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Zusammenfassung

Visuelle gleichzeitige Lokalisierung und Kartierung aus Bildfolgen von unbemannten

Flugkörpern

Diese Arbeit zeigt, dass die Kalmanfilter basierte Lösung der Triangulation zur Lokali-

sierung und Kartierung aus Bildfolgen von unbemannten Flugkörpern realisierbar ist. Auf-

grund von Echtzeitanforderungen autonomer Systeme erreichen rekursive Schätz-verfahren,

insbesondere Kalmanfilter basierte Ansätze, große Beliebheit. Bedauerlicherweise treten da-

bei durch die Nichtlinearität der Triangulation einige Effekte auf, welche die Konsistenz und

Genauigkeit der Lösung hinsichtlich der geschätzten Parameter maßgeblich beeinflussen.

Der erste Beitrag dieser Arbeit besteht in der Herleitung eines generellen Verfahrens

zum rekursiven Verbessern im Kalmanfilter mit impliziten Beobachtungsgleichungen. Wir

zeigen, dass die klassischen Verfahren im Kalmanfilter eine Spezialisierung unseres Ansatzes

darstellen.

Im zweiten Beitrag erweitern wir die klassische Modellierung für ein Einkameramodell zu

einem Mehrkameramodell im Kalmanfilter. Diese Erweiterung erlaubt es uns, die Prädiktion

für eine lineares Bewegungsmodell vollkommen linear zu berechnen.

In einem dritten Hauptbeitrag stellen wir ein neues Verfahren zur Initialisierung von Neu-

punkten im Kalmanfilter vor. Anhand von empirischen Untersuchungen unter Verwendung

simulierter und realer Daten einer Bildfolge eines photogrammetrischen Streifens zeigen und

vergleichen wir, welchen Einfluß die Initialisierungsmethoden für Neupunkte im Kalmanfilter

haben und welche Genauigkeiten für diese Szenarien erreichbar sind.

Am Beispiel von Bildfolgen eines unbemannten Flugkörpern zeigen wir in dieser Arbeit

als vierten Beitrag, welche Genauigkeit zur Lokalisierung und Kartierung durch Triangula-

tion möglich ist. Diese theoretische Analyse kann wiederum zu Planungszwecken verwendet

werden.
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Abstract

Visual SLAM from image sequences acquired by unmanned aerial vehicles

This thesis shows that Kalman filter based approaches are sufficient for the task of si-

multaneous localization and mapping from image sequences acquired by unmanned aerial

vehicles. Using solely direction measurements to solve the problem of simultaneous localiza-

tion and mapping (SLAM) is an important part of autonomous systems. Because the need for

real-time capable systems, recursive estimation techniques, Kalman filter based approaches

are the main focus of interest. Unfortunately, the non-linearity of the triangulation using the

direction measurements cause decrease of accuracy and consistency of the results.

The first contribution of this work is a general derivation of the recursive update of the

Kalman filter. This derivation is based on implicit measurement equations, having the classi-

cal iterative non-linear as well as the non-iterative and linear Kalman filter as specializations

of our general derivation.

Second, a new formulation of linear-motion models for the single camera state model

and the sliding window camera state model are given, that make it possible to compute the

prediction in a fully linear manner.

The third major contribution is a novel method for the initialization of new object points

in the Kalman filter. Empirical studies using synthetic and real data of an image sequence

of a photogrammetric strip are made, that demonstrate and compare the influences of the

initialization methods of new object points in the Kalman filter.

Forth, the accuracy potential of monoscopic image sequences from unmanned aerial ve-

hicles for autonomous localization and mapping is theoretically analyzed, which can be used

for planning purposes.
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Chapter 1

Introduction

A major goal of photogrammetry and computer vision is a fully automatic reconstruction

of an environment from images. An important aspect is the determination of the image lo-

cation and orientation. Although much progress has been made, the problem still remains

an active research field. A lot of attention to this problem has been received by the robotics

community simply because images carry manifold information about the scene. Hence, au-

tonomous systems are able to use the image information for different tasks, even for their

location determination.

The human ability to learn maps of the surrounding environment and to use them for

localization has inspired researchers in the robotics community over the last decades. The

understanding and acquisition of this ability has been identified as a fundamental problem in

robotics. The process of incremental map construction is called simultaneous localization and

mapping (SLAM). This task is a key component for building autonomous mobile devices, that

for many applications has been a dream of researchers. In the field of civil applications service,

robots perform cleaning, inspection and transportation tasks or medical and construction

assistance. Robots also operate in dangerous environments, say for life rescue or pollution

control. Robots can be used in a wide field of research applications, for instance space and

deep sea exploration. Moreover, in military applications for instance robots are useful in

investigating areas and for transportation and rescue tasks.

The research community is focused on different kinds of aspects concerning the map-

ping ability. Various sensor types and configurations to obtain map information as well as

knowledge about the robots location will be used. Of course, the developed methods depend

on the application environment and the a-priori information about it. The use of multiple

11



12 CHAPTER 1. INTRODUCTION

cooperating robots is of interest, caused by its advantages in case of fault-tolerance and to

accomplish a task faster. Available solutions for narrowed environments are well understood.

For unstructured large-scale environments open problems remain. These are issues regarding

map representation and its uncertainty, real-time capable update methods and sensor fusion

algorithms. Almost every technique assumes the environment to be static. A more difficult

problem occurs if the environment changes over time.

A module to solve the task of simultaneous localization and mapping can be understood as

a subcomponent of an entire system for autonomous robots. Its main function is to aggregate

observations obtained by sensors in order to obtain information of the environment stored in

a map and provide this informations to other subsystems. The map and the relative location

of the robot may be used for interaction with the environment depending on the robots

task. This interaction comprises for instance safe navigation, exploration of areas where the

robots knowledge about the map is uncertain, identifying and following dynamic objects or

manipulation of the environment.

1.1 Motivation

The task of simultaneous localization and mapping is an old problem. Since the computer

technology provides sufficient computation power and data from sensor systems is digitalized

automatically, classical techniques becomes practical for real-time applications. One of the

well-established techniques is named as triangulation, where direction measurements from

different locations are used to determine the location of an observed object and the location

of the observer himself. In the area of nautical navigation this task is called dead reckoning

and is known since millenniums.

In classical photogrammetry a realization incorporating uncertainties of the direction

measurements into the triangulation is given by a least square solution known as bundle

adjustment. This technique can be adapted to the real-time localization and mapping problem

of a robot. It becomes even more complex in the case of large environments and a huge

number of observations and mapping parameters. To handle this complexity a reformulation

of the least square solution to a recursive update that is part of the Kalman filter can be

used. Several researchers adapted this technique to recover the map structure as well as the

localization of the robot at any point in time. One argument to use the recursive update
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is always the high computational performance. Unfortunately, many researchers observe

disadvantages concerning the consistency of the resulting estimates and its uncertainty. These

inconsistencies appear dominant in the case when only direction measurements are used.

The contribution of this thesis is to derive real-time capable models based on a recur-

sive update technique using image measurements only and to compare their benefit to the

results concerning consistency and precision. In practice we are interested in the domain of

lightweight unmanned aerial vehicles (UAV). Intentionally we do not incorporate additional

sensors like global positioning systems (e.g. GPS) and inertial systems (INS) to determine

the location of the robot directly. There are several applications to use a UAV without access

to a global positing system for a specific task supposable, for instance indoor applications,

between skyscrapers, under bridges, in tunnels or in military faced approaches where the

GPS signals are jammed as well as extra-planetary missions. High accurate INS sensors are

still heavy and expensive and therefore not usable in all kinds of applications. It is certainly

advisable to incorporate additional sensor information if available. This work may be con-

sidered as a continuation of the work of Ackermann (1965) and Li (1987). Both highlighted

aspects about the accuracy and the sensitivity analysis of the outlier detection of the trian-

gulation using high resolution wide baseline aerial images. Our approach will deal with a low

resolution image sequence. This thesis will examine the questions of

• how to represent the environment and the robots dynamics in a Kalman filter,

• how the initialization of new object points in the map influences the overall consistency

and precision of the results,

• how to deal with outliers in the observations, and

• how to find a general law to assess the achievable accuracy in case of aerial image

sequences.

The common method to represent the environment and the robots dynamics in a Kalman

filter follows Davison (2003). We will improve and extend this representation to be more

flexible. To our knowledge, the inconsistency of the Kalman filter based results observed

by many researchers e. g. Castellanos et al. (2004), Bailey et al. (2006) has not yet been

analyzed for photogrammetric strips. Furthermore, the known previous work assumes that

the observations are free of gross errors in the observations. This assumption cannot be
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guaranteed. Hence, we will present a method to reduce the outlier influence in a Kalman

filter based approach. The question about the achievable accuracy in case of low resolution

aerial image sequences becomes interesting to assess the approach for new application tasks.

This thesis is organized as follows. First, we will give an overview about the meaning and

available techniques of the simultaneous localization and mapping problem and review the

previous work in a broader context.

In Chapter 3 the relevant methods to this thesis in the area of projective geometry, image

geometry and least squares solutions are presented. A novel algorithm for a recursive update

will be introduced. It will be shown, that this novel algorithm is a generalization of the

classical recursive update of the Kalman filter. In addition, we will examine the task of

outlier detection and elimination.

Chapter 4 addresses the problem how the environment can be represented in a Kalman

filter. We will introduce a new state representation for the robot pose and a completely linear

dynamic model. In the second part we will highlight the problem of parameter initialization

in terms of a variable state according to the extended knowledge of the environment during

exploration. In this context we will introduce a new approach to initialize new object points

into the filter state.

The proposed algorithms will be evaluated in Chapter 5 using synthetic datasets and

real datasets. We develop a model for the theoretical accuracy as a function of the design

parameters of a flight line. In a second step the influence of the initialization method of new

object points to the resulting observers trajectory will be analyzed in case of full synthetic

observations, synthetic image sequences and real image sequences. Finally we will conclude

this thesis with an outlook to future work.

1.2 Collaborations and publications

Some algorithms proposed in this thesis were developed in cooperation with other people.

The idea of a non-linear recursive update as well as a quality measure for the intersection of

projection rays have been presented by Christian Beder in Steffen & Beder (2007) and Beder

& Steffen (2006). A new solution to initialize object points in a Kalman filter based approach

for the mapping task was done in collaboration with Wolfgang Förstner, presented in Steffen

& Förstner (2008). Parts of this thesis have been published in the following articles:
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• Christian Beder and Richard Steffen. Determining an initial image pair for fixing the

scale of a 3d reconstruction from an image sequence. In K. Franke, K.-R. Müller,

B. Nickolay, and R. Schäfer, editors, Pattern Recognition, number 4174 in LNCS, pages

657–666. Springer, 2006.

• Christian Beder and Richard Steffen. Incremental estimation without specifying a-

priori covariance matrices for the novel parameters. VLMP Workshop on CVPR.

Anchorage, USA, 2008.

• Wolfgang Förstner and Richard Steffen. Online geocoding and evaluation of large scale

imagery without GPS. Photogrammetric Week, Heidelberg, Wichmann Verlag, 2007.

• Richard Steffen and Christian Beder. Recursive estimation with implicit constraints.

In F.A. Hamprecht, C. Schnörr, and B. Jähne, editors, Proceedings of the DAGM 2007,

number 4713 in LNCS, pages 194–203. Springer, 2007.

• Richard Steffen and Wolfgang Förstner. On visual real time mapping for unmanned

aerial vehicles. In 21st Congress of the International Society for Photogrammetry and

Remote Sensing (ISPRS), Beijing, China, 2008.

1.3 Notation

symbol meaning

general writing style

x,X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . scalar value

x,X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vector

X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . matrix

x,X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . homogeneous vector

X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . homogeneous matrix

x̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . estimated variable

x̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .true value of stochastical variable

~x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . predicted vector

S(•) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .skew matrix of a 3-vector

reserved symbols
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L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . roundness measure

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rotation matrix

M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .homogeneous motion matrix

K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . camera calibration matrix

P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .camera projection matrix

P (·) . . . . . . . . . . . . . . . . . . . . . . probability density function of a variable

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .parameter vector or state

D . . . . . . . . . . . . . . . . . . . . . . duality matrix for homogeneous elements

V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unit quaternion inversion matrix

U . . . . . . . . . . . . . . . . . . . . . concatenation matrix for small quaternion

Υ . . . . . . . . . . . . . . . . . . . . . . quaternion representation in matrix form

Ῠ . . . . . . . . . . . . reinverse quaternion representation in matrix form

z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . observation vector

ω, φ, κ . . . . . . . . . . . . . . . . Euler angles for rotations around X,Y, Z - axis

Θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . threshold of a scalar variable

statistic symbols

σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . standard deviation

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . covariance matrix

ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . white noise vector with mean zero

χ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .χ-square distribution

N(µ,C ) . . . . . normal distribution with mean vector µ and covariance C

CXX . . . . . . . . . . . . . . . . . . . . . . covariance matrix of parameter vector X

mathematic operators and indices

XT transpose

X
−1 inverse of a matrix

X
−T

inverse transpose of a matrix

X(ν) iteration ν counter

Xt time index

|A| determinant of the matrix A

|X| L2-norm of the vector X

tr(A) trace or sum of the diagonal elements of A
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reference indices

cX variable in camera coordinate system
oX variable in object coordinate system
wX variable in world coordinate system or geo-referenced system
wMo homogeneous motion from object to world system
wM
−1
o = oMw inverse homogeneous motion from object to world system

is equivalent to the transformation from world to object system
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Chapter 2

Previous work

In this chapter we will present the previous work that has been done in the field of simul-

taneous localization and mapping. To classify the available literature we have to clarify

the meaning of localization, mapping and simultaneous localization and mapping as a joint

problem.

The localization in a known environment as a single problem is to determine the pose of

an observer relative to a given map. The pose can usually not be sensed directly and has to

be inferred from sensor data. For the localization determination almost every system is based

on triangulation, where directions, distances or both of a known object are measured. The

real problem is to establishing correspondences between the map and the acquired sensor

data. In case of active systems like GPS the object identification is simple as the GPS

satellites communicate its identification. Using image measurements or range scanners the

identification, also known as the data association problem, becomes challenging.

The mapping task as a single problem determines the locations of objects in the observers

environment. The determination assumes to know the observers location. In case the sensor

system to obtain the map gets multiple observations of an object, then the map estimation

method has to be taken into account the uncertainty of the observations as well as the uncer-

tainty of the observers location. Again, the data association problem has to be solved. The

mapping approach should be able to identify map changes and update the map respectively.

Simultaneous localization and mapping as a joined problem is much more complicated.

This task was identified as one of the fundamental problems in the field of autonomous

robotics. The problem arises when an observer does not have any information about its

location and does not know anything about its environment. The task of simultaneous local-

19



20 CHAPTER 2. PREVIOUS WORK

ization and mapping can be considered as a time driven process. We distinguish between two

major forms following Thrun et al. (2005). First, the observer will determine its momentary

location only, also termed as online SLAM. Second, the observer will determine the entire

path of the observers trajectory at every point in time, known as full SLAM. Both concepts

combined with the ability to fall back on previous observations afford different solutions of

the problem. In the area of photogrammetry the aero-triangulation is a well understood

example for a full SLAM approach. But, in case of large maps and real-time tasks full SLAM

may not be applicable. Due to large maps implicating a huge number of observations and

therefore a huge storage space, they are therefore usually not real-time capable. Instead,

online SLAM performs the integration of new observations one-at-a-time. Typically, a fall

back to previous observations is not possible. The information of the observations will be

accumulated and represented by a posterior distribution of the map and of the observer’s

location. Some solutions also neglect the information of past locations which are not neces-

sary anymore. Depending on the task, map information can also be discarded, e. g. if only a

save motion is required. Often, these systems operate in an egocentric system comparable to

human perception. Approaches, which do not neglect information and resolve inconsistencies

of previous and actual observations are called optimal. The ”‘gold standard”’ is to estimate

the full posterior distribution about the environment. However, approximative approaches

are able to approximate this full posterior distribution in a sufficient manner. The gain is a

speed up of the computation and a reduction of the necessary storage space.

The main problem to classify the available literature arises from the wide field of appli-

cations, environments, sensors and their combinations. We identified two main areas caused

by the sensor type, namely visual sensors and range sensors. The first induces direction

measurements. Using multiple image sensors, distances can also be determined at one point

in time. Secondly, range sensors measure distances and directions directly. Both will divide

the proposed concepts into visual SLAM and scan-matching SLAM.

In the following sections we will review general estimation techniques in the context of

metric simultaneous localization and mapping. The influence of different sensor types and

metric map representations on the complexity of the joined location and map estimation will

be highlighted and we will outline the benefits of these approaches in various ambiances of

particular publications. The main leading works in the already addressed problem of huge

maps will be presented.
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2.1 Previous work on general estimation techniques

In the task of simultaneous localization and mapping orientation parameters of an observer

and parameters of the observed environment have to be estimated. At the moment there

are three general methods in the focus of the community, namely least squares, recursive

estimation and particle based methods. Thrun (2002) presents an overview of the state of

the art techniques. The paper points out the relative strength and weakness of the proposed

algorithms.

1. Least squares is a commonly-used technique for the parameter estimation tasks (c. f.

section 3.3). Here, the posteriori distribution will be approximated by a Gaussian

distribution. In case of direction measurements the method will be addressed as bundle

adjustment and usually will solve the full SLAM problem. A very good overview of

the bundle adjustment techniques in terms of estimation theory and robustification,

solving large normal equation systems efficiently, incremental updates, gauge problems,

outlier detection and sensitivity analysis, model selection and network design is given

by Triggs et al. (1999).

To achieve real-time capability, algorithms were developed to reduce the computational

cost of solving the normal equation system of the least squares solution. These take

advantage of the special structure of the normal equation system. Grün (1982) dis-

cusses a normal equation factorization method based on the Schur-complement1, which

is able to subdivide the parameter vector into two independent solutions. Additionally,

a formalism to detect blunder via Baarda’s data-snooping is introduced. Also Thrun &

Montemerlo (2005) presented this factorization method of Grün (1982) for large scale

mapping. To obtain the data association a statistically motivated method based on

incrementally updated maps is introduced. Besides the factorization method, a com-

promise between between full and online SLAM can be used to significantly reduce the

parameter space. According to a hierarchical map representation, the estimation will

be performed only on a local map which will be adjusted at any point in time. This

means only the last few orientation parameters of the observer and only a fragment

of the environment will be used in the estimation process. This adaptation is called

sliding window, e. g. Bibby & Reid (2007). Mouragnon et al. (2006) propose a local

1In the following we will refer to the Schur-complement as a factorization.
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bundle adjustment using observations of a set of arbitrary chosen images (keyframes)

to reduce the number of parameters. Correlations between previous orientation param-

eters (the observer trajectory) will be ignored. This makes it impossible to resolve the

inconsistencies in case of a loop closing in an optimal manner. Additionally, estimated

uncertainties of the parameters are too optimistic.

Another important aspect to the time consuming complexity of the least squares solu-

tion is the re-linearization of the non-linear observation model in an iterative manner.

The convergence of the iteration depends on the degree of the non-linearity as well as on

the accuracy of the initial approximate values. Sibley (2006) and McLauchlan (2000)

argue, that a re-linearization on previous orientation parameters is not necessary. How-

ever, their described methods use a sliding window for the orientation parameters to

enhance the solution.

Sometimes only information about the trajectory of the observer is desired. Using

image data only the task can be denoted as visual odometry estimation. Sünderhauf

et al. (2005) describes a sparse bundle approach using a sliding window to estimate the

motion of the observer only.

As a compendium, Dellaert (2005) reviews the factorization techniques used in bundle

adjustment and enhanced the classical model by a dynamic model of an autonomous

system. Additionally, he compared some implementations in case of complexity and

runtime.

Faugeras et al. (1998) introduce an algorithm to recover the structure of an image

sequence with uncalibrated cameras. The reconstruction leads to an unknown projective

transformation, which can be recovered up to an affine transformation using three pairs

of parallel lines and to a similarity transformation using orthogonal lines.

2. Recursive methods are based on an update technique of already estimated parame-

ters using new observations to increase its accuracy that can be used to solve the

online-SLAM problem. The most popular technique is the Kalman filter2 introduced

by Kalman (1960), which will approximate the posteriori distribution of the parameters

using a Gaussian distribution. An good overview about Kalman filter techniques can

2We do not distinguish between the linear Kalman filter, the extended Kalman filter and the iterative

extended Kalman filter in the review section.
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be found in Simon (2006). The Kalman filter update can be derived from the least

squares solution as well as from the weighted mean of the Bayes theorem, e. g. Koch

(1997) p. 182ff and Thrun et al. (2005) p. 45ff.

A well-established method using a Kalman filter based technique is proposed for in-

stance by Davison (2003). A linear motion model to get approximate values is used.

