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Abstract

The GOCE (Gravity Field and steady-state Ocean Circulation Explorer) mission is dedicated to the deter-
mination of the Earth’s gravity field. During the mission period of at least one year the GOCE satellite
will collect approximately 100 million highly correlated observations. The gravity field will be described in
terms of approximately 70000 spherical harmonic coefficients. This leads to a least squares adjustment, in
which the design matrix occupies 51 terabytes while the covariance matrix of the observations requires 72 760
terabytes of memory. The very large design matrix is typically computed in parallel using supercomputers
like the JUMP (Juelich Multi Processor) supercomputer in Jilich, Germany. However, such a brute force
approach does not work for the covariance matrix. Here, we have to exploit certain features of the observa-
tions, e.g. that the observations can be interpreted as a stationary time series. This allows for a very sparse
representation of the covariance matrix by digital filters.

This thesis is concerned with the use of digital filters for decorrelation within large least squares problems.
First, it is analyzed, which conditions the observations must meet, such that digital filters can be used to
represent their covariance matrix. After that, different filter implementations are introduced and compared
with each other, especially with respect to the calculation time of filtering. This is of special concern, as for
many applications the very large design matrix has to be filtered at least once. One special problem arising
by the use of digital filters is the so-called warm-up effect. For the first time, methods are developed in this
thesis for determining the length of the effect and for avoiding this effect. Next, a new algorithm is developed
to deal with the problem of short data gaps within the observation time series. Finally, it is investigated
which filter methods are best adopted for the application scenario GOCE, and several numerical simulations
are performed.

Zusammenfassung

Die GOCE (Gravity Field and steady-state Ocean Circulation Explorer) Mission ist der Bestimmung des
Erdschwerefeldes gewidmet. Wahrend der Missionsdauer von mindestens einem Jahr wird der GOCE Satellit
circa 100 Millionen hoch korrelierte Beobachtungen sammeln. Das Erdschwerefeld wird durch circa 70000
sphérisch harmonische Koeffizienten beschrieben. Dies fiihrt zu einem kleinste-Quadrate Ausgleich, wobei
die Designmatrix 51 Terabytes benttigt wihrend die Kovarianzmatrix der Beobachtungen 72 760 Terabytes
erfordert. Die sehr grofse Designmatrix wird typischerweise parallel berechnet, wobei Supercomputer wie
JUMP (Juelich Multi Processor) in Jiilich (Deutschland) zum Einsatz kommen. Ein solcher Ansatz, bei dem
das Problem durch geballte Rechenleistung gelost wird, funktioniert bei der Kovarianzmatrix der Beobach-
tungen nicht mehr. Hier miissen bestimmte Eigenschaften der Beobachtungen ausgenutzt werden, z.B. dass
die Beobachtungen als stationare Zeitreihe aufgefasst werden kénnen. Dies ermdglicht es die Kovarianzmatrix
durch digitale Filter zu reprisentieren.

Diese Arbeit beschéftigt sich mit der Nutzung von digitalen Filtern zur Dekorrelation in grofsen kleinste-
Quadrate Problemen. Zuerst wird analysiert, welche Bedingungen die Beobachtungen erfiillen miissen,
damit digitale Filter zur Reprédsentation ihrer Kovarianzmatrix benutzt werden kénnen. Danach werden
verschiedene Filterimplementierungen vorgestellt und miteinander verglichen, wobei spezielles Augenmerk
auf die Rechenzeit fiir das Filtern gelegt wird. Dies ist von besonderer Bedeutung, da in vielen Anwendungen
die sehr grofe Designmatrix mindestens einmal gefiltert werden muss. Ein spezielles Problem, welches beim
Benutzen der Filter entsteht, ist der sogenannte Warmlaufzeiteffekt. Zum ersten Mal werden in dieser Arbeit
Methoden entwickelt, um die Lénge des Effekts zu bestimmen und um den Effekt zu vermeiden. Als Néachstes
wird ein neuer Algorithmus zur Lésung des Problems von kurzen Datenliicken in der Beobachtungszeitreihe
entwickelt. Schliefslich wird untersucht, welche Filtermethoden man am besten fiir das Anwendungsszenario
GOCE verwendet und es werden verschiedene numerische Simulationen durchgefiihrt.
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1. Introduction

1.1 Motivation

Knowledge about the Earth’s gravity field is one important component in the understanding of the Earth as
a dynamic system. The mass distribution within the Earth system shapes the Earth’s gravity field while any
mass transports cause changes of the Earth’s mass distribution. One special feature of interest is that the
Earth’s gravity field defines the geoid, a surface of equal gravity potential. This surface corresponds to the
surface of the ocean at rest, i.e. without tides and currents. After the geoid is combined with altimetry data,
which measures the actual height of the ocean surface, one can derive the ocean circulation. Besides ocean
circulation there are many other fields which benefit from the accurate knowledge of the Earth’s gravity
field. Among them are geodynamics, sea level, ice mass balance and the global hydrologic water cycle. A
good overview is given in ILK et al. (2005).

The determination of the Earth’s gravity field is a challenging task. In order to investigate the Earth’s
system on a global scale, one needs to collect precise and globally distributed observations. This can only be
achieved by satellite missions. There are currently three satellite missions dedicated to the determination of
the Earth’s gravity field: CHAMP, GRACE and GOCE.

CHAMP CHAMP has been the first of these missions. In addition to measuring the Earth’s gravity field,
it was also designed to determine the Earth’s magnetic field, ionosphere and troposphere (cf. REIGBER
et al. 2004). The CHAMP satellite was launched in Juli 2000. The measurement concept is satellite-
to-satellite tracking in high-low mode (cf. for example RUMMEL et al. 2002). Its data allows for a
resolution of the Earth’s gravity field up to degree and order 60-70 in terms of spherical harmonics
(cf. MAYER-GURR et al. 2005, REIGBER et al. 2003), which corresponds to the low frequency part of
the Earth’s gravity field.

GRACE The GRACE mission has a remarkable measurement concept: Two satellites fly 220 km apart,
one behind the other on the same orbital track. This corresponds to satellite-to-satellite tracking in
low-low mode. The gravity field is determined from measuring the distance between the two satellites,
using GPS and a microwave ranging system. The twin satellites were launched in March 2002. The
GRACE mission provides very precise measurements of the time variable gravity field as well as the
low frequency parts of the static gravity field (cf. for example MAYER-GURR 2006). Current gravity
fields derived from GRACE data are resolved up to degree and order 140-180 (cf. ITG-GRACEO03
2007, REIGBER et al. 2005, TAPLEY et al. 2005).

GOCE The GOCE mission is dedicated to the very precise determination of the high frequency part of the
static gravity field. The mission goal is to determine the Earth’s gravity field at the highest possible
spatial resolution and accuracy (cf. ESA 2000). The launch of the GOCE satellite is scheduled for
May 2008. The GOCE satellite relies on a sensor fusion concept. The core instrument is a three-axis
gradiometer, which consists of three orthogonally mounted pairs of accelerometers. This instrument
will measure the high frequency part of the Earth’s gravity field. The low frequency part of the Earth’s
gravity field will be determined by satellite-to-satellite tracking (SST) in high-low mode using the GPS
and GLONASS (cf. ESA 1999).

The GRACE and GOCE mission can be considered as complementary (cf. RUMMEL et al. 2002). While
the GRACE mission aims at the precise determination of the low frequency part of the static gravity field
and the temporal variations of the gravity field, the GOCE mission has the goal to determine the high
frequency part of the gravity field as precisely as possible. The processing of GRACE and GOCE mission
data are both computationally very demanding. One reason is the very large number of observations, which
are collected by the satellites. Another reason is the large number of parameters. Current gravity fields
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derived from GRACE data are described by approximately 33 000 spherical harmonic coefficients (cf. ITG-
GRACEO03 2007) resulting from a resolution up to degree and order 180. For gravity fields derived from
GOCE data, the number of parameters may exceed 70000 spherical harmonic coefficients, corresponding
to a resolution of higher than degree and order 270. In both cases, the spherical harmonic coefficients are
typically estimated by a least squares adjustment. The design matrices of both least squares adjustments
need tens of terabytes of memory. Thus, both least squares adjustments can be characterized as large least
squares adjustments. The computation of the design matrix is normally performed in parallel using computer
clusters or supercomputers.

Besides the size of the design matrices within the least squares adjustment, the size of the covariance ma-
trices is another problem. In case of the GOCE mission the number of observations will be approximately
100000 000 resulting in a covariance matrix which would require more than 70000 terabytes if it was fully
stored. For such large matrices, parallel computing techniques are not sufficient to handle them anymore.
Therefore, tailored algorithms are needed to incorporate the covariance matrices into the least squares ad-
justment.

In the case of the GOCE mission the SGG observations can be considered as stationary time series. Con-
sequently, their covariance matrix is a Toeplitz matrix, i.e. a matrix, in which each descending diagonal
from left to right is constant. For this reason it is possible to represent the covariance matrix of the SGG
observations by digital filters. This thesis is concerned with the modeling of covariance matrices by digital
filters and their integration within large least squares adjustments. Due to the large number of parameters,
the extremely large number of observations and their high correlations, the SGG observations provide the
best playground for this thesis. As the GOCE satellite has not been launched yet, the calculations within
this thesis are based on simulated test data, resulting from an end-to-end simulator (cf. DE SANCTIS et al.
2002).

1.2 Current State of Research

Concerning the SGG observations of the GOCE mission, there are basically two methods documented in the
literature, in which the covariance matrix is represented by digital filters: the PCGMA algorithm described
by ScHUH (1996) and the PCCG algorithm described by KLEES et al. (2003). Both use a preconditioned
conjugate gradient algorithm to determine the least squares solution. Furthermore, both use autoregressive
moving-average (ARMA) filters to model the covariance matrix. The point, where the methods differ with
respect to the use of digital filters, is the integration of the filtering into the adjustment procedure. SCHUH
(1996) follows the approach of decorrelating the system of observation equations by filtering. This requires
the filtering of the large design matrix in each iteration of the conjugate gradient algorithm. In contrast
to that, KLEES et al. (2003) avoid filtering the design matrix in each iteration of the conjugate gradient
algorithm. Here, the filtering is applied to the product of the design matrix and the parameter vector, which
corresponds to the gradient of the residual sum of squares. Because SCHUH (1996) filters the design matrix
with tens of thousands of columns and KLEES et al. (2003) the gradient, which is only a single vector,
the filtering is much less computationally demanding for the approach of KLEES et al. (2003). However,
the approach of KLEES et al. (2003) requires the design matrix to be computed twice, which is avoided by
ScHUH (1996). Which approach is less computationally demanding depends on whether the computation of
the design matrix or the filtering of the design matrix needs more calculation time.

