vehicles except for some small-sized vehicles beneath the vegetation on the road margins whose height 
edges in relation to ground surface are vague. This dataset is characterized by the most challenging scene 
due to the forward-looking mode; the local-maxima detection could be degraded by oversmoothed or 
incomplete height edges of vehicles and cannot provide sufficient and accurate seed for flooding simulation 
used for watershed transformation to outline the vehicle shape. Moreover, the accuracy of geometry 
preservation for extracted vehicles in dataset TUM is becoming worse compared to other datasets. The 
reason may be tracked back to the fact that the background-markers for watershed transformation which are 
primarily responsible for the accurate vehicle delineation could not be reliably determined, since some 
vehicle objects themselves have degenerated from independent and distinct semantic entities to connected 
and ambiguous clutters, leading to making the indication of the back-ground markers by extracting ridge 
lines impossible. 
 

According to Table 5(b), it can be also observed that dataset TUM exhibits a relatively moderate 
performance in terms of vehicle motion classification, which might prove that the acquisition geometry of 
oblique view LiDAR could further impose negative impacts on the accuracy of motion indication and 
velocity estimation based on the vehicle shape analysis. It can be easily inferred that ALS data acquired 
under oblique-view condition could undermine the scanning and reflection mechanism of laser pulse upon 
vehicle by producing more vehicles with ambiguous or incomplete sampled points, thereby making the 
motion classification based on shape features more difficult. 
 
As can be further seen in Table 5(b) and Figure 45, the performance for motion detection becomes 
deteriorated (approx. 65% detection rate for moving class). Only five moving vehicles were detected on the 
lanes of main road on the southern side of the building block and the vehicles classified as motionless are 
primarily found to appear along the road margins of two along-track roads. The red vehicles of uncertain 
motion state are found to be placed densely to each other in parking lots and contaminated by neighboring 
objects. Misdetection and false alarms for the detected moving class appear either when vehicles travel very 
slowly in the (near) along-track roads or they consist of ambiguous sampled points. Equivalently, the 
commission error of motion classification for the moving class have been alleviated by identifying and 
removing the uncertain class despite of the strongly varied structure of vehicle points caused by 
oblique-view mode, while the omission error has been also uplifted to some extent due to the boundary 
condition of data acquisition used in this experiment. 
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From Table 6 it can be seen that the velocities derived from the motion artifacts effect are travelled 
obviously slower than normal ones but still representative for the cars travelling on that section of the urban 
road and correspond very well to the speed value of vehicles moving towards the traffic light (Figure 45), e.g. 
vehicle #1 and #2 were approaching the road crossing when the traffic light was red. Moving vehicle #1 
exhibits a little bit higher velocity than vehicle #2, as vehicle #2 travelled behind a heavy truck that is not 
detected and had to brake early and strongly in order to avoid potential danger. Vehicle #5 had a low 
averaged velocity since it were coming out from a small road and had to turn right onto the main road. 
Vehicle #3 and #4 became nearly stagnant, as it is supposed that they had then just started the engine 
preparing to get to the road lane from the parking strips. However, the accuracies of their velocity estimates 
are even worsen by partial occlusion of trees and poor sampled points through the view mode and scene 
complexity. Although inaccuracies are definitely included in the measurements the results show a good 
match of theory and real measurements. 
 

6.1.4 Dataset Enschede 

With the first glance at Figure 46, the overall performance of the strategy on this dataset is very promising. 
The unique main road in the scene on which vehicles were traveling is not oriented perpendicular toward the 
sensor flight direction. Most of vehicles which were either travelling on roads or parked are successfully 
extracted, even including several ones partially occluded by trees (within red ellipse of Figure 46(a)), which 
are usually unable to be detected in optical data; only few ones are not which are undersampled due to 
ambiguous laser reflection or deficient topological relation to surroundings. Most of these vehicles are 
small-sized or would appear very close to adjacent clutters or vehicles themselves. 

 
As shown in the quantitative evaluation in Table 7, there is already a considerable improvement in terms of 
both the completeness and correctness for vehicle extraction. The results achieved a vehicle extraction 
completeness of almost 87% and reliability from near 85%, which is the best among the five datasets. The 
extraction shows its geometric precision with a comparable RMS{H(E,R)} of 0.23m implying a fairly 
increase of the vehicle extraction method in geometric outlining capability thanks to the high point density 
and quality of the dataset. The local context guided method used here to extract vehicles has demonstrated 
the capability to provide both high completeness and correctness. It tends to show that the method work well 
with parking vehicles of some small-sized vehicles or those partially occluded the vegetation. This dataset is 
characterized by very high point density; the local-maxima detection could therefore provide sufficient and 
accurate seed for flooding simulation used for watershed transformation to outline the vehicle shape. 
Moreover, the accuracy of geometry preservation for extracted vehicles in Enschede dataset becomes to get 
increased to such a high level that also corresponds to the point spacing of the dataset. 
 
According to Table 7(b), it can be also observed that Enschede dataset exhibits a good performance in terms 
of vehicle motion classification, which might prove that the point density of airborne LiDAR could further 
impose positive impacts on the accuracy of motion indication and velocity estimation. It can be easily 
inferred that ALS data acquired with high point density could strengthen the reflection mechanism of laser 
pulse upon vehicle by acquiring vehicle objects with more complete sampled points and distinct silhouette 
features, thereby making the motion classification based on shape features more easy. As can be further seen 
in Table 7(b) and Figure 46, almost all the moving vehicles (7 vehicles) on the lanes of main road in the 
scene have been successfully detected except only one which was moving through a tree occlusion, and the 
vehicles classified as motionless are primarily found to appear in the parking lots or along the margins of 
small roads. The red vehicles of uncertain motion state are found to be densely placed underneath trees and 
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contaminated by neighboring clutters. Misdetection and false alarms for the detected moving class appear 
have been reduced, they would most probably happen when the vehicles consist of ambiguous sampled 
points due to unfavorable scanning angles. Finally, the commission error for the moving class has been 
reduced by identifying and removing the uncertain class in spite of the usage of such a high density dataset. 
 
