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Abstract
Geophysical processes continuously change the mass distribution of the Earth, including oceans and
atmosphere. Continuous mass redistributions change the Earth’s gravity field, the tensor of inertia
and the relative angular momentum. The variations of the tensor of inertia and the relative angular
momentum cause Earth rotation variations. The instantaneous rotation axis and velocity are measured
continuously. The time variable gravity field is determined by satellites. The excitation functions model
the variations of the tensor of inertia and the relative angular momentum caused by the Earth largest
subsystems (atmosphere, oceans and continental hydrology). The Earth Orientation Parameters (EOP),
the Gravity Field Coefficients of second degree (GFC2) and the excitation functions depend linearly on
the tensor of inertia. This dissertation aims at the validation of the time series by the identification and
quantification of the inconsistencies.
The time series are linked by the tensor of inertia, which allows the mutual validation. Three of six
tensor elements can be determined redundantly from the time series. Therefore, they are validated by
a constrained, linear, least-squares Gauss-Helmert Model (GHM). As the time series originate from
different sources, Variance and Covariance Components (VCC) have to be estimated within the adjust-
ment algorithm. This dissertation derives the necessary formulas, which require the multiple calculation
of traces of large matrix products. In order to avoid costly numerical calculations of the traces, the
Stochastic Monte-Carlo Trace Estimator (SMCTE) which estimates variance components in an uncon-
strained Gauss-Markov Model (GMM) is proposed in literature. In this work, the SMCTE is extended
such that covariance components in a constrained GHM can be estimated.
The sensitivity analysis investigates the extent to which different geophysical models effect the results.
The chosen core-mantle coupling model and the approximation of the unobserved time derivatives of
the polar motion by analytic functions show the largest effects. In total, nine time series (1×EOP,
2×excitation functions, 5×GRACE GFC2, 1×SLR GFC2), covering nearly six years, are validated by
the proposed least-squares adjustment solver. The results consist in adjusted residuals for all time series,
the adjusted tensor of inertia and a posteriori Variance Covariance Matrices (VCM), which reflect the
relative accuracy of the time series.
The adjusted tensor of inertia results from the weighted average of the individual solutions. The weights
are determined by the estimation of the VCC. The equatorial mass terms and the differences between
the polar motion and the equatorial motion terms roughly contribute the same weight to the equatorial
tensor elements. The axial tensor element is mainly determined by the axial mass terms. The GFC2 have
the smallest weight. The residuals of a time series contain those parts of the signal, which are not present
in the other time series. Therefore, they contain the inconsistencies. The residuals of most time series are
dominated by annual periods. The GFC2 and the gravity field coefficients of higher degrees are correlated
due to the joint adjustment of all gravity field coefficients. To analyze the effects of the correlations, the
constrained GHM is extended to account for gravity field coefficients up to degree/order 10. The larger
the correlations, the larger are the residuals of the gravity field coefficients of higher degrees. The resulting
residual potential maps are mainly effected by C20, C21 and S21 residuals. However, the effect of the
residuals of higher degrees is visible in the residual potential maps. Correlations have a significant effect
on the calculation of potential maps. Therefore, a release of more covariance information is recommended.

Key words: constrained Gauss-Helmert-Model, estimation of Variance and Covariance Components,
validation, Earth Orientation Parameters, Gravity Field Coefficients of second degree, ex-
citation functions



Kurzfassung
Geophysikalische Prozesse verändern kontinuierlich die Massenverteilungen innerhalb des Erdkörpers, zu
dem auch Atmosphäre und Ozeane gehören. Durch die Massenumverteilungen ändern sich das Schwe-
refeld, der Trägheitstensor und der relative Drehimpuls der Erde. Die Variationen des Trägheitstensors
und des relativen Drehimpulses verursachen Veränderungen der Rotation der Erde. Die aktuelle Rota-
tionsachse und Rotationsgeschwindigkeit werden durch kontinuierliche Messungen erfasst. Das variable
Schwerefeld wird mit Hilfe von Satelliten bestimmt. Die Anregungsfunktionen modellieren für einzelne
Subsysteme (Atmosphäre, Ozeane, kontinentale Hydrologie) die Variationen des Trägheitstensors (Mas-
senterme) und der relativen Drehimpulse (Bewegungsterme). Die Erdorientierungsparameter (EOP), die
Schwerefeldkoeffizienten zweiten Grades (GFC2) und die Anregungsfunktionen sind linear vom Trägheits-
tensor abhängig. Das Ziel der Arbeit ist es, die Zeitreihen zu validieren, indem vorhandene Inkonsistenzen
identifiziert und quantifiziert werden.
Die gegenseitige Validierung der Zeitreihen erfolgt mit Hilfe des Trägheitstensors. Drei der sechs Elemen-
te des Trägheitstensors können redundant aus den Zeitreihen bestimmt werden, so dass die Zeitreihen
mit Hilfe eines bedingten, linearen Gauß-Helmert Ausgleichungsmodells nach der Methode der kleinsten
Quadrate validiert werden. Da die Zeitreihen aus unterschiedlichen Quellen stammen, müssen zusätz-
lich Varianz- und Kovarianzkomponenten geschätzt werden. Die vorliegende Arbeit leitet die benötigten
Formeln her, die die mehrfache Berechnung von Spuren großer Matrizenprodukte erfordern. Um die num-
merisch sehr aufwendigen Berechnungen der Spuren zu umgehen, wird in der Literatur ein Stochastischer
Monte-Carlo Spurschätzer (SMCTE) vorgeschlagen, der Varianzkomponenten in einem Gauß-Markov
Modell ohne zusätzliche Bedingungsgleichungen schätzt. Der bestehende SMCTE wird im Rahmen der
Arbeit so erweitert, dass auch Kovarianzkomponenten in einem bedingten Gauß-Helmert Modell geschätzt
werden können.
Im Rahmen der Sensitivitätsanalyse wird ferner untersucht, inwieweit unterschiedliche geophysikalische
Modelle die Ergebnisse beeinflussen. Das gewählte Modell für die Kern-Mantel-Kopplung und die Ap-
proximation der unbeobachteten Zeitableitung der Polbewegung durch analytische Funktionen besitzen
den größten Einfluss. Insgesamt neun Zeitreihen (1×EOP, 2×Anregungsfunktionen, 5×GRACE GFC2,
1×SLR GFC2), die einen Zeitraum von fast sechs Jahren abdecken, werden mit Hilfe des vorgeschla-
gen Ausgleichungsalgorithmus validiert. Aus der Ausgleichung resultieren ausgeglichene Residuen für alle
Zeitreihen, der ausgeglichene Trägheitstensor und a posteriori Varianzkovarianzmatrizen, die die relative
Genauigkeiten der Zeitreihen reflektieren.
Der ausgeglichene Trägheitstensor ist ein gewichtetes Mittel der Einzellösungen. Die Gewichte werden
über die Varianzkomponentenschätzung bestimmt. Die äquatorialen Massenterme und die Differenz aus
der Polbewegung und den äquatorialen Bewegungstermen tragen mit ungefähr demselben Gewicht zu
den äquatorialen Trägheitstensorelementen bei. Das axiale Tensorelement wird zum größten Teil durch
die axialen Massenterme bestimmt. Die Schwerefeldkoeffizienten besitzen jeweils die geringsten Gewich-
te. Die Residuen einer Zeitreihen enthalten diejenigen Signalanteile, die nicht in den anderen Zeitreihen
enthalten sind. Sie enthalten somit die Inkonsistenzen. Die Residuen der meisten Zeitreihen sind von
jährliche Perioden dominiert. Zwischen den GFC2 und den Schwerefeldkoeffizienten höheren Grades exis-
tieren Korrelationen, die durch die gemeinsame Bestimmung aller Schwerefeldkoeffizienten entstanden
sind. Um den Einfluss der Korrelationen zu untersuchen, wurde das bedingte Gauß-Helmert Modell um
Schwerefeldkoeffizienten bis zum Grad/Ordnung 10 erweitert. Je höher die Korrelationen sind, desto
größer sind die Residuen der Schwerefeldkoeffizienten höheren Grades. Die resultierenden Residuenpo-
tentialkarten sind durch C20, C21 und S22 Residuen dominiert. Ein Einfluss der Residuen höheren Grades
ist in den Residuenpotentialkarten erkennbar. Korrelationen spielen somit eine wesentliche Rolle bei der
Berechnung von Potentialkarten. Daher sollten Korrelationen vermehrt veröffentlicht werden.

Stichwörter: bedingtes Gauß-Helmert-Modell, Varianz-Kovarianzkomponentenschätzung, Validierung,
Erdorientierungsparameter, Schwerefeldkoeffizienten zweiten Grades, Anregungsfunktio-
nen
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Abbreviations
AAM Atmospheric Angular Momentum functions
BIQUE Best Invariant Quadratic Estimation
CIP Celestial Intermediate Pole
CSR University of Texas Center for Space Research
DORIS Doppler Orbit determination and Radio positioning Integrated on Satellite
EAMF Effective Angular Momentum Functions
ECCO Estimating the Circulation and Climate of the Ocean
ECMWF European Center for Medium-range Weather Forecast
ELE Euler Liouville Equation
EOP Earth Orientation Parameters
DLR Deutsche Forschungsanstalt für Luft und Raumfahrt
GCRS Geocentric Celestial Reference System
GFC2 Gravity Field Coefficients of second degree
GFZ GeoForschungsZentrum Potsdam
GHM Gauss-Helmert Model
GMM Gauss-Markov Model
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
GRACE Gravity Recovery and Climate Experiment
GRGS Groupe de Recherche de Géodésie Spatiale
HAM Hydrological Angular Momentum functions
ICRF International Celestial Reference Frame
ICRS International Celestial Reference System
IERS International Earth Rotation and References Systems Service
ITRF International Terrestrial Reference Frame
ITRS International Terrestrial Reference System
J2000.0 Epoch identifier: January 1st 2000, 12:00 UTC
JPL Jet Propulsion Laboratory
LLR Lunar Laser Ranging
LOD Length Of Day
LSDM Land Surface Discharge Model
MINQUE Minimum Norm Quadratic Unbiased Estimation
NCEP National Centers for Environmental Prediction
OAM Oceanic Angular Momentum functions
OMCT Ocean Model for Circulation and Tides
SLR Satellite Laser Ranging
SMCTE Stochastic Monte-Carlo Trace Estimator
TU Tensor Unit
UTC Coordinated Universal Time
UT1 Universal Time
VCC Variance and Covariance Components
VCM Variance Covariance Matrices
VLBI Very Long Baseline Interferometry



Nomenclature: Geophysical parameters
SI-Unit Description

A kgm2 smallest principal moment of inertia

A′ kgm2 average of the smallest and intermediate principal moments of inertia

AC kgm2 smallest principal moment of inertia of the core

AM kgm2 smallest principal moment of inertia of the crust and mantle

B kgm2 intermediate principal moment of inertia

C kgm2 largest principal moment of inertia

CC kgm2 largest principal moment of inertia of the core

Cnm normalized gravity field coefficient of degree n and order m (Cosine term)

CM kgm2 largest principal moment of inertia of the crust and mantle

Da kgm2 coefficient relating changes in the inertia tensor to changes of LOD

De kgm2 coefficient relating changes in the inertia tensor to changes of the polar motion

G m3 kg−1 s−2 Newtonial constant of gravitation

M kg mass of the Earth

Snm normalized gravity field coefficient of degree n and order m (Sine term)

a m radius of a sphere having the same volume as the Earth

c kgm2 vector containing the tensor elements cxz, cyz and czz
c̃ kgm2 complex combination of the equatorial tensor elements cxz and cyz
cxx kgm2 change in the (x, x)-element of the Earth’s tensor of inertia due to mass redistribution

cxy kgm2 change in the (x, y)-element of the Earth’s tensor of inertia due to mass redistribution

cxz kgm2 change in the (x, z)-element of the Earth’s tensor of inertia due to mass redistribution

cyy kgm2 change in the (y, y)-element of the Earth’s tensor of inertia due to mass redistribution

cyz kgm2 change in the (y, z)-element of the Earth’s tensor of inertia due to mass redistribution

czz kgm2 change in the (z, z)-element of the Earth’s tensor of inertia due to mass redistribution

h kgm2 s−1 angular momentum vector due to motion relative to the terrestrial reference frame

h̃ kgm2 s−1 complex combination of the equatorial angular momentum hx and hy
hx kgm2 s−1 x-component of the change in the relative angular momentum due to motion

hy kgm2 s−1 y-component of the change in the relative angular momentum due to motion

hz kgm2 s−1 z-component of the change in the relative angular momentum due to motion

k2 second degree body tide Love number of the Earth

k′2 second degree load Love number of the Earth

m vector containing the elements mx, my and mz

m̃ complex-valued position of the rotation pole in the terrestrial frame

mx x-component of position of the rotation pole in the terrestrial frame

my y-component of position of the rotation pole in the terrestrial frame

mz deviation of the mean rotation velocity due to the difference UT1–UTC

n0 parameter related to the changes of the inertia tensor due radial deformation

p̃ ′′ complex-valued position of the CIP in the terrestrial frame

px
′′ x-component of position of the CIP in the terrestrial frame

py
′′ y-component of position of the CIP in the terrestrial frame

r m radius



ur ms−1 radial component of the velocity vector

uλ ms−1 west-east component of the velocity vector

uφ ms−1 north-south component of the velocity vector

x position vector

χ̃ complex combination of the excitation functions χx and χy
χx x-component of the excitation functions

χy y-component of the excitation functions

χz z-component of the excitation functions

∆k′an modification of the degree-2 load Love number due to anelasticity

∆kocn,s oceanic Love number for the spin of the Earth

∆kocn,w oceanic Love number for the wobble of the Earth

εC ellipticity of the surface of the core

λ ° longitude

Ω rad s−1 mean rotation velocity

ω rad s−1 Earth rotation vector

φ ° latitude

ρ kgm−3 density

ϑ ° polar distance: ϑ = 90°− φ



12 1. Introduction and motivation

1. Introduction and motivation
1.1. Historical development and current situation of the Earth rotation research
"Eppur si muove." (Italian: And yet it moves.) According to a popular legend, Galileo Galilei has
muttered this phrase just after he was forced to recant the theory of heliocentrism. The Catholic Church
dismissed the theory of heliocentrism in 1616 and declared it as contrary to the Holy Scripture. Galilei
(1632) defended the ideas of Copernicus (1543), who proposed a heliocentric world system in which the
Moon rotates about the Earth in a spherical orbit; the Earth rotates about its own axis in one day and
rotates about the Sun in one year. After this publication, Galileo Galilei was ordered to Rome and was
forced to abjure in 1633. He was not rehabilitated until 1992, when pope John Paul II issued a declaration
acknowledging the committed error (Cowell, 1992).
The arising Age of Enlightenment fueled the progress in natural sciences. Isaac Newton and Leonard
Euler (Newton, 1687; Euler, 1765) predicted that the Earth’s rotation and figure axis are divergent and
that the pole describes a circular motion. Based on the known flattening of the Earth, Euler (1765)
predicted a period of approximately 10 months for the polar motion, which could not be detected by
the astronomers. Seth Carlo Chandler (Chandler, 1891) detected a wobble with a dominant period of
approximately 14 months more than 100 years after Euler’s publication. Since then, this wobble has
been called the Chandler wobble in his honor. According to Newcomb (1902, page 116), the Earth is
more rigid than steel but not perfectly rigid. He explained the large deviation between the Euler and the
Chandler frequency by the elastic reaction of the Earth.
The variations of the polar motion and the rotation velocity have been observed since approximately 1850.
The Earth Orientation Parameters (EOP) were first derived from astronomic observations. Nowadays,
they are obtained with high accuracy by combining five different measurement techniques: Very Long
Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite Systems
(GNSS), Doppler Orbit determination and Radio positioning Integrated on Satellite (DORIS) and Lunar
Laser Ranging (LLR). These techniques are sensitive to different EOP. Therefore, only the combination
of all techniques delivers the complete set of EOP with sufficient accuracy. Additionally, SLR allows
to determine the time variable gravity field with a low spatial resolution. However, the gravity field
coefficients and the EOP cannot be simultaneously determined by SLR. Therefore, either the EOP
or the gravity field coefficients have to be considered as fixed parameters. Furthermore, the Gravity
Recovery and Climate Experiment (GRACE) observes the time variable gravity field with a high spatial
resolution since 2002 (Tapley et al., 2004).
The divergent figure and rotation axis of the Earth would coincide over time due to dissipation caused by
the anelastic reaction of the Earth’s body. Then, the amplitude of the Chandler wobble would be damped.
However, the amplitude of the Chandler period is not decreasing, it is excited by geophysical processes.
The amplitude and the phase of the Chandler wobble changes continuously. It is widely accepted that
not only the atmosphere, oceans and hydrology but also the postglacial rebound and earthquakes excite
the Chandler wobble, (e.g. Gross, 1986; Wahr, 1988; Aoyama and Naito, 2000; Gross, 2000; Aoyama
et al., 2003; Liao et al., 2003; Gibert and Le Mouël, 2008; Zotov and Bizouard, 2012). Though, the exact
excitation mechanisms are currently not completely understood. Seitz and Stuck (2004), Seitz (2005) and
Chao and Chung (2011) excited Earth models with purely random functions. The modeled polar motion
time series show a similar pattern as the observed polar motion time series. It is therefore concluded that
random events might play an important role for the excitation of the Chandler wobble.
The changes of the Earth’s rotation axis and velocity are caused by geophysical processes in the Earth’s
core, mantle, oceans and atmosphere. The distribution of the masses varies and the motions of the
masses generate currents. The mass redistribution changes directly the gravity field of the Earth and
the Earth’s tensor of inertia. The currents lead to variations of the Earth’s relative angular momentum.
Variations of the tensor of inertia and the relative angular momentum change the Earth’s rotation. The
contributions of the largest subsystems of the Earth (atmosphere, oceans and continental hydrology) to
the Earth rotation variations are approximated by models. The modeled excitation functions provide
the contribution of the subsystems to the total relative angular momentum and tensor of inertia. The
variations of the Earth’s rotation induce further indirect effects, which have to be considered if the Earth’s
rotation is described by models. Figure 1.1 gives an overview over the direct and indirect effects caused
by geophysical processes.
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Figure 1.1: The graph describes the Earth rotation variations due to geophysical processes. Red boxes denote the effects
caused by the Earth’s subsystems. Direct effects are depicted with green boxes and indirect effects with light
green boxes (Seitz, 2004, modified).

1.2. Objective and outline of the dissertation
This dissertation aims at the mutual validation of the EOP, Gravity Field Coefficients of second degree
(GFC2) and excitation functions. As mentioned before, the mass redistribution causes variations of the
Earth rotation and the gravity field coefficients. The GFC2 are functionally related to the tensor of inertia.
According to Figure 1.1, Earth rotation variations are caused by the variations of the tensor of inertia
and the relative angular momentum. The excitation functions model the contributions of the Earth’s
largest subsystems (atmosphere, oceans and continental hydrology) to the tensor of inertia (mass terms)
and to the angular momentum (motion terms). Smaller subsystems (e.g. cryosphere, core) are neglected
so far. The available excitation functions are assumed to model the effect of the mass redistribution on
the total relative angular momentum and the total tensor of inertia with sufficient accuracy. Therefore,
the common link between the EOP, the GFC2 and the excitation functions is the Earth’s total tensor
of inertia. All time series depend linearly on the Earth’s tensor of inertia. Inconsistencies between
the time series might arise due to different or inaccurate geophysical models and due to measurement
errors. As the time series are derived independently, the common relation to the tensor of inertia allows
the independent mutual validation by quantifying the inconsistencies of the time series. In particular,
systematic periodic patterns in the inconsistencies are of interest.
The data are partly delivered with stochastic information, in terms of standard deviations and covariances.
However, complete stochastic information is not available for all time series. Furthermore, the given
stochastic information reflects the internal uncertainty of the specific time series. The internal uncertainty
describes the variations of measurement results, obtained by repeated measurements of the same object
under specified conditions (JCGM, 2008). Therefore, the given stochastic information does not describe
the agreement of time series from different origins. The validation has to consider all available a priori
stochastic information and has to provide an appropriate a posteriori stochastic model which reflects the
agreement of time series from different origins.
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Three of the six elements of the tensor of inertia can be redundantly determined by

1. the difference of the EOP and the motion terms of the excitation functions,

2. the mass terms of the excitation function and

3. the GFC2.

According to Rochester and Smylie (1974), the trace of the tensor of inertia is invariant to mass re-
distributions as long as the principle of mass conservation holds. Their result allows to constrain the
determination of the tensor of inertia by a further linear relation. Since all functional relations between
the time series and the tensor of inertia are linear and since at least three of the six tensor elements are
redundantly determinable, a constrained linear least-squares adjustment is chosen as a suitable method
for the mutual validation. The constrained least-squares adjustment has to include an estimation of
Variance and Covariance Components (VCC), in order to obtain the demanded a posteriori stochastic
model.
Koch (1999) developed the Best Invariant Quadratic Estimation (BIQUE) of VCC in an unconstrained
Gauss-Markov Model (GMM). His approach is adapted in this dissertation to obtain a BIQUE of VCC
in a constrained Gauss-Helmert Model (GHM). The resulting formulas are identical to the formulas in
Yu (1992), who obtained the BIQUE of VCC in a constrained GHM in a different way. The estimation of
VCC requires the calculation of several traces of matrix products. If the least-squares adjustment prob-
lem considers a large amount of measurements, the calculation of the traces requires therefore a large
number of floating point operations. Förstner (1979) proposed an alternative to the original approach,
which reduces the number of floating point operations essentially. Since the exact calculation of the traces
remains computationally intensive, even with Förstner’s approach, Koch and Kusche (2002), Kusche and
Klees (2002) and Kusche (2003) proposed an efficient Stochastic Monte-Carlo Trace Estimator (SMCTE).
Their approach is based on Förstner’s approach and avoids the exact calculation of the traces. It approx-
imates the traces of symmetric matrices by a stochastic Monte-Carlo sampler. However, doubt arises
during the work on this dissertation that Förstner’s approach is in any case suitable for the estimation
of covariance components. Appendix C contains an example in which a covariance component can be
successfully estimated with the original approach, whereas the estimation fails using Förstner’s approach.
Therefore, Förstner’s approach is not considered further in this dissertation. Since the SMCTE of Koch
and Kusche (2002), Kusche and Klees (2002) and Kusche (2003) is based on Förstner’s approach, their
SMCTE is extended within this dissertation to deal with the original approach and asymmetric matrices.
The resulting least-squares adjustment model is a universal, linear least-squares solver, suitable for each
adjustment problem, which can be handled by linearization with sufficient accuracy.
The mutual validation is performed by the proposed least-squares adjustment model. The EOP, GFC2
and excitation functions are considered as (pseudo)observations, whereas the Earth’s total tensor of
inertia is considered as unknown. The a priori Variance Covariance Matrices (VCM) are either delivered
together with the time series or approximated by empirical auto- and crosscorrelation functions. The
functional model of the least-squares adjustment is basically described by geophysical models, relating
each time series to the tensor of inertia. As the time series possess different temporal resolutions (daily
and monthly), the daily time series have to be downsampled to monthly epoch values. The functional
model additionally requires the unobserved time derivatives of the polar motion. Two approaches for the
downsampling and the approximation of the time derivatives are analyzed within a sensitivity analysis.
The first approach approximates the monthly epoch values and the time derivatives by cubic splines.
The second approach calculates monthly averages and approximates the time derivatives by difference
quotients. The sensitivity analysis additionally investigates different geophysical constants, and the finally
chosen formulation of the functional model is based on the results of the sensitivity analysis.
The mutual validation is performed by applying the proposed least-squares adjustment algorithm. The
residuals contain the inconsistencies and are analyzed in the time domain and in the frequency domain.
The frequency analysis reveals dominant periods. The a posteriori stochastic model is obtained from the
adjusted VCC and reflects the agreement of different time series. A comparison of the a priori and the
adjusted VCM points to the quality of the a priori stochastic models.
Based on the initial task of the mutual validation, Figure 1.2 illustrates the content of this dissertation.
The literature provides the functional models and some basic ideas developed further within this disser-
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Initial task:
Mutual validation of EOP, GFC2 and ex-
citation function

Method:
Least-squares adjustment in a linear, un-
constrained Gauss-Markov Model,
including Variance Covariance Compo-
nent estimation (Koch, 1999)

Method: (Section 3.2)
Least-squares adjustment in a linear, con-
strained Gauss-Helmert Model, in-
cluding Variance Covariance Component
estimation (Yu, 1992)

Numerical methods (Algorithm):
• Estimation of variance components ac-

cording to Förstner (1979)
• Efficient SMCTE estimates the trace

of symmetric matrices (Koch and
Kusche, 2002; Kusche and Klees, 2002;
Kusche 2003)

Numerical methods (Algorithm):
(Section 3.3)
Expansion of the SMCTE
• Förstner’s approach not necessary
• Estimation of the trace of asymmetric

matrices
• Estimation of covariance components

The rotating Earth: (Chapter 2)
• Euler Liouville Equation (e.g., Gross,

2007)
• Definition of the GFC2 (Torge and

Müller, 2012)
• Tensor trace constraint (Rochester and

Smylie, 1974)

Implementation of the least-squares
adjustment: (Chapter 4)
• Functional model (Subsection 4.2.1)
• A priori stochastic model (Subsection

4.2.2)
• Sensitivity analysis (Section 4.3)

Results: (Chapter 5)
• Residuals containing inconsistencies;

analysis in the time and frequency do-
main

• A posteriori stochastic model
• Adjusted tensor of inertia

Figure 1.2: Beginning with the initial task of the mutual validation, the graph describes the content of this dissertation.
Models and ideas found in literature are denoted with gray boxes. The own contributions to the solution of the
initial task are indicated by light gray boxes.

tation. Models and ideas found in literature are denoted with gray boxes. The own contributions to the
solution of the initial task are indicated by light gray boxes.
Briefly summarized, this dissertation is focused on two different aspects:

• A sophisticated, universal, efficient, linear least-squares adjustment solver is developed, which in-
cludes an estimation of VCC. The dissertation extents previously known methods regarding to
additional constraints and an efficient estimation of covariance components. The proposed univer-
sal, efficient, linear least-squares adjustment model is suitable for each adjustment problem, which
can be handled by linearization with sufficient accuracy.

• The mutual validation of EOP, GFC2 and geophysical excitation functions is performed by the
proposed least-squares solver. The residuals of each time series contain those parts of the signal
not present in the other time series and contain therefore the inconsistencies of the data. They are
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analyzed in the time and frequency domain. Furthermore, the adjustment provides the adjusted
tensor of inertia and the a posteriori VCM, describing the relative accuracy of the time series. The
scientific community is supported with a valuable insight on the quality of the measured data and
models.

The dissertation is outlined as follows: Chapter 2 models the rotating Earth and presents the functional
relations between the time series and the tensor of inertia. Figure 1.1 describes graphically the depen-
dencies within the functional model. Chapter 3 develops the universal, efficient, linear least-squares
adjustment solver, which allows the estimation of variance components as well as covariance components.
The development of the linear least-squares solver is performed in several steps. As a preparatory step,
Section 3.1 considers a known stochastic model and solves a constrained least-squares GHM. Section 3.2
derives the BIQUE of the VCC. Section 3.3 proposes the numerical methods and provides a pseudocode
for the universal least-squares solver. The least-squares solver is applied to the specific problem of the
mutual validation of EOP, GFC2 and excitation functions in Chapter 4. This chapter links the Chap-
ters 2 and 3 and includes a description of preprocessing steps and a sensitivity analysis. The sensitivity
analysis investigates the effect of different functional models on the results. Chapter 5 contains a short
description of the used time series and presents the results of the mutual validation of the time series.
The residuals are extensively analyzed in the time and frequency domain, and the a priori and a posteriori
VCM are compared. Additionally, this chapter answers some questions, arising during the work on this
dissertation. Finally, Chapter 6 summarizes the results and gives an outlook.
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2. Model of the rotating Earth
2.1. Reference systems and reference frames
2.1.1. Celestial and terrestrial reference systems and frames

The Earth is observed on global and local scales by means of numerous global and local techniques.
Each measurement has to be performed within a reference system defined by conventions. A reference
frame realizes a predefined reference system by measurements. If the rotating Earth is observed by
global techniques, two reference systems are required, a non-rotating, celestial, inertial reference system
and a rotating, Earth-fixed reference system. The International Earth Rotation and References Systems
Service (IERS) maintains the conventional inertial and terrestrial reference systems and frames by means
of the IERS Conventions (2010).
The International Astronomical Union recommends for the International Celestial Reference System
(ICRS) that the origin of the ICRS is centered in the barycenter of the solar system. The directions of
the axes should be fixed with respect to distant extra galactic quasars, whose motions are negligible small.
This recommendation further stipulates that the celestial reference system should have its principal plane
as close as possible to the mean equator at January 1st 2000, 12:00 Coordinated Universal Time (UTC).
This date is denoted by the epoch identifier J2000.0. The origin of this principal plane should be as close
as possible to the dynamical equinox of J2000.0. The ICRS is realized by the International Celestial
Reference Frame (ICRF) (IERS Conventions, 2010, Chapter 2). The realization consists of a set of
precise coordinates of extra galactic radio sources, which are observed by VLBI. Chapter 2 of the IERS
Conventions (2010) provides further information and references about the ICRS and the ICRF.
The International Union of Geodesy and Geophysics and the International Association of Geodesy define
the International Terrestrial Reference System (ITRS) as a right-handed, geocentric reference system.
Its origin is the Earth’s center of mass, including oceanic and atmospheric masses. The unit length
is the meter. The orientation of the ITRS is initially given by the Bureau International de l’Heure
orientation of J1984.0. The temporal stability of the orientation is ensured by using the no-net-rotation
condition, which regards the motion of tectonic plates (Kreemer et al., 2006). The ITRS is realized by
the International Terrestrial Reference Frame (ITRF). The positions of the IERS network stations and
their velocities are determined by combining VLBI, SLR, GNSS and DORIS. Due to enhancement in
both, measuring equipment and modeling, twelve versions of the ITRF were published over the years.
The current reference frame is the ITRF2008. Further information and the transformation parameters
between the current ITRF and previous references frames are published in IERS Conventions (2010,
Chapter 4). The Geocentric Celestial Reference System (GCRS), introduced in Chapter 5 of the IERS
Conventions (2010), has the same orientation as the ICRS and its origin equals the origin of the ITRS.