The design of decorrelating filters is broadly addressed in the literature. In the context of the GOCE mission
KLEES and BROERSEN (2002) introduced suitable methods for estimating the filter coefficients. Further
improvements of the filter design are presented by SCHUH (2002), who introduced notch filters in order to
model peaks in the power spectral density of the measurement noise. However, the latter were not tested by
simulations with respect to gravity field recovery. In the fields of time series analysis (with the background
of econometrics) and signal processing (with the background of electrical engineering) there exists a great
deal of articles and books concerned with the determination of digital filters. The methods can be roughly
divided into time domain methods and frequency domain methods. A good overview over frequency methods



1.3. The Objectives of this Thesis

is given by PINTELON et al. (1994) while time domain methods are discussed for example by FRIEDLANDER
and PORAT (1984) and SCHLITTGEN and STREITBERG (2001).

Besides the use of digital filters for the incorporation of the covariance matrix of the SGG observations, the
PCCG and PCGMA algorithm are equipped with several features. The PCGMA algorithm for example has
the following additional features:

Preconditioning In order to keep the number of iterations of the conjugate gradient algorithm low, precon-
ditioning is required. BOXHAMMER (2006) developed a tailored numbering scheme for the parameters,
the so-called free kite numbering scheme. By means of this numbering scheme it is possible to compute
a tailored preconditioner, the so-called kite matrix. The work of BOXHAMMER (2006) was based on
the work of SCHUH (1996) on this subject (cf. also BOXHAMMER and SCHUH 2006). BOXHAMMER
(2006) showed that a suitable choice of the kite matrix reduces the necessary number of iterations by
a factor of two compared to methods described by ScHUH (1996).

Regularization In the context of the GOCE mission, state-of-the-art regularization methods are given by
METZLER and PAIL (2005) (cf. also KocH and KuscHE 2002). Due to the sun-synchronous orbit of
the GOCE satellite there are no measurements over the polar regions while the rim of the polar caps
is characterized by a maximum data density. For this reason the zonal spherical harmonic coeflicients
are weakly determined. METZLER and PAIL (2005) developed a regularization method tailored for this
problem.

Monte Carlo variance component estimation In the case of the GOCE mission SGG and SST obser-
vations as well as the regularization information have to be combined in an optimal manner. Especially
the relative weighting of the different groups of observations is of importance. Variance component
estimation is a technique to determine the optimum relative weights (cf. KocH and KuscHE 2002).
ALKHATIB (2007) showed, how variance component estimation can by integrated into the PCGMA
algorithm based on Monte Carlo methods.

Monte Carlo estimation of the covariance matrix Besides the gravity field solution, given in terms of
a set of spherical harmonic coefficients, its accuracy is of special interest. The accuracy and correlations
of the estimated gravity field parameters are contained within the covariance matrix of the parameters,
which is the inverse normal equation matrix of the least squares adjustment. However, the computation
and inversion of the normal equation matrix is avoided by the PCGMA method, as it is computationally
very demanding. ALKHATIB (2007) developed a method for estimating the covariance matrix by means
of Monte Carlo methods, which can be integrated into the PCGMA algorithm.

In practice, one special item of concern is the handling of data gaps, which is problematic, because the
filtering relies on an uninterrupted observation time series. There are several strategies to solve this problem.
One strategy is to simply stop the filtering at each data gap and to restart the filtering after the data gap.
However, due to an effect, which is called the filter warm-up (cf. SCHUH 2003), the first observations at the
beginning of the filtering cannot be used within the least squares adjustment. If there are many data gaps
and if the filter warm-up is not short, one loses many observations in this way. Another strategy is therefore
not to stop the filtering at each data gap, which then requires to fill-in the data gaps. However, to compute
suitable fill-in values for the data gaps is problematic, as shown by KLEES and DITMAR (2004). Therefore,
KLEES and DITMAR (2004) favor another approach. Here, the problem of integrating the covariance matrix
into the least squares adjustment is reduced to the solution of a linear equation system with the covariance
matrix as equation matrix. The linear equation system is solved using the preconditioned conjugate gradient
algorithm, whereas the digital filters are used for preconditioning. However, this strategy introduces much
higher computational costs, which is confirmed by KLEES and DITMAR (2004).

1.3 The Objectives of this Thesis

This thesis addresses the use of digital filters for decorrelation within large least squares problems. The devel-
oped algorithms and methods are described from a general viewpoint rather than from narrower viewpoint
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of only adjusting the SGG observations. For the sake of generality, moving-average (MA) filters as well as
ARMA filters are considered. Furthermore, it is not assumed that a particular adjustment procedure, such
as the conjugate gradient algorithm, is used. Only basic matrix operations within least squares adjustment
operations are considered. Therefore, a general goal of this thesis is to describe problems and solutions in a
way, such that the reader is provided with guidelines, which he may use for different application scenarios.
In the chapter on the application scenario of the GOCE mission it is demonstrated, how these guidelines
lead to the decision, which of the methods for filtering should be used. Moreover, the following issues are
addressed in the chapters to follow.

1. identification of well-defined conditions for the modeling of the covariance matriz by digital filters

To identify conditions, which must be met by the observations in order to be statistically allowed to
apply digital filters for decorrelation, is important. Unless such conditions are well-defined, it is not
clear, when the methods described in this thesis may be used for some application scenario. Therefore,
this point is addressed at the beginning of this thesis in chapter 2.

2. clear exposure of the interrelation of the covariance matriz and the filter coefficients

One question to be answered is: How to design the digital filters? In order to formulate the goal of the
filter design, we have to expose the interrelation of the covariance matrix and the filter coeflicients.
This point is also addressed in chapter 2.

3. comparison and development of numerically efficient implementations of digital filters

Within this thesis we consider both recursive and non-recursive digital filters. Each in both groups
may be implemented by different methods. The methods to be compared range from straightforward
implementations of the filter equations to implementations exploiting the fact that filtering corresponds
to a convolution. Of special interest are block methods which either are well suited to make use of
optimized libraries such as the ATLAS library or reduce the computational complexity such as the
overlap-add method. The reason for this is that the large design matrix has to be filtered at least once
within a least squares adjustment procedure. The implementations are introduced and compared in
the first part of chapter 3.

4. exploration of numerically efficient integration of the filtering into least square adjustment procedures

How to implement digital filters is one question, how to integrate them into least squares adjustment
procedures is another. There are many different least squares adjustment procedures. To investigate all
of them in detail would be very extensive. However, there exists a small set of typical matrix operations,
which most of the least squares adjustment procedures make use of. Such a typical matrix operation
is for example the computation of the gradient of the residual sum of squares or the normal equation
matrix. In the last part of chapter 3 we explore numerically efficient ways of integrating the filtering
into least square adjustment procedures based on such typical matrix operations.

5. accurate investigation of the warm-up effect of digital filters

The first filtered values are not well decorrelated and must therefore not be used within the least
squares adjustment. This effect is called the filter warm-up. If there are many larger data gaps within
the observation time series, the digital filter is stopped at each data gap and restarted behind it. In
this case many observations may be lost for the adjustment due to the filter warm-up. For this reason
the filter warm-up will be thoroughly investigated in the first part of chapter 4. Furthermore, if it is
possible to avoid the filter warm-up, a numerical efficient method will be developed to do so.

6. development of a numerically efficient algorithm for computing suitable fill-in values for data gaps

The computation of suitable fill-in values for data gaps is not as simple as one might guess. We have
to take into account that the observations consist of a deterministic part and a stochastic part. A
numerically efficient algorithm for computing suitable fill-in values for data gaps is developed in the
last part of chapter 4.

7. selection and compilation of a set of suitable methods for determining the filter coefficients
The determination of the filter coefficients is already broadly addressed in the literature. Even in the
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context of the GOCE mission there exist some articles on this subject. However, there are still some
open questions. For example, by which methods the parameters of notch filter are best estimated.
Chapter 5 is dedicated to the design of digital filters.

. identification of the best filter implementation and integration for the application scenario

The application scenario of this thesis is the adjustment of the SGG observations of the GOCE mission.
In chapter 6 it will be described in detail, which of the filter implementations is most useful for this
application scenario. Furthermore, it is discussed in detail, which is the best way for integrating the
filtering into the least-squares adjustment procedure PCGMA.

. comparative study of different filter designs with respect to gravity field recovery from GOCE data

As the design of the digital filters is improved within this thesis, the question arises, how big the benefit
of the improved design is. In chapter 6 a comparative study of different filter designs with respect to
gravity field recovery from GOCE data is performed.

summary of major results and conclusions

For the sake of clarity the major results and conclusions are summarized in chapter 7. Within this
chapter it is also highlighted, which new algorithms and methods are developed in this thesis.
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In this chapter the basic interconnections between least squares problems and digital filtering are established.
We start with the well-known Gauss-Markov model which provides the theoretical basis for least squares
problems. After that, we formulate conditions for the observations, which must be met for the applicability
of the methods depicted in this thesis. We will focus on large least squares problems, i.e. problems in which
the number of observations is large and the number of parameters may be large, too. Therefore, the main
challenge is caused by the fact that, if the number of observations is large, their covariance matrix cannot
be stored.

Having discussed the Gauss-Markov model and the conditions for the applicability of the methods depicted
in this thesis, we proceed with describing three different approaches of representing the covariance matrix of
the observations:

e Toeplitz approach

e autoregressive (AR) process approach

e autoregressive moving average (ARMA) process approach
All three approaches are efficient with respect to both storage requirements and computational costs. After
that, we focus on the basics of digital signal processing. These basics provide us with the necessary theoretical
background for the following chapters. Furthermore, within the last section of this chapter, the link between
the coefficients of AR processes and ARMA processes and the covariance matrix of the observations is
established. With this knowledge, principles are formulated which must be followed during the design of

these filters, i.e. when the filter coefficients are estimated. Last but not least, some restrictions of the filter
design are investigated.

2.1 The Gauss-Markov Model

Before we start with the formulation of the Gauss-Markov model, we should clarify that we distinguish
between random variables, true values and realizations of random variables.

Random variable Random variables are used to describe the statistical properties of specific variables.
They will be denoted in capital letters such as L.

True value Normally, we do not have access to the true values of random variables. Nevertheless we use
them for modeling. We will denote true values in Greek lower case letters such as .