From Table 8 it can be seen that the velocities for the moving vehicles derived from the motion artifacts 
effect are representative on that section of the urban road and correspond very well to the speed limit in a 
European city (Figure 46(b)), e.g. vehicle #1, #2 #3 were passing through this road section uninterruptedly 
with proper and similar velocities. Moving vehicle #4 that was moving in the same lane exhibits a little bit 
lower velocity than vehicle #3, as vehicle #4 travelled behind a heavy truck/bus and had to brake early in 
order to keep an adequate distance. Since the vehicles were moving along neither along-track nor 
across-track direction, they all were imaged as parallelogram with distinct elongation and shearing, leading 
to a clear conclusion to the motion state. Vehicles #5 and #6 had a little bit lower averaged velocity. Vehicle 
#7 was moving faster than the two precedent moving vehicles, as it is supposed that they had intended to 
pursue two moving ones. The accuracies of their velocity estimates are much better than those derived for 
TUM dataset according to the comparison with the reference data for velocity estimation. Only the velocity 
estimates for vehicles #4 and #5 show a relative poor accuracies, which could be tracked back to the fact that 
the undersized vehicle (vehicle #4) and degraded laser point sampling due to occlusion of (vehicle #5). 
 
To summarize the overall performance, the experiments tend to show that the motion detection rate as well 
as the velocity estimation accuracy could drop down as vehicles become small or move slowly. This could 
be mainly caused by the limited spatial resolution and the high sensitivity of the shape parameterization 
process to the noise and anomaly. Although Toronto dataset delivered relatively good performance in terms 
of motion classification when considering the results quantitative evaluation only, it does not necessarily 
mean that the low point density could not hinder the motion classification. Current airborne LiDAR data 
have the nominal resolution ranging from 0.5m to 1m, so that, in certain situations, vehicle’s points are 
mixed with the background objects. Hence, the point sampling rate as well as the backscattered energy is 
biased towards smaller values, which makes motion detection and velocity estimation less robust and 
reliable. Furthermore, according to the quantification of the motion artifact model in Section 3.3.1.2, 
vehicles moving with a low velocity would induce minor shape deformations and be more likely to have an 
inaccurate parameterized shape which can degrade the estimated velocity too. Fortunately, the problem is 
also to some extent alleviated, since vehicles with unambiguous shape have already been removed prior to 
the motion classification step and directly labeled as uncertain class. Although there are still some 
inaccuracies in the estimated velocities, they are able to provide a good representation of the overall traffic 
situation and the velocity distribution in the scanned scenes. 
 

6.1.5 Comparison of vehicle extraction method towards motion analysis 

Through the visual analysis in Figure 47, Figure 48 and Figure 49, the overall performances of the strategies 
using two methods of vehicle extraction - local context guided method (vehicle extraction method I) and 
(vehicle extraction method II) appear to be promising and make no huge differences. It is to be found out 
that the strategy based on method I to extract vehicles achieved a better vehicle detection rate, e.g. for 
dataset Toronto III, with the completeness of ca. 79%, being 6 percentage point higher than that achieved by 
the OBPA method, while the reliability is almost equivalent for both methods. However, the method II 
shows a high geometric precision of extracted vehicles with a RMS{H(E,R)} of 0.34m implying a increase in 
shape preservation accuracy by 15%. For both datasets there is a better agreement between the motion 
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classification results and the reference for most of vehicles when using method II (e.g. approx. 83% vs. 87% 
for detection rate of moving class in dataset Toronto III). The detection reliability has also increased to some 
extent (e.g. approx. 74% vs. 82% for detection rate of moving class in dataset Toronto III). Both travelling 
vehicles on roads and parking ones are successfully extracted, including those that were placed along the 
road margins or in parking areas.  
 
The visual impression of the results is also reflected in the quantitative evaluation (Table 9 and Table 10). By 
further observing the quantitative results of evaluations in, it is to be found out that the strategy based on the 
local context guided method to extract vehicles achieved a better vehicle detection rate, while the reliability 
is almost equivalent for both methods (Table 9(a) and Table 10(a)). However, the OBPA method shows a 
higher geometric precision of extracted vehicles. Most of additional vehicles extracted by method I 
originated from the areas where vehicles are located very close to each other, such as parking lots. The 
method II tend to be more likely to extract fewer vehicles that are placed as scattered despite of having 
vague height edges in relation to ground surface, such as those on the road lanes. It may be owing to the fact 
that the method II using 3D segmentation based classification is able to accurately detect scattered geometric 
modes at local level by adaptive MS clustering, while the vehicle extraction method I based vehicle 
extraction relies more on the quality of detected makers for potential single vehicles controlling the 
segmentation. Clearly, vehicle extraction directly in 3D ALS point cloud results in overall a higher accuracy 
of geometry preservation. However, according to the evaluation results for dataset Enschede used for 
comparative study the increase of the point density seems to help to some extent relieve the difference of 
motion classification accuracy between two methods, as it can be easily imaged that the high point density 
of ALS data could facilitate the vehicle extraction operation by high geometric fidelity and improve the 
extraction results in terms of the shape accuracy whatever kind of methods is used. 
 
