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A New Approach for a Kinematic-Dynamic Determination
of Low Satellite Orbits Based on GNSS Observations

Summary

A new approach for the integrated kinematical-dynamical orbit determination of low flying satellites based
on high-low GPS-SST observations is proposed. These observations are code and carrier phase measurements
between a Low Earth Orbiter (LEO) and the satellites of any of the Global Navigation Satellite Systems
(GNSS) such as GPS, GLONASS or in future GALILEO. The orbit determination in this investigation is
restricted to short arcs. The orbit determination technique is characterized by the fact that the satellite’s
arcs are represented by a semi-analytical series, consisting of a linear combination of the boundary vectors
of the satellite’s arc, a linear combination of Euler and Bernoulli polynomials up to a specific upper degree
and a sine series up to a properly selected upper summation index. This kind of orbit representation does
not only allow to determine arbitrary functionals of the satellite’s orbits, such as velocities and accelerations
of the satellite, it covers also the possibility to introduce geometrical and kinematical as well as dynamical
observables for the determination of the orbit parameters. Furthermore, besides a pure kinematical orbit de-
termination it is possible to introduce dynamical force function restrictions to realize a reduced-kinematical
orbit determination — or in case of restricting each free orbit parameter — a pure dynamical orbit determina-
tion. The accuracy of the orbit representation depends primarily on the quality of the GPS-SST observation
accuracy, the GPS satellite configuration and the number of GPS satellites at every individual observation
epoch. The orbit determination approach has been tested based on simulation data sets and with real GPS
observations of the satellite CHAMP. The proposed integrated kinematical-dynamical orbit determination
opens a wide field of applications such as the orbit determination of satellite formation flight configurations
and its application for the Earth system research.

Ein neuer Ansatz zur Bestimmung kinematisch-dynamischer
Bahnen niedrig fliegender Satelliten aus GNSS Beobachtungen

Zusammenfassung

Eine neue Methode der integrierten kinematisch-dynamischen Bahnbestimmung von niedrig fliegenden Satel-
liten aus GPS-SST Beobachtungen wird vorgeschlagen. Diese Beobachtungen sind Code- und Trégerphasen-
messungen zwischen dem Low Earth Orbiter (LEO) und den Satelliten eines der Global Navigation Satellite
Systems (GNSS), wie beispielsweise GPS, GLONASS oder in Zukunft GALILEO. Die Bahnbestimmung in
dieser Untersuchung ist begrenzt auf kurze Bahnen. Die Bahnbestimmungsmethode ist dadurch gekennzeich-
net, dass die Satellitenbogen durch einen halb-analytischen Ansatz dargestellt werden, bestehend aus der Lin-
earkombination der Randvektoren des Satellitenbogens, einer Linearkombination von Euler- und Bernoulli-
Polynomen bis zu einem speziellen Grad und einer Sinusreihe bis zu einem geeignet gewéhlten oberen Sum-
mationsindex. Diese Art der Bahndarstellung erlaubt nicht nur, die Berechnung von beliebigen Funktionalen
der Satellitenbahnen abzuleiten, wie Geschwindigkeiten und Beschleunigungen des Satelliten, sie ermdglicht
auch die Nutzung geometrischer, kinematischer wie auch dynamischer Beobachtungstypen zur Bestimmung
der Bahnparameter. Uberdies ist es moglich, neben einer reinen kinematischen Bahnbestimmung dynamis-
che Bedingungen der Kréftefunktion einzufiihren und auf diese Weise eine reduziert-kinematische Bahnbes-
timmung zu realisieren — oder im Falle der Einfiihrung von dynamischen Bedingungen fiir sémtliche freie
Bahnparameter — eine reine dynamische Bahnbestimmung. Die Genauigkeit der Bahndarstellung héngt
vor allem von der Genauigkeit der GPS-SST- Beobachtungen, der GPS Satellitenkonfiguration und der
Zahl der GPS-Satelliten zu den einzelnen Beobachtungszeitpunkten ab. Die Bahnbestimmungsmethode
wurde am Beispiel von simulierten Datensétzen aber auch mit realen Beobachtungen des Satelliten CHAMP
getestet. Die vorgeschlagene Methode der integrierten kinematisch-dynamischen Bahnbestimmung 6ffnet ein
weites Feld von Anwendungen, wie beispielsweise die Berechnung von Bahnen von Satelliten-Formationsflug-
Konfigurationen und die Nutzung dieser Satellitenmissionen fiir die Erdsystemforschung.
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1. Introduction

1.1 Orbit Determination (OD)

The development of orbit determination techniques especially for the bodies of our Solar System was one of
the main topics of research during the last two centuries. Famous astronomers, physicists and mathematicians
such as Gauss, Legendre, Lagrange and later Poincaré contributed significantly to the development and the
progress of these techniques. This was also the time when many problems of Celestial Mechanics initiated
the development of new mathematical methods. Only one example, important especially for the geodetic
sciences, was the development of the least squares adjustment technique by Carl Friedrich Gauss as important
numerical method to treat erroneous observations especially for the determination of the orbit of the planetoid
Ceres. Within these two centuries, an overwhelming number of publications related to various questions of
Celestial Mechanics and of the orbit determination problem of multi-body systems have been published.

Astronomy played an important role within Geodesy from the very beginning when it started to be a
scientific discipline. All those observation and processing techniques which were necessary to derive geodetic
latitudes, longitudes and azimuths are summarized within the knowledge domain "Geodetic Astronomy”.
These geodetic elements are used to orientate geodetic networks and to determine the figure of the Earth
and the dimensions of best-fitting or of mean Earth ellipsoids. The techniques of "Astronomical Geodesy”
developed to a high standard had been applied to derive reference ellipsoids for a subsequent mapping such
as the International Ellipsoid, Hayford’s ellipsoid, Bessel’s ellipsoid or Clarke’s ellipsoids. These ellipsoids
are still important today as elements of geodetic datum systems and represent the basic fundaments of
various worldwide mapping products.

Nevertheless, these techniques lost continuously their importance during the last fifty years since 1957 when
the first artificial satellite Sputnik I was launched. This was the moment when "Satellite Geodesy” started to
become one of the most important disciplines within Geodesy. During these five decades the determination
of the orbits of artificial satellites became an extremely important task for geodetic research. Indeed the
determination of precise orbits is the important pre-requisite for the determination of gravity field models
and the geoid indispensable in Geodesy and many other Geo-disciplines but also for the determination
of precise positions and the definition of celestial and terrestrial reference frames. Based on the principle
techniques developed within Celestial Mechanics, the development of precise orbit determination methods
for artificial satellites started and numerous articles have been published on this topic during these past five
decades. Because of the decade-long tradition of Celestial Mechanics, the specific focus of the determination
of orbits changed and with it also the terminology of the different orbit determination techniques. Nowadays,
the various methods can be characterized based on different criteria. One of these criteria is related to
the purpose of the orbit we want to determine. If we need a first impression of the orbit to derive, e.g.,
initial or boundary values as starting values for an orbit improvement procedure then we have to perform a
preliminary orbit determination. If we want to determine an orbit which fits the observations in the
best possible way then we have to improve not only the various constituents of the force function model in
the equation of motion and the determination quantities (initial or boundary values) but it is also necessary
to correct the observations based on a proper stochastic model such that the residuals are minimized with
respect to a specific norm. This procedural method of differential orbit improvement results in a final
definitive orbit determination. Indeed this is the procedure which is applied to improve gravity field
parameters or parameters of any other force function constituents.

Another classification of the various orbit determination techniques with respect to the kind of orbit models
is proposed by G. Beutler (BEUTLER 2005). He distinguishes kinematic methods which do not make use
of any force function models and dynamic methods which require a specific force function model. In the
first case the orbits are represented by a table of satellite positions where the table’s spacing is defined by the
measurement rate, in general by the measurement rate of the on-board GNSS (Global Navigation Satellite
System) receiver. The result is a point-wise empirical representation of the orbit and a satellite-related
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equivalent to the so-called kinematical positioning by GNSS. In the second case, the initial or boundary
values of the satellite arcs are determined, or improved if they are approximately known from a preliminary
orbit determination, so that a best fit to the observations is achieved. The notation “best fit” means usually a
best fit in the sense of least squares, but also other norms are possible. The dynamical orbit determination is
possible either numerically by any numerical integration method or analytically. The dynamical orbit can be
represented in principle by an arbitrarily dense sequence of point positions (and velocities) or by an analytical
expression. But it should be pointed out that the analytical solutions are possible only for specific cases and
only at a certain level of approximation. In addition to the kinematic and the dynamic orbit determination
technique, Beutler also introduced a further type of methods called reduced dynamic methods which lie
somewhere in between the kinematic and purely dynamic methods. This group of methods is characterized
by the fact that additionally to the parameters of the dynamic methods stochastic parameters of various
types are introduced after a couple of minutes along the orbit. In this way the total orbit is divided into
short arcs with different continuity properties at the arc boundaries, depending on the type of stochastic
parameters. There are various articles which demonstrate the advantages of this method (e.g. BEUTLER
et al. 2006, JAGGI et al. 2000).

We will modify this terminology of orbit determination techniques slightly, adapting the real meaning of the
notation “kinematics” in physics, which is defined as the theory of the motion of mass points and closely
related to terms such as velocity and acceleration. Therefore, if the orbit is determined point-wise by GNSS
analysis techniques then we consider this determination of satellite position ephemerides as geometric orbit
determination. There is no connection between subsequent positions, and consequently, no information
about the velocity or even the acceleration of the satellite. To describe the time dependency of the motion of
a satellite, it is necessary to provide a properly constructed function which consistently connects positions,
velocities and accelerations. Such a function can be a represented by an interpolation function or a function
derived from the table of positions by a sophisticated approximation method. From these functions, velocities
and accelerations can be derived consistently by numerical or analytical differentiation. With such a function,
the kinematics of the satellite’s motion is given. Because of the importance of these orbit representations
we will define those methods which are directed to the determination of precise kinematical orbits by any
approximation functions as kinematic orbit determination. We would like to point out that no dynamic
force model is used at all. The kinematic orbit is represented by a sufficient number of approximation
parameters, including the initial or boundary values of the arc. These parameters are determined such
that the observations are approximated in the best possible way with respect to a properly selected norm
for the residuals. In this research, the kinematical orbit is, in principle, a solution of the equation of
motion of the satellite. If the kinematical parameters are determined by a best fitting process based on
the observations then we perform a kinematical orbit determination, if the parameters are determined by
a model of the force function then we perform a dynamical orbit determination. Therefore, the dynamic
orbit determination based on a dynamical model corresponds to Beutler’s definition. There is also the
possibility to use certain constraints based on the dynamical force function model. In this case, we come up
with a reduced kinematical orbit determination of a specific level. It will be explained later in detail,
that this formulation of the orbit determination problem allows a smooth transition from a kinematical orbit
determination to a dynamical orbit determination. In the first case, the orbit parameters are determined
without the force function information and in the second case, all parameters are functionals of the force
function model.

1.2 Satellite Orbits in Satellite Geodesy

1.2.1 Mathematical-Physical Model of a Satellite’s Motion

The three-dimensional motion of artificial satellites is caused by the various constituents of the force function
acting on the satellite. In the following, we will consider only the free-fall motion of artificial satellites.
This free-fall can be generated also by a compensation mechanism where the (non-gravitational) surface
forces are transformed into active thruster accelerations by a specific feedback system to produce a pure
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gravitational free-fall motion of the satellite. Forces acting on an artificial satellite can be volume forces such
as gravitational forces which act on the mass elements of the satellite or surface forces such as atmospheric
drag or solar radiation pressure which act on the surface elements of the satellites. This is the reason that
the geometry of the satellite must be known up to a certain level of approximation. The total of all surface
and volume forces causes a three-dimensional motion of the satellite in space.

The three-dimensional motion of a satellite can be separated in a translational motion of the mass center
of the satellite and a rotation around this center of mass. The translational motion is described by the
balance equation of the linear impulse and in case of a constant satellite mass by the equation of motion.
The rotational motion is described by the balance equation of linear momentum or by Euler’s equation of
rotation in case of a rigid body with constant tensor of inertia. In Satellite Geodesy, only the translational
motion of the artificial satellite is of importance; the rotation of satellites in space is treated within the
so-called satellite attitude control and important for astrodynamics. The analysis of the rotational motion
for geodetic purpose is of minor importance, therefore, the rotational effects are not considered here within
the context of the orbit determination problem. Because of the fact that the gravitational force and the
gravitational torque generated by the gravitational interaction of the satellite and the Earth are derived
from the gravitational energy of mutual gravitational interaction of both bodies, the translation and the
rotation are coupled (ILK 1983A). But the coupling effects are very small because of the small size of
the satellite with respect to the Earth dimensions; therefore it will be disregarded for orbit determination
problems in this research.

There are various formulations in Classical Theoretical Mechanics to formulate the equations of motion of
satellites, Newton’s classical formulation, Lagrange’s formalism or the Hamilton formalism. For the present
applications Newton-Euler’s equation of motion is sufficient as basic physical-mathematical formulation of
the satellite’s translational motion.

1.2.2 The Classical Techniques of Satellite Geodesy

The classical techniques of Satellite Geodesy are based on the use of satellites as high targets, as test bodies
following the force functions acting on the satellites and as platforms carrying sensors to detect various
features of the Earth system by remote sensing techniques. A combination of these techniques enables the
recovery of the gravity field of the Earth together with very precise three-dimensional coordinates of selected
observation stations but also area covering features of the Earth surface such as the sea surface and the
topography at the continents. In most of these applications, the precise determination of satellite orbits
plays a decisive role. We will give a short review of the development during the last decade and demonstrate
that the high precision of the GNSS positioning and the innovative satellite technology led to a change of
paradigm in geodetic applications, especially for the determination of gravity field models and here with
regard to the orbit determination problem.

The determination of the gravitational field and of selected position coordinates by using the satellites as
test masses can be performed by a definitive orbit determination procedure which is based on the classical
(in most cases non-relativistic) Newton-Euler formalism,

%p(t) = %K(r,f‘;t) — F=a, (1.1)

with the force function K(r, f;¢) or the specific force function a, the position r, velocity  and the acceleration
I vectors as well as the linear momentum p. To determine the parameters of the force function model and the
determination quantities of the equation of motion (initial or boundary vectors of the satellite’s arc) based
on various types of observations of the satellite, a numerical as well as an analytical perturbation strategy
has been applied, frequently in a complementary way.

