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Kurzfassung

Das Ziel dieser Arbeit ist die Entwicklung und Implementierung generischer, vom Modellwis-
sen weitgehend unabhéngiger Losungsstrategien zur texturierten 3D Rekonstruktion urbaner
Gebiete aus Videosequenzen. Solche Videosequenzen kénnen sowohl mit einer Tageslicht- als
auch Infrarotkamera aufgenommen werden; in unseren Anwendungen handelt es sich {iber-
wiegend um luftgetragene Aufnahmen. Die zahlreichen zivilen aber auch militdrischen An-
wendungsfelder der 3D Erschliefsung der Szene mit minimalem Aufwand verlangen von den
zu entwickelnden Verfahren besondere Robustheit gegeniiber Videosequenzen suboptimaler
Qualitdt und kritischen Sensorbewegungen. Auch spielen ein einschitzbarer, parallelisier-
barer Rechenaufwand und die Eignung der Verfahren, mit einem theoretisch unendlichen
Datenstrom anndhernd schritthaltend fertig zu werden, eine wichtige Rolle.

In dieser Arbeit wird vorausgesetzt, dass eine Euklidische Rekonstruktion durch Kame-
ramatrizen (Orientierungen) sowie eine diinne Punktwolke vorliegt. Die entwickelten Metho-
den sind also in den Forschungsgebieten Rekonstruktion dichter 3D Punktwolken aus Mehr-
kamerasystemen sowie Kompression dieser Punktwolken in Dreiecksvermaschungen ange-
siedelt.

Um eine dichte Punktwolke aus einem Bildverbund zu erhalten, miissen Korresponden-
zen einer dichten Menge der Pixel eines sogenannten Referenzframes in anderen Bildern
wiedergefunden werden. Formeln zur schnellen Berechnung der vom Referenzframe in andere
Bilder projizierten Punkte sind unentbehrlich; die schnellste Moglichkeit ist durch die Dis-
paritdtensuche in epipolar rektifizierten Bildern gegeben. Danach werden die Kostenfunktio-
nen (auch Datenkosten genannt) zur effektiven Suche der Punktkorrespondenzen aggregiert.
Da diese Datenkostenterme allein auch bei Mehrkamerasystemen nicht ausreichen, um die
Tiefenwerte in schwach texturierten Bereichen sowie Bereichen von Verdeckungen und sich
wiederholender Muster zu rekonstruieren, muss ein zusétzlicher Glattheitsterm eingefiihrt
werden, der sich auf die Annahme stiitzt, dass die Tiefen eines {iberwiegenden Anteils der
Pixel ungefihr gleich sind wie die Tiefen ihrer Nachbarn. Da das Finden eines exakten Mini-
mums einer Gesamtkostenfunktion, die aus einem Datenterm, einem 2D Glattheitsterm und
einem zusétzlichen, zwecks Ausgleichung von (insbesondere bei Schréigsichtaufnahmen typis-
chen) Diskretisierungsartefakten eingefiihrten Dreiecksterm besteht, in der Praxis unmoglich
ist, werden Approximationsverfahren angewandt. Die Verallgemeinerung des semiglobalen
Algorithmus auf Multi-view Systemen und die Benutzung sowie Evaluierung der Dreiecksver-
maschungen aus den bereits detektierten Punkten stellen den wissenschaftlichen Hauptbeitrag
zum bildbasierten Teil der Funktionsbibliothek dar.

Unter der Annahme, dass sich die Gebdudeoberflichen anhand von Dreiecksvermaschun-
gen zu texturierten Flichensegmenten aggregieren lassen, wurden im Rahmen dieser Dis-
sertation zahlreiche Verfahren zur Rekonstruktion der Oberflichen aus Punktwolken unter-
sucht, weiterentwickelt und bewertet. Am robustesten gegeniiber sehr variabler Punktdichte,
Rauschen und Ausreiffern (weit von der Oberfliche entfernt liegende Punkte, die beispiel-
sweise durch Spiegelungen, Verdeckungen und kleine bewegte Objekte entstehen) hat sich



die auf Li-Splines basierender Algorithmus gezeigt, der den Hauptbeitrag des punktbasierten
Teils der Arbeit darstellt. Hier kann sowohl die Rekonstruktion einer skalaren Funktion
als auch der Ubergang zu einer automatisch parametrisierten 3D Oberfliiche stattfinden.
Im letzten Schritt solcher globalen Verfahren wird zu jedem Dreieck der Vermaschung ein
Referenzframe gewihlt, in dem das Dreieck vollstindig sichtbar ist (Texturierung).

Zur Visualisierung der Ergebnisse wurden zahlreiche Datensétze getestet, die zum Teil
anspruchsvolle historische Gebdude darstellen, zum anderen Teil aber zerstorte Gebiete,
deren genaue Rekonstruktion mit Hilfe modellbasierter Verfahren kaum mdglich ist. Zur
quantitativen Bewertung der Verfahren wurde fiir einen synthetischen und einen realen, mit
einer sehr dichten Laserpunktwolke als Ground Truth gegebenen Datensatz die Hausdorff-
Distanz als Maf fiir Vollstindigkeit und Korrektheit einbezogen.

Im letzten Teil der Arbeit wird zusammenfassend auf die Starken und Schwéichen der
vorgestellten Verfahren eingegangen und mogliche Ansétze zur Behebung dieser Schwéchen
werden erldutert.

Zusammenfassend wird aus der Arbeit ersichtlich, dass sich das vorgestellte Konzept
zur qualitativ ansprechenden Rekonstruktion von Gebduden und urbanem Geldnde aus
Luftvideos hervorragend eignet.



Summary

The goal of this thesis is development and implementation of a generic procedure for tex-
tured 3D reconstruction of urban terrain from video sequences. These video sequences can
be recorded by daylight or infrared cameras; in our applications these cameras are mostly
mounted onboard airborne sensor platforms. There are numerous civil and military applica-
tions of 3D reconstruction from videos obtained from cheap, miniaturized cameras without
any other information, but the reconstruction algorithms must be robust enough to process
video sequences of limited quality and cope with critical motions and scenes. The paral-
lelizable computation costs, which can be estimated, as well as adequacy of reconstruction
procedures to keep step with a theoretically endless data stream play an important role in
our considerations.

We assume in this work that an Euclidean Reconstruction is given by a set of extrinsic
and intrinsic camera parameters (orientations) corresponding to frames of the given video
sequence as well as several 3D points. Two main directions of research will be obtaining dense
3D point clouds from multi-view systems and compressing these point clouds into triangular
meshes.

To extract a dense point cloud from an image sequence, one must be able to perform
matching of a dense set of pixels within the so-called reference image of this sequence. We
derive fast equations for point projection in other images and obtain initial information by
comparing intensities of projected points (data terms). The fastest way to project points
is given by considering disparity values from epipolarly rectified image pairs. Alternatively,
depth values can be used. In the next step of the matching process, data cost aggregation is
carried out over all images. Unfortunately, even for multi-view systems, the data term alone
is not sufficient for assigning correct depth values in areas of homogeneous color distribution,
repetitive patterns of texture, and near occlusions, so a smoothness term, which encourages
neighboring pixels to have similar depth values, must be introduced. Computationally ef-
ficient methods must be applied for total energy minimization of a functional consisting of
the data term, the 2D smoothness term and an additional triangulation-based smoothness
term whose main task consists of reducing discretization artifacts typical for slanted sur-
faces by biasing depth values towards the triangular mesh from already available points.
The generalization of a semi-global algorithm for energy minimization to the multi-camera
systems as well as application and evaluation of triangular meshes from already detected
points represent, the principal innovations of the image-based part of this thesis.

A reasonable assumption that the surface of buildings can be aggregated to polygonal
meshes motivated us to investigate, modify and evaluate numerous algorithms for shape
reconstruction from point clouds. The best results with respect to varying point density,
data noise and a considerable number of outliers (points far away from the surface resulting,
for instance, from reflections, occlusions or small moving objects) were obtained with the
Ly -spline-based procedure for geometric reconstruction which is the principal contribution of
the shape reconstruction portion of our reconstruction pipeline. This can include either a



reconstruction of a scalar function representing a 2.5D surface or a real 3D surface in an
automatically generated parameter domain. The last step of all these methods consists of
assigning to every polygon (triangle) in the resulting mesh a reference camera which com-
pletely observes it (texturing). Reconstruction results from numerous data sets representing
complex historical buildings as well as destroyed structures, which can hardly be modeled
with non-generic approaches, demonstrate the effectiveness of our algorithms. As a measure
of completeness and correctness for quantitative evaluation of algorithms on a synthetic data
set and a simple real data set with a dense laser point cloud as ground truth, the Hausdorff
distance was used.

The last part of the dissertation summarizes the advantages and disadvantages of the
algorithms and introduces concepts for future work for coping for remaining problems.

It becomes clear that the reconstruction procedure presented in this work can be used
for obtaining excellent textured 3D models for buildings and surrounding terrain from aerial
and UAV-videos.
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Chapter 1

Introduction

1.1 Motivation, sensors and requirements

Because of their ability to cover large parts of the scenery, aerial images have always been
an extraordinarily attractive tool to gain information. In the past decade, it has become
attractive to utilize unmanned aerial vehicles (UAVs) because of their low cost and easy
use. The application areas for videos captured by UAV can vary from civil engineering
and urban planning to surveillance, automatic navigation, and defense research. Although
in the course of this work, external references for sensor platforms are not required, the
technical equipment of the miniaturized aerial vehicles has experienced rapid progress in
the most recent couple of years: historically, UAVs were simple remotely piloted drones, but
autonomous control and capability to carry out pre-programmed flight plans is increasingly
being employed in UAVs. Figure 1.1 shows several unmanned sensor platforms used for data
acquisition in our work.

From the mathematical point of view, the applications of these videos can be divided into
essentially two main categories. On the one hand, the spatial depth is negligible for many
applications, such as video stabilization, image-mosaicking, image-based 2D geo-referencing,
detection of moving objects and annotation of space-oriented information into the video
sequence, see [121]. Real-time algorithms play an indispensable role here because potential
threats and targets must be detected in time to take action. For these applications, the
(bijective) mapping from view to view can be described by a transformation of the plane, or
the so called 2D homography, which is given by a regular 3 x 3 matrix, and the 3D character
of scenes only interferes in the results of the performance wherefore efforts must be taken to
exclude its negative effects from consideration (see Fig. 1.2).

On the other hand, algorithms for 3D reconstruction require flights at relatively small al-
titudes and with slowly flying platforms. Although there are also quasi-3D methods, such as
image morphing described in [32], where, given an optical flow function between two or more
images, intermediate images can be rendered without explicit computation of the 3D struc-
ture of the scenery, an accurate 3D reconstruction from a general configuration of cameras
can be achieved only by obtaining structure and motion followed by dense reconstruction.

However, because of the need to open up the third dimension out of two-dimensional
images, the algorithms for 3D reconstruction are time-consuming, and, since our area of
applications always lies in the margin zone between 2D and 3D, they are less numerically
stable. The lightweight equipment that such aerial vehicles may carry and the local insta-
bility that characterizes the paths of these small vehicles result in considerable uncertainty
in reconstruction and texturing of terrain. When external references such as GPS are not
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available, the uncertainty is larger still, because the drift errors in camera position and ori-
entation negatively influence the results. In addition, the quality of data acquired by small,
instable, unmanned sensors is usually much worse than that of typical high-resolution aerial
images because of interlacing effects, lens distortions, motion blur and a rather low spatial
resolution.

Figure 1.1: a. Piper cup plane is able to carry onboard a unit consisting of a daylight camera
and an infrared camera. Since it can achieve a height of up to 100 meters and a velocity
of up to 15m/s, it is suitable mainly for 2D applications. b. The md4-quadrocopter is able
to store the video data onboard and perform automatic flights. Therefore the data can be
evaluated after the mission is completed. c. The m3d-UAV can be operated in hovering and
cruising modes.

The majority of the current state-of-the-art object reconstruction methods first retrieves
the camera trajectory and the object contours (given by sparse point clouds) and then
generates a dense reconstruction with texturing. Although there are several possibilities
for visualization, for example, voxels, level-sets, depth maps and polygonal meshes (see
Fig.1.3), we decided to represent our objects by triangular meshes since they provide a
more comfortable way for many relevant applications, such as visibility calculation. This
is important for automatic navigation while textured models are important for visual im-
pression as well as mission planning to ease user’s orientation in the unknown terrain. The
other three possibilities will either be mentioned in Chapter 3 (related work) or or will serve
as intermediate results in the course of this work. In urban areas, an additional challenge
is created by the need for replacement of traditional 2.5D "terrain skins" (representations
of height as a univalent function of latitude and longitude) by a fully 3D terrain represen-
tation with multivalent height (vertical walls, balconies, overhanging roofs etc.). In many
applications, model generation must be performed in a reasonable time, which justifies us to
prefer — sometimes — one algorithm because it is faster than another algorithm, even though
its performance is slightly worse. Moreover, we will classify our algorithms into local, or
close-to-real-time ones, i.e. those that can process the video sequence either frame by frame
or using "short" sub-sequences, and global ones that can be applied only after the whole se-
quence has been captured and processed by local algorithms. Application of global methods
for shape-reconstruction on 3D point sets obtained from local methods makes up the most
important scientific contribution of our work.
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Figure 1.2: Examples of 2D applications: Top left: In almost-planar scenes, detection of
moving objects can reliably be performed by means of homographies. In urban scenes, the
3D character of the terrain causes parallaxes which are the main reason for false alarms
(e.g.the church tower top right). These false alarms can be successfully eliminated if the
video stream is geo-referenced onto the orthophoto (bottom, see also [121]). In this case, it
is also possible to estimate the velocities and heading directions of moving objects.
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Figure 1.3: Four possibilities for scene (black curve) representation: Voxel grid (top left),
level-sets (top right), a triangular mesh, which is the desired output of our work (bottom
left) and a depth-map representation (bottom right) (Fig. courtesy of C. Strecha).

1.2 Reconstruction pipeline and organization of this work

As described in the previous section, our goal is to obtain a textured surface from a video
sequence. We describe in the two following subsections the outline of the reconstruction
procedure and the organization of this work.

1.2.1 Reconstruction pipeline

One popular framework for 3D reconstruction from video sequences in a reasonable time,
possibly proportional to the speed of video rendering, consists of three main steps 1) obtain-
ing camera poses and 3D points by means of detecting and tracking characteristic points,
2) creating dense 3D point clouds from several (reference) images, 3) geometric model gen-
eration and texturing (see Alg. 1.1)

The first step will not be in the focus of this thesis. For the main references about
methods needed to obtain the camera trajectory and a sparse point cloud from (calibrated
or uncalibrated) image sequences, we refer to [9, 22, 105]. The second step includes image-
based methods and will be performed incrementally for several reference frames. Together
with Step 3.1 of local tessellations, it has a concept of a real-time oriented model generation.
The main function of Step 2.1 — sparse tracking and triangulation — consists of regularizing
the density of points (a process also called enriching) since the original point cloud has
extremely low density in untextured regions. A coarse visibility information can be gener-
ated by a triangular mesh from point sets. To improve and further enhance this visibility
information, Step 2.2 is applied. The task of this dense reconstruction module is to to pro-
vide exact (apart from discretization errors) depth values for every pixel in every (reference)
image. Local tessellations are needed if there is no time to apply a global method for post-
processing. In this case, the reconstruction terminates after Step 3.1. Otherwise, the whole
available information — point sets, camera matrices and visibility information — is used in
global approaches, which make up Step 3.2 of our pipeline. This step consists of retrieving
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Input: video sequence
Step 1: Relative orientation % see [9, 22, 105]
Step 2 Image-based reconstruction

Step 2.1: Sparse tracking and triangulation % see Sec. 4.4

Step 2.2: Dense reconstruction % see Sec. 4.5
Step 8: Shape reconstruction

Step 3.1: Local tessellations % see Sec. 5.1

Step 3.2: Global surf. extraction and texturing % Global approach, see e. g. Sec. 5.2

Output: triangular mesh

Algorithm 1.1: Three main steps of the reconstruction pipeline.

triangulated surfaces, (optional) mesh manipulation and texturing triangles that make up
the mesh.

1.2.2 Organization of this work

As indicated in Alg. 1.1, we cover the image-based methods and those for shape reconstruc-
tion in Chapters 4 and 5, respectively. These steps require quite different technologies. On
the one hand, during enriching, information from video frames, and, consequently image-
processing methods will be used. On the other hand, the stage of post-processing presup-
poses application of shape reconstruction methods, such that color or intensity information
will not be considered before texturing. The related work, preceding these sections will
be grouped into an image-based Sec.3.1 and a point-based Sec.3.2, followed by a short
Sec. 3.3, which describes several already existing reconstruction procedures. For reasons of
completeness, Chapter 2 will show the most important concepts for point matching and
shape reconstruction. The evaluation of the reconstruction algorithms will be demonstrated
for several data sets in Chapter 6. Finally, conclusions and directions of future research are
given in Chapter 7.

1.3 Main contributions
Several new ideas will be developed in this work.

1. Most state-of-the-art approaches do not consider points already reconstructed during
Step 1 of the reconstruction pipeline in the course of computation of depth maps.
However, these points can propagate the depth information to neighboring pixels; as
a consequence, local triangular networks, also called tessellations, are used in this
work. The starting point is usually the Delaunay triangulation of points in the im-
ages. These triangles do not always coincide, not even approximately, with the object
surface. Therefore, we introduce novel ideas to evaluate the triangles as consistent
and inconsistent with the surface, to try to correct the depth values of the inconsis-
tent triangles using color information and to support the pixel costs to be low at the
disparity values given by triangles consistent with the surface. A triangulation-based
smoothness term will be the topic of Sec. 4.5 while the necessary theoretic background
is provided in Sec.4.1 and Sec. 4.3.
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1.3. Main contributions

2.

Applying non-local algorithms for multi-view configurations and not for stereo image
pairs has become attractive only in the recent years. A relatively fast and easily-
implementable approach of semi-global optimization was first introduced by Hirsch-
miiller in [67] for rectified image pairs. Few generalizations of this approach exist,
like for example for the case of three cameras in a special trinocular configuration
[62]. The principal innovation of our work, described in Sec.4.5.3, is to apply this
algorithm for an arbitrary number of not necessarily rectified images after a local
approach, supported by triangular meshes, assigns a cost value to every pixel and every
depth label. An important contribution concerns the automatic choice of smoothness
parameters (Sec.4.5.4).

. Point clouds reconstructed by passive sensors with small, uncalibrated cameras often

have rather dramatic negative properties of varying density, Gaussian noise and out-
liers (points far away from the surface, which can result, for example, from shadows,
reflections and moving objects). A broad, detailed analysis of the performance of meth-
ods for shape reconstruction applied on these point clouds has, to our knowledge, not
yet been carried out. It will thus be important to investigate how the state-of-the-art
methods for shape reconstruction — being applied on the original and enriched point
cloud — can cope with the negative properties mentioned above. Section 3.2, dedi-
cated to already existing methods of surface reconstruction, is therefore covered with
a higher level of detail. We will see that the Li-splines-based procedure of Sec. 5.2,
which represents the most important contribution of this work, provides the most ac-
curate reconstruction. The high computing time of this procedure can be explained in
part by some technical limitations of the current implementation and in part because
computation of an Li-spline requires solving a linear program. In Chapter 7, we will
discuss how the computing time can be reduced.

Beside these three main contributions, we also care about

1.

Fast and point projection equations that allow simultaneous processing of large point
sets. A compact closed-form representation of depth and disparity values as well as
3D points is given in Sec.4.1.

. Sparse tracking with the search space for correspondences reduced to a line segment

because we are given camera matrices and disparity ranges from the already available
points. These points also provide initial values for two iterative algorithms, namely
epipolar and simultaneous tracking, described in Sec.4.4.2. The cost function and
minimization procedure are then similar to the already existing methods of [94].

. Binocular stereo reconstruction, since there is a large amount of software with different

conceptional advantages available in the Internet. Since we must exploit the redundant
information from many images, the algorithm of median-depth maps was developed and
is described in Sec.4.5.2.

Reducing and homogenizing the number of triangle vertices in the images by applying
restricted top-down quadtree triangulations results in surfaces without cracks. This
topic, described in Sec. 5.1.1, is an essential step to prepare the shape reconstruction on
triangular grids, which have certain advantages compared with tensor-product surfaces
considered in Sec.3.2.4 and 5.2.1.

. Incremental reconstruction, which ideally must be close to real time and which can be

carried out without computationally challenging iterative or non-local methods. The
evaluation of triangles is performed by a local method (LIFT, see [22] and Sec. 5.1.2)
and can be incrementally updated.
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1.4 Some notation

Besides elementary knowledge of linear algebra and numerical analysis, the reader of this
dissertation is presumed to have basic knowledge of computer vision. For detailed clarifi-
cation of terms homography, fundamental matriz, etc. we refer to the book due to Hartley
and Zisserman, [61]. The most important parameters which can be found in more than one
chapter of this work are included in the list below:

X,¥,p, X points

X point list

T plane in space, given by a 1 x 4 vector

A images

P camera matrices

d/j depth value / discrete depth or disparity label
D depth or disparity map

T triangle (a triple of integer numbers)

u,v,w local barycentric coordinates of the triangle

T triangular mesh

F surface

n normal vector

‘x5 ys utw €te. partial derivatives 9 - /Ox etc.

o E,TJ cost, energy function, Jacobian (matrix)

Iy L, vector norm ||x||, = (>, |x|f)1/p, p = 2 if nothing else is stated
dst Euclidean distance function, dst(x,y) = ||x — y||
ct /e max(c,0)/ max(—c,0)

T/t matrix transpose / inverse

0y, Iy zero-vector of length w, w x w identity matrix
U U(a) = 1if a is true and 0 otherwise

Remarks: Frames of a video sequence taken at time k will be denoted by Zj and corre-
sponding camera matrices by Pj.

Generally, we denote 2D and 3D points and vectors by bold variables (x,y, X). Letters
in lower case (e.g. x,y) will usually denote points/pixels in images; upper case is reserved
— especially if ambiguous representations are possible — for 3D points. Also * stands for
homogeneous coordinates and ~ denotes equality up-to-scale.

We will denote incidence relations with "€". For example, x € Z means that x lies
within the rectangular domain of image Z and x € T means that x lies in the triangle.
The constraint on barycentric coordinates of x is in this latter case 4 +V + W = 1 and
U,V, W > 0. The inequalities in terms of =,y (coordinates of x) from the height and width
of Z in the first, coordinates of vertices of T in the second case can be easily established.
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Chapter 2
Theoretical background

This chapter summarizes the most important basics and tools for computer vision and
shape reconstruction. Image pair rectification to epipolar geometry is an important tool
to accelerate computations and also to make window-based matching algorithms invariant
against rotation. Therefore we will consider this topic separately in Sec. 2.1. Then, two main
ideas of matching — the photo-consistency terms (Sec.2.2) and the smoothness assumptions
(Sec.2.3) — are presented. Finally, a short introduction to approximation of surfaces from
triangular irregular networks (TINs) is given in Sec. 2.4.

2.1 Image rectification

Image rectification is an elegant way to perform a search for correspondences in one constant
direction and thus computationally optimize matching algorithms. We will now briefly
review implementation details, advantages, and disadvantages of binocular (Sec.2.1.1) and
trinocular rectification algorithms (Sec.2.1.2).

2.1.1 Image pair rectification

Given a fundamental matrix I, searching for correspondences can take place along epipolar
lines in the binocular case. For reasons of speed and in order to compensate for rotational
deviations in the orientation of windows around corresponding pixels, rectification transfor-
mations are applied on images. All epipolar lines in the rectified images are parallel, for
example, to the z-axis. The computation of the fundamental matrix for two cameras® P;, Py
is carried out according to:

F=(Py,-Cy) x (P, P]), (2.1)

(see Eq.9.1 in [61]) where C; is the location of the first camera given by the one-dimensional
null-space of the 3 x 4-matrix P; and PlT is pseudo-inverse of P;. If the epipole is inside
the image domain, one possibility for rectification is to extract epipolar lines directly and
to orient them by means of polar coordinates (r, ¢), where r is the distance to the epipole
and ¢ is the inclination angle of an epipolar line (see [110]). Otherwise, one can find two
homographies H{* and HI' that transform the epipole to the point at infinity [1 0 0]7 and
thus make epipolar lines lie horizontally in the images. There are nine degrees of freedom?
which can regulate Hf¥ and HI' in the way such that images look like original images after

I Throughout this work, camera will be an abbreviation for camera matriz. We use monocular image
sequences in our data sets, so there will be no possibility for misinterpretations.

2The fundamental matrix has 7 degrees of freedom and each of two homographies has 8. Since the
fundamental matrix must be fixed, we have 2 -8 — 7 = 9 degrees of freedom.
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transformation; in other words, projective and affine components of H¥*, H1 are minimized.
Such a pair of homographies can be obtained by some simple method (e. g.[110], p. 66) and
then optimized using some meaningful criterion [96]. In this work, explicit minimization of
projective and affine components of the transformed images was chosen and is carried out
by the method of Loop and Zhang [90], which extracts first one parameter A responsible for
the projective transformation of images by means of a standard optimization problem. The
cost function for this optimization uses the fact that a projective transformation minimizing
image loss should be as close as possible to an affine one. After ) is extracted, the choice of
other parameters is rather trivial.

We show the results of rectification by this method in Fig. 2.1 and also Fig. 4.7 (see p. 55)3
and conclude that projective image distortion of the rectified images is rather small since
image transformations are very similar to rotations.

o
i

[}

L/

N -

2

Figure 2.1: Top: Two frames from the sequence House rectified to epipolar geometry. Bot-
tom: Two frames from the sequence Gottesaue rectified to epipolar geometry. Several hor-
izontal epipolar lines are depicted in red. The parameters of rectifying homographies are
chosen by means of [90] and as a result, the projective distortion of images is almost negli-
gible.

2.1.2 Trinocular rectification

Since our sequences are not restricted to pairs of images, it is important to mention the
existing ways to rectify also triplets of images. Given images 71, 7o, Z3, there is a possibility
to rectify the images in a way that ZF, ZF are aligned horizontally, Z*, TI* vertically and
TE TE diagonally (i.e.for (w1,y1) € ZF, (z3,y3) € L, the relation y3 — y1 = A(xz —

3a detailed description of data sets is given in Sec. 6.1.
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e

A= tana =const

Figure 2.2: Left: Three images from the well-known benchmark data set Tsukuba [115]
in a trinocular configuration; Right: for a general video stream taken from approximately
the same altitude, trinocular rectification of images without significant distortion is hardly
possible.

x1), where X\ a scalar preferably +1 holds). The advantage of this kind of rectification is
its robustness and elegance, since it can be performed linearly [137]. But it has one big
disadvantage: It can be performed only for several special cases, for example, for the camera
configuration of the kind of Fig. 2.2 right, mounted on a robot in [62]. For the general case,
it is already difficult to fulfill two first conditions: Given that the epipole e is transformed
to [1 0 0], and, at the same time, eo3 is transformed to [0 1 0]7, then new line at
infinity results from the straight line connecting the prototypes of e;; and es3. But if this
line intersects the image domain of Z5 or just passes nearby, then there is no possibility of
rectification without significant distortion (see Fig.2.2, right). The problem of a straight
line intersecting an image domain arises more often (at least, in our applications, where the
images were taken from approximately the same height) than a single point lying inside it.
For this reason, we will create sequences of rectified image pairs, as described in Sec.4.1,
instead of performing multi-image rectification for depth estimation.

2.2 Image-based methods — data cost functions

The basic task of 3D reconstruction is to obtain the spatial coordinates and color/intensity
values of a point given its color/intensity values of pixels in the images. If we use the
reference image Zy to color the 3D points, then, for another image Z;, we are interested in a
geometric transformation G and a radiometric transformation Ry such that

To(x) = Ri (I (Gg(x))) 4+ r(x, k), (2.2)

where the residual term r(x, k) is zero in the ideal case and can be supposed to be small
for practical situations. The geometric transformation Gy depends on the camera model.
For example, if the depth of the scene is negligible (see [121]), an (image-to-image) homog-
raphy X, = Hix can be used. For a classical pinhole camera, which stands in focus of our
applications, the relations can be expressed in terms of depth for multi-view configurations
(or, equivalently, disparity for binocular configurations). The essential goal of matching
problematic is to select the unknown values of depth (or disparity) parameters to minimize
r given a suitable radiometric relation Ry, of color/intensity information between Zy(x) and
Tk (xi), which are our data-cost values. Hence in this section, we will present several ideas
for choosing R and we consider, for the sake of simplicity, only gray images. However, it is
important to note that in the general case, Z, r can be also vectors and R a multi-dimensional
map.
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There are many other different cost functions mentioned in [69] to which interested
readers can refer, but here we only want to give a short overview about cost functions we
work with in order to perform robust depth estimation from a video sequence.

2.2.1 L,-based functions

The simplest assumption, namely Zy(x) and Zj(xy,) are approximately the same, means that
the cost function c(x)

c(x) = ||Zk (w(xk)) —Io(w(x))Hp, where p > 1 (2.3)

must be small. Here w is a small correlation window w around points of interest needed
to cope with rounding errors. Note that with increasing value of p, more weight will be
given to outliers in the correlation window, which can deteriorate results for pixels near
occlusions or dead pixels in infrared images (pixels with constant luminance values, similar
to salt-and-pepper-noise). These are clearly undesired effects and this is why usually p =1
or p = 2 are used. The cost functions corresponding to p = 1 and p = 2 are Sum of Absolute
Differences and Sum of Squared Differences, abbreviated by SAD and SSD, respectively. In
order not to give too much importance to non-plausible changes of luminance, one can use
truncated cost functions, therefore e.g., for SAD, we will use

c<x>—< ! ) S min (1Zoy) — Tulya) | cma) (2.4)

Emax yew(x)
instead of (2.3) in Chapter 4. Here e,y is a real-valued scalar, and by division by emax,
the cost function is scaled between 0 and 1. This cost function is sampling-sensitive because
for non-integer coordinates of y,, the value Zy(y,) depends on the rounding procedure, so
efforts can be made to make (2.4) sampling-insensitive (see [13]).

2.2.2 Other parametric cost functions

Due to the different viewing angles of Py and Pj onto the object’s surface, there are lumi-
nance gain ¢ > 0 and offset b in the intensity of the both images, in other words:

Tr(y) = aZo(y) + b. (2.5)

This equation can be explained by considering the Phong lighting model (see [33], pp. 306-
311) when the total intensity is expressed in terms of two summands®: ambient term L,
and diffusion term Ly, which is proportional to the intensity of the reflected light emanating
from the common source L4 as well as to the angle between the surface normal and the
viewing direction. From the relations Zo(y) = Lo + b(y)La, Zi(y) = Lo + be(y)La, we
obtain (2.5). In order to achieve invariance with respect to linear transformations without
knowledge of a and b, one can apply the function of Normalized Cross Correlation, denoted
also by (Zero-mean) NCC or (Z)NNC:

_ Yyew (Loy) = Zo(y)) - (Zulyr) — Tu(yi)
Vvewtn (Do) ~ Do) Syewi Trlye) — Zelyy)

_ 1—¢é(x)
2

&(x) ;

2
(2.6)

c(x)

4We omit here the Non-Lambertian specular component.
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Here - is the averaging operator. In order to avoid calculation of square roots, ¢(x) from
(2.6) can be replaced by:

1 —¢é(x)|e(x
(9lé0)| (27)
2

which is also scaled between 0 and 1. This kind of correlation is quite sensitive to outliers
since a local Taylor series expansion around zero describes a quadratic polynomial.

2.2.3 Nonparametric cost functions

In the case of complex radiometric relationships, one can still use assumptions about intensity
ordering of gray values or even formulate implicit functions of probabilities of assigning gray
values (mutual information).

Intensity-ordering-based functions

If not the magnitude but rather the order of intensities in quadratic windows is of interest,
the Census filter [136] around a pixel can be considered. It defines a logical vector variable
where each entry corresponds to a certain pixel y € w(x). This entry is true if and only if
To(y) < Zi(yj)- Thus, Census not only stores the intensity ordering, but also the spatial
structure of the local neighborhood. The computation of dissimilarity can be measured by
Hamming-distances. Using similar descriptor vectors around salient points in gradient space,
like SIFT [92] or SURF [8], theoretically can be generalized for dense sets of points. These
descriptors however do not contain a reliable information in the regions of weak texture and
their computation requires a very high computational cost.

Mutual information

The key idea of Mutual information is to quantify the extent to which two random variables
are dependent by computing the entropy of the joint probability distribution H; 2 and sub-
tracting it from the sum H; + Ho of entropies of single probability distributions (see [133]
for further details). To do this, an assumption about correspondences must be made on a
coarser level (initialization). If we know that x € Zy and x; € Zy are corresponding points,
we increase the probability P(m,n) where m = s(Zy(x)),n = s(Ix(xx)) and s is a discretiza-
tion function, that is, a suitable number of intensity levels. For example, if two 16-bit images
are given, it makes more sense to convert them to 8-bit and consider m,n = {0, 1,2, ...255}
than computing probabilities for each m,n = {0,1,2,...2'1~1)}. From P(m,n), we compute

]Dl("n)~ = En P(m’n)7P2(W~L) = Zm P(mvn)a B
H1(m) = log(P1(m)), Ha(n) = log(Pa(m)), H1,2 = log P(m,n),

where ~ is the (one- or two-dimensional) Gaussian smoothness function. The cost function
given by Mutual Information (M) is computed according to:

c(x)=—-MI(m,n) = 7:{172(m, n) — Hi(m) — Ha(n), (2.8)

m = s(Zp(x)),n = s(Ix(xx)). The values of MI(m,n) are scaled between 0 and 1 and
stored in a square matrix, see Fig.2.3. The pixel-wise accumulation of costs from (2.8)
within a window can be performed as well, e. g. by averaging costs of entries. The question
of initialization without image pyramids will be the topic of Sec.4.5.1.
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Figure 2.3: Mutual information M as a cost function stored in a 256 x 256 square matrix
(matching table). It can handle simple changes in illumination: in the pair of images on
the top left, the lower cost entries mostly lie near the main diagonal of the matrix (bottom
left). If we replace the second image by its negative (as in the pair of images on the right),
the entries of the matching table change in the suitable way (bottom right). Fig.courtesy
of P. Wernerus.

2.3 Image-based-methods — smoothness functions

Correct assignment of correspondences by minimizing one of the cost functions of the previ-
ous section can be carried out, in the majority of practical situations, only for a small number
of points in textured areas. As we will see in Chapter 4, mismatches from local algorithms
happen due to radiometric deviations, repetitive patterns of texture and weakly textured
areas as well as many other factors. Since we want to obtain 3D coordinates for pixels
homogeneously distributed in the image, we must make additional assumptions about scene
geometry. In practice, surfaces observed are piecewise continuous, which means neighboring
pixels usually have similar disparities. Belhumeur formulates in [10] the goal of matching as
a Bayesian problem:

P(S|D) ~ P(DI|S)P(S), S denotes Scene, D denotes Data.