2.1.2. Transformation between the International Terrestrial Reference System and Geocentric
Celestial Reference System

Geophysical processes change the distribution of masses of the entire Earth including atmosphere and
oceans and induce variations of the Earth’s pole and the rotation velocity. Additionally, the gravitational
torques of the Sun, the Moon and the planets cause precession and nutation of the Earth’s rotation
axis. Thus, the instantaneous rotation axis varies in the ITRS as well as in the GCRS. The Celestial
Intermediate Pole (CIP) divides by conventions the motion of the pole into a terrestrial and a celestial
part. Since the Earth rotates in one sidereal day about its own axis, the frequency of a motion observed
in the ITRS is one cycle per sidereal day (cpsd) higher than the frequency of the same motion observed
in the GCRS. The precession and nutation describe the celestial motion of the CIP and include periods
larger than two days, observed in the GCRS. These periods correspond to the retrograde diurnal band
in the ITRS. In contrast, the polar motion describes the terrestrial motion of the CIP and includes
frequencies outside of the retrograde diurnal band in the ITRS. Figure 2.1 illustrates the definition of
the CIP (IERS Conventions, 2010).
The EOP, provided by the IERS, contain daily values for

• the observed coordinates of the CIP in the ITRS (polar motion),



18 2. Model of the rotating Earth

GCRS

ITRS

-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
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frequency in cycles per sideral day

frequency in cycles per sideral day

precession
nutation

polar motionpolar motion

Figure 2.1: The chart illustrates the conventional frequency separation between the precession/nutation and the polar mo-
tion, either viewed in the ITRS (top), or the GCRS (bottom), with a 1 cpsd shift due to the rotation of the
ITRS with respect to the GCRS. (IERS Conventions, 2010, page 46).

• the observed variation of the Earth’s rotation velocity, measured by the difference between the
universal time UT1 and UTC and Length Of Day (LOD) respectively, and

• the observed corrections to the precession/nutation model, which describe the motion of the CIP
in the GCRS.

The transformation of a position vector xITRS in the ITRS to a position vector xGCRS in the GCRS is
performed at a given date t with

xGCRS (t) = Q (t)R (t)W (t)xITRS (t) 2.1

where the transformation matrices Q, R and W arise from

Q (t): the motion of the CIP in the GCRS (precession/nutation),
R (t): the Earth’s rotation about its own rotation axis and
W (t): the motion of the CIP in the ITRS (polar motion).

The transformation matrices depend on the EOP and are described in detail in IERS Conventions (2010,
Chapter 5). Due to the definition of the CIP, the polar motion excludes daily and subdaily tidal variations
and includes long periodic tidal signals and the secular trend due to the postglacial rebound. The IERS
Conventions (2010, Sections 5.5.1, 5.5.3, and 8.2) provides models which add daily and subdaily tides to
polar motion, LOD and the difference UT1–UTC. Additionally, the IERS Conventions (2010, Sections
8.1 and 8.3) and Appendix A provide models which remove long periodic tidal signals. The corrections of
Appendix A have to be subtracted from the observed polar motion, LOD and the difference UT1–UTC,
to obtain values free from tidal variations.

2.2. Theory of the Earth’s rotation
2.2.1. Euler Liouville Equation

The Earth’s rotation and its excitation are studied by various authors. Munk and MacDonald (1960, 1975)
is probably the most cited textbooks regarding the rotation of the Earth. Further textbooks are Lambeck
(1980) and Moritz and Mueller (1987). The latter textbook gives a very detailed and comprehensible
overview. Gross (2007) and Dehant and Mathews (2007) wrote compact papers regarding the rotation
of the Earth. Gross (2007) limited his paper to long periodic rotation variations caused by geophysical
processes, and Dehant and Mathews (2007) focused on nutation effects caused by gravitational torques
of Sun and Moon. This section summarizes the mechanic of a rotating Earth with a deformable body.
The derivations presented here are similar to the textbook of Moritz and Mueller (1987) and the paper
of Gross (2007). First, the rotation of rigid Earth is described. Later, this simple model is refined in two
steps accounting for a deformable Earth model:
Assume an inertial and a rotating terrestrial reference system, both with the same origin. Assume further,
a point mass on the Earth is viewed from a fixed point in the inertial reference system. Then, the observed
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motion of the point mass in the inertial system is composed of the sum of two motions. The first motion
is due to the deformation of the Earth’s body. If the body were rigid, this motion with respect to the
rotating reference system would be zero. The second motion of the point mass is due to the rotation
itself and is obtained from the crossproduct of the rotation vector ω and the position vector x of the
point mass. The rotation vector ω points along the instantaneous rotation axis, and its length quantifies
the rotation velocity. Hence, the time derivative of a point mass with respect to a fixed inertial reference
system is

dxI
d t = dxT

d t + ω × xT. 2.2

The indices I and T denote the position vector of the point mass in the inertial and the terrestrial
reference system. The angular momentum of a point mass is defined by the crossproduct of the position
vector and its time derivative. The angular momentumHI of the Earth’s body, consisting of continuously
distributed point masses dM , is according to Moritz and Mueller (1987, formula 2-37)

HI =
∫∫∫
Earth

xI ×
dxI
d t dM. 2.3

If the inertial position vector xI and the angular momentum HI are transformed in the terrestrial po-
sition vector xT and the angular momentum HT respectively and if Equation 2.2 is substituted into
Equation 2.3, it yields

HT =
∫∫∫
Earth

xT × (ω × xT) dM +
∫∫∫
Earth

xT ×
dxT
d t dM. 2.4

The definition of the tensor of inertia I results from the first summand of the last equation

∫∫∫
Earth

xT × (ω × xT) dM =

∫∫∫
Earth

y2 + z2 xy xz
xy x2 + z2 yz
xz yz x2 + y2

 dM

ω = Iω 2.5

where x, y and z denote the Cartesian coordinates of the terrestrial position vector. The relative angular
momentum h is defined with

h =
∫∫∫
Earth

xT ×
dxT
d t dM. 2.6

It follows from the Equations 2.5 and 2.6 that the Earth’s angular momentum HT is

HT = Iω + h. 2.7

The Earth’s reaction on external torques, mainly gravitational torques of the Moon and the Sun, has to
be taken into account. The angular momentum is constant in closed systems. If an external torque L
acts on the rotating Earth, the angular momentum changes. According to Moritz and Mueller (1987, pp.
42f and 118), the conservation of the angular momentum is described by

dHI
d t = L. 2.8

This equation is commonly called the Eulerian Equation of motion or simply Euler Equation. According
to (Moritz and Mueller, 1987, formula 2-35), the time derivative of any arbitrary vector with respect to
the inertial system consists of the sum of the time derivative with respect to the rotating system and the
temporal changes due to the rotation. The time derivative of the inertial angular momentum vector is
determined analogous to Equation 2.2 and it holds

dHT
d t + ω ×HT = L. 2.9

If HT in Equation 2.7 is substituted into Equation 2.9, it holds

d
d t (Iω + h) + ω × (Iω + h) = L. 2.10
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This form of the Euler Equation, defined in the terrestrial reference system, is called Liouville Equation
(Munk and MacDonald, 1960, 1975) or Euler Liouville Equation (ELE) (Moritz and Mueller, 1987). The
motion of the rotation axis with respect to the inertial system is called precession and nutation, whereas
the motion of the rotation axis with respect to the terrestrial frame is denoted wobble (Dehant and
Mathews, 2007). The rotation varies due to mass redistributions, changing the tensor of inertia and
the relative angular momentum. External forces of Moon, Sun and planets cause additional rotation
variations. Free modes consider mass redistributions due to internal geophysical processes only, and
the external torques are set to zero. Forced modes describe the rotation variations caused by external
torques. Since this dissertation is limited to Earth rotation variations due to geophysical processes, it
holds L = 0. The time derivative with respect to the terrestrial reference system is hereafter replaced
with a dot, in order to make the following derivations more legible. Equation 2.10 results then in

İω + Iω̇ + ḣ+ ω × Iω + ω × h = 0. 2.11

The tensor of inertia is split in a mean, time-invariant, biaxial tensor of inertia and a time-dependent
part, described by comparatively small deviations cjk (with j, k = x, y, z) from the mean tensor

I =

A′ 0 0
0 A′ 0
0 0 C

+

cxx cxy cxz
cxy cyy cyz
cxz cyz czz

 with A′ = A+B

2 . 2.12

The parameters A, B and C denote the Earth’s principal moments of the tensor of inertia.
The Earth approximately rotates about the z-axis of the terrestrial reference system with a mean rotation
velocity Ω. The rotation vector ω is described by a sum of the mean rotation vector and small time-
dependent variations Ωmj (with j = x, y, z)

ω =

 0
0
Ω

+Ω

mx

my

mz

 = Ω

 mx

my

1 +mz

 . 2.13

The tensor of inertia and the rotation vector in Equations 2.12 and 2.13 are substituted into Equation 2.11.
It holds for all deviations cjk � A′, C and all mj � 1. If products of two or more small quantities cjk and
mj are neglected, it yields the linear approximation of the ELE with (Gross, 2007; Moritz and Mueller,
1987, pp.123f)

A′

Ω (C −A′)ṁx +my = 1
Ω (C −A′)

(
Ωcyz − ċxz + hy −

1
Ω
ḣv

)
, 2.14a

A′

Ω (C −A′)ṁy −mx = 1
Ω (C −A′)

(
−Ωcxz − ċyz − hx −

1
Ω
ḣy

)
, 2.14b

ṁz = 1
ΩC

(
−Ωċzz − ḣz

)
. 2.14c

The linear approximation decouples the equatorial part in Equations 2.14a and 2.14b from the axial part
in Equation 2.14c. Furthermore, the tensor elements cxx, cxy and cyy vanish due to linearization. The
Equations 2.14 are simplified by defining excitation functions

χx = Ωcxz + hx
Ω (C −A′) , χy = Ωcyz + hy

Ω (C −A′) and χz = Ωczz + hz
ΩC

. 2.15

Using the excitation functions, the equatorial ELE is described by

A′

Ω (C −A′)ṁx+my =χy −
1
Ω
χ̇x, 2.16a

A′

Ω (C −A′)ṁy−mx = − χx −
1
Ω
χ̇y. 2.16b

The integration of the axial Equation 2.14c results in

mz = − χz. 2.16c
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The two equatorial ELE are usually summarized in one complex equation. Complex equatorial quantities
are defined by using the imaginary number i =

√
−1 with

m̃ = mx + imy, c̃ = cxz + i cyz, h̃ = hx + ihy and χ̃ = χx + iχy. 2.17

Then, the complex equatorial ELE reads

m̃+ i A′

Ω (C −A′)
˙̃m = χ̃− i 1

Ω
˙̃χ. 2.18

If the Earth were rigid, the mass distribution would remain constant. Hence, the right-hand side of the
Equation 2.18 would be zero. Then, the solution of the complex differential Equation 2.18 would be

m̃ = m̃0 exp
(

i C −A
′

A′
Ωt

)
2.19

where m̃0 is an initial value required for the unique solution of the differential equation. The pole would
describe a prograde undamped circular motion. The radius of the circular polar motion can be obtained
from m̃0. Based on the known flattening of the Earth, Euler (1765) predicted the frequency of the wobble
with

σE = C −A′

A′
Ω, 2.20

which corresponds to a period of about 10 months. However, the Earth wobbles with a longer period
of 14 months. This wobble was first detected by Chandler (1891) more than 100 years later. Newcomb
(1902) explained the large deviation between the Euler and the Chandler frequency with a deformable
Earth body.

2.2.2. Euler Liouville Equation for a deformable Earth

As mentioned before, the Earth’s body, including atmosphere and oceans, is not rigid. Tides and at-
mospheric and oceanic loading effects deform the Earth’s mantle and crust. The change of the rotation
itself induce deformations. The variation of the mass distribution in the Earth’s core leads to rota-
tion variations. The distribution of water in atmosphere, oceans, continental lakes and rivers and ice
changes continuously. The motions of the tectonic plates cause earthquakes and volcanic eruptions. Each
subsystem contributes to the total tensor of inertia and the total relative angular momentum and it holds

h = hCore + hT ides + hRot + hLoad + hAtmo + hOcean + hHydro + hIce + hTectonic + . . . 2.21

c =

cxzcyz
czz

 = cCore + cT ides + cRot + cLoad + cAtmo + cOcean + cHydro + cIce + cTectonic + . . . . 2.22

The vector c contains the three tensor elements cxz, cyz and czz. The tensor elements cxx, cyy and cxy
are not considered in vector c, as they vanish due to the linearization of the ELE.
Some terms in Equations 2.21 and 2.22 are approximated by models. The core is assumed to be ellipsoidal
and to be of a homogeneous, incompressible fluid. As the fluid is homogeneous and incompressible, the
mass distribution and therefore the tensor of inertia of the core remains constant. Thus, it holds cCore = 0.
Based on the work of Hough (1895), Smith and Dahlen (1981) models the changes of relative angular
momentum due to rotation variations. If the rotation axis of the core varies with a frequency σ � Ω (so
that σ/Ω ≈ 0), it holds

hCore =

− (1− εC)ACṁy

(1− εC)ACṁx

−ΩCCmz

 2.23

where AC and CC denote the principal moments of inertia of the biaxial, ellipsoidal core. εC describes
the ellipticity of the surface of the core.
The terrestrial reference system is assumed to be oriented in a manner that the relative angular momen-
tum caused by motions of the Earth’s crust and mantle vanishes. The assumed reference system is the
Tisserand mean-mantle reference system. The Tisserand mean-mantle reference system is equivalent to
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orienting the Earth’s rotation axis ω along the mean rotation axis of the mantle (Munk and MacDonald,
1975). Then, motions of crust and mantle do not contribute to the total relative angular momentum h,
and it holds hRot = 0 and hLoad = 0 (Gross, 2007). Dahlen (1976) studied the effect of the rotation
deformation on the Earth. Rotation variations change the centripetal potential of the Earth and cause
elastic deformation of its body. Reactions to changes of the centripetal potential are assumed to be equal
to reactions that a non-rotating Earth would show to changes of a static potential of the same amplitude
and type. Then, the contribution to the tensor of inertia due to rotation variations is modeled by

cRot =

De 0 0
0 De 0
0 0 Da


mx

my

mz

 = Dm

with De = a5Ω2

3G (k2 + ∆kocn,w) and Da = a5Ω2

3G

(
n0 + 4

3 (k2 + ∆kocn,s)
) 2.24

where a is the mean radius of the Earth and G is the Newtonian gravitational constant. The second-
degree body tide Love number k2 is a dimensionless parameter, describing the elastic deformation of the
Earth’s body. Assuming equilibrium oceans, the oceans also undergo centrifugal deformations. Oceanic
Love numbers modify the body tide Love number k2 to account for oceanic deformations. As the oceans
are non-uniformly distributed over the Earth, two different oceanic Love numbers ∆kocn,w and ∆kocn,s
for the Earth’s wobble and spin are considered. The non-uniform distribution of the oceans couples the
equatorial and axial components. That leads to off-diagonal elements of the matrix D which are unequal
to zero. Based on older Earth models 1066A and 1066B (Gilbert and Dziewonski, 1975), Dahlen (1976)
investigated the off-diagonal elements and found a weak coupling. This finding is extrapolated to the
current Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson, 1981). The coupling
due to non-uniform distribution of the oceans is neglected as well. The parameter n0 arises from the
change of the mean moment of inertia caused by purely radial deformation of the Earth (Dahlen, 1976;
Gross, 2007).
The loads of atmosphere and oceans are assumed to deform the Earth radially. The deformation due to
loading changes the tensor of inertia with

cLoad = k′2c 2.25

where k′2 denotes the load Love number. The assumed radial deformation is a rough approximation, which
does not consider local deformations of the Earth’s crust, caused by pressure variations of the atmosphere
and oceans. Dill (2002) and Seitz (2004) developed a model accounting for regional deformations of the
Earth’s crust.
As mentioned previously, the frequency of the Earth rotation variations is assumed to be low. Then, the
second time derivative of the polar motion is approximately zero ( ¨̃m ≈ 0). The Equations 2.23, 2.24 and
2.25 are substituted into the equatorial ELE in Equation 2.18

m̃+ i A′

Ω (C −A′)
˙̃m =

ΩDem̃+ i (1− εC)AC ˙̃m− iDe ˙̃m+Ω (1 + k′2) c̃+ h̃− (1 + k′2) ˙̃c− 1
Ω

˙̃h
Ω (C −A′)

⇒Ω
(
C −A′ −De

)
m̃+ i

(
A′ − (1− εC)AC +De

) ˙̃m = Ω
(
1 + k′2

)
c̃+ h̃−

(
1 + k′2

) ˙̃c− 1
Ω

˙̃h

⇒m̃+ iA
′ − (1− εC)AC +De

Ω (C −A′ −De)
˙̃m = χ̃− i 1

Ω
˙̃χ

2.26

with a refined complex valued equatorial excitation function

χ̃ = Ω (1 + k′2) c̃+ h̃

Ω (C −A′ −De)
. 2.27

If the Earth is approximated by an axisymmetric body with a fluid core, an elastically deformable mantle
and equilibrium oceans, the Earth rotates with a refined theoretical Chandler frequency of

σC = C −A′ −De

A′ − (1− εC)AC +De
Ω. 2.28
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The axial component of the ELE is similarly refined. The total principal moment of inertia consists of
the sum of the principal moments of the mantle CM and the core CC . Hence, it holds CM = C − CC .
According to the Equations 2.23, 2.24 and 2.25, the axial Euler Liouville Equation follows as

mz = −−ΩCCmz +ΩDamz +Ω (1 + k′2) czz + hz
ΩC

⇒
(

1− CC
C

+ Da

C

)
mz = −Ω (1 + k′2) czz + hz

ΩC

⇒ (C − CC +Da)mz = −Ω (1 + k′2) czz + hz
Ω

⇒
(

1 + Da

CM

)
mz = −Ω (1 + k′2) czz + hz

ΩCM
.

2.29

However, the theoretical value for the Chandler period in Equation 2.28 is more than one week shorter
than the observed Chandler period (Gross, 2007). This difference is caused by the anelastic reaction of
the Earth’s body. Viscose, electromagnetic or topographic core-mantle coupling processes and dissipation
in the Earth’s mantle and oceans lead to the anelastic reaction of the Earth (Smith and Dahlen, 1981).
If the Chandler wobble were not excited, the figure axis and rotation axis of the Earth would coincide
over time due to the anelasticity. The Chandler wobble would be damped and the polar motion would
describe an inward spiral. However, the excitation of the Earth rotation is still not completely understood.
A damped Chandler wobble is reflected by a complex-valued Chandler frequency σ0. The anelasticity
modifies the body tide and load Love numbers by complex values. According to Gross (2007), accurate
models for the anelastic Earth do not exist for the frequencies of interest (σ < Ω). Therefore, the ELE is
refined by replacing the theoretical Chandler frequency σC with the empirical Chandler frequency σ0 in
Equations 2.26 and 2.28. If σC in Equation 2.28 is replaced, a refined complex-valued parameterDe can be
derived. If the parameter De and the empirical Chandler frequency σ0 are substituted into Equation 2.26
the refined ELE is obtained (Gross, 2007)

m̃+ i 1
σ0

˙̃m = χ̃− i 1
Ω

˙̃χ with χ̃ = Ω (1 + k′2 +∆k′a) c̃+ h̃

σ0 (C −A′ +AM + εCAC) 2.30a

mz = −χz χz =
(

1 + Da

CM

)−1 Ω (1 + k′2 +∆k′a) czz + hz
ΩCM

2.30b

where the complex-valued factor ∆k′a accounts for the effects of the mantle elasticity on the load Love
number and where A′−AC = AM holds. This refined ELE models an Earth with an axisymmetric body,
a fluid core, an elastically deformable mantle and equilibrium oceans. The imaginary parts describe
the damping of the Chandler wobble caused by dissipative processes. The dimensionless excitation
functions χ̃ and χz are denoted as Effective Angular Momentum Functions (EAMF). Since the empirical
complex-valued Chandler frequency is used to constrain the anelastic behavior of the Earth’s mantle,
Equation 2.30a only holds for frequencies close to the Chandler frequency (Wahr, 2005). The numerical
values derived from the refined Equation 2.30a differ by 1%–3% from the values obtained by Equation 2.26.
Wahr (2005) and Smith and Dahlen (1981) tried to estimate the quality of the models by quantifying
the model errors as far as possible. The model errors cause perturbations of the Chandler frequency of
1/800 cycles per day maximum.
According to literature, different numerical values for the complex-valued Love numbers and the Chandler
frequency exist. They are derived from Earth models, seismological measurements and from the observed
polar motion. The real parts slightly differ about a few percent. In contrast to the real parts, the
imaginary parts are determined with low accuracy. The sensitivity analysis in Subsection 4.3.3 analyzes
the effect of the different numerical values for the Love numbers and the Chandler frequency.
A further open question is the extent to which the Earth’s core and mantle are coupled. The effects of core
viscosity, electromagnetic and topographic coupling processes are still unknown. A completely decoupled
core is not affected by mantle deformation, whereas a fully coupled core completely deforms. According
to Dickman (2003), the core is hardly affected by mantle deformations. Therefore, he recommended to
replace the body tide Love number k2 and the load Love number k′2 for the entire Earth with mantle-
only Love numbers. However, the core-mantle coupling is differently treated in literature. Barnes et al.
(1983) modeled a coreless Earth. Several publications assumed inconsistent zero coupling of core and
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mantle for the axial component but full coupling in the equatorial component (Wahr, 1983; Eubanks,
1993; Aoyama and Naito, 2000; Gross, 2007). Dickman (2003) compared the various EAMF with respect
to the core-mantle coupling. Based on available data, Subsection 5.1.4 shortly discusses the core-mantle
coupling.

2.2.3. IERS Earth Orientation Parameters and the rotation vector of the Earth

The rotation vector ω linearly depends on small perturbationsmx,my andmz according to Equation 2.13.
The parametersmx andmy describe the angular offset of the instantaneous rotation vector from the z-axis
of the terrestrial reference system. However, the IERS does not report the angles mx and my. Instead,
it reports the coordinates of the instantaneous CIP (cf. Subsection 2.1.2). The CIP represents an
intermediate reference system, separating the precession/nutation from the polar motion by conventions
(cf. Figure 2.1). As the instantaneous rotation vector ω is not given by the IERS, it has to be derived
from the transformation matrix between the terrestrial and celestial reference system. The here presented
derivation of the rotation vector follows according to Gross (1992, 2007).
First, assume an arbitrary inertial and an arbitrary terrestrial reference system. The inertial system is
fixed and the terrestrial system rotates. The origins of these systems coincide and the relative orienta-
tion is arbitrary. The transformation of the inertial system (denoted with index ’I’) in the terrestrial
system (denoted with index ’T’) is performed by a transformation matrix A which considers the relative
orientation of the two systems

xT = AxI. 2.31

Since the orientation of the terrestrial system is continuously changing, A is time-dependent. Further-
more, A is an orthogonal transformation matrix and therefore its inverse is its transpose. Hence, it
holds

xI = ATxT. 2.32

The time derivative of the position vector xI in the inertial system is obtained by the product rule for
derivatives. The multiplication of the time derivative of the position vector xI and the matrix A leads to

A
dxI
d t = A

dAT

d t xT +AAT dxT
d t

= dxT
d t +AdAT

d t xT.

2.33

The terrestrial and inertial systems are assumed to coincide momentarily. Then, the left hand side of this
expression represents the time derivative of a vector with respect to the inertial system (cf. Equation 2.2).
The right hand side is the sum of the time derivative with respect to the terrestrial system and a summand
linearly dependent on xT. According to Equation 2.2, the second summand in Equation 2.33 has to be
equal to the crossproduct of the Earth rotation vector and the position vector xT. If the definition of
the crossproduct is considered, it holds (Gross, 1992, 2007)

A
dxI
d t = dxT

d t + ω × xT

= dxT
d t +

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

xT

2.34

where ωx, ωy and ωz denote the coordinates of the Earth’s rotation vector. A comparison of Equations 2.33
and 2.34 relates the coordinates of the Earth’s rotation vector to the transformation matrix A with 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 = A
dAT

d t . 2.35

Thus, the Earth’s rotation vector ω is derived from the transformation matrix A between the terrestrial
and the celestial reference systems and its time derivative. Chapter 5 of the IERS Conventions (2010)
provides the transformation matrix between the ITRS and the GCRS. Three transformation matrices
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arise according to Equation 2.1, one due to precession/nutation, one due to the Earth’s spin and one due
to the polar motion. As the precession/nutation causes daily and subdaily variations of the Earth rotation
vector ω (cf. Figure 2.1) and since this dissertation is limited to long periods, the transformation matrix
due to precession/nutation is neglected here. The variation of the Earth rotation velocity is given by
the time difference ∆UT=UT1–UTC. The Universal Time (UT1) is the mean solar time at 0° longitude
and is proportional to the rotation angle of the Earth with respect to distant quasars. UTC is the time
measured by atomic clocks. The spin of the Earth is considered by a rotation of the Earth Rotation
Angle (ERA) about the z-axis with

ERA ≈ Ω (t+∆UT (t)) . 2.36

The transformation matrix due to the polar motion consists of two rotations about the x- and y-axes.
Subsection 5.4.1 of the IERS Conventions (2010) considers a third rotation about the z-axis, called the
’TIO locator’. This angle has a value of a few microarcseconds in the period considered within this
dissertation. Therefore, it is omitted as well as the precession/nutation matrix. The angles px and −py
describe the coordinates of the instantaneous CIP in the ITRF. The angle −py has a negative sign
as traditionally the positive direction of py is taken towards the 90°W longitude, whereas the positive
y-axis of the terrestrial system points to the 90°E longitude. The angle pz = Ω∆UT (t) is related to the
perturbation of the mean rotation velocity. The transformation between the terrestrial system and the
inertial system is performed by using following three rotation matrices

Rx =

cos px 0 − sin px
0 1 0

sin px 0 cos px


Ry =

1 0 0
0 cos py sin py
0 − sin py cos py


Rz =

cos (Ωt+ pz) − sin (Ωt+ pz) 0
sin (Ωt+ pz) cos (Ωt+ pz) 0

0 0 1

 .
2.37

The three rotation matrices are summarized to the transformation matrix

AT = RzRxRy. 2.38

The rotation vector ω is obtained by Equation 2.35 and the given transformation matrix A with

ω =

 (Ω + ṗz) sin px − ṗy
− (Ω + ṗz) sin py cos px − ṗx cos py

(Ω + ṗz) cos px cos py − ṗx sin py cos py

 . 2.39

If any arbitrary angle p is small, the sine and cosine of p are approximately sin p ≈ p and cos p ≈ 1. If
small products of second order are neglected, the Earth’s rotation vector and the vector m are

ω =

 Ωpx − ṗy
−Ωpy − ṗx
Ω + ṗz

 and m =

 px − 1
Ω ṗy

−py − 1
Ω ṗx

1
Ω ṗz

 . 2.40

If the two polar motion parameters are combined into a complex notation

p̃ = px − ipy, 2.41

the complex parameter m̃ is then
m̃ = p̃− i 1

Ω
˙̃p. 2.42

The complex-valued m̃ is substituted into Equation 2.30a. Then, one obtains

χ̃− i 1
Ω

˙̃χ = p̃− i 1
Ω

˙̃p+ i 1
σ0

(
˙̃p− i 1

Ω
¨̃p
)

= p̃+ i 1
σ0

˙̃p− i 1
Ω

(
˙̃p+ i 1

σ0
¨̃p
)
.