Realization Observations and parameters, which are derived from the observations, are considered as re-

alizations of random variables. They will be denoted in lower case letters such as [.

Using this notation, we can start formulating the Gauss-Markov model. The main reference for this section
is KOocH (1997), chapter 3.2. The Gauss-Markov model is defined by

E{L}= Az, Z{L}=3,c, (2.1)

wherein £ is the vector of observations, A is the so-called design matrix, « is the unknown vector of
parameters and X ., is the covariance matrix of the observation vector. The observations are often assumed
to follow a multivariate normal distribution (cf. KocH 1997, p. 127)

L~ N(AZC,EL;L). (22)
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The number of observations is generally larger than the number of parameters. Because of the unavoidable
measurement errors, the system of observation equations

l+# Ax (2.3)

is then inconsistent. In order to fix this inconsistency, we introduce the error vector e into the observation
equations

l=Ax+e. (2.4)

The measurement errors are then modeled by the random vector £, which stochastically describes the
deviation of the observation vector I to its true value X by

E{L} =FE{Axz+ &} = Ax + E{E}. (2.5)
Combining (2.5) with (2.1) we find
E{€} =0, X{&}=3¢¢. (2.6)

L and € both describe the stochastic properties of the measurement errors. They only differ from each other
in their expectation values. Therefore, their covariance matrices equal each other and we can abbreviatedly
write

S =Yg =3. (2.7)

One problem within this thesis is that the covariance matrix X is very large. For this reason we will model
the covariance by digital filters which mathematically corresponds to replacing it by the product of two filter
matrices. Another problem is the computation of the least squares estimates = for the unknown parameters
x. This is subject to least squares adjustment procedures. To find numerically efficient ways of connecting the
filtering and the least squares adjustment procedures poses a third problem. A direct formula for obtaining
the least squares estimates  is

T=(ATx'A) AT, ={x}=(ATzlAa)"L (2.8)

Herein, the random variable X describes the stochastic properties of the least squares estimates x. The
least squares estimates have the property to be the best linear unbiased estimator (BLUE) of the unknown
parameters x (cf. KocH 1997, p. 171). With the help of @, we then find that the adjusted observations 1
and residuals v are given by

1=Az, Z{L}=AATS='A)'AT (2.9)
and
v=I-1, Z{YV}=X-AA'S'A) A" (2.10)

Note, that the covariance matrix of the measurement errors, which we want to model by digital filters, is the
sum of the covariance matrix of the adjusted observations and the residuals, i.e.

Furthermore, it holds that
rank(Eyy) = N - M and rank(Xzz) = M, (2.12)

whereas M is the number of parameters and N is the number of observations. Formula (2.12) means that
both covariance matrices are positive semi-definite (cf. KocH 1997, pp. 174, 177), which turns out to be
problematic for the following reason. We do not know the covariance matrix 3 of the observations. However,
we have to determine the filter coefficients such that they model this covariance matrix. For this reason



14

2. Filtering and Least Squares Methods

we typically use the residuals v as an approximation of the measurement errors e and estimate the filter
coefficients such that the residuals v are decorrelated. Unfortunately, this corresponds to modeling ¥y,
instead of 3, so that we systematically underestimate the covariances of the measurement errors. The reason
for this is that covariance matrices are positive definite or positive semi-definite matrices, which means for
example that the diagonal elements of 3, must be smaller or of equal size than the diagonal elements of X
in equation (2.11). However, if we have no a priori information about the covariance matrix 3 and no access
to the measurement errors e, then designing the digital filters such that they decorrelate the residuals v is
the best we can do.

In the section about the integration of the filtering into least squares adjustment procedures we will use
the term normal equations. It should be mentioned here that the normal equations can be obtained by
minimizing the residual sum of squares

v’ 'y — Min. (2.13)

(cf. KocH 1997, p. 174), which leads to the least squares estimates & in formula (2.8). The normal equations
are

AT Az = AT, (2.14)
wherein
N=A"x"'4 (2.15)

is the normal equation matrix and
n=A"%71 (2.16)

is the right hand side.

2.2 Boundary Conditions for the Observations

As mentioned in the introduction, the preferred method for the integration of the covariance matrix X into
a least squares adjustment procedure is the utilization of decorrelating digital filters. This and the other
presented methods in this thesis are not generally applicable to the Gauss-Markov model, which connects
the stochastic modeling of the covariance matrix of the observations by digital filters and least squares
adjustment procedures. In this section we will introduce the necessary conditions which have to hold for the
applicability of these methods. Furthermore, we will discuss additional conditions, which are often met for
problems in which these methods are considered. The additional conditions affect certain practical matters
like the warm-up length or the implementation of the filters.

Necessary Conditions

The following conditions for the observations must hold for the applicability of the methods within this
thesis. Some conditions are formulated for the residuals instead of for the observations. For the sake of a
clarity, we will again distinguish between random variables like £,, and realizations ,,.

Time Series A chronologically sorted series of observations lg, I, ..., [y_1, gathered in the observation
vector [, is called a time series (cf. SCHLITTGEN and STREITBERG 2001, p. 1). Often, we can imag-
ine that we could have obtained earlier observations [_1,1 o, ..., l_o or subsequent observations
INy IN$1, -y loo (cf. HAMILTON 1994, p. 25). Not to know the earlier or subsequent observations
poses a special problem, which requires an adequate handling. We will discuss this in detail in sec-
tion 4.1. In many practical circumstances the time interval between two succeeding observations is the
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same for all observations. That is the case, if ¢,, is the time of the observation /,, and ¢, is the time
of the succeeding observation /,,4; and

At =t,1 —ty (2.17)

is a constant value for all n. Though this latter property is not necessary for observations to be a time
series, we will require it as well in order to be able to do meaningful spectral analyses easily.

Normal Distribution The observations follow the multivariate normal distribution N(Az,3). In for-
mula (2.2), we have this condition already assumed to be met. Therefore, the residual time series v,
follows the multivariate normal distribution

v~ N(0,3), (2.18)

as stated in (2.6). A time series, which follows the normal distribution is said to be Gaussian. The
following conditions aim at the residual time series v, rather than at the observations time series
l,. The reason for this is, that the expectation E{L,} is not independent of the index n, since the
observations contain a deterministic trend. However, our goal is to decorrelate the observation time
series [,, and therefore only the covariance matrix X, of £, is relevant. Thus, we can switch from the
observation time series [,, to the residual time series v,,, whose covariance matrix 3y, equals X, as
stated in (2.7).

Stationarity The residual time series v, is stationary. This means, that the probability distribution of
Un+m 18 independent of the index m for all n (cf. HAMILTON 1994, pp. 45, 46). As a consequence the
moments of the probability distribution such as mean, variance, skewness or kurtosis do not chance
over time. If only the first and second moments do not change over time, the time series is said to be
weakly stationary. This is the case, if

E{V,} =v forall n (2.19)
and
E{(Vn — E{Vn}) Vaik — E{Vnsr})} = for all n and any k, (2.20)

wherein v is the expectation value and v, is the autocovariance function of the time series v,, (cf. HAMIL-
TON 1994, p. 45). As E{V,} = 0 according to (2.6), the condition (2.19) is always met for the residual
time series of a Gauss-Markov model. Therefore, equation (2.20) becomes

E{V:Vpir} =, forall n and any k, (2.21)

and poses the actual condition. If in addition the time series v,, follows the normal distribution, then
weakly stationarity coincides with stationarity (cf. HAMILTON 1994, p. 46). Thus, within this thesis
we use the term weakly stationarity tantamount to the term stationary, as we only consider Gaussian
time series.

Stationarity is important, because it forms the shape of the covariance matrix 3 of the residuals v,.
With equation (2.20) we find that 3 has a Toeplitz structure

Yo Al t YN—-2 YN-1
Y1 Y0 71 YN -2
= T C (2.22)
TYN-2 "
IN-1 IN-2 - At Yo

This structure permits the application of algorithms based on the fast Fourier transform (FFT) and
other fast algorithms.
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Ergodicity The observation time series is ergodic. Let us suppose that we possess not a single realization v,
but an ensemble of realizations v%o), ”U7(ll), ey ’U»SLJ_l). Ergodicity now means that the ensemble averages
and the time averages converge against each other (cf. HAMILTON 1994, pp. 46, 47). For example a

time series v,, is said to be ergodic for the mean if

1 N-1 1ol
im — () — lim = () —
]\}Enoo N ;) v = thr;o 5 Zovnj =E{V,}. (2.23)
n= Jj=

However, we typically possess only one realization v,. Therefore, we need a criterion which does not
depend on ensemble averages. A sufficient criterion is the following: If the time series v,, is Gaussian
and its covariance function +; is absolutely summable, i.e.

>l < oo, (2.24)
=0

then the time series v, is ergodic (c¢f. HAMILTON 1994, p. 47). This condition implies that the corre-
lations numerically decay for some index j to zero, because |y;| — 0 for j — oo (cf. FORSTER 1983,
p. 38, theorem 2 and 3). Ergodicity is important, because if a time series is not ergodic, we cannot
recover the parameters describing the underlying process.

Correlation Length The correlation length of the residual time series is smaller than the length of the
residual time series. Within this thesis, the correlation length is defined to be the smallest index, for
which the autocovariance function numerically approaches zero. Therefore, the correlation length is the
smallest value j for which

|ve| <e forall k>j (2.25)

holds, wherein ¢ a small positive number representing numerical zero (¢ is used in this sense throughout
this thesis). Thus, the condition states that N > min(j), wherein N is the length of the residual time
series and min(j) is the correlation length. It follows, that the covariance matrix X of the residuals
approximately has a banded structure.

W Ymmg O O
' Ymin(5)
0 i K Ymin(5)
: ' Ymin(j) e Yo
L 0 e 0 Ymin(5) Y

Note, that ergodicity already implies that the correlations decay to numerical zero. However, this
condition is more restrictive. This condition is also important, because if it is not met, we cannot
recover the parameters of the underlying process and the warm-up length of the filter exceeds the
length of the time series.

Additional Conditions

Number of Observations and Parameters The methods within this thesis are only considered, when
the number of the observations is large. Then, it is not possible to store the covariance matrix X of the
observations within the memory of a normal computer, even when it has a banded structure. For small
problems, where the number of observations is small, 3 can be stored within the working memory and
its integration into least squares adjustment procedures can be performed straightforward.
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Within adjustment procedures, we need to apply 3 at least once to the design matrix A, if the normal
equation matrix cannot be approximated by means of analytical formulas. If not only the number
of observations is large, but also the number of parameters, then the design matrix A is large, too.
Therefore, applying 3 to A can be a computationally time-consuming task. In this case, it is desirable
to use computationally efficient algorithms. Chapter 3 deals with this problem.