In other words, to maximize the probability of a scene given some data, not only data
generated from the scene but also prior information about the scene have to be considered.
Taking the logarithm of the last formula yields the well-known energy function

E =Y (Baata(%,5) + Esmootn(x, 5)) . (2.9)

The most popular way to impose the smoothness penalty on the disparity or depth, denoted
by d in this work, is to punish the disparity or depth jumps of neighboring points®. In other
words,
Esmooth(xa S) = Esmooth (X7 dx) = Z f(dxa dya X, y)a
{x,y}teN

5From here on, d is the unknown we use in order to parametrize the Scene S. We leave this parameter-
ization and also a discretization of depth values, which is usually imposed for dense reconstruction, until
Chapter 4.
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where {x,y} € N (or, alternatively, y € N(x)) if and only if || x—y|1 = 1, dx is the unknown
parameter of depth at x and f is a scalar non-decreasing function of ||dx — dy||. We give
here several possible cost functions f some of which can be found in related works cited in
Sec. 3.1.2.

- - 0 ifdx=dy
Fildx, dy) = MU (ds # dy) = { A1 otherwise (2.10)
0 ifdx=dy
fz(dx,dy) = A1 if0< |dx — dy| < dp (2.11)
Ao otherwise
0 ifdge=dy
fB(dX’ dy’ va) - Az if |I0(X) - IO(y)l < 9o (2'12)
A1 otherwise
fa(dx, dy) = M |dx — dy|? (2.13)
fs(dx, dy) = A o (2.14)
5 \Ux, by ) — Al (dx—dy)2+dg . .

Here \; < A2, g0, dp are positive numbers called smoothness parameters, and numerous
references can be found about optimal choice of smoothness parameters. See, for example,
[28, 101, 79] (Sec. 3), [59] and references therein.

We review here the differences in expressions (2.10)-(2.14). In (2.13), the depth discon-
tinuities are punished hard because the penalty function increases monotonically with the
difference of depth values. As a result, the depth map is expected to be oversmoothed near
occlusions. On the other hand, Eq. (2.10) punishes all discontinuities equally. Merely two
cases of small and big differences of depth are considered in (2.11): for big differences it is
a constant value. A smooth change between small cost for small differences and constant
cost for big differences is modeled in (2.14). Finally, if two neighboring pixels have similar
intensities, they are less likely to belong to different segments and so the disparity cost for
such a pair of pixels should be larger, which justifies (2.12).

Now suppose that we have a path v and want to enable depth values of points to increase
or decrease linearly along the path v instead of (possibly) incurring too many occlusions.
This approach results in the next kind of smoothness term, which includes triplets of neigh-
bors:

fG(dX7 dx—V7 dx-i—v) = )\1 |dx—v + dx—v - 2dx| (215)

It is also possible to combine (2.14) with one of penalty terms acting on neighboring pixels
only, for example, f; of (2.10) or f2 of (2.11).

Besides smoothness terms in the image space, we give an example of an object-based
smoothness term from [79], see p.63. The author uses the term interaction: pixels x, xj, in
two images of Z and Zj, can only interact when the reprojection rays from x € Z,x;, € Zj,
nearly intersect in space; the interaction i = (x, Xy, d) is set active if the intersection point
is close to the object surface. Here d is a depth or disparity value, which, as we will see in
Sec. 4.1, uniquely defines the 3D coordinate. For active interactions i, the boolean variable
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U(i) is set to true. Two interactions i = (x,xy,dx) and ' = (y,y,.dy) are neighbors
({i,7'} € Ny) if and only if dx = dy and ||x — y|1 < 1. The object-based smoothness term

Bemootn = >, i, i \UU(i) # U(i")) (2.16)

{i,i'}EN>

with a scalar function A and U as in Sec. 1.4 is not quite the same as one of the single-image-
based disparity terms (2.10)-(2.15).

2.4 Shape reconstruction

We now consider the shape reconstruction portion of the reconstruction pipeline. The task
it to perform polygonization of an input point cloud which means either compression of
very dense point clouds (as a result of substep 2.2 of Alg.1.1, if it took place) and/or
interpolation of point clouds with moderate density (if that step was omitted). It is clear
that not every surface can be exactly modeled by triangles. Therefore we assume a surface
F interpolating or approximating such a point cloud X, and our task will be to find a
polygonization homeomorphic® to F. The necessary theoretical background about surface
polygonization without explicit computation of F will be given in Sec.2.4.1 while several
possible ways of meshing of surfaces will be given in Sec. 2.4.2. Note that an elaborate survey
of previous work on surface computation will be given in Sec. 3.2.

2.4.1 Direct polygonization of point clouds

Given a set of 2D points in a plane, there are plenty of ways to connect (some of) them by
means of straight line segments. However, depending on the configuration, one way may
appear more compact or more natural from a physical point of view than another one. As
an example, all four options for connecting points in left hand side portion of Fig. 3.1, p. 34
are possible and have geometric justification (as we will see below), but the first one — which
does the best job of recognizing that the shape consists of two rings — seems somehow more
probable; intuitively, its probability will increase with the point density within two rings.
In 3D, the situation is clearly even more complicated. If we imagine a surface F passing
through the 3D point cloud X and wish to generate a triangular mesh 7 homeomorphic
to F, it becomes clear that the point sets must have special properties with respect to
their density (a term to be explained below) and noise: their density must exceed a given
threshold and noise level must be low. Amenta and Bern [4] give a sufficient criteria for
sampling in order to make a triangular surface homeomorphic to the original one.

Here the definitions of medial azis (points in space which have at least two nearest
neighbors on F in the Euclidean sense), local feature size (distance from point to medial
axis, denoted as Ifs) as well as p-sample X such that dst(r,X) < Ifs(r)p for each r € F)
are given. The main result, stated in [4], considers noise-free p-samples, p < 0.1. Then it is
possible to reconstruct the triangular mesh homeomorphic to F. Note that a p-sample does
not require the point density to be uniformly constant. From the definition of the medial
axis, it must only be high enough in curved regions.

The approaches related to that in [4] have an advantage that they do not require explicit
knowledge of F for computation of such a triangular irregular network (TIN) 7. This makes
them very attractive for several openly and commercially available software packages such
as meshlab. Therefore it will be worth reviewing these methods in Sec.3.2.1. However,
the main drawback of TINs is their extreme dependence on the sampling density of points.

6Two surfaces F, F’, are said to be homeomorphic if there is a mapping (homomorphism) f : F + F'.
Here f must be a continuous bijection, f~1! is also continuous.
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Apart from the fact that there are only heuristic methods to estimate p without knowledge
about the surface, it is rather impossible, because of difficulties of image-based algorithms
to find correspondences in homogeneously textured areas or in the areas not sufficiently
covered by the camera path, to satisfy the assumptions of [4]. In addition, the resulting
mesh 7 will usually contain aesthetically unpleasant surface artifacts which have to do with
noise and outliers in the data, since no explicit assumption about the smoothness of the
surfaces underlying 7. Since we want to obtain polygonal meshes despite these negative
properties and also be able to fill sparsely sampled regions in a plausible way, it will be
necessary to deduce methods that lack, to a certain extent, a theoretical justification, but
are good enough to be applied in the practical case. For this practical case, we may make
use of assumptions for objects we are dealing with, such as orientation consistence, or one
dominant direction which is given by the z-axis.

2.4.2 Polygonization of surfaces
Generation of meshes

Suppose that the function describing F is explicitly given. In the case of 2.5D "terrain
skins", altitudes z are represented in terms of  and y coordinates as a function z = f(z,y).
Otherwise, there is a 3D parameterization X (u,v) := (x(u,v), y(u,v), z(u,v)) in some coor-
dinate system (u,v). In both cases, one can perform (e. g. Delaunay) triangulation of (x,y)-,
respectively (u,v)-points.

Other methods have an implicit surface as input. It is usually given by a signed distance
function sampled for points in space. Since sampling implicit surfaces goes beyond the scope
of this work, we mention the most famous algorithms [39, 53, 66, 91, 107] and refer to (e.g.)
Akkouche and Gallin [3] where a classification of these methods in three groups (surface
meshing techniques, surface fitting techniques and surface tracking techniques) is made and
also to [17] where several interesting refinements and more references of the existing methods
are described. Our default method for implicit surface polygonization will be the well-known
algorithm of marching cubes [91].

Mesh manipulation

Some kinds of surface tessellation routines described in the last paragraph often do not con-
sider the (scalar or vector) properties of mesh vertices, as for example, the partial derivative
values, color informations etc. A concept and examples of cost functions which can be
minimized with local flipping algorithms are given in [41] for 2.5D surfaces. Usually, a
combination of several basic procedures are chosen for mesh simplification, namely:

1. vertex translation: Vertices are transformed so that a total energy of the mesh is
diminished. See Fig.2.4, top.

2. edge flip: A spatial quadrilateral ABCD consisting of two triangles ABC and ACD
is flipped to BDC and BDA.. See Fig.5.3, p. 77, right.

3. edge collapse: Two vertices are melt, that is, the edge between them disappears, the
number of triangles is reduced by two and that of edges by three, as shown in Fig. 2.4,
bottom.

4. edge split: A new vertex is added near an edge. If this is not a margin edge, then the
new vertex is connected to other two vertices of the quadrilateral and so the number
of triangles is increased by two.
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Figure 2.4: Top: To reduce an energy term (e. g. Laplacian), a dominant plane can be fitted.
Bottom: To compress the mesh, an edge collapsing method is applied (inserting a new point
marked by a red circle). Edge split and edge collapse are inverse procedures.

In [71], items 1-3 of those previously mentioned are selected in random order to perform
mesh simplification. Other authors restrict themselves to one operation — edge flip in [103]
or edge collapse in [89]. Some publicly or commercially available software packages are
mentioned in [126].

While the four procedures mentioned above do not change the topology of the mesh, the
procedure of hole filling usually has a topologically different mesh as output. A hole as a
loop of boundary edges (i.e., those incident with exactly one triangle) has to be identified
and filled with new vertices and edges. One algorithm to perform hole-filling is described in
[134], the non-trivial part of the algorithm consists in reasonable choice of 3D coordinates
for new vertices to be added to the mesh.
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Chapter 3

Previous work

Tremendous amounts of work on scene reconstruction from video sequences have been done
in the past decades. Even though it is hardly possible to survey the technical details for all
existing algorithms, a detailed study of state-of-the-art is very important for us not only be-
cause an evaluation of our algorithms and comparable methods will be described in Chapter
6, but also in order to demonstrate that the innovations presented in this work are meaning-
ful and robust to close the gap in the area of generic urban terrain reconstruction from aerial
videos, often under non-cooperative conditions. Since our work consists of an image-based
and an object-based module, we separately cover algorithms for depth estimation from a
set of images and surface reconstruction algorithms in Sec. 3.1 and Sec. 3.2. Among numer-
ous already existing pipelines that go the whole way from an image sequence to a textured
reconstruction, we give in Sec. 3.3 a detailed description of three procedures [116, 48, 111]
which turned out to be very instructive for our approach.

3.1 Previous work on depth map computation

The task of retrieving depth values for a relatively dense and homogeneously distributed set
of pixels in the reference image can be accomplished by tracking sparse points as in Sec. 3.1.1
or by using data, smoothness and other assumptions, as mentioned in Sec. 3.1.2, 3.1.3, and
3.1.4, respectively.

3.1.1 Sparse tracking

We forget for a short moment the 3D aspect of the problem and solely wish to retrieve, for
a pixel x € 7y, the corresponding point x; = x + wy, € Zj. This kind of matching is closely
related to the optical flow problem because in the approaches of e.g.[72, 94|, a functional
including a data and a smoothness term must be minimized over the translation parameters
wj, by means of common numerical methods. For example, in [21], the data cost consists of
a non-decreasing function ¥ of weighted differences of gray values and their Laplacians:

U =0 (|Zo(x) — Zi(x + wi)| + 7| VZo(x) — VIE(x + Wi)|),y € R (3.1)

and the smoothness term is the total variation of the flow field, which is given, in the case
of two images, by the norm of spatial-temporal second-order derivatives. In order not to get
stuck in local minima, image pyramids downscaled by an arbitrary factor between 0 and 1
are calculated and a steady-state solution of a linearized fixed-point-approximation of (3.1)
determined for each pyramid level is used as the initial value for the next level.
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The process of optical flow estimation can be generalized for a multi-view case [113].
Unfortunately, the computational cost is very high and so discretization of derivatives and
using fixed-point numbers are necessary to perform minimization in a reasonable time. It is
theoretically possible to detect moving objects by means of optical flow algorithms since the
functionals do not prevent any point from being moved to any other point. For retrieving
3D structure, however, it will be indispensable to introduce geometric constraints and thus
to reduce the search range for point correspondences to a one-dimensional space, namely
the depth, which reduces the search space in the images to the (epipolar) line. Still, it
is possible to use the features of the optical flow estimation pipeline for a sparse set of
points, which later can allow either direct surface reconstruction or 2D meshing of points
into triangles and classification of these triangles into consistent and inconsistent with the
surface by considering pixels within these triangles.

The state-of-the-art method for computing correspondences for a sparse point set is the
well-known algorithm of Lucas-Kanade-Tomasi (KLT, [94]) which iteratively searches for
a (e.g. affine) transformation of a window around a point in the first image that produces
a similar window in the second image. Usually the similarity is measured by the squared
norm of the differences of the intensities within both windows; the optimization method can
be gradient descent. The algorithm has one important advantage — no need for any prior
information; hence a simple creation of image pyramids and the identity transformation as
a starting value is usually a suitable approximation for the position of pixels in the next
image. But it is also its disadvantage because the search range for point correspondences is
theoretically unlimited. For this reason, efforts were made to incorporate the known camera
positions. Trummer et. al. [130] consider the binocular case and support tracking of points
along epipolar lines. The component perpendicular to the epipolar lines is supposed to
compensate for uncertainties of camera poses. The algorithm is expected to perform worse
for points that lie near edges parallel to epipolar lines. In order to make this approach
more stable with respect to this problem, one can consider the work of Gruen [54, 55] as a
generalization of this approach in the case of a multi-view system. In the system described
in Egs.9-11 in [55], an affine transformation of points in images is supposed to compensate
for rotations, so instead of considering relative orientation of cameras, he uses an over-
parametrized system of equations for every point (six affine transformation parameters per
camera and three spatial coordinates). In [54], an additional variable expressing radiometric
deviation is introduced. A statistical test in order to eliminate unnecessary parameters from
further calculations is performed afterwards. Note also that no use of information from
already established correspondences is made in these approaches.

3.1.2 Considering the data term

Many existing approaches of stereo matching are mentioned in the survey of Scharstein and
Szeliski [115]. Local methods compute depth maps pixel-by-pixel using the principle "winner
takes all". For a pixel x = (z,y), values of a cost function (denoted by ¢ = ¢(x) = ¢(x,d))
are obtained for candidates in a suitable rectangle

[$+dmin — €43 T + dimax +5m] X [y_gy;y+5y]u

where €., ¢, are needed to take into account uncertainties in the camera parameters and
dmin, dmax are the disparity ranges computed, for example, from already available points.
The cost function can be SSD of gray values differences, NCC or some other distance function
of Sec.2.2. The point with the highest score is chosen to be the corresponding point if it
satisfies some heuristics (for example, the value of the score must exceed a certain threshold).
We can mention contributions due to [69] where disparities that failed the cross-check test
(see Eq.(3.2) below) are marked as discarded and then filled by values propagated from
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neighboring points, [18] where the window size for correlation was adapted according to the
local geometric constellation (pixels with disparity similar to dx, i.e., lying near the fronto-
parallel plane through x, obtain larger weights in e. g. (2.3)) and [114] where a diffusion term
was introduced.

Of course, these methods produce a large set of outliers among point correspondences in
the regions of repeatable texture and homogeneously textured regions. This happens because
no model assumptions about the surface are made and so not all available information is
used. In order to extract only reliable, confident pixels, [112] suggests discarding ambiguous
matches by selecting the mazimum stable component along an epipolar line. This largest
stable subset is proved to be unique, but — especially in areas of homogeneous texture, — it
can be very sparse and even empty.

3.1.3 Considering the smoothness term

Since we want to retrieve a reliable set of correspondences homogeneously distributed in the
images, we strive for an efficient minimization of (2.9). To reduce computing time, depth
or disparity scales must be discretized into labels. For example, we assign for every integer
disparity value (in pixels) one of S + 1 values 7 = 0,...,.S. Even with this discretization,
global minimization of (2.9) was shown to be an NP-hard problem [19, 51], which means
that the order of magnitude of operations needed for computing an exact minimum cannot
be less time-consuming than the brute-force procedure of O(S™) configurations, where M is
the number of pixels in the images. We will sketch and discuss several methods of different
complexity that allow determining a strong local minimum of (2.9).

Dynamic Programming, tree-based optimization

The method presented in [10] suggests minimizing the energy functional along all epipolar
lines using a well known method of dynamic programming. We will use this method for multi-
view optimization and, from a detailed description of this method in Alg. 8.2 of the Appendix,
we will see that the complexity can be reduced to O(MS) where M is the number of pixels
in the images and S is the number of depth/disparity values. However, the distribution
of costs in the adjacent epipolar lines can be completely different which usually leads to
implausible bulges and convexities in the final result. We do not discuss here heuristics
for additional optimization in the direction perpendicular to epipolar lines, but turn our
attention to a generalization of this method given in [132] which uses a minimum spanning
tree [82] from the weighted graph of absolute gray value differences of the neighboring pixels
instead of (epipolar) lines. Since by including an edge between neighboring pixels x and y in
the tree, one enforces the constraint that pixels x and y should have similar disparities, it is
reasonable to weight the edge of the graph by |Zo(x) — Zo(y)| and then to create a minimum
spanning tree of such a graph.

The algorithm starts at the leaves of the tree (as in [10], it starts in the first pixel of the
epipolar line) and processes along the branches of the tree until the root is achieved. From
the root, it is then possible to go to every leaf since the recursive information, which is the
best disparity value of the current pixel (i.e. child) given a disparity value for the previous
pixel (i.e.parent), is available; compare Alg.8.2, p.144. The algorithm has the property
of being invariant with respect to image subdivision (since the minimum spanning tree of
a union of disjoint sub-images is a union of minimal spanning trees of these sub-images
[82]), which offers an elegant way to compute depth/disparity maps even from large images.
However, also here bulges that correspond to the branches of the tree are inevitable in the
final result.
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2D Global approaches

As mentioned before, the process of finding a 2D global minimum of equation (2.9) is,
unfortunately, a NP-hard problem, in contrast to both of the methods mentioned above,
which obtain a global minimum of the 1D equivalent of equation (2.9). The algorithms of
alpha-ezpansion [80] and alpha-beta-swap [19] based on graph cuts and belief propagation
[77, 124] approximate this minimum by iterative procedures.

For example, given a depth map D, an alpha-expansion (a-expansion) of D, as described
in Kolmogorov and Zabih [80], is a configuration D’ with D’(x) = D(x) or D’'(x) = a. Now
one can define a binary function f such as f(x) is true if D’(x) = D(x) and false otherwise.
It is possible to construct a graph that minimizes in a polynomial time the energy function
for binary variables:

E(f(x1), f(x2)...f(xn)) = ZE(f(Xi)a f(x5))

if and only if F(0,0) + E(1,1) < E(0,1) + E(1,0). The procedure of construction and
minimization of the binary graph is given in [81].

Now disparities from d,i, t0 dyax are randomly ordered. The inner iteration consists of
selecting a disparity j from the list and minimizing energy over all j-expansions of D via
graph cuts. The outer iteration consists of repeating the inner iteration until no improvement
in the value of energy function has been achieved.

Especially for Nadir flights, the graph-cuts approach turns out to be one of the best
methods for removing noise without over-smoothing the edges. However, its main disad-
vantage is an extremely long computing time. Another drawback is that the method has
problems in scenes with many slanted surfaces.

Semi-global approaches

Another procedure for minimization of (2.9) is the method of Hirschmiiller [67], originally
elaborated for disparity map computation from a stereo pair. Here paths from different
directions leading into one pixel are accumulated. For only one path, the method becomes
equivalent to the dynamic programming. The key idea of algorithm is here, similar to [10],
to use the previous pixel x — r in order to compute the disparity value for the current pixel
x. The difference is that the global value of the cost function is stored in a M x S array
obtained by summing up costs of all paths of the same disparity and then the disparity
which yields the lowest result is chosen.

The original approach of [67] consists of computing image pyramids, then to start using
a random map and iteratively calculate improved maps, which are used for a new cost cal-
culation by means of Mutual Information (see Sec. 2.2.3). Finally, images and corresponding
disparity estimations are iteratively upscaled until the original scale is achieved. Since the
final result usually looks too noisy because of discretization into a finite number of paths,
the author suggests using a median filter to obtain the final result.

To find occlusions and mismatches (in the reference image Z7), one first computes dis-
parity map Do from Z; to Zy, then Doy from Z; to Z;, after which all pixels x with the

property
"Dlz(X) + Dgl (X + [Dlg(X), O]T)‘ >1 (32)

are marked as occluded. We will take a closer look at the implementation details for the
multi-view case in Sec. 4.5.3 and we will see that it is also here possible to perform semi-global
optimization in a linear time.
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The semi-global approach has another advantage in comparison with the the graph-based
algorithm, apart from computing time. In its original implementation, graph cuts approach
assigns to pixels in the regions of homogeneous texture depth values from neighboring tex-
tured pixels and propagates these values, which leads to spurious disparities in whole regions.
However, the semi-global approach solves this problem by considering different patches and
thus smooths the final result, as we will see in Chapter 6.

In the last paragraph of this subsection, we mention other modifications of the semi-global
matching. In the method due to [15], another sophisticated path choice was given and the
authors of [62] generalized the semi-global method for the rectified configuration of three
cameras. Finally, in [68], particular attention was paid to homogeneous segments. Mean-
shift segmentation of the reference image was performed and included in the semi-global
matching pipeline, with an assumption that homogeneous segments must have approximately
the same disparity.

3.1.4 Other approaches

To end this section, several other methods for depth or disparity map computation will be
listed here, especially those that use a set of more than two images and use already available
sets of points. Many authors perform image segmentation in order to improve reconstruction
in textureless areas [7, 14, 68, 77, 87]. For example [14], after performing color segmentation
of one image of a rectified stereo pair and computing disparity from some reliable points, the
authors store the three degrees of freedom of the homography induced by a scene plane for
every segment in a vector v. The disadvantage is that, in general, v does not have geometric
meaning and depends, as we will see in Sec.4.3.1, only on the way the images are rectified.
For this reason, the authors state that the weak point of the algorithm lies in the grouping
planar segments into layers by computing Euclidean distances of corresponding values of v.
Besides this nontrivial task of assigning planes to segments and typical artifacts arising from
over- and under-segmentation, color segmentation is not possible for infrared images, which
are actually very important in our applications. Furthermore, Szeliski and Coughlan [127]
extracted depth maps by means of splines. In [105], the Delaunay triangulation® of points
already determined is obtained; [103] proposes using edge-flip algorithms in order to obtain
a better triangulation since the edges of the Delaunay-triangles in the images are not likely
to correspond to the object edges, but the point correspondences obtained at that stage are
usually too sparse.

Using more than two images usually does not allow joint image rectification; nevertheless
it is possible to use depth instead of disparity values. Multi-view systems are known to be
more robust against occlusions and patterns of repeatable texture because using redundant
information from more than two images allows suppressing spurious local maxima of the
cost function. One survey about handling occlusions in stereo- and multi-view systems can
be found in [74]. A global graph-cuts-based algorithm for multi-view depth map extraction
[80] makes use of an additional term that marks occlusions and takes on the value infinity for
forbidden configurations. The work of Mayer and Ton [98] is a simplification of the recon-
struction pipeline of Schliiter ([116], see Sec.3.3.1). A coarse 2.5D triangular mesh of points
in a reference image is given and pixels inside the convex hull are projected into other images
in order to obtain the local minimum of the cost function and thus the correspondences.
This approach has turned out to be rather unstable for more than three images.

In the work of [86], which makes up the Google 3D software, high-resolution images with
enough overlap are used and depth maps are computed by means of [77]. This method is

IThere can be several Delaunay triangulations for degenerate sets of points, however, we can always
imagine a slightly transformed point set and so, for a general case, there is only one Delaunay triangulation.
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known to perform well for many fronto-parallel surfaces. Model assumptions are then used
to perform tessellation.

The well-known software described in [50] is a continuation of the Microsoft-based soft-
ware Photosynth. The main goal is to obtain dense reconstructions from arbitrary images
taken mostly by tourists from historic buildings and available in the Internet. Even more
than the depth map computation itself, the authors are concerned about criteria for the
choice of local neighbors of the reference image from which the depth map is computed.
These are: global criteria such as the number of common (SIFT, [92]) features, angles be-
tween reprojection rays from these features and differences of the resolution, as well as
(after rescaling images according to the resolution changes) local criteria, which include the
changes of the y-coordinates in the camera positions (in order to stabilize depth computation
near horizontal lines) and the matching scores of the local features with the ZNCC-matching
function (2.6). The (non-zero mean) NCC is the cost function for the region-growth-based
approach for depth maps computation, but an important feature here is that the color shift
component (denoted luminance in Sec.2.2.2, Eq. (2.5)) is forced to be the same for each
image pair and hence is included in the optimization. The output of the procedure is a 3D
point cloud. For our applications, a conclusion can be made that matching SIFT points can-
not provide the desired resolution for spatial depth (because subpixel accuracy of matching
is not given) and therefore tracking algorithms provide better subpixel coordinates for the
characteristic points.

3.2 Previous work on shape reconstruction

Because of rapid progress in hardware development that allows processing large point sets,
there are plenty of algorithms for generating models from scattered point sets. The goal
of this section is to provide an overview of several surface reconstruction algorithms and to
discuss their potential advantages and disadvantages for application on our point clouds.
We will consider in Secs. 3.2.1, 3.2.2, 3.2.3, 3.2.4, respectively, examples of four main ap-
proaches of geometric reconstruction, namely, TINs (examples stemming from the general
idea of Sec.2.4.1), (implicit) iso-surface extraction, surface reconstruction by level sets, and
surface reconstruction by explicit functions (tensor-product splines). Sec.3.2.5 is dedicated
to several alternative algorithms for surface reconstruction.

3.2.1 Polygonization of surfaces of unknown topological type by
TINSs

Motivated by the approach of Amenta and Bern, many approaches are based on the local
sample density. One of the typical examples presented in Gopi [52] requires that the dot
product between the normals of neighboring points must be approximately constant and
bounded away from zero. Then a local (2D) Delaunay triangulation of every sample point in
its local coordinate frame replaces the 3D Voronoi polygonization of [4]. Medeiros et. al. [100]
even compress the point set (by fusing neighboring points into clusters) and apply also a
local algorithm for triangulation. The method of Boissonnat [16] starts with the Delaunay
tetrahedrization of 3D points, and deletes iteratively all tetrahedra which either have one
border face and the vertex non-incident with this face as an interior point, or two border
faces and one interior edge. Other criteria (as in our case, visibility criteria for the given
camera locations and corresponding depth images) can be applied, too. Another method,
called ball pivoting algorithm, is proposed by Bernardini et.al.[12]. It starts with a ball
around a fixed edge in the point set. Its radius is diminished until the next point is hit. The
triangle formed by this triple of points is added to the list and the procedure is propagated
from these recently added edges. Finally, a-shapes [43], a geometric tool widely used and
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investigated for surface modeling, consist of all triples of points such that no further point of
X lies in one of two spheres of radius o around these triples of points. Clearly, for large values
of a, the convex hull of A will be obtained while for too small values of «, the resulting set
of triangles will be empty (see Fig. 3.1, left, for visualization of these situations). To name
some advantages of a-shapes, we mention that the size of the triangles is automatically
regularized, a-shapes are easy to generalize for higher dimensions, and, since they are a
subset of the Delaunay triangulation (or, in 3D, tetrahedrization) of X', they are in principal
easy to compute.

The concept of a-shapes can be generalized to the case when information about distri-
bution and quality of points is available. Here, weighted a-shapes [44] can be used. The
point X is given a weight (wx) such that the weighted distance between two points X,Y
is given by d(X,Y) = dst(X,Y) — wx — wy. Just as a-shapes are subsets of the Delaunay
triangulation (tetrahedrization) of X, weighted a-shapes are subsets of the so called regular
simplicial complexes, which can be extracted in a manner similar to the way in which the
Delaunay triangulation of " is generated.

Despite the advantages of a-shapes and other TINs-based methods, the reconstruction
results produced by them suffer from the drawbacks mentioned at the end of Sec. 2.4.1. Even
though e.g.[11] gives a necessary condition when a triangular mesh modeled by a-shape is
homeomorphic to F, in many practical cases, the surface is not topologically correct. For
example, it is not guaranteed that an edge is shared by exactly two triangles. If « is too
small, the resulting mesh will contain holes. If « is too large, it will connect points of
topologically different fragments. Furthermore, noise around nearly planar regions in X will
result in visually unpleasant artifacts.

X XXX

Figure 3.1: Left: Alpha-shapes (depicted by black line segments) for different values of
«. The characteristic circles around segments that belong to the a-shape are depicted in
cyan and their size is indicated by red circles on a blue background in the lower right of
each portion. Right: Iso-surface extraction by [70]. Surface points X are depicted by red
crosses and the nodes Y of the volumetric grid by blue crosses. The value d of the signed
distance function is given by the length of the perpendicular from Y in the direction of "its"
tangential plane (black horizontal line) if there is a sample point near the base-point, as in
the case of Y;. Otherwise, as for Y, it remains undefined. Problems are expected in the
areas near sudden changes of normal vector field, see Fig.6.33, p. 114.
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3.2.2 Iso-surface extraction

An iso-surface is a surface in space that represents points of a constant value of a trivariate
function f(x,y, z). For the both state-of-the-art methods covered in this section, f represents
the signed distance from the point to the surface and it is computed at the vertices of a
tensor-product volumetric grid (x, yi, 2m), k = 0,...,9z,0 = 0,...,g, and m = 0, ..., g, and
9z Gy, g~ are the numbers of nodes in the grid, usually chosen in the way to guarantee
approximately equal resolution of the grid in x,y and z direction. After extracting f, one
performs meshing by means of one of the method mentioned in Sec.2.4.2.

Hoppe’s method

The method of Hoppe et. al.[70] is able to reconstruct a smooth, orientable surface of ar-
bitrary topological type and consists of four steps (for schematic visualization, see Fig. 3.1,
right). In the first step, the approximate computation of a surface tangent plane center and
normal vector for every sample point takes part. The tangent plane consists of the surface
normal n (always of length 1) and the plane center C that can be computed as an average of
neighboring points. Then the surface normals are consistently oriented, which means that
for neighboring points X and Y, the dot product of the normals nkny (which is expected
to be close to 1 since the surface is piecewise smooth) should be rather close to 1 than to
—1. An exact solution of an energy function minimization implies a graph-cuts-based mini-
mization, but in [70], a sign-propagation approach is proposed. In the third step, the value
of the signed distance function dst(Y) from each node Y of a volumetric grid is computed
by projecting Y onto the tangent plane i, where the center of the plane i is the closest to
C. This function reflects the distance from Y to the closest point on the surface. Formally,
we have i = argmin(dst(Y, C;)), the base-point

V=Y-n;(n/ (Y-C;)) anddst(Y) =n] (Y — C;) (3.3)

is set to be the value of the signed distance function if and only if there is a sample point
of X within a sphere of radius p around V. Otherwise it is set to infinity. In the last
step, triangles are extracted from the volumetric grid by one of the approaches described in
Sec.2.4.2.

Experiments show that the approach of [70] performs well in presence of moderate Gaus-
sian noise. Its another advantages is the topological flexibility: there is no need to differen-
tiate between 2.5D and 3D surfaces. But the approach has the following disadvantages: it
is not immediately clear how to take the sample’s accuracy (weighted points) into account.
For a point Y quite far from the surface, a correct value of the signed distance function is
hard to determine, especially if the surface has boundaries or there are uncertainties in the
values of n. Other problem can emerge near the points of the medial axis, where function
values can differ from negative to positive and so ghost triangles can appear. Also, the
approach does not perform well in regions of rapid curvature changes and non-continuous
distribution of normal vectors.

Based on values of the signed distance function retrieved by [70], local adaptive [6] and
global [42] methods were developed to support smoothing the function values at grid nodes
and also at the intermediate points.

Applying the Fourier transform for water-tight surface extraction

Another well-known method of iso-surface extraction from water-tight surfaces (i.e., those
that partition the space into two sets, one with positive and one with negative values of
the signed distance function) is given in [75]. Given the point sample and normal vectors
(x,n), the procedure first retrieves the Fourier transform of the characteristic function x of
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the surface (y(x) = 1if x € F and x(x) = 0 if x ¢ F) from the point set S and the set of
oriented normal vectors using Stokes’s theorem.

Av) = /R e xax = /F = [ Gutonioix s Y Gulx)n()

xeX

where * denotes the Fourier-transform, v = (k,l,m) is a triple of integer numbers and G
is a vector function such as div(Gy(x)) = e~ ™V'x for all v. In [75], the term Gy (x) =

ive~ "% /||v||2 is proposed, because it is the only function that is invariant under rotations
and translations and by which "no points influences its neighbor".

After obtaining x by Fast Fourier Transformation, the resulting mesh may be obtained
by any polygonization algorithm mentioned in Sec.2.4.2. Of course, our models are not
water-tight. Therefore, the resulting surface must be filtered in an additional step, e.g. by
removing pieces of the surface outside the bounding box of F.

3.2.3 Surface reconstruction by level sets

The key idea of the level set method is an exploration of the evolution of the open, possibly
multi-connected set 2 € R”, bounded by a hyper-surface F under influence of a velocity
field, see [106]. This velocity field can depend on position, time, geometry of F and many
other factors. The function ¢(X,t), which (similar to the last section) is positive for X € €,
negative for X ¢ Q U 00 and zero at the border 02, is a kind of characteristic function
for Q. A significant advantage of the representation can be seen from Fig.3.2: the three
different curves in the top of the figure have completely different topology and can hardly be
parametrized from a mere intuition. But, if one considers the three-dimensional counter-part
of these graphics (in Fig. 3.2, bottom), an evolution principle becomes evident and clear.

Figure 3.2: Top: the behavior of the level-set function is hard to describe by an explicit

function. Bottom: in 3D, it is easy to observe how the level set function merely is moved
downward and so parameterization is easier in 3D. Source: Wikipedia.

Reconstruction of open, water-tight surfaces is one of the applications of the level set
method. The task is to obtain a steady-state solution for a partial differential equation (PDE)
00/0t + (X, ¢, V) = 0 with a suitable function f; the PDE representation means that
the surface is assumed to be a time-dependent function that ideally converges to the correct
solution for ¢t — oo. This surface deformation approach has turned to be very suitable for
computing a surface given several kinds of information. A modification of that method will
be presented in Sec. 3.3.2, and one of its best-known alternatives is the snake algorithm (see,
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for example, [65]). The partial differentiation of the PDE mentioned above helps to obtain
the Euler-Lagrange equation for its steady-state solution. The resulting functional consists
of a data term (which can express, similarly to [106], the distance from the point cloud to F,
or some radiometric relations [76]), a smoothness term, which according to [106] punishes
the area of F, and, additionally, a salience field, which is used to reduce the number and
influence of outliers (see [93] for further information).