2.43
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The last equation relates the polar motion and the refined excitation function of Equation 2.30a

p̃+ i 1
σ0

˙̃p = Ω (1 + k′2 +∆ka) c̃+ h̃

σ0 (C −A′ +AM + εCAC) . 2.44

This formulation of the equatorial ELE offers the advantage, that the transition from the quantity m̃ to
the complex polar motion p̃ does not require any time derivatives of the equatorial complex excitation
function χ̃.
The time derivative ṗz of UT1–UTC equals the negative LOD quantity ∆LOD by definition. As the
IERS provides the ∆LOD in seconds per day, ∆LOD has to be divided by the nominal length of day
(Λ0 = 86400 seconds) to reach a dimensionless quantity. Thus, it holds for mz

mz = d (UT1−UTC)
dt = −∆LOD

Λ0
. 2.45

According to Equations 2.30b and 2.45, the final axial component of the ELE is

∆LOD

Λ0
= kr

Ω (1 + k′2 +∆ka) czz + hz
ΩCM

with kr =
(

1 + Da

CM

)−1
. 2.46

2.2.4. Excitation functions from geophysical models

According to the Equations 2.5 and 2.6, the total relative angular momentum and the total tensor
of inertia are integrals over the point masses of the entire Earth’s body. If the contribution of one
subsystem to the total relative angular momentum and tensor of inertia is calculated, the point masses
belonging to the specific subsystems are integrated. The integrals require the position vectors of the
point masses and their time derivatives. The position vectors and currents are obtained by geophysical
models of the subsystems. This subsection derives the atmospheric excitation functions in analogy to
the Equations 2.5 and 2.6. The excitation functions of further subsystems are obtained accordingly. The
atmospheric contribution to the relative angular momentum and the third column of the tensor of inertia
is

cAtmo =
∫∫∫

Atmosphere

 xz
yz

x2 + y2

 dM 2.47

and
hAtmo =

∫∫∫
Atmosphere

x× ẋ dM. 2.48

The Cartesian coordinates of the vector x are expressed by spherical coordinates. Denoting the radius
with r, the longitude with λ and the latitude with φ the position vector is

x =

r cosφ cosλ
r cosφ sinλ
r sinφ

 . 2.49

The atmospheric currents are given by meteorological models, which provide a radial wind component ur,
a west-east wind component uλ and a north-south component uφ for each position. That leads to

u =

uruλ
uφ

 =

 ṙ

rλ̇ cosφ
rφ̇

 . 2.50

The time derivative of the position vector x is obtained by differentiating Equation 2.49. It yields with
the definition of the wind vector u

ẋ =

ṙ cosφ cosλ− rλ̇ cosφ sinλ− rφ̇ sinφ cosλ
ṙ cosφ sinλ+ rλ̇ cosφ cosλ− rφ̇ sinφ sinλ

ṙ sinφ+ rφ̇ cosφ

 =

ur cosφ cosλ− uλ sinλ− uφ sinφ cosλ
ur cosφ sinλ+ uλ cosλ− uφ sinφ sinλ

ur sinφ+ uφ cosφ

 . 2.51
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The mass element dM is replaced with the density ρ of the mass element multiplied by the spherical
volume element. Thus, it holds

dM = ρr2 cosφ dr dφ dλ. 2.52

The atmospheric contribution to the tensor of inertia and the relative angular momentum is obtained by
the Equations 2.49, 2.51 and 2.52 as

cAtmo =
∫∫∫

Atmosphere

ρr4

cos2 φ sinφ cosλ
cos2 φ sinφ sinλ

cos3 φ

 dr dφ dλ 2.53

and

hAtmo =
∫∫∫

Atmosphere

ρr3

 uφ cosφ sinλ− uλ sinφ cosφ cosλ
−uφ cosφ cosλ− uλ sinφ cosφ sinλ

uλ cos2 φ

 dr dφ dλ. 2.54

The contributions of the oceans and hydrology are obtained accordingly. In practice, the models of
the subsystems provide threedimensional grids with various data. Some models are shortly described in
Subsection 5.1.3. Each grid cell contains, among other data, values for the time and position dependent
velocity vector u and the time and position dependent density ρ. The contributions of the subsystems
to the tensor of inertia and the relative angular moment are then obtained by numerical integration of
the grid cells.
The modeled excitation functions are provided either in terms of dimensionless EAMF or angular mo-
mentum functions, which posses the unit kgm2 s−1. If the excitation functions are given in angular
momentum functions, the motion term (sometimes called wind term) is identical to the relative angular
momentum h. The mass term (sometimes called pressure term) is the tensor vector c multiplied by the
mean rotation velocity Ω. The EAMF reflect the dimensionless functions χx, χy and χz. Since differently
defined EAMF exist, consistent time series have to be ensured by a transformation of the different EAMF
(Dickman, 2003, discussion in Subsection 2.2.2). Here, EAMF are transformed into angular momentum
functions.

2.3. Gravity field of the Earth
According to Newton’s law of gravitation, the gravitational potential V of a point mass is proportional to
the gravitational constant G and to the reciprocal distance between the point mass and a given point P
with the spherical coordinates (r, λ, ϑ). The potential of the entire Earth is accordingly obtained by the
integral over the continuously distributed point masses

V (r, λ, ϑ) = G

∫∫∫
Earth

dM
l

2.55

where l denotes the distance from P to the differential mass element dM with the spherical coordinates
(r′, λ′, ϑ′). Figure 2.2 shows the relation between P and differential mass element dM . The angle ψ is the
angle between the differential mass element dM and P . The spherical law of cosines gives the relation
between cosψ and the longitudes λ and the polar distances ϑ of dM and P as

cosψ = cosϑ cosϑ′ + sinϑ sinϑ′ cos
(
λ′ − λ

)
. 2.56

If P lies outside of the Earth’s body, the reciprocal distance 1/l can be developed in a Taylor series. If
cosψ in Equation 2.56 is substituted into the Taylor series, the potential is expressed by following series
expansion (Hofmann-Wellenhof and Moritz, 2006; Torge and Müller, 2012)

V (r, λ, ϑ) = GM

r

∞∑
n=0

n∑
m=0

(
a

r

)n
(Cnm cosmλ+ Snm sinmλ)Pnm (cosϑ) 2.57
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dM

Earth

b
Origin

b

ψ

l

rr′

P

x y

z

b

b

b

λ′
− λ

ϑ′

ϑ

ψ

P

dM
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Figure 2.2: The left figure describes the relation between the differential mass element dM and an arbitrary point P outside
of the Earth’s body. The right figure illustrates the spherical coordinates of dM and P (Hofmann-Wellenhof and
Moritz, 2006, Figures 1.7 and 2.9, modified).

where Pnm denotes the fully normalized associated Legendre function of degree n and order m. The fully
normalized gravity field coefficients Cnm and Snm are defined with (Torge and Müller, 2012)

Cn0 = 1
Man

1
2n+ 1

∫∫∫
Earth

r′n Pn0
(
cosϑ′

)
dM if m = 0

Cnm = 1
Man

1
2 (2n+ 1)

∫∫∫
Earth

r′n cosmλ′ Pnm
(
cosϑ′

)
dM m 6= 0

Snm = 1
Man

1
2 (2n+ 1)

∫∫∫
Earth

r′n sinmλ′ Pnm
(
cosϑ′

)
dM m 6= 0.

2.58

The gravity field coefficients of the degrees n = 0, 1, 2 are related to the Earth’s center of mass and to
the tensor of inertia. According to Hofmann-Wellenhof and Moritz (2006) and Torge and Müller (2012),
the fully normalized associated Legendre functions Pnm of the low degrees are

P00(cosϑ′) = 1,
P10(cosϑ′) =

√
3 cosϑ′, P11(cosϑ′) =

√
3 sinϑ′,

P20(cosϑ′) = 3
√

5
2 cos′2 ϑ−

√
5

2 , P21(cosϑ′) =
√

15 sinϑ′ cosϑ′, P22(cosϑ′) =
√

15
2 sin′2 ϑ′.

2.59

The fully normalized gravity field coefficients of low degrees are evaluated according to Equations 2.58
and 2.59

C00 = 1
M

∫∫∫
Earth

dM = 1

C10 = 1
Ma

1√
3

∫∫∫
Earth

r′cosϑ′ dM

C11 = 1
Ma

1√
3

∫∫∫
Earth

r′ cosλ′sinϑ′ dM S11 = 1
Ma

1√
3

∫∫∫
Earth

r′ sinλ′sinϑ′ dM

C20 = 1
Ma2

1√
5

∫∫∫
Earth

r′2
(3

2 cos2 ϑ′ − 1
2

)
dM

C21 = 1
Ma2

√
3
5

∫∫∫
Earth

r′2 cosλ′ sinϑ′ cosϑ′ dM S21 = 1
Ma2

√
3
5

∫∫∫
Earth

r′2 sinλ′ sinϑ′ cosϑ′ dM

C22 = 1
Ma2

√
3
5

∫∫∫
Earth

1
2r
′2 cos 2λ′ sin2 ϑ′ dM S22 = 1

Ma2

√
3
5

∫∫∫
Earth

1
2r
′2 sin 2λ′ sin2 ϑ′ dM.

2.60
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The spherical coordinates (r′, λ′, ϑ′) in Equations 2.60 are replaced with Cartesian coordinates (x′, y′, z′).
The transformation formulas are

x′ = r′ cosλ′sinϑ′, y′ = sinλ′sinϑ′, z′ = r′cosϑ′. 2.61

The Cartesian coordinates are substituted into the fully normalized gravity field coefficients. The addition
theorems for angles are applied to the terms cos 2λ′ and sin 2λ′. Then, it holds

C00 = 1

C10 = 1
Ma

1√
3

∫∫∫
Earth

z′ dM

C11 = 1
Ma

1√
3

∫∫∫
Earth

x′ dM S11 = 1
Ma

1√
3

∫∫∫
Earth

y′ dM

C20 = 1
Ma2

1√
5

∫∫∫
Earth

z′2 − x′2 + y′2

2 dM

C21 = 1
Ma2

√
3
5

∫∫∫
Earth

x′z′ dM S21 = 1
Ma2

√
3
5

∫∫∫
Earth

y′z′ dM

C22 = 1
Ma2

√
3
5

∫∫∫
Earth

x′2 − y′2

2 dM S22 = 1
Ma2

√
3
5

∫∫∫
Earth

x′y′ dM.

2.62

The integrals
∫∫∫

x′ dM/M ,
∫∫∫

y′ dM/M and
∫∫∫

z′ dM/M are the coordinates of the Earth’s center of
mass. Since the origin of the geocentric ITRS coincides with the center of mass, these integrals are zero

C10 = 0, C11 = 0 and S11 = 0. 2.63

According to Equation 2.5, the GFC2 are related to Earth’s tensor of inertia by

C20 = 1
Ma2

1√
5

(
ixx + iyy

2 − izz
)

C21 = 1
Ma2

√
3
5 iyz S21 = 1

Ma2

√
3
5 ixz

C22 = 1
Ma2

√
3
5
iyy − ixx

2 S22 = 1
Ma2

√
3
5 ixy.

2.64

where ixx, ixy, ixz, iyy, ixz and izz denote the elements of the Earth’s tensor of inertia. Equation 2.12
splits the tensor of inertia in a constant and in a time-variable part. Substituting Equation 2.12 into
Equation 2.64 leads to

∆C20 = C20 −
1

Ma2
1√
5
(
A′ − C

)
= 1
Ma2

1√
5

(
cxx + cyy

2 − czz
)

∆C21 = 1
Ma2

√
3
5cyz ∆S21 = 1

Ma2

√
3
5cxz

∆C22 = 1
Ma2

√
3
5
cyy − cxx

2 ∆S22 = 1
Ma2

√
3
5cxy.

2.65

The last equations relate five gravity field coefficients to six elements of the tensor of inertia. The off-
diagonal elements of the tensor of inertia can be uniquely determined, whereas the trace of the tensor of
inertia is underdetermined. According to Rochester and Smylie (1974), the trace of the tensor of inertia
is invariant to any deformations as long as the principle of mass conservation is valid. Their result allows
to solve the otherwise underdetermined system by applying following additional tensor trace constraint

cxx + cyy + czz = 0. 2.66

The potentials of Moon and Sun cause tidal variations of the Earth’s potential. Chapter 1 of the IERS
Conventions (2010) gives a short overview over the tidal effects on the potential and positions observed
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on the Earth’s crust. The observed gravitational potential is effected by the combination of the tidal
gravitational potential of external bodies (Moon, Sun and planets) and the Earth’s own (indirect) poten-
tial, which is additionally perturbed by the action of the tidal potential. The external and the indirect
potential contain both permanent and time-dependent parts.
The gravity field coefficients are given either as conventional tide free or as zero tide gravity field coeffi-
cients. If all tidal signals are removed from the potential, it is a conventional tide free potential. EGM2008
(http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/) is an example for a conventional
tide free potential. Accordingly, ITRF coordinates describe positions on a conventional tide free crust.
Chapter 6 of IERS Conventions (2010) provides a model which removes tidal signals from the gravity
field coefficients by means of the Love numbers. The zero tide potential is obtained by restoring the
indirect, permanent part of the tide potential. The degree two zonal tide generating potential has a
non-zero mean (average in time) value. The time-independent potential produces a permanent deforma-
tion and consequently a time-independent contribution to the potential coefficient C20. Therefore, the
zero tide and conventional tide free values for C20 differ by a constant factor (IERS Conventions, 2010,
Subsection 6.2.2), whereas the other GFC2 have the same value in the zero tide and conventional tide
free system.

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/
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3. Estimation of Variance and Covariance Components in a constrained
Gauss-Helmert Model

3.1. Least-squares adjustment in a constrained Gauss-Helmert Model
As mentioned before, the mutual validation is performed by a universal, linear least-squares solver, which
includes the estimation of VCC. The development of the least-squares solver is performed in several steps.
As a preparatory step, the first Subsection 3.1 solves a constrained least-squares adjustment problem
considering a known stochastic model. Subsection 3.2 derives the necessary formulas for the BIQUE of
the VCC in a constrained GHM. Subsection 3.3 proposes the numerical methods for the calculation of
the VCC and suggests a pseudocode for an efficient universal least-squares solver. The development of
the BIQUE of the VCC in a constrained GHM requires some theorems, provided by Koch (1999) with
proofs. The used theorems are listed in Appendix B. The development of the least-squares solver is
described by Figure 1.2 graphically.
The method of least-squares is a standard approach to solve overdetermined systems. The goal of least-
squares adjustment is to determine unknown parameters, functionally related to observed quantities. The
observations are collected in a n× 1 vector l. The observation vector has an expectation value µl and a
positive-definite variance covariance matrix Dll

E (l) = µl and Var (l) = Dll. 3.1

The unknown parameters are collected in a u×1 vector β. The unknowns and the observations are related
by b1 independent functional relations φH . The unknowns are restricted by b2 additional independent
functional relations φC . For example, the unknowns might be constrained by physical laws, or datum
defects might be solved by applying constraints. The non-linear functional relations between µl and β
are generally described by

φH (µl,β) = 0. 3.2a

The additional constraints are given by

φC (β) = 0. 3.2b

Equation 3.2b contains no stochastic quantity. Therefore, the constraints have a high impact on the
estimation of the unknowns. If the zero-vector on the right hand side in Equation 3.2b is interpreted
as a pseudo-observation vector with a corresponding VCM, the impact of the constraints decrease in
dependency on the chosen VCM. In that case, both Equations 3.2 are stochastic, and they can be
summarized into one unconstrained functional model.
The non-linear Equations 3.2 are linearized by the Taylor expansion with respect to an approximated
vector of unknowns β0 and the vector of the observations l. The Taylor expansion is truncated after the
linear term. That leads to

AH∆β = wH +Bε 3.3a
AC∆β = wC 3.3b

with the residual vector: ε = l− µl,
reduced unknowns: ∆β = β − β0,

misclosure vectors: wH = −φH (l,β0) , wC = −φC (β0) ,

design matrices: AH = dφH
dβ (l,β0) , AC = dφC

dβ (β0) , B = −dφH
d l (l,β0) .

According to the definition of the residuals ε, the expectation value of ε is zero and it holds for the
expectation value of wH

E (wH) = AH∆β. 3.4
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A least-squares adjustment minimizes the weighted squared sum of the residuals

Ω = εTD−1
ll ε→ min . 3.5

A constrained optimization problem can be solved by Lagrange functions. The minimization problem
constrained by the Equations 3.3 leads to the Lagrange function

φLG = εTD−1
ll ε+ 2kT

H (AH∆β −Bε−wH) + 2kT
C (AC∆β −wC) 3.6

where kH and kC denote the Lagrange multipliers. The minimum is found by setting the derivatives of
the Lagrange function with respect to each unknown parameter to zero. Adjusted unknown parameters
are denoted with a hat over the parameters. The differentiation leads to

dφLG
d ε = 2D−1

ll ε̂− 2BTk̂H
!= 0 ⇒ ε̂ = DllB

Tk̂H , 3.7a
dφLG
d ∆β = 2AT

H k̂H + 2AT
C k̂C

!= 0 ⇒ AT
H k̂H = −AT

C k̂C . 3.7b

If ε̂ in Equation 3.7a is substituted into Equation 3.3a, it yields

AH∆β̂ = wH +BDllB
Tk̂H ⇒ k̂H =

(
BDllB

T
)−1 (

AH∆β̂ −wH

)
. 3.8

Substituting k̂H into Equation 3.7b leads to

AT
H

(
BDllB

T
)−1 (

AH∆β̂ −wH

)
= −AT

C k̂C

⇒ AT
H

(
BDllB

T
)−1

AH∆β̂ +AT
C k̂C = AT

H

(
BDllB

T
)−1

wH .
3.9

Defining the matrix
Dww = BDllB

T 3.10

the Equations 3.9 and 3.3b are summarized to the system of normal equations[
AT
HD

−1
wwAH AT

C

AC 0

] [
∆β̂
k̂C

]
=
[
AT
HD

−1
wwwH

wC

]
. 3.11

The system of normal equations is similar to the solution of a constrained GMM. In fact, each GHM
can be transformed into a GMM. The misclosure vector wH is the transformed observation vector and
the matrix Dww is the VCM of the transformed observation vector. The vector Bε is interpreted as the
transformed residual vector. It might be easier for some readers to follow the derivations in this chapter,
if she or he imagines a transformed GMM instead of the GHM.
The system of normal equations is assumed to describe a well-posed problem. Ill-posed problems (caused
by e.g. datum defects) are assumed to be solved by the application of appropriate constraints. Then,
a unique inverse of the normal equation matrix exists. The normal equation matrix and its inverse Q,
which contains the submatrices Q11, Q12 and Q22, are related by[

AT
HD

−1
wwAH AT

C

AC 0

] [
Q11 Q12
QT

12 Q22

]
=
[
I 0
0 I

]
. 3.12

Four subequations are derived from Equation 3.12

AT
HD

−1
wwAHQ11 +AT

CQ
T
12 = I, 3.13a

AT
HD

−1
wwAHQ12 +AT

CQ22 = 0, 3.13b
ACQ11 = 0, 3.13c
ACQ12 = I. 3.13d

The submatrices of the inverse Q can be determined at once by Equation 3.12. Alternatively, if the
matrix AT

HD
−1
wwAH has a unique inverse, the submatrices can be determined by a sequential inversion

(Koch, 1999, Formula 1.111, p. 33).
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The adjusted vector of unknowns ∆β̂ is

∆β̂ = Q11A
T
HD

−1
wwwH +Q12wC . 3.14

The product Bε̂ is obtained by Equations 3.14 and 3.3a with

Bε̂ = AH∆β̂ −wH =
(
AHQ11A

T
HD

−1
ww − I

)
wH +AHQ12wC . 3.15

The adjusted residual vector ε̂ is according to the Equations 3.7a, 3.8 and 3.15

ε̂ = DllB
TD−1

ww

((
AHQ11A

T
HD

−1
ww − I

)
wH +AHQ12wC

)
. 3.16

The expectation value of the adjusted residuals ε̂ has to be zero. Otherwise, the functional model is
biased. Unbiasness is proven with Equations 3.4 and 3.13a

E (ε̂) = DllB
TD−1

ww

((
AHQ11A

T
HD

−1
ww − I

)
E (wH) +AHQ12wC

)
= DllB

TD−1
ww

(
AHQ11A

T
HD

−1
wwAH∆β −AH∆β +AHQ12AC∆β

)
= DllB

TD−1
ww (AH (I −Q12AC)−AH +AHQ12AC) ∆β

= 0.

3.17

The VCM of the unknowns and residuals are obtained by variance covariance propagation. In contrast
to the stochastic vector wH , the deterministic vector wC does not contribute to the VCM. It holds with
the Equations 3.13, 3.14 and 3.16

Dβ̂β̂ =Q11 3.18

Dε̂ε̂ =DllB
TD−1

ww

(
Dww −AHQ11A

T
H

)
D−1
wwBDll. 3.19

The adjusted residual squares sum Ω̂ is obtained by Equations 3.15 and 3.16 with

Ω̂ = ε̂TD−1
ll ε̂ = ε̂TBTD−1

wwBε̂. 3.20

Koch (1999, Theorem 2.175, p. 134) gave the expectation value of quadratic forms. According to this
theorem, E (ε̂) = 0 and Equations 3.13, it holds for the expectation value of Ω̂

E
(
Ω̂
)

= tr
(
Dε̂ε̂D

−1
ll

)
= tr

(
DllB

TD−1
ww

(
Dww −AHQ11A

T
H

)
D−1
wwB

)
= tr

(
I −AHQ11A

T
HD

−1
ww

)
= b1 − tr

(
AT
HD

−1
wwAHQ11

)
= b1 − tr

(
I −AT

CQ
T
12

)
= b1 − u+ tr

(
QT

12A
T
C

)
= b1 + b2 − u = r.

3.21

The expectation value of the adjusted residual squares sum Ω̂ equals the redundancy r. The elements
on the main diagonal of the matrix Dε̂ε̂D

−1
ll are the partial redundancies of the specific observations.

The partial redundancies are reliability measures for the observations (Baarda, 1968). If the observations
are uncorrelated, the partial redundancies amount to values within the unit-interval [0, 1]. A partial
redundancy of zero indicates that the specific observation is not controlled by any other observation.
An error in this observation cannot be detected, and the error has furthermore a high impact on the
estimation of the unknowns. A partial redundancy of one suggests that this specific observation is fully
controlled by other observations and does therefore not contribute to the estimation of the unknowns. If
the observations are correlated, the partial redundancies sporadically amount to values outside of the unit-
interval. Schaffrin (1997) suggested a transformation of partial redundancies of correlated observations,
in order to reach partial redundancies within the unit-interval, which are open to interpretation.
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3.2. Best Invariant Quadratic Estimation of Variance and Covariance Components
The integration of heterogeneous observations into a common linear adjustment model requires the de-
termination of the unknown relative weights of these data. They are usually determined by a variance
component estimation. Additionally, the estimation of covariances might be of interest. Helmert (1924)
was the first who introduced the idea of VCC estimation assuming an unconstrained GMM. Rao (1973)
developed the Minimum Norm Quadratic Unbiased Estimation (MINQUE) of VCC in an unconstrained
GMM. Sjöberg (1983) extended the MINQUE approach to unconstrained GHM. According to Koch
(1986), the Maximum-Likelihood estimation of VCC is identical to a local BIQUE and MINQUE, if an
unconstrained GMM and normally distributed observations are assumed. Yu (1992) derived the BIQUE
of VCC in a constrained GHM and showed that the MINQUE of Rao (1973) and the BIQUE of Sjöberg
(1983) are special cases of his estimator. The estimator of Yu (1992) is a universal estimator, capable to
deal with each well-posed linear model. This section derives the BIQUE of VCC in a constrained GHM.
The development differs from Yu (1992) but results in the same formulas. The presented derivation
expands the approach of Koch (1999), who derived the BIQUE of VCC in an unconstrained GMM.
Let the variance covariance matrix of all observations consists of a sum of z a priori known matrices Vi
multiplied by unknown VCC σi

Dll =
z∑
i=1

σiVi. 3.22

According to Xu et al. (2007), the number of independently estimable VCC is limited by the redundancy
to z ≤ r(r+ 1)/2. Note, the σi denote variance components as well as covariance components. The VCM
of the misclosure wH vector is obtained accordingly (cf. Equation 3.10)

Dww =
z∑
i=1

σiBViB
T. 3.23

A best estimation of the unknown VCC is obtained, if the variance of the weighted residuals squared
sum Ω is minimal

Var (Ω)→ min . 3.24
The estimation is unbiased, if the expectation value of Ω is a linear combination of the VCC

E (Ω) = pTσ 3.25

where σ =
[
σ1 σ2 . . . σz

]T
and p denote unknown vectors. According to Equation 3.20, the adjusted

residual squares sum is obtained by a quadratic form of the adjusted residual vector ε̂, which depends
on both misclosure vectors wH and wC . Hence, the expectation value is a quadratic form

E (Ω) = E
([
wT
H wT

C

] [M11 M12
MT

12 M22

] [
wH

wC

])
3.26

where M is an unknown symmetric matrix which depends on the VCC. If the deterministic vector
wC = AC∆β is considered, Equation 3.26 yields

E (Ω) = E
(
wT
HM11wH

)
+ 2 E (wH)M11AC∆β + ∆βTAT

CM22AC∆β. 3.27

The expectation value of the quadratic form E
(
wT
HM11wH

)
is given by Koch (1999, Theorem 2.174,

p. 134). Then, the expectation value of Ω yields with Equation 3.4

E (Ω) = tr (M11Dww) + ∆βT
(
AT
HM11AH + 2AT

HM12AC +AT
CM22AC

)
∆β. 3.28

Since the vector wH is stochastic and the vector wC is deterministic, the variance of Ω is obtained
according to Koch (1999, theorem 2.175, p. 134)

Var (Ω) = Var
([
wT
H wT

C

] [M11 M12
MT

12 M22

] [
wH

wC

])

= E
((
wT
HM11wH + 2wT

HM12wC +wT
CM22wC − E (Ω)

)2
)

= 2 tr (M11DwwM11Dww) +

4∆βT
(
AT
HM11DwwM11AH + 2AT

HM11DwwM12AC +AT
CM

T
12DwwM12AC

)
∆β.