High Correlations The observations can be highly correlated. If this is the case, then the entries of the
covariance matrix X of the observations decay only very slowly to zero with increasing distance from
the main diagonal. For some methods presented in this thesis, this implies an increased computational
effort. Some methods may even be ruled out because of their also increased memory requirements.

2.3 Compressed Representations of the Covariance Matrix

Within this thesis the focus lies on least squares problems in which the number of observations is large.
Therefore, the representation of the covariance matrix of the observations in (2.1) must be chosen with care.
It has to be efficient with respect to both memory requirements and computational costs. In this section we
introduce three efficient approaches of representing the covariance matrix of the observations. These three
approaches rely on the conditions formulated in section 2.2. They are described for example by SCHUH (1996)
(chapter 3) or by DITMAR et al. (2003) or by KLEES et al. (2003). In this section we concentrate on the
relation of these approaches to the covariance matrix of the observations. How they can be implemented and
integrated into the Gauss-Markov model (2.1) will be discussed later on in chapter 3.

Toeplitz Approach

This approach exploits the stationarity of the observations. As already stated in (2.22), the covariance matrix
of the observations has a Toeplitz structure, if the observations are stationary. Therefore, the covariance
matrix can be simply represented by its first row. This is the most straightforward representation. Another
condition in section 2.2 states that the correlation length must be shorter than the number of observations.
Hence, it is possible to store only the first non-zero part of the first row of the covariance matrix, whereas
the term non-zero is regarded from a numerical point of view.

AR Process Approach

Another way of representing X is to model the stochastic behavior of the residuals V in (2.6) by a Gaussian
autoregressive (AR) process. Such a process is described by

P

Vo= ey with ¥ ~N(0,I), (2.27)
k=0

wherein I denotes the identity matrix (cf. HAMILTON 1994, p. 58). Herein, X, is tantamount to V,,. We
deliberately do not use V,, within this equation. The reason for this is derived in the following.

In principle, such a process is defined for all n € N. However, the observations are only known for n =

0,1, ..., N — 1. Therefore, we define
T T
X (X ] ]

and y = D)U e yN,1 (228)

)

whereas all X, with n < 0 in (2.27) are set to zero, which is commonly performed in practice (cf. SCHUH
1996, pp. 36,37). Hence, we find

y=HX, (2.29)



18 2. Filtering and Least Squares Methods
wherein
ho 0 e 0
H = h} h.o (2.30)
: 0
hn-1 hn—2 -+ ho

As matrix H is a lower triangular matrix with Toeplitz structure, it is invertible if hg # 0 (cf. KocH 1997,
pp- 23-26). We denote the inverse of H by G, i.e.

H=G" (2.31)
According to equation (2.29) we find
X =Gy (2.32)

for the filtering (cf. BURRUS 1972), wherein

90 0 )
g=| " o (2.33)
gN-1 9gn-2 - 9o

Matrix G is also a lower triangular matrix with Toeplitz structure. How it can be computed without inverting
H, is shown in section 2.4. Applying variance propagation (cf. KocH 1997, p. 108) we obtain

X} =GZ{Y}GT =GG", (2.34)

because 3{Y} = I according to (2.27). When designing the filter, our goal is to determine the filter coeffi-
cients hy, such that

X} = GG ~2{V} =3%{L}). (2.35)

However, equality cannot be achieved, because GG does not generally posses a Toeplitz structure while
3. does. This is the reason why we deliberately did not use V), within equation (2.27). The source of this
problem is found in setting all X, to zero for n < 0. A detailed discussion of this problem and the problem’s
solution is given in chapter 4 of this thesis.

ARMA Process Approach

The third way of representing the covariance matrix of the observations is to model the stochastic behavior
of the residuals V by a Gaussian autoregressive moving-average (ARMA) process. The advantage of this
approach is, that this representation is much more compressed and therefore less memory demanding than
the Toeplitz approach or the AR process approach. The drawbacks are, that the filter design and the filter
implementation are more complicated than the implementation of the other two approaches.

A Gaussian ARMA process is defined by

P Q
Vo= bk + Y ajdn; with ¥~ N(0,T), (2.36)

k=0 j=1

wherein I denotes the identity matrix (cf. HAMILTON 1994, p. 58). As for the AR process approach, the
observations are only known for n =0, 1, ..., N — 1. Thus, we define again
:|T

X = [XO"'XNA]T and Y = [3}0"'ny1 , (2.37)
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whereas all X, and ), with n < 0 in (2.27) are set to zero. Using these definitions and rearranging (2.36),
we find

AY = BX, (2.38)
wherein
M1 0 0 0 0]
a1 bp O 0 0
: 0 0 O bp - by O - 0
A: _aQ e —a; 1 ',. : : and B: 0 _'. . (2.39)
0 oo 00 : bp - by O
: . o—ag o —a 1 0 L0 -~ 0 bp -+ bo]
L0 0 —ag - —ay 1]

As matrix A is lower triangular matrix and its main diagonal is non-zero, it is invertible (cf. Kocn 1997,
pp- 23-26). Therefore, we find

Y=A"'BXx. (2.40)
Apparently, the ARMA process approach is connected to the AR process approach by
H=A"'B, (2.41)

wherein H is lower triangular matrix with Toeplitz structure as in (2.30). If by # 0, matrix B is invertible,
because it is a lower triangular matrix with Toeplitz structure (cf. KocH 1997, pp. 23-26). Then, we find

X =B lAYy (2.42)
and it follows
G=B'A, (2.43)

wherein G is lower triangular matrix with Toeplitz structure as in (2.33). If matrix A and matrix B are
given, we can compute matrix H and if by # 0 also matrix G, which indicates that we can convert a Gaussian
ARMA process into a Gaussian AR process. These two approaches are obviously closely associated with each
other. In section 2.4 we will find more details of this interconnection. Within the filter design, our goal is to
determine the filter coefficients a; and by such that

S{X}=GG' =B 'AA'B T & 2{V} =={L}. (2.44)

As for the AR process approach, equality can never be achieved, because G is a lower triangular matrix and
therefore X{X'} does not posses a Toeplitz structure while 3X{L} does. Here, the reason for this is, that A,
and YV, with n < 0 in (2.27) are set to zero. Similar to the AR process approach, a detailed discussion of
this problem and the problem’s solution is given in chapter 4 of this thesis.

2.4 Selected Basics of Digital Signal Processing

This section provides the necessary theory of digital filters which can be found in the standard literature on
signal processing and time series analysis like OPPENHEIM and SCHAFER (1999), HAMILTON (1994), Box
and JENKINS (1970) and SCHLITTGEN and STREITBERG (2001). Only those elements are described which
are relevant for the application of the Toeplitz approach, AR process approach and ARMA process approach
in section 2.3. It constitutes the basis for the implementation of these approaches. Furthermore, this section
tries to answer the following questions.
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e What is the relationship between the filter coefficients and the covariance matrix of the observations?
The answer to this question provides the interconnections between the Toeplitz, AR and ARMA ap-
proach. Moreover, the practical computation of the matrices G in (2.33) und H in (2.30) will be
described.

e Which criterion is relevant for the design of filters?
The relevant quantity is the power spectral density which is the spectral representation of the auto-
covariance function in (2.20). Therefore, the criterion is the quality of the adjustment of the power
spectral density of the filter to the power spectral density of the residuals V. Furthermore, the process
should be stationary, because it models a stationary time series, and the filters should be stable which
means that for a bounded filter input the filter output is bounded, too.

e Which restrictions do we have to accept for the design of filters?
A high quality of the adjustment of a filter to the spectral noise characteristics of the residuals comes
along with a long warm-up of this filter. Furthermore, a high resolution of the power spectral density
of the residuals unavoidably leads to a low resolution in the time domain.

Fourier Transform

The stochastic characteristics of the residuals can be interpreted more easily in the frequency domain than
in the time domain. The Fourier transform is therefore a very important tool for analyzing the residuals.
Often, only a finite set of values xg, x1, ..., ny_1 of a time series x,, is available. After assuming that this
finite set of values is repeated periodically, i.e.

ey LQy ooy TN—1y LQy v v vy TN—1y -+« (245)

the Fourier transform becomes the discrete Fourier transform (DFT). The fast Fourier transform (FFT) is
a very efficient algorithm for evaluating the discrete Fourier transform of such periodic time series. Many
algorithms presented in this thesis make use of the FFT. Therefore, we start this section with the Fourier
transform of time series and the DFT.

The Fourier transform of a time series z,, is defined by

X(w)=Flan} = D wne ™, (2.46)

n=—oo

wherein w is the normalized angular frequency (cf. OPPENHEIM and SCHAFER 1999, p. 51). This equation is
usually evaluated for w € [—m, 7], though it may be evaluated for any interval of width 27, because X (w) is
periodical with a period of 27 (cf. OPPENHEIM et al. 1983, pp. 308, 309). The corresponding inverse Fourier
transform (cf. OPPENHEIM and SCHAFER 1999, p. 51) is defined by

17 .
T, =F HX(w)} = o /X(w)e”“”dw. (2.47)
™
In practice, the time series x,, is only given for n =0, 1, ..., N — 1. Therefore, we define
T
T = [350 1. IN_l} (2.48)

Then, the discrete Fourier transform (DFT) of the vector x is denoted by
y = F{x}. (2.49)

The application of the DFT implies, the elements x are repeated periodically as in (2.45) (cf. BRIGHAM
1988, chapter 6). Therefore it matters, whether we write F{x,} for time series x,, which are generally
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non-periodically, or F{x} for vectors, which implies that the corresponding time series is periodic according
to (2.45). Each element of vector y can be computed by

N-1
Y = Z Tpe ™r for k=0,1,..., N —1, (2.50)
n=0
wherein wy, = 2% (cf. OPPENHEIM and SCHAFER 1999, p. 626). The inverse discrete Fourier transform

(IDFT) is denoted by
y=F =z} (2.51)

The elements of vector & can be reconstructed by
| N1
mnzﬁkz_:oykem“’“ forn=0,1,...,N—1 (2.52)

(cf. OPPENHEIM and SCHAFER 1999, p. 626). We can compute the DFT and IDFT of vectors very efficiently
by FFT algorithms. The complexity of the computation is proportional to O(NIn N) (cf. OPPENHEIM and
SCHAFER 1999, p. 706). If N = 2%, whereas k is a positive integer value, the complexity of the computation
is proportional to O(N logy N) (cf. OPPENHEIM and SCHAFER 1999, p. 710). If desired, we can compute
the DFT or IDFT in-place (cf. OPPENHEIM and SCHAFER 1999, p. 716). It should be mentioned that FFT
algorithms can be derived for any basis, though the basis is typically the value 2.