Civera et al. (2007a) extend the approach to an unknown scale factor of the environ-

ment. This is useful if no a-priori metric information is available. Julier & Uhlmann

(2007) introduced a Kalman filter technique with the update complexity of O(1) ignor-

ing the correlations inside the covariance matrix and a special update procedure. In

their experiments the uncertainty is growing three times faster.

In McLauchlan & Murray (1995) and McLauchlan (2000) the interconnections between

least squares and recursive estimation for the localization and mapping problem are

analyzed. Here observer localization and map parameters will be separated into two

groups of parameters. There are three update methods proposed: 1) A recursive update

according to the factorization method of Grün (1982) is introduced. For a large number

of localization parameters this can be expensive in terms of computational complex-

ity. 2) Only the new localization parameters will be updated, the previous localization

parameters are fixed and the correlations are neglected. 3) The new localization pa-

rameters will be determined in larger time steps, where the approximate values will

be obtained by a prediction using a linear motion model. In all three cases the map

parameters will be updated using the factorization method. In contrast, Beder & Stef-

fen (2008) calculate the update for the localization parameters similar to the second

method proposed by McLauchlan & Murray (1995), though the previous localization

parameters will not be fixed. As an advantage this will consider the correlations.

In case of a highly non-linear prediction and measurement model the Kalman filter

can diverge caused by the linear error propagation. To reduce this effect Julier &

Uhlmann (1997) introduced an error propagation method for non-linear functions called

the unscented transformation as it does reduce the bias in propagation the first and

second moments of the distribution. This non-linear error propagation for Gaussian

distribution guarantees to keep either the second in mean or fourth moments in variance.

It can be applied to the Kalman filter resulting in the so-called sigma point Kalman

filter. As an extension, Sibley et al. (2006) introduced an iterated version of the sigma
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point Kalman filter. The computational overhead of calculation is the computation of

the inverse of the whole covariance matrix of the state vector.

An alternative way is to approximate non-Gaussian distributions of the parameters,

which will usually arise if new parameters have to be initialized, by a sum of Gaussian

distributions. Solà et al. (2005) introduce a multi-hypothesis initialization of new object

points in a Kalman filter based approach.

3. Particle filter as non-parametric filter are the common way to represent the posterior

distribution by a set of random states assigned with a probability. A good overview

on localization and mapping using non-parametric filter can be found in Thrun et al.

(2005) p. 85ff. However, the number of particles will increase exponentially with the

number of parameters and is therefore not suitable for the SLAM task.

Hence, another idea to solve the online-SLAM problem is to decouple the map and ob-

server trajectory into two separated parts. This decoupling will be used in the so-called

Fast-SLAM algorithm introduced by Montemerlo et al. (2002). The trajectory is repre-

sented by a Particle filter. Every particle is associated by an individual map, stored in a

tree based data structure for fast access and memory usage reduction. The environment

object locations are estimated by separated Kalman filter for every particle and every

object simultaneously. Spero & Jarvis (2005) extended the Fast-SLAM algorithm by

the use of robot hypotheses with no underlying distribution. The hypotheses are com-

puted and valuated in a feature matching process in a RANSAC based manner. Eliazar

& Parr (2003) introduced a particle filter based method according to Fast-SLAM using

range scanners. Here multi hypothesis grid maps for multi-hypothesis trajectories of

the observer are associated with a balanced tree, that reduces the memory consumption

significantly.

In Pupilli & Calway (2005) and Pupilli & Calway (2006) also the trajectory parameters

of an observer are represented by a particle filter. Here in contrast, one single map

is updated by a sigma point Kalman filter with weighted multi hypothesis updates of

the object locations according to every particle of the observers trajectory. Täubig &

Schröter (2004) extended the approach of Montemerlo et al. (2002) by using a par-

ticle filter also for the environment parameter estimation. This enables multi-modal

distributions of object locations.
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2.2 Previous work with different sensor types

Simultaneous localization and mapping approaches are strongly influenced by the used sensor

system. In the case of the environment perception this can be monocular or stereo image

sensors, range sensors like laser scanners, sonar or radar sensors. Additionally odometry

sensors like wheel sensors, GPS or initial sensors for rotation and velocity are used.

The integration of odometry sensors will always stabilize a system, especially in case of

weak sensors to acquire information about the environment. For example, Davison & Kita

(2001) demonstrate the benefit of the integration of roll and pitch sensors. The propagation

of the observers location will be much more accurate. Therefore, gross errors in the data

association can be determined much more precisely and the data association search space

will be reduced.

In close range environments autonomous systems can carry stereo and multi stereo vi-

sion systems. Comparable with range sensors, these systems are used to determine depth

informations at any point in time.

One method to solve the SLAM task is to extend the monocular vision approaches by

incorporating the new sensor information of a second camera using the same observation

model. In Davison & Murray (2002) a stereo vision system is used. The Kalman filter based

model represents the observers trajectory in a 2d environment and the object locations in a

3d environment.

Another method is to determine a dense depth map at a discrete point of time. The

observers motion will be determined by a scan matching of at least two depth maps of the

same parts of the environment. The key problem is to find correspondences between the

depth maps. A popular technique to do this is the iterative closest point algorithm and

its extensions, c. f. Besl & D.McKay (1992), Rusinkiewicz & Levoy (2001). The work of

Akbarzadeh et al. (2006) is based on a multi stereo image sensor system. First a dense map

will be obtained and used for scan matching. The map will be represented by a point cloud,

obtained by a median fusion algorithm of different scans. Scan matching can be performed

with 3d sonar sensors Ribas et al. (2006), laser scanners Brennecke et al. (2003) as well as

radar sensors Dissanayake et al. (2001). The scan matching can also be performed using 2d

range scans, e. g. Lu & Milios (1994).

Simple multiple scan matching will result in discrepancies arising from the inaccuracy

of the matching process and the sensor noise. To incorporate the uncertainty the relative
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motion of the observer derived by the scan matching can be used as a measurement in a

least squares solution. Nüchter (2007) showed, that the inconsistencies in this case can be

minimized.

The idea of Nieto et al. (2005) combines scan matching and Kalman filter based SLAM.

Here objects will be separated in the range data. The location of an object in the observer’s

coordinate system will be used as a direct observation of a landmark in a Kalman filter based

approach.

2.3 Previous work with different map representations

The scope of all approaches is to acquire map information which has to be represented. In

figure 2.1 different schemes of map representations are shown. First, one commonly used

Figure 2.1: Left: Feature map, Middle: Topological map, Right: Grid map

representation is feature maps, using points as well as line features. Euclidean coordinates

are used as the usual parameterization. Montiel et al. (2006) introduced the inverse distance

parametrization for the monocular visual SLAM problem to reduce the effect of linearization

errors and to deal with points on infinity. It is shown, that the non-Gaussian distribution of a

ray intersection with small parallaxes results in a bias. Related to this representation, Civera

et al. (2007b) proposed a linearity measurement based on the disparity angle to decide when

to switch from inverse distance to Euclidean representation. Trawny & Roumeliotis (2006)

introduced an over represented feature initialization using a vantage point. Nearby points

and points at infinity can be represented in the same way. In the work of Lemaire & Lacroix

(2007) line segments and point feature as map elements are used simultaneously in a Kalman

filter based approach.

In Marzorati et al. (2007) a solution for the integration into a Kalman filter of 3d lines
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and points acquired by a stereo camera system is described. The model is generated using

homogeneous representations of geometric entities. Rodŕıguez-Losada et al. (2006) introduced

a sub-map representation in an Kalman filter. For every new set of features its own reference

coordinate system is defined. The actual location of the observer can also be transformed to

this coordinate system. One positive effect is the reduction of the linearizion error, but it

increases the computational costs.

Second, topological maps are typically used if the environment can be separated into

distinct locations. In Kuipers et al. (2000) the connections between spacial semantic and

localization and mapping using autonomous systems is outlined. The topological map rep-

resented by a Voronoi graph is introduced in Choset & Nagatani (2001), which also encodes

metric information about the environment. The key feature of this approach is to construct

the graph incrementally using a set of basic control laws. Another example using a topolog-

ical graph representation has been shown by Folkesson & Christensen (2004). The approach

is able to impose global constraints (e. g. loop closing) and to represent inconsistencies using

an energy term of the graph nodes.

Third, grid maps can be used to represent map information. Most of these implemen-

tations are limited to 2d environments, for example Howard & Kitchen (1997), Montemerlo

& Thrun (2003), Eliazar & Parr (2004), where the grid cells are signed as occluded or not

occluded. Grisetti et al. (2006) for example extends the grid map approach using particles

associated with a probability for the map occlusion. Using an elevation grid map based ap-

proach is outlined in Pfaff et al. (2007). Also a dimension extension to 3d grid maps (voxel

maps) will be feasible, e. g. Yu & Zhang (2006) and Zask & Dailey (2009). Grid maps in

general are limited in their accuracy depending on the chosen grid resolution, which will be

a trade-off between memory usage and sensor accuracy.

2.4 Previous work with different ambiances

Different kinds of solution can be separated into different ambiances. Very popular are

systems for indoor environments, such as Davison (2003) using a single camera approach,

Harati et al. (2007) using laser scans or Tardós et al. (2002) using sonar measurements.

In an outdoor environment most systems focus on safe navigation to autonomous vehicles,

e. g. Holz et al. (2008), Nüchter et al. (2006). Particularly detecting dynamical objects is
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one of the major problems Liao et al. (2003). The localization and mapping problem can be

simplified using GPS.

Using unmanned aerial vehicles as a sensor platform in any kind of altitude becomes

more and more affordable. Kim & Sukkarieh (2006) described an airborne platform with

range, bearing and inertial sensors. A single camera system combined with GPS and inertial

sensors was used in Sünderhauf et al. (2007) to demonstrate the capability of the sigma point

Kalman Filter with inverse distance parametrization in the context of autonomous airships.

Also Schlaile et al. (2006) presented a vision based framework for small unmanned aerial

vehicles in indoor environments. Visual data can be used to achieve odometer information

of a UAV proposed by Ollero et al. (2004) and Beńıtez et al. (2005). In case of stratospheric

UAV system, e. g. Everaerts et al. (2004), the mapping task will be simplified into a 2d map

problem.

Sonar sensors makes it possible to perform the localization and mapping problem for

autonomous underwater vehicles (AUV), e. g. P. M. Newman & Rikoski (2003), Fairfield

et al. (2006) and Ribas et al. (2008).

Extra-planetary missions will be the most spectacular environment for the simultaneous

localization and mapping task. Primarily camera sensors will be used, because of its hardware

robustness, lightweight construction and high information gain, e. g. Se et al. (2005). Future

missions will also incorporate satellite images. For instance Li et al. (2005) propose a network

vision system using ground image series and satellite images. The challenge is a robust, fully

autonomous system for outdoor environments, which do not have any access to a global

positioning system.

2.5 Previous work for large scenes

All presented approaches in the previous sections are very suitable in small areas. In case

of large maps Kalman filter based algorithms shows inconsistencies between the estimated

uncertainties and the parameters and becomes instable in terms of its numerical stability.

Castellanos et al. (2004) investigated the inconsistency of a Kalman filter approach versus a

local map joining. They introduced a robocentric mapping approach, where the world coor-

dinate system is defined by the observer. It is shown, that a map-consistency improvement

for this approach can be obtained. The reason is, that higher order terms of the linearization
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becomes smaller due to the robocentric coordinate system. Also Bailey et al. (2006) ana-

lyzed the consistency of Kalman filter based methods for large loops. It is pointed out, that

the angular uncertainty of measurements has the overall influence to the divergence of the

Kalman filter approaches. In J. A. Castellanos & Tardós (1999) a framework is introduced

to deal with uncertain geometric symmetry of segments (e. g. walls) using a Kalman filter

method. It is shown that symmetry information improves significantly the consistency of the

filter.

Simultaneous localization and mapping for large scenes typically can be solved by a hier-

archical mapping. Small local maps with high inner accuracy and consistency can be joined.

In case of an unmanned aerial vehicle, classical algorithms using image pair geometry can

be used to obtain an independent photogrammetric model. These local maps can be joined

to make large maps as shown in Kanade et al. (2004). Clemente et al. (2007) also used a

hierarchical map approach. For obtaining independent local maps with a Kalman filter based

approach with inverse distance map representation, an overall transformation of the gener-

ated local maps will be computed to yield an optimal solution, if a loop closing is detected.

Paz et al. (2007) proposed a technique to join local independent maps at fixed intervals using

a binary tree to reduce the complexity of joining the maps. Martinez-Cantin & Castellanos

(2005) showed implementation details on the integration of the sigma point Kalman filter to

the SLAM problem and introduced an innovation-based consistency checking for large scale

outdoor navigation using a 2d laser range sensor. In Estrada et al. (2005) an example for

combining several local maps under the loop closing constraint is shown. All local maps are

adjusted, but the inner precision of every local map does not change. Blanco et al. (2007)

also introduce a hierarchical SLAM approach to combine small local maps with a superior

Bayesian network. Sub-maps are computed by the FAST-SLAM algorithm. Guivant et al.

(2004) introduce a new hybrid map representation. The global map is partitioned in Lo-

cal Triangular Regions (LTR) based on selected landmarks, which defines independent skew

symmetric coordinate systems. The observer’s location is embedded in this system. The

observed landmarks therefore can be updated using separated Kalman filter.

In this chapter we specified the meaning of localization, mapping and its joint problem as

a time dependent process. As outlined, the goal of a simultaneous localization and mapping

approach is to estimate the full posterior distribution of an observers location and its environ-
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ment. In a review part we gave a broad overview about different solutions distinguishable by

the parameter estimation technique, map representation and used sensor systems. It can be

observed that existing approaches score well for different kinds of ambiances in small areas.

However, building larger maps still seems to be challenging.



Chapter 3

Background theory

3.1 Geometric entities and transformations

In this section we will present the construction and relationship of geometric entities and

basic coordinate transformation techniques. We will briefly describe the representation of

rotations, the extension to motions and homographies as a general coordinate transformation

in the 3d space. Using homogeneous coordinates we are able to formulate rotations, motions

as well as homographies as linear transformation in a 2- and 3-dimensional projective space.

For a broad introduction to homogeneous coordinates, its transformations and its historical

background please refer to Heuel (2004). For an interpretation of the different writing styles

of variables please refer to the notation definition.

3.1.1 Geometric entities

In this section we will present the fundamentals of algebraic projective geometry which we

use in this dissertation. In a first step we introduce homogeneous coordinates to represent

points and lines in the 2-dimensional space. Secondly, we present the extension to tree-

dimensional space using points, planes and lines followed by construction1 elements and

incidence contradictions.

1The construction of an element from two elements will be indicated by the operator ∧ and the intersection

of two elements by ∩.
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3.1.1.1 Points and lines in the 2d space

Homogeneous coordinates in general are invariant with respect to multiplication by a scalar

factor λ 6= 0. Every Euclidean coordinate x = [x, y]T can be represented as a homogeneous

vector

x =

 x0

xh

 =


u

v

w

 . (3.1)

Normalizing the homogeneous vector by dividing x by w, than x0 represents the Euclidean

part of x. All points [u, v, w]T 6= 0 build the so called projective plane consisting of all points

[x, y]T of the Euclidean plane together with the points at infinity [u, v, 0]T.

Every line in in R2 can be represented in Hessian normal form

x cosφ+ y sinφ− d = 0 (3.2)

and has the homogeneous coordinate vector

l =

 lh
l0

 =


a

b

c

 =
√
a2 + b2


cosφ

sinφ

−d

 (3.3)

as long as
√
a2 + b2 6= 0. Every line with the same coordinates as a point up to an arbitrary

factor λ 6= 0 is called the dual element of the point. The line at infinity is [0, 0, 1]T.

3.1.1.2 Points, planes and lines in the 3d space

In the 3-dimensional space a point X = [X,Y, Z]T can be represented similar to the two-

dimensional space by

X =

 X0

Xh

 =


U

V

W

T

 . (3.4)

The dual element of a 3d point in homogeneous coordinates is a plane. From the implicit

plane representation

AX +BY + CZ +D = 0 (3.5)
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or its analogon in Hessian normal form XTN − S = 0, with N as the unit normal vector

of the plane and S as the distance from the origin, the homogeneous representation vector is

defined as

A =

 Ah

A0

 =


A

B

C

D

 . (3.6)

Normalizing A in a way that the length of the subvector is |Ah| = 1, the absolute value of

the fourth element of A represent the distance to the origin.

Lines in R3 can be represented by four independent parameters, for instance by one point

in the XY-plane and a direction represented by azimuth and elevation. A common represen-

tation is the Plücker representation, namely a 6d-vector containing the Plücker coordinates.

We will use this representation, because there are mathematical connections to the homoge-

neous representation. One can show that the construction of a 3d line using two homogeneous

3d points L = X ∧Y can be obtained by

L =

 Lh
L0

 =



L1

L2

L3

L4

L5

L6


=



X4Y1 − Y4X1

X4Y2 − Y4X2

X4Y3 − Y4X3

X2Y 3− Y2X3

X3Y1 − Y3X1

X1Y2 − Y1X2


=

 XhY 0 − YhX0

S(X0)Y 0

 . (3.7)

Because a 3d line can be defined by 4 independent parameters and the Plücker vector is

homogeneous, obviously there is an additional constraint for all 6-vectors represents a 3d-

line, the so called Plücker constraint:

LT
0Lh = L1L4 + L2L5 + L3L6 = 0. (3.8)

The homogeneous part of the Plücker line Lh can be interpreted as the line direction vector,

the Euclidean part L0 is the normal vector of a plane spanning of the 3d line and the origin.

Like the dual element of a 3d point is a plane with the same coordinate vector there exists

a dual element of the Plücker line L. This dual element is called a dual line L and can be

constructed using a dual operator D by

L = DL with D =

 0 I 3

I 3 0

 . (3.9)
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3.1.1.3 Incidence constrains and entity construction

Now we will introduce the basic formulations for checking the incidence of geometric entities

and their construction. Using the Hessian normal form of equation (3.2) we can easily check

the incidence of a 2d point x lies on the 2d line l by

lTx = xTl = 0. (3.10)

Equivalently, a 3d point X lies on a plane A if

ATX = XTA = 0. (3.11)

The construction of entities in the 2-dimensional space is restricted to points and lines only.

Given two points x,y the line intersect both can be constructed by

x ∧ y = l = S(x)y = S(y)x. (3.12)

Using the duality relationship, the intersection of two lines l and m is a point x and can be

expressed by

l ∩m = x = S(l)m = S(m)l. (3.13)

In 3-dimensional space the incidence relationships and the construction of entities need to

introduce some matrix expressions. Rewriting equation (3.7) to a matrix vector multiplication

L = I I (X)Y we introduce

I I (X) =

 XhI 3 −Xo

S(X0) 0

 =



T 0 0 −U

0 T 0 −V

0 0 T −W

0 −W V 0

W 0 −U 0

−V U 0 0


. (3.14)

Using the plane A as the dual element of X we can construct a dual element of Π written as

I I (A) = D I I (A) =



0 −C B 0

C 0 −A 0

−B A 0 0

D 0 0 −A

0 D 0 −B

0 0 D −C


. (3.15)



3.1. GEOMETRIC ENTITIES AND TRANSFORMATIONS 35

Additionally we will introduce a proper representation of a 3d line in a matrix expression,

the so-called Plücker matrix representation

I (L) =


0 L6 −L5 −L1

−L6 0 L4 −L2

L5 −L4 0 −L3

L1 L2 L3 0

 . (3.16)

One can show that the dual matrix relation holds

I (L) = I (L) =


0 L3 −L2 −L4

−L3 0 L1 −L5

L2 −L1 0 −L6

L4 L5 L6 0

 (3.17)

with the Plücker constraint in matrix expression I T(L)I (L) = 0.

Without any proof and claim of completeness we summarize the construction of main

entities in table 3.1, Heuel (2004).

entities construction expression

points x,y l = x ∧ y l = S(x)y = −S(y)x

lines l,m x = l ∩m x = S(l)m = −S(m)l

points X,Y L = X ∧Y L = I I (X)Y = − I I (Y)X

planes A,B L = X ∩Y L = I I
T(A)B = − I I (B)A

point X, line L A = X ∧ L A = I I
T(X)L = I

T(L)X

plane A, line L X = A ∩ L X = I I T(A)L = I T(L)A

Table 3.1: Construction of geometric entities

3.1.2 Rotations

In geometry rotations are one central transformation operation. In the following we will re-

view rotation representations and some additional mathematical aspects for the 3-dimensional

case we will use in this thesis. A rotation matrix R is a special, orthogonal n-dimensional

linear transformation with the restrictions |R| = 1 and R
T = R

−1, which results in RR
T = I .
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A Euclidean point X = {X,Y, Z} in 3d can be transformed by

X ′ = RX with R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (3.18)

Elementary rotations using Euler angles denoted as ω, φ, κ around the three axis X,Y, Z of

a right hand 3d-coordinate system are

R1(ω) =


1 0 0

0 cosω − sinω

0 sinω cosω

 (3.19)

R2(φ) =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

 (3.20)

R3(κ) =


cosκ − sinκ 0

sinκ cosκ 0

0 0 1

 . (3.21)

In this dissertation we define the concatenation of the rotation by left multiplication

R(ω, φ, κ) = R3(κ)R2(φ)R1(ω) =


cκcφ −sκcω + cκsφsω sκsω + cκsφcω

sκcφ cκcω + sκsφsω −cκsω + sκsφcω

−sφ cφsω cφcω

 . (3.22)

Note, the order of the concatenation is crucial for an interpretation of an estimated rotation.