3.29
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The estimation of the VCC is requested to be invariant to any arbitrary estimation of the unknowns ∆β.
Hence, it must hold

E (Ω) = tr (M11Dww) 3.30
Var (Ω) = 2 tr (M11DwwM11Dww) . 3.31

Therefore, the terms in the brackets between ∆βT and ∆β in Equations 3.28 and 3.29 have to be zero.
Invariance of any arbitrary estimation of ∆β is achieved, if it holds

AT
HM12 = −AT

CM22 3.32a
M12AC = −M11AH . 3.32b

According to Equations 3.23 and 3.30,it follows

E (Ω) =
z∑
i=1

σi tr
(
M11BViB

T
)

= pTσ ⇒ pi = tr
(
M11BViB

T
)
. 3.33

Again, a constrained optimization problem arises. The Lagrange multipliers of the constraints in the
Equations 3.32 and 3.33 are denoted with K1, K2 and kT =

[
k1 k2 . . . kz

]
. The minimal variance

of Ω is determined with the Lagrange function

φLG = 2 tr (M11DwwM11Dww)− 4 tr
((
AT
HM12 +AT

CM22
)
K1
)

− 4 tr ((M12AC +M11AH)K2)−
z∑
i=1

ki
(
tr
(
M11BViB

T
)
− pi

)
. 3.34

The minimum is found by setting the derivatives of the Lagrange function with respect to each unknown
parameter to zero. According to Koch (1999, Theorem 1.269 and 1.270, p. 70), the derivatives of the
Lagrange function with respect to the submatrices M11, M12 and M22 lead to

dφLG
dM11

!= 0 ⇒ DwwM̂11Dww = K̂T
2 A

T
H +

z∑
i=1

k̂iBViB
T 3.35a

dφLG
dM12

!= 0 ⇒ AHK̂
T
1 = −K̂T

2 A
T
C 3.35b

dφLG
dM22

!= 0 ⇒ ACK̂
T
1 = 0. 3.35c

The BIQUE of the VCC is obtained by an iterative process (Koch, 1999, p. 233ff). Based on a ’first-guess’
stochastic model

D0
ww =

z∑
i=1
BV 0

i B
T 3.36

the system of normal equations (Equation 3.11) is solved. In order to clarify that this local estimation
of the VCC is dependent on the approximated a priori stochastic model, an additional index 0 is used.
A symmetric matrix W is defined by

W = D0−1
ww −D0−1

ww AHQ
0
11A

T
HD

0−1
ww . 3.37

Equation 3.35a contains the matrix M̂11 on the left hand side. The matrix M̂11 is separated by using
following two auxiliary relations. Equations 3.32b, 3.13c and 3.13a yield

M̂11AHQ
0
11 = −M̂12ACQ

0
11 = 0 3.38a

AT
HW = ATD0−1

ww −
(
I −AT

CQ
0T
12

)
AT
HD

0−1
ww = AT

CQ
0T
12A

T
HD

0−1
ww . 3.38b
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Equation 3.35a is multiplied on the left and on the right by W . Then, it holds with Equations 3.35b,
3.35c, 3.37 and 3.38

WDwwM̂11DwwW = WK̂T
2 A

T
HW +

z∑
i=1

k̂iWBV 0
i B

TW

(cf. Eq. 3.37) ⇒
(
I −D0−1

ww AHQ
0
11A

T
H

)
M̂11

(
I −AHQ

0
11A

T
HD

0−1
ww

)
=

WK̂T
2 A

T
CQ

0T
12A

T
HD

0−1
ww +

z∑
i=1

k̂iWBV 0
i B

TW

(cf. Eq. 3.38) ⇒ M̂11 = WAHK̂
T
1 A

T
CQ

0T
12A

T
HD

0−1
ww +

z∑
i=1

k̂iWBV 0
i B

TW

(cf. Eq. 3.35b) ⇒ M̂11 = −D0−1
ww AHQ

0
12ACK̂

T
1 A

T
CQ

0T
12A

T
HD

0−1
ww +

z∑
i=1

k̂iWBV 0
i B

TW

(cf. Eq. 3.35c) ⇒ M̂11 =
z∑
i=1

k̂iWBV 0
i B

TW . 3.39a

The adjusted M̂11 is substituted into the Equations 3.32. Then, it holds according to Equations 3.38

M̂12AC = −
z∑
i=1

k̂iWBV 0
i B

TWAH = −
z∑
i=1

k̂iWBV 0
i B

TD0−1
ww AHQ

0
12AC

⇒ M̂12 = −
z∑
i=1

k̂iWBV 0
i B

TD0−1
ww AHQ

0
12 3.39b

AT
CM̂22 =

z∑
i=1

k̂iA
T
HWBV 0

i B
TD0−1

ww AHQ
0
12 =

z∑
i=1

k̂iA
T
CQ

0T
12A

T
HD

0−1
ww BV

0
i B

TD0−1
ww AHQ

0
12

⇒ M̂22 =
z∑
i=1

k̂iQ
0T
12A

T
HD

0−1
ww BV

0
i B

TD0−1
ww AHQ

0
12. 3.39c

The submatrices M̂11, M̂12 and M̂22 in the Equations 3.39 are rearranged to the block matrix M̂

M̂ =
[
WD0

ww

−Q0T
12A

T
H

](
z∑
i=1

k̂iD
0−1
ww BV

0
i B

TD0−1
ww

)[
D0
wwW −AHQ

0
12

]
. 3.40

M̂ is substituted into Equation 3.26. The adjusted weighted squares sum of the residuals is according
to Equation 3.15

Ω̂ =
[
wT
H wT

C

]
M̂

[
wH

wC

]

=
(
wT
HWD0

ww −wT
CQ

0T
12A

T
H

)( z∑
i=1

k̂iD
0−1
ww BV

0
i B

TD0−1
ww

)(
D0
wwWwH −AHQ

0
12wC

)
=
(
−wT

H

(
D0−1
ww AHQ

0
11A

T
H − I

)
−wT

CQ
0T
12A

T
H

)( z∑
i=1

k̂iD
0−1
ww BV

0
i B

TD0−1
ww

)
(
−
(
AHQ

0
11A

T
HD

0−1
ww − I

)
wH −AHQ

0
12wC

)
=

z∑
i=1

k̂iε̂
T
0B

TD0−1
ww BV

0
i B

TD0−1
ww Bε̂0

= k̂Tq with qi = ε̂T
0B

TD0−1
ww BV

0
i B

TD0−1
ww Bε̂0.

3.41

If M̂11 in Equation 3.39a is substituted into Equation 3.33, it yields

p̂i = tr

∑
j

kjWBV 0
j B

TWBV 0
i B

T


⇒ Ω̂ = k̂TSσ̂ with sij = tr

(
WBV 0

j B
TWBV 0

i B
T
)
.

3.42
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The matrix
z∑
i=1

z∑
j=1
WBV 0

i B
TWBV 0

j B
T = WD0

wwWD0
ww = WD0

ww 3.43

is an idempotent matrix (proof: Equations 3.13). According to Equation 3.21, the trace of this idempotent
matrix is equal to the redundancy r of the adjustment problem. Therefore, a useful relation to control
the correct estimation of the traces is

z∑
i=1

z∑
j=1

sij = r. 3.44

A comparison of the Equations 3.41 and 3.42 results in

Sσ̂ = q. 3.45

If the symmetric matrix S is regular, the adjusted VCC are

σ̂ = S−1q. 3.46

If a singular matrix S arises, at least two variance or covariance components depend on each other. As
mentioned before, the number of independently estimable VCC is restricted to r (r + 1) /2 components
(Xu et al., 2007). If S is singular, one might consider a reformulation of the stochastic model with a
reduced number of VCC.
The matrix M is postulated to be symmetric, but a positive-definite matrix M is not postulated.
Therefore, negative variance components might occur (Koch, 1999). Negative variance components are
a strong indication for too few observations or an incorrect functional or stochastic model (Crocetto
et al., 2000). Thus, if negative variance components occur, a reformulation of the problem should be
considered. However, Sjöberg (1984) derived a variance component estimator, which provides positive
variance components, but unbiasedness is not ensured by his estimator.
The VCC are obtained within an iterative process, until all σi converge to σi = 1. z (z + 1) /2 trace
operations are required in each iteration step. Each trace operation tr

(
WBV 0

j B
TWBV 0

i B
T
)
calculates

the trace of a product of several matrices. Therefore, even medium scaled problems require a large number
of floating point operations. Förstner (1979) modified the matrix S in Equation 3.42 to a diagonal matrix.
Then, the main diagonal of S contains trace operations of the type tr

(
WBV 0

i B
T
)
. Förstner’s approach

reduces the number of floating point operations significantly about approximately the factor zn (with
n denoting here the size of the quadratic matrix W ). Nevertheless, doubt arises during the work on
this dissertation that Förstner’s approach is suitable for the estimation of covariance components in
any case. Appendix C contains an example in which the estimation of a covariance component fails
using Förstner’s approach, whereas the approach developed here leads to a meaningful result. Therefore,
Förstner’s approach is not considered here.

3.3. Stochastic Monte-Carlo Trace Estimator
According to the previous section, the matrix S requires the calculation of the traces of matrix products.
These calculations require large computer capacities, if a large number of observations and unknowns
have to be considered. The trace can be efficiently obtained by a SMCTE. The Monte-Carlo sampler
determines the trace by generating several samples of a random vector. Since the SMCTE replaces each
matrix-matrix multiplication by a matrix-vector multiplication, the number of floating points operations
are reduced to a minimum and the SMCTE is highly efficient. In particular, the SMCTE avoids the
explicit calculation of the matrixW and the calculation of any inverse. Koch and Kusche (2002), Kusche
and Klees (2002) and Kusche (2003) proposed a SMCTE for Förstner’s approach. Their SMCTE estimates
the trace of non-stochastic, symmetric matrices. Symmetry is provided by a Cholesky decomposition of
the matrices Vi. Since a Cholesky decomposition is not possible, if covariance components are estimated,
their SMCTE has to be expanded to deal with the trace estimation of asymmetric matrices. This section
motivates the chosen probability distribution for the random vector, compares the variance of the trace
estimation of symmetric and asymmetric matrices and proposes an algorithm for the universal least-
squares solver.
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Assume a non-stochastic, asymmetric n × n matrix T , whose trace is estimated by a SMCTE. The
SMCTE generates several samples of the n × 1 stochastic vector u. Two probability distributions are
analyzed, first u is normally distributed with the expectation value E (u) = 0 and the assigned VCM is
the identity matrix (cf. Equation 3.47a). The second probability distribution provides a random vector u
with a discrete distribution. Each element ui has either the value −1 or +1, each with the probability of
0.5 (cf. Equation 3.47b)

u ∼ N (0, I) 3.47a

u ∼
{
p(ui = −1) = 0.5
p(ui = +1) = 0.5

for i = 1, . . . , n. 3.47b

The quadratic form uTTu is calculated by

uTTu =
n∑
i=1

n∑
j=1

uiujtij . 3.48

Then, the expectation value E
(
uTTu

)
of the quadratic form is

E
(
uTTu

)
= E

 n∑
i=1

n∑
j=1

uiujtij

 =
n∑
i=1

n∑
j=1

E (uiuj) tij . 3.49

The elements of the vector u are uncorrelated in both distributions. Hence, if i 6= j, the expectation
value E (uiuj) is zero. If i = j, the expectation value is E

(
u2
i

)
= 1 in both distributions. Thus, it holds

E
(
uTTu

)
=

n∑
i=1

tii = tr (T ) . 3.50

The variance of the quadratic form is

Var
(
uTTu

)
= E

((
uTTu− E

(
uTTu

))2
)

= E


 n∑
i=1

n∑
j=1

uiujtij − tr (T )

2


= (tr (T ))2 − 2 tr (T )
n∑
i=1

n∑
j=1

E (uiuj) tij +
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E (uiujukul) tijtkl.

3.51

The expectation values E (uiujukul) are given in Table 3.1. In case of a normally distributed vector u
the variance of the quadratic form is

Var
(
uTTu

)
= − (tr (T ))2 +

n∑
i=1

n∑
j=1

t2ij + tiitjj + tijtji

=
n∑
i=1

n∑
j=1

t2ij + tijtji

= tr
(
TTT

)
+ tr (TT) .

3.52

Table 3.1: Expectation values of the summands in Equation 3.51

normal discrete
distribution distribution

E
(
u4
i

)
3 1

E
(
u3
iuj
)

i 6= j 0 0
E
(
u2
iu

2
j

)
i 6= j 1 1

E
(
u2
iujuk

)
i 6= j 6= k 0 0

E (uiujukul) i 6= j 6= k 6= l 0 0



3.3. Stochastic Monte-Carlo Trace Estimator 39

If the vector u has the discrete distribution, it holds

Var
(
uTTu

)
= − (tr (T ))2 +

n∑
i=1

n∑
j=1

tiitjj +
n∑
i=1

n∑
j=1,j 6=i

t2ij + tijtji

=
n∑
i=1

n∑
j=1,j 6=i

t2ij + tijtji

= tr
(
T TT

)
+ tr (TT )− 2

z∑
i=1

t2ii.

3.53

The variance in Equation 3.53 is 2∑n
i=1 t

2
ii smaller than the variance in Equation 3.52. Since the dis-

crete distributed random vector needs fewer samples to obtain a comparable variance than a normally
distributed random vector, the SMCTE draws samples from the discrete distribution.
The SMCTE of Koch and Kusche (2002), Kusche and Klees (2002) and Kusche (2003) estimates the trace
of symmetric matrices. Symmetry might be a crucial factor for an efficient trace estimation. Therefore,
bounds for the variance of the traces of symmetric and asymmetric matrices are derived, in order to
evaluate the influence of the symmetry. Hutchinson (1989) found bounds for the variance of the trace
estimation of symmetric matrices, determined by a discrete distributed random vector u. The bounds
depend on the eigen values of T . Motivated by Hutchinson (1989), bounds for the trace of asymmetric
matrices are estimated by using the singular value decomposition. The singular value decomposition of
T is

T = UΛV T. 3.54

Λ is a diagonal matrix with non-negative real singular values. If the matrix T is real, the matrices U
and V are orthogonal matrices. The inverse of an orthogonal matrix is its transpose. Hence, it holds

tr
(
T TT

)
= tr

(
V ΛUTUΛV T

)
= tr

(
ΛV TV ΛUTU

)
= tr

(
Λ2
)
.

3.55

Since the product of two orthogonal matrices is as well orthogonal, each column and row respectively of
the product V TU has the length 1 and the maximal value of each matrix element is also 1. Therefore,
it holds

tr (TT ) = tr
(
UΛV TUΛV T

)
= tr

(
ΛV TUΛV TU

)

< tr

Λ

1 . . . 1
... . . . ...
1 . . . 1

Λ

1 . . . 1
... . . . ...
1 . . . 1




< tr (Λ) tr (Λ) .

3.56

Thus, the variance is bounded by the singular values with

Var
(
uTTu

)
< tr

(
Λ2
)

+ tr (Λ) tr (Λ)− 2
z∑
i=1

t2ii. 3.57

This bound is still highly overestimated, as most elements of the matrix product V TU are significantly
smaller than one.
If T is a symmetric matrix, U equals V and the bound is described with

Var
(
uTTu

)
≤ 2 tr

(
Λ2
)
− 2

z∑
i=1

t2ii. 3.58
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As the singular values are non-negative, the variance is tighter bounded in the symmetric case than in
the asymmetric case. Therefore, the SMCTE estimates the trace of asymmetric matrices with a larger
variance than the trace of a symmetric matrix.
According to Equation 3.42, a typical trace estimation calculates sij = tr

(
WBV 0

j B
TWBV 0

i B
T
)
. The

matrix product within the trace operator lacks symmetry. Koch and Kusche (2002), Kusche and Klees
(2002) and Kusche (2003) ensured the symmetry of the matrices by a Cholesky decomposition. If a
Cholesky decomposition of at least one of the matrices V 0

i = RTR or V 0
j = RTR exists, it holds

tr
(
WBV 0

j B
TWBV 0

i B
T
)

= tr
(
RBTWBV 0

j B
TWBRT

)
or

tr
(
WBV 0

j B
TWBV 0

i B
T
)

= tr
(
RBTWBV 0

i B
TWBRT

)
.

3.59

If both matrices V 0
i and V 0

j describe covariances, a Cholesky decomposition does not exist, and symmetry
cannot be provided. Therefore, the trace estimation of asymmetric matrices remains necessary. The
variance of the trace estimation is improved by drawing several samples of the vector u and calculating
the arithmetic average of the samples. Then, the elements of the matrix S are

sij = 1
ns

ns∑
k=1

uT
kWBV 0

j B
TWBV 0

i B
Tuk 3.60

where ns is the number of the drawn samples. Koch and Kusche (2002), Kusche and Klees (2002) and
Kusche (2003) estimated the trace of symmetric matrices. According to them, it is sufficient to draw
one single sample in most cases. According to empirical experience, this statement also is true for the
trace estimation of asymmetric matrices, although the trace of asymmetric matrices is estimated with
a larger variance than the trace of symmetric matrices. This experience additionally indicates that the
bound in Equation 3.57 is highly overestimated. The variance of the trace estimation can be evaluated
by analyzing the convergence during the iterations. The variations of the VCC around the point of
convergence indicate the accuracy of the stochastic trace estimation. If the variations are too large,
they can be decreased by increasing the number of samples. However, the convergence is additionally
affected by the partial redundancies of the specific observations. This aspect is discussed in more detail
in Section 5.2. Note, if a covariance component of zero is estimated by the SMCTE, the associated σi
continuously changes the sign during the iterations and does not converge. In that case, a reformulation
of the stochastic model is recommended.
The matrix W is determined by repeated inversions and multiplications of sometimes large VCM and
normal equation matrices. The algorithm is optimized significantly in computation time and memory
requirements, if inversions are avoided and matrix-matrix multiplications are replaced with matrix-vector
multiplications (Koch and Kusche, 2002; Kusche and Klees, 2002; Kusche, 2003). If the trace is estimated
by the SMCTE, it holds for the kth sample of u:

uT
kWBV 0

j B
TWBV 0

i B
Tuk = uT

kWEBV
0
j B

TWEBV
0
i B

Tuk 3.61

with WE = D0
H
−1 −D0

H
−1 [

AH 0
]
N0−1

[
AT
H

0

]
D0
H
−1
.

The matrix AH is extended by zeros in order to include the inverse of the entire normal equation
matrix N0 instead of the submatrix Q0

11. The matrix WE is not explicitly calculated. The products
WEuk andWE

(
BV 0

i B
Tuk

)
are obtained by matrix-vector multiplications, which requires significantly

fewer floating point operations than matrix-matrix multiplications. The matrixWE contains the inverses
of the matrices D0

H and N0. The explicit calculations of these inverses are avoided by using suitable fast
linear solvers, e.g. Gaussian elimination algorithms. Since the unknown vector ∆β can be determined
by fast linear solvers as well, inversions are not necessary. Nevertheless, if the complete VCM of the
unknown parameters is requested, the normal equation matrix has to be inverted at least in the last
iteration step. Alkhatib (2007) described a Monte-Carlo sampler which inverts large matrices.
Appendix D describes a pseudocode for the iterative estimation of unknown parameters and VCC in a
constrained GHM. The suggested algorithm for the estimation of VCC was verified by several simulated
examples. For example, threedimensional coordinates on a surface of a sphere were simulated, and its
radius and three variance and three covariance components were estimated. The expected results were
obtained and the VCC converged rapidly toward σi = 1.
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4. Combined analysis of Earth Orientation Parameters, Gravity Field
Coefficients of second degree and geophysical excitation functions in a
constrained Gauss-Helmert Model

4.1. Preprocessing of the data: Filter
The combined analysis of the different time series is complicated by the different temporal resolution of the
time series. The EOP and the excitation functions are given by daily time series. In contrast, the GRACE
and SLR provide gravity field solutions with a significantly lower temporal resolution. The gravity field
coefficients are available with a temporal resolution between ten days and one month. Therefore, the
daily time series contain high frequencies which are not present in the gravity field coefficients. The
excitation functions model the atmospheric, oceanic and hydrological contributions to the Earth rotation
variations. Greiner-Mai (1987), Martinec and Hagedoorn (2005), Greiner-Mai and Hagedoorn (2008) and
Hagedoorn and Greiner-Mai (2008) model the contribution of the core to Earth rotation variations. The
core causes decadal variations of the EOP. As the available time series span less than a decade, the
core models are not considered here. Thus, the EOP contain low frequencies which are not modeled by
excitation functions. As the time series contain different frequencies, they have to be filtered, before the
combined analysis is performed. The filters remove those frequencies not present in all time series. The
daily time series are filtered with a bandpass filter to remove low and high frequencies, and the gravity
field coefficients are treated with a highpass filter.
Ideal filters completely eliminate frequencies smaller or larger than the cutoff frequencies (stop band),
while frequencies passing remain unchanged. However, ideal filters cannot be realized, since the response
of a filter on an impulse is infinitely long in time (Meyer, 2011, page 125). Thus, the design of a digital
filter is generally concerned with realizing an optimal approximation to an ideal filter. Numerous filters
with different characteristics were proposed in literature. However, all filters feature a more or less
large attenuation of the amplitude and a phase shift (Schlittgen and Streitberg, 1997, page 165ff). It is
necessary to use the same filter for all time series, in order to avoid artifacts resulting from amplitude
attenuation and phase shifts. Since the temporal resolution of the time series is different, exact filters
cannot be realized for all time series. However, the filters of the daily and monthly time series need to
be as similar as possible.
Using an approach similar to the Fourier transformation, a simple filter is proposed for the preprocessing
of data. The filter assumes equidistant observations. Some of the GFC2 time series contain a few gaps
due to suboptimal satellite orbits. The gaps are filled by linear interpolation, before the filter is applied.
The observation vector lo =

[
l1o l

2
o . . . l

n
o

]T contains n equidistant original observations in total. The
proposed filter removes a linear trend and frequencies smaller than the cutoff frequency fl. In case of
the bandpass filter, additional frequencies larger than the second cutoff frequency fh are removed. The
filtered time series lf =

[
l1f l

2
f . . . lnf

]T
is obtained from the difference between the observed time series lo

and the removed signal lr =
[
l1r l

2
r . . . l

n
r

]T. The removed part of the jth observation (j = 1, . . . , n) is
approximated by following equation

ljr = a0 + a1τj +
k≤nfl∑
k=1

(bk cos 2πkτj + ck sin 2πkτj) +
nmax∑
k≥nfh

(bk cos 2πkτj + ck sin 2πkτj) 4.1

with the normed time τj = (j − 1)/n and nmax = floor (n/2). The second sum only exists in case
of a bandpass filter. The coefficients a0, a1, bk and ck are determined by a least-squares adjustment
in an unconstrained GMM. The observations are assumed to be uncorrelated and determined with
equal accuracy. The design matrix A contains the partial derivatives of Equation 4.1 with respect to
the unknown coefficients. Since the filtered signal is obtained from the difference between the original
observations and the removed signal, the filtered signal corresponds to the residuals of the least-squares
adjustment. Therefore, the filtered signal is obtained by

lf = lo −A
(
ATA

)−1
ATlo. 4.2

Figure 4.1 provides examples for the bandpass filter and the highpass filter. The figure depicts the
original signal, the removed signal and the resulting filtered signal of the daily LOD and of a monthly



42 4. Combined analysis of EOP, GFC2 and geophysical excitation functions in a constrained GHM

−1

0

1

2

year

L
O

D
in

m
s

Bandpass filter: Signals

2003 2004 2005 2006 2007 2008 2009

observed signal

removed signal

filtered signal

0

0.1

0.2

0.3

0.4

frequency in cycles per year

L
O

D
in

m
s

Bandpass filter: Amplitude spectra

0 1 2 3 4 5 6 7 8

observed signal

filtered signal

−3

−2

−1

0

1

2

3

year

C
2
0

in
1
0

−
1
0

Highpass filter: Signals

2003 2004 2005 2006 2007 2008 2009
0

0.5

1.0

1.5

frequency in cycles per year

C
2
0

in
1
0

−
1
0

Highpass filter: Amplitude spectra

0 1 2 3 4 5 6 7 8

Figure 4.1: The figures show the observed original signal (blue), the removed signal (green) and the filtered signal (red) of
LOD (upper row) and the gravity field coefficents C20 (lower row). The signals are shown in the time domain
(left column) and in the frequency domain (right column).

C20 time series. A constant offset was removed from C20, before the filter is applied. LOD is bandpass-
filtered with the cutoff frequencies fl = 1/ (3 · 365 days) and fh = 1/60 days. C20 is highpass-filtered
with the cutoff frequency fl = 1/ (3 · 12 months). According to the amplitude spectra, the amplitudes
in the stopbands are approximately zero in both time series. The characteristic annual and semiannual
peaks in the passbands remain present in the filtered time series. The filtered semiannual amplitude in
LOD shows a small attenuation. Therefore, the proposed filter is sufficient for the further analysis of the
data. However, since the time series feature different temporal resolutions, the passbands do not consider
exactly the same frequencies. Thus, filter artifacts might arise near the cutoff frequencies.

4.2. Realisation of the Gauss-Helmert Model
4.2.1. Functional model

According to Chapter 2, the EOP, GFC2 and the excitation function are linearly related to the tensor
of inertia. Since the equations are linear and since three of six elements of the tensor inertia can be
redundantly determined by the different time series, a constrained linear least-squares adjustment model
is chosen for the mutual validation. The least-squares adjustment is performed by considering the EOP,
GFC2 and geophysical excitation functions as observations. The functional model of the least-squares
adjustment problem is based on the geophysical models in Chapter 2. This subsection generates the
vectors and matrices used within the least-squares adjustment, whereas the a priori stochastic models
are described by Subsection 4.2.2.
In principle, the time series are mutually validated by comparisons of the tensors of inertia, obtained
from time series with different temporal resolutions. Therefore, the tensors have to be related to the
same epochs. Thus, the daily observations have to be downsampled to the lower temporal resolution of
the GFC2. The simplest method of downsampling is the calculation of monthly arithmetic averages of
the daily time series. The equatorial part of the ELE in Equation 2.30a requires the unavailable time
derivatives of the polar motion. Therefore, the time derivatives have to be approximated by the polar
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Figure 4.2: The observed polar motion of June, July and August 2009 are pictured in blue. The polar motion is approximated
by the red splines. The green dots denote the representative monthly values obtained by the spline coefficients.
The green lines are the time derivatives of the polar motion, obtained from the analytic differentiation of the
splines, multiplied by the reciprocal Chandler frequency 1/σ0.

motion itself. The simplest approximation of the time derivative is the differential quotient. Then, the
time derivative of the jth epoch is obtained by the polar motion of the previous epoch j − 1 and the
subsequent epoch j + 1 with

˙̃p j = p̃ j+1 − p̃ j−1

2∆t 4.3

where ∆t denotes the time span of one epoch. The numerical differentiation causes linear dependencies
of the epochs. The first and the last epoch cannot be validated by a linear least-squares adjustment, if
the epochs are linearly dependent on each others. Then, the polar motion of the first and last epoch are
hardly controlled by other observations, as they only are present in the time derivatives of the second and
the next-to-last epoch. Errors in the first and last epoch would not be detected and would impact the
entire validation. Though, this simple approach is discussed within the sensitivity analyses in Section 4.3.
Another approach is proposed, in order avoid the disadvantage of the numeric differentiation. Each epoch
(e.g. one month) is modeled by one cubic spline. The downsampled representative monthly epoch values
are obtained by evaluating the splines at the mid of the month. Cubic splines have the advantage that
the time derivatives can be easily obtained by analytic differentiation. According to Mayer-Gürr (2006),
the approximation of a time series by piecewise defined functions, e.g. splines, is superior to blockwise
calculated averages, since the piecewise defined functions are in contrast to the averages continuous over
time. Figure 4.2 illustrates the approximation of the polar motion by cubic splines.
If the time series involve n epochs, n+ 1 moments in time Tj (with j = 1, . . . , n+ 1) exist which denote
the begin and end of each spline. If the k-th daily observation, belonging to the jth spline, is observed
at the time tk, the observation lk is described by

fj (τk) = lk + εk = ajτ
3
k + bjτ

2
k + cjτk + dj . 4.4

with τk = (tk − Tj) / (Tj+1 − Tj). The normed time τk (with 0 ≤ τk ≤ 1) is introduced to reach a
good numerical condition. The 4n unknown spline coefficients aj , bj , cj and dj are estimated within
the least-squares adjustment. The first and second time derivative of the observation lk are according to
Equation 4.4

ḟj (τk) = l̇k = 1
Tj+1 − Tj

(
3ajτ2

k + 2bjτk + cj
)
, 4.5

f̈j (τk) = l̈k = 1
(Tj+1 − Tj)2 (6ajτk + 2bj) . 4.6
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Additionally, it is required that the splines are twice continuously differentiable in the transition points
between two splines. 3 (n− 1) constraints result from this request

fj(1) = fj+1(0) ⇒ aj + bj + cj + dj = dj+1 4.7a

ḟj(1) = ḟj+1(0) ⇒ 3aj + 2bj + cj = Tj+1 − Tj
Tj+2 − Tj+1

cj+1 4.7b

f̈j(1) = f̈j+1(0) ⇒ 3aj + bj =
(

Tj+1 − Tj
Tj+2 − Tj+1

)2

bj+1. 4.7c

The constraints in Equations 4.7 are used to reduce the number of the unknown parameters from 4n para-
meters to n + 3 parameters per time series. The reduction of the unknown parameters improves the
efficiency of the least-squares adjustment. Since the necessary computer capacity increases by the order
three of the size of the normal equation system, the reduction is essential for efficient coding. Reductions
lead to smaller but denser normal equation systems. Here, the 4n splines coefficients are reduced to
following n+ 3 spline coefficients

βsp =
[
an b1 bn d1 d2 . . . dn

]T
. 4.8

The coefficients in the vector βsp are chosen with respect to sufficient numerical condition numbers.
Appendix E performs the reduction of the unknown parameter. The resulting system of normal equations
is reduced to approximately 30% of the original size. Appendix E delivers design matrices Asp and Bsp

relating daily time series and their time derivatives to the chosen n+ 3 spline coefficients. Then, it holds
for the observations ldaily and their time derivatives

ldaily + εdaily =Aspβsp 4.9
l̇daily =Bspβsp. 4.10

The vector εdaily denotes the residuals. The EOP contain three daily time series (px, py and ΛLOD) in
total and the excitation functions contain six daily time series (Ωcxz, Ωcyz, Ωczz, hx, hy, hz). The daily
observations are related to the 9 (n+ 3) spline coefficients by

[
lEOP
lEF

]
+
[
εEOP
εEF

]
=



Asp 0 0 0 0 0 0 0 0
0 Asp 0 0 0 0 0 0 0
0 0 Asp 0 0 0 0 0 0
0 0 0 Asp 0 0 0 0 0
0 0 0 0 Asp 0 0 0 0
0 0 0 0 0 Asp 0 0 0
0 0 0 0 0 0 Asp 0 0
0 0 0 0 0 0 0 Asp 0
0 0 0 0 0 0 0 0 Asp


︸ ︷︷ ︸

Adaily



βpx

βpy

βΛLOD

βΩcxz

βΩcyz

βΩczz

βhx

βhy

βhz


︸ ︷︷ ︸
βdaily

. 4.11

Equation 2.65 describes the linear functional relation between GFC2 variations and the unknown tensor
in inertia. The observed GFC2 variations of the jth epoch depend on the variations of the tensor of
inertia by 

∆Cj20
∆Cj21
∆Sj21
∆Cj22
∆Sj22


︸ ︷︷ ︸
ljGF C

+εjGFC = 1
Ma2



1
2
√

5 0 0 1
2
√

5 0 − 1√
5

0 0 0 0
√

3
5 0

0 0
√

3
5 0 0 0

−1
2

√
3
5 0 0 1

2

√
3
5 0 0

0
√

3
5 0 0 0 0


︸ ︷︷ ︸

Aj
GF C



cjxx
cjxy
cjxz
cjyy
cjyz
cjzz


︸ ︷︷ ︸
βj

T

4.12

where the vector βjT contains the unknown tensor elements of the jth epoch (j = 1, . . . , n). This equation
relates five gravity field coefficients to six elements of the tensor of inertia. The trace of the tensor of
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inertia is underdetermined. According to the tensor trace constraint in Equation 2.66, the trace of the
tensor of inertia is invariant to any deformations. The tensor trace constraint of the jth epoch is[

1 0 0 1 0 1
]

︸ ︷︷ ︸
Aj

C12

βjT = 0. 4.13

The last two equations describe the relations between the GFC2 and the tensor elements of one epoch.
Summarizing all epochs leads tol

1
GFC
...

lnGFC


︸ ︷︷ ︸
lGF C

+

ε
1
GFC
...