Filter Equation

The basic equation for filtering with an ARMA filter is obtained by replacing the random variables in (2.36)
by their realizations (cf. OPPENHEIM and SCHAFER 1999, p. 37).

P Q
Yn = Z bpTy_k + Z jYn—j- (2.53)
k=0 =1

Herein, y,, is the filtered time series and can be understood as the filter output, while x,, is the filter input.
The corresponding process is described by equation (2.36), which is repeated here for convenience.

P Q
Vo= biXo i+ a;Vn ;. (2.54)
k=0 j=1

If @ = 0, then equation (2.53) describes moving-average (MA) filters and equation (2.54) describes AR
processes, respectively. If P = 0, equation (2.53) describes AR filters and equation (2.54) describes MA
processes, respectively. MA and AR filters can be regarded as special cases of ARMA filters. Therefore, we
do not need to discuss them separately. For each filter equation there exists a corresponding process equation.
Typically, we will use (2.53), when we address the application of the filter while we use (2.54) to describe
the stochastic properties of the filter.

Impulse Response

The impulse response h,, of an ARMA filter is a time series which describes certain properties of the filter.
It is obtained by filtering an unit impulse d,, which is defined by

1, if n=
g, =L tn=0 (2.55)
0, otherwise
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(cf. OPPENHEIM and SCHAFER 1999, p. 12). After filtering this time series by equation (2.53), we get the
impulse response h,, of a filter (cf. OPPENHEIM and SCHAFER 1999, p. 24).

P Q
hn = Z bkdn_k + Z ajhn_j (256)
k=0 j=1

The filters we consider are causal. That is, for calculating the filtered value y,, in (2.53), we do not use values
Yn Or T, of the future. We use only values xj and y, with & < n. As a consequence of this, the impulse
response h,, is one-sided (cf. OPPENHEIM and SCHAFER 1999, p. 251). That means, h,, = 0 for n < 0.

The time series y,, and x,, are not only connected by equation (2.53), but also by the impulse response.

Yn = Z hiTp—r = hy, * x,, (2.57)

k=—o00

Both the impulse response and the filter equation can be use to determine y,. The impulse response is
therefore an equivalent description to (2.53) of the filter.

Note, that for MA filters @ = 0. Therefore, the impulse response of MA filters is given by

P
hn =Y brdn k. (2.58)
k=0

Because only for k = n the impulse d,,_j is non-zero, we find h, = by for MA filters. It is an interesting
fact that the impulse response of an MA filter equals its filter coefficients. This also implies that the impulse
response of MA filters is finite in contrast to the impulse response of ARMA filters, which is infinite. In order
to highlight this difference between MA filters and ARMA filters we write

P
Yn = Z hkxn—k = hn * T, (259)
k=0

for the filter equation of MA filters. The term moving-average filter is motivated by the fact that each value
yn of the filtered time series is a weighted average of the values x,,, ..., x,_p. As this average moves along
the time series x,, as the index n changes, the corresponding filter is called a moving-average filter. This
principle is shown in figure 2.1.

© X2 T_1| Lo L1 IN-1| TN TN41 "

" Y2 y—ll Yo W YN-1| YN YN+1 -

Figure 2.1: Each value y, of the filtered time series is a weighted average of the values x,,, ..., x,_p. As
this average moves along the time series x, as the index m changes, the corresponding filter is called a
moving-average filter. Note, that in practice only values z,, n =0, ..., N — 1 are known and the values y,,,
n=20,..., N—1 are computed.

The fact that for MA filters the filter coefficients coincide with the impulse response, indicates that ARMA
filters can be converted into MA filters by means of the impulse response. However, the order P of the
resulting MA filter is then in principle infinite. We will investigate such conversions in more detail later in
this section.
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z-Transform

The z-transform of a time series is defined as
X(Z) = Z{l‘n} = Z xnzina (260)

wherein z is a complex variable (cf. OPPENHEIM and SCHAFER 1999, p. 179). It is the discrete counterpart of
the Laplace transform. Furthermore, if we substitute z = €', equation (2.60) becomes the Fourier transform
in (2.46). The multiplication with 27! can be regarded as time shift, because

Tz ® =24 (2.61)
holds for integer values of k (cf. HAMILTON 1994, p. 26). Therefore, z=! is often called backward shift
operator (cf. Box and JENKINS 1970, p. 8), lag operator (cf. HAMILTON 1994, p. 26) or delay operator. In
order to illustrate the values of z, we plot them in the so-called z-plane. Along the abscissa of the z-plane we

plot the real part R(z) of the complex variable z and along the ordinate of the z-plane we plot the imaginary
part $(z) (cf. OPPENHEIM and SCHAFER 1999, p. 181).

Transfer function

The transfer function of an ARMA filter is the z-transform of the filter equation, which is given by

Pk
b
H(z) = —Zk:3 S (2.62)
1= 279

(cf. OPPENHEIM and SCHAFER 1999, p. 250). This function is denoted by H (z), because it is closely connected
to the impulse response (2.57) through

H(z) = i hyz k. (2.63)
k=—oc0

Tt relates the input and output of a filter in terms of the z-transform (cf. OPPENHEIM and SCHAFER 1999,
p. 245).

Y(z) = H(2)X(2) (2.64)

Herein, X (z) and Y (2) are the z-transforms of x,, and y,,. By evaluating (2.64) for z on the unit circle in the
z-plane, i.e. z = e, we find

Flyn} = H(e)F{an}, (2.65)

wherein F{z, } and F{y, } are the Fourier transforms of x,, and y,, according to (2.46) and w is the normalized
angular frequency (cf. OPPENHEIM and SCHAFER 1999, p. 246). Therefore,

Zf:o bkefiw
1- Z?:l aje”™

H(e™) = (2.66)

describes the spectral properties of the filter, which are essential for its decorrelation capability.
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Phase Response and Amplitude Response

The Fourier transform of a time series z,, can be expressed in polar form by phase and amplitude (cf. Op-
PENHEIM and SCHAFER 1999, pp. 51, 52).

]:{xn} = |*7:{xn}|€<(}-{m"}) (2.67)

The phase is defined as

= T, }) = arctan S(FHan})
Vo (w) = <(F{zn}) tan S ) (2.68)

while the amplitude defined by
Az (w) = [F{zn}. (2.69)

The phase and amplitude of x,, and y,, are connected by the phase response

S(H(e™))

¥ (w) = arctan ————=, 2.70
and the amplitude response

A(w) = |H(e™)] (2.71)
of the filter. Because

U e R AT

= [H ()| F{a, Y<MD o) (2.72)

holds, we find

Ay(w) = |Flyn}| = [H(e™)|F{an}] = Aw)As(w) (2.73)
for the amplitude and

Uy (w) = A(Flyn}) = <(H (™)) + A(Fzn}) = ¥(w) + Vu(w) (2.74)

for the phase of z,, and y,, (cf. OPPENHEIM and SCHAFER 1999, p. 246). When designing a filter, there are
typically requirements for both phase response and amplitude response. Which one is more important for
the design of decorrelating filters, will be clarified in the following.

Power Spectral Density and Autocovariance Function

The power spectral density and the autocovariance function both describe the same properties of a filter or
a time series. For the latter, we have to switch from the realization x,, of a time series to its corresponding
random variable X),. The reason for this is that the power spectral density and the autocovariance function
are only defined for random variables. Note, that we only consider stationary time series and processes.

The expectation of a time series X, is given by
px = E{X,} (2.75)

(cf. SCHLITTGEN and STREITBERG 2001, p. 95). Since we require X, to be stationary, py is independent of
the index n. The autocovariance function of a real-valued stationary time series X, is defined by

Yxx ke = E{(X — pa)( Xtk — px)} (2.76)
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There exist two different definitions of the term autocorrelation function. The first definition
Txx,k
Pxx k= ——" (2.77)

corresponds to a normalized version of the autocovariance function. The other definition of the autocorrelation
function of a stationary time series X, is

¢XX,I@ = E{Xan+k} (278)

(cf. SCHLITTGEN and STREITBERG 2001, p. 97). Throughout this thesis, we will use the term autocorrelation
function only according to the definition in (2.78). Note, that the autocovariance function is centralized while
the autocorrelation function is not. The autocovariance and autocorrelation function are connected by

bxxk = Vaxk + - (2.79)

Note, that due to the stationarity of X, the autocorrelation function ¢, and the autocovariance function -y
are independent of the index n and symmetric around k& = 0, i.e. dxx r = dxx,—k and Yxxr = Yxx,—k
(cf. HAMILTON 1994, p. 46).

The power spectral density ® xx (w) is the discrete Fourier transform of the autocorrelation function (cf. Op-
PENHEIM and SCHAFER 1999, p. 74).

Prx(w) = Floxxr} (2.80)

After defining E{X?2} = ¢xx,0 to be the power contained in the time series &, the power spectral density
shows how much power of X, belongs to certain parts of frequencies. Therefore, %@ rx(w)dw is the average
contribution of the frequency components of &), between the frequencies w and w + dw to the total power
E{X2%} = ¢xx,0 of X,. Following this interpretation, we find for the total power E{X?} of the time series

1 ™
B{X}} = ¢xxo = Py /‘Pxx(w)dw (2.81)

(cf. OPPENHEIM and SCHAFER 1999, p. 74).

