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KurzfassungDas Ziel dieser Arbeit ist die Entwi
klung und Implementierung generis
her, vom Modellwis-sen weitgehend unabhängiger Lösungsstrategien zur texturierten 3D Rekonstruktion urbanerGebiete aus Videosequenzen. Sol
he Videosequenzen können sowohl mit einer Tagesli
ht- alsau
h Infrarotkamera aufgenommen werden; in unseren Anwendungen handelt es si
h über-wiegend um luftgetragene Aufnahmen. Die zahlrei
hen zivilen aber au
h militäris
hen An-wendungsfelder der 3D Ers
hlieÿung der Szene mit minimalem Aufwand verlangen von denzu entwi
kelnden Verfahren besondere Robustheit gegenüber Videosequenzen suboptimalerQualität und kritis
hen Sensorbewegungen. Au
h spielen ein eins
hätzbarer, parallelisier-barer Re
henaufwand und die Eignung der Verfahren, mit einem theoretis
h unendli
henDatenstrom annähernd s
hritthaltend fertig zu werden, eine wi
htige Rolle.In dieser Arbeit wird vorausgesetzt, dass eine Euklidis
he Rekonstruktion dur
h Kame-ramatrizen (Orientierungen) sowie eine dünne Punktwolke vorliegt. Die entwi
kelten Metho-den sind also in den Fors
hungsgebieten Rekonstruktion di
hter 3D Punktwolken aus Mehr-kamerasystemen sowie Kompression dieser Punktwolken in Dreie
ksvermas
hungen ange-siedelt.Um eine di
hte Punktwolke aus einem Bildverbund zu erhalten, müssen Korresponden-zen einer di
hten Menge der Pixel eines sogenannten Referenzframes in anderen Bildernwiedergefunden werden. Formeln zur s
hnellen Bere
hnung der vom Referenzframe in andereBilder projizierten Punkte sind unentbehrli
h; die s
hnellste Mögli
hkeit ist dur
h die Dis-paritätensu
he in epipolar rekti�zierten Bildern gegeben. Dana
h werden die Kostenfunktio-nen (au
h Datenkosten genannt) zur e�ektiven Su
he der Punktkorrespondenzen aggregiert.Da diese Datenkostenterme allein au
h bei Mehrkamerasystemen ni
ht ausrei
hen, um dieTiefenwerte in s
hwa
h texturierten Berei
hen sowie Berei
hen von Verde
kungen und si
hwiederholender Muster zu rekonstruieren, muss ein zusätzli
her Glattheitsterm eingeführtwerden, der si
h auf die Annahme stützt, dass die Tiefen eines überwiegenden Anteils derPixel ungefähr glei
h sind wie die Tiefen ihrer Na
hbarn. Da das Finden eines exakten Mini-mums einer Gesamtkostenfunktion, die aus einem Datenterm, einem 2D Glattheitsterm undeinem zusätzli
hen, zwe
ks Ausglei
hung von (insbesondere bei S
hrägsi
htaufnahmen typis-
hen) Diskretisierungsartefakten eingeführten Dreie
ksterm besteht, in der Praxis unmögli
hist, werden Approximationsverfahren angewandt. Die Verallgemeinerung des semiglobalenAlgorithmus auf Multi-view Systemen und die Benutzung sowie Evaluierung der Dreie
ksver-mas
hungen aus den bereits detektierten Punkten stellen den wissens
haftli
hen Hauptbeitragzum bildbasierten Teil der Funktionsbibliothek dar.Unter der Annahme, dass si
h die Gebäudeober�ä
hen anhand von Dreie
ksvermas
hun-gen zu texturierten Flä
hensegmenten aggregieren lassen, wurden im Rahmen dieser Dis-sertation zahlrei
he Verfahren zur Rekonstruktion der Ober�ä
hen aus Punktwolken unter-su
ht, weiterentwi
kelt und bewertet. Am robustesten gegenüber sehr variabler Punktdi
hte,Raus
hen und Ausreiÿern (weit von der Ober�ä
he entfernt liegende Punkte, die beispiel-sweise dur
h Spiegelungen, Verde
kungen und kleine bewegte Objekte entstehen) hat si
h



die auf L1-Splines basierender Algorithmus gezeigt, der den Hauptbeitrag des punktbasiertenTeils der Arbeit darstellt. Hier kann sowohl die Rekonstruktion einer skalaren Funktionals au
h der Übergang zu einer automatis
h parametrisierten 3D Ober�ä
he statt�nden.Im letzten S
hritt sol
her globalen Verfahren wird zu jedem Dreie
k der Vermas
hung einReferenzframe gewählt, in dem das Dreie
k vollständig si
htbar ist (Texturierung).Zur Visualisierung der Ergebnisse wurden zahlrei
he Datensätze getestet, die zum Teilanspru
hsvolle historis
he Gebäude darstellen, zum anderen Teil aber zerstörte Gebiete,deren genaue Rekonstruktion mit Hilfe modellbasierter Verfahren kaum mögli
h ist. Zurquantitativen Bewertung der Verfahren wurde für einen synthetis
hen und einen realen, miteiner sehr di
hten Laserpunktwolke als Ground Truth gegebenen Datensatz die Hausdor�-Distanz als Maÿ für Vollständigkeit und Korrektheit einbezogen.Im letzten Teil der Arbeit wird zusammenfassend auf die Stärken und S
hwä
hen dervorgestellten Verfahren eingegangen und mögli
he Ansätze zur Behebung dieser S
hwä
henwerden erläutert.Zusammenfassend wird aus der Arbeit ersi
htli
h, dass si
h das vorgestellte Konzeptzur qualitativ anspre
henden Rekonstruktion von Gebäuden und urbanem Gelände ausLuftvideos hervorragend eignet.



SummaryThe goal of this thesis is development and implementation of a generi
 pro
edure for tex-tured 3D re
onstru
tion of urban terrain from video sequen
es. These video sequen
es 
anbe re
orded by daylight or infrared 
ameras; in our appli
ations these 
ameras are mostlymounted onboard airborne sensor platforms. There are numerous 
ivil and military appli
a-tions of 3D re
onstru
tion from videos obtained from 
heap, miniaturized 
ameras withoutany other information, but the re
onstru
tion algorithms must be robust enough to pro
essvideo sequen
es of limited quality and 
ope with 
riti
al motions and s
enes. The paral-lelizable 
omputation 
osts, whi
h 
an be estimated, as well as adequa
y of re
onstru
tionpro
edures to keep step with a theoreti
ally endless data stream play an important role inour 
onsiderations.We assume in this work that an Eu
lidean Re
onstru
tion is given by a set of extrinsi
and intrinsi
 
amera parameters (orientations) 
orresponding to frames of the given videosequen
e as well as several 3D points. Two main dire
tions of resear
h will be obtaining dense3D point 
louds from multi-view systems and 
ompressing these point 
louds into triangularmeshes.To extra
t a dense point 
loud from an image sequen
e, one must be able to performmat
hing of a dense set of pixels within the so-
alled referen
e image of this sequen
e. Wederive fast equations for point proje
tion in other images and obtain initial information by
omparing intensities of proje
ted points (data terms). The fastest way to proje
t pointsis given by 
onsidering disparity values from epipolarly re
ti�ed image pairs. Alternatively,depth values 
an be used. In the next step of the mat
hing pro
ess, data 
ost aggregation is
arried out over all images. Unfortunately, even for multi-view systems, the data term aloneis not su�
ient for assigning 
orre
t depth values in areas of homogeneous 
olor distribution,repetitive patterns of texture, and near o

lusions, so a smoothness term, whi
h en
ouragesneighboring pixels to have similar depth values, must be introdu
ed. Computationally ef-�
ient methods must be applied for total energy minimization of a fun
tional 
onsisting ofthe data term, the 2D smoothness term and an additional triangulation-based smoothnessterm whose main task 
onsists of redu
ing dis
retization artifa
ts typi
al for slanted sur-fa
es by biasing depth values towards the triangular mesh from already available points.The generalization of a semi-global algorithm for energy minimization to the multi-
amerasystems as well as appli
ation and evaluation of triangular meshes from already dete
tedpoints represent the prin
ipal innovations of the image-based part of this thesis.A reasonable assumption that the surfa
e of buildings 
an be aggregated to polygonalmeshes motivated us to investigate, modify and evaluate numerous algorithms for shapere
onstru
tion from point 
louds. The best results with respe
t to varying point density,data noise and a 
onsiderable number of outliers (points far away from the surfa
e resulting,for instan
e, from re�e
tions, o

lusions or small moving obje
ts) were obtained with the
L1-spline-based pro
edure for geometri
 re
onstru
tion whi
h is the prin
ipal 
ontribution ofthe shape re
onstru
tion portion of our re
onstru
tion pipeline. This 
an in
lude either a



re
onstru
tion of a s
alar fun
tion representing a 2.5D surfa
e or a real 3D surfa
e in anautomati
ally generated parameter domain. The last step of all these methods 
onsists ofassigning to every polygon (triangle) in the resulting mesh a referen
e 
amera whi
h 
om-pletely observes it (texturing). Re
onstru
tion results from numerous data sets representing
omplex histori
al buildings as well as destroyed stru
tures, whi
h 
an hardly be modeledwith non-generi
 approa
hes, demonstrate the e�e
tiveness of our algorithms. As a measureof 
ompleteness and 
orre
tness for quantitative evaluation of algorithms on a syntheti
 dataset and a simple real data set with a dense laser point 
loud as ground truth, the Hausdor�distan
e was used.The last part of the dissertation summarizes the advantages and disadvantages of thealgorithms and introdu
es 
on
epts for future work for 
oping for remaining problems.It be
omes 
lear that the re
onstru
tion pro
edure presented in this work 
an be usedfor obtaining ex
ellent textured 3D models for buildings and surrounding terrain from aerialand UAV-videos.
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Chapter 1Introdu
tion1.1 Motivation, sensors and requirementsBe
ause of their ability to 
over large parts of the s
enery, aerial images have always beenan extraordinarily attra
tive tool to gain information. In the past de
ade, it has be
omeattra
tive to utilize unmanned aerial vehi
les (UAVs) be
ause of their low 
ost and easyuse. The appli
ation areas for videos 
aptured by UAV 
an vary from 
ivil engineeringand urban planning to surveillan
e, automati
 navigation, and defense resear
h. Althoughin the 
ourse of this work, external referen
es for sensor platforms are not required, thete
hni
al equipment of the miniaturized aerial vehi
les has experien
ed rapid progress inthe most re
ent 
ouple of years: histori
ally, UAVs were simple remotely piloted drones, butautonomous 
ontrol and 
apability to 
arry out pre-programmed �ight plans is in
reasinglybeing employed in UAVs. Figure 1.1 shows several unmanned sensor platforms used for dataa
quisition in our work.From the mathemati
al point of view, the appli
ations of these videos 
an be divided intoessentially two main 
ategories. On the one hand, the spatial depth is negligible for manyappli
ations, su
h as video stabilization, image-mosai
king, image-based 2D geo-referen
ing,dete
tion of moving obje
ts and annotation of spa
e-oriented information into the videosequen
e, see [121℄. Real-time algorithms play an indispensable role here be
ause potentialthreats and targets must be dete
ted in time to take a
tion. For these appli
ations, the(bije
tive) mapping from view to view 
an be des
ribed by a transformation of the plane, orthe so 
alled 2D homography, whi
h is given by a regular 3×3 matrix, and the 3D 
hara
terof s
enes only interferes in the results of the performan
e wherefore e�orts must be taken toex
lude its negative e�e
ts from 
onsideration (see Fig. 1.2).On the other hand, algorithms for 3D re
onstru
tion require �ights at relatively small al-titudes and with slowly �ying platforms. Although there are also quasi-3D methods, su
h asimage morphing des
ribed in [32℄, where, given an opti
al �ow fun
tion between two or moreimages, intermediate images 
an be rendered without expli
it 
omputation of the 3D stru
-ture of the s
enery, an a

urate 3D re
onstru
tion from a general 
on�guration of 
ameras
an be a
hieved only by obtaining stru
ture and motion followed by dense re
onstru
tion.However, be
ause of the need to open up the third dimension out of two-dimensionalimages, the algorithms for 3D re
onstru
tion are time-
onsuming, and, sin
e our area ofappli
ations always lies in the margin zone between 2D and 3D, they are less numeri
allystable. The lightweight equipment that su
h aerial vehi
les may 
arry and the lo
al insta-bility that 
hara
terizes the paths of these small vehi
les result in 
onsiderable un
ertaintyin re
onstru
tion and texturing of terrain. When external referen
es su
h as GPS are not



12 1.1. Motivation, sensors and requirementsavailable, the un
ertainty is larger still, be
ause the drift errors in 
amera position and ori-entation negatively in�uen
e the results. In addition, the quality of data a
quired by small,instable, unmanned sensors is usually mu
h worse than that of typi
al high-resolution aerialimages be
ause of interla
ing e�e
ts, lens distortions, motion blur and a rather low spatialresolution.
a. 
.b.

Figure 1.1: a. Piper 
up plane is able to 
arry onboard a unit 
onsisting of a daylight 
ameraand an infrared 
amera. Sin
e it 
an a
hieve a height of up to 100 meters and a velo
ityof up to 15m/s, it is suitable mainly for 2D appli
ations. b. The md4-quadro
opter is ableto store the video data onboard and perform automati
 �ights. Therefore the data 
an beevaluated after the mission is 
ompleted. 
. The m3d-UAV 
an be operated in hovering and
ruising modes.The majority of the 
urrent state-of-the-art obje
t re
onstru
tion methods �rst retrievesthe 
amera traje
tory and the obje
t 
ontours (given by sparse point 
louds) and thengenerates a dense re
onstru
tion with texturing. Although there are several possibilitiesfor visualization, for example, voxels, level-sets, depth maps and polygonal meshes (seeFig. 1.3), we de
ided to represent our obje
ts by triangular meshes sin
e they provide amore 
omfortable way for many relevant appli
ations, su
h as visibility 
al
ulation. Thisis important for automati
 navigation while textured models are important for visual im-pression as well as mission planning to ease user's orientation in the unknown terrain. Theother three possibilities will either be mentioned in Chapter 3 (related work) or or will serveas intermediate results in the 
ourse of this work. In urban areas, an additional 
hallengeis 
reated by the need for repla
ement of traditional 2.5D "terrain skins" (representationsof height as a univalent fun
tion of latitude and longitude) by a fully 3D terrain represen-tation with multivalent height (verti
al walls, bal
onies, overhanging roofs et
.). In manyappli
ations, model generation must be performed in a reasonable time, whi
h justi�es us toprefer � sometimes � one algorithm be
ause it is faster than another algorithm, even thoughits performan
e is slightly worse. Moreover, we will 
lassify our algorithms into lo
al, or
lose-to-real-time ones, i. e. those that 
an pro
ess the video sequen
e either frame by frameor using "short" sub-sequen
es, and global ones that 
an be applied only after the whole se-quen
e has been 
aptured and pro
essed by lo
al algorithms. Appli
ation of global methodsfor shape-re
onstru
tion on 3D point sets obtained from lo
al methods makes up the mostimportant s
ienti�
 
ontribution of our work.
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Figure 1.2: Examples of 2D appli
ations: Top left: In almost-planar s
enes, dete
tion ofmoving obje
ts 
an reliably be performed by means of homographies. In urban s
enes, the3D 
hara
ter of the terrain 
auses parallaxes whi
h are the main reason for false alarms(e. g. the 
hur
h tower top right). These false alarms 
an be su

essfully eliminated if thevideo stream is geo-referen
ed onto the orthophoto (bottom, see also [121℄). In this 
ase, itis also possible to estimate the velo
ities and heading dire
tions of moving obje
ts.
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onstru
tion pipeline and organization of this work

Figure 1.3: Four possibilities for s
ene (bla
k 
urve) representation: Voxel grid (top left),level-sets (top right), a triangular mesh, whi
h is the desired output of our work (bottomleft) and a depth-map representation (bottom right) (Fig. 
ourtesy of C. Stre
ha).1.2 Re
onstru
tion pipeline and organization of this workAs des
ribed in the previous se
tion, our goal is to obtain a textured surfa
e from a videosequen
e. We des
ribe in the two following subse
tions the outline of the re
onstru
tionpro
edure and the organization of this work.1.2.1 Re
onstru
tion pipelineOne popular framework for 3D re
onstru
tion from video sequen
es in a reasonable time,possibly proportional to the speed of video rendering, 
onsists of three main steps 1) obtain-ing 
amera poses and 3D points by means of dete
ting and tra
king 
hara
teristi
 points,2) 
reating dense 3D point 
louds from several (referen
e) images, 3) geometri
 model gen-eration and texturing (see Alg. 1.1)The �rst step will not be in the fo
us of this thesis. For the main referen
es aboutmethods needed to obtain the 
amera traje
tory and a sparse point 
loud from (
alibratedor un
alibrated) image sequen
es, we refer to [9, 22, 105℄. The se
ond step in
ludes image-based methods and will be performed in
rementally for several referen
e frames. Togetherwith Step 3.1 of lo
al tessellations, it has a 
on
ept of a real-time oriented model generation.The main fun
tion of Step 2.1 � sparse tra
king and triangulation � 
onsists of regularizingthe density of points (a pro
ess also 
alled enri
hing) sin
e the original point 
loud hasextremely low density in untextured regions. A 
oarse visibility information 
an be gener-ated by a triangular mesh from point sets. To improve and further enhan
e this visibilityinformation, Step 2.2 is applied. The task of this dense re
onstru
tion module is to to pro-vide exa
t (apart from dis
retization errors) depth values for every pixel in every (referen
e)image. Lo
al tessellations are needed if there is no time to apply a global method for post-pro
essing. In this 
ase, the re
onstru
tion terminates after Step 3.1. Otherwise, the wholeavailable information � point sets, 
amera matri
es and visibility information � is used inglobal approa
hes, whi
h make up Step 3.2 of our pipeline. This step 
onsists of retrieving
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tion 15Input: video sequen
eStep 1: Relative orientation % see [9, 22, 105℄Step 2 Image-based re
onstru
tionStep 2.1: Sparse tra
king and triangulation % see Se
. 4.4Step 2.2: Dense re
onstru
tion % see Se
. 4.5Step 3: Shape re
onstru
tionStep 3.1: Lo
al tessellations % see Se
. 5.1Step 3.2: Global surf. extra
tion and texturing % Global approa
h, see e. g. Se
. 5.2Output: triangular meshAlgorithm 1.1: Three main steps of the re
onstru
tion pipeline.triangulated surfa
es, (optional) mesh manipulation and texturing triangles that make upthe mesh.1.2.2 Organization of this workAs indi
ated in Alg. 1.1, we 
over the image-based methods and those for shape re
onstru
-tion in Chapters 4 and 5, respe
tively. These steps require quite di�erent te
hnologies. Onthe one hand, during enri
hing, information from video frames, and, 
onsequently image-pro
essing methods will be used. On the other hand, the stage of post-pro
essing presup-poses appli
ation of shape re
onstru
tion methods, su
h that 
olor or intensity informationwill not be 
onsidered before texturing. The related work, pre
eding these se
tions willbe grouped into an image-based Se
. 3.1 and a point-based Se
. 3.2, followed by a shortSe
. 3.3, whi
h des
ribes several already existing re
onstru
tion pro
edures. For reasons of
ompleteness, Chapter 2 will show the most important 
on
epts for point mat
hing andshape re
onstru
tion. The evaluation of the re
onstru
tion algorithms will be demonstratedfor several data sets in Chapter 6. Finally, 
on
lusions and dire
tions of future resear
h aregiven in Chapter 7.1.3 Main 
ontributionsSeveral new ideas will be developed in this work.1. Most state-of-the-art approa
hes do not 
onsider points already re
onstru
ted duringStep 1 of the re
onstru
tion pipeline in the 
ourse of 
omputation of depth maps.However, these points 
an propagate the depth information to neighboring pixels; asa 
onsequen
e, lo
al triangular networks, also 
alled tessellations, are used in thiswork. The starting point is usually the Delaunay triangulation of points in the im-ages. These triangles do not always 
oin
ide, not even approximately, with the obje
tsurfa
e. Therefore, we introdu
e novel ideas to evaluate the triangles as 
onsistentand in
onsistent with the surfa
e, to try to 
orre
t the depth values of the in
onsis-tent triangles using 
olor information and to support the pixel 
osts to be low at thedisparity values given by triangles 
onsistent with the surfa
e. A triangulation-basedsmoothness term will be the topi
 of Se
. 4.5 while the ne
essary theoreti
 ba
kgroundis provided in Se
. 4.1 and Se
. 4.3.
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ontributions2. Applying non-lo
al algorithms for multi-view 
on�gurations and not for stereo imagepairs has be
ome attra
tive only in the re
ent years. A relatively fast and easily-implementable approa
h of semi-global optimization was �rst introdu
ed by Hirs
h-müller in [67℄ for re
ti�ed image pairs. Few generalizations of this approa
h exist,like for example for the 
ase of three 
ameras in a spe
ial trino
ular 
on�guration[62℄. The prin
ipal innovation of our work, des
ribed in Se
. 4.5.3, is to apply thisalgorithm for an arbitrary number of not ne
essarily re
ti�ed images after a lo
alapproa
h, supported by triangular meshes, assigns a 
ost value to every pixel and everydepth label. An important 
ontribution 
on
erns the automati
 
hoi
e of smoothnessparameters (Se
. 4.5.4).3. Point 
louds re
onstru
ted by passive sensors with small, un
alibrated 
ameras oftenhave rather dramati
 negative properties of varying density, Gaussian noise and out-liers (points far away from the surfa
e, whi
h 
an result, for example, from shadows,re�e
tions and moving obje
ts). A broad, detailed analysis of the performan
e of meth-ods for shape re
onstru
tion applied on these point 
louds has, to our knowledge, notyet been 
arried out. It will thus be important to investigate how the state-of-the-artmethods for shape re
onstru
tion � being applied on the original and enri
hed point
loud � 
an 
ope with the negative properties mentioned above. Se
tion 3.2, dedi-
ated to already existing methods of surfa
e re
onstru
tion, is therefore 
overed witha higher level of detail. We will see that the L1-splines-based pro
edure of Se
. 5.2,whi
h represents the most important 
ontribution of this work, provides the most a
-
urate re
onstru
tion. The high 
omputing time of this pro
edure 
an be explained inpart by some te
hni
al limitations of the 
urrent implementation and in part be
ause
omputation of an L1-spline requires solving a linear program. In Chapter 7, we willdis
uss how the 
omputing time 
an be redu
ed.Beside these three main 
ontributions, we also 
are about1. Fast and point proje
tion equations that allow simultaneous pro
essing of large pointsets. A 
ompa
t 
losed-form representation of depth and disparity values as well as3D points is given in Se
. 4.1.2. Sparse tra
king with the sear
h spa
e for 
orresponden
es redu
ed to a line segmentbe
ause we are given 
amera matri
es and disparity ranges from the already availablepoints. These points also provide initial values for two iterative algorithms, namelyepipolar and simultaneous tra
king, des
ribed in Se
. 4.4.2. The 
ost fun
tion andminimization pro
edure are then similar to the already existing methods of [94℄.3. Bino
ular stereo re
onstru
tion, sin
e there is a large amount of software with di�erent
on
eptional advantages available in the Internet. Sin
e we must exploit the redundantinformation from many images, the algorithm ofmedian-depth maps was developed andis des
ribed in Se
. 4.5.2.4. Redu
ing and homogenizing the number of triangle verti
es in the images by applyingrestri
ted top-down quadtree triangulations results in surfa
es without 
ra
ks. Thistopi
, des
ribed in Se
. 5.1.1, is an essential step to prepare the shape re
onstru
tion ontriangular grids, whi
h have 
ertain advantages 
ompared with tensor-produ
t surfa
es
onsidered in Se
. 3.2.4 and 5.2.1.5. In
remental re
onstru
tion, whi
h ideally must be 
lose to real time and whi
h 
an be
arried out without 
omputationally 
hallenging iterative or non-lo
al methods. Theevaluation of triangles is performed by a lo
al method (LIFT, see [22℄ and Se
. 5.1.2)and 
an be in
rementally updated.
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tion 171.4 Some notationBesides elementary knowledge of linear algebra and numeri
al analysis, the reader of thisdissertation is presumed to have basi
 knowledge of 
omputer vision. For detailed 
lari�-
ation of terms homography, fundamental matrix, et
. we refer to the book due to Hartleyand Zisserman, [61℄. The most important parameters whi
h 
an be found in more than one
hapter of this work are in
luded in the list below:x,y,p,X points
X point list
π plane in spa
e, given by a 1× 4 ve
tor
I images
P 
amera matri
es
d/j depth value / dis
rete depth or disparity label
D depth or disparity map
T triangle (a triple of integer numbers)
U ,V ,W lo
al bary
entri
 
oordinates of the triangle
T triangular mesh
F surfa
en normal ve
tor
·x, ·y, ·u·v et
. partial derivatives ∂ · /∂x et
.
c, E,J 
ost, energy fun
tion, Ja
obian (matrix)
‖ · ‖p Lp ve
tor norm ‖x‖p = (

∑

i |x|
p
i )

1/p, p = 2 if nothing else is stateddst Eu
lidean distan
e fun
tion, dst(x,y) = ‖x− y‖
c+/c− max(c, 0)/max(−c, 0)

(·)T /(·)−1 matrix transpose / inverse
0w, Iw zero-ve
tor of length w, w × w identity matrix
U U(a) = 1 if a is true and 0 otherwiseRemarks: Frames of a video sequen
e taken at time k will be denoted by Ik and 
orre-sponding 
amera matri
es by Pk.Generally, we denote 2D and 3D points and ve
tors by bold variables (x,y,X). Lettersin lower 
ase (e. g. x,y) will usually denote points/pixels in images; upper 
ase is reserved� espe
ially if ambiguous representations are possible � for 3D points. Also ·̌ stands forhomogeneous 
oordinates and ≃ denotes equality up-to-s
ale.We will denote in
iden
e relations with "∈". For example, x ∈ I means that x lieswithin the re
tangular domain of image I and x ∈ T means that x lies in the triangle.The 
onstraint on bary
entri
 
oordinates of x is in this latter 
ase U + V + W = 1 and

U ,V ,W > 0. The inequalities in terms of x, y (
oordinates of x) from the height and widthof I in the �rst, 
oordinates of verti
es of T in the se
ond 
ase 
an be easily established.
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Chapter 2Theoreti
al ba
kgroundThis 
hapter summarizes the most important basi
s and tools for 
omputer vision andshape re
onstru
tion. Image pair re
ti�
ation to epipolar geometry is an important toolto a

elerate 
omputations and also to make window-based mat
hing algorithms invariantagainst rotation. Therefore we will 
onsider this topi
 separately in Se
. 2.1. Then, two mainideas of mat
hing � the photo-
onsisten
y terms (Se
. 2.2) and the smoothness assumptions(Se
. 2.3) � are presented. Finally, a short introdu
tion to approximation of surfa
es fromtriangular irregular networks (TINs) is given in Se
. 2.4.2.1 Image re
ti�
ationImage re
ti�
ation is an elegant way to perform a sear
h for 
orresponden
es in one 
onstantdire
tion and thus 
omputationally optimize mat
hing algorithms. We will now brie�yreview implementation details, advantages, and disadvantages of bino
ular (Se
. 2.1.1) andtrino
ular re
ti�
ation algorithms (Se
. 2.1.2).2.1.1 Image pair re
ti�
ationGiven a fundamental matrix F , sear
hing for 
orresponden
es 
an take pla
e along epipolarlines in the bino
ular 
ase. For reasons of speed and in order to 
ompensate for rotationaldeviations in the orientation of windows around 
orresponding pixels, re
ti�
ation transfor-mations are applied on images. All epipolar lines in the re
ti�ed images are parallel, forexample, to the x-axis. The 
omputation of the fundamental matrix for two 
ameras1 P1, P2is 
arried out a

ording to:

F = (P2 · Č1)× (P2 · P †
1 ), (2.1)(see Eq. 9.1 in [61℄) where C1 is the lo
ation of the �rst 
amera given by the one-dimensionalnull-spa
e of the 3 × 4-matrix P1 and P †

1 is pseudo-inverse of P1. If the epipole is insidethe image domain, one possibility for re
ti�
ation is to extra
t epipolar lines dire
tly andto orient them by means of polar 
oordinates (r, φ), where r is the distan
e to the epipoleand φ is the in
lination angle of an epipolar line (see [110℄). Otherwise, one 
an �nd twohomographies HR
1 and HR

2 that transform the epipole to the point at in�nity [1 0 0]T andthus make epipolar lines lie horizontally in the images. There are nine degrees of freedom2whi
h 
an regulate HR
1 and HR

2 in the way su
h that images look like original images after1Throughout this work, 
amera will be an abbreviation for 
amera matrix. We use mono
ular imagesequen
es in our data sets, so there will be no possibility for misinterpretations.2The fundamental matrix has 7 degrees of freedom and ea
h of two homographies has 8. Sin
e thefundamental matrix must be �xed, we have 2 · 8− 7 = 9 degrees of freedom.
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kground 19transformation; in other words, proje
tive and a�ne 
omponents of HR
1 , HR

2 are minimized.Su
h a pair of homographies 
an be obtained by some simple method (e. g. [110℄, p. 66) andthen optimized using some meaningful 
riterion [96℄. In this work, expli
it minimization ofproje
tive and a�ne 
omponents of the transformed images was 
hosen and is 
arried outby the method of Loop and Zhang [90℄, whi
h extra
ts �rst one parameter λ responsible forthe proje
tive transformation of images by means of a standard optimization problem. The
ost fun
tion for this optimization uses the fa
t that a proje
tive transformation minimizingimage loss should be as 
lose as possible to an a�ne one. After λ is extra
ted, the 
hoi
e ofother parameters is rather trivial.We show the results of re
ti�
ation by this method in Fig. 2.1 and also Fig. 4.7 (see p. 55)3and 
on
lude that proje
tive image distortion of the re
ti�ed images is rather small sin
eimage transformations are very similar to rotations.

Figure 2.1: Top: Two frames from the sequen
e House re
ti�ed to epipolar geometry. Bot-tom: Two frames from the sequen
e Gottesaue re
ti�ed to epipolar geometry. Several hor-izontal epipolar lines are depi
ted in red. The parameters of re
tifying homographies are
hosen by means of [90℄ and as a result, the proje
tive distortion of images is almost negli-gible.2.1.2 Trino
ular re
ti�
ationSin
e our sequen
es are not restri
ted to pairs of images, it is important to mention theexisting ways to re
tify also triplets of images. Given images I1, I2, I3, there is a possibilityto re
tify the images in a way that IR
1 , IR

2 are aligned horizontally, IR
2 , IR

3 verti
ally and
IR
1 , IR

3 diagonally (i. e. for (x1, y1) ∈ IR
1 , (x3, y3) ∈ IR

3 , the relation y3 − y1 = λ(x3 −3a detailed des
ription of data sets is given in Se
. 6.1.
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ost fun
tions

Figure 2.2: Left: Three images from the well-known ben
hmark data set Tsukuba [115℄in a trino
ular 
on�guration; Right: for a general video stream taken from approximatelythe same altitude, trino
ular re
ti�
ation of images without signi�
ant distortion is hardlypossible.
x1), where λ a s
alar preferably ±1 holds). The advantage of this kind of re
ti�
ation isits robustness and elegan
e, sin
e it 
an be performed linearly [137℄. But it has one bigdisadvantage: It 
an be performed only for several spe
ial 
ases, for example, for the 
amera
on�guration of the kind of Fig. 2.2 right, mounted on a robot in [62℄. For the general 
ase,it is already di�
ult to ful�ll two �rst 
onditions: Given that the epipole e12 is transformedto [1 0 0]T , and, at the same time, e23 is transformed to [0 1 0]T , then new line atin�nity results from the straight line 
onne
ting the prototypes of e21 and e23. But if thisline interse
ts the image domain of I2 or just passes nearby, then there is no possibility ofre
ti�
ation without signi�
ant distortion (see Fig. 2.2, right). The problem of a straightline interse
ting an image domain arises more often (at least, in our appli
ations, where theimages were taken from approximately the same height) than a single point lying inside it.For this reason, we will 
reate sequen
es of re
ti�ed image pairs, as des
ribed in Se
. 4.1,instead of performing multi-image re
ti�
ation for depth estimation.2.2 Image-based methods � data 
ost fun
tionsThe basi
 task of 3D re
onstru
tion is to obtain the spatial 
oordinates and 
olor/intensityvalues of a point given its 
olor/intensity values of pixels in the images. If we use thereferen
e image I0 to 
olor the 3D points, then, for another image Ik we are interested in ageometri
 transformation Gk and a radiometri
 transformation Rk su
h that

I0(x) = Rk (Ik (Gk(x))) + r(x, k), (2.2)where the residual term r(x, k) is zero in the ideal 
ase and 
an be supposed to be smallfor pra
ti
al situations. The geometri
 transformation Gk depends on the 
amera model.For example, if the depth of the s
ene is negligible (see [121℄), an (image-to-image) homog-raphy x̌k = Hkx̌ 
an be used. For a 
lassi
al pinhole 
amera, whi
h stands in fo
us of ourappli
ations, the relations 
an be expressed in terms of depth for multi-view 
on�gurations(or, equivalently, disparity for bino
ular 
on�gurations). The essential goal of mat
hingproblemati
 is to sele
t the unknown values of depth (or disparity) parameters to minimize
r given a suitable radiometri
 relation Rk of 
olor/intensity information between I0(x) and
Ik(xk), whi
h are our data-
ost values. Hen
e in this se
tion, we will present several ideasfor 
hoosing Rk and we 
onsider, for the sake of simpli
ity, only gray images. However, it isimportant to note that in the general 
ase, I, r 
an be also ve
tors and R a multi-dimensionalmap.
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al ba
kground 21There are many other di�erent 
ost fun
tions mentioned in [69℄ to whi
h interestedreaders 
an refer, but here we only want to give a short overview about 
ost fun
tions wework with in order to perform robust depth estimation from a video sequen
e.2.2.1 Lp-based fun
tionsThe simplest assumption, namely I0(x) and Ik(xk) are approximately the same, means thatthe 
ost fun
tion c(x)
c(x) = ‖Ik(ω(xk))− I0(ω(x))‖p , where p ≥ 1 (2.3)must be small. Here ω is a small 
orrelation window ω around points of interest neededto 
ope with rounding errors. Note that with in
reasing value of p, more weight will begiven to outliers in the 
orrelation window, whi
h 
an deteriorate results for pixels nearo

lusions or dead pixels in infrared images (pixels with 
onstant luminan
e values, similarto salt-and-pepper-noise). These are 
learly undesired e�e
ts and this is why usually p = 1or p = 2 are used. The 
ost fun
tions 
orresponding to p = 1 and p = 2 are Sum of AbsoluteDi�eren
es and Sum of Squared Di�eren
es, abbreviated by SAD and SSD, respe
tively. Inorder not to give too mu
h importan
e to non-plausible 
hanges of luminan
e, one 
an usetrun
ated 
ost fun
tions, therefore e. g. , for SAD, we will use

c(x) = ( 1

εmax

)
∑y∈ω(x)min (|I0(y)− Ik(yk)|, εmax) (2.4)instead of (2.3) in Chapter 4. Here εmax is a real-valued s
alar, and by division by εmax,the 
ost fun
tion is s
aled between 0 and 1. This 
ost fun
tion is sampling-sensitive be
ausefor non-integer 
oordinates of yk, the value Ik(yk) depends on the rounding pro
edure, soe�orts 
an be made to make (2.4) sampling-insensitive (see [13℄).2.2.2 Other parametri
 
ost fun
tionsDue to the di�erent viewing angles of P0 and Pk onto the obje
t's surfa
e, there are lumi-nan
e gain a > 0 and o�set b in the intensity of the both images, in other words:

Ik(y) = aI0(y) + b. (2.5)This equation 
an be explained by 
onsidering the Phong lighting model (see [33℄, pp. 306-311) when the total intensity is expressed in terms of two summands4: ambient term Laand di�usion term Ld, whi
h is proportional to the intensity of the re�e
ted light emanatingfrom the 
ommon sour
e Ld as well as to the angle between the surfa
e normal and theviewing dire
tion. From the relations I0(y) = La + b(y)Ld, Ik(y) = La + bk(y)Ld, weobtain (2.5). In order to a
hieve invarian
e with respe
t to linear transformations withoutknowledge of a and b, one 
an apply the fun
tion of Normalized Cross Correlation, denotedalso by (Zero-mean) NCC or (Z)NNC:
c̃(x) = ∑y∈ω(x) (I0(y)− Ī0(y)) · (Ik(yk)− Īk(yk)

)

√
∑y∈ω(x) (I0(y)− Ī0(y))2 ·∑y∈ω(x) (Ik(yk)− Īk(yk)

)2
,

c(x) = 1− c̃(x)
2

(2.6)4We omit here the Non-Lambertian spe
ular 
omponent.
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ost fun
tionsHere ·̄ is the averaging operator. In order to avoid 
al
ulation of square roots, c(x) from(2.6) 
an be repla
ed by:
1− c̃(x)|c̃(x)|

2
, (2.7)whi
h is also s
aled between 0 and 1. This kind of 
orrelation is quite sensitive to outlierssin
e a lo
al Taylor series expansion around zero des
ribes a quadrati
 polynomial.2.2.3 Nonparametri
 
ost fun
tionsIn the 
ase of 
omplex radiometri
 relationships, one 
an still use assumptions about intensityordering of gray values or even formulate impli
it fun
tions of probabilities of assigning grayvalues (mutual information).Intensity-ordering-based fun
tionsIf not the magnitude but rather the order of intensities in quadrati
 windows is of interest,the Census �lter [136℄ around a pixel 
an be 
onsidered. It de�nes a logi
al ve
tor variablewhere ea
h entry 
orresponds to a 
ertain pixel y ∈ ω(x). This entry is true if and only if

I0(y) < Ik(yk). Thus, Census not only stores the intensity ordering, but also the spatialstru
ture of the lo
al neighborhood. The 
omputation of dissimilarity 
an be measured byHamming-distan
es. Using similar des
riptor ve
tors around salient points in gradient spa
e,like SIFT [92℄ or SURF [8℄, theoreti
ally 
an be generalized for dense sets of points. Thesedes
riptors however do not 
ontain a reliable information in the regions of weak texture andtheir 
omputation requires a very high 
omputational 
ost.Mutual informationThe key idea of Mutual information is to quantify the extent to whi
h two random variablesare dependent by 
omputing the entropy of the joint probability distribution H1,2 and sub-tra
ting it from the sum H1 +H2 of entropies of single probability distributions (see [133℄for further details). To do this, an assumption about 
orresponden
es must be made on a
oarser level (initialization). If we know that x ∈ I0 and xk ∈ Ik are 
orresponding points,we in
rease the probability P (m,n) where m = s(I0(x)), n = s(Ik(xk)) and s is a dis
retiza-tion fun
tion, that is, a suitable number of intensity levels. For example, if two 16-bit imagesare given, it makes more sense to 
onvert them to 8-bit and 
onsider m,n = {0, 1, 2, ...255}than 
omputing probabilities for ea
hm,n = {0, 1, 2, ...216−1)}. From P (m,n), we 
ompute
P1(m) =

∑

n P (m,n), P2(m) =
∑

m P (m,n),

H1(m) = log(P̃1(m)),H2(n) = log(P̃2(m)),H1,2 = log P̃ (m,n),where ·̃ is the (one- or two-dimensional) Gaussian smoothness fun
tion. The 
ost fun
tiongiven by Mutual Information (MI) is 
omputed a

ording to:
c(x) = −MI(m,n) = H̃1,2(m,n)− H̃1(m)− H̃2(n), (2.8)

m = s(I0(x)), n = s(Ik(xk)). The values of MI(m,n) are s
aled between 0 and 1 andstored in a square matrix, see Fig. 2.3. The pixel-wise a

umulation of 
osts from (2.8)within a window 
an be performed as well, e. g. by averaging 
osts of entries. The questionof initialization without image pyramids will be the topi
 of Se
. 4.5.1.
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Figure 2.3: Mutual information MI as a 
ost fun
tion stored in a 256× 256 square matrix(mat
hing table). It 
an handle simple 
hanges in illumination: in the pair of images onthe top left, the lower 
ost entries mostly lie near the main diagonal of the matrix (bottomleft). If we repla
e the se
ond image by its negative (as in the pair of images on the right),the entries of the mat
hing table 
hange in the suitable way (bottom right). Fig. 
ourtesyof P.Wernerus.2.3 Image-based-methods � smoothness fun
tionsCorre
t assignment of 
orresponden
es by minimizing one of the 
ost fun
tions of the previ-ous se
tion 
an be 
arried out, in the majority of pra
ti
al situations, only for a small numberof points in textured areas. As we will see in Chapter 4, mismat
hes from lo
al algorithmshappen due to radiometri
 deviations, repetitive patterns of texture and weakly texturedareas as well as many other fa
tors. Sin
e we want to obtain 3D 
oordinates for pixelshomogeneously distributed in the image, we must make additional assumptions about s
enegeometry. In pra
ti
e, surfa
es observed are pie
ewise 
ontinuous, whi
h means neighboringpixels usually have similar disparities. Belhumeur formulates in [10℄ the goal of mat
hing asa Bayesian problem:
P (S|D) ≃ P (D|S)P (S), S denotes S
ene, D denotes Data.In other words, to maximize the probability of a s
ene given some data, not only datagenerated from the s
ene but also prior information about the s
ene have to be 
onsidered.Taking the logarithm of the last formula yields the well-known energy fun
tion