εnGFC


︸ ︷︷ ︸
εGF C

= diag
(
A1
GFC , . . . ,A

n
GFC

)
︸ ︷︷ ︸

AGF C

β
1
T
...
βnT


︸ ︷︷ ︸
βT

⇒ lGFC + εGFC = AGFCβT 4.14

diag
(
A1
C12, . . . ,A

n
C12

)
︸ ︷︷ ︸

AC12

β
1
T
...
βnT


︸ ︷︷ ︸
βT

= 0 ⇒ AC12βT = 0. 4.15

The operator ’diag’ provides block-diagonal matrices. Equation 4.15 contains n constraints.
Subsection 2.2.3 derives the linear approximation of the ELE, which relates the EOP, the mass and
motion terms of the excitation functions and the tensor of inertia to each other. The motion terms equal
the relative angular momentum hx, hy and hz, whereas the mass terms Ωcxz, Ωcyz and Ωczz contain
three tensor elements multiplied by the mean rotation velocity Ω. The mass and the motion terms have
the unit kgm2 s−1. As mentioned before, the daily observations have to be downsampled to one value per
epoch. The downsampled epoch values and their time derivatives are obtained by the spline coefficients.
The design matrices Am and Bm are evaluated according to Appendix E by considering τ = 0.5. The
relation between the EOP, the motion terms and the tensor of inertia are given by the Equations 2.44
and 2.46. These equations lead to following 3n constraints Am

1
σ0
Bm 0 0 0 0 − 1

σ0(C−AC+εCAC)Am 0 0
− 1
σ0
Bm Am 0 0 0 0 0 − 1

σ0(C−AC+εCAC)Am 0
0 0 1

Λ0
Am 0 0 0 0 0 − kr

ΩCM
Am


︸ ︷︷ ︸

AC21

βdaily

−


Ω(1+k′2+∆ka)

σ0(C−AC+εCAC)Axz

Ω(1+k′2+∆ka)
σ0(C−AC+εCAC)Ayz

kr
Ω(1+k′2+∆ka)

ΩCM
Azz


︸ ︷︷ ︸

AC22

βT = 0. 4.16

The design matrices Axz, Ayz and Azz contain the value one for the cxz, cyz and czz, respectively, and
zeros for all remaining tensor elements (compare Equations 2.44 and 2.46). As the mass terms contain
the tensor elements multiplied by the mean rotation velocity, further 3n constraints arise with0 0 0 Am 0 0 0 0 0

0 0 0 0 Am 0 0 0 0
0 0 0 0 0 Am 0 0 0


︸ ︷︷ ︸

AC31

βdaily −

ΩAxz

ΩAyz

ΩAzz


︸ ︷︷ ︸
AC32

βT = 0. 4.17

The equations derived in this section describe a functional model according to Chapter 3. The Equa-
tions 4.11 and 4.14 contain stochastic observations, whereas the Equations 4.15, 4.16 and 4.17 describe
7n nonstochastic constraints. The stochastic equations are summarized tolEOPlEF

lGFC


︸ ︷︷ ︸

l

+

εEOPεEF
εGFC


︸ ︷︷ ︸

ε

=
[
Adaily 0

0 AGFC

]
︸ ︷︷ ︸

AH

[
βdaily
βT

]
︸ ︷︷ ︸

β

⇒ l+ ε = AHβ 4.18a
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and the constraints to 0 AC12
AC21 −AC22
AC31 −AC32


︸ ︷︷ ︸

AC

[
βdaily
βT

]
︸ ︷︷ ︸

β

= 0 ⇒ ACβ = 0. 4.18b

The last two equations describe a constrained GHM, which can be solved by the algorithm shown in
Appendix D. To be precise, the functional model describes a constrained GMM, since the design matrixB
is the identity matrix (compare Equations 3.3a and 4.18a).

4.2.2. Stochastic model

The data validated within this dissertation partly results from previous measurements (EOP and GFC2)
and partly from models (excitation functions). Here, the excitation functions are introduced as stochastic
pseudo-observations. Data resulting from models do not contain any stochastic information. The EOP
and GFC2 are provided with standard deviations and therefore with variances. However, information
on covariances is not delivered from the data provider, except one GFC2 time series. This subsection
proposes the approximation of unknown variances and covariances by empirical auto- and crosscorrelation
functions.
Assume two arbitrary equidistant time series x and y, which observe stochastic processes. Each time series
contains n observations. The empirical autocorrelation function σxx and the crosscorrelation function σxy
are defined as (Koch and Schmidt, 1994, page 218)

σxx (d) =


1

n− d

n−d∑
i=1

(xi − µxi)
(
xi+d − µxi+d

)
for d ≥ 0

σxx (−d) for d < 0
4.19a

σxy (d) =


1

n− d

n−d∑
i=1

(xi − µxi)
(
yi+d − µyi+d

)
for d ≥ 0

1
n+ d

n+d∑
i=1

(
xi−d − µxi−d

)
(yi − µyi) for d < 0

4.19b

where d denotes the time difference. The expectation values µ are considered due to stationarity. Since
the auto- and crosscorrelations functions have to reflect stochastic variations, deterministic parts of the
signal are removed by the expectation values. Then, the differences between the observations and the
expectation values are time-invariant, and the stochastic process is stationary (Koch and Schmidt, 1994,
page 166). For example, since the polar motion is modeled by splines, the splines reflect the deterministic
part of the signal. Thus, a preliminary spline adjustment is performed. The adjusted splines are removed
from the original signal. Then, the empirical auto- and crosscorrelations functions are calculated by the
residual signal. Koch et al. (2010) suggested to generate Toeplitz-structured VCM using the empirical
auto- and crosscorrelation functions. Toeplitz matrices contain the same values on the diagonals.
If stochastic processes are ergodic, the auto- and crosscorrelations functions tend to zero for large time
differences d. However, since only a few summands contribute to the empirical variances and covariances
of large d, the empirical auto- and crosscorrelations in Equations 4.19 are usually comparatively large.
Ergodic VCM can be reached by defining zero correlations for large d, e.g. for all |d| > n/10, or by using
biased empirical auto- and crosscorrelations functions instead of the auto- and crosscorrelations functions
in the Equations 4.19. Koch et al. (2010) proposed the latter approach.
Toeplitz-structured VCM, composed of empirical auto- and crosscorrelation functions, are positive semidef-
inite (Koch et al., 2010). According to experience, made during the work on this dissertation, the VCM
resulting from empirically derived auto- and crosscorrelations functions tend to be semidefinite. Then,
the VCM are poorly conditioned. The condition numbers of the VCM are improved by approximating the
empirical auto- and crosscorrelation functions by analytical functions. Sansò and Schuh (1987), Gaspari
and Cohn (1999) and Koch et al. (2010) propose piecewise analytical functions. However, the analytical
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Figure 4.3: The empirical autocorrelation function in blue is modeled by a damped oscillation function in red.

functions do not necessarily provide positive semidefinite VCM (Koch et al., 2010). Positive-definiteness
has to be verified, e.g., by Cholesky decomposition.
The a priori VCM for daily time series are obtained as follows: Empirical auto- and crosscorrelation func-
tions are calculated in each possible combination. The crosscorrelation functions between the equatorial
(polar motion, hx/hy, Ωcxz/Ωcyz) and axial components (LOD, hz, Ωczz) do not indicate systematic
effects but rather noise. Therefore, the correlations between equatorial and axial components of the
daily time series are set to zero. The autocorrelation and the remaining crosscorrelation functions are
similar to damped oscillation functions. Therefore the empirical auto- and crosscorrelations functions are
approximated by

sxy (d) = sxy0 exp (δ|d− d0|) cos (2πf |d− d0|) 4.20

where sxy0 denotes the maximal value of the empirical auto- and crosscorrelation function. The para-
meter d0 is time difference of the maximal value. It holds d0 = 0 in case of autocorrelation functions.
The parameter δ is the damping factor and f is the frequency of the damped oscillation. The damping
factor and the frequency are determined by a nonlinear least-squares solver. Figure 4.3 gives an example
for the empirical and approximated autocorrelation function of LOD.
The correlations decrease for large time differences d. The correlations for large time differences d are set
to zero as long as the values are below a threshold level. The threshold level is set to 0.1% of the maximal
value of the empirical auto- or crosscorrelation functions here. The achieved zeros in the margins of the
auto- or crosscorrelation functions ensure sparse a priori VCM and optimize therefore the efficiency of
the estimation (regarding computer storages). The resulting Toeplitz-structured VCM are band-diagonal
and positive-definiteness is proven by Cholesky decomposition.
As the monthly gravity field time series are too short, meaningful empirical auto- and crosscorrelations
functions cannot be calculated. One gravity field solution is delivered with full VCM. The VCM of
the other gravity field solutions are diagonal matrices composed of the given formal errors. Further
information on the available GFC2 time series is given in Subsection 5.1.2.

4.3. Sensitivity analysis
4.3.1. Comparison of time series with different units

Two methods for the approximation of the time derivative of the polar motion are proposed in Subsec-
tion 4.2.1. Furthermore, different values exist for some of the geophysical quantities in Chapter 2. The
sensitivity analysis investigates the influence of the different functional approaches and numerical values.
In order to make the different units of the time series comparable, a common Tensor Unit (TU) is defined
as

1 TU [dimensionless] = 1010 kgm2

a2M
4.21

where a and M denote the Earth’s radius and mass. The values for a and M are given in Table 4.4.
The variations of the time series cause variations of the tensor elements. The values in Table 4.1 change
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Table 4.1: The values change the associated tensor element about 1 TU.

equatorial axial

EOP ∆px, ∆py ≈ 20.8 mas ∆Λ ≈ 0.02 ms
∆ṗx, ∆ṗy ≈ 0.3 mas day−1

Motion terms ∆hx, ∆hy ≈ 1.21 · 1024 kgm2 s−1 ∆hz ≈ 1.33 · 1024 kgm2 s−1

Mass terms Ω∆cxz, Ω∆cyz ≈ 1.77 · 1024 kgm2 s−1 Ω∆czz ≈ 1.77 · 1024 kgm2 s−1

GFC2 ∆C21, ∆S21 ≈ 0.77 · 10−10 ∆C20 ≈ 0.67 · 10−10

the associated tensor element about 1 TU. For example, if LOD changes about 0.02 ms, the tensor
element czz varies about 1 TU. If the polar motion varies, the time derivative of the polar motion also
varies. The influence of polar motion variations on the time derivative and vice versa cannot be separated
from each other without taking further assumptions into account. The polar motion values in Table 4.1
are obtained by assuming that polar motion variations do not cause variations of the time derivative and
vice versa. Though this assumption does not describe reality, the values in Table 4.1 are used to relate
different units to each other.
As mentioned before, three unknown tensor elements are redundantly determinable first by the difference
of the EOP and motion terms, second by the mass terms and third by the GFC2. Figure 4.4 shows the
tensor elements resulting from the difference between the EOP and motion terms. The contributions
of the EOP (blue), the time derivatives of the polar motion (green) and the motion terms (red) to the
total tensor elements are shown separately. The resulting tensor element is drawn in gray. The graphs
are obtained from the IERS C04 time series and from atmospheric and oceanic excitation functions from
the GeoForschungsZentrum Potsdam (GFZ). A more detailed description of the time series is given in
Section 5.1. The left and the middle figures show the contributions to the equatorial tensor component cxz
and cyz. The influence of the motion term is significantly smaller than the influence of the polar motion
and its time derivative. The contributions of the polar motion and the polar motion time derivatives
have similar absolute values but impact in opposite directions. Thus, the equatorial tensor elements
are comparatively small quantities resulting from the differences of two larger values. According to the
right figure, the contributions of the axial motion term hz are significantly larger than the contributions
of the equatorial motion terms. The axial tensor elements result as well from the difference of two
large quantities, namely LOD and the motion term hz. Figure 5.1 presents additional tensor elements
calculated from further time series.
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Figure 4.4: Graphs show the contribution of the EOP and motion terms to the resulting tensor of inertia.
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Figure 4.5: Graphs show the equatorial tensor elements resulting from the EOP and the motion terms. The blue lines
are obtained by the splines approach and the red lines result from monthly arithmetic averages and numerical
differentiation.

4.3.2. Splines versus numerical differentiation

According to Subsection 4.2.1, the time derivatives of the polar motion are not observed directly and
are approximated by the observed polar motion. Additionally, the daily time series are downsampled
to epoch values due to the different temporal resolution of the time series. Two approaches for the
downsampling and the approximation of the time derivatives are discussed. The first approach models
the representative epoch values and the time derivatives by cubic splines (cf. Subsection 4.2.1). The
splines have the advantage that the time derivatives can be obtained by analytic differentiation. The
second approach calculates the monthly arithmetic average and determines the time derivative by simple
numeric differentiation of monthly averages (cf. Equation 4.3).
The effect of the two approaches on the tensor of inertia is analyzed by calculating the equatorial tensor
elements from the polar motion and the motion terms using both approaches. Figure 4.5 shows the
resulting tensor elements. Both approaches deliver mostly similar results. Comparatively large deviations
of maximal 1.8 TU occur in some epochs. The spline approach obviously shows a noisier pattern than
the second approach. According to further analysis, the differences between these two approaches are
caused by the time derivatives. The representative epoch values for the polar motion and the motion
terms differ barely. However, the differences between the two approaches do not reveal any systematic
behavior. Therefore it is concluded, that the equatorial tensor solution resulting from the polar motion
and the motion terms shows large but stochastic variations due to the chosen approximation of the time
derivatives.

4.3.3. Effect of different numerical values for geophysical constants

The ELE contains several geophysical constants describing a model of the Earth. Different numerical
values exist for some of the constants. If the tensor elements are obtained from the difference between
the EOP and the motion terms, the different constants affect the resulting tensor elements. Therefore,
the effect of the different values are analyzed.

Effect of the complex-valued Chandler frequency on the equatorial ELE:
The anelastic reaction of the Earth leads to energy dissipation and consequently to a damped Chandler
wobble. The body tide Love number is modified by a complex-valued number to account for the anelas-
ticity. That leads via the parameter De (cf. Subsection 2.2.2) to a modified complex-valued Chandler
frequency (Wahr, 2005)

σ0 = 2π
TCW

(
1 + 1

2QCW
i
)

4.22

where TCW denotes the period of the Chandler wobble and QCW the damping factor. Gross (2007) and
Seitz (2004) listed values for TCW and QCW . Table 4.2 contains these values and the resulting complex-
valued Chandler frequency. Since the imaginary part of the Chandler frequency is smaller than 2% of the
real part and since it is determined with high uncertainty (Gross, 2007), the imaginary part is neglected.
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Table 4.2: Period and damping factor of the Chandler wobble

TCW in solar days QCW σ0 in radiant per day References

433.2 63 0.014 504 + 0.000 115i Jeffreys (1972)
434.0 100 0.014 477 + 0.000 072i Wilson and Haubrich (1976)
434.8 96 0.014 451 + 0.000 075i Ooe (1978)
433.3 170 0.014 501 + 0.000 043i Wilson and Vicente (1980)
431.7 24 0.014 555 + 0.000 303i Lenhardt and Groten (1985)
433.0 179 0.014 511 + 0.000 041i Wilson and Vicente (1990)
439.5 72 0.014 296 + 0.000 099i Kuehne et al. (1996)
433.7 49 0.014 487 + 0.000 148i Furuya and Chao (1996)

[413.0 439.0] [0.014 312 0.015 214] Schuh et al. (2001)
433.1 83 0.014 507 + 0.000 087i Gross (2004)
431.9 82 0.014 548 + 0.000 089i Seitz (2004)

Gross (2007) suggested to use a Chandler period of 433.0 solar days proposed by Wilson and Vicente
(1990), as this value results from long time series and a sophisticated maximum Likelihood Monte-Carlo
estimator.

Effect of the complex-valued body tide Love number on the axial ELE:
The complex modification of the body tide Love number changes among the Chandler frequency the
parameter Da and therefore the factor kr. The effective axial body tide Love number keff2,s is defined as

keff2,s = k2 + ∆kan + ∆kocn,s 4.23

where ∆kan and ∆kocn,s account for the anelasticity of the Earth’s body and for the oceans. ∆kan is
complex-valued. Göttl (2013) listed four different effective Love numbers. The factors kr in Table 4.3 are
obtained from the effective Love numbers according to Equations 2.24 and 2.46.
The real parts of the complexed-valued axial factors kr agree in four decimal places and the imaginary
parts are as well negligible. Therefore, the choice of the effective body tide axial Love number has an
infinitesimal influence on the estimation of the tensor of inertia. However, neglecting the imaginary parts
of ∆kan and the Chandler frequency means that the ELE models an Earth having an undamped polar
motion.

Effect of core-mantle coupling:
Dickman (2003) pointed out that the core-mantle coupling is handled inhomogeneously in literature (cf.
discussion in Subsection 2.2.2). According to Wahr (1983), the effective body tide and load Love num-
bers have to be multiplied by a factor α3 = 0.792, if mantle-only Love numbers are considered. The
theoretical body tide Love number is replaced with the empirical Chandler frequency in the equatorial
ELE. The axial factor kr changes about 0.1%, if a decoupled core is assumed. Therefore, the influence
of the core-mantle coupling on the body tide Love number is insignificant. Though, the influence of

Table 4.3: Effect of the complex-valued body tide Love number on the axial ELE

axial keff2,s complex-valued kr References

0.3566− 0.0034i 0.995 747 + 0.000 018i Smith and Dahlen (1981), Mathews et al. (2002), Gross (2007)
0.3537− 0.0034i 0.995 762 + 0.000 018i Dickman (2003), Mathews et al. (2002), Gross (2007)
0.3504− 0.0036i 0.995 779 + 0.000 019i IERS Conventions (2003), Gross (2007)
0.3520− 0.0042i 0.995 771 + 0.000 022i Seitz (2004)
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the core-mantle coupling on the load Love number has a larger influence. If a fully decoupled core is
considered, the tensor elements are about the factor 1.09 larger than the tensor elements resulting from
a fully coupled core-mantle model. As a difference of approximately 10% is worth taking a closer look,
Subsection 5.1.4 discusses the effects of the core-mantle coupling with respect to available time series.

Brief summary of the sensitivity analysis:
The approximation of the polar motion time derivatives by two different models leads to tensor elements
which differ up to 1.8 TU. However, the partly large differences between the two approximations do not
show obvious systematics. The factor due to the core-mantle coupling has the second largest effects.
In contrast to the approximation of the time derivatives, the assumed core-mantle coupling model has
a systematic influence, since the tensor elements, resulting from the difference of the EOP and motion
terms, depend linearly on the chosen core-mantle model. Further influences due to different numerical
values and models are small and are therefore neglected.
The least-squares adjustment additionally takes the GFC2 and the mass terms into account. The tensor
elements resulting from the GFC2 and the mass terms are independent on polar motion time derivatives
and the core-mantle coupling. Therefore, the effects of the time derivatives and the core-mantle coupling
on the adjusted tensor elements are limited. The finally chosen numerical values for the geophysical
constants are listed in Table 4.4.

Table 4.4: Geodetic parameters of the Earth

Constant Value Description Ref.

G 6.674 28 × 10−11 m3 kg−1 s−2 Constant of gravitation (a)
GM 3.986 004 418 × 1014 m3 s−2 Geocentric gravitational constant (b)
a 6 378 136.6m Equatorial radius of the Earth (c)
Ω 7.292 115 × 10−5 rad s−1 Mean angular velocity (c)
Λ0 86 400 s Nominal Length of Day
C −A 2.6398 × 1035 kgm2 Difference between largest and smallest principal moments of inertia (c)
C −B 2.6221 × 1035 kgm2 Difference between largest and intermediate principal moments of inertia (c)
Am 7.0999 × 1037 kgm2 Smallest principal moment of inertia of crust and mantle (d)
Cm 7.1236 × 1037 kgm2 Largest principal moment of inertia of crust and mantle (d)
Cc 9.1401 × 1036 kgm2 Largest principal moment of inertia of the core (d)
εc 2.546 × 10−3 Ellipicity of the core’s surface (d)
n0 0.155 05 Factor due to change in the moment of inertia caused by the purely radial

component of the rotational potential
(e)

k2 0.298 Degree-2 body tide Love number of the Earth (f)
k′2 −0.305 Degree-2 load Love number of the Earth (f)
∆kan −0.011 Modification of the degree-2 Love numbers due to mantle anelasticity;

(imaginary part is neglected)
(f)

∆kocn,s 0.043 228 Modification of the degree-2 body Tide Love number due to ocean (axial
component)

(g)

α3 0.792 Factor modifying the degree-2 load Love number of the Earth due to
core-mantle coupling

(h)

TCW 433.0 days Chandler period (i)

References: (a) Mohr et al. (2008), (b) Ries et al. (1992), (c) Groten (2004), (d) Mathews et al. (1991), (e) Dahlen (1976),
(f) Wahr (2005), (g) Gross (2007), (h) Wahr (1983), (i) Wilson and Vicente (1990)
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5. Results
5.1. Data description
5.1.1. Earth Orientation Parameters

The IERS provides the EOP 08 C04 time series, which describes the coordinates of the CIP in the ICRF
and in the ITRF2008. EOP 08 C04 also contains the deviations of the instantaneous rotation velocity
from the mean rotation velocity by providing the difference UT1–UTC and LOD, respectively. Bizouard
and Gambis (2010) described the derivation of EOP 08 C04 and listed the used models. According to
Subsection 2.1.2, the CIP separates by definition the daily and subdaily precession/nutation from polar
motion (cf. Figure 2.1). Since this dissertation is limited to long periodic movements, precession/nutation
parameters are not considered, and the Earth rotation vector is described by LOD and polar motion.
The EOP include long periodic tidal signals. As the validation is performed in a tide free system, the
tidal influences are removed according to Appendix A (IERS Conventions, 2010).
Two other EOP time series exist. The Institut Géographique National provides the ITRF together with
consistent EOP ITRF time series on behalf of the IERS. Altamimi et al. (2007) described the determi-
nation of the ITRF2005 extensively. This description was updated for the ITRF2008 in Altamimi et al.
(2011). Here, LOD values are determined by VLBI only. The limitation on VLBI avoids contamination
of the VLBI estimates by biases caused by GNSS (Altamimi et al., 2011; Ray, 2009). As VLBI mea-
surements are not performed continuously, EOP ITRF does not contain daily LOD values and is not
considered for further analyses in this dissertation. The differences between EOP ITRF and EOP 08 C04
polar motion do not exceed ±0.2 mas in the years from 2000 to 2008. This corresponds to ±0.01 TU
according to Table 4.1.
The Deutsches Geodätisches Forschungsinstitut (DGFI) proposes the EOP DTRF2008 time series (Seitz
et al., 2012). This time series is based on the models of the older IERS Conventions (2003) and is obtained
similar to the ITRF2005D reference frame, proposed in Angermann et al. (2009). The differences between
EOP DTRF2008 and EOP 08 C04 have been analyzed in the years from 2000 to 2008. The differences
do not exceed ±0.4 mas (±0.02 TU) in polar motion and ±0.05 ms per day (±2.5 TU) in LOD. The
differences are due to different input data, different weighting of the contributing techniques and different
parametrization of the ITRF station coordinates (personal communication with M. Seitz, July 2012). If
the differences of the two time series are analyzed in the frequency domain, the largest LOD amplitudes
are at periods of approximately 59 days, one year, 44 days and 14 days. If the LOD time series are
bandpass-filtered (cutoff periods of 60 days and three years, c.f. Section 4.1) before the comparisons,
the differences between the LOD time series do not contain the 44 days and 14 days periods. Then, the
differences of the filtered LOD time series remain below ±0.02 ms (±1 TU). Göttl (2013) gave a more
detailed description of the three EOP time series and included more background information.

5.1.2. Gravity field coefficients

Gravity Recovery and Climate Experiment (GRACE)

GRACE is a joint project of the National Aeronautics and Space Administration (NASA) in the United
States and the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany and determines the
time variable gravity field. The project management and system engineering activities are carried out by
the Jet Propulsion Laboratory (JPL). GRACE consists of two identical low Earth orbiters launched in
March 2002 and orbiting about 220 km apart in a nearly spherical, polar orbit of initially 500 km above
the Earth. Despite of the previously intended life time of five years, the tenth anniversary of GRACE
has been celebrated in March 2012. A K-Band-microwave beam tracks the distance between the two
satellites with micrometer accuracy. The satellites are additionally equipped with Global Positioning
System (GPS) antennas and accelerometers to measure non-gravitational accelerations. If the gravity
changes beneath the satellites, the orbital motion of each satellite is changed causing variations of the
distance between the satellites. A combined processing of the measured non-gravitational accelerations,
the GPS data, the K-Band ranges and further sensors leads to a time variable gravity field with a high
spatial resolution up to degree/order 120. The GRACE data are processed in three centers, at the
University of Texas Center for Space Research (CSR), the JPL and the GFZ. Further information on
GRACE can be found in Tapley et al. (2004) and Schmidt (2007).
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The time variable gravity field coefficients are determined by a least-squares adjustment with respect to
a background gravity field which considers

• a static background gravity field,

• tidal acceleration caused by Sun, Moon and planets and obtained from models (including atmo-
spheric and oceanic tides, tidal deformation of the Earth and loading effects),

• rotational deformation,

• non-tidal, aperiodic mass variations of atmosphere and oceans, the Atmospheric-Ocean-De-Aliasing-
products (Flechtner, 2007b),

• non-gravitational forces (friction of the higher atmosphere, the solar radiation pressure and the
Earth albedo), measured by the accelerometers and

• relativistic corrections, accounting for the deviation of Newton’s mechanics from Einstein’s relativity
theory.