We assume that ), follows the Gaussian distribution Y, ~ N(0,1). Then, it holds that py = 0 for processes
according to (2.54). In this case ¢pxx x and yxx  are identical.

bxxk = Yxxk, i px =0 (2.82)

Thus, the power spectral density @y (w) indicates how the variance 0% = yxx o is spread over the frequen-
cies from —m to w. Let us consider a time series W,,, having a zero mean and being uncorrelated. For such a
time series we find

2 .
oy, if k=0
= . 2.83
PWW.k {0, otherwise ( )

Because ¢ i equals a scaled impulse, its Fourier transform is a constant value for all frequencies.
Dyyw (W) = F{lowwi} = oy (2.84)

In physics, one basic property of light is its frequency, perceived by humans (and other living creatures) as
the color of the light. If all frequencies contribute the same power, we perceive white light. In analogy to
that, the uncorrelated and stationary time series W, is referred to as white noise (cf. HAMILTON 1994, pp.
47, 48). All time series with a non-constant power spectral density are referred to as colored noise, also in



26

2. Filtering and Least Squares Methods

analogy to the colors of light in physics. Other examples of colored noise are pink, brown and black noise.
Their power spectral densities are defined as follows (cf. CUDDINGTON and Yobpzis 1999).

k=1 pink noise
DPyx(w) ~ wk k=2 brown noise (2.85)
k=3 black noise

The autocorrelation function of a filter is defined by
a= Y hihiy=hyth_p, (2.86)

k=—o0

which corresponds to correlation of the impulse response of the filter with itself (cf. OPPENHEIM and SCHAFER
1999, p. 73). It connects the autocorrelation function of the time series X,, and the filtered time series ),
in (2.53) by

Gyyr = D bxxh-icl = dxx,*c (2.87)

l=—o00

which is a convolution of the autocovariance function of X, with the autocorrelation function of the filter.
The power spectral density of a filter is defined by

P(w) = F{a} (2.88)
(cf. OPPENHEIM and SCHAFER 1999, p. 74). It can also be computed by
P(w) = |H(e™)|? = H*(e™)H (™), (2.89)

wherein H*(e™) is the complex conjugate of H(e™). It connects the power spectral densities of X, and Y,
by

Pyy(w) = P(w)Pxx(w). (2.90)

Our goal is to design a filter, such that the time series ), corresponds to white noise. Therefore, our goal is
to chose P(w) such that ®yy(w) =1 for all w. Obviously, we have found the best filter, if

1

Pw) = 7@;\9’\?(&0)

(2.91)

holds.

We will now establish the link between the filter and the covariance matrix 3 in (2.8). Because the residual
time series V), is regarded as a stationary time series, the covariance matrix Xy, of the residual vector

V=[ WV - Yy (2.92)

has a Toeplitz structure (cf. section 2.2). Furthermore, the time series V,, has a zero mean, i.e. E{V,,} =0
(cf. section 2.1). Therefore, the covariances

VoV = E{(Vn = EVa}) Vnsk — E{Vnsi D} = v e = E{VaVotr} = dvvi (2.93)
are equal to the autocorrelation function of V,. Thus, the elements of 34y, are given by

dvv,0 dyv1 o Ovy.N-1

dvv.1 dvvo ot Ovy.N-2
Y=3yy = : : . . (2.94)

PV N—1 DV N—2 - Pyyo
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Now, the link is given by the design goal for the filter in (2.91). We have ®yy(w) = P~1(w) and
OV Vs = Gvve = F H{Oypp(w)} = FH{P ™ (W)} (2.95)

This equation is the link between the filter and the covariance matrix 3 in (2.8). Since the power spectral
density P(w) = |H(e™)|? of the filter depends only on its amplitude response A(w) = |H (e™)|, the phase
response ®(w) of the filter is irrelevant within the design of decorrelating filters.

In practical situations, we need to estimate the autocovariance function and the power spectral density from
a given time series

e R 2
A commonly used estimator for the autocovariance function yxx 1 is
| Nkt 1
Coak = 3 ; (@n = me) (Tn ik = ma) = 5 (@0 = my) * (T = Ma), (2.97)

wherein m, is the mean of z,, (cf. Box and JENKINS 1970, p. 32). Note, that this estimation is biased
towards zero.

| Nl
me = o Z Tn, (2.98)
n=0

We can estimate the autocorrelation function ¢xx 1 by

1 N—-k—1 1
fa;z,k = N Z TnTntk = N'rn *T_n. (299)
n=0

An efficient computation of f, j is given via the FFT and IFFT by

faos = P HF (@) F )} (2.100)

(cf. OPPENHEIM and SCHAFER 1999, p. 65). The power spectral density ® yx(w) can be estimated by

Pro(w) = F{foar} = %}'{xn}]—‘*{xn} = %|}'{mn}|2 (2.101)

(cf. OPPENHEIM and SCHAFER 1999, p. 888). An estimation of the power spectral density is referred to as
a periodogram. Note, that N P, (w) is equal to the squared amplitude response A2(w). Of course, there are
many other estimation methods for the autocovariance function and the power spectral density. For example
we could use a window function to reduce the spectral leakage (cf. BRIGHAM 1988, pp. 178-188) combined
with Welch’s method (cf. WELCH 1967) in order to obtain a smoother estimate of @y x (w).

Zeros and Poles

The transfer function H(z) in (2.62) can also be expressed by
_ Naebe™ Tl (- B

H(z) = Q - =bo Q 1
1—2].:1 a;z=7 szl(l—ajz* )

as any polynomial p(z) = ag + a1z + azz? + ... can be factorized into factors p(z) = (r; — 2)(ra — 2)...,
whereas the ry, are the roots of the polynomial (cf. OPPENHEIM and SCHAFER 1999, p. 250). Herein [ are
the zeros and «; are the poles off H(z). The position of zeros and poles play an important role for the design
of highpass, lowpass and notch filters. In section 3 it is shown that even the realization of an ARMA filter
is affected by the position of zeros and poles. For now, we will use the position of the zeros and poles only
as a tool to determine, whether a filter is stable or not.

: (2.102)
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Stability and Stationarity

A filter is called stable, if the poles «; of the transfer function H(z) lie inside the unit circle of the z-plane,
ie. |oj| < 1. A stable filter has the property, that for a bounded time series x,,, the filtered time series
yn is bounded, too. Furthermore, stable filters have a minimum-phase transfer function (cf. OPPENHEIM

and SCHAFER 1999, p. 255). This means, if h%min) is the impulse response of the minimum-phase transfer
function and h,, is the impulse response of any other non-minimum-phase transfer function which has the
same power spectral density, then

D lhl? <Y R (2.103)
m=0 m=0

holds (cf. OPPENHEIM and SCHAFER 1999, p. 298). Hence, the energy of the impulse response of a minimum-
phase transfer function has the highest concentration near to n = 0 in comparison to any other transfer
function. Therefore, stable filters automatically have the best possible localization property in the time
domain. Another property of a stable filter is, that its impulse response h,, decays to zero, as n approaches
infinity.

lim h, =0 for stable filters (2.104)
This follows from the fact, that
oo
> Jhal <0 (2.105)

holds for stable filters (cf. OPPENHEIM and SCHAFER 1999, p. 251 and FORSTER 1983, p. 38, theorem 2
and 3). We will make use of this property in many of the algorithms within this thesis.

A process is stable, if the zeros §, of the transfer function lie inside the unit circle of the z-plane, i.e. |G;| < 1.
Stable processes are also stationary. After defining the inverse transfer function

(2.106)

and the process corresponding to the transfer function H(z) is stable, then the impulse response g,, of G(2)
decays to zero, as n approaches infinity.

lim g, =0 for stable processes (2.107)
n—od
Analog to stable filters, this follows from the fact, that
> gnl < o0 (2.108)

holds for stable processes (cf. OPPENHEIM and SCHAFER 1999, p. 251 and FORSTER 1983, p. 38, theorem
2 and 3).

If a zero () or a pole a; of a filter lies outside the unit circle, we may stabilize the filter by changing the
transfer function H(z) (cf. OPPENHEIM and SCHAFER 1999, p. 288). We start by expressing the pole or zero
in polar form.

a; = ra].e%a' or [ =rg.e’ (2.109)
Then, we substitute the radius of the pole or the zero for its reciprocal value.
1 1
o = 76@"-7‘ or ﬂk = %8s (2110)
Taj T8y

The power spectral density of the stabelized filter will remain the same as the power spectral density of the
original filter. Thus, the decorrelation capability of the filter remains unaffected, too. Only if poles or zeros
lie on the unit circle, we cannot stabilize the transfer function without altering the corresponding filter’s
decorrelation capabilities. However, for some types of highpass filters, such as Butterworth filters, the zeros
of the filter lie on the unit circle. Though the filter is still stable, the corresponding process is not stationary.
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Localization Features of Filters

In many applications it is desirable for a filter to have good localization features in the time domain. In
our case, this means, that local phenomena such as outliers remain local after filtering. For a given filter
characteristic, a stable filter provides the best possible localization features. Furthermore, it is desirable
to keep the impulse response h, of the stable filter as short as possible in order to obtain even better
localization features. However, Fourier’s uncertainty relation states, that the product of the resolution in the
time domain and the resolution in the frequency domain must exceed a certain constant. From this it follows,
that increasing the localization features of the filter results in decreasing its decorrelating capabilities. Here,
we have two contradicting requirements. Because the decorrelating capabilities of the filter affect the quality
of the solution (2.8) of the least squares problem, they are by far more important than the localization
features of the filter.

From this discussion, we can conclude that the localization features of the filter in the time domain mainly
depend on the noise characteristics of the residuals in the Gauss-Markov model in (2.1). If the power spectral
density of the residuals contains local phenomena with respect to frequency, then the impulse response of
the filter will be long. For example, such local phenomena can be peaks in the power spectral density.

Conversions between AR, MA and ARMA Processes

Every filter is uniquely characterized by the impulse response of its transfer function. As the impulse response
of AR filters equals the filter coefficients, it is possible to convert AR and ARMA filters into MA filters only
by computing their impulse response h,, and then using these values as filter coefficients. We can obtain the
impulse response by

P Q
h =Y brdn_ + Y _ ajhn_j, (2.111)
k=0 j=1

wherein d,, is the unit impulse as defined in (2.55). The drawback is, that the impulse response of AR and
ARMA filters is in principle infinitely long. However, the impulse response h,, of stable filters will decay to
zero as n approaches infinity as stated in equation (2.104). Thus, we can approximate the AR and ARMA
filters by MA filters with arbitrary precision by choosing the order R of the MA filter, whereas R equals the
index n at which we truncate the impulse response h,,.

In the same way we can convert MA and ARMA filters into AR filters. The only difference is, that we use
the inverse transfer function G(z) defined in (2.106). With G(z) we can compute the impulse response g,, by

Q P
1
gn = %(dn - E ajdn—j - E kan—k)v (2-112)
j=1 k=1

wherein d,, is the unit impulse as defined in (2.55). If the process is stable, then the impulse response g,, will
decay to zero as n approaches infinity as stated in (2.107). Thus, we can approximate the MA and ARMA
filters by AR filters with arbitrary precision by choosing the order R of the AR filter, whereas R equals the
index n at which we truncate the impulse response g,,.