The numerical perturbation concept can be characterized by the definitive orbit determination process
where differential corrections to the various observed or unknown parameters are determined numerically. It
is based on the basic geometric relation,

r;(t) = Ry (¢) + Ry (1), (1.2)



1. Introduction

with the geocentric position vector r;(t) to the satellite i, the topocentric position vector Ry; (t), referred to
the terrestrial observation station ! and the station vector Ry (¢). This equation represents the observation
model which reads for a specific observation time ¢, after inserting the observations b; (ranges, direction
elements, etc.), the approximate values for the (unknown) station coordinates x%, the respective residuals
db; and corrections to the station coordinates dxg,

ri(tk> = RM (tk; B, + dbz) + Rl (tk; X% + dXS) . (13)
The orbit model is based on Newton-Euler’s equation,
i;(t) = ar(t;xp) +ap(t;x;), (1.4)

where the specific force function is composed of the Earth-related specific force function ap(t;xpr) with
the parameters xp and the orbit-related specific disturbance forces ap(¢;x;) with the corresponding model
parameters x;. This equation has to be integrated twice based on the initial values af for the orbit i, so that
the non-linear model results in

r;(tg; a? + dai,x? + dxi,x(}); +dxp) = r;(tg, b; + dbi,xos + dxg). (1.5)

This equation has to be linearized in the usual way, building a so-called mixed adjustment model. The
partial differentials are determined numerically by integrating the variational equations or by approximating
the partial differentials by partial differences. Obviously, this model requires satellite arcs of sufficient lengths
because of two reasons: On the one hand, the coverage of the satellite arcs with observations was very poor in
the past compared to the situation nowadays. Therefore, to achieve a sufficient redundancy it was necessary
to use medium or long arcs. On the other hand, to cover the characteristic periodic and secular disturbances
caused by the small corrections to the approximate force function parameters it was necessary - at least
useful - to use medium or long satellite arcs as well.

This fact becomes even more visible by having a closer look at the analytical perturbation strategy. The
explicit Lagrange’s perturbation equations expressed by classical Keplerian elements a,,e,() w,v and the
disturbing potential R read e.g. for the orbit inclination i (do not mix it up with the orbit number) and the
right ascension of the ascending node, €, (e.g. KAuLA 2000)

@ = —1 <cosiaR — 6R)
dt na?v'1 —e?sini ow 0Q)°
dS) 1 OR

_—— 1.6
dt  na2y/1—e2sini 01 (1.6)

Inserting Kaula’s expansions of the disturbing function in terms of the Keplerian elements leads to the famous
Kaula’s perturbation equations,

di FrnpGpgS;
— = GMgag, ' n — 2p)cosi —m),
dt Z ore GMga (1 — e?)a™*1sini (( 2 )
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with the inclination function F,,, the excentricity function G,,pq, etc. (refer to Kaura 2000, for an
explanation of additional quantities). It becomes obvious that the secular effects and the various periodicities
can be detected only with arcs of sufficient length which are able to cover these typical disturbance patterns
of the Keplerian elements. As typical effects, we only want to mention the dependencies of the rotation of
the nodal line of the orbit plane and the line of apsides by the zonal spherical harmonics of even degree of
a spherical harmonic expansion of the disturbing function R. The situation is similar also in case of the
numerical perturbation techniques. The practical experiences underline these numerical characteristics of
the perturbation strategies.

n,m,p,q

(1.7)
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1.2.3 A New Era of Satellite Geodesy

The success of the Global Navigation Satellite Systems (GNSS), the development of microcomputer technol-
ogy and the availability of highly sophisticated sensors enabled space borne concepts of gravity field missions
such as CHAMP and GRACE and — to be realized in a couple of months — GOCE. The innovative character
of these missions is based on the continuous and precise observations of the orbits of the low flying satellites
(high-low Satellite-to-Satellite Tracking — h-1 SST) and the extremely precise range and range-rate K-band
measurements between the satellites in case of GRACE (low-low Satellite-to-Satellite Tracking — 1-1 SST).
In addition, the surface forces acting on these satellites are measured and can be considered properly during
the recovery procedure. In case of GOCE, components of the gravity gradient are measured by a gravity
gradiometer (Satellite Gravity Gradiometry — SGG). The orbit decay of GOCE is compensated by a feedback
system coupled with the measurement of the surface forces acting on the satellite so that the kinematically
computed orbit is purely gravity field determined.

In case of SST, the relative motion of free-falling test masses are measured as relative distances and velocities
or as relative accelerations. The concept is possible either in the so-called low-low or in the high-low mode.
In the former case, the satellites have approximately the same altitude (400 to 500km). In this case, both
satellites are equally sensitive to gravity field irregularities. In the latter case, only one (the gravity field
sensitive) satellite is placed into a low orbit while the observing satellites of the GNSS describe orbits with
high altitudes. The latter high-low alternative is usually modified such that the observations of the satellites
of the GNSS are used to derive precise kinematical orbits. In case of SGG, the elements of the gravity gradient
or linear combinations thereof are intended to be measured simultaneously, depending on the sensitivity axes
realized in the gradiometer instrument. It can be shown that the observations in these three cases can be
related to the gravitational potential V' in case of high-low SST or precise orbit determinations, to the gradient
of the potential VV in case of low-low SST and to the gradient of the gradient of the gravitational potential
VVV (gravitational tensor) in case of SGG. A common feature of these various gravity field measurement
techniques is the fact that the differences of the free-fall motion of test masses is used to derive more or less
in-situ the field strength of the gravity field. This is obvious in case of SGG; here the relative acceleration
of two test masses mi and ms in the sensitivity axis ris is measured. The main part of the acceleration
is represented by the (specific) tidal force field G(21)g of the Earth which can be approximated by the
gravitational tensor Vgg:

fi2 =ri2- Vge. (1.8)

There is no basic difference to the measurement principle in case of the low-low-SST alternative where the
Earth gravity field is measured also in form of the tidal field acting on the relative motion of both satellites.
It reads with the reduced mass p12 and the gravitational attraction of both satellites, Ko,

.. 1
1o = — (K1 + Gpne) - (1.9)
H12

In this case, the tidal force G(21)g cannot be approximated sufficiently accurate by the gravitational tensor.
The same principle holds also in case of the free-fall absolute gravimetry or by the use of precisely determined
kinematical orbits for gravity field recovery; here the free fall of a test mass with respect to the gravity field
of the Earth is observed. The only difference to low-low-SST is the fact that the specific force function is
dominated mainly by the gravitational acceleration of the Earth, gg, and not by the tidal force field G21)g
as in case of low-low-SST or SGG:

F =g, (1.10)

Obviously, the in-situ character of these measurement principles does not require the analysis of long arcs
with respect to accumulated gravity field effects, because the gravity field is detected more or less directly. It
should be pointed out that in all these different measurement scenarios, the in-situ observations contain the
complete spectral band of the gravity field. Therefore, the frequently expressed argument long wavelength
features of the gravity field cannot be detected in such an in-situ way is certainly not true. The restrictions
with respect to signal content in certain observables are caused by the spectral limitations of the measure-
ment apparatus, such as in case of a satellite gravity gradiometer as envisaged for the GOCE mission.
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There are various proposals to account for the special features of the new types of observations as already
outlined in Sec. 1.2.3. These techniques have in common that they do not analyze accumulated perturbation
effects of the gravitational field; they rather detect - more or less directly - the intrinsic structure of the
gravitational field.

A very obvious and simple approach is the use of energy balance relations along the orbit. In this approach,
the velocities derived by numerical differentiation from the satellite positions along the orbits (as result of a
geometric orbit determination) are used to compute the kinetic energy which balances the potential energy,
modeled by the unknown gravity field parameters. The application of the energy integral for problems of
Satellite Geodesy has been proposed since its very beginning (e.g., O’KEEFE 1960, BJERHAMMAR 1967,
REIGBER 1969, ILK 1983A). But the applications did not lead to convincing results because of the type of
observations and the poor coverage of the satellite orbits with observations available at that time. The situa-
tion changed with the new type of homogeneous and dense data distributions as demonstrated e.g. by Jekeli
(JEKELI 1999) or discussed in Visser (VISSER et al. 2003). Two gravity field models based on the energy
balance approach and kinematical CHAMP orbits, TUM-1s and TUM-2Sp, have been derived by Gerlach
(GERLACH et al. 2003) and Foldvary (FOLDVARY et al. 2004), respectively. Both models come close to the
GFZ (GeoForschungsZentrum) gravity field models EIGEN-1 (REIGBER et al. 2003A), EIGEN-2 (REIGBER
et al. 2003B), EIGEN-CHAMP3Sp (REIGBER et al. 2003C), derived by the classical perturbation approach.
Another approach is based directly on Newton’s equation of motion, which balances the acceleration vector
with respect to an inertial frame of reference and the gradient of the gravitational potential. By means of
triple differences, based upon Newton’s interpolation formula, the local acceleration vector is estimated from
relative GPS position time series (again as a result of a geometric orbit determination) as demonstrated by
Reubelt (REUBELT et al. 2003). The analysis techniques, mentioned so far, are based on the numerical
differentiation of the GPS-derived ephemeris, in the latter case even twice. Numerical differentiation of noisy
data sets is an improperly posed problem, in so far, as the result is not continuously dependent on the input
data. Therefore, any sort of regularization is necessary to come up with a meaningful result. In general,
filtering techniques or least squares interpolation or approximation procedures can be applied to overcome
these stability problems. The respectable results of the energy approach in a real application, demonstrated
by Gerlach (GERLACH et al. 2003) and Foldvary (FOLDVARY et al. 2004). Nevertheless, numerical differ-
entiation remains the most critical step in these gravity field analysis procedures. An advanced kinematical
orbit determination procedure which delivers directly velocities and accelerations can help to overcome these
intrinsic problems.

An alternative is a gravity field approach which is based on a two-step procedure, representing, in princi-
ple, a definitive orbit determination strategy as mentioned in Sec. 1.1. In a first step, a kinematical orbit
determination delivers the empirical orbit as observed from the GNSS measurements of different types. In
a second step the parameters of a dynamical force function model is modified such that it fits in a best
possible way the kinematical orbit, as derived in the preceding step. This gravity field recovery technique
is based on Newton’s equation of motion, formulated as a boundary value problem in the form of a Fred-
holm type integral equation. The idea has been proposed as a general method for orbit determination by
Schuneider in 1967 (SCHNEIDER 1968), modified for gravity field determination by Reigber (REIGBER 1969)
and successfully applied subsequently, especially as additional observation equations for zonal and resonant
potential coefficients, by Reigber (REIGBER 1989) in a series of gravity field models, which became well-
known under the acronym GRIM (e.g., BALMINO et al. 1976). In the following, the idea has been applied
to the Satellite-to-Satellite Tracking (SST) problem by Ilk (ILk 1983A) and later to the Satellite Gravity
Gradiometry (SGG) analysis. After that, the method has been developed and tested based on various simu-
lation scenarios, e.g. see ILK et al. 1995 and ILK et al. 2003. The method requires a dense coverage of the
satellite arcs with observations so that it took some more years until its suitability for the processing of real
data could be shown. When the Global Positioning System (GPS) became fully operational and the first
gravity field satellite CHAMP was equipped with precise on-board GPS receivers and launched in 2000, a
first convincing proof of the excellent properties of this method was possible by Mayer-Guerr (MAYER-GURR
2006). The recovery procedure can be applied in the space domain or in the spectral domain (by a series
of sine functions). In case of the gravity field recovery procedure, the observation equations are formulated
in space domain by dividing the one-year orbit into short pieces of arcs. As already mentioned above, the
subdivision of the total orbit is necessary because of discontinuities of the kinematical orbits. The length
of the arcs is not critical at all and can be adapted to the discontinuities of the data set. Because of the
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fact that a bias for each of the three components of the accelerometer measurements along a short arc will
be determined, the arc length should be not too small to get a safe redundancy and not too long to avoid
accumulated unmodeled disturbances. An arc length of approximately 30 minutes seems to be appropriate,
taking the discontinuities of the kinematically determined arcs into account. The root of the gravity field
recovery techniques developed so far is the orbit determination of short arcs which underlines again the
importance of the improvement of the orbit determination techniques.

1.3 A Short Historical Review of Orbit Determination

1.3.1 Ground Based Orbit Determination

The observation of the direction vectors to artificial satellites (longitudes and latitudes or azimuths and zenith
distances) by specialized cameras is the early observation technique of Satellite Geodesy. Approximately at
the same time the distance measurement technique by lasers was developed and it was possible to measure the
geometrical distances from the ground stations to the satellites equipped with retro-reflectors. In the early
seventieth, the laser ranging replaced the optical measurements nearly completely. The processing of optical
observations, either based on the astrometric or the photogrammetric method, was very time-consuming.
This was the reason that the optical observation era in Satellite Geodesy came to a sudden end with the
development of SLR systems and the use of the Doppler and GPS techniques for orbit determination. Another
reason was the limited accuracy of the direction measurements: a directional accuracy of +0.1” corresponds to
+3m in the orbit of a satellite at 6000 km altitude above ground (e.g. LAGEOS). Even if the direction vectors
are complementary to the distance measurements and despite the fact that the optical measurements have
some unique properties compared to the other observation types, the optical observation techniques were not
competitive with respect to the accuracy compared to the e¢m accuracy available with laser ranging systems.
Nevertheless, the optical tracking of satellites is of fundamental importance because it is the only observation
technique in Satellite Geodesy which directly enables access to the inertial reference frame defined by the
fixed stars. But recent progress made in the development of the Charge Coupled Device (CCD) technique
may lead to a revival of optical satellite observations. All other methods such as the measurements related to
the Global Positioning System (GPS) or by the Satellite Laser Ranging (SLR) provide only an indirect link
to the celestial reference frame through the equation of motion (SEEBER 2003). Nowadays, the observations
within the GNSS play a dominant role in Satellite Geodesy but it shall be noticed that optical and laser
observations are an independent tool to control and calibrate other observation systems, e.g. based on GPS
and DORIS.

In the case of laser distance measurements to satellites (SLR), the travel time of a laser pulse between a
ground station and a retro-reflector fixed to a satellite is measured with an extremely high accuracy. The
development of pulsed laser-systems for the tracking of artificial satellites started in the USA as early as
1961/1962. The first satellite that carried a laser reflector was BEACON EXPLORER-B (BE-B) and the
first successful signal returns were obtained in 1965 and yielded an accuracy of a few meters (e.g. SEEBER
2003). In subsequent years, the progress in laser ranging was very fast and the accuracy of laser ranging has
improved from several meters down to a few millimeters. In space distance measurements are possible with
an accuracy of a couple of micro-meters with micro-wave measurement techniques (e.g. K-band measurement
between the GRACE twin-satellites). Laser-interferometric distance measurements are in discussion that can
reach even a much higher accuracy.