As shown in the results and their evaluation (Table 9(b) and (c) and Table 10(b) and(c)), for both datasets 
there is a better agreement between the motion classification results and the reference for most of vehicles 
when using method II. The detection reliability has also increased to some extent. The geometric accuracy of 
extracted vehicles can directly indicate the difference between two methods, since the distinction of motion 
state is performed based on measuring and examining the geometric properties of vehicle points. False alarm 
and misdetection rates of classified moving vehicles are reduced for method II, since either additional 
moving vehicles have been newly extracted (e.g. vehicles on the road on the right border of Figure 47(a) and 
Figure 48(a))or the high geometric accuracy of extracted vehicles enable the motion classification step to be 
performed more accurately (e.g. vehicles on the road of Figure 49). Some small-sized cars slowly moving 
can be detected only using method II where their shape parameterization process is very sensitive to the 
noise. Apart from the increased quality of moving class method II has actually yielded fewer vehicles 
detected as stationary. That means that it has not proved to provide the same improvement in the 
classification quality for the stationary class, although the traffic monitoring research focuses on the 
extraction of dynamical information. That is also to say that method II has improved the performance of 
motion indication using airborne LiDAR by sacrificing the detection rate and reliability of stationary 
vehicles, especially in the places where vehicles are located very close to each other, such as large parking 
lots. 
 
Contrarily, for the motion analysis using method I, although the number of detected motionless ones 
increased, the false alarm and misdetection rates for moving ones still remain unimproved. On the one hand, 
the completeness for the detection of motionless vehicles is increased when the cardinal number of extracted 
vehicles expands. On the other hand, new detection of vehicles using method I usually appear in parking lots 
and somewhere vehicles are densely placed to each other, which also increases the risk of false or missing 
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classification of the motion state due to the poor geometric outlining ability. It is more likely for method I to 
generate a more complete vehicle extraction result with relatively poor geometric accuracy which has 
potential to deliver the promising data basis for the stationary vehicle class other than moving class. Since 
airborne traffic monitoring intends to provide the complete overview on traffic scenario and information, not 
only moving vehicles but also stationary ones are required to be extracted for intelligent traffic management. 
The complete and accurate detection of stationary vehicles is not a trivial thing. Therefore, the selection of 
two vehicle extraction methods for motion analysis using airborne LiDAR is the tradeoff between the 
completeness and diversity of traffic information and the reliability and accurateness of dynamical 
component of traffic information. Moreover, the number of vehicles of uncertain motion state has increased 
by averagely 20% when using method I, particularly concentrating in the parking areas, it has again proved 
that method I could yield more outliers of vehicle extraction for the stationary class. 
 
The velocities of moving vehicles of the two datasets derived based on two vehicle extraction methods are 
denoted or listed in Figure 47(b), Figure 48(b) and Table 11, respectively. Since the reference data is 
unavailable for velocity estimation in dataset Toronto III, the objective evaluation is impossible. 
Nevertheless, the interrelationship between the spatial distribution of estimated velocity and the spatial 
contexts of vehicles in the scene could help to infer the quality of velocity estimation to some extent. 
Generally, the estimated velocities are representative for the vehicles travelling on this section of the urban 
road and correspond well to the speed limit. According to empirical analysis, there are some anomalies 
among the moving vehicles on the road margins which were detected as travelling with distinctly too fast 
velocities (>50km/h) in the result obtained using method I (Figure 47(b)). Although these vehicles were 
leaving the parking strips for the main lanes of roads or traveling densely behind another, they were not 
possible to travel with such high velocities at that time. The velocity estimates derived via method II (Figure 
48(b)) showed more reasonable values ((<= 40km/h)) for these vehicles. Additionally, the moving vehicles 
on the normal urban road (across the bottom part) using method I show the mean velocity being a bit lower 
than the moderate tempo limit and the maximum of the velocity range being far beyond the allowed in urban 
areas such as Toronto. For dataset Enschede there is a reference which can be used to evaluate the velocity 
estimates more objectively. The quantitative evaluation results presented in Table 11 has further indicated the 
similar relationships of velocity estimation accuracy between two vehicle extraction methods. The residues 
of velocity estimates by using method I are generally larger than that of method II by averagely 3%, which is 
rooted in the better ability of method II in delineating the vehicles’ geometry. Based on empirical and 
quantitative evaluations concerning velocity estimation, it can be summarized that the vehicle extraction 
method I tends to reduce the estimation accuracy and under/over-estimate the velocity compared to method 
II. Furthermore, the variation of point density of datasets appears to have an inconsistent influence on the 
estimation accuracy. When the point density becomes low, the difference of the estimation accuracy between 
two methods would become sufficiently large needed to be considered. However, this difference would be 
reduced to such level (<10%) that can be neglected when the point density becomes larger than 7 points/m2

6.2 Performance analysis for motion detector 

6.2.1 Analytic performance analysis  

To analyze the quality and performance of the vehicle motion detection approach a theoretic analysis 
method is firstly applied. There are two hypotheses for the vehicle motion state used in our applications – 
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stationary and moving vehicles. The probability density functions (PDFs) of two motion states regarding 
vehicle shape parameters are to be inferred and summarized as below: 
 
 Stationary vehicles 

For all stationary targets the values of sensed aspect ratio Ars and shearing angle SA  are assumed to be 
statistically distributed around the expectation value E [Ars] = 2   E [ SA ] = 90°. Using the underlying 
assumption of two dimensional jointly Gaussian-distributed data for the space of shape parameters, the joint 
probability density function (PDF) fs (Ar, SA ) of the sensed aspect ratio and the shearing angle of a detected 
stationary vehicle is given by bivariate normal distribution as 
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coefficient between Ars  and SA  1 , 2  and 1 , 2 are mean values and standard deviations of Ars  and 

SA , respectively. 
 
For airborne LiDAR data of medium resolution and above the jointly Gaussian assumption can be easily 
validated for traffic in most urban areas (Yao et al., 2008). Figure 50(a) shows a typical example of the PDF 
fs (Ars, SA ) assuming a point density of 4.5 points/m2. Figure 50(a) also illustrates the typical behavior of 
the stationary class that large fluctuations of the aspect ratio are associated with small-sized vehicles while 
the shearing angle variations are drastically reduced for large sized vehicles.  
 