Practical Use

We will now demonstrate, how these equations can be evaluated in practice. The question we want to

answer in this subsection is: How are xg, 1, ..., zny_1 and yo, y1, ..., yn—_1 related to each other, if x,
is a time series and y, is the corresponding filtered time series? This question arises from the fact, that
the observations [,, are given for n = 0,1, ..., N — 1 and we minimize the sum of squares of the filtered

residuals also for n =0, 1, ..., N — 1 and not for —oco < n < oo. In order to keep the example simple, we
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will consider MA filters for the filtering of x,,. The mathematical background of the following is very well
depicted in FARHANG-BOROUJENY (1998), pp. 251-255.

MA filters are defined by equation (2.59). We can compute the time series y,, by a convolution, as equa-
tion (2.59) indicates. But a convolution evaluated in the time domain is usually a computationally intensive
task, if the filter order P is not a small value. Because z,, is in practice only given for n =0, ..., N — 1 (cf.
section 2.3), we set x,, to zero for all other n, i.e.

n, [ =0,1,...,N—-1
g, = R (2.113)
0, for all other n
In this case y,, is non-zero for n =0, ..., N — 1+ P, which follows from equation (2.59).
n, I =0,1,..., N-1+P
gy = { Yno For + (2.114)
0, for all other n

With the goal to reduce the computational effort of the convolution in (2.59), we express it as a circulant
convolution. This is possible due to (2.113) and (2.114). The circulant convolution is defined as follows. If

ao bO Co Co CN—-1 e C2
a1 b1 C1 .
a= , = ) , c= ) and C=| 4 €0 ' , (2.115)
. . .- .0 cN_l
aN—1 bn-1 CN-1 CN—1 C1 Co
then
b=Ca=c®a=F {F{c}oF{a}} (2.116)

is the circulant convolution of ¢ and a. Herein, o denotes an element-wise multiplication. In order to make
use of this, we define the following vectors of length N + P.

z=[wg - a1 O - 0] (2.117)
h=1[ho -~ hp 0 - 0] (2.118)
y=[w - yv-1+r] (2.119)

In vector x, the time series x,, is padded by P zeros, while in vector h, the filter coefficients h; are padded
by N — 1 zeros. This technique is called zero-padding. Any convolution of finite length can by computed by
a circulant convolution, if zero-padding is applied. With these zero-padded vectors we find

y=h®x=F "Y{F{h}oF{z}}. (2.120)
In our application, we are only interested in the values yq, ..., yn—1. For this reason we need to set the
values yn, ..., yn—14+p to zero. This corresponds to an element-wise multiplication with the rectangular

window w,,, which is defined by

1, f0<n<N-1
T . (2.121)
0, otherwise
In order to integrate this window in equation (2.120), we define
T
w=|wy - wWn-14p] (2.122)

Multiplying equation (2.120) by the window vector w yields

1
N+ P

woy=woh®x)=woF {F{h}oF{x}} = F Y F{w}® (F{h} o F{z})}. (2.123)
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If we want to relate the spectral properties of yq, ..., yn—1 to the spectral properties of zq, ..., ty_1 by
means of the filter coefficients hg, ..., hp, we must use equation (2.123) instead of (2.120). This demonstrates
that windowing effect have to be taken into account in practice.

This example shows also that the filter equation (2.59) for MA filter can be implemented very fast by means
of FFT techniques. Which other techniques lead to fast filter implementations, is investigated in the next
chapter.
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In this chapter different methods for filtering with MA and ARMA filters are described. For the sake of
generality the methods are formulated for the application to a time series which is stored in a vector.
The methods range from straightforward implementation of the filter equation (2.53) to an implementation
which performs the filtering by a multiplication in the frequency domain. Special emphasis is put on the
block methods which perform better concerning the calculation time. We will discuss the following four
implementations.

e time domain straightforward implementation (filter a single element at a time)
e time domain block implementation (filter a block of elements at a time)
e frequency domain block implementation (filter a block of elements at a time)

e frequency domain implementation (filter all elements at once)

After that we discuss how to integrate these methods into least-squares adjustment procedures. It will be
shown that there are many possibilities of integrating the filter methods into different adjustment procedures.
Because each of the methods has its pros and cons, we will highlight under which circumstance which methods
should be preferred. Within this context we also describe the integration of the Toeplitz approach.

3.1 MA Filters

The impulse response h,, of MA filters is finite while the impulse response of ARMA filters is infinite. For
this reason, we can describe the following algorithms easier for the MA filters. As the results can be partially
transferred to the case of ARMA filters, we can regard this section also as a preparation for the section on
the implementation of ARMA filters.

Block Method (Time Domain Block Implementation)

We can implement MA filters straightforward by equation (2.59) in the time domain. Within this straightfor-
ward implementation only vector-vector products occur and any one value y,, of the filter output is calculated
at a time. In order to increase the calculation speed, we can compute not any single value y,, but a whole
block
(k) — T
Yy =k wrr+r 0 Yosvn-1) (3.1)

of the filter output at a time. Herein, we call L the block size of the filter output or simply block size while
k is the index of the block. The increase of calculation speed is achieved by switching from vector-vector
products to matrix-vector products. In numerical libraries like BLAS/ATLAS matrix-vector products are
often more effective compared to vector-vector products (cf. ANDERSON et al. 1999. pp. 56, 57). Therefore,
even if the number of arithmetic operations increases, applying the filter block-wise will be faster.

We define the filter matrix F' as a L x L + P matrix by
hp hp_1 -+ ho 0 --- 0
F = 9 he R (3.2)
. . ' hp_1 ho 0
0 0 hp -+ hi ho
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whereas P is the order of the MA filter. The time series x,, is divided into blocks x(*) of size L + P, which
overlap each other by P elements.
-
o™ = [zpp-p ThL-py1 o Teanpo1] for k=0,1,..., K -1 (3.3)

Figure 3.1 illustrates the partitioning of the time series x,, and y,.

:L-(kfl)

Yn yk=b L

overl
) a

y®

Figure 3.1: Partitioning of the time series z,, and y,, for the MA block filter method. The block size is equal
to L. The blocks x®) overlap by P values while the blocks y*) do not overlap. The overlapping values of
x,, are marked by darker gray.

We compute the filtered blocks y*) by
y® = Fz® for k=0,1,..., K —1. (3.4)
Herein, the blocks y(*) are defined by (3.1) and do not overlap each other.

As the time series x,, is only known for n =0, 1, ..., N — 1, the number of blocks is K = ceil (%) At least
within the first block () there occur values x, with n < 0. These values are simply set to zero, which is
commonly performed in practice (cf. SCHUH 1996, pp. 36,37). Within the last block x(K=1) there may occur
values x,, with n > N — 1. We can leave these values undefined, as they only affect output values y,, with
n < N — 1 which are not used for further processing.

The number of multiplications for filtering N values of the time series x,, is N(L + P). Thus, we obtain the
minimum number of arithmetic operations for L = 1 which is the smallest possible block size and corresponds
to the straightforward implementation of MA filters mentioned at the beginning of this subsection. However,
the optimum block size is typically L > 1 and we can determine it best by measuring the calculation time
of test computations for different block sizes L.

Within adjustment procedures for least squares problems, for example the conjugate gradient algorithm
(cf. SCHUH 1996), we need to filter the design matrix A at least once, if the normal equation matrix cannot
be approximated by means of analytical formulas. In this case, we replace the input blocks &*) by blocks
AR Then, the matrix-vector products within the filtering procedure become matrix-matrix products. From
the point of view of calculation speed, this is a best case scenario as matrix-matrix products are highly
optimized operations within numerical libraries like BLAS/ATLAS (cf. ANDERSON et al. 1999. pp. 56, 57).
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Overlap-Add Method (Frequency Domain Block Implementation)

There are two methods which make use of partintioning the input time series x, in order to decrease
the computational costs of filtering in the frequency domain: the overlap-save method and the overlap-
add method. Both methods are described in BRIGHAM (1988), chapter 10. As these methods are almost
equivalent concerning their computational costs, we consider here only the overlap-add method. Within this
method the input time series is divided into blocks similarly to the block implementation of the filtering in
the time domain.

20
2D

m(Kil)

Herein, K = ceil % is the number of blocks, L is the block size and
T

z) = [IkL Trr4+1 I(k+1)L—1] (3.6)

is one of the blocks. Within the last block 2 =1)_ there may occur values x, with n > N — 1. We can leave
these values undefined, as they only affect the output values y,, with n > N — 1 which are not used within
the further processing. This partition of the input time series into blocks corresponds formally to the identity

K—1
— (k) . ) _ ) ®nykr, for n=0,1,..., L—1
T, = T ,  Wherein z,"/ = . 3.7
' kz_o nokE " {0, otherwise (3.7)
The time series x,,, which we assume to be non-zero only for n =0, 1, ..., N — 1, is split into K time series

xﬁf) which are in principle defined for —oo < n < co. However, for each of these time series a?%k) only the first

L values asék), ceey :c(Lkzl are non-zero. The filtering by MA filters is according to equation (2.59) equivalent

to a convolution in the time domain. Therefore, we find

K-1 K—-1
k k
I * T = § hn*xg,,_)kL = E y,(L_)k.L, (38)
k=0 k=0

wherein yflk) is defined analog to a:gf).

K-1
_ (k) . (k) _ ) Yn+kLs forn=0,1,..., L—1
n = “.r, Wwherein = . 10
! kZ:O InokL o {0, otherwise (3.9)

According to equation (3.8), we can perform the convolution of x, and h, in small parts as the time series

x;’“) has less non-zero values than the time series z,,. After the convolution, we only have to rearrange and

add the resulting time series y,(lk). The only thing we have to be aware of is, that L 4+ P values of yflk_) LL

are non-zero and thus the non-zero elements of yT(L’i) wz, overlap by P values. This explains the name of this

method.

Each of the convolutions in (3.8) can by performed as an element-wise multiplication in the time domain
according to (2.116) and (2.120). After defining

.
x<k>:[$ék> B I 0} (3.10)

and
} T

h=1[h hi -+ hp O -~ 0 (3.11)

)
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whereas both vectors are padded with zeros, such that their length is equal to Nppp = 20611 (og2(L+P)) e
obtain

y®) = FHF(h} o Flz™}}, (3.12)
wherein
(k) k) (k) ® 1"
Yy = |:y0 Y1 o yL+P71} . (313)

Figure 3.2 illustrates the partitioning of the time series x,, and y,.

(k—1) Ln
x
y(k_l)

overl z®)
* L y®

Figure 3.2: Partitioning of the time series x, and ¥, for the overlap add method for MA filters. The block
size is equal to L, which should be chosen such that L + P = 2¥, whereas k is an integer value. The blocks
y¥) overlap by P values while the blocks (*) do not overlap. The overlapping values of y,, are marked by
darker gray. The last P values of (*) are equal to zero.