Satellite laser ranging systems have been deployed at many locations around the world. Despite the success of
GNSS measurements for orbit determinations, laser ranging measurements are still indispensable in Satellite
Geodesy and this will last for the next future. Nowadays, ground-based orbit determinations of Low flying
Earth Orbiting satellites (LEO) such as CHAMP and GRACE are possible with an accuracy of a couple
of centimeters and they can be used to calibrate and control other orbit determination techniques. DORIS
(Doppler Orbitography and Radiopositioning Integrated by Satellite) is another navigation system to de-
termine and validate the orbits of LEOs.The DORIS system was developed by the French Space Agency
(CNES) with the objective to support the precise orbit determination of LEOs with the reverse Doppler
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concepts. The DORIS system uses a stable frequency which is emitted from the ground beacon stations
(beacons network). The Doppler measurements are performed by DORIS on-board the LEOs. Many of the
remote sensing satellites like SPOT 2-5, TOPEX/POSEIDON, JASON and ENVISAT are equipped with the
DORIS instruments to estimate their precise orbits. A first realization was used 1990 at the remote sensing
satellite SPOT-2. In the DORIS system, the ground beacons broadcast continuously and omnidirectionally
at frequencies of 2036.25 MHz and 401.25 MHz. A receiver on-board of the satellite receives the broadcasted
signals and measures the Doppler shift over a short count interval, e.g. 10 seconds (SEEBER 2003). The pre-
cise Doppler measurement is made at 2 GHz; the use of the second frequency allows to eliminate ionosphere
effects. The DORIS results are of high quality because the DORIS stations are distributed well around the
globe. The accuracy envisaged for DORIS was about 10 ¢m in the radial component after one month in the
post processing mode, but with the improvement of the network configuration, a better theory and a sophis-
ticated error modeling, the current accuracy is about 2.5 ¢m in the post processing mode (SEEBER 2003).
With the establishment of the autonomous real time orbit determination on-board the SPOT-4 satellite, the
accuracy of a few meters for the real time orbit was reachable. For remote sensing applications, the delivery
of the real time orbit of satellites is very important. The DORIS system offers three different orbit products
(SEEBER 2003),

e Real time orbits with an accuracy of sub-meter with the new DORIS generation,
e Operational orbits with an accuracy of sub-meter after 48 hours (<20 c¢m in the radial component),

e Precise orbits with sub-decimeter accuracy after one month (¢m accuracy for radial component).

Besides the SLR and DORIS systems, PRARE (Precise Range And Range rate Equipment) is another
system to determine precise orbits of the LEOs. The German PRARE system is a compact, space-borne,
two-way, two-frequency (2.2 GHz S-band and 8.5 and 7.2 GHz X-band) microwave satellite tracking system.
The primary objective of the PRARE system is to provide the precise orbit determination for LEOs missions.
Based on a global network of PRARE ground stations, a radial orbit accuracy of better than 10¢m has been
achieved (SEEBER 2003).

1.3.2 Space Based Orbit Determination

The dense coverage of the orbits of low flying Earth observation satellites with highly precise observations
performed by the satellites of the GNSS changed the situation for the orbit determination dramatically.
Already in the early years of the development of space navigation systems, it was observed that the precise
and continuous global coverage of satellite orbits with measurements could significantly improve the quality
of the orbits of LEOs. Because of the independency of Earth based observation stations, the accuracy of
the determined orbits was much more homogeneous than ever before. A pre-requisite was that the satellites
are equipped with precise multi-channel on-board GNSS receivers. The application of Space-borne GPS
(SGPS) receivers on-board a LEO for the goal of the orbit determination began with the launch of Landsat
4 (BIRMINGHAM et al. 1983) and the GPS tracking system has demonstrated its capability of providing
high precision POD products through the GPS experiment on the altimetric mission TOPEX/Poseidon
(MELBOURNE et al. 1994). Geometric precise orbits computed from the GPS tracking data are estimated
to arrive at a radial orbit accuracy comparable to or even better than the precise orbit ephemerides (POE)
computed from the combined SLR and DORIS tracking data (Bock 2003). Precise orbits are especially
important in those cases where the satellites are considered as free-falling test masses in the gravitational
field as mentioned already. In these cases, the perturbations of the observed orbits from reference orbits
are analyzed and considered as functionals of the improvements of the gravitational field parameters. This
corresponds in principle to the definitive orbit determination procedure as mentioned before. This idea
has been applied in various modifications with great success in case of the geodetic satellites CHAMP and
GRACE and will be applied in the near future for GOCE. But also the altimetric satellites such as e.g.
TOPEX/ Poseidon, JASON-1 as well as the satellites to investigate the polar caps as e.g. ICESAT and in
near future CRYOSAT require very precise orbits to determine the sea surface topography and the sea level
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heights as well as the ice thickness of the polar caps. But also the various remote sensing satellites require
a precise geo-referencing of the sensors as in case of the magnetic missions @rsted and SWARM or other
remote sensing satellites such as ASTER and IKONOS etc. Because of the importance of the determination
of satellite orbits, there were various approaches to solve this problem and the progress arrived so far is well
documented in many books and papers.

1.4 The GNSS Revolution in Satellite Geodesy

1.4.1 Processing Techniques of GNSS Observations

The primary result of an orbit determination procedure based on GNSS observations is an ephemeris of three-
dimensional coordinates referred to a terrestrial or celestial reference frame. The data processing procedures
may be distinguished by their differencing level namely the zero-difference (ZD), double-difference (DD), or
triple difference (TD) level of the original high-low GPS-SST observations. All strategies make direct use (in
double and triple differences) or indirect use (zero difference) of the GNSS ground network (IGS network).
Direct use is made if the GPS observations of the ground stations are used together with the LEO GPS-SST
data for the processing procedure in case of DD and TD. Indirect use is made if the observations of the
ground stations are not used for the LEO GPS data processing as in case of ZD. The ground based GPS
observations are required in this case to estimate GPS satellite positions and clock corrections. In any case,
ground station observations are required to compute precise GPS satellite orbits. All differencing techniques
require GPS orbits, precise Earth rotation information, and LEO GPS-SST measurements as input for the
data processing. The GPS satellite orbits and ERP (Earth Rotation Parameters) are taken either from the
IGS (or one of its analysis centers) or they may be estimated together with the LEO orbit (within a one
step or a two step procedure). In the following, the specific advantages of the GNSS for orbit determination
are outlined and compared to the ground based observation systems and some important groups of orbit
determination strategies applied so far will be described in more detail.

1.4.2 Conventional Ground Based Observations and High-Low GPS-SST Observations

The Global Navigation Satellite System provides a number of advantages over conventional (classical) track-
ing techniques from ground based observation stations. The excellent observation geometry of the GNSS
provides three-dimensional information from the pseudo-range measurements as opposed to just range, range
rate or angular measurements to a single satellite. Another appealing aspect of the observations from a GNSS
receiver on-board a LEO is its continuous data collection property, provided sufficient power is available to
sustain the receiver operation and a sufficient storage capacity to record the huge amount of measurements
is available. Conventional ground based techniques are limited to those observation periods where the space-
craft is visible from the tracking stations, and, in case of laser ranging if the atmospheric conditions permit
a measurement. The high costs (equipment and personal) involved with the operation of conventional track-
ing stations and their land based nature limits its use and hence reduces the data collection quantity and
distribution. Space-borne GNSS receivers avoid the need of these expensive tracking stations, provided the
IGS network consists of a sufficient number of observation stations. It is remarkable that GPS carrier phase
observations and their differenced quantities taken from the ground station network (DD or TD) are the most
accurate ones among all space observation techniques (BISNATH 2004). Only GPS measurement techniques
allow a purely geometrical three dimensional orbit determination. The geometrical satellite positions can be
estimated independently of the orbit altitude and without knowledge of force function models (Bock 2003).
For validation of LEO orbits derived from GPS measurements, it is necessary to compare them with other
independent orbit determination procedures such as those based on SLR.
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1.4.3 Dynamical Precise Orbit Determination

The dynamical precise orbit determination approach requires a precise mathematical model of the physical
forces acting on the LEOs and a precise mathematical model of the LEOs physical properties (RiM and
ScHUTZ 2002). The physical models are used to describe the motion of the LEO according to the physical
laws of Theoretical Mechanics (e.g. ILK 1976, BisNATH 2004). Double integration of the Newton-Euler
equation of motion using initial or boundary values of the orbit results in a nominal trajectory. The task is to
correct the initial or boundary values such that the orbit shows a best fit to the pre-processed (undifferenced or
differenced) GPS tracking data with respect to a certain norm (differential orbit improvement). An example
of the most accurate SGPS dynamical orbit determination results compared to SLR and DORIS orbits is
that of the altimetry satellite TOPEX /Poseidon orbiting around the Earth at an approximate altitude of
1300 km. For an arc of ten days length, the radial RMS differences are in the size of approximately 3cm,
the along track RMS differences in the size of 10¢m and the cross track RMS differences are in the size of
9c¢m. The procedure applied in this example was based on double differenced ionosphere-free carrier phase
and P-code GPS observations (RIM and ScHUTZ 2002).

1.4.4 Geometrical Precise Orbit Determination

In case of a geometrical orbit determination procedure, only the geometrical observations between the receiver
(LEO) and the sender (e.g. GPS, SLR, DORIS, etc.) are used to determine point-wise the positions of the
receiver. Only the LEO positions and/or clock offsets at every observation epoch are determined, based on
the SST observations. The geometrical orbit determination strategies do not need an information about
the Earth gravity field and other parameters of the dynamical LEO orbit model. The input, in case of
the zero-differenced geometrical orbit determination strategy, consists of precise GPS orbits and their clock
offsets, Earth rotation parameters and dual frequency pseudo ranges (Py, Py, C'/A) and carrier phase (¢1,
¢2) space-borne GPS receiver tracking data. The precision of the geometrical LEO positions depends on the
precision of the GPS-SST observations, on the configuration of the GPS-SST observation geometry and on
the quality of the GPS orbit and clock products, provided by the IGS centers. The number of GPS satellites,
simultaneously visible from the space-borne receiver, as well as the strength of the geometric configuration
of the GPS satellites are the crucial criteria for the accuracy of the positions determined by the geometrical
orbit determination method. If less than four GPS satellites are available per epoch, no LEO position can be
estimated in zero-differenced mode. These missing positions as well as data gaps, e.g. due to receiver resets
or orbit maneuvers lead to interrupts in the geometrically determined orbit of the LEO. This may cause
problems if the geometrical positions are used for subsequent gravity field determination procedures where
equidistant ephemerides are necessary to derive e.g. homogeneous velocities or accelerations. This is not the
case for a dynamical orbit solution, because the dynamical orbits are determined continuously independent
from data gaps. Poor and not homogeneous data coverage would also cause weaknesses in the specific parts
of the determined satellite arcs. An example for a geometrical (denoted as "kinematical”) strategy using
triple differenced GPS-SST observations may be found in Grejner-Brzezinska (GREIJNER-BRZEZINSKA et al.
2002) and in Byun (ByuN 2003). In Svehla (SVEHLA and ROTHACHER 2002) geometrical (denoted also
as "kinematical”) zero and double-differenced precise orbit determination strategies of LEOs (e.g. CHAMP)
including an ambiguity resolution are presented (see also SVEHLA and ROTHACHER 2003). The zero-
differenced geometrical POD approach for the determination of LEO orbits (denoted as "kinematical”) using
subsequent filtering techniques can be found in Bisnath (BISNATH 2004). This approach is based on code
pseudo-ranges and subsequently time differenced carrier phase observations.

1.4.5 Short Arc Kinematical Precise Orbit Determination of the LEO

The kinematic precise orbit determination procedure consists of two steps which can be integrated also
into one determination procedure: (a) the geometrical precise orbit determination resulting in an ephemeris
of point-wise positions and (b) the estimation of an approximation function representing the kinematical
satellite orbit. Geometrical orbit determination is the process of determining an initial geometrical orbit



1.5. Thesis Statement

11

of the LEO from only geometrical high-low GPS-SST observations. This process consists of a point-wise
determination of the absolute LEO positions from the ionosphere-free code pseudo-range and carrier phase
observations. As outlined, the satellite orbit is given point-wise and may contain gaps along the ephemerides.
In many applications (e.g. in case of Earth gravity field recovery techniques), a continuous LEO orbit is
required. But as mentioned already, the densely with GPS-SST observations covered satellite arcs do not
need to be very long provided the analysis procedure is properly adapted to the well-observed short arcs.

1.4.6 Reduced-Dynamical Precise Orbit Determination

As already pointed out, the dynamical orbit determination techniques require a precise mathematical model
of all forces acting on the satellite and a mathematical model of the physical properties of the LEO. The
equation of motion can be solved using numerical or analytical determination techniques. The high-low
GPS-SST observations are approximated by a particular orbit as result of the least squares adjustment
process where the initial or boundary values are determined as unknown parameters. Remaining model
errors cause deviations of the dynamically determined orbit from the observed one, in most cases showing
systematic patterns of the residuals. Usually, the model errors increase with the arc length of the LEO.
The introduction of empirical parameters, modeling e.g. deviations proportional to the satellites revolution
period or stochastic pulses once per a couple of minutes (JAGGI et al. 2006) can help to avoid the unlimited
increase of modeling errors. This is the basic idea of the reduced-dynamical orbit determination strategies
as proposed by Beutler (BEUTLER et al. 2006). Empirical parameters reduce the influence of possible
deficiencies of the dynamic models on the estimated orbit. Lower flying satellites (e.g. GOCE) require
more empirical parameters than higher flying ones (e.g. CHAMP) because it is virtually impossible to use
adequate dynamical models for the non-gravitational surface forces (e.g. atmospheric drag), and it is difficult
to model ocean tide effects (Bock 2003).