Instead of the Euler angle representation, a rotation in 3d-space can also be defined by a

rotation axis n through the origin with |n| = 1 and a rotation angle α. The corresponding

rotation matrix is

Rn,α = cosα I 3 + (1− cosα)Dn + sinα S(n) (3.23)

with I 3 as the identity matrix, Dn = nnT as the dyadic product of n and

S(n) =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 (3.24)
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as the skew-symmetric matrix of n. From a given rotation matrix we can compute the angle

and rotation vector in the following way. Given the vector a from the elements of R

a = −


r23 − r32

r31 − r13

r12 − r21

 (3.25)

the rotation angle is given by

α = atan2 (|a|, tr(R)− 1) (3.26)

and the rotation vector n by

n =
a

|a|
if |a| 6= 0. (3.27)

Rotations represented by Euler angle as well as axis and angle require trigonometric functions

which may be a disadvantage. The quaternion representation introduced by W. R. Hamilton

is closely related to the axis and angle representation, but there is no need for trigonometric

terms. Quaternions are also closely related to complex numbers and they define their own

algebra. Furthermore the quaternion representation for rotations is unique except for a sign

and shows no singularities. A quaternion consists of a scalar part q = q0 and a vector part

q = {q1, q2, q3}. We can write a quaternion as a 4-vector

q =

 q

q

 =


q0

q1

q2

q3

 . (3.28)

The corresponding rotation matrix can be computed by

R(q) =
1

q2
0 + q2

1 + q2
2 + q2

3


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 .
(3.29)

We observe, that R(q) is invariant with respect to a multiplication of q with a scalar 6= 0.

It can be shown, that the vector part q is parallel to the rotation axis n. Using the unit

quaternion |q| = 1 the relationship between quaternions and the axis-angle representation is

defined by

q =

 cos α2
sin α

2n

 . (3.30)
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We can easily derive the concatenation of two rotations q and r represented by quaternion

as a quaternion multiplication p = qr defined as the matrix vector multiplication

p = qr = Υ(q)r = Ῠ(r)q (3.31)

with the 4× 4 matrix

Υ(q) =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (3.32)

and

Ῠ(r) =


r0 −r1 −r2 −r3

r1 r0 r3 −r2

r2 −r3 r0 r1

r3 r2 −r1 r0

 . (3.33)

In case of |q| = 1 the inverse element of q is defined by

q−1 =

 q

−q

 Υq−1 = Υ−1
q (3.34)

or as matrix-vector multiplication

q−1 = Vq with V =

 1 0

0T −I 3

 . (3.35)

For a small rotation qk which depends on k concatenations of a small rotation q around the

same axis a sufficient approximation can be obtained by

qk ≈

 1

kq

 (3.36)

or written as matrix vector product

qk ≈ Ukq with Uk =

 1 0

0T kI 3

 . (3.37)

This approximation is very useful for the representation of small angular velocities and ac-

celerations we will use in chapter 4.

In the following we will show for the special case of small circular motions, that the

quaternion concatenation can be used to obtain a rotation from angular velocity. First, lets
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assume an angle α is a function of time t depends on an initial angle α0 and an angular

velocity α̇, so

αt = α0 + α̇t. (3.38)

Substitute αt into the unit quaternion representation in equation (3.30) we get

q(t) =

 cos(α0+α̇t
2 )

sin(α0+α̇t
2 )n

 (3.39)

as the quaternion as a function of time. Using the theorems

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y) (3.40)

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) (3.41)

and reformulate equation (3.39) we get

q(t) =

 cos(α0
2 ) cos( α̇t2 )− sin(α0

2 ) sin( α̇t2 )(
sin(α0

2 ) cos( α̇t2 ) + cos(α0
2 ) sin( α̇t2 )

)
n

 . (3.42)

Evaluate (3.42) at t0 = 0 and α0 = 0 and approximate sin( α̇t2 ) ≈ α̇t
2 and cos( α̇t2 ) ≈ 1 we get

q(t) =

 1

( α̇t2 )n

 =

 1

( α̇2n)t

 , (3.43)

which can be expressed using equations (3.36) and (3.37) with k = t and q = α̇
2n. A

derivation using a Taylor expansion and incorporation of acceleration can be found in the

appendix in section A.1.

3.1.3 Motions and homographies

In many geometric tasks linear transformations are necessary. The projective transformation,

also known as a homography, can be applied to a homogeneous point as a 4×4 matrix multi-

plication with 15 degrees of freedom. As the homography H is homogeneous, a normalization

with respect to the last element is useful.

X′ = HX→


X

Y

Z

1



′

=


a b c d

e f g h

i j k l

m n o 1




X

Y

Z

1

 . (3.44)
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This general linear transformation can be specialized to the motion of coordinate systems.

In the Euclidean 3d space a motion is defined by a rotation R and a translation T of a

3-dimensional point X

X ′ = RX + T (3.45)

and its inversion

X = R
T(X − T ). (3.46)

Using homogeneous coordinates for the point X = [X,Y, Z, 1]T we can rewrite the motion in

(3.45) to a linear mapping using a matrix vector multiplication

X′ = MX (3.47)

with the homogeneous motion matrix

M =

 R T

0T 1

 . (3.48)

From equation (3.46) we can show that the inversion of the motion can be computed by

M
−1 =

 R
T −RTT

0T 1

 (3.49)

and so is MM−1 = I 4. We are able to concatenate motion similar to rotations.

Example: As an example for the concatenation of motions we will rotate a point-cloud

Xi around its centroid Tc. First we translate the centroid to the origin, rotate the point-cloud

and translate back by using the motion matrix

M = MTcMRM
−1
Tc

=

 I 3 T c

0T 1

 R 0

0T 1

 I 3 −T c

0T 1

 =

 R −RT c + T c

0T 1

 .
(3.50)

A second specialization is the 7-parameter Helmert-transformation (similarity transforma-

tion) as a concatenation of a motion and a scale factor. This restricted homography can be

derived by the following concatenation:

H = HsMRMT =

 λI 3 0

0T 1

 R
T 0

0T 1

 I 3 −T

0T 1

 . (3.51)
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In the same manner also a 3d affine transformation with 12 degrees of freedom can be repre-

sented. The rotation, motion and the homography can also be applied to 2d space coordinates

by canceling the third row and column of the transformation matrices. As an example the

2d affine transformation can be represented by a matrix multiplication as a concatenation of

base transformations, namely a translation Ht, a rotation Hr, a scaling Hs with individual

scales for both vector components and an unsymmetric shearing Hsh

x′ = Hx = HtHrHsHshx =


a b c

d e f

0 0 1

x. (3.52)

For an overview of possible transformations have a look to McGlone et al. (2004) page 143ff.

Rotations in the 2d space are embedded in the 3d space as a rotation only around the Z-Axis

using equation (3.21).

3.2 Basic image geometry

In this section we will briefly introduce the basic issues that deal with images. The term

image will be used in a broad context. Usually an image is a mapping of the 3d world to a 2d

image using a camera. There are numbers of real world camera with different constructions

and projection principles Sturm et al. (2006). In this work we will assume cameras with a

single projection center and a perspective projection. However, for every kind of cameras

given an image point x′ it is possible to reconstruct at least one projection ray, which is a 3d

line L(x′) from an object point to an arbitrary projection center given by a measured image

point x′. This principle allows to assign the geometry reconstruction principle in this work

to all different kinds of camera models.

3.2.1 The geometry of the single image

In general, we distinguish between the interior and exterior orientation of a camera. The

interior orientation describes the transformation of an image point x′ to the projection ray

in a fixed camera coordinate system cS and vice versa, the exterior orientation describes the

location of the camera system cS in a world system wS.

The exterior orientation can be represented by the position and angular orientation of

the camera. The interior orientation of perspective cameras can be modeled using an affine
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sensor. This is caused from the principle of the manufacturing of sensors and/or scanner

technologies. Moreover, caused by lens distortions and different physically effects non-linear

distortion terms have to be applied to correct them.

Figure 3.1: Left: Exterior orientation definition Right: Central perspective mapping scheme

A given 3d point cX in the camera coordinate system can be projected into the image

plane resulting in the ideal image point x̄′ using the intercept theorems

cx̄ = c
cX
cZ

and cȳ = c
cY
cZ

. (3.53)

This can be rewritten using homogeneous coordinates

cx̄ =


ū

v̄

w̄

 = c
P̄c

cX =


c 0 0 0

0 c 0 0

0 0 1 0




cX

cY

cZ

1

 . (3.54)

Here c is the principal distance of the projection center to the image plane. The ideal image

point x̄′ can be mapped using an affine sensor model by a 2d homography for an affine sensor

x′ = Hc
cx̄′ =


1 s xh

0 1 +m yh

0 0 1

 cx̄. (3.55)

Using the position and orientation of the camera in a world coordinate system wS we can

transform a homogeneous 3d-point X applying the inverse motion matrix from equation
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(3.48). We obtain a point cX in the camera system by

cX = c
MX =

 R
T −RTT

0T 1

 X
1

 . (3.56)

Combining the equations (3.54), (3.55) and (3.56) and substituting the commonly named

calibration matrix

K =


c sc xh

0 (1 +m)c yh

0 0 1

 (3.57)

we get the projection of a 3d point in a world coordinate system to the image plane by

x′ = PX = KR
T[I 3 | −T ]X. (3.58)

The Euclidean coordinates of the image point can be derived by normalizing x′. Assuming

zero shear and scale differences we get the collinearity equations

x′ = c
r11(X −XT ) + r21(Y − YT ) + r31(Z − ZT )
r13(X −XT ) + r23(Y − YT ) + r33(Z − ZT )

+ xh (3.59)

y′ = c
r12(X −XT ) + r22(Y − YT ) + r32(Z − ZT )
r13(X −XT ) + r23(Y − Y v) + r33(Z − ZT )

+ yh (3.60)

with T = [XT , YT , ZT ]T as the camera projection center and rij are the entries in R. We can

see from equation (3.54) that the projection is not invertible, because we lose the information

about the depth of the object point. Splitting the projection matrix into two parts

P = [H∞|h] = [KRT | −KRTT ] (3.61)

as H∞ map points at the plane of infinity into the image plane, we can derive the direction

to a projected object point in the camera system by

d = H
−1
∞ x′. (3.62)

Assuming a distance d to the object points X we can calculate its location by

X = d
d
|d|

+ T . (3.63)

So far, from the principle of linear transformations the camera model is straight-line-preserving.

Real cameras are not straight line preserving, due to several physical influences such as lens

distortions or refraction. In the literature different non-linear distortion models are available.



44 CHAPTER 3. BACKGROUND THEORY

For a overview please c. f. Abraham (1999). A general way to represent all these models

is by using a distortion lockup-table. This means, for every real image point x′ exists a

distortion vector to get the straight-line-preserving image point coordinate and vice versa.

The distortion lookup-table can be obtained in a camera calibration process. A measured

Euclidean image point xm can be corrected by

x′ = xm + ∆x(xm) (3.64)

to get image coordinates following the model above. Typically, for non-integer coordinates

the distortion are interpolated.

3.2.2 The geometry of the image pair

In this section we introduce the basic concept for 3d geometry retrieval from two images. For

a general introduction we refer to Hartley & Zisserman (2000).

In general the two cameras have different exterior and interior orientations. In the fol-

lowing we assume to know the interior orientation of the cameras, which can be obtained by

a previous calibration Abraham (1999). The proposed approaches are useful for consistency

checks of automatic feature measurements which we will use in subsequent algorithms.

Forward intersection Knowing the interior and exterior orientation of at least two cam-

eras given by their projection matrices P we can derive the 3d point coordinate as the in-

tersection of the projection rays from corresponding image measurements x in both images.

This can be formulated in an equation system as follows:

The incidence of the projected point X can be implicitly rewritten as

S(x)PX = 0. (3.65)

Using two rows2 of (3.65) for two cameras and stack them to S(x′)P′

S(x′′)P′′


︸ ︷︷ ︸

A
4×4

X != 0 (3.66)

we can derive X as an approximate solution of (3.66) using for instance the singular value

decomposition as a method of an equation solver. With more cameras two additional lines

can be added to A for each additional ray.
2Only two rows of equation (3.65) are independent.
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Coplanarity constraint As shown in figure 3.2 the image points x′ and x′′ and the object

point X are coplanar. This plane A intersects the image planes in two lines l′ and l′′.

Obviously, the corresponding point to x′ lies on the line l′′. It can be shown, that this

Figure 3.2: Epipolar geometry, x′ and x′′ are the images of a 3d object pointX, the projection

centers of the two cameras are T ′ and T ′′ and their images (epipole) in the opposite cameras

are e′ and e′′. The 2d line constructed from the image point x and the epipole e is the

epipolar line.

constraint can be formulated as

x′TK′−T
R
′
S(b)R ′′TK′′−1x′′ = 0 (3.67)

with b as the base vector between the projection centers of the two cameras. Substitute
cx̄′ = K

−1x′ as the normalized image coordinates and E = R
′
S(b)R ′′T as the essential matrix

we get

cx̄′TE cx̄′′ = 0. (3.68)

Note, this constraint also holds for multiplying the equation with any scalar, so the coplanarity

equation is independent of the length of the base vector. Fixing the world coordinate system

at the first camera, we can easily see that the essential matrix is defined by five parameters.

These five parameters, the base direction and the rotation between the first and the second

camera represents the relative orientation. Using five arbitrary point correspondences we

can derive the relative orientation using the algorithm of Nistér (2004). In case of a given

relative orientation represented by E the correspondence of the image measurements can be

checked using equation (3.68). The corresponding image point has to be on the corresponding

epipolar line.
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Homography induced by a planar object As introduced in section 3.1.3 the concate-

nation of homographies is also a homography. The mapping between two images observing

the same plane is then also a homography. In a world coordinate system at the first camera

the mapping from the first to the second image using the homogeneous plane representation

A = [Ah, A0]T is given by

x′′ = K
′
HpK

′′−1x′ = Hx′ and Hp = R
′′ +

R
′′T ′′AT

h

A0
. (3.69)

The homography H can be derived using at least four corresponding image points. Using

Figure 3.3: Homography induced by a plane

the Kroenecker product

ABC = (CT ⊗ A)vec(B) (3.70)

we can rewrite equation (3.69) to

0 = x′′ × Hx′ = S(x′′)Hx′ = (S(x′′)⊗ x′)Tvec(H). (3.71)

Note, that only two of these constraints are independent. Using the homogeneous coordinates

for corresponding points in equation (3.71) we obtain 0 0 0 −w′′u′ −w′′v′ w′′w′ v′′u′ v′′v′ v′′w′

w′′u′ w′′v′ w′′w′ 0 0 0 −u′′u′ −u′′v′ −u′′w′

 vec(H) = 0.

(3.72)

Collecting these equations for at least four points we finally obtain an equation system

Avec(H) = 0, (3.73)

that we can solve with respect to the elements of H.
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The proposed algorithms starting from equation (3.66) assume independent and equal

measurement accuracy. Here we neglected statistical conditions, which can be easily intro-

duced by weights for the observations. The accuracy of the obtained parameters can be

derived using error propagation. Furthermore, the extension for the case of image blocks

is possible. To consider the different uncertainty of observations and achieve multi-image

integration we propose a least square solution, which will be introduced in the next section.

3.3 Least squares

Finding a set of parameters of a model given a set of observations is known as an optimiza-

tion problem. To do this, the least square method is a very effective numerical method.

The proposed algorithms are embedded in the broad context of probability theory. For lin-

ear relationships of Gaussian distributed observations and unknown parameters, the least

squares method leads to best unbiased estimators. In the physical world, measurements can

well be approximated by Gaussian distributions. Because least square methods approximate

probability density function by Gaussian distributions, least squares methods becomes very

popular.

In this section we will derive various forms of functional models. This derivation follows

the concept of specialization of a universal form to specific specializations. These derivations

can be found in several publications, for instance Mikhail & Ackermann (1976), Koch (1988),

Niemeier (2001) or Förstner & Wrobel (2004). Our motivation to derive these algorithms

again lies in a novel derivation of recursive least square estimation in the subsequent section.

Furthermore we will present standard methods for outlier detection and robustification as

well as a technique for parameter reduction.

3.3.1 Least squares optimization

Optimizing linear Gauss-Helmert-model with constraints At the beginning we start

with the definition of two linear constraints

cg = Ap̂+ B
T(ẑ − z) (3.74)

ch = H
Tp̂ (3.75)

where p̂ of size U is the parameter vector to be optimized. The contradiction vectors cg and

ch of size G and H therefore depend on the estimated parameter vector as well as on the
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fitted observations ẑ with size N . Therefore, the linear model in A has the size G×U , H has

the size U ×H and B has the size N × G. The basic concept of the least square method is

to find p̂ by minimizing the function

Ω2 =
1
2
v̂T
C
−1
zz v̂ =

1
2

(ẑ − z)C−1
zz (ẑ − z)T (3.76)

with z as the observation vector with its covariance matrix C zz and ẑ as the estimated ob-

servation vector under the constrains in (3.74) and (3.75). To incorporate the contradictions

it is necessary that we minimize

Ω2 =
1
2

(ẑ − z)C−1
zz (ẑ − z)T + λT(Ap̂+ B

T(ẑ − z)− cg) + µT(HTp̂− ch) (3.77)

by introducing the Lagrangian multipliers λ and µ. To find the minimum of this function

we set the first derivation with respect to all parameters to zero. We obtain four equations(
∂Ω
∂ẑ

)T

= C
−1
zz v̂ + Bλ = 0 (3.78)(

∂Ω
∂p̂

)T

= A
Tλ+ Hµ = 0 (3.79)(

∂Ω
∂λ

)T

= Ap̂+ B
Tv̂ − cg = 0 (3.80)(

∂Ω
∂µ

)T

= −ch + 2HTp̂ = 0 (3.81)

Solving (3.78) with respect to the residuals v̂, substitute v̂ into (3.80) and solve with respect

to λ we get

λ = (BT
C zzB)−1(Ap̂− cg) (3.82)

and for the residuals

v̂ = −C zzB(BT
C zzB)−1(Ap̂− cg). (3.83)

The sub-term B
T
C zzB can be interpreted as a projection of the covariance of the observations

to the space of the contradictions. The inverse can only be computed if the column rank of

B is N . This is a special case of the general Gauss-Helmert model. In the following we will

assume our model guarantees full rank of the sub-term. Now, substitute λ into (3.79) and

use equation (3.81) we can arrange these two equations to the normal equation system A
T(BT

C zzB)−1A H

H
T

0

 p̂

µ

 =

 A
T(BT

C zzB)−1cg

ch

 (3.84)
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The inverse of the left side of the normal equation system is the theoretical covariance matrix

of the parameter vector, so  N H

H
T

0

−1

=

 C p̂p̂ S

S
T

T

 (3.85)

and can only be computed if the stacked matrix [AT
H]T has full column rank. Substituting

the solution for p̂ into (3.83) we can compute the variance factor

σ̂2
0 =

v̂T
C
−1
zz v̂

G+H − U
(3.86)

with G as the number of constraints, H as the number of contradictions and U as the number

of unknown parameters inside the vector p. The estimated covariance matrix for the unknown

parameters is therefore

Ĉ p̂p̂ = σ̂2
0C p̂p̂ (3.87)

By error propagation of (3.83) we can show, that the covariance matrix of the residuals is

C v̂v̂ = C zzB(BT
C zzB)−1(I − AC p̂p̂AT(BT

C zzB)−1)BT
C zz (3.88)

c. f. Mikhail & Ackermann (1976) p. 197.