Based on this PDF of the hypothesis for the stationary vehicle class a constant false alarm rate (CFAR) 
detector can be designed that groups all extracted vehicle instances into two classes. Class I, called 
‘stationary vehicle only’, should contain all vehicle objects being motionless while scanning-over. Class II, 
called ‘non-stationary vehicle’, and should contain all vehicles apart from class I. This second class includes 
objects that contain moving vehicles but also some sort of outliers. Since the PDF of this second class is at 
the moment not known, it is assumed to be equally distributed over a large area. With this assumption a 
likelihood ratio can be computed. Classification is done by comparing that likelihood ratio with thresholds α. 
This approach provides curves of separation between the two classes, which are actually isolines on fs(Ars,

SA ). The chosen curve of separation determines the probability of false alarm (Pfa); often also referred to as 
‘false alarm rate’ (FAR). It is simply the integral of fs(Ars, SA ) over the area where fs(Ars, SA ) < α. 
 
 Moving vehicles 

The moving target shape is assumed to have a peak value of SA  other than 90° and a dispersion of the 
aspect ratio Ars from 2 to more or less. By considering various groups of moving vehicles appearing in 
scenario of urban traffic and assuming them to equivalently move along all the possible directions (usually 
consists of two mutually perpendicular directions due to the structure of road network in urban areas) with 
representative velocities (e.g. 60 km/h), a new class describing the superposition of shape deformation 
effects of multiple moving vehicles, called ‘moving vehicle’ can be introduced here. Unfortunately, a PDF fm 
(Ars, SA ) describing the probability density of this class cannot be explicitly determined. An approximation 
for fm (Ars, SA ) valid for single-pass ALS data, can be given by the kernel density estimation technique based 
on a large amount of samples. Approximated PDF of the moving vehicle class is estimated based on an 
extensive range of real-life datasets acquired in large urban areas. It is stated that it provides sufficient 
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representativeness from the viewpoint of statistical sampling and can generalize the analytical description 
ability for the alternative hypothesis within the framework of vehicle motion classification. 
 
 Approximation for the PDF fm (Ars, SA ) of moving vehicle class 

Kernel density estimation (or Parzen window method) is a non-parametric way of estimating the probability 
density function of random variables. Given some data about a sample of a population, kernel density 
estimation makes it possible to extrapolate the data to the entire population. For a bivariate random sample 
X1, X2, … Xn drawn from a density f of moving vehicle samples, the kernel density estimate for PDF of 
moving class fm (Ars, SA ) is defined by 
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numerical simulation based on the motion artifacts model (Equations (27) and (29)) by adapting relevant 
parameters to urban traffic scenarios. For instance, the velocity of vehicle v takes values drawn from a 
population obeying a normal distribution with the mean of 60km/h(stochastic sampling), and the intersection 
angle SA  take values obeying a discrete uniform distribution as vehicles could be moving in any directions 
in a broad sense when attempting to derive a general PDF. The good agreement of theoretic PDF and real 
cases can be verified through this estimation process. The choice of K is not crucial: we take 
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This latter parameterization allows kernels to have an arbitrary orientation whereas the former only allows 
kernels which are oriented to the coordinate axes. Here, the bandwidth is determined by the rule of thumb 
bandwidth (Bowman and Azzalini, 1997), the number of samples n is set to 2000.  
 
Once the probability density functions of both hypotheses (stationary and moving vehicle) are given in 
analytic form, applying a CFAR detector of the given design for detecting moving vehicles is a natural way 
to make a binary decision. Upon the estimation of approximated PDF ˆ

m
f  and using this approximation as 

an alternative hypothesis, m s
ˆ ( , )

SA
f Ar   allows to define a likelihood ratio to which a threshold can be 

applied. These lines are not isolines of fc(Ars, SA ) anymore, but they separate the class ‘moving vehicle’ 
better from the class ‘stationary vehicle only’, which can also be verified by the ROC curves of two applied 
motion detectors in Figure 51. Figure 50(b) shows an example of the shape of fm(Ars, SA ) together with 
fm(Ars, SA ) and a corresponding curve of separation. 
 
However, the classification scheme based on the joint PDFs of two hypotheses can be potentially performed 
in optimal cases when the sensed aspect ratio and shearing angle of a possible moving target in scanned 
scenes is uniformly distributed. This does not hold for many military applications, where vehicles are not 
bound to roads and can move in any arbitrary direction. In case of public traffic in urban areas, where 
a-priori restrictions on velocity and movement direction of vehicles is available to a certain degree 
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depending on the topology of road network and tempo limit on that road section, the use of a CFAR motion 
detector is assumed to perform better. It is possible to derive the expectation values for velocity and moving 
direction of vehicles using ancillary data such as GIS and road database. Furthermore, this a-prior 
information can be integrated into the estimation of the empirical PDF for the alternative hypothesis of 
moving vehicle prior to applying the CFAR detector. The incorporation of a-priori information into the 
vehicle detector improves the amount of detected targets and also reduces the number of false alarms. 

 
(a)            (b) 

Figure 50: PDF for vehicles of two motion states, (a) Theoretical PDF fs(Ars, SA ) of sensed aspect ratio and shearing 

angle with E [Ars] = 2 and E [ SA ] = 90°. The point density is set to 4 points/m2, (b) approximation of theoretical PDF 

of fm (Ars, SA ) and its position relative to the hypotheses fs (Ars, SA ). The dashed lines are examples for curves of 

separation. SA  is normalized into the acute angle range (<=90°) for simplicity 

 

If the probability density functions of both the Null-hypothesis (stationary vehicle) and the alternative 
hypothesis are given in analytic form, Receiver Operating Characteristic (ROC) curves can be calculated 
analytically for every set of parameters. By that, the performance of the detector can be estimated and 
assessed for all traffic situations. As shown in this section, an analytical description of the Null-hypothesis 
exists, if homogeneous distribution of vehicle size can be assumed (c.f. Equation (61)). Unfortunately, only 
approximations for the PDF fm(Ars, SA ) corresponding to the alternative hypothesis are available up to now 

(c.f. Equation (62)), which are obtained from the viewpoint of statistical sampling theory. Thus, the use of 
analytical descriptions for the alternative hypothesis is to some extent applicable for this study. With 
preliminary knowledge of the alternative hypothesis the performance of the system for motion can be 
quasi-fully described, as not only the probability of detection can be accurately estimated but also the 
probability of false alarms remains known. 
 