1.5 Thesis Statement

Due to the fact that the arcs of low Earth orbiting satellites are densely and homogeneously covered by code
pseudo-range and carrier phase measurements, orbit determination based on various processing procedures is
possible at a very high level of precision. This fact has revolutionized processing techniques and applications
in Satellite Geodesy. It has been demonstrated recently that e.g. for gravity field recovery only short
arcs of approximately 30 minutes length and covering the Earth homogeneously are sufficient to determine
the complete spectrum of the gravitational field of the Earth. Therefore, the very precise determination
of kinematical orbits becomes indispensable. As already defined, we understand the notation "kinematics”
as a procedure which delivers not only three-dimensional positions but also velocities and accelerations
in a consistent way. In this thesis, a procedure will be proposed which allows the determination of pure
kinematical orbits as well as pure dynamical orbits; but even more, it allows a smooth transition from
a kinematical orbit determination to a dynamical orbit determination. This hybrid orbit determination
procedure is achieved by formulating a boundary value problem to Newton-Euler’s equation of motion,
either as absolute or relative orbits, in form of an integral equation of Fredholm type. The solution of
this integral equation can be formulated as a function which consists of three parts: a first one describing
a linear combination of the boundary position vectors (either a straight line or an ellipse connecting the
end points of the arc or a dynamical reference orbit), a second one which consists of polynomials of Euler
and Bernoulli type of various degrees and a third one consisting of a series of sine functions, described
by an - in principle — infinite number of terms. Because of a limited number of observations, the number
of parameters has to be restricted adequately, ensuring the envisaged accuracy. The free parameters of
this approximation function can be determined partly by the adapted force function model and partly as
free parameters in a least squares adjustment procedure representing the dynamical orbit or completely
by a least squares adjustment procedure representing the kinematical orbit. In the case of the reduced-
kinematical or reduced dynamical modification, certain constraints are introduced by the functional model.
The observations are based on precise GNSS measurements of various types. GNSS provides accurate code
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pseudo-range and carrier phase observations, which are used to estimate the geometrical absolute position
of the LEOs. Results are presented based on different observables. Precise results have been achieved with
the help of carrier phase high-low GPS-SST observations in the zero difference concept. In this method, the
availability of the GPS precise orbits from the IGS centers and the physical models of the systematic errors
in the high-low GPS-SST observations are necessary. Laser tracking to GPS and LEO satellites (e.g. GPS
PRN 5-6, CHAMP, GRACE A/B) provides an opportunity to compare GPS and SLR systems directly or
to combine the data of both in a single solution.
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2.1 Overview on GNSS

2.1.1 GPS Constellation

For the time being, the Global Positioning System (GPS) is the only operational Global Navigation Satellite
System (GNSS). It consists of a constellation of at least 24 Medium Earth Orbiters (MEO, see Fig. 2.1)
in nearly circular orbits with an altitude of about 20200 km above the Earth, in six evenly spaced planes
(A to F) with an inclination of 55° and with four satellites per plane that transmit precise microwave
signals. The system enables a GPS receiver to determine its location, time, speed and direction. It was
developed by the United States Department of Defense (DOD) and was officially denoted as NAVSTAR
GPS. Contrary to popular belief, NAVSTAR  is not an acronym, but simply a name given by John Walsh, a
key decision maker at the time where the GPS program has been established (PARKINSON 1996). GPS has
become a worldwide used aid to navigation at land, sea, air and space and a useful tool for map-making,
land surveying, commerce and a very useful tool for various scientific applications. In geodesy, the Precise
Orbit Determination (POD) of LEOs based on high-low GPS-SST observations and applied for gravity field
recovery is one important task. Another important application out of many others is the determination
of the positions of a worldwide net of IGS reference stations to define precise reference frames. GPS also
provides a precise time reference used in many applications including scientific studies in the geo-sciences
and the synchronization of telecommunication networks.

Figure 2.1: GPS-Block ITF Satellite (Credits: NASA)

2.1.2 GPS Satellite Categories

There are six types of GPS satellites, namely Block I, Block II, Block ITA, Block IIR, Block IIF, and Block
IIT satellites. Eleven Block I satellites were launched in the period between 1978 and 1985 from Vandernberg
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AFB, California. Today none of the original Block I satellites are in operation anymore. The Block II
constellation is slightly different from the Block I constellation since the inclination of their orbital planes
is 55° compared to the former 63° inclination. Apart from the orbital inclination, there is an essential
difference between Block I and Block II satellites related to U.S. national security. The Block ITA satellites
("A” denotes advanced) are equipped with mutual communication capabilities. Some of them carry retro-
reflectors to be tracked by laser ranging systems, i.e. SLR. Today no distinction is made between Block II
and Block ITA satellites. Block IIR satellites ("R” denotes replacement) are equipped with improved facilities
for communication and inter-satellite tracking. The Block IIR satellites have been launched after 2005 and
will also transmit the new civil signal Lo component and with the capability to improve the signal power to
ground receivers. Furthermore, they transmit new military signals with an improved accuracy (M Signal).
The Block ITF satellites ("F” denotes follow on) will be launched from 2009 onwards with an expected lifetime
of 15 years. These satellites will be equipped with improved on-board capabilities such as inertial navigation
systems and an augmented signal structure. The Block IIT GPS satellites are expected to carry the GPS into
the year 2014 and beyond with a modern signal structure (e.g. Lic and Ls) and an improved GPS satellite
body structure (HOFMANN-WELLENHOF et al. 2001).

2.1.3 GPS Satellite Signals

The actual carrier signals in the GPS satellites are a spread spectrum that makes it less subject to intentional
(or unintentional) jamming by the users. All GPS carrier signal components are derived from the output
of a highly stable atomic clock, which is the key to the accuracy of the global navigation system. In the
operational GPS (e.g. Block II/ITA) each satellite is equipped with four on-board time standards, i.e. two
cesium and two rubidium atomic clocks. The long frequency stability of these clocks reaches a few parts of
10~1'3 and 10~ '# over one day, respectively. The Block IIF satellites may be equipped with a space-qualified
hydrogen maser with frequency stability of 10~'% over one day. The heart of the GPS satellites are stable
atomic clocks, that generate a pure sine wave at a frequency fo = 10.23M H z, with a stability of the order of
1 part in 1072 over one day. This is referred to as the fundamental L band frequency in GPS. Multiplying
the L band fundamental frequency (fo) by integer factors yields the three (later four with the new signal
Ls) microwave L-band carrier waves Ly, Ly and Lac, respectively. The new signal Ly has been proposed for
the use as a civilian Safety-of-Life (SoL) signal. This frequency falls into an internationally protected range
for aeronautical navigation, promising little or no interference under all circumstances. The first Block ITF
satellite that would provide this signal is planned to be launched in 2009. The frequencies of the three active
waves are obtained as follows:

fr, = 154fy = 1575.42M Hz (A; ~ 0.190m) ,
fr, = fr,. = 120f5 = 1227.60M Hz (Ay ~ 0.244m) , (2.1)
fr. =115f, = 1176.45M Hz (A5 ~ 0.255m) .

The combination of all operational signals is very important to mitigate or eliminate some signal propagation
errors (e.g. ionospheric error). It is remarkable that on the L; signal band a mix of navigation messages,
coarse acquisition (C/A) and encrypted precision P(Y) codes are propagated. On the Ly, P(Y') code plus
the new Lo code on the Block IIR-M and newer satellites are transmitted to the users. In the case of LEOs
all observation types (i.e. C/A, Py, Py, ¢1, ¢2 and ¢P;) are tracked with their signal strength (i.e. SA, Sy
and Sy) to consider signal strength as statistical quantity in the precise orbit determination procedure.

2.2 The International GNSS Service

The International GNSS Service (IGS), formerly the International GPS Service, is a voluntary federation
of more than 200 worldwide agencies that pool resources and permanent GPS and GLONASS station data
to generate precise GPS and GLONASS products (orbits, clock offsets, etc.). The IGS is committed to
provide the highest data quality and products as the standard for Global Navigation Satellite Systems in
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support of Earth science research, multidisciplinary applications and education. The GNSS observations
at the IGS permanent stations are transferred to the Data Centers and pre-processed and processed by
the IGS Analysis Centers with respect to latency. The Analysis Centers produce diverse products specified
as predict, rapid and precise. The analyzed data in the different analysis centers are transferred to the
IGS center to produce the final products. Currently the IGS includes two GNSS, the USA GPS and the
Russian GLONASS, and intends to incorporate future GNSS like the European GALILEO (IGS 2008).
Obviously, in the post-processing of the LEO orbit determination procedure, the final precise products of
the GNSS are necessary in this procedure. The GNSS positions and clock offsets can be used as fixed values
(without variance-covariances) or as float values (with variance-covariances) in the processing of the GNSS
observations.

2.3 Time Coordinate Systems

In space geodesy, measurement techniques usually measure travel times or travel time differences. Examples
are the measurement of travel time differences of extraterrestrial signals from Quasars at two stations in
case of VLBI and travel times of artificial signals from GNSS satellites to the GNSS receiver. In Satellite
Geodesy, a time scale is regarded as one of the coordinates of a four-dimensional space-time reference frame.
Two aspects of time scales are required in Satellite Geodesy, the time epoch and the time interval. The
epoch defines the moment of an event, and the interval is the time difference between two epochs, which are
measured in units of time of the adopted time scale. There are several time coordinate systems in Satellite
Geodesy and in astronomic applications, which are based on various periodic processes such as the rotation
of the Earth or atomic oscillations. Time scales in Satellite Geodesy can be classified in three basic main
groups (SEIDELMANN 1992):

e Sidereal Time (ST): the time defined through the rotation of the Earth w.r.t the reference meridian of
the Earth e.g. Greenwich meridian, local meridian or vernal equinox,

e Dynamical Time (TD): the time defined from planetary motions in the solar system, based on the
theory of General relativity,

e Atomic Time (TA): the time realized in atomic clocks on the Earth’s geoid. It is the basis for a uniform
time scale on the Earth. This time is defined by the frequency of the basic oscillation of the frequency-
determined element. The origin of the atomic time is defined by international conventions agreed by
international organizations such as IAU (International Astronomical Union).

2.3.1 Sideral and Universal Time

Sidereal time and universal time are directly related to the periodic rotation of the Earth, and they are
thus equivalent time scales. Sidereal time is a measure of the Earth’s rotation and is defined as the hour
angle between the observed local meridian and a point on the celestial sphere (e.g. the vernal equinox). If
the measure is counted from the local meridian to the true vernal equinox, the sidereal time is called Local
Apparent Sidereal Time (LAST) and if the measure is counted from the Greenwich meridian to the true
vernal equinox, the sidereal time is called Greenwich Apparent Sidereal Time (GAST). Obviously, for the
mean equinox, the Local and Greenwich sidereal time holds LMST and GMST respectively. The Universal
Time (UT) is the Greenwich hour angle of the apparent Sun, which is orbiting uniformly in the equatorial
plane. Universal time is not a uniformly scaled time, because the angular velocity of the Earth is not a
constant. If the universal time is corrected for the polar motion (effect on the meridian, dUT}), then the
Universal Time is denoted as UT;. The relationship between the corrected universal time (natural time
scale) and universal time coordinate (artificial atomic time scale) is,

UTy = UTC + dUT. (2.2)
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In Eq. (2.2), UT1 is the astronomical observation at the ground station which is corrected for polar motion,
and dUT1 is a correction which can be obtained from the TERS center. The practical importance of the
Universal Time today is not as a time systems (it is too irregular compared to regular atomic time scales)
but as an angular measurement used in the transformation between the Celestial and Terrestrial Reference
Frames (KLEUSBERG and TEUNISSEN 1998).

2.3.2 Atomic Time

The atomic time is the basis of a uniform, continuous time scale on the geoid, and is kept by atomic clocks.
The fundamental time scale is International Atomic Time (TAI, Temps Atomique International) based on
atomic clocks operated by various national agencies. It is kept by the IERS and BIPM who are responsible
for the dissemination of the standard time and of the EOP. The fundamental interval (scale) of the atomic
time is one SI second that has been defined at the 13" general conference of ICWM based on the Cesium 133
atom and its origin point was established with Universal Time (UT) at midnight on the 1** of January 1958.
There is a fundamental problem of using the T'AI in practice: the rotation of the Earth around its rotation
axis is slowing down. Thus T'AI would eventually become inconveniently out of synchronization with the
solar day. This problem has been overcome by introducing Universal Time Coordinate (UTC'), which runs
at the same rate as TAI, but incremented by the leap seconds when necessary. The IERS is responsible to
publish them on January, 1st or July, 1st. The time signal broadcast by GPS satellites are synchronized
with the atomic clock at the GPS master control station in Colorado. GPS time was set to 0" UTC on 6"
of January 1980, but it is not incremented by UTC leap seconds. Therefore, at the moment of writing this
lines, there is a 19° offset between GPS time (GPST) and Atomic time (T'ATI) and the transformation reads,

GPST = TAI —19°, (2.3)

UTC is the atomic time scale, which can be determined from the T'AI and the leap seconds (n) as (Mc-
CARTHY and PETIT 2003),

UTC = TAI —n®. (2.4)

In space geodesy applications, the time epoch denoted by the Julian Date (JD) is expressed by a certain
number of integer days and a fraction of a day after a fundamental epoch in the past, chosen to be at 12"
UT on January 1, 4713 BCE. The JD of the standard epoch of UT is called J2000.0 as (KLEUSBERG and
TEUNISSEN 1998),

J2000.0 = 2451545.0(JD) = 2000, January, 195, UT, (2.5)
The Modified Julian Day (MJD) was introduced by space scientists in the late 1950’s. It is defined as

MJD = JD — 2400000.5. (2.6)

2.3.3 Dynamical Time

In 1952, the IAU introduced the so-called Ephemeris Time(ET) as a theoretically uniform time scale for the
use with ephemeris. In practice, the ephemeris time was derived from lunar observations, and it depends on
a theory of the Sun and the system of astronomical constants. Ephemeris time has never been disseminated
as time signals from a time service. It was made available only through the publication of differences with
respect to UTy, and later to TAI (SEEBER 2003). The Dynamical time is the independent variable in the
equation of motion of bodies moving under gravitational interaction in the Solar System according to the
theory of General Relativity. The best approximation of an Inertial Reference Frame to which we have
access based on General Relativity is located at the mass center of the Solar System. The Dynamical time
measured in this mass center is called Barycentric Dynamical Time(TDB), and in the mass center of the
Earth it is called Terrestrial Dynamical Time(TDT)(KLEUSBERG and TEUNISSEN 1998). In the concepts of
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General Relativity, a clock located at the geoid and moving with the Earth experiences periodic variations
of up to 1.6 msec. which is caused by the annual motion of the Earth within the gravitational field of the
Sun (and the other planets). In the computation of LEO orbits, this effect can be neglected, because LEOs
move together with the Earth. Because of neglecting this effect in the orbit determination and by adapting
as basic Newton’s theory, TDT is the appropriate time scale in Satellite Geodesy. The application of the
TDB time scale has to be considered for VLBI (SEIDELMANN 1992). Later in 1991, TAU has defined the
Terrestrial Time(TT) as a new time scale based on the general theory of relativity to clarify the relationship
between space and time coordinates. The unit of 7T is the SI second and is realized through the atomic
time scale TAI with a constant offset of 32.184° between both time scales as,

TT = TAI + 32.°184. (2.7)

Because of this constant shift between 7T and TAI time scales and the realization of 7T by the TAI time
scale, these two time scales are practically identical.

2.4 Reference Systems and Reference Frames

2.4.1 Introduction

In satellite geodesy, reference frames play a basic role for the representation of satellite orbits and as reference
for station positions. The latter ones refer to an Earth-fixed reference frame while the equations of motion
of satellites refer to an inertial system. There are three types of reference systems:

e Galilei system, with arbitrarily accelerated rotational motion of the reference system,

e Newton system (Quasi-inertial system), with arbitrarily accelerated translational motion of the ref-
erence system,

e Inertial system, with translational motion of the reference system along a straight line with constant
velocity.

These reference systems can be used to describe the motion of satellites, the moon, sun, and the planets. The
use of an inertial system has the advantage that the equation of motion has the simplest form compared to
the equation of motion formulated with respect to other arbitrarily rotating reference systems. Nevertheless,
inertial systems cannot be realized rigorously. This is the reason that Newton systems are used instead of
inertial systems which represent local inertial systems in the vicinity of the origin (quasi inertial systems). Let
us consider a Newton system, fixed at the center of mass of the Earth. The free fall motion of the geocenter,
and with it, the motion of the origin of the reference system is ruled by the mutual gravitational forces with
the sun, the moon, the planets, etc. The relative motion of an artificial satellite with respect to the geocenter
then is determined by the gravitational interaction with the Earth, but also by the inhomogeneities of the
mutual gravitational interaction of the Earth with the other bodies. The latter forces are so called tidal
forces caused by these bodies. In case of LEOs which are close to the Earth, the direct gravitational force
caused by the Earth is, of course, the largest constituent.

