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6  Zusammenfassung 

 

Zusammenfassung 

Die Kalibration von Kameras ist ein zentrales Thema in der Photogrammetrie und der Computer 

Vision. Das als Selbstkalibration bezeichnete Verfahren ist sehr flexibel und leistungsfähig und spielt 

eine signifikante Rolle bei der Bestimmung der inneren und äußeren Orientierung einer Kamera und in 

der bildbasierten Objektrekonstruktion. Diese Arbeit hat sich daher zum Ziel gesetzt, eine 

mathematische, detaillierte und synthetische Studie zum Einsatz der Selbstkalibration in der 

Luftbildphotogrammetrie, dem photogrammetrischen Nahbereich wie auch dem Computer Vision zu 

liefern. 

In der Luftbildphotogrammetrie hat der Einsatz von zusätzlichen Parametern für Zwecke der 

Selbstkalibration eine lange Tradition, auch wenn diese oft pragmatisch und ohne große 

mathematische oder physikalische Begründungen genutzt werden. Zudem sind sie hochkorreliert mit 

anderen Korrekturparametern. Im photogrammetrischen Nahbereich sind hohe Korrelationen schon 

seit langem bekannt, nicht zuletzt durch das als Quasi-Standard eingesetzte Brown'sche 

Selbstkalibrationsmodell. Die negativen Effekte dieser hohen Korrelationen sind bisher nur 

unzulänglichuntersucht. Die Verzeichnungskorrektur ist eine wesentliche Komponente der 

photogrammetrischen Selbstkalibration; dies ist im Computer Vision-Bereich nicht unbedingt der Fall: 

Hier ist mit der Autokalibration die Festlegung von einigen wenigen Parametern beschrieben, 

unabhängig von Verzeichnung und Näherungswerten. Auch wenn in den letzten Jahrzehnten eine 

Auto-Kalibration für N≥3 Bilder sehr extensiv untersucht worden ist, stellt diese nach wie vor ein 

schwieriges Thema dar. 

In dieser Arbeit wird zunächst das mathematische Problem der Selbstkalibration allgemein untersucht. 

Es kann gezeigt werden, dass die photogrammetrische Selbstkalibration (oder der Aufbau von 

Selbstkalibrationsmodellen) im Wesentlichen einer "Funktional-Approximation" der Mathematik 

entspricht. Die Abweichungen von der strengen Perspektivbildgeometrie werden mittels einer linearen 

Kombination von speziellen mathematischen Basisfunktionen approximiert. Mit Hilfe von 

algebraischen Polynomen kann eine Reihe von Legendre-Selbstkalibrationsmodellen definiert werden, 

die alle auf der Basis von orthogonalen, univariaten Legendre-Polynomen beruhen. Der Satz von 

Weierstrass garantiert, dass die geometrischen Abweichungen eines flächenhaft aufzeichnenden 

Kamerasystems effektiv durch die Verwendung von Legendre-Polynomen entsprechenden Grades 

kalibriert werden können. Dieses Legendre-Modell kann auch als eine wesentliche Verallgemeinerung 

der historischen Selbstkalibrationsmodelle, vorgeschlagen durch Ebner und Grün, angesehen werden, 

speziell wenn man Legendre-Polynome zweiten und vierten Grades einsetzt.  

Aus mathematischer Sicht haben diese algebraischen Polynome jedoch einen unerwünschten 

Nebeneffekt - hohe Korrelationen zwischen den Polynomtermen. Dies ist auch der Grund für die 

hohen Korrelationen im Brown'schen Ansatz der Nahbereichsphotogrammetrie. Dieser Nachteil ist 

inhärent und unabhängig von Blockgeometrie und externer Orientierung der Bilder. Als Ergebnis von 

Korrelationsanalysen wurde daher für den photogrammetrischen Nahbereich  ein verbessertes Modell 

zur Korrektur der Verzeichnung in der Bildebene vorgeschlagen. 

Nachdem in dieser Arbeit eine Reihe von mathematischen Basisfunktionen geprüft wurden, werden 

speziell Fourierreihen als theoretisch optimale und geeignete Basisfunktionen zum Aufbau von 

Selbstkalibrationsmodellen empfohlen. Aus diesem Grund wurde eine Familie von Fourier-

Selbstkalibrationsmodellen entwickelt, die auf der Laplace-Gleichung wie auch dem Satz von Fourier 

beruhen. Bei Abwägung aller Vor- und Nachteile von physikalischen und mathematischen Modellen 

zur Selbstkalibration wird vorgeschlagen, entweder Legendre- oder Fourierpolynome angereichert 
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durch Parameter für die Korrektur der radialen Verzeichnung für Kalibrationsanwendungen 

einzusetzen. 

In dieser Arbeit wurden eine Reihe von Simulationen und empirischen Tests zur Untersuchung der 

neuen Selbstkalibrationsmodelle durchgeführt. Die Tests zu den digitalen Luftbildkamerasystemen 

zeigen, dass beide Gruppen – sowohl die Legendre- als auch die Fourier-Polynome –rigoros, flexibel, 

generisch, effektiv und erfolgreich zur Korrektur von geometrischen Abweichungen der 

Perspektivbildgeometrie von flächenhaft aufzeichnenden Kamerasystemen mit großen, mittleren oder 

kleinen Sensorformaten, eingesetzt in Einkopf- oder Mehrkopf-Systemen (eingeschlossen DMC, 

DMC II, UltraCamX, UltraCam Xp, DigiCAM usw.) eingesetzt werden können. Der Vorteil von 

Fourierpolynomen liegt darin, dass zum einen weniger zusätzliche Parameter notwendig sind und zum 

anderen eine bessere Verzeichnungskorrektur erreicht werden kann. Die Tests im 

photogrammetrischen Nahbereich zeigen, dass die Lage des Bildhauptpunkts zuverlässig rekonstruiert 

werden kann, obwohl hohe Korrelationen mit den dezentralen Verzeichnungsparametern auftreten. 

Das Modell der „Im-Bild“-Kalibration erlaubt eine verbesserte Bestimmung der Brennweite. Die gute 

Verwendungsmöglichkeit von kombinierten „Radial+Legendre“- sowie „Radial+Fourier“–Modellen 

zur Selbstkalibration wird gezeigt. Für den Einsatz im Computer Vision wird eine neue Methode zur 

Auto-Kalibration vorgeschlagen, welche lediglich Bildkorrespondenzen unabhängig von 

Bildverzerrung benötigt. Diese Methode basiert im Wesentlichen auf der Fundamentalmatrix und den 

drei (abhängigen) Bedingungen, abgeleitet von der Rang 2 Projektionsmatrix. Die drei wichtigsten 

Vorzüge des Verfahrens sind folgende: Erstens kann eine rekursive Strategie zur Bestimmung von 

Brennweite und der Lage des Bildhauptpunktes eingesetzt werden. Zweitens werden optimale 

geometrische Bedingungen ausgewählt mit Hinblick auf minimale Varianz. Drittens wird eine 

nichtlineare Optimierung für die vier internen Parameter mittels des Levenberg-Marquardt 

Algorithmus durchgeführt. Diese neue Methode der Autokalibration ist schnell, effizient und ergibt 

eine eindeutige Kalibration. 

Neben diesem neuen Verfahren zur Autokalibration wird vorgeschlagen, die Brennweite aus nur zwei 

Bildern zu berechnen, unabhängig von der Lage des Bildhauptpunkts. Im Vergleich zur bisherigen 

Vorgehensweise, welche die exakte Lage des Bildhauptpunkts benötigt, ist die neue Methode viel 

flexibler und einfacher. Auch wenn die Autokalibration nicht in all ihren Details untersucht worden 

ist, konnten sehr gute Ergebnisse durch Simulationen und praktische Experimente nachgewiesen 

werden. Ferner werden Diskussionen für zukünftige Verbesserungen ausgeführt. 

Es ist die Hoffnung des Autors, dass der Inhalt dieser Dissertation nicht nur alle relevanten 

mathematischen Prinzipien in die Praxis der Selbstkalibration eingeführt hat, sondern auch zum 

besseren Verständnis zwischen der Photogrammetrie und dem Computer Vision-Bereich beiträgt, die 

viele gemeinsame Aufgaben zu lösen haben, wenn auch mit unterschiedlichen mathematischen 

Hilfsmitteln. 

 

Kennwörter: Photogrammetrie, geometrisches Computer Vision, Kamera-Selbstkalibration, 

zusätzliche Parameter, Brown’sches Modell der Selbstkalibration, Legendre-Modell der 

Selbstkalibration, Fourier-Modell der Selbstkalibration, Funktional-Approximation, Korrelation, 

Mehrfach-Bildgeometrie, Zweibild-Kalibration, Fundamentalmatrix. 
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Abstract 

Camera calibration is a central subject in photogrammetry and geometric computer vision. Self-

calibration is a most flexible and highly useful technique, and it plays a significant role in camera 

automatic interior/exterior orientation and image-based reconstruction. This thesis study is to provide 

a mathematical, intensive and synthetic study on the camera self-calibration techniques in aerial 

photogrammetry, close range photogrammetry and computer vision.  

In aerial photogrammetry, many self-calibration additional parameters (APs) are used increasingly 

without evident mathematical or physical foundations, and moreover they may be highly correlated 

with other correction parameters. In close range photogrammetry, high correlations exist between 

different terms in the ‘standard’ Brown self-calibration model. The negative effects of those high 

correlations on self-calibration are not fully clear. While distortion compensation is essential in the 

photogrammetric self-calibration, geometric computer vision concerns auto-calibration (known as self-

calibration as well) in calibrating the internal parameters, regardless of distortion and initial values of 

internal parameters. Although camera auto-calibration from N 3 views has been studied extensively 

in the last decades, it remains quite a difficult problem so far. 

The mathematical principle of self-calibration models in photogrammetry is studied synthetically. It is 

pointed out that photogrammetric self-calibration (or building photogrammetric self-calibration 

models) can – to a large extent – be considered as a function approximation problem in mathematics. 

The unknown function of distortion can be approximated by a linear combination of specific 

mathematical basis functions. With algebraic polynomials being adopted, a whole family of Legendre 

self-calibration model is developed on the base of the orthogonal univariate Legendre polynomials. It 

is guaranteed by the Weierstrass theorem, that the distortion of any frame-format camera can be 

effectively calibrated by the Legendre model of proper degree. The Legendre model can be considered 

as a superior generalization of the historical polynomial models proposed by Ebner and Grün, to which 

the Legendre models of second and fourth orders should be preferred, respectively.  

However, from a mathemtical viewpoint, the algebraic polynomials are undesirable for self-calibration 

purpose due to high correlations between polynomial terms. These high correlations are exactly those 

occurring in the Brown model in close range photogrammetry. They are factually inherent in all self-

calibration models using polynomial representation, independent of block geometry. According to the 

correlation analyses, a refined model of the in-plane distortion is proposed for close range camera 

calibration. 

After examining a number of mathematical basis functions, the Fourier series are suggested to be the 

theoretically optimal basis functions to build the self-calibration model in photogrammetry. Another 

family of Fourier self-calibration model is developed, whose mathematical foundations are the 

Laplace’s equation and the Fourier theorem. By considering the advantages and disvantages of the 

physical and the mathematical self-calibration models, it is recommended that the Legendre or the 

Fourier model should be combined with the radial distortion parameters in many calibration 

applications.  

A number of simulated and empirical tests are performed to evaluate the new self-calibration models. 

The airborne camera tests demonstrate that, both the Legendre and the Fourier self-calibration models 

are rigorous, flexible, generic and effective to calibrate the distortion of digital frame airborne cameras 

of large-, medium- and small-formats, mounted in single- and multi-head systems (including the 

DMC, DMC II, UltraCamX, UltraCamXp, DigiCAM cameras and so on). The advantages of the 

Fourier model result from the fact that it usually needs fewer APs and obtains more reliable distortion 

calibration. The tests in close range photogrammetry show that, although it is highly correlated with 
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the decentering distortion parameters, the principal point can be reliably and precisely located in a 

self-calibration process under appropriate image configurations. The refined in-plane distortion model 

is advantageous in reducing correlations with the focal length and improving the calibration of it. The 

good performance of the combined “Radial + Legendre” and “Radial + Fourier” models is illustrated. 

In geometric computer vision, a new auto-calibration solution which needs image correspondences 

and zero (or known) skew parameter only is presented. This method is essentially based on the 

fundamental matrix and the three (dependent) constraints derived from the rank-2 essential matrix. 

The main virtues of this method are threefold. First, a recursive strategy is employed subsequently to a 

coordinate transformation. With an appropriate approximation, the recursion estimates the focal length 

and aspect ratio in advance and then calculates the principal point location. Second, the optimal 

geometric constraints are selected using error propagation analyses. Third, the final nonlinear 

optimization is performed on the four internal parameters via the Levenberg–Marquardt algorithm. 

This auto-calibration method is fast and efficient to obtain a unique calibration.  

Besides auto-calibration, a new idea is proposed to calibrate the focal length from two views without 

the knowledge of the principal point coordinates. Compared to the conventional two-view calibration 

techniques which have to know principal point shift a priori, this new analytical method is more 

flexible and more useful. Although the auto-calibration and the two-view calibration methods have not 

been fully mature yet, their good performance is demonstrated in both simulated and practical 

experiments. Discussions are made on future refinements. 

It is hoped that this thesis not only introduces the relevant mathematical principles into the practice of 

camera self-calibration, but is also helpful for the inter-communications between photogrammetry and 

geometric computer vision, which have many tasks and goals in common but simply using different 

mathematical tools.  

 

Keywords: photogrammetry, geometric computer vision, camera self-calibration, additional 

parameters (APs), Brown self-calibration model, Legendre self-calibration model, Fourier self-

calibration model, function approximation, correlation, multi-view geometry, two-view calibration, 

fundamental matrix. 
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1  Introduction 

“Being too hasty might obtain the right answer to the wrong problem.” 

––– Anonym. 

 

 

Camera calibration is a central subject in photogrammetry and computer vision. It plays a crucial role 

in camera interior/exterior orientation and image-based reconstruction. Rigorously speaking, this 

thesis studies the geometric calibration rather than the radiometric calibration in photogrammetry, and 

the calibration in geometric computer vision. Without ambiguity, the terms “photogrammetry”, 

“computer vision” and “calibration” in this thesis are referred to geometric photogrammetry, 

geometric computer vision and geometric calibration, respectively. 

To understand camera calibration, the basic concepts of photogrammetry and computer vision need to 

be introduced in advance. The collinearity equations and projection equation, which are the 

mathematical fundamentals in photogrammetry and computer vision respectively, can be exactly 

derived from the mathematical central projection.  

1.1 Basic concepts 

1.1.1 Camera coordinate system 

The definition of a camera coordinate system differs slightly in photogrammetry and computer vision. 

In Fig. 1.1,     and     are the world coordinates and the camera coordinates, respectively. The 

perspective center and the principal point are denoted by   and   , respectively. Both camera 

coordinates are right hand coordinate systems, and their difference is raised by the different   

directions. 

1.1.2 Central projection 

A mathematical form of the central projection in the three dimensions is given by 

  
 
 
 

   

  

  

  

             

    

    

  
  (1.1)  

where 

  ,   and   are the coordinates of an object point in the world coordinates; 

   ,    and    are the coordinates of the camera perspective center in the world coordinates; 

                        
 is the rotation matrix from the camera coordinates to the world 

coordinates, and  ,   and   are the three rotation angles; 

   ,   ,   ,  ,   and   are the six parameters of the exterior orientation (or external/extrinsic 

orientation, EO); 
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Fig. 1.1 Camera coordinate systems defined in photogrammetry (left) and in computer vision (right). 

   and   are the coordinates of an image point in the camera coordinates; 

    and    are the coordinates of the principal point, and   is focal length (principle distance)
1
. 

They are often called the three interior orientation (IO) parameters in photogrammetry; 

 The sign of   depends on the definition of the camera coordinates (see Fig. 1.1). It is –   in 

photogrammetry and   in computer vision;  

    is the scale factor given in (1.2) below; and 

 The camera model in (1.1) has 9 degrees of freedom (DOF), i.e., the three IO parameters and 

the six EO parameters. 

    
 

  
                                (1.2)  

1.1.3 Collinearity equations 

In Cartesian coordinates of Euclidean geometry, the photogrammetric collinearity equations can be 

derived as (1.3) by eliminating the scale factor    in (1.1): 

 

      
                             

                             

      
                             

                             

 (1.3)  

where the photogrammetric camera model has thus 9 DOF, same as that in the central projection (1.1). 

In most practices, there exists distortion which causes departures from the ideal equations (1.3). The 

collinearity equations with distortion and random errors are described as 

 

      
                             

                             
     

      
                             

                             
     

 (1.4)  

                                                      
1
 Rigorously speaking, the principal distance is defined slightly differently from the focal length. The principal 

distance is the length of the normal from the perspective centre of the lens to the image plane (Newby, 2012). 

Focal length is referred as “equivalent focal length” which is an approximate value of principal distance which is 

also called “calibrated focal length” (McGlone et al., 2004). In this thesis, this slight difference is ignored and 

“focal length” stands mostly for the principal distance.  
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where    and    are the distortion terms, and   indicates the random error.    and    are often 

represented by parametric models which are known as self-calibration models. 

Because of the fundamental role of the nonlinear collinearity equations in photogrammetry, lots of the 

photogrammetric analytical techniques are nonlinear, iterative and requiring good initial values. 

1.1.4 Projection equation 

Denote  

  
  

  

  

     
    

    

    

     
      

      

      

  

 
 
 
 

   (1.5)  

Then         and (1.1) can be rewritten as 

  

    

    

 
       

  

  

  

  (1.6)  

and  

  

 
 
 
   

  

  

 
  

 

  
 

   
   
   

  
  

  

  

  
 

  
 

    

    

   
  

  

  

  

   (1.7)  

By noticing         , (1.7) is equivalent to 

    
 
 
 
   

    

    

   

  
  

  

  

   (1.8)  

Using the homogeneous representation in the two dimensional image coordinates (         and 

           represent the same point in two dimensions for any    ),    can removed from (1.8):  

  
 
 
 
   

    

    

   

  
  
  
  

   (1.9)  

A geometric interpretation of the equivalence between (1.8) and (1.9) is that the coordinates of 

imaging points are independent of the scene depth   . Inserting (1.5) into (1.9) obtains 

  
 
 
 
   

    

    

   

    

      

      

      

  

 
 
 
 

  (1.10)  

  
 
 
 
    

 
 
 
 

  (1.11)  

where 
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               (1.12)  

  is defined as the camera matrix and   is the calibration matrix. (1.11) is the projection equation and 

also named as the basic pinhole camera model. It should be noted that the pinhole model (1.11) should 

contain 9 DOF while a general     matrix   has 11 DOF.  

In CCD cameras, two parameters are additionally introduced into the calibration matrix:  

    
    

     

   

   (1.13)  

where   is the aspect ratio and   is the skew parameter.         where    and    are the pixel size 

in   and   directions, respectively; and     for the square pixel.   accounts for the angle between 

the pixel axes and     holds in most practices. It will be shown that   is exactly the parameter    of 

the in-plane distortion in photogrammetry (up to a constant scale factor). These two parameters enable 

filling the gap of DOF between a general     camera matrix and the pinhole camera model
2
. 

The projection equation (1.11) is the fundamental formula in computer vision, as well as the 

collinearity equations in photogrammetry. Due to its linear form, many analytical methods in 

computer vision are linear. 

It is evident from the above mathematical derivations that the collinearity equations in 

photogrammetry are the Cartesian representation of the central projection in Euclidean geometry, 

while the projection equation in computer vision is the homogeneous representation of the central 

projection in projective geometry. The mathematical fundamentals of photogrammetry and computer 

vision are essentially the same. 

1.1.5 Terminology 

Due to the different traditions, philosophies and mathematics being used, there are differences of the 

terminology in photogrammetry and computer vision. 

Interior orientation V.S. internal orientation (IO): interior orientation is uniquely adopted in 

photogrammetry while internal/intrinsic orientation is routinely used in computer vision. The interior 

orientation parameters include   ,   ,  , and the parameters of    and    in (1.4), while the five 

internal orientation parameters (known as the calibration parameters as well) are   ,   ,  ,   and   in 

the calibration matrix (1.13). 

Exterior orientation V.S. external/extrinsic orientation (EO): exterior orientation is used in 

photogrammetry and external/extrinsic orientation is usually employed in computer vision. Both refer 

to the same six parameters:   ,   ,   ,  ,   and  . 

Camera calibration: Notwithstanding the different definitions, the purposes of camera calibration in 

photogrammetry and computer vision are, quite similarly, to determine the parameters of interior 

                                                      

2
 It sometimes confuses the photogrammetrists that why the skew parameter   (equivalently   ) is introduced 

into the calibration matrix in computer vision, but not others such as the parameters of the radial and the 

decentering distortion which are definitely much more significant in practice? In the textbooks by Hartley & 

Zisserman (2003), there is an example, though not much photogrammetric, illustrating the case    . The 

introduction of   may, to a large extent, be used to fill the gap of DOF between the camera model and a general 

    matrix.  
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orientation and internal orientation, respectively (those parameters are differently defined). 

Compensating    and    (if necessary) in computer vision is often known as distortion correction. 

Distortion: The terms, such as “systematic image errors”, “lens distortion” and “image distortion”, are 

often used to indicate    and    in photogrammetry. The lens distortion may be only part of the 

distortion sources in the multi-head camera systems (see Section 1.3.2 below), and “systematic image 

errors” is rarely known in computer vision. The term “image distortion” is thus adopted in this thesis, 

disregarding the potential trivial differences among these terms. It is also noteworthy that the 

“projective distortion”, “affine distortion” and “similarity distortion” are used frequently in computer 

vision. They stand for the deformation of the Euclidean reality caused by the projective, affine and 

similar transformations, respectively; they are not mattered with    and   . 

For more on the basic concepts in photogrammetry and computer vision, the readers are referred to the 

textbooks, such as Kraus (2007), Luhmann et al. (2006) and Mikhail et al. (2001) in photogrammetry, 

and Faugeras (1993) and Hartley & Zisserman (2003) in computer vision. 

1.2 Camera calibration 

1.2.1 Camera calibration in photogrammetry 

Camera calibration has been investigated in the photogrammetric society for several decades. A 

general definition of calibration by the International Vocabulary of Basic and General Terms in 

Metrology (VIM, 2007) is 

“set of operations that establish, under specified conditions, the relationship between values of 

quantities indicated by a measuring instrument or measuring system, or values represented by 

a material measure or a reference material, and the corresponding values realized by 

standards”. 

Another definition, closer to camera calibration, was given in Slama (1980): calibration is 

 “the act and process of determining certain specific measurements in a camera or other 

instrument or device by comparison with a standard, for use in correcting or compensating 

errors for purposes of record”. 

The definitions of camera calibration have changed significantly over recent years. While there is no 

well-accepted definition, the purpose of camera calibration in photogrammetry is to determine the 

geometric camera model described by the parameters of interior orientation, including focal length, 

principal point shift, the distortion terms and others (McGlone et al., 2004; Luhmann et al., 2006). 

There are different definitions of principal point during the development of photogrammetric 

calibration. They are the indicated principal point (fiducial center), the principle point of best 

symmetry and the principal point of autocollimation, denoted by IPP, PPS and PPA, respectively. 

Some important notes on these principal points are (Kraus, 2007): 

 they lie within a circle of radius < 0.02 mm in most metric cameras; 

 IPP is valid only in analogue cameras but not in digital cameras anymore; 

 both PPS and PPA are recorded in the digital camera calibration report; and 

 PPA is the mathematical definition of principal point in (1.1).  

Different calibration techniques have been employed in photogrammetry as follows (Kraus, 1997; 

Clarke & Fryer, 1998; McGlone et al., 2004; Luhmann et al., 2006). 

Laboratory calibration. Laboratory calibration is generally used only for metric cameras. The IO 

parameters are determined by goniometers, collimators or other optical alignment instruments.  
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Test field calibration. Test field calibration uses a suitable targeted field of object points with known 

coordinates or distances. This test field is imaged from multi-view camera stations, ensuring good ray 

intersection and filling the image format. This calibration is processed by bundle adjustment to 

calculate the IO parameters. 

Plumb-line calibration. Plumb-line method employs a test field with several straight lines. Its main 

principle is that a straight line must be imaged as a straight line and all deviations should be caused by 

distortion. 

In-situ calibration. In-situ calibration (known as on-the-job calibration as well) indicates a test field 

calibration with combination of actual object measurements of known coordinates. It is processed by 

the self-calibrating bundle adjustment technique. 

Self-calibration. Self-calibration can be considered as an extension to test field and in-situ calibration. 

It does not require any known reference points. 

Each calibration technique has advantages as well as disadvantages. 

 As it is hardly performed by camera users, laboratory calibration is often employed for 

airborne cameras but not practical in close range photogrammetry. It is recognized that the 

distortion can be impacted by the environment and this may be not fully accounted in the lab 

calibration.  

 As the analytical calibration methods, including test field, plumb-line, in-situ and self-

calibration techniques, are processed by the bundle adjustment, good initial values of the IO 

and EO parameters are required for good convergence and precise calibration. 

 The test field, in-situ and self-calibration techniques can precisely determine the IO 

parameters in an appropriate configuration of multiple views. They are quite popular in close 

range photogrammetry, and self-calibration is the most flexible technique. The high 

correlations between different terms should be cautioned in practice. 