To evaluate the performance of the motion detector based on analyzing theoretic PDFs in the 2D Euclidean 
feature space spanned by two shape parameters, the threshold is varied and the probability of motion 
detection and probability of false alarm are determined for each step of this variation, finally resulting in 
ROC curves. Figure 51 show the theoretic ROC curve of the motion detector derived based on two estimated 
analytic PDFs for motion detection. For motion detection using joint PDFs of two vehicle classes, the risk of 
falsely detecting an outlier is reduced and the probability of false alarms can be decreased as well compared 
to using the PDF of the class of stationary vehicle only to do the separation. Nevertheless, the nonlinear 
variability of vehicle shape features defined for resolving the motion state still dominate characteristics of 



102          6. Discussion and performance analysis 

the feature space used for the classification where the large and irregular overlapped area between two 
hypotheses leads to severe difficulties in distinguishing between moving and stationary vehicle classes. The 
ROC curve obtained in this way give us an impression that common classification method based on 
analyzing the likelihood ratio of moving class to stationary class using the Euclidean distance metric could 
not yield promising and reliable results towards the accurate distinction of vehicle motion states, despite that 
it is only limited to a binary classification task. 

 
Figure 51: ROC curves of a CFAR- motion detector based on analyzing one PDF of stationary class and joint PDFs of 

two motion classes, respectively 

6.2.2 Experimental performance analysis  

To evaluate the quality of the vehicle motion detector (since binary classifier is actually a detector) in a 
numerical way, one can implement a Lie group distance based motion detector based on simulating LiDAR 
vehicles points, whose outputs should be ROC curves for the detection of moving vehicle class. For each 
simulation, a set of 300 simulated instances of vehicle points consisting of 150 stationary and 150 moving 
vehicles whose velocity are sampled using stochastic technique (Monte Carlo simulation) from a normally 
distributed population controlled by the tempo limit in urban areas are generated as experimental dataset to 
which the motion classification strategy is applied. By varying the thresholds, detection rates and false alarm 
rates are calculated from motion classification results, respectively, and further delivered to yielding ROC 
curves. This simulator can be parameterized in such a way that acquisition conditions and configurations of 
simulated LiDAR points of vehicles such as the point density and the moving direction of vehicle relative to 
the sensor flight path can be flexibly adjusted according to user’s settings. Hence, the influences of varying 
characteristics of LiDAR data on the performance of vehicle motion detection can be quantified. 
Configuration for LiDAR data simulation is referred to Table 12 which is one of typical sensor and flight 
configurations used for city mapping tasks using airborne LiDAR. 
 
To evaluate the performance of the detector, the threshold is varied and the probability of detection and 
probability of false alarm are determined for each step of this variation, finally resulting in ROC curves. 
Figure 52 show the ROC curves of the motion detector for different point densities of vehicle points (Figure 
52(a)) and for different relative moving directions (Figure 52(b)). The comparison of the detector with 
respect to data characteristics and vehicle behaviors shows a clear advantage for the one using data of high 
point density. Especially in bad detection scenarios the improvements tend to be larger. It is easy to 
understand that more detailed information of the vehicle shape can be preserved for accurate classification. 
Datasets whose point density is less than 4points/m2 can hardly provide reliable results. As shown in Figure 
52(b), that tends to tell us that the shearing effect of vehicles is more robust than the shape stretching effect 
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of vehicles with respect to distinguishing motion states, as the shape deformation of vehicles moving in the 
intersection angle v  of ca. 60° is dominated by the shearing effect (maximum of the 

SA
 occurs when 

v  60°) while elsewhere it is more or less dominated by the stretching effect (as indicated in the 
quantification of motion effects in Section 3.3.1.2). The inherent shortcomings of vehicle’s original aspect 
ratio Ar that cannot be accurately determined and is sensitive to noise account for relative poor performance 
of the motion detector in such case that the shape deformation of vehicles is dominated by the stretching 
effect. 
 
Figure 53 illustrates the detection probability using the proposed binary Lie classifier for motion detection (a) 
over different vehicle velocities for certain vehicle sizes as well as (b) for different relative moving direction, 
both with fixed false alarm rate. As can be seen, for high velocities and large vehicles (equaling to high point 
density) the proposed motion detector delivers generally better results. The reason for this behavior is that 
the motion detector purely relies on the shape information, i.e. for data of low point density the detection is 
strongly influenced by noise or shape ambiguity, which leads to the significant decrease in performance. In 
contrast, high velocities evoke more significant motion artifacts effect deviating from normal vehicle 
structures as assumed, so that, feature values with more distinguishing ability are delivered to detecting a 
moving vehicle. For moving vehicles with different intersection angles v  and yet the same point density, 
the best performance of motion detection is found to be depending on the vehicle velocity. For instance, the 
detection rate of the best case that vehicles move in direction of v =30° at high speed (e.g. 120 km/h) is 
almost improved by 15% compared to the worst case that vehicles move in along-track ( v =90°), where this 
improvement is likely to disappear if the velocity has decreased to ca.60 km/h. It could be traced back to the 
fact that the shearing effect of vehicle shape artifacts obtained under airborne LiDAR scanning mechanism 
is maximized towards the along track direction as the velocity of moving vehicles is approaching the flying 
velocity of the sensor platform. 