E =
∑x (Edata(x, S) + Esmooth(x, S)) . (2.9)The most popular way to impose the smoothness penalty on the disparity or depth, denotedby d in this work, is to punish the disparity or depth jumps of neighboring points5. In otherwords,

Esmooth(x, S) = Esmooth(x, dx) = ∑

{x,y}∈N

f(dx, dy,x,y),5From here on, d is the unknown we use in order to parametrize the S
ene S. We leave this parameter-ization and also a dis
retization of depth values, whi
h is usually imposed for dense re
onstru
tion, untilChapter 4.
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tionswhere {x,y} ∈ N (or, alternatively, y ∈ N(x)) if and only if ‖x−y‖1 = 1, dx is the unknownparameter of depth at x and f is a s
alar non-de
reasing fun
tion of ‖dx − dy‖. We givehere several possible 
ost fun
tions f some of whi
h 
an be found in related works 
ited inSe
. 3.1.2.
f1(dx, dy) = λ1U(dx 6= dy) = { 0 if dx = dy

λ1 otherwise (2.10)
f2(dx, dy) = 



0 if dx = dy
λ1 if 0 < |dx − dy| ≤ d0
λ2 otherwise (2.11)

f3(dx, dy,x,y) = 


0 if dx = dy
λ2 if |I0(x)− I0(y)| ≤ g0
λ1 otherwise (2.12)

f4(dx, dy) = λ1|dx − dy|g0 (2.13)
f5(dx, dy) = λ1

(

1− d20
(dx − dy)2 + d20

)

. (2.14)Here λ1 < λ2, g0, d0 are positive numbers 
alled smoothness parameters, and numerousreferen
es 
an be found about optimal 
hoi
e of smoothness parameters. See, for example,[28, 101, 79℄ (Se
. 3), [59℄ and referen
es therein.We review here the di�eren
es in expressions (2.10)-(2.14). In (2.13), the depth dis
on-tinuities are punished hard be
ause the penalty fun
tion in
reases monotoni
ally with thedi�eren
e of depth values. As a result, the depth map is expe
ted to be oversmoothed nearo

lusions. On the other hand, Eq. (2.10) punishes all dis
ontinuities equally. Merely two
ases of small and big di�eren
es of depth are 
onsidered in (2.11): for big di�eren
es it isa 
onstant value. A smooth 
hange between small 
ost for small di�eren
es and 
onstant
ost for big di�eren
es is modeled in (2.14). Finally, if two neighboring pixels have similarintensities, they are less likely to belong to di�erent segments and so the disparity 
ost forsu
h a pair of pixels should be larger, whi
h justi�es (2.12).Now suppose that we have a path v and want to enable depth values of points to in
reaseor de
rease linearly along the path v instead of (possibly) in
urring too many o

lusions.This approa
h results in the next kind of smoothness term, whi
h in
ludes triplets of neigh-bors:
f6(dx, dx−v, dx+v) = λ1|dx−v + dx−v − 2dx|. (2.15)It is also possible to 
ombine (2.14) with one of penalty terms a
ting on neighboring pixelsonly, for example, f1 of (2.10) or f2 of (2.11).Besides smoothness terms in the image spa
e, we give an example of an obje
t-basedsmoothness term from [79℄, see p. 63. The author uses the term intera
tion: pixels x, xk intwo images of I and Ik 
an only intera
t when the reproje
tion rays from x ∈ I,xk ∈ Iknearly interse
t in spa
e; the intera
tion i = 〈x,xk, d〉 is set a
tive if the interse
tion pointis 
lose to the obje
t surfa
e. Here d is a depth or disparity value, whi
h, as we will see inSe
. 4.1, uniquely de�nes the 3D 
oordinate. For a
tive intera
tions i, the boolean variable
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U(i) is set to true. Two intera
tions i = 〈x,xk, dx〉 and i′ = 〈y,yk, dy〉 are neighbors({i, i′} ∈ N2) if and only if dx = dy and ‖x− y‖1 ≤ 1. The obje
t-based smoothness term

Esmooth =
∑

{i,i′}∈N2

λ(i, i′)U(U(i) 6= U(i′)) (2.16)with a s
alar fun
tion λ and U as in Se
. 1.4 is not quite the same as one of the single-image-based disparity terms (2.10)-(2.15).2.4 Shape re
onstru
tionWe now 
onsider the shape re
onstru
tion portion of the re
onstru
tion pipeline. The taskit to perform polygonization of an input point 
loud whi
h means either 
ompression ofvery dense point 
louds (as a result of substep 2.2 of Alg. 1.1, if it took pla
e) and/orinterpolation of point 
louds with moderate density (if that step was omitted). It is 
learthat not every surfa
e 
an be exa
tly modeled by triangles. Therefore we assume a surfa
e
F interpolating or approximating su
h a point 
loud X , and our task will be to �nd apolygonization homeomorphi
6 to F . The ne
essary theoreti
al ba
kground about surfa
epolygonization without expli
it 
omputation of F will be given in Se
. 2.4.1 while severalpossible ways of meshing of surfa
es will be given in Se
. 2.4.2. Note that an elaborate surveyof previous work on surfa
e 
omputation will be given in Se
. 3.2.2.4.1 Dire
t polygonization of point 
loudsGiven a set of 2D points in a plane, there are plenty of ways to 
onne
t (some of) them bymeans of straight line segments. However, depending on the 
on�guration, one way mayappear more 
ompa
t or more natural from a physi
al point of view than another one. Asan example, all four options for 
onne
ting points in left hand side portion of Fig. 3.1, p. 34are possible and have geometri
 justi�
ation (as we will see below), but the �rst one � whi
hdoes the best job of re
ognizing that the shape 
onsists of two rings � seems somehow moreprobable; intuitively, its probability will in
rease with the point density within two rings.In 3D, the situation is 
learly even more 
ompli
ated. If we imagine a surfa
e F passingthrough the 3D point 
loud X and wish to generate a triangular mesh T homeomorphi
to F , it be
omes 
lear that the point sets must have spe
ial properties with respe
t totheir density (a term to be explained below) and noise: their density must ex
eed a giventhreshold and noise level must be low. Amenta and Bern [4℄ give a su�
ient 
riteria forsampling in order to make a triangular surfa
e homeomorphi
 to the original one.Here the de�nitions of medial axis (points in spa
e whi
h have at least two nearestneighbors on F in the Eu
lidean sense), lo
al feature size (distan
e from point to medialaxis, denoted as lfs) as well as ρ-sample X su
h that dst(r,X ) < lfs(r)ρ for ea
h r ∈ F)are given. The main result, stated in [4℄, 
onsiders noise-free ρ-samples, ρ ≤ 0.1. Then it ispossible to re
onstru
t the triangular mesh homeomorphi
 to F . Note that a ρ-sample doesnot require the point density to be uniformly 
onstant. From the de�nition of the medialaxis, it must only be high enough in 
urved regions.The approa
hes related to that in [4℄ have an advantage that they do not require expli
itknowledge of F for 
omputation of su
h a triangular irregular network (TIN) T . This makesthem very attra
tive for several openly and 
ommer
ially available software pa
kages su
has meshlab. Therefore it will be worth reviewing these methods in Se
. 3.2.1. However,the main drawba
k of TINs is their extreme dependen
e on the sampling density of points.6Two surfa
es F ,F ′, are said to be homeomorphi
 if there is a mapping (homomorphism) f : F ← F ′.Here f must be a 
ontinuous bije
tion, f−1 is also 
ontinuous.
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onstru
tionApart from the fa
t that there are only heuristi
 methods to estimate ρ without knowledgeabout the surfa
e, it is rather impossible, be
ause of di�
ulties of image-based algorithmsto �nd 
orresponden
es in homogeneously textured areas or in the areas not su�
iently
overed by the 
amera path, to satisfy the assumptions of [4℄. In addition, the resultingmesh T will usually 
ontain aestheti
ally unpleasant surfa
e artifa
ts whi
h have to do withnoise and outliers in the data, sin
e no expli
it assumption about the smoothness of thesurfa
es underlying T . Sin
e we want to obtain polygonal meshes despite these negativeproperties and also be able to �ll sparsely sampled regions in a plausible way, it will bene
essary to dedu
e methods that la
k, to a 
ertain extent, a theoreti
al justi�
ation, butare good enough to be applied in the pra
ti
al 
ase. For this pra
ti
al 
ase, we may makeuse of assumptions for obje
ts we are dealing with, su
h as orientation 
onsisten
e, or onedominant dire
tion whi
h is given by the z-axis.2.4.2 Polygonization of surfa
esGeneration of meshesSuppose that the fun
tion des
ribing F is expli
itly given. In the 
ase of 2.5D "terrainskins", altitudes z are represented in terms of x and y 
oordinates as a fun
tion z = f(x, y).Otherwise, there is a 3D parameterization X(u, v) := (x(u, v), y(u, v), z(u, v)) in some 
oor-dinate system (u, v). In both 
ases, one 
an perform (e. g. Delaunay) triangulation of (x, y)-,respe
tively (u, v)-points.Other methods have an impli
it surfa
e as input. It is usually given by a signed distan
efun
tion sampled for points in spa
e. Sin
e sampling impli
it surfa
es goes beyond the s
opeof this work, we mention the most famous algorithms [39, 53, 66, 91, 107℄ and refer to (e. g.)Akkou
he and Gallin [3℄ where a 
lassi�
ation of these methods in three groups (surfa
emeshing te
hniques, surfa
e �tting te
hniques and surfa
e tra
king te
hniques) is made andalso to [17℄ where several interesting re�nements and more referen
es of the existing methodsare des
ribed. Our default method for impli
it surfa
e polygonization will be the well-knownalgorithm of mar
hing 
ubes [91℄.Mesh manipulationSome kinds of surfa
e tessellation routines des
ribed in the last paragraph often do not 
on-sider the (s
alar or ve
tor) properties of mesh verti
es, as for example, the partial derivativevalues, 
olor informations et
. A 
on
ept and examples of 
ost fun
tions whi
h 
an beminimized with lo
al �ipping algorithms are given in [41℄ for 2.5D surfa
es. Usually, a
ombination of several basi
 pro
edures are 
hosen for mesh simpli�
ation, namely:1. vertex translation: Verti
es are transformed so that a total energy of the mesh isdiminished. See Fig. 2.4, top.2. edge �ip: A spatial quadrilateral ABCD 
onsisting of two triangles ABC and ACDis �ipped to BDC and BDA. See Fig. 5.3, p. 77, right.3. edge 
ollapse: Two verti
es are melt, that is, the edge between them disappears, thenumber of triangles is redu
ed by two and that of edges by three, as shown in Fig. 2.4,bottom.4. edge split: A new vertex is added near an edge. If this is not a margin edge, then thenew vertex is 
onne
ted to other two verti
es of the quadrilateral and so the numberof triangles is in
reased by two.
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Figure 2.4: Top: To redu
e an energy term (e. g. Lapla
ian), a dominant plane 
an be �tted.Bottom: To 
ompress the mesh, an edge 
ollapsing method is applied (inserting a new pointmarked by a red 
ir
le). Edge split and edge 
ollapse are inverse pro
edures.In [71℄, items 1-3 of those previously mentioned are sele
ted in random order to performmesh simpli�
ation. Other authors restri
t themselves to one operation � edge �ip in [103℄or edge 
ollapse in [89℄. Some publi
ly or 
ommer
ially available software pa
kages arementioned in [126℄.While the four pro
edures mentioned above do not 
hange the topology of the mesh, thepro
edure of hole �lling usually has a topologi
ally di�erent mesh as output. A hole as aloop of boundary edges (i. e., those in
ident with exa
tly one triangle) has to be identi�edand �lled with new verti
es and edges. One algorithm to perform hole-�lling is des
ribed in[134℄, the non-trivial part of the algorithm 
onsists in reasonable 
hoi
e of 3D 
oordinatesfor new verti
es to be added to the mesh.



28
Chapter 3Previous workTremendous amounts of work on s
ene re
onstru
tion from video sequen
es have been donein the past de
ades. Even though it is hardly possible to survey the te
hni
al details for allexisting algorithms, a detailed study of state-of-the-art is very important for us not only be-
ause an evaluation of our algorithms and 
omparable methods will be des
ribed in Chapter6, but also in order to demonstrate that the innovations presented in this work are meaning-ful and robust to 
lose the gap in the area of generi
 urban terrain re
onstru
tion from aerialvideos, often under non-
ooperative 
onditions. Sin
e our work 
onsists of an image-basedand an obje
t-based module, we separately 
over algorithms for depth estimation from aset of images and surfa
e re
onstru
tion algorithms in Se
. 3.1 and Se
. 3.2. Among numer-ous already existing pipelines that go the whole way from an image sequen
e to a texturedre
onstru
tion, we give in Se
. 3.3 a detailed des
ription of three pro
edures [116, 48, 111℄whi
h turned out to be very instru
tive for our approa
h.3.1 Previous work on depth map 
omputationThe task of retrieving depth values for a relatively dense and homogeneously distributed setof pixels in the referen
e image 
an be a

omplished by tra
king sparse points as in Se
. 3.1.1or by using data, smoothness and other assumptions, as mentioned in Se
. 3.1.2, 3.1.3, and3.1.4, respe
tively.3.1.1 Sparse tra
kingWe forget for a short moment the 3D aspe
t of the problem and solely wish to retrieve, fora pixel x ∈ I0, the 
orresponding point xk = x+wk ∈ Ik. This kind of mat
hing is 
loselyrelated to the opti
al �ow problem be
ause in the approa
hes of e. g. [72, 94℄, a fun
tionalin
luding a data and a smoothness term must be minimized over the translation parameters
wk by means of 
ommon numeri
al methods. For example, in [21℄, the data 
ost 
onsists ofa non-de
reasing fun
tion Ψ of weighted di�eren
es of gray values and their Lapla
ians:

Ψ = Ψ(|I0(x)− Ik(x+wk)|+ γ|▽I0(x)− ▽Ik(x+wk)|) , γ ∈ R (3.1)and the smoothness term is the total variation of the �ow �eld, whi
h is given, in the 
aseof two images, by the norm of spatial-temporal se
ond-order derivatives. In order not to getstu
k in lo
al minima, image pyramids downs
aled by an arbitrary fa
tor between 0 and 1are 
al
ulated and a steady-state solution of a linearized �xed-point-approximation of (3.1)determined for ea
h pyramid level is used as the initial value for the next level.
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ess of opti
al �ow estimation 
an be generalized for a multi-view 
ase [113℄.Unfortunately, the 
omputational 
ost is very high and so dis
retization of derivatives andusing �xed-point numbers are ne
essary to perform minimization in a reasonable time. It istheoreti
ally possible to dete
t moving obje
ts by means of opti
al �ow algorithms sin
e thefun
tionals do not prevent any point from being moved to any other point. For retrieving3D stru
ture, however, it will be indispensable to introdu
e geometri
 
onstraints and thusto redu
e the sear
h range for point 
orresponden
es to a one-dimensional spa
e, namelythe depth, whi
h redu
es the sear
h spa
e in the images to the (epipolar) line. Still, itis possible to use the features of the opti
al �ow estimation pipeline for a sparse set ofpoints, whi
h later 
an allow either dire
t surfa
e re
onstru
tion or 2D meshing of pointsinto triangles and 
lassi�
ation of these triangles into 
onsistent and in
onsistent with thesurfa
e by 
onsidering pixels within these triangles.The state-of-the-art method for 
omputing 
orresponden
es for a sparse point set is thewell-known algorithm of Lu
as-Kanade-Tomasi (KLT, [94℄) whi
h iteratively sear
hes fora (e. g. a�ne) transformation of a window around a point in the �rst image that produ
esa similar window in the se
ond image. Usually the similarity is measured by the squarednorm of the di�eren
es of the intensities within both windows; the optimization method 
anbe gradient des
ent. The algorithm has one important advantage � no need for any priorinformation; hen
e a simple 
reation of image pyramids and the identity transformation asa starting value is usually a suitable approximation for the position of pixels in the nextimage. But it is also its disadvantage be
ause the sear
h range for point 
orresponden
es istheoreti
ally unlimited. For this reason, e�orts were made to in
orporate the known 
amerapositions. Trummer et. al. [130℄ 
onsider the bino
ular 
ase and support tra
king of pointsalong epipolar lines. The 
omponent perpendi
ular to the epipolar lines is supposed to
ompensate for un
ertainties of 
amera poses. The algorithm is expe
ted to perform worsefor points that lie near edges parallel to epipolar lines. In order to make this approa
hmore stable with respe
t to this problem, one 
an 
onsider the work of Gruen [54, 55℄ as ageneralization of this approa
h in the 
ase of a multi-view system. In the system des
ribedin Eqs. 9-11 in [55℄, an a�ne transformation of points in images is supposed to 
ompensatefor rotations, so instead of 
onsidering relative orientation of 
ameras, he uses an over-parametrized system of equations for every point (six a�ne transformation parameters per
amera and three spatial 
oordinates). In [54℄, an additional variable expressing radiometri
deviation is introdu
ed. A statisti
al test in order to eliminate unne
essary parameters fromfurther 
al
ulations is performed afterwards. Note also that no use of information fromalready established 
orresponden
es is made in these approa
hes.3.1.2 Considering the data termMany existing approa
hes of stereo mat
hing are mentioned in the survey of S
harstein andSzeliski [115℄. Lo
al methods 
ompute depth maps pixel-by-pixel using the prin
iple "winnertakes all". For a pixel x = (x, y), values of a 
ost fun
tion (denoted by c = c(x) = c(x, d))are obtained for 
andidates in a suitable re
tangle
[x+ dmin − εx;x+ dmax + εx]× [y − εy; y + εy],where εx, εy are needed to take into a

ount un
ertainties in the 
amera parameters and

dmin, dmax are the disparity ranges 
omputed, for example, from already available points.The 
ost fun
tion 
an be SSD of gray values di�eren
es, NCC or some other distan
e fun
tionof Se
. 2.2. The point with the highest s
ore is 
hosen to be the 
orresponding point if itsatis�es some heuristi
s (for example, the value of the s
ore must ex
eed a 
ertain threshold).We 
an mention 
ontributions due to [69℄ where disparities that failed the 
ross-
he
k test(see Eq. (3.2) below) are marked as dis
arded and then �lled by values propagated from
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omputationneighboring points, [18℄ where the window size for 
orrelation was adapted a

ording to thelo
al geometri
 
onstellation (pixels with disparity similar to dx, i. e., lying near the fronto-parallel plane through x, obtain larger weights in e. g. (2.3)) and [114℄ where a di�usion termwas introdu
ed.Of 
ourse, these methods produ
e a large set of outliers among point 
orresponden
es inthe regions of repeatable texture and homogeneously textured regions. This happens be
auseno model assumptions about the surfa
e are made and so not all available information isused. In order to extra
t only reliable, 
on�dent pixels, [112℄ suggests dis
arding ambiguousmat
hes by sele
ting the maximum stable 
omponent along an epipolar line. This largeststable subset is proved to be unique, but � espe
ially in areas of homogeneous texture, � it
an be very sparse and even empty.3.1.3 Considering the smoothness termSin
e we want to retrieve a reliable set of 
orresponden
es homogeneously distributed in theimages, we strive for an e�
ient minimization of (2.9). To redu
e 
omputing time, depthor disparity s
ales must be dis
retized into labels. For example, we assign for every integerdisparity value (in pixels) one of S + 1 values j = 0, ..., S. Even with this dis
retization,global minimization of (2.9) was shown to be an NP-hard problem [19, 51℄, whi
h meansthat the order of magnitude of operations needed for 
omputing an exa
t minimum 
annotbe less time-
onsuming than the brute-for
e pro
edure of O(SM ) 
on�gurations, where M isthe number of pixels in the images. We will sket
h and dis
uss several methods of di�erent
omplexity that allow determining a strong lo
al minimum of (2.9).Dynami
 Programming, tree-based optimizationThe method presented in [10℄ suggests minimizing the energy fun
tional along all epipolarlines using a well known method of dynami
 programming. We will use this method for multi-view optimization and, from a detailed des
ription of this method in Alg. 8.2 of the Appendix,we will see that the 
omplexity 
an be redu
ed to O(MS) where M is the number of pixelsin the images and S is the number of depth/disparity values. However, the distributionof 
osts in the adja
ent epipolar lines 
an be 
ompletely di�erent whi
h usually leads toimplausible bulges and 
onvexities in the �nal result. We do not dis
uss here heuristi
sfor additional optimization in the dire
tion perpendi
ular to epipolar lines, but turn ourattention to a generalization of this method given in [132℄ whi
h uses a minimum spanningtree [82℄ from the weighted graph of absolute gray value di�eren
es of the neighboring pixelsinstead of (epipolar) lines. Sin
e by in
luding an edge between neighboring pixels x and y inthe tree, one enfor
es the 
onstraint that pixels x and y should have similar disparities, it isreasonable to weight the edge of the graph by |I0(x)−I0(y)| and then to 
reate a minimumspanning tree of su
h a graph.The algorithm starts at the leaves of the tree (as in [10℄, it starts in the �rst pixel of theepipolar line) and pro
esses along the bran
hes of the tree until the root is a
hieved. Fromthe root, it is then possible to go to every leaf sin
e the re
ursive information, whi
h is thebest disparity value of the 
urrent pixel (i. e. 
hild) given a disparity value for the previouspixel (i. e. parent), is available; 
ompare Alg. 8.2, p. 144. The algorithm has the propertyof being invariant with respe
t to image subdivision (sin
e the minimum spanning tree ofa union of disjoint sub-images is a union of minimal spanning trees of these sub-images[82℄), whi
h o�ers an elegant way to 
ompute depth/disparity maps even from large images.However, also here bulges that 
orrespond to the bran
hes of the tree are inevitable in the�nal result.
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hesAs mentioned before, the pro
ess of �nding a 2D global minimum of equation (2.9) is,unfortunately, a NP-hard problem, in 
ontrast to both of the methods mentioned above,whi
h obtain a global minimum of the 1D equivalent of equation (2.9). The algorithms ofalpha-expansion [80℄ and alpha-beta-swap [19℄ based on graph 
uts and belief propagation[77, 124℄ approximate this minimum by iterative pro
edures.For example, given a depth map D, an alpha-expansion (α-expansion) of D, as des
ribedin Kolmogorov and Zabih [80℄, is a 
on�guration D′ with D′(x) = D(x) or D′(x) = α. Nowone 
an de�ne a binary fun
tion f su
h as f(x) is true if D′(x) = D(x) and false otherwise.It is possible to 
onstru
t a graph that minimizes in a polynomial time the energy fun
tionfor binary variables:
E(f(x1), f(x2)...f(xn)) =

∑

i,j

E(f(xi), f(xj))if and only if E(0, 0) + E(1, 1) ≤ E(0, 1) + E(1, 0). The pro
edure of 
onstru
tion andminimization of the binary graph is given in [81℄.Now disparities from dmin to dmax are randomly ordered. The inner iteration 
onsists ofsele
ting a disparity j from the list and minimizing energy over all j-expansions of D viagraph 
uts. The outer iteration 
onsists of repeating the inner iteration until no improvementin the value of energy fun
tion has been a
hieved.Espe
ially for Nadir �ights, the graph-
uts approa
h turns out to be one of the bestmethods for removing noise without over-smoothing the edges. However, its main disad-vantage is an extremely long 
omputing time. Another drawba
k is that the method hasproblems in s
enes with many slanted surfa
es.Semi-global approa
hesAnother pro
edure for minimization of (2.9) is the method of Hirs
hmüller [67℄, originallyelaborated for disparity map 
omputation from a stereo pair. Here paths from di�erentdire
tions leading into one pixel are a

umulated. For only one path, the method be
omesequivalent to the dynami
 programming. The key idea of algorithm is here, similar to [10℄,to use the previous pixel x− r in order to 
ompute the disparity value for the 
urrent pixelx. The di�eren
e is that the global value of the 
ost fun
tion is stored in a M × S arrayobtained by summing up 
osts of all paths of the same disparity and then the disparitywhi
h yields the lowest result is 
hosen.The original approa
h of [67℄ 
onsists of 
omputing image pyramids, then to start usinga random map and iteratively 
al
ulate improved maps, whi
h are used for a new 
ost 
al-
ulation by means of Mutual Information (see Se
. 2.2.3). Finally, images and 
orrespondingdisparity estimations are iteratively ups
aled until the original s
ale is a
hieved. Sin
e the�nal result usually looks too noisy be
ause of dis
retization into a �nite number of paths,the author suggests using a median �lter to obtain the �nal result.To �nd o

lusions and mismat
hes (in the referen
e image I1), one �rst 
omputes dis-parity map D12 from I1 to I2, then D21 from I2 to I1, after whi
h all pixels x with theproperty
∣
∣D12(x) +D21

(x+ [D12(x), 0]T )∣∣ > 1 (3.2)are marked as o

luded. We will take a 
loser look at the implementation details for themulti-view 
ase in Se
. 4.5.3 and we will see that it is also here possible to perform semi-globaloptimization in a linear time.



32 3.1. Previous work on depth map 
omputationThe semi-global approa
h has another advantage in 
omparison with the the graph-basedalgorithm, apart from 
omputing time. In its original implementation, graph 
uts approa
hassigns to pixels in the regions of homogeneous texture depth values from neighboring tex-tured pixels and propagates these values, whi
h leads to spurious disparities in whole regions.However, the semi-global approa
h solves this problem by 
onsidering di�erent pat
hes andthus smooths the �nal result, as we will see in Chapter 6.In the last paragraph of this subse
tion, we mention other modi�
ations of the semi-globalmat
hing. In the method due to [15℄, another sophisti
ated path 
hoi
e was given and theauthors of [62℄ generalized the semi-global method for the re
ti�ed 
on�guration of three
ameras. Finally, in [68℄, parti
ular attention was paid to homogeneous segments. Mean-shift segmentation of the referen
e image was performed and in
luded in the semi-globalmat
hing pipeline, with an assumption that homogeneous segments must have approximatelythe same disparity.3.1.4 Other approa
hesTo end this se
tion, several other methods for depth or disparity map 
omputation will belisted here, espe
ially those that use a set of more than two images and use already availablesets of points. Many authors perform image segmentation in order to improve re
onstru
tionin textureless areas [7, 14, 68, 77, 87℄. For example [14℄, after performing 
olor segmentationof one image of a re
ti�ed stereo pair and 
omputing disparity from some reliable points, theauthors store the three degrees of freedom of the homography indu
ed by a s
ene plane forevery segment in a ve
tor v. The disadvantage is that, in general, v does not have geometri
meaning and depends, as we will see in Se
. 4.3.1, only on the way the images are re
ti�ed.For this reason, the authors state that the weak point of the algorithm lies in the groupingplanar segments into layers by 
omputing Eu
lidean distan
es of 
orresponding values of v.Besides this nontrivial task of assigning planes to segments and typi
al artifa
ts arising fromover- and under-segmentation, 
olor segmentation is not possible for infrared images, whi
hare a
tually very important in our appli
ations. Furthermore, Szeliski and Coughlan [127℄extra
ted depth maps by means of splines. In [105℄, the Delaunay triangulation1 of pointsalready determined is obtained; [103℄ proposes using edge-�ip algorithms in order to obtaina better triangulation sin
e the edges of the Delaunay-triangles in the images are not likelyto 
orrespond to the obje
t edges, but the point 
orresponden
es obtained at that stage areusually too sparse.Using more than two images usually does not allow joint image re
ti�
ation; neverthelessit is possible to use depth instead of disparity values. Multi-view systems are known to bemore robust against o

lusions and patterns of repeatable texture be
ause using redundantinformation from more than two images allows suppressing spurious lo
al maxima of the
ost fun
tion. One survey about handling o

lusions in stereo- and multi-view systems 
anbe found in [74℄. A global graph-
uts-based algorithm for multi-view depth map extra
tion[80℄ makes use of an additional term that marks o

lusions and takes on the value in�nity forforbidden 
on�gurations. The work of Mayer and Ton [98℄ is a simpli�
ation of the re
on-stru
tion pipeline of S
hlüter ([116℄, see Se
. 3.3.1). A 
oarse 2.5D triangular mesh of pointsin a referen
e image is given and pixels inside the 
onvex hull are proje
ted into other imagesin order to obtain the lo
al minimum of the 
ost fun
tion and thus the 
orresponden
es.This approa
h has turned out to be rather unstable for more than three images.In the work of [86℄, whi
h makes up the Google 3D software, high-resolution images withenough overlap are used and depth maps are 
omputed by means of [77℄. This method is1There 
an be several Delaunay triangulations for degenerate sets of points, however, we 
an alwaysimagine a slightly transformed point set and so, for a general 
ase, there is only one Delaunay triangulation.



Chapter 3. Previous work 33known to perform well for many fronto-parallel surfa
es. Model assumptions are then usedto perform tessellation.The well-known software des
ribed in [50℄ is a 
ontinuation of the Mi
rosoft-based soft-ware Photosynth. The main goal is to obtain dense re
onstru
tions from arbitrary imagestaken mostly by tourists from histori
 buildings and available in the Internet. Even morethan the depth map 
omputation itself, the authors are 
on
erned about 
riteria for the
hoi
e of lo
al neighbors of the referen
e image from whi
h the depth map is 
omputed.These are: global 
riteria su
h as the number of 
ommon (SIFT, [92℄) features, angles be-tween reproje
tion rays from these features and di�eren
es of the resolution, as well as(after res
aling images a

ording to the resolution 
hanges) lo
al 
riteria, whi
h in
lude the
hanges of the y-
oordinates in the 
amera positions (in order to stabilize depth 
omputationnear horizontal lines) and the mat
hing s
ores of the lo
al features with the ZNCC-mat
hingfun
tion (2.6). The (non-zero mean) NCC is the 
ost fun
tion for the region-growth-basedapproa
h for depth maps 
omputation, but an important feature here is that the 
olor shift
omponent (denoted luminan
e in Se
. 2.2.2, Eq. (2.5)) is for
ed to be the same for ea
himage pair and hen
e is in
luded in the optimization. The output of the pro
edure is a 3Dpoint 
loud. For our appli
ations, a 
on
lusion 
an be made that mat
hing SIFT points 
an-not provide the desired resolution for spatial depth (be
ause subpixel a

ura
y of mat
hingis not given) and therefore tra
king algorithms provide better subpixel 
oordinates for the
hara
teristi
 points.3.2 Previous work on shape re
onstru
tionBe
ause of rapid progress in hardware development that allows pro
essing large point sets,there are plenty of algorithms for generating models from s
attered point sets. The goalof this se
tion is to provide an overview of several surfa
e re
onstru
tion algorithms and todis
uss their potential advantages and disadvantages for appli
ation on our point 
louds.We will 
onsider in Se
s. 3.2.1, 3.2.2, 3.2.3, 3.2.4, respe
tively, examples of four main ap-proa
hes of geometri
 re
onstru
tion, namely, TINs (examples stemming from the generalidea of Se
. 2.4.1), (impli
it) iso-surfa
e extra
tion, surfa
e re
onstru
tion by level sets, andsurfa
e re
onstru
tion by expli
it fun
tions (tensor-produ
t splines). Se
. 3.2.5 is dedi
atedto several alternative algorithms for surfa
e re
onstru
tion.3.2.1 Polygonization of surfa
es of unknown topologi
al type byTINsMotivated by the approa
h of Amenta and Bern, many approa
hes are based on the lo
alsample density. One of the typi
al examples presented in Gopi [52℄ requires that the dotprodu
t between the normals of neighboring points must be approximately 
onstant andbounded away from zero. Then a lo
al (2D) Delaunay triangulation of every sample point inits lo
al 
oordinate frame repla
es the 3D Voronoi polygonization of [4℄. Medeiros et. al. [100℄even 
ompress the point set (by fusing neighboring points into 
lusters) and apply also alo
al algorithm for triangulation. The method of Boissonnat [16℄ starts with the Delaunaytetrahedrization of 3D points, and deletes iteratively all tetrahedra whi
h either have oneborder fa
e and the vertex non-in
ident with this fa
e as an interior point, or two borderfa
es and one interior edge. Other 
riteria (as in our 
ase, visibility 
riteria for the given
amera lo
ations and 
orresponding depth images) 
an be applied, too. Another method,
alled ball pivoting algorithm, is proposed by Bernardini et. al. [12℄. It starts with a ballaround a �xed edge in the point set. Its radius is diminished until the next point is hit. Thetriangle formed by this triple of points is added to the list and the pro
edure is propagatedfrom these re
ently added edges. Finally, α-shapes [43℄, a geometri
 tool widely used and
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onstru
tioninvestigated for surfa
e modeling, 
onsist of all triples of points su
h that no further point of
X lies in one of two spheres of radius α around these triples of points. Clearly, for large valuesof α, the 
onvex hull of X will be obtained while for too small values of α, the resulting setof triangles will be empty (see Fig. 3.1, left, for visualization of these situations). To namesome advantages of α-shapes, we mention that the size of the triangles is automati
allyregularized, α-shapes are easy to generalize for higher dimensions, and, sin
e they are asubset of the Delaunay triangulation (or, in 3D, tetrahedrization) of X , they are in prin
ipaleasy to 
ompute.The 
on
ept of α-shapes 
an be generalized to the 
ase when information about distri-bution and quality of points is available. Here, weighted α-shapes [44℄ 
an be used. Thepoint X is given a weight (wX) su
h that the weighted distan
e between two points X,Yis given by d̃(X,Y) = dst(X,Y)− wX − wY. Just as α-shapes are subsets of the Delaunaytriangulation (tetrahedrization) of X , weighted α-shapes are subsets of the so 
alled regularsimpli
ial 
omplexes, whi
h 
an be extra
ted in a manner similar to the way in whi
h theDelaunay triangulation of X is generated.Despite the advantages of α-shapes and other TINs-based methods, the re
onstru
tionresults produ
ed by them su�er from the drawba
ks mentioned at the end of Se
. 2.4.1. Eventhough e. g. [11℄ gives a ne
essary 
ondition when a triangular mesh modeled by α-shape ishomeomorphi
 to F , in many pra
ti
al 
ases, the surfa
e is not topologi
ally 
orre
t. Forexample, it is not guaranteed that an edge is shared by exa
tly two triangles. If α is toosmall, the resulting mesh will 
ontain holes. If α is too large, it will 
onne
t points oftopologi
ally di�erent fragments. Furthermore, noise around nearly planar regions in X willresult in visually unpleasant artifa
ts.

Y1

Y2

d

nρ

Figure 3.1: Left: Alpha-shapes (depi
ted by bla
k line segments) for di�erent values of
α. The 
hara
teristi
 
ir
les around segments that belong to the α-shape are depi
ted in
yan and their size is indi
ated by red 
ir
les on a blue ba
kground in the lower right ofea
h portion. Right: Iso-surfa
e extra
tion by [70℄. Surfa
e points X are depi
ted by red
rosses and the nodes Y of the volumetri
 grid by blue 
rosses. The value d of the signeddistan
e fun
tion is given by the length of the perpendi
ular from Y in the dire
tion of "its"tangential plane (bla
k horizontal line) if there is a sample point near the base-point, as inthe 
ase of Y1. Otherwise, as for Y2, it remains unde�ned. Problems are expe
ted in theareas near sudden 
hanges of normal ve
tor �eld, see Fig. 6.33, p. 114.
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e extra
tionAn iso-surfa
e is a surfa
e in spa
e that represents points of a 
onstant value of a trivariatefun
tion f(x, y, z). For the both state-of-the-art methods 
overed in this se
tion, f representsthe signed distan
e from the point to the surfa
e and it is 
omputed at the verti
es of atensor-produ
t volumetri
 grid (xk, yl, zm), k = 0, ..., gx, l = 0, ..., gy and m = 0, ..., gz and
gx, gy, gz are the numbers of nodes in the grid, usually 
hosen in the way to guaranteeapproximately equal resolution of the grid in x, y and z dire
tion. After extra
ting f , oneperforms meshing by means of one of the method mentioned in Se
. 2.4.2.Hoppe's methodThe method of Hoppe et. al. [70℄ is able to re
onstru
t a smooth, orientable surfa
e of ar-bitrary topologi
al type and 
onsists of four steps (for s
hemati
 visualization, see Fig. 3.1,right). In the �rst step, the approximate 
omputation of a surfa
e tangent plane 
enter andnormal ve
tor for every sample point takes part. The tangent plane 
onsists of the surfa
enormal n (always of length 1) and the plane 
enter C that 
an be 
omputed as an average ofneighboring points. Then the surfa
e normals are 
onsistently oriented, whi
h means thatfor neighboring points X and Y, the dot produ
t of the normals nTXnY (whi
h is expe
tedto be 
lose to ±1 sin
e the surfa
e is pie
ewise smooth) should be rather 
lose to 1 than to
−1. An exa
t solution of an energy fun
tion minimization implies a graph-
uts-based mini-mization, but in [70℄, a sign-propagation approa
h is proposed. In the third step, the valueof the signed distan
e fun
tion dst(Y) from ea
h node Y of a volumetri
 grid is 
omputedby proje
ting Y onto the tangent plane i, where the 
enter of the plane i is the 
losest to
C. This fun
tion re�e
ts the distan
e from Y to the 
losest point on the surfa
e. Formally,we have i = argmin(dst(Y,Ci)), the base-point

V = Y− ni

(nT
i · (Y−Ci)

) and dst(Y) = nT
i (Y−Ci) (3.3)is set to be the value of the signed distan
e fun
tion if and only if there is a sample pointof X within a sphere of radius ρ around V. Otherwise it is set to in�nity. In the laststep, triangles are extra
ted from the volumetri
 grid by one of the approa
hes des
ribed inSe
. 2.4.2.Experiments show that the approa
h of [70℄ performs well in presen
e of moderate Gaus-sian noise. Its another advantages is the topologi
al �exibility: there is no need to di�eren-tiate between 2.5D and 3D surfa
es. But the approa
h has the following disadvantages: itis not immediately 
lear how to take the sample's a

ura
y (weighted points) into a

ount.For a point Y quite far from the surfa
e, a 
orre
t value of the signed distan
e fun
tion ishard to determine, espe
ially if the surfa
e has boundaries or there are un
ertainties in thevalues of n. Other problem 
an emerge near the points of the medial axis, where fun
tionvalues 
an di�er from negative to positive and so ghost triangles 
an appear. Also, theapproa
h does not perform well in regions of rapid 
urvature 
hanges and non-
ontinuousdistribution of normal ve
tors.Based on values of the signed distan
e fun
tion retrieved by [70℄, lo
al adaptive [6℄ andglobal [42℄ methods were developed to support smoothing the fun
tion values at grid nodesand also at the intermediate points.Applying the Fourier transform for water-tight surfa
e extra
tionAnother well-known method of iso-surfa
e extra
tion from water-tight surfa
es (i. e., thosethat partition the spa
e into two sets, one with positive and one with negative values ofthe signed distan
e fun
tion) is given in [75℄. Given the point sample and normal ve
tors

(x,n), the pro
edure �rst retrieves the Fourier transform of the 
hara
teristi
 fun
tion χ of



36 3.2. Previous work on shape re
onstru
tionthe surfa
e (χ(x) = 1 if x ∈ F and χ(x) = 0 if x 6∈ F) from the point set S and the set oforiented normal ve
tors using Stokes's theorem.
χ̂(v) =

∫

R3

χ
F
e−ivTxdx =

∫

F

e−ivTxdx =

∫

∂F

Gv(x)n(x)dx ≈
∑x∈X

Gv(x)n(x),where ·̂ denotes the Fourier-transform, v = (k, l,m) is a triple of integer numbers and Gis a ve
tor fun
tion su
h as div(Gv(x)) = e−ivTx for all v. In [75℄, the term Gv(x) =

ive−ivTx/||v||2 is proposed, be
ause it is the only fun
tion that is invariant under rotationsand translations and by whi
h "no points in�uen
es its neighbor".After obtaining χ by Fast Fourier Transformation, the resulting mesh may be obtainedby any polygonization algorithm mentioned in Se
. 2.4.2. Of 
ourse, our models are notwater-tight. Therefore, the resulting surfa
e must be �ltered in an additional step, e. g. byremoving pie
es of the surfa
e outside the bounding box of F .3.2.3 Surfa
e re
onstru
tion by level setsThe key idea of the level set method is an exploration of the evolution of the open, possiblymulti-
onne
ted set Ω ∈ R
n, bounded by a hyper-surfa
e F under in�uen
e of a velo
ity�eld, see [106℄. This velo
ity �eld 
an depend on position, time, geometry of F and manyother fa
tors. The fun
tion φ(X, t), whi
h (similar to the last se
tion) is positive for X ∈ Ω,negative for X 6∈ Ω ∪ ∂Ω and zero at the border ∂Ω, is a kind of 
hara
teristi
 fun
tionfor Ω. A signi�
ant advantage of the representation 
an be seen from Fig. 3.2: the threedi�erent 
urves in the top of the �gure have 
ompletely di�erent topology and 
an hardly beparametrized from a mere intuition. But, if one 
onsiders the three-dimensional 
ounter-partof these graphi
s (in Fig. 3.2, bottom), an evolution prin
iple be
omes evident and 
lear.