 A major advantage of the plumb-line calibration is that it avoids high correlations. However, it 

cannot locate the principal point and usually needs a pre-defined principal point. The plumb-

line method is rarely used in aerial photogrammetry. 

 The parametric self-calibration models of    and    play a crucial role in analytical 

calibration methods. The unknown coefficients of the self-calibration model are called self-

calibration additional parameters (APs). Self-calibration by using APs has been widely 

accepted and substantially used as an efficient technique in photogrammetry. 

 In-situ airborne camera calibration has recently received many attentions and becomes a 

routine process (in fact, some airborne camera vendors rely only on the in-situ calibration). 

Although self-calibration itself is unworkable in aerial photogrammetry (this is due to the 

distinctive block geometry of nadir looking; the ground control and aerial control are 

necessary), the self-calibration models are vital for the in-situ calibration. 

1.2.2 Camera calibration in computer vision 

Camera calibration in computer vision is to determine the calibration matrix. There are two major 

distinctions between the camera calibration in photogrammetry and that in computer vision. First, 

while the precise prior information on the interior orientation (focal length at least) is needed in most 

photogrammetric cases, the calibration in computer vision, benefiting from the linear projection 

equation (1.11), does not require any prior knowledge on the internal parameters (unless specified 

otherwise). Second, the distortion compensation is a critical issue in the photogrammetric calibration, 

but it is much less or even not considered in computer vision (perhaps due to the vision philosophy: 

why the distortion needs to be taken into account for making a computer see?). 

Besides image correspondences, many calibration techniques in computer vision require one or more 

additional constraints, such as camera motion, scene information, three-dimensional (3D) or two-

dimensional (2D) object coordinates, and partial knowledge on the internal parameters. There is a very 
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important calibration technique named as self-calibration (or auto-calibration) which is defined to 

determine a constant calibration matrix by using only image correspondences from multiple views. 

Any prior information on camera motion, scene constraints or calibration parameters is not required in 

self-calibration. This “self-calibration” in computer vision is definitely different from that in 

photogrammetry, except that both do not use any control points. To avoid ambiguity, the term “auto-

calibration” is adopted to indicate the self-calibration in computer vision. 

1.3 Related work on camera self-calibration 

1.3.1 Self-calibration in close range photogrammetry 

The concept of self-calibration appeared initially in close range photogrammetry, mainly due to the 

pioneer work of Duane C. Brown. He developed the camera distortion model (Brown, 1956, 1964, 

1966) and firstly introduced an analytical calibration method (Brown, 1971). His self-calibration 

model includes the three IO parameters, the radial distortion (three parameters) and the decentering 

distortion (two parameters). 

Brown’s work was followed by many investigations (Kenefick et al., 1972; Faig, 1975; Wong, 1975; 

Ziemann & El-Hakim, 1982; Fryer & Brown, 1986; Fryer & Fraser, 1986; Fryer et al., 1994; Fraser et 

al., 1995). Although it was originated for analogue camera calibration, the Brown model has found 

great significance in the digital era as well. The Brown model of eight parameters was suggested by 

Fraser (1997) to be combined with two parameters of the in-plane distortion for digital camera self-

calibration. The Brown model and the 10-parameter extension are very favorable in close range 

photogrammetry. Notwithstanding any changes of terminology, the formulae proposed by Brown 

appear to have remained virtually unchallenged for over forty years, as mentioned by Clarke & Fryer 

(1998) who gave an excellent review on the early calibration work. 

Many works have been investigated on the practical applications of the Brown self-calibration model. 

They may be categorized as follows (to cite a few). 

 Methodology studies: an important characteristic of the Brown model is the zoom effects, 

which were observed in many self-calibration studies (Wiley & Wong, 1995; Fraser & Al-

Ajlouni, 2006). Wester-Ebbinghaus (1983) studied the impact of image configurations on self-

calibration. The plumb-line calibration method was studied in Habib et al. (2002) and the 

effects of various straight line patterns were explored in José & Cabrelles (2007). 

 Camera-based studies: the photogrammetric model and calibration of underwater camera were 

studied in Fryer & Fraser (1986) and Telem & Filin (2010). The stability of the off-shelf 

lenses was analyzed in Läb & Förstner (2004) and Habib & Morgan (2005). Stamatopoulos & 

Fraser (2011) studied calibrating the cameras of long focal length, where the correlations are 

rather high between the EO and the three IO parameters. 

 Implementations: different calibration implementations and algorithms were compared in 

Remondino & Fraser (2006). Targetless camera calibration was recently studied in Barazzetti 

et al. (2011). And 

 Applications: the applications in industry and heritage documentation are illustrated in such as 

Granshaw (1980), Yilmaza (2008) and Luhmann (2010). 

A main inconvenience of the Brown self-calibration model is high correlations between different 

parameters. Those high correlations have been well recognized for almost as long as the self-

calibration itself (Brown, 1971, 1972, 1989; Ziemann, 1986; Fraser, 1997; Clarke & Fryer, 1998; 

Clarke et al., 1998; Luhmann et al., 2006). 
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Fig. 1.2 Different formats of digital airborne cameras (from left to right): single-head, multi-head and three-line-

scanner (push-broom) (Cramer et al., 2012) © 2012 Springer. 

1.3.2 Self-calibration in aerial photogrammetry 

Besides in close range photogrammetry, the self-calibration models play a significant role in 

compensating the distortion of airborne cameras in aerial photogrammetry as well.  

Brown (1976) extended his classical close range self-calibration model to calibrate the single-head 

analogue airborne cameras. This model contains additional terms which were supposed to compensate 

the film deformation and unflatness. The polynomial models were introduced in Ebner (1976) and 

Grün (1978) by using the orthogonal polynomials of second and fourth orders, respectively. El-Hakim 

& Faig (1977) proposed a mathematical self-calibration model by using spherical harmonics. Jacobsen 

(1982) implemented a set of APs in his bundle adjustment software. A number of early effects were 

carried out to investigate the self-calibrating bundle adjustment with APs (Schut, 1979; Ackermann, 

1981; Kilpelä, 1981; Kilpelä et al., 1981). These contributions showed that self-calibration APs could 

reduce remarkably image residuals and improve accuracy. The concerns were raised as well on 

overparameterization, high correlations and the theoretical foundations of self-calibration APs 

(Ackermann, 1981; Clarke & Fryer, 1998). Ackermann (1981) presented many theoretical and 

practical discussions which are still valuable for digital airborne camera calibration. A few traditional 

self-calibration models are illustrated in Appendix A. 

There were two main developments in digital aerial photogrammetry. The first one is the introduction 

of digital airborne cameras, whose manufacturing technologies are quite different from those of 

analogue cameras (Sandau, 2010). In contrast to the analogue airborne camera of typical 23cm×23cm 

size (such as the Zeiss RMK camera and Leica RC camera), digital cameras have various formats: 

 the push-broom cameras, such as the Airborne Digital Sensor (ADS40 and ADS80) in Leica 

Geosystems/Hexagon, the Jena Airborne Scanner (JAS) in Jena-Optronik GmbH, the HRV 

cameras in SPOT satellites and the cameras in WorldView-1 satellites;  

 the large-format cameras, such as the Digital Mapping Camera (DMC) and DMC II in 

Intergraph Z/I Imaging/Hexagon, the cameras of UltraCam family in Vexcel/Microsoft, and 

the Quattro DigiCAM cameras in Ingenieur-Gesellschaft für Interfaces (IGI) mbH;  

 the medium-format cameras, such as the cameras of DigiCAM series in IGI mbH and the 

cameras of RCD series in Leica Geosystems/Hexagon; and 

  the small-format cameras, such as Digital Camera System (DCS) in Kodak. 

It should be noted that with the development of hardware and technologies, the dividing lines among 

small, medium, and large format sensors has shifted and will continue to shift. 

There are single-head cameras (such as DMC II, RCD 30 and DCS cameras) and multi-head cameras 

(such as DMC, UltraCam family and Quattro DigiCAM). The multi-head cameras usually employ 

virtual image composition techniques to create very large format aerial images. The distortion sources 
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of multi-head cameras are thus much more complex than those of single-head types. Different format 

sensors are illustrated in Fig. 1.2. 

The second striking development is the successful incorporation of navigation sensors into airborne 

camera systems (Schwarz, 1993; Ackermann, 1994; Skaloud et al., 1996; Skaloud & Legat, 2008; 

Blázquez & Colomina, 2012). The navigation sensors are typically GPS (Global Positioning System, 

or Global Navigation Satellite System (GNSS)) or GPS/IMU integration (Inertial Measurement Unit 

or Inertial Navigation System (INS)). This leads to so-called direct georeferencing and integrated 

sensor orientation (Heipke et al., 2002), which reduce the number of ground control points (GCPs), 

increase reliability and flexibility, and accelerate photogrammetric mapping. The introduction of 

GPS/IMU (or GPS/INS) system as aerial control makes the in-situ airborne camera calibration 

feasible. Besides distortion calibration, the systematic errors in the direct observations of EO 

parameters need to be compensated. 

Since of these revolutions, many effects were devoted to the calibration of digital airborne camera 

systems (Fritsch, 1997; Kersten & Haering, 1997; Schuster & Braunecker, 2000; Zeitler et al., 2002; 

Kröpfl et al., 2004; Chen et al., 2007; Jacobsen, 2011). Cramer (2009, 2010) reported the 

comprehensive empirical tests carried out by EuroSDR (European Spatial Data Research) and DGPF 

(German Society for Photogrammetry, Remote Sensing and Geoinformation). It is now well accepted 

that the in-situ calibration has become a new option and an indispensable calibration procedure 

(Heipke et al., 2002; Honkavaara et al., 2006; Kresse, 2006; Cramer et al., 2010). For overall system 

calibration, the misalignments between camera and navigation instruments and the drift/shift effect 

must be compensated (Honkavaara, 2004; Yastikli & Jacobsen, 2005).  

Unlike the dominant role of the Brown model or the 10-parameter extension in close range 

photogrammetry, there is no such ‘standard’ self-calibration model for digital airborne camera 

calibration. A number of different self-calibration models were employed to compensate the distortion 

of airborne cameras (Cramer, 2009; Jacobsen et al., 2010). 

1.3.3 Auto-calibration in computer vision 

Camera auto-calibration was originally introduced by Faugeras et al. (1992) in computer vision. The 

methods based on the Kruppa equation were later developed by Maybank & Faugeras (1992), Heyden 

& Astrom (1996) and Luong & Faugeras (1997). Stratification approach was proposed by Pollefeys & 

van Gool (1997) and refined recently by Chandraker et al. (2010). Triggs (1997) introduced the 

absolute (dual) conic as a numerical device for formulating auto-calibration problem. These early 

works are however quite sensitive to noise and unreliable (Bougnoux, 1998; Hartley & Zisserman, 

2003). An excellent comprehensive overview on the early auto-calibration work is given in the whole 

Chapter 19 of the textbooks by Hartley & Zisserman (2003). The numerical solution using interval 

analysis was presented in Fusiello et al. (2004), but this method is quite time consuming. 

Other techniques, of which some were although proclaimed as auto-calibration, use different 

constraints, such as camera motion (Hartley, 1994; Stein, 1995; Horaud & Csurka, 1998; Agapito et 

al., 1999), scene constraints by using the vanishing points (Caprile & Torre, 1990; Liebowitz & 

Zisserman, 1998; Hartley et al., 1999), plane constraints (Triggs, 1998; Sturm & Maybank, 1999; 

Malis & Cipolla, 2002; Knight et al., 2003), concentric circles (Kim et al., 2005), plumb-lines (Geyer 

& Daniilidis, 2002) and others (Pollefeys et al., 1998; Liebowitz & Zisserman, 1999); and partial 

calibration information (Sturm et al., 2005). Nevertheless, not all of them are practically useful. 

Instead of calibrating all the internal parameters from N≥3 views, it was recently studied to estimate 

focal length from two-views, given the other internal parameters, i.e., aspect ratio and principal point 

(Sturm et al., 2005; Stew nius et al., 2005; Li, 2008). However, the prerequisite of known principal 

point can hardly be satisfied in practice. 

Although image distortion is less important, it is critical for the camera-based vision applications. The 

distortion, particularly the radial distortion, is occasionally accounted in vision (Tsai, 1987; Weng et 

al., 1992; Zhang, 2000). These techniques contain essentially two-steps: a close-form solution to 
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obtain the initial values of calibration parameters, and a subsequent nonlinear optimization. The 

known object coordinates (3D or 2D information, while the 2D planar board can be viewed as a 

special type of 3D test field with    ) are necessary for the close-form solution. These methods can 

thus be categorized as the test-field calibration techniques from a photogrammetric viewpoint. Mallon 

& Whelan (2004) described how to approximate the inverse of the Brown radial distortion model, in 

order to get an ‘undistorted’ image which is not of much sense in photogrammetry
3
. Fitzgibbon (2001) 

proposed the so-called division model of radial distortion, whose applications were found in such as 

calculating the fundamental matrix for cameras with radial distortion (Barreto & Daniilidis, 2005). 

The non-parametric radial distortion correction was recently studied in Hartley & Kang (2007). 

1.4 Problem settings 

Due to the vital importance of camera calibration in photogrammetry and computer vision, numerous 

effects have been contributed into this subject (even the citations in this thesis are a small set of the 

whole contribution yet). Self-calibration is the most flexible and highly useful calibration technique. 

The self-calibration model is crucial for high-accuracy photogrammetric applications. It is recognized 

that, although many outstanding successes have been achieved, a number of important problems on 

self-calibration remain unsolved. The following three relevant subjects on self-calibration are 

undertaken and addressed in this thesis. 

 

1. Self-calibration models in aerial photogrammetry. 

There are inconveniences on the existing self-calibration models for airborne camera calibration. 

 Due to the development of digital airborne cameras, the traditional self-calibration APs, which 

were originated for the single-head analogue camera calibration, may not fit the distinctive 

features of digital airborne cameras, such as multi-head, virtual images composition and 

various image formats. 

 Although self-calibration APs are increasingly employed for calibration purposes, many of 

them appear to have no evident mathematical or physical foundations. The foundations are 

essential to address the following questions: whether the self-calibration model is appropriate 

to calibrate the distortion of the camera being used? Whether the distortion has been (almost) 

fully calibrated by the used self-calibration model? Is there any overparameterization or 

underparameterization effect? 

 From the viewpoint of overall system calibration, camera self-calibration must be decoupled 

from the correction of other systematic errors. Decoupling is vital in the senses that each 

systematic error must be independently (in statistical sense) calibrated and the calibration 

results should be block-independent. Decoupling indicates mathematically low correlations 

between different correction parameters. However, some self-calibration APs suffer high 

correlations with other parameters.  

 Last but not least, some self-calibration APs are tailored for specific cameras concerning the 

manufacturing technologies. They can hardly be used to calibrate different cameras in a 

general sense. 

Therefore, new self-calibration models are desired for digital airborne camera calibration. These new 

models should have solid mathematical or physical foundations and low correlations with other 

correction parameters. Further, the new models might be generally effective to calibrate the distortion 

of all frame-format airborne cameras. 

                                                      
3
 The distortion is originated in principal point. Correcting distortion is thus impractical unless principal point is 

known. 
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2. Self-calibration models in close range photogrammetry. 

It is well known that high correlations, usually over 0.90, exist between the principal point shift and 

the parameters of the decentering distortion. High correlation also occurs between focal length and an 

in-plane distortion parameter. High correlations imply that the errors of one parameter can be 

corrected by the parameters of another. Harmful effects can be induced by high correlations, and high 

correlations may lead to a weakening calibration solution or unrealistic calibration results. Many 

effects were devoted to circumvent the high correlations in the close range camera self-calibration, but 

most of them seemed unnecessary (Clarke & Fryer, 1998). 

The following critical questions remain not fully resolved: to what extent the principal point shift can 

be compensated by the parameters of the decentering distortion due to high correlations? Or inversely, 

to what extent the decentering distortion can be compensated by the principal point shift? Further, can 

self-calibration always obtain reliable and realistic calibration results? 

In order to answer these questions, more theoretical works are desired to explore the reasons behind 

the correlations. Quantitative analyses should be investigated to learn the negative effects of these high 

correlations in practice. The 10-parameter model could even be refined. 

 

3. Camera auto-calibration in computer vision. 

Auto-calibration is essential if the camera information is unavailable or inadequate for camera 

orientation and scene reconstruction. Auto-calibration is not only of vital importance in computer 

vision, but also significant in photogrammetry. Camera information can be missed in some mobile 

mapping cases, such as reconstruction using historical images. Auto-calibration is a prerequisite to 

obtain precise initial values of the IO parameters for photogrammetric reconstruction in these cases. 

Although it is possible to auto-calibrate a camera from N≥3 views and various methods have been 

proposed in the last two decades, it remains quite a difficult problem in computer vision (Hartley & 

Zisserman, 2003). The work on auto-calibration should be continued for its ultimate efficient solution. 

 

The study of these three subjects is not only significant in each corresponding area, but also can offer a 

synthetic overview of the self-calibration models in aerial and close range photogrammetry, and help 

to bridge the gaps of calibration techniques in photogrammetry and computer vision. 

1.5 Outline of the thesis 

The general aim of this thesis is to provide a mathematical, intensive and synthetic study on the 

camera self-calibration techniques in aerial photogrammetry, close range photogrammetry and 

computer vision. The thesis is outlined as follows. 

In Chapter 2, the mathematical principle of self-calibration models in photogrammetry is studied. It is 

pointed out that photogrammetric self-calibration (or building photogrammetric self-calibration 

models) can – to a large extent – be considered as a function approximation or, more precisely, curve 

fitting problem in mathematics. Image distortion can be approximated by a linear combination of 

specific mathematical basis functions. Different sets of basis functions are regarded. With the 

algebraic polynomials being adopted, a whole family of so-called Legendre self-calibration model is 

developed from the orthogonal univariate Legendre Polynomials. It is guranteed by the renowned 

Weierstrass theorem, that the Legendre APs of proper degree are capable to effectively calibrate the 

distortion of any frame-format camera. The Legendre self-calibration model can be considered as a 

superior generalization of the polynomial models proposed by Ebner (1976) and Grün (1978), to 

which the Legendre APs of second and fourth orders should be preferred, respectively. However, from 

a mathemtical viewpoint, the algebraic polynomials are undesirable for self-calibration purpose due to 
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the high correlations between different polynomial terms. After examining many mathematical basis 

functions, the Fourier series are suggested to be the theoretically optimal ones to build a self-

calibration model. Another family of Fourier self-calibration model is developed, whose mathematical 

foundations are the Laplace’s equation and the Fourier theorem. The combination of the Fourier (or 

Legendre) model and the parameters of radial distortion is recommended in many calibration 

applications. It is further shown that the high correlations in the Brown model are exactly those 

occurred in the (Legendre) polynomial APs. According to the correlation analyses, a refined model of 

in-plane distortion is proposed. 

In Chapter 3, a number of simulated and empirical tests are performed on the self-calibration models 

in photogrammetry. Evaluation strategies of the in-situ airborne camera calibration are suggested. The 

empirical tests of airborne camera calibration demonstrate the high performance of the Lgendre and 

the Fourier self-calibration models, whose advantages are demonstrated over the conventional 

counterparts. Both the Legendre and the Fourier models are flexible, generic and effective to calibrate 

the distortion of most digital frame airborne cameras (including the DMC, DMC II, UltraCamX, 

UltraCamXp, DigiCAM cameras and so on). The advantages of the Fourier APs lie in that they usually 

need fewer APs and obtain more reliable calibration of image distortion. The tests in close range 

photogrammetry confirm the theoretical analyses of correlations in Chapter 2. It is shown that the 

principal point can be reliably and precisely located in a self-calibration under appropriate image 

configurations, disregarding the high correlations with the decentering distortion. The refined in-plane 

distortion model is advantageous in reducing the correlation with focal length and improving the 

calibration of it. The good performance of the combined “Radial + Legendre” and “Radial + Fourier” 

models are demonstrated. Discussions are made on the advantages and disadvantages of the physical 

and the mathematical self-calibration models. 

Camera auto-calibration in computer vision is studied in Chapter 4. A new method is presented for 

camera auto-calibration from N 3 views, by given image correspondences and zero skew parameter 

only. This method is essentially based on the fundamental matrix and the three (dependent) constraints 

derived from the rank-2 essential matrix. The main virtues of this method are threefold. First, a 

recursive strategy is performed subsequently to a coordinate transformation. The recursion first 

estimates focal length and aspect ratio, and then calculates principal point by fixing the estimate of 

focal length and aspect ratio. The principal point estimate returns to contribute to computing focal 

length and aspect ratio. Second, the optimal geometric constraints are selected using error propagation 

analyses. Third, the Levenberg–Marquardt algorithm is adopted for the fast final refinement of the 

four internal parameters. This method is fast and efficient to derive a unique calibration. Besides, we 

propose a new idea of the focal length calibration from two views without the knowledge of principal 

point. The coordinate transformation appears to play a critical role in this two-view focal length 

calibration. While the auto-calibration and the two-view calibration methods are not fully mature, their 

promising potential is demonstrated in both simulation and practical experiments. Discussions are 

made on future improvement. 

Finally, this work is summarized. Discussions are made on the self-calibration models in 

photogrammetry, the advantages and disadvantages of the analytical methods in photogrammetry and 

computer vision, and future outlooks. 
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2  Self-Calibration Models in 
Photogrammetry: Theory 

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty.” 

––– Bertrand Russell (1872 – 1970). 

2.1 Self-calibration models 

2.1.1 Distortion modeling 

The mathematical fundamentals of photogrammetry are the collinearity equations (1.4). The distortion 

terms,    and   , are two-variable functions whose forms are unknown. They need to be represented 

by specific models, i.e., self-calibration models. 

Generally speaking, there are physical and mathematical approaches to develop self-calibration 

models. If precise knowledge on distortion is available and the pattern of distortion is evident, the 

physical modeling is often favored and distortion can be precisely represented by an exact function. 

Otherwise, we need to approximate the unknown distortion function via abstract mathematical 

modeling techniques. Both physical and mathematical approaches have advantages and disadvantages. 

On the one hand, the physical approach, whose efficiency depends heavily on the knowledge on 

distortion, is able to model the major significant distortion. The physical models are usually precise 

and compact. Yet, there might be minor distortion missed in a physical model. The physical modeling 

may not work if the distortion pattern is not apparent. On the other hand, the mathematical approach is 

independent on the physical sources of distortion and can thus be generally effective. Nevertheless, the 

mathematical models may need more unknown parameters than the physical counterparts, and they 

may be involved in overparameterization. The combination of both modeling approaches can be 

effective and flexible in practice. Correlations should be taken into account in developing any 

distortion model. 

These two modeling approaches have factually been used, implicitly or explicitly, in developing all the 

existing distortion models. An excellent example of the physical models is the Brown self-calibration 

model (Brown, 1971), and two mathematical models are those by Ebner (1976) and Grün (1978). 

2.1.2 Self-calibration: a mathematical view 

The unknown distortion can be approximated via the mathematical modeling approach. As known, 

there are several groups of basis functions available in mathematics and their combinations can well 

approximate any function. The distortion can thus be modeled by a linear combination of specific 

basis functions. The unknown coefficients of the linear combination are computed in the adjustment 

process; or in a loose sense, the coefficients can be fixed by the noisy image measurements during the 

adjustment. This quite resembles the problem of least-squares fitting to the irregular spaced data in 

mathematics (see Rao & Toutenburg (1999) for the mathematical materials on least-squares fitting). 

Therefore, photogrammetric self-calibration (or building self-calibration models) can – to a very large 
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extent – be considered as a function approximation or, more precisely, a curve fitting problem in 

mathematics. 

Function approximation is the main mathematical principle used in developing new self-calibration 

models. Its significance arises throughout the whole chapter and even in constructing the physical self-

calibration models. Many interesting and valuable observations can be found from the viewpoint of 

the approximation theory. 

Before proceeding to establishing new self-calibration models, the function approximation theory and 

the mathematical basis functions are briefly introduced in the following two subsections (more 

materials are given in such as Itō (1993) and Oliver et al. (2010)).  

2.1.3 Function approximation theory 

The principle of function approximation is very useful in applied mathematics, computer science and 

many engineering disciplines. In general, function approximation is concerned with how functions can 

be best approximated with other simpler functions, and with quantitatively characterizing the errors 

introduced thereby. The meanings of best and simpler depend on the application. Briefly speaking, the 

simple functions (algebraic polynomials for example) often have desirable properties, such as 

inexpensive computation, continuity, integrability and limit values. The best approximation depends 

on the norm of the function space (or loosely speaking, the definition of the distance between 

functions). Typical choices of norm in the function space include the minimax norm (uniform norm), 

least-squares norm (Euclidean norm) and mean norm (Manhattan norm). 

The function approximation problems can be categorized into two major classes, depending on 

whether the target function is known or not. First, for the known target function, the approximation 

investigates how certain known functions can be approximated by a specific class of functions. 

Second, the explicit form of the target function is unknown and a set of sample points is provided. The 

problems of this type include interpolation, extrapolation, curve fitting and so on. 

Therefore, photogrammetric self-calibration is a function approximation problem of the second type, 

since the target distortion function is unknown; the least-squares norm (Euclidean norm) should be 

adopted, since calibration is to minimize the image residuals in the least-squares sense. 