The technical details of the approach for obtaining a solution of PDE mentioned above
are described in [106]. The first step is an approximation of ¢ and its derivatives on a
discretized Carthesian grid. Then the solution of the discretized PDE can be obtained via
TVD (total variance diminishing) by Runge-Kutta schemes.

The results of the level set approach are usually visually good even for a high percentage
of outliers, especially after being extended with the salience term of [93]. However, the
tensor voting procedure works only if the number of inliers is high and their distribution
is homogeneous. In addition to the rather high computing time needed to solve the PDE,
there are two other reasons why the level set procedure in its straightforward implementation
can hardly be applied on our problem. First of all, the model assumption of a C?-function
bias the results towards Gibbs artifacts (over-swinging near sharp edges and gradient dis-
continuities). The second problem consists of the fact the models to be instantiated in our
applications are not necessarily water-tight.

3.2.4 Approximation of surfaces on two-dimensional tensor-product
grids
If the assumption of the z-axis as a dominant direction holds (e.g., by flights at sufficiently

high altitudes), it is possible to parametrize the terrain along its length and width by inde-
pendent variables v and v and model the height

zi,j(u, 1)) = AZ)JFZ(U)GJ(U),Z = O, ...,I,j = O, ceey J (34)

with basis functions F'(u), G(v) of independent parameters u,v and unknown scalars A;;.

Gridfit

The simplest possibility is to let F' and G be fixed and model A; ;. In the case F = G =1,
A; ; represent the function values of z at the nodes (u;,v;) and will be denoted by z; ;.
For example, gridfit, a widely used modeling tool available in MATLAB (see [38]) can be
applied for obtaining the unknown z; ; and thus a C°-surface homeomorphic to a plane. The
resulting surface has to approximate the points X = (x,y, z) in the least square sense and
the interpolated method can be either:

1 Bilinear: for u; < < wjy1,v; <y < vj41, we have
z(@,y) =t (s2ij + (S — 8)zit1,5) + (¢ — 1) (820541 + (5 — 8)ziv1,541) s (3.5)

where s =z — w;, §; = Uip1 — wi, t =y —vj,t; = vjy1 — v; (see Fig. 3.3, left).

2 Triangular: here we use the local barycentric coordinates of (xz,y) in the triangles
obtained after tracing the diagonal z; jz;11 ;41 of the spatial quadrilateral z; ;z; j11
Zi41,j4+1%i4+1,5- We have:

Uz j +Vzip1,j + Wzeigr j41 s/t > Si/tj
z(z,y) = ’ ’ ’ - 3.6
( y) { L{Ziﬁj + VZi)j+1 + WZiJrLjJrl S/t < Si/tj. ( )
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The condition s/t > s;/t; means that (x,y) lies in the upper triangle of Fig. 3.3,
right, made by points (u;,vj), (wi+1,v;) and (wiy1,vj41) with U, V, W are the local
barycentric coordinates corresponding to this vertices, while the condition s/t < s;/t;
is equivalent to (z,y) is incident with the bottom triangle.

3 Nearest neighbor: the coordinates of z and y only have to be rounded towards the
nearest vertex of the rectangle. Clearly, this kind of interpolation will be sub-optimal
in the majority of cases, but it helps to save computing time.

The first two options for interpolation mentioned in the previous paragraph also have their
drawbacks. For example, in (3.5) the result will be different, in general, for curvilinear
rectangles, if we replace s, s; and z;11,; by ¢, t; and z; j41 respectively, because two lines in
space do not necessarily intersect. In (3.6), the result will be different if the other diagonal of
the quadrilateral is chosen. The optimization process consists of solving an over-determined
system of equations with a sparse, banded-structured left-hand-side matrix A using well-
known methods of linear algebra.
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Figure 3.3: Left: Bilinear interpolation of a point (z,y) and (unknown) function values in
the grid nodes. Right: Triangular interpolation. See text for further explanation.

Splines

In order to cope for the negative effects mentioned at the end of previous paragraph, one
has to use other functions F'(u), G(v) as the basis functions in (3.4). Hoschek and Lasser
[73] consider in Chapter 6, among others, bicubic polynomial splines

3 3
Zi,j = Z ZAi)jﬁkﬁl(u - ui)k(v - ’Uj)l. (37)
k=0 1=0
Since these splines will be very important for our applications in Sec. 5.2, we now provide
the necessary theoretical background about bicubic splines. A bicubic C'-spline is uniquely
determined by the values of the function z and its partial derivatives 0z/0u,dz/0v at the
grid vertices (u;,v;) which we denote by z; j, (zi j)u, (%i;)v, respectively.

The integration of a data point (z,y, z) into the matrix A succeeds by assigning it to
one of four triangles built by the diagonals of the cell containing (z,y) and computing its
Sibson-element [57, 85]:

If (x,y) lies in the triangle specified by:

{(Uiavj)a (uis1, v;), (Ui +2Ui+1, Uj +2Uj+1 )}

then
T = (.I - UZ)/SZ,Q == (y - ’Uj)/tj with S; = Uj4+1 — ui,tj = Vj4+1 — Uy
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lies in the triangle T, specified by vertices (0,0),(1,0) and (1/2,1/2) and we can express
the function value for z in terms of function and derivative values at the vertices of the
corresponding rectangle by means of the following equation.

z(z,y) = [1 - 3%% +23° — 3% + 3%9° + §°] 25

~ ~ ~ ~2 j‘:”‘Q ~ L ~2 . ~3
+Si[$ -2+ — % + %}(zm—)ﬁ tj {y — Iy — % + 25 + %}( i.5)

X
+[38% = 22° = 375 + §°] ziw1 + s{—af +3°+ i](mm)u

2
7° 2 7 2 2 -3 (38)
+t [5?7 -3 Ty° + 3}(21-“,]‘)1) + [39% = 329% — §°] 21,511
) ~3
Yy xry oy - Yy
i) o — o |(Zig1)y 5|20 = 5+ S |(zi41),
2 2 2
~ 9 ~3 ,%52 ~2 gS
+ [327% — §°J2i41,541 + 50 5 |(Firrgan), | =8G T (zinge),, -

Expressions for the Sibson element in the other three triangles can be created by mapping
these triangles onto Ty. For instance, for the triangle with vertices {(xit1,v;), (Zit1,Yj+1)s
and (z; + ®it1,Y; + y;j+1)/2} (or, equivalently, (Z,7) vertices (1,0), (1,1), and (1/2,1/2)),
one adjusts (3.8) by replacing & by 1 — ¢ and § by Z and by rotating the indices of
the four vertices of the cell, replacing z; j, zit1,5, Zi+1,+1 and z; j41 (with derivatives) by
Zit1,j, Zit1,j+1, Zij+1 and z; ;, respectively.

Smoothing Surfaces

The surfaces described above are fitting surfaces, in other words, they assume a point set of
high accuracy more or less regularly distributed over the parameter domain [ug; us] X [vo; v].
The result of these routines applied for point sets with sparsely covered regions will be poor
since the matrix A will have a multi-dimensional null-space. Similar to Sec. 3.1, we will have
to extend the data term:

Iz = z(z,9)ll; (3.9)

(where X = (x,y, z) is a sample point and z(z,y) as in (3.4)) by a smoothness term. In the
case of gridfit, three possibilities are given:

1 A Diffusion, or Laplacian term is the weighted norm (weight A) of the numerical
Laplacian A of neighboring grid points. For example, for a point 4, j such that i,j >
0,i<I,7<J,

A = [2Zi,j — Zifl,j — Zi+1,j 221”‘ — Zi,jfl — Zi)j+1]T 5 (310)

which contributes two new rows to the matrix A. The weight A balances data fidelity
and hypothesized properties of the surface. For the grid points on the margin of
computation domain but not in the corner, only one row of (3.10) is added. The total
number of equations thus obtained is 2(1 — 1)(J — 1) +2(I — 1) +2(J — 1).

2 The Gradient strategy suggests minimizing the norm of the gradient and is subtly
different from what we saw before, since here the directional derivatives are biased to
be smooth across cell boundaries in the grid. The total number of equations here is
(I+1)J+(J+1)1.
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3 Springs minimizes springs between neighboring nodes as well as between data points
and the nodes of the grid. In this case, the nodes drag the surface toward the local
mean of the data and therefore it is usually only a suboptimal choice. The total
number of equations here is 2m + (I +1)J + (J + 1)I.

One of the first two terms is usually applied in the case of more complicated basis
functions, as described in the previous section. Here the balance parameter A as in (3.10)
plays a role similar to that in equations of Sec.2.3. Theory to guide the choice of A is not
yvet well developed.

In the case of conventional splines [73, 122], regions with sharp changes of curvature often
cannot be reconstructed correctly. For regions of rapid change of curvature (e.g., corners
of building), overshoot (Gibbs) artifacts emerge if the smoothness parameter A is too small
while oversmoothing occurs if A is too large. One possibility to solve this problem is presented
in [20], where reduction of the smoothness parameter near the characteristic edges in the
images is proposed; however, these edges have to be identified in advance. Alternatively, the
L1 -spline-based approach, originally elaborated by Lavery for approximation of 2.5D surfaces,
allows non-overshooting and non-oversmoothing reconstruction of regions of sharp change
of curvature without requiring additional information, albeit at additional computation cost
[84, 85]. In addition, Ly splines provide accurate terrain reconstruction even in cases with
considerable noise and outliers. The remaining problem is thus to generalize this approach
for our applications — reconstruction of a fully 3D surface represented by a vector function
X (u,v) under the assumption that the surface is "nearly" 2.5D with the z-axis as dominant
direction.

Summarizing the contents of this section, we state that smoothing splines on tensor-
product grids are often used to retrieve plausible surfaces approximating noisy point clouds.
However, because videos of the urban terrain recorded from a moderate height cannot be
represented by a function z = z(x,y) but rather require representation by a parametrized
3D-vector function X(u,v), the question of parameterization must be solved. Typically,
the parametrization by u and v is unknown a priori. If we succeed in finding a suitable
parameterization, the probability of obtaining good results is high.

3.2.5 Other methods

Here we will describe several approaches of meshing point clouds that can be applied for the
kind of data obtained from our image-based methods. For example, in [99], a constrained
Delaunay triangulation [119] of sparse points and endpoints of characteristic edges in every
reference image is obtained and afterwards a visibility constraint for every triangle is checked.
The triangles in a new reference view that occlude a point obtained in an old reference view
are discarded. This approach leads to holes in the mesh and to artifacts resulting from
noise and outliers in the data. The group of space-carving methods [83] also uses the power
principle: the more photographs are available, the more difficult it is for 3D points to
satisfy either spatial or radiometric constraints and once a surface point fails to satisfy these
constraints, no new image of that point can re-establish the reliability of this point.

Several authors [1, 78] (see also contributions mentioned in these two papers) perform
surface reconstruction by modifying the well-known Shepard method (Hoschek and Lasser
[73], Chapter 9) for scattered point approximation. They interpolate on a volumetric grid
Y = (zk,y1, 2m) the 3D function

a(Y) = M where wl(Y) = —exp <M)7

g
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or some other function that has a maximum at X; and decreases toward zero in all directions.
Here, o is a scalar that depends on the distribution and quality of the points. The resulting
surface is the zero set of the function

f(Y)=n"(Y)(Y —a(Y)) and n(Y) = argmin (Z n” (Y) (X; — a(Y)) w; (Y))

is the (oriented) normal vector field to be estimated. Intuitively, the point sets are locally
approximated by planes and the size of the local neighborhood is given by the potentials w;.
Different approaches make use of topological relations between the points and variation of
norm (since the Lo-norm is known to be sensitive to noise and outliers).

The approaches of [97, 34] and [117] are dedicated to extracting special kinds of surfaces.
The work [97] searches for vertical planar segments from sparse 3D points clouds, since many
ghost planes may appear if the assumption of vertical segments identifying building walls is
dropped. On the other hand, [34] fits conics in the depth maps. Finally, [117] searches for
geometric primitives in laser point clouds using RANSAC with an octree-based evaluation
cost function.
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Figure 3.4: A typical approach of surface (illustrated by the blue curve) reconstruction
from dense range images. As an approximation of the absolute value of the signed distance
function at X (nodes of a volumetric grid, denoted, in selected cases, by orange circles),
one takes min(|d;(X)|) over all reference images (identified by the corresponding camera
matrices P;) with the sign +1 if and only if all dx are positive (as for the point Xs3). At
the points for which §;(X) cannot be calculated (for instance, X3), the value of the signed
distance function is left undefined.

Curless and Levoy [36] have a set of depth maps D; corresponding to several reference
images as input and calculate, in a volumetric grid, a signed distance function consisting of
a weighted sum of signed distances to the surface in the direction of the camera view. The
problem is the choice of function values "behind the surface" which may lead to multi-sheet
surfaces. A possible solution consists in keeping track of the union of all regions behind the
surface and setting its signs after all depth maps are processed [80]. A typical constellation
is shown in Fig. 3.4, where, for each grid point X and each reference camera P;, the term
0i(X) = |C;X|—D;(P;X) can be calculated. (Note that, in an manner analogous to Fig. 3.4,
we can write instead of the distance |CX| between X and camera center, the depth value
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dx; see Sec.5.1.1.) The sign of the signed distance function at X is positive if and only
if all 6(X) are positive. Turk and Levoy [129] remove the redundant parts of the meshes,
connect their boundaries and, finally, update the positions of the vertices. We assume that
the results of this algorithm will be similar to the iso-surface extraction, since the mesh is
not expected to be topologically consistent and the values of signed distance function are not
exact. As an example, one sees that the bad approximation of the signed distance function
in X; and Xj resulting from the depth map at P; (specified by red dashed lines in Fig. 3.4)
can be corrected by P». However, in reality, such a P is either not necessarily given or may
be occluded by another object.

3.3 Overview of three existing reconstruction pipelines

There is quite a large amount of work on textured 3D reconstruction from images and
videos because of the importance and elegance of this area. In this section, we will present
several of approaches and discuss their applicability for our data. In particular, we will
learn form Schliiter’s dissertation of Sec.3.3.1 how to create, starting from a coarse 2.5D
triangulation, a 3D description of surface patches in local coordinates. The idea of enriching
a sparse 3D point set by means of radiometric relations and then fusing an enriched point
set into a 3D surface is presented in Sec. 3.3.2 and a real-time oriented incremental approach
of local tessellations from depth maps is given in Sec.3.3.3. For additional relevant work
on reconstruction pipelines that go the complete way from image sequences to textured 3D
models, we refer to [120].

3.3.1 Schliiter’s thesis

The approach of [116] generalizes global methods for 2.5D surface-fitting on a rectangular
grid by several images [63, 135] and uses multi-grid method to obtain dense 3D models with-
out prior knowledge about the surface. The 3D nodes are vertices of a global triangulation
to be defined for every pyramid level. The observations are defined for every pixel in every
image that covers a patch F of the surface. The selection of images succeeds by means of
visibility constraints previously computed. Both the point of intersection of a reprojection
ray with F and its local barycentric coordinates within the corresponding triangle in space
can be computed, which allows computing surface normals and main curvature directions.
The solution of the resulting differential equation presupposes updating F by means of slid-
ing 3D points in the direction of their normal vectors. Of course, updating the position of
every single point can lead to completely wrong results, since the interactions of neighbor-
ing pixels are not considered. Therefore, a regularization term that consists of a distance
function between local tangent planes for adjacent points is added.

The bottleneck of the method is the choice of the initial triangulation. While the author
claims the 2.5D Delaunay triangulation of  and y coordinates of the available 3D points
is good enough for the initialization, it is clearly not sufficient for our applications where
the sensor platform may be located near the walls of the building, so that, in the case of
balconies and overhanging roofs, projection of points into the zy-plane will not correspond to
correct topological relations between the points. Varying density of the 3D points obtained
by photogrammetric methods does not contribute to the stability of such a triangulation.
Since minimization parameters include both geometry and color information (together with
the local values of brightness and contrast), the parameter matrix becomes rather large
and the solution cannot easily be computed for a large number of images covering a broad
scene. Therefore the 3D data presented in [116] include only a few high-resolution intensity
images around a small object (a single house) and not a complete, theoretically infinite video
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sequence with a lot of redundant information. For large data sets, it will be an advantage
to split the process up into the image-based and point-based stage.

3.3.2 Reconstruction by Furukawa and Ponce

The key idea of this work [48] is to obtain a set of patches that are parts of the object surface
using a sophisticated region-growing system. Every patch is characterized by its center and
normal in the direction of its reference image. These two parameters are obtained by min-
imizing the NCC-score. Initial guesses are given by matching algorithms for characteristic
features [92, 60| along epipolar lines in the images. At the initial stage, the patch must be
visible in at least two images and not be occluded by other patches in other images that
can potentially see it. At the expansion stage, neighbors of already reconstructed patches
must be added to the reconstruction. For accomplishing this task, images are partitioned
into quadratic cells, each of which can potentially contain several patches. The empty cells
the neighbors of which contain already reconstructed patches are explored. The next stage
is filtering, where first patches that occlude more than n patches and finally patches that
are occluded by more than m other patches (n, m are automatically calculated thresholds)
are deleted.

Since, until this stage, the algorithms are local, many outliers are expected and a subse-
quent filtering stage is indispensable. Since patches are sparse in space and even more holes
will be left after the filtering process, Furukawa and Ponce propose a post-processing opti-
mization that is described in [47]. An energy function that includes a smoothness term for
minimization the second derivatives of local parameterizations of mesh nodes, a photometric
consistency term based on the reconstructed patches in the first phase, and a visibility term
that is additionally inserted in the case accurate silhouettes are available, is minimized in
the last step.

Similar to Schliiter’s method, the authors strive to use all available information at the
same time. Using already available point correspondences while expanding patch sets (which
will be partly inferred in Chapter 4) and considering color /intensity information while post-
processing makes results more robust. In the current implementation, this method produces
a combinatorial explosion for a large number of images (which is given in our case because we
deal with theoretically infinite video sequences with uncertainties in camera positions), but
can be modified for incremental processing. Another drawback of this method is insufficient
investigation of its performance for critical motions, such as forward/backward motion,
where not all points are situated in front of all cameras. Moreover, the post-processing
step without visibility is biased towards shrinking models, which can produce the empty set
as output; in the case of water-tight models, Furukawa and Ponce prefer using Kazhdan’s
method ([75], see Sec. 3.2.2) to perform the post-processing step.

3.3.3 Reconstruction algorithm by Nistér et. al.

The system presented by Nistér et.al.in [111] can create textured models from a geo-
registered video taken from a moving ground vehicle. The process is incremental, so model
generation can be performed in real time. There are four parts of the reconstruction pipeline
that are interesting for our purposes. First, a plane-sweep algorithm that allows obtaining
depth maps from several images is presented. Then the concept of fusing depth maps, which
has several simple depth maps as input, is described. Then a triangular mesh from a refer-
ence image is obtained. Finally, interaction of several such triangular meshes is obtained by
deleting wrong and redundant triangles.

The concept elaborated in [111] will be partly adopted for our work. However, there are

several significant differences: while [111] assumes the set of several cameras to be fixed in
the ground vehicle and uses an internal navigation unit, model assumptions can be made
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that facilitate, clearly, the reconstruction. For example, directions of dominant planes are
given by the ground plane and facades whose approximate positions can be easily determined
(Sec.6.2 of [111]). Moreover, resolution of depth does not change that dramatically as for
the aerial view, as one can see in Figs.6.3 and 6.45 on pp.84 and 126, respectively, of this
present thesis, since the distance between the points on the surface corresponding to adjacent
pixels can differ by up to several meters. The question is, consequently, that of finding a
post-processing routine that allows computation a global mesh connecting points in different
parts of surface.
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Chapter 4

Multi-view algorithms for depth
maps estimation

The goal of this chapter is to obtain a dense 3D point set from a set of images, corresponding
camera matrices and also a sparse, but precise and reliable set of 3D points used for retrieving
relative orientation of cameras. Of course, such points can come from other sources, like
LIDAR points or manually measured ground control points. However, in our case, these
points are automatically extracted from the images and so usually stem from rather textured
areas and have extremely low density in the untextured regions. Each short subsequence of 5
to 10 images that we consider in this chapter has a reference frame Z, typically in the middle
of the subsequence. It can be assumed that the Non-Lambertian specular components can be
neglected in relations between corresponding pixels in different images of the subsequence.
The desired output is the depth information of (almost) every pixel of Zy with maximum
accuracy. We do not care about the (theoretically unlimited) length of the video stream,
but will show in the next chapter how the outliers can be successfully removed by using
several of reference images and simple geometric constraints.

The proposed pipeline of point homogenization consists of two optional steps. The first
step concerns characteristic points whose positions in 3D space are to be determined with
maximum accuracy. This process, used for enriching the already available point set, is called
sparse tracking and triangulation. The Delaunay triangulation of these points in images will
support the second step, namely, the pizel-wise depth computation for which the smoothness
constraints as in Sec. 2.3 must be enforced.

Derivation of the most important relations for point-projection in multi-view configu-
rations, choice of characteristic points, initial values of the unknown depth by means of
triangular meshes, sparse tracking and triangulation, and dense matching will be described
in Secs.4.1,4.2, 4.3, 4.4 and 4.5, respectively. We shall make a difference between a rectified
binocular configuration and a multi-view configuration (and thus subdivide Secs. 4.3-4.5)
not only in order to describe simple, but reliable heuristics for outlier rejection in the case
of geometrically less stable binocular configurations, but for the sake of differences in terms
of disparity and depth estimation, since for the rectified binocular case, we do not need 3D
points and can work only in terms of disparities.

It is important to emphasize that either of the two steps mentioned above can be omit-
ted, usually at the cost of reduced accuracy of the reconstruction. Sparse tracking and
triangulation can be omitted and the (Delaunay) triangulation 7 of the already available
points in Zy can be thus the input for Sec. 4.5, but then 7 will probably consist of very small
triangles in textured areas of Zy and large triangles far away from the surface in textureless
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areas of Zy. As a consequence, the evaluation of triangles into consistent or inconsistent with
the surface and thus rendering local tessellations will not have much sense. If the second
step, the dense estimation, is omitted, only the (enriched) point cloud and the triangles of
T will be output of this chapter. However, even though some triangles that do not reflect
correct depth information can often be filtered by considering further reference frames and
local methods for shape reconstruction, which we will describe in Sec. 5.1, the assumptions
of many surface reconstruction methods [4] will generally not be satisfied because of the low
density of points in textureless areas.

4.1 Multi-view geometry

The goal of this section is to establish fast point projection relations that can be used for
projecting millions of pixels into dozens of images for dense reconstruction. The best way
to parametrize spatial coordinates of points with a minimum of unknown parameters is to
consider the depth values d of pixels in the reference image Zy of a sequence, because the
search space for point correspondences is one-dimensional and the explicit computation of
3D points is not required. We denote the camera corresponding to Iy by Fp, as visualized in
Fig.4.1, and call Py the reference camera of the sequence. If Py is a classical pinhole camera,
then the depth d := dx of the 3D point X corresponding to a pixel x = (z,y) € Zy is the
distance from X to the image plane of Z, and is given by (see e. g.[61]):

d(X) = (dx) = sgn(det(M))PeX/[[ M|, (4.1)

where -3 is the third row of -, and M = Pé4} is the 3 x 3 matrix obtained after omitting
the last column of Fy. Throughout this work, the camera matrix Py will be normalized,
i.e. divided by the quantity sgn(det(M))||M?3||. In homogeneous coordinates, we denote the
vector [z y 1]7 by X and we prove, starting from (4.1), the following result:

Result 1: The coordinates of the 3D point X corresponding to x are given by:
X=d M 'x+Cy (4.2)

(as a function of d) while the reprojection of x into the image Z; will be induced by the
transformation:

%(d) = Ho sk + = (4.3)

where Hop j, = P,;H}M*l, er = P,Cy are the infinite homography and the epipole, respec-
tively. Since (4.3) denotes equality up to a multiplicative constant, one can perform a further
substitution (with an arbitrary real scalar dy) in order to reduce point projection to addition
of 2D points:

d—dy

d) = he + té h t=—"_ and 4.4
xp(d) . + té;, where PRy an (4.4)
. 1 hled — hiel
hy ~ Hopx +ep/do, x = 5——5——= | 55 55 |.
b Hopk o+ en/do, & = parga ey { 2.l — hie?

Proof: Since the fronto-parallel plane 7 at distance d from the image plane has the
equation:
m(d) =P —(0 00 d),

the coordinates of the 3D point X are given by:
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Figure 4.1: Point projection in multi-view configurations. Cameras are depicted by orange
pyramids on the top, the object surface is below. A point x € Zy with depth dx induces
a 3D point X that can be projected to images x; € Z; and x € Z,. Matching can then
succeed by comparing color/intensity values of x,x1, Xa.
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and thus X is given by (4.2). Moreover, (4.3) is also easily obtained:

-1

. M . . e
Xk(d):PkX:Pk<|: 0%-, :|—|—|:04 04 %:|>X2H0,kx+7k

with notations for Hyj and e, mentioned above. According to (4.3), the reprojection of
a point into the image k£ can be performed by adding two homogeneous quantities, since
the values of h;, = Hp rx; can be saved for every pixel x;. In order to derive (4.4), the
subscripts -; can be dropped and, because of a strong analogy in the calculations, it is
enough to consider only the z-coordinates:

doht + et d—dy hle3 — h3el

h+té= : =
teE A T T @ W (AP + )
d+ —
h3
ddoh'h3 + e'e3 + dh'e3 + dyh3e! B dh' + e!
(@3 + ¢3) (doh® + ¢9) IR

which completes the proof.

From the already available point correspondences, we approximately know the depth
ranges (d € [dmin; dmax]), which allows us obtaining depth ranges for ¢:

telo: dmax - dmin o d— dmin o t- ez/h?k + dmin
’dmax+ez/h?k ’ d+€%}/h§k7 1-—t '
We now describe the properties of Eqs. (4.2)-(4.4).

If we know the spatial depth of an arbitrary number of points x; € Zy, using (4.2) repre-
sents an extremely fast way for obtaining their spatial coordinates, because multiplication
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and addition can be performed simultaneously and column-wise. The same argument can
be applied for Egs. (4.3) and (4.4). There are more time-consuming algorithms for obtaining
3D points from point correspondences, which, however, consider uncertainties in camera
parameters and point coordinates. The general case can be handled the DLT! solution by
means of singular value decomposition of a 2K x 4 matrix for every 3D point, see [61], Chap-
ter 12. The solutions for error-free camera configurations and noisy point correspondences
are presented in [61] for two-view configurations and in [123] for three views.

According to (4.3), point projection from image to image can be performed by adding
two homogeneous quantities if one stores the values for h;, e; for every pixel of interest x;.
This fact will be extensively used in Sec.4.5 when d is a common optimization parameter
in arbitrary multi-view configurations and dense sets of pixels. Since ¢ depends on the
camera index k in equation (4.4), we cannot, unfortunately, generalize these considerations
for ¢t as a common optimization parameter in (4.4), unless K = 1 or images Zy,Z;, are
rectified to epipolar geometry. However, for epipolarly rectified images, e; = 0. Hence, ¢
does not depend on k anymore, the transformations concern only the z-coordinates, the
time-consuming conversion of (4.3) into inhomogeneous coordinates is not required and,
since the influence of all rotation angles except the one around the baseline CyCy has
been compensated, the algorithms of Sec.4.4 and Sec. 4.5 are made more invariant against
rotations. There are also disadvantages of image rectification: First of all, it can be carried
out using a linear transformation only if the epipole e lies outside the image domain and
significant distortions of images are inevitable if it is close to the image border. Moreover,
due to interpolation errors in the course of image transformation, gradient calculations are
less reliable. Throughout this work, we have a rectification option opt.r; if (and only if)
its value is true and the epipoles are bounded away from the image borders, we rectify the
images by means of the algorithm proposed in [90] (see Sec.2.1). As the result, we have
several rectified pairs of images and pairs of homographies. For example, if we rectify Zy and
Ty, we have the rectified images Z{% , 7%, the homographies Hl?, HE and, for every pixel
of interest x; € Zy, we store H(ﬁxi, H,%Hoykxi = flik as well as €;;, in 2K x N matrices and
always can perform a sum of 2D points for projection of points.

For two images rectified to epipolar geometry, the first coordinate of the left hand side
of (4.3) can be formulated as:

(Hyk + eb/dr) @+ H 2y + Hy

3.3
Hyy

zi(dr) = abbreviated by

(4.5)
1
w(d) = v&, where v = —oo [Hyl +el/dn Hy} Hyj),
Hyy,
dp is the new value of depth in terms of H&Po and v is a 1x3 vector.

From (4.5) we can obtain depth (in the terms of rectified images) from the disparity
value j = xp, — x:

1
€k

d= .
(z+ j)HS‘,’i - H&,kx

(4.6)

We illustrate in Fig.4.2 fast ways of calculating 3D coordinates, depth values of points in
terms of original and rectified images as well as disparity values. The time-consuming process
for obtaining 3D points from point correspondences requires applying the DLT-algorithm.

IDirect Linear Transformation
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Figure 4.2: Reprojection equations for multi-view configurations. The time-consuming pixel-
wise triangulation is denoted by a dashed line.

4.2 Choice of characteristic points

If the original point cloud is too sparse and not distributed regularly in the image, we
need to obtain 3D coordinates for some additional points. The criteria of state-of-the-art
feature extraction procedures must therefore be modified in order to incorporate the given
knowledge of camera matrices. In this case, the search range for points is reduced by the one-
dimensional epipolar line as indicated by equations (4.3), (4.4) and (4.5). We are interested
in points whose neighborhoods have strong intensity changes in the direction parallel to the
epipolar lines.

We subdivide the reference image into small squares (e.g. 10 x 10 pixels) and select, for
every square, a point with a maximum response of some cornerness operator C(Z). For the
two-camera case, the authors of [29] considered the structural tensor (compare [46, 60]) A(Z)
for a given image as well as the term

C(T) = trace(A(T)) — 0.04 det(A(T)), A(T) = [ iéy %fy ] (4.7)

where 7/, are image gradients given e. g. by the Sobel operator, ~ is the optional Gaussian
smoothness operator. The response of the term C(Z) given by (4.7) cousists of points near
corners of the intensity image and so the probability of finding them in the second image
is relatively high. We use points obtained by (4.7) mostly in the binocular case. In order
to save computing time, we rely, instead of on the structural tensor, only on the gradient
operator, namely,

C(I) = (1 - )%+ aZZ, (4.8)

where o € [0,1] is a positive scalar needed to give more support to pixels with intensity
changes parallel to the epipolar lines. For example, if the  and y coordinates of the axes
in the images approximately coincide with the corresponding coordinates in 3D space and
the height of the sensor platform remains approximately constant, the angle between x-axis
and epipolar lines is usually small. Therefore a should be chosen close to 1; but even the
choice @ = 0.5 is reasonable. For multi-view configurations, we usually apply (4.8) instead
of (4.7). An illustration of the operator C(Z) for an infrared image is presented in Fig. 4.3.

If several points with known depth are available, we always compute the Delaunay trian-
gulation of these points in Zy and replace C(Zy) of (4.8) by C(Zy)C1(Zy), where Cy(x) is 0



50 4.3. Choice of initial values by means of triangular meshes

Figure 4.3: Top left: A reference frame of the video sequence Infrared. The other three
pictures represent log(C'(Z) + 1) for different choices of «: top right: a = 0.5, bottom left:
a = 0.2, bottom right: o = 0.8. As a consequence, horizontal lines are highlighted in the
bottom left image and vertical lines are highlighted in the bottom right image.

if the point x lies within the convex hull of these points and the area of the incident triangle
is smaller than a threshold (150-300 pixels in our experiments) and 1 otherwise; so new
points will be found in the areas not yet sufficiently covered. The points with response of
the cornerness operator below a certain threshold are excluded from further consideration.

4.3 Choice of initial values by means of triangular meshes

Our goal is to obtain depth values for characteristic points from the previous section. This
is done by the iterative algorithms of Sec. 4.4, which require initialization. If a characteristic
point lies outside the convex hull of points in Zy with available depth values or no points
at all are assigned 3D coordinates, a brute-force procedure consists of evaluating a suitable
data cost function (see Sec.2.2) for several values of an unknown parameter and taking the
one that leads to a global minimum. This approach is less sensitive to local minima, but
it is time-consuming. A faster method can be applied if several points have already been
reconstructed. We obtain a 2D triangulation T of points already available and consider the
support planes of each triangle in 3D space. The initialization consists of intersecting the
reprojection ray of a pixel x with the support plane of the triangle 7" incident with x. In the
following three sections, we describe 1) the process of obtaining the initial disparity (without
explicit calculation of the corresponding 3D point) in the two-camera case (Sec.4.3.1), 2)
the process of obtaining initial depth values from multi-view configurations (Sec.4.3.2) and,
finally, 3) the methods used for obtaining a suitable triangulation 7 and incidence relations
for pixels in Zy with respect to triangles in 7 (Sec. 4.3.3).



Chapter 4. Multi-view algorithms for depth maps estimation 51

4.3.1 Binocular configuration

Suppose two rectified images as well as a set of sparse point correspondences p; and p2 are
given. We can assume that the percentage of outliers among these points is low because
most of the outliers are supposed to be eliminated by robust methods in Step 1 of our
reconstruction pipeline (Sec. 1.2, Alg.1.1). We are interested in computing correspondences
of all points inside the convex hull of the points already available. Consider a triangulation
T of the point set and a triangle 7" C 7. Suppose that the triangle 7" is consistent with
the object surface, in other words, the surface enclosed by three vertices of T' can be nearly
replaced by the support plane of 7. Then for any point x = (x1,y) € T, the corresponding
point in the second image is given by:

Result 2: Let p1 7, pa,r? be triplets of corresponding points in two epipolarly rectified
images. The homography induced by 7" maps x; onto the point xo = (z2,y), where zo =
VX1, V= Top (f)l,T)*l, p1,7 is the 3 x 3 matrix formed by the columns of the projective
coordinates of p; and zg 7 is the row vector consisting of z-coordinates of pa 7.

Proof: Since triangle vertices pi 7, p2,7 are corresponding points, their correct loca-
tions are on the corresponding epipolar lines. Therefore, they have pairwise identical y-
coordinates. Moreover, the epipole is given by e; = [1,0,0]7 and the fundamental matrix
is F' = [e2]«. Inserting this information into Result 13.6 on p. 331 of [61] proves, after some
simplification, the statement of Result 2.

We wish to understand the nature of the parameter v, first mentioned in Eq. (4.5). A
scene plane 7 (visualized by one of the two red segments in the left hand side portion of
Fig. 4.4 connecting points with already available 3D coordinates) induces an image-to-image
homography H, which has three degrees of freedom [61]. These three degrees of freedom
stem from a plane equation and are stored in v. On the other hand, m can be defined by
three non-coplanar points, which can be interpreted as three vertices of a triangle 7" in space.
By Result 2, we have a relation that connects the vertices of T" and the vector v without
mentioning intermediate results 7 or H .