Newton systems can be used to describe the equation of the Earth in space, of celestial bodies and artificial
satellites. Frequently, this sort of systems are called celestial reference system. If we want to describe
positions and motions on the surface of the Earth, then another type of reference systems has to be introduced,
so called terrestrial reference systems which are, in a certain way, fixed to the Earth. At a first glance
the problem to define a terrestrial reference system seems to be a simple task. Because of the fact that any
point on the Earth is moving with respect to the other points of the Earth’s surface then again we have to
search for an idealization of terrestrial reference systems. Ideal terrestrial systems could be defined in such
a way that with respect to this system the crust should have only deformations and no rotations.
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Besides the definition of these two basic concepts of reference systems, celestial and terrestrial ones, we also
need the relationship between terrestrial and celestial reference systems. This need can be clearly
seen if we want to describe the motion, e.g. of an artificial satellite with respect to a terrestrial reference
system. The inertia forces have to be considered properly in this case. To determine these forces, we need the
time-dependent rotation vector of the terrestrial reference system with respect to the celestial system. Also
many Earth related observation techniques in physical geodesy, e.g. to model the dynamical observations
as in case of gravity measurements at the Earth surface, at sea or on-board of an airplane it is necessary to
know the relationship between terrestrial and celestial systems.

2.4.2 Realizing Reference Frames

Space fixed reference systems in the sense of inertial systems (celestial reference systems) and Earth fixed
reference systems (terrestrial reference systems), arbitrarily rotating with respect to the celestial system, are
both necessary in practical applications. Yet, the definition of these two systems are just concepts. These
theoretical concepts define ideal reference systems. The basic concepts comprise the structure of space and
time. Therefore, the points in space and time have to be described accordingly. The problem to define space
and time points can be realized by introducing space and time coordinates. A reference system equipped
with coordinates is denoted as coordinate system. Yet, it is not possible to connect to an ideal reference
system in practice. In realizing these systems, we have to follow certain steps, suggested by Kovalevsky and
Miiller (KOVvALEVSKY and MULLER 1981) and discussed, e.g. in detail in Kovalevsky (KOVALEVSKY and
MULLER 1989) and in Moritz and Miiller (MORITZ and MULLER 1987):

e Statement of a theoretical concept as an tdeal reference system: For example, an ideal celestial
reference system is an inertial system, on which Newtonian’s mechanics is based on,

e Choice of the physical structure of the reference system: Besides the basic concept it is necessary to
identify the physical bodies that are part of the physical system. For example, the solar system with
its planets and moons defines such a physical structure including constants, equations of motion etc.,

e Modeling the physical structure as conventional reference system: For example, to define a dy-
namical celestial reference system based on the solar system one has to adopt a specific model including
the masses of the planets, precession constant etc. ("system of fundamental constants”, periodically
updated by TAU and IUGG),

e Realization of the reference system as conventional reference frame: The materialization of con-
ventional reference systems consists of a list of coordinates of points which represent the conventional
reference system (fiducial points). For example a conventional dynamical celestial frame can be rep-
resented by the ephemerides of the fiducial points and a conventional kinematical celestial frame is
realized by the coordinates of a selection of stars, accessible to observation, e.g. the fundamental star
catalogue FK5, defined by the directions of about 1500 stars. Obviously, the number of fiducial points
must be available in a sufficient number,

e Extensions and densifications of a conventional reference frame as a secondary conventional ref-
erence frame: If the number of fiducial points of a conventional reference frame is not sufficient to
connect to them, then extensions are necessary as for example secondary star catalogues referring to
the same conventional reference frame.

2.4.3 Coordinate System

The problem to describe space and time points can be realized by introducing space and time coordinates.
A reference system equipped with coordinates is referred to a coordinate system. Beside the three space
coordinates, it is necessary to introduce another coordinate for the time. For both types of coordinates it is
necessary to define proper measurement procedures.
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In case of an ideal reference system, Newtonian mechanics based on an Euclidean or a flat space, respectively,
is implicitly introduced. In Euclidean spaces, it is possible to introduce Cartesian coordinates but also
curved coordinates. It should be pointed out that the introduction of curved coordinates, e.g., spherical
polar coordinates, does not change the flatness of the space. Today we know that we live in a curved space
an Euclidean or flat space can be introduced only locally. This is the reason that we may use also Cartesian
coordinates locally.

To describe the geometrical positions of space points we can use orthogonal Cartesian coordinates. But also
spherical polar coordinates or (rotational) ellipsoidal or geodetic coordinates. These types of coordinates are
frequently used in geodesy. Ellipsoidal or geodetic coordinates consist of ellipsoidal longitudes and latitudes
as well as of ellipsoidal heights. The application of modern satellite based observation techniques or geodetic
space techniques allows to derive directly three dimensional absolute positions referred to a unique global
reference system without separating it into two dimensional surface coordinates and a one dimensional height
coordinate. E.g., the transformation of these three dimensional positions into surface coordinates "ellipsoidal
latitude” and “ellipsoidal longitude” as well as into a height coordinates “ellipsoidal height” is simply accessible
once a reference ellipsoid is introduced.

2.4.4 Conventional Reference Systems
2.4.4.1 Conventional Celestial Reference System (CCRS)

Conventional celestial reference systems can be defined by its various system components, a certain concept,
a physical structure and the model of this structure, which is defined by certain conventions. There are two
concepts of conventional celestial reference systems depending on the type of relations of the "carrier points”
of these systems. Both definitions should lead to the same reference system at least in Newtonian mechanics.
The relation between the carrier points can be defined kinematically by time-dependent coordinates or
dynamically by the equation of motion of the corresponding mass points. In case of Newtonian Systems,
e.g. there are various possibilities as shown in Table 2.1. The "relations” in this table contain implicitly

Table 2.1: Conventional Newton Systems.

. . Relations
Carrier points Kinematic Dynamic
compact radio sources (quasers) | position catalogue (including proper motion, etc.) cosmology
stars position catalogue (including proper motion, etc.) stellar dynamics
planets planet ephemerides planet theory
moon moon ephemerids moon theory
artificial satellites satellite ephemrides satellite orbit theory

the physical structure and all numerical values of these parameters which are necessary to describe the
mathematical-physical foundation of the reference systems. Obviously, most of the elements of such a
reference system are, to a certain amount, arbitrary. One has to decide by convention how the reference
system has to be constructed. Conventional kinematical and dynamical reference systems are not used
exclusively but frequently in a certain combination. One has to keep in mind that this procedure can cause
inconsistencies. Frequently used conventional Newton systems are space fixed ecliptic systems with the origin
at the heliocenter or space fixed equator systems with the origin at the geocenter.

2.4.4.2 Conventional Terrestrial Reference System (CTRS)

A similar procedure as before to define conventional celestial reference system is necessary to define "Earth
fixed” Galilei systems. In case of a rigid Earth, any Earth fixed triad is suitable for the definition of a
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conventional terrestrial reference system. Because of the fact that the Earth is deformable and certain parts
of the Earth move with respect to other parts, it is necessary to set up conditions for the definition of a
terrestrial reference system. One possibility is (KOVALEVSKY and MULLER 1989) to define it such that the
overall rotation of certain parts of the Earth vanish ("no net rotation”). Another choice would be to define
a conventional terrestrial reference system by material points of the Earth’s surface such that these points
only show deformations but no common rotations with respect to the adopted CTRS. Many other concepts
are possible and have been proposed in the past. A certain concept for such a reference system (models,
algorithms, constants, etc.) defines a "Conventional Terrestrial Reference System (CTRS)”.

2.4.5 Conventional Reference Frames

With the choice of the system components, conventional reference systems are specified, conventional celestial
reference system (CCRS) as well as conventional terrestrial reference systems (CTRS). Based on the basic
system components, a certain number of representative points “fiducial points”’, have to be selected. These
fiducial points are identical with the carrier points of the conventional reference systems. They must be
available in a sufficient number and accessible to observation to connect to them and to derive the coordinates
of other points. It is necessary to provide the coordinates of these points together with their time variations.
Then materializations of a CCRS and a CTRS of a conventional celestial reference frame (CCRF) and a
conventional terrestrial reference frame (CTRF) are available. Of special importance are the realizations of
the International Earth Rotation Service (IERS). The IERS reference system contains the IERS standards
and the IERS reference coordinate systems. The IERS standards contain a set of constants and models
published in the IERS conventions 2003 (McCARTHY and PETIT 2003), e.g. the TAU 2000A /B precession
theory and the IERS 2000A /B nutation theory, rates of continental drift, gravity constants, etc., which are
used by the IERS. The IERS reference coordinate systems consist of:

e International Terrestrial Reference Frame (ITRF) and the

e International Celestial Reference Frame (ICRF).

Both coordinates systems are realized by lists of coordinates of reference points, terrestrial collocation points
or compact extra galactic radiation sources and its epochs. These frames and its mutual transformations are
explained in more detail in Sec. 2.5.

2.4.5.1 Conventional Celestial Reference Frame (CCRF)

The stellar conventional celestial reference frame which is important in astronomy and geodesy and which is
accessible with the techniques of geodetic astronomy is the fundamental catalogue FK5. The conventions of
the FK5 are referred to the epoch J2000.0 (Julian date 2000.0). The axes coincide with a mean equatorial
system, i.e. the x- and y-axes are located in so-called mean (dynamical) vernal equation. The stars are
given by spherical polar coordinates « (right ascension) and 0 (declination). These coordinates, the proper
motions of the stars and various quantities are given in the FK5. The FK5 has been introduced end of the
eighties. It contains 1535 stars; an FK5-extension is being prepared and shall contain around 3000 additional
stars. More details on the FK5 can be found in Fricke (FRICKE et al. 1988).

Of special importance is the International Celestial Reference Frame (ICRF). A detailed description is given
in the IERS conventions 2003 (McCARTHY and PETIT 2003). The origin of the ICRF coincides with
the barycenter of the solar system and the directions of the axes are fixed with respect to extragalactic
radio sources. The accuracy of the axes is approximately 0.0001. The J2000.0 equatorial coordinates of
extragalactic objects are determined from Very Long Baseline Interferometry (VLBI) observations. The
z—axis corresponds to the (mean) Earth rotation axis at epoch J2000.0. The motion of the rotation axis in
space is determined by the theories for precession and nutation (IAU 2000A /B), adopted by the International
Astronomical Union (IAU). The VLBI analysis provide corrections to the conventional TAU models for
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precession and nutation (SEIDELMANN 1980). The z—axis coincides with the intersection of the equatorial
plane with the ecliptic plane. It is directed to the vernal equinox and is referred also to the epoch J2000.0.
The change of this intersection line in time is determined also by the IAU-theories of precession and nutation.
The y—axis is orthogonal to the z —z—plane and builds a right hand oriented system. ICRF is a frame whose
directions are consistent with those of the fundamental catalogue FK5 within the observation accuracy of
approximately 0.01 (FRICKE et al. 1988).

2.4.5.2 Conventional Terrestrial Reference Frame (CTRF)

Especially for GPS users, the so-called World Geodetic System 84 (WGS84) is still very important. The
user adopts this frame automatically if he uses the broadcast ephemeris predicted by the GPS control
segment. Besides the errors of the orbit determination for the GPS satellites, the falsifications of the orbit
parameters by the owner of the Global Positioning System reduce the accuracy of a connection to WGS84 to
approximately a couple of meters. WGS84 is a terrestrial reference frame represented by the system satellites
as carrier marks. Therefore, the orbit dynamics is included in the frame definition. The frame has its origin
in the geocenter and the orientation of the coordinate axes is defined by a modification of the coordinate
system NSWZ9z-c from the Defense Mapping Agency of the USA (DMA).

An alternative to get improved results consists in determining precise ephemerides by a network of globally
distributed tracking stations. Such a network is run by DMA consisting of the five ground stations of the
control segment and five additional tracking stations globally distributed. Besides, there exist some private
tracking networks, or being established. Important is the Cooperative International GPS Network and the
International GNSS Service (IGS). The precise ephemerides based on these tracking networks enable a much
better realization of WGS84 than based on the predicted ephemerides of the GPS control segment.

Another conventional terrestrial reference frame is the ITRF (International Terrestrial Reference Frame) of
the International Earth Rotation Service (IERS). It is a realization of the International Terrestrial Reference
Frame (ITRF). The frame is materialized by a network of tracking stations whose position coordinates have
been derived from a combination of laser ranging to satellites and to the moon, from VLBI observations, from
GPS measurements and others. The origin, the orientation of the coordinate system and the scale of ITRF
are implicitly defined by the coordinates of the observation stations. The origin of ITRF is the geocenter;
the accuracy is in the size of a couple of centimeters. The z—axis coincides with the mean rotation axis of
the Earth defined by the International Reference Pole (IRP). The y—axis is in the 0° International Reference
Meridian (IRM) plane, which is defined by the adopted longitudes of the reference stations. IRP and IRM
coincide with the corresponding directions of the BIH Terrestrial System (BTS) 1984 within an accuracy of
0.003. The BIH Reference Pole was adjusted to the CIO 1967 (Conventional International Origin) with an
accuracy of approximately 0.03. Changes of the positions in time caused by plate tectonics or shift vectors
are derived from repeating measurements. IERS publishes updates to the reference station coordinates,
including shift vectors, as far as they are available. The solutions for every year are marked by the year code,
e.g. ITRF2000.

2.5 Transformation between Celestial and Terrestrial Reference Frames

The transformation between conventional reference frames (CCRF) and conventional terrestrial reference
frames (CTRF) could be performed by three rotations in space with three time-dependent angles, e.g.
Eulerian angles or Cardano’s angles. There are various theoretical reasons why this total rotation is split up
in a series of successive rotations. There are two basic steps:

e Transformation from the mean celestial reference frame at epoch Ty = J2000.0 to the true celestial
reference frame at epoch T'; these transformations include the transformations due to precession and
due to nutation:
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Figure 2.2: Celestial and Terrestrial Reference Frames.