Optimizing Nonlinear Gauss-Helmert-Model with constraints Now let us assume

we have a nonlinear model with the nonlinear implicit contradictions and constrains according

to equations (3.74) and (3.75)

g(p̃, z̃) = 0 (3.89)

h(p̃) = 0 (3.90)

These equations hold for the true parameters p̃ and observations z̃. Using estimated param-

eters and observations the following system holds

g(p̂, ẑ) = 0 (3.91)

h(p̂) = 0 (3.92)

with ẑ = z + v̂. Approximate these functions using a Taylor expansion on the approximate

values p0 and z0 up to the first order we get

g(p̂, ẑ) ≈ g(p0, z0) + A(p̂− p0) + B
T(ẑ − z0) (3.93)

h(p̂) ≈ h(p0) + H
T(p̂− p0) (3.94)
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with the Jacobians

A
G×U

=
∂g(p, z)
∂p

∣∣∣∣
p̂,ẑ

(3.95)

B
N×G

=
∂g(p, z)T

∂z

∣∣∣∣
p̂,ẑ

(3.96)

H
U×H

=
∂h(p
∂p

∣∣∣∣
p̂

(3.97)

taken at the current approximation of p̂ and ẑ. Now we enlarge the third term of equation

(3.93) by z − z and we get

g(p̂, ẑ) ≈ g(p0, z0) + A(p̂− p0) + B
T(ẑ + z − z − z0) = 0. (3.98)

Split equation (3.98) into two separated parts cg and substitute ∆̂p = p̂ − p0 we define a

nonlinear contradiction

cg = −g(p0, z0) + B
T(z0 − z) (3.99)

and a linear contradiction

cg = A(p̂− p0) + B
T(ẑ − z) = A∆̂p+ B

Tv̂. (3.100)

Note, both terms are equal if and only if the linearization point for the observation is

z0 = ẑ and for the unknown parameters is p0 = p̂ so

0 = A∆̂p = −g(p0 = p̂, z0 = ẑ). (3.101)

The residuals v̂ are equal to equation (3.83) replacing p̂ with ∆̂p. Because we do not know

a-priori p̂ and ẑ we have to find the solution by iteration. After rewriting equation (3.94)

and using (3.100) we get the linearized normal equation system A
T(BT

C zzB)−1A H

H
T

0

 ∆̂p

µ

 =

 A
T(BT

C zzB)−1cg

ch

 (3.102)

with cg from equation (3.99) and

ch = −h(p0). (3.103)

In every iteration ν we update p(ν+1) = p(ν) + ∆̂p
(ν)

and z(ν+1) = z+ v̂(ν). The convergence

of this iteration scheme depends on the linearity of the optimization space around the ap-

proximate values p(ν) and z(ν). Note, that this scheme does not guaranty to find the optimal

minimum, because the optimization space depends on nonlinear functions and therefore can

be non-convex. There are several methods to apparently overcome this limitation e. g. the

Levenberg-Marquardt algorithm.
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Optimizing Gauss-Markov-Model with constraints Now we assume that the relation-

ship between the unknown parameters and the observations can be formulated as an explicit

function of the form z̃ = f(p̃). We can always rewrite these functions to implicit functions by

subtracting z from both sides. After replacing the true values against the estimated values

we get

0 = g(p̂, ẑ) = f(p̂)− ẑ. (3.104)

Applying the estimation algorithm of the nonlinear Gauss-Helmert model we always get

the Jacobian B = −I . Setting the approximate value for the observations as z0 = f(p0),

substitute (3.104) and B in equations (3.102), (3.99) and (3.100) we get

cg = −(f(p0)− z0)− (z0 − z) (3.105)

= ∆z = z − z0 (3.106)

= A∆̂p− v̂ (3.107)

and therefore the normal equation system is A
T
C
−1
zz A H

H
T

0

 ∆̂p

µ

 =

 A
T
C
−1
zz ∆z

ch

 . (3.108)

The residuals in equation (3.83) simplify to

v̂ = A∆̂p−∆z. (3.109)

As we can see the Gauss-Markov model is a simplification of the more general Gauss-Helmert

model.

3.3.2 Outlier detection and robustification

The least square estimation schemes presented so far minimize the square residuals of the

observations. This is known to be extremely sensitive to outliers. In general we are not able

to discriminate between systematic errors and gross errors. Systematic error can be caused

by errors in the functional model or by non-modeled effects of the observation process. The

last one can be a non-Gaussian distribution of the observations or neglected correlations. To

analyze where these residuals do come from we have to distinguish between systematic and

gross errors. In the following we assume that our functional model holds and therefore no

systematic error appears. We will now show how gross errors, also called outliers, may be
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detected by looking at the plausibility of the computed residuals with respect to the expected

uncertainty. Outliers can be eliminated canceling the observation, or their influence on the

estimation process can be reduced.

Outlier detection by testing the residuals Following Baarda (1967) a test value tn for

uncorrelated observations in the Gauss-Markov-model can by obtained by

tn =
−v̂n
σvn

. (3.110)

If there are no gross errors in the observations tn ∼ N(0, 1) is normally distributed. The

computation of σvn can be expensive as the covariance of the parameters is required. In

the case that all observation can be assumed to have the same influence to the parameter

vector, it is suitable to use σzn instead. In various cases, groups of observations are strongly

correlated to each other but uncorrelated to the remaining observations. In this case we

cannot distinguish which of the observations in the group i causes the error, but we can test

the group itself Stefanovic (1978) with

Ti = v̂T
i C
−1
vivi v̂i ∼ χ

2
I (3.111)

where I is the size of the group i and C vivi is the regular sub-matrix of the covariance of the

residuals.

Using implicit functions in the Gauss-Helmert model we can formulate functional models,

where a number of contradiction groups depend on a set of observations. In this case we

cannot test the observation groups themselves according to equation (3.111) because of the

functionally dependent on the contradictions. Using the relation (3.100) in the convergence

point that ∆̂p = 0, we get

cg = B
T(z − z0) = B

Tv̂ with C cgcg = B
T
C viviB (3.112)

and a test value for the groups of observations composed of the contradiction relations with

Ti = cT
giC
−1
cgicgi

cgi ∼ χ2
I . (3.113)

Corresponding groups of observations than can be determined as outliers if the test value Ti

exceeds a chosen threshold. The sub-covariance matrix C vivi can be singular and we are not

able to compute the test value. However, if we assume that all observations have the same

influence to the parameter vector, it is suitable to use C zz instead.
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Influence reduction Outliers can be eliminated in the estimation process. Alternatively,

their influence on the minimization function can be reduced. This technique is called reweight-

ing. The key idea is to adjust the assumed weight of the observations or rather groups by

an influence function, so that their influence on the minimization function is not square. If

there is a-priori information about the distribution of the gross errors, the function should be

chosen accordingly. The influence of the square residuals to the estimated parameter vector

can be adjusted using different functions ρ (c. f. Hampel et al. (1986). In table (3.3.2) we can

see commonly used influence and corresponding weighting functions. Assuming uncorrelated

and independent observations than equation (3.76) can be rewritten as

Ω2 =
∑
n

Ω2
n =

∑
n

1
2

(
vn
σzn

)2

=
∑
n

ρ(x) (3.114)

This means that the influence function for the least square case is ρ(x) = 1
2x

2. Instead

to replace the influence function, we can reweight the variances of the observations by its

corresponding weighting function. The weighting function for the observations according to

the influence function can be derived by

w(x) =
dρ(x)
dx

x
(3.115)

which leads to weighting factors wn for individual uncorrelated observations n. To reduce

the influence of outliers we multiply the covariance of the observation group by

C
(ν)
zizi =

1

w(x(ν)
i )

C
(0)
zizi (3.116)

in the νth iteration.

Outlier detection by testing the variance components In case that a group of ob-

servations belongs together in a functional manner, alternatively the variance component of

this group can be tested to detect that the group does not fulfill the functional model and

should be eliminated from the optimization process. The variance factor of the i-th group

can be computed following Förstner (1987) by

σ̂2
0i =

v̂T
i C
−1
zizi v̂i

ri
(3.117)

with the redundancy numbers ri

ri = tr(C viviC
−1
zizi). (3.118)
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Norm influence function weight function visualizations

L2 ρ(x) = 1
2x

2 w(x) = 1

L1 ρ(x) = |x| w(x) = sign(x)
x = 1

|x|

L1-L2-mixture ρ(x) = 2(
√

1 + x2

2 − 1) w(x) = 1√
1+x2

2

Huber


if|x| ≤ k

if|x| ≥ k
ρ(x) =


x2

2

k(|x| − k
2 )

ψ(x) =


1

k
|x|)

Welch ρ(x) = k2

2 (1− exp(−x2

k2 ) ψ(x) = exp(−x2

k2 )

Tukey


if|x| ≤ k

if|x| ≥ k
ρ(x) =


k2

6 (1− 1− x2

k2 )3)

k2

6

ψ(x) =


(1− x2

k2 )2

0

Table 3.2: Optimization and corresponding weight functions for different norms for robust

estimation (M-estimators). The tuning factors k can be adjusted for the specific distribution

of the task. Substitute x2 = v̂T
i C
−1
zizi v̂i in the Gauss-Markov-model or x2 = cT

giC
−1
cgicgi

cgi in

the Gauss Helmert model.

If the variance factor of the group exceeds an a-priori assumed variance factor, the obser-

vations of the group can be determined as outliers. In real implementations one will not

eliminate all groups determined as outliers simultaneously from the estimation process. In-

stead, one should eliminate the worst group or groups and iterate the estimation process.

3.3.3 Parameter elimination in the normal equation system

In some cases we are only interested in a subset of parameters inside the parameter vector.

For instance in case of the camera orientation problem the object coordinates can be of no

interest. According to the special structure of the normal equation system of this task, the

computation time of solving this for the camera parameters can be speeded up dramatically.

In the Gauss-Helmert-model and the Gauss-Markov model the normal equation system has

the form

N p̂ = n (3.119)
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ignoring contradictions on the parameter. Let us assume we can split the unknown parameter

vector into two parts

p =

 p1

p2

 . (3.120)

The normal equation system can then be rewritten as N11 N12

N21 N22

 p̂1

p̂2

 =

 n1

n2

 (3.121)

which leads to the equations

N11p̂1 + N12p̂2 = n1 (3.122)

N21p̂1 + N22p̂2 = n2. (3.123)

Drawing N21p̂1 from the left hand side of (3.123) and multiplying the left hand side with

N
−1
22 we get the subvector solution with respect to p̂1 as

p̂2 = N
−1
22 n2 − N−1

22 N21p̂1. (3.124)

Now substitute (3.124) into (3.122) we get

N11p̂1 + N12p̂2 = n1 (3.125)

N11p̂1 + N12(N−1
22 n2 − N−1

22 N21p̂1) = n1 (3.126)

(N11 − N12N
−1
22 N21)p̂1 = n1 − N12N

−1
22 n2 (3.127)

N̄11p̂1 = n̄1. (3.128)

Observe, that the inverse of N22 has to be computed in equation 3.127 and therefore has to

be full rank. Without any limitation we can expand (3.128) using contradiction Hp̂ = 0, if

the common normal equations system is regular.

3.4 Recursive state estimation

In this section we will introduce the concept of estimating states from sensor models in a

recursive manner. State here means a time varying unknown parameter vector. The aim is to

derive a recursive least square estimator and embedding it into a broader context of recursive

state estimation.
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3.4.1 General recursive state estimation

In general the real world changes over time. For example objects change their position,

light becomes darker or wind changes its strength. On the other hand, some objects or

occurrences are static over a segment of time. Describing these phenomenons we distinguish

between dynamic state variables and static state variables. Describing the evolution of the

real world as a temporal process depend on the state of the world only on variables prior to

the actual time t we get a so called Markov chain or dynamic Bayes networks. Measurements

depends stochastically on the state of the world.

Figure 3.4: The dynamic Bayes network of the evolution of the world depends on the de-

scription of the world p, controls u and measurements z.

Figure 3.4 illustrates the evolution of the knowledge of the world coded in the state vector

p. We distinguish between control data u and measurements z, although both introduce

information into the system. Controls are actions which influence the state directly, which

interact with the system dynamics and are separable in time from the measurements.

The basic concept for a realization of the dynamic Bayes network is called general Bayes

filter. In the following, we denote P (p) as the probability density function of the state p. The

sum rule or joint probability has to be used for the dynamic system, because the new state

pt depends on the old state pt−1 so that the predicted probability ~P (pt) can be obtained by

~P (pt) =
∫
P (pt|pt−1,ut)P (pt−1)dpt−1. (3.129)

Under the assumption that the observations zt are independent of the state pt, the updated

probability density can be obtained by

P (pt) = ηP (zt|pt)~P (pt). (3.130)

The factor η is just a normalization factor, that
∫
P (pt) = 1. Real implementations of
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equation (3.129) and (3.130) require a dynamic and a measurement model as well as a rep-

resentation of the probabilistic state space.

3.4.2 The derivation of Kalman filtering

In the following we will assume that the probability density over the variable pt can be

approximated using a Gaussian distribution. One realization of the Bayes filter using a

Gaussian approximation will be called Kalman filter. The probability density P (p) can be

represented using the Gauss-function

P (p) = det(2πΣ)−
1
2 exp

{
−1

2
(p− µ)TC−1(p− µ)

}
(3.131)

with its mean µ and covariance C . We distinguish between the dynamic model and the

measurement model. Figure 3.5 illustrates the filter scheme. The transition of the probability

Figure 3.5: Kalman filter scheme. The dynamic model is the realization of equation (3.129),

the measurement model of equation (3.130) of the Bayes filter.

density in the dynamic model can be computed using error propagation. The dynamic model

is given in the general non-linear function to get the predicted3 state vector ~pt by

~pt = h(pt−1,ut) + s(εt) (3.132)

with ut as control variables and εt as additional Gaussian random noise influences the state

according to a non-linear function s. The non-linear error propagation can be achieved for

instance by a linearization of the dynamic model using a Taylor expansion. The mean of

3Predicted variables are indicated by an arrow.
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the posterior distribution can be transformed using the non-linear model and the Gaussian

distribution C pp of the state using the linearized error propagation

C ~p~p,t = HC pp,t−1H
T + SC εε,tS

T (3.133)

with

H =
∂h(pt−1,ut)

∂pt−1

∣∣∣∣
pt−1,ut

(3.134)

S =
∂s(pt−1)
∂pt−1

∣∣∣∣
pt−1

. (3.135)

After the prediction we obtain measurements from the world to update or correct the

predicted state. This process can be interpreted as a weighted mean of a direct measurement

of the state itself and an indirect measurements from the sensor data.

Typically, in the common literature the derivation of the update equation will be for-

mulated specializing the linear case going to non-linear iterative case. Here we will derive

a general novel form of an implicit update equation similar to the Gauss-Helmert model in

section 3.3.1 and we will show, that the classical linear, non-linear and iterative non-linear

update equations are specializations of our formulation.

Recursive update in the Gauss-Helmert-model4 From equation (3.91) we can split

the parameter estimation into two groups of implicit constraints g1(p̂, ẑ1)

g2(p̂, ẑ2)

 = 0 (3.136)

with g1 as a direct observation of the state and g2 as an indirect observation. In the following

p is equal to pt. Using the normal equation system in equation (3.102) and neglecting the

constraints on the parameter vector, we can rewrite the left side as

A
T(BT

C zzB)−1
A =

 A1

A2

T B
T
11 B

T
12

B
T
21 B

T
22

 C 11 C 12

C 21 C 22

 B11 B12

B21 B22

−1  A1

A2


(3.137)

and the right side as

A
T(BT

C zzB)−1cg =

 A1

A2

T B
T
11 B

T
12

B
T
21 B

T
22

 C 11 C 12

C 21 C 22

 B11 B12

B21 B22

−1  cg1
cg2

 .
(3.138)

4First publication in Steffen & Beder (2007)
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In the following we will assume that the two observation blocks are stochastically indepen-

dent, i.e. C 12 = C 21 = 0 as well as functionally independent, i.e. B12 = B21 = 0 . Observe,

that these boundary conditions are implicitly defined in the Bayes filtering scheme. Then we

can rewrite the left and right side as

A
T(BT

C zzB)−1
A = A

T
1 (BT

11C 11B11)−1
A1 + A

T
2 (BT

22C 22B22)−1
A2 (3.139)

and

A
T(BT

C zzB)−1cg = A
T
1 (BT

11C 11B11)−1cg1 + A
T
2 (BT

22C 22B22)−1cg2 . (3.140)

Using the substitution W = B
T
C zzB, the final solution, that incorporates both observation

z1 and z2, may be obtained iteratively at the approximate values p(ν) and z(ν) using the

update

∆̂p = (AT
1W

−1
11 A1 + A

T
2W

−1
22 A2)−1(AT

1W
−1
11 cg1 + A

T
2W

−1
22 cg2). (3.141)

In the following the dependency on the first set of contradiction cg1 and therefore on the first

set of observation z1 should be removed. The goal of recursive estimation is now to derive

such a solution ∆̂p2 for the combined constraints using the solution of the first constraint

block g1 represented by ∆̂p1 and its covariance matrix C p1p1 as well as the new constraint

block g2 together with the new observations z2 and their covariance matrix C 22. In order to

achieve this goal equation (3.141) may be re-written as

∆̂p2 = (AT
1W

−1
11 A1︸ ︷︷ ︸

C
−1
p1p1

+AT
2W

−1
22 A2)−1

︸ ︷︷ ︸
C p2p2

(AT
1W

−1
11 ~cg1︸ ︷︷ ︸

C
−1
p1p1

∆̂p1

+AT
1W

−1
11 ∆cg1 + A

T
2W

−1
22 cg2)

(3.142)

with the contradictions for the first block being separated into

cg1 = ~cg1 + ∆cg1 . (3.143)

Observe that the contradictions5 ~cg1 for the first contradiction block g1 at p1 change due to

the change of parameters resulting from the new contradiction block g2, due to the depen-

dence on p of equation (3.99). As a consequence, the residuals for the observations of the

first contradiction block change as well

v1 = C 11B1W
−1
11 (~cg1 + ∆cg1 − A1∆̂p2) (3.144)

= C 11B1W
−1
11 (~cg1 − A1∆̂p1)︸ ︷︷ ︸

~v1

+C 11B1W
−1
11 (∆cg1 − A1(∆̂p2 − ∆̂p1))︸ ︷︷ ︸

∆v1

. (3.145)

5Here we use ~(·) to indicate, that the vector depends on a prediction to be consistent in the following

equations.
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The expression C p2p2 in equation (3.142) is the inverse of a sum and can be decomposed using

the matrix inversion identity (c.f. Koch (1988) page 37)

(K + LN
−1
M)−1 = K

−1 − K−1
L(N +MK

−1
L)−1

MK
−1 (3.146)

that follows

C p2p2 = C p1p1 − C p1p1AT
2 (W 22 + A2C p1p1A

T
2 )−1︸ ︷︷ ︸

F

A2C p1p1 (3.147)

= C p1p1 − FA2C p1p1 (3.148)

= (I − FA2)C p1p1 (3.149)

= C p1p1 − F (W 22 + A2C p1p1A
T
2 )FT (3.150)

with F being the gain or influence matrix. We can see, that this update of C p2p2 does not

involve the inversion of the full normal equation matrix. Substituting this back into equation

(3.142) we obtain

∆̂p2 = (I − FA2)C p1p1C
−1
p1p1∆̂p1 + (I − FA2)C p1p1A

T
2W

−1
22 cg2 + (3.151)

(I − FA2)C p1p1A
T
1W

−1
11 ∆cg1

= ∆̂p1 − FA2∆̂p1 + Fcg2 + (I − FA2)C p1p1A
T
1W

−1
11 ∆cg1 (3.152)

using the identity Koch (1988) page 37

F = (I − FA2)C p1p1A
T
2W

−1
22 = C p1p1A

T
2 (W 22 + A2C p1p1A

T
2 )−1. (3.153)

The only remaining part still depending on z1 is now the change of the contradictions (see

equation (3.99))

∆cg1 = cg1 − ~cg1 = −g1(p̂2, ẑ1) + B
T
1 v1 + g1(p̂1, z1)− BT

1 ~v1. (3.154)

In order to remove this remaining dependence on the previous observations, we bring in mind

that the whole first contradiction block is encoded in the first two moments of the parameter

vector only. We therefore replace the first contradiction block by a direct observation of the

parameters itself from the prediction, i.e. z1 = ~pt = p̂1 and C p1p1 = C ~p~p,t, so that

g1(p̂1, z1) = p̂1 − z1 = 0 (3.155)
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immediately fulfills the constraint and therefore

~cg1 = 0 (3.156)

~v1 = 0 (3.157)

∆̂p1 = 0. (3.158)

Furthermore the Jacobians are given by A1 = I and B1 = −I independently of the lineariza-

tion point. Now equation (3.152) simplifies to

∆̂p2 = Fcg2 + (I − FA2)∆cg1 (3.159)

with

∆cg1 = −g1(p(ν), ẑ1)− v1

= −p(ν) + ~pt + v1 − v1

= −p(ν) + ~pt. (3.160)

For the second contradiction block we can compute the residuals

v2 = C 22B2W
−1
22 (cg2 − A2∆̂p2) (3.161)

and the contradictions

cg2 = −g2(p(ν), z(ν)) + B
T
2 v2 (3.162)

where p(ν+1)
0 = p(ν) + ∆̂p

(ν)

2 and z(ν+1) = z2 + v
(ν)
2 has to be iterated until convergence is

reached. We will summarize the update algorithm in 3.1.