2.1.4 Mathematical basis functions 

In mathematics, a basis function is an element of a particular basis for a function space. Every function 

in the function space can be represented as a linear combination of basis functions. A few sets of 

mathematical basis functions are briefly introduced as follows.  

 

Algebraic polynomials 

A polynomial is a mathematical expression involving a sum of finite powers in one or more variables 

multiplied by coefficients. A univariate polynomial is given by  

                        (2.1)  

where                are the coefficients. 

 

Rational functions 

A rational function is any function which can be written as the ratio of two polynomial functions. A 

univariate rational function      is 
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 (2.2)  

where      and      are two polynomials. 

 

Wavelet functions 

A wavelet is a wave-like oscillation, which is to analyze according to amplitude. The amplitude starts 

at zero, increases and then decreases back to zero. Wavelet functions may be considered as the forms 

of time-frequency representation. They are quite useful in signal processing. 

 

Three sets of basis functions from the Laplace’s equation 

The Laplace’s equation is a second-order partial differential equation named after the French 

mathematician Pierre-Simon Laplace. It is written as  

      (2.3)  

where   is the Laplace operator and   is a scalar function. The form of Laplace’ equation varies in 

different coordinate systems. In the Cartesian coordinates        , it is 

    
   

   
 

   

   
 

   

   
    (2.4)  

In the cylindrical coordinates        , it is 

    
 

 

 

  
  

  

  
  

 

  

   

   
 

   

   
    (2.5)  

And in the spherical coordinates        , it is 

    
 

  

 

  
   

  

  
  

 

      

 

  
     

  

  
  

 

      

   

   
    (2.6)  

Different solutions of the Laplace’s equation can be derived in different coordinates. Particularly, 

 the Fourier series are obtained from (2.4) in the Cartesian coordinates; 

 the Bessel functions (also known as cylindrical harmonics) are obtained from (2.5) in the 

cylindrical coordinates; and 

 the spherical harmonics are obtained from (2.6) in the spherical coordinates. 

Each set of the solutions forms a group of orthogonal basis functions in their specific coordinates. In 

particular, the Fourier series in two-dimensional Cartesian coordinates are 

                                         (2.7)  

The spherical harmonics in two-dimensional spherical coordinates (known as circular harmonics) are 

                                (2.8)  

Notice the difference between the Fourier series and the circular harmonics, though both are 

trigonometric functions.  
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2.2 Legendre self-calibration model 

Algebraic polynomials are adopted as basis functions to approximate distortion in this section. This is 

inspired somehow by the historical prevalence of the polynomial self-calibration models proposed by 

Ebner (1976) and Grün (1978). 

2.2.1 Orthogonal polynomial approximation 

The algebraic polynomial approximation is based on the renowned Weierstrass theorem (Mason & 

Handscomb, 2002), which is given as follows. 

 

Theorem 1 (Weierstrass Theorem) 

Suppose   is a continuous function complex-valued on      . There exists a sequence of 

polynomials          such that 

    
   

           (2.9)  

uniformly on      . If   is real-valued, then          can be taken real. 

 

A constructive proof of the Weierstrass theorem is given in Appendix D.1. This theorem indicates that 

any univariate function can be approximated with arbitrary accuracy by a polynomial of sufficiently 

high degree. Among all the forms of polynomials, the orthogonal polynomials (OPs) are often favored 

in both theoretical and practical applications due to their orthogonality and numerical stability. An 

orthogonal polynomial sequence is defined in mathematics as a family of polynomials, such that any 

two different polynomials in the sequence are orthogonal under certain inner product (see Appendix 

B). The OPs can be categorized into two types: discrete and continuous. The discrete OPs are 

orthogonal with respect to finite discrete measurements, while the continuous OPs are orthogonal over 

a whole region. 

For the function approximation problem of the second type, the analytical form of function is 

unknown while sample measurements are available. The unknown function can be approximated by a 

combination of OPs. If the number of measurements is close to the degree of the used polynomials, the 

discrete OPs are usually employed and can be obtained by an orthogonalization process. The discrete 

OPs are orthogonal on the measured locations only, but not necessarily on others. Else, if the number 

of the measurements is much larger than the polynomials’ degree, the continuous OPs are preferred. 

More theoretical materials can be seen in Berztiss (1964) and Mason & Handscomb (2002). 

Legendre polynomials, denoted by                  where   indicates the order, are continuous OPs 

over       : 

 

                

             
 

  

  
     
      

    (2.10)  

Among all polynomials, the Legendre polynomials possess the optimal approximation in the least-

squares sense, i.e., the minimal (weighted) mean square error (MSE) is obtained by using the 

Legendre polynomials for function approximation (Mason & Handscomb, 2002). The first few 

normalized Legendre polynomials are listed in Appendix B.1. 

The bivariate OPs can be generalized from the univariate polynomials. They can be much more 

complicated, depending on the two-dimensional definition domain. Particularly, the two-dimensional 
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generalization on the rectangular domain turns out to be rather easily straightforward. Namely, if 

                 are a series of univariate OPs over       , then 

                       
           

 (2.11)  

are the complete bivariate OPs over the rectangular domain              , satisfying 

                           
                
      

 
 

  

 

  

   (2.12)  

 “Complete” means that any two-variable function can be approximated well by the OPs 

           
           

, as long as a sufficiently high degree of the OPs has been chosen 

(Koornwinder, 1975). 

2.2.2 Legendre model 

Let     and     denote the width and length of the image format, respectively (the unit of     and 

    is usually metric (meter) or pixel). By scaling we obtain 

                                         (2.13)  

where    and    are the corrected coordinates of image measurements
4
, and    and    are the 

univariate Legendre polynomials. The first few           are, 

            

                

                          

                                 

                                      

                                              

                                                    . 

The similar formulae of            
 

 can be derived as above. Denote 

                                             (2.14)  

Then       
   

 are a series of bivariate OPs over the rectangular frame                    and 

        . By considering the image distortion is typically in the order of   ,      is obtained by 

multiplying      with 10
-6

 for numerical stability: 

                                                      
4
 The term “the corrected coordinates of image measurements” is widely used in the literature of camera 

calibration in photogrammetry. It indicates the ideal coordinates of image measurements in the ideal collinearity 

equations (1.3); i.e., the “corrected coordinates” are distortion-free and noise-free. The corrected coordinates are 

certainly unknown in practice, and they are (approximately) calculated in the iterative adjustment process. 
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                             (2.15)  

      
   

 can be ordered lexicographically as (2.16), following Koornwinder (1975): 

 

    

        

        

        

  

    

        

  (2.16)  

Obviously, 

                         
  

   

  

   

                  (2.17)  

It implies that if the image measurements are densely distributed, then 

                                           (2.18)  

which indicates that       
   

 is (almost) orthogonal over all the image measurements. 

Therefore, the distortion    and    in (1.4) could be approximated by the continuous bivariate OPs 

      
       

          
 and       

       

          
 respectively, where   ,   ,    and    are the chosen 

maximum degrees (these four degrees are not necessarily equal, and        
 
and         

are usually adopted in practice; generally speaking, more complicated the distortion is, larger degrees 

are required). Further, six of them should be eliminated, as also done in Ebner (1976) and Grün 

(1978). Specially, the constant terms      in    and    are nothing but the principal point shift;     , 

    ,      and      in   
 
are highly correlated with     ,     ,      and      in   , respectively. Thus, 

the number of the unknown parameters is                             or     

         . 

For example, the APs of      
 
are, 

 

                                                   

                                                      

                                                        

                                                        

                                                        

                                                      

                                                        

                                                        

                                                        

                                                        

 (2.19)  

with 66 unknown parameters (             ).  

The model of    
 
and     with 34 APs (             ) are given by  
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 (2.20)  

So far a whole family of self-calibration model has been completely constructed. The input of the 

model includes the image length and width (    and    ), and the chosen degrees. This class of self-

calibration model is based on the Legendre polynomials and thus named as Legendre self-calibration 

model (or equivalently Legendre self-calibration APs). The Legendre self-calibration model of  -th 

order is defined as that with      . 

2.2.3 Discussions on polynomial self-calibration models 

As the self-calibration models proposed by Ebner (1976) and Grün (1978) are also based on algebraic 

polynomials, theoretical discussions can be made on them and the Legendre model. 

Based on the “standard” 60% forward overlapping level and a few number of photographic 

measurements in the analogue time, Ebner and Grün proposed the polynomial self-calibration models 

of second and fourth orders, respectively. Their models were built on the assumed 3×3 and 5×5 regular 

“grid points” configurations, respectively. They can be obtained by orthogonalization and elimination 

of six parameters, and finally get the models of 12 and 44 unknowns, respectively. Obviously, they 

belong to the discrete OPs in the mathematical jargon and they are orthogonal on the grid points only. 

However, the continuous OPs should be certainly preferred to the discrete OPs for the self-calibration 

purpose. It is mainly because that the distortion of a single camera is always assumed to be constant in 

one block. This homogenous assumption implies that all the measurements of all images are put 

together into a single image dimension for calibration, as illustrated in Fig. 2.1. For example, for a 

block containing 50 images, each image contains a small amount of measurements, say around 40. It 

turns out to be about 2000 measurements usable for self-calibration, much more than the unknown 

APs which are usually less than 100. The number of total image measurements is far larger than the 

number of APs in all photogrammetric practices (otherwise, the block will be extremely unstable due 

to the severe overparameterization). According to the theory of polynomial approximation in Section 

2.2.1, the Legendre self-calibration model which is derived from the continuous Legendre OPs is 

theoretically favored. 

Furthermore, the polynomial models by Ebner and Grün can be exactly derived from the principle of 

polynomial approximation which was although not explicitly mentioned in their work. Particularly, the 

Ebner APs can be developed via the following steps: 

1. use univariate polynomials no higher than the second order:       ; 

2. perform normalization and orthogonalization (neglecting one scale factor); 

3. do two-dimensional generalization as (2.14); 

4. eliminate two constants and four highly correlated terms; and 

5. the Ebner APs are exactly obtained. 

The mathematical relation among these three sets of polynomial APs can be further shown. Assume 

there are               points distributed equidistantly on a square image dimension. Let’s 

consider the 2nd-degree monic polynomial      
 
(the leading coefficient is one), which corresponds 

to the term   in the Ebner and Grün APs (see Appendix A) and      in the Legendre APs. Neglecting a 

scale constant,       could be obtained by using the Gram-Schmidt orthogonalization process: 
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Fig. 2.1 The effect of the homogeneous assumption of image distortion on self-calibration: all the image 

measurements are put together into a single image dimension. 

 
         

         
    

 
    

    
    

 
    

    
   

  
  

(2.21)  

Then, 

                                                  

                                                 

                                                      

Therefore, the theoretical foundations behind all polynomial APs (Ebner, Grün and Legendre) are the 

same: polynomial approximation and the Weierstrass theorem. That the polynomial self-calibration 

models are able to compensate distortion is because that the polynomials can approximate the 

unknown distortion function. The principle of polynomial approximation is also able to explain why 

the regular 3×3 and 5×5 point patterns are not a prerequisite for applying the Ebner and Grün APs. 

The irregular point distribution does not degrade the calibration effect but induces impacts on 

correlations. Theoretically, the correlations of the Ebner and the Grün APs are larger than those of 

Legendre APs. This will be confirmed in the practical tests in Chapter 3. 

In contrast to the Ebner or the Grün APs which are single-order APs, the whole family of Legendre 

APs offers much flexibility to calibrate more complex image distortion, particularly when high degree 

is desired. The Legendre APs suit the rectangular image format and are orthogonal over the whole 

image format. Compared to the two historical counterparts, the Legendre self-calibration model is 

more flexible and more effective. Particularly, the Legendre model can also be considered as a 

superior generalization of the models by Ebner and Grün. 

Another interesting issue is on using alternative orthogonal polynomials rather than the Legendre 

polynomials as bases to build self-calibration models. Amongst them the Chebyshev polynomials of 

the first kind (see Appendix B.2) can be most attractive. While the Chebyshev polynomials possess the 

optimal approximation in the minimax sense, the Legendre polynomials are optimal in the least-

squares sense. Therefore, the Legendre polynomials are theoretically advantageous since camera 

calibration is to minimize the image residuals in the least-squares sense. Our empirical experiences 

also show that, although there is no significant difference between applying these two sets of 

polynomials, the application of the Chebyshev polynomials involves higher correlations and is less 

stable than the Legendre polynomials.  

In a word, three main theoretical conclusions can be drawn. First, the mathematical foundations for all 

polynomial APs are the same: polynomial approximation and the Weierstrass theorem. Second, the 

continuous OPs rather than the discrete OPs should be favored to build self-calibration models, due to 

that the number of all image measurements is far larger than the number of APs. Third, the Legendre 

self-calibration model is preferred to other polynomial models, due to that the Legendre polynomials 

obtain optimal approximation in the least-squares sense. 
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2.3 Fourier self-calibration model 

2.3.1 Optimal basis functions 

Principally speaking, every set of basis functions introduced in Section 2.1.4 can build a self-

calibration model. Then, a natural question is whether there is a set of optimal basis functions which 

should be preferred for self-calibration? The ‘optimal basis functions’ stand for at least  

(1) that their self-calibration model is able to (almost) fully compensate distortion under 

certain conditions;  

(2) that their self-calibration model follows strictly the approximation theory; and  

(3) that their self-calibration model does not cause severe overparameterization in practice. 

The first condition requires that distortion can be approximated by a combination of these basis 

functions. The second one requires that all the APs in           should be independent of those in 

         . In fact, one function, say          , is used to approximate           and another           is to 

approximate          . From the viewpoint of approximation, all the coefficients of these two 

functions,           and          , should thus be fully free (independent of any others). The third 

condition requires that the basis functions should use as few terms as possible to approximate 

distortion. Too many terms indicate mathematically very slow approximation and may practically 

cause serious overparameterization.  

All sets of basis functions satisfy, at least theoretically, the first rule by using the terms of sufficiently 

high order. However, not all of them meet the second and the third rules. For example, the algebraic 

polynomials do not fully follow the second rule since they have to eliminate four highly correlated 

terms. This is detailed as follows. 

The first five terms of the two-dimensional Legendre polynomials are 

 
                                         

                                         
   (2.22)  

It can be shown in theoretical study and simulation experiments that six terms of (2.2) must be 

eliminated to build polynomial self-calibration models, due to  

 that the constants    and    are merely the principal point shift     and    ; 

 that    and    are highly correlated in the presence of   ; 

 that    and    are highly correlated due to the exterior rotation angle  ; 

 that    and    are highly correlated due to     and the exterior rotation angle  ; and 

 that    and    are highly correlated due to     and the exterior rotation angle  .  

Therefore, two constants are removed since they are nothing more than the principal point shift 

(removal of constant terms never impacts the approximation), and four parameters must be eliminated 

due to the high correlations. Consequently, the first five terms of the Legendre self-calibration APs are 

 
                                      

                                               
  (2.23)  

Note that all the four high correlations are linked to the terms  ,   and   . These correlation analyses 

hold for all the polynomial self-calibration models including those by Ebner (1976) and Grün (1978)
5
. 

                                                      
5
 It should be noted that these correlation analyses can only be performed in a simulation block of integrated 

sensor orientation. Without the direct observations of the EO parameters, it may lead to incorrect interpretations 

of the elimination, such as that in Grün (1978) “…the rejection of those parameters which correspond to the 6 

elements of exterior orientation …”. 
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The elimination of the four highly correlated terms is an indispensable step to construct the 

polynomial APs. It imposes four constraints on the polynomial APs. This is however a theoretical 

deficiency. According to the polynomial approximation principle and the Weierstrass theorem, all the 

parameters in     should be independent of those in     for the strict approximation purpose. In other 

words, the theoretical number of the unknown APs in the Ebner, the Grün and the fifth order Legendre 

models should be 16, 48 and 70, rather than 12, 44 and 66, respectively (by removing two constants). 

The elimination of the highly correlated terms degrades the rigorousness of the polynomial APs, and it 

may cause negative effects on calibration. Algebraic polynomials are therefore not the optimal basis 

functions for self-calibration purpose. This view was shared in Ziemann (1986) that algebraic 

polynomials “are undesirable from a mathematical point of view because of the high correlation 

between the different terms”. 

Moreover, the wavelet and rational functions are not favored by the reason that their forms are rather 

inconvenient and their derivatives are complicated. These functions increase computation and can 

burden bundle adjustment. For the three sets of basis functions from the Laplace’s equation, the 

Fourier series should be certainly favored since of the Cartesian image coordinate system. This 

mathematical insight also explains why the APs using spherical harmonics (El-Hakim & Faig, 1977) 

are less significant in practice. Actually, the APs using spherical harmonics encounter the similar 

difficulties of high correlations as those in the algebraic polynomial APs. They include the terms 

 

                                       

                        

                                       

                        

  (2.24)  

where the parameters    and    must be replaced by    and    , respectively (similar to (2.23)). The 

correlations between    and   , and between    and   , can be fairly high. 

Therefore, the Fourier series should be chosen as the theoretically optimal basis functions to develop 

self-calibration models.  

2.3.2 Fourier model 

Parallel to the Weierstrass theorem for the algebraic polynomial approximation, the Fourier theorem is 

the fundamental principle for the approximation via the Fourier series. 

 

Theorem 2 (Fourier Theorem) 

Suppose   is a continuous real function whose period is   . For every    , there exists an 

integral number  ,      and      (           ) such that 

                     
             (2.25)  

Particularly, if   is valued on  –          where a is an arbitrary real number, (2.25) 

holds uniformly for any    –         . 

 

A proof of the Fourier theorem is given in Appendix D.2. 

Bivariate Fourier series are given as 

                                        (2.26)  
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where           . The Fourier theorem in two-variables indicates that any two-variable functions 

defined in               can be approximated with arbitrary accuracy by the linear combination of 

the bivariate Fourier series of sufficiently high degree. 

Denote 

 
                               

                                       
  (2.27)  

where the factor      accounts for the order of distortion magnitude, as done in the Legendre self-

calibration model. The      and      satisfy the orthogonal conditions (2.28) which indicate      and 

     are orthogonal over the whole image dimension: 

 

                
  

   

  

   
                  

                
  

   

  

   
                 

                
  

   

  

   
  

   (2.28)  

The linear combination of the bivariate Fourier series can be used to approximate the unknown 

distortion functions    and   . The general form of self-calibration models is given as 

 
                         

    
 
                         

   

                           
    

 
                           

   

  (2.29)  

where     ,     ,       and       are the unknown coefficients (parameters) to be computed in 

adjustment.   and   are the maximum degrees chosen by the users. The number of unknown APs is 

                          (although different degrees   ,   ,    and    can be 

introduced as those in the Legendre model,        
 
and         are used in practice). 

As this family of self-calibration APs (with respect to   and  ) is established on the base of the 

Fourier series, it is named as Fourier self-calibration model (or Fourier self-calibration APs). The  -

th order Fourier model is defined as that with      . 

Particularly, the Fourier model of       (16 APs) is given with the lexicographic order: 

 

                               

                             

                                  

                                 

   (2.30)  

The Fourier model of       with 48 unknown APs are given by  

 

                                             

                                                

                                                 

                                                   

                                                   

                                                   

                                                 

                                                   

    (2.31)  
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An intermediate model between the first and the second orders is given in (2.32) below where it 

contains 32 APs. 

 

                                             

                                                

                                 

                                                   

                                                   

                                 

  (2.32)  

For the Fourier self-calibration model, all the APs in    are independent of those in    and there is no 

need to eliminate any APs. Therefore, the Fourier APs completely and strictly obey their mathematical 

principles while the polynomial APs do not. From a mathematical point of view, the Fourier APs are 

more rigorous and more desirable for camera self-calibration. 

2.3.3 Discussions on mathematical self-calibration models 

We have insofar developed two groups of mathematical self-calibration models, i.e., the Legendre and 

the Fourier models. Discussions are made on their commons and distinctions in this subsection. 

 

Mathematical fundamentals of self-calibration models 

There exist solid mathematical fundamentals behind the polynomial (including the Ebner, Grün and 

Legendre models) and the Fourier self-calibration models. The basic principle is utilizing the basis 

functions to approximate the unknown distortion function. The approximation theory guarantees that 

the Legendre and the Fourier models of appropriate degree are capable to approximate any distortion. 

Although the mathematical APs are sometimes dubbed “empirical” (McGlone et al., 2004), the 

Legendre and the Fourier self-calibration models are in fact more objective in many senses than the 

physical self-calibration models. For example, the performance of these mathematical models is quite 

independent of any empirical knowledge on distortion. 

 

Theoretical rigorousness 

As seen previously, algebraic polynomials have to eliminate four highly correlated terms to construct 

the self-calibration models while the Fourier series do not. This fact can also be interpreted from the 

function profiles of the univariate algebraic polynomials and the Fourier series. In Fig. 2.2 it is plotted 

the first six Legendre polynomials (left), the first six Chebyshev polynomials of the first kind 

(middle), and the first five terms of Fourier series (right) (all the zero-order constants are ignored). The 

Legendre polynomials and the Chebyshev polynomials are denoted by ‘     ’ and ‘     ’ (  

indicates the polynomial order), respectively.  

The most distinction found in Fig. 2.2 is that, in contrast to the two polynomials, the Fourier series 

contain no linear term. The linear terms,   and  , and their two-dimensional multiplication   , cause 

high correlations with the three IO parameters (   ,     and   ), as shown in (2.23). In fact, any self-

calibration model including the terms  ,   and    gives rise to high correlations with the three IO 

parameters, if not following (2.23) to minimize correlations. It is a distinct characteristic of the camera 

orientation and independent of block geometry. The disappearance of the linear terms (and their 

multiplication) in the Fourier series makes that the Fourier model does not need to eliminate any term. 

Therefore, the Fourier self-calibration model is theoretically more rigorous than the Legendre 

counterpart. 
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It is also noteworthy that the curves of those two polynomials and the Fourier series appear somehow 

similarly with particular respect to the number of the peaks. Following the order of the algebraic 

polynomials, the Fourier series on  –      can be ‘naturally’ ordered as 

                                        (2.33)  

In other words,       can be considered to be one-order higher than      , but one-order lower than 

                   . This is the exact rule how to derive the intermediate formulae (2.32) 

between the first and the second orders. The formulae (2.32) is factually that      and      (  
         ) are added to the first order (2.30), or that      and      (           ) are removed 

from the second order (2.31).  
 

 

Fig. 2.2 The function profiles of the first few Legendre polynomials (left), the Chebyshev polynomials of the 

first kind (middle) and the Fourier series (right). 
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Independence of distortion sources 

The Legendre and the Fourier self-calibration models (as well as the models by Ebner, Grün and El-

Hakim & Faig) are built on the base of the abstract principle of function approximation. They are thus 

independent of the distortion sources and generically effective. This is the exact reason why the APs 

by Ebner and Grün can work well in the digital era, although they are originated for analogue camera 

calibration. This is also a significant advantage which can be of vital importance when precise 

knowledge on distortion is unavailable.  

 

APs’ interpretation 

Ebner (1976) illustrated the geometric effects of his second-order polynomial APs. However, these 

illustrations should not be viewed as the interpretations like those of the physical APs. Generally 

speaking, the APs of both the polynomial and the Fourier models merely follow the mathematical 

principle of function approximation, and they don’t have any physical meaning (it is noted that having 

physical meanings implies depending on distortion sources, and vice versa). There is no need to 

interpret those mathematical APs, while the illustrations might be slightly helpful for empirical 

understanding. 

 

Overparameterization and underparameterization 

Overparameterization is always a major concern whenever the self-calibration APs are applied. In 

personal opinion, there are two relevant but different types of overparameterization. One is in the 

common mathematical sense that the random error is over-fitted as the systematic error; another is in 

the photogrammetric sense that the block geometry is deformed by the excessive use of APs. The first 

type is generally trivial since the image measurements are far more than the unknown APs (see section 

2.2.3). The second type is mainly dependent on the configurations of block geometry, such as the 

distribution of GCPs and the overlapping levels. Generally, increasing the number of GCPs and the 

overlapping levels helps the block against overparameterization. 

As the opposite of overparameterization, underparameterization should deserve similar importance. 

Underparameterization implies that self-calibration model is inadequate for distortion compensation. It 

can also result in degraded accuracy and incorrect system calibration. 

For the Legendre and the Fourier models, overparameterization and underparamterization can be 

simply interpreted as overly high and too low degrees, respectively. The degree should be decreased if 

overparameterization is observed, and should be increased if underparamterization occurs. The 

appropriate degree of the Legendre and the Fourier models needs to be chosen in order to avoid 

overparameterization and underparamterization. 

Then, an open question is that how many degrees of the Legendre and the Fourier models should be 

chosen in practice? Generally, there is no certain answer which depends on particular circumstances. 

From our empirical experiences (maybe a rule of thumb), the Legendre model of fourth and fifth 

orders, and the Fourier model of first and second orders and the intermediate (2.32), are sufficient for 

many applications in aerial photogrammetry. The risk of overparameterization should be cautioned if 

one utilizes the Legendre and the Fourier models of even higher orders. 

 

Radial distortion 

The radial distortion ((2.37) below) is known as a major distortion in many frame-format cameras. 