— transformation from the mean celestial reference frame at epoch To = J2000.0 (CCRF Tj) to the
mean celestial reference frame at epoch T (CCRF T'): precession,

— transformation from the mean celestial reference frame at epoch T' (CCRF T') to the true celestial
reference frame at the same epoch T (CRF T'): nutation,

e Transformation from the true celestial reference frame at epoch T' to the conventional terrestrial ref-
erence frame at epoch T'; these transformations include the transformations due to the daily rotation
and due to the polar motion:

— transformation from the true celestial reference frame at epoch T (CRF T') to the true terrestrial
reference frame at the epoch T (TRF T'): daily rotation,

— transformation from the true terrestrial reference frame at epoch T' (TRF T') to the conventional
reference frame at the epoch T' (CTRF T'): polar motion.
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The total transformation of the orthogonal Cartesian coordinates referred to the frame (CCRF Tj) to coor-
dinates referred to the frame (CTRF T)) is given by the rotation matrix:

X X
Y = S(GAST7yP7 ‘rP)N(Ev _A’L/Jv —€ - AE)P(_CAa 7-9147 _ZA) Yy . (28)
# / CTRF 7 # / CCRF 1,

The first transformation from the mean celestial reference frame at epoch Ty = J2000.0 (CCRF Tp) to
the mean celestial reference frame at epoch T' (CCRF T) is due to the general (lunisolar and planetary)
precession between the epochs Ty = J2000.0 and T' (precession matrix),

P(—Ca,94, —za) = R3(—24)R2(V4)R3(—Ca). (2.9)

The equatorial precession parameters for precession between the epoch T and epoch T are given by the
IERS conventions 2003 (McCARTHY and PETIT 2003):

Ca = 2.5976176" + 2306.0809506"t + 0.3019015”¢% + 0.0179663"t> — 0.0000327"t* — 0.0000002"¢°,

Y4 = 2004.1917476"t — 0.4269353" % — 0.0418251”t> — 0.0000601”t* — 0.0000001"¢°, (2.10)
—2.5976176" + 2306.0803226"t + 1.0947790"t? + 0.0182273"¢> + 0.0000470”t* — 0.0000003"¢>,

ZA

where the time difference ¢ is given in Julian Centuries of T'DB (Barycentric Dynamical Time) according to:
t = (T — J2000.0)/36525.0, (2.11)

and T is given in Julian years of T'DB. These parameters are based on a numerical model adopted by the
IAU in 2000.

The second transformation from the mean celestial reference frame at epoch T (CCRF T) to the
true celestial reference frame at the same epoch T' (CRF T') is due to astronomic nutation at the epoch 7.
It can be computed by the following combination of rotations (nutation matrix):

N(g, =AY, —e — Ae) := Ry (—e — Ae)R3(—AY)Ry (¢). (2.12)

The rotations contain the mean obliquity of the ecliptic € and the astronomic nutation components in
longitude A and in obliquity Ae, respectively. The mean obliquity of the ecliptic at epoch T, &, which
represents the rotation angle from the mean ecliptic system to the mean equator systems, is calculated by:

e = 23°26'21.448" — 46.8150"t — 0.00059”¢% + 0.001813"¢3. (2.13)

The true obliquity of the ecliptic at epoch T' is given by the sum e+Ae. The astronomic nutation components
in longitude At and in obliquity Ae, respectively, are calculated by series expansions, according to the above
mentioned theory. The first terms read:

Arp = (—17.1996" — 0.01742"t) sin(2) + (0.2062” + 0.00002") sin(29) + - - - ,
Ae = (9.2025" + 0.00089"t) cos(£2) + (—0.0895" + 0.00005”¢) cos(29) + - - - . (2.14)

The complete series terms are given, e.g. in the IERS conventions 2003 (McCARTHY and PETIT 2003),
as well as an improved theory of precession and nutation. The final transformation from the true celestial
reference frame at epoch T' (CRF T') to the conventional terrestrial reference frame at epoch 7' (CTRF
T) includes a first rotation due to the daily rotation expressed by the Greenwich Apparent Sidereal Time
(GAST) and two rotations around small angles due to the polar motion, expressed by the polar coordinates

(zp,yp):
S(GAST, —yp, —.’Ep) = RQ(—{EP)Rl(—yp)Rg(GAST). (215)

The coordinate systems involved are illustrated in Fig. 2.2 (ILK 2007). The true celestial reference frame
(CRF T) is defined by the true celestial equator and the true Celestial Intermediate Pole (CIP) of epoch
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T. The Conventional Terrestrial Reference Frame (CTRF T') is defined by the conventional mean terrestrial
equator and the Conventional Terrestrial Pole (CTP) at the same epoch T'. The position of CIP with respect
to CTP is described by the parameters of polar motion (polar coordinates), zp, yp. The angle between
the z—axis of CTRF (which is in the Greenwich mean astronomical meridian) is defined by the Greenwich
hour angle of the true vernal equinox, the Greenwich Apparent Sidereal Time (GAST). GAST is changing
continuously because of the rotation of the Earth but not completely uniformly. The GAST can be calculated
from the Greenwich Mean Sidereal Time (GMST) and GMST itself by a time polynomial from the difference
of the Universal Time 1 (UT'1), which can be derived from observations and an atomic time scale, the
Universal Time Coordinated (UTC):

At =UTC — UT1. (2.16)

The integration of At over one day results in changes of the Length Of Day (LOD). The time difference At
cannot be expressed by an analytical formula and is published together with the polar coordinates zp,yp
by IERS.

A consistent system of reference frames, as for example the IERS reference coordinate frames con-
sisting of the International Terrestrial Reference Frame (ITRF) and the International Celestial Reference
Frame (ICRF), include also the relations between these frames to be able to transform between these
frames. The basic transformations are identical to those sketched before. A detailed description of the
transformations between the current IERS reference frames, ICRF and ITRF, are given in the IERS
conventions 2003 (McCARTHY and PETIT 2003). The (numerical) deviations from the more general
transformation models given above are outlined in this publication. From the point of view of a conventional
reference system, that means from the model point of view, there are only minor differences. The TERS
Earth Oriented Parameter (EOP) describe the rotation of ITRF with respect to ICRF based on the
conventional model of precession and nutation; they model the non-predictable portions of the Earth
rotation. The polar coordinates zp and yp describe the Celestial Intermediate Pole (CIP) with respect to
the IERS Reference Pole (IRP) (see Fig. 2.2). The CIP deviates from the true rotation axis by quasi-daily
fluctuations with amplitudes below 0.01. The z—axis is directed to the IERS Reference Meridian (IRM); the
y—axis is orthogonal to the x—axis in a westerly direction. UT'1 is related to the Greenwich Mean Sidereal
Time (GMST) by conventions; it defines the orientation of the IRM within ICRF, countable around the
CEP-axis. UT1 is represented by the difference to very uniform atomic time scale, TAI, by UT1 — T AI;
the instability of T'AI is about six orders of magnitudes smaller than those of UT'1.

2.6 Overview of GPS Observations

GPS observables are either ranges which are deduced from the measured travel times of electro-magnetic
wave signals between the GPS satellites and the receivers or phase differences based on a comparison between
the received electro-magnetic wave signals from GPS satellites and the signals which are generated in the
receivers. Unlike the classical terrestrial electronic distance measurement, GPS uses the "one way concept”
where two clocks are used, one is located in the GPS satellite and the other in the receiver. Thus, the
ranges are biased by the satellite and receiver clock errors and, consequently, they are denoted as pseudo-
ranges (HOFMANN-WELLENHOF et al. 2001). Obviously, the measured pseudo-range is different from the
geometrical distance between the antenna at the GPS satellite and the receiver’s antenna because of the
errors of both clocks, the influence of the transmission medium and other physical influences on the GPS
signals. It is also notable that the path of the signal transmission differs slightly from the geometric signal
propagation path. The medium not only delays the signal, but also bends the path of the transmitting signal
(GAOo and WoJCIECHOWSKI 2004). For GPS satellites, three basic observables can be identified:

e Code pseudo-range observations,
e Carrier phase observations and

e Doppler observations.

They will be discussed in more details in the following sections.
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2.6.1 Code Pseudo-range Observables

Pseudo-ranges derived from code measurements are the fundamental observables in a code dependent receiver
(SEEBER 2003). The code sequence, generated in the receiver, is shifted stepwise against the code sequence,
received from the satellite, until a maximum correlation is achieved. At the moment of maximum correlation,
the internal code sequence is measured in the receiver time frame (SEEBER 2003). The signal emission time
of the GPS satellite is denoted by t*, and the GPS signal reception time at the receiver by ¢,.. In the case of
vacuum and an error free situation, the measured pseudo-range is equal to the geometrical distance and can
be derived from (Xu 2007),

Pty t°) = (t, —t%)c, (2.17)

where c is the speed of light and the subscripts r and s denote the receiver and GPS satellite, respectively.
t* and t, are considered as true emission and reception times of the GPS signal. Taking both, GPS satellite
and receiver clock errors, into account then the pseudo-range can be represented by,

PE(ty 1) = (t — t)c + [0to(t) — 6t5(%)]c, (2.18)

where dt,(t,) and §t°(¢t*) denote the clock errors of the receiver and the GPS satellite, respectively. The
GPS satellite clock error §t°(¢*) is known from the GPS satellite orbit determination procedure, performed
by the IGS analysis centers. The receiver clock offset can be estimated within the GPS data processing in
case of precise point positioning or it can be modeled in case of lower accuracy demands from the coefficients
received from the navigation message. Considering the influences of the transmitting medium, e.g. the
ionospheric, tropospheric, as well as the multi-path effects and other model corrections, e.g. Earth and
ocean tide loading effects, relativistic effects and antenna mass center offsets as well as remaining error
effects, the code pseudo-range observable at frequency i can be written as (Xu 2007),

Bri(tr, 1) = pp(tr, 1) + [0t () — 6t°(°)]c + I (tr) + dp(tr) + di, (tr) + dipy(Er) + di;(Er)+
+dy () + dr(t;) — dg(t:) +duap(t:) + €5 p,- (2.19)

The measured code pseudo-range at frequency ¢ at the left-hand side represents the geometrical distance
between the satellite s at the signal emission time t* and the GPS receiver antenna r at the reception time
t, as well as several correction terms as,

I7(t,.), dy.,.(t) the ionospheric path delay at frequency 7 and the tropospheric effect, respectively,

dr; (t) the Earth tide and ocean loading effects,

ds(tr) orbital error of st GPS satellite at time t,.,

dg ;(tr), dy;(t;)  the receiver antenna phase center offset and its variation,

di(ty), di(t,) the special relativistic effects of the receiver r and GPS satellite s,

dn.pi(tr), €5 p,  the multi-path effect on code pseudo-range observation and remaining (un-modeled)
errors in the code pseudo-range observation model.

The GPS signal travel time between the GPS satellite s and the GPS receiver r, based on the corresponding
geometrical distance p?(t,,t%), can be written

= A1) e, (2:20)

with taking frequency and time stability of the GPS satellites and GPS signal travel time into account, the
GPS satellite clock offset reads,

5t5(8°) = 6t5(t, — 7°) ~ 6% (t,). (2.21)

If we assume that all error effects of the receiver r and the GPS satellite s have been considered, either by
specified models or by elimination through the data combination procedures, then the error effects can be
summarized as follows,

€ p,(tr) = —cot*(tr — 7) + Ii (tr) + dg (tr) + dip,.(tr) + dip(tr) + dg(tr) — di(tr)+ (2.22)
+doi(tr) + dy(tr).
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The observation equation can be written with the error term from Eq. (2.22) inserted into Eq. (2.19),

Prs,z'(tr) = pp(tr, %) + cotr(tr) + du,p, (tr) + evsn,P,- (t:) + 5f~,Pi~ (2.23)

The above discussed code pseudo-range model is generally valid for both C/A and P code pseudo-range
observations. The precision of the code pseudo-range measurements depends on the electronic characteristics.
Nowadays, it is no problem to measure with a precision of up to 1% of the chip wavelength. This corresponds
to a precision of about 3m for the C/A code and of 30cm for the P-code observations (Xu 2007).

2.6.2 Carrier Phase Observables

The carrier phase observable is the measurement of the phase of the received satellite signal relative to the
receiver generated phase at the reception time. The observable is the difference between the transmitted
and the doppler shifted carrier phase, defined in the satellite time frame, and the phase of the reference
signal, defined in the receiver time frame (SEEBER 2003). The number of full carrier phase waves between
the receiver and the GPS satellite cannot be accounted for at the initial signal acquisition time. Therefore,
the measured carrier phase is the measurement of the fractional phase and it is necessary to register changes
in the cycles. The carrier phase observable results from an accumulated carrier phase observation process.
The fractional carrier phase can be measured electronically with a precision of better than 1% of the carrier
phase wavelength, which corresponds to a millimeter precision. This is the reason why the carrier phase
measurement is more precise than the code pseudo-range observation. A full carrier wave is called a cycle.
The ambiguity integer number of cycles in the carrier phase measurement is called ambiguity parameter.
The measurement consists of a correct fractional phase and an arbitrary integer cycle count setting at the
start epoch. Such an arbitrary initial cycle of carrier phases will be adjusted to the correct one by modeling
an ambiguity parameter (Xu 2007). Note that the receiver, the GPS satellite clock offset, the atmospheric
delay, the ambiguity parameter and the hardware signal delay at the receiver and at the satellite are linear
dependent. Hence, ambiguity fixing is not a trivial problem (WUEBBENNA et al. 2001). In the vacuum or
an error-free situation, the measured carrier phase can be written as (Xu 2007),

¢i(tr) = ¢r(tr) - ¢s(tr) + N7, (2~24)

where the subscripts r and s denote the receiver and the GPS satellite, respectively. ¢,, ¢* and N; are the
phases of the receiver oscillator and the received signal phase of the GPS satellite as well as the ambiguity
related to the receiver and the GPS satellite. The received phase of the satellite signal at the reception time
is exactly the same as the phase of the emitted satellite signal at the emission time (REMONDI 1984, LEICK
1995)

(bs(tT) = ¢Z(tr - Tf)a (225)

where ¢2 and 7,7 denote the emitted phase of the GPS satellite and the travel time of the signal, respectively.
The Eq. (2.24) can be rewritten as,

O3(t,) = 6r(t,) — 63t — 73) + N (2.26)

Suppose the initial time is ¢y and the received satellite signal and the reference carrier of the receiver have
the nominal frequency f then the carrier phase measurement with the GPS satellite clock offset §¢° and the
receiver clock error dt, reads,

¢7'(tr) = ¢r(t0) + f(tr + 5tr(tr) —to— 6tr(t0))v
Ge(ty = 77) = ¢°(to) + f(tr + t°(t, — 777) — 7,7 — to — 0t°(t0)), (2.27)
= Pt t7)/c.