   

(a)            (b) 
Figure 52: ROC curves of the motion detector using the Lie group metric (a) for point densities of (from innermost to 

outermost) − 2 points/m2, 4 points/m2, 7 points/m2, and 10 points/m2, (b) for different relative moving directions of 

vehicles (from outermost to innermost: v = 0 , v = 30  v = 90 , and v = 60 ). Here, the point density is fixed at 

4 points/m2 

v  
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    (a)           (b) 

Figure 53: Numerical Detection Characterization: detection probabilities for given fixed false alarm rate (10e–2): (a) 

results calculated for varying vehicle sizes (i.e. point density), (b) results calculated for varying relative moving 

directions; Here, the point density is fixed at 4 points/m2

6.3 Accuracy prediction for velocity estimation 

Finally, to demonstrate the quality of the velocity estimation for real-life scenarios and enable to deliver a 
valuable and quantitative guidance on the planning of future flight campaigns for airborne LiDAR data 
acquisition towards traffic analysis, true data of road networks in urban areas are chosen to undergo 
simulated experiments on the prediction of velocity estimation accuracy. It is useful for exploiting boundary 
conditions of applying the proposed strategy in real airborne LiDAR campaigns for traffic analysis. 
Generally, it can be stated that this experiment is designed by considering following points (Yao et al., 
2010c):  

 validate the feasibility and repeatability of velocity estimation results  
 verify the velocity estimation scheme which can be used to provide rational estimates with sufficient 

accuracy in wide range of datasets acquired over urban areas 
 show the potential of velocity accuracy estimator developed in this work that it would have a great 

impact on guiding and assisting the flight planning 

Flight height h 420 m 

Pulse repetition rate PRR 110 kHz 

Sensor velocity vL 120 km/h 

Scan angle s  60° 

Point density PD 4.5 points/m2 

Swath Sw 450 m 

View mode  Nadir 

Scan pattern  parallel line 

Table 12: Configuration parameters for airborne LiDAR acquisition used in the simulation 

The standard deviation of the estimated velocity v  is simulated for two road network sections north of 
Munich which are supposed to be able to characterize most of typical scenarios in urban areas. In this area, 
several main roads and large express roads are situated which are highly frequented during rush hours. Four 

4 points /m2

2 points /m2 

7 points /m2

10 points /m2

v =30°
v =60°

 

v =90°
v =0° 
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velocity estimators are applied to this test: (i) shearing-based estimator, (ii) stretching-based estimator, (iii) 
integrated shape deformation based estimator and joint estimator, (iv) joint estimation of velocity and 
moving direction. For each test site, two general schemes are assumed to exist for velocity estimates:  
 

(1) The moving direction of vehicle relative to sensor flight path is known 
(2) The moving direction of vehicle relative to sensor flight path is unknown 

 

   
(a)           (b) 

   
(c)          (d) 

Figure 54: Simulation of standard deviation of velocity estimates v on two road networks north of Munich using the 

velocity estimation schemes: (a) and (b) show the estimation accuracy for the first road network in % of the absolute 

velocity using the first and second schemes, respectively, (c) and (d) show the estimation accuracy for the second road 

network in % of the absolute velocity using the first and the second scheme, respectively 

 

As three methods within the first scheme complement each other in terms of performance we finally 
combined the estimators depending on the relative orientation between road and flight path to get optimal 
results. For every relative orientation such the estimator that provides the best results is chosen. That means 
that the maximum of estimated velocity accuracies is assumed to be selected as the accuracy value for 
velocity estimate of that road location. Real flying and sensor parameters using Riegl LMSQ560 LiDAR 

Flight 
heading 
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sensor have been used in this simulation and an average speed of 120 km/h was assumed (configuration 
specifications can be found in Table 12). The average velocity of moving vehicles on the roads is set to 60 
km/h. The error measures for the shearing angle and intersection angle of moving vehicles can be assessed 
empirically from shape parameterization , for our case,  Ars =  SA

= 2°, v = 2°. The orientation of the 

roads relative to the planned flying path and the resulting v  values obtained by combining the estimators 

in the first scheme are shown in Figure 54(a) and (c), while the resulting values v  using second scheme 

for the same sites are shown in Figure 54(b) and (d). v is given in % of the absolute velocity as relative 

accuracy.  

   
(a)          (b) 

Figure 55: Indication of velocity estimation methods used for the two road networks under the first velocity estimation 

scheme: (a) indicates which estimation method is chosen in which parts of the first road network, (b) indicates which 

estimation method is chosen in which parts of the second road network. 

 
With the presented algorithm velocities can be estimated with an accuracy better than 10% for ca. 80% of 
the investigated road networks. Figure 55 indicates which estimator is chosen in which parts of the road 
network. It shows that the across-track shearing-based estimator (method I) provides best results for large 
parts of the road network. The along-track stretching-based (method II) / combined (method III) estimator 
outperforms the across-track shearing-based approach only in areas where the road is extended nearly in the 
along-track direction (i.e. v  25°), e.g. in the second test site, Dachauer street (in the bottom-left part) 
requires the method III to be used for velocity estimation, whereas one part of Ackermann street (curved, in 
the top-right part) requires the method II to be performed. Moreover, in most parts of the road networks, the 
accuracy of velocity estimation using the first scheme is generally higher than that obtained using the second 
scheme, especially when vehicles move along a direction which is close to the across-track. This is due to 
the fact that the joint estimation of velocity and moving direction angle could incorporate additional error 
sources caused by the unknown relative moving direction of vehicles to sensor flight path, leading to an 
accumulative error for final velocity estimates. 