Figure 3.2: Top: the behavior of the level-set fun
tion is hard to des
ribe by an expli
itfun
tion. Bottom: in 3D, it is easy to observe how the level set fun
tion merely is moveddownward and so parameterization is easier in 3D. Sour
e: Wikipedia.Re
onstru
tion of open, water-tight surfa
es is one of the appli
ations of the level setmethod. The task is to obtain a steady-state solution for a partial di�erential equation (PDE)
∂φ/∂t + f(X, φ,∇φ) = 0 with a suitable fun
tion f ; the PDE representation means thatthe surfa
e is assumed to be a time-dependent fun
tion that ideally 
onverges to the 
orre
tsolution for t → ∞. This surfa
e deformation approa
h has turned to be very suitable for
omputing a surfa
e given several kinds of information. A modi�
ation of that method willbe presented in Se
. 3.3.2, and one of its best-known alternatives is the snake algorithm (see,



Chapter 3. Previous work 37for example, [65℄). The partial di�erentiation of the PDE mentioned above helps to obtainthe Euler-Lagrange equation for its steady-state solution. The resulting fun
tional 
onsistsof a data term (whi
h 
an express, similarly to [106℄, the distan
e from the point 
loud to F ,or some radiometri
 relations [76℄), a smoothness term, whi
h a

ording to [106℄ punishesthe area of F , and, additionally, a salien
e �eld, whi
h is used to redu
e the number andin�uen
e of outliers (see [93℄ for further information).The te
hni
al details of the approa
h for obtaining a solution of PDE mentioned aboveare des
ribed in [106℄. The �rst step is an approximation of φ and its derivatives on adis
retized Carthesian grid. Then the solution of the dis
retized PDE 
an be obtained viaTVD (total varian
e diminishing) by Runge-Kutta s
hemes.The results of the level set approa
h are usually visually good even for a high per
entageof outliers, espe
ially after being extended with the salien
e term of [93℄. However, thetensor voting pro
edure works only if the number of inliers is high and their distributionis homogeneous. In addition to the rather high 
omputing time needed to solve the PDE,there are two other reasons why the level set pro
edure in its straightforward implementation
an hardly be applied on our problem. First of all, the model assumption of a C2-fun
tionbias the results towards Gibbs artifa
ts (over-swinging near sharp edges and gradient dis-
ontinuities). The se
ond problem 
onsists of the fa
t the models to be instantiated in ourappli
ations are not ne
essarily water-tight.3.2.4 Approximation of surfa
es on two-dimensional tensor-produ
tgridsIf the assumption of the z-axis as a dominant dire
tion holds (e. g., by �ights at su�
ientlyhigh altitudes), it is possible to parametrize the terrain along its length and width by inde-pendent variables u and v and model the height
zi,j(u, v) = Ai,jFi(u)Gj(v), i = 0, ..., I, j = 0, ..., J (3.4)with basis fun
tions F (u), G(v) of independent parameters u, v and unknown s
alars Aij .Grid�tThe simplest possibility is to let F and G be �xed and model Ai,j . In the 
ase F = G = 1,

Ai,j represent the fun
tion values of z at the nodes (ui, vj) and will be denoted by zi,j .For example, grid�t, a widely used modeling tool available in MATLAB (see [38℄) 
an beapplied for obtaining the unknown zi,j and thus a C0-surfa
e homeomorphi
 to a plane. Theresulting surfa
e has to approximate the points X = (x, y, z) in the least square sense andthe interpolated method 
an be either:1 Bilinear: for ui < x < ui+1, vj < y < vj+1, we have
z(x, y) = t (szi,j + (S − s)zi+1,j) + (tj − t) (szi,j+1 + (S − s)zi+1,j+1) , (3.5)where s = x− ui, si = ui+1 − ui, t = y − vj , tj = vj+1 − vj (see Fig. 3.3, left).2 Triangular: here we use the lo
al bary
entri
 
oordinates of (x, y) in the trianglesobtained after tra
ing the diagonal zi,jzi+1,j+1 of the spatial quadrilateral zi,jzi,j+1

zi+1,j+1zi+1,j . We have:
z(x, y) =

{
Uzi,j + Vzi+1,j +Wzi+1,j+1 s/t ≥ si/tj
Uzi,j + Vzi,j+1 +Wzi+1,j+1 s/t < si/tj .

(3.6)
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onstru
tionThe 
ondition s/t ≥ si/tj means that (x, y) lies in the upper triangle of Fig. 3.3,right, made by points (ui, vj), (ui+1, vj) and (ui+1, vj+1) with U ,V ,W are the lo
albary
entri
 
oordinates 
orresponding to this verti
es, while the 
ondition s/t < si/tjis equivalent to (x, y) is in
ident with the bottom triangle.3 Nearest neighbor: the 
oordinates of x and y only have to be rounded towards thenearest vertex of the re
tangle. Clearly, this kind of interpolation will be sub-optimalin the majority of 
ases, but it helps to save 
omputing time.The �rst two options for interpolation mentioned in the previous paragraph also have theirdrawba
ks. For example, in (3.5) the result will be di�erent, in general, for 
urvilinearre
tangles, if we repla
e s, si and zi+1,j by t, tj and zi,j+1 respe
tively, be
ause two lines inspa
e do not ne
essarily interse
t. In (3.6), the result will be di�erent if the other diagonal ofthe quadrilateral is 
hosen. The optimization pro
ess 
onsists of solving an over-determinedsystem of equations with a sparse, banded-stru
tured left-hand-side matrix A using well-known methods of linear algebra.
W V

U

Figure 3.3: Left: Bilinear interpolation of a point (x, y) and (unknown) fun
tion values inthe grid nodes. Right: Triangular interpolation. See text for further explanation.SplinesIn order to 
ope for the negative e�e
ts mentioned at the end of previous paragraph, onehas to use other fun
tions F (u), G(v) as the basis fun
tions in (3.4). Hos
hek and Lasser[73℄ 
onsider in Chapter 6, among others, bi
ubi
 polynomial splines
zi,j =

3∑

k=0

3∑

l=0

Ai,j,k,l(u− ui)
k(v − vj)

l. (3.7)Sin
e these splines will be very important for our appli
ations in Se
. 5.2, we now providethe ne
essary theoreti
al ba
kground about bi
ubi
 splines. A bi
ubi
 C1-spline is uniquelydetermined by the values of the fun
tion z and its partial derivatives ∂z/∂u, ∂z/∂v at thegrid verti
es (ui, vj) whi
h we denote by zi,j , (zi,j)u, (zi,j)v, respe
tively.The integration of a data point (x, y, z) into the matrix A su

eeds by assigning it toone of four triangles built by the diagonals of the 
ell 
ontaining (x, y) and 
omputing itsSibson-element [57, 85℄:If (x, y) lies in the triangle spe
i�ed by:
{

(ui, vj), (ui+1, vj),

(
ui + ui+1

2
,
vj + vj+1

2

)}then
x̃ = (x− ui)/si, ỹ = (y − vj)/tj with si = ui+1 − ui, tj = vj+1 − vj



Chapter 3. Previous work 39lies in the triangle T0 spe
i�ed by verti
es (0, 0), (1, 0) and (1/2, 1/2) and we 
an expressthe fun
tion value for z in terms of fun
tion and derivative values at the verti
es of the
orresponding re
tangle by means of the following equation.
z(x, y) =

[
1− 3x̃2 + 2x̃3 − 3ỹ2 + 3x̃ỹ2 + ỹ3

]
zi,j

+si

[

x̃− 2x̃2 + x̃3 − ỹ2

2
+

x̃ỹ2

2

]

(zi,j)u+ tj

[

ỹ − x̃ỹ − 3ỹ2

2
+ x̃ỹ2 +

ỹ3

2

]

(zi,j)v

+
[
3x̃2 − 2x̃3 − 3x̃ỹ2 + ỹ3

]
zi+1,j + si

[

−x̃2 + x̃3 +
x̃ỹ2

2

]

(zi+1,j)u

+tj

[

x̃ỹ − ỹ2

2
− x̃ỹ2 +

ỹ3

2

]

(zi+1,j)v +
[
3ỹ2 − 3x̃ỹ2 − ỹ3

]
zi,j+1

+si

[
ỹ2

2
− x̃ỹ2

2

]

(zi,j+1)u + tj

[

x̃ỹ2 − ỹ2 +
ỹ3

2

]

(zi,j+1)v

+
[
3x̃ỹ2 − ỹ3

]
zi+1,j+1 + si

[

− x̃ỹ2

2

]

(zi+1,j+1)u + tj

[

−x̃ỹ2 +
ỹ3

2

]

(zi+1,j+1)v .

(3.8)
Expressions for the Sibson element in the other three triangles 
an be 
reated by mappingthese triangles onto T0. For instan
e, for the triangle with verti
es {(xi+1, yj), (xi+1, yj+1),and (xi + xi+1, yj + yj+1)/2} (or, equivalently, (x̃, ỹ) verti
es (1, 0), (1, 1), and (1/2, 1/2)),one adjusts (3.8) by repla
ing x̃ by 1 − ỹ and ỹ by x̃ and by rotating the indi
es ofthe four verti
es of the 
ell, repla
ing zi,j, zi+1,j , zi+1,j+1 and zi,j+1 (with derivatives) by
zi+1,j , zi+1,j+1, zi,j+1 and zi,j , respe
tively.Smoothing Surfa
esThe surfa
es des
ribed above are �tting surfa
es, in other words, they assume a point set ofhigh a

ura
y more or less regularly distributed over the parameter domain [u0;uI ]×[v0; vJ ].The result of these routines applied for point sets with sparsely 
overed regions will be poorsin
e the matrix A will have a multi-dimensional null-spa
e. Similar to Se
. 3.1, we will haveto extend the data term:

‖z − z(x, y)‖, (3.9)(where X = (x, y, z) is a sample point and z(x, y) as in (3.4)) by a smoothness term. In the
ase of grid�t, three possibilities are given:1 A Di�usion, or Lapla
ian term is the weighted norm (weight λ) of the numeri
alLapla
ian ∆ of neighboring grid points. For example, for a point i, j su
h that i, j >
0, i < I, j < J ,

∆ = [2zi,j − zi−1,j − zi+1,j 2zi,j − zi,j−1 − zi,j+1]
T
, (3.10)whi
h 
ontributes two new rows to the matrix A. The weight λ balan
es data �delityand hypothesized properties of the surfa
e. For the grid points on the margin of
omputation domain but not in the 
orner, only one row of (3.10) is added. The totalnumber of equations thus obtained is 2(I − 1)(J − 1) + 2(I − 1) + 2(J − 1).2 The Gradient strategy suggests minimizing the norm of the gradient and is subtlydi�erent from what we saw before, sin
e here the dire
tional derivatives are biased tobe smooth a
ross 
ell boundaries in the grid. The total number of equations here is

(I + 1)J + (J + 1)I.



40 3.2. Previous work on shape re
onstru
tion3 Springs minimizes springs between neighboring nodes as well as between data pointsand the nodes of the grid. In this 
ase, the nodes drag the surfa
e toward the lo
almean of the data and therefore it is usually only a suboptimal 
hoi
e. The totalnumber of equations here is 2m+ (I + 1)J + (J + 1)I.One of the �rst two terms is usually applied in the 
ase of more 
ompli
ated basisfun
tions, as des
ribed in the previous se
tion. Here the balan
e parameter λ as in (3.10)plays a role similar to that in equations of Se
. 2.3. Theory to guide the 
hoi
e of λ is notyet well developed.In the 
ase of 
onventional splines [73, 122℄, regions with sharp 
hanges of 
urvature often
annot be re
onstru
ted 
orre
tly. For regions of rapid 
hange of 
urvature (e. g., 
ornersof building), overshoot (Gibbs) artifa
ts emerge if the smoothness parameter λ is too smallwhile oversmoothing o

urs if λ is too large. One possibility to solve this problem is presentedin [20℄, where redu
tion of the smoothness parameter near the 
hara
teristi
 edges in theimages is proposed; however, these edges have to be identi�ed in advan
e. Alternatively, the
L1-spline-based approa
h, originally elaborated by Lavery for approximation of 2.5D surfa
es,allows non-overshooting and non-oversmoothing re
onstru
tion of regions of sharp 
hangeof 
urvature without requiring additional information, albeit at additional 
omputation 
ost[84, 85℄. In addition, L1 splines provide a

urate terrain re
onstru
tion even in 
ases with
onsiderable noise and outliers. The remaining problem is thus to generalize this approa
hfor our appli
ations � re
onstru
tion of a fully 3D surfa
e represented by a ve
tor fun
tionX(u, v) under the assumption that the surfa
e is "nearly" 2.5D with the z-axis as dominantdire
tion.Summarizing the 
ontents of this se
tion, we state that smoothing splines on tensor-produ
t grids are often used to retrieve plausible surfa
es approximating noisy point 
louds.However, be
ause videos of the urban terrain re
orded from a moderate height 
annot berepresented by a fun
tion z = z(x, y) but rather require representation by a parametrized3D-ve
tor fun
tion X(u, v), the question of parameterization must be solved. Typi
ally,the parametrization by u and v is unknown a priori. If we su

eed in �nding a suitableparameterization, the probability of obtaining good results is high.3.2.5 Other methodsHere we will des
ribe several approa
hes of meshing point 
louds that 
an be applied for thekind of data obtained from our image-based methods. For example, in [99℄, a 
onstrainedDelaunay triangulation [119℄ of sparse points and endpoints of 
hara
teristi
 edges in everyreferen
e image is obtained and afterwards a visibility 
onstraint for every triangle is 
he
ked.The triangles in a new referen
e view that o

lude a point obtained in an old referen
e vieware dis
arded. This approa
h leads to holes in the mesh and to artifa
ts resulting fromnoise and outliers in the data. The group of spa
e-
arving methods [83℄ also uses the powerprin
iple: the more photographs are available, the more di�
ult it is for 3D points tosatisfy either spatial or radiometri
 
onstraints and on
e a surfa
e point fails to satisfy these
onstraints, no new image of that point 
an re-establish the reliability of this point.Several authors [1, 78℄ (see also 
ontributions mentioned in these two papers) performsurfa
e re
onstru
tion by modifying the well-known Shepard method (Hos
hek and Lasser[73℄, Chapter 9) for s
attered point approximation. They interpolate on a volumetri
 gridY = (xk, yl, zm) the 3D fun
tion

a(Y) =

∑

i wi(Y)Xi
∑

i wi(Y)
where wi(Y) = − exp

(‖Y−Xi‖2
σ

)

,
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tion that has a maximum atXi and de
reases toward zero in all dire
tions.Here, σ is a s
alar that depends on the distribution and quality of the points. The resultingsurfa
e is the zero set of the fun
tion
f(Y) = nT (Y) (Y− a(Y)) and n(Y) = argmin

(
∑

i

nT (Y) (Xi − a(Y))wi(Y)

)is the (oriented) normal ve
tor �eld to be estimated. Intuitively, the point sets are lo
allyapproximated by planes and the size of the lo
al neighborhood is given by the potentials wi.Di�erent approa
hes make use of topologi
al relations between the points and variation ofnorm (sin
e the L2-norm is known to be sensitive to noise and outliers).The approa
hes of [97, 34℄ and [117℄ are dedi
ated to extra
ting spe
ial kinds of surfa
es.The work [97℄ sear
hes for verti
al planar segments from sparse 3D points 
louds, sin
e manyghost planes may appear if the assumption of verti
al segments identifying building walls isdropped. On the other hand, [34℄ �ts 
oni
s in the depth maps. Finally, [117℄ sear
hes forgeometri
 primitives in laser point 
louds using RANSAC with an o
tree-based evaluation
ost fun
tion.
P1

P2

P3X3

X2

X1

δ1(X1)

δ1(X2)

Figure 3.4: A typi
al approa
h of surfa
e (illustrated by the blue 
urve) re
onstru
tionfrom dense range images. As an approximation of the absolute value of the signed distan
efun
tion at X (nodes of a volumetri
 grid, denoted, in sele
ted 
ases, by orange 
ir
les),one takes min(|δi(X)|) over all referen
e images (identi�ed by the 
orresponding 
ameramatri
es Pi) with the sign +1 if and only if all δX are positive (as for the point X2). Atthe points for whi
h δi(X) 
annot be 
al
ulated (for instan
e, X3), the value of the signeddistan
e fun
tion is left unde�ned.Curless and Levoy [36℄ have a set of depth maps Di 
orresponding to several referen
eimages as input and 
al
ulate, in a volumetri
 grid, a signed distan
e fun
tion 
onsisting ofa weighted sum of signed distan
es to the surfa
e in the dire
tion of the 
amera view. Theproblem is the 
hoi
e of fun
tion values "behind the surfa
e" whi
h may lead to multi-sheetsurfa
es. A possible solution 
onsists in keeping tra
k of the union of all regions behind thesurfa
e and setting its signs after all depth maps are pro
essed [80℄. A typi
al 
onstellationis shown in Fig. 3.4, where, for ea
h grid point X and ea
h referen
e 
amera Pi, the term
δi(X) = |CiX|−Di(PiX) 
an be 
al
ulated. (Note that, in an manner analogous to Fig. 3.4,we 
an write instead of the distan
e |CX| between X and 
amera 
enter, the depth value
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onstru
tion pipelines
dX; see Se
. 5.1.1.) The sign of the signed distan
e fun
tion at X is positive if and onlyif all δ(X) are positive. Turk and Levoy [129℄ remove the redundant parts of the meshes,
onne
t their boundaries and, �nally, update the positions of the verti
es. We assume thatthe results of this algorithm will be similar to the iso-surfa
e extra
tion, sin
e the mesh isnot expe
ted to be topologi
ally 
onsistent and the values of signed distan
e fun
tion are notexa
t. As an example, one sees that the bad approximation of the signed distan
e fun
tionin X1 and X2 resulting from the depth map at P1 (spe
i�ed by red dashed lines in Fig. 3.4)
an be 
orre
ted by P2. However, in reality, su
h a P2 is either not ne
essarily given or maybe o

luded by another obje
t.3.3 Overview of three existing re
onstru
tion pipelinesThere is quite a large amount of work on textured 3D re
onstru
tion from images andvideos be
ause of the importan
e and elegan
e of this area. In this se
tion, we will presentseveral of approa
hes and dis
uss their appli
ability for our data. In parti
ular, we willlearn form S
hlüter's dissertation of Se
. 3.3.1 how to 
reate, starting from a 
oarse 2.5Dtriangulation, a 3D des
ription of surfa
e pat
hes in lo
al 
oordinates. The idea of enri
hinga sparse 3D point set by means of radiometri
 relations and then fusing an enri
hed pointset into a 3D surfa
e is presented in Se
. 3.3.2 and a real-time oriented in
remental approa
hof lo
al tessellations from depth maps is given in Se
. 3.3.3. For additional relevant workon re
onstru
tion pipelines that go the 
omplete way from image sequen
es to textured 3Dmodels, we refer to [120℄.3.3.1 S
hlüter's thesisThe approa
h of [116℄ generalizes global methods for 2.5D surfa
e-�tting on a re
tangulargrid by several images [63, 135℄ and uses multi-grid method to obtain dense 3D models with-out prior knowledge about the surfa
e. The 3D nodes are verti
es of a global triangulationto be de�ned for every pyramid level. The observations are de�ned for every pixel in everyimage that 
overs a pat
h F of the surfa
e. The sele
tion of images su

eeds by means ofvisibility 
onstraints previously 
omputed. Both the point of interse
tion of a reproje
tionray with F and its lo
al bary
entri
 
oordinates within the 
orresponding triangle in spa
e
an be 
omputed, whi
h allows 
omputing surfa
e normals and main 
urvature dire
tions.The solution of the resulting di�erential equation presupposes updating F by means of slid-ing 3D points in the dire
tion of their normal ve
tors. Of 
ourse, updating the position ofevery single point 
an lead to 
ompletely wrong results, sin
e the intera
tions of neighbor-ing pixels are not 
onsidered. Therefore, a regularization term that 
onsists of a distan
efun
tion between lo
al tangent planes for adja
ent points is added.The bottlene
k of the method is the 
hoi
e of the initial triangulation. While the author
laims the 2.5D Delaunay triangulation of x and y 
oordinates of the available 3D pointsis good enough for the initialization, it is 
learly not su�
ient for our appli
ations wherethe sensor platform may be lo
ated near the walls of the building, so that, in the 
ase ofbal
onies and overhanging roofs, proje
tion of points into the xy-plane will not 
orrespond to
orre
t topologi
al relations between the points. Varying density of the 3D points obtainedby photogrammetri
 methods does not 
ontribute to the stability of su
h a triangulation.Sin
e minimization parameters in
lude both geometry and 
olor information (together withthe lo
al values of brightness and 
ontrast), the parameter matrix be
omes rather largeand the solution 
annot easily be 
omputed for a large number of images 
overing a broads
ene. Therefore the 3D data presented in [116℄ in
lude only a few high-resolution intensityimages around a small obje
t (a single house) and not a 
omplete, theoreti
ally in�nite video
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e with a lot of redundant information. For large data sets, it will be an advantageto split the pro
ess up into the image-based and point-based stage.3.3.2 Re
onstru
tion by Furukawa and Pon
eThe key idea of this work [48℄ is to obtain a set of pat
hes that are parts of the obje
t surfa
eusing a sophisti
ated region-growing system. Every pat
h is 
hara
terized by its 
enter andnormal in the dire
tion of its referen
e image. These two parameters are obtained by min-imizing the NCC-s
ore. Initial guesses are given by mat
hing algorithms for 
hara
teristi
features [92, 60℄ along epipolar lines in the images. At the initial stage, the pat
h must bevisible in at least two images and not be o

luded by other pat
hes in other images that
an potentially see it. At the expansion stage, neighbors of already re
onstru
ted pat
hesmust be added to the re
onstru
tion. For a

omplishing this task, images are partitionedinto quadrati
 
ells, ea
h of whi
h 
an potentially 
ontain several pat
hes. The empty 
ellsthe neighbors of whi
h 
ontain already re
onstru
ted pat
hes are explored. The next stageis �ltering, where �rst pat
hes that o

lude more than n pat
hes and �nally pat
hes thatare o

luded by more than m other pat
hes (n, m are automati
ally 
al
ulated thresholds)are deleted.Sin
e, until this stage, the algorithms are lo
al, many outliers are expe
ted and a subse-quent �ltering stage is indispensable. Sin
e pat
hes are sparse in spa
e and even more holeswill be left after the �ltering pro
ess, Furukawa and Pon
e propose a post-pro
essing opti-mization that is des
ribed in [47℄. An energy fun
tion that in
ludes a smoothness term forminimization the se
ond derivatives of lo
al parameterizations of mesh nodes, a photometri

onsisten
y term based on the re
onstru
ted pat
hes in the �rst phase, and a visibility termthat is additionally inserted in the 
ase a

urate silhouettes are available, is minimized inthe last step.Similar to S
hlüter's method, the authors strive to use all available information at thesame time. Using already available point 
orresponden
es while expanding pat
h sets (whi
hwill be partly inferred in Chapter 4) and 
onsidering 
olor/intensity information while post-pro
essing makes results more robust. In the 
urrent implementation, this method produ
esa 
ombinatorial explosion for a large number of images (whi
h is given in our 
ase be
ause wedeal with theoreti
ally in�nite video sequen
es with un
ertainties in 
amera positions), but
an be modi�ed for in
remental pro
essing. Another drawba
k of this method is insu�
ientinvestigation of its performan
e for 
riti
al motions, su
h as forward/ba
kward motion,where not all points are situated in front of all 
ameras. Moreover, the post-pro
essingstep without visibility is biased towards shrinking models, whi
h 
an produ
e the empty setas output; in the 
ase of water-tight models, Furukawa and Pon
e prefer using Kazhdan'smethod ([75℄, see Se
. 3.2.2) to perform the post-pro
essing step.3.3.3 Re
onstru
tion algorithm by Nistér et. al.The system presented by Nistér et. al. in [111℄ 
an 
reate textured models from a geo-registered video taken from a moving ground vehi
le. The pro
ess is in
remental, so modelgeneration 
an be performed in real time. There are four parts of the re
onstru
tion pipelinethat are interesting for our purposes. First, a plane-sweep algorithm that allows obtainingdepth maps from several images is presented. Then the 
on
ept of fusing depth maps, whi
hhas several simple depth maps as input, is des
ribed. Then a triangular mesh from a refer-en
e image is obtained. Finally, intera
tion of several su
h triangular meshes is obtained bydeleting wrong and redundant triangles.The 
on
ept elaborated in [111℄ will be partly adopted for our work. However, there areseveral signi�
ant di�eren
es: while [111℄ assumes the set of several 
ameras to be �xed inthe ground vehi
le and uses an internal navigation unit, model assumptions 
an be made
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onstru
tion pipelinesthat fa
ilitate, 
learly, the re
onstru
tion. For example, dire
tions of dominant planes aregiven by the ground plane and fa
ades whose approximate positions 
an be easily determined(Se
. 6.2 of [111℄). Moreover, resolution of depth does not 
hange that dramati
ally as forthe aerial view, as one 
an see in Figs. 6.3 and 6.45 on pp. 84 and 126, respe
tively, of thispresent thesis, sin
e the distan
e between the points on the surfa
e 
orresponding to adja
entpixels 
an di�er by up to several meters. The question is, 
onsequently, that of �nding apost-pro
essing routine that allows 
omputation a global mesh 
onne
ting points in di�erentparts of surfa
e.
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Chapter 4Multi-view algorithms for depthmaps estimationThe goal of this 
hapter is to obtain a dense 3D point set from a set of images, 
orresponding
amera matri
es and also a sparse, but pre
ise and reliable set of 3D points used for retrievingrelative orientation of 
ameras. Of 
ourse, su
h points 
an 
ome from other sour
es, likeLIDAR points or manually measured ground 
ontrol points. However, in our 
ase, thesepoints are automati
ally extra
ted from the images and so usually stem from rather texturedareas and have extremely low density in the untextured regions. Ea
h short subsequen
e of 5to 10 images that we 
onsider in this 
hapter has a referen
e frame I0, typi
ally in the middleof the subsequen
e. It 
an be assumed that the Non-Lambertian spe
ular 
omponents 
an benegle
ted in relations between 
orresponding pixels in di�erent images of the subsequen
e.The desired output is the depth information of (almost) every pixel of I0 with maximuma

ura
y. We do not 
are about the (theoreti
ally unlimited) length of the video stream,but will show in the next 
hapter how the outliers 
an be su

essfully removed by usingseveral of referen
e images and simple geometri
 
onstraints.The proposed pipeline of point homogenization 
onsists of two optional steps. The �rststep 
on
erns 
hara
teristi
 points whose positions in 3D spa
e are to be determined withmaximum a

ura
y. This pro
ess, used for enri
hing the already available point set, is 
alledsparse tra
king and triangulation. The Delaunay triangulation of these points in images willsupport the se
ond step, namely, the pixel-wise depth 
omputation for whi
h the smoothness
onstraints as in Se
. 2.3 must be enfor
ed.Derivation of the most important relations for point-proje
tion in multi-view 
on�gu-rations, 
hoi
e of 
hara
teristi
 points, initial values of the unknown depth by means oftriangular meshes, sparse tra
king and triangulation, and dense mat
hing will be des
ribedin Se
s. 4.1, 4.2, 4.3, 4.4 and 4.5, respe
tively. We shall make a di�eren
e between a re
ti�edbino
ular 
on�guration and a multi-view 
on�guration (and thus subdivide Se
s. 4.3-4.5)not only in order to des
ribe simple, but reliable heuristi
s for outlier reje
tion in the 
aseof geometri
ally less stable bino
ular 
on�gurations, but for the sake of di�eren
es in termsof disparity and depth estimation, sin
e for the re
ti�ed bino
ular 
ase, we do not need 3Dpoints and 
an work only in terms of disparities.It is important to emphasize that either of the two steps mentioned above 
an be omit-ted, usually at the 
ost of redu
ed a

ura
y of the re
onstru
tion. Sparse tra
king andtriangulation 
an be omitted and the (Delaunay) triangulation T of the already availablepoints in I0 
an be thus the input for Se
. 4.5, but then T will probably 
onsist of very smalltriangles in textured areas of I0 and large triangles far away from the surfa
e in textureless
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onsequen
e, the evaluation of triangles into 
onsistent or in
onsistent withthe surfa
e and thus rendering lo
al tessellations will not have mu
h sense. If the se
ondstep, the dense estimation, is omitted, only the (enri
hed) point 
loud and the triangles of
T will be output of this 
hapter. However, even though some triangles that do not re�e
t
orre
t depth information 
an often be �ltered by 
onsidering further referen
e frames andlo
al methods for shape re
onstru
tion, whi
h we will des
ribe in Se
. 5.1, the assumptionsof many surfa
e re
onstru
tion methods [4℄ will generally not be satis�ed be
ause of the lowdensity of points in textureless areas.4.1 Multi-view geometryThe goal of this se
tion is to establish fast point proje
tion relations that 
an be used forproje
ting millions of pixels into dozens of images for dense re
onstru
tion. The best wayto parametrize spatial 
oordinates of points with a minimum of unknown parameters is to
onsider the depth values d of pixels in the referen
e image I0 of a sequen
e, be
ause thesear
h spa
e for point 
orresponden
es is one-dimensional and the expli
it 
omputation of3D points is not required. We denote the 
amera 
orresponding to I0 by P0, as visualized inFig. 4.1, and 
all P0 the referen
e 
amera of the sequen
e. If P0 is a 
lassi
al pinhole 
amera,then the depth d := dx of the 3D point X 
orresponding to a pixel x = (x, y) ∈ I0 is thedistan
e from X to the image plane of I0 and is given by (see e. g. [61℄):

d(X) = (dx) = sgn(det(M))P 3
0X/‖M3‖, (4.1)where ·3 is the third row of ·, and M = P

{4}
0 is the 3 × 3 matrix obtained after omittingthe last 
olumn of P0. Throughout this work, the 
amera matrix P0 will be normalized,i. e. divided by the quantity sgn(det(M))‖M3‖. In homogeneous 
oordinates, we denote theve
tor [x y 1]T by x̌ and we prove, starting from (4.1), the following result:Result 1: The 
oordinates of the 3D point X 
orresponding to x are given by:X = d ·M−1x̌+C0 (4.2)(as a fun
tion of d) while the reproje
tion of x into the image Ik will be indu
ed by thetransformation: x̌k(d) ≃ H0,kx̌+

ek
d

(4.3)where H0,k = P
{4}
k M−1, ek = PkČ0 are the in�nite homography and the epipole, respe
-tively. Sin
e (4.3) denotes equality up to a multipli
ative 
onstant, one 
an perform a furthersubstitution (with an arbitrary real s
alar d0) in order to redu
e point proje
tion to additionof 2D points: xk(d) = ĥk + têk where t =

d− d0
d+ e3k/h

3
k

and (4.4)ĥk ≃ H0,kx̌+ ek/d0, êk =
1

h3
k (d0h

3
k + e3k)

[
h1
ke

3
k − h3

ke
1
k

h2
ike

3
k − h3

ke
2
k

]

.Proof: Sin
e the fronto-parallel plane π at distan
e d from the image plane has theequation:
π(d) = P 3

0 − (0 0 0 d) ,the 
oordinates of the 3D point X are given by:
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Figure 4.1: Point proje
tion in multi-view 
on�gurations. Cameras are depi
ted by orangepyramids on the top, the obje
t surfa
e is below. A point x ∈ I0 with depth dx indu
esa 3D point X that 
an be proje
ted to images x1 ∈ I1 and x2 ∈ I2. Mat
hing 
an thensu

eed by 
omparing 
olor/intensity values of x,x1,x2.X̌ =

[
P0

π(d)

]−1 [ x̌
0

]

=

([
M−1

0T
3

]

+

[

04 04
Č0

d

]) x̌and thus X is given by (4.2). Moreover, (4.3) is also easily obtained:x̌k(d) = Pk ·X = Pk ·
([

M−1

0T
3

]

+

[

04 04
Č0

d

]) x̌ ≃ H0,kx̌+
ek
dwith notations for H0,k and ek mentioned above. A

ording to (4.3), the reproje
tion ofa point into the image k 
an be performed by adding two homogeneous quantities, sin
ethe values of hik = H0,kxi 
an be saved for every pixel xi. In order to derive (4.4), thesubs
ripts ·k 
an be dropped and, be
ause of a strong analogy in the 
al
ulations, it isenough to 
onsider only the x-
oordinates:ĥ+ tê =

d0h
1 + e1

d0h3 + e3
+

d− d0

d+
e3

h3

· h1e3 − h3e1

h3 (d0h3 + e3)
=

dd0h
1h3 + e1e3 + dh1e3 + d0h

3e1

(d3h + e3) (d0h3 + e3)
=

dh1 + e1

dh3 + e3
,whi
h 
ompletes the proof.From the already available point 
orresponden
es, we approximately know the depthranges (d ∈ [dmin; dmax]), whi
h allows us obtaining depth ranges for t:

t ∈
[

0;
dmax − dmin

dmax + e3k/h
3
ik

]

, t =
d− dmin

d+ e3k/h
3
ik

, d =
t · e3k/h3

ik + dmin

1− t
.We now des
ribe the properties of Eqs. (4.2)-(4.4).If we know the spatial depth of an arbitrary number of points xi ∈ I0, using (4.2) repre-sents an extremely fast way for obtaining their spatial 
oordinates, be
ause multipli
ation



48 4.1. Multi-view geometryand addition 
an be performed simultaneously and 
olumn-wise. The same argument 
anbe applied for Eqs. (4.3) and (4.4). There are more time-
onsuming algorithms for obtaining3D points from point 
orresponden
es, whi
h, however, 
onsider un
ertainties in 
ameraparameters and point 
oordinates. The general 
ase 
an be handled the DLT1 solution bymeans of singular value de
omposition of a 2K×4 matrix for every 3D point, see [61℄, Chap-ter 12. The solutions for error-free 
amera 
on�gurations and noisy point 
orresponden
esare presented in [61℄ for two-view 
on�gurations and in [123℄ for three views.A

ording to (4.3), point proje
tion from image to image 
an be performed by addingtwo homogeneous quantities if one stores the values for hik, eik for every pixel of interest xi.This fa
t will be extensively used in Se
. 4.5 when d is a 
ommon optimization parameterin arbitrary multi-view 
on�gurations and dense sets of pixels. Sin
e t depends on the
amera index k in equation (4.4), we 
annot, unfortunately, generalize these 
onsiderationsfor t as a 
ommon optimization parameter in (4.4), unless K = 1 or images I0, Ik arere
ti�ed to epipolar geometry. However, for epipolarly re
ti�ed images, e3k = 0. Hen
e, tdoes not depend on k anymore, the transformations 
on
ern only the x-
oordinates, thetime-
onsuming 
onversion of (4.3) into inhomogeneous 
oordinates is not required and,sin
e the in�uen
e of all rotation angles ex
ept the one around the baseline C0Ck hasbeen 
ompensated, the algorithms of Se
. 4.4 and Se
. 4.5 are made more invariant againstrotations. There are also disadvantages of image re
ti�
ation: First of all, it 
an be 
arriedout using a linear transformation only if the epipole e lies outside the image domain andsigni�
ant distortions of images are inevitable if it is 
lose to the image border. Moreover,due to interpolation errors in the 
ourse of image transformation, gradient 
al
ulations areless reliable. Throughout this work, we have a re
ti�
ation option opt.r; if (and only if)its value is true and the epipoles are bounded away from the image borders, we re
tify theimages by means of the algorithm proposed in [90℄ (see Se
. 2.1). As the result, we haveseveral re
ti�ed pairs of images and pairs of homographies. For example, if we re
tify I0 and
Ik, we have the re
ti�ed images IR

0k, IR
k0, the homographies HR

0k, H
R
k0, and, for every pixelof interest xi ∈ I0, we store HR

0kxi, HR
k0H0,kxi = ĥik as well as êik in 2K ×N matri
es andalways 
an perform a sum of 2D points for proje
tion of points.For two images re
ti�ed to epipolar geometry, the �rst 
oordinate of the left hand sideof (4.3) 
an be formulated as:

xk(dR) =

(

H1,1
0,k + e1k/dR

)

x+H1,2
0,ky +H1,3

0,k

H3,3
0,k

abbreviated by
xk(d) = vx̌, where v =

1

H3,3
0,k

[

H1,1
0,k + e1k/dR H1,2

0,k H1,3
0,k

]

,

(4.5)
dR is the new value of depth in terms of HR

0kP0 and v is a 1×3 ve
tor.From (4.5) we 
an obtain depth (in the terms of re
ti�ed images) from the disparityvalue j = xk − x:
d =

e1k
(x+ j)H3,3

0,k −H1
0,kx . (4.6)We illustrate in Fig. 4.2 fast ways of 
al
ulating 3D 
oordinates, depth values of points interms of original and re
ti�ed images as well as disparity values. The time-
onsuming pro
essfor obtaining 3D points from point 
orresponden
es requires applying the DLT-algorithm.1Dire
t Linear Transformation
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(4.1)dR X

dx (4.2)(4.6) (4.5) x = PX (4.2)(4.1)
Figure 4.2: Reproje
tion equations for multi-view 
on�gurations. The time-
onsuming pixel-wise triangulation is denoted by a dashed line.4.2 Choi
e of 
hara
teristi
 pointsIf the original point 
loud is too sparse and not distributed regularly in the image, weneed to obtain 3D 
oordinates for some additional points. The 
riteria of state-of-the-artfeature extra
tion pro
edures must therefore be modi�ed in order to in
orporate the givenknowledge of 
amera matri
es. In this 
ase, the sear
h range for points is redu
ed by the one-dimensional epipolar line as indi
ated by equations (4.3), (4.4) and (4.5). We are interestedin points whose neighborhoods have strong intensity 
hanges in the dire
tion parallel to theepipolar lines.We subdivide the referen
e image into small squares (e. g. 10 × 10 pixels) and sele
t, forevery square, a point with a maximum response of some 
ornerness operator C(I). For thetwo-
amera 
ase, the authors of [29℄ 
onsidered the stru
tural tensor (
ompare [46, 60℄) A(I)for a given image as well as the term

C̄(I) = tra
e(A(I)) − 0.04 det(A(I)), A(I) =
[

Ĩ2
x ĨxĨy

ĨxĨy Ĩ2
y

]

, (4.7)where Ix/y are image gradients given e. g. by the Sobel operator, ·̃ is the optional Gaussiansmoothness operator. The response of the term C̄(I) given by (4.7) 
onsists of points near
orners of the intensity image and so the probability of �nding them in the se
ond imageis relatively high. We use points obtained by (4.7) mostly in the bino
ular 
ase. In orderto save 
omputing time, we rely, instead of on the stru
tural tensor, only on the gradientoperator, namely,
C(I) = (1− α)Ĩ2

x + αĨ2
y , (4.8)where α ∈ [0, 1] is a positive s
alar needed to give more support to pixels with intensity
hanges parallel to the epipolar lines. For example, if the x and y 
oordinates of the axesin the images approximately 
oin
ide with the 
orresponding 
oordinates in 3D spa
e andthe height of the sensor platform remains approximately 
onstant, the angle between x-axisand epipolar lines is usually small. Therefore α should be 
hosen 
lose to 1; but even the
hoi
e α = 0.5 is reasonable. For multi-view 
on�gurations, we usually apply (4.8) insteadof (4.7). An illustration of the operator C(I) for an infrared image is presented in Fig. 4.3.If several points with known depth are available, we always 
ompute the Delaunay trian-gulation of these points in I0 and repla
e C(I0) of (4.8) by C(I0)C1(I0), where C1(x) is 0



50 4.3. Choi
e of initial values by means of triangular meshes

Figure 4.3: Top left: A referen
e frame of the video sequen
e Infrared. The other threepi
tures represent log(C(I) + 1) for di�erent 
hoi
es of α: top right: α = 0.5, bottom left:
α = 0.2, bottom right: α = 0.8. As a 
onsequen
e, horizontal lines are highlighted in thebottom left image and verti
al lines are highlighted in the bottom right image.if the point x lies within the 
onvex hull of these points and the area of the in
ident triangleis smaller than a threshold (150-300 pixels in our experiments) and 1 otherwise; so newpoints will be found in the areas not yet su�
iently 
overed. The points with response ofthe 
ornerness operator below a 
ertain threshold are ex
luded from further 
onsideration.4.3 Choi
e of initial values by means of triangular meshesOur goal is to obtain depth values for 
hara
teristi
 points from the previous se
tion. Thisis done by the iterative algorithms of Se
. 4.4, whi
h require initialization. If a 
hara
teristi
point lies outside the 
onvex hull of points in I0 with available depth values or no pointsat all are assigned 3D 
oordinates, a brute-for
e pro
edure 
onsists of evaluating a suitabledata 
ost fun
tion (see Se
. 2.2) for several values of an unknown parameter and taking theone that leads to a global minimum. This approa
h is less sensitive to lo
al minima, butit is time-
onsuming. A faster method 
an be applied if several points have already beenre
onstru
ted. We obtain a 2D triangulation T of points already available and 
onsider thesupport planes of ea
h triangle in 3D spa
e. The initialization 
onsists of interse
ting thereproje
tion ray of a pixel x with the support plane of the triangle T in
ident with x. In thefollowing three se
tions, we des
ribe 1) the pro
ess of obtaining the initial disparity (withoutexpli
it 
al
ulation of the 
orresponding 3D point) in the two-
amera 
ase (Se
. 4.3.1), 2)the pro
ess of obtaining initial depth values from multi-view 
on�gurations (Se
. 4.3.2) and,�nally, 3) the methods used for obtaining a suitable triangulation T and in
iden
e relationsfor pixels in I0 with respe
t to triangles in T (Se
. 4.3.3).
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ular 
on�gurationSuppose two re
ti�ed images as well as a set of sparse point 
orresponden
es p1 and p2 aregiven. We 
an assume that the per
entage of outliers among these points is low be
ausemost of the outliers are supposed to be eliminated by robust methods in Step 1 of ourre
onstru
tion pipeline (Se
. 1.2, Alg. 1.1). We are interested in 
omputing 
orresponden
esof all points inside the 
onvex hull of the points already available. Consider a triangulation
T of the point set and a triangle T ⊆ T . Suppose that the triangle T is 
onsistent withthe obje
t surfa
e, in other words, the surfa
e en
losed by three verti
es of T 
an be nearlyrepla
ed by the support plane of T . Then for any point x = (x1, y) ∈ T , the 
orrespondingpoint in the se
ond image is given by:Result 2: Let p1,T ,p2,T

2 be triplets of 
orresponding points in two epipolarly re
ti�edimages. The homography indu
ed by T maps x1 onto the point x2 = (x2, y), where x2 =vx̌1, v = x2,T (p̌1,T )
−1, p̆1,T is the 3 × 3 matrix formed by the 
olumns of the proje
tive
oordinates of p1 and x2,T is the row ve
tor 
onsisting of x-
oordinates of p2,T .Proof: Sin
e triangle verti
es p1,T ,p2,T are 
orresponding points, their 
orre
t lo
a-tions are on the 
orresponding epipolar lines. Therefore, they have pairwise identi
al y-
oordinates. Moreover, the epipole is given by e2 = [1, 0, 0]T and the fundamental matrixis F = [e2]×. Inserting this information into Result 13.6 on p. 331 of [61℄ proves, after somesimpli�
ation, the statement of Result 2.We wish to understand the nature of the parameter v, �rst mentioned in Eq. (4.5). As
ene plane π (visualized by one of the two red segments in the left hand side portion ofFig. 4.4 
onne
ting points with already available 3D 
oordinates) indu
es an image-to-imagehomography Hπ whi
h has three degrees of freedom [61℄. These three degrees of freedomstem from a plane equation and are stored in v. On the other hand, π 
an be de�ned bythree non-
oplanar points, whi
h 
an be interpreted as three verti
es of a triangle T in spa
e.By Result 2, we have a relation that 
onne
ts the verti
es of T and the ve
tor v withoutmentioning intermediate results π or Hπ.A

ording to Result 2, the disparity in the se
ond image is given by

jT,x = vx̆− x1, ,v = x2,T (p̆1,T )
−1whi
h not only provides an initialization for the algorithms of Se
. 4.4, but also a 
oarseapproximation for the disparity/depth map itself, espe
ially in areas where the surfa
e isapproximately pie
ewise planar and does not have many self-o

lusions, as illustrated inthe example of Fig. 4.5. To 
ompute this approximation DT , it is su�
ient to determineand store the entries of v for ea
h triangle; the disparities of any other point � with notne
essarily integer 
oordinates � are 
omputed a

ording to Result 2. An optional step forimproving the quality of the initial depth map is to �t planes by 
lustering the values of vwhile 
onsidering neighborhood relations. This will be a subje
t of future work.4.3.2 Multi-view 
on�gurationFrom the already available 3D points, we 
an obtain the depth values by equation (4.1).The depth value of a point indu
ed by the triangulation is given by a linear 
ombination ofdepth values at the verti
es of the 
orresponding simplex (epipolar line endpoints in Fig. 4.4,left, for 2D and triangle verti
es T in Fig. 4.4, right, for 3D). In the two-dimensional analogyof triangular interpolation, Fig. 4.4, left, the 
oe�
ients of the linear 
ombination are givenby proportions U ,V of lengths of small segments vs. the total segment length. In 3D, these2Here xT , yT ,PT et
. are x, y,x-
oordinates (respe
tively) of triangle verti
es spe
i�ed by a triplet ofinteger numbers T .
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U V

π axbc

aaxc
aabx

b

c

a

x

T

Figure 4.4: Left: The idea of triangular interpolation (same symbols as in Fig. 4.1). Severalalready re
onstru
ted points are denoted by red 
ir
les and the triangulation by solid redlines. The initial estimation of dT,x is retrieved from triangular meshes of already availablepoints (whose depths are indi
ated by red dashed lines) either by means of lo
al homogra-phies given by the plane π (as in Result 2) or by means of lo
al bary
entri
 
oordinates ofx within triangle T (see text to Se
. 4.3.2). To obtain the lo
al bary
entri
 
oordinates, theareas of small triangles, must be divided by the area of T , as depi
ted on the right.