According to Result 2, the disparity in the second image is given by

. o 9 -1
JTx = VX —T1, ,V=2I27T (Pl,T)

which not only provides an initialization for the algorithms of Sec.4.4, but also a coarse
approximation for the disparity/depth map itself, especially in areas where the surface is
approximately piecewise planar and does not have many self-occlusions, as illustrated in
the example of Fig.4.5. To compute this approximation D7, it is sufficient to determine
and store the entries of v for each triangle; the disparities of any other point — with not
necessarily integer coordinates — are computed according to Result 2. An optional step for
improving the quality of the initial depth map is to fit planes by clustering the values of v
while considering neighborhood relations. This will be a subject of future work.

4.3.2 Multi-view configuration

From the already available 3D points, we can obtain the depth values by equation (4.1).
The depth value of a point induced by the triangulation is given by a linear combination of
depth values at the vertices of the corresponding simplex (epipolar line endpoints in Fig. 4.4,
left, for 2D and triangle vertices T' in Fig. 4.4, right, for 3D). In the two-dimensional analogy
of triangular interpolation, Fig. 4.4, left, the coefficients of the linear combination are given
by proportions U,V of lengths of small segments vs. the total segment length. In 3D, these

2Here xr,yr,Pr etc.are z,y,x-coordinates (respectively) of triangle vertices specified by a triplet of
integer numbers 7.
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C

Figure 4.4: Left: The idea of triangular interpolation (same symbols as in Fig.4.1). Several
already reconstructed points are denoted by red circles and the triangulation by solid red
lines. The initial estimation of dr x is retrieved from triangular meshes of already available
points (whose depths are indicated by red dashed lines) either by means of local homogra-
phies given by the plane 7 (as in Result 2) or by means of local barycentric coordinates of
x within triangle T (see text to Sec.4.3.2). To obtain the local barycentric coordinates, the
areas of small triangles, must be divided by the area of T', as depicted on the right.

Figure 4.5: Left: A reference frame of the video sequence House and a sparse point set
(resulting from the structure from motion algorithm [22]) with Delaunay triangles depicted
in red. One sees the abundant density of points in highly textured regions (e.g.on a tree)
and in the door lattice while the density of points in textureless areas (road and roof) is
relatively low. Right: Initialization of the depth map obtained from the depth values of
the points on the left and Eq. (4.9). There are also some outliers on the house walls visible
by sudden depth changes with respect to their neighbors. These outliers usually stem from
reflections in the windows.
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are proportions i/, V, W of the areas of the small triangles vs. the total area, as illustrated in
Fig.4.4, right, p. 52. This proportions are the the well-known local barycentric coordinates
U, V, W of x in T. Formally we have:

Gxbc Gabx

Gaxc
V= W=

dT,x =Udy + Vdy + Wdc; U=
Gabe Gabce Gabe

(4.9)

and a denotes the area of a triangle. Equation 4.9 shows the advantage of parameterizing
the 3D points according to their depth, not according to their distance to the projection
center. Similar to Sec.4.3.1, drx will from here on denote the depth value resulting from
triangular interpolation.

4.3.3 Choice of triangulation and establishing incidence relations

The remaining questions for this section are which kind of triangulation to apply (since we
already know, for example, from (3.6) that the results of the interpolation depend on the
triangulation) and how to assign to a point x € Zy the incident triangle in 7. The Delaunay
triangulation was chosen because of its easy availability in many software packages and
because the max-min principle allows excluding more (visually unpleasant) long and thin
triangles. There is one more reason — actually an answer to the second question — for choosing
Delaunay triangulations. Suppose we want to determine in which triangle T" € T a point
x lies. There exist algorithms that allow finding 7" in linear time when 7 is the Delaunay
triangulation. For example, one can calculate the vertex of the Voronoi-polygonization that
is the closest to x.

If the cardinality of the point set is large, using these algorithms for each point becomes
computationally expensive. An alternative, on which we follow up in this work, is to create
a segmented image where a triangle is labeled by its number. The points outside the convex
hull are labeled by —1. The process of labeling is very fast and it also has an advantage
that the barycentric coordinates or any other scalar value (for example, the area of the
incident triangle, mentioned in the last paragraph of Sec.4.2) can be stored for each pixel
once and for all. The result of this routine works quite well (especially if the images and
point coordinates are upscaled by a factor of 2 to 4, depending on image size) and with only
several mismatches near the border of rather skinny triangles.

4.4 Sparse tracking and triangulation

The task of this section is to enrich the point set, in other words, to find the correspondences
for new characteristic points obtained in Sec.4.2. From the resulting, extended point set,
we will again use Delaunay triangulation to determine the set of triangles consistent with
the surface.

4.4.1 Binocular configuration

We will first turn our attention to the binocular case. This configuration is rather unstable
for obtaining point correspondences because of spurious matches in the repetitively textured
areas and in the image regions near occlusions. We assume that the images Z;, 7 are rectified
to epipolar geometry and we search for point matches within corresponding epipolar lines.

As visualized in Fig.4.6, for a point x = (21,y) in a triangle T € T, the search window
can potentially be reduced to

WS = [Il + Tmin; T1 + xmax] X [y — &Y + Ey],
Tmin — max(jmin — &g, min(ST>), Tmax — min(jmax —+ Ex, max(sT)),

(4.10)
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where €, = ¢, are fixed scalars which cope for uncertainties in camera orientations, s are the
z-coordinates of at most six intersection points between the epipolar lines at y,y —ey,y + ¢y
and the edges of pi,7 and jmin, jmax are the estimates of disparity ranges which can be
obtained from the point coordinates already available.

min(sr) max(sr)

Figure 4.6: Matching supported by triangular meshes in binocular case. An exemplar trian-
gle T' from triplets of corresponding points p1, 7, p2,r (small red crosses) is depicted by thin
blue lines in both images. The search range for correspondences within 7' (a point marked
by a big red cross) can often be further constrained by taking into account intersection
points of epipolar lines (denoted for a selected point by a thick red line) with edges of T'. In
degenerated cases of occlusions in triangles inconsistent with the surface, this assumption
does not hold, but mismatches are usually excluded by applications of one of three filters
imposed on putative correspondences.

The search for correspondence points can succeed be means of any data cost function
mentioned in Sec. 2.2. In [29], it was the Normalized Cross Correlation (NCC, see Eq. (2.6))
between quadratic windows Z; (w(x1)) of size between 5 and 21 pixels and Zo(w(x2)). Ap-
plication of NCC is reasonable here since we can assume a piecewise linear transformation
between luminance values of both images, see (2.5). However, in order to avoid including
mismatches in the set of correspondences, three filters on the result are imposed before the
correspondence X1, Xs is added:

1. The luminance difference between the windows is bounded, i.e.
|71 (w(x1)) — ZTo(w(x2))|l; < wumax where w is the number of pixels in the window
and Umax = 15 in our experiments,

2. The correlation coefficient ¢y(x) = min;(x, j) of the winner is low enough (for example,
below the threshold 0.5), and

3. In order to reject ambiguous correspondences, cg must be low enough with respect to
the neighbors. Let ¢; be the best matching coefficients in the sub-windows

([z1 + Tmin; T2 — 2] U [2 + 2521 + Tmax]) X [y — Ly +1].

If the ratio co/c1 (best to second-best) exceeds a threshold (which is usually 0.9), the
match is rejected.

The coordinates of corresponding points can be refined to subpixel values. We first
check whether jx =~ jrx, which can be the case if T" is consistent with the surface. The
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disparity jrx is assigned to x if and only if |jx — jrx| < 1. Otherwise, the subpixel value
of j can be assigned according to one of the four methods discussed in [128]. For the sake
of computing time, subpixel coordinates for correspondences are computed according to
correlation parabolas (second-order curves fitted into the cost distribution function). We
denote by c¢_ and c; the correlation values in the pixels to the left and right of zo. The
correction term 29 in the z-direction is then given by

Cy —C—
2(c— +cy —2¢0)

:EQZIEQ—

In Fig. 4.7, new correspondences obtained from binocular sparse tracking are shown.

Figure 4.7: Two rectified images of the sequence Bonnland and a point set (marked in green)
detected by means of (4.8) in a window of 20 x 20 pixels in the left image. In the right
image, correspondences obtained by the local method are marked in red.

After performing this algorithm for all points, an additional heuristic can be applied
in order to reject mismatches. A point with a deviation of disparity values of more than
one pixel from all its neighbors is rejected. Here, the neighborhood relation is defined by
common edges within the triangulation 7. We efficiently apply this procedure once prior to
and once after the expansion.

Of course, the process of triangulation and matching can be carried out several times for a
narrower matching search space given by (4.10), varying (diminishing) step and (increasing)
window sizes until a new, refined disparity map is obtained. An alternative of using a
constrained Delaunay triangulation (see [119]) with seeded edges stemming from the old,
coarser mesh allows evaluating triangles of the coarser mesh with respect to the surface
consistency (to be defined in Sec.4.5) once for all, but has a significant disadvantage of
having many long, skinny triangles.

4.4.2 KLT-epipolar and simultaneous tracking policies fur multi-
view configurations

Obtaining point correspondences as described in the previous section usually works well for
data sets with many fronto-parallel surfaces. In the case of airborne sequences with many
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slanted surfaces (which we discuss in Chapter 6), a deviation of one pixel in the image space
(disparity) sometimes results in a deviation of several meters in object space. In order to
increase accuracy, we consider redundant information from several images by incorporating
into the standard KLT-tracking algorithm [94] the knowledge of camera matrices. Because
of a strong analogy in the calculations, we will concentrate on the case when the rectification
option opt.r of Sec.4.1 is set to zero in the explanations of this section. For a characteristic
point x, we have to compare the intensity distributions of Z(x) and Zj,(xx(d)), k = {1, ..., K'}
as in Eq. (4.3). The total error € is composed of ¢ = [cy, ..., ck] (the radiometric deviation
term) and (optionally) g = [g1, ..., gk (the uncertainties in the camera parameters). Here,
the radiometric deviation can be described by differences of gray values since changes of
luminance are small in neighboring images of the video sequence. Overall, we have

¢=[c Wg]", ¢y = I (w(xk(d) + grer)) — Zo (w(x)), (4.11)

where W is a diagonal weight matrix, w is a small window around x, Zj, (w(xx(d) + grei)
is computed by bilinear interpolation and eé- is the normalized perpendicular component to

the epipolar line ey:
2
et = | | e

The Jacobian of derivatives 7 is sparse and has the following structure:

7 Jio. 0
J = [g M{I]’ where JZ[jl,...,jK]T“f: . 7
0 ... Jk
80 3X d — (9C a
Tk = 6—; = [(Zk)« (Ik)y] gcg ), N (9—9: = [(Zk)= (Ik)y] eé7 I, = a_gz =1,

w is the number of pixels in the window w and xx(d) of (4.3) is differentiated by the
quotient rule. The system of normal equations can be solved for the parameter update
p = [Ad Ag]”, for example, by the Levenberg-Marquardt algorithm (with a small scalar
and identity matrix I):

(jTj+/\I) p=-J"¢,

followed by sparse matrix techniques for linear equation systems. In this work, the uncer-
tainties in camera parameters g; are not further considered. We thus have ¢ =c¢,J = J
and

Ad=-J"/(T"T1+N). (4.12)

In this iterative minimization procedure, the initial value of d is refined until a given tolerance
in parameter updates is achieved. In our implementation, we considered two policies of
optimization: In the KLT-epipolar policy, points are sequentially tracked from image to
image; pairs of images are optionally rectified and the error function is minimized according
to (4.12). Point correspondences are triangulated linearly as described in [61] and rejected
if the total reprojection error in pixels exceeds 1. Since Z; is usually chosen in the middle
of the subsequence, the algorithm is modified by forward and backward tracking. For the
second policy, simultaneous tracking, we project x into all images by (4.3) or (4.4) and use
Levenberg-Marquardt optimization. If the algorithm converges and the value of ¢ of (4.11)
without considering camera uncertainties lies below a fixed threshold e,ax, the point is said
to be tracked reliably and its 3D coordinates are computed from the depth value by means
of (4.2).
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4.5 Multi-view dense matching using triangular meshes

The task of dense matching is to assign a depth to each pixel of the reference image Zy. The
algorithms of the previous section cannot be applied to every pixel because of susceptibility
to converge to local minima for pixels in areas of homogeneous texture and because of a
high computational cost of a non-linear iterative minimization algorithm. Therefore, on the
one hand, the values of unknown parameters must be discretized; for the binocular case, the
discretization labels are given in the natural way by the integer disparity values. On the
other hand, smoothness assumptions must be used in order to propagate the information
from already reconstructed points or points where the correct depth value can be reliably
obtained to those textureless regions.

The initialization of the depth map with D from Sec. 4.3 can be used as a soft constraint
in order to bias the depth values of the pixels — especially in areas of weak texture — to
those resulting from triangular interpolation. To do this, we introduce a triangulation-based
smoothness term and a process of evaluation of triangles. In Sec.4.5.1, we will use Dy as
initialization for two non-local algorithms, namely the global algorithm of graph cuts with
a-expansions [81] and semi-global optimization used by [67] with Mutual Information as
cost function. Such depth maps obtained from pairs of images can be fused into the median
depth map described in Sec.4.5.2, which has the advantage of a much lower percentage of
outliers and points with non-assigned depth values. Since calculation of median depth maps
is computationally intensive, a framework of local and global simultaneous computation of
depth maps will be presented in Sec.4.5.3. Finally, we present in Sec.4.5.4 an approach for
automatic selection of the smoothness parameter A, which as we have learned in Sec. 2.3,
represents a trade-off between the properties of the data given a scene (photo-consistence
assumptions) and hypothesized properties of the scene (piece-wise smoothness assumptions).

4.5.1 Binocular configuration
Triangulation-based smoothing

As previously indicated, the evaluation of pixel costs is carried out by means of one of the cost
functions ¢(x,7) = Egata(X,7) of Sec.2.2 for every integer value of disparity. A significant
difference of this approach with many state-of-the-art approaches is that we extensively use a
large point set that is (after applying tracking routines described in Sec. 4.4) homogeneously
distributed in Zy. We assume that the non-occluded parts of the scene can be piecewise
approximated by triangles. The point is that, if a correct evaluation is made about which
triangles are nearly consistent with the surface and which are not, we will not only be able
to avoid mismatches in areas of repetitive patterns of textures and homogeneous texture,
but also be able to obtain depth values of all points within these triangles with subpixel
accuracy. This subpixel calculation, performed in order to avoid discretization errors (see
Fig. 4.8, left) actually does not depend on the choice of the cost function (see [128]) and it
replaces segmentation of images as in [14, 68, 77, 87].

In [28], the local smoothness term
ET(Xaj) = A(XvT)D(.]aTv X) (413)

is introduced. Here D can be practically any scalar nondecreasing function in terms of
|7 — jr.x|- The weight function A(x,T") should be zero outside the convex hull, reflect the
reliability for the coordinates of points at the vertices of a triangle 7" and become smaller in
its interior (as, for instance, in Fig. 4.8, middle and right). One possible choice, followed up
in this paper, is

9(x,T)

A(x,T) = Agexp (_T> , D(j,T,x) = —1 + min ('Jx_j%’x', 1) ) (4.14)
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where x € T, the amplitude Ay (which in the future will be denoted by A) and j, are two
non-negative constants and the descent parameter o € [0;00]. By g(x,T), we denote the
minimum distance from x to the vertices of T'. For jp, the value 2 is a reasonable choice. It
is clear that for small values of o, only the depth values for characteristic points are made
unlikely to change (which can be good when such points are provided by other sources —
such as LIDAR-data — and thus possibly lie in the weakly textured areas). On the other
hand, for ¢ — oo, the whole convex hull YT € T will be affected:

A if g(x,T) <1
Alx, T) = { 0 ot}glérwis)e for o =0,
and A if U T
itxeUT e
A T) = { 0 otherwise for o = cc.

Figure 4.8: Left: Discretization of depth labels deteriorates the visual quality of the dense
reconstruction even in the case of error-free matching. The problem can be solved by con-
sidering triangular meshes from 3D points already obtained rather than by increasing the
number of labels, because, in the latter case, mismatches appear due to limited resolution,
the smoothness term of (4.23) tends to lose its sense and computation cost increases dra-
matically. Middle and right: Weights A(x,T') from (4.14) propagated from already available
points with a small/large value of o (on the left /right, respectively) for the reference image
of sequence Tsukuba (see [115]).

In addition to the parameters A and o, a third triangulation-based parameter v € [0; 1]
is introduced in [28]. If the percentage of pixels consistent with the surface within a triangle
exceeds 7, then all pixels y of such triangles are assigned the value dry. The definition of
a pixel x consistent with the surface is given by the ratio

B co(x)
) = e ) e U] 7 DY (4.15)

where cp(x) = min;(c(x,j)) is the best cost value and [jr«] is the "floor value" of jrx
(the largest integer smaller than jrx). Point x is said to be consistent with the surface if
r(x) = 1 for a global algorithm and r(x) > 0.8 for a local algorithm.

Using similarity information of triangles in RGB-images

The influence of parameters A, o and v helps to overwrite, at different stages of the algorithm,
the disparity values of a set of pixels with those stemming from triangular interpolation. The
performance of this approach depends directly on the quality of the triangular meshes. In
the case of color images Z;, 7o, the authors of [29] propose a similarity analysis of triangles
based on color information and histogram evaluations: Each color contains values from 0
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to 255 and thus each color histogram has b bins with a bin size of 256/b. Let the number
of pixels in a triangle be N. In order to obtain the probability of this distribution and to

make it independent of the size of the triangle, we obtain for the I*h bin of the normalized
histogram
1 256 - 1 256 - (1+1
Hr(l) = N-#{p‘peTand 2L <oy <« 202D,

The three histograms HF, HE, HE represent the color distribution of T'. It is also useful to
split big, inhomogeneous triangles that are inconsistent with the surface into smaller ones.
To perform splitting, characteristic edges [30] are found in every candidate triangle and
saved in the form of a binary image G(p). To find the line with maximum support, the
radon transformation [37] is applied to G(p):

00 r=0

Glue) = Ri6w) = [ [~ Gw)Te, ~ wip where 6(z) —{ 0 otherwise

is the Dirac delta function and line parameters pTeg, — u, where e, = (cos ¢, sin ©)T is the
normal vector and u the distance to the origin. The strongest edge in the triangle is found
when the maximum of é’(u, ) exceeds a certain threshold for the minimum line support.
This line intersects the edges of T in two points. We disregard intersection points too close
to a vertex of T'. If new points are found, the original triangle is split in two or three smaller
triangles. These new, smaller triangles consider the edges in the image.

Next, the similarity of two neighboring triangles has to be calculated by means of the
color distribution. There are a lot of different approaches for measuring the distance between
histograms, see [31]. We define the distance between two neighboring triangles 77 and T» as
follows:

dst(T1,T2) = wg - d (Hf  HiL) +we - d (HS, HE)) +wp - d (Hf , Hy)) (4.16)

where wg, wg, wp are weights for the colors that are all set to be 1/3 in our method. The
distance d between two histograms in (4.16) is the SAD of their bins. There are two possible
ways to define neighboring relations on a set of triangles: two triangles can be declared
neighbors if they either share one or two common vertices (i. e. a common edge in this latter
case). The value of dst(77,7») is set to infinity if 77 and 75 are not neighbors.

In the last step, disparity values in the vertexes of triangles that are inconsistent with
the surface are corrected. For such a triangle T3, another triangle

T, = arg 71%1% dst(T4,T)

was defined in [29]. Here, 7o denotes the set of triangles consistent with the surface. If
area(T») > 30 pixels and dst(77,7) < 2, then T and T are likely to belong to the same
(planar) region of the surface and therefore the disparities of pixels in T} are recomputed
with v, according to Result 2. The more reliable, though time-consuming approach, not
followed in [29], consists of expanding the already precomputed cost function Egqtq(X) by
the recalculated triangle-based term E/. = A(x,T5)D(j,T1,x) from (4.13) and (4.14).

Refinement with global and semi-global optimization algorithms

The values of the function ¢(x) = Egatq(x, d) + Er(x,d), computed for each pixel and each
disparity value, can be stored in a S x M matrix A where S is the number of disparity labels
and M is the number of pixels. The result D, of a local algorithm assigns to the pixel x; a
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Figure 4.9: Top row, left: Initialization of the disparity map created from the triangular
mesh. Top row, right: Result of correction of triangles as suggested in [29] for a pair of images
from the sequence Tsukuba. Bottom row, left and right: Results of semi-global estimation of
the disparity map without and with initialization of the disparity map, respectively. Right:
Color scale representing different disparity values.

label corresponding to the minimum value within a column 7 of A (followed by y-smoothing of
the triangles consistent with the surface). Two possibilities are now opened up: to use either
A or Dy, (or alternatively D) as an initialization of a (semi-)global optimization algorithm
with one of the smoothness energy terms of Sec.2.3. Before we go into the details of these
two kinds of optimization, we consider two examples that justify each of two approaches. An
example of advantages of initialization with D7 is in the case of unclear luminance relations
(such that A cannot be rendered). By calculating intensity correspondences with D (see
[29], Sec. 2.4), one can determine values for the mutual information matching table M I(m,n)
of Eq. (2.8) and does not have to consider image pyramids. This helps save computing time.
On the other hand, suppose we have several very exact (e.g., LIDAR) 3D points. In this
case, we use a very high value of A and a low value of ¢ in (4.14) in order to fix the disparity
values of the ground control points in A and propagate these values to neighboring points
using smoothness terms.

As explained in Sec. 3.1.3, the main feature of the algorithm of [81] is an a-expansion
that expects a (depth) image D as input. The output D’ is either identical with D or some
pixels of D' are assigned the value «. In other words, if we have a good initialization,
the energy computed at the beginning already takes on a large negative value and so, on
average, fewer expansion moves need to be taken. This allows reducing computing time. On
the other hand, initializing the semi-global optimization with a result of D allows omitting
image pyramids without significant visible and quantitative adverse affects on the results,
as illustrated in Fig.4.9, bottom.

The second alternative, namely, to consider A, works in a slightly different way and will
be covered for the multi-view case in Sec.4.5.3 on the examples of dynamic programming
and semi-global optimization.
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4.5.2 Median-based depth estimation

A depth map produced in the previous section usually has several outliers and artifacts, es-
pecially in areas of reflections, occlusions, and homogeneously textured regions. To increase
accuracy, it is necessary to use all available information from several images and several
disparity maps obtained from Zy and 7y, (k =1, ..., K).

One can ask why it makes sense to compute pairwise depth maps from pairs of frames in a
subsequence of the given video sequence if a multi-view reconstruction algorithm (presented
in Sec.4.5.3 below) that can handle all images simultaneously is available. The answer is
that the method described in this section has a possibility of self-control since, for pixels
without reliable depth, undefined values are likely to occur while the algorithm of Sec.4.5.3
has the advantage of being fast although, since geometric control is not given (that is, the
algorithm always delivers some depth map), it is possible to have some outliers because of
radiometric irregularities in the reference image, low accuracy in the position of cameras,
etc. We can compare the ideas behind the algorithms of Sec4.5.2 and Sec.4.5.3 with the
epipolar and simultaneous tracking of Sec.4.4. The second important point is that the
majority of the (semi)-global state-of-the-art methods available online (such as the graph-
cuts method, belief propagation, etc.) works only for rectified image pairs. If we search for
a certain advantage of these algorithms and are interested in obtaining a stable result with
few outliers, we must be able to work with several disparity maps from a set of images rather
than with an oriented subsequence (with external data provided by camera matrices). The
situation covered in this section is schematically visualized by Fig.4.10, left.

The algorithm starts by computing depth values dj x = dj, for a pixel x € 7, from
disparity maps between Z; and Zj; obtained in the previous section and use the chain of
equations (4.6) — (4.2) — (4.1) (compare Fig.4.2). But which of these values dj should be
chosen? Clearly, if a cluster with several values of dj can be identified, we can assign to dx
the median of these values. In other words,

d = dx = mediany {dj || — d| < €} (4.17)

for some positive e. Conversely, if for example, |dj, — d}| > € for all 1 <k < k' < K and no
prior information (such as the confidence of disparity maps or information about whether x
is consistent with the surface) about the depth value at x is available, the depth at x is left
undefined.

Equation (4.17) is recursive. In order to identify the set of values in a cluster, one can
iteratively approximate d by the weighted average

_ 1 .
A= Zk: dpwy with W = Zk: Wi (4.18)

and with initial weights wy = 1 if dj, is not occluded and 0 otherwise. In the next iteration,
we set wy, = w(dx — d) ™7 where 3 is a positive scalar (8 = 2 is used for our applications).
After the last iteration, we compute d from the inliers among the values of dj, by (4.17) and
accept this value when the number of inliers is not smaller than max(K/3). Several remarks
can be made here:

1 If dpx = D7(x) is available, it can be used as an additional observation in Eq. (4.17)
and (4.18). The counter is now K +1 and the initial weight for the term dr x is larger
than 1 since the probability that the triangle incident with x is consistent with the
surface is rather high.

2 Since the points in the background are obtained with lower accuracy than those in the
foreground, one replaces the ¢ on the right of (4.17) by ed. Note that this right-hand
side only influences the results of the final iteration.
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3 A total of 3 to 5 iterations can be used in the algorithm. Because of the structure
of (4.18), the loop over the pixels can be avoided, so the computation of weights and
d-values can proceed simultaneously. Therefore, the time for computing the median
depth map is comparing with the time for computing depth maps.

The last remark concerns the choice of initial weights. Especially in the case of a low
number of views, it makes sense not to set all wi = 1, but to obtain, for one single pixel
x, the confidence of the depth value at x. The confidence is expected to be high if the
cost function has a single sharp minimum and low if there are several local minima (in other
words, there are several plausible possibilities to match x in the corresponding epipolar line).
The confidence map is calculated in a manner similar to that used in [111]:

min (c(x, dy) — c(x,d), 0)2 B

2 bl

Cox) = | S exp{ -

d#dy

. (4.19)

where o is an empirically determined constant. We use the confidence function if the number
of available views is low and select the match of highest confidence.

Figure 4.10: Left: Median-based computation of depth maps. In order to find dy, one can
take into account depth values dx 1,dx 2 resulting from images 7,7, and also drx (since
these values lie in a cluster specified by the ellipse on the left). For the point y, only
dy 2,d7,y must be taken into account and dy; is an outlier. Right: Schematic visualization
of simultaneous multi-view dense estimation. Pixels have to be assigned labels using cost
and smoothness penalty functions. The triangulation from the enriched set of points is
shown by red circles and lines. A forbidden configuration of interactions {(x,x1), (y,y;)}
should be excluded either by adding an occlusion term as in (2.9) or by modification of the
aggregation function.

4.5.3 Fast simultaneous computation of depth maps for multi-view
configurations

Discretization

First, the equations (4.3) and (4.4) of Sec.4.1 must be modified by discretizing d or t into
labels d; and ¢;, respectively; here, j =0, ...,.S and S+ 1 is the number of bins (labels). The
discretization chosen is inverse-linear,

S

d; =
! (S _j)/dmin +j/dmax
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(schematically visualized in Fig.4.10, right), which is more suitable than the linear one,
namely,
dj = ((S - j)dmin + jdmax) /Sv

because, in the inverse-linear case, the projections of the corresponding 3D points lie nearly
equidistant at epipolar lines and so the decrease of the resolution is treated in a more
natural way. The resolution of depth for points near the camera is then higher (and so is the
accuracy of the depth computation) than in the background further away from the camera.
The number of labels corresponds to the length (in pixels) of the longest epipolar line after
all available points are projected into images 71, ..., Zx by means of Eq. (4.3) using values
dmin, dmax (0r, respectively, Eq. (4.4) and values of ¢yin, tmax)-

Choice of data and aggregation function

Analogously to binocular configurations, cost functions for each depth label and each pixel
must be computed. As a default cost function, the truncated SAD (2.4) is used. Exper-
iments were also carried out for NCC as in (2.6) and MI as in (2.8). In contrast to the
situation with the image pair rectified to epipolar geometry, where the cost evaluation pro-
ceeds by fast convolution methods between windows of type (4.10), we need here also the
inner loop of depth values (labels), which presupposes extracting quadratic windows around
reprojected (e.g. by (4.4)) points by means of bilinear interpolation as in (3.5) (actually, bi-
linear interpolation is performed if and only if the option opt.i is activated; otherwise xj(d)
is determined by rounding procedure). Between this inner loop over depth values and the
outer loop over pixels, there is a loop over interactions, i.e. which pairs of windows must be
compared to each other. Since there are K (K + 1)/2 possible kinds of interactions i = (-, -)
and we want our algorithm to be linear in the number of views, a subset of ¢ must be selected.
One possibility, followed up in the current implementation, is to aggregate costs between
the reference image Zp and other images. This choice differs from [79] which proposes to use
neighboring images. The latter approach, we admit, could help us to treat all images sym-
metrically and avoid error resulting from radiometric irregularities in the reference image
(reflections, small moving objects, dead pixels, etc.), but we decided, similar to what was
done in [111], to compute costs from the reference image to other images, because in doing
so, a higher value of S and therefore a higher depth accuracy can be obtained. In [111], the
minimum of sums of data cost functions on the left and on the right of the reference image
has been chosen. An occlusion term, important in [79], can be omitted in the majority of
practical situations if the choice of the cost aggregation function is robust against occlusions,
in which case not every pixel x € Zy must be seen in all images 71, ..., Zj, but, at the same
time x is encouraged to be observed in a large number of images (see Fig.4.10, right). For
example, in [22], where care was taken to exclude all triangles inconsistent with the surface,
it was enough to consider the sum of costs ¢, over k. For a more sophisticated choice of
aggregation function, we denote by K (emax) the number of interactions (of x) where the
cost function does not exceed a constant enyax. Now, for example, the aggregation function
"average error per interaction"

Ck|Ck < €max
Edata(x) = Zk {K|(€ ) }

also tends to be small if only for a few images ¢ is small at d, which is of course, unstable.
Therefore we used positive constants b, epax and Kg to increase the denominator for large
K (emax) and the aggregation function chosen in this work was

Zk {Ck|ck < 5max}
Edata(xu d) = (1 + b) (K(amax) — K()) + 1
400 otherwise.

if K(Emax) > Ky (420)
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The concept of dense pixel matching is explained in Alg. 8.1 of the Appendix.

Considering triangular meshes

Equations (4.13) and (4.14) for the triangulation-based term can, as in Sec.4.5.1, be written
in terms of depth instead of disparity. We again use the triangulation-based smoothness
term

Er(x,d) = A(x,T)D(d,x,T), where (4.21)

A(x,T) = Aexp (—M> , D =—14min <Mx_di’x|,1) (4.22)
o 0

with constants A, o, do and function g(x,T) defined analogously to (4.14).

The values of the function Fg.tq(Xx,d) + E7(x,d), computed for each pixel and each
depth level, are again stored in a S x M matrix A. Similar to the binocular case, the local
algorithm, in order to obtain dx, compares the lowest cost within the column ¢ (that is, j =
arg minj A(j’, 1)) with costs at rounded dr x, and assigns dx, = drx, if T' is consistent with
the surface and d; otherwise. Furthermore, almost any algorithm for non-local optimization
mentioned in Sec.3.1.3 can now be applied for the matrix thus obtained. We show two
examples of the non-local optimization in the next section. After a depth level dyx for a pixel
x (a result of a local or global algorithm) has been retrieved, we can compute cost functions
at dx and dpx; if the ratio r(x) as in (4.15) is below a threshold, the pixel x is marked as
consistent with the surface. The percentage of pixels consistent with the surface allows a
decision about triangles: if the percentage exceeds a constant scalar -, all pixels y of such
triangles are assigned the value dry. The influence of the parameters A, and v will be
evaluated in Sec. 6.3 along with other items.

Two examples of non-local optimization

As two examples of non-local optimization, the 1D optimization algorithm of dynamic pro-
gramming [10] and semi-global optimization as in [67] were considered. For both approaches,
Esmootn 18 chosen as in [67] (and, as in Eq. (2.11) on p. 24, dg=1):

Esmooth(xaj) = )‘1 . Nx(l) + )‘2 : ZNX(j)7 (423)
j=2

where A1 and Ay with A\; < \g are penalties for depth discontinuities and Ny () is the number
of pixels y in the 4-neighborhood of x for which the absolute difference of depth/disparity
values at x and y is equal to j. This choice of Eg00tn is reasonable, because penalty terms
monotonically increasing with differences of depth levels result in over-smoothing occlusions.

In the case of dynamic programming considered for an (epipolar?) line with M pixels, the
data cost matrix A; ; is denoted, as done previously in Sec. 2.2, by [¢(1, ), ...c(M, 7)] for each
value j = 1,..., 5 and the smoothness cost matrix with entries is denoted by c¢4(j1, j2), ...,
¢s(jmr—1,7nm)- The smoothness term can also depend on the intensity levels of relevant pixels
(see (2.12)) and should be denoted by ¢s(jar—1, i, Zo(M — 1), Zo(M)). However, this slight
misuse of notation does not lead to misunderstanding and is, therefore, not critical. The
task is to minimize

M M-—1 M-—1
Zc(ivﬁ) + Z cs(jim1,Ji) = Z (c(i, i) + es(di-1, i) + (M, j)

3QOriginally, dynamic programming is used for a rectified stereo pair, so that in our applications, epipolar
lines coincide with horizontal (scan)lines if and only if opt.r = 1
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over all S™ possible configurations of j;. This is carried out by computing and storing the
best path P(i,j) from 1 to 4 for each value of j;11, as explained in the Alg. 8.2.

The complexity of Alg.8.2 is actually O(MS?) (instead of the SM complexity of the
brute-force procedure which considers every configuration), because computing C(j) by
minimization over j’ is itself an O(S) procedure. By a suitable choice of smoothness function,
one can achieve a complexity of O(M S). Such a smoothness function A must depend as little
as possible on j (although dependence on Z, as in (2.12), is not a problem). For example,
in order to compute Cy(j) with a disparity term given by (2.10) or (2.12), we need only
to compare C(j) and C(P(j)) + A(4)). For the smoothness term mentioned in (4.23), four
values of must be compared (see (4.24)). The generalization of the Alg.8.2 for (2.15) (in
which the smoothness term involves j;, ji+1, and j;12) is straightforward. The difference
with Alg. 8.2 is just that we need to compute C1(j + 2) in order to know the best path
P(i, ). For example in order to know the optimal choice of the label j; for every value of
73, we must compute

II]lel (e(1,41) +¢(2, 42) + Mg + 73 — 252(),
1

for every j, and j3, a procedure of O(MS?) complexity. Also in this case, of course, the
complexity can be reduced for special kinds of depth terms.