Based on the background gravity field, the orbits of the two satellites are precisely obtained by numerical
integration. According to Mayer-Gürr (2006), the numerical integration of Newton’s dynamic equation
is formulated either as initial value problem (Volterra’s integral equation) or as boundary value problem
(Fredholm’s integral equation of second art). Since the micrometer accuracy of the K-Band measurements
is significantly more accurate than the centimeter accuracy of the GPS-positions, the functional model of
the least-squares adjustment has to separate these two types of measurements (Mayer-Gürr, 2006). The
high accuracy of the K-Band ranges allows to determine the gravity field with a high spatial resolution.
Since the satellites approximately orbit along the meridians, the microwave sensor errors act in north-
south direction. Thus, the sensor errors, combined with the mission geometry, cause north-south stripes
in the potential maps and derived equivalent water height maps. Various authors proposed filters for
the reduction of the stripes with respect to the smallest possible loss of signals, e.g. Kusche (2007),
Wouters and Schrama (2007), Davis et al. (2008) and Klees et al. (2008). As the two satellites orbit a
short distance apart on a global scale, GRACE is less sensitive to gravity field coefficients of low degrees.
However, the coefficients of low degrees can still be determined, as the GPS-positions of the satellites are
available. Though, the delivered formal errors for coefficients of low degrees do usually not reflect the
lesser accuracy of the GPS-positions and are therefore too optimistic in most cases.
The non-tidal redistribution of atmospheric and oceanic masses is considered by the Atmospheric-Ocean-
De-Aliasing-products (AOD1B). The atmospheric contribution is obtained from the European Center
for Medium-range Weather Forecast (ECMWF) and the oceanic mass redistribution is modeled by the
Ocean Model for Circulation and Tides (OMCT). Subsection 5.1.3 describes the atmospheric and oceanic
models in more detail. The GRACE data centers provide gravity field coefficients, which describe an
Earth without the non-tidal, aperiodic masses of atmosphere and oceans (GSM products). The non-
tidal, aperiodic masses of atmosphere and oceans are additionally provided in form of further gravity
field coefficients (GAC products). The sum of the GSM und GAC products describes a gravity field
which includes the complete atmospheric and oceanic masses. The sum of the GRACE GSM and GAC
products is validated here.
Apart from the three official GRACE data centers, two further groups, the Institut für Geodäsie und
Geoinformation (ITG) and the Groupe de Recherche de Géodésie Spatiale (GRGS), deliver GRACE
gravity fields. The five solutions differ in various details. The main differences are shortly recapitulated
as follows: The gravity field solution CSR R04 is unconstrained, but the GRACE Technical Note No 5
suggests to replace the C20 coefficient with SLR coefficients. The gravity field solution JPL R04 is
obtained by a two step approach. First, a subset of orbit and GPS clock parameters is solved without
adjusting gravity. In the next step, the subset constrains a second adjustment which determines the
gravity field coefficients. This approach aims to the reduction of the stripes and to a more reliable
determination of C20, but leads to leakage effects in regions where a large signal is near areas with low
signals, e.g. North Atlantic near Greenland (personal communication M. Watkins, April 2012). The
gravity field solution GFZ R04 is unconstrained. GRGS R02 uses the barotropic MOG2D ocean model
instead of the baroclinic AOD1B ocean model and provides a higher temporal resolution as the other
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Table 5.1: Overview over background models and processing of GRACE and SLR gravity fields

CSR R04 JPL R04 GFZ R04 GRGS R02 ITG 2010 CSR SLR
R04

Static gravity field
Static gravity field GIF22a GIF22a EIGEN-

GL04C
EIGEN-

GRGS.RL02.
MEAN-
FIELD

Grace
ITG03s

GGM02C

Tidal reference zero tide zero tide tide free tide free zero tide zero tide

Tidal forces of Sun, Moon and planets
Solid Earth tides IERS 2003 IERS 2003 IERS 2003 IERS 2003 IERS 2003 IERS 2003
Planetary
ephemerides

DE-405 DE-405 DE-405 DE-403 DE-405 unknown

Oceanic tides FES 2004 FES 2004 FES 2004 FES 2004 EOT08a FES 2004
Atmospheric tides none none Biancale and

Bode (2006)
none none none

Polar tides (rotational deformation)
Solid Earth IERS 2003 IERS 2003 IERS 2003 IERS 2003 IERS 2003 IERS 2003
Oceans Desai (2002) Desai (2002) Desai (2002) Desai (2002) Desai (2002) Desai (2002)

Short periodic mass variations
Atmosphere AOD1B AOD1B AOD1B ECMWF AOD1B AOD1B
Oceans AOD1B AOD1B AOD1B MOG2D AOD1B AOD1B

Non-tidal accelerations
Non-tidal
accelerations

GRACE
accelerometer

GRACE
accelerometer

GRACE
accelerometer

GRACE
accelerometer

GRACE
accelerometer

models

Relativistic effects
Relativistic effects IERS 2003 IERS 2003 IERS 2003 IERS 2003 IERS 2003 IERS 2003

Reference frames
Transformation from
inertial to Earth-fixed
reference frames

IERS 2003 IERS 1996 IERS 2003 IERS 2003 IERS 2003 IERS 2003

Processing of the data
numerical orbit
integration

initial value
problem

initial value
problem

initial value
problem

initial value
problem

boundary
value

problem

unknown

Constraints and
remarks

replacement
of GRACE

C20
coefficients
by SLR

coefficients
recommended
(Technical
Note No. 5)

GPS clocks
and orbits are
solved first

and constrain
the gravity

field determi-
nation

none constrained
gravity field

and
stabilization

by
LAGEOS-1

and 2

none SLR only
(LAGEOS-1

and 2,
Starlette,
Stella and
Ajisai)

Temporal resolution monthly monthly monthly 10 days monthly monthly

References to the gravity field solution
References Bettadpur

(2007)
Watkin and
Dah Ning
(2007)

Flechtner
(2007a)

Bruinsma
et al. (2010)

Mayer-Gürr
(2006)

Cheng and
Tapley (2004)

Further references: IERS 1996: IERS Conventions (1996); IERS 2003: IERS Conventions (2003); IERS 2010: IERS
Conventions (2010); EIGEN-GL04C: Förste et al. (2008); Grace ITG03s: Mayer-Gürr et al. (2010); GGM02C: Tapley et al.
(2005); FES 2004: Lyard et al. (2006); EOT08a: Savcenko and Bosch (2008); AOD1B: Flechtner (2007b); MOG2D: Carrére
and Lyard (2003)
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groups. Since the higher temporal resolution means that a reduced number of satellite ground tracks
is available, the solution is constrained. The background gravity field coefficients of degrees and orders
larger than 30 are introduced as pseudo-observations with given degree- and order-dependent variances.
Furthermore, the gravity field coefficients of low degrees are stabilized by taking SLR range observations
into account (cf. next paragraph). The gravity field solution ITG 2010 is determined with the EOT08a
ocean tide model instead of the FES2004 model. Beyond that, no special constraints are taken into
account. The background models, the references to the models and some further details of the five
GRACE solutions are summarized in Table 5.1.
The official GRACE data centers have recently published new releases of the gravity fields (Release 05).
The new releases are based on improved AOD1B products and improved knowledge of the relative align-
ment of the different satellite sensors. The new releases 05 show reduced north-south stripes and an
improved estimation of C20 (Bettadpur, 2012). Nevertheless, the SLR estimation of C20 is still better
than the new CSR R05, whereas CSR R05 provides a better estimation of C21, S21, C22 and S22 (Bet-
tadpur, 2012). The releases 05 are not considered, as the background models of the older releases 04
are more consistent to the background models of ITG 2010 and GRGS R02. The Institut für Geodäsie
und Geoinformation additionally provides daily gravity fields by using a smoothing Kalman filter which
considers spatial and temporal correlations (Kurtenbach et al., 2012). The GFZ additionally delivers
weekly gravity fields with a smaller spatial resolution (Schmidt et al., 2007). Both daily and weekly
gravity fields are disregarded. The limitation to one time series per data center avoids the double weight
of processing strategies on the combined adjustment.

Satellite Laser Ranging (SLR)

SLR determines gravity fields of low temporal resolution by range measurements from globally distributed,
Earth-fixed ground stations to satellites. The satellites are passive spherical satellites with a dense core
and retroreflectors on their surface. The range is measured with millimeter accuracy by the travel time
of laser pulses to the reflectors and back. The LAGEOS-1 and 2 satellites were launched in 1976 and
1992, in orbits with an altitude of approximately 5900 km and inclinations of 110° and 54°. The smaller
satellites Starlette and Stella orbit in an lower altitude of approximately 800 km since 1975 and 1993.
They have inclinations of 50° and 99°. The Japanese satellite Ajisai orbits in an altitude of 1500 km with
an inclination of 50° since 1986. Further information can be found on http://ilrs.gsfc.nasa.gov/.
The gravity field is determined analogously to GRACE. The satellite orbits are integrated numerically
with respect to a background gravity field. Since the spherical satellites have an optimal surface-mass
ratio, the non-gravitational accelerations are described with sufficient accuracy by models (Cheng and
Tapley, 2004). As the SLR satellites orbit the Earth in higher altitudes than the GRACE twin-satellites,
a lower spatial resolution of the gravity fields is reached. Table 5.1 summarizes the background models
and processing details of the GRACE gravity fields and CSR SLR R04. CSR SLR R04 is obtained by
using the same background models as CSR R04. The C20 values in the GRACE Technical Note No 5
results from CSR SLR R04.

5.1.3. Excitation functions

The mass redistributions of the Earth’s atmosphere, oceans and hydrology are calculated by geophysical
models. Based on the models, data fields with a large number of parameters, e.g. velocity, temperature
and pressure, are calculated in threedimensional grids covering the Earth. The models differ in the
spatial resolution of the grids and in the temporal resolution. Most models are constrained by other
models and/or assimilate observed data.
The excitation functions of the specific subsystem and model are obtained by the numerical integration of
the grid data according to Equations 2.53 and 2.54. If the excitation functions are given as dimensionless
EAMF, they are transformed into angular momentum functions (unit: kgm2 s−1). The transformation
is necessary, as the EAMF from different sources might differ in details (Dickman, 2003). Consistent
transformations are ensured by evaluating the definitions of the EAMF and the used numerical values
of the geophysical constants. The motion terms of the excitation functions equal the relative angular
momentum hx, hy and hz. The mass terms contain the tensor variations cxz, cyz and czz multiplied by
the mean rotation velocity Ω. Some models are briefly described in following paragraphs.

http://ilrs.gsfc.nasa.gov/
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Atmospheric NCEP/NCAR Reanalysis model

The National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric
Research (NCAR) have established the NCEP/NCAR Reanalysis project to produce atmospheric fields
which support the needs of research and climate communities (Kalnay et al., 1996). The NCEP/NCAR
Reanalysis project collects atmospheric data from various sources, e.g. from sensors on ships, weather
stations, buoys, airplanes and satellites. The quality of the data is analyzed, and the data are assimilated
into a model which remains constant over the entire reanalysis period. This results in a threedimensional
grid of data with a horizontal resolution of 210 km and 28 vertical layers and with a temporal resolution
of six hours (Salstein et al., 1993; Zhou et al., 2006).
The atmospheric excitation functions depend on assumptions of oceanic reactions on pressure variations.
The so called Inverted Barometer (IB) hypothesis assumes that the oceans react with sealevel depressions
in areas with high atmospheric pressure and with sealevel rise in areas with low pressure. Oceans and at-
mosphere are assumed to be in an equilibrium state. If the IB hypothesis is assumed, the Earth’s rotation
does not react on local pressure changes, but rather on changes of the mean pressure over the oceans of
the entire Earth (Salstein et al., 1993). The NCEP/NCAR excitation functions are calculated assuming
both the IB and the Non-IB hypothesis. The ocean model ECCO implies the IB hypothesis (Gross, 2009).

Atmospheric ECMWF model

The European Center for Medium-range Weather Forecast (ECMWF) provides atmospheric models which
assimilate measured data. The ERA-Interim reanalysis model provides grids with a horizontal resolution
of 79 km and 60 vertical layers. A detailed description of ERA-Interim is found in Dee et al. (2011).
Although ERA-Interim data are provided with a short latency, the delay is unacceptable for some ap-
plications. Therefore, the ECMWF also provides operational forecast data with a spatial resolution of
79 km and 91 vertical layers. Dee et al. (2011) described the differences between the operational forecast
model and ERA-Interim. Since the forecast model is occasionally updated and the data are not repro-
cessed after updates, they are in contrast to ERA-Interim not strictly consistent over time. However, the
GRACE AOD1B products are based on the operational ECMWF forecast data (Flechtner, 2007b).

Oceanic ECCO model

Oceanic currents and the resulting bottom pressure of the oceans are modeled by Estimating the Circu-
lation and Climate of the Ocean (ECCO). ECCO is based on the MIT ocean general circulation model
Marshall et al. (1997a,b). It spans the globe between 80° S to 80° N. The latitudinal grid spacing differs
from 0.3° at the equator to 1° at the poles and the longitudinal grid is spaced with 1°. The model
possesses 46 vertical layers and is forced with wind stress, surface heat flux and evaporation-precipitation
fields from the NCEP/NCAR Reanalysis project. Atmospheric surface pressure fields do not force the
model (baroclinic model). Further information on ECCO is available in Stammer et al. (2003).
The Special Bureau for the Oceans of the IERS Geophysical fluids center provides two different excitation
functions, ECCO_kf079 and ECCO_kf080. In contrast to ECCO_kf079, altimetric sea surface height
measurements are assimilated into ECCO_kf080. Beyond that, both time series are obtained from the
same model configuration and the same forces.

Oceanic OMCT model

The Ocean Model for Circulation and Tides (OMCT) (Thomas, 2002) is an advancement of the clima-
tological Hamburg Ocean Primitive Equation Model (Drijfhout et al., 1996; Wolff et al., 1997). The
ocean model has a lower spatial resolution than ECCO (horizontal resolution of 1.875 degree in latitude
and longitude and 13 vertical layers). The atmospheric forcing of OMCT includes wind stress, surface
pressure as well as heat and freshwater fluxes. Continental freshwater fluxes, provided by e.g. LSDM,
can optionally be taken into account. OMCT is alternatively forced by ERA-Interim or by operational
ECMWF forecast data and does not assimilate altimeter data. Dobslaw et al. (2010) gave a compact
overview over consistent ECMWF, OMCT and LSDM models.
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Table 5.2: Definitions of the integral excitation functions

Integral excitation
function

= Atmospheric Angular
Momentum functions

+ Oceanic Angular Momen-
tum functions

+ Hydrological Angular Mo-
mentum functions

Interim GFZ = ERA-Interim + OMCT driven by ERA-
Interim and LSDM

+ LSDM driven by ERA-
Interim

op. GFZ = operational ECMWF + OMCT driven by opera-
tional ECMWF and LSDM

+ LSDM driven by opera-
tional ECMWF

non-ass. JPL = NCEP/NCAR Reanaly-
sis model

+ ECCO driven by
NCEP/NCAR Reanal-
ysis model, no further data
assimilation

+ none

ass. JPL = NCEP/NCAR Reanaly-
sis model

+ ECCO driven by
NCEP/NCAR Reanal-
ysis model, assimilation of
altimeter measurements

+ none

Hydrological LSDM model

The continental hydrology is simulated by the Land Surface Discharge Model (LSDM) (Dill, 2008). The
model simulates global water storage variations of surface water in rivers, lakes, wetlands, groundwa-
ter, and soil moisture as well as water stored in snow and ice. The model is discretized on a regular
0.5° global grid and is integrated with a 24 hour timestep. LSDM is forced with precipitation, evapora-
tion and temperature from ERA-Interim and operational ECMWF forecast data, respectively. LSDM is
not part of the GRACE AOD1B products, as an inclusion of the continental hydrology is not expected
to improve monthly GRACE gravity solutions (Dobslaw and Thomas, 2007). The hydrological signal
remains present in the GRACE GSM products. Therefore, the GSM+GAC product contains the total
masses of all subsystems.

Integral excitation functions

The observed EOP and gravity field coefficients reflect the sum of mass redistributions in all subsystems.
Therefore, only the sum of consistent excitation functions can be validated. The described models provide
four possible consistent integral excitation functions, defined in Table 5.2.
The integral excitation functions of the GFZ consider hydrology, in contrast to the JPL excitation func-
tions. Interim GFZ is forced by ERA-Interim and op. GFZ by operational ECMWF data. The differences
of both bandpass-filtered integral GFZ excitation functions do not exceed ±0.5 TU in the equatorial mass
and motion terms and ±2 TU in the axial mass and motion terms. Both bandpass-filtered integral JPL
excitation functions show differences of ±0.5 TU maximum in the equatorial and axial mass and motion
terms.
A comparison of all four possible integral excitation functions reveals differences but no significant pattern
in the mass terms. Whereas both equatorial JPL motion terms clearly show larger variations than both
GFZ excitation functions. Both axial GFZ motion terms show larger annual variations than both JPL
excitation functions. The motion terms of GFZ and JPL differ more than the two GFZ and the two JPL
time series among each other.

5.1.4. Comparison of preliminary tensor elements obtained from the time series

Three of the six elements of the tensor of inertia can be redundantly determined either by the difference of
the EOP and the motion terms, by the mass terms or by the GFC2. Preliminary values for the tensor of
inertia are calculated from each time series, in order to obtain a first, summarizing overview over the time
series. Representative, monthly epoch values for the daily time series (EOP and excitation functions)
are obtained by cubic splines. The spline coefficients are adjusted by assuming uncorrelated observations
with equal standard deviations. Note, since this subsection aims to a first overview, a sophisticated
adjustment is not necessary at this point. The preliminary spline adjustment does not take relations
between different time series into account. The adjustment model described in the previous chapter is
applied in Section 5.2. Monthly epoch values of the daily time series are calculated by evaluating the
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adjusted spline coefficients at the midpoint of each spline. The six tensor elements cannot be uniquely
determined by five GFC2. Therefore, the underdetermined trace of the tensor of inertia is solved by
taking the tensor trace constraint in Equation 2.66 into account. Due to this constraint, the tensor
element czz solely depends on the gravity field coefficient C20.
Figure 5.1 illustrates the preliminary tensor elements. The first column shows the tensor elements re-
sulting from the difference of the EOP and motion terms. The tensor elements obtained from the mass
terms are given in the second column. The third column presents the tensor elements resulting from the
GFC2. The tensor elements cxz (first row) show an annual period with a small amplitude in some of the
time series (mass terms and some of the gravity field coefficients), whereas other preliminary solutions
(EOP minus motion terms, ITG 2010 ) do not show obvious annual periods in cxz. In contrast to cxz,
the tensor elements cyz (second row) and czz (third row) clearly contain annual periods. The smaller
variations of the equatorial tensor element cxz compared to the tensor element cyz are mainly caused by
the unequal distribution of continents and oceans masses over the Earth.
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Figure 5.1: Preliminary elements of the tensor of inertia are presented (cxz first row, cyz second row and czz third row).
The first column contains the tensor elements resulting from the difference of the EOP 08 C04 and the motion
terms. The solid lines display the tensor elements obtained by assuming a coupled core and mantle, whereas
the crosses denote tensor elements obtained from a decoupled Earth model. The second column illustrates the
tensor elements calculated from the mass terms. Tensor elements resulting from the GFC2 are given in the third
column.
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The tensor elements resulting from the difference of the EOP and motion terms show a significantly
noisier behavior compared to the tensor elements obtained from the mass terms. The noisy behavior is
caused by the spline approximation of the polar motion time derivatives (cf. Figure 4.5 and discussion in
Subsection 4.3.2). The two GFZ excitation functions and the two JPL excitation functions show small
differences in the resulting tensor elements. The axial tensor elements resulting from the differences
between LOD and both GFZ motion terms contain smaller annual amplitudes than those tensor elements
resulting from both JPL motion terms.
Dickman (2003) discussed the effect of the core-mantle coupling. Depending on the assumed core-mantle
coupling, the tensor of inertia obtained from the EOP and the motion terms differ about approxi-
mately 10% (cf. Subsection 4.3.3). The tensor elements in the first column of Figure 5.1 are calculated
by assuming both, the fully coupled and the completely decoupled model. The solid lines describe the
coupled Earth model and the crosses denote the uncoupled model. The equatorial tensor elements ob-
viously support the coupled model more than the decoupled model. The axial tensor elements resulting
from the difference of LOD and the axial JPL motion terms support the coupled model as well. In
contrast to that, the axial tensor elements resulting from GFZ motion terms do not indicate a specific
coupling model. As mentioned before, the chosen model for the core-mantle coupling changes the tensor
elements by a multiplicative factor and is therefore a potential source for inconsistencies. The tensor
elements resulting from the mass terms agree well. The time series resulting from the GFC2 generally
agree with the mass terms but show larger variations than the mass terms.

5.2. Mutual validation of EOP, excitation functions and GFC2
5.2.1. A priori setting of the adjustment model and adjustment

Preprocessing of the data

This section performs the mutual validation of one EOP time series, two different excitation functions
and six different GFC2 time series. As mentioned before, the three available polar motion time series
show small differences. If all three EOP time series are considered, the differences between the EOP
and motion terms obtain a high weight, which is not in relation to the comparatively small accuracy of
the motion terms. Note, only the difference between the EOP and the motion terms can be validated.
Therefore, only one EOP time series is considered. The tides are removed from the chosen EOP 08 C04
time series before the filter is applied (cf. Appendix A). The four excitation functions defined in Table 5.2
depend on two geophysical models. To avoid that the geophysical models are weighted twice, one set
of excitation functions is considered per each geophysical model. The GRACE AOD1B products are
obtained from the operational atmospheric ECMWF forecast data and consistent OMCT data (Flechtner,
2007b). Therefore, the excitation functions op. GFZ are chosen. As op. GFZ do not assimilate altimeter
data, the excitation functions non-ass. JPL are additionally considered.
Though the six different gravity solutions are obtained from the same original data and/or models, the
GFC2 obviously differ due to various details in the models and weighting (Figure 5.1). As the differences
are comparatively large, the six GFC2 time series in Table 5.1 are considered. The time series have a
temporal resolution of one month except GRGS R02 with a temporal resolution of ten days. GRGS R02
is downsampled to a monthly temporal resolution by calculating weighted averages. The weights are
determined according to the number of days belonging to the month. Some gaps arise in the monthly
GRACE time series due to satellite orbits causing repeated ground tracks. The poor orbit configurations
impede the determination of the gravity field. The gaps are filled by linear interpolation before the filter
is applied.
The time series are filtered according to Section 4.1 to reduce known inconsistencies before the ad-
justment. The daily EOP and excitation functions are bandpass-filtered with the cutoff frequencies of
1/(60 days) and 1/(3 · 365 days). The monthly GFC2 time series are highpass-filtered with the cutoff
frequencies of 1/(3 · 12 months). Note, absolute values of the time series cannot be validated due to the
filter. The validation is limited to relative variations. The data of the six first and the six last months
are discarded to avoid effects caused by run-in effects of the filter. The remaining time series cover a
period of 71 months between April 2003 and February 2009. If the filters are not applied before, the
tensor elements obtained by different time series are biased and the results are deteriorated. Heiker et al.
(2012) did not apply the filter before the mutual validation. The unknown parameter vector in Heiker
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et al. (2012) was extended to account for biases between the time series, which were estimated within
the least-squares adjustment. The influence of the filters is discussed more detailed in Subsection 5.3.1.

Least-squares adjustment

The functional model is set up according to Subsection 4.2.1. The ELE assumes a fully coupled core-
mantle model. Six unknown elements of the tensor of inertia and one spline per daily time series are
estimated per each of the 71 epoch. Each of the 15 daily time series (3 × EOP 08 C04, 6 × op. GFZ,
6 × non-ass. JPL) is modeled by 74 unknown spline coefficients (equivalent to 74 ·15 = 1110 unknowns).
The daily time series contain 32 445 observations in total. The observed 71 · 5 = 355 GFC2 directly
depend on the tensor of inertia with 71 · 6 = 426 unknown tensor elements. The model is constrained
by the ELE (71 · 3 = 213 constraints), by the relation between the mass term and the tensor of inertia
(71 ·3 = 213 constraints) and by the 71 tensor trace constraints (Rochester and Smylie, 1974). The least-
squares adjustment considers 32800 observations, 497 constraints and 1536 unknowns in total. Hence,
the redundancy amounts to 31 761.
The a priori stochastic model for the daily EOP and excitation functions is obtained according to Subsec-
tion 4.2.2. The VCM of the daily parameters are described by band-diagonal Toeplitz matrices, composed
of analytical auto- and crosscorrelation functions. As the monthly time series of the GFC2 are too short
for the calculation of meaningful auto- and crosscorrelation functions, the a priori stochastic model is
composed of given stochastic information. ITG 2010 is delivered with a complete VCM. The other
GFC2 are provided with formal errors / standard deviations without any information about covariances.
Therefore, their a priori VCM are diagonal matrices assuming uncorrelated observations.
Nine equatorial variance components (1 × polar motion, 2 × hx/hy/Ωcxz/Ωcyz, 6 × C21/S21/C22/S22)
and nine axial variance components (1 × LOD, 2 × hz/Ωczz, 6 × C20) are estimated. Additionally, one
covariance component is estimated for the covariance between C20 and C21/S21/C22/S22 of the ITG 2010
time series.

Iterations

The least-squares adjustment algorithm, described in Figure D, delivers adjusted residuals for all time
series and a posterori stochastic models. The matrix S (cf. Equation 3.42) is estimated by the SMCTE,
which draws one single sample for each trace. Koch and Kusche (2002), Kusche and Klees (2002) and
Kusche (2003) proposed a Cholesky decomposition. Since the extended SMCTE allows the estimation
of traces of asymmetric matrices and since inversions are replaced by a fast linear solver, provided by
the used computer software Matlab, a Cholesky decomposition is not necessary here (cf. Section 3.3).
Figure 5.2 illustrates the adjusted VCC. The VCC of the first two iterations are not shown, as they
partly have values larger than 100. If the VCC are estimated correctly, they converge to σj = 1 with
j = 1, . . . , 19. The adjusted σj vary around one in each iteration step, due to the stochastic characteristic
of the SMCTE. 50 iterations are calculated in total, in order to illustrate the stochastic effect of the
SMCTE.
The variance components of the daily time series show smaller variations than the variance components
of the GFC2 and the covariance component of the ITG 2010 time series. Furthermore, the variations
of the axial C20 variance components are larger than the variations of the equatorial C21/S21/C22/S22
variance components. According to Equation 3.61, the vector BViBTuk contains one non-zero vector
element per month in case of a C20 time series, whereas this vector contains approximately four non-zero
vector elements per month in case of C21/S21/C22/S22 time series and approximately 30 non-zero vector
elements per month in case of daily time series. (Note, here holds: B = I.) The variations of the adjusted
variance components obviously depend on the number of the elements in the stochastic vector BViBTuk
which are unequal to zero. Nevertheless, the covariance component surprisingly shows a clearly larger
variation than the C20 variance components. The reason for this behavior is not completely understood.
The condition number of the a priori matrices Vi might play a role. The matrix VCovariance, describing
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Figure 5.2: The estimated VCC since the third iteration are shown.

the correlation between C20 and C21/S21/C22/S22, has following structure in each epoch j

V j
Covariance =


0 σjC20 C21

σjC20 S21
σjC20 C22

σjC20 S22

σjC20 C21
0 0 0 0

σjC20 S21
0 0 0 0

σjC20 C22
0 0 0 0

σjC20 S22
0 0 0 0

 . 5.1

According to the last equation, a rank defect of three occurs per each epoch. A second possible reason
for the poorer convergence is discussed in Subsection 5.2.3.

5.2.2. Adjusted residuals

The least-squares adjustment results in consistent, adjusted time series. The residuals describe the dif-
ference between the original observations and the adjusted observations. Therefore, the residuals contain
the inconsistencies of the time series. The residuals of the EOP, the excitation functions and the GFC2
are analyzed by means of amplitude spectra to reveal systematic periods. Furthermore, the residuals
affect the adjusted VCC via the vector q (cf. Equation 3.41). Large residuals lead to large a posteriori
standard deviations and indicate a poorer degree of consistency.

Residuals of the EOP

Figure 5.3 shows the residuals of the EOP in the time domain and the frequency domain. The EOP
residuals are small compared to the residuals of the other time series. The polar motion residuals have a
maximal value of ±3 mas, which corresponds to ±0.14 TU, according to Table 4.1. The maximal LOD
residuals amount to ±0.1 ms (±0.5 TU). The largest amplitudes of the EOP residuals are associated
with periods of about two months corresponding to the cutoff frequency of the filter. These periods are
artifacts, caused by the filter and leakage effects. The Nyquist-Shannon theorem (Shannon, 1984) states
that a signal with a given frequency f can be reconstructed from an infinite sequence of samples, if the
sampling rate exceeds 2f samples. That means an annual signal can be detected, if it is measured at
least twice per year. Thus, as monthly GFC2 are considered, frequencies about six cycles per year and
higher cannot be validated mutually. That is the reason, that the daily time series are filtered with a
cutoff period of 60 days. Since the months contain a different number of days and the filters for daily and
monthly time series are therefore not exactly equal, additional leakage effects contribute to the artifacts.
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Figure 5.3: The residuals of the EOP are depicted in the time domain (left column) and the frequency domain (right column).

Residuals of the motion terms

The residuals of the motion terms are shown in Figure 5.4. The equatorial residuals do not exceed
±1.5× 1024 kgm2 s−1 (±1.2 TU), and the axial motion term residuals remain below ±8× 1024 kgm2 s−1

(±6 TU). The equatorial residuals partly are larger than their associated observations. This aspect is
discussed in the next paragraph. Both hx residuals are mainly dominated by noise. Both hy amplitude
spectra contain large peaks at the long period of 2 years and ten months. This period is slightly shorter
than the cutoff period of three years. On one hand, this long period might be a filter artifact, resulting
from slightly different filters for daily and monthly times series. On the other hand, this period might be
a remainder of a real long period not completely filtered out. This aspect is discussed in Subsection 5.3.1.
Both hy amplitude spectra additionally show small annual and semiannual peaks. Both hz amplitude
spectra show, like the EOP amplitude spectra, filter artifacts with periods about two months. The annual
signal in the non-ass. JPL hz amplitude spectrum is larger than the op. GFZ annual signal. non-ass. JPL
presents furthermore an additional semiannual signal in hz, which does not exist in the op. GFZ motion
term.
As the ELE determines the tensor elements by differences between EOP and motion terms, these differ-
ences instead of absolute values are validated by the mass terms and the GFC2. According to Subsec-
tion 4.3.2, inconsistencies in the differences might arise due to three reasons: first from the EOP, second
from the approximation of the polar motion time derivatives and third from the motion terms. The
splines allow to separate the combined residuals into EOP residuals and motion term residuals. However,
the inconsistencies due to the approximation of the time derivatives are not quantified and contaminate
either the polar motion or the motion term residuals. Thus, the large residuals of the equatorial motion
terms are likely caused by the approximation of the time derivatives.
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Figure 5.4: The residuals of the motion terms are shown in the time domain (left column) and the frequency domain (right
column). Blue lines denote residuals of the op. GFZ and red lines the residuals of non-ass. JPL.