Figure 4.5: Left: A referen
e frame of the video sequen
e House and a sparse point set(resulting from the stru
ture from motion algorithm [22℄) with Delaunay triangles depi
tedin red. One sees the abundant density of points in highly textured regions (e. g. on a tree)and in the door latti
e while the density of points in textureless areas (road and roof) isrelatively low. Right: Initialization of the depth map obtained from the depth values ofthe points on the left and Eq. (4.9). There are also some outliers on the house walls visibleby sudden depth 
hanges with respe
t to their neighbors. These outliers usually stem fromre�e
tions in the windows.



Chapter 4. Multi-view algorithms for depth maps estimation 53are proportions U ,V ,W of the areas of the small triangles vs. the total area, as illustrated inFig. 4.4, right, p. 52. This proportions are the the well-known lo
al bary
entri
 
oordinates
U ,V ,W of x in T . Formally we have:

dT,x = Uda + Vdb +Wdc, U =
axbc

aabc

,V =
aaxc
aabc

,W =
aabx
aabc

(4.9)and a denotes the area of a triangle. Equation 4.9 shows the advantage of parameterizingthe 3D points a

ording to their depth, not a

ording to their distan
e to the proje
tion
enter. Similar to Se
. 4.3.1, dT,x will from here on denote the depth value resulting fromtriangular interpolation.4.3.3 Choi
e of triangulation and establishing in
iden
e relationsThe remaining questions for this se
tion are whi
h kind of triangulation to apply (sin
e wealready know, for example, from (3.6) that the results of the interpolation depend on thetriangulation) and how to assign to a point x ∈ I0 the in
ident triangle in T . The Delaunaytriangulation was 
hosen be
ause of its easy availability in many software pa
kages andbe
ause the max-min prin
iple allows ex
luding more (visually unpleasant) long and thintriangles. There is one more reason � a
tually an answer to the se
ond question � for 
hoosingDelaunay triangulations. Suppose we want to determine in whi
h triangle T ∈ T a pointx lies. There exist algorithms that allow �nding T in linear time when T is the Delaunaytriangulation. For example, one 
an 
al
ulate the vertex of the Voronoi-polygonization thatis the 
losest to x.If the 
ardinality of the point set is large, using these algorithms for ea
h point be
omes
omputationally expensive. An alternative, on whi
h we follow up in this work, is to 
reatea segmented image where a triangle is labeled by its number. The points outside the 
onvexhull are labeled by −1. The pro
ess of labeling is very fast and it also has an advantagethat the bary
entri
 
oordinates or any other s
alar value (for example, the area of thein
ident triangle, mentioned in the last paragraph of Se
. 4.2) 
an be stored for ea
h pixelon
e and for all. The result of this routine works quite well (espe
ially if the images andpoint 
oordinates are ups
aled by a fa
tor of 2 to 4, depending on image size) and with onlyseveral mismat
hes near the border of rather skinny triangles.4.4 Sparse tra
king and triangulationThe task of this se
tion is to enri
h the point set, in other words, to �nd the 
orresponden
esfor new 
hara
teristi
 points obtained in Se
. 4.2. From the resulting, extended point set,we will again use Delaunay triangulation to determine the set of triangles 
onsistent withthe surfa
e.4.4.1 Bino
ular 
on�gurationWe will �rst turn our attention to the bino
ular 
ase. This 
on�guration is rather unstablefor obtaining point 
orresponden
es be
ause of spurious mat
hes in the repetitively texturedareas and in the image regions near o

lusions. We assume that the images I1, I2 are re
ti�edto epipolar geometry and we sear
h for point mat
hes within 
orresponding epipolar lines.As visualized in Fig. 4.6, for a point x = (x1, y) in a triangle T ∈ T , the sear
h window
an potentially be redu
ed to
Ws = [x1 + xmin;x1 + xmax]× [y − εy; y + εy],

xmin = max(jmin − εx,min(sT )), xmax = min(jmax + εx,max(sT )),
(4.10)



54 4.4. Sparse tra
king and triangulationwhere εx = εy are �xed s
alars whi
h 
ope for un
ertainties in 
amera orientations, sT are the
x-
oordinates of at most six interse
tion points between the epipolar lines at y, y−εy, y+εyand the edges of p1,T and jmin, jmax are the estimates of disparity ranges whi
h 
an beobtained from the point 
oordinates already available.

max(sT )min(sT )Figure 4.6: Mat
hing supported by triangular meshes in bino
ular 
ase. An exemplar trian-gle T from triplets of 
orresponding points p1,T ,p2,T (small red 
rosses) is depi
ted by thinblue lines in both images. The sear
h range for 
orresponden
es within T (a point markedby a big red 
ross) 
an often be further 
onstrained by taking into a

ount interse
tionpoints of epipolar lines (denoted for a sele
ted point by a thi
k red line) with edges of T . Indegenerated 
ases of o

lusions in triangles in
onsistent with the surfa
e, this assumptiondoes not hold, but mismat
hes are usually ex
luded by appli
ations of one of three �ltersimposed on putative 
orresponden
es.The sear
h for 
orresponden
e points 
an su

eed be means of any data 
ost fun
tionmentioned in Se
. 2.2. In [29℄, it was the Normalized Cross Correlation (NCC, see Eq. (2.6))between quadrati
 windows I1(ω(x1)) of size between 5 and 21 pixels and I2(ω(x2)). Ap-pli
ation of NCC is reasonable here sin
e we 
an assume a pie
ewise linear transformationbetween luminan
e values of both images, see (2.5). However, in order to avoid in
ludingmismat
hes in the set of 
orresponden
es, three �lters on the result are imposed before the
orresponden
e x1,x2 is added:1. The luminan
e di�eren
e between the windows is bounded, i. e.
‖I1(ω(x1))− I2(ω(x2))‖1 < wumax where w is the number of pixels in the windowand umax = 15 in our experiments,2. The 
orrelation 
oe�
ient c0(x) = minj(x, j) of the winner is low enough (for example,below the threshold 0.5), and3. In order to reje
t ambiguous 
orresponden
es, c0 must be low enough with respe
t tothe neighbors. Let c1 be the best mat
hing 
oe�
ients in the sub-windows

([x1 + xmin;x2 − 2] ∪ [x2 + 2;x1 + xmax])× [y − 1; y + 1].If the ratio c0/c1 (best to se
ond-best) ex
eeds a threshold (whi
h is usually 0.9), themat
h is reje
ted.The 
oordinates of 
orresponding points 
an be re�ned to subpixel values. We �rst
he
k whether jx ≈ jT,x, whi
h 
an be the 
ase if T is 
onsistent with the surfa
e. The



Chapter 4. Multi-view algorithms for depth maps estimation 55disparity jT,x is assigned to x if and only if |jx − jT,x| < 1. Otherwise, the subpixel valueof j 
an be assigned a

ording to one of the four methods dis
ussed in [128℄. For the sakeof 
omputing time, subpixel 
oordinates for 
orresponden
es are 
omputed a

ording to
orrelation parabolas (se
ond-order 
urves �tted into the 
ost distribution fun
tion). Wedenote by c− and c+ the 
orrelation values in the pixels to the left and right of x2. The
orre
tion term x̂2 in the x-dire
tion is then given by
x̂2 = x2 −

c+ − c−
2(c− + c+ − 2c0)

.In Fig. 4.7, new 
orresponden
es obtained from bino
ular sparse tra
king are shown.

Figure 4.7: Two re
ti�ed images of the sequen
e Bonnland and a point set (marked in green)dete
ted by means of (4.8) in a window of 20 × 20 pixels in the left image. In the rightimage, 
orresponden
es obtained by the lo
al method are marked in red.After performing this algorithm for all points, an additional heuristi
 
an be appliedin order to reje
t mismat
hes. A point with a deviation of disparity values of more thanone pixel from all its neighbors is reje
ted. Here, the neighborhood relation is de�ned by
ommon edges within the triangulation T . We e�
iently apply this pro
edure on
e prior toand on
e after the expansion.Of 
ourse, the pro
ess of triangulation and mat
hing 
an be 
arried out several times for anarrower mat
hing sear
h spa
e given by (4.10), varying (diminishing) step and (in
reasing)window sizes until a new, re�ned disparity map is obtained. An alternative of using a
onstrained Delaunay triangulation (see [119℄) with seeded edges stemming from the old,
oarser mesh allows evaluating triangles of the 
oarser mesh with respe
t to the surfa
e
onsisten
y (to be de�ned in Se
. 4.5) on
e for all, but has a signi�
ant disadvantage ofhaving many long, skinny triangles.4.4.2 KLT-epipolar and simultaneous tra
king poli
ies fur multi-view 
on�gurationsObtaining point 
orresponden
es as des
ribed in the previous se
tion usually works well fordata sets with many fronto-parallel surfa
es. In the 
ase of airborne sequen
es with many



56 4.4. Sparse tra
king and triangulationslanted surfa
es (whi
h we dis
uss in Chapter 6), a deviation of one pixel in the image spa
e(disparity) sometimes results in a deviation of several meters in obje
t spa
e. In order toin
rease a

ura
y, we 
onsider redundant information from several images by in
orporatinginto the standard KLT-tra
king algorithm [94℄ the knowledge of 
amera matri
es. Be
auseof a strong analogy in the 
al
ulations, we will 
on
entrate on the 
ase when the re
ti�
ationoption opt.r of Se
. 4.1 is set to zero in the explanations of this se
tion. For a 
hara
teristi
point x, we have to 
ompare the intensity distributions of I(x) and Ik(xk(d)), k = {1, ...,K}as in Eq. (4.3). The total error c̆ is 
omposed of c = [c1, ..., cK ] (the radiometri
 deviationterm) and (optionally) g = [g1, ..., gK ]T (the un
ertainties in the 
amera parameters). Here,the radiometri
 deviation 
an be des
ribed by di�eren
es of gray values sin
e 
hanges ofluminan
e are small in neighboring images of the video sequen
e. Overall, we have
c̆ = [c Wg]T , ck = Ik

(
ω(xk(d) + gke⊥k ))− I0 (ω(x)) , (4.11)where W is a diagonal weight matrix, ω is a small window around x, Ik(ω(xk(d) + gke⊥k )is 
omputed by bilinear interpolation and e⊥k is the normalized perpendi
ular 
omponent tothe epipolar line ek: e⊥k =

[
e2k
−e1k

]

/
√

(e1k)
2 + (e2k)

2.The Ja
obian of derivatives J̆ is sparse and has the following stru
ture:
J̆ =

[
J J̄
0 WI

]

, where J = [J1, ...,JK ]
T
, J̄ =





J̄1 ... 0
...

0 ... J̄K



 ,

Jk =
∂ck
∂d

= [(Ik)x (Ik)y]
∂xk(d)

∂d
, J̄k =

∂ck
∂gk

= [(Ik)x (Ik)y] e⊥k , Ik =
∂gk
∂gk

= 1,

w is the number of pixels in the window ω and xk(d) of (4.3) is di�erentiated by thequotient rule. The system of normal equations 
an be solved for the parameter update
p = [∆d ∆g]T , for example, by the Levenberg-Marquardt algorithm (with a small s
alar λand identity matrix I):

(

J̆ T J̆ + λI
)

p = −J̆ T c̆,followed by sparse matrix te
hniques for linear equation systems. In this work, the un
er-tainties in 
amera parameters gk are not further 
onsidered. We thus have c̆ = c, J̆ = Jand
∆d = −J T c/

(
J TJ (1 + λ)

)
. (4.12)In this iterative minimization pro
edure, the initial value of d is re�ned until a given toleran
ein parameter updates is a
hieved. In our implementation, we 
onsidered two poli
ies ofoptimization: In the KLT-epipolar poli
y, points are sequentially tra
ked from image toimage; pairs of images are optionally re
ti�ed and the error fun
tion is minimized a

ordingto (4.12). Point 
orresponden
es are triangulated linearly as des
ribed in [61℄ and reje
tedif the total reproje
tion error in pixels ex
eeds 1. Sin
e I0 is usually 
hosen in the middleof the subsequen
e, the algorithm is modi�ed by forward and ba
kward tra
king. For these
ond poli
y, simultaneous tra
king, we proje
t x into all images by (4.3) or (4.4) and useLevenberg-Marquardt optimization. If the algorithm 
onverges and the value of c̆ of (4.11)without 
onsidering 
amera un
ertainties lies below a �xed threshold εmax, the point is saidto be tra
ked reliably and its 3D 
oordinates are 
omputed from the depth value by meansof (4.2).
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hing using triangular meshesThe task of dense mat
hing is to assign a depth to ea
h pixel of the referen
e image I0. Thealgorithms of the previous se
tion 
annot be applied to every pixel be
ause of sus
eptibilityto 
onverge to lo
al minima for pixels in areas of homogeneous texture and be
ause of ahigh 
omputational 
ost of a non-linear iterative minimization algorithm. Therefore, on theone hand, the values of unknown parameters must be dis
retized; for the bino
ular 
ase, thedis
retization labels are given in the natural way by the integer disparity values. On theother hand, smoothness assumptions must be used in order to propagate the informationfrom already re
onstru
ted points or points where the 
orre
t depth value 
an be reliablyobtained to those textureless regions.The initialization of the depth map with DT from Se
. 4.3 
an be used as a soft 
onstraintin order to bias the depth values of the pixels � espe
ially in areas of weak texture � tothose resulting from triangular interpolation. To do this, we introdu
e a triangulation-basedsmoothness term and a pro
ess of evaluation of triangles. In Se
. 4.5.1, we will use DT asinitialization for two non-lo
al algorithms, namely the global algorithm of graph 
uts with
α-expansions [81℄ and semi-global optimization used by [67℄ with Mutual Information as
ost fun
tion. Su
h depth maps obtained from pairs of images 
an be fused into the mediandepth map des
ribed in Se
. 4.5.2, whi
h has the advantage of a mu
h lower per
entage ofoutliers and points with non-assigned depth values. Sin
e 
al
ulation of median depth mapsis 
omputationally intensive, a framework of lo
al and global simultaneous 
omputation ofdepth maps will be presented in Se
. 4.5.3. Finally, we present in Se
. 4.5.4 an approa
h forautomati
 sele
tion of the smoothness parameter λ, whi
h as we have learned in Se
. 2.3,represents a trade-o� between the properties of the data given a s
ene (photo-
onsisten
eassumptions) and hypothesized properties of the s
ene (pie
e-wise smoothness assumptions).4.5.1 Bino
ular 
on�gurationTriangulation-based smoothingAs previously indi
ated, the evaluation of pixel 
osts is 
arried out by means of one of the 
ostfun
tions c(x, j) = Edata(x, j) of Se
. 2.2 for every integer value of disparity. A signi�
antdi�eren
e of this approa
h with many state-of-the-art approa
hes is that we extensively use alarge point set that is (after applying tra
king routines des
ribed in Se
. 4.4) homogeneouslydistributed in I0. We assume that the non-o

luded parts of the s
ene 
an be pie
ewiseapproximated by triangles. The point is that, if a 
orre
t evaluation is made about whi
htriangles are nearly 
onsistent with the surfa
e and whi
h are not, we will not only be ableto avoid mismat
hes in areas of repetitive patterns of textures and homogeneous texture,but also be able to obtain depth values of all points within these triangles with subpixela

ura
y. This subpixel 
al
ulation, performed in order to avoid dis
retization errors (seeFig. 4.8, left) a
tually does not depend on the 
hoi
e of the 
ost fun
tion (see [128℄) and itrepla
es segmentation of images as in [14, 68, 77, 87℄.In [28℄, the lo
al smoothness term

ET (x, j) = A(x, T )D(j, T,x) (4.13)is introdu
ed. Here D 
an be pra
ti
ally any s
alar nonde
reasing fun
tion in terms of
|j − jT,x|. The weight fun
tion A(x, T ) should be zero outside the 
onvex hull, re�e
t thereliability for the 
oordinates of points at the verti
es of a triangle T and be
ome smaller inits interior (as, for instan
e, in Fig. 4.8, middle and right). One possible 
hoi
e, followed upin this paper, is

A(x, T ) = A0 exp

(

−g(x, T )
σ

)

, D(j, T,x) = −1 + min

( |jx − jT,x|
j0

, 1

)

, (4.14)



58 4.5. Multi-view dense mat
hing using triangular mesheswhere x ∈ T , the amplitude A0 (whi
h in the future will be denoted by A) and j0 are twonon-negative 
onstants and the des
ent parameter σ ∈ [0;∞]. By g(x, T ), we denote theminimum distan
e from x to the verti
es of T . For j0, the value 2 is a reasonable 
hoi
e. Itis 
lear that for small values of σ, only the depth values for 
hara
teristi
 points are madeunlikely to 
hange (whi
h 
an be good when su
h points are provided by other sour
es �su
h as LIDAR-data � and thus possibly lie in the weakly textured areas). On the otherhand, for σ → ∞, the whole 
onvex hull ⋃T ∈ T will be a�e
ted:
A(x, T ) = { A if g(x, T ) < 1

0 otherwise for σ = 0,and
A(x, T ) = { A if x ∈ ⋃T ∈ T

0 otherwise for σ = ∞.

dmin

dmaxFigure 4.8: Left: Dis
retization of depth labels deteriorates the visual quality of the densere
onstru
tion even in the 
ase of error-free mat
hing. The problem 
an be solved by 
on-sidering triangular meshes from 3D points already obtained rather than by in
reasing thenumber of labels, be
ause, in the latter 
ase, mismat
hes appear due to limited resolution,the smoothness term of (4.23) tends to lose its sense and 
omputation 
ost in
reases dra-mati
ally. Middle and right: Weights A(x, T ) from (4.14) propagated from already availablepoints with a small/large value of σ (on the left/right, respe
tively) for the referen
e imageof sequen
e Tsukuba (see [115℄).In addition to the parameters A and σ, a third triangulation-based parameter γ ∈ [0; 1]is introdu
ed in [28℄. If the per
entage of pixels 
onsistent with the surfa
e within a triangleex
eeds γ, then all pixels y of su
h triangles are assigned the value dT,y. The de�nition ofa pixel x 
onsistent with the surfa
e is given by the ratio
r(x) = c0(x)

min {c ([jT,x]) , c ([jT,x] + 1)} , (4.15)where c0(x) = minj(c(x, j)) is the best 
ost value and [jT,x] is the "�oor value" of jT,x(the largest integer smaller than jT,x). Point x is said to be 
onsistent with the surfa
e if
r(x) = 1 for a global algorithm and r(x) > 0.8 for a lo
al algorithm.Using similarity information of triangles in RGB-imagesThe in�uen
e of parametersA, σ and γ helps to overwrite, at di�erent stages of the algorithm,the disparity values of a set of pixels with those stemming from triangular interpolation. Theperforman
e of this approa
h depends dire
tly on the quality of the triangular meshes. Inthe 
ase of 
olor images I1, I2, the authors of [29℄ propose a similarity analysis of trianglesbased on 
olor information and histogram evaluations: Ea
h 
olor 
ontains values from 0
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h 
olor histogram has b bins with a bin size of 256/b. Let the numberof pixels in a triangle be N . In order to obtain the probability of this distribution and tomake it independent of the size of the triangle, we obtain for the lth bin of the normalizedhistogram
HT (l) =

1

N
·#
{

p

∣
∣
∣
∣
p ∈ T and 256 · l

b
≤ I0(p) <

256 · (l + 1)

b

}

.The three histograms HR
T , HG

T , HB
T represent the 
olor distribution of T . It is also useful tosplit big, inhomogeneous triangles that are in
onsistent with the surfa
e into smaller ones.To perform splitting, 
hara
teristi
 edges [30℄ are found in every 
andidate triangle andsaved in the form of a binary image G(p). To �nd the line with maximum support, theradon transformation [37℄ is applied to G(p):

Ğ(u, ϕ) = R{G(p)} =

∫ ∞

−∞

∫ ∞

−∞

G(p)δ(pT eϕ − u)dp where δ(x) =

{
∞ x = 0
0 otherwiseis the Dira
 delta fun
tion and line parameters pT eϕ − u, where eϕ = (cosϕ, sinϕ)T is thenormal ve
tor and u the distan
e to the origin. The strongest edge in the triangle is foundwhen the maximum of Ğ(u, ϕ) ex
eeds a 
ertain threshold for the minimum line support.This line interse
ts the edges of T in two points. We disregard interse
tion points too 
loseto a vertex of T . If new points are found, the original triangle is split in two or three smallertriangles. These new, smaller triangles 
onsider the edges in the image.Next, the similarity of two neighboring triangles has to be 
al
ulated by means of the
olor distribution. There are a lot of di�erent approa
hes for measuring the distan
e betweenhistograms, see [31℄. We de�ne the distan
e between two neighboring triangles T1 and T2 asfollows:dst(T1, T2) = wR · d

(
HR

T1
, HR

T2

)
+ wG · d

(
HG

T1
, HG

T2

)
+ wB · d

(
HB

T1
, HB

T2

) (4.16)where wR, wG, wB are weights for the 
olors that are all set to be 1/3 in our method. Thedistan
e d between two histograms in (4.16) is the SAD of their bins. There are two possibleways to de�ne neighboring relations on a set of triangles: two triangles 
an be de
laredneighbors if they either share one or two 
ommon verti
es (i. e. a 
ommon edge in this latter
ase). The value of dst(T1, T2) is set to in�nity if T1 and T2 are not neighbors.In the last step, disparity values in the vertexes of triangles that are in
onsistent withthe surfa
e are 
orre
ted. For su
h a triangle T1, another triangle
T2 = arg min

T∈T0

dst(T1, T )was de�ned in [29℄. Here, T0 denotes the set of triangles 
onsistent with the surfa
e. Ifarea(T2) > 30 pixels and dst(T1, T ) < 2, then T1 and T2 are likely to belong to the same(planar) region of the surfa
e and therefore the disparities of pixels in T1 are re
omputedwith vT2
a

ording to Result 2. The more reliable, though time-
onsuming approa
h, notfollowed in [29℄, 
onsists of expanding the already pre
omputed 
ost fun
tion Edata(x) bythe re
al
ulated triangle-based term E′

T = A(x, T2)D(j, T1,x) from (4.13) and (4.14).Re�nement with global and semi-global optimization algorithmsThe values of the fun
tion c(x) = Edata(x, d) +ET (x, d), 
omputed for ea
h pixel and ea
hdisparity value, 
an be stored in a S×M matrix A where S is the number of disparity labelsand M is the number of pixels. The result Dloc of a lo
al algorithm assigns to the pixel xi a



60 4.5. Multi-view dense mat
hing using triangular meshes

Figure 4.9: Top row, left: Initialization of the disparity map 
reated from the triangularmesh. Top row, right: Result of 
orre
tion of triangles as suggested in [29℄ for a pair of imagesfrom the sequen
e Tsukuba. Bottom row, left and right: Results of semi-global estimation ofthe disparity map without and with initialization of the disparity map, respe
tively. Right:Color s
ale representing di�erent disparity values.label 
orresponding to the minimum value within a 
olumn i ofA (followed by γ-smoothing ofthe triangles 
onsistent with the surfa
e). Two possibilities are now opened up: to use either
A or Dloc (or alternatively DT ) as an initialization of a (semi-)global optimization algorithmwith one of the smoothness energy terms of Se
. 2.3. Before we go into the details of thesetwo kinds of optimization, we 
onsider two examples that justify ea
h of two approa
hes. Anexample of advantages of initialization with DT is in the 
ase of un
lear luminan
e relations(su
h that A 
annot be rendered). By 
al
ulating intensity 
orresponden
es with DT (see[29℄, Se
. 2.4), one 
an determine values for the mutual information mat
hing tableMI(m,n)of Eq. (2.8) and does not have to 
onsider image pyramids. This helps save 
omputing time.On the other hand, suppose we have several very exa
t (e. g., LIDAR) 3D points. In this
ase, we use a very high value of A and a low value of σ in (4.14) in order to �x the disparityvalues of the ground 
ontrol points in A and propagate these values to neighboring pointsusing smoothness terms.As explained in Se
. 3.1.3, the main feature of the algorithm of [81℄ is an α-expansionthat expe
ts a (depth) image D as input. The output D′ is either identi
al with D or somepixels of D′ are assigned the value α. In other words, if we have a good initialization,the energy 
omputed at the beginning already takes on a large negative value and so, onaverage, fewer expansion moves need to be taken. This allows redu
ing 
omputing time. Onthe other hand, initializing the semi-global optimization with a result of DT allows omittingimage pyramids without signi�
ant visible and quantitative adverse a�e
ts on the results,as illustrated in Fig. 4.9, bottom.The se
ond alternative, namely, to 
onsider A, works in a slightly di�erent way and willbe 
overed for the multi-view 
ase in Se
. 4.5.3 on the examples of dynami
 programmingand semi-global optimization.
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ed in the previous se
tion usually has several outliers and artifa
ts, es-pe
ially in areas of re�e
tions, o

lusions, and homogeneously textured regions. To in
reasea

ura
y, it is ne
essary to use all available information from several images and severaldisparity maps obtained from I0 and Ik (k = 1, ...,K).One 
an ask why it makes sense to 
ompute pairwise depth maps from pairs of frames in asubsequen
e of the given video sequen
e if a multi-view re
onstru
tion algorithm (presentedin Se
. 4.5.3 below) that 
an handle all images simultaneously is available. The answer isthat the method des
ribed in this se
tion has a possibility of self-
ontrol sin
e, for pixelswithout reliable depth, unde�ned values are likely to o

ur while the algorithm of Se
. 4.5.3has the advantage of being fast although, sin
e geometri
 
ontrol is not given (that is, thealgorithm always delivers some depth map), it is possible to have some outliers be
ause ofradiometri
 irregularities in the referen
e image, low a

ura
y in the position of 
ameras,et
. We 
an 
ompare the ideas behind the algorithms of Se
 4.5.2 and Se
. 4.5.3 with theepipolar and simultaneous tra
king of Se
. 4.4. The se
ond important point is that themajority of the (semi)-global state-of-the-art methods available online (su
h as the graph-
uts method, belief propagation, et
.) works only for re
ti�ed image pairs. If we sear
h fora 
ertain advantage of these algorithms and are interested in obtaining a stable result withfew outliers, we must be able to work with several disparity maps from a set of images ratherthan with an oriented subsequen
e (with external data provided by 
amera matri
es). Thesituation 
overed in this se
tion is s
hemati
ally visualized by Fig. 4.10, left.The algorithm starts by 
omputing depth values dk,x = dk for a pixel x ∈ I0 fromdisparity maps between I0 and Ik obtained in the previous se
tion and use the 
hain ofequations (4.6) 7→ (4.2) 7→ (4.1) (
ompare Fig. 4.2). But whi
h of these values dk should be
hosen? Clearly, if a 
luster with several values of dk 
an be identi�ed, we 
an assign to dxthe median of these values. In other words,
d̄ = dx = mediank {dk ||dk − d| < ε} (4.17)for some positive ε. Conversely, if for example, |dk − d′k| > ε for all 1 ≤ k < k′ ≤ K and noprior information (su
h as the 
on�den
e of disparity maps or information about whether xis 
onsistent with the surfa
e) about the depth value at x is available, the depth at x is leftunde�ned.Equation (4.17) is re
ursive. In order to identify the set of values in a 
luster, one 
aniteratively approximate d̄ by the weighted average
d̄ =

1

W

∑

k

dkwk with W =
∑

k

wk (4.18)and with initial weights wk = 1 if dk is not o

luded and 0 otherwise. In the next iteration,we set wk = wk(dk − d̄)−β where β is a positive s
alar (β = 2 is used for our appli
ations).After the last iteration, we 
ompute d from the inliers among the values of dk by (4.17) anda

ept this value when the number of inliers is not smaller than max(K/3). Several remarks
an be made here:1 If dT,x = DT (x) is available, it 
an be used as an additional observation in Eq. (4.17)and (4.18). The 
ounter is now K+1 and the initial weight for the term dT,x is largerthan 1 sin
e the probability that the triangle in
ident with x is 
onsistent with thesurfa
e is rather high.2 Sin
e the points in the ba
kground are obtained with lower a

ura
y than those in theforeground, one repla
es the ε on the right of (4.17) by εd̄. Note that this right-handside only in�uen
es the results of the �nal iteration.



62 4.5. Multi-view dense mat
hing using triangular meshes3 A total of 3 to 5 iterations 
an be used in the algorithm. Be
ause of the stru
tureof (4.18), the loop over the pixels 
an be avoided, so the 
omputation of weights and
d̄-values 
an pro
eed simultaneously. Therefore, the time for 
omputing the mediandepth map is 
omparing with the time for 
omputing depth maps.The last remark 
on
erns the 
hoi
e of initial weights. Espe
ially in the 
ase of a lownumber of views, it makes sense not to set all wk = 1, but to obtain, for one single pixelx, the 
on�den
e of the depth value at x. The 
on�den
e is expe
ted to be high if the
ost fun
tion has a single sharp minimum and low if there are several lo
al minima (in otherwords, there are several plausible possibilities to mat
h x in the 
orresponding epipolar line).The 
on�den
e map is 
al
ulated in a manner similar to that used in [111℄:

C0(x) = ∑
d̃6=dx exp−

min
(

c(x, dx)− c(x, d̃), 0)2
σ2












−1

, (4.19)where σ is an empiri
ally determined 
onstant. We use the 
on�den
e fun
tion if the numberof available views is low and sele
t the mat
h of highest 
on�den
e.

Figure 4.10: Left: Median-based 
omputation of depth maps. In order to �nd dx, one 
antake into a

ount depth values dx,1, dx,2 resulting from images I1, I2 and also dT,x (sin
ethese values lie in a 
luster spe
i�ed by the ellipse on the left). For the point y, only
dy,2, dT,y must be taken into a

ount and dy,1 is an outlier. Right: S
hemati
 visualizationof simultaneous multi-view dense estimation. Pixels have to be assigned labels using 
ostand smoothness penalty fun
tions. The triangulation from the enri
hed set of points isshown by red 
ir
les and lines. A forbidden 
on�guration of intera
tions {(x,x1) , (y,y1)}should be ex
luded either by adding an o

lusion term as in (2.9) or by modi�
ation of theaggregation fun
tion.4.5.3 Fast simultaneous 
omputation of depth maps for multi-view
on�gurationsDis
retizationFirst, the equations (4.3) and (4.4) of Se
. 4.1 must be modi�ed by dis
retizing d or t intolabels dj and tj , respe
tively; here, j = 0, ..., S and S+1 is the number of bins (labels). Thedis
retization 
hosen is inverse-linear,

dj =
S

(S − j)/dmin + j/dmax
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hemati
ally visualized in Fig. 4.10, right), whi
h is more suitable than the linear one,namely,
dj = ((S − j)dmin + jdmax) /S,be
ause, in the inverse-linear 
ase, the proje
tions of the 
orresponding 3D points lie nearlyequidistant at epipolar lines and so the de
rease of the resolution is treated in a morenatural way. The resolution of depth for points near the 
amera is then higher (and so is thea

ura
y of the depth 
omputation) than in the ba
kground further away from the 
amera.The number of labels 
orresponds to the length (in pixels) of the longest epipolar line afterall available points are proje
ted into images I1, ..., IK by means of Eq. (4.3) using values

dmin, dmax (or, respe
tively, Eq. (4.4) and values of tmin, tmax).Choi
e of data and aggregation fun
tionAnalogously to bino
ular 
on�gurations, 
ost fun
tions for ea
h depth label and ea
h pixelmust be 
omputed. As a default 
ost fun
tion, the trun
ated SAD (2.4) is used. Exper-iments were also 
arried out for NCC as in (2.6) and MI as in (2.8). In 
ontrast to thesituation with the image pair re
ti�ed to epipolar geometry, where the 
ost evaluation pro-
eeds by fast 
onvolution methods between windows of type (4.10), we need here also theinner loop of depth values (labels), whi
h presupposes extra
ting quadrati
 windows aroundreproje
ted (e. g. by (4.4)) points by means of bilinear interpolation as in (3.5) (a
tually, bi-linear interpolation is performed if and only if the option opt.i is a
tivated; otherwise xk(d)is determined by rounding pro
edure). Between this inner loop over depth values and theouter loop over pixels, there is a loop over intera
tions, i. e. whi
h pairs of windows must be
ompared to ea
h other. Sin
e there are K(K + 1)/2 possible kinds of intera
tions i = 〈·, ·〉and we want our algorithm to be linear in the number of views, a subset of imust be sele
ted.One possibility, followed up in the 
urrent implementation, is to aggregate 
osts betweenthe referen
e image I0 and other images. This 
hoi
e di�ers from [79℄ whi
h proposes to useneighboring images. The latter approa
h, we admit, 
ould help us to treat all images sym-metri
ally and avoid error resulting from radiometri
 irregularities in the referen
e image(re�e
tions, small moving obje
ts, dead pixels, et
.), but we de
ided, similar to what wasdone in [111℄, to 
ompute 
osts from the referen
e image to other images, be
ause in doingso, a higher value of S and therefore a higher depth a

ura
y 
an be obtained. In [111℄, theminimum of sums of data 
ost fun
tions on the left and on the right of the referen
e imagehas been 
hosen. An o

lusion term, important in [79℄, 
an be omitted in the majority ofpra
ti
al situations if the 
hoi
e of the 
ost aggregation fun
tion is robust against o

lusions,in whi
h 
ase not every pixel x ∈ I0 must be seen in all images I1, ..., Ik, but, at the sametime x is en
ouraged to be observed in a large number of images (see Fig. 4.10, right). Forexample, in [22℄, where 
are was taken to ex
lude all triangles in
onsistent with the surfa
e,it was enough to 
onsider the sum of 
osts ck over k. For a more sophisti
ated 
hoi
e ofaggregation fun
tion, we denote by K(εmax) the number of intera
tions (of x) where the
ost fun
tion does not ex
eed a 
onstant εmax. Now, for example, the aggregation fun
tion"average error per intera
tion"
Edata(x) = ∑

k {ck|ck ≤ εmax}
K(εmax)also tends to be small if only for a few images ck is small at d, whi
h is of 
ourse, unstable.Therefore we used positive 
onstants b, εmax and K0 to in
rease the denominator for large

K(εmax) and the aggregation fun
tion 
hosen in this work was
Edata(x, d) = 



∑

k {ck|ck ≤ εmax}
(1 + b) (K(εmax)−K0) + 1

if K(εmax) > K0

+∞ otherwise. (4.20)



64 4.5. Multi-view dense mat
hing using triangular meshesThe 
on
ept of dense pixel mat
hing is explained in Alg. 8.1 of the Appendix.Considering triangular meshesEquations (4.13) and (4.14) for the triangulation-based term 
an, as in Se
. 4.5.1, be writtenin terms of depth instead of disparity. We again use the triangulation-based smoothnessterm
ET (x, d) = A(x, T )D(d,x, T ), where (4.21)

A(x, T ) = A exp

(

−g(x, T )
σ

)

, D = −1 + min

( |dx − dT,x|
d0

, 1

) (4.22)with 
onstants A, σ, d0 and fun
tion g(x, T ) de�ned analogously to (4.14).The values of the fun
tion Edata(x, d) + ET (x, d), 
omputed for ea
h pixel and ea
hdepth level, are again stored in a S ×M matrix A. Similar to the bino
ular 
ase, the lo
alalgorithm, in order to obtain dxi

ompares the lowest 
ost within the 
olumn i (that is, j =

argminj′ A(j′, i)) with 
osts at rounded dT,xi
and assigns dxi

= dT,xi
if T is 
onsistent withthe surfa
e and dj otherwise. Furthermore, almost any algorithm for non-lo
al optimizationmentioned in Se
. 3.1.3 
an now be applied for the matrix thus obtained. We show twoexamples of the non-lo
al optimization in the next se
tion. After a depth level dx for a pixelx (a result of a lo
al or global algorithm) has been retrieved, we 
an 
ompute 
ost fun
tionsat dx and dT,x; if the ratio r(x) as in (4.15) is below a threshold, the pixel x is marked as
onsistent with the surfa
e. The per
entage of pixels 
onsistent with the surfa
e allows ade
ision about triangles: if the per
entage ex
eeds a 
onstant s
alar γ, all pixels y of su
htriangles are assigned the value dT,y. The in�uen
e of the parameters A, σ and γ will beevaluated in Se
. 6.3 along with other items.Two examples of non-lo
al optimizationAs two examples of non-lo
al optimization, the 1D optimization algorithm of dynami
 pro-gramming [10℄ and semi-global optimization as in [67℄ were 
onsidered. For both approa
hes,

Esmooth is 
hosen as in [67℄ (and, as in Eq. (2.11) on p. 24, d0=1):
Esmooth(x, j) = λ1 ·Nx(1) + λ2 ·

∞∑

j=2

Nx(j), (4.23)where λ1 and λ2 with λ1 ≤ λ2 are penalties for depth dis
ontinuities andNx(j) is the numberof pixels y in the 4-neighborhood of x for whi
h the absolute di�eren
e of depth/disparityvalues at x and y is equal to j. This 
hoi
e of Esmooth is reasonable, be
ause penalty termsmonotoni
ally in
reasing with di�eren
es of depth levels result in over-smoothing o

lusions.In the 
ase of dynami
 programming 
onsidered for an (epipolar3) line with M pixels, thedata 
ost matrix Aj,i is denoted, as done previously in Se
. 2.2, by [c(1, j), ...c(M, j)] for ea
hvalue j = 1, ..., S and the smoothness 
ost matrix with entries is denoted by cs(j1, j2), ...,
cs(jM−1, jM ). The smoothness term 
an also depend on the intensity levels of relevant pixels(see (2.12)) and should be denoted by cs(jM−1, jM , I0(M − 1), I0(M)). However, this slightmisuse of notation does not lead to misunderstanding and is, therefore, not 
riti
al. Thetask is to minimize