As for the semi-global optimization algorithm, the NP-hard 2D problem (2.9) was solved
by approximating the term Egp,o0tn. As stated in [67], at least eight paths (two horizontal,
two vertical and four diagonal) are necessary to provide good coverage of Zy. Throughout
our experiments, up to 16 paths are used. A global accumulation of all possible paths is
replaced by paths emanating from each pixel along a straight line. Suppose we have a pixel
x and a path direction r such that the previous pixel x — r is denoted by y. With (4.23),
the path cost at x at depth label j in the direction r is recursively defined by

This recursive formula is initialized by corresponding values of A at the beginning of all
paths. Because the value L.(x,j) always increases as the path is traversed, precautions
must be taken to bound L. Thus, (4.24) is extended to

Le(x,5) = Ly(x, ) — min Le(y, j°). (4.25)
Jl

Since minj L.(y,j’) is constant for all j, the position of the minimum-cost depth does not
change and L, is bounded by L, < €42 + A2. To compute the costs for a depth, the paths
for all computed directions r are summed up to

C(ij) = ZLr(ij)'

The depth label dx is then chosen as the label that yields the lowest overall cost: arg
min; C(x,7). Since 16 paths are used in our experiments, the upper limit of C' is C' <
16(emaz + A2). By scaling the entries of the data cost matrix so that both €4, and Ao are
bounded by 2048, the size of C' can be limited to 16 bits and thus a 16-bit integer vector is
used throughout the computations. At the last step, outliers (which can sporadically emerge
in the regions between the paths) are eliminated by means of a median filter. The subpixel
calculation can proceed by fitting a correlation parabola to the values of the cost function,
as we explained at the end of Sec.4.4.1.

The semi-global optimization algorithm also has complexity O(MS) (or, to be exact,
O(M Sr) where r is the number of paths) for our special choice of cost function. In general,
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its complexity is O(MS?r) (since the second summand of (4.24) is, in the general case,
min[L(y, j') + ¢s(j,7’,x,y)] over j'). Applying semi-global optimization helps eliminate
streaking artifacts without significant increase in computing time. It will, therefore, be our
default method for the reconstruction pipeline.

4.5.4 Choice of smoothness parameters

As for the choice of smoothness parameters, the results presented in the next chapter show
that the difference Ao — A1 should be bounded away from zero, since otherwise the algorithm
prefers one big jump of the depth to its slow, continuous change that is characteristic for
smooth surfaces. As a result, the depth maps become too noisy. On the other hand, if
Ao > Aq, the results easily become over-smoothed near occlusions and the deviations of
depth in these areas become, consequently, very high. The best results were achieved for
the ratio Aa/A1 = 2 to 3. The choice of A; is not trivial, but also not critical, since it is
typical for global algorithms to produce results of comparable quality for quite a wide range
of smoothness parameters. Due to equations (4.1) and (4.23), however, it is clear that A;
must not depend on image size while its order of magnitude must depend on the differences
of entries in the data cost term.

The following strategy is applied: after the local algorithm is performed and a label j is
assigned to a pixel x € 7y, we calculate the term

Ci(x) = [e(x,7) = e(x,5 + D[+ [e(x,j) — e(x,5 = )| =

Z |C(X7j) —C(X,_;)l

lj—il=1

(4.26)

in order to estimate, quite rigorously, the confidence of x. This quantity C;(x) measures
how well the cost function at d; outperforms the cost functions of the previous and following
labels, so that the depth value of x can be changed (oversmoothed) by A;. The quantity
Ci(x) is a special case of

Co) = =3 Jelx, ) — elx, ). (4.27

J#i

and a simplification of the term C(x) of (4.19). Here again, we denote by c(x,j) the value
of Egata(x,j) +E7(x, 7). For illustration of this, see Fig.4.11.

Now let us assume that typically not more than 10 to 20% of all points are characteristic
enough that the depth can be estimated with a precision of one (depth or disparity) label
(since the vast majority of points lies in areas of rather weak texture). Then it is sufficient

to take a value of A\; corresponding to a quantile between the 80th and goth quantiles of
the histogram of {C;(x)|x € Zp}. Due to discretization effects, one could consider a lower
quantile value Ca(x) of (4.27).

To explain the reason for our assumption, we go one step further and take into account
pixels corresponding to smooth surfaces in object space. These are the pixels whose depth
values we should be able to change by applying the smoothness term and which often lie
in homogeneously textured areas. The question how many pixels we must be able to over-
smooth is equivalent to the question how many pixels lie in homogeneous, topologically
connected regions. This is the reason why the smoothness parameters the data set Tsukuba
will turn out to be somehow lower than for data sets that are typical for our applications:
there are not that many homogeneous regions in the reference image.
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L TORLE T

Figure 4.11: Confidence maps C;(x) (left) and C2(x) (right) from equations (4.26) and (4.27),
respectively, of the data set Tsukuba. The reference image is depicted, for comparison of
textured and homogeneous areas, in Fig. 6.4, p. 90, on the right.
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Chapter 5

Shape reconstruction

The input of a shape reconstruction procedure consists of a 3D point cloud sampled from one
or several depth maps obtained, as described in the previous chapter, from the corresponding
reference image(s). The desired output is a discrete set of 3D points as well as triangles
connecting these points. Actually, there are two tasks that face us here. First, we consider
the urgent need for "close-to-real-time" algorithms and, consequently, their incremental
character. In this case, we must make use of several reference images with corresponding
depth maps and generate from them triangular meshes "up-to-now" without considering the
global character of data. We describe the local incremental fusion of tessellations (LIFT)
algorithm in Sec.5.1. The second task will be unifying these results into a global mesh.
To do this, we apply methods discussed in Sec. 5.2 and Sec. 5.3. Here the L;-splines-based
procedure of Sec. 5.2 is considered as our default method and represents the main innovation
of our work. For comparison of the results on synthetic and real data, we implemented
several methods mentioned in Sec. 3.2, namely, alpha-shapes, iso-surface extraction, grid-fit
and conventional splines, details of which are reviewed in Sec.5.3. Finally, the texturing
procedure, described in Sec. 5.4, consists of choosing a reference camera for each triangle of
the mesh.

5.1 Local tessellations from depth maps

The goal of this section is the description of an incremental procedure for compressing the
data stemming from one or more reference images. We discuss first a method for tessellation
of one reference frame (Sec.5.1.1). If the number of reference frames is more than one, a
naive approach is to consider the union of all tessellations. However, since such a tessel-
lation usually contains spurious triangles, it is better to consider geometric constraints to
remove these triangles. The local incremental fusion of tessellations (LIFT) algorithm will
be explained in detail in Sec. 5.1.2.

5.1.1 Tessellation from one reference frame

We start our treatment of meshing with a minimum of information. Suppose we have one
reference view and the corresponding depth map D. If the depth map was retrieved according
to Chapter 4, we already have a list of triangles consistent with the surface and can restrict
ourselves to this list only. Since the vertices of these triangles were obtained in the process
of (epipolar or simultaneous) tracking, some of them (especially those in textureless areas)
get lost. As a consequence, the triangles have different sizes and, since many vertices lie in
the textured areas, the number of triangles becomes unnecessarily high. In the rest of the
section, we are concerned with compression and homogenization of the point set.
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Starting from one single depth map, the simplest way to create a triangular mesh is to
consider a canonical triangulation (see [105]): we subdivide the image into small squares of
q % q pixels and further subdivide each square by one of its diagonals into two triangles. Two
improvements of this approach are proposed and applied. The first improvement consists of
choosing mesh vertices according to their accuracy. For every canonical vertex x, we search,
in a small window (some ¢/4 to ¢/3 pixels) around x, for a point y with the maximum value
of the confidence map (given, e.g., by (4.27)) and replace x by y. The second improvement
consists of subdividing a triangle with depth discontinuities into two smaller triangles along
its symmetry axis. This kind of subdivision is very efficient (see Fig.5.1) and preserves the
angles of triangles. We have found out that the condition

dmaX(T) - dmin(T)
dmin(T) + d

(where dimax(T), dmin(T') are maximum and minimum depth values of a triangle and d, € are
positive constants) is a reasonable criterion for subdivision. The maximum possible order
of iterative subdivisions (also called generation of triangles) is set to 4. In order to avoid
cracks in the final surface (that result if a 2D mesh vertex is an inner point of an edge,
because the corresponding 3D point is not necessarily incident with the an edge connecting
the 3D endpoints of this edge) new vertices must be inserted, as in Fig. 5.1, bottom right.
The process of inserting new vertices and subdividing triangles (which actually have passed
the criteria mentioned above) to avoid cracks is called restricted (top-down) quadtree trian-
gulation (RQT or RTDQT) and was introduced in [108]. The report [108] and the sources
given there provide only hints about how to compute RTDQT. We describe in the two fol-
lowing paragraphs the basic terminology and the complete procedure for implementation
of RTDQTs from the initial, canonical triangulation. For completeness, the procedure is
formulated as pseudo-code in Alg. 8.3 of the appendix.

>e€

Figure 5.1: Left: The depth map of a reference frame from the sequence Infrared and the
canonical triangulation of vertices corrected by the confidence map with pyramid-depth level
2; triangles with jumps of depth are shown in red, those without jumps in green. Top right:
The edges and vertices of a part of the left image marked by the yellow rectangle. The cracks
in the final surface are clearly visible. Bottom right: No cracks are visible if a restricted
triangulation is performed.

The different levels of details for vertices and triangles correspond to generations g. On
the coarsest level, g = 0, for a vertex at the midpoint of the largest edge of such a triangle,
g =1 and so on (see Fig.5.2, left). The generation of a triangle is given by the generation of



70 5.1. Local tessellations from depth maps

its youngest vertex, such that we can define for a triangle T' (if g(T') > 0) its parent and two
children. If the edge e of T opposite to its youngest vertex is not incident with the margin
of the (rectangular) domain, then the triangle of the same generation sharing e with T is
called, the friend of T'. On the coarsest level, g = 0, these are just triangles which share
the diagonal of the same rectangle. Note that two friends are not brothers (i.e. children of
the same parent) unless g = 0 and that it is easily possible to compute for every triangle its
friend by comparing the indexes of its vertexes.

The activity status s of a triangle can be active (s(T') = 1), if it is in the list, non-active
(s(T) = 0), if a triangle of an older generation incident with 7" is active and lost(s(T) = —1)
if there is a chain of children of T ending up in an active triangle. Splitting a triangle T'
can always be performed by setting its status to 0 and the status of its children to 1 (see
procedure Split(T) of Alg.8.3). The RTDQT has the property that the generations of two
triangles sharing the same edge differ at most by one, in other words, for every active triangle,
either its friend, or the friend’s parent, or its friend’s child, is active (Alternatively, no vertex
can be the inner point of a triangle’s edge). The main idea of the procedure rtdqtSplit(7T),
where T is the triangle to be split, is to identify the friend of 7T". If this triangle is active, it is
split. If it is non-active, then, by definition, its parent P must be active and the procedure
is repeated for P. Even if the algorithm is recursive, it will converge since the generation
of P is necessarily lower than that of 7" and the moment must come when g(P) = 0. The
process of refining starts with the canonic triangulation on the coarsest level. From level
to level, the list of active triangle satisfying a splitting criterion is determined. For every
triangle T of this kind (unless ¢g(T") > no where ng is a fixed number of maximum pyramid
level), the procedure of rtdqtSplit(7T) is performed and so a new set of active triangles is
generated.

,,,,, T
' B . B = friend(T)
P = pareni(3)
* )

Figure 5.2: Left: Canonic triangulation of an arbitrary rectangular domain. The triangles
of generation 0 are marked by crosses, for generation 1, by diamonds and dotted edges and
for generation 2 by small stars. For four exemplar triangles marked in green, we show their
children as well as their friends marked in red. There is no friend for a triangle near domain
margin. Top right: Cracks are likely to emerge if restricted triangulation is not carried out.
Bottom right: To perform the algorithm, one has to identify the friend B of a triangle T" to
be split, and if B is not active, then the same algorithm must be applied to the parent of B.
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5.1.2 Tessellation from several reference frames

The union of local triangular meshes from different reference frames, as the output of the
previous section, can be now considered. However, several triangles inconsistent with the
surface may be included in the result. Also, there are many redundant triangles that emerge
because the different reference images have a partial overlap (see, for instance, images on
the top of Fig.6.3, p.84). After a local tessellation for the new reference view (denoted by
Z.) has been calculated, it is possible to reject several triangles that were incorrectly or
redundantly assigned to the list of triangles consistent with the surface. In the following
paragraph, we review the main ideas of the local incremental fusion of tessellations (LIFT)
algorithm, which is also illustrated as pseudo-code in Alg. 8.4, p. 145.

From each pixel x of the current reference frame Z,,, we set the value of the boolean
variable status to 1 and project the corresponding 3D point X (extracted by means of the
corresponding depth map D,, at x) into the other reference images 7, ..Z,,—1. (In [22],
double indexing Z,, , ...,Z,_, was used to differentiate between the local approach within a
subsequence and a global approach, where results from different subsequences are fused into
a global mesh). Since we have depth values for these points (xj), we can compute the error
term

5(X) = d(X) — ’Dk(xk)

with depth d(X) computed from P} according to (4.1). For a positive constant e (tolerance),
d(x) > ed(X) means that X occludes some point of Dy; in this case, the occlusion counter
o(T) for the triangle T incident with x is increased. On the other hand, [6(x)| < ed(X) means
that the pixel x was already processed at an earlier stage, so, in this case, the redundancy
counter r(T) of T is increased. In either of these situations, the variable status is set to be
0. After all pixels of the new reference image has been processed, we delete all triangles
for which either o(T")/a(T) > 0.1 or (o(T) 4+ r(T))/a(T) > 0.99 holds. Here a(T") (area
counter) denotes the number of pixels processed in every triangle. The starting values for
the counters for a(T"), r(T),o(T) are all set to 0 for every triangle T'.

A modification of this algorithm can be also found in [22] and it was originally applied
on the Delaunay triangulations from the point sets in the reference images. The most
significant difference between Alg. 8.4 and [22] is the following. Since Step 2.2 of our pipeline
was completely omitted in [22], the evaluation of triangles took place within LIFT. For the
case status = 1 after the inner loop in Alg.8.4, the local approach with the aggregation
function ||cxs (x)|| taken over neighboring images k' = m £+ 1, m £ 2, ..., (not other reference
images!) was performed; here ¢, denotes the SAD-values from either gray or color values in
a small window. If the value of the aggregated cost function exceeds a threshold, the pixel
is declared as inconsistent with the surface. After all pixels of the new reference image have
been evaluated, also triangles with a high percentage of pixels inconsistent with the surface
are deleted as well. This has the advantage of performing a geometric and image-based
evaluation on triangles in one step but the disadvantage of potential wrong classification of
triangles. For example, large triangles from homogeneous, untextured regions are biased to
be included into the list while triangles near occluded regions are biased to be excluded,
since the aggregation function near occluded regions is less robust than the one chosen in
(4.20).

We now refer to other differences between Alg. 8.4 and [22] as well as extensions of the
LIFT algorithm. Fitting dominant planes into local tessellations and correcting points in
the direction of normal vectors of these planes is a meaningful preprocessing step. The
computation of dominant planes proceeds by means of the RANSAC procedure with the
Ty,q-test (see [95]) until a sufficiently large consensus set is obtained. After the 3D points
of this set are projected onto the plane according to (3.3), they are deleted (temporarily)
from the point list and the procedure begins again. This has an advantage, beside improved
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position of 3D points, that triangles lying in one of the dominant planes can be preferred
by decreasing the maximum threshold for percentages of redundant and occluded pixels
(o(T)/a(T) and r(T)/a(T), respectively) within them. In order to reduce computing time,
the set of test points can be diminished from all pixels of the reference frame to the 3D points
available up-to-now. This idea is proposed by [99]. Similar to [111], we also undertook efforts
to avoid inconsistent meshes (i. e. those locally non-homeomorphic to a plane) and to reduce
the number of vertices by fusing vertices of the new local tessellation with those of the
previous one if they are too close. The closest point in the previous mesh is computed in the
Hausdorff metric calculation (covered in Chapter 6). As the final step, we optionally delete
triangles of the previous mesh that occlude the new mesh.

Clearly, for an increasing number of frames, it becomes quite expensive both to keep
all reference images with the corresponding depth maps in memory and to process the new
reference image while recalling all available reference images. The computational cost of such
a procedure depends quadratically on the number of reference images. More sophisticated
methods (for example, octree decomposition of the 3D space to be reconstructed) can process
all tessellations simultaneously. These methods will certainly be a topic of future work. In
the current implementation, in order to keep the cost of the procedure linear, we keep
and process only a fixed number, between 2 and 5, of previous local tessellations. Other
important parameters of the algorithm are the following;:

1. The number of images in the subsequences is 5 to 7, as we will see in Chapter 6.

2. The number of frames between the frames within a subsequence varies between 2 and
12, depending on the sensor’s velocity (see also Chapter 7).

3. The distance between subsequence in the current implementation is chosen so that two
successive subsequences almost overlap, i.e., the number of frames between the last

frame of the k' and the first frame of k + 15t subsequence is small.

4. The value of ¢ (from Sec.5.1.2) of the resolution on the finest level is 10-20 pixels.
Consequently, it is 40-80 pixels for the coarsest level. The number of triangles in a
tessellation in a subsequence usually does not exceed 10000.

5. Finally, the value of € in Alg. 8.3 depends on the distance from the camera center to
the object points, the baseline, and the focal length. Mostly € = 0.05.

The procedure described in this section allows obtaining a close-to-real-time reconstruc-
tion in the form of (quite regularly distributed) sample points in the areas covered up to
now and triangles that connect these points. This concept is sufficient for the majority
of applications. However, the visual quality of models thus obtained is unfortunately not
always sufficient. Two causes of insufficient visual quality are holes and other topological
inconsistencies in the triangular mesh and noise in the triangle vertices. In order to solve
these problems, we will consider the whole point cloud in the next sections.

5.2 L;-splines-based procedure

The core element of our algorithm for shape reconstruction is the L;-splines-based procedure,
also described in [24]. Starting with a 2D tensor-product domain (u;,v;),7 = 0,...,I,j =
0,...,J, our main task is to obtain a differentiable homeomorphism in the form of a cubic
spline that approximates the point cloud. Explicitly, this means that the surface to be
reconstructed must be homeomorphic to a plane. This puts restrictions on the topological
variety of surfaces, but it is a plausible assumption for a flying sensor covering the urban
terrain and thus eliminates, for a vast majority of cases, a large source of errors.
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Since we strive for generic models automatically instantiated for data sets with irregular
density of points, high percentage of outliers and sharp changes of curvature, we cannot
rely on most least-squares-approaches. In order to obtain, on arbitrary grids, smooth ap-
proximations free from extraneous overshoot and oscillations, we adopted the ideas of L4
approximating splines, whose main idea (see [85] and references therein) consists of replac-
ing (the outlier-sensitive mean-based) Lo-norm by the median-based Li-norm. Overall, our
algorithm consists of four steps, namely,

1. Generation of a nonparametric 2.5D surface from the point cloud in form of a C'! cubic
spline

2. Creation of a parametrized data set using the latest 2.5D or 3D surface

3. Generation of a parametric 3D surface and return to Step 2 until a stopping criterion
is satisfied

4. Tessellation of the 3D surface.

The point cloud serves as input of the algorithm while for texturing step, explained in
Sec. 5.4, camera matrices and depth information are also needed. If one wants to reconstruct
a smooth surface from depth maps or 3D character of the scene is not present, Steps 2 and
3 can be omitted. When vertical structures (like building walls have) to be reconstructed,
Steps 2 and 3 are necessary and a pair of independent parameters u, v are to be determined.
This is why we denote the surfaces obtained in Step 1 and Step 3 by nonparametric and
parametric, respectively.

The four steps will be explained in the Subsections 5.2.1, 5.2.2, 5.2.3, and 5.2.4, respec-
tively, of this section.

5.2.1 Functional and algorithm for 2.5D L, splines

The first step of the procedure is orientation of the point cloud X = {X,,|m = 1,..., M},
since the nonparametric 2.5D representation assumes that one is able a priori to rotate the
point cloud so that the z-axis coincides roughly with the physical vertical direction. For the
data considered here, this assumption is reasonable, since the physical vertical direction can
be estimated either by the normal vector of the plane robustly approximating the camera
centers or by the dominating direction of vertical straight lines (detected by [30] in the
images and triangulated by means of the DLT-method of [61]). This latter approach was
successfully used in [97].

In this section, the problem of the 2.5D surface approximation given a set of sample
points X is considered. Given a rectangular grid (u;,v;) (where up < w1 < ... < ur,vg <
v1 < ... < vy and the {(z,ym)} of the data points are assumed to lie in the rectangle
[ug; us] X [vo;vs]), we wish to approximate the data with a C cubic spline z(u,v) that best
passes through the data points.

The (vertical) error of a single sample point X, is [2(@m, Ym ) — 2m|, where z(z, y) is given
by (3.8) or by the analogous formula for one of the other triangles. The way to aggregate the
error of the whole data set has a large influence on what surface one obtains. Unfortunately,
the traditional choice which is the least squares minimization

Z (Z(xmv ym) - Zm)2

virtually always produces inaccurate results with extraneous artifacts and oscillation in
areas of rapid curvature change (for example, vertical discontinuities or near-discontinuities,
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which are common in terrain). Evidence in the recent literature [85] suggests that surfaces
calculated by minimizing sums of absolute values are more robust and have fewer artifacts
than surfaces calculated by minimizing sums of squares. For this reason, we decided to
minimize the sum of the absolute values (along with other terms) instead of the sum of
squares.

The functional that we minimize to create an L; spline consists of a weighted sum of
the absolute (vertical) deviations of the data from the surface, a smoothness term, similar
to the Laplacian of Sec.3.2.4 and a regularization term that resolves nonuniqueness when it
oceurs:

M
1—A Wm, |2\ Tms Ym) — Zm +)\/ Zuu+22uv+2'yv du dv
(103 w2, gm) =l +2 f (] + 2 el + o) 5.1
te Znodes (|ZU| + |ZU|) — min.

In the first term (data term) of (5.1), the weights w,, can be chosen to reflect uncer-
tainty in the point coordinates. If there is no information on the uncertainty in the point
coordinates, all of the wy, are set equal to 1. The parameter A € [0; 1] expresses the balance
between how closely the data points are fitted and the tendency of the surface to be close to a
piecewise planar surface, without extraneous, nonphysical oscillations. If A is too small, the
second term (smoothness term) of (5.1) becomes rather unessential and so the disturbances
caused by outliers become clearly visible. If, however, it is too large, areas near charac-
teristic edges become oversmoothed. In order to approximate the integral which makes up
the smoothness term in (5.1) by a discretized value, each grid cell [u;;uit1] X [vjvj41] is
divided into N? equal subcells (N > 3) and the sum of absolute values of the integrand
at the midpoints of those sides of the subcells that are interior to the cell is computed.
The value of the integrand is approximated by differential quotients of function values given
by (3.8). The last term of (5.1), consisting of the sum of the absolute values of the first
derivatives at the grid nodes, is added to the functional in order to prevent it from having
a non-unique minimum. L, functionals are in general, non-convex and can have an infinite
number of solutions. This third term is responsible for choosing from this set the most
physically meaningful one. If € is small enough, consideration of the last term in (5.1) does
not change the minimum value of the functional.

The task is thus to solve an overdetermined system of equations Ab = ¢ in the L; norm.
Formally:

_ - r_
b= arg min | Ab" —c|l1 ], (5.2)

r

where A is a coefficient matrix stemming from (5.1) that has r = M +6IJN(N —1)+2(I +
1)(J + 1) rows and 3(1 + 1)(J + 1) columns (recall that M is the cardinality of the point
set, N is the number of grid cells used for discretization of the integral in (5.1) and I x J is
the dimension of the grid). It can be assumed that A has the full rank. A linear program
can be obtained from (5.2) by considering the residuals r. We have to minimize

rt b rt
1o, | __ | subject to [A|I.| —I,]| r* | =cand _ | > 0o,
r r

r

with r™,r~ as in Sec.1.4. The minimization is carried out by means of a primal-affine
algorithm. This is an interior-point method that starts with a least squares solution of (5.2)
and, by iteratively updating the weight matrix W and computing the weighted least-squares
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solution WAb = We, either converges to a Li-solution of (5.2) (if parameter updates lie
below a reasonable tolerance) or terminates if a maximum number of iterations is reached.
The algorithm converges theoretically both for cases of unique minima [131] and for cases
of multiple minima [2]. It is closely related with the robust least-squares approach because
the outliers are supposed to be given smaller weights in the course of the minimization
procedure. Consequently, it is possible to keep track track on outliers in the data; however,
these outlier tests are not carried out in our approach.

The proof of the statement that primal-affine algorithm corresponds to a Li-solution
of (5.2) was given in [102]. The most time-consuming step is the least-squares solution of
the overdetermined linear system, that is, solution of ATW?2Ab = ATW?2c. By properly
ordering the unknowns, the symmetric, positive definite matrix A7 W?2A can have a minimal
one-sided bandwidth (number of superdiagonals + 1 for the main diagonal) of 3 min(7, J)+9.
We give, for completeness, the pseudo-code for the primal-affine algorithm that we use in
Alg. 8.5 of the Appendix and refer to [85] for further details.

5.2.2 Parameterization of data points

While the method presented in the previous section produces good results for 2.5D data,
the question now is how to generalize it for a 3D point cloud. What we need is a global
parametrization u,v that allows calculation of a triplet of splines x(u,v),y(u,v), z(u,v),
which we now denote by X(u,v). Such a parametrization usually exists for typical airborne
video data of an urban scene, because the surface is usually homeomorphic to the plane. If
the point density is sufficient and adaptive to curvature changes, one could apply methods of
multi-dimensional scaling (see, for example, [35]) and (in the case of 3D to 2D dimensionality
reduction) closely related surface flattening. These methods roughly consist of minimizing
a norm of a matrix with observations

dst ((Um, Um), (Un, vy)) — dst(Xo, Xp)

over 2M values of the parameters ., v, and where X,,,n € {1,..., N} is a neighbor of X,,,.
The choice of neighbors can be carried out by means of the approximate nearest neighbors
(ANN) algorithm as described in [104]. In the context of surface reconstruction by bivariate
B-splines, this approach was applied by Eck and Hoppe in [42]. Unfortunately, despite the
band structure of the M N x 2N observation matrix, solving the system for (u,,v,,) was
noted to be an extremely time-consuming and unstable process. We project the data points
X, onto the (most recently generated) surface to obtain "corrected" points X, and use its
coordinates (u,v) = (tm,, Om) as a parameterization for the surface X to be calculated next.
The unknowns in this case are the (u,v)-coordinates of the point X, at the surface that is
closest to X. We use the Levenberg-Marquardt algorithm [49, 61], where the cost function
¢ and the Jacobian J are given by:

e=c¢e(u,v) =X —X(u,v) = min, 7 = [X(u,v), X(u,v),].

The terms of X(u,v), X(u,v),, X(u,v), are given by (3.8) (in which one has to replace z
by the entries of X and select the suitable Sibson-triangle) and its derivatives. While for
parameterization of the 2.5D surface, the first two rows J are made up by the identity
matrix and the third row is z,, z,, it is a full 3 x 2 matrix at all following iterations (see
Sec.5.2.3). This parametrization process is schematically visualized on the left of Fig. 5.3.

5.2.3 Functional and algorithm for 3D L, splines

After parameter values (uy,, v,) have been assigned to each point (2, Ym, 2m) as indicated
in the previous section, we compute a 3D L; spline by minimizing the functional



76 5.2. Li-splines-based procedure

M
L= N [wim|2(tm, vm) = 2m| + A/ (|2aw] + 2| 2un| + |200|)du do+

m 1 (5-3)
€ Z (|zu] + |20]) + Z[analogous expressions|,
nodes 1

where by "analogous expressions" we mean replacing z in (5.3) by the 12 functions z, y,
xty,xtz, y+tzand x+y=+z, respectively. The functional (5.3) is more robust (at the cost
of computing time!) with respect to outliers than three uncorrelated functionals as in (5.1)
for z(u,v),y(u,v) and z(u,v). Functional (5.3) is minimized by the primal-affine algorithm
described in Sec.5.2.1 (with details suitably adjusted). The complete process consists of
starting from a 2.5D L; spline and then iterating the two steps of parameterization and 3D
spline generation several times.

The smoothness parameter A in (5.3) does not need to be the same as in the (5.1). The
automatic choice of suitable A is not a trivial problem. Neither theoretical nor heuristic
guidance is currently available. Like in (2.9) of the image-based part of this dissertation,
changing A by small values (in our case +0.05) does not result in large changes in the Lq
splines. Usually, it is recommended that A be bounded away from zero in the non-parametric
spline since we must make sure that the correct topological relations are not affected by
outliers. For other iterations, smaller values of A can be used.

5.2.4 Tessellation of the spline surface

As a result from the previous sections, we have an explicit representation of the object
surface X (u,v) and also of its partial derivatives. Our task now is to create a triangular
mesh that best fits the spline surface. This triangular mesh will be, at a later stage, the
main input of the texturing procedure: its task will be to texture each triangle using one of
the available reference views.

Surface meshing

There are two possibilities for meshing the surface obtained using the procedures of Sec. 5.2.3.
The authors of [24] applied the Delaunay triangulation of the (u,v)-values of the points
X, (the points on the surface closest to the data points X,,) of the last of the iteratively
calculated spline surface. Points within a rectangle R = [u;; uit+1] X [v;; vj+1] are compressed
into multipoints X, that coincide with the center of R. Another possibility is to use canonical
triangulation of spline nodes in the (u,v) domain (rectangles cut by one of the diagonals, as
proposed in 5.1.1). Since the number of spline nodes in each direction is about 30-50, we are
able to model our objects by means of several thousands of triangles. Although this second
approach results in a higher number of triangles, we use it in our further considerations
because it represents the spline surface at its finest resolution and the high number of
triangles can be reduced by efficient mesh-manipulation methods described in Sec. 2.4.2.

In our implementation, an optional step after tessellation is mesh manipulation by an
edge-flipping method. From the initial triangulation, the (u,v)-values of 3D points X and
the values of their normal vectors nx = (X, xX,)/|| Xy x Xy ]|, we wish to obtain a new mesh
that is more consistent with nx, as indicated in Fig. 5.3, right. To do this, one starts with
considering for a triangle 7" with vertices ABC the terms (actually, three scalar products)

n,(T) = (n7,0)" - [na nB ncl, (5.4)
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where np o is the normal vector of the triangle given by

we _ (A-B)x(A-C)
T IA-B)x (A-O)[

If the normal vector of T is nearly parallel to the normal vector at one of its vertices,
the corresponding entry of the vector ny(T") in (5.4) is close to £1. Therefore, we choose,
among a large number of possible energy functions for a triangle 7', the very simple term
E(T) = —|ni(T)||c and wish to minimize the total energy E(T) = > .y E(T) over
triangulations 7.

The next step of our minimization algorithm consists of obtaining all interior edges of
T. Each of them is associated with a quadrilateral, so the energy value E(Q) of every
quadrilateral @ is computed. The energy of @ is given by the sum of the energies of both
triangles composing Q. The energy values are now stored in non-decreasing order.

The activity status of all quadrilaterals is now set to be 1. The iteration loop runs over
all swappable quadrilaterals of the list, where a quadrilateral @) is declared swappable if its
activity status is 1, all its angles do not exceed 7 and the angle between the oriented normal
vectors of the two triangles from which @ is made up is below a fixed value (7/2 —¢). If
E(Q) > E(Q’) (where Q' is a swapped quadrilateral), the triangles composing @ are replaced
by those composing Q’, incidence and energy information of all quadrilaterals around Q is
recalculated and their activity status is set to be 1. Finally, the activity status of Q' is set
to be 0.

Figure 5.3: Left: Parameterization of the approximating spline surface (see Sec. 5.2.2). The
2.5D spline surface is depicted by the green curve, the point cloud is depicted by red crosses
and the correct surface is indicated by a black dotted line. Points are projected onto the
surface (depicted in selected cases by blue crosses) and the first two coordinates are chosen
as independent parameters (blue circles). The approach will preserve topological relations
of points when the inclination angle of the z-axis against the vertical direction of building
walls is small and the input surface is good enough. Right: Visualization of the edge-flipping
process. Two triangles sharing a common edge and not reflecting the values of the normal
vectors of their vertices (given by derivatives) are flipped along this edge.

In our applications, it was convenient not to include quadrilaterals @ into the list when
E(Q) was below 0.0001 and so the number of iterations was always below 500. It is also
important to point out that the final triangulation depends on the order of swapping and
so there is generally no guaranty that, at the end of the process, the energy takes on the
global minimum value arg miny E(7T) over all possible triangulations 7. However, since the
energy of every swap reduces the total energy, it will be always lower than the energy in the
beginning and therefore the algorithm terminates (in a local minimum of the total energy
function) after a finite number of iterations, namely, when there are no longer any swappable
quadrilaterals in the list. Further reduction of total energy can be achieved by considering
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more sophisticated methods like simulated annealing, see, for instance, [118], but also here
no statement can be made about conditions under which a global minimum of energy can
be achieved in a reasonable time. Furthermore, simulated annealing is very sensitive to the
choice of relaxation parameters and, as stated in [118], quantitative improvements of the
geometric cost function are not as significant as those of the local result.

5.3 Implementation details of other procedures for sur-
face reconstruction

In the next three short sections, we give brief descriptions of implementation details of
several approaches that will be used to provide comparison with results obtained by the
L+-splines-based procedure.

5.3.1 Alpha-shapes

The main properties of Alpha-shapes (a-shapes, [43]) were discussed in Sec. 3.2.1. Because
of its indisputable advantages (no need for 3D parameterization, regularized triangle sizes
etc.), the a-shapes-based procedure will be our default TIN-based method for shape recon-
struction. To compute an a-shape, one needs the Delaunay tetrahedrization of the input
point cloud, after which for each face, the maximum and minimum value of o for which T
belongs to the a-shape can be obtained. These values are stored in a 2 x N array where
N is the number of triangles. Then it is a trivial task to select triangles belonging to the
a-shape from this array.

The value of a should be slightly larger than the average triangle edge size in meshes
obtained by a local method. After the a-shape has been obtained, the vertices and mesh can
be manipulated in order to detect large planar regions and to reduce the number of triangles.
For the comparison of computational results, the Steps 1-4 of the procedure mentioned at
the beginning of Sec. 5.2 are replaced by triangulation with a-shapes.

5.3.2 Iso-surface extraction

Similar to the previous section, we wish to understand the advantages and disadvantages of
iso-surface extraction with respect to our applications. The most important parameters for
the iso-surface extraction algorithm of [70] described in Sec.3.2.2 are p (sampling density)
and r (resolution). If p is too large, completely wrong results for the signed distance function
can be obtained, as depicted in Fig. 5.4, top left. However, if p is too small, two many values
remain undefined (Fig. 5.4, top right). A resolution grid that is too fine usually leads not only
to an unnecessarily large number of triangles with coordinates of vertices contaminated by
noise, but also to increased computing time, since, at least at present, g, - g, - g. - M distance
evaluations (where g,, gy, 9. are the numbers of nodes in a grid in the x,y and z directions,
respectively, and M the cardinality of the input point cloud) for determination of closest
points in (3.3) are required for every grid point. Grids that are too coarse usually ignore
some fine details. For the data set Gottesaue, depicted in Fig. 5.4, bottom (intermediate
result), we set g, = g, = g, = 2 = 64.