Although the Legendre and the Fourier self-calibration models are generically effective to calibrate 

any type’s distortion, it is unwise to directly use them to calibrate the symmetric radial distortion. The 

main reason is that the Legendre APs of over sixth-order (over 92 parameters), or the Fourier APs of 

over third-order (over 96 parameters) may be needed to approximate the radial distortion to a good 

accuracy. This can cause severe damages of overparameterization. 
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Instead, we strongly recommend that the Legendre and the Fourier APs should be utilized together 

with the radial distortion parameters to calibrate the image distortion which maintains significant 

radial distortion. These combined models (or called “mixed models”) “Radial + Legendre” and 

“Radial + Fourier” can be very efficient and highly flexible. On the one hand, these two combined 

models are capable to calibrate the radial distortion (if present) and others (by the Legendre or the 

Fourier APs), with little price of overparameterization. On the other hand, the radial distortion 

parameters are low correlated with the EO and other IO parameters; they do not increase the risk of 

high correlations. As will be seen in the next chapter, these combined models work very well even in 

calibrating the typical lenses in close range photogrammetry. 

2.4 Self-calibration models in close range photogrammetry 

Notwithstanding slight variations, the self-calibration model developed by Duane. C. Brown is the 

‘standard’ model widely accepted in close range photogrammetry. It is efficient and powerful to 

calibrate a huge range of lenses. Yet, a main disadvantage of the Brown model is the well-known high 

correlations between different parameters. The high correlations and their effects on self-calibration 

are analyzed in this section.  

2.4.1 Brown self-calibration model 

The Brown self-calibration model includes the three IO parameters (   ,     and   ), the symmetric 

radial distortion and the decentering distortion. The principle of function approximation is significant 

as well in the following construction of the Brown model. 

 

Radial distortion 

The radial distortion is a major geometric error of many cameras. It is caused by variations in 

refraction at each individual component lens. It is a radial function, denoted by      . The corrections 

in the two image coordinates are     and    : 

               
  

 
                 

  

 
       (2.34)  

where    and    are the corrected coordinates,           , and   is the angle between the   axis and 

the radial vector to the image point        . 

The profile function       can certainly be approximated by an algebraic polynomial (see the 

Weierstrass theorem in Section 2.2.1): 

             
     (2.35)  

where               are the coefficients. As the three odd-order terms are sufficient in most 

practices, (2.35) and (2.34) are simplified as (2.36) and (4.7), respectively: 

                          (2.36)  

 
                      

                      
   (2.37)  

 

Decentering distortion 



38   2  Self-Calibration Models in Photogrammetry: Theory 

 

A lack of centering of lens elements along the optical axis gives rise to the decentering distortion. 

According to the Conrady’s model (Conrady, 1919), the decentering distortion contains the radial and 

tangential components, denoted by     and    : 

                                         (2.38)  

where       is the profile function of the decentering distortion, and    is the angle between the   

axis and the axis of the maximum tangential distortion.  

Then, the effects of the decentering distortion in two image coordinates, denoted by     and    , are 

given as 

 
                   
                   

   (2.39)  

Analogue to (2.35),       is approximated by a polynomial as well. Specifically, it can be well 

approximated by a series of the even-order polynomials: 

                       .  (2.40)  

From (2.38) – (2.40), we can obtain 

 
                                     

                                     
  (2.41)  

where 

                           (2.42)  

The terms higher than second order in (2.41) are practically negligible, leading to common forms as 

 
                                                

                                                
    (2.43)  

2.4.2 Out-of-plane and in-plane distortion 

Out-of-plane distortion 

The unflatness of focal plane causes the out-of-plane distortion, denoted by    . Its components     

and     in two coordinates are 

  
   

   
   

    
    

                   
   

 
       (2.44)  

While     may be significant in metric film cameras, it is often negligible in digital cameras. 

 

In-plane distortion 

In-plane distortion, denoted by    , arises due to the shrinkage and stretching in film cameras. The 

shrinkage effect in CCD camera is a differential scaling between the   and   coordinates. In order to 

avoid overparameterization,     is often modeled in two coordinates as  
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  (2.45)  

where    and    are named as the affinity and the shear terms, respectively. They account for the 

differential scaling and the non-orthogonality between two image axes, respectively (It is proved in 

Appendix C that the shear term    and the skew parameter   in the calibration matrix (1.13) are 

exactly the same, up to a scale constant). The in-plane distortion is rarely of metric significance in 

digital cameras. 

 

In summary, the Brown self-calibration model is 

 
        

  

 
                                           

        
  

 
                                           

    (2.46)  

Adding (2.45) to (2.46) leads to the so-called extended 10-parameter model: 

 
        

  

 
              

        
  

 
              

    (2.47)  

The Brown and the 10-parameter models are most favorable in close range digital camera calibration. 

More materials on close range self-calibration models can be found in Brown (1971; 1972), Fraser 

(1997) and McGlone et al. (2004). 

2.4.3 Correlation analysis 

Three types of high correlations are of major concerns in close range camera self-calibration: 

1. high correlations between the IO and the EO parameters; 

2. high correlations between principal point shift and the decentering distortion parameters    

and   ; and 

3. high correlation between    and the in-plane distortion parameter   . 

Correlations of the first type can be quite serious in calibrating the cameras of long focal length 

(Stamatopoulos & Fraser, 2011), while they are rarely significant in most other cases as long as the 

image configurations are appropriate (Luhmann et al., 2006). The high correlations of the second and 

the third types are often encountered in practice and will be studied in this subsection. As plumb-line 

calibration is generally unable to locate the principal point (Clarke & Fryer, 1998; José & Cabrelles, 

2007) and the decentering parameters are not used in the calibration of long focal length camera 

(Stamatopoulos & Fraser, 2011), these two cases are beyond the scope of this study and are not further 

considered. 

It is well known that, the high correlations of the second type indicate that the decentering distortion 

can be partially compensated by the principal point shift, and vice versa. It was illustrated in Clarke et 

al. (1998) that the EO parameters were linked to these high correlations. However, there were only 

four images used in their simulation study (which may be geometrically inadequate) and their 

conclusion is unlikely to be true. In fact, these high correlations still remain even if the EO parameters 

are precisely given. The EO parameters should thus not be considered to be the main factor causing 

the high correlations. There must be other reasons.  

It will be shown that the high correlations of the second and third types are inherently caused by the 

polynomial nature of the Brown model and the correlations are exactly those occurring in all the 
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polynomial models in Section 2.2. For this purpose, the first five terms of the bivariate polynomials, 

by neglecting the constant terms which are entirely irrelevant to correlation analysis, are rewritten as 

 
                                 

                                   (2.48)  

which correspond to (2.22). In order to minimize the correlations,   ,   ,    and    should be replaced 

by   ,    ,     and    , respectively (see Section 2.2 and Section 2.3.1). (2.48) are thus reduced as 

 
                                 

                                             (2.49)  

In contrast, the terms are        and          , and        and          , in the decentering distortion 

(2.43). They are different from those terms       and        , and        and       , in (2.49) of 

minimum correlations. These differences, particularly the opposite signs between         and          , 

and between        and       , give rise to high correlations between the decentering parameters and 

principal point shift. 

To further illustrate the impact of the sign differences, two altered formulae are composed: 

 
                

                
  (2.50)  

 
                          

                          
  (2.51)  

where the first formulae (2.50) remove the       terms from (2.43) and the second ones (2.51) change 

the signs of the       terms (Note that these formulae are constructed for correlation analyses only, but 

not for calibration purpose). It is theoretically expected that (2.50) obtain lower correlations than 

(2.43), and (2.51) which most resemble (2.49) get lowest correlations. This will be confirmed by the 

tests in Chapter 3. Thus, high correlations between the decentering distortion parameters and principal 

point shift are inherent in the Brown models, mainly due to that the polynomial representation of the 

decentering distortion (2.43) does not follow (2.49) or (2.23) to minimize correlations. 

Analogously following the spirit of (2.49), the in-plane distortion should be altered as 

 
             

         
    (2.52)  

While handling the scaling effect quite similarly with (2.45), (2.52) possess an advantage that they 

reduce the correlation between    and    without any price of overparameterization. This advantage 

can be interpreted by the geometric effects of   , (2.45) and (2.50), as illustrated in Fig. 2.3. It is 

clearly found in Fig. 2.3 that, compared to (2.45), the geometric effect of (2.52) is more distinct from 

that of   . This leads to smaller correlation between    and the    in (2.52).  

It is noteworthy that, although certain terms are common and their numerical behaviors are similar in 

the Brown or 10-parameter model and the polynomial self-calibration model in Section 2.2, those 

terms should not be confounded and they are factually different in many ways. The terms in the Brown 

model are based on the distortion sources and they are physically interpretable; while the terms in the 

polynomial model are derived from the abstract principle of function approximation, and they are 

independent of distortion sources and not interpretable.  
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Fig. 2.3 Geometric effects of      (left), the affinity parameter      in (2.45) (middle) and in (2.52) (right). 

2.5 Concluding remarks 

It is pointed out that the primary mathematical principle of photogrammetric self-calibration (building 

self-calibration models) is function approximation. The significance of this principle identified not 

only in building two groups of mathematical self-calibration models, i.e., the Legendre and the Fourier 

models, but also in refining the physical self-calibration models in close range photogrammetry. 

The work in this chapter will be tested in practice, with particular interests in 

 how is the practical performance of the Legendre and the Fourier self-calibration models? 

 what are the advantages and disadvantages of these two new models, compared to the 

conventional counterparts? 

 experimenting the correlation analyses of the Brown and the 10-parameter model in close 

range camera calibration; and 

 others of practical interests. 
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3  Self-Calibration Models in 
Photogrammetry: Tests 

“I have no satisfaction in formulas unless I feel their numerical magnitude.” 

––– Lord Kelvin (William Thomson) (1824 – 1907). 

3.1 Test datasets 

3.1.1 Datasets in aerial photogrammetry 

The empirical test datasets are taken from a recent project of DGPF (German Society for 

Photogrammetry, Remote Sensing and Geoinformation). This project was carried out in the well-

established Vaihingen/Enz test field nearby Stuttgart, Germany. This successful project aimed at an 

independent and comprehensive evaluation on the performance of digital airborne cameras, as well as 

providing a standard empirical dataset for the next years (Cramer, 2010; DGPF project, 2010). 

Four flight datasets of two cameras are adopted in our tests: DMC (GSD 20cm, ground sample 

distance), DMC (GSD 8cm), UltraCamX (GSD 20cm) and UltraCamX (GSD 8cm). Each camera was 

flown at two heights, i.e., a same DMC camera flown in the blocks of DMC (GSD 20cm) and DMC 

(GSD 8cm), and a same UltraCamX camera flown in the UltraCamX (GSD 20cm) and UltraCamX 

(GSD 8cm) blocks. The test field of a top view is illustrated in Fig. 3.1.The area of solid rectangular in 

Fig. 3.1 is used for the flights of GSD 20cm, and the smaller area of dash rectangular is for the flights 

of GSD 8cm.  

 

Fig. 3.1 The Vaihingen/Enz test field nearby Stuttgart, Germany. 
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Table 3.1 The block configurations of the test flights of airborne cameras. 

Scenarios In-situ calibration Operational project 

Sensor orientation  Integrated sensor orientation Integrated sensor orientation 

Forward overlap (p) 60% ~70% 60% ~70% 

Cross strip NO NO 

Side overlap (q) 60% ~70% 20% ~30% 

Image number    

DMC (GSD 20cm) 3 lines × 14/line = 42 2 lines × 14/line = 28 

UltraCamX (GSD 20cm) 3 lines × 12/line = 36 2 lines × 12/line = 24 

DMC (GSD 8cm) 5 lines × 22/line = 110 3 lines × 22/line = 66 

UltraCamX (GSD 8cm) 5 lines × 35/line = 175 3 lines × 35/line = 105 

GCP/ChP distribution   

DMC (GSD 20cm) 47 GCPs / 138 ChPs 4 GCPs / 181 ChPs 

UltraCamX (GSD 20cm) 47 GCPs / 138 ChPs 4 GCPs / 181 ChPs 

DMC (GSD 8cm) 49 GCPs / 69 ChPs 4 GCPs / 114 ChPs 

UltraCamX (GSD 8cm) 48 GCPs / 68 ChPs 4 GCPs / 112 ChPs 

 

 

Fig. 3.2 The 10-image (left) and 4-image (right) configurations in close range photogrammetry. 

 

   

Fig. 3.3 Three examples of the practical images taken by a typical close range digital camera. 



44   3  Self-Calibration Models in Photogrammetry: Tests 

 

For each flight, we are interested in two most often used scenarios: in-situ calibration and operational 

project. The former scenario is with high side overlapping (  60%) and a number of well-distributed 

GCPs, and the latter with low side overlapping (  20%) and 4 GCPs only at the block corners. The 

block configurations are depicted in Table 3.1, where ‘ChP’ stand for check point. The external 

accuracy, also called “empirical check point accuracy”, indicates the root mean square errors (RMSE) 

of check points. 

Other datasets, which are acquired from different test fields by using different cameras, are also 

adopted to test the new self-calibration models. The cameras being tested include DMC II, 

UltraCamXp, DigiCAM and so on. Similar results are obtained as those in the DGPF project. The 

details on these tests are not demonstrated in this thesis due to contract limitations.  

The bundle adjustment with self-calibration is implemented in the open-source software DGAP from 

the Institute for Photogrammetry (ifp), University of Stuttgart, Germany (http://www.ifp.uni-

stuttgart.de/publications/software/openbundle/index.html, last accessed in May 2012). DGAP, 

composed by Dipl. -Ing Dirk Stallmann, is a compact, efficient and reliable software. It delivers 

adjustment results similar to those by commercial software, such as ApplicationsMaster from 

Inpho/Trimble (http://www.inpho.de) and PAT-B from the K
2
 – Photogrammetry company 

(http://www.k2-photogrammetry.de). 

It should be pointed out that all the tests are not intended for, and should not be interpreted as, the 

direct comparisons between different commercial camera systems. All the investigations are carried 

out for the scientific purpose only. 

3.1.2 Datasets in close range photogrammetry 

Simulation datasets 

The focal length of the virtual lens is 8mm and the image format is 7×7mm
2
. The pixel size is 4×4    

and the standard deviation (std. dev.) of the Gaussian noise in the image measurements is 0.1 pixels.  

Two groups of simulation datasets are used. They contain ten and four images, respectively, as 

demonstrated in Fig. 3.2. In the 10-image configuration, there are two images looking-down and eight 

around a 3D test field with a convergent angle of approximately 45
0
. This highly redundant and 

reliable configuration follows the suggestions by Wester-Ebbinghaus (1983). The 4-image 

configuration is similar to that used in Clark et al. (1998), with a convergent angle of about 90
0
. 

 

Empirical datasets 

Two lens systems, with focal length of 8mm and 12mm, are fixed in a uEye camera from Imaging 

Development System (IDS) GmbH (http://www.ids-imaging.com). The resolution of the CCD sensor 

is 2448×2048 and the pixel size is 3.5×3.5    . The image distribution is similar to the 10-image 

configuration in Fig. 3.2 (left). Ten images of each lens system are taken from a 3D test field, and a 

few examples are illustrated in Fig. 3.3. 

3.2 In-situ airborne camera calibration 

Before proceeding to the empirical tests, we need to study two topics of in-situ airborne camera 

calibration: overall system calibration and the evaluation strategy. The first topic is an essential 

requirement for calibrating heterogeneous systematic errors of a camera system. The second one, on 

which there has been a lack of investigations, is vital to evaluate whether a camera system has been 

fully in-situ calibrated and to assess the performance of self-calibration models. 

http://www.ifp.uni-stuttgart.de/publications/software/openbundle/index.html
http://www.ifp.uni-stuttgart.de/publications/software/openbundle/index.html
http://www.inpho.de/
http://www.k2-photogrammetry.de/products/patb.html
http://www.ids-imaging.com/
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3.2.1 Overall system calibration 

The systematic errors involved in the direct EO observations must be compensated. The errors of 

important interests include the misalignments between camera and navigation instruments and the 

shift/drift (if present). For the overall system calibration, a major challenge is to minimize the coupling 

effects of different correction parameters. Decoupling is critical in the sense that each systematic error 

must be independently and properly corrected and the calibration results are block-independent. 

For this purpose, we suggest the joint application of the Legendre APs or the Fourier APs (for 

calibrating image distortion) with other correction parameters, i.e., the three IO parameters used for 

correcting principal point shift and focal length error, the GPS/IMU shift/drift and the misalignment 

correction parameters. Low correlations must be warranted between the self-calibration APs and those 

other correction parameters, and between APs and the EO parameters.  

3.2.2 Evaluation strategies 

In the traditional aerial triangulation without aerial control, the common evaluation approach was to 

check whether the empirical check-point accuracy is close to the optimal theoretical accuracy. This 

evaluation approach, which is still important yet, may be inadequate in integrated sensor orientation 

due to two reasons. First, according to the statistical effect of sampling size, a sufficient number of 

well-distributed check points are needed to properly evaluate the empirical accuracy. This is however 

not always satisfied in practice due to the economic or other limitations. Second, high correlations 

may occur between correction parameters and they can result in miscalibration. 

In this subsection, the evaluation strategies of in-situ camera calibration are investigated via a 

simulation study. The simulated camera, embodied with assumed GPS/IMU system, is similar to the 

DMC camera. The error of 20   is introduced into the three IO parameters. The image distortion is 

represented by the Legendre model of third order (factually any model can be used as well to represent 

certain distortion, as long as the model’s APs don’t have high correlations with other parameters). The 

IMU misalignments in three directions are 0.005 degrees. Two block configurations, ‘calibration 

scenario’ and ‘operational scenario’, are similar to those of DMC (GSD 20cm) in Table 3.1.  

In practice, the true precision of GPS/IMU measurements is unknown
6
 and its standard deviation (std. 

dev.) is often assigned empirically. It may lead to variance misspecifications, whose effect on 

calibration is also investigated here. Without loss of generality, four presumptions of the std. dev. of 

the GPS/INS position, 20, 10, 5 and 2 (unit: cm) in the three dimensions, are employed, while the true 

value is 10cm. The std. dev. of the precision of the other observations is assigned perfectly. 

Two adjustment solutions are performed on the simulated blocks. In the first solution, the three IO and 

the IMU misalignment parameters are employed, while the Legendre APs of third order are applied 

additionally in the second solution. The impact of the remaining distortion can be demonstrated by 

comparing the two adjustment results. Note that the first adjustment solution implies equivalently that 

uncompensated distortion is remained if an inappropriate self-calibration model has been adopted.  

The adjustment results of the three IO parameters and the IMU misalignments in the ‘calibration 

scenario’ are illustrated in Fig. 3.4 and Fig. 3.5, respectively. On the one hand, it is found from the left 

figures of Fig. 3.4 and Fig. 3.5, that the three IO parameters and the IMU misalignments cannot be 

correctly calibrated if significant distortion is remained. Moreover, the calibration results vary 

substantially with the std. dev presumptions of GPS/INS position. On the other hand, if the proper 

self-calibration APs are employed in adjustment, the systematic errors can be precisely calibrated (the 

right figures). More interestingly, the calibration is quite stable, disregarding the variations of the std. 

dev. presumptions of GPS/INS position. Thus, a main observable distinction between using 

                                                      
6
 The precision of GPS/IMU measurements depends on signals received and algorithmic processing. 



46   3  Self-Calibration Models in Photogrammetry: Tests 

 

inappropriate and appropriate self-calibration models lies in whether the calibration of systematic 

errors varies with the std. dev. presumptions of GPS/INS position. 

In the ‘operational scenario’, it is nearly impossible to obtain accurate calibration results even if the 

adjustment model is perfect (i.e., adjustment with exact correction parameters, self-calibration model, 

and perfect variance assignments). The estimates of the three IO parameters with perfect adjustment 

model are 21.7, 30.9 and 12.1 (  ), which quite deviate from the true values 20  . This is mainly 

due to the weak block geometry. A sufficient number of GCPs are necessary for in-situ airborne 

camera calibration.  

According to the above simulation studies, the following three strategies are suggested for evaluating 

full in-situ airborne camera calibration: 

1. the empirical check point accuracy should be equal to the theoretical accuracy. The statistical 

effect of sampling size (the number and the distribution of check points) should be kept in 

mind in practice; 

2. the calibration results of systematic errors should be very stable, with respect to varying the 

std. dev. presumptions of GPS/INS positions; and 

 

 

Fig. 3.4 The calibration results of the three IO parameters vary with different std. dev. presumptions of GPS/INS 

position, without (left) and with (right) appropriate distortion calibration. 

 

 

Fig. 3.5 The calibration results of the IMU misalignments vary with different std. dev. presumptions of GPS/INS 

position, without (left) and with (right) appropriate distortion calibration. 
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3. the correction of each systematic error should be decoupled from others’ correction. Any 

correction parameter should be low correlated with others. 

Nevertheless, it cannot take all practical effects into account in the simulation study. For example, the 

instability of camera lens, imperfect forward move compensation (FMC) or time delayed integration 

(TDI), and operator errors, may occur in practice. Thus, these three strategies may be not entirely 

satisfied in every practice.  

These three strategies will be used to evaluate the performance of the Legendre and the Fourier self-

calibration models. Another similar simulation study with more details was given in Tang et al. 

(2012). 

3.3 Tests in aerial photogrammetry 

3.3.1 Tests on Legendre self-calibration model 

In-situ calibration scenario 

The system calibration strategy in Section 3.2.1 is adopted in all the blocks of in-situ calibration 

scenarios. Particularly, the three IO, IMU misalignments and horizontal GPS shift (insignificant in all 

the tests) parameters, and the Legendre self-calibration model of      , are employed. The order 

of the Legendre model is empirically selected by the compromise between achieving optimal accuracy 

and reducing overparameterization effects. The derived external accuracy, indicated by “self 

calibrating”, is compared to the theoretical accuracy and the “without APs” one which indicates using 

the three IO parameters but not the Legendre self-calibration APs. We assume four std. dev. of the 

GPS/INS positions: 20, 10, 5 and 2 (unit: cm) in the three dimensions. The std. dev. assumptions of 

the other observations are kept invariant. 

The adjustment accuracy is demonstrated in Fig. 3.6 (the APs of statistical insignificance are not 

eliminated in the adjustment unless specified). By comparing “self calibrating” with “Without APs”, 

the refinement of the Legendre APs is significant in all the blocks, up to 10cm in the DMC (GSD 

20cm) block. Moreover, all the “self calibrating” accuracy reaches very close to the theoretical one, 

i.e., the optimal accuracy has been achieved. All the “self calibrating” accuracy reaches to about 0.2 

GSD in the horizontal directions and 0.4 GSD in the vertical direction. It is interesting to note that, 

although the DMC and UltraCamX cameras are differently manufactured, very similar external 

accuracy can be obtained by using the Legendre APs in the blocks of similar configuration, i.e., 

similar GSD, similar GCPs distribution, and similar forward and side overlapping levels. This 

important fact coincides well with the photogrammetric accuracy expectation. That is, if all the 

systematic errors have been fully calibrated, the external accuracy should depend only on the block 

configuration and the precision of measurements, but is independent of the cameras being used. 

For the system calibration, we demonstrate in Fig. 3.7 and Fig. 3.8 the calibration results of the three 

IO parameters and the IMU misalignments in the four blocks, with respect to different std. dev. 

assumptions of GPS/INS positions. It is observed that the calibrations of the three IO parameters and 

the IMU misalignments are quite stable. These results meet well the conclusions of the simulation 

study in Section 3.2.2. It is noticed as well that the    calibration is less stable than    and   , 

particularly in the DMC (GSD 8cm) block. It may be caused by the imperfect TDI (or FMC) in 

practice, since the   coordinate is parallel to the flight direction in all the blocks. This practical effect 

was not accounted in the simulation study in Section 3.2.2. Further, by comparing the calibration 

results of the DMC and UltraCamX cameras at different flight heights, it can be found that the three 

IO parameters of the both cameras are very stable at different heights. 

Another issue of interest is the precision of image measurements. The posteriori std. dev. estimates are 

1.6, 1.4, 0.89 and 0.78 (  ) in the DMC (GSD 20cm, GSD 8cm) and UltraCamX (GSD 20cm, GSD 

8cm) blocks, respectively. These values are around 0.12 pixel which are 12 and 7.2 (  ) for the DMC 
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and UltraCamX cameras, respectively. These values meet very well the expected precision of the 

automatic tie point transfer techniques in CCD-array aerial images. 

 

Fig. 3.6 External accuracy in the four blocks of in-situ calibration scenarios (‘without APs’ indicates using the 

three IO parameters but not the Legendre APs).  

 

Fig. 3.7 The calibration results of the three IO parameters in the four blocks of in-situ calibration scenarios, with 

respect to various std. dev. preassumptions of GPS/INS positions (by using the Legendre APs). 
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Fig. 3.8 The calibration results of the IMU misalignments in the four blocks of in-situ calibration scenarios, with 

respect to various std. dev. preassumptions of GPS/INS positions (by using the Legendre APs). 

 

 

Fig. 3.9 External accuracy in the four blocks of operational project scenarios (‘without APs’ indicates using the 

three IO parameters but not the Legendre APs). 
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Operational project scenario 

There are 4 GCPs and 20% side overlapping level in the blocks of the operational project scenario. 

The IMU misalignments and the three IO parameters, and the Legendre model of    ,     are 

employed in the adjustment. This derived external accuracy is indicated as “self calibrating”. Due to 4 

GCPs available only, the GPS/IMU observations must be weighted carefully to achieve the best 

accuracy. 