Recursive update in the Gauss-Markov-model Similar to the derivation of the least

square estimation we can derive the Kalman filter update equations for the Gauss-Markov

model as a specialization of the Gauss-Helmert model. Again beginning at the explicit ob-

servation model z̃ = f(p̃), which can be rewritten to the implicit model using (3.104). The

Jacobian is with respect to the observations B2 = −I . The Gain matrix from equation (3.153)

simplifies to

F = C p1p1A
T
2 (C zz + A2C p1p1A

T
2 )−1. (3.163)

Substitute the model into (3.162) we get

cg2 = −g2(p(ν), z(ν)) + B
T
2 v2

= −(f(p(ν))− (z2 + v2))− v2

= z2 − f(p(ν)). (3.164)



62 CHAPTER 3. BACKGROUND THEORY

Algorithm 3.1 Iterative Kalman filter update in the Gauss-Helmert-model
1: given observation vector z2, its covariance C zz and predicted state vector ~pt

2: set ν = 0 as the iteration counter

3: set the initial state correction ∆̂p
(ν)

2 = 0

4: set initial p(ν) = ~pt and C p1p1 = C ~p~p,t

5: set v2 = 0, hence z(ν) = z2

6: repeat

7: compute Jacobians A2 and B2 at p(ν) and z(ν)

8: compute the gain matrix F (ν) as shown in equation (3.153)

9: compute c(ν)
g2 according to equation (3.162)

10: compute ∆c(ν)
g1 according to equation (3.160)

11: compute ∆̂p
(ν)

2 according to equation (3.159)

12: update p(ν+1) = p(ν) + ∆̂p
(ν)

2

13: compute v(ν)
2 according to equation (3.161)

14: update z(ν+1) = z2 + v(ν)
2

15: increase ν by 1

16: until ∆̂p
(ν)

2 is sufficiently small

17: compute the updated covariance C pp,t = C p2p2 according to equation (3.149)
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This results in the iterative update

∆̂p2 = Fcg2 + (I − FA2)∆cg1

= F (z2 − f(p(ν))) + (I − FA2)(~pt − p(ν))

= (~pt − p(ν)) + F (z2 − f(p(ν))− A2(~pt − p(ν)))

(3.165)

to the approximate values p(ν+1) = p(ν) + ∆̂p
(ν)

2 . Instead we can use the predicted values as

the reference state which results in the update equation

p(ν+1) = ~pt + F (z2 − f(p(ν))− A2(~pt − p(ν)) (3.166)

which is known in the literature as the iterative extended Kalman filter update. In many prac-

tical applications the approximate values from the prediction p(0) = ~pt in the first iteration

is good enough and there is no iteration necessary. In this case equation (3.166) simplifies to

p̂ = ~pt + F (z2 − f(~pt)) (3.167)

and is known as the extended Kalman filter update. We summarize the update algorithm in

3.2.

Algorithm 3.2 Iterative Kalman filter update in the Gauss-Markov-model
1: set ν = 0 as the iteration counter

2: set initial state p(ν) = ~pt and state covariance C p1p1 = C ~p~p,t

3: repeat

4: compute Jacobian A2 for f(p(ν))

5: compute the gain matrix F as shown in equation (3.163)

6: update p(ν+1) according to equation (3.166)

7: increase ν by 1

8: until the difference of ∆(ν) = p(ν+1) − p(ν) is sufficiently small

9: compute the updated covariance C pp,t = C p2p2 according to equation (3.149)

3.4.3 The particle based Kalman filtering

As mentioned before the Kalman filter is a realization of the general Bayes filter using a

Gaussian approximation for the posterior distribution and assumes a Gaussian distribution
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after the correction step. The transition and update through non-linear functions are realized

by a Taylor expansion. The Gaussian distribution is transformed using the non-linear trans-

formation for its mean and by a linear transformation for its covariance. Higher degrees of the

non-linear transformation are neglected. Another error propagation method is the so-called

unscented transformation introduced by Julier & Uhlmann (1996). Instead of approximating

the non-linear function by a Taylor series the posterior Gaussian distribution can be approx-

imated using a series of particles, which will be passed through the non-linear function itself.

Instead of using randomly selected particles according to a Monte Carlo simulation, Julier &

Uhlmann (1996) choose deterministically particles. These particles are called Sigma points.

First we will briefly describe the error propagation through the unscented transformation and

then apply this algorithm to a dynamic system resulting in the so-called Unscented Kalman

filter. For a more detailed explanation c. f. van der Merwe (2004).

The posterior distribution is assumed to be n-dimensional Gaussian by its mean µ and

its covariance C . We compute 2n+ 1 sigma points χ[i]:

χ[1] = µ

χ[i] = µ+ (
√

(n+ λ)C )i i = 1, ..., n

χ[i] = µ− (
√

(n+ λ)C )i i = n+ 1, ..., 2n (3.168)

where the scaled root of the covariance (
√

(n+ λ)C ) is a matrix square root computed by a

Cholesky-decomposition6. The sigma points are associated with weights W [i], that reflect the

influence of the i-th sigma point to the Gaussian approximation.

W [0] =
λ

n+ λ

W [i] =
1

2(n+ λ)
i = 1, .., 2n. (3.169)

Here λ is a tuning factor. For Gaussian distributions select λ = 3−n (c. f. Julier & Uhlmann

(1996)). The general non-linear error propagation is summarized in algorithm 3.4.3.

As we have shown before, the Kalman filter consists of two parts, a dynamic model per-

formed by error propagation using the general model in equation (3.132) and a measurement

model. The measurement update using the unscented transformation is applicable for explicit

measurement functions (Gauss-Markov-model) only.

6In case of a singular covariance matrix C , we use an incomplete Cholesky decomposition.
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Algorithm 3.3 Unscented Transformation
1: compute sigma points and their weights according to equations (3.168) and (3.169)

2: transform all sigma points with the non-linear system

γ[i] = f(χ[i]) (3.170)

3: compute the mean by

γ̄ =
∑
i

W [i]γ[i] (3.171)

4: compute the covariance by the weighted sum of the dyadic product

C γγ =
∑
i

W [i](γ[i] − γ̄)(γ[i] − γ̄)T (3.172)

The dynamic model has to take into account the effect of process noise ε. In a first step

the state vector is augmented with the process noise with mean zero and covariance C εε,t

p∗t−1 =

 pt−1

0

 with C
∗
pp,t−1 =

 C pp,t−1 0

0 C εε,t

 . (3.173)

By applying the unscented transformation on the dynamic model function in equation (3.132)

we get the predicted mean p̄t and covariance C ~p~p,t as well the transformed sigma points ~χ[i]

after the prediction. Using the non-linear observation function z = f(p) of the Gauss-

Markov-model we can compute sigma points for the predicted observations ~z[i], their mean

z̄ and the predicted covariance C~z~z. We observe, that z̄ is similar to f(~pt) in equation

(3.167) and C~z~z is similar to the predicted observation covariance AC ~p~pAT in equation (3.163).

According to the Kalman filter we can compute a gain matrix using the cross-correlation

similar to C ~p~p,tAT by

Cχ~z =
∑
i

W [i](~χ[i] − p̄t)(z[i] − z̄)T (3.174)

and the additive observation covariance C zz by

F = Cχ~z(C zz + C~z~z)−1. (3.175)

Then a final update can be derived by

pt = ~pt + F (z − z̄) (3.176)
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with its covariance using equation (3.150)

C pp,t = C ~p~p,t − F (C zz + C~z~z)FT. (3.177)

The Unscented Kalman filter above has two advantages. First, the Gaussian approxima-

tion of the transformed uncertainty through the non-linear transformation take higher order

therms up to degree four of a Taylor expansion into account. Second, the computational

complexity is equal to the Kalman filter but parallelizable. But there are also disadvan-

tages. First, the update scheme does not ensure a positive definite covariance matrix C pp,t.

A solution of this disadvantage is the Square root Kalman filter, which ensure positive semi-

definiteness. Second, the non-linear functions must be continuous. We will explain this last

issue in chapter 4 in more detail.

3.4.4 Outlier detection and robustification of Kalman filtering

As we mentioned the update process is a weighted mean of the direct observation of the

state obtained by the dynamic model and a set of noisy observations. Comparing it to the

least square outlier detection in section 3.3.2 this mean process can be reformulated using

the normal equations. Therefore the predicted state vector is a pseudo observation vector

with full correlations, so that from the theory of outlier detection we can only test the whole

pseudo observation as a group. Additionally, the unknowns in the state vector depends on

groups of observations of the measurement model. Following the considerations in 3.3.2, it

is not possible to distinguish between gross errors in the prediction and gross errors in the

observations.

However, in some real applications the mean and covariance of the predicted state approx-

imate the true state very well. If and only if we can neglect the influence of the prediction we

can test the observations against gross errors using equation (3.111) in the Gauss-Markov-

model (3.113) in the Gauss-Helmert-model respectively.

Therefore, the residuals for the recursive update using the Gauss-Markov-model have to

be obtained at the estimated state using

v = z − f(p̂). (3.178)

The contradictions for the recursive update in the Gauss-Helmert-model can be tested using

equations (3.112) and (3.113) at the convergence point.
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Similar to the reweighting method for the least square method the reweighting scheme is

applicable to the recursive update using equation (3.116). A method to estimate the variance

components of individual groups of observations can be found in Caspary (1998).

In this chapter we first summarized basic concepts in image geometry followed by a deriva-

tion of global least square methods. We introduced the notion of dynamic state systems as

a general Bayes filter and derived similar to the global least square method, a new formu-

lation of an implicit recursive estimation scheme. We showed that the classical least square

recursive estimation algorithm is a specialization of our new derivation. Furthermore, we

explained how outliers can be rejected and their influence can be reduced to achieve more

robust estimation with respect to erroneous observations inside the global least square as well

as in the recursive estimation scheme.
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Chapter 4

Kalman filter based localization and

mapping with a single camera

The goal of this chapter is to work out the details of a Kalman filter based system for the

task of localization and mapping for a single camera only. We are especially focused on the

state representation and initialization.

Full autonomous simultaneous localization and mapping using image based measurements

is still a hard problem. A broad range of applications, especially in the field of robotics and

surveillance, require fully autonomous, robust, accurate and real-time capable methods. The

goal of such applications is to acquire detailed map information. This includes an adequate

surface model and the determination of the full observer localization at every point in time.

In the following we will discuss the requirements of such systems using a single camera

sensor only and we will focus on the problem of real-time capable recursive estimation of the

environment. As motivated in the introduction the environment is focused on the task of

acquiring elevation maps from an unmanned aerial vehicle (UAV).

4.1 Introduction

Unmanned aerial vehicles become more and more interesting as a tool for medium and large

scale image acquisition. To determine a dense surface model of an observed scene the camera

orientations of the acquired images in a fixed world coordinate system are necessary. Clas-

sical offline approaches are well-known in the photogrammetric community. In this case the

images are acquired with large baselines, information about the projection center and camera

69
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orientation are known from available GPS and gyro measurements or are reconstructed auto-

matically from image measurements. In the past two decades automatic image measurement

and image to image matching techniques Mikolajczyk & Schmid (2005) have become avail-

able, which allow a fully automatic orientation process without any user interaction. Besides,

the computer vision and robotic community invented techniques for short-range and small

baseline image sequences. Driven by real-time requirements of the orientation determination

of a camera setup, which is not limited in the number of cameras, several solutions especially

for small local maps were proposed.

In all cases visual measurements and estimation techniques to determine metric informa-

tions about the camera orientation and the map are used. For small baseline image sequences

the proposed task is called visual simultaneous localization and mapping (V-SLAM). In the

following we will highlight the background of such a system requirement using an image se-

quence acquired by a single camera with an unmanned aerial vehicle. Additional sensors like

GPS and INS can always be integrated as direct or relative observations to an arbitrary metric

estimation technique. However, in some environments and caused by hardware restrictions

this information is not available. From this motivation, we will ignore this measurement in

the proposed models.

The task of simultaneous localization and mapping can be understood as a discrete time

driven dynamic process. Based on the scheme of figure 4.1 we will explain the meaning of

the needed components.

• Initialization module

Initializing a real-time system is a problem of its own and different than the online

update. It is also required if the system has failed and a reinitialization is necessary.

From the nature of time dependent processes, there is a beginning at time t0. At

this time we may have information of a particular fragment of the environment. This

prior information includes information about possible velocities and accelerations of

the camera and distances to objects or full coordinates of control points in an arbitrary

local or world coordinate system. The initialization module usually fixes the reference

system including the initial camera orientation and the environment scale as well as

their uncertainties.

• Metric estimation module
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Figure 4.1: System components and connections for the task of simultaneous localization and

mapping using a single camera

According to the dynamic process and the acquired observations the estimation frame-

work provides the knowledge of current and if needed past camera orientations as well

as map information. The module incorporates observations by updating the represented

knowledge in a statistical manner. Map information in our context is represented by

parameterized objects, for instance coordinates in a world reference system. In addi-

tion, knowledge about its absolute and relative uncertainty has to be represented and

provided. In our case this module will be realized using a Kalman filter estimation

framework.

• Feature tracking and/or matching module

Features are defined as image observations which are associated with objects in the

environment. Here these objects are observed by a single camera. The goal of this

module is to automatically identify features and track them across the image sequence.

• Loop closing detection module

In case the feature tracking fails or an object is revisited at a later point in time this

module associates the feature with a previously observed object. Usually this will be

solved using descriptors for features or feature groups.
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• Georeferencing module

Depending on the a-priori knowledge introduced by the initialization module a later

georeferencing stage can be applied, if there are observations available to achieve abso-

lute orientations in a fixed world coordinate system.

• Path planing and control module

Depending on the task and the a-priori knowledge of the autonomous system this mod-

ule generates control actions to achieve a complete mapping. In the case of mapping

with unmanned aerial vehicles often the path is fixed a-priori using an approximate

knowledge of the surface and of the achievable accuracy.

The aim of an implementation of the scheme above is to provide an autonomous local-

ization and navigation using visual information only. In our opinion the core module is the

metric estimation framework. The requirements of this framework are real-time capability,

high accuracy and robustness. In this section we will therefore focus on the estimation frame-

work, its initialization and required observations. To achieve real-time capable estimation of

a set of metric parameters the Kalman filter framework will be our choice. We will derive

and discuss different kinds of state representations as well as their initialization and dynamic

evolution in time.

4.2 Feature extraction, tracking and matching

First we will clarify the meaning of features. In general images are only light intensity

information in different directions. The image is a carrier of such information. Known from

the information theory the information can be measured globally or locally by its entropy.

But, we cannot decide by only one image whether its information is high or low. It depends

on our task.

We give a small example: Assuming we already mapped a large green area like a golf

field. We get an image of a homogeneous bright surface. The information inside the image

can be low according to its entropy, but the information for the localization task can be high

according to the identification of a sand strap.

From this consideration, in our opinion we have to distinguish between landmarks usable

as control points, which are high level location based objects or information in a global map
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and features as pure image based metric objects usable as tie points. Features for instance are

interest points, blobs1 and line segments. Moreover, features can also be identifiable objects,

for instance cars or windows. In our experiments we will only use interest points as features,

but every kind of feature can be used for our task. A point based feature should fulfill certain

criteria:

1. Invariance - The detection of a specific feature should be invariant with respect to geo-

metric and radiometric distortions, for instance relative rotations or intensity changes.

2. Stability - The detection of a feature should be robust against noise in the observation.

3. Distinctness - The feature should be distinguishable from neighboring features in terms

of local image information.

4. Infrequency - For the task of loop closing detection the surrounding local image infor-

mation of a feature should be unique.

5. Interpretability - In case of object recognition tasks it is necessary that the feature or

a feature group can be assigned to semantic objects.

In the past decade many point based interest operators were developed Förstner & Gülch

(1987), Harris & Stephens (1988), Lindeberg (1998), Mikolajczyk & Schmid (2002), Lowe

(2003). We will use interest points according to Förstner/Harris, which are suitable for

matching. Matching here means to identify the same feature, which is associated to a location

in the world space, in a following image. There are two situations possible. First the following

image was taken with small disparities, then tracking algorithms can be used for matching.

Second, a feature is revisited and has to be identified.

Tracking algorithms assume small disparities as well as small scale and rotation changes.

The surrounding local image information of a feature will be used as a template. The as-

sumption is, that the corresponding object point is locally planar. It has been shown by

Förstner (1982), that the accuracy of template based matching using least square methods

depends on the signal noise ratio and on window size around a feature point. Using a large

window size, the planar assumption can be corrupted and therefore it is necessary to find a

trade off between accuracy and local planarity of a feature. A well known tracking algorithm

1Blobs are homogeneous image areas.
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for distinctive feature points was developed by Tomasi & Kanade (1991)2, which combines

interest points and least square matching. Tracking algorithms for line segments are also

available, for instance Chiba & Knade (1998).

The identification of a revisited feature is much more complicated. The environment

usually does not guarantee the uniqueness of a feature. Furthermore, the number of features

can be huge. Hence, common techniques use information about the image neighborhood of

a feature using descriptors Mikolajczyk & Schmid (2005) and relaxations to other features

Herbert Bay & Gool (2005) as well as geometric information about their location in a world

coordinate frame. The re-identification is closely related to the loop closing detection. In this

thesis we do not focus on this aspect.

Figure 4.2: Example for point based feature tracking assuming small disparities in consecutive

frames. The red box marks an extracted feature, the yellow line is the displacement vector of

the feature to the consecutive image. In the lower left corner a detail of the image is enlarged.

In the following we use an implementation of a point based feature tracking of the

OPENCV3 library, which is a realization of the KLT-Tracker by Tomasi & Kanade (1991).

To overcome the limitation of small disparities, the feature disparity will be obtained by

template matching through a Gaussian scale space of the image.
2In the literature the reader can find this tracking algorithm searching for KLT-Tracker (Kanade-Lucas-

Thomasi).
3http://www.opencv.org
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4.3 State representation

According to the scheme of the dynamic Bayes filter in section 3.4 the state pt contains

the actual knowledge about the known world at time t. This knowledge is encoded as metric

information in a set of variables in pt. Its uncertainties and their correlations using a Gaussian

uncertainty approximation are encoded in the covariance matrix C pp,t. The state vector is

partitioned into camera orientation and map information. In this section we will derive

different kinds of camera state and map state representations, the non-linear dynamic state

changes and the observation model. We will discuss the filter initialization and how new map

parameters can be initialized.

Equivalent to the classical aerial photogrammetry we will first define the camera coordi-

nate system as a right hand system with the negative Z-component in view direction. In case

of a photogrammetric strip the typical flight direction is in X-direction, because most digital

image sensors are not square and the width is in column direction and larger than the height

of the sensor. We will define the measurement in the pixel systems as x = {x, y}. Therefore,

Figure 4.3: Camera coordinate system definition and image plane in negative Z direction.

the calibration matrix can be build in the following way

K =


c 0 xh

0 c yh

0 0 1

 , (4.1)

with xh and yh as the principle point in row and column direction (c. f. figure 4.3) and c < 0
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as the principle distance. To achieve the rotation between the image and the camera system

we multiply K right hand side by a rotation matrix R(κ = 180) around the Z-component.

4.3.1 Single camera state

The camera orientation in a 3-dimensional space is defined by using six parameters, its

location and its angular orientation. As mentioned in section 3.1.2 an angular representation

using Euler angles involves trigonometric functions and can fail in case of deviations close to

the 180 degree singularity. For this reason the angular orientation will be represented using

quaternions. A convenient effect is that the dynamic state change equation becomes linear.

Therefore the actual state can be represented as follows:

pt = [T t,qt,X1, . . . ,Xn, . . . ,XN ]T (4.2)

with T t = {Xt, Yt, Zt} as the camera position and qt as the angular camera orientation repre-

sented as quaternion. Additionally the state contains N object point coordinates. Following

the state representation model of Davison (2003) the state also contains the velocity and

angular velocity.

pt =

T t,qt, Ṫ t, q̇t︸ ︷︷ ︸
13

,X1, . . . ,Xn, . . . ,XN︸ ︷︷ ︸
3N

T

(4.3)

We denote, that the angular velocity q̇t is usually small and below 180◦. In this case we can

represent the velocity as the vector part only as a three component vector, c. f. equation

(3.36). As an extension also the acceleration can be added. The scheme of a single camera

state is outlined in figure 4.4.

In the following, we will present a linear dynamic model and the error propagation using

accelerations as a perturbation with mean zero. The derivation can be found in the appendix

in section A.2. The prediction of the state according to a time difference ∆t can then be

computed as

~pt+1 = h(pt) =



T t + Ṫ t∆t+ 1
2 T̈ t∆t

2

Υ(1
2 q̈t∆t

2)Υ(q̇∆t)qt

Ṫ t + T̈ t∆t

q̈t∆t+ q̇

X1

...