Residuals of the mass terms

Figure 5.5 shows the residuals of the mass terms in the time domain and the frequency domain. The
equatorial residuals do not exceed ±3× 1024 kgm2 s−1 (±1.7 TU), and the maximal axial mass term
residuals amount to ±4× 1024 kgm2 s−1 (±2.2 TU). The equatorial graphs show a picture similar to
the motion term residuals. Both Ωcxz residuals show small annual peaks in the amplitude spectra. The
op. GFZ annual amplitude is slightly larger than the non-ass. JPL annual signal. The long period of
two years and ten month also is present and possesses large amplitudes in both Ωcyz amplitude spectra.
The two Ωczz residuals show large differences. The op. GFZ amplitude spectrum is dominated by the
artifact period of two months and two smaller amplitudes, denoting periods of one and two years. The
axial non-ass. JPL residuals show larger variations than the op. GFZ residuals. The amplitude spectrum
of the axial non-ass. JPL is dominated by a large annual amplitude and a longer period of two years.
However, as the GRACE gravity fields are determined with respect to a background model which incor-
porates the operational ECMWF atmosphere model and OMCT driven by operational ECMWF data, it
is expected that op. GFZ mass and motion terms show a higher degree of consistency to the EOP and
GFC2 and therefore smaller residuals than non-ass. JPL. The axial residuals satisfy this expectation,
whereas the equatorial residuals of both analyzed excitation functions have the same dimensions and
mostly contain the same periods.



64 5. Results

−3

−2

−1

0

1

2

3
Ω

c
x

z
in

1
0

2
4

k
g

m
2

s−
1

Residuals Mass Terms

2003 2004 2005 2006 2007 2008 2009
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6

Ω
c

x
z

in
1
0

2
4

k
g

m
2

s−
1

Amplitude spectra

op. GFZ

non-ass. JPL

−3

−2

−1

0

1

2

3

Ω
c

y
z

in
1
0

2
4

k
g

m
2

s−
1

2003 2004 2005 2006 2007 2008 2009
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6

Ω
c

y
z

in
1
0

2
4

k
g

m
2

s−
1

−4

−2

0

2

4

year

Ω
c

z
z

in
1
0

2
4

k
g

m
2

s−
1

2003 2004 2005 2006 2007 2008 2009
0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

frequency in cycles per year

Ω
c

z
z

in
1
0

2
4

k
g

m
2

s−
1

Figure 5.5: The residuals of the mass terms are shown in the time domain (left column) and the frequency domain (right
column). Blue lines denote residuals of the op. GFZ and red lines the residuals of non-ass. JPL.

Residuals of the GFC2

Figure 5.6 presents the GFC2 residuals in the time domain and the frequency domain. The equatorial
C21/S21 residuals have maximal values of ±2.5× 10−10 (±3.2 TU). The C20 residuals contain values of
±6× 10−10 (±9 TU) maximum. Hence, the GFC2 residuals are larger than the EOP residuals and the
residuals of the excitation functions. All C20 amplitude spectra contain an annual period. Three of the
six C20 time series, namely CRS R04, GFZ R04 and ITG 2010, additionally comprise amplitudes with
a frequency of 2.25 cycles per year, corresponding to a period of approximately 161 days. This period
results from errors in high-frequency ocean tide models. The period of 161 days is an alias period of the
S2 semidiurnal solar tide (Chen et al., 2009). The remaining C20 time series do not contain the S2 tide
alias. Since SLR C20 coefficients are not sensitive to this tide error, CSR SLR R04 and GRGS R02 C20
coefficients are not affected. The two step approach of JPL R04 successfully prevents a contamination
with this tide error as well.
The C21 residuals mainly contain noise apart from GRGS R02, which contains an additional annual
period. In contrast to C21, the S21 residuals possess amplitudes with periods of one year and two years.
The linear approximation of the ELE leads to the consequence that the C22 and S22 coefficients cannot
be validated by the EOP and excitation functions. Therefore, the residuals of C22 and S22 arise from
the redundant observation of six GFC2 time series. However, the four time series GRGS R02 C22,
GRGS R02 S22, CSR SLR R04 C22 and JPL R04 S22 time series contain an annual signal.
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Figure 5.6: The residuals of the six GFC2 time series are shown in the time domain (left column) and the frequency domain
(right column).
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5.2.3. Partial redundancies and a posteriori stochastic model

Subsection 3.1 discusses the partial redundancies as a measure of reliability. The partial redundancy of an
observation informs to which extent the specific observation is controlled by other observations. A small
partial redundancy of ri ≈ 0 indicates a weakly controlled observation. An error in a weekly controlled
observation has a high impact on the results. A large partial redundancy of ri ≈ 1 means a highly
controlled observation. Here, the combined least-squares adjustment problem has a total redundancy of
r = 31 761. The total redundancy is distributed over 32 800 observations. The adjustment problem is
therefore highly overdetermined. The partial redundancies of observations of the first and last epochs
are smaller than the partial redundancies of the observations in median epochs. However, the partial
redundancy of observations belonging to the same time series are basically homogeneous. Therefore, the
arithmetic averages of the partial redundancies of each time series are calculated and shown in Figure 5.7.
Apart from the C22/S22 time series, the averaged partial redundancies slightly differ and are larger than
0.95. The smaller partial redundancies of the C22/S22 coefficients are caused by the linearization of the
ELE. The linearization decouples C22/S22 from the other time series. Therefore, the partial redundancies
of the C22/S22 coefficients solely arise from the multiple observation of the gravity field.
According to Heiker et al. (2008) the polar motion and C22/S22 are not controlled by other observations,
and C21/S21 have partial redundancies of one. Since Heiker et al. (2008) considered only one GFC2 time
series, the C22/S22 coefficients were not controlled by other observations. Furthermore, Heiker et al.
(2008) considered the excitation functions as deterministic parameters and did not estimate VCC, which
caused the extreme partial redundancies of the polar motion and C21/S21.
The a posteriori standard deviations reflect the agreement of the time series and depend on the residuals.
Large residuals cause large VCC and standard deviations and therefore indicate a low agreement of
the specific time series with other time series. Since the a priori VCM of the daily time series are
modeled by Toeplitz matrices, the variances of the daily time series are time-invariant. Table 5.3 lists
the adjusted a posteriori standard deviations of the daily parameters. The standard deviations are
additionally transformed into TU according to Table 4.1. The a posteriori standard deviation of the
polar motion is approximately three to four times larger than the mean standard deviations of 0.07 mas
given by the IERS. Whereas the a posteriori standard deviation of LOD amounts to 7 µs and is slightly
smaller than the mean IERS standard deviation of 10 µs. The mean IERS standard deviations are
calculated by the arithmetic averages of the EOP 08 C04 standard deviations of the years 2002 to 2009.
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Table 5.3: a posteriori standard deviation of the daily time series

time series standard deviation σ̂ standard deviation σ̂ in TU

EOP 08 C04 px 0.3 mas 0.0132
EOP 08 C04 py 0.2 mas 0.0087
EOP 08 C04 ΛLOD 7 µs 0.2982
op. GFZ Ωcxz 3.5 · 1023 kgm2 s−1 0.1948
op. GFZ Ωcyz 4.2 · 1023 kgm2 s−1 0.2348
op. GFZ Ωczz 2.2 · 1023 kgm2 s−1 0.1231
op. GFZ hx 2.3 · 1023 kgm2 s−1 0.1890
op. GFZ hy 2.3 · 1023 kgm2 s−1 0.1914
op. GFZ hz 6.3 · 1023 kgm2 s−1 0.4741
non-ass. JPL Ωcxz 3.3 · 1023 kgm2 s−1 0.1867
non-ass. JPL Ωcyz 4.6 · 1023 kgm2 s−1 0.2590
non-ass. JPL Ωczz 4.0 · 1023 kgm2 s−1 0.2236
non-ass. JPL hx 2.4 · 1023 kgm2 s−1 0.1942
non-ass. JPL hy 2.5 · 1023 kgm2 s−1 0.2052
non-ass. JPL hz 9.6 · 1023 kgm2 s−1 0.7209

The time-variable a posteriori standard deviations of the gravity field coefficients are shown in Figure 5.8.
The a posteriori standard deviations of GFZ R04, JPL R04 and ITG 2010 are significantly larger in
June 2003, January 2004 and August to October 2004 than in the other months. The large values are
caused by suboptimal satellites orbits of the GRACE satellites. CSR R04, GFZ R04 JPL R04 and
GRGS R02 even do not provide a gravity field solution in June 2003. The gaps are filled by linear
interpolation. The C20 a priori and a posteriori standard deviations of CSR R04 are in contrast to the
other time series increasing with time due to unknown reasons.
The standard deviations are averaged and transformed into TU according to Table 4.1, in order to
compare standard deviations with different units. Since the GFC2 of the years 2003 and 2004 are
affected by suboptimal satellite orbits, the years 2003 and 2004 are not considered for the calculation of
the arithmetic averages. The averaged a posteriori standard deviations are described by two bar charts
in Figure 5.9. The bar chart on the left separates the standard deviations of the equatorial observations
from the standard deviations of the axial components on the right. The equatorial standard deviations
are smaller than the axial standard deviations.
As mentioned in Subsection 5.2.2, the inconsistencies in the differences between the EOP and the motion
terms are mainly assigned to the motion terms, although the approximation of the polar motion time
derivatives likely is the reason for large hx/hy residuals. Therefore, the EOP have the smallest standard
deviations. Since the GRACE AOD1B products result from the same geophysical models as op. GFZ and
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Figure 5.9: The bars in the left chart shows the averaged equatorial a posteriori standard deviations whereas the bar chart
on the right side illustrates the averaged axial a posteriori standard deviations.

since non-ass. JPL do not model the continental hydrology, it is expected that the op. GFZ excitation
functions show a higher consistency and therefore a lower standard deviations than non-ass. JPL. The
axial excitation functions satisfy this expectation, whereas the equatorial op. GFZ standard deviations
exhibit marginally smaller standard deviations than the non-ass. JPL excitation functions. Both axial
mass terms clearly show the smallest standard deviations and therefore contribute the largest weight to
the estimation of the tensor element czz. However, the equatorial mass terms and the combined standard
deviation for the difference of the polar motion and the motion terms have roughly similar standard
deviations.
The GFC2 time series generally show larger standard deviations than the EOP and excitation functions.
GRGS R02 provides the largest C21/S21 standard deviations. Since CSR SLR R04 possesses the smallest
standard deviations and since GRGS R02 considers also SLR, this result is surprising on one hand. On the
other hand, Bettadpur (2012) stated that the new GRACE CSR release 05 provides better estimations of
C21/S21 than SLR. The combined GRACE-SLR approach does not lead to improved C21/S21 coefficients
in GRGS R02. The standard deviations of ITG 2010 C21/S21 coefficients are slightly larger than the
standard deviations of the CSR SLR R04 coefficients. The C21/S21 coefficients of the official GRACE
data centers (CSR R04, GFZ R04 and JPL R04 ) possess larger standard deviations than CSR SLR R04
and ITG 2010.
The averaged standard deviation of the CSR R04 C20 coefficients is nearly twice as large as the other
C20 standard deviations. JPL R04 possesses the smallest C20 standard deviations. This result is surpris-
ing, since JPL R04 is a pure GRACE solution and since GRACE is less sensitive to C20 variations than
SLR. Therefore, the two step approach of the JPL reduces the errors in C20 quite successfully. A second
conclusion arises due to this result. Since CSR SLR R04 is expected to deliver the smallest residuals,
since it is based on the same background models as CSR R04 and since CSR R04 provides the largest
standard deviation, the CSR background models and processing strategies might be inferior compared
to the other groups.
The last two paragraphs discuss the a posteriori standard deviations of the GFC2. They do not analyze
the quality of the a priori formal errors. This paragraph relates the a priori and the a posteriori standard
deviations to each other. The a priori VCM of the GFC2 are composed of the formal errors provided
by the data centers. According to Wahr et al. (2006), the formal errors of GRACE time series are too
optimistic. To provide more realistic accuracy measures, CSR and GFZ add calibrated errors to their
results, which are obtained from comparisons of different gravity field solutions. The calibrated errors
of the GFC2 are approximately 13 times larger than the formal errors. Table 5.4 lists factors obtained
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Table 5.4: A posteriori standard deviations and calibrated errors divided by formal errors

GFC2 time series equatorial factor axial factor calibrated factor

CSR SLR R04 2.28 1.13
CSR R04 11.23 17.29 13.65
GFZ R04 40.56 30.33 13.56
JPL R04 36.98 44.95
ITG 2010 20.15 5.12
GRGS R02 58.36 33.46

by dividing the averaged a posteriori standard deviations and the calibrated errors by the formal errors.
These factors equal the squared roots of the adjusted VCC. The factors of the CSR SLR R04 solution are
slightly larger than one. Therefore, the formal errors of CSR SLR R04 describe a more or less realistic
accuracy. In contrast to SLR, the formal errors of all GRACE time series clearly are too optimistic.
The calibrated errors of CSR R04 approximately correspond to the a posteriori standard deviations and
therefore describe a realistic accuracy. The calibrated errors of GFZ R04 still are about a factor of
three too optimistic. The formal errors of GFZ R04, JPL R04 and GRGS R02 have to be multiplied by
factors between 30 and 60 to obtain realistic standard deviations. ITG 2010 also is too optimistic, but
has smaller factors than GFZ R04, JPL R04 and GRGS R02.
Apart from the variance components, the covariance between C20 and C21/S21/C22/S22 of ITG 2010
is estimated. Figure 5.10 shows the a priori and a posteriori correlation coefficients. The a posteriori
correlation coefficients are 2.1 times larger than the a priori correlation coefficients. Nonetheless, as the
maximal correlation coefficients amounts to ±0.3, the correlation coefficients remain small. However, it is
assumed, that the correlations between C20 and C21/S21/C22/S22 of all other GFC2 time series are zero.
The neglected correlations of five time GFC2 time series might cause the small correlation coefficients of
the ITG 2010 time series.
In order to analyze the influence of neglected covariances, the adjustment is repeated by taking only
ITG 2010 into account. Surprisingly, the convergence of the covariance component deteriorates and
varies between 0.01 < σCovariance < 4. Therefore, a reliable estimation of the covariance component is not
possible due to the large variations. Increasing the number of samples drawn by the SMCTE does not
improve the convergence substantially. Since the covariance component is successfully estimated during
the first adjustment, which takes six gravity field solutions into account, the algorithm likely is not the
reason for the poor convergence. According to Xu et al. (2007), the total number of VCC is limited by the
total redundancy of the adjustment problem. However, the poor convergence leads to the suspicion that
the estimation of an individual variance or covariance component is not limited by the total redundancy
but rather by the partial redundancies of the involved observations. As only one gravity field solution
is considered in the second adjustment, C21 and S21 show reduced partial redundancies and C22 and
S22 partial redundancies of zero. Therefore, the C22 and S22 residuals also are near zero and do not
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Figure 5.10: The a priori and a posteriori correlations coefficients between C20 and C21 (left graph) and between C20 and
S21 (right graph) of ITG 2010 are illustrated.
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contribute to the estimation of VCC (cf. vector q in Equation 3.41). Therefore, the reliability of the
estimation of VCC likely depends on the partial redundancies of the associated observations.

5.2.4. Summary and open questions

The least-squares adjustment delivers residuals for each time series, VCC and the adjusted tensor of
inertia. The residuals contain the inconsistencies of the data, caused by measurements errors or inaccurate
models. Therefore, a thorough analysis of the residuals provides a valuable insight into the quality of
the validated data. The adjusted VCC depend on the residuals and determine the a posteriori VCM of
the time series. A transformation of the a posteriori standard deviations into a common TU facilitates
comparisons of time series with different units. The larger the transformed standard deviations, the less
the associated time series contribute to the adjusted tensor of inertia. The adjusted tensor of inertia is a
weighted average of the tensors resulting from the individual time series. However, the results obtained
in this section arise further open questions that are investigated within the following Section 5.3. The
results and the open questions are summarized by following list.

• Most residuals show an annual signal. The annual signal results from inconsistencies of consid-
ered data and models. The residuals of hy and Ωcyz additionally contain a long period, which
is either caused by filter artifacts or by existing inconsistencies. This aspect is investigated in
Subsection 5.3.1.

• The equatorial op. GFZ excitation functions show a marginally higher degree of consistency with
the EOP and GFC2 than the non-ass. JPL excitation functions. The axial op. GFZ excitation
functions clearly are more consistent to LOD and C20 time series than the non-ass. JPL excitation
functions.

• The inconsistencies arising from the difference between the polar motion and the equatorial motion
terms are mainly caused by the approximation of the polar motion time derivatives. The least-
squares adjustment is not able to separate inconsistencies due to the polar motion, the approxima-
tion of the time derivative and the motion terms. The inconsistencies due to the time derivatives do
not deteriorate the polar motion residuals but rather enlarge the motion term residuals. Therefore,
a reliable validation of the equatorial motion terms hx/hy is not possible.

• The axial mass terms of the excitation functions contribute the largest weights to the adjusted
tensor element czz. The equatorial mass terms and the difference between the polar motion and
the motion terms contribute roughly the same weight to the determination of the adjusted tensor
elements cxz/cyz. The GFC2 time series contribute the smallest weights.

• The known S2 tide alias is successfully identified in those GRACE C20 time series which are not
stabilized by further appropriate measures.

• JPL uses a two step approach for the estimation of the GRACE gravity field solution JPL R04.
This approach reduces the C20 errors efficiently. Therefore, the JPL R04 C20 values even show a
slightly higher degree of consistency than the CSR SLR R04 C20 values.

• The GRACE GFC2 formal errors clearly are too optimistic, whereas the formal errors of CSR SLR
R04 seem to be realistic.

• The adjusted correlations between C20 and C21/S21/C22/S22 of the ITG 2010 time series are small.

• The results are obtained by assuming the tensor trace constraint in Equation 2.66. Since the tensor
element czz can be redundantly determined by LOD and the axial excitation functions, the tensor
trace constraint is not necessary to obtain a unique solution of the system of normal equations. The
tensor trace constraint is a strict constraint, which influences the estimation of the tensor elements
essentially. In order to analyze the effect of this constraint, the tensor trace constraint is neglected
in Subsection 5.3.2.
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• The GFC2 and the gravity field coefficients of higher degrees are linked by correlations. If the
GFC2 change due to the least-squares adjustment, the gravity field coefficients of higher degrees
have to change likewise. Thus, the least-squares adjustment model is extended in Subsection 5.3.3,
to take the gravity field coefficients of higher degrees into account.

5.3. Investigation of further open questions
5.3.1. Effect of the filter on the least-squares adjustment

The results presented in the previous section are based on filtered data. The filters remove frequencies
which are not present in all time series. For example, geophysical processes in the Earth’s core cause
long periodical variations of LOD, which are not modeled by the excitation functions. On one hand,
the filters increase the consistency of the data before the adjustment is performed and therefore lead
to decreased residuals. On the other hand, the filters alter the original data and filter artifacts might
arise. Hence, suspicion arises in Section 5.2 that long periods detected in the equatorial mass and motion
term residuals are caused by filter artifacts. In order to analyze the effect of the filters, the least-squares
adjustment in Section 5.2 is repeated with unfiltered data. However, linear trends are removed from
the data before the adjustment to account for biases and secular trends. Heiker et al. (2012) suggested
an alternative approach which considers unaltered data by estimating the biases and trend parameters
within the least-squares adjustment.
The resulting residuals of the time series are significantly larger than the residuals in Section 5.2, because
they additionally contain inconsistent frequencies not filtered out before. Figure 5.11 illustrates the
residuals of LOD. A comparison with Figure 5.3 reveals significantly larger residuals. The long periods in
the residuals are caused by the Earth’s core, which is not modeled by excitation functions. Furthermore,
the residuals contain increased amplitudes in frequency between six and twelve cycles per years. As
monthly cubic splines model unfiltered daily time series, frequencies larger than six times per year are
expected here.
Figure 5.12 presents the residuals of the mass terms. They also are larger than the residuals in Figure 5.5.
The long period in the Ωcyz residuals is still present. Therefore, the long period in Figure 5.5 is not caused
by a filter artifact but is rather a residual signal which is not completely filtered out. However, since the
times series only cover six years, the specific long period cannot be identified more precisely. Therefore,
further conclusions regarding underlying geophysical processes cannot be drawn here. According to
Figure 5.5, the axial op. GFZ mass term residuals show a better agreement with LOD and the C20 time
series than non-ass. JPL. Surprisingly, this finding is not verified by Figure 5.12, where the axial op. GFZ
residuals even show a larger annual amplitude than the non-ass. JPL residuals.
The motion term residuals show a similar pattern as the mass term residuals. Therefore, they are not
presented here. The residuals of the GFC2 are barely changed by the neglected filter. Since the daily
time series show significantly larger residuals due to the unfiltered high frequencies, the averaged standard
deviations increase likewise. In contrast to Figure 5.9, the transformed averaged standard deviations of
the excitation functions are larger than the standard deviations of the GFC2.
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Figure 5.11: The residuals of the LOD are shown in the time domain (left column) and the frequency domain (right column).
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Figure 5.12: The residuals of the mass terms are shown in the time domain (left column) and the frequency domain (right
column). Blue lines denote residuals of the op. GFZ and red lines the residuals of non-ass. JPL.

This subsection leads to the conclusion that the reduction of previously known inconsistencies improves
the results and the interpretation of the results significantly. Additionally, this subsection reveals that
the inconsistent long periods obtained in Section 5.2 are not caused by filter artifacts.

5.3.2. Effect of the tensor trace constraint

According to Rochester and Smylie (1974) the trace of the tensor of inertia is invariant to any redistribu-
tion of masses as long as the principle of mass conversation holds. The gravity field solutions consider the
Earth’s total masses. In contrast to the gravity field coefficients, the excitation functions do not model
the masses of all subsystems. For example, water in glaciers, ice shelfs and partly in the continental
hydrology is not modeled. Therefore, the excitation functions violate the principle of mass conversation.
However, the tensor trace constraint is justified by assuming that the masses of the neglected subsystems
are small compared to the atmospheric and oceanic masses.
The tensor trace constraint in Equation 2.66 stabilizes the estimation of the tensor of inertia by the EOP,
GFC2 and the excitation functions. It relates the tensor element czz linearly to C20, and the elements cxx
and cyy are linearly dependent on C20 and C22. As the tensor element czz can be redundantly determined
by LOD and the axial excitation functions, the tensor trace constraint is not necessary to obtain a unique
solution of the system of normal equations. If the tensor trace constraint is neglected, the C20 gravity
field coefficients are not validated by the EOP and the excitation functions. Then, C20 observations are
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Figure 5.13: The adjusted tensor elements on the main diagonal of the tensor of inertia are plotted. Red lines illustrate the
tensor elements resulting from an adjustment which considers the tensor trace constraint. The blue lines are
obtained from an adjustment which neglects the tensor trace constraint.

only validated by the multiple observation of the gravity field coefficients, and the tensor elements cxx
and cyy are determined by the gravity field coefficients C20, C22, LOD and the axial excitation functions.
The least-squares adjustment described in Section 5.2 is repeated with identical functional and stochastic
models, except that the tensor trace constraint is not considered. The adjusted tensor elements cxx,
cyy and czz differ from the results obtained in Subsection 5.2. Figure 5.13 shows the tensor elements.
The red lines are obtained from the adjustment which considers the tensor trace constraint. The blue
lines result from the adjustment which neglects the tensor trace constraint. The right graph shows nearly
identical tensor elements czz. The difference between both czz solutions does not exceed ±0.02 TU. Small
differences between the two czz solutions are expected, as according to Section 5.2 the axial mass terms
contribute the largest weights to the adjusted tensor element czz. However, the tensor elements cxx and
cyy show significantly larger differences than czz. If the tensor trace constraint is considered, the cxx and
cyy depend on C20 and C22. In contrast, if the tensor trace constraint is neglected, the tensor elements cxx
and cyy additionally depend on LOD and the axial excitation functions, which leads to different values
for cxx and cyy.
On one hand, the tensor trace constraint is a meaningful assumption, as it reflects the physical law of the
mass conservation (Rochester and Smylie, 1974). On the other hand, the tensor trace constraint highly
impact the estimation of the unknown tensor of inertia. However, Rochester and Smylie (1974) do not
give a numerical value for the trace of the tensor of inertia. Figure 5.14 shows the trace of the tensor
of inertia, which is obtained by neglecting the tensor trace constraint. The trace of the tensor of inertia
varies around zero and shows an annual period with maximal values of about ±8 TU. The assumption
that the constant trace equals the sum of the principal moments of inertia is confirmed by the variations
around zero. The trace cumulates the inconsistencies in LOD, the axial excitation functions, C20 and
C22. The residuals of the axial time series mostly have annual periods, according to Subsection 5.2.2. The
individual contributions of the time series to the inconsistent trace cannot be identified. An amplitude
of approximately ±8 TU is expected, as the averaged axial standard deviations in Figure 5.9 amounts
up to 3.2 TU.
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Figure 5.14: The trace of the tensor of inertia is shown, which is obtained by neglecting the tensor trace constraint.
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According to this subsection, the tensor trace constraint is necessary to assign inconsistencies to the
individual time series. Furthermore, it is confirmed that the constant trace equals the sum of the principal
moments of inertia.

5.3.3. Effect of covariances on the gravity field coefficients of higher degrees

As mentioned before, the raw GRACE gravity field coefficients deliver potential maps with north-south
stripes due to the satellite geometry. The stripes are accompanied by high correlations between the
gravity field coefficients of even and odd degrees (Swenson and Wahr, 2006). Figure 5.15 illustrates the
correlation coefficients of the ITG 2010 gravity field coefficients up to degree/order ten of June 2008.
The correlation coefficients are summarized in a correlation matrix. The correlation matrix is sorted by
degrees and within the degrees by orders. The high correlation coefficients of even and odd degrees are
visible clearly.
If the GFC2 change due to the combined adjustment, the gravity field coefficients of higher degrees
also change due to correlations. Uncorrelated gravity field coefficients of higher degrees are not effected
whereas highly correlated observations show large residuals. The correlations between the GFC2 and the
gravity field coefficients of higher degrees are small (compare first row and left column of Figure 5.15).
Therefore, one can assume that the impact of the correlations is small, too. To analyze the effect of the
correlations, the least-squares adjustment model of Section 5.2 is modified. The gravity field coefficients
up to degree/order ten are introduced as additional observations on the one hand and as additional
unknown parameters on the other hand. The total redundancy of the adjustment problem is not changed
by this modification.
The modified adjustment model only considers ITG 2010, as this time series is the sole gravity field
solution with covariances information. According to Subsection 5.2.3, the correlation coefficients between
C20 and C21/S21 are enlarged by the factor 2.1 due to the covariance component estimation. Figure 5.15
shows that correlation coefficients exist, which are larger than ±0.5. The duplication of the correlation
coefficients would lead to values larger than ±1 and consequently to incorrect negative definite VCM.
Therefore, covariance components are not estimated. The extended adjustment model estimates one
common variance component for ITG 2010.
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Figure 5.15: The figure illustrates the correlation coefficients of the ITG 2010 gravity field coefficients up to degree/order
ten. The correlation matrix of June 2008 is shown.
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The obtained C20, C21 and S21 residuals are similar to the residuals in Figure 5.6. Since the C22 and S22
coefficients are not controlled by other gravity field coefficients, the residuals of C22/S22 and the residuals
of coefficients of higher degrees mostly are significantly smaller than the C20, C21 and S21 residuals. The
residuals correspond to the correlation matrix in Figure 5.15. Residuals of gravity field coefficients of odd
and even degrees and high orders have larger absolute values than the residuals of gravity field coefficient
of low orders, because gravity field coefficients of high orders show larger correlations than gravity field
coefficients of low orders.
The adjusted residuals are used to calculate residual potential maps according to Equation 2.57. The
residual potential is calculated for r = a, where a denotes the Earth’s radius. The resulting residual
potential maps of the year 2005 are plotted in Figure 5.16. If the absolute C20 residuals are larger than
zero and all other residuals are zero, the residual potential maps show a horizontal stripe. If only C21/S21
residuals are considered, the residual potential maps show a checkerboard pattern. If the effects of C20
and C21/S21 residuals are added, a typical S-shaped structure is visible in the residual potential maps.
The maps in Figure 5.16 are dominated by C20, C21 and S21 residuals. The maps of most months (e.g.

January 2005 February 2005 March 2005

April 2005 May 2005 June 2005

July 2005 August 2005 September 2005

October 2005 November 2005 December 2005

−0.020 −0.015 −0.010 −0.005 0.000 0.005 0.010 0.015 0.020

Residual potential in m2/s2

Figure 5.16: The maps show the residual potential obtained from the residuals of the ITG 2010 gravity field coefficients.
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May 2005 and December 2005) show smaller structures within the S-band, caused by residuals of higher
degrees. As gravity field coefficients of higher degrees are hardly correlated with GFC2, the effect of
the correlations is surprisingly large. The high systematic correlations between even and odd degrees
likely amplify the influence of the originally small correlations between the GFC2 and the gravity field
coefficients of higher degrees.
The approach described in this subsection is relevant. Correlations between the GFC2 and the gravity field
coefficients of higher degrees cannot be neglected. Therefore, the release of more covariance information
is recommended. If potential maps are drawn by means of the results obtained within this dissertation,
the effect of the correlations has to be considered.
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6. Summary and outlook
6.1. Summary
The main goal of this dissertation was the mutual validation of EOP, GFC2 and the geophysical excitation
functions. The common link between these time series was the Earth’s tensor of inertia. As this common
link was not taken into account during the derivations of the different time series, it allowed the mutual
validation of the time series. Since the functional relation between the time series and the tensor of inertia
was linear, a linear least-squares adjustment in a constrained GHM was chosen as a suitable approach
for the mutual validation. The time series resulted from different sources, therefore the least-squares
adjustment had to include an estimation of VCC to account for the different relative accuracy of the time
series. The main results of the dissertation are summarized as follows:

• A universal least-squares solver has been developed within this dissertation. This solver is suitable
for each linear least-squares adjustment problem. The SMCTE developed by Koch and Kusche
(2002), Kusche and Klees (2002) and Kusche (2003) has been extended in a manner that the
SMCTE is able to estimate not only variance components but also covariance components in a
constrained GHM. That has resulted in an efficient algorithm, whose pseudocode is presented in
this dissertation.