The quality of the in-situ calibration is evaluated as well in the blocks of operational scenarios. The in-

situ calibration results of the three IO parameters and image distortion are fixed as known values in the 

corresponding “reduced” operational scenario, i.e., it assumes that the camera has been fully 

calibrated. Self-calibration is not needed, while the IMU misalignment parameters are still free 

unknowns (the IMU parameters can be fixed as well). The derived external accuracy is called “after 

calibration” which is compared to “self calibrating”, “without APs” and theoretical ones. 

The external accuracy in all the four blocks is illustrated in Fig. 3.9. From those results, the ‘self-

calibrating’ by using the Legendre APs improves the accuracy and the “after calibration” yields further 

refinement. The “after calibration” accuracy is very close to the optimal theoretical one in every block. 

Therefore, these tests not only recognize the sufficient accuracy obtained by the Legendre APs in the 

blocks of operational scenarios, but confirm the good efficiency of the Legendre APs in the in-situ 

calibration. 

3.3.2 Tests on Fourier self-calibration model 

The empirical tests on the Fourier self-calibration model are performed parallel to those on the 

Legendre models in the last subsection. The Fourier models of first order are used in all the tests. The 

results are illustrated in Fig. 3. 10 – Fig. 3.13, parallel to Fig. 3.6 – Fig. 3.9.  

Generally, the Fourier model obtains results (accuracy and system calibration) very similar to the 

Legendre model, while the former needs much fewer unknown APs (16 unknowns) than the latter (66 

or 34 unknowns). The details on these tests are not repeated.  

 

Fig. 3. 10 External accuracy in the four blocks of in-situ calibration scenarios (‘without APs’ indicates using the 

three IO parameters but not the Fourier APs). 
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Fig. 3.11 The calibration results of the three IO parameters in the four blocks of in-situ calibration scenarios, 

with respect to various std. dev. preassumptions of GPS/INS positions (by using the Fourier APs). 

 

 

Fig. 3.12 The calibration results of the IMU misalignments in the four blocks of in-situ calibration scenarios, 

with respect to various std. dev. preassumptions of GPS/INS positions (by using the Fourier APs). 
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Fig. 3.13 External accuracy in the four blocks of operational project scenarios (‘without APs’ indicates using the 

three IO parameters but not the Fourier APs). 

 

 

Fig. 3.14 Accuracy comparisons of different self-calibration models in the ‘DMC (GSD 20cm)’ block of two 

scenarios: the in-situ calibration (top) and the operational project (bottom). 
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Fig. 3.15 Accuracy comparisons of different self-calibration models in the ‘UltraCam  (GSD 20cm)’ block of 

two scenarios: the in-situ calibration (top) and the operational project (bottom). 

 

 

Fig. 3.16 Accuracy comparisons of different self-calibration models in the ‘DMC (GSD 20cm)’ (top) and 

‘UltraCam  (GSD 20cm)’ (bottom) blocks, with zero GCP and 20% side-overlapping levels. 
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3.4 Comparisons: airborne camera calibration 

In this section, comparisons are made among different self-calibration models in airborne camera 

calibration, with respect to external accuracy, correlation analyses and system calibration. The self-

calibration models taken into account include the 10-parameter physical model (Brown, 1971; Fraser, 

1997), the extended Brown model (Brown, 1976), the models by Ebner (1976), the models by Grün 

(1978), the Legendre and the Fourier models. They are denoted respectively by “Brown (10)”, “Brown 

(21)”, “Ebner (12)”, “Grün (44)”, “Legendre (n)” and “Fourier (n)”, where the figure in parentheses 

indicates the number of the unknown APs and ‘n’ implies the number of the Legendre and the Fourier 

APs depending on the chosen degrees. The comparisons are performed fairly in same block 

configurations (same GCP and ChP distribution and same overlapping levels) and with the same 

adjustment strategies (same weights on measurements and correction parameters). 

3.4.1 External accuracy 

We compare the external accuracy in the ‘DMC (GSD 20cm)’ and the ‘UltraCam  (GSD 20cm)’ 

blocks of the in-situ and the operational scenarios. The results are illustrated in Fig. 3.14 and Fig. 3.15 

(noting the different scales in vertical axes in the figures).  

In the ‘DMC (GSD 20cm)’ block, it is obvious that “Ebner (12)” and “Brown (10)” obtain rather 

worse accuracy than the others. Yet, the reasons are quite different for their worse performance. On 

the one hand, “Ebner (12)” performs poorly because the algebraic polynomial of second order is 

insufficient to calibrate the image distortion. Polynomials of higher degree are required for better 

approximation, according to the approximation principle. The considerable improvement is clearly 

achieved by using the Grün models of fourth order and the Legendre APs of fifth order. On the other 

hand, “Brown (10)” fails mainly due to the fact that the classical close range self-calibration model is 

inappropriate for calibrating these airborne cameras. The distortion of aerial images (especially after 

lab calibration) is not dominated by the radial distortion which is the main one in close range cameras. 

As the distortion plotted in Fig. 3.19 and Fig. 3.20 below, there is no significant radial tendency in the 

distortion of both the DMC and the UltraCamX cameras. The good performance of the “Brown (21)” 

model is due to that this model includes several high order polynomial terms which although were 

supposed compensate film deformation and unflatness (Brown, 1976). All these self-calibration 

models perform more closely in the ‘UltraCam  (GSD 20cm)’ block, because the distortion of the 

UltraCamX camera is quite small (see Table 3.4 below). From these results it is seen that the “Brown 

(21)”, “Legendre (66)” and “Fourier (16)” obtain similarly the best accuracies in these blocks. 

It is noticed that the Fourier model (16 APs) obtain similar accuracy as the Legendre model (66 APs), 

but use much fewer APs. Fewer APs imply better efficiency. Mathematically, fewer APs indicate that 

the distortion function can be faster approximated by the Fourier series than the polynomials. Fewer 

APs help to improve the stability of the block geometry against overparameterization. This is a 

practical advantage of the Fourier model over the polynomial model. 

The models of “Brown (10)”, “Brown (21)”, “Legendre (12)”, “Legendre (44)” and “Fourier (16)” are 

further compared in the two blocks with zero GCP and 20% side overlapping ( “Legendre (12)” and 

“Legendre (44)” perform similarly (or slightly better) to “Ebner (12)” and “Grün (44)”, respectively). 

The accuracy results in these very weak blocks are illustrated in Fig. 3.16. In the ‘DMC (GSD 20cm)’ 

block, the “Legendre (12)” obtains the best accuracy in the vertical direction, while “Fourier (16)” gets 

best in horizontal accuracy. In the ‘UltraCam  (GSD 20cm)’ block, the “Brown (21)”, “Legendre 

(12)” and “Legendre (44)” obtain quite similar accuracy in all three dimensions. “Fourier (16)” 

performs much worse in the vertical direction, close to 350cm.  

The results in Fig. 3.16 demonstrate that there is no self-calibration model which can certainly 

outperform others in these very weak blocks without GCP. This is mainly due to that the accuracy in a 

block without GCPs depends quite heavily on the precision of GPS/IMU observations and the role of 

self-calibration models may become less significant. Further, the accuracies are about 20–100cm in 
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the horizon and 50–200cm in the vertical in the blocks without GCP (Fig. 3.16), while they are about 

5cm in horizon and 10–15cm in vertical in the blocks with 4 GCPs (Fig. 3.14 (bottom) and Fig. 3.15 

(bottom)). 4 GCPs can improve accuracy even more than ten times. The significance of GCPs is 

clearly shown in these tests. It is thus strongly recommended that GCPs should be introduced into the 

photogrammetric mapping, even though GPS/IMU system may be able to acquire quite precise 

observations of the EO parameters. Even a small number of GCPs at the corners of the block can 

substantially improve the accuracy.  

3.4.2 Correlation analyses 

Correlation analyses deserve more importance in integrated senor orientation than aerial triangulation, 

since the heterogeneous observations from multiple sensors may contain various systematic errors. 

Each systematic error should be calibrated independently from others. The coupling effects should be 

minimized and low correlations should be guaranteed among different correction parameters. 

We examine the correlations between the self-calibration APs and EO parameters, the three IO 

parameters and the IMU misalignment parameters. Table 3.2 and Table 3.3 depict two typical 

examples in the DMC (GSD 20cm) and UltraCamX (GSD 20cm) blocks of in-situ calibration 

scenarios. ‘Intra-corr’ indicates the intra-correlations of self-calibration APs. ‘< 0.1’ denotes the 

percentage of correlations smaller than 0.1 and ‘max’ is the maximum correlation. As “Brown (10)” 

and “Ebner (12)” deliver rather poor external accuracy (Fig. 3.14 and Fig. 3.15), their performance in 

correlations is not illustrated here. 

Table 3.2 Correlation analyses in the DMC (GSD 20cm) block of an in-situ calibration scenario. 

APs corr. EO IO IMU Intra-corr 

Brown APs (21) < 0.1 98% 78% 86% 78% 

max 0.19 0.87 0.55 0.92 

Grün APs (44) < 0.1 100% 80% 83% 88% 

max --- 0.73 0.53 0.93 

Legendre APs (66) < 0.1 100% 97% 100% 96% 

max --- 0.44 --- 0.57 

Fourier APs (16) < 0.1 100% 89% 92% 92% 

max --- 0.45 0.20 0.53 

 

Table 3.3 Correlation analyses in the UltraCamX (GSD 20cm) block of an in-situ calibration scenario. 

APs corr. EO IO IMU Intra-corr 

Brown APs (21) < 0.1 99% 72% 85% 75% 

max 0.15 0.60 0.29 0.95 

Grün APs (44) < 0.1 100% 81% 87% 78% 

max --- 0.52 0.23 0.87 

Legendre APs (66) < 0.1 100% 95% 98% 90% 

max --- 0.39 0.11 0.65 

Fourier APs (16) < 0.1 100% 88% 94% 94% 

max --- 0.34 0.16 0.53 
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Interesting observations can be obtained from Table 3.2 and Table 3.3. First, all the four groups of 

APs hold very low correlations with the EO parameters; this is nearly certain since EO is 

independently observed by navigation systems. Second, the Legendre and the Fourier APs, rather than 

“Brown (21)” and “Grün (44)”, deliver much lower correlations with the three IO and the IMU 

misalignment parameters. For the columns “IO” and “IMU” in Table 3.2 , although the Fourier APs 

(89% and 92%) seem slightly worse in ‘< 0.1’ than the Legendre APs (97% and 100%, respectively), 

these differences are negligible because of the similar ‘max’ correlations, which are 0.45 and 0.20 for 

the Fourier APs, and 0.44 and <0.1 respectively for the Legendre APs. This occurs similarly in the 

UltraCamX (GSD 20cm) block, as depicted in Table 3.3. Third, the ‘Intra-corr’ shows the 

orthogonality of the Legendre and the Fourier APs. The intra-orthogonality, though having not much 

impact on calibration and accuracy, helps the stability of the adjustment process.  

The Legendre model outperforms the Grün model in correlation analyses in both Table 3.2 and Table 

3.3. This confirms the theoretical conclusions in Section 2.2.3 that the Legendre model should be 

preferred to other polynomial models.  

The Legendre and the Fourier models perform similarly best in correlation analyses. Therefore, they 

minimize the coupling effects and can derive more reliable calibration results than others. 

3.4.3 Calibrations of three IO parameters and IMU misalignments  

The calibration results of the three IO parameters and the IMU misalignments are examined in the two 

blocks of in-situ calibration scenarios: DMC (GSD 20cm) and UltraCamX (GSD 20cm); they are 

illustrated in Fig. 3.17 and Fig. 3.18, respectively. The “Brown (21)”, “Legendre (66)” and “Fourier 

(16)” models are taken into account. 

It is observed in Fig. 3.17 that the Legendre and the Fourier models obtain quite coincident results of 

the three IO parameters, while the “Brown (21)” model gets diverse results, particularly in the focal 

length calibration in the DMC (GSD 20cm) block. It is found in Fig. 3.18 that the three sets of APs 

yield similar calibrations of the IMU misalignments, while the results obtained by the Legendre and 

the Fourier APs are closer. It is reasonable and expectable that the Legendre and the Fourier APs 

obtain coincident calibration results, since both calibrate effectively the image distortion and have low 

correlations with the three IO and the IMU misalignment parameters. The high correlations between 

the “Brown (21)” APs and the three IO parameters (Table 3.2 and Table 3.3) are probably the reason 

causing the biases in the IO calibration results. As it has lower correlation with the IMU misalignment 

parameters, “Brown (21)” obtains more consistent results with “Legendre (66)” and “Fourier (16)”. 
 

 

 

Fig. 3.17 The calibration results of the three IO parameters in the ‘DMC (GSD 20cm)’ (left) and ‘UltraCam  

(GSD 20cm)’ (right) blocks of in-situ calibration scenarios. 
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Fig. 3.18 The calibration results of the IMU misalignments in the ‘DMC (GSD 20cm)’ (left) and ‘UltraCam  

(GSD 20cm)’ (right) blocks of in-situ calibration scenarios. 

3.4.4 Distortion calibration 

So far, the Legendre and the Fourier models perform quite closely in external accuracy, correlation 

analyses and the calibrations of the three IO parameters and the IMU misalignments, except that the 

Fourier model needs fewer APs for full calibration. In this subsection, we illustrate an important 

difference between these two models in the distortion calibration.  

Fig. 3.19 and Fig. 3.20 illustrate the distortion determined by self-calibration models in the DMC 

(GSD 20cm) and UltraCamX (GSD 20cm) blocks of in-situ calibration scenarios, respectively. The 

left and right plots of distortion are determined by the fifth order Legendre model (“Legendre (66)”) 

and the first order Fourier model (“Fourier (16)”), respectively. The distortion is plotted in 9×13 grid 

points.  

It is observed from Fig. 3.19 and Fig. 3.20 that there is no significant symmetric radial pattern in these 

two multi-head cameras (the distortion of these composed virtual images is definitely different from 

that of single-head cameras). It is further found that, while the distortions determined by these two 

models look quite similar, the Legendre APs produce larger distortion results particularly around the 

extremity of image format. The Fourier APs produce more homogenous distortion result over the 

whole image dimension.  

The differences in distortion calibration are more clearly depicted in Table 3.4, where it describes the 

mean and max values of the distortion on the 9×13 pattern points in the four blocks of in-situ 

calibration scenarios. It is observed from the columns “Legendre (66)” and “Fourier (16)” that, while 

the ‘mean’ values of both are close, the ‘max’ values derived by “Legendre (66)” are over twice larger 

than those by “Fourier (16)” (except in the DMC (GSD 20cm) block). To ensure these differences in 

‘max’ are not caused by overparameterization, we reduce the order of the Legendre model and raise 

the order of the Fourier model, i.e., the fourth order Legendre model (44 APs) and the second order 

Fourier model (48 APs) are used. The distortion results are depicted in the columns “Legendre (44)” 

and “Fourier (48)” in Table 3.4, respectively. It is observed again that the Legendre APs result in 

much larger ‘max’ values than the Fourier APs. Therefore, the differences in ‘max’ values are unlikely 

the consequence of overparameterization. They are probably the negative effects of the elimination of 

four highly correlated terms in the Legendre APs (see Section 2.3.1). The elimination imposes four 

undesirable constraints and can bias the distortion determination via the polynomial APs. This may be 

a practical consequence of the theoretical defect of the polynomial models (including the Ebner, Grün 

and Legendre models). In contrast, the distortion determined by the Fourier APs should be more 

reliable and more realistic, due to their ideal theoretical properties. 

Two other interesting observations are noteworthy. First, it is observed from Table 3.4 that the self-

calibration models of different orders obtain different results of distortion determination. For example, 

in the ‘DMC (GSD 20cm)’ block, the ‘mean’ values are 2.92   and 2.17   by using the Fourier 
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models of the first order and the second order, respectively. These differences show the effects of 

overparameterization and underparameterization. While the self-calibration models of different orders 

may obtain similar external accuracy, the one deducing minimal distortion should be considered as the 

model of appropriate order. For the Legendre model, it is very likely that the fourth order “Legendre 

(44)” suffers underparameterization in the ‘UltraCamX (GSD 8cm)’ block, as it delivers larger ‘max’ 

and ‘mean’ values than “Legendre (66)”. Both “Legendre (44)” and “Legendre (66)” perform quite 

similarly in the other three blocks. For the Fourier model, the second order “Fourier (48)” should be 

favored in the ‘DMC (GSD 20cm)’ block, while the first order ‘Fourier (16)’ is more appropriate in 

the other three blocks.  

Second, those distortion results in Table 3.4 show that the distortion of a single camera vary at differnt 

flight heights (note that it is a same (DMC and UltraCamX) camera in the blocks of GSD 20cm and 

GSD 8cm). For example, the mean and max values of the DMC distortion determined by the Fourier 

model in the block of GSD 8cm are 1.01   and 1.53   respectively. They are much smaller than 

those corresponding values, 2.17   and 5.21  , in the block of GSD 20cm. Similarly, for the 

UltraCamX camera, the mean and max values of distortion determination are 0.31   and 0.72   at 

the flight of GSD 8cm, while they are 0.54   and 1.14   at the higher flight of GSD 20cm. The 

distortion variations with flight heights are shown as well by applying the Legendre model. These 

variations are caused by the atmospheric influences (such as temperature, humidity and pressure) on 

distortion: all these influences increase with the flight altitude. This is a fact well recognized in 

photogrammetry (Heipke, et al., 2002), optical engineering (Lei & Tiziani, 1993) and remote sensing 

(Atkinson, 1993; Bannari et al., 1997). It is thus reasonable to suggest that the in-situ airborne camera 

calibration should be performed at a single height, same as that in related practical project. 

 

Fig. 3.19 The image distortion determined by ‘Legendre (66)’ (left) and ‘Fourier (16)’ (right) in the DMC (GSD 

20cm) block of an in-situ calibration scenario. 
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Fig. 3.20 The image distortion determined by ‘Legendre (66)’ (left) and ‘Fourier (16)’ (right) in the UltraCam  

(GSD 20cm) block of an in-situ calibration scenario. 

Table 3.4 Mean and max values of the distortion determined by the Legendre APs and the Fourier APs in the 

four blocks of in-situ calibration scenarios (unit:  ). 

Mean (Max) Legendre (44) Legendre (66) Fourier (16) Fourier (48) 

DMC (GSD 20cm) 2.36 (5.67) 2.39 (5.34) 2.92 (5.30) 2.17 (5.21) 

DMC (GSD 8cm) 0.83 (4.66) 0.95 (3.61) 0.97 (1.54) 1.01 (1.53) 

UltraCamX (GSD 20cm) 0.68 (3.28) 0.71 (3.32) 0.54 (1.14) 0.79 (1.94) 

UltraCamX (GSD 8cm) 0.52 (2.42) 0.40 (1.74) 0.31 (0.72) 0.44 (1.23) 

 

3.4.5 Overparameterization and statistical test 

Two empirical examples of overparameterization are illustrated in Fig. 3.21. The Legendre models of 

fifth order (66 APs) and the sixth order (92 APs), and the Fourier models of first order (16 APs) and 

second orders (48 APs), are applied in the DMC (GSD 20cm) block of an operational project scenario. 

The overparameterization of “Legendre (92)” and “Fourier (48)” can be observed in Fig. 3.21. 

Nevertheless, the quantitative effect of overparameterization is certainly case-dependent, while it is 

not quite severe in these two examples (less than 4cm).  

Besides correlation analysis, another statistical approach being often used in photogrammetry is 

statistical test (see Rao (2001) for the theoretical details). It removes the statistically insignificant APs 

in order to reduce the overparameterization effect. For both the Legendre and the Fourier APs, we 

refer “numerically insignificant AP” as the AP whose magnitude is smaller than 0.1. A numerically 

insignificant AP corresponds to the distortion smaller than 0.1  . It is usually found in our 
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experiments that, the parameters which are statistically insignificant (in the sense of 95% confidence 

level) are numerically insignificant, and vice versa. 

Two examples in Fig. 3.22 illustrate the effects of statistical tests on the external accuracy in the DMC 

(GSD 20cm) block of an operational project scenario. Three different strategies are used: without 

eliminating any APs, eliminating the insignificant APs of the 68% confidence level and eliminating 

the insignificant APs of the 95% confidence level. They are denoted in Fig. 3.22 by ‘without 

elimination’, ‘with 68% CL’ and ‘with 95% CL’, respectively. The 68% and 95% levels correspond to 

2-  and 3-  thumb rules under the normal distribution, respectively. These strategies of statistical tests 

are applied to the Legendre model of fifth order (66 APs) and the Fourier model of first order (16 

APs). It is observed from Fig. 3.22 that applying statistical tests and eliminating insignificant APs does 

not necessarily improve the accuracy. Instead, retaining the insignificant parameters may be 

beneficial. This was mentioned as well in Ackermann (1981). The negative effects (if present) of 

insignificant APs can be somewhat released by the high stability and reliability of the integrated 

sensor orientation block.  

Undoubtedly, rather than statistical tests, selecting the appropriate degree of the Legendre and the 

Fourier APs is much more critical to avoid overparameterization and to improve accuracy. 
 

 

Fig. 3.21 The effects of overparameterization on the external accuracy in the DMC (GSD 20cm) block of an 

operational project scenario. 

 

 

Fig. 3.22 External accuracy by applying different strategies of statistical tests in the DMC (GSD 20cm) block of 

an operational project scenario. 
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3.5 Tests in close range photogrammetry 

The empirical experiments are carried out to examine the correlation analyses and the refined model of 

in-plane distortion in Section 2.4.3. 

3.5.1 High correlations 

The 10-image and 4-image simulation datasets in Section 3.1.2 are utilized. Non-zero    ,    ,    

and   , and               are introduced into the simulated camera.         indicates 

null decentering distortion and makes fair comparisons among the formulae (2.43), (2.50) and (2.51). 

The EO parameters are precisely given in self-calibration adjustment. The correlations between     

and   , and between     and   , are depicted in Table 3.5.  

It is observed from Table 3.5 that (2.50) obtain smaller correlations than the original Brown formulae 

(2.43); (2.51) which most resemble the polynomial models (2.49) deliver the lowest correlations in the 

both experiments. The formulae (2.51) reduce remarkably the correlations from over 0.90 to a much 

lower level, around 0.30 or even smaller. These results confirm the theoretical analyses in Section 

2.4.3, that high correlations between principal point and the decentering distortion parameters are 

because (2.43) do not follow (2.49) to minimize correlations. In other words, these high correlations 

are essentially caused by the polynomial representation of the decentring distortion in the Brown 

model. High correlations in the polynomial self-calibration models are a distinctive characteristic of 

camera orientation (three IO parameters    ,     and   , and three exterior rotation angles  ,   and 

 ), and they are nearly independent of the block geometry. These high correlations exist in all self-

calibration models including the linear polynomial terms  ,   and   ; they can be circumvented only 

by following the elimination rule of (2.49).  

As the high correlations are inherent in the Brown model due to the polynomial representation of the 

decentering distortion, it needs to study their quantitative influence on the principal point location in 

self-calibration. 

3.5.2 Principal point location 

The non-zero    ,    ,   ,   ,    and    are introduced into the virtual camera. Considering that the 

decentering distortion rarely exceeds 10   at the extremity of image format (Fraser, 1997), the 

extreme decentering distortion of the virtual camera is set to increase gradually from 1   to 10  .  

Two calibration strategies are performed in the highly redundant 10-image network. The parameters 

   ,    ,    and    are used in the adjustment of the first strategy, while in the second strategy    

and    in (2.43) are additionally employed. The first strategy is designed to demonstrate the impact of 

uncompensated decentering distortion on the location of the principal point; the second one is intended 

to show their interaction in self-calibration. 

The errors of    ,     and    (by comparing the calibration results and the true values), and sigma 

zero estimate a posteriori (denoted by    ), are illustrated in Fig. 3.23 and Fig. 3.24 where the “max 

decentering distortion” indicates the distortion at the image extremity. The     stands for a posteriori 

estimate of the std. dev. of the precision of image measurements. It is calculated as  

          
 

         (3.1)  

where      are the image residuals and      is the redundancy number (equal to the number of 

constraints minus the number of unknowns). Note that      is very large in a redundant network and it 

is nearly not influenced by self-calibration APs. 
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Table 3.5 Correlation analyses between the principal point shift and the decentering distortion of different 

formulae. 

(       ) / (       )  Eq. (2.43) Eq. (2.50) Eq. (2.51) 

10-image 0.94/0.92 0.63/0.66 0.30/0.33 

4-image 0.91/0.87 0.69/0.43 0.39/0.04 

 

 

Fig. 3.23 The calibration results of principal point (left), focal length (middle) and     (right) vary with the 

uncompensated decentering distortion.  

 

Fig. 3.24 The calibration results of principal point (left), focal length (middle) and     (right) vary with different 

decentering distortion (using the decentering distortion parameters in self-calibration). 