XN


, (4.4)
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Figure 4.4: Camera state representation scheme using a single camera state

where q̇ and q̈ are the angular velocity4 and angular acceleration represented as the vector

part of a quaternion only (c. f. equation (3.36)). Note, the expression Υ(q̇) can be written

as Υ([1, q̇T]). The unknown accelerations T̈ t and q̈t are assumed to be Gaussian distributed

with mean zero. The prediction of the covariance C ~p~p following equation (3.133) can then be

expressed with the Jacobians H and W as

H
13+3N×13+3N

=



I 3 0 ∆tI 0 0

0 Υ(q̇∆t) 0 Ῠ(qt)[03|∆tI 3]T 0

0 0 I 3 0 0

0 0 0 I 3 0

0 0 0 0 I 3N


(4.5)

4The derivation of the angular velocity can be comprehended in section 3.1.2.
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and for the system noise

W
13+3N×6

=



1
2∆t2I 3 0

0 Ῠ(Υ(q̇∆t)qt)[03|12∆t2I 3]T

∆tI 3 0

0 ∆tI 3

0 0


. (4.6)

We observe, that using quaternions and assuming small rotations, matrix multiplications

without any trigonometric functions are necessary.

4.3.2 Sliding window camera state

It is well known from an entire bundle adjustment with all camera orientations, arbitrary

camera parameters are correlated. Using the single camera state representation presented so

far we neglect past camera orientations as well as their correlations. For this reason there

is an leakage of information. The correlation between close camera locations is high and

should not be neglected. Furthermore, the map will be updated by new observations, which

will indirectly influence past camera parameters, which are useful for an off-line dense map

computation. Therefore we propose a multiple camera state as outlined in figure 4.5. In the

following we will show how the linear prediction model can be applied to a multi camera state

representation. Because we have take into account the correlations between all the camera

orientations and the estimated object points, the error propagation in the prediction step has

to be performed using a state extension. We extend the state to the new camera position

at time t + 1 computed from the state at time pt. Let us assume we take k sets of camera
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Figure 4.5: Camera state representation scheme using a multiple camera state

parameters in the state vector, then the state vector and the predicted state vector are

pt =



T t

qt

T t−1

qt−1

...

T t−k

qt−k

X1

...

Xn

...

XN



~pt+1 = h(pt) =



T t + (T t − T t−1)∆t+ 1
2 T̈ t∆t

2

Υ(1
2 q̈t∆t

2)Υ(U∆tΥ(qt)Vqt−1)qt

T t

qt

T t−1

qt−1

...

T t−k

qt−k

X1

...

Xn

...

XN



, (4.7)
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where ∆t = tt+1−tt
tt−tt−1

is a time dependent ratio factor. The extended covariance matrix can be

obtained using the error propagation for the prediction step using the Jacobian

H
7(k+2)+3N×7(k+1)+3N

=



I 3 + ∆tI 3 0 −∆tI 3 0 0

0 Υ(U∆tΥ(qt)Vqt−1)+ 0 Ῠ(qt)U∆tΥ(qt)V 0

Ῠ(qt)U∆tῨ(Vqt−1)

I 3 0 0 0 0

0 I 4 0 0 0

0 0 I 3 0 0

0 0 0 I 4 0

0 0 0 0 I 7(k−1)+3N


(4.8)

and for the system noise

W
7(k+2)+3N×6

=


1
2∆t2I 3 0

0 Ῠ(Υ(U∆tΥ(qt)Vqt−1)qt)[0|12∆t2I 3]

0 0

 (4.9)

with U and V from equations (3.37) and (3.35). The derivation is outlined in the appendix

in section A.2.

Up to now, the state is expanded by the new camera orientation. If intended, the camera

parameter for the camera at time t−k can be neglected. To do so, we delete the corresponding

rows and columns of the covariance respectively of the state vector. For real implementations

the memory reordering for the covariance matrix can be performed using an error propagation

scheme with the Jacobian

J
7(k+1)+3N×7(k+2)+3N

=

 I 7(k+1) 0 0

0 0 I 3N

 . (4.10)

Discussion: One can show, that the single camera representation including velocities is

equivalent to a multi-camera state representation with k = 1, by using error propagation one

representation can be transformed to the other one and vice versa. In case of large system

noise the dynamic state change model will not cause correlations between consecutive camera

orientations. But correlations transfered to past camera orientations across the map state
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further on exist. The overhead of the computational complexity using a sliding window cam-

era state is usually small. An implementation should decide which past camera orientations

have to stay inside the state vector. This decision should be taken into account which past

cameras are useful for off-line dense map computation and the degree of correlations.

4.3.3 Feature representation and update models

In this section we will describe the representation of the object point coordinates and for-

mulate the corresponding update or observation model which can be used in the bundle

adjustment and in the Kalman filter based solution.

Euclidean representation. In the classical case a point in the object space will be

represented by its Euclidean coordinates Xn = {Xn, Yn, Zn}. As shown in section 3.2.1 the

observation model can be described by the colinear equation (3.59) or (3.58). Using equation

(3.58) the projection matrix and therefore the projection of all visible points Xn in frame t

can be computed as

xn = KR
T(qt)[I 3| − T t]Xn (4.11)

from the predicted state vector representation of the camera position and angular orienta-

tion. Note, that in the case of the bundle adjustment the over-representation of the camera

orientation using the quaternion cause a rank deficiency. To avoid this rank deficiency in the

bundle adjustment two solutions are available. First, we can formulate the constraint, that

the length of the quaternion is equal to one. Second we can introduce a pseudo observation

with a high weight for their length. In a Kalman filter based approach there is no inversion

of a rank deficient matrix necessary. But, the free length of the quaternion can cause numer-

ical instabilities. The quaternion length can grow up to large values, which cause numerical

instability. In contrast, we do not know any method for a constraint on the state vector

in a Kalman filter similar to the global least square method. Instead we can use a pseudo

observation for the quaternion length in arbitrary time steps.

Inverse distance representation - The inverse distance representation was introduced

by Montiel et al. (2006). Instead of a Euclidean representation of an object point, the point

will be represented using polar coordinates with an inverse distance. It has been shown and

quantified that for small parallax angles the distribution of the intersection in Euclidean

space is not well modeled. This can be proven by a Monte-Carlo simulation shown in figure

4.7. The advantage of an inverse distance representation is a better approximation of the
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distribution of an object point. The goal of this parametrization is to reduce the effect of a

bad Gaussian approximation of the object point location in case of small parallaxes between

consecutive frames in an early life time of the object point. This representation uses six

parameters to determine an object point. The first three components are the location of

a reference point. This reference point Xr can be obtained by the camera location for the

first visibility of the object point. The following three components are the polar coordinates

relative to the orientation of the object coordinate system (c. f. figure 4.6). The distance will

be represented by the inverse distance ρ, so that the distance is d = 1/ρ.

iXn =



Xr

Yr

Zr

θ

ζ

ρ


n

(4.12)

A Euclidean object point X can be obtained from its inverse distance representation by

X =


Xr + 1

ρ sin ζ cos θ

Yr + 1
ρ sin ζ sin θ

Zr + 1
ρ cos ζ

 . (4.13)

The measurement model can be performed using equation 4.13 and 4.11 in a chain.

Figure 4.6: Polar coordinate definition for the inverse distance representation.

Given a 6 × 6 covariance C iX iX of a point iX in inverse distance representation the

covariance of a Euclidean point representation can be obtained using linear error propagation.
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In section 4.5 we will explain, why the error propagation using the unscented transformation

can fail. The inversion of the transformation (4.13) will be derived in section 4.3.4.3.
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Figure 4.7: Left: Simulation scheme of a point reconstruction with small parallax angle

(0.5◦) and 1000 samples, Middle: Distribution in Euclidean space with linear covariance

propagation. Right: Distribution in the inverse distance space with linear covariance prop-

agation.

4.3.4 The initialization problem

When the discrete time process starts at time t0 we have to initialize the parameter vector

p and its covariance C pp with reasonable initial values. This initialization fixes the gauge of

the state space, which is defined by an orientation in the 3-dimensional space and a scale of

the space. Because the camera is not stationary the gauge is encoded in the map coordinates

themselves. The initialization depends on the availability of at least three control points

visible and identifiable in the first image. In this case the control points will be introduced

with their uncertainties as the initial map. On the other hand if there are no control points

available, there is no information about a scale of the world space, but an arbitrary gauge

for the orientation can be fixed on three arbitrary observed object points. Both methods will

be explained in more detail in this section. Furthermore, at every time of the process new

object points will be visible and have to be initialized. The initial coordinates appears as

the linearization point for the non-linear observation model and have to be chosen correctly

as much as possible. Their covariance should be infinite5, because the initialization is a

direct observation of the objects coordinate and is therefore information introduced in the

stochastical representation.

5Covariance matrix entries cannot be infinite. The covariance of the new object point coordinate should

be huge in contrast to the covariance of the camera orientation.
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4.3.4.1 Control point initialization

The initialization of the filter can be performed using at least three control points. Usually

these control points can be obtained by a-priori global or local map information, e.g. from

an independent absolute measurement. Their coordinates, uncertainties as well as their

correlations will be used to initialize the map coordinates inside the filter.

The initial camera parameter can be obtained using the observations of the control points

in the first image. The advantage of a direct approach is that we do not need any approximate

values a-priori. Using three points only few direct approaches are available to determine the

distances of the camera projection center to the control points. A good overview can be

found in Haralick et al. (1991), who analyzes the numerical stability of different approaches.

These approaches result in up to four equivalent solutions. We need a fourth point to pick

up the correct one.

The camera position T and the angular orientation R can be obtained solving the model

λimi = R(Xi − T ) (4.14)

with mi as the normalized directions to the control points Xi and λi as the distances to the

control points already obtained by the direct solution. The algorithm for the determination

of T and R can be found in McGlone et al. (2004) pages 786ff.

The covariance matrix for the camera parameter will be initialized with a huge uncertainty.

In the following Kalman filter measurement update the camera parameter will be corrected.

4.3.4.2 Scale free bundle adjustment initialization

In some real environments no control points and no additional information about the visible

world space are available. To make the Kalman filter operable and to fix the gauge we propose

a free bundle adjustment initialization procedure in the early stage of the process. To do so,

we have to decide which of the obtained frames we will use for the initialization.

Here we will derive a real-time capable algorithm to decide when the acquired images are

adequate to initialize the estimation process, c. f. Beder & Steffen (2006). The contribu-

tion is to present a statistically motivated measure for the quality of a bundle adjustment

initialization procedure.

We will now analyze the uncertainty of an object point from two measured corresponding

image coordinates. Observe that we will neglect the correlation between a set of points. If a
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scene point X is observed by two projective cameras P1 and P2, the image coordinates x1 and

x2 can be computed using equation (3.58) which can be rewritten using the skew-symmetric

matrix reflecting the cross product as

0 = x× PX = S(x)PX = −S(PX)x. (4.15)

Only two constrains are independent. Using (4.15) for two observations and choosing two

arbitrary constrains indicated by S2(·), both expressions are linear in the object point as well

as in the image point, so that follows S2(x1)P1

S2(x2)P2


︸ ︷︷ ︸

A
4×4

X = 0 (4.16)

and  −S2(P1X) 0

0 −S2(P2X)


︸ ︷︷ ︸

B
4×6

 x1

x2

 = 0. (4.17)

Now the scene point coordinate and the two image point coordinates are assumed to be

random variables with Gaussian distribution. We observe that, as all three quantities are

homogeneous, the covariance matrices of their distributions are singular. In case the covari-

ances of the image points are given by C 11 and C 22, then it has been shown by Heuel (2004)

according to our derivation of the normal equation system in section 3.3, that the covariance

matrix CXX of an object point is proportional to the upper left 4×4-submatrix of the inverse

of

N =

 A
T

B
 C 11 0

0 C 22

BT

−1

A X

XT 0

 . (4.18)

We have neglected the effect of the uncertainty of the projection matrices P here, because

the relative orientation of two cameras is determined by many points, so that it is of superior

precision compared to a single object point. In the second step we can compute the Euclidean

covariance of X indicated by eCXX using the error-propagation with the Jacobian

e
J =

∂X0/Xh

∂X0
=

1
Xh

[
I 3 | −

X0

Xh

]
(4.19)
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according to
e
CXX = e

JCXX
e
J

T. (4.20)

The roundness as a measure for the reconstruction stability is directly related to the condi-

tion number of the 3d reconstruction of the object point. Hence, apply the singular value

decomposition6 to the covariance

e
CXX = G


λ1 0 0

0 λ2 0

0 0 λ3

GT (4.21)

the roundness L is defined as the square root of the quotient of the smallest and the largest

singular value

L =
√
λ3

λ1
. (4.22)

This measure lies between zero and one, is invariant to scale changes and only depends on

the relative geometry of the camera pose and on the measured image point accuracy.

The algorithm for a scale free bundle adjustment initialization is outlined in 4.1.

4.3.4.3 Inverse distance feature initialization and reduction

As shown in 4.3.3 an object point can be represented using polar coordinates with respect

to a reference system. Here we will show, how the object point can be initialized using the

inverse distance parametrization and explain the introduction into the state vector and its

covariance matrix. Furthermore we will describe the transformation from the inverse distance

representation to the Euclidean representation.

The first time a new object point is visible the point can be introduced to the state vector.

Because we will fix the reference polar coordinate system to the actual camera position, we

have to take into consideration to its uncertainty. The direction to the object point can be

determined using image observation.

Using the estimated camera orientation Rt at time t and the observed image point x in

homogeneous representation we obtain the direction vector d = {dX , dY , dZ} to the object

point by

d = −RtK−1x. (4.23)

6Note, the value decomposition of a covariance matrix leads to a symmetric solution, where G is a rotation

matrix.
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Algorithm 4.1 Scale free bundle adjustment initialization algorithm
1: Fix the first image of the sequence and let its projection matrix be Pt=1 = K[I 3|0]

2: Extract the interest points x1,n together with their covariance matrices C 11,n from this

image

3: repeat

4: Get the next image at time t = t+ 1

5: Extract the interest points xt,n together with their covariance matrices C tt,n from this

new image

6: Determine the point correspondences x1,n ↔ xt,n and the relative orientation Rt, T t to

the first image of the sequence according to the algorithm proposed in Nistér (2004).

The camera matrix for the current image is then Pt = KR
T
t [I 3| − T t] with |T t| = 1.

7: Determine the scene point positions Xn for each found correspondence by forward

intersection according to the linear system in equation (4.16) using the singular value

decomposition as an linear equation solver.

8: Determine the roundness Ln (c. f. equation (4.22)) of each scene point Xn’s confidence

ellipsoid as outlined.

9: until the mean roundness is above a given threshold ΘL for example 0.1.

10: Compute approximate values for the camera orientations P2..t−1 by spatial resection using

the scene points Xn.

11: Perform a bundle adjustment with all images up to time t by fixing the gauge on the first

camera and the base line length to the camera at time t with one.

12: Use the reconstructed point cloud and according camera orientations for the initialization

of the state vector of the Kalman filter approach.

We observe, that the negative direction has to be used with respect to the view direction to

the negative Z-component. Applying the polar transformation

θ = atan2 (dY , dX) (4.24)

ζ = atan2
(√

d2
X + d2

Y , dZ

)
(4.25)

to the direction vector and choosing a reasonable distance we get the inverse distance param-

eterization as iX = f(T t,qt, z, ρ). The state vector then has to be extended by iX. The
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extended covariance matrix xC pp has to be computed using error propagation with

x
C pp = x

J


C pp 0 0

0 C zz 0

0 0 σ2
ρ

 x
J

T (4.26)

x
J =


I 7 0 0

0 I 0[
∂ iX
∂T t
|∂ iX∂qt

]
0

[
∂ iX
∂z |

∂ iX
∂ρ

]
 . (4.27)

The analytical derivation in equation (4.27) is complex and depends on a set of trigonometric

functions. We get these derivatives using numerical differentiation. As we mentioned before,

the inverse distance representation enlarges the state vector significantly. Therefore Gaussian

approximation in the Euclidean space can be obtained, if the object point will be observed

several times from different directions. In this case it is sufficient to change the representation

of an object point from inverse representation to a Euclidean one.

Using the roundness measurement of equation (4.22) we can determine whether a Eu-

clidean representation is sufficient for the uncertainty representation.

The transformation of an arbitrary point iXn inside the state vector can be computed

using equation (4.13). The covariance again can be obtained using error propagation by

e
C pp = e

JC pp
e
J

T (4.28)

e
J =


I 0 0

0
∂Xn

∂ iXn
0

0 0 I

 (4.29)

with

∂Xn

∂ iXn
=

 I 3

−1
ρ sin ζ sin θ 1

ρ cos ζ cos θ − 1
ρ2

sin ζ cos θ
1
ρ sin ζ cos θ 1

ρ cos ζ sin θ − 1
ρ2

sin ζ sin θ

0 −1
ρ sin ζ − 1

ρ2
cos ζ

 . (4.30)

In our experiments in chapter 5 we will analyze the influence of the parameter reduction

using different roundness measurement thresholds on the estimated camera orientation in a

photogrammetric strip.
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4.3.4.4 Stable feature initialization procedure

As already outlined in figure 4.7, due to the small parallaxes, the distribution of the inter-

section point cannot be approximated with a Gaussian well enough. As we will show in the

experimental section this will lead to a bias in the recursive estimation. The problem can be

circumvented by the inverse distance representation, but requires more parameters to repre-

sent object points and furthermore increases the update computation complexity as well as

a complicated point management.

In Steffen & Förstner (2008) we introduce a new algorithm, which is able to deal with a

single camera state and uses a Euclidean object point representation. This approach is able

to reduce the bias problem significantly.

We suggest postponing the initialization until the geometry guarantees the 3D-point is

stable. This requires to store for each 3d-point coordinate Xn, which is observed in frame t

for the first time, the orientation parameters T t, qt and the measured image coordinate xt.

As the initialization needs not to be perfect in terms of accuracy, we do not need to introduce

this data into the Kalman filter at later stages > t.

Each new point is tracked leading to a sequence of image points {xt, t = tk, tk + 1, ...} in

the following frames. At each time t we select that pair of frames (to, t) with to ∈ {tk, tk+1, ...}

for determining the 3D-point where the length of the basis |T to −T t| is largest, as we expect

the determination of the 3D-point to be most stable. If the covariance matrix of the 3d-

point is round enough (c. f. section 4.3.4.2), we initialize the 3D-point and include it into

the Kalman filter. The roundness can be computed according to the proposed algorithm in

section 4.3.4.2.

The covariance matrix can be determined assuming the camera orientation parameters to

be error free. In our implementation the triangulation and the error propagation is performed

using the unscented transformation Julier & Uhlmann (1997), c. f. section 3.4.3.

Therefore the precision is overestimated and, what is even more severe, the correlations

between the new point and the state of the system are zero. Thus a blind inclusion of the

point together with its covariance matrix, derived this way, would make this new point act

like a control point. For this reason we need to couple the uncertainty of the parameters of

the state vector and the uncertainty of the new point. The idea is to determine the new point
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Figure 4.8: Left: 3d view of the intersection of a postponing initialization Right: Top view.

Xn via a point Xr which is close to the new point via:

Xn = Xr + ∆Xn (4.31)

and perform error propagation assuming the given covariance matrix ofXr and its correlation

with all parameters of the state vector. However, the coordinate difference ∆Xn = Xn−Xr

has covariance matrix which in the worst case is

C∆Xn∆Xn = 2CXnXn

and is assumed to be independent of Xr. This is a realistic assumption, as the reference point

would probably have a similar accuracy if it were triangulated from the same two images.

An explanation of this assumption can be found in the Appendix in A.3. Thus we obtain the

extension of the state vector in the following manner

pe =


p∗

Xr

Xn

 =


I

I 3

I 3 I 3


︸ ︷︷ ︸

J


p∗

Xr

∆Xn


︸ ︷︷ ︸

ps

(4.32)

where p∗ is the state vector without point Xr. The generating vector has the covariance

matrix

C psps =


C pp∗ C p∗r 0

C rp∗ C rr 0

0 0 C∆Xn∆Xn

 . (4.33)
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The new covariance matrix of the state vector including the new landmark can now be

calculated as follows

C pepe = JC pspsJ
T =


C p∗p∗ C p∗r C p∗r

C rp∗ C rr C rr

C rp∗ C rr C rr + C∆Xn∆Xn

 . (4.34)

This covariance matrix is guaranteed to be positive semi-definite and reflects the new situation

realistically. Obviously, the linear transformation is sparse and except for the addition of the

covariance matrices of the reference and the point difference only copies need to be realized,

which is extremely efficient. The algorithm for initialization of new points thus can be

summarized as follows:

Algorithm 4.2 Stable Initialization Procedure algorithm
1: Detecting that a new point xn is observed at time tk.