M∑

i=1

c(i, ji) +

M−1∑

i=1

cs(ji−1, ji) =

M−1∑

i=1

(c(i, ji) + cs(ji−1, ji)) + c(M, j)3Originally, dynami
 programming is used for a re
ti�ed stereo pair, so that in our appli
ations, epipolarlines 
oin
ide with horizontal (s
an)lines if and only if opt.r = 1
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on�gurations of ji. This is 
arried out by 
omputing and storing thebest path P (i, j) from 1 to i for ea
h value of ji+1, as explained in the Alg. 8.2.The 
omplexity of Alg. 8.2 is a
tually O(MS2) (instead of the SM 
omplexity of thebrute-for
e pro
edure whi
h 
onsiders every 
on�guration), be
ause 
omputing C(j) byminimization over j′ is itself an O(S) pro
edure. By a suitable 
hoi
e of smoothness fun
tion,one 
an a
hieve a 
omplexity of O(MS). Su
h a smoothness fun
tion λ must depend as littleas possible on j (although dependen
e on I, as in (2.12), is not a problem). For example,in order to 
ompute C1(j) with a disparity term given by (2.10) or (2.12), we need onlyto 
ompare C(j) and C(P (j)) + λ(i)). For the smoothness term mentioned in (4.23), fourvalues of must be 
ompared (see (4.24)). The generalization of the Alg. 8.2 for (2.15) (inwhi
h the smoothness term involves ji, ji+1, and ji+2) is straightforward. The di�eren
ewith Alg. 8.2 is just that we need to 
ompute C1(j + 2) in order to know the best path
P (i, j). For example in order to know the optimal 
hoi
e of the label j1 for every value of
j3, we must 
ompute

min
j1

(c(1, j1) + c(2, j2) + λ1|j1 + j3 − 2j2|) ,for every j2 and j3, a pro
edure of O(MS3) 
omplexity. Also in this 
ase, of 
ourse, the
omplexity 
an be redu
ed for spe
ial kinds of depth terms.As for the semi-global optimization algorithm, the NP-hard 2D problem (2.9) was solvedby approximating the term Esmooth. As stated in [67℄, at least eight paths (two horizontal,two verti
al and four diagonal) are ne
essary to provide good 
overage of I0. Throughoutour experiments, up to 16 paths are used. A global a

umulation of all possible paths isrepla
ed by paths emanating from ea
h pixel along a straight line. Suppose we have a pixelx and a path dire
tion r su
h that the previous pixel x − r is denoted by y. With (4.23),the path 
ost at x at depth label j in the dire
tion r is re
ursively de�ned by
L′r(x, j) = c(x, j) + min

[

L′r(y, j), L′r(y, j ± 1) + λ1,min
i

L′r(y, i) + λ2

]

. (4.24)This re
ursive formula is initialized by 
orresponding values of A at the beginning of allpaths. Be
ause the value L′r(x, j) always in
reases as the path is traversed, pre
autionsmust be taken to bound L. Thus, (4.24) is extended to
Lr(x, j) = L′r(x, j)−min

j′
Lr(y, j′). (4.25)Sin
e minj′ Lr(y, j′) is 
onstant for all j, the position of the minimum-
ost depth does not
hange and Lr is bounded by Lr ≤ εmax + λ2. To 
ompute the 
osts for a depth, the pathsfor all 
omputed dire
tions r are summed up to

C(x, j) =∑r Lr(x, j).The depth label dx is then 
hosen as the label that yields the lowest overall 
ost: arg
minj C(x, j). Sin
e 16 paths are used in our experiments, the upper limit of C is C <
16(εmax + λ2). By s
aling the entries of the data 
ost matrix so that both εmax and λ2 arebounded by 2048, the size of C 
an be limited to 16 bits and thus a 16-bit integer ve
tor isused throughout the 
omputations. At the last step, outliers (whi
h 
an sporadi
ally emergein the regions between the paths) are eliminated by means of a median �lter. The subpixel
al
ulation 
an pro
eed by �tting a 
orrelation parabola to the values of the 
ost fun
tion,as we explained at the end of Se
. 4.4.1.The semi-global optimization algorithm also has 
omplexity O(MS) (or, to be exa
t,
O(MSr) where r is the number of paths) for our spe
ial 
hoi
e of 
ost fun
tion. In general,



66 4.5. Multi-view dense mat
hing using triangular meshesits 
omplexity is O(MS2r) (sin
e the se
ond summand of (4.24) is, in the general 
ase,
min[L(y, j′) + cs(j, j

′,x,y)] over j′). Applying semi-global optimization helps eliminatestreaking artifa
ts without signi�
ant in
rease in 
omputing time. It will, therefore, be ourdefault method for the re
onstru
tion pipeline.4.5.4 Choi
e of smoothness parametersAs for the 
hoi
e of smoothness parameters, the results presented in the next 
hapter showthat the di�eren
e λ2−λ1 should be bounded away from zero, sin
e otherwise the algorithmprefers one big jump of the depth to its slow, 
ontinuous 
hange that is 
hara
teristi
 forsmooth surfa
es. As a result, the depth maps be
ome too noisy. On the other hand, if
λ2 ≫ λ1, the results easily be
ome over-smoothed near o

lusions and the deviations ofdepth in these areas be
ome, 
onsequently, very high. The best results were a
hieved forthe ratio λ2/λ1 = 2 to 3. The 
hoi
e of λ1 is not trivial, but also not 
riti
al, sin
e it istypi
al for global algorithms to produ
e results of 
omparable quality for quite a wide rangeof smoothness parameters. Due to equations (4.1) and (4.23), however, it is 
lear that λ1must not depend on image size while its order of magnitude must depend on the di�eren
esof entries in the data 
ost term.The following strategy is applied: after the lo
al algorithm is performed and a label j isassigned to a pixel x ∈ I0, we 
al
ulate the term

C1(x) = |c(x, j)− c(x, j + 1)|+ |c(x, j)− c(x, j − 1)| =
∑

|j̃−j|=1

|c(x, j)− c(x, j̃)| (4.26)in order to estimate, quite rigorously, the 
on�den
e of x. This quantity C1(x) measureshow well the 
ost fun
tion at dj outperforms the 
ost fun
tions of the previous and followinglabels, so that the depth value of x 
an be 
hanged (oversmoothed) by λ1. The quantity
C1(x) is a spe
ial 
ase of

C2(x) = 1

s

∑

j̃ 6=j

|c(x, j)− c(x, j̃)|, (4.27)and a simpli�
ation of the term C(x) of (4.19). Here again, we denote by c(x, j) the valueof Edata(x, j) +ET (x, j). For illustration of this, see Fig. 4.11.Now let us assume that typi
ally not more than 10 to 20% of all points are 
hara
teristi
enough that the depth 
an be estimated with a pre
ision of one (depth or disparity) label(sin
e the vast majority of points lies in areas of rather weak texture). Then it is su�
ientto take a value of λ1 
orresponding to a quantile between the 80th and 90th quantiles ofthe histogram of {C1(x)|x ∈ I0}. Due to dis
retization e�e
ts, one 
ould 
onsider a lowerquantile value C2(x) of (4.27).To explain the reason for our assumption, we go one step further and take into a

ountpixels 
orresponding to smooth surfa
es in obje
t spa
e. These are the pixels whose depthvalues we should be able to 
hange by applying the smoothness term and whi
h often liein homogeneously textured areas. The question how many pixels we must be able to over-smooth is equivalent to the question how many pixels lie in homogeneous, topologi
ally
onne
ted regions. This is the reason why the smoothness parameters the data set Tsukubawill turn out to be somehow lower than for data sets that are typi
al for our appli
ations:there are not that many homogeneous regions in the referen
e image.
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Figure 4.11: Con�den
e maps C1(x) (left) and C2(x) (right) from equations (4.26) and (4.27),respe
tively, of the data set Tsukuba. The referen
e image is depi
ted, for 
omparison oftextured and homogeneous areas, in Fig. 6.4, p. 90, on the right.



68
Chapter 5Shape re
onstru
tionThe input of a shape re
onstru
tion pro
edure 
onsists of a 3D point 
loud sampled from oneor several depth maps obtained, as des
ribed in the previous 
hapter, from the 
orrespondingreferen
e image(s). The desired output is a dis
rete set of 3D points as well as triangles
onne
ting these points. A
tually, there are two tasks that fa
e us here. First, we 
onsiderthe urgent need for "
lose-to-real-time" algorithms and, 
onsequently, their in
remental
hara
ter. In this 
ase, we must make use of several referen
e images with 
orrespondingdepth maps and generate from them triangular meshes "up-to-now" without 
onsidering theglobal 
hara
ter of data. We des
ribe the lo
al in
remental fusion of tessellations (LIFT)algorithm in Se
. 5.1. The se
ond task will be unifying these results into a global mesh.To do this, we apply methods dis
ussed in Se
. 5.2 and Se
. 5.3. Here the L1-splines-basedpro
edure of Se
. 5.2 is 
onsidered as our default method and represents the main innovationof our work. For 
omparison of the results on syntheti
 and real data, we implementedseveral methods mentioned in Se
. 3.2, namely, alpha-shapes, iso-surfa
e extra
tion, grid-�tand 
onventional splines, details of whi
h are reviewed in Se
. 5.3. Finally, the texturingpro
edure, des
ribed in Se
. 5.4, 
onsists of 
hoosing a referen
e 
amera for ea
h triangle ofthe mesh.5.1 Lo
al tessellations from depth mapsThe goal of this se
tion is the des
ription of an in
remental pro
edure for 
ompressing thedata stemming from one or more referen
e images. We dis
uss �rst a method for tessellationof one referen
e frame (Se
. 5.1.1). If the number of referen
e frames is more than one, anaive approa
h is to 
onsider the union of all tessellations. However, sin
e su
h a tessel-lation usually 
ontains spurious triangles, it is better to 
onsider geometri
 
onstraints toremove these triangles. The lo
al in
remental fusion of tessellations (LIFT) algorithm willbe explained in detail in Se
. 5.1.2.5.1.1 Tessellation from one referen
e frameWe start our treatment of meshing with a minimum of information. Suppose we have onereferen
e view and the 
orresponding depth mapD. If the depth map was retrieved a

ordingto Chapter 4, we already have a list of triangles 
onsistent with the surfa
e and 
an restri
tourselves to this list only. Sin
e the verti
es of these triangles were obtained in the pro
essof (epipolar or simultaneous) tra
king, some of them (espe
ially those in textureless areas)get lost. As a 
onsequen
e, the triangles have di�erent sizes and, sin
e many verti
es lie inthe textured areas, the number of triangles be
omes unne
essarily high. In the rest of these
tion, we are 
on
erned with 
ompression and homogenization of the point set.
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onstru
tion 69Starting from one single depth map, the simplest way to 
reate a triangular mesh is to
onsider a 
anoni
al triangulation (see [105℄): we subdivide the image into small squares of
q×q pixels and further subdivide ea
h square by one of its diagonals into two triangles. Twoimprovements of this approa
h are proposed and applied. The �rst improvement 
onsists of
hoosing mesh verti
es a

ording to their a

ura
y. For every 
anoni
al vertex x, we sear
h,in a small window (some q/4 to q/3 pixels) around x, for a point y with the maximum valueof the 
on�den
e map (given, e. g., by (4.27)) and repla
e x by y. The se
ond improvement
onsists of subdividing a triangle with depth dis
ontinuities into two smaller triangles alongits symmetry axis. This kind of subdivision is very e�
ient (see Fig. 5.1) and preserves theangles of triangles. We have found out that the 
ondition

dmax(T )− dmin(T )

dmin(T ) + d
> ε(where dmax(T ), dmin(T ) are maximum and minimum depth values of a triangle and d, ε arepositive 
onstants) is a reasonable 
riterion for subdivision. The maximum possible orderof iterative subdivisions (also 
alled generation of triangles) is set to 4. In order to avoid
ra
ks in the �nal surfa
e (that result if a 2D mesh vertex is an inner point of an edge,be
ause the 
orresponding 3D point is not ne
essarily in
ident with the an edge 
onne
tingthe 3D endpoints of this edge) new verti
es must be inserted, as in Fig. 5.1, bottom right.The pro
ess of inserting new verti
es and subdividing triangles (whi
h a
tually have passedthe 
riteria mentioned above) to avoid 
ra
ks is 
alled restri
ted (top-down) quadtree trian-gulation (RQT or RTDQT) and was introdu
ed in [108℄. The report [108℄ and the sour
esgiven there provide only hints about how to 
ompute RTDQT. We des
ribe in the two fol-lowing paragraphs the basi
 terminology and the 
omplete pro
edure for implementationof RTDQTs from the initial, 
anoni
al triangulation. For 
ompleteness, the pro
edure isformulated as pseudo-
ode in Alg. 8.3 of the appendix.

Figure 5.1: Left: The depth map of a referen
e frame from the sequen
e Infrared and the
anoni
al triangulation of verti
es 
orre
ted by the 
on�den
e map with pyramid-depth level2; triangles with jumps of depth are shown in red, those without jumps in green. Top right:The edges and verti
es of a part of the left image marked by the yellow re
tangle. The 
ra
ksin the �nal surfa
e are 
learly visible. Bottom right: No 
ra
ks are visible if a restri
tedtriangulation is performed.The di�erent levels of details for verti
es and triangles 
orrespond to generations g. Onthe 
oarsest level, g = 0, for a vertex at the midpoint of the largest edge of su
h a triangle,
g = 1 and so on (see Fig.5.2, left). The generation of a triangle is given by the generation of
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al tessellations from depth mapsits youngest vertex, su
h that we 
an de�ne for a triangle T (if g(T ) > 0) its parent and two
hildren. If the edge e of T opposite to its youngest vertex is not in
ident with the marginof the (re
tangular) domain, then the triangle of the same generation sharing e with T is
alled, the friend of T . On the 
oarsest level, g = 0, these are just triangles whi
h sharethe diagonal of the same re
tangle. Note that two friends are not brothers (i. e. 
hildren ofthe same parent) unless g = 0 and that it is easily possible to 
ompute for every triangle itsfriend by 
omparing the indexes of its vertexes.The a
tivity status s of a triangle 
an be a
tive (s(T ) = 1), if it is in the list, non-a
tive(s(T ) = 0), if a triangle of an older generation in
ident with T is a
tive and lost(s(T ) = −1)if there is a 
hain of 
hildren of T ending up in an a
tive triangle. Splitting a triangle T
an always be performed by setting its status to 0 and the status of its 
hildren to 1 (seepro
edure Split(T ) of Alg. 8.3). The RTDQT has the property that the generations of twotriangles sharing the same edge di�er at most by one, in other words, for every a
tive triangle,either its friend, or the friend's parent, or its friend's 
hild, is a
tive (Alternatively, no vertex
an be the inner point of a triangle's edge). The main idea of the pro
edure rtdqtSplit(T ),where T is the triangle to be split, is to identify the friend of T . If this triangle is a
tive, it issplit. If it is non-a
tive, then, by de�nition, its parent P must be a
tive and the pro
edureis repeated for P . Even if the algorithm is re
ursive, it will 
onverge sin
e the generationof P is ne
essarily lower than that of T and the moment must 
ome when g(P ) = 0. Thepro
ess of re�ning starts with the 
anoni
 triangulation on the 
oarsest level. From levelto level, the list of a
tive triangle satisfying a splitting 
riterion is determined. For everytriangle T of this kind (unless g(T ) > n0 where n0 is a �xed number of maximum pyramidlevel), the pro
edure of rtdqtSplit(T ) is performed and so a new set of a
tive triangles isgenerated.

Figure 5.2: Left: Canoni
 triangulation of an arbitrary re
tangular domain. The trianglesof generation 0 are marked by 
rosses, for generation 1, by diamonds and dotted edges andfor generation 2 by small stars. For four exemplar triangles marked in green, we show their
hildren as well as their friends marked in red. There is no friend for a triangle near domainmargin. Top right: Cra
ks are likely to emerge if restri
ted triangulation is not 
arried out.Bottom right: To perform the algorithm, one has to identify the friend B of a triangle T tobe split, and if B is not a
tive, then the same algorithm must be applied to the parent of B.



Chapter 5. Shape re
onstru
tion 715.1.2 Tessellation from several referen
e framesThe union of lo
al triangular meshes from di�erent referen
e frames, as the output of theprevious se
tion, 
an be now 
onsidered. However, several triangles in
onsistent with thesurfa
e may be in
luded in the result. Also, there are many redundant triangles that emergebe
ause the di�erent referen
e images have a partial overlap (see, for instan
e, images onthe top of Fig. 6.3, p. 84). After a lo
al tessellation for the new referen
e view (denoted by
Im) has been 
al
ulated, it is possible to reje
t several triangles that were in
orre
tly orredundantly assigned to the list of triangles 
onsistent with the surfa
e. In the followingparagraph, we review the main ideas of the lo
al in
remental fusion of tessellations (LIFT)algorithm, whi
h is also illustrated as pseudo-
ode in Alg. 8.4, p. 145.From ea
h pixel x of the 
urrent referen
e frame Im, we set the value of the booleanvariable status to 1 and proje
t the 
orresponding 3D point X (extra
ted by means of the
orresponding depth map Dm at x) into the other referen
e images I1, ...Im−1. (In [22℄,double indexing Ir1 , ..., Irm−1

was used to di�erentiate between the lo
al approa
h within asubsequen
e and a global approa
h, where results from di�erent subsequen
es are fused intoa global mesh). Sin
e we have depth values for these points (xk), we 
an 
ompute the errorterm
δ(x) = d(X)−Dk(xk)with depth d(X) 
omputed from Pk a

ording to (4.1). For a positive 
onstant ε (toleran
e),

δ(x) > εd(X) means that X o

ludes some point of Dk; in this 
ase, the o

lusion 
ounter
o(T ) for the triangle T in
ident with x is in
reased. On the other hand, |δ(x)| < εd(X)meansthat the pixel x was already pro
essed at an earlier stage, so, in this 
ase, the redundan
y
ounter r(T ) of T is in
reased. In either of these situations, the variable status is set to be0. After all pixels of the new referen
e image has been pro
essed, we delete all trianglesfor whi
h either o(T )/a(T ) > 0.1 or (o(T ) + r(T ))/a(T ) > 0.99 holds. Here a(T ) (area
ounter) denotes the number of pixels pro
essed in every triangle. The starting values forthe 
ounters for a(T ), r(T ), o(T ) are all set to 0 for every triangle T .A modi�
ation of this algorithm 
an be also found in [22℄ and it was originally appliedon the Delaunay triangulations from the point sets in the referen
e images. The mostsigni�
ant di�eren
e between Alg. 8.4 and [22℄ is the following. Sin
e Step 2.2 of our pipelinewas 
ompletely omitted in [22℄, the evaluation of triangles took pla
e within LIFT. For the
ase status = 1 after the inner loop in Alg. 8.4, the lo
al approa
h with the aggregationfun
tion ‖ck′(x)‖ taken over neighboring images k′ = m± 1, m± 2, ..., (not other referen
eimages!) was performed; here ck′ denotes the SAD-values from either gray or 
olor values ina small window. If the value of the aggregated 
ost fun
tion ex
eeds a threshold, the pixelis de
lared as in
onsistent with the surfa
e. After all pixels of the new referen
e image havebeen evaluated, also triangles with a high per
entage of pixels in
onsistent with the surfa
eare deleted as well. This has the advantage of performing a geometri
 and image-basedevaluation on triangles in one step but the disadvantage of potential wrong 
lassi�
ation oftriangles. For example, large triangles from homogeneous, untextured regions are biased tobe in
luded into the list while triangles near o

luded regions are biased to be ex
luded,sin
e the aggregation fun
tion near o

luded regions is less robust than the one 
hosen in(4.20).We now refer to other di�eren
es between Alg. 8.4 and [22℄ as well as extensions of theLIFT algorithm. Fitting dominant planes into lo
al tessellations and 
orre
ting points inthe dire
tion of normal ve
tors of these planes is a meaningful prepro
essing step. The
omputation of dominant planes pro
eeds by means of the RANSAC pro
edure with the
Td,d-test (see [95℄) until a su�
iently large 
onsensus set is obtained. After the 3D pointsof this set are proje
ted onto the plane a

ording to (3.3), they are deleted (temporarily)from the point list and the pro
edure begins again. This has an advantage, beside improved
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edureposition of 3D points, that triangles lying in one of the dominant planes 
an be preferredby de
reasing the maximum threshold for per
entages of redundant and o

luded pixels(o(T )/a(T ) and r(T )/a(T ), respe
tively) within them. In order to redu
e 
omputing time,the set of test points 
an be diminished from all pixels of the referen
e frame to the 3D pointsavailable up-to-now. This idea is proposed by [99℄. Similar to [111℄, we also undertook e�ortsto avoid in
onsistent meshes (i. e. those lo
ally non-homeomorphi
 to a plane) and to redu
ethe number of verti
es by fusing verti
es of the new lo
al tessellation with those of theprevious one if they are too 
lose. The 
losest point in the previous mesh is 
omputed in theHausdor� metri
 
al
ulation (
overed in Chapter 6). As the �nal step, we optionally deletetriangles of the previous mesh that o

lude the new mesh.Clearly, for an in
reasing number of frames, it be
omes quite expensive both to keepall referen
e images with the 
orresponding depth maps in memory and to pro
ess the newreferen
e image while re
alling all available referen
e images. The 
omputational 
ost of su
ha pro
edure depends quadrati
ally on the number of referen
e images. More sophisti
atedmethods (for example, o
tree de
omposition of the 3D spa
e to be re
onstru
ted) 
an pro
essall tessellations simultaneously. These methods will 
ertainly be a topi
 of future work. Inthe 
urrent implementation, in order to keep the 
ost of the pro
edure linear, we keepand pro
ess only a �xed number, between 2 and 5, of previous lo
al tessellations. Otherimportant parameters of the algorithm are the following:1. The number of images in the subsequen
es is 5 to 7, as we will see in Chapter 6.2. The number of frames between the frames within a subsequen
e varies between 2 and12, depending on the sensor's velo
ity (see also Chapter 7).3. The distan
e between subsequen
e in the 
urrent implementation is 
hosen so that twosu

essive subsequen
es almost overlap, i. e., the number of frames between the lastframe of the kth and the �rst frame of k + 1st subsequen
e is small.4. The value of q (from Se
. 5.1.2) of the resolution on the �nest level is 10-20 pixels.Consequently, it is 40-80 pixels for the 
oarsest level. The number of triangles in atessellation in a subsequen
e usually does not ex
eed 10000.5. Finally, the value of ε in Alg. 8.3 depends on the distan
e from the 
amera 
enter tothe obje
t points, the baseline, and the fo
al length. Mostly ε = 0.05.The pro
edure des
ribed in this se
tion allows obtaining a 
lose-to-real-time re
onstru
-tion in the form of (quite regularly distributed) sample points in the areas 
overed up tonow and triangles that 
onne
t these points. This 
on
ept is su�
ient for the majorityof appli
ations. However, the visual quality of models thus obtained is unfortunately notalways su�
ient. Two 
auses of insu�
ient visual quality are holes and other topologi
alin
onsisten
ies in the triangular mesh and noise in the triangle verti
es. In order to solvethese problems, we will 
onsider the whole point 
loud in the next se
tions.5.2 L1-splines-based pro
edureThe 
ore element of our algorithm for shape re
onstru
tion is the L1-splines-based pro
edure,also des
ribed in [24℄. Starting with a 2D tensor-produ
t domain (ui, vj), i = 0, ..., I, j =
0, ..., J , our main task is to obtain a di�erentiable homeomorphism in the form of a 
ubi
spline that approximates the point 
loud. Expli
itly, this means that the surfa
e to bere
onstru
ted must be homeomorphi
 to a plane. This puts restri
tions on the topologi
alvariety of surfa
es, but it is a plausible assumption for a �ying sensor 
overing the urbanterrain and thus eliminates, for a vast majority of 
ases, a large sour
e of errors.
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onstru
tion 73Sin
e we strive for generi
 models automati
ally instantiated for data sets with irregulardensity of points, high per
entage of outliers and sharp 
hanges of 
urvature, we 
annotrely on most least-squares-approa
hes. In order to obtain, on arbitrary grids, smooth ap-proximations free from extraneous overshoot and os
illations, we adopted the ideas of L1approximating splines, whose main idea (see [85℄ and referen
es therein) 
onsists of repla
-ing (the outlier-sensitive mean-based) L2-norm by the median-based L1-norm. Overall, ouralgorithm 
onsists of four steps, namely,1. Generation of a nonparametri
 2.5D surfa
e from the point 
loud in form of a C1 
ubi
spline2. Creation of a parametrized data set using the latest 2.5D or 3D surfa
e3. Generation of a parametri
 3D surfa
e and return to Step 2 until a stopping 
riterionis satis�ed4. Tessellation of the 3D surfa
e.The point 
loud serves as input of the algorithm while for texturing step, explained inSe
. 5.4, 
amera matri
es and depth information are also needed. If one wants to re
onstru
ta smooth surfa
e from depth maps or 3D 
hara
ter of the s
ene is not present, Steps 2 and3 
an be omitted. When verti
al stru
tures (like building walls have) to be re
onstru
ted,Steps 2 and 3 are ne
essary and a pair of independent parameters u, v are to be determined.This is why we denote the surfa
es obtained in Step 1 and Step 3 by nonparametri
 andparametri
, respe
tively.The four steps will be explained in the Subse
tions 5.2.1, 5.2.2, 5.2.3, and 5.2.4, respe
-tively, of this se
tion.5.2.1 Fun
tional and algorithm for 2.5D L1 splinesThe �rst step of the pro
edure is orientation of the point 
loud X = {Xm|m = 1, ...,M},sin
e the nonparametri
 2.5D representation assumes that one is able a priori to rotate thepoint 
loud so that the z-axis 
oin
ides roughly with the physi
al verti
al dire
tion. For thedata 
onsidered here, this assumption is reasonable, sin
e the physi
al verti
al dire
tion 
anbe estimated either by the normal ve
tor of the plane robustly approximating the 
amera
enters or by the dominating dire
tion of verti
al straight lines (dete
ted by [30℄ in theimages and triangulated by means of the DLT-method of [61℄). This latter approa
h wassu

essfully used in [97℄.In this se
tion, the problem of the 2.5D surfa
e approximation given a set of samplepoints X is 
onsidered. Given a re
tangular grid (ui, vj) (where u0 < u1 < ... < uI , v0 <
v1 < ... < vJ and the {(xm, ym)} of the data points are assumed to lie in the re
tangle
[u0;uI ]× [v0; vJ ]), we wish to approximate the data with a C1 
ubi
 spline z(u, v) that bestpasses through the data points.The (verti
al) error of a single sample pointXm is |z(xm, ym)−zm|, where z(x, y) is givenby (3.8) or by the analogous formula for one of the other triangles. The way to aggregate theerror of the whole data set has a large in�uen
e on what surfa
e one obtains. Unfortunately,the traditional 
hoi
e whi
h is the least squares minimization

∑

m

(z(xm, ym)− zm)
2virtually always produ
es ina

urate results with extraneous artifa
ts and os
illation inareas of rapid 
urvature 
hange (for example, verti
al dis
ontinuities or near-dis
ontinuities,
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edurewhi
h are 
ommon in terrain). Eviden
e in the re
ent literature [85℄ suggests that surfa
es
al
ulated by minimizing sums of absolute values are more robust and have fewer artifa
tsthan surfa
es 
al
ulated by minimizing sums of squares. For this reason, we de
ided tominimize the sum of the absolute values (along with other terms) instead of the sum ofsquares.The fun
tional that we minimize to 
reate an L1 spline 
onsists of a weighted sum ofthe absolute (verti
al) deviations of the data from the surfa
e, a smoothness term, similarto the Lapla
ian of Se
. 3.2.4 and a regularization term that resolves nonuniqueness when ito

urs:
(1− λ)

M∑

m=1

wm |z(xm, ym)− zm|+ λ

∫

(|zuu|+ 2 |zuv|+ |zvv|)du dv
+ε
∑

nodes (|zu|+ |zv|) −→ min .

(5.1)In the �rst term (data term) of (5.1), the weights wm 
an be 
hosen to re�e
t un
er-tainty in the point 
oordinates. If there is no information on the un
ertainty in the point
oordinates, all of the wm are set equal to 1. The parameter λ ∈ [0; 1] expresses the balan
ebetween how 
losely the data points are �tted and the tenden
y of the surfa
e to be 
lose to apie
ewise planar surfa
e, without extraneous, nonphysi
al os
illations. If λ is too small, these
ond term (smoothness term) of (5.1) be
omes rather unessential and so the disturban
es
aused by outliers be
ome 
learly visible. If, however, it is too large, areas near 
hara
-teristi
 edges be
ome oversmoothed. In order to approximate the integral whi
h makes upthe smoothness term in (5.1) by a dis
retized value, ea
h grid 
ell [ui;ui+1] × [vjvj+1] isdivided into N2 equal sub
ells (N ≥ 3) and the sum of absolute values of the integrandat the midpoints of those sides of the sub
ells that are interior to the 
ell is 
omputed.The value of the integrand is approximated by di�erential quotients of fun
tion values givenby (3.8). The last term of (5.1), 
onsisting of the sum of the absolute values of the �rstderivatives at the grid nodes, is added to the fun
tional in order to prevent it from havinga non-unique minimum. L1 fun
tionals are in general, non-
onvex and 
an have an in�nitenumber of solutions. This third term is responsible for 
hoosing from this set the mostphysi
ally meaningful one. If ε is small enough, 
onsideration of the last term in (5.1) doesnot 
hange the minimum value of the fun
tional.The task is thus to solve an overdetermined system of equations Ab = c in the L1 norm.Formally:
b = argmin

b′



‖Ab′ − c
︸ ︷︷ ︸r ‖1



, (5.2)where A is a 
oe�
ient matrix stemming from (5.1) that has r = M +6IJN(N − 1)+2(I+
1)(J + 1) rows and 3(I + 1)(J + 1) 
olumns (re
all that M is the 
ardinality of the pointset, N is the number of grid 
ells used for dis
retization of the integral in (5.1) and I × J isthe dimension of the grid). It 
an be assumed that A has the full rank. A linear program
an be obtained from (5.2) by 
onsidering the residuals r. We have to minimize

12r

[ r+r− ] subje
t to [A | Ir | − Ir]





br+r− 

 = c and [ r+r− ]

> 02rwith r+, r− as in Se
. 1.4. The minimization is 
arried out by means of a primal-a�nealgorithm. This is an interior-point method that starts with a least squares solution of (5.2)and, by iteratively updating the weight matrix W and 
omputing the weighted least-squares
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onstru
tion 75solution WAb = Wc, either 
onverges to a L1-solution of (5.2) (if parameter updates liebelow a reasonable toleran
e) or terminates if a maximum number of iterations is rea
hed.The algorithm 
onverges theoreti
ally both for 
ases of unique minima [131℄ and for 
asesof multiple minima [2℄. It is 
losely related with the robust least-squares approa
h be
ausethe outliers are supposed to be given smaller weights in the 
ourse of the minimizationpro
edure. Consequently, it is possible to keep tra
k tra
k on outliers in the data; however,these outlier tests are not 
arried out in our approa
h.The proof of the statement that primal-a�ne algorithm 
orresponds to a L1-solutionof (5.2) was given in [102℄. The most time-
onsuming step is the least-squares solution ofthe overdetermined linear system, that is, solution of ATW 2Ab = ATW 2c. By properlyordering the unknowns, the symmetri
, positive de�nite matrix ATW 2A 
an have a minimalone-sided bandwidth (number of superdiagonals + 1 for the main diagonal) of 3min(I, J)+9.We give, for 
ompleteness, the pseudo-
ode for the primal-a�ne algorithm that we use inAlg. 8.5 of the Appendix and refer to [85℄ for further details.5.2.2 Parameterization of data pointsWhile the method presented in the previous se
tion produ
es good results for 2.5D data,the question now is how to generalize it for a 3D point 
loud. What we need is a globalparametrization u, v that allows 
al
ulation of a triplet of splines x(u, v), y(u, v), z(u, v),whi
h we now denote by X(u, v). Su
h a parametrization usually exists for typi
al airbornevideo data of an urban s
ene, be
ause the surfa
e is usually homeomorphi
 to the plane. Ifthe point density is su�
ient and adaptive to 
urvature 
hanges, one 
ould apply methods ofmulti-dimensional s
aling (see, for example, [35℄) and (in the 
ase of 3D to 2D dimensionalityredu
tion) 
losely related surfa
e �attening. These methods roughly 
onsist of minimizinga norm of a matrix with observationsdst ((um, vm), (un, vn))− dst(Xm,Xn)over 2M values of the parameters um, vm and where Xn, n ∈ {1, ..., N} is a neighbor of Xm.The 
hoi
e of neighbors 
an be 
arried out by means of the approximate nearest neighbors(ANN) algorithm as des
ribed in [104℄. In the 
ontext of surfa
e re
onstru
tion by bivariateB-splines, this approa
h was applied by E
k and Hoppe in [42℄. Unfortunately, despite theband stru
ture of the MN × 2N observation matrix, solving the system for (um, vm) wasnoted to be an extremely time-
onsuming and unstable pro
ess. We proje
t the data pointsXm onto the (most re
ently generated) surfa
e to obtain "
orre
ted" points X̂m and use its
oordinates (u, v) = (ûm, v̂m) as a parameterization for the surfa
e X to be 
al
ulated next.The unknowns in this 
ase are the (u, v)-
oordinates of the point X̂m at the surfa
e that is
losest to X. We use the Levenberg-Marquardt algorithm [49, 61℄, where the 
ost fun
tion
ε and the Ja
obian J are given by:

ε = ε(u, v) = X−X(u, v) → min,J = [X(u, v)u X(u, v)v] .The terms of X(u, v),X(u, v)v,X(u, v)u are given by (3.8) (in whi
h one has to repla
e zby the entries of X and sele
t the suitable Sibson-triangle) and its derivatives. While forparameterization of the 2.5D surfa
e, the �rst two rows J are made up by the identitymatrix and the third row is zu, zv, it is a full 3 × 2 matrix at all following iterations (seeSe
. 5.2.3). This parametrization pro
ess is s
hemati
ally visualized on the left of Fig. 5.3.5.2.3 Fun
tional and algorithm for 3D L1 splinesAfter parameter values (um, vm) have been assigned to ea
h point (xm, ym, zm) as indi
atedin the previous se
tion, we 
ompute a 3D L1 spline by minimizing the fun
tional
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edure
(1 − λ)

M∑

m=1

|wm|z(um, vm)− zm|+ λ

∫

(|zuu|+ 2 |zuv|+ |zvv|)du dv+
ǫ
∑

nodes

(|zu|+ |zv|) +
12∑

1

[analogous expressions], (5.3)where by "analogous expressions" we mean repla
ing z in (5.3) by the 12 fun
tions x, y,
x±y, x±z, y±z and x±y±z , respe
tively. The fun
tional (5.3) is more robust (at the 
ostof 
omputing time!) with respe
t to outliers than three un
orrelated fun
tionals as in (5.1)for x(u, v), y(u, v) and z(u, v). Fun
tional (5.3) is minimized by the primal-a�ne algorithmdes
ribed in Se
. 5.2.1 (with details suitably adjusted). The 
omplete pro
ess 
onsists ofstarting from a 2.5D L1 spline and then iterating the two steps of parameterization and 3Dspline generation several times.The smoothness parameter λ in (5.3) does not need to be the same as in the (5.1). Theautomati
 
hoi
e of suitable λ is not a trivial problem. Neither theoreti
al nor heuristi
guidan
e is 
urrently available. Like in (2.9) of the image-based part of this dissertation,
hanging λ by small values (in our 
ase ±0.05) does not result in large 
hanges in the L1splines. Usually, it is re
ommended that λ be bounded away from zero in the non-parametri
spline sin
e we must make sure that the 
orre
t topologi
al relations are not a�e
ted byoutliers. For other iterations, smaller values of λ 
an be used.5.2.4 Tessellation of the spline surfa
eAs a result from the previous se
tions, we have an expli
it representation of the obje
tsurfa
e X(u, v) and also of its partial derivatives. Our task now is to 
reate a triangularmesh that best �ts the spline surfa
e. This triangular mesh will be, at a later stage, themain input of the texturing pro
edure: its task will be to texture ea
h triangle using one ofthe available referen
e views.Surfa
e meshingThere are two possibilities for meshing the surfa
e obtained using the pro
edures of Se
. 5.2.3.The authors of [24℄ applied the Delaunay triangulation of the (u, v)-values of the pointsX̂m (the points on the surfa
e 
losest to the data points Xm) of the last of the iteratively
al
ulated spline surfa
e. Points within a re
tangle R = [ui; ui+1]×[vj ; vj+1] are 
ompressedintomultipointsXr that 
oin
ide with the 
enter of R. Another possibility is to use 
anoni
altriangulation of spline nodes in the (u, v) domain (re
tangles 
ut by one of the diagonals, asproposed in 5.1.1). Sin
e the number of spline nodes in ea
h dire
tion is about 30-50, we areable to model our obje
ts by means of several thousands of triangles. Although this se
ondapproa
h results in a higher number of triangles, we use it in our further 
onsiderationsbe
ause it represents the spline surfa
e at its �nest resolution and the high number oftriangles 
an be redu
ed by e�
ient mesh-manipulation methods des
ribed in Se
. 2.4.2.In our implementation, an optional step after tessellation is mesh manipulation by anedge-�ipping method. From the initial triangulation, the (u, v)-values of 3D points X andthe values of their normal ve
tors nX = (Xu×Xv)/‖Xu×Xv‖, we wish to obtain a new meshthat is more 
onsistent with nX, as indi
ated in Fig. 5.3, right. To do this, one starts with
onsidering for a triangle T with verti
es ABC the terms (a
tually, three s
alar produ
ts)n1(T ) = (nT,0)

T · [nA nB nC] , (5.4)
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onstru
tion 77where nT,0 is the normal ve
tor of the triangle given bynT,0 =
(A−B)× (A−C)

‖(A−B)× (A−C)‖ .If the normal ve
tor of T is nearly parallel to the normal ve
tor at one of its verti
es,the 
orresponding entry of the ve
tor n1(T ) in (5.4) is 
lose to ±1. Therefore, we 
hoose,among a large number of possible energy fun
tions for a triangle T , the very simple term
E(T ) = −‖n1(T )‖∞ and wish to minimize the total energy E(T ) =

∑

T∈T E(T ) overtriangulations T .The next step of our minimization algorithm 
onsists of obtaining all interior edges of
T . Ea
h of them is asso
iated with a quadrilateral, so the energy value E(Q) of everyquadrilateral Q is 
omputed. The energy of Q is given by the sum of the energies of bothtriangles 
omposing Q. The energy values are now stored in non-de
reasing order.The a
tivity status of all quadrilaterals is now set to be 1. The iteration loop runs overall swappable quadrilaterals of the list, where a quadrilateral Q is de
lared swappable if itsa
tivity status is 1, all its angles do not ex
eed π and the angle between the oriented normalve
tors of the two triangles from whi
h Q is made up is below a �xed value (π/2 − ε). If
E(Q) > E(Q′) (whereQ′ is a swapped quadrilateral), the triangles 
omposingQ are repla
edby those 
omposing Q′, in
iden
e and energy information of all quadrilaterals around Q isre
al
ulated and their a
tivity status is set to be 1. Finally, the a
tivity status of Q′ is setto be 0.