Computing depth maps and rendering local tessellations according to Sec.5.1 allows
the assumption of a constant point density at least in large portions of the surface. We can
compute the neighbors of a sample point using the well-known approzimate nearest neighbors
(ANN) method, [104]. The matrix of distances between the point set and its neighbors is
obtained as well and a number proportional to the median of these distance values is set to
be p. Now, if a sample point X projected by a reference camera, in which it is visible, lies in
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a triangle consistent with the surface, we assign to the normal vector at X the normal vector
of the triangle. Otherwise, the calculation of the normal vector is carried out by fitting a
plane with RANSAC from the neighbors of X. The most difficult part of the algorithm,
namely determining the orientation of the normal vector, can be significantly simplified in
our applications, because one can take the vector from X toward the camera as an initial
orientation of the normal vector of X € X. Multiplication by —1 proceeds merely in the
regions of sharp curvature changes (it can not be completely skipped!) and is completed
after several iterations. Finally, meshing is provided by the marching cubes algorithm [91].

In the post-processing step, another problem, namely, ghost triangles near the medial
axis, can be partially solved by selecting a rather small value for resolution and then deleting
all vertices lying in the cube where either the maximum of negative values at the vertices or
the minimum of positive vertices is bounded away from zero. Finally, neighborhood relations
of vertices sharing a triangle edge are established and we delete all triangles with too few
neighbors.
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Figure 5.4: Top: Problematic of parameter choice for iso-surface extraction. Top left: Too
large p and a too small value is assigned to dst(Y), namely the distance to the regression
plane. Top right: Since no points of the sample lie in a circle of radius p (which was chosen to
be too small), the value of signed distance function at Y remains undefined. A meaningful
value would be assigned if p were slightly larger. The regression plane is always denoted
by the thick black line, its normal vector by the arrow on the left, the input point set
by red crosses and the points included into the consensus set for plane fitting by green
ellipses. Bottom: An intermediate result of signed distance function extraction for the data
set. Gottesaue. The original point cloud is indicated in black, Y with positive values of the
signed distance function in green, and those with negative values in red. One can see several
wrong assignments which are mainly situated near regions with sharp gradient changes (e. g.,
towers), points of medial axis and outliers in the data. The result of the complete procedure
for this data set is depicted in Fig.6.33, p. 114, middle left.
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5.3.3 Conventional (L,) splines and gridfit

The procedure for conventional, or Lo splines of Sec.3.2.4 is the same as that stated for
L4 splines in Sec. 5.2 except that the absolute values in the minimization principles of (5.1)
and (5.3) are replaced by squares. A conventional spline is easily obtained, since it is (the
spline corresponding to) the value of b after the first iteration of Alg.8.5. The tessellation
procedure remains the same. Comparison of procedures based on conventional splines with
our default procedure based on Li splines is of interest because conventional splines are
commonly used in geometric modeling and because all of the differences in the results can be
directly attributed to the differences in the functionals by which these splines are calculated.

Computational results generated by the Gridfit routine ([38], see also Sec. 3.2.4) for 2.5D
surfaces in particular and for different grid sizes, regularization kinds, and smoothness terms,
help understand to what extend C°-surfaces can perform successful reconstruction from pho-
togrammetrically generated point clouds. Comparison of surfaces generated by Gridfit with
Lq-splines provides an additional component of comparison that assists in understanding
the context.

5.4 Texturing

To texture the 3D surface obtained by a global algorithm, we must find for every triangle
T of the mesh a (reference) camera k that completely observes it under a reasonable angle.
"Reasonable angle” means that the cosine of the angle a between the triangle normal ng 7
and the ray connecting its center of gravity (denoted by G(7T')) with the location of reference
camera (Cj) must be bounded away from zero. The choice of such a camera is not a trivial
task because there is a lot of available information (the distance G(T')Cy, which should not
become too large, depth information for points within 7" in Z, and many others). So we first
extract by means of depth maps information about which vertex is seen in which reference
image. This set will be denoted by v(X) for the given vertex X. Then, the sets U3_;v(X;)
and N?_,v(X;) are evaluated for the three vertices of 7. If the first set is non-empty, we
take one view from the intersection set for texturing. Otherwise it is clear that the triangle
can theoretically be textured using any image of the second set. We therefore start with
removing the views that cannot texture T either because at least one of it vertices is not
visible in the image or because of coarse deviation from the indicated depth information, in
other words

min (min (IDx(PX:) = d(Xy)]), [DL(G(T)) = d(G(T))]) < 26 - D(G(T)),

where d(X) is the depth of the point X according to (4.1), and on the right, € is the same
as in Alg. 8.4 and the factor 2 considers the fact that the positions of mesh vertices are
slightly changed by a global method. In [24], the reference image with the smallest value of
c1(k,T) = |G(T)Ck|(1—cos ) was chosen from the remaining set of reference images. If the
uncertainties in camera parameters are not negligible, the approach is modified by choosing
the minimum value of ¢1(k,T) — Aca(k, T)) where A is a large positive constant and the value
of co(k,T) is set to 1 if a triangle sharing an edge with T is chosen by the reference image k
and 0 otherwise. This not only allows selecting cameras with low values of o and small values
of |G(T)Cy| for texturing T, but also making small errors of point projections less visible
(since triangles are textured cluster-wise from reference images). The last strategy achieves
its best impact as an iterative procedure where triangles already textured are propagated
along their edges. Finally, triangles that cannot be assigned to any camera are textured by
a neutral color and their transparencies are set to 0.5.
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Chapter 6

Evaluation of algorithms

After presenting reconstruction algorithms in Chapters 4 and 5, evaluation of results ob-
tained by these algorithms will be described in this chapter. To emphasize the generic
character of our approach, video sequences of quite various types and quality will be de-
scribed in Sec. 6.1. For each frame of the video sequence, we are given, as stated in Chapter
1, the corresponding camera matrix. As additional input, a sparse set of 3D-points is given
together with a visibility information (which point is seen in which camera). Evaluation of
sparse tracking algorithms, which represent Step 2.1 of our reconstruction pipeline of p. 15,
takes place in Sec. 6.2. Qualitative and quantitative evaluation of dense image-based meth-
ods (Step 2.2) is provided in Sec.6.3. Evaluation of the methods for shape reconstruction
described in Sec.6.4 (Steps 3.1 and 3.2) is divided into two parts: in Sec. 6.4, screen-shots
of meshes and textured model representations are presented; a separate section (Sec.6.5) is
dedicated to quantitative evaluation. In order to visualize different steps of our algorithm
from input images over depth maps and dense points clouds to textured model instances,
qualitative results for two additional video sequences are presented in Sec.6.6; for these
sequences, only main challenges will be mentioned, but a detailed performance analysis will
not be performed. Information about computing time is given in the concluding Sec.6.7.

6.1 Data sets

The first data set that we discuss in this section is the well-known Tsukuba data set [115].
Several images and the disparity map between two of these images (Z3 3,73,4) are provided
for verification and evaluation of the results. Although we do not consider this data set as
characteristic for our applications and hence do not perform shape reconstruction in this
case, we decided to demonstrate the performance of the image-based part of the algorithm
for a data set with available ground truth. Since the surface has many self-occlusions, the
grading of the geometric complexity of the scene is declared as high in Table 6.1 (where
relevant properties of all data sets mentioned in this Chapter are summarized). For point
tracking, we use either five images (Z2 2,73 2, 73,3 (reference image) Z3 4 and Zy 4 — in order
to mimic a flying sensor) or nine images with (2 < r,¢ < 4) and again 73 3 is chosen to be
the reference image. For dense estimation, the number of images was chosen to be five.

In the next data set, Turntable houses, only the moving parts of the images need be
reconstructed. Since the (unmoved) background (see Figs.6.1 and 6.5) does not satisfy the
collineation constraint, it does not make much sense to perform a dense reconstruction of
this data set, but it is still interesting to observe the results of sparse tracking for different
methods and parameter sets for this labor data set. The extraction of camera trajectory
and sparse point cloud was carried out by the structure-from-motion approach of [22, 23]
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followed by a bundle block geometric error minimization. The total number of cameras was
81 and the number of points 8159. The shape reconstruction methods are applied to this
point cloud. Several video frames of the data set as well as the result of Step 1 of our
reconstruction pipeline are visualized in Fig.6.1, top and bottom, respectively.

Figure 6.1: Top: Three views from the original sequence Turntable houses. Bottom: The
complete camera trajectory and the point cloud as a result of a structure-from-motion algo-
rithm are the input of our reconstruction pipeline.

Our next sequence, Gottesaue, shows a real building Gottesaue Palace in Karlsruhe,
Germany. The results of the reconstruction presented in [24, 25] were derived from 339
images and 39059 points obtained using the methods of [22] without bundle adjustment
(which was not possible to perform reliably for such a large number of cameras). The
results depicted in Fig.6.6, bottom, were produced by generating four workspaces from
subsequences showing different but overlapping parts of the building. Each subsequence
was self-calibrated and reconstructed by [22] with bundle adjustment in a Euclidean space
and then transformed into the same coordinate system. Nevertheless, because of the flight
in turbulent conditions (with a consequence of a high level of noise and outliers, partly
produced by drift effects of the camera trajectory) and the challenging geometry (huge depth
ranges, fine details in the structure of the palace and its surrounding terrain, abundance of
non-fronto-parallel planes), the radiometric and geometric complexity of this sequence are
classified to be high and very high, respectively, in Table 6.1. The total numbers of camera
matrices and points are 310 and 39165, respectively; several frames of the video sequence
together with the results of sparse reconstruction are illustrated in Fig.6.2.

We also present an infrared video sequence of a skyscraper in the city Frankfurt (Oder)
in the eastern part of Germany. This video was also recorded by an airborne sensor (in a
helicopter) and reconstructed by a SLAM-method [9] after self-calibration of a short subse-
quence was performed. The whole sequence has 418 images and 3109 points (see Fig.6.3).
Its particular complexity consists of dead pixels and many textureless areas (radiometry) as
well as slanted surface of huge depth ranges in the background (geometry). Contrary to the
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Figure 6.2: Top: Three views from the original sequence Gottesaue. Bottom: Part of the
camera trajectory and the point cloud as a result of a structure-from-motion algorithm due
to [22] are the input of our reconstruction pipeline.
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Figure 6.3: Top: Three views from the original sequence Infrared. Bottom: Part of the
camera trajectory and the point cloud as a result of a SLAM algorithm due to [9] are the
input of our reconstruction pipeline.
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points in the background, 3D points at the walls of the tower can be computed with a higher
accuracy. For this reason and also because of the abundance of planar regions (similar to
the situation in the sequence Turntable houses), we decided to show the result of the LIFT
algorithm in Sec. 6.4.1 for these two data sets.

The video sequence Ettlingen church is used for quantitative evaluation of several shape
reconstruction algorithms in Sec. 6.5 because a laser point cloud representing the surface
is available. Because of many fine details, the complexity of scene is high. Finally, to
demonstrate the reliability of our reconstruction pipeline for different situations, we present
in Sec. 6.6 qualitative results for two additional data sets: Wangen and Speyer, but, since
the quantitative analysis of these two sequences does not represent a significant difference
from other data sets and, therefore, was not carried out, we do not consider them in Table
6.1 below. Note that in Table 6.1, an important measure for geometric complexity of the
input data is given by the ratio field of view/spatial resolution ranges that reflects the ranges
for the quotient baseline/depth.

Table 6.1: Summary of data sets available for this work. It is also mentioned which exper-
iments (denoted by Sec.6.2-6.5) were carried out for which data set. "dl" means daylight
video with three spectral channels, "ir" infrared video, and "i" denotes image sequence. The
complexity of radiometric or geometric configurations of the scene is denoted by "!", if the
scene is very complex, a "!!" is put. If the reason why a certain experiment was not carried
out with a certain data set is not given, it was omitted because of redundancy. See text for
further details.

Data set Tsukuba | Turntable h. Gottesaue Infrared Ettlingen h.
dl/ir dli dl dl ir dli
sensor platf. fixed hand-held Cessna helicopter hand-held

image 384 x 288 | 720 x 566 720 x 566 640 x 480 650x475
num. of
frames / 9/- 81/8159 310/39165 418/3109 5/869
3D-Points
dist. cam/pt | 10 to 39 7.5 to 10 17 to 25 10 to 17 14 to 17
focal (pix) 300 1.07-10° 3.39:10° 4.67-103 1.38-10°
fow / spat.
res.ranges 1to3.77 | 0.70 to 0.96 | 0.21 to 0.30 | 0.12 to 0.21 | 0.5 to 0.59
complexity
rad./geom. 0/! 0/0 I 1! 0/!
test-runs 6.2, 6.3 6.2, 6.4 6.2,6.3,64 | 6.2,6.3,64 6.5

6.2 Sparse tracking and triangulation

For the benchmark data set Tsukuba, we first convert the data into the format described
at the beginning of Chapter 4. Since the cameras have the same calibration and rotation
matrices, we need only modify the camera centers. They lie in the same plane and in a
equally spaced rectangular grid. We choose a reasonable calibration matrix to guarantee
numerical stability of the calculations, rotation matrices are set to be identity matrices,
and the translation vector corresponding to image Z,. . is [1.5(c — 3) 1.5(r — 3) 0]7. The
evaluation is carried out by projecting a 3D point into the images 73 3,73 4 and computing
the minimum absolute difference between x33 — 34 and the true disparity values dg; at
rounded x3 3 and its 8 neighbors (in order to avoid rounding errors). In other words, we
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have the set of incorrectly tracked pixels:
B= {x ]mvm ldge(x3.3 + V) — (235 — 23.4) > 1 } (6.1)

where v = [vg vy], —1 < v,, v, <1 and the error quantity min(-) in (6.1) is denoted by e.
We provide in Table 6.2 the results of the state-of-the-art implementation of KLT-tracking,
as well as the epipolar and simultaneous tracking described in Sec.4.4, applied to 1238
characteristic points obtained as described in Sec. 4.2.

Table 6.2: The numbers of points tracked correctly, incorrectly and lost for different methods,
different numbers of cameras and different window size (win) of the sequence Tsukuba. opt.r
was set to zero everywhere. For the standard KLT-method, image pyramids at the third
level were necessary to produce these results. The total number of points was 1238.

meth. KLT, pyr = 5, cam = 3 KLT, pyr = 5, cam = 5 | KLT, pyr = 5,cam = 9
win 5 7 9 11 ) 7 9 11 5 7 9 11
total 936 | 1005 | 1030 | 1039 | 650 | 741 | 787 | 798 | 475 | 572 | 608 | 619
cor. 859 916 941 954 | 649 | 732 | 777 | 789 | 474 | 570 | 606 | 618
incor. 7 89 89 85 1 9 10 9 1 2 2 1
lost 302 233 208 199 | 588 | 497 | 451 | 440 | 763 | 666 | 630 | 619
meth. KLT-epi, cam = 3 KLT-epi, cam = KLT-epi, cam = 9
win 3 5 7 9 3 ) 7 9 3 ) 7 9
total | 1061 | 1038 | 1018 | 1003 | 993 | 991 | 949 | 929 | 987 | 974 | 942 | 910
cor. 918 938 933 918 | 978 | 981 | 938 | 917 | 981 | 965 | 936 | 900
incor. 143 100 85 85 15 10 11 12 6 9 6 10
lost 177 200 220 235 | 245 | 247 | 289 | 309 | 251 | 264 | 296 | 328

meth. simultan, cam = 3 simultan, cam = simultan, cam =
win 3 5 7 9 3 5 7 9 3 5 7 9
total | 1125 | 1156 | 1171 | 1181 | 883 | 970 | 975 | 982 | 613 | 733 | 754 | 766
cor. 1026 | 1086 | 1086 | 1076 | 872 | 962 | 971 | 964 | 612 | 731 | 749 | 761
incor. 99 70 85 105 11 8 4 18 1 2 5 5
lost 113 82 67 57 355 | 268 | 263 | 256 | 625 | 505 | 484 | 472

For the data set Turntable houses, the considered subsequence consists of seven images
T1,...,Z7 and the triangulation results are shown for 900 points detected in the reference
image Z4. Since it is quite difficult to obtain a data set with reliable ground truth and
since a comparison with results obtained by different methods shows similar tendencies
as in the case of the benchmark sequence, we compare the results of the epipolar and
simultaneous tracking algorithms for all non-benchmark sequences with the standard KLT-
tracking algorithm. We use 1 pixel as threshold for reprojection errors for triangulation for
which the number of outliers in the benchmark data set is extremely low. After the 3D
points are normalized to have average standard deviation of z,y, and z-coordinates of 1, a
point tracked by the epipolar and simultaneous tracking algorithms is declared as tracked
correctly if the Euclidean distance between the corresponding 3D point and its counterpart
obtained by the KLT-tracking algorithm is below 0.1. Table 6.3 shows how many points
were lost, tracked correctly (cor.) and tracked incorrectly (incor.).

For the sequence Gottesaue, the number of points with a high response of the operator
(4.8) of Sec.4.2 is 1517. Again, seven images are used for triangulation. Table 6.4 shows
the sensitivity of the standard KLT-method for a video sequence taken from a small plane
in extremely bumpy and turbulent conditions while Table 6.5 shows triangulation results
obtained by epipolar and simultaneous tracking. Finally, for the sequence Infrared (and its
short subsequence of seven images), we are interested in keeping the number of outliers small
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Table 6.3: Results of tracking characteristic points for the data set Turntable houses with
seven images, variable window size (win) and rectification option (opt.r). The total number
of points was 900. The standard KLT-tracking with the window size 11 and the number of
image pyramid levels 5 yielded 180 points.

meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init =1
win 3 7 11 15 19 3 7 11 15 19
total | 279 | 360 | 380 | 414 425 231 | 284 | 323 | 356 377
cor. 92 | 138 | 144 | 153 152 67 99 | 116 | 126 136
incor. 0 0 1 2 3 1 0 1 2 2
lost 88 42 35 25 25 112 | 81 63 52 42
meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0
win 3 7 11 15 19 3 7 11 15 19
total | 188 | 303 | 348 | 377 393 138 | 263 | 316 | 339 361
cor. 44 | 101 | 127 | 139 148 26 69 | 100 | 120 128
incor. 1 3 3 3 2 2 3 4 4 4
lost 135 | 76 50 38 30 152 | 108 | 76 56 48
meth. | simultaneous, opt.r = 0, init = 1 | simultaneous, opt.r = 1, init = 1
win 3 7 11 15 19 3 7 11 15 19
total | 525 | 617 | 671 | 684 691 896 | 896 | 898 | 898 898
cor. 124 | 131 | 141 | 139 142 162 | 164 | 164 | 165 165
incor. 1 0 1 2 2 18 16 16 15 15
lost 55 49 38 39 36 0 0 0 0 0
meth. | simultaneous, opt.r = 0, init = 0 | simultaneous, opt.r = 1, init = 0
win 3 7 11 15 19 3 7 11 15 19
total | 563 | 574 | 583 | 575 564 889 | 872 | 840 | 818 792
cor. 114 | 128 | 143 | 145 145 130 | 147 | 160 | 160 163
incor. 3 3 1 3 1 49 31 16 16 13
lost 63 49 36 32 34 1 2 4 4 4
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and, for this purpose, varied the norm of the value of maximum total error £y,,x; a point
is lost if at the end of the optimization process of Sec.4.4.2, ||c|| from (4.11) exceeds emax-
Table 6.6 (from [28]) shows the results for 1170 characteristic points.

Table 6.4: Results of tracking characteristic points by the standard KLT-tracking with and
without initialization for the data set Gottesaue, seven images and variable window size
(win) and the number of image pyramid levels (pyr).

meth. KLT-epi, pyr = 5, init = 0 KLT-epi, pyr = 1, init = 0
win 5 7 11 15 19 23 5 7 11 15 19 23
total | 64 | 134 | 313 | 473 | 532 | 542 | 1 2 2 10 18 20
meth. KLT, pyr = 5, init =1 KLT, pyr = 1, init = 1
win 5 7 11 15 19 23 5 7 11 15 19 23
total | 96 | 212 | 369 | 479 | 532 | 542 | 99 | 200 | 349 | 430 | 480 | 489

Table 6.5: Results of tracking characteristic points for the data set Gottesaue with seven
images and variable window size (win), rectification and initialization options. The maximal
error per pixel and interaction was 30.

meth. KLT-epi, opt.r = 0, init = 1 KLT-epi, opt.r = 1, init =1
win 7 11 15 19 23 7 11 15 19 23
total | 765 | 829 833 852 849 767 868 867 872 861
cor. 375 | 424 433 428 415 369 429 442 443 427

incor. | 12 10 5 7 17 18 12 3 2 11
lost 92 45 41 44 47 92 38 34 34 41

meth. KLT-epi, opt.r = 0, init = 0 KLT-epi, opt.r = 1, init = 0
win 7 11 15 19 23 7 11 15 19 23

total | 999 | 1029 | 1045 | 1049 | 1046 946 977 975 947 930
cor. 400 | 417 421 410 405 399 427 441 432 429
incor. 25 12 11 22 22 22 14 2 6 12
lost 54 50 47 47 52 58 38 36 41 38
meth. | sim.emax = 50, opt.r = 0, init = 1 | sim.emax = 50, opt.r = 1, init = 1
win 7 11 15 19 23 7 11 15 19 23
total | 866 | 881 890 856 848 1219 | 1217 | 1191 | 1129 | 1087
cor. 339 | 357 356 347 345 387 396 394 395 380
incor. 23 13 14 13 10 72 62 60 55 66
lost 117 | 109 109 119 124 20 21 25 29 33

We can see from Tables 6.2-6.6 that both policies (epipolar and simultaneous tracking)
yield more reliably reconstructed points than the original version of KLT-tracking without
considering camera matrices (the total number is always higher). For the video sequence
Gottesaue, recorded in turbulent conditions, standard KLT-tracking fails to obtain a large
set of correspondences if the number of image pyramid levels is below 5 (Table 6.4). As
soon as the initialization of depths provided by triangular interpolation as described in
Sec. 4.3 is carried out, the total number of reliably triangulated points depends mainly on
the window size and not so much on the number of pyramid levels. For the epipolar and
simultaneous tracking algorithm, initialization is not crucial. The results are similar to
those in Tables 6.3 and 6.5. Increasing the window size usually contributes to a larger
number of triangulated points, because the risk of ending up in a local minimum of the cost
function declines; unfortunately, the computing time depends quadratically on the window
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size. Increasing the number of cameras always contributes to better reconstruction, as one
can observe in Table 6.2. The parameter €,,,x practically does not influence the results
of the epipolar tracking algorithm. In simultaneous tracking, it clearly contributes to a
larger number of tracked points (and, clearly, outliers between them). The next question
concerns the rectification option opt.r: for the data sets Gottesaue and Infrared, one can
significantly reduce the number of outliers for growing window size in epipolar tracking by
using opt.r. The explanation is the following: while, for smaller windows, the interpolation
errors in values of derivatives computed for rectified images deteriorate the results, the
real invariance against rotation begins to show its effects for larger windows. We do not
discuss the rectification option for Tsukuba, since it is already rectified nor for the sequence
Turntable houses because here too many points lie on unmoved parts of the scene and
invariance against rotation cannot be achieved for them. From Table 6.6, where efforts have
been made to reduce the number of outliers, it becomes clear that the number of outliers
for epipolar tracking is usually slightly smaller than for simultaneous tracking. Probably,
the main reason lies in gross errors in single images. For simultaneous tracking, the only
possibility to sort out points is to decrease enyax, in other words, the effect of gross errors can
be distributed across all images preventing the point from being discarded during tracking.
Also, the interpolation errors for (optional) image rectification and gradient computation as
well as camera uncertainties cannot be corrected geometrically (i.e. by reprojection errors).
Since in pairwise tracking gross errors in single images are detected and eliminated right
away, we will use epipolar tracking as our default option.

We are also interested in the locations of the lost points and incorrectly tracked points
in the images. Figures 6.4-6.7, on the left, show the already available features, depicted by
orange points, and, on the right, the newly tracked features (yellow), the lost features (cyan
circles) and the features tracked incorrectly (red diamonds). As could be expected, most of
the lost points lie near occlusions; this is not really surprising, because only one part of the
template window is seen in the new image and the other part changes from image to image.
This problem can be partly solved by considering cost functions other than the ¢ in (4.11)
or norms other than Lo for weighting the entries within windows, but we let that be a topic
for future work. The few outliers lie in the weakly textured regions; here the cost function
does not have a clear minimum and so the result is not reliable. One can apply heuristics
as described in [29] and in Sec.4.4.1 in order to eliminate outliers, but we do not consider
these options here.

Table 6.6: Results of tracking characteristic points for the data set Infrared with seven
images, variable window size (win) and rectification option (opt.r). The total number of
points was 900 and the standard KLT-tracking with window size 11 and image pyramid
levels 5 yielded 583 points. See also [28].

meth. KLT-epi, opt.r = 0 KLT-epi, opt.r =1
win 7 11 15 19 7 11 15 19
total | 764 | 807 | 821 | 813 | 616 | 709 | 757 | 770
cor. 487 | 530 | 545 | 538 | 416 | 474 | 593 | 510
incor. 0 0 1 10 0 0 1 4
lost 96 53 37 35 167 | 109 | 79 69

meth. | simultaneous, opt.r = 0 | simultaneous, opt.r = 1
win 7 11 15 19 7 11 15 19
total | 985 | 995 | 995 | 971 | 957 | 987 | 966 | 942
cor. 571 | 575 | 576 | 564 | 563 | 570 | 557 | 550
incor. 2 3 3 11 4 6 12 14
lost 10 5 4 8 16 7 14 19
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Conclusion

In the current version of our implementation, we use epipolar tracking as a default option.
The reason is that the number of outliers is usually lower than in the case of simultaneous
tracking and camera uncertainties are better taken into account during the final triangulation
step. In the future work, we will restructure the simultaneous tracking algorithm: first by
filtering out, by means of radiometric differences, the images where occlusions are probable
and second by taking camera uncertainties into account.

Figure 6.4: Left: The ground truth result of the benchmark data set T'sukuba needed for
Sec. 6.3 with the original point cloud colored in orange. Middle: Disparity scale bar. On
the right, the reference image with results of epipolar tracking. Points with disparity values
correctly assigned by epipolar tracking are depicted by yellow dots, the lost points by cyan
circles and outliers by red diamonds. See also [28].

Figure 6.5: Left: The reference image of a subsequence of the data set Turntable houses with
the results of epipolar tracking. Points with disparity values correctly assigned by epipolar
tracking are depicted by yellow dots, the lost points by cyan circles and outliers by red
diamonds. Points lost in the standard KLT tracking algorithm are depicted by green dots.
Right: A view of the 3D-point cloud with already available points marked in orange.
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Figure 6.6: Left: the median-based depth map will be our ground truth of a subsequence
of the data set Gottesaue in Sec.6.3. The original point cloud is colored in orange. Middle:
Depth scale bar. On the right, the reference image with results of epipolar tracking. Points
with disparity values correctly assigned by epipolar tracking are depicted by yellow dots,
the lost points by cyan circles and outliers by red diamonds. Points lost in the standard
KLT-tracking algorithm are depicted by green dots.

Figure 6.7: Left: The median-based depth map will be our ground truth for a subsequence of
the data set Infrared in Sec.6.3. The original point cloud is in orange. Middle: Depth scale
bar. On the right, the reference image with results of epipolar tracking. Points with disparity
values correctly assigned by epipolar tracking are depicted by yellow dots, the lost points
by cyan circles and outliers by red diamonds. Points lost in the standard KLT-tracking
algorithm are marked by green dots.
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6.3 Dense reconstruction

This section will illustrate dense reconstruction of selected subsequences of video data with
which we deal. We will structure this section in a manner similar to what we did in Chapter 4,
first handling the binocular case (Sec. 6.3.1) and then multi-view reconstruction (Sec. 6.3.2).
A subject of particular interest will be the automatic choice of the smoothness parameters
A1, A2, covered in Sec.6.3.3.

6.3.1 Binocular case

For the benchmark data set with the ground truth depth map shown in Fig.6.4, the eval-
uation is carried out analogously to the previous section and we followed the choice of the
authors of [115] to measure the number of incorretly tracked pixels, which we denote by
N = Y 1, as a function of different parameters. Alternatively, one can compute the
average sum of relative depth deviations, denoted by eg = >z ¢, with B and ¢ defined in
Eq. (6.1). For the data sets Infrared and Gottesaue, we chose the ground truth to be the
median depth map using the methods of Sec.4.5.2. This method is very robust — the reason
that justifies us to take it as a ground truth — but also very time-consuming since semi-
global optimization must be performed altogether 2K times (with cross-check as in (3.2),
and K + 1 number of images). We show in each of Figs. 6.8, 6.9, and 6.10, a typical result
of the disparity estimation computed for the sequences Tsukuba, Gottesaue, and Infrared,
respectively, with a local method supported by triangular meshes. One can see the two
typical sources of errors: either too much noise makes it impossible to assign a triangle as
consistent with the surface or a triangle is spuriously declared as consistent with the surface.
For the binocular case, this is especially visible in Fig. 6.9, where the stripes on the roof —
which go perpendicular to the epipolar lines — provoke too many mismatches that cannot
be corrected by the evaluation on triangles. As we will see later, this situation will be fairly
seldom for the local algorithm applied to multi-view configurations because the pixels in
somewhat textured area will be helped out of local minima by redundant views.

Figure 6.8: Top left: Tllustration of the disparity map computed by the local algorithm from
images Z3 3,73 4 of the sequence T'sukuba. Top right: Evaluation of the result on the left with
incorrect matches depicted in black. The triangles consistent with the surface are marked
in green, those inconsistent with the surface in red. The ground truth result is depicted in
Fig.6.4, p. 90, left.

In the next step, we turn our attention to global and semi-global methods. Figures 6.11,
6.12 and 6.13 illustrate typical results for the sequences T'sukuba, Gottesaue, and Infrared,
respectively, of the graph-cuts-algorithm implementation of [81] (top) and the semi-global
optimization due to Hirschmiller as in [67] (bottom). In the graph cuts algorithm, the
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data-cost function was given by the truncated SSD, as in Eq. (2.4), p = 2, the smoothness
function was given by (2.16), where

Ai,i") = MU (u > 8) + 3\ U(u < 8),u = min (|Z(x) — Z(y)|, |7 (x") = Z'(¥y")])

and points x = (z,y) with the property d(z,y) = d(z + 1,y) + 1 were marked as occluded.
In the implementation of the semi-global algorithm for the binocular case, mutual informa-
tion was our the data-function; also the cross-check test according to (3.2) followed by the
evaluation on triangles by the methods of Sec.4.5.1 was carried out.

Figure 6.9: Top left: Part of the rectified reference image from the sequence Gottesaue.
Triangles declared as consistent with the surface by the local algorithm are colored in green
while inconsistent triangles are colored in red. Right: Disparity map D7 produced by
the triangular interpolation described in Sec.4.3.1. Bottom left: a typical result Dj,. of
the local depth computation. Bottom right: evaluation of Dj,. on the left with incorrect
matches depicted in black and triangles consistent and inconsistent with the surface in green
and red, respectively.

The next several figures show quantitative evaluations of the binocular dense reconstruc-
tion. The global results, demonstrated for the three sequences Tsukuba, Gottesaue, and
Infrared, in Figs,6.14, 6.15, and 6.16, respectively, are important for understanding, among
other things, the performance of the graph cuts algorithm (always top row) in compari-
son with the performance of semi-global matching (bottom row). The local results will be
covered in Sec. 6.3.2 because of a strong analogy with the multi-view case.

One can see that the graph-cuts algorithm, despite its positive properties to perform
well near occlusions and in regions of repetitive patterns of texture, is barely suitable for
computing disparity maps for the sequences Gottesaue and Infrared. In the latter sequence,
application of the graph-cuts algorithm even deteriorates the results of the local algorithm
supported by triangular meshes, while, in the first, it improves them only slightly. The



94 6.3. Dense reconstruction

Figure 6.10: Top left: Part of the rectified reference image from the sequence Infrared.
Triangles declared consistent with the surface by the local algorithm are colored in green
while inconsistent triangles are colored in red. Right: Disparity map D7 produced by the
triangular interpolation described in Sec. 4.3.1. Bottom left: a typical result D;,. of the local
disparity computation. Bottom right: evaluation of Dj,. on the left with incorrect matches
depicted in black and triangles consistent and inconsistent with the surface in green and
red, respectively.

idea behind the graph-based algorithm based on alpha-expansions is to overwrite a set
of pixels of a given initial disparity map D by a scalar value «. In other words, if we
have a pixel with disparity label « in a textured region, this value will be propagated to
neighboring untextured regions until no improvements take place. Hence a risk to fall into
a local minimum is very high. The susceptibility of the algorithm towards fronto-parallel
planes additionally aggravate this problem; and evaluation of triangles cannot actually solve
it because the percentage of pixels that the algorithm recognizes to be consistent with
the surface is rather low (see Fig.6.12). As a result, the disparity values are likely to be
grouped into segments whose borders are often drawn somewhere within textureless regions.
The semi-global method can reduce the number of pixels with wrongly assigned disparities,
especially if evaluation of triangles takes place, but for the remaining pixels (which are
usually situated near occlusions, the values of the disparities are forced to be near to those
of neighboring pixels or are interpolated linearly. Therefore the value of g increases while
Np falls and we can state that occasional over-smoothing edges represents the main drawback
of the semi-global method.

With respect to the choice of the smoothness parameter for the graph-based method,
good experiences were made with the heuristic described in [79]. One can see a clear min-
imum in the number of pixels with incorrectly assigned disparity values in Fig.6.14 which
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Figure 6.11: Top left: Nlustration of the disparity map computed by the graph cuts algorithm
[81] for the sequence Tsukuba. Top right: Evaluation of the result on the left with incorrect
matches depicted in black. Bottom: Result and evaluation of the semi-global algorithm.

results from the automatically selected value of A;. In the case of data sets with less self-
occlusions (for instance, Nadir flights over urban terrains), A; can be chosen slightly larger
than the automatically computed value. In the case of the semi-global optimization, we have
two smoothness parameters. Both in binocular and multi-camera configurations, visually
good results were obtained if the strategy to choose a moderate value of A (to admit slanted
surfaces) and A2 = 2\; was followed. We refer to Sec. 6.3.3, where the question of automatic
choice of A\; for dynamic programming and semi-global optimization methods will be covered
in a more detailed way.

Our next issue concerns reduction of the computing time by initialization of the graph-
cuts algorithm. As one can see from Figs.6.12 and 6.13, quantitative results of a global
algorithm do not depend significantly on the initialization, so we are concerned here about
the number of iterations in the process of computing the disparity map. Since we have here
a random process, we carried out the energy minimization several times and computed the
average number of iterations. The test data set was Gottesaue because the number of pixels
in the images was larger than in other data sets and so the randomization effects of order of
disparity values for alpha-expansions could be reduced. The correlation between the energy
ratios at the beginning and at the end of the algorithm is indicated in Table 6.7. We see
that a good initialization is equivalent to a low energy at the beginning of the graph-cuts
algorithms and so, in the majority of cases and especially for larger values of smoothness
parameter A, less iterations are needed to reach a (local) minimum of the energy functional.

For the semi-global method, computation of Mutual information matching table from the
triangular mesh and initialization with this result helps to produce comparable results as in
the case of image pyramids as one can see from the blue and cyan curves in Fig.6.15. This
kind of initialization can thus be preferred to the computation of image pyramids proposed
in [67].
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Figure 6.12: Top left: Hlustration of the disparity map computed by graph cuts algorithm
from two frames of the sequence Gottesaue. The discretization artifacts are very visible in
the final result because no subpixel matching is performed. Top right: Evaluation of the
result on the left with incorrect matches depicted in black. Typical problems emerging in this
algorithm are shown by marking some disparity labels; of course no jumps in the disparity
exist in the reality (see Fig. 6.6 above). Bottom, left and right: Result and evaluation of the

semi-global algorithm.