In the experiments of the first strategy (Fig. 3.23), the errors of the principal point location grow 

substantially with the increasing decentering distortion. This implies that the remaining decentering 

distortion does bias the principal point location due to the high correlations between them. On the 

other hand, it is certain from the increasing     that the decentering distortion cannot be entirely 

compensated by the parameters     and    . This uncompensated effect can be perceived when the 

    estimate is significantly larger than 0.1 pixels. This corresponds to the decentering distortion at 

extremity being over 4   and the principal point error being over 4 pixels. In other words, less than 4 

pixels’ bias of the principal point location is undetectable in this self-calibration due to the high 

correlations. It is noted as well from Fig. 3.23, that the impact of the uncompensated decentering 

distortion on    is trivial, less than 1 pixel; the impact does not increase with the decentering 

distortion. This must be attributed to the very low correlations between    and the decentering 

distortion parameters (smaller than 0.30 in this case). 
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In the experiments of the second strategy (Fig. 3.24), the high correlations between the principal point 

shift and the decentering distortion parameters are higher than 0.90, independent of the magnitudes of 

the decentering distortion. The calibration results show the precise location of the principal point, with 

errors less than 1 pixel. The precise location is nearly not impacted by the varied decentering 

distortion. The     estimates are invariantly close to the true value 0.1 pixels. These results illustrate 

that the interaction between the principal point shift and the decentering parameters are trivial in self-

calibration. Again, the focal length calibration is little influenced by the varied decentering distortion. 

The focal length of the virtual camera is also changed to be 12 mm and 20 mm, and the experiments of 

the two strategies are repeated. Similar observations are obtained as those in Fig. 3.23 and Fig. 3.24. It 

can therefore be safely concluded that, although it is highly correlated with the decentering distortion 

parameters, the principal point can be reliably and precisely located in a self-calibration under the 

appropriate image configurations. This is a very encouraging result. It explains why the Brown model 

has worked so well in practice regardless of high correlations. As the negative effects of high 

correlations are trivial, the early works, which attempted to circumvent the high correlations between 

the principal point shift and the decentering parameters, become unnecessary.  

The precise location of the principal point irrespective to high correlations may not be surprising. It 

should be noted that, although high correlations do cause the risk of miscalibration, it is usually 

circumstance-dependent whether the miscalibration is practically significant. On the one hand, high 

correlation stands mathematically for a significant linear relation between two parameters. On the 

other hand, the quantitative influence of one parameter on another depends on many factors, such as 

the magnitudes of parameters and the scaling factor (geometrically, the gradient of the linear 

dependence). The scaling factor of the linear correlations between     and   , and between     and 

  , might be quite small (though unproved here). The limited magnitude of the decentering distortion, 

which is usually smaller than 10  , is also beneficial. 

As the decentering distortion has been shown to be significant in most digital camera lens (Brown, 

1966; Fraser, 1997; McGlone et al., 2004) and the harmful effects of high correlations are insignificant 

in self-calibration, it is suggested that the decentering distortion parameters should be employed in 

self-calibration whenever possible. The use of the decentering distortion parameters not only reduces 

the residuals of image measurements, but also improves the accuracy of the principal point location. 

3.5.3 In-plane distortion 

The simulation data and the empirical data with 12 mm focal length in Section 3.1.2 are experimented 

to evaluate the performance of the two in-plane distortion formulae (2.45) and (2.52). The experiments 

of 10-image simulation, 4-image simulation and the empirical test of ten images are denoted by 

‘simulation-10’, ‘simulation-4’ and ‘practical-10’, respectively. The values of         and 

        are introduced into the virtual cameras. The self-calibration results and the correlation 

between    and    (denoted by    ) are depicted in Table 3.6. 

In both experiments ‘simulation-10’ and ‘simulation-4’, (2.45) and (2.52) obtain the same    . This is 

mainly due to the zero in-plane distortion, i.e.,        , thus (2.45) and (2.52) has no impact on 

the     estimate. The slight refinement of    and     is observed by using (2.52), particularly in the 

case of ‘simulation-4’ where the network geometry is weak. The refined performance is due to that 

(2.52) which include additional terms       follow the spirit of (2.49) to minimize correlations. In the 

practical experiments ‘practical-10’, (2.52) obtain slightly smaller     than (2.45). The difference of 

   calibration is insignificant. This may be due to quite small in-plane distortion which is smaller than 

0.05 pixels in this digital camera. 

These results coincide with the theoretical conclusion in Section 2.4.3, that (2.52) perform similarly to 

(2.45) but help to reduce the correlation between    and    and to refine the    calibration. The 

amount of refinement by using (2.52) depends on the magnitude of the in-plane distortion and the 

image configuration. 
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Table 3.6 Self-calibration results by using two in-plane distortion models. 

Experiments Models     (  )    (  )     

Simulation-10 Eq. (2.45) 0.41 50.3 -0.81 

Eq. (2.52) 0.41 50.0 -0.75 

Simulation-4 Eq. (2.45) 0.38 48.3 -0.78 

Eq. (2.52) 0.38 50.2 -0.60 

Practical-10 Eq. (2.45) 0.26 46.1 -0.83 

Eq. (2.52) 0.26 45.8 -0.80 

 

Table 3.7 Statistical values of the self-calibration by using three different self-calibration models. 

Statistics Cameras Brown model  

(10) 

Radial + 

Legendre (18) 

Radial + 

Legendre (32) 

Radial + 

Fourier (22) 

    (  ) f = 8mm 0.42 0.41 0.37 0.38 

f = 12mm 0.26 0.25 0.25 0.25 

Max correlation f = 8mm 0.89 -0.63 -0.62 -0.52 

f = 12mm 0.92 -0.80 -0.73 -0.88 

 

 

Fig. 3.25 The calibration results of the three IO parameters for the lens systems with focal length 8 mm (left) and 

12 mm (right), by using three different self-calibration models. 

3.5.4 Combined models 

It is suggested in Section 2.3.3 that the Legendre or the Fourier APs should be combined with the 

radial distortion parameters to calibrate the distortion which contains significant radial tendency. In 

this subsection, the combined models of “Radial + Legendre” and “Radial + Fourier” are tested in 

calibrating the two close range lenses introduced in Section 3.1.2. The Legendre model of second 

order and the Fourier model of first order are chosen; the “Radial + Legendre” and “Radial + Fourier” 

models have thus 18 and 22 APs (together with    ,     and   ), respectively. They are denoted by 

“Radial + Legendre (18)” and “Radial + Fourier (22)”, respectively. The APs’ number of the 

combined models has little influence on the redundancy      which is about 4,000 in the experiments. 
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The performance of these two combined models is compared to the classical 10-parameter model 

(2.47). The calibrations of the three IO parameters by using the three self-calibration models are 

illustrated in Fig. 3.25;     and the max correlations between the three IO parameters and other APs are 

depicted in Table 3.7. 

For the first lens with      , the “Radial + Fourier (22)” model obtains smallest     while the 10-

parameter get max    . The          in “Radial + Legendre (16)” is mainly due to the 

underparamterization of the second order Legendre APs. The     is decreased to 0.37 when the degree 

of the Legendre model is increased to the third order, as illustrated in the column of “Radial + 

Legendre (32)”. From Fig. 3.25 (left), the “Radial + Legendre” and “Radial + Fourier” models obtain 

closer calibration results of the three IO parameters.  

For the second lens with       , the three models get very similar    . Comparing the results of 

“Radial + Legendre (16)” and “Radial + Legendre (32)”, it is interestingly found that increasing the 

order of the Legendre model does not further reduce    . This indicates that the Legendre model of 

second order does not suffer underparameterization in this case. Moreover, it is seen from Fig. 3.25 

(right) that very coincident results of the three IO parameters are obtained by all the three models. 

The posterior check after the experiments finds that the lens system with        does not well fit 

the uEye camera (the radial distortion at the image extremity is even over 100 pixels). The classic 10-

parameter model might be unsuitable in such case, while the combined models appear to be quite 

effective. The combined models are capable to calibrate not only the radial distortion, but other 

distortion by using the Legendre or the Fourier model. 

These experiments demonstrate the good performance of the combined “Radial + Legendre” and 

“Radial + Fourier” models in close range camera calibration. They particularly show the generic 

effectiveness of the Legendre and the Fourier models. These two models, based on approximation 

principle, are able to compensate the decentering, the in-plane and the out-of-plane distortion, and 

others. These combined models can be very useful in the cases where the Brown or the 10-parameter 

model is inadequate, such as the calibration of all-reflective cameras (Seidl et al., 2011) and the 

current example of the lens with 8mm focal length. 

3.6 Discussions 

3.6.1 Physical and mathematical self-calibration models 

The high performance of the Legendre and the Fourier self-calibration models has been identified in a 

number of empirical tests on airborne camera calibration. Both theoretical justification and practical 

tests show that these two models should be preferred to many conventional mathematical counterparts 

such as those by Ebner (1976), Grün (1978) and El-Hakim & Faig (1977). The combined models of 

“Radial + Legendre” and “Radial + Fourier” are shown to be quite effective even in the close range 

camera calibration.  

However, this should not lead to a hasty conclusion that the Legendre and Fourier models (and the 

combined models) are even preferable to the physical models. Instead of picking a winner, it is more 

appropriate and more reasonable to discuss the advantages and disadvantages of the mathematical and 

the physical self-calibration models, from both theoretical and practical viewpoints. 

It needs to specify the range of mathematical and physical models to be discussed: 

 the physical self-calibration models indicate those established on the base of the knowledge on 

distortion sources, such as those by Brown (1971, 1976), Fraser (1997) and Jacobson (1982, 

2007); and  
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 the mathematical self-calibration models indicate those established on the abstract principle of 

function approximation, such as those by Ebner (1976), Grün (1978) and El-Hakim & Faig 

(1977), the Legendre and the Fourier models. 

On the one hand, the physical self-calibration models are usually quite compact and efficient since 

they are built on the base of precise knowledge on distortion. Each AP in the physical models is 

physically interpretable. Nevertheless, physical models may encounter underparameterization due to 

the limit of knowledge. They may need to be altered to fit different camera manufacturing 

technologies (such as multi- or single-head cameras, and all-reflective cameras). Some physical APs 

may be highly correlated with other correction parameters. 

On the other hand, the mathematical self-calibration models are established (explicitly or implicitly) 

on the abstract mathematical principle of function approximation. They are independent of the 

physical sources of distortion. Particularly, the Legendre and the Fourier self-calibration models are 

theoretically rigorous, flexible and generically effective. While the calibration accuracy of the physical 

models depends on how precise the empirical knowledge is on distortion, the Legendre and the Fourier 

models are capable to compensate the distortion of very small magnitude (smaller than 0.05 pixels in 

the tests in Section 3.4.4). They are thus very useful in the cases where the empirical knowledge is 

biased or insufficiently precise while very high accuracy is desired. The Legendre and the Fourier APs 

are very low correlated with other parameters and thus able to deliver reliable and precise calibration 

results. Yet, the mathematical APs are not physically interpretable. The risk of overparameterization 

needs to be cautioned.  

A synthetic view, which follows the principle of the physical and the mathematical modeling 

approaches in Section 2.1.1, may be helpful to further understand the advantages and disadvantages. 

Mathematically speaking, an unknown (distortion) function may be divided into two parts: one with 

significant tendency and one lacking apparent pattern. The first part should be modeled using 

empirical functions via the physical modeling approach, while the second part, which is difficult to be 

exactly modeled, can be approximated via the mathematical modeling approach. Practically, the 

physical models can be used to compensate the major distortion (such as the radial distortion), while 

the mathematical models should be favored to compensate the remaining distortion which is not 

accounted by the physical models or for which it is hard to find close forms. In a word, it is rather fair 

that “each must be considered within its own right” (Ackermann, 1981) for the physical and the 

mathematical models. Their advantages and disadvantages are summarized in Table 3.8.  

To take the advantages of both the physical and the mathematical self-calibration models, it is 

recommendable to apply their combination if necessary. The combined models exploit the knowledge 

on distortion as well as take advantages of function approximation. The combined “Radial + 

Legendre” and “Radial + Fourier” models are proposed in our work. They are shown to be quite 

effective in calibrating both the airborne cameras and the close range cameras (it is an interesting 

question why the degrees of the Legendre and the Fourier models are usually higher in airborne 

camera calibration than those in close range camera calibration? This is mainly because the precision 

of calibration is application-dependent. In aerial photogrammetry, the distortion of small magnitude 

may considerably degrade the external accuracy, due to very large scale     where   is the flight 

height (or the scene depth in the close range case). Therefore, the Legendre and the Fourier models of 

sufficiently high degree are desired in airborne camera calibration. However, the scale is much smaller 

in close range photogrammetry. The remained tiny distortion may be practically trivial, while the 

overparameterization should be avoided to maintain the block stability).  

3.6.2 Calibration network 

For a successful self-calibration, an appropriate self-calibration model and an adequate calibration 

network (image configuration) are necessary. This can be better understood from the following 

stochastic equation which is the linearization of the collinearity equations (1.4): 
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Table 3.8 Advantages and disadvantages of the physical and the mathematical self-calibration models in 

photogrammetry. 

 Physical APs Mathematical APs 

Advantages Compact and efficient; 

Physically interpretable; 

Capable to compensate the radial 

distortion (main distortion in many 

lenses); 

Significant for close range application. 

 

Rigorous, flexible, generic and effective; 

Independent of the physical sources of distortion; 

Capable to compensate very small distortion; 

Low correlated with other parameters; 

Significant for large scale application (aerial and 

space) and wherever the knowledge on distortion is 

unavailable. 

 

Disadvantages Dependent on the physical knowledge; 

Risk of high correlation; 

Risk of underparameterization. 

Not physically interpretable; 

Risk of overparameterization. 

 

                     (3.2)  

where 

   stands for the observations (vector); 

   stands for the EO parameters and the coordinates of object points (the unknowns in the ideal 

collinearity equations (1.3)); 

   stands for the correction parameters (including self-calibration APs) and   for the random 

noise; and 

   and   are the design matrix or coefficient matrix, and     the variance matrix. 

All these parameters are relevant to a successful self-calibration. Particularly,  

 an adequate   indicates an calibration network of sufficiently strong geometry; 

 an adequate   indicates an appropriate calibration model; and 

 the adequate   and     indicate the sufficient precision of observations. 

An adequate   is critical for the precise solutions of   and  . As illustrated in Section 3.2.2, when   is 

inadequate (block geometry is weak), one cannot obtain the precise estimates of   and  , even if   is 

perfect (calibration model is perfect). 

The pyhsical interpretation of the matrix   depends on the types of netwrok geometry. Brown (1989) 

suggested the following criteria to get an adequate   for the close range camera calibration: 

(1) a single camera must be used to take at least three images of the object; 

(2) both the interior geometry of the camera and the point to be measured on the object must 

remain stable during the measurement process; 

(3) the photogrammetric network must be strong and exercise a high degree of convergence; 

(4) at least one image must have a roll angle that is significantly different from the others; and 

(5) a relatively large number of well distributed points should be used. 

According to the simulation study in Section 3.2.2 and the practical tests in Section 3.3 and Section 

3.4, the following requirements should be satisfied to produce an adequate design matrix   for the in-

situ airborne camera calibration: 

(1) a sufficient number of GCPs are well distributed in the block; 

(2) high side overlapping levels are beneficial. The cross flights are not mandatory but maybe 

helpful; 
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(3) at least one flight is in different direction. It corresponds somehow to the fourth criterion in 

the Brown’s suggestion. The inverse directions of adjacent flight lines are recommended; this 

flight pattern is of practical and economic convenience; and 

(4) a flight of a single height should be operated since the atmospheric influences on lens 

distortion may vary with altitude, as mentioned in Section 3.4.4. 

3.7 Concluding remarks 

Extensive tests are preformed to evaluate the performance of the new calibration models developed in 

last chapter. 

The high performance of the Legendre and the Fourier self-calibration models has been identified in 

the practice of airborne camera calibration. They are rigorous, generic, flexible and effective. They 

possess many advantages on the conventional counterparts. In general, they are able to calibrate the 

distortion of digital frame airborne cameras of large-, medium- and small-formats, mounted in single- 

and multi-head systems.  

The correlation analyses in the Brown model are carried out in simulation and practical experiments. 

The new in-plane distortion model is shown to get lower correlations with focal length and better 

calibration of it. 

By discussing the advantages and disadvantages of the mathematical and the physical models, it is 

recommended that the mathematical and the physical models should be combined together in many 

calibration applications.  
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4  Auto-Calibration in Computer Vision 

“I had no need of that hypothesis.” 

––– Pierre-Simon Laplace (1749 – 1827). 

 4.1 Projective geometry 

While photogrammetry utilizes Cartesian coordinates in Euclidean geometry, computer vision applies 

homogenous coordinates in projective geometry. Homogenous coordinates have an advantage that the 

points, lines and planes at infinity can be represented using finite coordinates. 

 4.1.1 Homogenous coordinates in projective geometry 

The homogenous coordinates of a point        in the two-dimensional (2D) space are         , and 

the homogenous coordinates of a 3D point          are           . Further, the homogenous 

representation of a line (         ) in the 2D space is naturally         , and that of a line 

(            ) in the 3D space is           . 

The homogenous coordinates have the following distinctive properties.  

(1) For any    ,          and            represent the same point in the 2D space. 

Analogously,            and               are the same point in the 3D space for    ;  

(2) The point at infinity in the 2D and 3D space is represented as          and           , 

respectively;  

(3) For any    ,          and             represent a same line in the 2D space;            

and                are the same line in the 3D space;  

(4) The point   lies on the line   if and only if       ; and 

(5) The intersection point of two lines   and    is represented as           , where   denotes the 

cross product operation. Parallel lines intersect at a point at infinity. 

The homogenous representation of the central projection in projective geometry is a linear equation, 

i.e., equation (1.11). 

 4.1.2 Fundamental matrix and essential matrix 

The fundamental matrix and the essential matrix are two basic concepts in computer vision. The 

homogeneous coordinates of an image point are indicated by             .   and    are the 

corresponding points in epipolar geometry. They satisfy 

        (4.1)  

where the matrix   is named as the fundamental matrix. The fundamental matrix, independent of scene 

structure, is the algebraic representation of epipolar geometry when the calibration matrices are 

unknown. It is a matrix with rank 2 and 7 degrees of freedom (a 3×3 matrix has 8 degrees of freedom 

by ignoring a scale factor, e.g., the norm of the matrix is one). 
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The epipolar geometry can be further represented by an essential matrix if the calibration matrices are 

known. An important property of the essential matrix is described in the following theorem. 

 

Theorem 3 (Essential Matrix) 

A 3×3 real non-zero matrix   is an essential matrix, if and only if two of its singular values 

are equal, and the third is zero. Equivalently,   is an essential matrix if and only it satisfies 

       and the following algebraic formula, 

                  (4.2)  

where       denotes the trace of a matrix. 

 

A proof of this theorem is given in Appendix D.3. It can be further shown that (4.2) provides two 

independent constraints. The essential matrix has thus rank 2 and 5 degrees of freedom. At least seven 

and five corresponding points are therefore needed to compute the fundamental matrix and essential 

matrix, respectively. An algebraic relation between the fundamental matrix and the essential matrix is 

given by  

         (4.3)  

where   and    are the two calibration matrices in epipolar geometry. As the skew parameter is zero in 

most practices (Hartley & Zisserman, 2003), the camera matrix with zero-skew is given as  

    

     

      

   

   (4.4)  

Many outstanding works have been accomplished on the fundamental matrix and the essential matrix. 

For intensive materials the readers are referred to such as Luong & Faugeras (1996) and Hartley & 

Zisserman (2003). 

4.1.3 Camera auto-calibration 

Auto-calibration is to determine a constant calibration matrix,      in (4.3), by using only image 

correspondences from multiple views. The skew parameter is often fixed as zero as (4.4). Auto-

calibration does NOT require any prior information on camera motion, scene constraints or the 

internal parameters. Image distortion is not accounted and camera is “undistorted”. 

There are four unknowns in calibration matrix to be calibrated. Two fundamental matrices are thus 

principally sufficient to calculate a calibration matrix, since each essential matrix offers two 

independent constraints. 

4.1.4 Focal length calibration from two-view 

A recent study is on estimating a constant focal length from two views by fixing the other internal 

parameters and given image correspondences (Stew nius et al., 2005; Sturm et al., 2005; Li, 2008). 

Yet, not all of them are capable to obtain a good calibration of focal length. The performance of the 

method in Li (2008) may depend on the definition of the interval of kernel-voting. Moreover, these 

methods need to know principal point and aspect ratio (and the skew parameter) in advance. Yet, the 

information on the principal point is often unavailable in practice. 
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In this chapter, we will study calibrating the focal length from two views by given aspect ratio only 

but without any knowledge of the principal point. This two-view calibration method is more flexible 

and more useful.  

4.2 Auto-calibration solution 

Our auto-calibration solution is based on the fundamental matrix and the two constraints of the 

essential matrix, i.e., equation (4.2). Its main virtues are threefold. Firstly, it utilizes an appropriate 

center-oriented coordinate transformation, with which the focal length and aspect ratio can be well 

estimated independent of the unknown principal point shift. Consequently, in contrast to the 

conventional methods which reconstruct simultaneously all the internal parameters, our method 

utilizes a recursive procedure. It first estimates focal length and aspect ratio, and then calculates the 

principal point by fixing the estimates of focal length and aspect ratio. The principal point estimate 

returns to update the calibration of the focal length and aspect ratio, and so on so forth. Secondly, the 

technique of error propagation is introduced to select the optimal geometrical constraints. The 

selection of optimal constraints is important for precise calibration and fast convergence. Thirdly, the 

Levenberg–Marquardt algorithm is adopted for the final nonlinear optimization by using the recursive 

results as the initial values. This nonlinear procedure is very fast since it is performed on the four 

unknown internal parameters. 

4.2.1 Coordinate transformation 

The pixel coordinates of image points, denoted by         , are transformed by multiplying with a 

matrix   :  

  
 
 
 
     

 
 
 
        

       
       
      

  (4.5)  

where         indicates image resolution (unit: pixels) and    is a positive scale factor.    transforms 

the pixel coordinates to a new center-oriented coordinate system. 

The new coordinates          will be used in our auto-calibration procedure. Consequently, the 

output of the internal parameters can be transferred back to the pixel coordinates by using  

    
 

  
  

  

  

 
    

    
  

  

 
  

 

 
 

  

  
 

  

 
  

  
 

  

 
  

 
 

 (4.6)  

where  ,    and    are the focal length and the principal point in the new coordinates.  

It will be demonstrated that the selection of    may play a significant role particularly in two-view 

calibration. It is suggested empirically that 

                                                 (4.7)  

For self-calibration from multiple views,           is often selected. 
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4.2.2 Mathematical derivations 

Let        by using the singular value decomposition (SVD) of the fundamental matrix  . Denote 

  

                         

   
    
    
   

 
 (4.8)  

where   and   are the orthogonal matrix and satisfy              (identity matrix). 

Noticing               for any matrices   and  , it is obtained from (4.2) and (4.3): 

                                     (4.9)  

 
                                      

                 
 (4.10)  

where 

 

                 

                 

         

   (4.11)  

    is called the dual image of the absolute conic (DIAC) which was important in early calibration 

literatures (Hartley & Zisserman, 2003). 

Denote 

                          (4.12)  

The matrix   has the form as: 

    
       
       
   

  (4.13)  

where 

 

         
                   

         
                   

         
                   

         
                   

 (4.14)  

and 

          
   

  
 

   

  
   (4.15)  

Then, the following three formulae can be derived from (4.10) – (4.15):  

   
          

          (4.16)  
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                     (4.17)  

                      (4.18)  

Obviously, these three interdependent equations, of which any two are independent, correspond to the 

two independent constraints in (4.2). For instance, (4.18) can be derived by inserting (4.17) (using 

                   ) into (4.16).  

Equations (4.16) – (4.18) are the fundamental constraints in our calibration method. They are named 

as the Constraints I, II and III, respectively. They can be viewed as the functions of the four internal 

parameters, denoted by                         or represented as              in general. The 

three constraints contain     and     (       ) only.     (       ) are derived as 
 

 

        
       

                           

                 
   

     
   

 

     
       

                       

 (4.19)  

 

                                                     

                                                 
          

 

                                                       

 (4.20)  

 

        
       

                           

                 
   

     
   

 

     
       

                       

   (4.21)  

Similar formulae can be built as well for     (       ), just replacing     by     
in (4.19) – (4.21). 

4.2.3 Recursive solution  

As the first approximation of (4.19) and (4.21), we adopt 

 
                      

 

                      
    (4.22)  

Then, (4.17) and (4.19) can be reduced as (4.23) and (4.24), respectively: 

         
       

        
  (4.23)  

         
       

        
    (4.24)  

Similar approximation of     and     can be derived similarly to (4.23) and (4.24), respectively. 

As the Constraint I (4.16) contains the terms     and     (     ) only, it can be reduced to be a 

function of    and    by using (4.23) and (4.24). The reduced Constraint I is 

 
  

      
       

        
       

       
        

  

   
      

       
        

       
       

        
    

   (4.25)  

The approximation (4.22) which disregards the unknown principal point shift makes a recursive 

solution possible and feasible. Given more than two fundamental matrices, the   and   can be 

calculated from (4.25)-alike equations. Solving two (4.25)-alike equations is a plain work and the 
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simple elimination technique is workable. Particularly, eliminating   gets a fourth order polynomial of 

  , and eliminating   obtains a sixth order polynomial of   . Subsequently, the estimates of   and   

are applied as fixed values into the constraints (4.16) – (4.18) to calculate the principal point. The 

principal point calculation is then turned back to (4.16) – (4.18) to refine the calibration of   and  . 

This recursive process proceeds until the convergent limit is satisfied. The details on recursion are 

presented in the next subsections. 