• The daily times series had to be downsampled to representative monthly epoch values due to the
different temporal resolution of the time series. Furthermore, the ELE required the time derivatives
of the polar motion. Since the time derivatives were not accessible by observations, they were
approximated by polar motion observations. Two approaches were discussed, both approaches had
significant disadvantages. Therefore, it was concluded that the direct observation of polar motion
time derivatives would have improve the validation. However, the polar motion time derivatives
currently are not included in the IERS time series.

• The least-squares adjustment was performed by taking into account the EOP 08 C04 from the
IERS, the two excitation functions op. GFZ and non-ass. JPL and six gravity field solutions (CSR
SLR R04, CSR R04, GFZ R04, JPL R04, ITG 2010 and GRGS R02 ). The data were filtered
before the adjustment, in order to reduce a priori known inconsistencies. The time series covered
approximately six years between April 2003 and February 2009. In total, 18 variance components
and one covariance component were estimated by the suggested adjustment algorithm. The mutual
validation of nine different time series resulted in residuals, containing the inconsistencies, and
adjusted VCM, reflecting the agreement of the time series. The results are summarized as:
– Most residuals showed annual periods. The EOP residuals were generally small. The residuals

of the equatorial motion terms partly were larger than the observed motion terms. These large
residuals were caused by the approximation of the polar motion time derivatives by analytic
functions. Both Ωcxz residuals mainly contained noise, whereas both Ωcyz residuals showed a
low periodical signal, whose frequency could not be identified precisely due to the short time
series. The axial op. GFZ excitation functions had a higher degree of consistency than the
axial non-ass. JPL excitation functions. Those three GRACE gravity field solutions, whose
C20 coefficients were not stabilized by further appropriate measures, were identified by the
S2 tide alias in the C20 residuals. The C21 residuals mainly contained noise, whereas the
S21 residuals showed an annual period and a long period, both periods with small amplitudes.
The C22/S22 coefficients were not validated by the EOP and excitation functions due to the
linear approximation of the ELE.

– The variations of the adjusted VCC around the point of convergence differed. The extent
of the variations depended on the number of the residuals considered for the estimation of
the individual variance or covariance components. The second impact factor was the partial
redundancy of the associated observations. Additionally, the condition of the a priori VCM was
assumed to play a role, since the adjusted covariance component for the covariance between
C20 and C21/S21/C22/S22 varied more than C20 variance components.

– The a posteriori standard deviations were obtained from the VCC, transformed into a common
TU and averaged over the time. The smaller the mean standard deviations were, the larger
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were the weights contributed to the adjusted tensor elements by the associated time series.
The EOP and the motion terms jointly contributed to the adjusted tensor of inertia. The mass
terms and the difference between the EOP and the motion terms roughly contributed with
equal weights to the adjusted equatorial tensor elements, whereas the axial mass terms clearly
showed the largest weights. The GFC2 contributed the smallest weights to the equatorial and
axial tensor elements. However, the JPL R04 C20 coefficients possessed a larger weight than
CSR SLR R04 coefficients, although JPL R04 was a pure GRACE solution. Thus, the two
step approach (cf. Subsection 5.1.2) of the JPL was highly convincing. The results indicated
further that the CSR background models or processing strategies might be inferior compared to
the other data centers, particularly because the CSR R04 C20 gravity field coefficients had an
averaged standard deviation twice as large as the other data centers. However, if the adjusted
averaged standard deviations of the GFC2 were compared to the a priori formal and calibrated
errors, CSR was the only data provider delivering realistic standard deviations for CSR R04
and CSR SLR R04. The other GFC2 were delivered with too optimistic formal errors. The
adjusted covariance component doubled the a priori correlation coefficients between C20 and
C21/S21/C22/S22 of ITG 2010. Nevertheless, the adjusted covariances remained small.

• Finally, the least-squares adjustment was repeated with different conditions, in order to address
three specific questions: First, the adjustment was repeated with unfiltered data. Then, the residu-
als of the daily time series were enlarged significantly, as high-frequent variations remained present.
This adjustment also revealed that the long period identified in the first adjustment did not re-
sult from filter artifacts but was rather present in reality. The second adjustment were performed
without the tensor trace condition. Then, C20, C22 and S22 were not validated by the EOP and
the excitation functions. Their residuals resulted from the multiple observation of the gravity field.
The resulting trace of the tensor of inertia was not zero and showed annual variations, caused by
inconsistent axial time series. The third adjustment model investigated the effect of the covariances
between the GFC2 and the gravity field coefficients of higher degrees. The gravity field coefficients
of higher degree were introduced on one hand as observations and as unknown parameters on the
other hand. This extension did not change the total redundancy. The resulting residuals of the
gravity field coefficients of higher degree were smaller than the residuals of C20, C21 and S21. How-
ever, the higher a gravity field coefficient was correlated with other coefficients, the larger was its
residual. The resulting residual potential maps were dominated by the residuals of C20, C21 and S21
coefficients, but the effect of the gravity field coefficients of higher degrees also were visible. Thus,
if the adjusted GFC2 are used for further applications, the changes of gravity field coefficients of
higher degrees, caused by correlations, have to be considered, too.

6.2. Outlook
Time series covering nearly six years were mutually validated within this dissertation. The length of
the time series is currently limited by ITG 2010, which is the only time series delivered with complete
stochastic information. Longer time series are required to identify long periodical inconsistencies in the
time series. Unfortunately, the outdated GRACE satellites are expected to last not longer than 2013 or
2014, since their batteries are already running low. The GRACE follow-on mission is scheduled for 2017.
Therefore, a gap between the current GRACE mission and the follow-on mission has to be expected,
which impedes an analysis of long GRACE time series. Time variable gravity fields can be obtained
from SLR with a low spatial resolution. However, the results of this dissertation show that C22 and S22
cannot be validated and reliable covariance components cannot be estimated, if only one gravity field
time series is considered. The longest period, in which several gravity field solutions are available, will
span approximately eleven years in near future.
The available data mostly have a temporal resolution of one month. As the months have a different
number of days, the gravity field solutions are not exactly equidistant and a time series analysis is more
effected by leakage effects than necessary. Therefore, it is recommended to process strictly equidistant
gravity field solutions. A higher temporal resolution of the GFC2 would allow to validate shorter periods
than the two month period. Gravity field solutions exist, which have a temporal resolution of 10 days
or one week. These solutions are constrained, as the GRACE satellites provide too few ground tracks to
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allow unconstrained gravity field solutions with a high temporal resolution. If several pairs of GRACE
satellites were in the orbit, unconstrained gravity field solutions with a higher temporal resolution would
be available.
Covariance components are estimated correctly and showed the same convergence as variance compo-
nents in simple simulated examples. In contrast to that, the covariance components between C20 and
C21/S21/C22/S22 of ITG 2010 showed comparatively large variations around the point of convergence, if
six gravity field time series was considered. If only ITG 2010 was considered, the convergence decreased
such that a reliable estimation of the covariance component were not possible. Therefore it was concluded
that the partial redundancies might play a major role. Though the estimation of covariance components
is described on a theoretical basis in literature, no further numerical examples for the estimation of co-
variance components are available so far. The reason for the deteriorated convergence of the covariance
components is not completely understood up to now. Further theoretical and experimental investigations
are necessary. Two reasons might cause the insufficient convergence of the covariance components: First
the SMCTE might not estimate the traces with sufficient accuracy. Finding tighter bounds for the trace
estimation of asymmetric matrices (Equation 3.57) might clarify the effect of the SMCTE. The second,
more likely reason for inaccurate covariance components might be an ill-conditioned matrix S (Equa-
tion 3.42), which is probably caused by too small partial redundancies of the associated observations.
The proposed linear least-squares solver is proven to be an adequate approach for the mutual validation.
However, other approaches also might be suitable. The Kalman and Bayes filter are highly efficient,
recursive analysis methods. Two steps are performed in each filter epoch. First, based on previous epochs
and a mathematical model, the filters predict the state vector, containing the unknown parameters, for
the current epoch. In the second step, the observations of the current epoch are taken into account and
are used to improve the predicted state vector. Then, the improved state vector is the basis for the
next prediction. However, as the time derivatives of the polar motion are unavailable, they have to be
approximated. If the time derivative of the current epoch is approximated by a difference quotient, the
current epoch depends on measurements of the previous and the next epoch. Thus, the measurements of
the epochs are not independent on each other and three different residuals occur for the same observation
in three consecutive epochs. If the temporal correlations are stretched over several epochs, the application
of recursive filters is additionally complicated. However, despite of the difficulties due to the epoch
dependencies, the Kalman filter is currently investigated, in order to estimate Love numbers (personal
communication S. Kirschner and F. Seitz, September 2012).
This dissertation validated integral time series. The validation did not allow a spatial separation of
specific effects. However, the spatial resolution of gravity fields is described by the maximal degree and
order of the gravity field coefficients. If gravity field coefficients of higher degrees can be validated, a
spatial mapping of inconsistencies is possible. The geophysical models deliver masses and motions of the
Earth subsystems in threedimensional grids. The grid values can be used to integrate modeled gravity
field coefficients of degree n and order m according to the Equations 2.58. A comparison of the resulting
modeled gravity field coefficients with gravity field coefficients resulting from measurements would allow
the spatial mapping of inconsistencies. Thus, this dissertation might be a first step towards the spatial
validation of geophysical models and gravity field coefficients of higher degrees. The spatial validation
should be a further fascinating research project.
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Appendix A Removing long periodic tidal variations from EOP
The polar motion is usually expressed by a complex-valued quantity

p̃ = px − i py, A.1

where by conventions the px points towards the 0° longitude and py towards the 90°W longitude.
The complex-valued corrections δp̃ due to long periodic oceanic tides (10 periods from 9 days to 18.6 years)
in the polar motion are according to IERS Conventions (2010, chapter 8)

δp̃ = δpx − i δpy =
10∑
j=1

Apj exp
(
φpj

)
exp (iξj) +Arj exp

(
φrj

)
exp (−iξj) . A.2

The prograde and retrograde amplitudes Apj and Arj and the prograde and retrograde phases φpj and
φrj are given in IERS Conventions (2010, table 8.4). The arguments ξj are time-dependent values given
in Equation A.5. These corrections result from the Dickman and Nam (1995) and Dickman and Gross
(2010).
The correction for long periodic, lunisolar, tidal effects (62 periods from 5 days to 18.6 years) in the polar
motion and LOD / UT1-UTC are obtained from

δUT1 =
62∑
j=1

Bj sin ξj + Cj cos ξj A.3

δLOD=
62∑
j=1

B′j sin ξj + C ′j cos ξj . A.4

Bj , Cj , B′j and C ′j are given in IERS Conventions (2010, table 8.1). The values in this table result from
Yoder et al. (1981), Wahr and Bergen (1986) and Kantha et al. (1998). The arguments ξj are calculated
from the fundamental arguments αk of the nutation theory by

ξj =
5∑

k=1
ajkαk. A.5

The integer multipliers ajk for the kth tide are given in the tables 8.1 and 8.4 of the IERS Conventions
(2010). The fundamental arguments αk are according to IERS Conventions (2010, section 5.7.2)

α1 = l = 134.96340251◦ + 1717915923.2178′′t′ + 31.8792′′t′2 + 0.051635′′t′3 − 0.00024470′′t′4
α2 = l′ = 357.52910918◦ + 129596581.0481′′t′ − 0.5532′′t′2 + 0.000136′′t′3 − 0.00001149′′t′4
α3 = F = L−Ω

= 93.27209062◦ + 1739527262.8478′′t′ − 12.7512′′t′2 − 0.001037′′t′3 + 0.00000417′′t′4
α4 = D = 297.85019547◦ + 1602961601.2090′′t′ − 6.3706′′t′2 + 0.006593′′t′3 − 0.00003169′′t′4
α5 = Ω = 125.04455501◦ − 6962890.5431′′t′ + 7.4722′′t′2 + 0.007702′′t′3 − 0.00005939′′t′4

A.6

where t′ denotes the Julian centuries since the J2000.0

t′ = (t− J2000.0) in days
36525 . A.7

The fundamental arguments are linear combinations of

l: mean anomaly of the Moon,
l′: mean anomaly of the Sun,
L: mean longitude of the Moon,
Ω: mean longitude of the ascending node of the Moon and
D: mean elongation of the Moon from the Sun.

The corrections in Equations A.2, A.3 and A.4 have to be subtracted from the observed EOP, in order
to obtain EOP free from long periodic tidal variations.
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Appendix B Theorems from Koch (1999)
Koch (1999) provided several theorems including their proofs which are used for the derivations in Chap-
ter 3. This appendix lists the most important theorems without proofs.

Theorems 1.143 and 1.144, page 40: Trace operations
Let A and B be two n× n matrices. Then it holds

tr (A+B) = tr (A) + tr (B) . B.1

Further let A be a n× r and B a r × n matrix. Then it holds

tr (AB) = tr (BA) . B.2

Theorem 1.267, page 69: Differentiation of quadratic forms
Let x be a n× 1 vector and A a n× n matrix. Then it holds

dxTAx

dx = 2Ax. B.3

Theorem 1.269, page 70: Differentiation of the trace of a matrix product
Let A be a m× n and B a n×m matrix. Then it holds

d tr (AB)
dA = BT. B.4

Theorem 1.270, page 70: Differentiation of the trace of a matrix product of the type
ABAC

Let A be a m× n and B and C two n×m matrices. Then it holds

d tr (ABAC)
dA = (BAC +CAB)T . B.5

If B = C and A and B are symmetric, it follows from this theorem

d tr (ABAB)
dA = 2BAB. B.6

Theorem 2.174, page 134: Expectation value of a quadratic form
Let x be a n × 1 stochastic vector with the expectation value E (x) = µx and the VCM Dxx. Then it
holds

E
(
xTAx

)
= tr (ADxx) + µT

xAµx. B.7

Theorem 2.175, page 134: Covariance of two quadratic forms
The n × 1 stochastic vector x is assumed to be normally distributed with x ∼ N (µx, Dxx). Then it
holds for the covariance of the two quadratic forms xTAx and xTBx

Cov
(
xTAx,xTBx

)
= 2 tr (ADxxBDxx) + 4µT

xADxxBµx. B.8

The variance of a quadratic form follows from this theorem with

Var
(
xTAx

)
= 2 tr (ADxxADxx) + 4µT

xADxxAµx. B.9
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Appendix C Förstner’s approach and the estimation of covariance
components

Assume, that the x- and y-coordinate of one point in a 2D-reference system is observed n times with
equal but unknown accuracy. The x- and y-coordinates of each observation are correlated and the
n observations of this point are not correlated which each other. The adjusted coordinates of the point
and the variances σ2

x and σ2
y and the covariance σxy are estimated according to Section 3.2. This problem

is an unconstrained GMM. Since the coordinates of the point are observed with equal accuracy, one
would expect that the adjusted point coordinates are the arithmetic average of the observations and the
adjusted variances and covariance are equal to the empirical variances and covariance. This appendix
proves two facts: First, the results of the variance covariance estimation are as expected and second,
Förstner’s approach fails, if covariances have to be considered.
If the observations and unknown parameters are sorted as follows, the design matrix A is

l =



x1
x2
...
xn
y1
y2
...
yn


, β =

[
x
y

]
, and A =



1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1


. C.1

The VCM of the observation is obtained from the ’first-guessed’ variances σx2
0 and σy2

0 and the covariance
σxy0

Σll0 =
[
σx

2
0I σxy0I

σxy0I σy
2
0I

]
with I = n× n identity matrix. C.2

Then, the system of normal equations is

n

σx2
0σy

2
0 − σxy2

0

[
σy

2
0 −σxy0

−σxy0 σx
2
0

]
β = 1

σx2
0σy

2
0 − σxy2

0

[
σy

2
0
∑n
i=1 xi − σxy2

0
∑n
i=1 yi

−σxy0
∑n
i=1 xi + σx

2
0
∑n
i=1 yi

]
. C.3

This system of normal equations leads to the adjusted point coordinates, which are independent of the
chosen a priori VCM

β̂ =
[
x̂
ŷ

]
= 1
n

[∑n
i=1 xi∑n
i=1 yi

]
. C.4

As expected, the adjusted point coordinates are the arithmetic average of the observations. The residuals
are the deviations of the observations from the arithmetic average with

εx =


x1 − x̂
x2 − x̂

...
xn − x̂

 and εy =


y1 − ŷ
y2 − ŷ

...
yn − ŷ

 . C.5

The VCC σ2
x, σ2

y and σxy are estimated based on following stochastic model

Σll = σ2
x σ

2
x0

[
I 0
0 0

]
︸ ︷︷ ︸

Vx

+σ2
y σ

2
y0

[
0 0
0 I

]
︸ ︷︷ ︸

Vy

+σxy σxy0

[
0 I
I 0

]
︸ ︷︷ ︸

Vxy

. C.6

The estimation of the VCC is obtained according to Section 3.2. With the given design matrix and
systems of normal equations, the matrix W is

W = 1
σx2

0σy
2
0 − σxy2

0

 σy
2
0

(
I − 1

nE
)

−σxy0

(
I − 1

nE
)

−σxy0

(
I − 1

nE
)

σx
2
0

(
I − 1

nE
)  with E =

1 . . . 1
... . . . ...
1 . . . 1

 . C.7
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Then, the matrix S and the vector q are

S = n− 1(
σx2

0σy
2
0 − σxy2

0
)2
 σx

4
0σy

4
0 σx

2
0σy

2
0σxy

2
0 −2σx2

0σy
2
0σxy

2
0

σx
2
0σy

2
0σxy

2
0 σx

4
0σy

4
0 −2σx2

0σy
2
0σxy

2
0

−2σx2
0σy

2
0σxy

2
0 −2σx2

0σy
2
0σxy

2
0 2

(
σxy

4
0 + σx

2
0σy

2
0σxy

2
0
)
 ,

q = 1(
σx2

0σy
2
0 − σxy2

0
)2
 σx

2
0σy

4
0ε

T
xεx − 2σx2

0σy
2
0σxy0ε

T
y εx + σx

2
0σxy

2
0ε

T
y εy

σy
2
0σxy

2
0ε

T
xεx − 2σx2

0σy
2
0σxy0ε

T
y εx + σx

4
0σy

2
0ε

T
y εy

−2σy2
0σxy

2
0ε

T
xεx + 2

(
σx

2
0σy

2
0σxy0 + σxy

3
0
)
εT
y εx − 2σx2

0σxy
2
0ε

T
y εy

 .
C.8

The adjusted VCC are obtained by the given matrix S and the vector q with

σ̂ =

 σ̂xσ̂y
σ̂xy

 = S−1q = 1
n− 1


1
σx

2
0
εT
xεx

1
σy

2
0
εT
y εy

1
σxy0

εT
y εx

 . C.9

As expected, the products σ̂xσx2
0, σ̂yσy2

0 and σ̂xyσxy0 contain the empiric variance for the x-coordinate
1

n−1ε
T
xεx, the empiric variance for the y-coordinate 1

n−1ε
T
y εy and the empiric covariance 1

n−1ε
T
y εx.

According to Förstner’s approach, matrix S is modified as follows

SFörstner =

tr (WV1) 0 0
0 tr (WV2) 0
0 0 tr (WV3)

 . C.10

The adjusted VCC of Förstner’s approach are then

σ̂Förstner = 1
(n− 1)

(
σx2

0σy
2
0 − σxy2

0
)


σy
2
0ε

T
xεx − 2σxy0ε

T
y εx + σxy

2
0

σy
2
0
εT
y εy

σxy
2
0

σx
2
0
εT
xεx − 2σxy0ε

T
y εx + σx

2
0ε

T
y εy

σy
2
0ε

T
xεx −

(
σx

2
0σy

2
0

σxy0
+ σxy0

)
εT
y εx + σx

2
0ε

T
y εy

 . C.11

According to Förstner’s approach, the variance component σ̂x depends not only on the empiric variance
for the x-coordinate but also on the empiric variance of the y-coordinate and the empiric covariance.
According to Equation C.11, the correct variances of the x- and y-coordinates are only obtained, if
the covariance σxy0 is zero. Since Förstner’s approach fails in this comparatively simple example, his
approach is not universally appropriate for the estimation of covariances.
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Appendix D Algorithm: Pseudocode of the extended SMCTE

1 Input: observations l

2 z variance covariance matrices Vi

3 termination conditions for while loop e1 and e2

4 approximated vector of the unknown parameter β0

5 number of samples ns for the SMCTE

6 set σ1
i = 1 for i = 1, . . . z

7 set arbitrary value larger than termination condition ∆βi > e1

8 set counter c = 1
9 WHILE max(|∆β̂|) > e1 AND max(|σci − 1|) > e2

10 { linearize non - linear equations : wH , wC , AH , AC and B// (Eq. 3.3)
11 calculate stoch. model: Qi =

∏c
j=1 σ

j
iBViB

T and Dww =
∑z
i=1Qi// (Eq. 3.23)

12 set up normal equation matrix : N =
[
AT
HD

−1
wwAH AT

C

AC 0

]

13 solve system of normal equations :

[
∆β
kC

]
= N−1

[
ATD−1

wwwH

wC

]
// (Eq. 3.11)

14

15 calculate residuals : Bε = AH∆β −wH // (Eq. 3.3)
16 FOR i = 1, . . . , z
17 { solve: h0 = D−1

ww (Bε)
18 calculate : qi = hT

0Qih0 // (Eq. 3.41)
19 FOR j = i, . . . , z

20 { FOR k = 1, . . . , ns
21 { draw sample : u

22 solve: h1 = D−1
ww (Qju)

23 solve: h2 = N−1

[
ATh1

0

]
24 solve: h3 = D−1

ww

([
A 0

]
h2

)
25 solve: h4 = D−1

ww (Qk (h1 − h3))

26 solve: h5 = N−1

[
ATh4

0

]
27 solve: h6 = D−1

ww

([
A 0

]
h5

)
28 calculate trace sample : skij = uT (h4 − h6)// (Eq. 3.42)
29 }

30 calculate arithmetic average : sij =
∑ns

k=1 s
k
ij/ns// (Eq. 3.60)

31 set: sji = sij

32 }

33 }

34 solve: σc+1 = S−1q// (Eq. 3.46)
35 update : β0 = β0 + ∆β
36 calculate new counter : c = c+ 1
37 }
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Appendix E Reduction of unknown parameters (spline coefficients)
If the size of an arbitrary system of normal equations is denoted with s, approximately s3 floating point
operations are required for the solution of the system of normal equations. Thus, the reduction of the
unknowns decreases the number of floating points considerably and leads to smaller but denser systems
of normal equations.
A time series with an arbitrary number of observations is described by n cubic splines. Then, these
splines depend on 4n spline coefficients. If the splines are constrained such that the splines are twice
continuously differentiable in the transition points from one spline to the next spline, 3 (n− 1) condition
equations arise. The splines and the constraints are described by Equations 4.4 and 4.7a to 4.7c. This
appendix uses the constraints in Equation 4.7a to 4.7c to reduce the numbers of the unknown spline
coefficients from 4n to n+ 3 spline coefficients.
Equation 4.7c is solved for ai

ai =

(
Ti+1−Ti

Ti+2−Ti+1

)2
bi+1 − bi

3 . E.1

Substituting ai into Equation 4.7a leads to

ci = di+1 − di −

(
Ti+1−Ti

Ti+2−Ti+1

)2
bi+1 + 2bi

3 and

ci+1 = di+2 − di+1 −

(
Ti+2−Ti+1
Ti+3−Ti+2

)2
bi+2 + 2bi+1

3 ,

E.2

respectively. If ci and ci+1 are substituted in Equation 4.7b, it holds

(
Ti+1 − Ti
Ti+2 − Ti+1

)2
bi+1 + bi = Ti+1 − Ti

Ti+2 − Ti+1

di+2 − di+1 −

(
Ti+2−Ti+1
Ti+3−Ti+2

)2
bi+2 + 2bi+1

3

+

− di+1 + di +

(
Ti+1−Ti

Ti+2−Ti+1

)2
bi+1 + 2bi

3

⇒ (Ti+1 − Ti) (Ti+2 − Ti+1)
(Ti+3 − Ti+2)2 bi+2 + 2

((
Ti+1 − Ti
Ti+2 − Ti+1

)2
+ Ti+1 − Ti
Ti+2 − Ti+1

)
bi+1 + bi =

3 Ti+1 − Ti
Ti+2 − Ti+1

di+2 − 3
(
Ti+1 − Ti
Ti+2 − Ti+1

+ 1
)
di+1 + 3di.

E.3

The 4n spline coefficients are reduced to following n+ 3 parameters

βsp =
[
an b1 bn d1 d2 . . . dn

]T
. E.4

All spline coefficients are linearly depended on the spline coefficients of the vector βsp. The parameters di
depend on βsp as follows 

d1
d2
...
dn

 =


0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
... . . . ...

0 0 0 0 0 . . . 1


︸ ︷︷ ︸

Td

βsp. E.5
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Equation E.3 results in



1 0 0 0 . . . 0
1 2

((
T2−T1
T3−T2

)2
+ T2−T1

T3−T2

)
(T2−T1)(T3−T2)

(T4−T3)2 0 . . . 0

0 1 2
((

T3−T2
T4−T3

)2
+ T3−T2

T4−T3

)
(T3−T2)(T4−T3)

(T5−T4)2 . . . 0
...

... . . . . . . . . . ...
0 0 . . . . . . . . . 1


︸ ︷︷ ︸

Hb


b1
b2
...
bn

 =



0 1 0 0 0 0 0 . . . 0
0 0 0 3 −3

(
T2−T1
T3−T2

+ 1
)

3T2−T1
T3−T2

0 . . . 0
0 0 0 0 3 −3

(
T3−T2
T4−T3

+ 1
)

3T3−T2
T4−T3

. . . 0
...

...
...

...
... . . . . . . . . . ...

0 0 1 0 0 . . . . . . . . . 0


︸ ︷︷ ︸

Hd

βsp. E.6

The matrix Hb is quadratic, regular and band diagonal. Therefore, a unique inverse exists. The spline
coefficients bi are then obtained by 

b1
b2
...
bn

 = H−1
b Hdβsp = Tbβsp. E.7

It follows from Equation E.1


a1
a2
...
an

 =




−1

3
1
3

(
T2−T1
T3−T2

+ 1
)2

0 . . . 0

0 −1
3

1
3

(
T3−T2
T4−T1

+ 1
)2

. . . 0
...

... . . . . . . ...

Tb[
1 0 0 . . . 0

]


βsp = Taβsp. E.8

The spline coefficients c1 to cn−1 are obtained from Equation E.2 by
c1
c2
...

cn−1

 =


−1 1 0 . . . 0

0 −1 1 . . . 0
...

... . . . . . . ...

Td −


2
3

1
3

(
T2−T1
T3−T2

+ 1
)2

0 . . . 0

0 2
3

1
3

(
T3−T2
T4−T3

+ 1
)2

. . . 0
...

... . . . . . . ...

Tb


︸ ︷︷ ︸
Tc1

βsp. E.9

The coefficient cn is obtained from Equation 4.7b by

cn = Tn+1 − Tn
Tn − Tn−1

(
3T n−1

a + 2T n−1
b +Hn−1

c1

)
︸ ︷︷ ︸

Tc2

βsp E.10

where the index n− 1 denotes the (n − 1)-th row of the associated matrix. A vector containing the ci
including cn is then described by 

c1
c2
...
cn

 =
[
Tc1
Tc2

]
βsp = Tcβsp. E.11
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Equations E.5, E.7, E.8 and E.11 describe the linear dependency of all spline coefficients on the spline
coefficients in vector βsp. Thus, the k-th observation, belonging to the i-th spline, is described by

lik + vk =
(
τ3
kT

i
a + τ2

kT
i
b + τkT

i
c + T id

)
βsp = Ai

spβsp. E.12

Then, the time derivative of the k-th observation is

l̇ik = 1
Ti+1 − Ti

(
3τ2
kT

i
a + 2τkT ib + T ic

)
βsp = Bi

spβsp. E.13

The matrices Asp and Bsp depend on the time of the observations and the transition points of the splines.
These matrices are introduced in the linear least-squares adjustment proposed in Subsection 4.2.1.
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