Table 6.7: Correlation between the energy ratios at the beginning and the end of the graph
cuts algorithm and the computing time, which is directly proportional to the number of
iterations. Sequence Gottesaue, different smoothness parameters \.

no init
X 100 | 200 | 300 [ 400 [ 500 | 600
Eo/E 0
av.iter | 12.7 | 103 [ 10.05 | 9.15 | 8.05 | 6.85
init Djoe
Eo/E | —043 ] 012 [ 0.29 [ 0.36 | 0.44 | 0.48
av.iter | 14.45 | 11.85 | 8.95 | 8.55 | 7.35 | 6.75
init Dy
Eo/E | —012 ] 031 | 0.44 [ 0.50 | 0.56 | 0.59
av.iter | 11.6 | 8.25 | 865 | 85 | 6.9 | 6.05
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Figure 6.13: Top left: Hlustration of the disparity map computed by graph cuts algorithm
from two frames of the sequence Infrared. Top right: Evaluation of the result on the left
with incorrect matches depicted in black. Bottom: result and evaluation of the semi-global
algorithm.

2. €EB 103

0, 1;

Figure 6.14: Results of disparity estimation for the sequence Tsukuba with the graph-cuts
methods. Left: The %o-value Ng of pixels with incorrectly assigned disparity values as a
function of smoothness parameters A\; and the triangulation-based parameter . The choice
for v = 0.75 is always marked by solid lines and v = 1 by dotted lines. The black, green
and red curves represent results initialized with the local disparity map D;,., initialized with
Dy and without initialization, respectively. On the right, average error per pixel e for all
configurations described above. Quantitative analysis of this data set with the semi-global
method will be performed for a multi-view configurations in the next section.
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Figure 6.15: Results of disparity estimation for the sequence Gottesaue with non-local meth-
ods. Top left: Graph-guts algorithm: the %o-value (Ng) of pixels with incorrectly assigned
disparity values as a function of A\;. The black, green and red curves represent results ini-
tialized with the local disparity map Dj,c, initialized with Dy and without initialization,
respectively. The dashed, solid and dotted curves represent choices v = 0.5,y = 0.75 and
~ = 1.0, respectively. Bottom left: Results for the semi-global algorithm. The %o-value of
Np as a function of A1, where v = 0.75 is always marked by solid lines and v = 1 by dotted
lines. Blue and cyan curves denote the results from the initialization as in [29] while all other
curves use image pyramids and mutual information as the cost function. Green and cyan
curves stem from the choice Ao = A1, black and blue curves stem from the choice Ay = 2\
and the red curve from the choice A2 = min(4A1, 2047) (see explanation of Eq. (4.25)). On
the right, average error ez per pixel for all configurations described above.
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Figure 6.16: Results of disparity estimation for the sequence Infrared with non-local methods.
Top left: Graph-cuts algorithm The %o-value of Np as a function of A\, where v = 0.67 is
marked by solid lines and v = 1 by dashed lines. The black curves denote the results with
initialization and red curves without. Bottom left: Results for the semi-global algorithm.
Green curves stem from the choice Ay = A1, black curves stem from the choice Ao = 21 and
the red curve from the choice Ao = min(4\;,2047). The dotted, solid and dashed curves
represent the choices v = 0.5,0.75 and 1.1, respectively. On the right, average error per
pixel ep for all configurations described above.
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6.3.2 Multi-view configurations

In order to demonstrate that the matching ambiguities in regions of repetitive patterns of
texture and near occlusions can be resolved by using redundant views, we now replace the
binocular configuration of the previous section by the multi-view configuration made up by
five images in data set Tsukuba and seven images in both data sets Gottesaue and Infrared.
The ground truth result remains the same as in the last section, but we changed slightly
the evaluation criterion for data sets Gottesaue and Infrared in order to take into account
the rather vast depth ranges which vary from several dozens to at least several hundreds of
meters. We say that a pixel x is assigned to B if the deviation of dx from the ground truth
dgi(x) value is more than 5%, in other words:

£ = ldyu (%) — d(x)|/]dgs(x)] > 0.0,

and the definitions for Ng, €5 remain the same.

Figure 6.17: Top Left: Triangular mesh and the result of the local disparity map of the
data set Tsukuba from five images and the mesh rendered from the enriched point set where
the triangles consistent and inconsistent with the surface are marked in green and red,
respectively. Top right: Evaluation of the result on the left by means of the ground truth
disparity map depicted in Fig. 6.4, all matches where the difference exceeds one pixel are
depicted in black. Bottom left: Part of the reference image (denoted by yellow rectangle
above) where triangles inconsistent with the surface are given red color. Bottom right:
evaluation of this part, almost all wrong matches lie inside of red triangles.

Extended tests were carried out for 9 local parameters (number of cameras K, window
size, cost function which we denote here by ., rectification option opt.r and interpolation
option opt.i, the parameter ¢, responsible for compensating errors due to uncertainties in
camera positions as well as triangulation-based smoothness terms A, o,v) and two global
parameters Aj, Ay for semi-global optimization. Many of these parameters were already ob-
ject of related research (see [115] and references therein), therefore we will not vary here the
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value of every parameter by letting fixed all others (and this for each data set), but restrict
ourselves to describing in the graphics below the influence of the most important ones, es-
pecially those related to triangular meshes and global methods. For the other parameters,
we give only summarizing observations.

We show in Figs. 6.17, 6.18, and 6.19 typical results of the local approach with considering
the local smoothness term FEp from Eq. (4.21) for the data sets Tsukuba, Gottesaue, and
Infrared, respectively. The result of applying the local triangulation-based smoothness terms
from the enriched point set (as the result of Sec. 6.2) is shown together with the triangulated
point set, triangles consistent and inconsistent with the surface (colored in green and red,
respectively), and binarized absolute differences from the ground truth. For the non-local
optimization algorithms of dynamic programming and multi-view semi-global optimization,
we show typical results of the multi-view dense reconstruction for the three data sets in
Figs.6.20, 6.21 and 6.22, respectively.

Figure 6.18: Left: Triangular mesh and the local result of the depth map of the data set
Gottesaue from seven images and the mesh rendered from the enriched point set where
the triangles consistent and inconsistent with the surface are marked in green and red,
respectively. Right: Evaluation of the result on the left with incorrect matches depicted in
black.

Figure 6.19: Left: Triangular mesh and the local result of the depth map of the data
set Infrared from seven images and the mesh rendered from the enriched point set where
the triangles consistent and inconsistent with the surface are marked in green and red,
respectively. Right: Evaluation of the result on the left with incorrect matches depicted in
black.
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Figure 6.20: Top left: The result of energy minimization with dynamic programming for the
data set Tsukuba, five images, window size = 3. Top right: Evaluation of the result on the
left with incorrect matches depicted in black. Bottom left and right: Result and evaluation

of the semi-global algorithm.

Figure 6.21: Top left: Result of energy minimization with dynamic programming for the
data set Gottesaue, seven images. Top right: Evaluation of this result with incorrect matches
depicted in black. Bottom left and right: Result and evaluation of the semi-global algorithm.
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In Figs. 6.23, 6.24, and 6.25, dependence of the results on the window size, cost function,
A, o and ~ for data sets Tsukuba, Gottesaue, and Infrared, respectively, is represented. The
red and green curves stand for the truncated SAD from Eq.(2.4) with en.x = 15 and
40, respectively. The blue curves stand for the NCC (2.6) and the black curves for the
simplification (2.7). A smaller percentage of incorrectly reconstructed pixel makes clear
that for a video sequence, it makes more sense to use (truncated) SAD as a cost function.
A possible explanation lies in the parameters a and b of (2.5). These additional degrees of
freedom allow a more flexible distribution of gray values within windows, but their values
must also satisfy (at least a piecewise-)smoothness condition because the reflection coefficient
of the material surface is made of as well as the angle between normal vector of a point and
a camera plane are constant in the whole regions. As a consequence, Eq. (2.6) is implicitly
over-parametrized and therefore blue and black curves lie above the red and green ones.
In other experiments, which go beyond the scope of this work, we were able to ascertain a
slight improvement of the results after activating opt.r or opt.i (the bilinear interpolation
instead of rounding) while increasing ¢, (see Eq. (4.10), p.53) does not influence much the
results. Finally, augmenting the number of cameras K and the window size win is helpful
to reduce Np and e although the computing times clearly increase.
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Figure 6.22: Top left: The result of energy minimization with dynamic programming for the
data set Infrared, seven images, window size = 3. Top right: Evaluation of the result on the
left with incorrect matches depicted in black. Bottom left and right: Result and evaluation
of the semi-global algorithm.

We go on by investigating the influence of the triangulation-based smoothness terms
whose presence usually not only increases the accuracy but also smoothers the effects of
too small K, or opt.r = 0. As one can see from Figs.6.9 and 6.18, there are almost no
mismatches in triangles consistent with the surface. If v(T) < 1, then all pixels within T
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Figure 6.23: Top left: The %o-value (Np) of pixels with incorrectly assigned depth values
as a function of A, cost function and ~, data set Tsukuba, window size = 5, opt.r = 0 and
o = 50. The dashed curves correspond to the value v = 0.67, solid curves for v = 1. The
behavior for different cost function: red and green curves for (2.4) with e,.x = 15 and 40,
respectively, blue curves for (2.6) and the black curves for (2.7). Bottom row: Variation of
o and . Black curves correspond to v = 0.75 and green curves to v = 0.95, the dashed,
solid and dotted lines correspond to different choices of sigma (o = 0, 10, 50, respectively).
On the right, average error e per pixel for all configurations described above.
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Figure 6.24: Top row, left: The %o-value of Np as a function of A, cost function and ~,
data set Gottesaue, window size = 5, opt.r = 0, number of images = 5 (images 1, 2, 4, 6,
7 used) and o = 50. The dashed curves correspond to the value v = 0.67, solid curves for
~v = 1. The behavior for different cost function: red and green curves for truncated SAD
from Eq. (2.4) with e, = 15 and 40, respectively, blue curves for NCC from Eq. (2.6) and
the black curves for (2.7). On the right: Average error e per pixel for all configurations
described above.
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are assigned depth values dr; this assumption is reasonable, because for large point clouds
nearly homogeneously distributed in the image, the number of triangles compatible with the
surface will normally be quite high. One can see the noisy distribution of depth values within
red triangles and the smooth (and correct) depth values by green triangles in Figs.6.17 and
6.19. Declaring a triangle consistent with the surface can be further eased by adding a
triangulation-based smoothness term Ep of the form (4.14) or (4.22); this approach proves
to be very efficient at a pixel x in a low textured area (see Fig.6.23 and Fig.6.25) where
the cost function is likely to yield quite similar results for several depth labels. In this case,
a support for the plausible value dr x can help to assign correct depth values with subpixel
accuracy. Of course, if T is inconsistent with the surface (i. e. when one or two of its vertices
lie on an occlusion edge), then 7" will be mapped in a wrong way; therefore the terms Np, ep
become larger if 0 and A are unreasonably high. The results of triangular interpolation
become indeed worse for very high ¢ and A, as one can see, for example, from the dotted
lines in Fig.6.23 where too many triangles were declared consistent with the surface.
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Figure 6.25: Left: The %o-value of N as a function of A, o and ~, data set Infrared, window
size = 3, opt.r = 0, number of images = 7. The green curves correspond to the value v = 0.67,
black curves for v = 1 and the red horizontal line shows the result without consideration
of triangulation-based smoothing. The behavior for different o-values (o = 10: dashed line
or o = 50: solid line) is illustrated as well. Bottom left: Ng (in %o) as a function of the
window size. The different curves are shown for opt.r = 0 (green line) and opt.r = 1 (black
line) as well as different choices of images: for the dashed line, all 7 images were considered,
for the solid line, images 1, 2, 4, 6, 7 were used and for the dotted line, only images 1, 4, 7.
The reference image was always image 4 and the number of levels for disparity computation
was the same for each experiment. On the right, top and bottom: Average error 3 per pixel
for all configurations described above.
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Figure 6.26: Left: The %o-value of Ng as a function of A\ for dynamic programming in the
data set Tsukluba. Right: Results of semi-global matching. The dotted, solid and dashed
curves correspond to different choices (1, 2, 4, respectively) for the ratio Ao /A;. Furthermore,
v = 0.67 for black curves and v = 0.95 for green curves.
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Figure 6.27: Left: The %o-value of Ng as a function of A\ for dynamic programming in the
data set Gottesaue. Right: Results of semi-global matching. The dotted, solid and dashed
curves correspond to different choices (1, 2, 4, respectively) for the ratio Ao /A1. Furthermore,
v = 0.5 for black curves and v = 0.95 for green curves with the cost function initialized by
a truncated SAD (see Eq. (2.4), emax = 40), blue curves stand for NCC in (2.6) and red
curves for (2.7). For blue and green curves, the value of v was always 0.5.
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Since the improvements of our local algorithm (for a fixed point set) are limited by the
number of triangles consistent with the surface and it depends on the complexity of the scene
how far we can go with increasing o and A and also decreasing 7, a further optimization
can be achieved by applying non-local algorithms. In Figs. 6.26, 6.27, 6.28, values of Ng for
dynamic programming and the semi-global algorithm are presented (since the results for €,
show a similar behavior) for the data sets Tsukuba, Gottesaue, and Infrared, respectively.
For all data sets, we varied the values of A1 and ratios A2/\1. On the other hand, we varied ~
in Fig. 6.26, v and the cost function in Fig. 6.27 and the number of cameras in Fig.6.28. The
results confirm that anything what improves the performance of a local algorithm, will also
do of a global one. We decided to use for all data sets window size 3 (because considering only
pixels themselves without neighbors results in a rapid increase of the number of mismatches
and larger windows make increase computing time without very significant improvements
of the results), opt.r was set to zero (because image transformations take extra computing
time) and the number of images was five for Tsukuba data set and seven for other data sets.

We can see from illustrations and graphics that dynamic programming can eliminate most
outliers within epipolar lines, but since epipolar lines are usually differently over-smoothed,
there are visually unpleasant streaking artifacts in the result. Applying the semi-global
algorithm with 16 smoothing directions allows eliminating these artifacts and so the number
of mismatches (which are mostly made up by points near occlusion edges and far away from
the camera positions) usually tends against zero (compare Figs. 6.20-6.22 for visualization,
Figs. 6.26-6.28 for quantitative evaluation). The %o-values for N decrease from around
45 (local method) to 20 (dynamic programming) and to 15 (semi-global matching) for both
data sets. For the data set Tsukuba, the lowest values of Ng are around 1.3% and 2.9% (with
and without correction for rounding errors, respectively). This means that our method is
one of the best among those mentioned by [115] and so a multi-view configuration supported
by a dynamic or, even more, a semi-global algorithm outperforms most of the two-camera
algorithms.
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Figure 6.28: Left: The %o-value of N as a function of A\; in the data set Infrared for
dynamic programming. On the right, results for semi-global matching. The black curves
result from considering all 7 images, the green curves from considering only images 1, 4, 7.
The dotted, solid and dashed curves are for ratios A\a/A1 = 1, 2,4, respectively.
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6.3.3 Automatic choice of smoothness parameters

Our next issue will be the automatic choice of smoothness constants A\; and As. For the data
sets Tsukuba and Infrared, we write down the best ranges of \; (with respect to N and ez
and ratios Ao /A;. We can clearly see from Eq. (4.27) that the automatic choice of smoothness
parameter must depend on the cost/aggregation function c. As a consequence, Table 6.8
shows the results for four typical cost functions: NCC from (2.7), Sec.2.2.2 (p.21), Mutual
Information (MI) from (2.8), Sec.2.2.3 (p.22)!, as well as the truncated SAD from (2.4)
with two different values of €y,ax = 15 and 40. Here C; and C3 are the values of confidence
terms in equations Eqs. (4.26) and (4.27) of Sec. 4.5.4, respectively, which correspond to the
quantile v and the superscripts -° and - denote parameters corresponding to semi-global
optimization and dynamic programming respectively.

Table 6.8: Correlation between quantile values for confidence terms C; and C; and smooth-
ness parameters A\; and Ao which yielded best results for the evaluation pipeline described
above. The number of cameras was two, the size of the correlation window win = 5,
triangulation-based constants A = 50,0 = 50, opt.r was set to 1 and the cost values for
assigned (non-occluded) values of ¢(x, j) were scaled between 0 and 1, in other words, multi-
plication by 2048 required in the considerations of p.65 was not carried out. Similar results
were obtained also for other sequences and other parameter settings.

data set Seq. T'sukuba Seq. Infrared
method | NCC | MI SAD SAD NCC | MI SAD SAD
Emax = 15 | €max = 40 Emax = 15 | €max = 40
o7 0.36 | 0.15 0.38 0.30 040 | 0.22 0.50 0.41
c9o 0.45 | 0.24 0.50 0.45 0.48 0.34 0.59 0.53
co 0.26 | 0.051 0.20 0.12 0.094 | 0.023 0.13 0.063
o 0.18 | 0.13 0.37 0.27 0.20 | 0.068 0.28 0.14
N 0.18 | 0.13- 0.37- 0.27- 0.20- | 0.068- 0.28- 0.14-
! 0.68 | 0.29 0.98 0.78 0.78 0.29 0.98 0.78
A5 /AT 2-4 1 2 4 2-4 1-2 2-4 2
H 0.49- | 0.29- 0.49- 0.59- 0.49- | 0.20- 0.29- 0.39-
M 0.78 | 0.59 0.78 0.78 0.68 | 0.39 0.98 0.59
AP /AP 1-2 1-2 2 2 2-4 2 2-4 2

From Table 6.8, one can clearly see that the quantile values of C] and CJ show similar
tendencies as A1 for both algorithms described above. If one of quantile values becomes
larger, a right-shift of the range suitable for A\; can also be expected. Conversely, for smaller
quantile values, also smaller \; can be chosen. Generally, a value around 1.5 - C$° and
2.5 - CY? is a suitable choice for \; and, according to our earlier considerations, the default
value for Ao/\; is 2.

1In the experiments to this chapter, it was important to check the consistences of best choices for smooth-
ness parameters and quantile values of the confidence maps for all available cost functions; therefore Mutual
Information was included into computations and, since, at the time of evaluation, computation of this cost
function was only possible in the case of a rectified stereo pair, the number of images was restricted to be
two.
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Conclusion

Summarizing the content of this section, we can state that dense depth maps extraction
represents a very useful module for our pipeline first because it contributes to homogenization
of the point clouds (better input for Steps 3.1 and 3.2 of our reconstruction pipeline) and
second because it enhances the visibility information in the texturing portion of Step 3.2.
We have seen that the local methods supported by triangular meshes can reduce the number
of wrong matches within triangles consistent with the surface. We can even claim that the
bigger the number of points consistent with the surface is, the more similar the results of local
optimization with a triangulation-based smoothness term in a binocular configuration are to
those in a multi-view configuration. In the general case, multi-view configurations provide a
better resolution of depth and allow treating occlusions and the regions of repetitive texture
in a robust way. In order to save computing time, we prefer the simultaneous method
supported by triangular meshes to the median-based method and, especially with respect
of treating regions with homogeneous texture and slanted surfaces, we recommend using
the semi-global global algorithms as non-local optimization method because of its clear
advantages to algorithms of dynamic programming and graph-cuts.

6.4 Shape reconstruction methods — qualitative results

In this section, results for textured reconstruction from our main data sets are presented
and discussed. Section 6.4.1 shows reconstruction results for the LIFT procedure; these
results can be obtained if Step 3.2 of the reconstruction pipeline Alg. 1.1, p. 15 is completely
omitted. Results of our main procedure for surface reconstruction by L, splines are presented
in Sec. 6.4.2 and those of other procedures in Sec. 6.4.3.

6.4.1 Results for the LIFT-algorithm

The results for the Local Incremental Fusion of Tessellations algorithm, LIFT, supported by
dominant-planes extraction from local tessellations (as described in Sec. 5.1.2) are presented
in Figs. 6.29 and 6.30 for the video sequences Turntable Houses and Infrared, respectively. In
the data set Infrared, points far away from the skyscraper were deleted because long skinny
triangles deteriorated the visual quality of the results. Although there seem to be little sense
(from the point of view of photogrammetry) to reconstruct pieces of surfaces situated several
hundreds of meters from the camera locations while the length of the baseline measures
only several meters, it will be, nevertheless, interesting to see in the next sections how the
point-based methods are able to reconstruct this kind of surface (even when interrupted by
occlusions, as in the example of the video sequence Infrared).

6.4.2 L;-splines-based results

For the domain on which the nonparametric and parametric L;-splines of Step 1 and Step
3, respectively, of the procedure described in Sec.5.2 are calculated, we used an equally-
spaced rectangular grid extending from min,, (X,,) to max,,(X,,) and from min,,(Y,,) to
max,, (Y;,) in the horizontal and vertical directions, respectively. For the data sets Turntable
Houses and Infrared, the number of grid cells was 30 x 30. We used the original point cloud
depicted in Figs. 6.1 (bottom) and 6.3 (bottom) as input for the algorithm; several reference
images (some of them are shown in Figs.6.1 and 6.3, top) were used for texturing. Note
the abruptly changing nature of the point cloud, with adjacent sparse and dense regions
(hundreds data points describing the oblique roof near almost no points on the flat roof of
Fig.6.1) and the changes of depth (Fig.6.3). The weights w,, were chosen equal to 1 divided
by the number of points X,,, in each triangle of the Sibson element, the smoothness parameter
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Figure 6.29: Two screen shots from the textured model of the sequence Turntable Houses
reconstructed by the LIFT-procedure. Note the small number of undetected triangles incon-
sistent with the surface. Several video frames and a view of the reconstructed point cloud
and the camera trajectory are given in Fig. 6.1, p. 82.

Figure 6.30: Results of reconstruction from the sequence Infrared with the LIFT algorithm,
two screen shots from the textured model. Video frames as well as a part of the camera
trajectory are given in Fig. 6.3, p. 84.
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A was set to be 0.7 for the nonparametric spline and the first parametric spline, and 0.8 for
the second and third parametric splines (in accordance with our considerations in Sec. 5.2.3).
Two views of the final mesh and three views of textured images are given in Fig. 6.31 for the
data set Turntable Houses. A colormap view of the final mesh and a view of the result of the
textured reconstruction are given in Fig. 6.32 for the data set Infrared. Note the topological
connectivity of meshes in Fig.6.31 in comparison to Fig.6.29 and the ability of L;i-splines-
based surfaces to obtain good reconstruction in sparsely covered areas. These areas can be
observed by slightly lighter pieces that mark the texture of triangles not completely seen
by any of the reference cameras behind the tower in Fig.6.32, bottom. We also refer the
reader to [24] where the process of surface evolution — e.g. using the nonparametric spline
that results from Step 1 of the L;-splines-based procedure — is illustrated.

Figure 6.31: Reconstruction results of the data set Twurntable Houses produced by the L;-
spline-based procedure of Sec.5.2. Top: Two views of the triangular mesh. Middle and
bottom: Three views of the textured reconstruction. The bottom view contains the 3D
points (depicted in blue) as well as a part of camera trajectory. See also [24].



112 6.4. Shape reconstruction methods — qualitative results

Figure 6.32: Reconstruction results of data set Infrared produced by the Lj-spline-based
procedure of Sec.5.2. Top: A colormap view of the triangular mesh. Bottom: A view of the
textured reconstruction with the input point cloud depicted in green.

6.4.3 Reconstruction results by other global methods for shape re-
construction

Comparison with the alpha-shapes procedure and iso-surface extraction

It was shown in [25] that, for non-regularized point clouds with many outliers, a-shapes are
not able to provide significantly better reconstruction than the local methods of Sec.5.1.
The reconstruction results are somewhat better if the input of the algorithm is given by
the regularized (for instance, RTDQT) nodes of Sec.5.1.1. The number of holes is thereby
reduced, but the problems of a noisy point cloud and an unnecessarily high number of
triangles remain. One can now use commercially available software packages mentioned
in [126] to perform interactively operations of mesh compression and hole filling, but an
automatic approach is hardly possible here. The result of the a-shapes procedure with
texturing as in Sec.5.2.4 is visualized for data set Gottesaue in Fig.6.33, top left. As
mentioned in Sec.3.2.2, the most challenging step of the algorithm based on iso-surface
extraction lies in the retrieval of the normal vector field in the areas of sharp gradient
change. In the middle left portion of Fig.6.33, severe artifacts are clearly visible in the
areas of the gabled roof and the towers. The visually best results of all of the methods
implemented here were obtained by applying the procedure based on L; splines, depicted
in Fig.6.33, middle right and bottom. We can see that the L;-splines-based surface is less
affected by noise and outliers in the point cloud, as one can see in the area in front of the
building; it is homeomorphic to a plane (has genus zero) and also the changes of gradient are
reliably treated. Unfortunately, the problem of parameterization is not completely solved
here because the surface remains a 2.5D manifold z(z,y), not a parametrized 3D manifold
(x(u,v),y(u,v), z(u,v)). We also refer the reader to |25], where, for further comparison, the
qualitative results of the procedure based on conventional splines are shown and present
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in the next subsection a comparison in performance of two procedures in three exemplary
regions of the surface.

Comparison with the conventional-splines-based procedure

We are now interested in the locations and distributions of the errors in the surfaces re-
constructed from the sequence Gottesaue by means of L splines and conventional splines.
Other methods are left out of consideration here since they produce topologically inconsis-
tent meshes. Figure 6.34, left, shows a reference frame of this sequence. In this frame, we
manually selected three portions of the surface corresponding roughly to the ground, wall
and roof. Then the residual errors of the points near the three regression planes were com-
puted. The three histograms depicted in the right hand side portion of Fig.6.34 illustrate
the error distribution of points to the ground plane 7; : z — zg = 0 by the red histogram, of
points to the wall plane w3 :  —xg = 0 by the blue histogram and of points to the roof plane
73 : ax + by + cz + d = 0 by the green histogram. We rotated the point cloud as described
at the beginning of Sec.5.2.1, oriented the ground plot of the palace to be nearly parallel to
the coordinate axes and, finally, chose a translation vector and a scaling factor to put the
input point cloud into the bounding box [—4;4] x [—4;4] x [—1.5;1.5]. In Fig.6.34, right,
one sees that all histograms nearly correspond to Gaussian distributions, possibly contami-
nated by several outliers. The error distribution of the points near the ground plane is less
favorable (due to the low quality of points in the textureless areas, further distance from the
camera and the drift errors) than that of the points near the wall and roof. Also, since the
parameters a, b, ¢, d of the roof plane were computed automatically, the error distribution of
points on the roof is the best. We illustrate by means of the histograms of Fig. 6.35, left and
right, the error distributions of surface points sampled from triangles constructed by the
conventional-splines-based and the L;-splines-based approaches, respectively. In Tab.6.9,
we report the numbers of triangles that participate in the evaluation and the measures
of the error function that result from the sum of zero-mean absolute differences of the z-
coordinates (in the case of w1 and 73) and the z-coordinates (in the case of m2) between the
plane and the corresponding spline. For instance, in the case of 73, this measure is

N
€= %Zk(u,v) —al,u = z(u,v) + (ax + by + d)/c, (6.2)
i=1

where N is the number of points in the triangles to be evaluated. We can see that the error of
the non-parametric Li-splines-based surface is always lower than that of the conventional-
splines-based surface and that, due to the parametrization problem, the performance is
worse in the area of the wall than in the ground plane and roof plane. Fully 3D parametric
splines as in Sec.5.2.2 and Sec. 5.2.3 allow reducing the error for the wall from 0.041 (which
corresponds, after consideration of the real building size, to approximately 0.33m) to 0.018
(some 0.14m), but the value for the roof plane increases (for a reason that is not yet clear?)
from 0.014 to 0.022.

Results for conventional cubic splines were shown here to demonstrate the susceptibil-
ity of these splines to Gibbs artifacts in areas of fast gradient change, noise and outliers.
Although these results were the only results for conventional splines presented here, the
conclusions of this work and of [25] about conventional cubic splines can be generalized to
other types of conventional splines mentioned in Sec. 3.2.4.

20ne possible interpretation is suggested by the small dormers: these are textured regions in images and
therefore contain many data points. They also lie in a vertical plane and so they are inconsistent with 73
while likely to be reconstructed by the parametric Li-spline
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Figure 6.33: Reconstruction results from the sequence Gottesaue, top left: a-shapes pro-
cedure, middle left: iso-surface extraction, bottom: L;-splines-based procedure. All three
figures represent the frontal view of the building. Top right: another view of the reconstruc-
tion by the L;-splines-based procedure.

03 0.2 a1 ] 01 0z 03 0.4 0s

Figure 6.34: Left: A reference frame from the sequence Gottesaue and, marked by the green
curve, the part of a surface to be evaluated. The three portions of the surface belong to the
ground plane, the wall and the roof. Right: Error distributions of sample points near the
ground plane (red histogram), wall (blue histogram) and roof (green histogram).
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Figure 6.35: Distribution of the (non-zero-mean) deviations u from (6.2) for the procedure
based on conventional splines (left) and Li-splines (right). Red histograms stand for the
reconstruction results of the ground plane, blue from the walls and green for the roof.

Table 6.9: Zero mean average deviations ¢ from (6.2) of the spline-based surfaces from three
selected planes. Sequence Gottesaue, 40 x 40 tensor-product grid, A = 0.3. The first number
in parentheses denotes the deviations in meter while the second is the number of evaluated
triangles.

deviations € (in m) (number of triangle)

(non-param)

Method Ground plane Wall Roof
Lo- splines | 0.030 (0.24)(36) | 0.045 (0.36)(21) | 0.030 (0.24)(18)
Ly- splines | 0.025 (0.2)(21) | 0.041 (0.33)(24) | 0.014 (0.11)(24)

L;- splines

(param)

0.025 (0.2)(24)

0.018 (0.14)(11)

0.022 (0.18)(14)
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6.5 Shape reconstruction methods — quantitative evalu-
ation

While the last section presented screen shots of the reconstruction results, the task of this
section is to perform a quantitative evaluation of several procedures for shape reconstruc-
tion. The evaluation of methods for shape reconstruction is carried out in two separate
sections for two main reasons. First, finding ground truth and an appropriate measure for
the comparison of ground truth with triangular meshes for buildings with many complicated
structures are not trivial problems. Although the comparison measure should ideally contain
penalty terms for both geometry and texture, we concentrate here only on the geometry of
the reconstruction and adopt the well known Hausdorff Distance. We motivate in Sec. 6.5.1
our choice of the Hausdorff distance as a metric for the quality of reconstruction while, in
Sec.6.5.2, we describe several technical details of the computation of this distance. While
being applied on point clouds obtained from our reconstruction pipeline, any distance mea-
sure is biased not only by the quality of the input data set but also by the reconstruction
result of Step 2, which makes it almost indispensable to consider a synthetic data set (not
contaminated by systematic errors, such as camera drift), as we do in Sec.6.5.3, before
evaluation of a real data set can be performed in Sec. 6.5.4.

6.5.1 Hausdorff distance as a measure for completeness and cor-
rectness

A crucial issue when making comparisons is the metric (measure of similarity) in which the
comparisons are made. Conventional metrics such as the average error and generalizations
thereof, such as the L, norms [40], measure similarity in ways inconsistent with human
perception. For many commonplace situations, for example, thin walls in urban terrain,
these metrics indicate that two sets are nearly the same when observers judge them to be
dissimilar, and, conversely, for other situations, they indicate that two sets are very different
while the user assesses them to be very similar.

Given a ground truth model Y and a reconstruction result denoted by X, our goal is to
evaluate X in terms of completeness (i.e. how much of Y is modeled by X') and correctness
(how closely X models V). These two anchors for evaluation of any algorithm were used
by e.g. Heipke et. al.in [64] and, specially for geometric reconstruction, by Seitz et. al. [120].
The latter paper motivated us to use the Hausdorff distance as the quantitative measure to
compare different procedures for geometric surface reconstruction. Other applications of the
Hausdorff metric are to measure similarity of objects in computer vision [58] and to match
objects with templates for identification in geometric modeling and tracking [109].

We denote the distance from a point X to mesh ) and the distance from mesh X to
mesh Y by dst(X,)) = infy, d(X,Y) and dst(X,)) = sup, dst(X, )), respectively. For our
purposes, d(X,Y) is the Euclidean distance between X and Y and in all definitions above,
"inf" can be replaced by "min" and "sup" by "max", because we always deal with compact
surfaces. The Hausdorff metric for the "distance" from one set of points X’ (could be disjoint
points or a continuous surface) to another set of points ) is

dp(X,Y) = max {dst(X, ), dst(V, X)} . (6.3)

One can see from Fig.6.36, left, that dst(X,)) describes the correctness and dst(), X)
the completeness of the reconstruction to be evaluated. The Hausdorff metric is sensitive
to outliers, a property that makes it a suitable tool for evaluating surface reconstruction
methods for practical applicability such as automatic navigation. Note that, in our case, the
outliers to be punished are not the input sample points lying far from the surface but those
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triangles of the resulting mesh that contain points far from the surface. There also exist
generalizations of the Hausdorff distance that play down the effect of outliers, for example,
the generalization of [5], where an error integral over a discretized volumetric domain D

1/p
dpep(X,Y) = (/V Dmim(|dst(V, X) — dst(V,y)|p,c))
€

with two scalars ¢ > 0,p > 1 is considered. However, in our work, the original Hausdorff
distance of Eq. (6.3) (which comes out of the last equation in case p,c — 00) is adopted to
perform comparisons for a simple object.

6.5.2 Details of the implementation

Care must be taken with the implementation details of the computation of the Hausdorff
distance in order to prevent the algorithm from becoming quadratically expensive in terms of
the sampled points, which is, of course, the worst-case scenario of (6.3). Since we work with
triangular meshes () = (Y, 7)), we observe that the distance dst(X,)) is either a shortest
distance from X to a vertex of the point set Y or the shortest length of the perpendicular
from X to one of the faces given that the base point V as in (3.3) lies within a triangle T'.
A rather efficient way to compute dst(X,)) is thus as follows.