The choice of Ngpr to be equal to 2" with m being a positive integer value is due to the fact, that
FFT algorithms work fastest for this length. In order to filter a maximum number of elements within each
convolution in (3.8), we choose the block size L such that L + P = Nppr.

FFT Method (Frequency Domain Implementation)

As the filtering by MA filters corresponds according to (2.59) to a convolution in the time domain, we can
perform this convolution by an element-wise multiplication in the frequency domain according to (2.116)
and (2.120). After defining

=ty ¥ - ay_1 0 --- 0] (3.14)
and

h=[ho hi -+ hp O --- 0], (3.15)
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whereas both vectors are padded with zeros, such that they are of length Nppp = 2¢¢1 (1022 (N+P)) we find
y =F YF{h}oFlz}}. (3.16)

The first N elements of this vector contain
T
Yyin=[% i o yn-i] (3.17)

which is the desired filtered output. As for the overlap add method, the choice of Nrpr to be equal to 2™
with m being a positive integer value is due to the fact, that FFT algorithms work the fastest for this length.
We can regard the FFT method as a special case of the overlap-add method. This special case is obtained,
if the block size L is chosen large enough such that K = 1.

3.2 ARMA Filters

In this section we describe the same methods for ARMA filters as in section 3.1 for MA filters. These methods
are more complicated to develop and to apply because of two major differences between MA and ARMA
filters: The first difference is the recursion for y,, in equation (2.53). While for MA filters the derivation of the
block method is straightforward as there is no recursion within the filter equation (2.59), the block method
for ARMA filters needs to resolve this recursion at least for the block size. The second difference is, that
the impulse response of MA filters is of finite length while the impulse response of ARMA filters is infinitely
long. This affects the methods based on FFT techniques, i.e. the overlap-add method and the FFT method.
As we design stable filters, the values h,, of the impulse response decay to zero as n increases (cf. section 2.4).
The workaround is to truncate the infinite impulse response of ARMA filters such that the truncation error
is smaller than roundoff errors and therefore negligible.

Block Method (Time Domain Block Implementation)

The motivation to use a block implementation of ARMA filters is the same as for MA filters: Within
the computation the vector-vector products of a straightforward implementation of equation (2.53) are
substituted by matrix-vector products of a block implementation of equation (2.53), which can be performed
more efficiently by numerical libraries such as the BLAS/ATLAS library. Depending on the filter design,
roundoff noise in equation (2.53) can become a serious problem. In order to reduce the roundoff noise to an
acceptable level, we subdivide the ARMA filter into sections, whereas each section is again an ARMA filter.
These filter sections are then applied in a serial sequence. It should be mentioned that filter sections are also
called filter cascades. Within this thesis, the terms section and cascade are equivalent.

Formation of Filter Sections

First of all, we show how an ARMA filter can be subdivided into filter sections. After that, we investigate
under which circumstances roundoff noise becomes a problem. Finally, we realize that the sectioning of the
filter should not be performed arbitrarily, but depending on rules given by DEHNER (2003).

We can subdivide the transfer function H(z) of an ARMA filter into filter sections H(z) by

S—1
H(z) = [] Ha(2). (3.18)
s=0

Herein, each filter section

Py 3(s) —k
Hy(z) = 20 bi’? (3.19)
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is again an ARMA filter, whereas its coefficients are denoted by a§s) and bgf). For this subdivision, the filter
sections are connected in series, which also means that they have to be applied serially to the time series.
Typically, the subdivision is performed such that the filter sections are of order P; = Qs =1 or Ps = Q5 = 2.
We call such sections first order sections or second order sections, respectively. According to equation (2.102)
the transfer function of an ARMA filter can be expressed by its poles and zeros.

H(z)=1b lota (L= ez ) T2 (L —mez™ (L —mj=)
T2 (01— ) T (= A= A=)

Herein, 7, are real-valued zeros, 7, are complex zeros, k; are real-valued poles and \; are complex poles.
Note, that the poles are the roots of the denominator polynomial of the transfer function while the zeros
are the roots of the numerator polynomial of the transfer function. First order sections are commonly set up
for real poles and zeros while second order sections are used for pairs of complex poles and zeros. For the
complex case, those poles are paired, which are complex conjugate to each other and those zeros are paired,
which are complex conjugate to each other, respectively. Therefore, we find for first order sections

(3.20)

1 — 271 ~bo+ biz~!
H(z) =bg T S (3.21)

and for second order sections

(1—nz"" A —n*271)  bo+brzt +byz?
(1—=Xz=H(1 = Xz"1)  1—ajz7! —apz=2"

H(z) =bo (3.22)

Reasons for Forming Filter Sections

The main reason for forming filter sections is the quantization noise of the filter coefficients. Quantization
noise is the error, which occurs, when number are stored with finite precision, for example double precision.
In some cases, the poles and zeros of the transfer function in (2.102) are located very close to the unit circle
in the z-plane. In such cases, small changes in the location of a pole or zero can result in large changes of
the power spectral density (2.89) and thus may destroy the decorrelation capability of a filter. Therefore,
we will now investigate under which circumstances the quantization noise of the filter coefficients affects the
location of the filter’s poles and zeros. The following derivations are taken from OPPENHEIM and SCHAFER
(1999), pp. 402-411.

The filter coeflicients and are typically stored with double precision. This means that we introduce a small

quantization error for the filter coefficients. Therefore, the actual filter coefficients a; and by, in (2.62) differ

)

from the stored filter coefficients, which we denote by a;q and bg]). The superscript (¢) indicates that these

coefficients are quantized, i.e. rounded. We find
a§»q) =a; + Aa; and b,(cq) = by + Aby, (3.23)

wherein Aa; und Aby, are the quantization errors of the filter coefficients. Thus, the implemented transfer
function reads

P (9 —k
b
H@ Ek:é; L2 (3.24)
1_Zj=1 a; z™

The poles and zeros of this transfer function are not the same as the poles and zeros of the transfer func-

tion (2.62). Therefore, we denote the poles and zeros of the transfer function H(® by agq) and ﬂ,@. They
are related to the filter coefficients of the implemented filter by

(1-al?271y. (3.25)

Q Q
=1

P P
Zb,(f)sz = bgq) H(l — /6’,(;1)271) and 1-— Zaé‘nz*j =
k=0 k=1 J

1 j
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3. Implementation of Filters

For the following derivations, we will understand the quantized poles and zeros as a function of the quantized
coefficients, i.e.

o = fo (... 0¥y and B = fs, (057, ...,0W). (3.26)
Our goal is now to express the quantization errors of the poles and zeros
Aa;=al” —a; and Ay =B - By (3.27)

in terms of the quantization errors Aa; and Aby of the filter coefficients. We begin with a single pole a;,
which we extract from the denominator polynomial of the transfer function (3.26).

SIS S X (a) @y T (a)
1 —Zajq 27 = H 7] =29 H(z—ajq ) =290 -aq?) H (z = a3") (3.28)
Jj=1 Jj=1 j=1 j=1,j#i
After solving this equation for ay;, we get
Q . @
agq) =229 (1 - Z agq)z_J) H (z — a§q))_1 = fou (agq), ce ag’)). (3.29)
=1 =1

Now we have found the function f,, in (3.26). In order to avoid a recursion, we assume that the quantized

(9)

poles a;" are constant values. In the next step, we linearize this function by expanding it in a Taylor series.

After choosing the actual filter coefficients a; as the Taylor point, we find for a(q) (3.29)

f%(a1 ,...,ag)) = fo, (a1 + Aaq,. .., aQ + Aag)
Ofa,;
= failar,. .. aq +Z f ; Aa;. (3.30)
=1 861 O (@) _
a; =a1,...,aq5’ =0qQ

(a)

Equality holds, because (3.29) is linear for the quantized filter coefficients a;"’ and thus higher derivatives

of f,, are zero. As f,, (ag‘n, . ,ag)) = ozgq) according to (3.26) and fa,(a1,...,aq) = o; analogously, (3.30)
becomes
Q
al? = Z ( N (3.31)
j=1 94; YZ):al, s ag):aQ
With (3.27) we find
Q
Ofa,
j=1 J a(l‘Z):al,...,ag):aQ

Building the partial derivatives yields

Q Q
ZzQ J H z—al(Q))_lAaj:ZzQ_jAaj H (z—al(q))_l. (3.33)

1=1,l#i j=1 1=1,i#i

This equation relates the quantization errors Aa; of the filter coeflicients to the resulting quantization errors
of the poles Aq;.

In order to investigate how the decorrelating capabilities of filters are affected by the quantization noise of
the filter coefficients, we look at their power spectral density

7,w_
bZHk 11— ﬁke_w|2 _ ZHk 16 ewﬁk|2 QHk 1‘€M Br|?
"I 1L — ajeie]? °H s U e — a2

|H (e™)|? (3.34)
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Figure 3.3: Effect of a small change in the location of a zero (3 on the decorrelating capabilities of an MA filter
of order one. The left panel shows the location of the zero of two filters in the z-plane. The two zeros lie both
close to each other and close to the unit circle. The effect of the small difference in the location of the zeros
on the decorrelating capabilities of the filters is shown in the right panel. The right panel illustrates that the
power spectral density of the two filters differs by a factor of four around the frequency w = <(g8) = 0.

which is here expressed by poles and zeros (cf. equation (2.102)). The value e™ describes the unit circle in
the z-plane. If a pole o or a zero 3 is located close to the unit circle in the z-plane, small changes in the
location of the pole or zero cause large changes in the power spectral density |H (e')|? around w ~ <(a;)
or w ~ <(f), respectively. Figure 3.3 illustrates the effect of a small change of the location of a zero.

Therefore, we analyze the effect of the quantization errors Aa; of the filter coefficients on the quantization
error Aq; of a pole by substituting z = ¢ in (3.33), which yields

Q Q
Aq; = Zei(Q_j)“’Aaj H (e — al(q))_l. (3.35)
j=1 I=1,1%i

We can neglect the term /9~ within our considerations, because its magnitude is equal to 1. The term
(e — al((n)*l is more interesting, because it becomes large for w =~ <I(al(q)), if al(Q) is located close to the
unit circle in the z-plane, i.e. \al(Q)| ~ 1. Then, the quantization errors Aa; are multiplied by a large value

and the quantization error Ac; of the pole «; increases. However, if only a single pole ozl(‘I) is close to the
unit circle, the effect will still