2: repeat

3: Get the next observation at time t = t+ 1

4: Determine the frame at time to with the longest base length

d = argmaxto∈{tk..t} (|T t − T to |).

5: Determine Xn and its covariance matrix using frame pair (to, t) and its roundness Ln

6: until Ln > ΘL

7: Search for the point Xr closest to Xn.

8: Include the new point into the state vector using (4.32) and (4.34).

The proposed algorithm is able to initialize new points in a stable manner considering

the correlation structure.

4.4 Georeferencing

As we have shown before the initialization of the Kalman filter can be performed using control

points or a scale free bundle adjustment procedure. The control points can be given in a global

coordinate system as well as in a local reference system. In the following we will assume that

the initialization was performed by control points in a local reference system or by a scale free

bundle adjustment. In case we are able to detect at least three non-collinear control points

in a global reference system, we can transform the state vectors and its covariance using a

general Helmert-transformation. Using only three identical points a direct solution can be



92 CHAPTER 4. KALMAN FILTER BASED SLAM WITH A SINGLE CAMERA

computed. If more points are available we will obtain the best results using a least square

solution. In the following we will first derive the transformation using three points only. In a

second step we use the estimated parameters to transform the state and its covariance matrix

and additionally transform the gauge of the system with respect to the control points.

First, we assume three control points Xc
i corresponding to three object points Xi, i =

1..3 inside the state vector are given. For all points the incidence equation

Xc
i = MλMRM∆TXi (4.35)

with MT as a translation, MR as a rotation and MS as a scale matrix must hold. The

transformation parameter λ,R and ∆T can easily be derived using the direct solution for the

Helmert-transformation by Horn et al. (1988).

Now we are able to transform the state coordinate system to the world coordinate

system using the estimated parameters of the Helmert-transformation, also called the K-

transformation according to Molenaar (1981). The transformation can be obtained by a

non-linear function as

ph =


 λR(qh)T + ∆T

qhq


k

[λR(qh) + ∆T ]i

 (4.36)

for all camera orientations k and all points i inside the state vector. The transformation of

the covariance matrix can be performed using error propagation with the Jacobian

J =


λR(qh) 0 0

0 Υ(qh) 0

0 0 λR(qh)

 . (4.37)

Actually, the gauge is still defined by the initialization method of the state vector. If de-

sired, the gauge can be transformed to the three reference points using the S-Transformation,

c. f. Baarda (1973) and Dickscheid et al. (2008). The transformation can be applied to the

covariance matrix in the following way: First create an stacked matrix A consistent of Ak for

all camera parameter and Ai for all object points

A =

 A1..K

A1..I

 (4.38)
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with

Ak =


I 3 −S(T ) T

0

 −1
2q

T

1
2(qI 3 − S(q))

 0


k

(4.39)

Ai =
[
I 3 0 0

]
i
. (4.40)

The Jacobian can then be computed by

JS = I − A(AT
WA)−1

A
T
W (4.41)

with the gauge points selection matrix, where the diagonal elements according to the reference

point coordinates are one. Applying the Jacobian to the covariance matrix, the gauge is

transformed to the specified reference points.

The proposed geo-referencing algorithm is applicable using a sliding window state repre-

sentation. Furthermore, it is assumed that the transformation parameters are non-stochastic

and the control point uncertainty is zero.

4.5 On particle based Kalman filtering for simultaneous local-

ization and mapping

In section 3.4.3 we introduced the unscented transformation and its enhancement to a particle

based Kalman filter. In the literature the reader will find examples for successful applications

of the sigma point Kalman filter, e. g. Sünderhauf et al. (2007), van der Merwe (2004). Nev-

ertheless, we will show that these approaches will fail for the task of simultaneous localization

and mapping in case of larger uncertainties of parameters in the state vector.

First we will illustrate these at the error propagation using the inverse distance rep-

resentation and in a second example on the measurement update using a Euclidean point

representation. The distance d of a point is represented in the inverse distance representation

ρ = 1
d . We assume the uncertainty representation is a Gaussian with mean µρ and their

standard deviation σρ. A small value µ is equal to a large distance and it is necessary that

d = lim
+|ρ|→0

1
ρ

=∞. (4.42)

On the other hand for negative values of µρ it is necessary that

d = lim
−|ρ|→0

1
ρ

= −∞. (4.43)
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Obviously, there is a singularity at ρ = 0. Crossing this singularity, the distance turns

from positive to negative infinity. As shown in figure 4.9 in case of large uncertainty in

relation to the inverse distance the sigma point needed to compute the error propagation can

cross this border, which results in a wrong error propagation. To illustrate the singularities

Figure 4.9: Sigma point crosses positive to negative infinity singularity

we perform the transformation of the inverse distance to the Euclidean distance using the

unscented transformation for the mean and standard deviation. The uncertainty in the inverse

distance space is chosen as σρ = 1. As shown in figure 4.10 the singularities appear between

−
√
n+ κ < µρ < +

√
n+ κ, in this case n = 1, so κ = 2, so that the sigma point crossing

the singularity at ±
√
n+ κ = ±1.73. As we have shown in the example before, singularities
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Figure 4.10: Left: Mean propagation using unscented transformation from inverse distance

to Euclidean space Right: Variance propagation using unscented transformation from inverse

distance to Euclidean space General: Gaussian distribution σ = 1 inside inverse space.

in the transformation result in some cases in an erroneous mean and variance reconstruction

using the unscented transformation. Projecting an object point X to the image plane via

an optical center O and computing mean and standard deviation using sigma points can fail
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as shown in figure 4.11. This comes from a singularity induced at the plane parallel to the

image plane thru the projection center. Sigma points can lie behind this plane in case of

large object point uncertainties. Their projection does not represent the uncertainty of the

projected image point x anymore.

Figure 4.11: Example of sigma point projection in case of large object point uncertainty.

Discussion: As shown in two examples the unscented transformation as well as its

extension to an particle based Kalman filter can fail in case of singularities of the nonlinear

transformation. Someone could argue, that the sigma points could be scaled to smaller
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distances adjusting k. In some application this can be beneficial. But, in case of pure

visual simultaneous localization and mapping a large set of parameters with different levels

of uncertainties occur. In this case the Gaussian will not be represented well anymore. The

loss of this advantage of the sigma point Kalman filter makes this approach uninteresting.

Nevertheless, using GPS and INS systems for absolute and relative observations with

nearly constant uncertainty at every point in time, an implementation can prevent singular-

ities in the prediction and measurement update model. The benefit was shown for example

by Sünderhauf et al. (2007).

In this chapter we introduced the need of a system for visual simultaneous localization and

mapping. To make a Kalman filter core module for estimating metric map and localization

parameters operable, we preferred feature tracking and matching techniques. We introduced

different camera orientation and point based map representations and derived their dynamic

and measurement updates. We proposed a novel dynamic update, which will use only linear

transformations for the state vector as well as for the covariance matrix. We pointed out,

how the Kalman filter for a simultaneous localization and mapping task can be initialized and

how new parameters in a variable state can be introduced. According to the initialization

a geo-referencing approach was proposed. Besides, we commented the disadvantage of the

unscented transformation and sigma point Kalman filter for this task.



Chapter 5

Evaluation of the proposed methods

In this chapter the applicability of Kalman filter based localization and mapping will be

demonstrated. In the classical aerial-triangulation images are be taken with large baselines

according to an image overlapping of approximately 60%. Therefore, an object point typically

is visible in at least three images. Special high resolution cameras with a stable interior

orientation will be used. These cameras are mounted on a motion compensation platform to

prevent motion blur coming from longitudinal and angular velocity. In contrast we will use

an image sequence taken from an unmanned aerial vehicle. The camera is a low resolution

consumer video camera. Due to the limited speed of flight in our case we deal with an

overlapping ratio of consecutive images of larger than 95%. Hence object points are visible

multiple times with small disparities in consecutive images, also called frames.

First we will derive a general law to assess the theoretical accuracy of a photogrammetric

strip. To neglect systematic errors arising from camera calibration errors, gross errors in

the point based feature tracking and influences of the approximate values of the parameters

the law will be determined using synthetic observation of a simulated environment. In a

second step the influence of the representation and initialization of new object points in

a Kalman filter will be analyzed. In an evaluation we will compare the different methods

regarding accuracy and consistency. To proof the applicability of our point based feature

tracking we will use two different kinds of rendered scenes. One scene consists of a planar

surface mapped with real image data of a high altitude airborne image data provided by the

company Vexcel. The second scene consists of a model of the Basilika St. Peter in Rome.

The texture was generated using a fractal texture algorithm. For both scenes the interior

and exterior orientation was extracted from the rendering software. Finally, we will run the

97
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algorithms on a full real data set.

5.1 On the theoretical accuracy of photogrammetric strips

from image sequences

In the classical aero-photogrammetry a general law for the evolution of the triangulation

accuracy of a strip flight has been found by Finsterwalder & Hofmann (1964). The proposed

law specifies the accuracy of the camera location and angular orientation depending on the

image number and the base length between consecutive frames up to a scale factor. The scale

factor depends on the configuration of the photogrammetric strip, the camera parameters and

the measurement accuracy. For every configuration the scale factor have to be determined

individually. In this section we extend this law, so that we incorporate the flight configuration

parameters as well as the camera parameters. This extended general law has the following

challenge:

a) The goal of a general law is to calculate the achievable accuracy under specific parameter

settings using a simple approximation function.

b) The function has to be as precise as possible for a specific interval for the given param-

eter.

First, we have to distinguished between a systematic errors and a stochastic errors. The error

propagation laws by Finsterwalder & Hofmann (1964) summarized in table 5.1 are useful to

assess the achievable accuracy of classical photogrammetric aerial-triangulation for very long

strips. This law has been derived from the error propagation and has been simplified for very

long strips. We can interpret the variance transition factors in that way, that smaller factor

yield in an accuracy improvement of the estimated camera orientations. These laws are true

under the condition that the gauge definition depends on the first frame and the covariance

matrix has a significant band structure for the strip. However, there are only a small number

of different aerial camera systems available and the configuration of flight strips is typically

fixed to 60% longitudinal overlapping. For this reason only a small set of variance transition

factors has to be analyzed for different configurations.

In the field of an unmanned aerial vehicle arbitrary cameras and flight configurations are

possible. In this case the variance transition factors are functions of a large set of parameters,
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Error component Systematic Stochastic

Lateral ∆Yn ≈ ∆κn2 σ2
Yn
≈ B2

3 m
2
κn

3 + σ2
Y0

Longitudinal ∆Xn ≈ ∆sn2 σ2
Xn
≈ B2

3 m
2
sn

3 + σ2
X0

Height ∆Zn ≈ ∆φn2 σ2
Zn
≈ B2

3 m
2
φn

3 + σ2
Z0

Angular ∆ωn ≈ ∆ωn σ2
ωn ≈ m

2
ωn+ σ2

ω0

∆φn ≈ ∆φn σ2
φn
≈ m2

φn+ σ2
φ0

∆κn ≈ ∆κn σ2
κn ≈ m

2
κn+ σ2

κ0

Table 5.1: General: The table shows the error transition law for the camera orientation

parameters of a very long photogrammetric strip in case of systematic and stochastic errors.

Parameter B is the base length between consecutive frames, n is the frame number of the

strip. Systematic: The systematic transition error factors ∆s,∆ω,∆φ and ∆κ are constant

for arbitrary chosen configurations and depend on systematic error. The highest influence

to these factors are non-linear calibration errors of the camera. Stochastic: The variance

transition factors m2
s,m

2
ω,m

2
φ and m2

κ can be interpreted as a variance error between con-

secutive frames. The additive variances σ2
X0
, σ2

Y0
, σ2

Z0
, σ2

ω0
, σ2

φ0
and σ2

κ0
depend on the gauge

definition of the first frame of the strip. Assuming an error-free camera orientation for the

first frame the additives are zero. Using control points as a gauge definition the additives

depend on the accuracy of the spatial resection.

c. f. table 5.2.

camera parameters path parameter

field of view α flight altitude Hg

video rate r flight speed v

camera resolution w features per image NX

tracking accuracy σxy

Table 5.2: Configuration parameters

In this work we will rearrange the law for the stochastical lateral, longitudinal and height

error to make them independent from the angular errors. Furthermore, the base length

B will be represented inside the variance transition factor. Following the definition of the

stochastic error in table 5.3 we get six variance transition factors depending on a chosen flight

configuration.
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Error component Stochastic

Lateral σ2
Yn
≈ m2

Y n
3 + σ2

Y0

Longitudinal σ2
Xn
≈ m2

Xn
3 + σ2

X0

Height σ2
Zn
≈ m2

Zn
3 + σ2

Z0

Angular σ2
ωn ≈ m

2
ωn+ σ2

ω0

σ2
φn
≈ m2

φn+ σ2
φ0

σ2
κn ≈ m

2
κn+ σ2

κ0

Table 5.3: Simplified stochastical transition error model for photogrammetic strips.

These six variance transition factors are a function defined by

m2
∗ = f∗(Hg, v, r, σxy, w,NX , α). (5.1)

Some of these parameters can be combined. The flight speed v and video rate r determine the

base length B between consecutive frames. The tracking accuracy σxy in pixel coordinates, the

camera resolution w and the field of view α determine the normalized direction measurement

accuracy. First, a normalized direction measurement accuracy can be derived using the

principal distance

c =
w

2 tan(1
2αw)

(5.2)

with w as the width of the camera and αw as the field of view according to the width.

Assuming square image pixels the normalized direction measurement accuracy σd can be

computed from the image measurement accuracy σxy by

σ2
d =

σ2
xy

c2
. (5.3)

Using this normalized direction measurement accuracy the camera resolution and image mea-

surement accuracy can be neglected from the general law. Because the field of view also

determines geometric stability, we do not neglect this parameter.

Second, we will combine the flight speed and video rate yielding in the base length.

Moreover, from the principle that the triangulation is independent of a scale factor we will

neglect the flight altitude by using a normalized base length

b =
v

rHg
(5.4)

Again, the video rate r, flight speed v and flight altitude Hg can be neglected from the

influence function by using the normalized base length b.
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As a consequence the achievable accuracy of a photogrammetric strip depends on four

parameters. In the following we will analyze in some experiments, how does the accuracy

depends on these parameters.

5.1.1 Experimental setup

As we shown above the stochastical accuracy of a photogrammetric strip will be influenced by

four parameters. To analyze their influence we here define four experiments. The parameter

themeself are physically bounded. For example, a camera view angle larger than 180◦ is

not reasonable. Furthermore the smallest base length can be zero, the largest base length

is restricted by the overlapping, and so indirect of the maximal possible video rate and the

maximum flight speed.

In table 5.4 we will define a standard configuration and different experiment configurations

of our simulated environment.

Exp 1: In this experiment we will change the field of view angle between 40 and 120 degree.

The lowest bound is a typical small angle camera objective, the upper bound is a wide

angle objective.

Exp 2: This experiment varies the base length, depending on the video rate and the flight speed

according to equation (5.4). The maximum base length is restricted by an overlapping

ratio of the images of approximately 60% to guarantee, so that a subset of object points

are visible in at least three images. This is neccessary to achieve the transition of the

scale factor to consecutive frames in a bundle adjustment solution.

Exp 3: The fully automatic detection and tracking accuracy can be broken down to σxy ≈

0.1[pel] using a sub-pixel estimation. Typically point based features on the original

image resolution are unstable in case of image noise. Therefore it is suitable to track

features at a reduced resolution which can by quantified by a change of the tracking

accuracy.

Exp 4: The mean number of used object points in an image is proportional to the size of the

unknown parameter. Here a trade of between computational complexity and achievable

accuracy has to be found. Furthermore, the content of the observed scene limits the

number of identifiable and trackable object points. It has been shown in our experiments
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camera standard Exp 1 Exp 2 Exp 3 Exp 4

parameter

camera w × h 800× 600

resolution

field of view α 90◦ 40,50,60

70,80,90,

100,110,120

principal point center

video rate r 25Hz

tracking σxy 0.25 [pel] 0.1, 0.25, 0.5,

accuracy 1, 2, 4, 8, 16

features NX 25 10,15,20,25,

per image 30,35,40

path parameter

strip length s 200 [m]

flight altitude Hg 30 [m]

flight speed v 5 [m/s]

base line B 0.20 [m] 0.1, 0.2, 0.5,

1, 2, 4, 8

image overlapping 99.7 [%] 99.8 → 82.2

Table 5.4: Summery of the experimental setup with a standard configuration and its varia-

tions in four experiments.



5.1. ON THE THEORETICAL ACCURACY OF PHOTOGRAMMETRIC STRIPS 103

that a marginal accuracy advantage can be achieved using more than 40 features per

image.

In the following we will compute the theoretical accuracy of the camera orientations for

a photogrammetric strip by any variation of the four defined experiments. The theoretical

accuracy will be estimated by a bundle adjustment under the condition, that the observations

are error free and the approximate values are equal to the true values. The variances of the

estimated camera parameter of the resulting theoretical covariance are used as data points

for a curve fitting using the simplified transition model in table 5.3. The variance transition

factors are be computed by a least square solution.

5.1.2 The influence of the field of view

In the first experiment (Exp 1, c.f. table 5.4) the variance transition factors for different view

angles of the camera are estimated. In figure 5.1 the square root of the transition factors for

the six camera orientation components are visualized.
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Figure 5.1: Influence of the principal distance (field of view) onto the accuracy transition

factors. The cameras field of view varies between 30◦ and 120◦. Left: Square root of the

transition factors for the camera position, Right: Square root of the transition factors for

the angular camera orientation.

We can observe that decreasing the field of view of the camera the uncertainty of the

Z-component and latitude angular orientation of the camera is growing rapidly. A small field

of view reduces the maximum intersection angles of a visible object point and therefore its
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accuracy in the Z-component. Due to the correlation, the accuracy of the camera location in

the Z-component will increase by using a camera with a larger field of view. This behavior

can also be observed at the angular orientation φ, which will be effected by a known high

correlation to the Z-component. Because we do not change the resolution of the camera as

well as the tracking accuracy, the direction measurement accuracy, which depends on the

field of view, will decrease by increasing the field of view. Its effect to the variance transition

factor will be superimposed by choosing a camera with a larger field of view.

5.1.3 The influence of the base length

In the second experiment (Exp 2, c.f. table 5.4) we vary the base length according to a change

of the UAVs flight speed or the frame rate of the camera.
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Figure 5.2: Influence of the chosen base length onto the accuracy transition factors. The

base length varies between 0.1 [m] and 8 [m]. Left: Square root of the transition factors

for the camera position, Right: Square root of the transition factors for the angular camera

orientation.

In figure 5.2 the resulting variance transition factors are shown. We can observe, that the

uncertainty of the camera location is growing for larger baselines in an exponential manner,

the uncertainty of the angular orientation is growing linear. Decrease the base length, the

number of observations to have a part of an individual object point will be increase.

The maximum intersection angle to determine an object point location does not change.

From a theoretical point of view, the influence of the involved observations due to the accuracy

of the camera orientation parameters depend on the geometric configuration, which will be
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reflected in the redundancy number of the observation.

5.1.4 The influence of measurement accuracy

In the third experiment (Exp 3, c. f. table 5.4) we will analyze the influence of the identifica-

tion accuracy of features in the image onto the variance transition factors. The measurement

of a feature can be reinterpreted as a direction measurement to an object point, which de-

pends on the resolution of the image, the object identification accuracy and the field of view

of the chosen camera. The resolution and identification accuracy depends linear by each

other. For example, if we double the resolution of the camera the measurement accuracy has

to be multiplied by a factor of two.
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Figure 5.3: Influence of the measurement accuracy onto the accuracy transition factors. The

feature measurement accuracy varies between 0.1 and 16 [pel]. Left: Square root of the

transition factors for the camera position, Right: Square root of the transition factors for

the angular camera orientation.

As expected, the influence of the measurement accuracy is linear to the square root of

the transition factors shown in figure 5.3. We observe that the angular accuracy transition

is unstable. We suppose, that this instability comes from the non-homogeneous arrangement

and limited number of object points in the scene. Nonetheless, in average the influence effects

in a linear manner.
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5.1.5 The influence of map density

In the fourth experiment (Exp 4, c. f. table 5.4), we will analyze the influence of the map

density e. g. the number of used object points visible in each image. We require that the

observed object points are uniformly distributed in the bounded image plane and are therefore

uniformly distributed on the observed planar surface. But, the uniform distribution cannot

be guaranteed, because the number of object points visible in each image is small.
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Figure 5.4: Influence of the map density onto the accuracy transition factors. The number

of used feature in an image varies between 10 and 40. Left: Square root of the transition

factors for the camera position, Right: Square root of the transition factors for the angular

camera orientation.