 
 

Method III

Method II

Method I
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7.  Conclusions and outlook 

The overall objective of this thesis was to develop and investigate a procedure for automatic extraction and 
motion estimation of vehicles from airborne LiDAR data with a focus on urban areas. It is assumed that the 
point spacing of datasets should be better than 1m. The dominant consideration in designing such a system 
that vehicles can be extracted with their motion states simultaneously is how to manipulate the nonlinearity 
and vulnerability of vehicle shape in ALS point cloud of urban scenes. In order to be able to extract vehicles 
with sufficient completeness and geometric accuracy the system builds on a comprehensive context-guided 
approach and explicit 3D handling of the object "vehicle" in the point cloud. The vehicle model integrates 
essential knowledge about geometric structures such as areas, planarity, elongatedness and vertical extension 
with abstracted knowledge about the contexts. Moreover, local context modeling can acquired links between 
a vehicle and the properties of immediately adjacent objects while the modeling of the global context can 
take the dependence of the shape and appearance of a vehicle on different scene structures in a large-scale 
environment in to account. 
 
Another feature of the presented approach is the development and application of a systematic scheme for 
motion detection and estimation of vehicles. The scheme is established based on the motion artifacts model 
which is introduced in this thesis as analytic functional relations between observed shape parameters and the 
velocity of vehicles. And criterion that characterizes whether the direction of an object motion is known or 
not divides the motion estimation method into two general categories. First, the motion direction is assumed 
to be derived in advance; and in the latter case, the motion direction is required to be estimated together with 
the velocity quantity. Provided that the criterion of the two categories can independently represent 
knowledge about moving direction of objects, the accuracy assessment based on the motion artifacts model 
allows to rate the confidence of velocity estimates for the object motion. Particularly in the treatment of 
complex scenes, the velocity estimation is of great importance according to their level of confidence, 
because it can be inclined to indicating the promising estimation method, thereby making the motion 
estimation more reliable and robust. 
 
The experiments are given and discussed to apply and validate the whole strategy to a variety of real-life 
scenarios. The usability of the proposed strategy has been successfully demonstrated with the extraction and 
motion estimation of vehicles in ALS data of urban areas. The fact that satisfactory results for both vehicle 
extraction and motion analysis can be achieved even in the case of very complex inner city areas also 
confirms the efficiency of the system. As difficulty exposed to the strategy, the poor or ambiguous geometric 
shape of scanned vehicles and their vague spatial relations to surroundings in the point cloud are identified, 
which could degrade the vehicle extraction results and accuracy of motion estimation. One of possible ways 
to remedy this problem is to perform the vehicle extraction module upon the non-vehicle areas in an iterative 
way. The extracted vehicle points could therefore serve as valuable approximate or a-prior knowledge for 
vehicle extraction in the next step. 
 
The implementation of the strategy for extraction and motion estimation of vehicles comprises the three 
stages: (1) contextual analysis, (2) extraction of vehicle objects, and (3) motion classification and velocity 
estimation. For each stage useful comments and considerations are summarized as follows 
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(1) The global and local background information is obtained by the contextual analysis, which is very 
important for the workflow of the vehicle extraction. The contextual analysis includes, on the one hand, 
the distinction of the global context areas between "areas with elevated road" and "areas without 
elevated road" for evoking the proper Route of vehicle extraction, and on the other hand, the extraction 
of local context objects to facilitate vehicle extraction by providing the RoI. Besides the accurate 
determination of ground surface, the exclusion of disturbing objects with similar spatial contexts such as 
low vegetations and traffic signs as well as the definition and modeling of knowledge about vehicles’ 
shape and positional properties plays a key role in the phase of vehicle extraction towards reduction of 
false alarms. 

(2) In the extraction of vehicle objects the goal are followed to extract most reliable parts in point clouds 
corresponding to the vehicle object with the help of the integrated usage of multiple kinds of information. 
To this end, on the one side, the extraction of ground surface that should construct most potential areas 
where most of vehicles should appear is applied prior to isolation of singe vehicles by morphological 
segmentation; on the other side, preliminary point sets of single vehicles are directly detected as local 
geometric modes from point clouds which are further delivered to a binary classification to acquire the 
semantic label. For more challenging scenes the two vehicle extraction are combined to generate an 
improved result especially in view of the completeness for those vehicles of dense placement. The 
experiments showed that the context-guided method is more likely to extract vehicles of dense 
placement such as in parking lots more completely whereas the OBPA method tends to be more capable 
of extracting vehicles with high geometric accuracy and complement the context-guided method by 
extracting vehicles on elevated roads. Vehicle extraction is built upon the pure geometric information of 
ALS data without utilizing and calibrating the laser reflection intensity, thereby giving us a great 
flexibility and extendibility in data handling. Forward-looking ALS data seem to be inappropriate for 
vehicle extraction due to the unstable point sampling and shadow effect, which can further hinder the 
motion analysis in the next step. 

(3) The motion classification process based on 3D shape categorization consists of two steps: (i) the 
parameterization and generation of vehicle shape description measures in view of motion artifacts model 
in ALS data, (ii) integrating them into a nonlinear classification framework working on the Lie group 
space. It could be stated that the classifier based on Lie group metric outperforms other common 
classification method working on the linear Euclidean space concerning distinguishing vehicle motion 
state, since the shape deformation measures defined towards the motion artifacts are of nonlinear 
essentiality to construct a heterogeneous feature space and can better be resolved by classifier working 
on manifold. The experiments also showed that the motion detection using the OBPA method for vehicle 
extraction can improve the performance of motion analysis compared to that using the context guided 
method; it is due to the fact that the OBPA method can extract vehicle objects with higher shape fidelity 
by handling point cloud directly instead of gridded data. However, despite of the lower percentage 
classification results of motion detection, the context guided method can extract more vehicles which 
can be classified as stationary, especially in areas where vehicle objects are concentrated such as parking 
lots, to provide more complete traffic information in view of monitoring applications. It can be found out 
by theoretic accuracy analysis and simulation study that point density of ALS data, vehicle velocity, 
moving direction of vehicles could have different impacts on the performance of motion detection. On 
the one hand, the denser the point cloud is and the faster vehicles move, the more accurately moving 
vehicles can be detected, on the other hand, neither vehicles moving along-track nor across-track can be 
detected with the largest probability. The velocity of moving vehicles is estimated by inverting the 
analytic model of motion artifacts. Last but not least, the accuracy of velocity estimates can be derived 
by exerting the error propagation law onto the inverted functional equations for the motion artifacts 
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model. It has been found that none of the velocity estimation methods can always guarantee the best 
quality for single vehicles under various observation conditions. The method by combing two motion 
components is most reliable method due to its generality to various circumstances, which could provide 
optimal results for a scanned scene at global level. The accuracy of velocity estimation seems to be 
proportional to the shape accuracy and point density of single vehicles. Moreover, the theoretic accuracy 
analysis of the motion artifacts model can be used to empirically predict the performance of velocity 
estimation using airborne LiDAR depending on the orientation of road networks, tempo limit and flight 
configurations, therefore enabling the optimal planning of the flight campaign in view of traffic 
monitoring applications.  