C

B

A

D

Figure 5.3: Left: Parameterization of the approximating spline surfa
e (see Se
. 5.2.2). The2.5D spline surfa
e is depi
ted by the green 
urve, the point 
loud is depi
ted by red 
rossesand the 
orre
t surfa
e is indi
ated by a bla
k dotted line. Points are proje
ted onto thesurfa
e (depi
ted in sele
ted 
ases by blue 
rosses) and the �rst two 
oordinates are 
hosenas independent parameters (blue 
ir
les). The approa
h will preserve topologi
al relationsof points when the in
lination angle of the z-axis against the verti
al dire
tion of buildingwalls is small and the input surfa
e is good enough.Right: Visualization of the edge-�ippingpro
ess. Two triangles sharing a 
ommon edge and not re�e
ting the values of the normalve
tors of their verti
es (given by derivatives) are �ipped along this edge.In our appli
ations, it was 
onvenient not to in
lude quadrilaterals Q into the list when
E(Q) was below 0.0001 and so the number of iterations was always below 500. It is alsoimportant to point out that the �nal triangulation depends on the order of swapping andso there is generally no guaranty that, at the end of the pro
ess, the energy takes on theglobal minimum value argminT E(T ) over all possible triangulations T . However, sin
e theenergy of every swap redu
es the total energy, it will be always lower than the energy in thebeginning and therefore the algorithm terminates (in a lo
al minimum of the total energyfun
tion) after a �nite number of iterations, namely, when there are no longer any swappablequadrilaterals in the list. Further redu
tion of total energy 
an be a
hieved by 
onsidering
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edures for surfa
e re
onstru
tionmore sophisti
ated methods like simulated annealing, see, for instan
e, [118℄, but also hereno statement 
an be made about 
onditions under whi
h a global minimum of energy 
anbe a
hieved in a reasonable time. Furthermore, simulated annealing is very sensitive to the
hoi
e of relaxation parameters and, as stated in [118℄, quantitative improvements of thegeometri
 
ost fun
tion are not as signi�
ant as those of the lo
al result.5.3 Implementation details of other pro
edures for sur-fa
e re
onstru
tionIn the next three short se
tions, we give brief des
riptions of implementation details ofseveral approa
hes that will be used to provide 
omparison with results obtained by the
L1-splines-based pro
edure.5.3.1 Alpha-shapesThe main properties of Alpha-shapes (α-shapes, [43℄) were dis
ussed in Se
. 3.2.1. Be
auseof its indisputable advantages (no need for 3D parameterization, regularized triangle sizeset
.), the α-shapes-based pro
edure will be our default TIN-based method for shape re
on-stru
tion. To 
ompute an α-shape, one needs the Delaunay tetrahedrization of the inputpoint 
loud, after whi
h for ea
h fa
e, the maximum and minimum value of α for whi
h Tbelongs to the α-shape 
an be obtained. These values are stored in a 2 × N array where
N is the number of triangles. Then it is a trivial task to sele
t triangles belonging to the
α-shape from this array.The value of α should be slightly larger than the average triangle edge size in meshesobtained by a lo
al method. After the α-shape has been obtained, the verti
es and mesh 
anbe manipulated in order to dete
t large planar regions and to redu
e the number of triangles.For the 
omparison of 
omputational results, the Steps 1-4 of the pro
edure mentioned atthe beginning of Se
. 5.2 are repla
ed by triangulation with α-shapes.5.3.2 Iso-surfa
e extra
tionSimilar to the previous se
tion, we wish to understand the advantages and disadvantages ofiso-surfa
e extra
tion with respe
t to our appli
ations. The most important parameters forthe iso-surfa
e extra
tion algorithm of [70℄ des
ribed in Se
. 3.2.2 are ρ (sampling density)and r (resolution). If ρ is too large, 
ompletely wrong results for the signed distan
e fun
tion
an be obtained, as depi
ted in Fig. 5.4, top left. However, if ρ is too small, two many valuesremain unde�ned (Fig. 5.4, top right). A resolution grid that is too �ne usually leads not onlyto an unne
essarily large number of triangles with 
oordinates of verti
es 
ontaminated bynoise, but also to in
reased 
omputing time, sin
e, at least at present, gx ·gy ·gz ·M distan
eevaluations (where gx, gy, gz are the numbers of nodes in a grid in the x, y and z dire
tions,respe
tively, and M the 
ardinality of the input point 
loud) for determination of 
losestpoints in (3.3) are required for every grid point. Grids that are too 
oarse usually ignoresome �ne details. For the data set Gottesaue, depi
ted in Fig. 5.4, bottom (intermediateresult), we set gx = gy = gz = 26 = 64.Computing depth maps and rendering lo
al tessellations a

ording to Se
. 5.1 allowsthe assumption of a 
onstant point density at least in large portions of the surfa
e. We 
an
ompute the neighbors of a sample point using the well-known approximate nearest neighbors(ANN) method, [104℄. The matrix of distan
es between the point set and its neighbors isobtained as well and a number proportional to the median of these distan
e values is set tobe ρ. Now, if a sample point X proje
ted by a referen
e 
amera, in whi
h it is visible, lies in
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onstru
tion 79a triangle 
onsistent with the surfa
e, we assign to the normal ve
tor at X the normal ve
torof the triangle. Otherwise, the 
al
ulation of the normal ve
tor is 
arried out by �tting aplane with RANSAC from the neighbors of X. The most di�
ult part of the algorithm,namely determining the orientation of the normal ve
tor, 
an be signi�
antly simpli�ed inour appli
ations, be
ause one 
an take the ve
tor from X toward the 
amera as an initialorientation of the normal ve
tor of X ∈ X . Multipli
ation by −1 pro
eeds merely in theregions of sharp 
urvature 
hanges (it 
an not be 
ompletely skipped!) and is 
ompletedafter several iterations. Finally, meshing is provided by the mar
hing 
ubes algorithm [91℄.In the post-pro
essing step, another problem, namely, ghost triangles near the medialaxis, 
an be partially solved by sele
ting a rather small value for resolution and then deletingall verti
es lying in the 
ube where either the maximum of negative values at the verti
es orthe minimum of positive verti
es is bounded away from zero. Finally, neighborhood relationsof verti
es sharing a triangle edge are established and we delete all triangles with too fewneighbors. n n
ρ

ρ

Y

Ydst(Y) dst(Y)

Figure 5.4: Top: Problemati
 of parameter 
hoi
e for iso-surfa
e extra
tion. Top left: Toolarge ρ and a too small value is assigned to dst(Y), namely the distan
e to the regressionplane. Top right: Sin
e no points of the sample lie in a 
ir
le of radius ρ (whi
h was 
hosen tobe too small), the value of signed distan
e fun
tion at Y remains unde�ned. A meaningfulvalue would be assigned if ρ were slightly larger. The regression plane is always denotedby the thi
k bla
k line, its normal ve
tor by the arrow on the left, the input point setby red 
rosses and the points in
luded into the 
onsensus set for plane �tting by greenellipses. Bottom: An intermediate result of signed distan
e fun
tion extra
tion for the dataset Gottesaue. The original point 
loud is indi
ated in bla
k, Y with positive values of thesigned distan
e fun
tion in green, and those with negative values in red. One 
an see severalwrong assignments whi
h are mainly situated near regions with sharp gradient 
hanges (e. g.,towers), points of medial axis and outliers in the data. The result of the 
omplete pro
edurefor this data set is depi
ted in Fig. 6.33, p. 114, middle left.



80 5.4. Texturing5.3.3 Conventional (L2) splines and grid�tThe pro
edure for 
onventional, or L2 splines of Se
. 3.2.4 is the same as that stated for
L1 splines in Se
. 5.2 ex
ept that the absolute values in the minimization prin
iples of (5.1)and (5.3) are repla
ed by squares. A 
onventional spline is easily obtained, sin
e it is (thespline 
orresponding to) the value of b after the �rst iteration of Alg. 8.5. The tessellationpro
edure remains the same. Comparison of pro
edures based on 
onventional splines withour default pro
edure based on L1 splines is of interest be
ause 
onventional splines are
ommonly used in geometri
 modeling and be
ause all of the di�eren
es in the results 
an bedire
tly attributed to the di�eren
es in the fun
tionals by whi
h these splines are 
al
ulated.Computational results generated by the Grid�t routine ([38℄, see also Se
. 3.2.4) for 2.5Dsurfa
es in parti
ular and for di�erent grid sizes, regularization kinds, and smoothness terms,help understand to what extend C0-surfa
es 
an perform su

essful re
onstru
tion from pho-togrammetri
ally generated point 
louds. Comparison of surfa
es generated by Grid�t with
L1-splines provides an additional 
omponent of 
omparison that assists in understandingthe 
ontext.5.4 TexturingTo texture the 3D surfa
e obtained by a global algorithm, we must �nd for every triangle
T of the mesh a (referen
e) 
amera k that 
ompletely observes it under a reasonable angle.�Reasonable angle� means that the 
osine of the angle α between the triangle normal n0,Tand the ray 
onne
ting its 
enter of gravity (denoted by G(T )) with the lo
ation of referen
e
amera (Ck) must be bounded away from zero. The 
hoi
e of su
h a 
amera is not a trivialtask be
ause there is a lot of available information (the distan
e G(T )Ck, whi
h should notbe
ome too large, depth information for points within T in Ik, and many others). So we �rstextra
t by means of depth maps information about whi
h vertex is seen in whi
h referen
eimage. This set will be denoted by v(X) for the given vertex X. Then, the sets ∪3

i=1v(Xi)and ∩3
i=1v(Xi) are evaluated for the three verti
es of T . If the �rst set is non-empty, wetake one view from the interse
tion set for texturing. Otherwise it is 
lear that the triangle
an theoreti
ally be textured using any image of the se
ond set. We therefore start withremoving the views that 
annot texture T either be
ause at least one of it verti
es is notvisible in the image or be
ause of 
oarse deviation from the indi
ated depth information, inother words
min

(

min
i

(|Dk(PkXi)− d(Xi)|) , |Dk(G(T ))− d(G(T ))|
)

< 2ε · Dk(G(T )),where d(X) is the depth of the point X a

ording to (4.1), and on the right, ε is the sameas in Alg. 8.4 and the fa
tor 2 
onsiders the fa
t that the positions of mesh verti
es areslightly 
hanged by a global method. In [24℄, the referen
e image with the smallest value of
c1(k, T ) = |G(T )Ck|(1−cosα) was 
hosen from the remaining set of referen
e images. If theun
ertainties in 
amera parameters are not negligible, the approa
h is modi�ed by 
hoosingthe minimum value of c1(k, T )−Ac2(k, T ) where A is a large positive 
onstant and the valueof c2(k, T ) is set to 1 if a triangle sharing an edge with T is 
hosen by the referen
e image kand 0 otherwise. This not only allows sele
ting 
ameras with low values of α and small valuesof |G(T )Ck| for texturing T , but also making small errors of point proje
tions less visible(sin
e triangles are textured 
luster-wise from referen
e images). The last strategy a
hievesits best impa
t as an iterative pro
edure where triangles already textured are propagatedalong their edges. Finally, triangles that 
annot be assigned to any 
amera are textured bya neutral 
olor and their transparen
ies are set to 0.5.
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Chapter 6Evaluation of algorithmsAfter presenting re
onstru
tion algorithms in Chapters 4 and 5, evaluation of results ob-tained by these algorithms will be des
ribed in this 
hapter. To emphasize the generi

hara
ter of our approa
h, video sequen
es of quite various types and quality will be de-s
ribed in Se
. 6.1. For ea
h frame of the video sequen
e, we are given, as stated in Chapter1, the 
orresponding 
amera matrix. As additional input, a sparse set of 3D-points is giventogether with a visibility information (whi
h point is seen in whi
h 
amera). Evaluation ofsparse tra
king algorithms, whi
h represent Step 2.1 of our re
onstru
tion pipeline of p. 15,takes pla
e in Se
. 6.2. Qualitative and quantitative evaluation of dense image-based meth-ods (Step 2.2) is provided in Se
. 6.3. Evaluation of the methods for shape re
onstru
tiondes
ribed in Se
. 6.4 (Steps 3.1 and 3.2) is divided into two parts: in Se
. 6.4, s
reen-shotsof meshes and textured model representations are presented; a separate se
tion (Se
. 6.5) isdedi
ated to quantitative evaluation. In order to visualize di�erent steps of our algorithmfrom input images over depth maps and dense points 
louds to textured model instan
es,qualitative results for two additional video sequen
es are presented in Se
. 6.6; for thesesequen
es, only main 
hallenges will be mentioned, but a detailed performan
e analysis willnot be performed. Information about 
omputing time is given in the 
on
luding Se
. 6.7.6.1 Data setsThe �rst data set that we dis
uss in this se
tion is the well-known Tsukuba data set [115℄.Several images and the disparity map between two of these images (I3,3, I3,4) are providedfor veri�
ation and evaluation of the results. Although we do not 
onsider this data set as
hara
teristi
 for our appli
ations and hen
e do not perform shape re
onstru
tion in this
ase, we de
ided to demonstrate the performan
e of the image-based part of the algorithmfor a data set with available ground truth. Sin
e the surfa
e has many self-o

lusions, thegrading of the geometri
 
omplexity of the s
ene is de
lared as high in Table 6.1 (whererelevant properties of all data sets mentioned in this Chapter are summarized). For pointtra
king, we use either �ve images (I2,2, I3,2, I3,3 (referen
e image) I3,4 and I4,4 � in orderto mimi
 a �ying sensor) or nine images with (2 ≤ r, c ≤ 4) and again I3,3 is 
hosen to bethe referen
e image. For dense estimation, the number of images was 
hosen to be �ve.In the next data set, Turntable houses, only the moving parts of the images need bere
onstru
ted. Sin
e the (unmoved) ba
kground (see Figs. 6.1 and 6.5) does not satisfy the
ollineation 
onstraint, it does not make mu
h sense to perform a dense re
onstru
tion ofthis data set, but it is still interesting to observe the results of sparse tra
king for di�erentmethods and parameter sets for this labor data set. The extra
tion of 
amera traje
toryand sparse point 
loud was 
arried out by the stru
ture-from-motion approa
h of [22, 23℄



82 6.1. Data setsfollowed by a bundle blo
k geometri
 error minimization. The total number of 
ameras was81 and the number of points 8159. The shape re
onstru
tion methods are applied to thispoint 
loud. Several video frames of the data set as well as the result of Step 1 of ourre
onstru
tion pipeline are visualized in Fig. 6.1, top and bottom, respe
tively.

Figure 6.1: Top: Three views from the original sequen
e Turntable houses. Bottom: The
omplete 
amera traje
tory and the point 
loud as a result of a stru
ture-from-motion algo-rithm are the input of our re
onstru
tion pipeline.Our next sequen
e, Gottesaue, shows a real building Gottesaue Pala
e in Karlsruhe,Germany. The results of the re
onstru
tion presented in [24, 25℄ were derived from 339images and 39059 points obtained using the methods of [22℄ without bundle adjustment(whi
h was not possible to perform reliably for su
h a large number of 
ameras). Theresults depi
ted in Fig. 6.6, bottom, were produ
ed by generating four workspa
es fromsubsequen
es showing di�erent but overlapping parts of the building. Ea
h subsequen
ewas self-
alibrated and re
onstru
ted by [22℄ with bundle adjustment in a Eu
lidean spa
eand then transformed into the same 
oordinate system. Nevertheless, be
ause of the �ightin turbulent 
onditions (with a 
onsequen
e of a high level of noise and outliers, partlyprodu
ed by drift e�e
ts of the 
amera traje
tory) and the 
hallenging geometry (huge depthranges, �ne details in the stru
ture of the pala
e and its surrounding terrain, abundan
e ofnon-fronto-parallel planes), the radiometri
 and geometri
 
omplexity of this sequen
e are
lassi�ed to be high and very high, respe
tively, in Table 6.1. The total numbers of 
ameramatri
es and points are 310 and 39165, respe
tively; several frames of the video sequen
etogether with the results of sparse re
onstru
tion are illustrated in Fig. 6.2.We also present an infrared video sequen
e of a skys
raper in the 
ity Frankfurt (Oder)in the eastern part of Germany. This video was also re
orded by an airborne sensor (in aheli
opter) and re
onstru
ted by a SLAM-method [9℄ after self-
alibration of a short subse-quen
e was performed. The whole sequen
e has 418 images and 3109 points (see Fig. 6.3).Its parti
ular 
omplexity 
onsists of dead pixels and many textureless areas (radiometry) aswell as slanted surfa
e of huge depth ranges in the ba
kground (geometry). Contrary to the
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Figure 6.2: Top: Three views from the original sequen
e Gottesaue. Bottom: Part of the
amera traje
tory and the point 
loud as a result of a stru
ture-from-motion algorithm dueto [22℄ are the input of our re
onstru
tion pipeline.
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Figure 6.3: Top: Three views from the original sequen
e Infrared. Bottom: Part of the
amera traje
tory and the point 
loud as a result of a SLAM algorithm due to [9℄ are theinput of our re
onstru
tion pipeline.
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kground, 3D points at the walls of the tower 
an be 
omputed with a highera

ura
y. For this reason and also be
ause of the abundan
e of planar regions (similar tothe situation in the sequen
e Turntable houses), we de
ided to show the result of the LIFTalgorithm in Se
. 6.4.1 for these two data sets.The video sequen
e Ettlingen 
hur
h is used for quantitative evaluation of several shapere
onstru
tion algorithms in Se
. 6.5 be
ause a laser point 
loud representing the surfa
eis available. Be
ause of many �ne details, the 
omplexity of s
ene is high. Finally, todemonstrate the reliability of our re
onstru
tion pipeline for di�erent situations, we presentin Se
. 6.6 qualitative results for two additional data sets: Wangen and Speyer, but, sin
ethe quantitative analysis of these two sequen
es does not represent a signi�
ant di�eren
efrom other data sets and, therefore, was not 
arried out, we do not 
onsider them in Table6.1 below. Note that in Table 6.1, an important measure for geometri
 
omplexity of theinput data is given by the ratio �eld of view/spatial resolution ranges that re�e
ts the rangesfor the quotient baseline/depth.Table 6.1: Summary of data sets available for this work. It is also mentioned whi
h exper-iments (denoted by Se
. 6.2-6.5) were 
arried out for whi
h data set. "dl" means daylightvideo with three spe
tral 
hannels, "ir" infrared video, and "i" denotes image sequen
e. The
omplexity of radiometri
 or geometri
 
on�gurations of the s
ene is denoted by "!", if thes
ene is very 
omplex, a "!!" is put. If the reason why a 
ertain experiment was not 
arriedout with a 
ertain data set is not given, it was omitted be
ause of redundan
y. See text forfurther details.Data set Tsukuba Turntable h. Gottesaue Infrared Ettlingen h.dl/ir dli dl dl ir dlisensor platf. �xed hand-held Cessna heli
opter hand-heldimage 384 × 288 720 × 566 720 × 566 640 × 480 650×475num. offrames / 9/- 81/8159 310/39165 418/3109 5/8693D-Pointsdist. 
am/pt 10 to 39 7.5 to 10 17 to 25 10 to 17 14 to 17fo
al (pix) 300 1.07·103 3.39·103 4.67·103 1.38·103fow / spat.res. ranges 1 to 3.77 0.70 to 0.96 0.21 to 0.30 0.12 to 0.21 0.5 to 0.59
omplexityrad./geom. 0/! 0/0 !/!! !/! 0/!test-runs 6.2, 6.3 6.2, 6.4 6.2, 6.3, 6.4 6.2, 6.3, 6.4 6.56.2 Sparse tra
king and triangulationFor the ben
hmark data set Tsukuba, we �rst 
onvert the data into the format des
ribedat the beginning of Chapter 4. Sin
e the 
ameras have the same 
alibration and rotationmatri
es, we need only modify the 
amera 
enters. They lie in the same plane and in aequally spa
ed re
tangular grid. We 
hoose a reasonable 
alibration matrix to guaranteenumeri
al stability of the 
al
ulations, rotation matri
es are set to be identity matri
es,and the translation ve
tor 
orresponding to image Ir,c is [1.5(c − 3) 1.5(r − 3) 0]T . Theevaluation is 
arried out by proje
ting a 3D point into the images I3,3, I3,4 and 
omputingthe minimum absolute di�eren
e between x3,3 − x3,4 and the true disparity values dgt atrounded x3,3 and its 8 neighbors (in order to avoid rounding errors). In other words, we



86 6.2. Sparse tra
king and triangulationhave the set of in
orre
tly tra
ked pixels:
B =

{x ∣∣∣minv |dgt(x3,3 + v)− (x3,3 − x3,4)| ≥ 1
}

, (6.1)where v = [vx vy], −1 ≤ vx, vy ≤ 1 and the error quantity min(·) in (6.1) is denoted by ε.We provide in Table 6.2 the results of the state-of-the-art implementation of KLT-tra
king,as well as the epipolar and simultaneous tra
king des
ribed in Se
. 4.4, applied to 1238
hara
teristi
 points obtained as des
ribed in Se
. 4.2.Table 6.2: The numbers of points tra
ked 
orre
tly, in
orre
tly and lost for di�erent methods,di�erent numbers of 
ameras and di�erent window size (win) of the sequen
e Tsukuba. opt.rwas set to zero everywhere. For the standard KLT-method, image pyramids at the thirdlevel were ne
essary to produ
e these results. The total number of points was 1238.meth. KLT, pyr = 5, 
am = 3 KLT, pyr = 5, 
am = 5 KLT, pyr = 5,
am = 9win 5 7 9 11 5 7 9 11 5 7 9 11total 936 1005 1030 1039 650 741 787 798 475 572 608 619
or. 859 916 941 954 649 732 777 789 474 570 606 618in
or. 77 89 89 85 1 9 10 9 1 2 2 1lost 302 233 208 199 588 497 451 440 763 666 630 619meth. KLT-epi, 
am = 3 KLT-epi, 
am = 5 KLT-epi, 
am = 9win 3 5 7 9 3 5 7 9 3 5 7 9total 1061 1038 1018 1003 993 991 949 929 987 974 942 910
or. 918 938 933 918 978 981 938 917 981 965 936 900in
or. 143 100 85 85 15 10 11 12 6 9 6 10lost 177 200 220 235 245 247 289 309 251 264 296 328meth. simultan, 
am = 3 simultan, 
am = 5 simultan, 
am = 9win 3 5 7 9 3 5 7 9 3 5 7 9total 1125 1156 1171 1181 883 970 975 982 613 733 754 766
or. 1026 1086 1086 1076 872 962 971 964 612 731 749 761in
or. 99 70 85 105 11 8 4 18 1 2 5 5lost 113 82 67 57 355 268 263 256 625 505 484 472For the data set Turntable houses, the 
onsidered subsequen
e 
onsists of seven images
I1, ..., I7 and the triangulation results are shown for 900 points dete
ted in the referen
eimage I4. Sin
e it is quite di�
ult to obtain a data set with reliable ground truth andsin
e a 
omparison with results obtained by di�erent methods shows similar tenden
iesas in the 
ase of the ben
hmark sequen
e, we 
ompare the results of the epipolar andsimultaneous tra
king algorithms for all non-ben
hmark sequen
es with the standard KLT-tra
king algorithm. We use 1 pixel as threshold for reproje
tion errors for triangulation forwhi
h the number of outliers in the ben
hmark data set is extremely low. After the 3Dpoints are normalized to have average standard deviation of x, y, and z-
oordinates of 1, apoint tra
ked by the epipolar and simultaneous tra
king algorithms is de
lared as tra
ked
orre
tly if the Eu
lidean distan
e between the 
orresponding 3D point and its 
ounterpartobtained by the KLT-tra
king algorithm is below 0.1. Table 6.3 shows how many pointswere lost, tra
ked 
orre
tly (
or.) and tra
ked in
orre
tly (in
or.).For the sequen
e Gottesaue, the number of points with a high response of the operator(4.8) of Se
. 4.2 is 1517. Again, seven images are used for triangulation. Table 6.4 showsthe sensitivity of the standard KLT-method for a video sequen
e taken from a small planein extremely bumpy and turbulent 
onditions while Table 6.5 shows triangulation resultsobtained by epipolar and simultaneous tra
king. Finally, for the sequen
e Infrared (and itsshort subsequen
e of seven images), we are interested in keeping the number of outliers small
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Table 6.3: Results of tra
king 
hara
teristi
 points for the data set Turntable houses withseven images, variable window size (win) and re
ti�
ation option (opt.r). The total numberof points was 900. The standard KLT-tra
king with the window size 11 and the number ofimage pyramid levels 5 yielded 180 points.meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init = 1win 3 7 11 15 19 3 7 11 15 19total 279 360 380 414 425 231 284 323 356 377
or. 92 138 144 153 152 67 99 116 126 136in
or. 0 0 1 2 3 1 0 1 2 2lost 88 42 35 25 25 112 81 63 52 42meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0win 3 7 11 15 19 3 7 11 15 19total 188 303 348 377 393 138 263 316 339 361
or. 44 101 127 139 148 26 69 100 120 128in
or. 1 3 3 3 2 2 3 4 4 4lost 135 76 50 38 30 152 108 76 56 48meth. simultaneous, opt.r = 0, init = 1 simultaneous, opt.r = 1, init = 1win 3 7 11 15 19 3 7 11 15 19total 525 617 671 684 691 896 896 898 898 898
or. 124 131 141 139 142 162 164 164 165 165in
or. 1 0 1 2 2 18 16 16 15 15lost 55 49 38 39 36 0 0 0 0 0meth. simultaneous, opt.r = 0, init = 0 simultaneous, opt.r = 1, init = 0win 3 7 11 15 19 3 7 11 15 19total 563 574 583 575 564 889 872 840 818 792
or. 114 128 143 145 145 130 147 160 160 163in
or. 3 3 1 3 1 49 31 16 16 13lost 63 49 36 32 34 1 2 4 4 4



88 6.2. Sparse tra
king and triangulationand, for this purpose, varied the norm of the value of maximum total error εmax; a pointis lost if at the end of the optimization pro
ess of Se
. 4.4.2, ‖c‖ from (4.11) ex
eeds εmax.Table 6.6 (from [28℄) shows the results for 1170 
hara
teristi
 points.Table 6.4: Results of tra
king 
hara
teristi
 points by the standard KLT-tra
king with andwithout initialization for the data set Gottesaue, seven images and variable window size(win) and the number of image pyramid levels (pyr).meth. KLT-epi, pyr = 5, init = 0 KLT-epi, pyr = 1, init = 0win 5 7 11 15 19 23 5 7 11 15 19 23total 64 134 313 473 532 542 1 2 2 10 18 20meth. KLT, pyr = 5, init = 1 KLT, pyr = 1, init = 1win 5 7 11 15 19 23 5 7 11 15 19 23total 96 212 369 479 532 542 99 200 349 430 480 489Table 6.5: Results of tra
king 
hara
teristi
 points for the data set Gottesaue with sevenimages and variable window size (win), re
ti�
ation and initialization options. The maximalerror per pixel and intera
tion was 30.meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init = 1win 7 11 15 19 23 7 11 15 19 23total 765 829 833 852 849 767 868 867 872 861
or. 375 424 433 428 415 369 429 442 443 427in
or. 12 10 5 7 17 18 12 3 2 11lost 92 45 41 44 47 92 38 34 34 41meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0win 7 11 15 19 23 7 11 15 19 23total 999 1029 1045 1049 1046 946 977 975 947 930
or. 400 417 421 410 405 399 427 441 432 429in
or. 25 12 11 22 22 22 14 2 6 12lost 54 50 47 47 52 58 38 36 41 38meth. sim. εmax = 50, opt.r = 0, init = 1 sim. εmax = 50, opt.r = 1, init = 1win 7 11 15 19 23 7 11 15 19 23total 866 881 890 856 848 1219 1217 1191 1129 1087
or. 339 357 356 347 345 387 396 394 395 380in
or. 23 13 14 13 10 72 62 60 55 66lost 117 109 109 119 124 20 21 25 29 33We 
an see from Tables 6.2-6.6 that both poli
ies (epipolar and simultaneous tra
king)yield more reliably re
onstru
ted points than the original version of KLT-tra
king without
onsidering 
amera matri
es (the total number is always higher). For the video sequen
eGottesaue, re
orded in turbulent 
onditions, standard KLT-tra
king fails to obtain a largeset of 
orresponden
es if the number of image pyramid levels is below 5 (Table 6.4). Assoon as the initialization of depths provided by triangular interpolation as des
ribed inSe
. 4.3 is 
arried out, the total number of reliably triangulated points depends mainly onthe window size and not so mu
h on the number of pyramid levels. For the epipolar andsimultaneous tra
king algorithm, initialization is not 
ru
ial. The results are similar tothose in Tables 6.3 and 6.5. In
reasing the window size usually 
ontributes to a largernumber of triangulated points, be
ause the risk of ending up in a lo
al minimum of the 
ostfun
tion de
lines; unfortunately, the 
omputing time depends quadrati
ally on the window
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reasing the number of 
ameras always 
ontributes to better re
onstru
tion, as one
an observe in Table 6.2. The parameter εmax pra
ti
ally does not in�uen
e the resultsof the epipolar tra
king algorithm. In simultaneous tra
king, it 
learly 
ontributes to alarger number of tra
ked points (and, 
learly, outliers between them). The next question
on
erns the re
ti�
ation option opt.r: for the data sets Gottesaue and Infrared, one 
ansigni�
antly redu
e the number of outliers for growing window size in epipolar tra
king byusing opt.r. The explanation is the following: while, for smaller windows, the interpolationerrors in values of derivatives 
omputed for re
ti�ed images deteriorate the results, thereal invarian
e against rotation begins to show its e�e
ts for larger windows. We do notdis
uss the re
ti�
ation option for Tsukuba, sin
e it is already re
ti�ed nor for the sequen
eTurntable houses be
ause here too many points lie on unmoved parts of the s
ene andinvarian
e against rotation 
annot be a
hieved for them. From Table 6.6, where e�orts havebeen made to redu
e the number of outliers, it be
omes 
lear that the number of outliersfor epipolar tra
king is usually slightly smaller than for simultaneous tra
king. Probably,the main reason lies in gross errors in single images. For simultaneous tra
king, the onlypossibility to sort out points is to de
rease εmax, in other words, the e�e
t of gross errors 
anbe distributed a
ross all images preventing the point from being dis
arded during tra
king.Also, the interpolation errors for (optional) image re
ti�
ation and gradient 
omputation aswell as 
amera un
ertainties 
annot be 
orre
ted geometri
ally (i. e. by reproje
tion errors).Sin
e in pairwise tra
king gross errors in single images are dete
ted and eliminated rightaway, we will use epipolar tra
king as our default option.We are also interested in the lo
ations of the lost points and in
orre
tly tra
ked pointsin the images. Figures 6.4-6.7, on the left, show the already available features, depi
ted byorange points, and, on the right, the newly tra
ked features (yellow), the lost features (
yan
ir
les) and the features tra
ked in
orre
tly (red diamonds). As 
ould be expe
ted, most ofthe lost points lie near o

lusions; this is not really surprising, be
ause only one part of thetemplate window is seen in the new image and the other part 
hanges from image to image.This problem 
an be partly solved by 
onsidering 
ost fun
tions other than the c in (4.11)or norms other than L2 for weighting the entries within windows, but we let that be a topi
for future work. The few outliers lie in the weakly textured regions; here the 
ost fun
tiondoes not have a 
lear minimum and so the result is not reliable. One 
an apply heuristi
sas des
ribed in [29℄ and in Se
. 4.4.1 in order to eliminate outliers, but we do not 
onsiderthese options here.Table 6.6: Results of tra
king 
hara
teristi
 points for the data set Infrared with sevenimages, variable window size (win) and re
ti�
ation option (opt.r). The total number ofpoints was 900 and the standard KLT-tra
king with window size 11 and image pyramidlevels 5 yielded 583 points. See also [28℄.meth. KLT-epi, opt.r = 0 KLT-epi, opt.r = 1win 7 11 15 19 7 11 15 19total 764 807 821 813 616 709 757 770
or. 487 530 545 538 416 474 593 510in
or. 0 0 1 10 0 0 1 4lost 96 53 37 35 167 109 79 69meth. simultaneous, opt.r = 0 simultaneous, opt.r = 1win 7 11 15 19 7 11 15 19total 985 995 995 971 957 987 966 942
or. 571 575 576 564 563 570 557 550in
or. 2 3 3 11 4 6 12 14lost 10 5 4 8 16 7 14 19
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king and triangulationCon
lusionIn the 
urrent version of our implementation, we use epipolar tra
king as a default option.The reason is that the number of outliers is usually lower than in the 
ase of simultaneoustra
king and 
amera un
ertainties are better taken into a

ount during the �nal triangulationstep. In the future work, we will restru
ture the simultaneous tra
king algorithm: �rst by�ltering out, by means of radiometri
 di�eren
es, the images where o

lusions are probableand se
ond by taking 
amera un
ertainties into a

ount.

Figure 6.4: Left: The ground truth result of the ben
hmark data set Tsukuba needed forSe
. 6.3 with the original point 
loud 
olored in orange. Middle: Disparity s
ale bar. Onthe right, the referen
e image with results of epipolar tra
king. Points with disparity values
orre
tly assigned by epipolar tra
king are depi
ted by yellow dots, the lost points by 
yan
ir
les and outliers by red diamonds. See also [28℄.

Figure 6.5: Left: The referen
e image of a subsequen
e of the data set Turntable houses withthe results of epipolar tra
king. Points with disparity values 
orre
tly assigned by epipolartra
king are depi
ted by yellow dots, the lost points by 
yan 
ir
les and outliers by reddiamonds. Points lost in the standard KLT tra
king algorithm are depi
ted by green dots.Right: A view of the 3D-point 
loud with already available points marked in orange.
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Figure 6.6: Left: the median-based depth map will be our ground truth of a subsequen
eof the data set Gottesaue in Se
. 6.3. The original point 
loud is 
olored in orange. Middle:Depth s
ale bar. On the right, the referen
e image with results of epipolar tra
king. Pointswith disparity values 
orre
tly assigned by epipolar tra
king are depi
ted by yellow dots,the lost points by 
yan 
ir
les and outliers by red diamonds. Points lost in the standardKLT-tra
king algorithm are depi
ted by green dots.

Figure 6.7: Left: The median-based depth map will be our ground truth for a subsequen
e ofthe data set Infrared in Se
. 6.3. The original point 
loud is in orange. Middle: Depth s
alebar. On the right, the referen
e image with results of epipolar tra
king. Points with disparityvalues 
orre
tly assigned by epipolar tra
king are depi
ted by yellow dots, the lost pointsby 
yan 
ir
les and outliers by red diamonds. Points lost in the standard KLT-tra
kingalgorithm are marked by green dots.
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onstru
tion6.3 Dense re
onstru
tionThis se
tion will illustrate dense re
onstru
tion of sele
ted subsequen
es of video data withwhi
h we deal. We will stru
ture this se
tion in a manner similar to what we did in Chapter 4,�rst handling the bino
ular 
ase (Se
. 6.3.1) and then multi-view re
onstru
tion (Se
. 6.3.2).A subje
t of parti
ular interest will be the automati
 
hoi
e of the smoothness parameters
λ1, λ2, 
overed in Se
. 6.3.3.6.3.1 Bino
ular 
aseFor the ben
hmark data set with the ground truth depth map shown in Fig. 6.4, the eval-uation is 
arried out analogously to the previous se
tion and we followed the 
hoi
e of theauthors of [115℄ to measure the number of in
orretly tra
ked pixels, whi
h we denote by
NB =

∑

B 1, as a fun
tion of di�erent parameters. Alternatively, one 
an 
ompute theaverage sum of relative depth deviations, denoted by εB =
∑

B ε, with B and ε de�ned inEq. (6.1). For the data sets Infrared and Gottesaue, we 
hose the ground truth to be themedian depth map using the methods of Se
. 4.5.2. This method is very robust � the reasonthat justi�es us to take it as a ground truth � but also very time-
onsuming sin
e semi-global optimization must be performed altogether 2K times (with 
ross-
he
k as in (3.2),and K + 1 number of images). We show in ea
h of Figs. 6.8, 6.9, and 6.10, a typi
al resultof the disparity estimation 
omputed for the sequen
es Tsukuba, Gottesaue, and Infrared,respe
tively, with a lo
al method supported by triangular meshes. One 
an see the twotypi
al sour
es of errors: either too mu
h noise makes it impossible to assign a triangle as
onsistent with the surfa
e or a triangle is spuriously de
lared as 
onsistent with the surfa
e.For the bino
ular 
ase, this is espe
ially visible in Fig. 6.9, where the stripes on the roof �whi
h go perpendi
ular to the epipolar lines � provoke too many mismat
hes that 
annotbe 
orre
ted by the evaluation on triangles. As we will see later, this situation will be fairlyseldom for the lo
al algorithm applied to multi-view 
on�gurations be
ause the pixels insomewhat textured area will be helped out of lo
al minima by redundant views.

Figure 6.8: Top left: Illustration of the disparity map 
omputed by the lo
al algorithm fromimages I3,3, I3,4 of the sequen
e Tsukuba. Top right: Evaluation of the result on the left within
orre
t mat
hes depi
ted in bla
k. The triangles 
onsistent with the surfa
e are markedin green, those in
onsistent with the surfa
e in red. The ground truth result is depi
ted inFig. 6.4, p. 90, left.In the next step, we turn our attention to global and semi-global methods. Figures 6.11,6.12 and 6.13 illustrate typi
al results for the sequen
es Tsukuba, Gottesaue, and Infrared,respe
tively, of the graph-
uts-algorithm implementation of [81℄ (top) and the semi-globaloptimization due to Hirs
hmüller as in [67℄ (bottom). In the graph 
uts algorithm, the
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ost fun
tion was given by the trun
ated SSD, as in Eq. (2.4), p = 2, the smoothnessfun
tion was given by (2.16), where
λ(i, i′) = λ1U(u ≥ 8) + 3λ1U(u < 8), u = min (|I(x)− I(y)|, |I ′(x′)− I ′(y′)|) ,and points x = (x, y) with the property d(x, y) = d(x + 1, y) + 1 were marked as o

luded.In the implementation of the semi-global algorithm for the bino
ular 
ase, mutual informa-tion was our the data-fun
tion; also the 
ross-
he
k test a

ording to (3.2) followed by theevaluation on triangles by the methods of Se
. 4.5.1 was 
arried out.

Figure 6.9: Top left: Part of the re
ti�ed referen
e image from the sequen
e Gottesaue.Triangles de
lared as 
onsistent with the surfa
e by the lo
al algorithm are 
olored in greenwhile in
onsistent triangles are 
olored in red. Right: Disparity map DT produ
ed bythe triangular interpolation des
ribed in Se
. 4.3.1. Bottom left: a typi
al result Dloc ofthe lo
al depth 
omputation. Bottom right: evaluation of Dloc on the left with in
orre
tmat
hes depi
ted in bla
k and triangles 
onsistent and in
onsistent with the surfa
e in greenand red, respe
tively.The next several �gures show quantitative evaluations of the bino
ular dense re
onstru
-tion. The global results, demonstrated for the three sequen
es Tsukuba, Gottesaue, andInfrared, in Figs, 6.14, 6.15, and 6.16, respe
tively, are important for understanding, amongother things, the performan
e of the graph 
uts algorithm (always top row) in 
ompari-son with the performan
e of semi-global mat
hing (bottom row). The lo
al results will be
overed in Se
. 6.3.2 be
ause of a strong analogy with the multi-view 
ase.One 
an see that the graph-
uts algorithm, despite its positive properties to performwell near o

lusions and in regions of repetitive patterns of texture, is barely suitable for
omputing disparity maps for the sequen
es Gottesaue and Infrared. In the latter sequen
e,appli
ation of the graph-
uts algorithm even deteriorates the results of the lo
al algorithmsupported by triangular meshes, while, in the �rst, it improves them only slightly. The
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Figure 6.10: Top left: Part of the re
ti�ed referen
e image from the sequen
e Infrared.Triangles de
lared 
onsistent with the surfa
e by the lo
al algorithm are 
olored in greenwhile in
onsistent triangles are 
olored in red. Right: Disparity map DT produ
ed by thetriangular interpolation des
ribed in Se
. 4.3.1. Bottom left: a typi
al result Dloc of the lo
aldisparity 
omputation. Bottom right: evaluation of Dloc on the left with in
orre
t mat
hesdepi
ted in bla
k and triangles 
onsistent and in
onsistent with the surfa
e in green andred, respe
tively.idea behind the graph-based algorithm based on alpha-expansions is to overwrite a setof pixels of a given initial disparity map D by a s
alar value α. In other words, if wehave a pixel with disparity label α in a textured region, this value will be propagated toneighboring untextured regions until no improvements take pla
e. Hen
e a risk to fall intoa lo
al minimum is very high. The sus
eptibility of the algorithm towards fronto-parallelplanes additionally aggravate this problem; and evaluation of triangles 
annot a
tually solveit be
ause the per
entage of pixels that the algorithm re
ognizes to be 
onsistent withthe surfa
e is rather low (see Fig. 6.12). As a result, the disparity values are likely to begrouped into segments whose borders are often drawn somewhere within textureless regions.The semi-global method 
an redu
e the number of pixels with wrongly assigned disparities,espe
ially if evaluation of triangles takes pla
e, but for the remaining pixels (whi
h areusually situated near o

lusions, the values of the disparities are for
ed to be near to thoseof neighboring pixels or are interpolated linearly. Therefore the value of εB in
reases while
NB falls and we 
an state that o

asional over-smoothing edges represents the main drawba
kof the semi-global method.With respe
t to the 
hoi
e of the smoothness parameter for the graph-based method,good experien
es were made with the heuristi
 des
ribed in [79℄. One 
an see a 
lear min-imum in the number of pixels with in
orre
tly assigned disparity values in Fig. 6.14 whi
h
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Figure 6.11: Top left: Illustration of the disparity map 
omputed by the graph 
uts algorithm[81℄ for the sequen
e Tsukuba. Top right: Evaluation of the result on the left with in
orre
tmat
hes depi
ted in bla
k. Bottom: Result and evaluation of the semi-global algorithm.results from the automati
ally sele
ted value of λ1. In the 
ase of data sets with less self-o

lusions (for instan
e, Nadir �ights over urban terrains), λ1 
an be 
hosen slightly largerthan the automati
ally 
omputed value. In the 
ase of the semi-global optimization, we havetwo smoothness parameters. Both in bino
ular and multi-
amera 
on�gurations, visuallygood results were obtained if the strategy to 
hoose a moderate value of λ1 (to admit slantedsurfa
es) and λ2 = 2λ1 was followed. We refer to Se
. 6.3.3, where the question of automati

hoi
e of λ1 for dynami
 programming and semi-global optimization methods will be 
overedin a more detailed way.Our next issue 
on
erns redu
tion of the 
omputing time by initialization of the graph-
uts algorithm. As one 
an see from Figs. 6.12 and 6.13, quantitative results of a globalalgorithm do not depend signi�
antly on the initialization, so we are 
on
erned here aboutthe number of iterations in the pro
ess of 
omputing the disparity map. Sin
e we have herea random pro
ess, we 
arried out the energy minimization several times and 
omputed theaverage number of iterations. The test data set was Gottesaue be
ause the number of pixelsin the images was larger than in other data sets and so the randomization e�e
ts of order ofdisparity values for alpha-expansions 
ould be redu
ed. The 
orrelation between the energyratios at the beginning and at the end of the algorithm is indi
ated in Table 6.7. We seethat a good initialization is equivalent to a low energy at the beginning of the graph-
utsalgorithms and so, in the majority of 
ases and espe
ially for larger values of smoothnessparameter λ, less iterations are needed to rea
h a (lo
al) minimum of the energy fun
tional.For the semi-global method, 
omputation ofMutual information mat
hing table from thetriangular mesh and initialization with this result helps to produ
e 
omparable results as inthe 
ase of image pyramids as one 
an see from the blue and 
yan 
urves in Fig. 6.15. Thiskind of initialization 
an thus be preferred to the 
omputation of image pyramids proposedin [67℄.
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Figure 6.12: Top left: Illustration of the disparity map 
omputed by graph 
uts algorithmfrom two frames of the sequen
e Gottesaue. The dis
retization artifa
ts are very visible inthe �nal result be
ause no subpixel mat
hing is performed. Top right: Evaluation of theresult on the left with in
orre
t mat
hes depi
ted in bla
k. Typi
al problems emerging in thisalgorithm are shown by marking some disparity labels; of 
ourse no jumps in the disparityexist in the reality (see Fig. 6.6 above). Bottom, left and right: Result and evaluation of thesemi-global algorithm.
Table 6.7: Correlation between the energy ratios at the beginning and the end of the graph
uts algorithm and the 
omputing time, whi
h is dire
tly proportional to the number ofiterations. Sequen
e Gottesaue, di�erent smoothness parameters λ.no init

λ 100 200 300 400 500 600
E0/E 0av. iter 12.7 10.3 10.05 9.15 8.05 6.85init Dloc

E0/E −0.43 0.12 0.29 0.36 0.44 0.48av. iter 14.45 11.85 8.95 8.55 7.35 6.75init DT

E0/E −0.12 0.31 0.44 0.50 0.56 0.59av. iter 11.6 8.25 8.65 8.5 6.9 6.05
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Figure 6.13: Top left: Illustration of the disparity map 
omputed by graph 
uts algorithmfrom two frames of the sequen
e Infrared. Top right: Evaluation of the result on the leftwith in
orre
t mat
hes depi
ted in bla
k. Bottom: result and evaluation of the semi-globalalgorithm.