Inserting Eq. (2.27) in Eq. (2.26), then the observed carrier phase can be rewritten as,

by (tr) = dr(to) + f(tr + 6te(ty) — to — 0tr(to)) — [¢°(to) + f(tr + 0t°(t — 7,7) — 7,7 — to — 6t°(t0))] + N,
= fpi(tr, %)/ c+ f(0L(tr) — 01°(tr — 777)) + @r(to) — @°(to) — fotr(to) + f6L°(to) + N;.  (2.28)
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If we assume A7 as real ambiguity parameter between the GPS satellite and the receiver:

A% = N2 + ¢, (to) — ¢° (to) — [t (to) + f5t°(to), (2.29)

and taking the special relativistic effect, the medium errors (e.g. tropospheric and ionospheric effects), multi-
path and ocean and the Earth tide loading into account, then Eq. (2.28) can be expressed in the cycle unit
at frequency i (f;) as:

i,i(tr) = pi(thté)fi/c + fi[étr(tr) - 6té(tr - 7—;)] + Ai,i + x[_IZ (tr) +d(tr) + da“r(tr) + dTTz‘(tr)""
+de i (t) + dy(t) + di(ty) — di(ty) + dare, ()] + €76, (2.30)

or in units of length,

(I)f«,i(tr) = )‘i¢f«,i(tr) = pp(tr, t7) + [0t (t,) — 0t°(t, — 7,))] + )‘iAasﬂ,i = 1] (t;) + dj(tr)+
+ dp, (tr) + dip(tr) + di; (8e) + dy i (t) + di(tr) — di(ty) + dae, (tr) + €7 0, - (2.31)

If we assume that all error effects of the receiver r and the GPS satellite s have been considered, either by
specified models or by elimination through the data combination procedures, then the error effects can be
summarized as follows,

erw,(tr) = —cot*(tr — 77) = I[ (1) + dp(tr) + dp(t) — di(tr) + doi(tr) + dy(E). (2.32)
The observation equation can be written with the error term from Eq. (2.32) inserted into Eq. (2.31),
(I)f«,i(tr) = pp(tr, t°) + c[0t (t,) — 0t° (¢, — 7,))] + )‘iAf«,i +dm,e, (t:) + ei,cbi (t:) + 57«,@-- (2.33)

During GPS signal tracking, the phase and integer accounts are continuously modeled and frequently mea-
sured. In this way, the changing oscillator frequency is accounted for. Every time the phase is measured,
the coefficient in the tracking loop model is updated to ensure a sufficient precision of the measurement
(REMONDI 1984).

2.6.3 Doppler Observables

The Doppler effect is a frequency shift phenomenon of the electromagnetic wave, caused by the relative
motion of the emitter and receiver. Some of the first solution strategies proposed for GPS were based on the
Doppler effect as observable for the TRANSIT system. This system used the integrated Doppler shifts (i.e.
the phase differences) which were scaled to the ranges (HOFMANN-WELLENHOF et al. 2001). Suppose the
emitted signal has the nominal frequency f then the radial velocity of the GPS satellite with respect to the
receiver is,

v, = v, = ||v|| cosa, (2.34)
with
v the velocity vector relative to the receiver,
u, the unit vector directing from the receiver to the GPS satellite,

«  the projection angle of the satellite velocity vector to the receiver-satellite direction and
p  the distance between the GPS satellite and the receiver.

Then the frequency of the received signal reads (Xu 2007):
Uy v
fo= 0+ ) m 1 - ), (2.35)

and the Doppler frequency shift can be written as,

gl _ Y dp
fo=f-fh=I_-=1= (2.36)
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The Doppler count (or integrated Doppler shift) is the integral of the frequency shift over a specific time
interval (e.g. one minute). If the time interval is small enough, then the Doppler count is identical to the
instantaneous frequency shift,

dp
D=fp= i (2.37)
An approximate Doppler frequency shift is required to get the GPS satellite signal. The prediction of D is
part of the GPS signal tracking process. D is used to predict the phase change first, then the phase change is
compared with the measured value to get the precise value of the Doppler frequency shift. The accumulated
integer account of cycles is obtained through a polynomial fitting of a series of predicted phase changes and
the measured values (REMONDI 1984). Therefore, the Doppler frequency shift is a by-product of the carrier
phase measurements. However, the Doppler frequency is an independent observable and a measurement of
the instantaneous range-rate (XU 2007). Notice that in an error-free environment the Doppler observable
can be written as,

o B o dpi(tr,ts)
TNt M\t

d(6t, — 6t%)
dt

—f + Ry + ¢, (2.38)

with

D the Doppler frequency shift,
f, A the frequency and the wavelength of the GPS signal, respectively,
Ry  the frequency correction of the relativistic effect,

¢ the measurement error.

Effects with low frequency properties such as ionospheric, tropospheric, multi-path and tide effects
are canceled out (XU 2007).

2.7 The Corrections and Error Sources on the GPS Observations

2.7.1 Signal Travel Time and Sagnac Effect

The GPS observations (code pseudo-range and carrier phase) can be considered in a simplified way as
geometrical distances p from the GPS satellite at the signal emission time to the receiver at the signal
reception time. In case of the Precise Point Positioning (PPP) method, the precise satellite ephemerides
(precise coordinates and the clock offset) provided by the IGS center must be corrected for the signal travel
time. Then it is necessary to correct the observation time (epoch) t by subtracting the travel time of the
signal to obtain the signal emission time and subsequently the GPS satellite position and its clock offset at the
emission time. Therefore, it is necessary to compute the signal travel time through an iterative process. The
computation of the GPS satellites position at the time of the signal transmission r(t — 7;7) can be performed
either by an interpolation of adjacent position values (e.g. by a Chebyschev interpolation method) or by a
Taylor expansion,

r(t—715) ~r(t) — ()7 + %'f(t)(rf)Q, (2.39)
where 1(¢) and ¥(t) are velocity and acceleration of the satellite at the time ¢. The travel time iteration is
usually performed in an inertial system with the inertial receiver position r;crpr and the inertial GPS satellite
position vector rj pp. It is necessary to transform the receiver positions from the inertial reference frame
(ICRF) to the terrestrial reference frame (ITRF). The signal path given by Montenbruck (MONTENBRUCK
and GILL 2000) reads,

; (2.40)

pitr ") = |Rirrr (O@icrr(t = 72) = vicre(t)
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where Ryrrp(t) is the rotation matrix from the ICRF to the ITRF at epoch ¢t. With the approximation,
RITRF(t) %Rz(weT:)R[TRF(f—Tﬁ)7 (241)
where R, is the rotation matrix causing a rotation around the z-axis of the ITRF and w. the angular
velocity of the Earth. The inertial position of the GPS satellite can be substituted by the corresponding
ITRF position, so that it follows,
rirre(t—77) = Rirrp(t — 70)ricpe(t — 77). (2.42)

The geometrical distance between the sender (GPS) and the receiver reads in ITRF,

o () = Re(wer))rippp(t —77).  (243)

piltrt') = 1 = |Relwer))rirpp(t = 7) = vrrrr ()

The rotation matrix, R, (w.7;), is necessary if the coordinates are referred to the ITRF (STRANG and BORRE
1997). The correction related to the rotation of the Earth is called Sagnac correction (Xu 2007). From
Eq. (2.43) we see that when using the LEO coordinates in the ITRF system, one has to rotate the GPS
satellite position vector around the z-axis. The amount equals the angular rotation of the earth in the time
the signal needs to travel from the GPS satellites to the GPS receiver on-board LEO. For example, the
altitude of a GPS satellite is about 20200km, thus the GPS signal travel time to the LEO satellite is about
66msec and the earth rotates within this time span at an amount of about 15 arcsec. Therefore, the angular
displacement of the earth around its rotation axis during the signal travel is roughly 1 arcsec. So, if the earth
rotation effect is not applied to the GPS satellite coordinates then the estimated LEO absolute positions
will be biased by about 1 arcsec in longitude. Therefore, the Sagnac effect can be corrected by inserting
the rotation matrix, i.e. R, (w,7;), in the Eq. (2.43) to calculate the true range between the LEO and GPS
satellites in the ITRF system. The signal transmitting time 7,7 can be solved through iteration of Eq. (2.43).
This procedure has been applied in the LEO precise orbit determination with the code pseudo-range and
the carrier phase observations. This computation is not affected by the receiver and the GPS clock offset.
However, the computed nominal emission time is corrupted by the ionospheric, hardware and multi-path
errors. All these effects are negligible in the present context (MONTENBRUCK and GILL 2000).

2.7.2 Tropospheric Delay Correction

Satellite signals travel through the atmosphere which affects the propagation of the signal by the ionosphere
and the troposphere. Each effect influences the satellite signals differently. Since the troposphere is a
non-dispersive medium, tropospheric refraction causes an identical effect on both code and carrier phase
modulation. The neutral atmosphere, which is the non-ionized part of the atmosphere, can normally be
divided into two components, the dry and the wet part of the troposphere. The dry component consists
mainly of dry gases (normally referred to as the dry part), whereas the wet component is a result of water
vapor. The hydrostatic fraction contributes 90% of the total tropospheric refraction (see LEICK 1995p.
308). The tropospheric effect is frequency independent and cannot be eliminated by combination of the
observations based on different frequencies as in case of the ionospheric effects. There are different models
to compute the wet and the dry tropospheric components, e.g. the models of Saastamoinen and Hopfield as
well as the modified Hopfield model. These models depend on the absolute temperature, the partial pressure
of the dry gases, the water vapor (from relative humidity) and the receiver elevation to the GPS satellite. In
other words, the tropospheric models are based on the physical information at the receiver and the geometric
receiver-GPS constellation. The tropospheric path delay can be represented as a function of the zenith path
delay (zpd) and the mapping function (e.g. Marini or Marini and Murray or Niell mapping function, etc.).
For zero differenced (ZD) observables in case of a LEO, there is no tropospheric delay to be taken into account
between the LEO and the GPS satellites (SVEHLA and ROTHACHER 2002). In case of double differenced
(DD) observables between the IGS GPS ground stations and the LEO satellite(s), the tropospheric zenith
path delay effect (zpd) must be modeled or estimated based on a properly selected mapping function within
the least squares estimation procedure.
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2.7.3 lonospheric Delay

The ionosphere influences the electromagnetic waves traveling through the atmosphere from the GPS satel-
lites to the receiver antenna. The effect varies inversely with the square of the frequency f of the signals
and directly with the Total Electron Content(TEC). The TEC represents the total number of free electrons
contained in a column with a cross section area of one square meter along the path of the signal between the
satellite and the receiver. The ionosphere path delayed of the code pseudo-range (P) and time advanced of
the carrier phase (¢) observations at frequency f can be represented as:

Ip; = 4(}'#TEC’ =—1I4 7. (2.44)
It is noticeable that there are only few ionosphere models available to estimate the ionosphere effects.
Examples are the ionosphere plate model, the daily cosine model and the ionosphere point model. The
ionosphere coefficients of the cosine model is included in the navigation message components which can
approximate only 50% of the actual ionospheric group delay. Because of the low precision of the ionosphere
models, they cannot be used for precise point positioning tasks. Better results to eliminate the ionosphere
path delay can be achieved by a combination of observables at different frequencies. In case of dual frequency
observations, almost all of the ionosphere range errors can be removed from code pseudo-range and carrier
phase observations by the following linear combination as(LEICK 1995),

BB
e
7-7 -7

where P; and ®; are the code pseudo-range and carrier phase observations at the frequency f;; P; and ®3 are
the ionosphere-free code pseudo-range and carrier phase observations, respectively. Even the most dominant
ionosphere correction is the lowest order term (#), the higher order terms (%) and (%) might be important
in case of an observation accuracy of a few millimeters to centimeters, respectively (BAsSIRI and HaJJ 1992).
If the code pseudo-range observations (P, P} 5) and the carrier phase observations (@7, @7 ,) between the
GPS satellite s and the receiver r under the frequencies f; and f» are given, ionosphere parameter can be
derived from the linear combination of the pseudo-range and carrier phase observations as,

P3 = 7’L1P1 +’I7,2P2, q)g = n1<I>1 + TLQCI)Q, ny = (245)

Plr=P—Ph=0-a)l{+c(1-a)Tép +¢; p,, (2.46)

Ol =00, — Pl =—(1—a)IT + M2y — ANy + €7 5, (2.47)

where o = ;—12 The largest part of the receiver clock offset cancels out in the code combination and T¢
2

is a constant over a period of time, as given in the broadcast message. The dual frequency carrier phase
ionosphere-free combination can be used to detect cycle slips and outliers in the carrier phase observations.
Since the ionospheric effect disrupts the code (time delaying) and carrier phase (time advancing) observations
in the same way, it is possible to eliminate common ionospheric errors under the same frequency based on
the combination,

Pri+ @,

Po;] 5 = 5

(2.48)
P®; 5 (index i = 3) is the ionosphere-free observation under the frequency f;,i = 1,2. This combination
can be used to estimate the precise point positioning of the LEQOs, because the new model has a lower noise
and feasibility of the fixed ambiguity estimation for both L; and Ly. The analysis process has to enable to
estimate the ambiguity parameter of the new ionosphere-free combination (see GAO and SHEN 2002).

2.7.4 Multi-path Effect

This effect is well described by its name: a signal emitted from the satellite arrives at the receiver along
more than one path. Multi-path is mainly caused either by reflections at surfaces nearby the receiver, or by
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reflections at the satellite during the signal transmission (e.g. in case of LEOs). The (indirect) multi-path
GPS signals are caused by the offset in the carrier phase and by variations in the amplitudes relative to
the (direct) GPS signal. The amplitude variation and phase offset are dependent on the conditions of the
environment of the GPS satellite and the receiver as well as by the geometric constellation of these elements.
The influence of the multi-path, however, can be estimated by using a combination of L, and Lo code pseudo-
range and carrier phase measurements. This holds because the troposphere, the clock error and the relativistic
effects influence the code and carrier phases by the same amount. This is not the case for the ionospheric
correction which is frequency dependent. By using the ionosphere-free code pseudo ranges (Ps;) and carrier
phases (®3), and forming differences between P; and ®3 all mentioned effects except for the multi-path are
canceled. The remaining part reflects the multi-path effect, apart from the noise (HOFMANN-WELLENHOF
et al. 2001). Because of the geometrical constellation, it is obvious that signals received from low satellites
are more susceptible to multi-path than those at high altitudes. Note also that code pseudo-ranges are more
affected by multi-path than carrier phases (HOFMANN-WELLENHOF et al. 2001). Comparing single epochs,
the multi-path effect may amount up to 10 — 20e¢m for code pseudo-ranges (WELLS et al. 1987). On the
carrier phases for relative positioning with short baseline this effect will not be greater than 1¢m under good
satellite geometry constellation and long observation intervals (HOFMANN-WELLENHOF et al. 2001). To
reduce or estimate the multi-path effects, various methods are available which can be classified as follows,

e Antenna based mitigation,
e Improved receiver technology and

e Signal processing methods.

In the case of a LEO’s data processing, high-low GPS-SST observations at low elevations are not corrupted
by tropospheric refraction but multi-path effects may be an important source of degradation of low-elevation
data. This is important particular for a LEO which may be tracked at zenith angles well above 90° up to
105° — 110°. A possibility to minimize the impact of multi-path is by using an elevation-dependent weighting
scheme. Using all observations with properly selected weights, this procedure promises a gain of observation
information for the kinematic solution (Bock 2003). For the processing of ground station observations, the
weight function can be introduced as follows (HUGENTOBLER et al. 2001),

w(z) = cos?(z), (2.49)

where z is the zenith distance of the GPS satellite observed from the ground station. To analyse the GPS-
SST data under the horizon of LEOs, the question arises whether these measurements help to improve the
precise orbit determination in case of an appropriate weighting or whether they even reduce the accuracy of
the solution. A simple modification of the weighting function in Eq. (2.49) is the introduction of a stretching
factor, i.e. « (see Bock 2003),

w(z) = cos*(az). (2.50)

Based on the results of Bock (Bock 2003) the stretching factor for CHAMP should read a@ = 1 and the
zenith cut-off angle 90° to improve the accuracy.