1. compute d; = minx dst(X,Y),

2. by considering normals ny (of length 1) of all triangles in the mesh, compute simul-
taneously (with (3.3)) both the length of the perpendiculars d; (X,T") and the base
points V,

3. as a last step, perform for every triangle T, for which d (X, T) lies below dj, the
test V € T is performed. The minimum of these values is denoted by d2. We have
dSt(X, y) = min(dl, dg)

The third step is the most time-consuming. It could be carried out, for example, by
checking whether the sum of the barycentric coordinates ¢, V, W of V € T is equal to 1.
However, two heuristics can be applied to avoid this calculation. The first heuristic is a
trivial one that takes into account the coming calculation of dst(X,Y). If we see that d;
or ds is already smaller than the value dst(X,)), we interrupt the calculation. The second
heuristic directly concerns step 3 previously mentioned. If we assume that V € T', then by
the Pythagorean Theorem,

di(X,T)* =dst(X,Y)* —dst(Y,V)* > max (dst(X, Y7)?) — £(T)?, (6.4)

where Y is a vertex of T and £(7') is the maximal Euclidean distance between a point 'V
within a triangle and the vertices of the triangle:

&(T) = max <min (d(V, YT)))

VeT \ Yr

It can be proven that £(7') is either the radius of circumference (if no angle of T' exceeds
m/2) or the distance from the vertex opposite to its longest side to the intersection point of
the perpendicular bisector of the second-longest side of T" with the longest side (otherwise),
as illustrated in Fig.6.37. The proof of this statement is trivial in the first case; in the
second case, one denotes the smallest angle of T' by 8 and the median angle by a. Then the
statement follows after analysis of the two subcases a > 25 and «a < 25 (see Fig.6.37). The
computation of the two quantities in the rightmost part of (6.4) proceeds simultaneously and
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sup(i%f d(X,Y))

sup(inf d(X,Y))
Yy X

Figure 6.36: Left: The Hausdorff distance measures completeness and correctness of the
reconstruction, and, as originally formulated, is sensitive to outliers (Source: Wikipedia).
Right: A configuration of two points sets consisting each of two rectangles (or, equivalently,
four triangles) for which both values dst(X,)) (corresponds to AB) and maxx (dst(X,)))
(that is larger or equal than AC) differ significantly.

2B<a: s<t<u

i
u=¢(I)

Figure 6.37: Computation of £(7) in the case one of angles of T" exceeds 7/2.
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is therefore very fast. Verification of the necessary condition (6.4) allows rejecting triangles
that do not satisfy V € T without computing & +V + W.

One can now have an idea to evaluate dst(X,)) by evaluating each vertex X € X by the
procedure described above and taking the maximum value max(dst(X,))). Unfortunately,
even in the case of connected meshes, the extreme point is not necessarily a vertex, but can lie
in the interior of an edge, as illustrated in Fig. 6.36, right, and, by a "suitable" (worst-case)
choice of parameters, the difference dst(X,)) — max(dst(X,))) can be, theoretically, arbi-
trarily high. In the case of meshes topologically different from planes (e. g. with holes) which
may be obtained from application of procedures based on a-shapes or iso-surface extraction,
max(dst(X,))) is even a worse estimate of the one-sided distance. Therefore, for the general
case, we implemented several features of the algorithm described in [56]: the points sampled
from triangles in X and ) are stored in an octree array, whose finest resolution multiplied
by /2 is the discretization error. From the centers of the disjoint cells of the octree, the
cells filled by points of the other set are identified and, if the computation to the submesh
makes sense (i. e. the distance between cells is not too short), it is carried out by the methods
used for computing dst(X,)). The option of fast computation of maxx (dst(X,))), which,
for non-pathologic cases such as that in Fig. 6.36, is a good approximation of dst(X,)), is
adopted for tensor-product surfaces that produce meshes without holes.

6.5.3 Evaluation of several algorithms on a synthetic data set

The test object represented by the point cloud & must be simple enough that it can be
correctly evaluated with the Hausdorff metric. On the other hand, it should possess all
of the properties of a point cloud obtained by photogrammetric methods in urban terrain:
gradient discontinuities (characteristic for man-made objects), high amplitude of Gaussian
noise, several outliers and varying density of points. In [26], the point cloud X to be used in
the comparisons represents a house with an overhanging roof (see Fig. 6.38). Computational
experiments were carried out for levels 0.025 and 0.15 of Gaussian noise and for outlier
percentages of 0%, 1% and 10% for z,y, and z coordinates of the point (in the case of
iso-surface extraction, also for normal vectors). Here, outliers were randomly chosen points
in the bounding box of the object. The density of points remained roughly unchanged
in all experiments but was variable in different regions of the data set. For each level of
noise and outliers, we carried out data set generation, reconstruction and evaluation 10 to
15 times and computed the average of the Hausdorff distances (6.3). Qualitative results
from the Li-splines-based procedure are shown in Figs.6.39. As we see in the graphics
that demonstrate the quantitative performance of different algorithms Fig. 6.40, our default
procedure turns out to be the most robust with respect to the increasing outlier percentage.
In order to reconstruct this clearly 3D point set X' by tensor-product surfaces, we manually
chose suitable spatial homographies for points on the ground, on the walls, on the roof and
under the overhang that transform the points from different parts of the house into the (u, v)-
plane and preserve topological relations between these points. The (u,v)-parametrization is
shown in Fig. 6.38, top center. For the qualitative illustrations of other procedures, we refer
to [26].

As one saw previously, the L;-splines-based procedure shows the most stable results with
respect to the percentage of outliers and noise, despite limitations due to the relatively small
number of grid nodes and the rather inflexible structure of a tensor-product rectangular grid.
In is also noticeable to observe the high Hausdorff-distance error of the iso-surface extraction
generated by the method of [75] in the absence of noise which we believe happens because
of degenerate configurations, for instance, planar structures.
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Figure 6.38: Model Synthetic house with overhanging roof and a point cloud without outliers,
see also [26]. On the left: view from side, right: view from top, middle at top: parametriza-
tion in (u,v)-domain (points on the ground, on the walls, on the horizontal, upper and lower
overhanging parts of the roof are marked in black, red, green, cyan and yellow, respectively).

Figure 6.39: Modeling the data set Synthetic house with overhanging roof with Lq-splines (see
also [26]). Outlier percentage is 0.01 everywhere. Equally spaced grid. Left: A = 0.3, right:
A = 0.5. The endpoints (X,Y) producing the largest values of dp(X,)) are surrounded by
a red circle and connected by a green line.
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Figure 6.40: The average values of the Hausdorff distance d; obtained for the data set
Synthetic house with overhanging roof for Gaussian noise amplitudes (A) 0.025-0.15 by alpha-
shapes (green/cyan line: a small/large value), iso-surface extraction (red), grid-fit (black)
and Lq-splines (blue). Curves for data sets without outliers are shown by solid lines, for
outlier percentage 0.01 by dotted lines.

6.5.4 Evaluation of a real data set

In this section, we again turn our attention to real data. Fragments of five high-resolution
images of the sequence Ettlingen church present the entrance area of the Herz-Jesu church
in Ettlingen, near Karlsruhe, Germany. The laser point set ), obtained from multiple scan
positions by means of Zoller+Frohlich IMAGER, 5003 laser scanner and registered interac-
tively, as a ground truth, several images and corresponding camera matrices are available
[125] for evaluation of multi-view dense estimation and surface reconstruction algorithms.
We selected and down-sampled five images of the sequence. Our reference image (presented
in Fig.6.41, right) is the third image of the subsequence. We mention here the two main
problems that emerged during the evaluation process:

1. The laser point set contains several millions of points and is therefore not convenient
for further processing (e.g., building meshes). For this reason, we did not perform
meshing of the ground truth point cloud ), but generalized our calculations directly
for the point set. For example, in order to calculate dst(X,)), the ANN algorithm due
to [104] can be used. Here X', 7 is again the mesh resulting from the reconstruction.

2. As one can see from Fig.6.41, left, the laser point set ) is not complete (due to the
unfavorable position of the scanner) and therefore cannot be considered as ideal ground
truth. The error in correctness of our reconstruction results will be unnecessarily high
if care is not taken to exclude the triangles lying in the regions where no ground truth
is given. In the current implementation, we projected ) by the reference camera into
the image and calculated the histogram that assigns the number of laser points to
each triangle of the reconstruction. If we denote by Ty all triangles whose support set
contains less than a fixed number of points in ), then we exclude the set of triangles

Ti = {T'| one of vertices of T is incident with a triangle of 7y }

from consideration. Of course, this approach will fail if some empty triangles are
occluded from the reference image by regions sufficiently covered by laser scanner
data, but this is not the case for our data set. By luck, also triangles near the image
borders with spurious depth values at the vertices — mainly because these regions were
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not covered by a sufficient number of images, e.g., in the bottom left corner and on
the right — belong to 71 and are left out of consideration.

Because of last two issues, we will treat separately the two values of the Hausdorff distance
in Eq. (6.3), which, as we saw previously, denote the correctness and completeness of the
reconstruction. We denote the two penalties for correctness and completeness by d; and da,
respectively.

We begin with sparse reconstruction from a set of images and points tracked by the
method of [94] and triangulated by means of the DLT algorithm [61]. In Fig. 6.41, left, these

points are depicted in green while every 2001 laser point is shown in blue. We compute
the Delaunay triangulation of these points, and, since the number of outliers is low and the
surface we wish to describe is approximately 2.5D, the value of d; is low for this simple
mesh. The value for ds is rather high because large portions of the reference image are
not covered. Then we computed the depth map as described in Sec.4.5.3 with parameters
suitable for this data set (window win = 2, data cost function: NCC, triangulation-based
parameters: A = 50,0 = 100,y = 0.75, non-local optimization: semi-global algorithm) and
the RTDQT-mesh (see Sec.5.1.1) starting from this depth map, as illustrated in Fig. 6.42,
top left and right, respectively. One sees that the number of outliers (caused in this case
by reflections in the windows) and, therefore, the value of d; increases. If one computes a
2.5D L; spline from these nodes, as described in Sec. 5.2.1, the value of d; becomes smaller
while the value of dy also slightly decreases. In Fig. 6.42, in the bottom row, left and middle,
meshes obtained by the RTDQT and Lj-spline-based procedure, respectively, as well as
pairs of points that are responsible for the maximum values of the correctness (d;) and
completeness (d2) penalties are depicted. On the right of Fig.6.42, bottom, we show two
screen shots of the textured reconstruction. Quantitative results for the three procedures
already mentioned here and two other tensor-product-based procedures, namely gridfid and
conventional splines, are shown in Table 6.10.

Remark: The deviations of around one meter seem, clearly, very high for this simple
image sequence. However the output of this section is always the highest deviation that
can be indeed quite high. Computation of average deviations for 3D models would require
modification of (6.3) that, unfortunately, is not available yet. Computation of average
deviations for "2.5D models" is equivalent to comparison of depth maps and yields similar
results as in Sec. 6.3.

Table 6.10: Reconstruction results for the data set Ettlingen church produced by several
methods. The grid size for all tensor-product-based methods was 50 x 50. The smoothness
parameter A was 0.1 for Ly splines and conventional splines, and 0.8 for gridfit. The object
bounding box measures were [8.3;10.8] x [—9.5; —5.9] x [—5.6;0.8] m

method | Delaunay | RTDQT | Li-splines | conv.splines | gridfid
dy 0.216 0.754 0.186 0.718 0.298
do 1.00 0.610 0.486 0.478 0.598

6.6 Computational results for the reconstruction pipeline
for two more data sets

We decided to include in this work two more data sets that assist in (and are very suitable
for) demonstrating the potential of our reconstruction pipeline and, in particular, that of the
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Figure 6.41: Left: The ground truth mesh with vertices given by laser points (in blue) from
the image sequence Ettlingen church, view from behind. Note that orientation of the z-axis
in the input data set is from top to bottom. The triangulated points are illustrated by green
dots both in the 3D space (left) as well as in the image space of the reference image (right).

Lq-splines-based procedure. The village of Wangen in Switzerland represents a destroyed
urban scenery (designated for training of police units, fire fighters and military forces) and
was recorded by a quadrocopter of the type depicted in Fig. 1.1, b. It is clear that the model-
based approaches are not expected to do a good job for this kind of scene. On the other
hand, this scenario is exactly what the automatic navigation, disaster management, and
defense missions in non-cooperative terrain are facing in a continuously increasing number
of cases.

The sparse point cloud and the camera trajectory were reconstructed by means of our
structure-from-motion algorithm [22]. Since the images are nearly 2.5D, it is, for qualitative
illustration of the results, sufficient to compute RTDQT with filled holes from one reference
frame and to model the distance of 3D points to the image plane of the reference frame
using cubic splines (that is, using the 2.5D surface of Sec.5.2.1 only and not the complete
procedure). The reference image, corresponding depth map computed using median depth
estimation, and several views from the point clouds triangulated by means of (4.2) and
exported into an OpenGL-interface (which assigns to each 3D point its color) are depicted
in Fig.6.43. Furthermore, we illustrate in Fig.6.44 compressed representations of the 3D
point cloud produced by RTDQT-mesh (top left) and by the L;-spline-based procedure
(bottom left and right). The main observation that can be made here is that the the 2.5D
L4 spline can suppress the noise in the coordinates of the 3D points.

The next data set shows the cathedral of Speyer, a historical building in the southwest
of Germany. The video sequence, from which 200 frames were automatically extracted and
oriented by the procedures of [22], was recorded in late autumn by a hand-held camera
mounted on a Cessna. In this case, the reconstruction is particularly difficult because of the
leafless trees, which not only violate the assumption of a piecewise smooth surface needed
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Figure 6.42: Evaluation of the data set Ettlingen church. Top left: depth map computed
by means of the simultaneous algorithm of Sec.4.5.3. Top right: RTDQT-mesh produced
from the depth map. Bottom left and middle: Top view of the RTDQT-mesh and the mesh
obtained from the L;-splines-based procedure. The pairs of points in the ground truth and
resulting meshes responsible for the highest values of the correctness (d;) and completeness
(d2) penalty terms are depicted by blue stars and denoted, for further clarification, by 1 and
2, respectively. Bottom right: Visualization of the textured reconstruction provided by the
L+-splines-based procedure.
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Figure 6.43: Top left: The reference image of the sequence Wangen. On the right, the depth
map created as a median fusion of six depth maps as described in Sec. 4.5.2. Note that even
by means of depth map, one can clearly see which part of the roof in the house at the bottom
left still remains and which does not. (This is extremely difficult to realize when viewing
the original image sequence!) Bottom: Three views of the dense point cloud (Fig. courtesy
of P. Wernerus).

Figure 6.44: Top left: a view of the textured reconstruction from the sequence Wangen by
the local algorithm of Sec.5.1.1 with pyramids up to level 4 and one reference image. Bottom:
A similar view of the Lj-spline-based reconstruction. One can see how the 3D points not
exactly computed by depth maps were replaced by spline vertices. Right: Another view of
the Li-splines-based reconstruction. The original point cloud is depicted in blue.
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for the image-based methods of Chapter 4 but also contribute to degeneracy of the surface,
which is no longer a 2D manifold of genus zero (contrary to the assumptions of Chapter 5).
Nevertheless, our methods showed their robustness and achieved reliable reconstruction in
the large parts of the scene. Various steps of the reconstruction from reference frames to
the views of the textured mesh are visualized in Figs.6.45 and 6.46.

Conclusion

From the contents of Secs.6.4-6.6, it becomes clear that the Lj-splines-based procedure is
able to produce topologically consistent surfaces with reliable information even in areas not
covered by the camera. Moreover, it can cope with a considerable percentage of outliers in
the point clouds.

Figure 6.45: Three reference images from the sequence Speyer (top) and corresponding depth
maps (bottom) created by the algorithm described in Sec.4.5.3.

6.7 Computing times

This section gives a coarse information about computing times for the main modules of the
program coded on a standard laptop by the author of this work in a MATLAB GUI with sev-
eral C(++)-files (mostly coded as mex-functions) for the most time-consuming procedures.
Generally, there are two important properties of our algorithm that prevent the software
from rapidly increasing the time for computation. The first is the subdivision in the image-
and point-based steps and the second is its modular structure; the time-consuming modules
of dense depth maps or L;-splines can be omitted or replaced by the simple Delaunay tri-
angulation or the (less time-consuming) procedure of a-shapes, respectively. The user can
decide which modules should be activated.

According to the reconstruction pipeline Alg.1.1, there are four main modules: Sparse
tracking, dense reconstruction, local tessellations and global approach for shape reconstruc-
tion (including texturing). In the following four paragraphs, we will report the computing
times of these modules and their main subroutines. The computational "bottlenecks" of the
respective modules will be described as well.

Sparse tracking includes MATLAB implementations of the epipolar and simultaneous
tracking algorithms and a mex-function for the standard KLT algorithm. MATLAB files
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Figure 6.46: Reconstruction results for the sequence Speyer. Top row: Two views of the
dense point cloud (Fig. courtesy of Peter Wernerus). Middle: Two views of the mesh resulting
from the L;-spline-based procedure with original point cloud depicted in green. Bottom:
Two views of textured reconstruction.
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need around 0.25 minutes for some 500 points and two pictures. The bottleneck is the choice
of the relevant image fragment in (4.11), which takes place by means of bilinear interpolation
and is therefore rather time-consuming in MATLAB. The mex-function of standard KLT-
tracking with 5 pyramids requires less than 0.1 second for the same input data.

Dense reconstruction consists of two submodules coded by mex-functions: computation
of the data term with triangulation-based smoothing and a smoothness function that is by
default semi-global optimization. For 7 images with 384x288 pixels and 21 depth labels,
both submodules need some 0.5 minutes. The current bottlenecks are the data exchange
and the not very efficient computation of the aggregation function (4.20). Use of dynamic
programming instead of semi-global optimization allows reducing the computing time by up
to 3 seconds.

Local tessellations are computed directly from depths maps. Less than one minute is
usually required in MATLAB in order to compute a LIFT interaction between two local
tessellations (shapes). The computing time increases linearly with the number of shapes,
and the whole procedure is then quadratic. Running the C-code for (optional) fitting of
several dominant planes in relatively sparse point clouds requires some 1-2 seconds.

Global approach is the last step of our algorithm. The most time-consuming procedure
is clearly the L;-spline based minimization algorithm, which includes iterative solution of a
linear equation system and has either 3(7+1)(J+1) or 9(/+1)(J+ 1) unknowns (the values
of z(z,y) or X(u,v) and their derivatives at Steps 1 and 3, respectively, of Sec. 5.2). So the
computation of L; splines depends on the number of iterations (the inner iteration loop is
needed for the primal-affine algorithm and the outer to compute the parametric spline in
Sec. 5.2) and can take up to about 1 hour of time (I = J = 40, 1 outer iteration). Rendering
of a 2.5D L; spline requires, however, only 1 minute. Improvements in the current (C-)code
can be carried out. In addition, we mention in Sec. 7.2 several general ideas for future work
that can reduce the computing time of the algorithm by orders of magnitude.

Other shape-reconstruction procedures are significantly faster. For example, the calcu-
lation of an a-shape for several thousands of 3D points requires only about 1 second. The
most computationally expensive portion of this procedure is Delaunay tetrahedrization. Iso-
surface extraction (implementation in C++ and MATLAB) requires 2 to 3 minutes because
the normals of all points must be computed and oriented by identifying neighbors and
RANSAC-based plane fitting.

The computing times for all other routines needed for our approach (detection of charac-
teristic points, texturing, mesh manipulation, etc.) are not higher than a couple of seconds.
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Chapter 7

Summary and outlook

The concept presented in this work has proved to provide good visual and quantitative
reconstruction results for monocular, uncalibrated video sequences of a challenging quality
from both infrared and daylight cameras. The procedure is subdivided into two major parts:
image-based and point-based. This separation was retained throughout the whole process
not only in order to save computation time but also in order to avoid getting stuck in a local
minimum of some global minimization functional. We showed in the image-based portion
how to obtain depth maps from short subsequences of images. In the point-based portion,
also called shape reconstruction, these depth maps are integrated into a global triangular
mesh and textured by the images.

The algorithm is nearly autonomous. The only user intervention may counsist of select-
ing the method of surface reconstruction and specifying thresholds min,, (z,,), max,, (2, ),
ming, (ym) and max,,(y,) to reconstruct the fragment of interest. The reconstruction
pipeline is real-time oriented and only the last step — surface reconstruction — must wait
until the whole point cloud is obtained. We start the detailed discussion of our conclusions
in Sec. 7.1 by emphasizing the main features of the image-based methods. The methods for
shape reconstruction are summarized in Sec.7.2. For every contribution mentioned in this
work, we discuss not only the main advantages and drawbacks, but also ideas recommended
for future work which suppose improvements over the existing drawbacks.

7.1 Image-based methods

Using the algorithms presented in Chapter 4, we are able to compute correspondences for
a sparse or dense point sets from several images, optionally pairwise rectified to epipolar
geometry, using modular cost functions, with or without triangular meshes, with or without
subpixel precision and with or without non-local refinement (for dense methods) by means
of dynamic programming, semi-global optimization, or, in the binocular case, graph-based
approach of alpha-expansions.

Sparse tracking and triangulation

We have seen from Tables 6.2-6.6 of Sec. 6.2 that consideration of multi-camera systems is a
powerful tool in order to obtain both exact spatial coordinates from characteristic points in
images and dense depth maps without too many additional heuristics. The precision of the
results obtained by epipolar and simultaneous tracking policies is, in theory, approximately
the same since, in the end, all cameras participate in the reconstruction. But in practice,
simultaneous tracking suffers more from uncertainties in camera positions, from the not
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always correct assumption of almost fronto-parallel object planes (which requires including
orientation (the normal vector) of 7 from Result 1 into the optimization pipeline and, in
particular, Eq. (4.11), as it was done in [54] for sparse tracking, [18] for local methods (see
Sec. 3.1.2) as well as [76] for global surface reconstruction methods followed by the level set
procedure of Sec. 3.2.3) and from radiometric artifacts in the reference image. While the last
problem can be solved by varying interacting pairs of images, both of the other problems
can hardly be solved without introducing additional parameters and statistical tests as in
[54]. Considering camera uncertainties as described in Sec. 6.2 would probably improve the
situation because the error bounds for camera matrices are usually known from Step 1 of
Alg. 1.1.

Depth map extraction

A new idea of applying triangulation-based smoothing was presented in the course of this
work. It consisted of a smoothness term and an additional evaluation step that ascertains
whether a triangle is consistent or inconsistent with the surface. This helps overcome the
biases of the non-local methods toward fronto-parallel surfaces. Since triangulation-based
terms are also a kind of smoothing, they usually seem — at first glance — not to bring very
significant improvement of the graphics of Figs. 6.26-6.28 if they are followed by non-local
methods with suitably chosen parameters, but these graphics do not reflect the fact that
the depth values of points within triangles consistent with the surface are obtained with
subpixel precision. An isolated outlier within the point set usually does not affect the
performance of the algorithm because triangles incident with it are supposed to be filtered
out as inconsistent with the surface. By considering further reference frames, as described in
Sec. 5.1.2, it is also possible to correct gross errors for triangles spuriously added to the list of
triangles consistent with the surface. Other advantages of the triangulation-based approach
— its ability to initialize depth maps, disentanglement from discretization heuristics, the
perspective of optimization with global methods only in areas made up of triangles that are
inconsistent with the surface — make us believe that the approach can still be improved.
One can, for example, consider for equations (4.21) and (4.22) a term A(T) instead of A,
where A(T) decreases as the variance of the depth at triangle vertices increases, and o (7))
instead of o, where o(T) is larger for triangles with homogeneous color distribution in order
to improve the classification of triangles into consistent and inconsistent with the surface.
Within one subsequence, our future work will also consist of pushing forward the histogram
approach described in [29] for finding similar triangles and recalculating cost functions for
triangles with flipped depth values. This approach must first be generalized for multi-camera
configurations.

As for non-local methods, numerous tests were carried out with dynamic programming,
semi-global optimization, and, in the binocular case, with the graph-cuts-based approach.
Semi-global optimization with 16 optimization paths obtained clearly better results than
dynamic programming (due to streaking artifacts) and the graph-cuts-based approach (due
to its susceptibility to fronto-parallel planes) while the computing time turned out to be
a clear advantage of dynamic programming. Overall, the implementation of the image-
based part of our reconstruction pipeline is very favorable for future developments. New
cost functions as well as other aggregation functions and non-local algorithms can easily
be added as additional modules. Because of the efficient, abstract problem statement for
dynamic programming and semi-global matching, other smoothness functions can also be
integrated into the software if necessary. However, for multi-view dense reconstruction of
our data sets, the smoothness term (4.23) contributed to better results than other terms
mentioned in Sec.2.3.

In the current version of the software, automatic choice of reference frames and other im-
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ages of the subsequence is insufficiently covered. Motion blur and many other artifacts can
make the reference frame unsuitable for dense reconstruction. Other images can have paral-
laxes to the reference frame that are either too large (which leads to many disparity /depth
levels and therefore high computing time) or too small, which has the consequence that
the numerical stability for retrieving 3D structure is lost. Adopting some of the heuristics
mentioned in [50] will help to overcome these drawbacks.

7.2 Shape reconstruction and visualization

Local methods for shape reconstruction

We start this section by summarizing our local method, the LIFT algorithm introduced in
Sec. 5.1. This is a close-to-real-time incremental method for filtering triangles that not only
does not require solving texturing problem (as in global methods, see Sec.5.2.4) but also
allows covering the object surface with multi-sensorial texture. An example of triangulation-
based multi-sensorial surface representation is presented in [27], where the author works
with disparities and Result 2, for which the 3D structure does not need to be explicitly
computed. A textured 3D model representation from additional sources (e.g. combination
of infrared and daylight videos) is also possible. The simple concept of the LIFT algorithm
allows improving the quality of the mesh by additional sources, such as dominant planes.
The main conceptual drawback of the current implementation is that the algorithm is biased
toward the old reconstruction: if a new triangle blocks an old one, it is deleted, although it
is theoretically possible that the positions of the vertices of the old triangle are less accurate.
The parameter € in Alg. 8.4 is thus a user-specified threshold and the results are very sensitive
to its choice. In order to solve these problems, it will be necessary to take the accuracy of
the 3D points into account and to consider the global structure of the scenery, for instance,
by maintaining and updating, after processing every reference frame, an octree structure.

Global methods for shape reconstruction

Among many procedures tested in the course of this work, the Li-splines-based procedure
performs the most robust reconstruction of the urban terrain despite highly varying density
of points, high amplitude of Gaussian noise and outliers. The fact that the Li-norm is
coupled to the coordinate axis and is not affine invariant against rotations and affine trans-
formations does not significantly affect the computational results. Making use of additional
information, such as known footprints of buildings that might be obtained from photogram-
metric or architectural databases, or developing approaches for removing outliers, would
improve the performance of all procedures, including that of the L;-spline-based procedure.
Still, by not using the bells and whistles, one gets clear insight into the fundamental capabil-
ities of the proposed method unaffected by other factors. The present work treats the case
when the footprints of buildings and other model-based information (except the direction of
the z-axis, described in Sec.5.2.1) are not a priori known.

There were several limitations in the current implementation of the Li-splines-based
procedure, namely,

1. use of a static, coarse, equally spaced rectangular grid that does not adapt to the local
density and characteristics of the point cloud,

2. non-adaptive balance parameters in functionals (5.1) and (5.3),

3. high computing time due to global calculation of the L; splines and
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4. use of the parameterization of points described in Sec.5.2.2 that is very sensitive to
the quality of the initial triangulation and the correct choice of the z-axis.

The results that we have presented in this work prove the principle of comparability or
superiority of our method in comparison with other procedures but, because of the limita-
tions mentioned above, the procedure for this method is not yet fully flexible and not yet
computing-time-optimized. By making further improvements in the implementation of the
L1-spline-based procedure, we expect to achieve further improved textured reconstructions.
Specifically, in the future, we will investigate extending the procedure of Sec. 5.2 using

1. flexible triangular grids that adapt to the local density and characteristics of the point
cloud. Possible directions of research on triangular grids include but are not limited to
C° linear splines (for comparison with gridfit) and C! cubic L; splines. These splines
consist of Clough-Tocher elements (separate cubic polynomials in three subtriangles
of a mesh triangle) [73] and are analogous to C' cubic L; splines on rectangular
grids, which consist of Sibson elements. The triangulation to be chosen will be data-
dependent, with roughly the same number of data points assigned to each triangle in
the parametric (u,v)-domain, and it will preserve topological relations.

2. locally adaptive balance parameters A in functionals (5.1) and (5.3) (that will not over-
smooth the edges describing the walls of buildings). Alternatively, since an automatic
choice of A is in general a non-trivial issue, use of Ly spline fits [84], which do not
involve any balance parameter, can be considered.

3. reduction of computing time by 1-4 orders of magnitude by local processing of the
point cloud using domain decomposition, that is, by computing local models on over-
lapping local domains and assembling the local models to generate the global model
(see [88]). This is feasible without detriment to accuracy because L; splines keep local
perturbations in the data completely (not just mostly) local in the surface.

The parameterization of points is indeed a rather complicated issue for future work. From
Fig. 5.3, left, one can see that the building walls will not become completely vertical even
after a large number of iterations and that the approach can fail if the angle between the
z-axis and the correct vertical direction is too large. (It could be asserted that an angle of 15
degrees is already critical for a data set similar to the synthetic one described in Sec. 6.5.3,
but, in this case, the problem can be alleviated by rescaling the point cloud). We will search
for a solution both by manipulating the point cloud by means of the approaches mentioned
in Sec. 5.2.2 and by modifying approaches that are not based on systems of coordinates (such
as level sets with consideration of image information) by our L;-splines-based tools.

Two possibilities for meshing the surface after its generation were mentioned in Sec. 5.2.4:
Delaunay-triangulation of multi-points and canonic triangulation of the spline nodes. Here,
our future work will consist of further effort to manipulate the mesh with the goal of com-
pressing the mesh without deteriorating its quality.

Due to the strict separation of image- and point-based methods in our reconstruction
pipeline as well as the quite simple texturing step described in Sec. 5.2.4, our textured models
have several disadvantages, such as differences in the luminance of neighboring triangles
that have been textured from different images, occasional errors caused by choosing a wrong
camera (if the visibility relations are not exact) and, finally, the fact that the cameras are
not error-free and so the choice of image coordinates is not always exact. Improving the
texturing portion of the reconstruction procedure can proceed by a combination of following
ideas that will be part of our future work.

1. modification of the cost function and applying non-local labeling algorithms on trian-
gular grids in the same way that the algorithm mentioned in Sec.3.1 and Sec.4.5.3
works on rectangular grids.
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2. smoothing, as described e.g.in [45], the color distribution of the triangles by using
linear combinations I(T") = >, txIx(T) where I(T") denotes intensity or color values
of the triangle T in 3D space, the I (T') denote intensity or color values of triangles in
the images [j in which T is visible, and the ¢ are transparency values that satisfy the
constraint Y tx = 1 and depend on the angles that the triangle normal builds with the
camera rays toward the center of gravity of 7. Of course, the problems of a rapidly
increasing number of triangles as well as uncertainties in the positions of cameras must
be taken into account.

3. simultaneous consideration of image- and object-based modeling as mentioned in the
end of the previous paragraph.

Evaluation of algorithms for shape reconstruction

Our next group of observations concerns performance evaluation of shape reconstruction al-
gorithms by means of the Hausdorff distance as described in Sec. 6.5. Experiments described
in this section as well as in [26] make clear the correlation between lower Hausdorft distance
and better reconstruction in the view of the user interested in practical applications. Three
important directions of future work are

1. modifying the error function to make it less outlier-sensitive,

2. applying modifications of Eq. (6.3) that allow considering not only geometry, but also
texture deviations of the reconstructed models and

3. comparing the procedures investigated in this work with a wider class of reconstruction
procedures.

Conclusion

Despite several still existing problems — efforts to cope with them are currently being made —
it is clear that the reconstruction procedure presented in this work can be used for obtaining
excellent textured 3D models for buildings and surrounding terrain from monocular aerial
and UAV-videos.
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Chapter 8

Appendix

Selected Algorithms Used in the Disserta-

tion

fori=1: M do
evaluate 15 = Zy(w(x;)
fork=1: K do
for j=1:5do
obtain x;(j) from x; and d;
if x;1,(d) € Z), then
evaluate 1§ = T (w(xix(4))
and compute ¢ (4, j) from Iy, I
Set C(k, j) = ex(i, )
else
set C(k,j) = o0
end if
end for
end for
for j=1:5do
aggregate C(k, j) into Eyata(X,7)
store A(j, i) = Eaata(X,J) + E7(X,j)
end for
end for

% number of pizels

% K + 1 number of cameras
% number of depth labels
% with eq. of Sec. 4.1

% e. g. bilinear interp.
% with eq. of Sec. 2.2

% using e. g.(4.20)
% using (4.21) and (4.22)

Algorithm 8.1: Dense simultaneous pixel matching.
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initialize C(j) = ¢(1,4), P(i,5) =0
fori=1: M —1do
for j=1:5do
compute: C1(j) = minj (C(5") + ¢5(5, 7))
and set P(i, j) = argminy (C(j') + ¢5(j', j))

end for
for j=1:5do
C(j) = C1(j) + (4, J)
end for
end for

Ju = argmin(C(j))
fori=1: M —1do

Jm—i =P(M — i, japr—it1)
end for

Algorithm 8.2: Dynamic programming algorithm.

procedure rtdqtSplit(7T")
if exists B = friend(7T") then
u=s(B)
if u==1 then
split(B)
else if u == 0 then
P = parent(B) % since s(T) =1 and s(B) =0, s(P) = 1
% according to definition of RTDQT
rtdqtSplit(7) % and so B becomes active
split(B)
end if
end if
split(T)

procedure split(7T)

s(T)=0

s(children(T)) =1

g(children(T)) = g(T) + 1 % increase generation

Algorithm 8.3: One step of the (recursive) algorithm for restricted top-down quadtree tri-
angulation. For necessary definitions, see text.
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Get N = total number of triangles in T
for j=1: N do
Set a(j) = 0,7(j) = 0,0(j) = 0
end for
forx e TUL, do
determine j such as x € T}
retrieve D,,(x) and calculate X
set a(j) = a(j) + 1 and set status = 1
while status and k£ < m — 1 do
k=k+1
project X with Py to obtain xy,
if x;, € T}, and T}, surface-consistent then
retrieve 6 = Dy, (x;) — d(X)
if |0 < ed(X) then
set r(j) =r(j) + 1, set status = 0
else if § > ¢d(X) then
set o(j) = o(j) + 1, set status = 0
end if
end if
end while
end for
for j=1: N do

if o(j) > 0.1a(j) or o(j) +r(j) > 0.99a(j) then
T; is marked as inconsistent with the surface

end if
end for

%Initialize

% area, redundancy, occlusion counter

% see Sec. 4.8.3
% using (4.9) and (4.2)

%T e Ik!
% d(X) from (4.1)
% X is appr. the same point

% X blocks T

Algorithm 8.4: The LIFT algorithm performs geometric evaluation of 7 into redundant,
consistent and inconsistent with the surface by means of depth maps of previous reference
frames. The input is the camera matrices Py, the corresponding triangulations 7, the depth

maps Dy, and a positive scalar threshold e.
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Set k=0 % number of iterations
Set b=0,w=0,6 =00
while k& < kpnax and € > 4 do

k=k+1

W =diag(1l — |w;|) % w; is the ith element of w

solve W ADb,,c., = We for byew % least squares solution

if ||brew — b|l1 > Emax O k < kpao then % the normalized L,-norm
compute r = c — Ab,v = W?r % residual v, temporal vector v
o = max; (max (131@7 1};&))
w=w+cv/a % recompute primal affine weights

end if

set b = byew

end while

Algorithm 8.5: Primal Affine Algorithm. Given a matrix A4 and data vector c, obtain
a solution vector b for (5.2). Two additional parameters are: the maximum number of
iterations kmax and the error tolerance ep,,x normalized by a number of nodes (I4+1)(J+1).
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