According to this recursive theme, by given    and   , the three constraints are the functions of    

and    with the general form 

                                      (4.26)  

where the coefficients             are the polynomials of    and   . Analogously by given    and   , 

the three constraints can be rewritten as the functions of    and    with the general form  

 
    

      
        

       
   

      
        

        
        

 

                   
       

       
             

 (4.27)  

where the coefficients              are the polynomials of    and   . Both      and      can be derived 

from (4.16) – (4.18). 

Two important issues are noteworthy. First, the factor    in (4.5) has a remarkable impact on the 

approximation (4.25), since the matrices   and   varies with   . The appropriate    should be chosen 

so that the approximation (4.22) holds well as much as possible or, equivalently, (4.25) approximates 

as closely as possible to (4.16). Second, although (4.25) is equal to (4.16) with        , (4.25) 

may not be viewed to equal the assumption of zero principal point shift. The approximation (4.22) 

holds if                     (or                  ) and                     (or 

                 ). These conditions are certainly much weaker than zero assumption    
    . 

4.2.4 Principal point calculation 

There are solutions potential to calculate the principal point    and    from two (4.27)-alike equations. 

Using elimination technique will obtain a 44th-oder univariate polynomial of    or   . Deriving a 

polynomial of such high order is however technically difficult and numerically unstable. The 

numerical methods based on the algebraic geometry techniques might be useful, but they can be very 

slow and unstable (Cox et al., 2004). The automatic generator (Kukelova et al., 2008) had been 

employed for solving the equations, but it was totally blocked by the complexity of (4.27). The 

nonlinear iterative techniques which require good initial values may thus lead to a poor convergence. 

In fact, a simple approximation can easily circumvent these difficulties, thanks to the convenience of 

the coordinate transformation. It holds           with an appropriate transformation (       

for example). Then, the terms higher than second order are numerically insignificant and can be 

ignored. (4.27) can thus be simplified as  

     
                    

                (4.28)  

It turns out to be rather easy to solve    and    from two (4.28)-alike equations. That is, eliminating 

   (  ) leads to a fourth order polynomial of    (  ). Our numerical simulation shows that, (4.27) and 

(4.28) deliver almost the same real solutions of    and    while (4.27) obtains many complex 

solutions which are certainly nonsense. 
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4.2.5 Optimal geometric constraints 

We know from last two subsection that any two constraints are able to calculate   and   by given    

and   ; as well, any two constraints are able to calculate    and    by fixing   and  . As one 

fundamental matrix provides three constraints (4.16) – (4.18), n fundamental matrices obtain 3n 

constraints, of which 2n are independent. Solving simultaneously all the constraints may be 

computationally inefficient, but also geometrically unfavorable. Some constraints may be appropriate 

to compute specific internal parameters, while others are less favorable. For example, the epipolar 

geometry which is close to the degenerate cases will produce false fundamental matrix, and they 

should be degraded in auto-calibration. Therefore, it is reasonable and even necessary to select the 

constraints which are geometrically appropriate to compute the internal parameters. This can be 

accomplished by using the technique of error propagation analysis, as described as follows.  

The partial derivatives of a constraint             , which is a function of the internal parameters, 

are performed as 

                                       (4.29)  

where  

 

   
             

   
    

             

   

   
             

   
    

             

   

   (4.30)  

  ,   ,    and    are the functions of the internal parameters as well. Their absolute magnitudes 

indicate the numerical impact of erroneous estimates   ,   ,    and   , respectively. While it is hard 

to be proved rigorously, the numerical simulation shows the general rules that 

(1) for the Constraint I,    and    are often quite small while    and    are significant. This 

indicates that the Constraint I is robust to the deviations of    and    but sensitive to the 

changes of    and   ; and 

(2) in contrast, the Constraints II and III are sensitive to the changes of    and    but not to the 

changes of    and   . 

Therefore, the Constraint I should be used to calculate   and  , while the Constraints II and III are 

preferred to compute    and   . These two rules coincide with the approximation in Section 4.2.3 

where it is suggested the reduced Constraint I should be used to calculate   and   in the first 

recursion. 

Consequently, we need to analyze the error propagations of    and    to the Constraints I, and the 

error propagations of    and    to the Constraints II and III. The mathematical process of error 

propagation is detailed as follows. 

 

Error propagations in the Constraint I 

Given erroneous    and   , the coefficients of the Constraint I should be normalized to avoid the 

impact of scale factor. The normalization of the constraints I (4.26) is performed as 

 

            

   
  

   
          

 (4.31)  

where the normalized coefficients are still denoted as    without ambiguity.     is the norm which can 

be taken as Euclidean one: 
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       (4.32)  

The partial derivatives of the normalized                with respective to    and    are 

    
   

       
     (4.33)  
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   (4.34)  

Then 

 
   

    
 

  
 

  

   

  
 

  
 

  

   

  
 (4.35)  

  
 

    
 

 

   
   

  
 

  
 

 

 
   

  
 

 

  
  

 

  
 

 

 
   

  
 

 

   (4.36)  

As     and     are unknown, it is assumed that                  . By further Neglecting the 

unknown constant         , it obtains 

    
   

  
 

  
 

 

  
  

 

  
 

 

   (4.37)  

For the first recursion without any prior estimate of    and   , (4.37) is replaced by  

    
      

  
 

    
  

 
            (4.38)  

Then the total error propagation of the erroneous    and    to the Constraint I   , denoted by    , is 

          
  

       (4.39)  

 

Error propagations in the Constraints II and III 

Analogously, with given erroneous    and   , the normalization of the coefficients is performed on 

the Constraint II (the Constraint III as well) of the form (4.28):  

 

                          
 

        
 

                              
  (4.40)  

The partial derivatives of the normalized                        with respective to    and    are 

    
   

       
     (4.41)  
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where 

   
  

   

   
   

  
   

   
   (4.42)  

Analogous to (4.35) – (4.39), we have 

 
   

    
 

  
 

  

   

  
 

  
 

  

   

  
 (4.43)  

  
 

    
 

 

   

   
  

 

   

 

 
   

   

 

  
  

 

   

 

 
   

   

 

   (4.44)  

Assuming                   and neglecting the factor         , it obtains 

    

     
     

 
    

     
 
  (4.45)  

The error propagations of the erroneous    and    to the Constraint II    (and to the Constraint III    

as well), denoted by     (   ), is 

          

 
                      (4.46)  

 

Optimal constraints 

Appropriate constraints can be picked using the results of error propagations. Any two Constraints I, 

whose error propagations of given    and    are denoted by      
  and      

 , result in a fourth-order 

univariate polynomial of    and a sixth-order polynomial of   . The polynomial of    and that of    

are both weighted as       
       

  
  

. Then, all the polynomials of    (and those of   ) can be 

ordered by the weights. The polynomials of three top weights are selected as optimal constraints to 

compute    (and   ). There are reasons for selecting the three top-weight polynomials. First, while 

the polynomial of the highest weight usually delivers optimal solution, this is not theoretically 

guaranteed. Second, the error propagation analyses include the approximate conditions:          
         and                  . This may result in that the polynomial of the highest weight 

may not necessarily be the polynomial which has the minimum error propagations. Third, it is 

somehow inspired by the fact that there are three polynomials of    derived from three views. 

Similar principle is applied to select the three constraints of top weights to calculate the principal point 

by using (4.40) – (4.46). The only difference lies in using either the Constraint II or the Constraint III 

of a single fundamental matrix. It is mainly due to the fact that two of the three constraints (4.16) – 

(4.18) of a fundamental matrix are independent. While (4.16) has been used to estimate focal length 

and aspect ratio, either (4.17) or (4.18) can be adopted to calculate the principal point. Thus for each 

fundamental matrix, (4.17) or (4.18) which has smaller error propagation is picked using the strategy 

(4.40) – (4.46). Then, the three constraints of top weights are selected among the n constraints of the n 

fundamental matrices.  

The selection of optimal constraints is able to significantly reduce computation. This selection strategy 

permits that each internal parameter can be solved from three polynomials of top weights. Without this 

strategy otherwise, 3n(3n-1)/2 polynomials from n fundamental matrices need to be solved for each 

internal parameter.  
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Unique optimal solution 

Certainly, not all solutions derived from the three optimal constraints are reasonable. The reasonable 

solutions must be real and satisfy 

              
    

 
      

    

 
 (4.47)  

More practical constraints, such as         (    for example), can also be adopted. 

Various reasonable solutions may remain after the check (4.47). The common criterion of minimal 

mean square error (MMSE) is adopted to obtain a unique optimal solution. Particularly, the reasonable 

solutions of   are denoted by      , and the univariate polynomials of   are indicated by          

(there are n(n-1)/2 univariate polynomials derived from n fundamental matrices). Then, the unique 

optimal solution    should satisfy 

           
          (4.48)  

The criteria similar to (4.48) are performed to obtain the unique optimal solutions of  ,    and   .  

 

Convergent criterion 

Assume the calibration are                         and                 at the    -th and  -th 

recursion, respectively. A common convergent criterion is given as 

 

 
       

  
        

       

  
       

 
         

   
        

         

   
      

 (4.49)  

     (4.50)  

where   indicates the maximum recursive step. The recursive procedure is stopped if either (4.49) or 

(4.50) is met. 

 

Briefly, the recursion contains two main steps. The unique estimates of    and    are obtained using 

     ,      , all the Constraints I of the form (4.26) (or (4.25) in the first recursion), the selection of 

optimal constraints and the MMSE criterion. Then, the unique estimates of     and     are obtained 

using   ,   , the Constraints II and III of the form (4.28), the selection of optimal constraints and the 

MMSE criterion. The recursion proceeds until convergence. 

4.2.6 Nonlinear optimization 

Undoubtedly, the results of the recursive procedure are sub-optimal. In order to take advantage of the 

whole multi-view geometry, the nonlinear optimization is recommended for the final refinement with 

the recursive results being used as initial values. The optimization is performed on all the 3*N 

constraints of the N fundamental matrices. 

The Levenberg–Marquardt algorithm is adopted in our method. The initial value of the damping factor 

  can be set as 10
-3

 as usual. This nonlinear optimization runs very fast since there are only four 

unknown internal parameters. The readers are referred to such as Hartley & Zisserman (2003) and 

Madsen et al. (2004) for more materials on nonlinear optimization. 
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4.2.7 Summaries of auto-calibration method 

The auto-calibration method is insofar completed. It contains a coordinate transformation, the 

recursive procedure and nonlinear optimization. The inputs include the image correspondences of 

pixel coordinates (and known skew parameter), image resolution, the max iteration of the recursive 

procedure, and the max iteration of the nonlinear optimization (Levenberg–Marquardt algorithm); the 

output is the calibration matrix. The flow chart of our method is depicted in Fig. 4.1. 

As this auto-calibration method is built on the base of the fundamental matrix and the constraints (4.2) 

and (4.3), the accurate computation of the fundamental matrix becomes thus vital in this work. The 

normalized 8-point algorithem is adopted, which was firstly presented in Longuet-Higgins (1981) and 

later refined via a normalization strategy by Hartley (1997). Although it is sub-optimal, this algorithm 

is fast, accurate and obtaining a unique fundamental matrix from epipolar geometry. The algebraic 

minimization and the Gold-Standard methods can be used if more accuracy is desired (Hartley & 

Zisserman, 2003). 

4.2.8 Two-view calibration 

As a second result of the auto-calibration method, it presents a new idea to compute focal length from 

two views with the known aspect ratio but not necessarily the principal point. The approximation of 

the Constraint I, i.e. equation (4.25), is capable to calculate   when   is known a priori (in fact     

for many CCD cameras). Four solutions at most can be derived from the 4th-order polynomial (4.25), 

while the (unique or multiple) positive real solutions are sensible only. 

The role of   is particularly significant in the two-view calibration. As will be demonstrated in 

Section 4.3, different   deliver quite different focal length calibrations, and appropriate   which 

depends on the epipolar geometry should be selected. 

Compared to the previous methods (Stew nius et al., 2005; Sturm et al., 2005; Li, 2008), our method 

has significant advantages in simplicity and flexibility: it is analytical and does not require the known 

principal point. It is interesting to note that the method of Sturm et al. (2005) utilized a quadratic 

equation which assumes     and known (zero) principal point. Although this quadratic equation 

appears quite similar to (4.25), they are remarkably different. First, (4.25) is derived from the 

constraint (4.16) by using the approximation (4.22), which is much weaker than the assumption of 

known principal point used in Sturm’s method. Second, Sturm’s method can be considered, just 

numerically, as a special case of our method with    . However,     is certainly not a good 

choice in many cases and it may obtain very poor calibration. 

4.3 Experiments: N=2 views 

Focal length calibration from two views is experimented in this section, while the auto-calibration 

from N 3 views is investigated in the next section. 

4.3.1 Test datasets 

Simulation datasets 

The virtual camera used in all simulation experiments is depicted as follows: 

Focal length:       ; 

Aspect ratio:    ; 

Skew parameter: 0; 
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Input: Image correspondences and 

image resolution

Coordinates transformation (4.5)

Compute the fundamental 

matrices for every image pair

SVD of all fundamental matrices

Compute the three constraints 

(4.16) – (4.18) for each 

fundamental matrix

Normalize the Constraints I (4.26) 

with        and       (or (4.25) for      

) 

Satisfy recursive conditions 

(4.49) or (4.50)?

1l 

Pick three (4.26) of top weights 

by using error propagation 

(4.31)-(4.38)

Get unique      and      by using 

(4.26) and MMSE criterion

lf l

1

0

lx  1

0

ly  Normalize the Constraints II and 

III (4.28) with       and 

Pick three (4.28) of top weights 

by using error propagation 

(4.39)-(4.42)

Get unique      and      by using 

(4.28) and MMSE criterion

lf l

0

lx
0

ly

N

Y

Nonlinear optimization by using 

recursive results as initialization 

(Levenberg–Marquardt algorithm) 

Stop

Transform calibration results to 

pixel coordinates 

1l l 

Recursive Solution

1l 

 

Fig. 4.1 The flow chart of our camera auto-calibration method. 
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Castle 

   

Fountain 

    

Castel Vecchio 

   

Piazza Erbe 

 

Fig. 4.2 Practical test datasets for the focal length calibration from two views (from top to bottom: Castle, 

Fountain, Castel Vecchio and Piazza Erbe). 
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Image resolution:          ; and  

Principal point: varied. 

The extrinsic parameters of the camera at three different poses are 

  :                     ,     
             

   
            

 ; 

  :              ,     
   
             
           

 ; and 

 

  :                    ,     
           

   
             

 . 

In each image pair there are around 100 corresponding points imaged from a 3D scene. 

Practical datasets 

Four practical image pairs, named as ‘Castle’, ‘Fountain’, ‘Castel Vecchio’ and ‘Piazza Erbe’, are 

used, as demonstrated in Fig. 4.2. The image resolutions are           ,           ,       
    and          , respectively. The aspect ratio is     and the skew parameter is zero. These 

images are taken from Fusiello et al. (2004) and Strecha et al. (2008). 

4.3.2 With known principal point 

Our method and the methods by Sturm et al. (2005) and Li (2008) are tested in the case of known 

principal point, by using the three stereo views of the simulation datasets:      ,       and      . 

Without losing generality it assumes zero principal point shift, i.e.,        . The interval of 

kernel-voting is set as             for the method of Li (2008), and        is adopted in our 

method. The noise of image measurements increases from 0.1 to 1 pixel. The experiments are 

performed 100 times for every noise level. The mean absolute errors of focal length calibration, 

denoted by   , are computed as 

    
 

 
        

     (4.51)  

where      ,      are the calculation results and   is the true focal length. 

It is demonstrated in Fig. 4.3 how    varies with the noise levels. It is found from those results that, 

while    obtained by all the three methods increases gradually with the noise levels, Li’s method 

obtains inferior results and more sensitive to the noise. The errors of Li’s method grow considerably 

with the noise levels and reach up to over 100 pixels for one pixel’s noise. Moreover, the methods of 

ours and Sturm et al. (2005), which are entirely analytical, are much faster than Li’s method. Our 

method with        performs quite similarly to Sturm’s method which takes    . It indicates 

that the coordinate transformation (or  ) has little influence on the focal length calibration when the 

principal point is given. However, the role of   is critical when the principal point is unknown, as 

shown in next subsections. 

4.3.3 With unknown principal point 

The unknown principal point shift of the virtual camera is set as          and the noise is 0.1 

pixel;   is chosen as those in (4.7). The variations of    with   in the three stereos (     ,       

and      ) are illustrated in Fig. 4.4. It is easily found from Fig. 4.4 that the focal length calibration 
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varies substantially with   in every stereo-view. The minimum calibration errors with the appropriate 

selection of   are 15.5, 5.1, and 28.4 for the three stereos, respectively; while the maximum errors are 

117.4, 51.1 and 424.3, respectively. The maximum errors are even over ten times worse than the 

minimum errors. These results show clearly the significant role of coordinate transformation in focal 

length calibration. 

Moreover,        and        obtain almost the same calibration result in the three stereos; 

       and        get quite similar errors as well. The impact of a certain range of   seems 

very close. To further investigate the impact of  , the principal point    and    are shifted randomly 

over            for 100 times. We use             for stereo      ,             for 

stereo      , and             for stereo      . The differences by using different   in each 

stereo are illustrated in Fig. 4.5. Obviously, the differences are rarely over 0.5 pixels in all the cases. 

Therefore, these experiments show that a certain range of   act similarly in two-view calibration. This 

is a main reason why the suggested   in (4.7) is a discrete set. 

It is a critical issue whether or not the appropriate selection of   is dependent on the principal point 

shift. If so, the optimal selection of   becomes nonsense since the principal point is unknown a priori. 

Fortunately, it can be shown that the optimal selection of   is independent of the principal point. 

To show this, the principal point    and    are shifted randomly over            for 100 times. We 

count the number when each   in (4.7) obtains minimum absolute errors of focal length. Particularly, 

it is performed as follows: 

 for each random principal point shift, the                in (4.7) are applied into (4.25) 

and the absolute errors of focal length, denoted by               , are obtained; and 

 count the number                when    obtains minimum absolute error (denoted by 

  ). To neglect slight numerical difference, other    which satisfy         are considered 

as obtaining minimum error as well. It is set           in these experiments. 

The numbers                are illustrated in Fig. 4.6. It is found from these results that       , 

       and        obtain minimum errors for all the random principal point shifts in the stereo 

     ;        and        in the stereo      , and        and        in the stereo 

     , always get minimum errors of focal length. There are quite a few times for other   to get the 

minimum errors when the random principal point shift is close to zero; the impact of   is not 

significant on focal length calibration in these cases, as mentioned in Section 4.3.2. 

In a word, these experiments show evidently that   plays a critical role in focal length calibration 

when the principal point is unknown; the choice of   is independent of the principal point shift, i.e., 

the optimal   depends on the essential matrix rather the fundamental matrix of epipolar geometry. 

Techniques are desired to automatically select the optimal  . 

4.3.4 Practical tests 

Our analytical method as well as that in Li (2008) is tested using the practical datasets. The 

corresponding points are extracted using the open VLFeat library by Vedaldi & Fulkerson (2010). The 

normalized 8-point algorithm, together with the RANSAC (RANdom SAmple Consensus) technique 

eliminating the outliers, is used to compute the fundamental matrix. Both       and        are 

used in our method; the interval of kernel-voting for Li (2008) is set as                where   

is the true focal length. 

The results of focal length calibration are depicted in Table 4.1. It is found from these results that our 

method achieves very good accuracy. The error is even smaller than 4 pixels in the data ‘Castel 

Vecchio’ with       .        performs better than        in all the datasets except 

‘Castel’. The calibration error is about 45 pixels in the ‘Castle’ and it is much worse than others. This 

may be caused by that many feature points lie in the plane of the wall of the ‘Castle’, while a single 

plane is known as a degenerate case to compute the fundamental matrix.  
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Fig. 4.3 The errors of the focal length calibration vary with different noise levels, with known principal point. 

The stereo views are       (left),       (middle) and       (right). 

 

 

Fig. 4.4 The errors of the focal length calibration vary with different   in different pair views, with an unknown 

principal point. 

 

 

Fig. 4.5 The differences of focal length calibration vary with 100 random unknown principal points, when   is 

chosen as two different values. 
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Fig. 4.6 The numbers different   obtain the minimum absolute errors of focal length calibration with 100 

random unknown principal points. 

Table 4.1 Practical test results of the two-view focal length calibration (unit: pixels). 

Datasets True   Li (2008) Ours  

with        

Ours  

with        

Castle 2761.82 2819 2805.83 2716.44 

Fountain 2761.82 2691 2738.66 2770.75 

Castel Vecchio  1341 1399 1328.43 1337.03 

Piazza Erbe 1341 1410 1353.35 1345.35 

 

Moreover, our method outperforms Li’s method in all the cases in Table 4.1. This may be due to two 

reasons. The first reason is the impact of noise. It is known that the precision of SIFT features (Lowe, 

2004) is around sub-pixel, while Li’s method seems quite sensitive to the noise as illustrated in Fig. 

4.3. The second one might be that, Li’s method utilizes the two constraints in (4.2), while our work 

suggest that using the constraint (4.16) only can be more effective. 

4.4 Experiments: N 3 views 

4.4.1 Test datasets 

Simulation datasets 

The simulation datasets of three views in Section 4.3.1 are used to test the auto-calibration method. 

 

Practical datasets 

We employ two practical image sets, ‘Castel Vecchio’ and ‘Piazza Erbe’, which contain four and three 

images, respectively. They are demonstrated in Fig. 4.7.  

All the experiments are implemented in MATLAB, in one PC with 32-bit Windows Seven system, 

CPU 2.5GHz and 3GB RAM. 
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Castel Vecchio_1                                Castel Vecchio_2 

     

Castel Vecchio_3                                Castel Vecchio_4 

   

Piazza Erbe_1                               Piazza Erbe_2                          Piazza Erbe_3 

 

Fig. 4.7 Practical test datasets for the camera auto-calibration: Castel Vecchio (4 images) and Piazza Erbe (3 

images). 

 

Fig. 4.8 Auto-calibration evaluation with respect to different principal point shifts, by given the perfect 

fundamental matrices. 
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Fig. 4.9 Auto-calibration evaluation with respect to different noise levels. 

 

Fig. 4.10 Auto-calibration evaluation with respect to different numbers of image correspondences. 

 

Fig. 4.11 Auto-calibration evaluation with respect to different principal point shifts. 

4.4.2 Simulation tests 

The simulation evaluations are performed with respect to different noise levels, different principal 

point shifts and different numbers of image correspondences. Each simulation experiment runs 100 

times. The accuracy of focal length and aspect ratio is quantified by the relative error (%) and the 

principal point is evaluated by the absolute error (unit: pixels).  
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We first evaluate the performance of our calibration method when all fundamental matrices are 

perfectly given. The results are illustrated in Fig. 4.8, with respect to the principal point varying from 

0 to 150 pixels. “PPs” in Fig. 4.8 stands for the principal point shift. The relative errors of   and   are 

impressively smaller than 10
-7

%, and the absolute errors of the principal point are less than 2×10
-6

 

pixels. The running time is around 0.1 seconds in all the cases. The performance of auto-calibration is 

clearly independent of the amount of the principal point shift. 

 

Noise effect 

The computation of the fundamental matrix is impacted by the noise, whose effect on our auto-

calibration method is evaluated here. There are about 100 correspondences for each image and the real 

principal point shift is 50 pixels. We illustrate in Fig. 4.9 the calibration results with respect to the 

noise levels which increasing from 0.0 to 1.0 pixel.  

It is observed from Fig. 4.9 that the relative errors of   and   and the absolute errors of the principal 

point increase linearly with the noise levels. For the noise smaller than 0.2 pixels, the relative errors of 

  and   are smaller than 0.1% and the absolute error of the principal point is smaller than 5 pixels; and 

they are around 0.5% and 14 pixels when the noise is one pixel. The linear increase of errors show our 

method is quite robust to the noise. The running time is around 0.1 second, independent of the noise 

level. 

 

Number of image correspondences 

The impact of the number of the image correspondences, which increase from 10 to 100, is illustrated 

in Fig. 4.10. The noise level is 0.1 pixels and the real principal point shift is 50 pixels. 

It is found from Fig. 4.10 that the calibration errors decrease substantially with the increasing number 

of image correspondences. When there are around 100 image correspondences, the relative errors of   

and   are around 0.07% and the absolute error of the principal point are 2 pixels. The running time is 

about 0.06 second in all the cases. 

 

Effect of principal point shifts 

Here we again demonstrate in Fig. 4.11 the calibration results with respect to different principal point 

shifts, with the noise of 0.1 pixels and around 100 correspondent points. The principal points are 

shifted from 10 to 150 pixels. It is seen from Fig. 4.11 that the relative errors of   and   are around 

0.05% and the absolute error of the principal point is smaller than 2 pixels. It is obvious that the 

calibration performance is entirely independent of the magnitude of the principal point shift. 

Table 4.2 Practical test results of the camera auto-calibration from N 3 views. 

Datasets Methods   (pixels)     (pixels)   (pixels) Time (Sec) 

Castel Vecchio 

True values 1341 1.00 521 382 --- 

Fusiello (2004) 1328 0.942 582 328 1200 

Ours (1, 2, 3) 1363.84 0.960 534.43 438.54 0.25 

Ours (1, 2, 3, 4) 1355.98 0.974 528.70 419.09 0.33 

       

Piazza Erbe 

True values 1341 1.00 521 382 --- 

Fusiello (2004) 1368 0.942 450 402 1920 

Ours (1, 2, 3) 1352.26 1.043 509.68 364.72 0.58 
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4.4.3 Practical tests 

The test results using the practical images in Fig. 4.7 are demonstrated in Table 4.2, where the 

calibration results of Fusiello et al. (2004) are depicted as well (the source codes of Fusiello et al. 