 
The research work of this thesis is driven by the basic idea that traffic-related information like traffic density 
and vehicle velocity could be directly derived relying on the so-called motion artifacts in single-path 
airborne laserscanning data. Our research work is focused on the design and realization of a traffic 
monitoring concept under LiDAR acquisition condition for city surveying and modeling tasks, which is able 
to provide the value-added product along with common products such as building models, DEM and canopy 
height models. Therefore, no extra expenses will be produced, even if the strategy would fail to extract 
adequate vehicles. The purpose of the vehicle extraction algorithm intends to automatically provide the data 
basis which can further be delivered to the step of motion classification and velocity estimation based on 
shape deformation (artifacts) analysis. 
 
In addition to possibilities for further development of the presented approach directly derived from the 
analysis of the results, such as improvement of the quality of vehicle extraction and motion analysis by 
introducing more advanced methods, there are some more general questions concerning the scientifically 
deep handling of this topic. Below are some selected open questions that can be taken up in future: 
 
 Most of airborne LiDAR systems can operate in different modes concerning data acquisition. One of the 

most important factors towards our application is scan pattern. The motion artifacts model is constructed 
based on the assumption that ALS data are scanned by linear pattern, which is nowadays the most widely 
used for scan pattern. All the experimental datasets used in this thesis were acquired by “parallel line” 
scan pattern. It remains as an open problem that whether the proposed strategy for vehicle motion 
analysis can be adapted to other scan patterns such as “zigzag”, “elliptic” and “burst line”, without loss of 
the generality and accuracy for motion detection and estimation. For elliptic scan pattern generated by 
palmer scan it is obvious that the presented motion artifacts model is not valid yet and needs to be revised 
according to the scanning trajectory of laser beam. However, data of palmer scanners are expected to 
show a more distinct artifacts effect for moving objects which could be used to improve the motion 
detection rate and velocity estimation accuracy.  

 New possibilities also arise due to diversity and advances in airborne LiDAR sensor technology. First, 
the full-waveform LiDAR has emerged as a standard instrument and it would be interesting to investigate 
the question of whether the analysis of the waveform information of laser echo signals can compensate 
for the lack of geometric information caused by partial occlusions to contribute to improving vehicle 
extraction beneath trees. Additionally, extracted vehicles with more complete point samplings are 
expected to yield more complete and accurate traffic dynamical information. Second, airborne LiDAR 
system which is simultaneously equipped by three (forward, nadir, backwards) scanners and can scan the 
scene with a constant time delay to form three LiDAR snapshots sampled along the temporal axis has 
recently emerged, one example can be found in Oude-Elberink and Vosselman, (2009) and Vosselman 
(2009). It is deserved to investigate the capability of such systems to detect moving objects and estimate 
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their velocities, since moving objects can be recorded at different positions which leads to a direct 
conclusion for motion. The correspondence between multiple instances of a vehicle in three datasets 
appears to be a challenging task for estimating their motion. Finally, for ALS systems of next generation, 
it is suggested that the scan pattern and trajectory are controllable and can be programmed in advance, so 
that the corridor mapping campaign can be realized for promoting traffic monitoring applications by 
focusing on roads of interest which is guided by maps. The motion sequence of the laser beam could be 
adaptively adjusted and optimized for extracting object motion in accordance with the orientation of local 
road networks and tempo limit. 

 Another potentially challenging task in future research remains in the quantification of qualitative and 
quantitative impacts of the geometric accuracy measure of vehicle extraction on the motion analysis. The 
establishment of the relationship between the shape preservation measure for extracted vehicles and the 
error measures for shape properties defined towards the motion artifacts is helpful to deepen the 
understanding of the performance of motion detection and estimation by specifying the error sources. 
Moreover, the normalized geometric accuracy for vehicle extraction is expected to serve as 
approximation for initial error values of shape deformation observations which are delivered to the error 
functions of the velocity estimator, therefore making the performance prediction of the motion analysis 
towards traffic monitoring in real-life urban scenarios more accurate and practical. 

The unsolved problems discussed here can be treated in future research to enhance the proposed strategy for 
deriving traffic-related information from ALS data. Summarizing the points mentioned above objectively, it 
can be stated that the airborne LiDAR using the presented approach is fairly competent towards the urban 
traffic analysis compared to other sensors. Extracted vehicles can enable us to extract semantic information 
about vehicles (i.e. for vehicle counts and traffic density analysis) as well as the motion state and dynamical 
parameters of vehicles (i.e. for deriving traffic flow information) without changing data acquisition 
configurations commonly used for city mapping. The use of airborne LiDAR for traffic monitoring is 
consequently justified by such a great superiority to other data sources that not only spatial but also temporal 
information about the scanned scene is simultaneously encoded and resolvable. 
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