There are another methods, i.e. correction of multi-path effects in GPS observations with SNR data. The
SNR data are available in CHAMP GPS-SST data from GFZ-ISDC in the standard RINEX format.

2.7.5 Antenna-Mass Center Offset Correction

The geometrical distance between the GPS satellite at the signal emission time and the receiver at the signal
reception time is the distance of the phase centers of the two antennas. However, the orbit determination
results, which describe the positions of the GPS satellite are referred to the mass center of the satellite.
Therefore, a mass center correction has to be applied to the coordinates of the satellite position for precise
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applications, especially for precise orbit determinations of the LEOs. A satellite fixed coordinate system
shall be set up for describing the antenna phase center offset referring to the mass center of the satellite or
vice versa. The origin of this coordinate system coincides with the mass center of the satellite (GPS satellite
or LEO) and the z-axis is parallel to the direction antenna-Earth direction, the y—axis is parallel to the
solar-panel axis, and the x—axis is selected to complete a right-hand coordinate system. A solar vector is a
vector from the satellite mass center pointing to the Sun. During the motion of a GPS satellite, the z-axis

Figure 2.3: GPS satellite body coordinate system

is always pointing to the Earth, and the y-axis (solar panel axis) shall be kept perpendicular to the solar
vector. In other words, the y—axis is always perpendicular to the plane, which is formed by the Sun, the
Earth and the GPS satellite (see Fig. 2.3). The solar panel can be rotated around its axis to keep the solar
panel perpendicular to the ray of the Sun. This is important to collect the solar energy in an optimal way.
This definition of the satellite fixed coordinate system becomes meaningless when the Sun, the GPS satellite
and the Earth are collinear. In this case and when the satellite is in the Earth’s shadow, the satellite attitude
cannot be modeled in such an easy way. Denoting the three unit vectors of the satellite fixed coordinate
system as (€;,&,,€.), then the vector of the geocenter to the GPS satellite and to the Sun reads r® and
rg, respectively. The vector r® is obtained from the final GPS orbit products (in SP3 format) and rg is
calculated from the JPL planetary ephemeris (e.g. DE 405, Development Ephemeris 405). The unit vector
€, can be written (Xu 2007),

€. = - (2.51)
7]
and the solar vector can be derived from,
S
. = YS”F (2.52)

)
Ies =]
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then it holds for the unit vector €, according to the above definition,

eZ X nS’U.TL

€y = ———=——1» 2.53

e X v (259
and for the unit vector €, holds finally,

€; =€y X &,. (2.54)

If r, denotes the GPS antenna phase offset referring to the GPS satellite system then the correction of the
GPS position, Ar,, can be written as,

AF, = Ef,, E=(&,,6,,6,). (2.55)

This term may be added to the GPS satellite position vector r® to calculate the position of the GPS antenna
center, which is necessary to calculate the geometrical distance between the phase centers of the GPS satellite
antenna and the receiver antenna.

2.7.6 LEO Antenna-Mass Center Correction

The geometrical distance between the phase centers of the antennas of the GPS satellite transmitter at the
signal emission time and of the GPS receiver on-board LEO at the reception time can be determined from
the satellite positions. To transform the position of the antenna phase center of the LEO to its center of
mass, the offset of both centers must be given. This requires the LEO geometry and the LEO fixed reference
coordinate system as well as the satellite orientation (satellite attitude). The location of the LEO antenna
is known from the assembly of the satellite. However, the location of the antenna phase center of the LEO
with respect to the center of mass of the spacecraft is also required. The position vector can be assumed to
be constant in the body-fixed coordinate system of the spacecraft, but a correction is necessary to refer it to
the center of mass of the satellite. The ephemerides of the GPS satellites are usually referred to its center of
mass, but the position of the phase center of the LEO-antenna must be referred to its center of mass based
on attitude information of the LEO, derived by a calibration procedure. In case of CHAMP, the effect of the
antenna - mass center offset can be calculated either approximately from the satellite position and velocity
data or more precisely based on the real attitude data, given in form of quaternions of the LEO measured
by its star camera (if such equipment is available as in case of CHAMP and GRACE). The real attitude and
antenna - mass offset data of the LEOs are available from the star camera and the calibration data.

2.7.6.1 Mass Center Correction with the Position and Velocity

If the position (r) and the velocity (&) of the LEO-antenna are available, then the unit vector of the body
reference coordinate system of the LEO can be represented by,

r rxXr
T
E:(exaeyvez) , €= — ‘I'H, €y =

The position of the mass center of the LEO can be approximately determined from the offset antenna - mass
centers r, as,

_W, €, =€y X e,. (256)

r.=r— Er,. (2.57)
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2.7.6.2 Mass Center Correction with the Quaternions

Quaternions are quadruples of real numbers, for which a special multiplication is defined. The quaternions
can be represented by a column vector of four elements,

QZ(QO a 92 g3 )T- (2.58)

If we assume that A is the rotational axis and 0 the rotation angle, respectively, then the elements of the
quaternions can be determined by the relations,

5:1: . 6 . 52 .
qo :=cos(0/2), ¢ := 5 sin(0/2), g2 = gy sin(6/2), gq3:= Ksm(é/Z), (2.59)
with the coordinates d;, dy, 0. of the rotational vector

(6, 6, 6.)", 6=|e|.

e =

| =

To control the LEOs attitude and to transform the LEO observations (e.g. acceleration data) to an inertial
coordinate frame, the Star Camera Assembly (SCA) on-board the LEOs plays an important role. The digital
images from the CCD cameras on-board the LEOs are processed to achieve the orientation of the LEOs as
time series of the quaternion values. The inertial orientation of the spacecraft is modeled using tabular input
data quaternions (derived from the LEO CCD cameras). The same data (with appropriate definitions) are
used for rotating the accelerometer data to the inertial frame prior to the numerical integration, for the
corrections of the range observations due to the offset of the satellite center of mass and the GPS antenna
location on-board LEO, as well as for computing the non-gravitational forces (if necessary). At the epochs,
where the LEOs quaternions are not available, a linear interpolation between adjacent values is used. If
rIcrr, e are the GPS antenna absolute position on-board LEO in the ICRF and the LEO mass center
positions in the spacecraft fixed system and the GPS receiver on-board LEO has the offset r,, from the LEO
mass center then LEO mass center position can be written as,

r. = ricrr — Qr,, cicrr = Qr,, (2.60)

with the transformation matrix Q from the spacecraft fixed coordinate system to the international celestial
reference frame,

G-G-G+6  2(qne+ eo) 2(q193 — ¢290)
Q= 2(q2 —a300) G+ BG-GB+ G 2(q2q3 + q190) . (2.61)
2(q193 + q2q0) 2(q293 — q190) -3 — g3+ a3+ a3

In the case of CHAMP, the GPS receiver antenna-mass center offset with respect to the LEO body reference
frame by the vector r, is available at every epoch as well as the attitude of the satellite with respect to the
international celestial reference frame (ICRF) by quaternions derived from accelerometer data. The rotation
matrix to transform the mass center offset to the inertial coordinate system can be performed with the
quaternion values. In a first step, the LEO antenna position in the ITRF frame has to be transformed to the
position based on the ICRF frame. Then the correction vector (c;jorp) in the ICRF frame may be added
to the position referenced to the ICRF to determine the position of the mass center. If desired, the ICRF
mass center coordinates can be transformed to the ITRF coordinates based on the IERS conventions.

2.7.7 Receiver Antenna Phase Center Correction and its Variation

It is assumed that the phase centers of both carrier frequencies L1 and Lo of the sender antenna are the
same and its location remains constant during the lifetime of the GPS satellites. There is some evidence
that the phase center of the GPS receiver antenna depends on the direction where the signal comes from.
It is considered constant because of missing information. The angle between the wave front and the GPS
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satellite’s nadir may reach up to 14° (at low elevation) and they have to be corrected (ROTHACHER et al.
1996). In the case of GPS receiver antenna, the situation is more complicated because the GPS signals
come from different direction (from the different GPS satellites to receiver) and the position of the antenna
phase center depends on the incoming GPS signal direction. This directional dependency is called antenna
phase center variation. In the case of GPS receiver, we also have to take into account that the antenna
phase center positions and the antenna phase center variations are not identical for L; and Lo carriers and
they are antenna-type-dependent. We use the following antenna phase center total correction (phase center
correction and variation) as (ROTHACHER et al. 1996),

PCT(a, z) = Ar.e + PCV (o, 2), (2.62)

where,

PCT(a,z) total phase center correction (phase center correction and its variation),

Q@ azimuth angle of GPS satellite from the receiver,
z zenith distance of GPS satellite from receiver,
Ar definition of the position of the mean receiver antenna phase center w.r.t. antenna reference

point. Antenna reference points and mean antenna phase center offset are defined for differ-
-ent antenna types in ANTEX format,

e unit vector in the directional GPS receiver antenna to GPS satellite and

PCV(a,z) model of azimuth and zenith dependent phase center variation.

The total correction, PCT(«, z), are added to the geometrical distance in the code pseudo-range or carrier
phase equations.

2.7.8 Relativistic Correction

The relativistic effects on the GPS observations can be divided into two parts: a constant term and a periodic
effect. In the GPS system, the fundamental frequency fy is selected to 10.23 MHz. All clocks on the GPS
satellites and receivers are based on the fundamental frequency. If all the GPS satellites are working simply
on the fundamental frequency fy on the geoid, then we will view a frequency f at the altitude of the GPS
satellites and f is not the same as fy due to relativistic effects. In order to be able to view the fundamental
frequency, the working frequency f of the GPS satellites can be computed as,

. 2
_fOij _ % (HZH> n %, (2.63)

where ||rH is the velocity of the satellite and AU is the difference of the Earth’s gravitational potential between
the satellite and the geoid. The difference between the fundamental clock frequency and set frequency is
called the satellite clock frequency offset. Such an offset of the relativistic effects has been implemented in
the GPS satellite clock settings, therefore users do not need to consider the offset (Xu 2007).

When the GPS satellites are orbiting around the Earth, the GPS satellites are affected under the periodically
changing influence of the Earth’s gravitational potential because of the orbit ellipticity. As a consequence,
the rate of the clocks on-board the GPS satellites is subject to periodic changes due to the special relativistic
effect. This periodic effect can be represented as a correction to the satellite clock error or as correction to
the GPS observation equation for high-low GPS-SST measurements as (ASHBY 2003):

2
dp —df = - (r.f —r°.i%), (2.64)
r, I are the position and velocity of the LEO satellite or tracking stations respectively, and r®, * are the

position and velocity of the GPS satellite s. Before the precise orbit determination, there are only approxi-
mate information about the position and velocity of the LEO. Therefore, we have to start the computation
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by neglecting the special relativistic effects of the receiver of the LEO and consider the following correction
to the GPS observation equations:

2
dn = — (r.1%). (2.65)
After the initial estimation of the LEO position without applying the periodic special relativistic effect, the
velocity can be estimated from the positions in the specified intervals by interpolation. Then with the help
of Eq. (2.64), the special relativistic effect of the GPS satellites and the LEO can be taken into account in
the subsequent computation step.

2.7.9 Receiver Noise

GPS measurements cannot be performed without errors. There is always a certain level of noise in the
observations. The most basic kind of noise is that produced by the movement of electrons in any substance
that has a temperature above absolute zero (KLEUSBERG and TEUNISSEN 1998). The receiver noise depends
on the type and structure of the receiver (analogue or digital). With improved technologies, un-modeled
effects in the GPS observations are minimized, so that the receiver noise can be treated as random error.
This error is minimized in the least squares adjustment.
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3.1 GPS-SST Data Pre-screening Methods

3.1.1 Introduction

For all applications of GPS, an efficient pre-processing and data screening of the GPS observations is neces-
sary. It is in particular an important issue for the processing of the GPS-SST observations of space-borne
receivers of LEOs and of the determination of the LEO absolute positions. The procedure to determine the
outliers of the code pseudo-range SST observations is divided into two main steps (Bock 2003),

1. The data are pre-screened based on a-priori information of the absolute positions of the space-borne
GPS receiver combined with a ‘majority voting’ algorithm. The observations which are flagged as
outliers in this step are excluded from the following processing.

2. The least squares adjustment step includes an iterative procedure where bad observations may be
detected and can be excluded from the main processing.

In the following, these processing steps will be described in more detail.

3.1.2 Majority Voting Technique to Detect Outliers

Majority voting is based on an epoch wise processing of the GPS-SST observations. In a first step, the code
pseudo-range observations are processed for each epoch and the receiver clock offset is synchronized with
the GPS time. In a second step, the carrier phase differences between subsequent epochs can be processed
to determine outliers (cycle slip) of the carrier phase observations (Bock et al. 2002). Let us have a look
at the code pseudo-range GPS-SST observations of the receiver for a particular epoch. The unknowns in
the code observation equations of one epoch are the three coordinates and a clock offset of the GPS receiver
on-board LEO. For the processing of the GPS-SST observations with the majority voting algorithm not
only precise GPS orbits and clock corrections are required, but also the a-priori information of the absolute
positions of the GPS receiver. If this reliable and accurate information is available, only the receiver clock
offset remains as unknown in the code observation equations for every tracked GPS satellite. The receiver
clock offset should be within the accuracy of code pseudo-ranges of one epoch. It is the key assumption for
the data screening procedure (Bock et al. 2002). This procedure is robust in case of only one unknown
receiver clock offset. From the statistical point of view normally distributed observations with a standard
deviation of 0. deviate from the expected value by 30, with a probability of 99.73%. This means that the
difference between two clock offsets derived from the code pseudo-range observations to GPS satellites 7 and
j, respectively, should lie within 3v/20., where o, is the standard deviation of the ionosphere-free linear
combination of the code pseudo-range observations. The majority voting algorithm is set up in the following
way (BOCK et al. 2002),

1. receiver absolute positions and clock offsets are estimated from the ionosphere-free linear combination
of code pseudo-range observations without applying a pre-screening algorithm,

2. with the receiver absolute position, estimated in step 1, and ionosphere-free code observation equations
for every tracked GPS satellite, the receiver clock offset can be estimated for every GPS satellite,

3. all possible differences are formed between the receiver clock offsets for ng tracked GPS satellites, i.e.
Yi = C(Sti,i = 1, ey Mgy
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4. a check is performed whether the absolute value of each difference is smaller than 3v/20,; Ay =
v — il <3V20. ,i=1,...,ng—1;j=1i+1,...,n,, where all v;, meeting the above condition with a
particular v;, are assigned to the same group as ;. We may influence the size of the group by changing
the value of 3\/§JC,

5. the clock offset values with the largest members (‘majority voting’) are used to compute a mean value
(%) and a standard deviation (o) of the clock correct