(2004) are unfortunately unavailable right now). The first three images and all the four images of 

‘Castel Vecchio’ are tested separately. 

For the first three images of ‘Castel Vecchio’, the errors of  ,    and    are 22.84, 13.43 and 56.54 

pixels, respectively. They are decreased to be 14.98, 7.70 and 37.09 pixels respectively, when all the 

four images are used. The aspect ratio   is refined from 0.96 to 0.97 as well. Obviously, more images 

are being used, more accurate the calibration is. On the other hand, the    calibration is much worse 

than   . It is mainly caused by the close directions of the   image axes of the four images. It can be 

found in Fig. 4.7 that the   axes of all the ‘Castel Vecchio’ images are close to the vertical direction. 

Small difference in rotation angles may lead to poor calibration. Compared to the results in Fusiello et 

al. (2004), our method obtains comparable   and   , and much better   and   . For the ‘Piazza Erbe’ 

images, our method achieves rather good accuracy. The errors of  ,    and    are 11.26, 11.32 and 

17.28 pixels, respectively; the errors of   is 0.043. These results are better than those obtained by 

Fusiello et al. (2004). Another main advantage of our method is the fast speed. Generally, our method 

runs less than one second which is less than one thousandth of the time costed by Fusiello et al. 

(2004). 

4.5 Discussions 

Although the promising results have been demonstrated in Section 4.3 and Section 4.4, our calibration 

method is not mature yet. There are critical issues to be addressed for the calibration from two views 

and N 3 views, as discussed as follows. 

4.5.1 Focal length calibration from two views 

First, how to select automatically the optimal  ? The critical role of   has been shown in calibrating 

focal length when the principal point is unknown. It has been shown as well that the optimal selection 

of   is independent of the principal point shift. Therefore, a technique is desired to automatically 

select an appropriate   for focal length calibration. 

Second, how many solutions of focal length can be derived from (4.25)? Theoretically, at most four 

reasonable solutions of   (real and positive) can be obtained from a 4th-oder polynomial (4.25) with 

given  . It might obtain none, single or multiple reasonable solutions. In our simulation experiments 

when the principal point    and    vary randomly over            (unit: pixels) and there are 

around 80 image correspondences, we always get a single reasonable solution. Nevertheless, more 

theoretical investigations are beneficial on the number of solutions (the work on degenerate 

configuration of two-view calibration was studied in Sturm et al. (2005)). 

Third, it is suggested that (4.17) and (4.18) should be ignored in focal length calibration. These two 

formulae occasionally obtain comparable but mostly get much worse results than (4.16). Their 

inadequacy is mainly caused by that they include the terms     and     which can be influenced 

severely by the unknown principal point    and   . For    , the sign of the ‘constant’ term      
                              can be opposite to the sign of        after approximation. 

Changing the sign of the constant terms in a polynomial can seriously corrupt the roots. (4.17) and 

(4.18) are thus unfavorable for focal length calibration due to the considerable influence of unknown 

principal point on     and    . On the other hand, as the ‘constant’ term                    in 

    always keeps as non-negative as    
  after approximation,     (   ,     and     as well) is 

numerically less impacted by the unknown principal point. Equation (4.16), which includes terms    , 
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   ,     and     but not     or    , should thus be preferred to calibrate focal length from two 

views when principal point is unknown.  

4.5.2 Auto-calibration from N 3 views 

First, how to select   in auto-calibration? While the optimal selection of   is vital in two-view 

calibration, its significance can be less considerable in the auto-calibration from N 3 views. Unlike 

two-view calibration, there are more than one (4.25)-alike equations being used in auto-calibration. 

The error of focal length, if significant in the first recursion, can be gradually reduced in the 

subsequent recursive procedure. Most importantly, the approximation (4.28) requires essentially 

selecting small  , for example        which works quite well in the experiments. Nevertheless, it 

is worth further exploring the impact of   on auto-calibration. 

Second, the selection of optimal geometric constraints in Section 4.2.5 should be a mandatory step in 

our auto-calibration method. The selection has two main advantages. First, it reduces the cost of 

computation. Without this selection strategy, 3N(3N-1)/2 polynomials from N fundamental matrices 

need to be solved for each internal parameter. Second, it helps the stability of auto-calibration since it 

can disregard the poor solution from inadequate epipolar geometry. For the fundamental matrices 

which are acquired from the cases close to the degenerate configurations (for example, pure camera 

translation), the significance of their constraints (4.16) – (4.18) can be degraded by the error 

propagation technique and the weighting strategy. The inadequate geometry can thus be filtered in the 

recursive procedure. Nevertheless, this selection strategy may be further refined. 

Third, the error propagation technique in Section 4.2.5 is adopted to address a problem: to estimate the 

impact of erroneous coefficients on the solutions of an algebraic polynomial. We presented a solution 

which appears quite adequate in auto-calibration. There may be other more efficient methods for this 

problem.  

Fourth, our auto-calibration method is basically using the Kruppa equations which may be not the 

sufficient conditions of auto-calibration (Hartley & Zisserman, 2003). The modulus constraint may 

need to be incorporated into our present method.   

4.6 Concluding remarks 

A new method is proposed to address the challenging problem of camera auto-calibration in geometric 

computer vision. This method contains three main steps: a coordinate transformation, recursive 

procedure and nonlinear optimization. A new idea of the focal length calibration from two views 

without the knowledge of the principal point is proposed as well. 

The three formulae (4.16) – (4.18) which equal the two independent constraints of an essential matrix 

in (4.2) are derived. They are of vital importance for establishing the recursive procedure. Their 

significance may be found in other applications. Although both the techniques of focal length 

calibration and the auto-calibration are not mature yet, the promising results have been demonstrated 

in both simulation and practical tests. The potential refinements are discussed in Section 4.5. 
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5  Summary 

“I know nothing except the fact of my ignorance.” 

––– Socrates (470 BC – 399 BC). 

5.1 Contributions 

This work starts with emphasizing the common mathematical fundamentals of photogrammetry and 

geometric computer vision, i.e., both the collinearity equations in photogrammetry and the projection 

equation in geometric computer vision can be derived from the mathematical central projection. It 

reviews the development of the camera calibration techniques in photogrammetry and geometric 

computer vision, with emphases on their commons and distinctions.  

This work studies the camera self-calibration in photogrammetry and computer vision, largely from a 

mathematical viewpoint as well as together with the physical and practical considerations. There are 

several contributions in this work. 

First, it is pointed out that photogrammetric self-calibration (or building self-calibration models) can – 

to a large extent – be considered as a function approximation problem in mathematics. The unknown 

function of distortion can be approximated by a linear combination of specific mathematical basis 

functions. This is the most significant theoretical contribution in this work. Particularly, 

 it provides a solid mathematical foundation for many conventional self-calibration models, 

such as those by Ebner (1976), Grün (1978) and El-Hakim & Faig (1977); 

 it introduces a theoretical base, on which we are able to discuss the theoretical advantages and 

disadvantages of different mathematical self-calibration models. This is a very important rule 

for selecting appropriate models in practice; 

 it leads directly to building the Legendre self-calibration models by using algebraic 

polynomials as the basis functions, and to developing the Fourier self-calibration models by 

using the bivariate Fourier series;  

 its significance is shown as well in the correlation analyses of the Brown self-calibration 

model in close range photogrammetry; and 

 it offers a synthetic view on the self-calibration models in both aerial and close range 

photogrammetry. The mathematical self-calibration models, which are originated for aerial 

applications, can be useful in close range camera calibration due to their approximation 

nature. 

Second, the Legendre and the Fourier self-calibration models are developed on the base of the 

approximation principle. There are important notes on these mathematical self-calibration models: 

 Among the algebraic polynomials, the Legendre polynomials should be preferred to construct 

self-calibration models since they obtain optimal approximation in the least-squares sense. 

The Legendre self-calibration model can be considered as a superior generalization of the 

Ebner’s and the Grün’s polynomial models, to which the Legendre models of second and 

fourth orders should be preferred, respectively. This is confirmed in the practical tests as well; 

 from a theoretical viewpoint, the Fourier series should be the optimal basis functions to build 

photogrammetric self-calibration model due to their perfect theoretical charateristics. The 

advantages of the Fourier self-calibration model over the polynomial models lie in that they 
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are more theoretically rigorous, usually need fewer APs and obtain more reliable distortion 

calibration. The Fourier model should be preferred in in-situ airborne camera calibration; and 

 both the Legendre and the Fourier self-calibration models are orthogonal, rigorous, generic, 

flexible and effective. A number of empirical tests show that both models are capable to 

calibrate the distortion of the frame-format airborne cameras of large-, medium- and small-

formats, mounted in single- and multi-head systems (including the DMC, DMC II, 

UltraCamX, UltraCamXp, DigiCAM cameras and so on). 

Third, it is shown in close range photogrammetry that high correlations between the principal point 

and the decentering distortion parameters are inherent in the Brown self-calibration model due to the 

polynomial nature of the model. These high correlations are an essential characteristic of camera 

orientation (three IO parameters    ,     and   , and three exterior rotation angles  ,   and  ), 

independent of block geometry. It is further shown that, although it is highly correlated with the 

decentering distortion parameters, the principal point can be reliably and precisely located in a self-

calibration under appropriate image configurations. A refined model of in-plane distortion is proposed, 

which helps to reduce the correlation with the focal length and improve the calibration of it. Moreover, 

the advantages and disadvantages of the pysical and the mathematical self-calibration models are 

discussed. The combined “Radial + Legendre” and “Radial + Fourier” models are recommended in 

many calibration pratices due to their high flexibility and effectiveness.  

Fourth, a new method is presented to address the challenging problem of camera auto-calibration in 

geometric computer vision. It requires only the image correspondences and zero skew parameter. This 

method includes a coordinate transformation, a recursive procedure and a nonlinear optimization. In 

the recursion, it firstly estimates the focal length and aspect ratio and then calculates the principal 

point. The nonlinear optimization, with the recursive results being used as initial values, is performed 

via the Levenberg–Marquardt algorithm. This method can be very efficient to obtain a unique 

calibration. 

Fifth, a new idea is proposed to calibrate focal length from two views without the knowledge of the 

principal point, by given the aspect ratio and image correspondences (and zero skew). With an 

appropriate coordinate transformation which plays a key role, this analytical method is able to 

calibrate focal length regardless of unknown principal point. 

5.2 Discussions 

5.2.1 Photogrammetric self-calibration models 

Camera calibration is always a central work in photogrammetry. Developing appropriate self-

calibration models is vital in calibration activities and many other applications in photogrammetry and 

remote sensing. 

Self-calibration model is essentially a mathematical representation of distortion. There are two general 

modeling approaches, i.e., physical and mathematical modeling, as mentioned in Section 2.1. The 

physical modeling uses specific functions to model the empirical knowledge of distortion. The 

mathematical modeling presumes that the exact knowledge on distortion is unavailable or the exact 

modeling is difficult; it thus applies the abstract principle of function approximation to approximate 

the unknown distortion function. The advantages of disadvantages of these two modeling approaches 

are described in Table 3.8. 

It should be noted that, although the mathematical self-calibration models do ‘merely’ approximate the 

distortion, this does not mean that these approximate models are less accurate than the exact physical 

models. The performance of the physical models is limited by our (perhaps imperfect) empirical 

knowledge on distortion. Distortions may vary with different cameras and they may not be represented 

and compensated by a specific physical model. Another usual nuisance of the physical models is that 
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they may need to make a good balance between the exact modeling and reducing correlations. In 

contrast, the mathematical models are independent on distortion sources. Their efficiency is 

theoretically guaranteed and they are able to address very complicated distortion. The Legendre and 

the Fourier self-calibration models are able to get arbitrary accuracy of calibration by choosing 

sufficiently high degree. Therefore, the mathematical models of appropriate degree are factually able 

to obtain comparable or even better calibration than the physical models. The combined models, such 

as the “Radial + Legendre” and “Radial + Fourier” models in Section 2.4, may exploit the advantages 

of both the physical and mathematical models. 

The comparisons between the Legendre and the Fourier self-calibration models are noteworthy. While 

the advantages of the Fourier model have been shown over the Legendre model, it was not intended to 

indicate that the Fourier model is superior. First, the Fourier model usually but not always needs fewer 

APs for calibration. Rigorously speaking, it is circumstance-dependent which model needs fewer APs. 

Mathematically, it depends on whether the distortion function is approximated more efficient by the 

algebraic polynomials or by the Fourier series. If polynomials are more suitable, then the Legendre 

model needs fewer APs; otherwise, the Fourier model is more efficient. Second, it is true on the one 

hand that the Fourier model is preferable in the in-situ airborne camera calibration due to its 

theoretical advantages (see Section 2.3 and Section 3.4); on the other hand, our experiences show that 

the Legendre model occasionally gets better performance in the blocks with few GCPs. Therefore, 

both the Legendre and the Fourier self-calibration models will find their significance in camera 

calibration. 

5.2.2 Photogrammetry and geometric computer vision 

It has been well recognized that photogrammetry and geometric computer vision are two closely 

neighboring disciplines. They have many similar tasks and goals such as calibration, orientation and 

reconstruction. Lots of work share their interest in both photogrammetry and computer vision, such as 

relative orientation (Philip, 1996; Nist r, 2004), the spatial resection of single image or the so-called 

PnP problem (Masry, 1981; Lepetit et al., 2009), point feature detection (Förstner & Gülch, 1986; 

Lowe, 2004) and bundle adjustment (Triggs et al., 2000). It should be acknowledged that much work 

was originally studied in photogrammetry while later advanced significantly in computer vision. This 

encourages the inter-communications between these two disciplines (Hartley & Mundy, 1993; 

Förstner, 2002, 2009). 

Although much remarkable progress has been made, the relationship between photogrammetry and 

geometric computer vision seems still quite remote. The exchange difficulty may be due to several 

facts. First, the traditions, philosophies and applications of the two disciplines are distinctive. For 

photogrammetry which was originated in surveying and mapping, accuracy is the primary goal and 

most photogrammetric work are post-processing. For lots of real-time vision work, on the other hand, 

accuracy is defined by applications and the processing speed becomes a critical issue (meanwhile it is 

aware of that more and more photogrammetric work become involved in the real-time applications). 

Second, the language is an obstacle. Quit different languages are used in these two fields. One has to 

spend time in learning another language before understanding a foreign work. Third but not least, 

while geometry remains as one of the major concerns in photogrammetry, the main trend in computer 

vision has been moved from geometry to learning and recognition (see the programs of the three top 

computer vision conferences (CVPR, ECCV and ICCV) in the recent years, and the timeline of most 

active topics in computer vision as described in Szeliski (2011)). 

While by no means aiming at an exhaustive study on the relationship between photogrammetry and 

geometric computer vision, it is attempted to make discussions from a mathematical viewpoint. As 

shown in the first chapter that the mathematical fundamentals of photogrammetry and geometric 

computer vision can be both derived from the central projection. The collinearity equations in 

photogrammetry are the Cartesian representation of the central projection in Euclidean geometry, 

while the projection equation in computer vision is the homogeneous representation of the central 
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projection in projective geometry. Consequently, many distinctions appear in the analytical methods of 

photogrammetry and geometric computer vision.  

 Due to the nonlinearity of the collinearity equations, many analytical techniques in 

photogrammetry are nonlinear and iterative. In contrast, the linearity of the projection 

equation permits the liner matrix operations in vision techniques and this suffices the real-time 

applications.  

 The Cartesian representation in photogrammetry enables exploiting many classical techniques 

of statistical inference, such as error estimation and statistical test. The homogeneous 

representation in computer vision is capable to take the advantages of the linear algebra, while 

the statistical inference in projective geometry was recently studied in Förstner (2005). 

 Good initial values are often desired in the iterative photogrammetric techniques. The 

nonlinear optimization, usually using bundle adjustment, can achieve very high accuracy by 

given good initial values. This is also well acknowledged in vision society. Many vision 

techniques are benefited from the linearity of the camera matrix and do not suffer such 

nuisance of initial values (if they are). They can handle quite complex matters. The output of 

the vision techniques can well serve as the initialization for the photogrammetric techniques. 

 All the parameters in the collinearity equations are physically interpretable, but those in the 

camera matrix are not. Consequently, the collinearity equations may have advantages in the 

applications of multi-sensor integration (for example a camera incorporated with a GPS/INS 

system). This is particularly true in aerial photogrammetry where the precise observations of 

GPS/INS systems serve as very good initial values of the camera EO parameters. On the other 

hand, projective geometry can be very powerful and convenient in the cases where camera is 

the only sensor available or camera is incorporated with low-precision navigation sensors. For 

example, focal length calibration from two views can be only fulfilled using projective 

geometry. 

To summarize, we would like to emphasize that, (1) from a mathematical viewpoint, photogrammetry 

and geometric computer vision are two different representations and solutions of the camera geometry. 

In a way, photogrammetry is an art of analysis and statistics, while geometric computer vision is an art 

of algebra; (2) from an engineering viewpoint, the techniques of photogrammetry and geometric 

computer vision provide two powerful and efficient alternatives to address the challenges in practice. 

Both have their advantages and disadvantages, depending on the applications; (3) the accuracy, speed 

and others should not be the labels used to distinguish the techniques of photogrammetry and 

geometric computer vision; both their techniques can obtain high accuracy with a fast speed in certain 

applications; and (4) it is expected that the researchers and students in photogrammetry should learn 

the basic concepts and techniques of geometric computer vision, and hopefully vice versa.  

5.3 Outlooks 

There are works to be continued in the following years. 

First, self-calibration models in photogrammetry. The self-calibration models should follow and fit the 

development of camera manufacturing techniques. The mathematical self-calibration models, 

particularly the Legendre and the Fourier models, will find their significance in the next years since 

they are rigorous and independent of distortion sources. Extensive tests are appreciated to demonstrate 

the advantages and disadvantages of these two models, and to enrich the practical experiences on 

applying different self-calibration APs. The combination of the mathematical APs and the physical 

APs should be always kept in consideration, in order to maintain precise calibration as well as to avoid 

overparameterization and high correlations.  

Second, camera auto-calibration from N 3 views and the focal length calibration from two-view in 

geometric computer vision. We present a new method to solve the auto-calibration problem and 
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propose a new problem to calibrate the focal length from two views without any knowledge on the 

principal point. Although there remain a few unsolved problems as discussed in Section 4.5, our 

methods show very promising potential to ultimately solve these challenging problems. The effects 

will be devoted in future refinements. 

Third, geometry and image understanding. A common goal of photogrammetry in a broad sense and 

computer vision is getting information from images. This thesis studies the geometry issues in 

photogrammetry and computer vision. One has to recognize that the geometry is generally mature and 

moderately difficult, relative to image understanding and recognition which are still much challenging. 

It is very interesting to incorporate the successful achievements in geometry into other broader 

applications. 

Finally, this thesis study would like to be ended with a quotation from the American computer 

scientist Alan Curtis Kay (1940 –): 

“The best way to predict the future is to invent it.” 
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Appendices 

Appendix A: Traditional self-calibration models 

The self-calibration model proposed by Brown (1976). 

                                       

 
 

 
                               

                                                  

 

 

                                  

 
 

 
                               

                                                  

 

 

The polynomial self-calibration model proposed by Ebner (1976). 
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       where   is the length of the square image format. 

 
 

The polynomial self-calibration model proposed by Grün (1978). 
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where        where   is the length of the square image format. 
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The self-calibration model of spherical harmonics by El-Hakim & Faig (1977). 
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Appendix B: Orthogonal polynomials 

Definition B.1 (Orthogonal) 

Two functions      and      in         are said to be orthogonal over the interval       
with respect to a given continuous and non-negative weight function     , if 

          
 

 

           (A.1)  

For convenience, the notation of inner product is often used. 

                
 

 

         (A.2)  

Definition B.2 (Orthogonal polynomial family) 

An orthogonal polynomial family is                  where    is of degree   exactly, defined so 

that 

                 (A.3)  

Particularly, this family is orthonormal if, in addition to (A.3), they satisfy 

                       (A.4)  

B.1 Legendre orthogonal polynomials 

If the inner product is defined over the interval and by using the weight function as 

                       (A.5)  

Then we obtain the orthogonal Legendre polynomials. The first few univariate Legendre polynomials 

follow. 
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B.2 Chebyshev orthogonal polynomials of the first kind 

If the inner product is defined over the interval and by using the weight function as  

                          
 
    (A.6)  

Then we obtain the Chebyshev orthogonal polynomials of the first kind. The first few first few 

Chebyshev polynomials of the first kind follow. 

 

        

        

            

             

                

                   

                       

The Chebyshev polynomials of the first kind have a very interesting relation to the cosine series, as 

given by 

                             (A.7)  

For more mathematical materials on orthogonal polynomials, the readers are referred to textbooks 

such as Mason & Handscomb (2003) or Oliver et al. (2010). 
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Appendix C: In-plane distortion and the skew parameter 

Both the shear term    of the in-plane distortion in photogrammetry and the skew parameter of the 

camera matrix in computer vision are proclaimed to account for the non-orthogonality between two 

image axes. It can be proved as follows that these two parameters are equal, up to a scale factor. 

Proof. For the benefit of simplification, it assumes zero principal point shift         and     

without losing generality. Denote (the indications of terms follow those in the first chapter) 

  
  

  

  

     

    

    

    

    (A.8)  

Then, it is derived from the collinearity equations (1.4) with the shear term    that 

  
             

         
 (A.9)  

and it is obtained from the camera matrix (1.10) and the calibration matrix (1.13) that 

  
 
 
 
   

   
   
   

  
  

  

  

   
       

   

  

    (A.10)  

Following the scale invariance of the homogeneous coordinates, (A.10) is equivalent to 

  
 
 
 
   

             

      
 

  (A.11)  

and 

 
             

        
  (A.12)  

Noticing –   in (A.9) are   in (A.10) (see Section 1.1.1), we have 

          (A.13)  

Therefore,    and   are the same, up to a positive constant factor   (  of a camera is a constant, 

whether known or not). 

Q.E.D. 

Appendix D: Proofs of the theorems 

D.1 Proof of the Weierstrass theorem 

A constructive proof of the Weierstrass theorem (for a real-valued function) using Bernstein 

polynomials is outlined here (Mason & Handscomb, 2003).  The Bernstein basis polynomials of 

degree   are defined as 
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            (2.53)  

where        ,          , and  
 
 
  is a binomial coefficient. 

A linear combination of Bernstein basis polynomials 

                

 

   

 (2.54)  

is called a Bernstein polynomial and    are coefficients. 

Proof. Without losing generality, let   be a continuous function on the interval      . Consider the 

Bernstein polynomial 

             
 

 
        

 

   

 (2.55)  

Suppose   is a random value distributed as the number of successes in   independent Bernoulli trials 

with probability   of success on each trial; in other words,   has a binomial distribution with 

parameters   and  . Then we have the expected value           . 

By the weak law of large numbers of probability theory, 

    
   

   
 

 
         (2.56)  

for every  . 

Because  , being continuous in a close bounded interval, must be uniformly continuous on that 

interval, one infers a statement of the form 
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uniformly in  . Taking into account that   is bounded (on the given interval) one gets for the 

expectation 
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Note that      
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     , then one gets the uniform convergence 
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Q.E.D. 

D.2 Proof of the Fourier theorem 

We proof the result under the additional assumptions that   is defined on       ,    is piecewise 

smooth and thus     is piecewise continuous. The proof for general cases can be seen in Folland (2009). 

Proof. Since   is continuous, it can be represented as  
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where   ,    and    (       ) are Fourier coefficients. 

To prove the absolute convergence it suffices to show that            
     for some constant   

independent of  . Then  
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uniformly in  . 

Notice  

 

   
 

 
            

 

  

  
 

  
             

 

  

 
 

   
              

  
 

   
              

 

  

 
 

   
                           

 

   
              

 

  

 (A.23)  

Since       and        are continuous on the close interval       ,         and          are bounded. 

Then there exist a constant   satisfying  

 

                           
  

 

               
 

  

  
  

 

   (A.24)  

Then one obtains       
    and similarly       

   . 

Q.E.D. 

D.3 Proof of the theorem on the essential matrix 

A proof is given in Hartley & Zisserman (2003).  

Proof. Given the known calibration matrix, a pair of normalized camera matrices can be formed as 

        and         . Then the essential matrix of this pair is  

            (A.25)  

where        and     is the matrix representation of the cross product and defined as  

   
 
 
 
  

 

  
    
    

    
    (A.26)  

 Denote the matrix 
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  (A.27)  

and it may be verified that   is orthogonal and   is skew-symmetric. 

The 3×3 skew-symmetric matrix   may be written as         where   is orthogonal. Noting that, 

up to sign,               , then up to scale,                  , and 

                       . This is a singular value decomposition of   with two equivalent 

singular values, as required. Conversely, a matrix with two equivalent singular values may be factored 

as    in this way. 

To prove (4.2), it is written as                       using singular value decomposition and 

      . Then  

 
                                      

                                                   
 (A.28)  

It is equal to     which indicates the singular values are equivalent. 

Q.E.D. 
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