λ1 λ1

NB, %� εB · 103

Figure 6.14: Results of disparity estimation for the sequen
e Tsukuba with the graph-
utsmethods. Left: The %�-value NB of pixels with in
orre
tly assigned disparity values as afun
tion of smoothness parameters λ1 and the triangulation-based parameter γ. The 
hoi
efor γ = 0.75 is always marked by solid lines and γ = 1 by dotted lines. The bla
k, greenand red 
urves represent results initialized with the lo
al disparity map Dloc, initialized with
DT and without initialization, respe
tively. On the right, average error per pixel εB for all
on�gurations des
ribed above. Quantitative analysis of this data set with the semi-globalmethod will be performed for a multi-view 
on�gurations in the next se
tion.
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λ1

λ1λ1

λ1

NB, %� εB · 103

NB, %� εB · 103

Figure 6.15: Results of disparity estimation for the sequen
e Gottesaue with non-lo
al meth-ods. Top left: Graph-guts algorithm: the %�-value (NB) of pixels with in
orre
tly assigneddisparity values as a fun
tion of λ1. The bla
k, green and red 
urves represent results ini-tialized with the lo
al disparity map Dloc, initialized with DT and without initialization,respe
tively. The dashed, solid and dotted 
urves represent 
hoi
es γ = 0.5, γ = 0.75 and
γ = 1.0, respe
tively. Bottom left: Results for the semi-global algorithm. The %�-value of
NB as a fun
tion of λ1, where γ = 0.75 is always marked by solid lines and γ = 1 by dottedlines. Blue and 
yan 
urves denote the results from the initialization as in [29℄ while all other
urves use image pyramids and mutual information as the 
ost fun
tion. Green and 
yan
urves stem from the 
hoi
e λ2 = λ1, bla
k and blue 
urves stem from the 
hoi
e λ2 = 2λ1and the red 
urve from the 
hoi
e λ2 = min(4λ1, 2047) (see explanation of Eq. (4.25)). Onthe right, average error εB per pixel for all 
on�gurations des
ribed above.
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λ1 λ1

λ1 λ1
NB, %� εB · 103

NB, %� εB · 103

Figure 6.16: Results of disparity estimation for the sequen
e Infrared with non-lo
al methods.Top left: Graph-
uts algorithm The %�-value of NB as a fun
tion of λ1, where γ = 0.67 ismarked by solid lines and γ = 1 by dashed lines. The bla
k 
urves denote the results withinitialization and red 
urves without. Bottom left: Results for the semi-global algorithm.Green 
urves stem from the 
hoi
e λ2 = λ1, bla
k 
urves stem from the 
hoi
e λ2 = 2λ1 andthe red 
urve from the 
hoi
e λ2 = min(4λ1, 2047). The dotted, solid and dashed 
urvesrepresent the 
hoi
es γ = 0.5, 0.75 and 1.1, respe
tively. On the right, average error perpixel εB for all 
on�gurations des
ribed above.
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tion6.3.2 Multi-view 
on�gurationsIn order to demonstrate that the mat
hing ambiguities in regions of repetitive patterns oftexture and near o

lusions 
an be resolved by using redundant views, we now repla
e thebino
ular 
on�guration of the previous se
tion by the multi-view 
on�guration made up by�ve images in data set Tsukuba and seven images in both data sets Gottesaue and Infrared.The ground truth result remains the same as in the last se
tion, but we 
hanged slightlythe evaluation 
riterion for data sets Gottesaue and Infrared in order to take into a

ountthe rather vast depth ranges whi
h vary from several dozens to at least several hundreds ofmeters. We say that a pixel x is assigned to B if the deviation of dx from the ground truth
dgt(x) value is more than 5%, in other words:

ε = |dgt(x)− d(x)|/|dgt(x)| > 0.05,and the de�nitions for NB, εB remain the same.

Figure 6.17: Top Left: Triangular mesh and the result of the lo
al disparity map of thedata set Tsukuba from �ve images and the mesh rendered from the enri
hed point set wherethe triangles 
onsistent and in
onsistent with the surfa
e are marked in green and red,respe
tively. Top right: Evaluation of the result on the left by means of the ground truthdisparity map depi
ted in Fig. 6.4, all mat
hes where the di�eren
e ex
eeds one pixel aredepi
ted in bla
k. Bottom left: Part of the referen
e image (denoted by yellow re
tangleabove) where triangles in
onsistent with the surfa
e are given red 
olor. Bottom right:evaluation of this part, almost all wrong mat
hes lie inside of red triangles.Extended tests were 
arried out for 9 lo
al parameters (number of 
ameras K, windowsize, 
ost fun
tion whi
h we denote here by εmax, re
ti�
ation option opt.r and interpolationoption opt.i, the parameter εy responsible for 
ompensating errors due to un
ertainties in
amera positions as well as triangulation-based smoothness terms A, σ, γ) and two globalparameters λ1, λ2 for semi-global optimization. Many of these parameters were already ob-je
t of related resear
h (see [115℄ and referen
es therein), therefore we will not vary here the



Chapter 6. Evaluation of algorithms 101value of every parameter by letting �xed all others (and this for ea
h data set), but restri
tourselves to des
ribing in the graphi
s below the in�uen
e of the most important ones, es-pe
ially those related to triangular meshes and global methods. For the other parameters,we give only summarizing observations.We show in Figs. 6.17, 6.18, and 6.19 typi
al results of the lo
al approa
h with 
onsideringthe lo
al smoothness term ET from Eq. (4.21) for the data sets Tsukuba, Gottesaue, andInfrared, respe
tively. The result of applying the lo
al triangulation-based smoothness termsfrom the enri
hed point set (as the result of Se
. 6.2) is shown together with the triangulatedpoint set, triangles 
onsistent and in
onsistent with the surfa
e (
olored in green and red,respe
tively), and binarized absolute di�eren
es from the ground truth. For the non-lo
aloptimization algorithms of dynami
 programming and multi-view semi-global optimization,we show typi
al results of the multi-view dense re
onstru
tion for the three data sets inFigs. 6.20, 6.21 and 6.22, respe
tively.

Figure 6.18: Left: Triangular mesh and the lo
al result of the depth map of the data setGottesaue from seven images and the mesh rendered from the enri
hed point set wherethe triangles 
onsistent and in
onsistent with the surfa
e are marked in green and red,respe
tively. Right: Evaluation of the result on the left with in
orre
t mat
hes depi
ted inbla
k.

Figure 6.19: Left: Triangular mesh and the lo
al result of the depth map of the dataset Infrared from seven images and the mesh rendered from the enri
hed point set wherethe triangles 
onsistent and in
onsistent with the surfa
e are marked in green and red,respe
tively. Right: Evaluation of the result on the left with in
orre
t mat
hes depi
ted inbla
k.
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Figure 6.20: Top left: The result of energy minimization with dynami
 programming for thedata set Tsukuba, �ve images, window size = 3. Top right: Evaluation of the result on theleft with in
orre
t mat
hes depi
ted in bla
k. Bottom left and right: Result and evaluationof the semi-global algorithm.

Figure 6.21: Top left: Result of energy minimization with dynami
 programming for thedata set Gottesaue, seven images. Top right: Evaluation of this result with in
orre
t mat
hesdepi
ted in bla
k. Bottom left and right: Result and evaluation of the semi-global algorithm.



Chapter 6. Evaluation of algorithms 103In Figs. 6.23, 6.24, and 6.25, dependen
e of the results on the window size, 
ost fun
tion,
A, σ and γ for data sets Tsukuba, Gottesaue, and Infrared, respe
tively, is represented. Thered and green 
urves stand for the trun
ated SAD from Eq. (2.4) with εmax = 15 and40, respe
tively. The blue 
urves stand for the NCC (2.6) and the bla
k 
urves for thesimpli�
ation (2.7). A smaller per
entage of in
orre
tly re
onstru
ted pixel makes 
learthat for a video sequen
e, it makes more sense to use (trun
ated) SAD as a 
ost fun
tion.A possible explanation lies in the parameters a and b of (2.5). These additional degrees offreedom allow a more �exible distribution of gray values within windows, but their valuesmust also satisfy (at least a pie
ewise-)smoothness 
ondition be
ause the re�e
tion 
oe�
ientof the material surfa
e is made of as well as the angle between normal ve
tor of a point anda 
amera plane are 
onstant in the whole regions. As a 
onsequen
e, Eq. (2.6) is impli
itlyover-parametrized and therefore blue and bla
k 
urves lie above the red and green ones.In other experiments, whi
h go beyond the s
ope of this work, we were able to as
ertain aslight improvement of the results after a
tivating opt.r or opt.i (the bilinear interpolationinstead of rounding) while in
reasing εy (see Eq. (4.10), p. 53) does not in�uen
e mu
h theresults. Finally, augmenting the number of 
ameras K and the window size win is helpfulto redu
e NB and εB although the 
omputing times 
learly in
rease.

Figure 6.22: Top left: The result of energy minimization with dynami
 programming for thedata set Infrared, seven images, window size = 3. Top right: Evaluation of the result on theleft with in
orre
t mat
hes depi
ted in bla
k. Bottom left and right: Result and evaluationof the semi-global algorithm.We go on by investigating the in�uen
e of the triangulation-based smoothness termswhose presen
e usually not only in
reases the a

ura
y but also smoothers the e�e
ts oftoo small K, or opt.r = 0. As one 
an see from Figs. 6.9 and 6.18, there are almost nomismat
hes in triangles 
onsistent with the surfa
e. If γ(T ) < 1, then all pixels within T
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AA

NB, %� εB · 103

NB, %� εB · 103

Figure 6.23: Top left: The %�-value (NB) of pixels with in
orre
tly assigned depth valuesas a fun
tion of A, 
ost fun
tion and γ, data set Tsukuba, window size = 5, opt.r = 0 and
σ = 50. The dashed 
urves 
orrespond to the value γ = 0.67, solid 
urves for γ = 1. Thebehavior for di�erent 
ost fun
tion: red and green 
urves for (2.4) with εmax = 15 and 40,respe
tively, blue 
urves for (2.6) and the bla
k 
urves for (2.7). Bottom row: Variation of
σ and γ. Bla
k 
urves 
orrespond to γ = 0.75 and green 
urves to γ = 0.95, the dashed,solid and dotted lines 
orrespond to di�erent 
hoi
es of sigma (σ = 0, 10, 50, respe
tively).On the right, average error εB per pixel for all 
on�gurations des
ribed above.

NB, %� εB · 103

A AFigure 6.24: Top row, left: The %�-value of NB as a fun
tion of A, 
ost fun
tion and γ,data set Gottesaue, window size = 5, opt.r = 0, number of images = 5 (images 1, 2, 4, 6,7 used) and σ = 50. The dashed 
urves 
orrespond to the value γ = 0.67, solid 
urves for
γ = 1. The behavior for di�erent 
ost fun
tion: red and green 
urves for trun
ated SADfrom Eq. (2.4) with εmax = 15 and 40, respe
tively, blue 
urves for NCC from Eq. (2.6) andthe bla
k 
urves for (2.7). On the right: Average error εB per pixel for all 
on�gurationsdes
ribed above.



Chapter 6. Evaluation of algorithms 105are assigned depth values dT ; this assumption is reasonable, be
ause for large point 
loudsnearly homogeneously distributed in the image, the number of triangles 
ompatible with thesurfa
e will normally be quite high. One 
an see the noisy distribution of depth values withinred triangles and the smooth (and 
orre
t) depth values by green triangles in Figs. 6.17 and6.19. De
laring a triangle 
onsistent with the surfa
e 
an be further eased by adding atriangulation-based smoothness term ET of the form (4.14) or (4.22); this approa
h provesto be very e�
ient at a pixel x in a low textured area (see Fig. 6.23 and Fig. 6.25) wherethe 
ost fun
tion is likely to yield quite similar results for several depth labels. In this 
ase,a support for the plausible value dT,x 
an help to assign 
orre
t depth values with subpixela

ura
y. Of 
ourse, if T is in
onsistent with the surfa
e (i. e. when one or two of its verti
eslie on an o

lusion edge), then T will be mapped in a wrong way; therefore the terms NB, εBbe
ome larger if σ and A are unreasonably high. The results of triangular interpolationbe
ome indeed worse for very high σ and A, as one 
an see, for example, from the dottedlines in Fig. 6.23 where too many triangles were de
lared 
onsistent with the surfa
e.

NB, %� εB · 103

NB, %� εB · 103

win winFigure 6.25: Left: The %�-value of NB as a fun
tion of A, σ and γ, data set Infrared, windowsize = 3, opt.r = 0, number of images = 7. The green 
urves 
orrespond to the value γ = 0.67,bla
k 
urves for γ = 1 and the red horizontal line shows the result without 
onsiderationof triangulation-based smoothing. The behavior for di�erent σ-values (σ = 10: dashed lineor σ = 50: solid line) is illustrated as well. Bottom left: NB (in %�) as a fun
tion of thewindow size. The di�erent 
urves are shown for opt.r = 0 (green line) and opt.r = 1 (bla
kline) as well as di�erent 
hoi
es of images: for the dashed line, all 7 images were 
onsidered,for the solid line, images 1, 2, 4, 6, 7 were used and for the dotted line, only images 1, 4, 7.The referen
e image was always image 4 and the number of levels for disparity 
omputationwas the same for ea
h experiment. On the right, top and bottom: Average error εB per pixelfor all 
on�gurations des
ribed above.
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semi-global opt.NB, %�dyn. programmingNB, %�

Figure 6.26: Left: The %�-value of NB as a fun
tion of λ1 for dynami
 programming in thedata set Tsukluba. Right: Results of semi-global mat
hing. The dotted, solid and dashed
urves 
orrespond to di�erent 
hoi
es (1, 2, 4, respe
tively) for the ratio λ2/λ1. Furthermore,
γ = 0.67 for bla
k 
urves and γ = 0.95 for green 
urves.

semi-global opt.
λ1λ1

NB, %�dyn. programming
NB, %�

Figure 6.27: Left: The %�-value of NB as a fun
tion of λ1 for dynami
 programming in thedata set Gottesaue. Right: Results of semi-global mat
hing. The dotted, solid and dashed
urves 
orrespond to di�erent 
hoi
es (1, 2, 4, respe
tively) for the ratio λ2/λ1. Furthermore,
γ = 0.5 for bla
k 
urves and γ = 0.95 for green 
urves with the 
ost fun
tion initialized bya trun
ated SAD (see Eq. (2.4), εmax = 40), blue 
urves stand for NCC in (2.6) and red
urves for (2.7). For blue and green 
urves, the value of γ was always 0.5.
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e the improvements of our lo
al algorithm (for a �xed point set) are limited by thenumber of triangles 
onsistent with the surfa
e and it depends on the 
omplexity of the s
enehow far we 
an go with in
reasing σ and A and also de
reasing γ, a further optimization
an be a
hieved by applying non-lo
al algorithms. In Figs. 6.26, 6.27, 6.28, values of NB fordynami
 programming and the semi-global algorithm are presented (sin
e the results for ε
Bshow a similar behavior) for the data sets Tsukuba, Gottesaue, and Infrared, respe
tively.For all data sets, we varied the values of λ1 and ratios λ2/λ1. On the other hand, we varied γin Fig. 6.26, γ and the 
ost fun
tion in Fig. 6.27 and the number of 
ameras in Fig. 6.28. Theresults 
on�rm that anything what improves the performan
e of a lo
al algorithm, will alsodo of a global one. We de
ided to use for all data sets window size 3 (be
ause 
onsidering onlypixels themselves without neighbors results in a rapid in
rease of the number of mismat
hesand larger windows make in
rease 
omputing time without very signi�
ant improvementsof the results), opt.r was set to zero (be
ause image transformations take extra 
omputingtime) and the number of images was �ve for Tsukuba data set and seven for other data sets.We 
an see from illustrations and graphi
s that dynami
 programming 
an eliminate mostoutliers within epipolar lines, but sin
e epipolar lines are usually di�erently over-smoothed,there are visually unpleasant streaking artifa
ts in the result. Applying the semi-globalalgorithm with 16 smoothing dire
tions allows eliminating these artifa
ts and so the numberof mismat
hes (whi
h are mostly made up by points near o

lusion edges and far away fromthe 
amera positions) usually tends against zero (
ompare Figs. 6.20-6.22 for visualization,Figs. 6.26-6.28 for quantitative evaluation). The %�-values for NB de
rease from around45 (lo
al method) to 20 (dynami
 programming) and to 15 (semi-global mat
hing) for bothdata sets. For the data set Tsukuba, the lowest values of NB are around 1.3% and 2.9% (withand without 
orre
tion for rounding errors, respe
tively). This means that our method isone of the best among those mentioned by [115℄ and so a multi-view 
on�guration supportedby a dynami
 or, even more, a semi-global algorithm outperforms most of the two-
ameraalgorithms. semi-global opt.NB, %�dyn. programmingNB, %�

Figure 6.28: Left: The %�-value of NB as a fun
tion of λ1 in the data set Infrared fordynami
 programming. On the right, results for semi-global mat
hing. The bla
k 
urvesresult from 
onsidering all 7 images, the green 
urves from 
onsidering only images 1, 4, 7.The dotted, solid and dashed 
urves are for ratios λ2/λ1 = 1, 2, 4, respe
tively.
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onstru
tion6.3.3 Automati
 
hoi
e of smoothness parametersOur next issue will be the automati
 
hoi
e of smoothness 
onstants λ1 and λ2. For the datasets Tsukuba and Infrared, we write down the best ranges of λ1 (with respe
t to NB and εBand ratios λ2/λ1. We 
an 
learly see from Eq. (4.27) that the automati
 
hoi
e of smoothnessparameter must depend on the 
ost/aggregation fun
tion c. As a 
onsequen
e, Table 6.8shows the results for four typi
al 
ost fun
tions: NCC from (2.7), Se
. 2.2.2 (p. 21), MutualInformation (MI) from (2.8), Se
. 2.2.3 (p. 22)1, as well as the trun
ated SAD from (2.4)with two di�erent values of εmax = 15 and 40. Here Cγ
1 and Cγ

2 are the values of 
on�den
eterms in equations Eqs. (4.26) and (4.27) of Se
. 4.5.4, respe
tively, whi
h 
orrespond to thequantile γ and the supers
ripts ·S and ·D denote parameters 
orresponding to semi-globaloptimization and dynami
 programming respe
tively.Table 6.8: Correlation between quantile values for 
on�den
e terms Cγ
1 and Cγ

2 and smooth-ness parameters λ1 and λ2 whi
h yielded best results for the evaluation pipeline des
ribedabove. The number of 
ameras was two, the size of the 
orrelation window win = 5,triangulation-based 
onstants A = 50, σ = 50, opt.r was set to 1 and the 
ost values forassigned (non-o

luded) values of c(x, j) were s
aled between 0 and 1, in other words, multi-pli
ation by 2048 required in the 
onsiderations of p. 65 was not 
arried out. Similar resultswere obtained also for other sequen
es and other parameter settings.data set Seq.Tsukuba Seq. Infraredmethod NCC MI SAD SAD NCC MI SAD SAD
εmax = 15 εmax = 40 εmax = 15 εmax = 40

C
0.7
2 0.36 0.15 0.38 0.30 0.40 0.22 0.50 0.41

C
0.9
2 0.45 0.24 0.50 0.45 0.48 0.34 0.59 0.53

C
0.7
1 0.26 0.051 0.20 0.12 0.094 0.023 0.13 0.063

C
0.9
1 0.18 0.13 0.37 0.27 0.20 0.068 0.28 0.140.18- 0.13- 0.37- 0.27- 0.20- 0.068- 0.28- 0.14-
λS
1 0.68 0.29 0.98 0.78 0.78 0.29 0.98 0.78

λS
2 /λ

S
1 2-4 1 2 4 2-4 1-2 2-4 20.49- 0.29- 0.49- 0.59- 0.49- 0.20- 0.29- 0.39-

λD
1 0.78 0.59 0.78 0.78 0.68 0.39 0.98 0.59

λD
2 /λD

1 1-2 1-2 2 2 2-4 2 2-4 2From Table 6.8, one 
an 
learly see that the quantile values of Cγ
1 and Cγ

2 show similartenden
ies as λ1 for both algorithms des
ribed above. If one of quantile values be
omeslarger, a right-shift of the range suitable for λ1 
an also be expe
ted. Conversely, for smallerquantile values, also smaller λ1 
an be 
hosen. Generally, a value around 1.5 · C0.9
2 and

2.5 · C0.9
1 is a suitable 
hoi
e for λ1 and, a

ording to our earlier 
onsiderations, the defaultvalue for λ2/λ1 is 2.1In the experiments to this 
hapter, it was important to 
he
k the 
onsisten
es of best 
hoi
es for smooth-ness parameters and quantile values of the 
on�den
e maps for all available 
ost fun
tions; therefore MutualInformation was in
luded into 
omputations and, sin
e, at the time of evaluation, 
omputation of this 
ostfun
tion was only possible in the 
ase of a re
ti�ed stereo pair, the number of images was restri
ted to betwo.
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lusionSummarizing the 
ontent of this se
tion, we 
an state that dense depth maps extra
tionrepresents a very useful module for our pipeline �rst be
ause it 
ontributes to homogenizationof the point 
louds (better input for Steps 3.1 and 3.2 of our re
onstru
tion pipeline) andse
ond be
ause it enhan
es the visibility information in the texturing portion of Step 3.2.We have seen that the lo
al methods supported by triangular meshes 
an redu
e the numberof wrong mat
hes within triangles 
onsistent with the surfa
e. We 
an even 
laim that thebigger the number of points 
onsistent with the surfa
e is, the more similar the results of lo
aloptimization with a triangulation-based smoothness term in a bino
ular 
on�guration are tothose in a multi-view 
on�guration. In the general 
ase, multi-view 
on�gurations provide abetter resolution of depth and allow treating o

lusions and the regions of repetitive texturein a robust way. In order to save 
omputing time, we prefer the simultaneous methodsupported by triangular meshes to the median-based method and, espe
ially with respe
tof treating regions with homogeneous texture and slanted surfa
es, we re
ommend usingthe semi-global global algorithms as non-lo
al optimization method be
ause of its 
learadvantages to algorithms of dynami
 programming and graph-
uts.6.4 Shape re
onstru
tion methods � qualitative resultsIn this se
tion, results for textured re
onstru
tion from our main data sets are presentedand dis
ussed. Se
tion 6.4.1 shows re
onstru
tion results for the LIFT pro
edure; theseresults 
an be obtained if Step 3.2 of the re
onstru
tion pipeline Alg. 1.1, p. 15 is 
ompletelyomitted. Results of our main pro
edure for surfa
e re
onstru
tion by L1 splines are presentedin Se
. 6.4.2 and those of other pro
edures in Se
. 6.4.3.6.4.1 Results for the LIFT-algorithmThe results for the Lo
al In
remental Fusion of Tessellations algorithm, LIFT, supported bydominant-planes extra
tion from lo
al tessellations (as des
ribed in Se
. 5.1.2) are presentedin Figs. 6.29 and 6.30 for the video sequen
es Turntable Houses and Infrared, respe
tively. Inthe data set Infrared, points far away from the skys
raper were deleted be
ause long skinnytriangles deteriorated the visual quality of the results. Although there seem to be little sense(from the point of view of photogrammetry) to re
onstru
t pie
es of surfa
es situated severalhundreds of meters from the 
amera lo
ations while the length of the baseline measuresonly several meters, it will be, nevertheless, interesting to see in the next se
tions how thepoint-based methods are able to re
onstru
t this kind of surfa
e (even when interrupted byo

lusions, as in the example of the video sequen
e Infrared).6.4.2 L1-splines-based resultsFor the domain on whi
h the nonparametri
 and parametri
 L1-splines of Step 1 and Step3, respe
tively, of the pro
edure des
ribed in Se
. 5.2 are 
al
ulated, we used an equally-spa
ed re
tangular grid extending from minm(Xm) to maxm(Xm) and from minm(Ym) to
maxm(Ym) in the horizontal and verti
al dire
tions, respe
tively. For the data sets TurntableHouses and Infrared, the number of grid 
ells was 30× 30. We used the original point 
louddepi
ted in Figs. 6.1 (bottom) and 6.3 (bottom) as input for the algorithm; several referen
eimages (some of them are shown in Figs. 6.1 and 6.3, top) were used for texturing. Notethe abruptly 
hanging nature of the point 
loud, with adja
ent sparse and dense regions(hundreds data points des
ribing the oblique roof near almost no points on the �at roof ofFig. 6.1) and the 
hanges of depth (Fig. 6.3). The weights wm were 
hosen equal to 1 dividedby the number of pointsXm in ea
h triangle of the Sibson element, the smoothness parameter
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Figure 6.29: Two s
reen shots from the textured model of the sequen
e Turntable Housesre
onstru
ted by the LIFT-pro
edure. Note the small number of undete
ted triangles in
on-sistent with the surfa
e. Several video frames and a view of the re
onstru
ted point 
loudand the 
amera traje
tory are given in Fig. 6.1, p. 82.

Figure 6.30: Results of re
onstru
tion from the sequen
e Infrared with the LIFT algorithm,two s
reen shots from the textured model. Video frames as well as a part of the 
ameratraje
tory are given in Fig. 6.3, p. 84.
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λ was set to be 0.7 for the nonparametri
 spline and the �rst parametri
 spline, and 0.8 forthe se
ond and third parametri
 splines (in a

ordan
e with our 
onsiderations in Se
. 5.2.3).Two views of the �nal mesh and three views of textured images are given in Fig. 6.31 for thedata set Turntable Houses. A 
olormap view of the �nal mesh and a view of the result of thetextured re
onstru
tion are given in Fig. 6.32 for the data set Infrared. Note the topologi
al
onne
tivity of meshes in Fig. 6.31 in 
omparison to Fig. 6.29 and the ability of L1-splines-based surfa
es to obtain good re
onstru
tion in sparsely 
overed areas. These areas 
an beobserved by slightly lighter pie
es that mark the texture of triangles not 
ompletely seenby any of the referen
e 
ameras behind the tower in Fig. 6.32, bottom. We also refer thereader to [24℄ where the pro
ess of surfa
e evolution � e. g. using the nonparametri
 splinethat results from Step 1 of the L1-splines-based pro
edure � is illustrated.

Figure 6.31: Re
onstru
tion results of the data set Turntable Houses produ
ed by the L1-spline-based pro
edure of Se
. 5.2. Top: Two views of the triangular mesh. Middle andbottom: Three views of the textured re
onstru
tion. The bottom view 
ontains the 3Dpoints (depi
ted in blue) as well as a part of 
amera traje
tory. See also [24℄.
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Figure 6.32: Re
onstru
tion results of data set Infrared produ
ed by the L1-spline-basedpro
edure of Se
. 5.2. Top: A 
olormap view of the triangular mesh. Bottom: A view of thetextured re
onstru
tion with the input point 
loud depi
ted in green.6.4.3 Re
onstru
tion results by other global methods for shape re-
onstru
tionComparison with the alpha-shapes pro
edure and iso-surfa
e extra
tionIt was shown in [25℄ that, for non-regularized point 
louds with many outliers, α-shapes arenot able to provide signi�
antly better re
onstru
tion than the lo
al methods of Se
. 5.1.The re
onstru
tion results are somewhat better if the input of the algorithm is given bythe regularized (for instan
e, RTDQT) nodes of Se
. 5.1.1. The number of holes is therebyredu
ed, but the problems of a noisy point 
loud and an unne
essarily high number oftriangles remain. One 
an now use 
ommer
ially available software pa
kages mentionedin [126℄ to perform intera
tively operations of mesh 
ompression and hole �lling, but anautomati
 approa
h is hardly possible here. The result of the α-shapes pro
edure withtexturing as in Se
. 5.2.4 is visualized for data set Gottesaue in Fig. 6.33, top left. Asmentioned in Se
. 3.2.2, the most 
hallenging step of the algorithm based on iso-surfa
eextra
tion lies in the retrieval of the normal ve
tor �eld in the areas of sharp gradient
hange. In the middle left portion of Fig. 6.33, severe artifa
ts are 
learly visible in theareas of the gabled roof and the towers. The visually best results of all of the methodsimplemented here were obtained by applying the pro
edure based on L1 splines, depi
tedin Fig. 6.33, middle right and bottom. We 
an see that the L1-splines-based surfa
e is lessa�e
ted by noise and outliers in the point 
loud, as one 
an see in the area in front of thebuilding; it is homeomorphi
 to a plane (has genus zero) and also the 
hanges of gradient arereliably treated. Unfortunately, the problem of parameterization is not 
ompletely solvedhere be
ause the surfa
e remains a 2.5D manifold z(x, y), not a parametrized 3D manifold
(x(u, v), y(u, v), z(u, v)). We also refer the reader to [25℄, where, for further 
omparison, thequalitative results of the pro
edure based on 
onventional splines are shown and present



Chapter 6. Evaluation of algorithms 113in the next subse
tion a 
omparison in performan
e of two pro
edures in three exemplaryregions of the surfa
e.Comparison with the 
onventional-splines-based pro
edureWe are now interested in the lo
ations and distributions of the errors in the surfa
es re-
onstru
ted from the sequen
e Gottesaue by means of L1 splines and 
onventional splines.Other methods are left out of 
onsideration here sin
e they produ
e topologi
ally in
onsis-tent meshes. Figure 6.34, left, shows a referen
e frame of this sequen
e. In this frame, wemanually sele
ted three portions of the surfa
e 
orresponding roughly to the ground, walland roof. Then the residual errors of the points near the three regression planes were 
om-puted. The three histograms depi
ted in the right hand side portion of Fig. 6.34 illustratethe error distribution of points to the ground plane π1 : z − z0 = 0 by the red histogram, ofpoints to the wall plane π2 : x−x0 = 0 by the blue histogram and of points to the roof plane
π3 : ax+ by + cz + d = 0 by the green histogram. We rotated the point 
loud as des
ribedat the beginning of Se
. 5.2.1, oriented the ground plot of the pala
e to be nearly parallel tothe 
oordinate axes and, �nally, 
hose a translation ve
tor and a s
aling fa
tor to put theinput point 
loud into the bounding box [−4; 4] × [−4; 4] × [−1.5; 1.5]. In Fig. 6.34, right,one sees that all histograms nearly 
orrespond to Gaussian distributions, possibly 
ontami-nated by several outliers. The error distribution of the points near the ground plane is lessfavorable (due to the low quality of points in the textureless areas, further distan
e from the
amera and the drift errors) than that of the points near the wall and roof. Also, sin
e theparameters a, b, c, d of the roof plane were 
omputed automati
ally, the error distribution ofpoints on the roof is the best. We illustrate by means of the histograms of Fig. 6.35, left andright, the error distributions of surfa
e points sampled from triangles 
onstru
ted by the
onventional-splines-based and the L1-splines-based approa
hes, respe
tively. In Tab. 6.9,we report the numbers of triangles that parti
ipate in the evaluation and the measuresof the error fun
tion that result from the sum of zero-mean absolute di�eren
es of the z-
oordinates (in the 
ase of π1 and π3) and the x-
oordinates (in the 
ase of π2) between theplane and the 
orresponding spline. For instan
e, in the 
ase of π3, this measure is

ε =
1

N

N∑

i=1

|z(u, v)− ū|, u = z(u, v) + (ax + by + d)/c, (6.2)where N is the number of points in the triangles to be evaluated. We 
an see that the error ofthe non-parametri
 L1-splines-based surfa
e is always lower than that of the 
onventional-splines-based surfa
e and that, due to the parametrization problem, the performan
e isworse in the area of the wall than in the ground plane and roof plane. Fully 3D parametri
splines as in Se
. 5.2.2 and Se
. 5.2.3 allow redu
ing the error for the wall from 0.041 (whi
h
orresponds, after 
onsideration of the real building size, to approximately 0.33m) to 0.018(some 0.14m), but the value for the roof plane in
reases (for a reason that is not yet 
lear2)from 0.014 to 0.022.Results for 
onventional 
ubi
 splines were shown here to demonstrate the sus
eptibil-ity of these splines to Gibbs artifa
ts in areas of fast gradient 
hange, noise and outliers.Although these results were the only results for 
onventional splines presented here, the
on
lusions of this work and of [25℄ about 
onventional 
ubi
 splines 
an be generalized toother types of 
onventional splines mentioned in Se
. 3.2.4.2One possible interpretation is suggested by the small dormers: these are textured regions in images andtherefore 
ontain many data points. They also lie in a verti
al plane and so they are in
onsistent with π3while likely to be re
onstru
ted by the parametri
 L1-spline
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Figure 6.33: Re
onstru
tion results from the sequen
e Gottesaue, top left: α-shapes pro-
edure, middle left: iso-surfa
e extra
tion, bottom: L1-splines-based pro
edure. All three�gures represent the frontal view of the building. Top right: another view of the re
onstru
-tion by the L1-splines-based pro
edure.

Figure 6.34: Left: A referen
e frame from the sequen
e Gottesaue and, marked by the green
urve, the part of a surfa
e to be evaluated. The three portions of the surfa
e belong to theground plane, the wall and the roof. Right: Error distributions of sample points near theground plane (red histogram), wall (blue histogram) and roof (green histogram).
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Figure 6.35: Distribution of the (non-zero-mean) deviations u from (6.2) for the pro
edurebased on 
onventional splines (left) and L1-splines (right). Red histograms stand for there
onstru
tion results of the ground plane, blue from the walls and green for the roof.

Table 6.9: Zero mean average deviations ε from (6.2) of the spline-based surfa
es from threesele
ted planes. Sequen
e Gottesaue, 40×40 tensor-produ
t grid, λ = 0.3. The �rst numberin parentheses denotes the deviations in meter while the se
ond is the number of evaluatedtriangles. deviations ε (in m) (number of triangle)Method Ground plane Wall Roof
L2- splines 0.030 (0.24)(36) 0.045 (0.36)(21) 0.030 (0.24)(18)
L1- splines 0.025 (0.2)(21) 0.041 (0.33)(24) 0.014 (0.11)(24)(non-param)
L1- splines 0.025 (0.2)(24) 0.018 (0.14)(11) 0.022 (0.18)(14)(param)
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onstru
tion methods � quantitative evaluation6.5 Shape re
onstru
tion methods � quantitative evalu-ationWhile the last se
tion presented s
reen shots of the re
onstru
tion results, the task of thisse
tion is to perform a quantitative evaluation of several pro
edures for shape re
onstru
-tion. The evaluation of methods for shape re
onstru
tion is 
arried out in two separatese
tions for two main reasons. First, �nding ground truth and an appropriate measure forthe 
omparison of ground truth with triangular meshes for buildings with many 
ompli
atedstru
tures are not trivial problems. Although the 
omparison measure should ideally 
ontainpenalty terms for both geometry and texture, we 
on
entrate here only on the geometry ofthe re
onstru
tion and adopt the well known Hausdor� Distan
e. We motivate in Se
. 6.5.1our 
hoi
e of the Hausdor� distan
e as a metri
 for the quality of re
onstru
tion while, inSe
. 6.5.2, we des
ribe several te
hni
al details of the 
omputation of this distan
e. Whilebeing applied on point 
louds obtained from our re
onstru
tion pipeline, any distan
e mea-sure is biased not only by the quality of the input data set but also by the re
onstru
tionresult of Step 2, whi
h makes it almost indispensable to 
onsider a syntheti
 data set (not
ontaminated by systemati
 errors, su
h as 
amera drift), as we do in Se
. 6.5.3, beforeevaluation of a real data set 
an be performed in Se
. 6.5.4.6.5.1 Hausdor� distan
e as a measure for 
ompleteness and 
or-re
tnessA 
ru
ial issue when making 
omparisons is the metri
 (measure of similarity) in whi
h the
omparisons are made. Conventional metri
s su
h as the average error and generalizationsthereof, su
h as the Lp norms [40℄, measure similarity in ways in
onsistent with humanper
eption. For many 
ommonpla
e situations, for example, thin walls in urban terrain,these metri
s indi
ate that two sets are nearly the same when observers judge them to bedissimilar, and, 
onversely, for other situations, they indi
ate that two sets are very di�erentwhile the user assesses them to be very similar.Given a ground truth model Y and a re
onstru
tion result denoted by X , our goal is toevaluate X in terms of 
ompleteness (i. e. how mu
h of Y is modeled by X ) and 
orre
tness(how 
losely X models Y). These two an
hors for evaluation of any algorithm were usedby e. g. Heipke et. al. in [64℄ and, spe
ially for geometri
 re
onstru
tion, by Seitz et. al. [120℄.The latter paper motivated us to use the Hausdor� distan
e as the quantitative measure to
ompare di�erent pro
edures for geometri
 surfa
e re
onstru
tion. Other appli
ations of theHausdor� metri
 are to measure similarity of obje
ts in 
omputer vision [58℄ and to mat
hobje
ts with templates for identi�
ation in geometri
 modeling and tra
king [109℄.We denote the distan
e from a point X to mesh Y and the distan
e from mesh X tomesh Y by dst(X,Y) = infY d(X,Y) and dst(X ,Y) = supX dst(X,Y), respe
tively. For ourpurposes, d(X,Y) is the Eu
lidean distan
e between X and Y and in all de�nitions above,"inf" 
an be repla
ed by "min" and "sup" by "max", be
ause we always deal with 
ompa
tsurfa
es. The Hausdor� metri
 for the "distan
e" from one set of points X (
ould be disjointpoints or a 
ontinuous surfa
e) to another set of points Y is
dH(X ,Y) = max {dst(X ,Y), dst(Y,X )} . (6.3)One 
an see from Fig. 6.36, left, that dst(X ,Y) des
ribes the 
orre
tness and dst(Y,X )the 
ompleteness of the re
onstru
tion to be evaluated. The Hausdor� metri
 is sensitiveto outliers, a property that makes it a suitable tool for evaluating surfa
e re
onstru
tionmethods for pra
ti
al appli
ability su
h as automati
 navigation. Note that, in our 
ase, theoutliers to be punished are not the input sample points lying far from the surfa
e but those
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ontain points far from the surfa
e. There also existgeneralizations of the Hausdor� distan
e that play down the e�e
t of outliers, for example,the generalization of [5℄, where an error integral over a dis
retized volumetri
 domain D

dp,c,D(X ,Y) =
(∫

V∈D

min (|dst(V,X ) − dst(V,Y)|p , c)
)1/pwith two s
alars c > 0, p ≥ 1 is 
onsidered. However, in our work, the original Hausdor�distan
e of Eq. (6.3) (whi
h 
omes out of the last equation in 
ase p, c → ∞) is adopted toperform 
omparisons for a simple obje
t.6.5.2 Details of the implementationCare must be taken with the implementation details of the 
omputation of the Hausdor�distan
e in order to prevent the algorithm from be
oming quadrati
ally expensive in terms ofthe sampled points, whi
h is, of 
ourse, the worst-
ase s
enario of (6.3). Sin
e we work withtriangular meshes (Y = (Y, T )), we observe that the distan
e dst(X,Y) is either a shortestdistan
e from X to a vertex of the point set Y or the shortest length of the perpendi
ularfrom X to one of the fa
es given that the base point V as in (3.3) lies within a triangle T .A rather e�
ient way to 
ompute dst(X,Y) is thus as follows.1. 
ompute d1 = minX dst(X,Y),2. by 
onsidering normals nT (of length 1) of all triangles in the mesh, 
ompute simul-taneously (with (3.3)) both the length of the perpendi
ulars d⊥(X, T ) and the basepoints V,3. as a last step, perform for every triangle T , for whi
h d⊥(X, T ) lies below d1, thetest V ∈ T is performed. The minimum of these values is denoted by d2. We havedst(X,Y) = min(d1, d2).The third step is the most time-
onsuming. It 
ould be 
arried out, for example, by
he
king whether the sum of the bary
entri
 
oordinates U ,V ,W of V ∈ T is equal to 1.However, two heuristi
s 
an be applied to avoid this 
al
ulation. The �rst heuristi
 is atrivial one that takes into a

ount the 
oming 
al
ulation of dst(X ,Y). If we see that d1or d2 is already smaller than the value dst(X ,Y), we interrupt the 
al
ulation. The se
ondheuristi
 dire
tly 
on
erns step 3 previously mentioned. If we assume that V ∈ T , then bythe Pythagorean Theorem,

d⊥(X, T )2 = dst(X,Y)2 − dst(Y,V)2 > max
(dst(X,YT )

2
)
− ξ(T )2, (6.4)where Y is a vertex of T and ξ(T ) is the maximal Eu
lidean distan
e between a point Vwithin a triangle and the verti
es of the triangle:

ξ(T ) = max
V∈T

(

minYT

(d(V,YT ))

)It 
an be proven that ξ(T ) is either the radius of 
ir
umferen
e (if no angle of T ex
eeds
π/2) or the distan
e from the vertex opposite to its longest side to the interse
tion point ofthe perpendi
ular bise
tor of the se
ond-longest side of T with the longest side (otherwise),as illustrated in Fig. 6.37. The proof of this statement is trivial in the �rst 
ase; in these
ond 
ase, one denotes the smallest angle of T by β and the median angle by α. Then thestatement follows after analysis of the two sub
ases α ≥ 2β and α < 2β (see Fig. 6.37). The
omputation of the two quantities in the rightmost part of (6.4) pro
eeds simultaneously and
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supX (infY d(X,Y))

supY (infX d(X,Y))

maxX (dst(X,Y))

BC

A

X

Y

dst(X ,Y)

Figure 6.36: Left: The Hausdor� distan
e measures 
ompleteness and 
orre
tness of there
onstru
tion, and, as originally formulated, is sensitive to outliers (Sour
e: Wikipedia).Right: A 
on�guration of two points sets 
onsisting ea
h of two re
tangles (or, equivalently,four triangles) for whi
h both values dst(X ,Y) (
orresponds to AB) and maxX(dst(X,Y))(that is larger or equal than AC) di�er signi�
antly.

Figure 6.37: Computation of ξ(T ) in the 
ase one of angles of T ex
eeds π/2.
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ation of the ne
essary 
ondition (6.4) allows reje
ting trianglesthat do not satisfy V ∈ T without 
omputing U + V +W .One 
an now have an idea to evaluate dst(X ,Y) by evaluating ea
h vertex X ∈ X by thepro
edure des
ribed above and taking the maximum value max(dst(X,Y)). Unfortunately,even in the 
ase of 
onne
ted meshes, the extreme point is not ne
essarily a vertex, but 
an liein the interior of an edge, as illustrated in Fig. 6.36, right, and, by a "suitable" (worst-
ase)
hoi
e of parameters, the di�eren
e dst(X ,Y) −max(dst(X,Y)) 
an be, theoreti
ally, arbi-trarily high. In the 
ase of meshes topologi
ally di�erent from planes (e. g. with holes) whi
hmay be obtained from appli
ation of pro
edures based on α-shapes or iso-surfa
e extra
tion,
max(dst(X,Y)) is even a worse estimate of the one-sided distan
e. Therefore, for the general
ase, we implemented several features of the algorithm des
ribed in [56℄: the points sampledfrom triangles in X and Y are stored in an o
tree array, whose �nest resolution multipliedby 3

√
2 is the dis
retization error. From the 
enters of the disjoint 
ells of the o
tree, the
ells �lled by points of the other set are identi�ed and, if the 
omputation to the submeshmakes sense (i. e. the distan
e between 
ells is not too short), it is 
arried out by the methodsused for 
omputing dst(X,Y). The option of fast 
omputation of maxX(dst(X,Y)), whi
h,for non-pathologi
 
ases su
h as that in Fig. 6.36, is a good approximation of dst(X ,Y), isadopted for tensor-produ
t surfa
es that produ
e meshes without holes.6.5.3 Evaluation of several algorithms on a syntheti
 data setThe test obje
t represented by the point 
loud X must be simple enough that it 
an be
orre
tly evaluated with the Hausdor� metri
. On the other hand, it should possess allof the properties of a point 
loud obtained by photogrammetri
 methods in urban terrain:gradient dis
ontinuities (
hara
teristi
 for man-made obje
ts), high amplitude of Gaussiannoise, several outliers and varying density of points. In [26℄, the point 
loud X to be used inthe 
omparisons represents a house with an overhanging roof (see Fig. 6.38). Computationalexperiments were 
arried out for levels 0.025 and 0.15 of Gaussian noise and for outlierper
entages of 0%, 1% and 10% for x, y, and z 
oordinates of the point (in the 
ase ofiso-surfa
e extra
tion, also for normal ve
tors). Here, outliers were randomly 
hosen pointsin the bounding box of the obje
t. The density of points remained roughly un
hangedin all experiments but was variable in di�erent regions of the data set. For ea
h level ofnoise and outliers, we 
arried out data set generation, re
onstru
tion and evaluation 10 to15 times and 
omputed the average of the Hausdor� distan
es (6.3). Qualitative resultsfrom the L1-splines-based pro
edure are shown in Figs. 6.39. As we see in the graphi
sthat demonstrate the quantitative performan
e of di�erent algorithms Fig. 6.40, our defaultpro
edure turns out to be the most robust with respe
t to the in
reasing outlier per
entage.In order to re
onstru
t this 
learly 3D point set X by tensor-produ
t surfa
es, we manually
hose suitable spatial homographies for points on the ground, on the walls, on the roof andunder the overhang that transform the points from di�erent parts of the house into the (u, v)-plane and preserve topologi
al relations between these points. The (u, v)-parametrization isshown in Fig. 6.38, top 
enter. For the qualitative illustrations of other pro
edures, we referto [26℄.As one saw previously, the L1-splines-based pro
edure shows the most stable results withrespe
t to the per
entage of outliers and noise, despite limitations due to the relatively smallnumber of grid nodes and the rather in�exible stru
ture of a tensor-produ
t re
tangular grid.In is also noti
eable to observe the high Hausdor�-distan
e error of the iso-surfa
e extra
tiongenerated by the method of [75℄ in the absen
e of noise whi
h we believe happens be
auseof degenerate 
on�gurations, for instan
e, planar stru
tures.
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Figure 6.38: Model Syntheti
 house with overhanging roof and a point 
loud without outliers,see also [26℄. On the left: view from side, right: view from top, middle at top: parametriza-tion in (u, v)-domain (points on the ground, on the walls, on the horizontal, upper and loweroverhanging parts of the roof are marked in bla
k, red, green, 
yan and yellow, respe
tively).

Figure 6.39: Modeling the data set Syntheti
 house with overhanging roof with L1-splines (seealso [26℄). Outlier per
entage is 0.01 everywhere. Equally spa
ed grid. Left: λ = 0.3, right:
λ = 0.5. The endpoints (X,Y) produ
ing the largest values of dh(X ,Y) are surrounded bya red 
ir
le and 
onne
ted by a green line.
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A

dh

Figure 6.40: The average values of the Hausdor� distan
e dh obtained for the data setSyntheti
 house with overhanging roof for Gaussian noise amplitudes (A) 0.025-0.15 by alpha-shapes (green/
yan line: a small/large value), iso-surfa
e extra
tion (red), grid-�t (bla
k)and L1-splines (blue). Curves for data sets without outliers are shown by solid lines, foroutlier per
entage 0.01 by dotted lines.6.5.4 Evaluation of a real data setIn this se
tion, we again turn our attention to real data. Fragments of �ve high-resolutionimages of the sequen
e Ettlingen 
hur
h present the entran
e area of the Herz-Jesu 
hur
hin Ettlingen, near Karlsruhe, Germany. The laser point set Y, obtained from multiple s
anpositions by means of Zoller+Fröhli
h IMAGER 5003 laser s
anner and registered intera
-tively, as a ground truth, several images and 
orresponding 
amera matri
es are available[125℄ for evaluation of multi-view dense estimation and surfa
e re
onstru
tion algorithms.We sele
ted and down-sampled �ve images of the sequen
e. Our referen
e image (presentedin Fig. 6.41, right) is the third image of the subsequen
e. We mention here the two mainproblems that emerged during the evaluation pro
ess:1. The laser point set 
ontains several millions of points and is therefore not 
onvenientfor further pro
essing (e. g., building meshes). For this reason, we did not performmeshing of the ground truth point 
loud Y, but generalized our 
al
ulations dire
tlyfor the point set. For example, in order to 
al
ulate dst(X ,Y), the ANN algorithm dueto [104℄ 
an be used. Here X , T is again the mesh resulting from the re
onstru
tion.2. As one 
an see from Fig. 6.41, left, the laser point set Y is not 
omplete (due to theunfavorable position of the s
anner) and therefore 
annot be 
onsidered as ideal groundtruth. The error in 
orre
tness of our re
onstru
tion results will be unne
essarily highif 
are is not taken to ex
lude the triangles lying in the regions where no ground truthis given. In the 
urrent implementation, we proje
ted Y by the referen
e 
amera intothe image and 
al
ulated the histogram that assigns the number of laser points toea
h triangle of the re
onstru
tion. If we denote by T0 all triangles whose support set
ontains less than a �xed number of points in Y, then we ex
lude the set of triangles
T1 = {T | one of verti
es of T is in
ident with a triangle of T0 }from 
onsideration. Of 
ourse, this approa
h will fail if some empty triangles areo

luded from the referen
e image by regions su�
iently 
overed by laser s
annerdata, but this is not the 
ase for our data set. By lu
k, also triangles near the imageborders with spurious depth values at the verti
es � mainly be
ause these regions were
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onstru
tion pipeline for two more data setsnot 
overed by a su�
ient number of images, e. g., in the bottom left 
orner and onthe right � belong to T1 and are left out of 
onsideration.Be
ause of last two issues, we will treat separately the two values of the Hausdor� distan
ein Eq. (6.3), whi
h, as we saw previously, denote the 
orre
tness and 
ompleteness of there
onstru
tion. We denote the two penalties for 
orre
tness and 
ompleteness by d1 and d2,respe
tively.We begin with sparse re
onstru
tion from a set of images and points tra
ked by themethod of [94℄ and triangulated by means of the DLT algorithm [61℄. In Fig. 6.41, left, thesepoints are depi
ted in green while every 200th laser point is shown in blue. We 
omputethe Delaunay triangulation of these points, and, sin
e the number of outliers is low and thesurfa
e we wish to des
ribe is approximately 2.5D, the value of d1 is low for this simplemesh. The value for d2 is rather high be
ause large portions of the referen
e image arenot 
overed. Then we 
omputed the depth map as des
ribed in Se
. 4.5.3 with parameterssuitable for this data set (window win = 2, data 
ost fun
tion: NCC, triangulation-basedparameters: A = 50, σ = 100, γ = 0.75, non-lo
al optimization: semi-global algorithm) andthe RTDQT-mesh (see Se
. 5.1.1) starting from this depth map, as illustrated in Fig. 6.42,top left and right, respe
tively. One sees that the number of outliers (
aused in this 
aseby re�e
tions in the windows) and, therefore, the value of d1 in
reases. If one 
omputes a2.5D L1 spline from these nodes, as des
ribed in Se
. 5.2.1, the value of d1 be
omes smallerwhile the value of d2 also slightly de
reases. In Fig. 6.42, in the bottom row, left and middle,meshes obtained by the RTDQT and L1-spline-based pro
edure, respe
tively, as well aspairs of points that are responsible for the maximum values of the 
orre
tness (d1) and
ompleteness (d2) penalties are depi
ted. On the right of Fig. 6.42, bottom, we show twos
reen shots of the textured re
onstru
tion. Quantitative results for the three pro
eduresalready mentioned here and two other tensor-produ
t-based pro
edures, namely grid�d and
onventional splines, are shown in Table 6.10.Remark: The deviations of around one meter seem, 
learly, very high for this simpleimage sequen
e. However the output of this se
tion is always the highest deviation that
an be indeed quite high. Computation of average deviations for 3D models would requiremodi�
ation of (6.3) that, unfortunately, is not available yet. Computation of averagedeviations for "2.5D models" is equivalent to 
omparison of depth maps and yields similarresults as in Se
. 6.3.Table 6.10: Re
onstru
tion results for the data set Ettlingen 
hur
h produ
ed by severalmethods. The grid size for all tensor-produ
t-based methods was 50× 50. The smoothnessparameter λ was 0.1 for L1 splines and 
onventional splines, and 0.8 for grid�t. The obje
tbounding box measures were [8.3; 10.8]× [−9.5;−5.9]× [−5.6; 0.8] m. method Delaunay RTDQT L1-splines 
onv. splines grid�d
d1 0.216 0.754 0.186 0.718 0.298
d2 1.00 0.610 0.486 0.478 0.5986.6 Computational results for the re
onstru
tion pipelinefor two more data setsWe de
ided to in
lude in this work two more data sets that assist in (and are very suitablefor) demonstrating the potential of our re
onstru
tion pipeline and, in parti
ular, that of the
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Figure 6.41: Left: The ground truth mesh with verti
es given by laser points (in blue) fromthe image sequen
e Ettlingen 
hur
h, view from behind. Note that orientation of the z-axisin the input data set is from top to bottom. The triangulated points are illustrated by greendots both in the 3D spa
e (left) as well as in the image spa
e of the referen
e image (right).
L1-splines-based pro
edure. The village of Wangen in Switzerland represents a destroyedurban s
enery (designated for training of poli
e units, �re �ghters and military for
es) andwas re
orded by a quadro
opter of the type depi
ted in Fig. 1.1, b. It is 
lear that the model-based approa
hes are not expe
ted to do a good job for this kind of s
ene. On the otherhand, this s
enario is exa
tly what the automati
 navigation, disaster management, anddefense missions in non-
ooperative terrain are fa
ing in a 
ontinuously in
reasing numberof 
ases.The sparse point 
loud and the 
amera traje
tory were re
onstru
ted by means of ourstru
ture-from-motion algorithm [22℄. Sin
e the images are nearly 2.5D, it is, for qualitativeillustration of the results, su�
ient to 
ompute RTDQT with �lled holes from one referen
eframe and to model the distan
e of 3D points to the image plane of the referen
e frameusing 
ubi
 splines (that is, using the 2.5D surfa
e of Se
. 5.2.1 only and not the 
ompletepro
edure). The referen
e image, 
orresponding depth map 
omputed using median depthestimation, and several views from the point 
louds triangulated by means of (4.2) andexported into an OpenGL-interfa
e (whi
h assigns to ea
h 3D point its 
olor) are depi
tedin Fig. 6.43. Furthermore, we illustrate in Fig. 6.44 
ompressed representations of the 3Dpoint 
loud produ
ed by RTDQT-mesh (top left) and by the L1-spline-based pro
edure(bottom left and right). The main observation that 
an be made here is that the the 2.5D
L1 spline 
an suppress the noise in the 
oordinates of the 3D points.The next data set shows the 
athedral of Speyer, a histori
al building in the southwestof Germany. The video sequen
e, from whi
h 200 frames were automati
ally extra
ted andoriented by the pro
edures of [22℄, was re
orded in late autumn by a hand-held 
ameramounted on a Cessna. In this 
ase, the re
onstru
tion is parti
ularly di�
ult be
ause of thelea�ess trees, whi
h not only violate the assumption of a pie
ewise smooth surfa
e needed
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Figure 6.42: Evaluation of the data set Ettlingen 
hur
h. Top left: depth map 
omputedby means of the simultaneous algorithm of Se
. 4.5.3. Top right: RTDQT-mesh produ
edfrom the depth map. Bottom left and middle: Top view of the RTDQT-mesh and the meshobtained from the L1-splines-based pro
edure. The pairs of points in the ground truth andresulting meshes responsible for the highest values of the 
orre
tness (d1) and 
ompleteness(d2) penalty terms are depi
ted by blue stars and denoted, for further 
lari�
ation, by 1 and2, respe
tively. Bottom right: Visualization of the textured re
onstru
tion provided by the
L1-splines-based pro
edure.
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Figure 6.43: Top left: The referen
e image of the sequen
e Wangen. On the right, the depthmap 
reated as a median fusion of six depth maps as des
ribed in Se
. 4.5.2. Note that evenby means of depth map, one 
an 
learly see whi
h part of the roof in the house at the bottomleft still remains and whi
h does not. (This is extremely di�
ult to realize when viewingthe original image sequen
e!) Bottom: Three views of the dense point 
loud (Fig. 
ourtesyof P.Wernerus).

Figure 6.44: Top left: a view of the textured re
onstru
tion from the sequen
e Wangen bythe lo
al algorithm of Se
.5.1.1 with pyramids up to level 4 and one referen
e image. Bottom:A similar view of the L1-spline-based re
onstru
tion. One 
an see how the 3D points notexa
tly 
omputed by depth maps were repla
ed by spline verti
es. Right: Another view ofthe L1-splines-based re
onstru
tion. The original point 
loud is depi
ted in blue.
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ontribute to degenera
y of the surfa
e,whi
h is no longer a 2D manifold of genus zero (
ontrary to the assumptions of Chapter 5).Nevertheless, our methods showed their robustness and a
hieved reliable re
onstru
tion inthe large parts of the s
ene. Various steps of the re
onstru
tion from referen
e frames tothe views of the textured mesh are visualized in Figs. 6.45 and 6.46.Con
lusionFrom the 
ontents of Se
s. 6.4-6.6, it be
omes 
lear that the L1-splines-based pro
edure isable to produ
e topologi
ally 
onsistent surfa
es with reliable information even in areas not
overed by the 
amera. Moreover, it 
an 
ope with a 
onsiderable per
entage of outliers inthe point 
louds.

Figure 6.45: Three referen
e images from the sequen
e Speyer (top) and 
orresponding depthmaps (bottom) 
reated by the algorithm des
ribed in Se
. 4.5.3.6.7 Computing timesThis se
tion gives a 
oarse information about 
omputing times for the main modules of theprogram 
oded on a standard laptop by the author of this work in a MATLAB GUI with sev-eral C(++)-�les (mostly 
oded as mex-fun
tions) for the most time-
onsuming pro
edures.Generally, there are two important properties of our algorithm that prevent the softwarefrom rapidly in
reasing the time for 
omputation. The �rst is the subdivision in the image-and point-based steps and the se
ond is its modular stru
ture; the time-
onsuming modulesof dense depth maps or L1-splines 
an be omitted or repla
ed by the simple Delaunay tri-angulation or the (less time-
onsuming) pro
edure of α-shapes, respe
tively. The user 
ande
ide whi
h modules should be a
tivated.A

ording to the re
onstru
tion pipeline Alg.1.1, there are four main modules: Sparsetra
king, dense re
onstru
tion, lo
al tessellations and global approa
h for shape re
onstru
-tion (in
luding texturing). In the following four paragraphs, we will report the 
omputingtimes of these modules and their main subroutines. The 
omputational "bottlene
ks" of therespe
tive modules will be des
ribed as well.Sparse tra
king in
ludes MATLAB implementations of the epipolar and simultaneoustra
king algorithms and a mex-fun
tion for the standard KLT algorithm. MATLAB �les
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Figure 6.46: Re
onstru
tion results for the sequen
e Speyer. Top row: Two views of thedense point 
loud (Fig. 
ourtesy of Peter Wernerus). Middle: Two views of the mesh resultingfrom the L1-spline-based pro
edure with original point 
loud depi
ted in green. Bottom:Two views of textured re
onstru
tion.
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tures. The bottlene
k is the 
hoi
eof the relevant image fragment in (4.11), whi
h takes pla
e by means of bilinear interpolationand is therefore rather time-
onsuming in MATLAB. The mex-fun
tion of standard KLT-tra
king with 5 pyramids requires less than 0.1 se
ond for the same input data.Dense re
onstru
tion 
onsists of two submodules 
oded by mex-fun
tions: 
omputationof the data term with triangulation-based smoothing and a smoothness fun
tion that is bydefault semi-global optimization. For 7 images with 384×288 pixels and 21 depth labels,both submodules need some 0.5 minutes. The 
urrent bottlene
ks are the data ex
hangeand the not very e�
ient 
omputation of the aggregation fun
tion (4.20). Use of dynami
programming instead of semi-global optimization allows redu
ing the 
omputing time by upto 3 se
onds.Lo
al tessellations are 
omputed dire
tly from depths maps. Less than one minute isusually required in MATLAB in order to 
ompute a LIFT intera
tion between two lo
altessellations (shapes). The 
omputing time in
reases linearly with the number of shapes,and the whole pro
edure is then quadrati
. Running the C-
ode for (optional) �tting ofseveral dominant planes in relatively sparse point 
louds requires some 1-2 se
onds.Global approa
h is the last step of our algorithm. The most time-
onsuming pro
edureis 
learly the L1-spline based minimization algorithm, whi
h in
ludes iterative solution of alinear equation system and has either 3(I+1)(J+1) or 9(I+1)(J+1) unknowns (the valuesof z(x, y) or X(u, v) and their derivatives at Steps 1 and 3, respe
tively, of Se
. 5.2). So the
omputation of L1 splines depends on the number of iterations (the inner iteration loop isneeded for the primal-a�ne algorithm and the outer to 
ompute the parametri
 spline inSe
. 5.2) and 
an take up to about 1 hour of time (I = J = 40, 1 outer iteration). Renderingof a 2.5D L1 spline requires, however, only 1 minute. Improvements in the 
urrent (C-)
ode
an be 
arried out. In addition, we mention in Se
. 7.2 several general ideas for future workthat 
an redu
e the 
omputing time of the algorithm by orders of magnitude.Other shape-re
onstru
tion pro
edures are signi�
antly faster. For example, the 
al
u-lation of an α-shape for several thousands of 3D points requires only about 1 se
ond. Themost 
omputationally expensive portion of this pro
edure is Delaunay tetrahedrization. Iso-surfa
e extra
tion (implementation in C++ and MATLAB) requires 2 to 3 minutes be
ausethe normals of all points must be 
omputed and oriented by identifying neighbors andRANSAC-based plane �tting.The 
omputing times for all other routines needed for our approa
h (dete
tion of 
hara
-teristi
 points, texturing, mesh manipulation, et
.) are not higher than a 
ouple of se
onds.
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Chapter 7Summary and outlookThe 
on
ept presented in this work has proved to provide good visual and quantitativere
onstru
tion results for mono
ular, un
alibrated video sequen
es of a 
hallenging qualityfrom both infrared and daylight 
ameras. The pro
edure is subdivided into two major parts:image-based and point-based. This separation was retained throughout the whole pro
essnot only in order to save 
omputation time but also in order to avoid getting stu
k in a lo
alminimum of some global minimization fun
tional. We showed in the image-based portionhow to obtain depth maps from short subsequen
es of images. In the point-based portion,also 
alled shape re
onstru
tion, these depth maps are integrated into a global triangularmesh and textured by the images.The algorithm is nearly autonomous. The only user intervention may 
onsist of sele
t-ing the method of surfa
e re
onstru
tion and spe
ifying thresholds minm(xm), maxm(xm),
minm(ym) and maxm(ym) to re
onstru
t the fragment of interest. The re
onstru
tionpipeline is real-time oriented and only the last step � surfa
e re
onstru
tion � must waituntil the whole point 
loud is obtained. We start the detailed dis
ussion of our 
on
lusionsin Se
. 7.1 by emphasizing the main features of the image-based methods. The methods forshape re
onstru
tion are summarized in Se
. 7.2. For every 
ontribution mentioned in thiswork, we dis
uss not only the main advantages and drawba
ks, but also ideas re
ommendedfor future work whi
h suppose improvements over the existing drawba
ks.7.1 Image-based methodsUsing the algorithms presented in Chapter 4, we are able to 
ompute 
orresponden
es fora sparse or dense point sets from several images, optionally pairwise re
ti�ed to epipolargeometry, using modular 
ost fun
tions, with or without triangular meshes, with or withoutsubpixel pre
ision and with or without non-lo
al re�nement (for dense methods) by meansof dynami
 programming, semi-global optimization, or, in the bino
ular 
ase, graph-basedapproa
h of alpha-expansions.Sparse tra
king and triangulationWe have seen from Tables 6.2-6.6 of Se
. 6.2 that 
onsideration of multi-
amera systems is apowerful tool in order to obtain both exa
t spatial 
oordinates from 
hara
teristi
 points inimages and dense depth maps without too many additional heuristi
s. The pre
ision of theresults obtained by epipolar and simultaneous tra
king poli
ies is, in theory, approximatelythe same sin
e, in the end, all 
ameras parti
ipate in the re
onstru
tion. But in pra
ti
e,simultaneous tra
king su�ers more from un
ertainties in 
amera positions, from the not
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orre
t assumption of almost fronto-parallel obje
t planes (whi
h requires in
ludingorientation (the normal ve
tor) of π from Result 1 into the optimization pipeline and, inparti
ular, Eq. (4.11), as it was done in [54℄ for sparse tra
king, [18℄ for lo
al methods (seeSe
. 3.1.2) as well as [76℄ for global surfa
e re
onstru
tion methods followed by the level setpro
edure of Se
. 3.2.3) and from radiometri
 artifa
ts in the referen
e image. While the lastproblem 
an be solved by varying intera
ting pairs of images, both of the other problems
an hardly be solved without introdu
ing additional parameters and statisti
al tests as in[54℄. Considering 
amera un
ertainties as des
ribed in Se
. 6.2 would probably improve thesituation be
ause the error bounds for 
amera matri
es are usually known from Step 1 ofAlg. 1.1.Depth map extra
tionA new idea of applying triangulation-based smoothing was presented in the 
ourse of thiswork. It 
onsisted of a smoothness term and an additional evaluation step that as
ertainswhether a triangle is 
onsistent or in
onsistent with the surfa
e. This helps over
ome thebiases of the non-lo
al methods toward fronto-parallel surfa
es. Sin
e triangulation-basedterms are also a kind of smoothing, they usually seem � at �rst glan
e � not to bring verysigni�
ant improvement of the graphi
s of Figs. 6.26-6.28 if they are followed by non-lo
almethods with suitably 
hosen parameters, but these graphi
s do not re�e
t the fa
t thatthe depth values of points within triangles 
onsistent with the surfa
e are obtained withsubpixel pre
ision. An isolated outlier within the point set usually does not a�e
t theperforman
e of the algorithm be
ause triangles in
ident with it are supposed to be �lteredout as in
onsistent with the surfa
e. By 
onsidering further referen
e frames, as des
ribed inSe
. 5.1.2, it is also possible to 
orre
t gross errors for triangles spuriously added to the list oftriangles 
onsistent with the surfa
e. Other advantages of the triangulation-based approa
h� its ability to initialize depth maps, disentanglement from dis
retization heuristi
s, theperspe
tive of optimization with global methods only in areas made up of triangles that arein
onsistent with the surfa
e � make us believe that the approa
h 
an still be improved.One 
an, for example, 
onsider for equations (4.21) and (4.22) a term A(T ) instead of A,where A(T ) de
reases as the varian
e of the depth at triangle verti
es in
reases, and σ(T )instead of σ, where σ(T ) is larger for triangles with homogeneous 
olor distribution in orderto improve the 
lassi�
ation of triangles into 
onsistent and in
onsistent with the surfa
e.Within one subsequen
e, our future work will also 
onsist of pushing forward the histogramapproa
h des
ribed in [29℄ for �nding similar triangles and re
al
ulating 
ost fun
tions fortriangles with �ipped depth values. This approa
h must �rst be generalized for multi-
amera
on�gurations.As for non-lo
al methods, numerous tests were 
arried out with dynami
 programming,semi-global optimization, and, in the bino
ular 
ase, with the graph-
uts-based approa
h.Semi-global optimization with 16 optimization paths obtained 
learly better results thandynami
 programming (due to streaking artifa
ts) and the graph-
uts-based approa
h (dueto its sus
eptibility to fronto-parallel planes) while the 
omputing time turned out to bea 
lear advantage of dynami
 programming. Overall, the implementation of the image-based part of our re
onstru
tion pipeline is very favorable for future developments. New
ost fun
tions as well as other aggregation fun
tions and non-lo
al algorithms 
an easilybe added as additional modules. Be
ause of the e�
ient, abstra
t problem statement fordynami
 programming and semi-global mat
hing, other smoothness fun
tions 
an also beintegrated into the software if ne
essary. However, for multi-view dense re
onstru
tion ofour data sets, the smoothness term (4.23) 
ontributed to better results than other termsmentioned in Se
. 2.3.In the 
urrent version of the software, automati
 
hoi
e of referen
e frames and other im-
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e is insu�
iently 
overed. Motion blur and many other artifa
ts 
anmake the referen
e frame unsuitable for dense re
onstru
tion. Other images 
an have paral-laxes to the referen
e frame that are either too large (whi
h leads to many disparity/depthlevels and therefore high 
omputing time) or too small, whi
h has the 
onsequen
e thatthe numeri
al stability for retrieving 3D stru
ture is lost. Adopting some of the heuristi
smentioned in [50℄ will help to over
ome these drawba
ks.7.2 Shape re
onstru
tion and visualizationLo
al methods for shape re
onstru
tionWe start this se
tion by summarizing our lo
al method, the LIFT algorithm introdu
ed inSe
. 5.1. This is a 
lose-to-real-time in
remental method for �ltering triangles that not onlydoes not require solving texturing problem (as in global methods, see Se
. 5.2.4) but alsoallows 
overing the obje
t surfa
e with multi-sensorial texture. An example of triangulation-based multi-sensorial surfa
e representation is presented in [27℄, where the author workswith disparities and Result 2, for whi
h the 3D stru
ture does not need to be expli
itly
omputed. A textured 3D model representation from additional sour
es (e. g. 
ombinationof infrared and daylight videos) is also possible. The simple 
on
ept of the LIFT algorithmallows improving the quality of the mesh by additional sour
es, su
h as dominant planes.The main 
on
eptual drawba
k of the 
urrent implementation is that the algorithm is biasedtoward the old re
onstru
tion: if a new triangle blo
ks an old one, it is deleted, although itis theoreti
ally possible that the positions of the verti
es of the old triangle are less a

urate.The parameter ε in Alg. 8.4 is thus a user-spe
i�ed threshold and the results are very sensitiveto its 
hoi
e. In order to solve these problems, it will be ne
essary to take the a

ura
y ofthe 3D points into a

ount and to 
onsider the global stru
ture of the s
enery, for instan
e,by maintaining and updating, after pro
essing every referen
e frame, an o
tree stru
ture.Global methods for shape re
onstru
tionAmong many pro
edures tested in the 
ourse of this work, the L1-splines-based pro
edureperforms the most robust re
onstru
tion of the urban terrain despite highly varying densityof points, high amplitude of Gaussian noise and outliers. The fa
t that the L1-norm is
oupled to the 
oordinate axis and is not a�ne invariant against rotations and a�ne trans-formations does not signi�
antly a�e
t the 
omputational results. Making use of additionalinformation, su
h as known footprints of buildings that might be obtained from photogram-metri
 or ar
hite
tural databases, or developing approa
hes for removing outliers, wouldimprove the performan
e of all pro
edures, in
luding that of the L1-spline-based pro
edure.Still, by not using the bells and whistles, one gets 
lear insight into the fundamental 
apabil-ities of the proposed method una�e
ted by other fa
tors. The present work treats the 
asewhen the footprints of buildings and other model-based information (ex
ept the dire
tion ofthe z-axis, des
ribed in Se
. 5.2.1) are not a priori known.There were several limitations in the 
urrent implementation of the L1-splines-basedpro
edure, namely,1. use of a stati
, 
oarse, equally spa
ed re
tangular grid that does not adapt to the lo
aldensity and 
hara
teristi
s of the point 
loud,2. non-adaptive balan
e parameters in fun
tionals (5.1) and (5.3),3. high 
omputing time due to global 
al
ulation of the L1 splines and
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onstru
tion and visualization4. use of the parameterization of points des
ribed in Se
. 5.2.2 that is very sensitive tothe quality of the initial triangulation and the 
orre
t 
hoi
e of the z-axis.The results that we have presented in this work prove the prin
iple of 
omparability orsuperiority of our method in 
omparison with other pro
edures but, be
ause of the limita-tions mentioned above, the pro
edure for this method is not yet fully �exible and not yet
omputing-time-optimized. By making further improvements in the implementation of the
L1-spline-based pro
edure, we expe
t to a
hieve further improved textured re
onstru
tions.Spe
i�
ally, in the future, we will investigate extending the pro
edure of Se
. 5.2 using1. �exible triangular grids that adapt to the lo
al density and 
hara
teristi
s of the point
loud. Possible dire
tions of resear
h on triangular grids in
lude but are not limited to

C0 linear splines (for 
omparison with grid�t) and C1 
ubi
 L1 splines. These splines
onsist of Clough-To
her elements (separate 
ubi
 polynomials in three subtrianglesof a mesh triangle) [73℄ and are analogous to C1 
ubi
 L1 splines on re
tangulargrids, whi
h 
onsist of Sibson elements. The triangulation to be 
hosen will be data-dependent, with roughly the same number of data points assigned to ea
h triangle inthe parametri
 (u, v)-domain, and it will preserve topologi
al relations.2. lo
ally adaptive balan
e parameters λ in fun
tionals (5.1) and (5.3) (that will not over-smooth the edges des
ribing the walls of buildings). Alternatively, sin
e an automati

hoi
e of λ is in general a non-trivial issue, use of L1 spline �ts [84℄, whi
h do notinvolve any balan
e parameter, 
an be 
onsidered.3. redu
tion of 
omputing time by 1-4 orders of magnitude by lo
al pro
essing of thepoint 
loud using domain de
omposition, that is, by 
omputing lo
al models on over-lapping lo
al domains and assembling the lo
al models to generate the global model(see [88℄). This is feasible without detriment to a

ura
y be
ause L1 splines keep lo
alperturbations in the data 
ompletely (not just mostly) lo
al in the surfa
e.The parameterization of points is indeed a rather 
ompli
ated issue for future work. FromFig. 5.3, left, one 
an see that the building walls will not be
ome 
ompletely verti
al evenafter a large number of iterations and that the approa
h 
an fail if the angle between the
z-axis and the 
orre
t verti
al dire
tion is too large. (It 
ould be asserted that an angle of 15degrees is already 
riti
al for a data set similar to the syntheti
 one des
ribed in Se
. 6.5.3,but, in this 
ase, the problem 
an be alleviated by res
aling the point 
loud). We will sear
hfor a solution both by manipulating the point 
loud by means of the approa
hes mentionedin Se
. 5.2.2 and by modifying approa
hes that are not based on systems of 
oordinates (su
has level sets with 
onsideration of image information) by our L1-splines-based tools.Two possibilities for meshing the surfa
e after its generation were mentioned in Se
. 5.2.4:Delaunay-triangulation of multi-points and 
anoni
 triangulation of the spline nodes. Here,our future work will 
onsist of further e�ort to manipulate the mesh with the goal of 
om-pressing the mesh without deteriorating its quality.Due to the stri
t separation of image- and point-based methods in our re
onstru
tionpipeline as well as the quite simple texturing step des
ribed in Se
. 5.2.4, our textured modelshave several disadvantages, su
h as di�eren
es in the luminan
e of neighboring trianglesthat have been textured from di�erent images, o

asional errors 
aused by 
hoosing a wrong
amera (if the visibility relations are not exa
t) and, �nally, the fa
t that the 
ameras arenot error-free and so the 
hoi
e of image 
oordinates is not always exa
t. Improving thetexturing portion of the re
onstru
tion pro
edure 
an pro
eed by a 
ombination of followingideas that will be part of our future work.1. modi�
ation of the 
ost fun
tion and applying non-lo
al labeling algorithms on trian-gular grids in the same way that the algorithm mentioned in Se
. 3.1 and Se
. 4.5.3works on re
tangular grids.
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ribed e. g. in [45℄, the 
olor distribution of the triangles by usinglinear 
ombinations I(T ) = ∑

k tkIk(T ) where I(T ) denotes intensity or 
olor valuesof the triangle T in 3D spa
e, the Ik(T ) denote intensity or 
olor values of triangles inthe images Ik in whi
h T is visible, and the tk are transparen
y values that satisfy the
onstraint∑ tk = 1 and depend on the angles that the triangle normal builds with the
amera rays toward the 
enter of gravity of T . Of 
ourse, the problems of a rapidlyin
reasing number of triangles as well as un
ertainties in the positions of 
ameras mustbe taken into a

ount.3. simultaneous 
onsideration of image- and obje
t-based modeling as mentioned in theend of the previous paragraph.Evaluation of algorithms for shape re
onstru
tionOur next group of observations 
on
erns performan
e evaluation of shape re
onstru
tion al-gorithms by means of the Hausdor� distan
e as des
ribed in Se
. 6.5. Experiments des
ribedin this se
tion as well as in [26℄ make 
lear the 
orrelation between lower Hausdor� distan
eand better re
onstru
tion in the view of the user interested in pra
ti
al appli
ations. Threeimportant dire
tions of future work are1. modifying the error fun
tion to make it less outlier-sensitive,2. applying modi�
ations of Eq. (6.3) that allow 
onsidering not only geometry, but alsotexture deviations of the re
onstru
ted models and3. 
omparing the pro
edures investigated in this work with a wider 
lass of re
onstru
tionpro
edures.Con
lusionDespite several still existing problems � e�orts to 
ope with them are 
urrently being made �it is 
lear that the re
onstru
tion pro
edure presented in this work 
an be used for obtainingex
ellent textured 3D models for buildings and surrounding terrain from mono
ular aerialand UAV-videos.
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Chapter 8AppendixSele
ted Algorithms Used in the Disserta-tionfor i = 1 : M do % number of pixelsevaluate Iω2 = I0(ω(xi)for k = 1 : K do % K + 1 number of 
amerasfor j = 1 : S do % number of depth labelsobtain xik(j) from xi and dj % with eq. of Se
. 4.1if xik(d) ∈ Ik thenevaluate Iω2 = Ik(ω(xik(j)) % e. g. bilinear interp.and 
ompute ck(i, j) from Iω1 , I

ω
2 % with eq. of Se
. 2.2Set C(k, j) = ck(i, j)elseset C(k, j) = ∞end ifend forend forfor j = 1 : S doaggregate C(k, j) into Edata(x, j) % using e. g. (4.20)store A(j, i) = Edata(x, j) + ET (x, j) % using (4.21) and (4.22)end forend for Algorithm 8.1: Dense simultaneous pixel mat
hing.
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initialize C(j) = c(1, j), P (i, j) = ∅for i = 1 : M − 1 dofor j = 1 : S do
ompute: C1(j) = minj′ (C(j′) + cs(j

′, j))and set P (i, j) = argminj′ (C(j′) + cs(j
′, j))end forfor j = 1 : S do

C(j) = C1(j) + c(i, j)end forend for
jM = argmin(C(j))for i = 1 : M − 1 do

jM−i = P (M − i, jM−i+1)end for Algorithm 8.2: Dynami
 programming algorithm.pro
edure rtdqtSplit(T )if exists B = friend(T ) then
u = s(B)if u == 1 thensplit(B)else if u == 0 then

P = parent(B) % sin
e s(T ) = 1 and s(B) = 0, s(P ) = 1% a

ording to de�nition of RTDQTrtdqtSplit(T ) % and so B be
omes a
tivesplit(B)end ifend ifsplit(T )pro
edure split(T )
s(T ) = 0

s(
hildren(T )) = 1

g(
hildren(T )) = g(T ) + 1 % in
rease generationAlgorithm 8.3: One step of the (re
ursive) algorithm for restri
ted top-down quadtree tri-angulation. For ne
essary de�nitions, see text.
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Get N = total number of triangles in Tkfor j = 1 : N do %InitializeSet a(j) = 0, r(j) = 0, o(j) = 0 % area, redundan
y, o

lusion 
ounterend forfor x ∈ T ∪ Im dodetermine j su
h as x ∈ Tj % see Se
. 4.3.3retrieve Dm(x) and 
al
ulate X % using (4.9) and (4.2)set a(j) = a(j) + 1 and set status = 1while status and k < m− 1 do

k = k + 1proje
t X with Pk to obtain xkif xk ∈ Tk and Tk surfa
e-
onsistent then % T ∈ Ik!retrieve δ = Dm(xi)− d(X) % d(X) from (4.1)if |δ| < εd(X) then % X is appr. the same pointset r(j) = r(j) + 1, set status = 0else if δ > εd(X) then % X blo
ks Tset o(j) = o(j) + 1, set status = 0end ifend ifend whileend forfor j = 1 : N doif o(j) > 0.1a(j) or o(j) + r(j) > 0.99a(j) then
Tj is marked as in
onsistent with the surfa
eend ifend forAlgorithm 8.4: The LIFT algorithm performs geometri
 evaluation of T into redundant,
onsistent and in
onsistent with the surfa
e by means of depth maps of previous referen
eframes. The input is the 
amera matri
es Pk, the 
orresponding triangulations Tk, the depthmaps Dk and a positive s
alar threshold ε.
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Set k = 0 % number of iterationsSet b = 0, ω = 0, ε = ∞while k < kmax and ε > εmax do
k = k + 1

W =diag(1− |ωi|) % ωi is the ith element of ωsolve WAbnew = Wc for bnew % least squares solutionif ‖bnew − b‖1 > εmax or k < kmax then % the normalized L1-norm
ompute r = c−Ab,v = W 2r % residual r, temporal ve
tor v
α = maxi

(

max
(

vi
1−ωi

, vi
1+ωi

))

ω = ω + cv/α % re
ompute primal a�ne weightsend ifset b = bnewend whileAlgorithm 8.5: Primal A�ne Algorithm. Given a matrix A and data ve
tor c, obtaina solution ve
tor b for (5.2). Two additional parameters are: the maximum number ofiterations kmax and the error toleran
e εmax normalized by a number of nodes (I+1)(J+1).
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