In figure 5.4 the estimated square root variance transition factors with respect to the

average number of visible object points are presented. From the nature of repeated normal

distributed measurements we know, that the uncertainty of the average measurement will

decrease by a factor of
√
Nz, with Nz as the number of repeated observations. As the

distribution of the object points at the surface is supposed to be uniform, we can interpret

the map density as a repeated measurement.

5.1.6 A general law to assess the theoretical accuracy of a photogrammet-

ric strip

In the following we will find a general law to specify the achievable accuracy for a strip flight.

At the beginning, we assume that the influence of the parameters is multiplicative with some



5.1. ON THE THEORETICAL ACCURACY OF PHOTOGRAMMETRIC STRIPS 107

unknown exponentials i{b,α,N,d} and unknown factors k. Furthermore, the transition factors

for the angular orientation components must be independent of the flight altitude Hg.

m2
{X,Y,Z} = k{X,Y,Z} · bib · f(α)iα ·N iN

X · σ
id
d ·H

2
g (5.5)

m2
{ω,φ,κ} = k{ω,φ,κ} · bib · f(α)iα ·N iN

X · σ
id
d (5.6)

As we have shown in figures 5.3, the accuracy transition factor grows linearly with the ex-

pected tracking accuracy. Therefore the exponent should be two. As we mentioned before,

doubling the number of observations will divide the uncertainty by the factor
√

2. Therefore

the exponent of NX can be set to minus one. The length of the base between consecutive

images directly influences the number of observations of an object point. Furthermore, the

maximum intersection angle will be divided in more peaces of intersections. The influence

of every individual observation caused by a smaller baseline is not equal. In figure 5.2 we

observe, that the accuracy transition factors for the angular orientation increase linearly with

respect to the base length. Therefore we set the exponent to two. The influence of the base

length to the location parameter seems to be square. Therefore we set the exponent to 4.

We model the influence of the field of view angle α using a trigonometric function. The

choice is motivated by the dependency of an angle. As we found out, a good approximation

is achievable using different exponents for the six component.

fX(α) = tan
(α

2

)−5
(5.7)

fY (α) = tan
(α

2

)−4
(5.8)

fZ(α) = tan
(α

2

)−6
(5.9)

fω(α) = tan
(α

2

)−6
(5.10)

fφ(α) = tan
(α

2

)−6
(5.11)

fκ(α) = tan
(α

2

)−4
(5.12)

and we finally obtain the approximation functions

m2
{X,Y,Z} = k{X,Y,Z}

b4

NX
f{X,Y,Z}(α) σ2

d H
2
g (5.13)

m2
{ω,φ,κ} = k{ω,φ,κ}

b2

NX
f{ω,φ,κ}(α) σ2

d (5.14)

Using the determined transition factors of the four experiments we estimate the constant

factors kX , kY , kZ , kω, kφ and kκ in a least square solution using equations (5.13) and (5.14)
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Variance factor value σ

kX 84 0.3

kY 40 0.3

kZ 148 0.3

kω 23 6.8

kφ 299 6.8

kκ 112 6.8

Table 5.5: Estimated variance transition factors of the approximation function.

as the measurement model. This model holds for the condition, that a) the field of view

for the camera is between 30◦ and 120◦, b) the mean number of object points is between 10

and 40, c) a direction measurement accuracy between σd = 0.00025 and 0.04 (c. f. equation

(5.3)) and d) a normalized base length between b = 0.0001 and 0.01 (c. f. equation (5.4)).

The estimated variance transition factors of our model are presented in table 5.5. Because

the particular factors depend on different functions relating to the field of view influence,

the factors are not interpretable. As a degree of the reliability of our model we compute

the maximum approximation error between our approximation function and the variance

transition factors of the experiments. For the experiments with a variable field of view,

direction measurement accuracy as well as the number of object points the approximation

error is below 50%. For the case of a base line B > 2m the maximum approximation error is

185%. A summery of the approximation error can be found in appendix A.4.
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5.2 The influence of the initialization method of new object

points in a Kalman filter based estimation

In the following we will analyze, how the Kalman filter based approaches performs on the same

dataset using different initialization methods for new object points proposed in section 4.3. As

we already mentioned, the initialization has a main influence on the consistency of the result

due to the small disparities of feature observations in consecutive images, which is caused by

a poorly Gaussian approximation of the object point determination by ray intersection. In all

experiments, where the new object points will be introduced instantly, new object points are

initialized at the first projection ray with a huge uncertainty. The distance will be assumed

to be known using the ground truth distance obtainable as the Euclidean distance between

the camera projection center and the object point location. The object point coordinate to

be introduced can be computed using equation (3.63). As the dynamic motion model will be

used to obtain approximate values for the camera orientation only, the error propagation will

be computed with large system noise for the camera parameter transition. As a consequence

the uncertainty of the predicted camera parameter is large and the correlations between the

predicted camera parameters and previous camera parameters as well as the object points

after the prediction step are equal to zero. Therefore, our dynamic model does not restrict

the trajectory. We do so, because the camera trajectory in the bundle adjustment solution is

also not restricted and therefore the results are comparable. The measurement update can be

considered as a spatial resection to obtain the camera orientation. An update of the object

point locations will be caused by the influence of the residuals between the measurements

and the back-projected object points themselves.

We will run the Kalman filter using the initialization methods with

1. Euclidean representation

2. Euclidean representation with sliding window camera model

3. Inverse distance representation

4. Inverse distance representation with reparameterization to the Euclidean representation

5. Delayed initialization with sliding window camera model

6. Delayed initialization using stable initialization procedure
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In order to evaluate the Kalman filter based approaches concerning their accuracy and con-

sistency we will run all algorithms on a simple synthetic dataset, where ground truth data

is available. The dataset was generated using the standard parameter defined in table 5.4

on page 102. The planar surface with object points were generated by sampling a uniform

distribution in the xy-plane. The observations were obtained by a back-projection of the

ground truth object point locations into the camera plane using the true camera orientation

at time t. Finally, the observations were disturbed by Gaussian noise using an expected

observation accuracy of σxy = 0.25 [pel]. The global coordinate system is fixed by the object

points visible in the first image and assumed to be error free.

First, we will estimate the camera orientation parameter using a bundle adjustment as

a high precision reference. To quantify the result we will use a consistency and a precision

measure proposed by Dickscheid et al. (2008). The consistency measure cc is defined by a

weighted distance of two datasets using their covariances. In our case ground truth data for

the camera parameter p̃n are available so that C p̃np̃n = 0 and therefore, the consistency mea-

sure reflects the consistency between the estimated camera parameter pn and its covariances

C pnpn for all camera orientations n. The consistency measure is defined by

cc =

√
Ω

6n− 7
(5.15)

with

Ω = (pn − p̃n)(C pnpn + C p̃np̃n)(pn − p̃n)T. (5.16)

We will call a result consistent, if its consistency measure is approximately cc ≈ 1.

The precision cp is a measure to compare two covariances using a metric for covariance

proposed by Förstner & Moonen (1999). The precision level is defined for a regular covariance

matrix only and will reflect the relative precision of the covariance of a parameter vector to

a covariance of superior precision. The precision measure can be obtained by

cp = e

√
ln r2 (5.17)

with

ln r2 =
∑m

i=1 ln2 ri
m

≥ 1 (5.18)

Here, r2
i are the generalized eigenvalues from |Cpnpn − r2 Cp̃np̃n | = 0. Due to the fact that we

will use the precision value to compare some results to each other, an arbitrary high precision

regular covariance matrix as a reference can be used. Our high precision reference covariance
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matrix is generated by multiplying the identity matrix by 10−10. An overall indicator to

benchmark a result is to compute a benchmark value by cb = cc · cp.

The results of the bundle adjustment of our synthetic dataset can be seen in figure 5.5 on

page 112. On the left hand side the difference between the estimated camera location and the

ground truth camera location and on the right hand side the difference to the angular camera

orientation is visualized. In all plots the 2σ bounds of the parameters accuracy is plotted.

We observe, that in the average the estimated parameters are inside the uncertainty bounds.

The estimated variance factor was approximately σ0 ≈ 1. The consistency measure of the

result including all correlations of the camera is cc = 1.3, that indicate a consistent result.

In the Kalman filter results we do not obtain the correlations between all estimated camera

orientations, including previous camera orientation. Therefore, neglecting these correlations

the resulting consistency measure is an approximation. In case of the bundle adjustment

result we get cc = 0.9, which is comparable to the consistency including all correlations.

In the first experiment we will perform the Kalman filter in its simplest form, where the

new object points are represented in the Euclidean space and are initialized instantly. The

estimated camera orientation parameters as well as their uncertainty are presented in figure

5.6 on page 113. We observe, that the obtained altitude (Z-component) and the latitude

angular orientation (φ-component) are significantly inconsistent. The estimated camera ori-

entation parameter are correlated to the estimated object points. As the object points are

determined by a recursive intersection of the projection rays with small disparities and its

probability density is non-Gaussian, a bias occurs in the distance to the object points. The

average of the bias of all object point distances will be transfered to the camera orientation

parameters via its correlations.

In a second experiment we will use a sliding window camera representation. Here, the

state vector consists of twenty camera orientations, c. f. section 4.3.2. This experiment will

analyze the influence of correlations to previous camera orientation parameters. Comparing

the results in figure 5.6 on page 113 for the single camera state with the results in figure

5.7 on page 114 for the sliding window representation we observe only marginal differences.

As we do not restrict the trajectory between consecutive camera orientations due to a large

system noise, the correlations between the camera orientations will be transfered by the

object points only. Therefore, the previous camera orientations are influenced marginally, if

the object point locations slightly change effected by the new observations.
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Figure 5.5: Left: Bundle adjustment results for the camera position parameters Right:

Bundle adjustment result for the camera orientation parameters
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Figure 5.6: Initialization using Euclidean representation with ground truth distance. Left:

Kalman filter result for the camera position parameters Right: Kalman filter result for the

camera orientation parameters.
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Figure 5.7: Initialization using ground truth distance and a sliding window camera represen-

tation (20). Left: Kalman filter result for the camera position parameters Right: Kalman

filter result for the camera orientation parameters.
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Figure 5.8: Initialization using inverse distance representation with ground truth distance.

Left: Kalman filter result for the camera position parameters Right: Kalman filter result

for the camera orientation parameters.



116 CHAPTER 5. EVALUATION OF THE PROPOSED METHODS

The third and forth experiment will be performed using the inverse distance parameter-

ization for new object points. First, we will run the Kalman filter without any reparame-

terization of the object points to a Euclidean representation. Second, we will analyze the

influence of a reparameterization of the object points depending on the roundness of the

associated covariance matrix. The roundness reflect the quality of Gaussian distribution in

the Euclidean space due to the small baseline intersection problem. In figure 5.8 on page 115

the resulting camera orientations for the experiment using the inverse distance is presented.

We can observe, that the results are consistent according to its uncertainty. Obviously, the

continuously introduced bias will be eliminated completely. As the main influence of the

bias will be visible in the Z-component of the camera location we can see the influence of

a reparameterization of the inverse distance to the Euclidean representation using different

roundness thresholds in figure 5.9 on page 117. A reparameterization using a roundness

threshold of ΘL = 0.5 seems to have no influence onto the camera orientation estimation.

The bias grows with decreasing the roundness thresholds.

The experiments presented so far introduced an object point instantly assuming an ar-

bitrary distance. In our case this distance was chosen knowing its ground truth distance.

As we already mentioned, also a delayed initialization of new object points is possible. This

technique requires the collection of observations for a limited time slot. Hence, a delayed

initialization is able to predetermine the object points location and we do not need to as-

sume an arbitrary distance. A second advantage is, that the method is able to previously

rate the influence of the bias due to the intersection angle. First we will show the results

using the sliding window state representation. An object point will be initialized only if the

roundness measure of the covariance of the intersection is below a threshold. The object

points roundness measure can be obtained using the estimated camera orientations and the

collected image observation. As we can see in figure 5.10 on page 118 , introducing new

object points by a delayed initialization, the estimated uncertainty of the parameter vector

increases in contrast to an instant initialization. This is due to the fact, that the determina-

tion of the camera orientation parameters depends on the distribution of the object points

on the surface and therefore on the accuracy of the spatial resection. The geometric configu-

ration using a delayed initialization becomes weaker. The uncertainty of the spatial resection

will increase, if new object points will be initialized later by increasing ΘL. We can observe,

that the delayed initialization cannot prevent the effect of the bias in our experiments. Using
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Figure 5.9: Initialization using inverse distance representation with ground truth distance

and reparameterization with roundness test values of ΘL = {0.5, 0.25, 0.1, 0.05, 0.025} (left

to right row wise). Kalman filter result for the camera position parameters in Z directions.
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Figure 5.10: Initialization using ground truth distance and Sliding Window with a roundness

test value of ΘL = 0.05. Left: Kalman filter result for the camera position parameters

Right: Kalman filter result for the camera orientation parameters.
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Figure 5.11: Initialization using ground truth distance and Sliding Window with a roundness

test value of ΘL = 0.01. Left: Kalman filter result for the camera position parameters

Right: Kalman filter result for the camera orientation parameters.
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a smaller test value ΘL, which will effect that new object points are introduced earlier, the

spatial resection will be much more stable. The results can be seen in figure 5.11. Comparing

to the first experiment (figure 5.6 on page 113), the effect of the bias is significantly reduced.

The sliding window and the inverse distance representation will enlarge the state vector

significantly. In the following we will analyze the results using the stable initialization pro-

cedure introduced in section 4.3.4.4. Again, new object points will be introduced delayed.

We will run the algorithm with a roundness test value of ΘL = 0.05 and ΘL = 0.01. The

results are presented in figures 5.12 on page 121 and 5.2 on page 122. In contrast to the

delayed sliding window initialization, we cannot observe an increase in the uncertainty of the

estimated camera parameters. Obviously, the weak spatial resection will be compensated by

the high inner accuracy of the reconstructed object points according to the transfer of the

correlations between adjacent object points. If we decrease the roundness test value ΘL, a

new object point will be introduced earlier. The new object points are introduced with larger

uncertainty. Therefore the effect of the bias increases. Hence, an implementation using the

sliding window initialization or the stable initialization method should find an appropriate

value for the roundness test value as a trade off between the influence of the bias and a

stability of the spatial resection.

Discussion: The experiments presented so far were running on a synthetic dataset to

analyze the expected accuracy of a Kalman filter based solution for the task of simultaneous

localization and mapping in case of a photogrammetric strip. In table 5.6 and figure 5.14 on

page 124 the computed consistency, precision and benchmark values for the experiments are

summarized.

We observe, that the method to initialize new object points has a significant influence on

the achievable consistency and accuracy of the results. A naive introduction of the object

point using Euclidean coordinates assuming a realistic distance results in a drift of the camera

orientation. This drift will be extremely effected by the altitude as well as in the latitude

orientation of the strip. As we do not restrict the camera trajectory in the dynamic model

the experiment does not show any improvement using the sliding window representation.

We analyzed the results of four major kinds of initialization methods to indicate a reduc-

tion of the effect on the bias. As we can see in figure 5.14 the inverse distance parameterization

seems to get the best results. A reparameterization of the object points from the inverse dis-
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Figure 5.12: Initialization using the stable initialization procedure with a roundness test value

of ΘL = 0.05. Left: Kalman filter result for the camera position parameters Right: Kalman

filter result for the camera orientation parameters.
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Figure 5.13: Initialization using the stable initialization procedure with a roundness test value

of ΘL = 0.01. Left: Kalman filter result for the camera position parameters Right: Kalman

filter result for the camera orientation parameters.
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Method consistency cc precision value cp benchmark cb

Euclidean 6.77 106496.5 720981.3

Euclidean k = 19 7.06 102320.8 722384.8

Inverse distance 2.88 115726.2 333291.4

Inverse distance ΘL = 0.025 3.14 115093.3 361393.0

Inverse distance ΘL = 0.05 3.00 115699.9 347099.7

Inverse distance ΘL = 0.1 2.91 115699.9 336686.7

Inverse distance ΘL = 0.25 2.88 115769.4 333415.9

Inverse distance ΘL = 0.5 2.88 115728.8 333298.9

Sliding window ΘL = 0.05 5.22 572035.8 9860269.0

Sliding window ΘL = 0.01 3.34 115857.6 386964.4

Stable init. procedure ΘL = 0.05 3.55 135295.9 480300.4

Stable init. procedure ΘL = 0.1 4.49 186672.6 838160.0

Table 5.6: Consistency cc, precision cp and benchmark value cb of the Kalman filter results.

The first eight rows are the results for the instantly object point initialization methods fol-

lowed by the two delayed initialization methods. The best results are be obtained by the

inverse distance representation.

tance to the Euclidean parameterization using a roundness threshold below ΘL = 0.25 will

cause an observable drift. The major problem using the proposed methods for a delayed

initialization is to find a convenient threshold ΘL so that the influence of the bias does not

occur and the spatial resection will be as precise as possible. Moreover, these methods require

a uniform distribution of the object point locations to guarantee a good geometric configu-

ration for the spatial resection. We recommend to use the inverse distance parameterization

using reparameterization to reduce the effect of the bias and to keep the state vector sufficient

small.

Remark: In appendix A.5 we additionally visualize the differences between the ground

truth object point coordinates and the estimated coordinates of the object points of the

experiments.
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Figure 5.14: Benchmark summary of the Kalman filter results.

5.3 Evaluation on simulated image data

In this section we will show the capability of the proposed estimation framework on a more

realistic scenario. A first synthetic image sequence was rendered using real image data of

a high altitude airborne image mapped on a planar surface. According to the previous

simulations and the following full real data experiment our environment is specified in table

5.7. To evaluate the accuracy of the point based tracking algorithm in a realistic manner, the

image sequence will be disturbed by Gaussian image noise with a standard deviation of σI = 5

[gr] of the intensity. Using consumer cameras in video mode this is a realistic assumption

about the image perturbation by noise. The mean number of features and a uniform sampling

of the features in the image sequence can be adjusted by choosing a circular free space around

a feature, where no new features can be initialized. However, the uniform sampling depends

on the content of the image and therefore cannot be guaranteed. Some control points are
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camera parameter value

camera resolution 800× 600

principal point image center

frames per second 25

field of view ≈ 60◦

expected tracking accuracy 0.25 [pel]

mean features per image 23

path parameter

strip length 200 [m]

flight altitude 30 [m]

flight speed 5 [m/s]

base line 0.20 [m]

Table 5.7: Parameter of the experimental environment using a synthetic image sequence

visible in the first images of the sequence, where ground truth data is available (see figure

5.15).

In a first step we run the dataset using a bundle adjustment to indicate that the obtained

observations of the tracking algorithm can be used for the trajectory reconstruction in a

Kalman filter. Approximate values for the camera orientations will be obtained by the known

ground truth camera orientation. Approximate values for the object points will be computed

by the intersection of the first projection ray and the known surface plane. In figure 5.16 on

page 127 the results for the estimated camera orientation are presented. The square root of

the estimated variance factor of the bundle adjustment is a quality measure of the accuracy

of the point based feature tracking and is σ̂0 = 0.36 [1]. According to the assumed tracking

accuracy of σxy = 0.25 [pel] the estimated observation standard deviation is σ̂xy ≈ 0.09

[pel]. The consistency of the result is cc = 42.6, the precision measure is cp = 49694. This

indicates, that the result is not consistent. The result shows, that the accuracy of the point

based tracking is much more precise, by a factor of three, as we expected. However, it seems

that there are outliers in the observations due to apparently non-stationary object points.

Therefore, we will run the dataset using a bundle adjustment including a reweighting method

proposed in section 3.3.2. Here we will use the Huber-weighting function for a robustification

using a tuning factor of k = 3. The results are presented in figure 5.17 on page 128. The
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Figure 5.15: First image of the simulated image data sequence with signalized control points

square root of the estimated variance factor of the robust bundle adjustment was σ̂0 = 0.26

[1] and therefore the estimated observation standard deviation is σ̂xy ≈ 0.07 [pel]. The overall

number of observations in this experiment is n = 46298, where nw = 1375 observations are

identified as outliers and reweighted. The consistency and the precision measure are cc = 42.8

and cp = 28529. Comparing the results in the figures 5.16 with 5.17 on page 127 and 128,

we observe that the robustification in the bundle adjustment solution is able to reduce the

effect of the outliers, but does not lead to an overall consistent solution. Apparently, the used

robustification method does not identify any outlier and so it cannot remove their influences

completely.

Now, we will apply the dataset to the Kalman filter approach. In this experiment we

will introduce new object points using the inverse distance parameterization with the same

conditions as before. The tracking accuracy will be assumed to be σxy = 0.25 [pel]. In a

second experiment a Kalman filter using a reweighting strategy to reduce the effect of outliers

is used. Again, we will apply the Huber-weighting function with a tuning factor of k = 3.

The results can be seen in figures 5.18 and 5.19 on page 130 and 131. In both experiments



5.3. EVALUATION ON SIMULATED IMAGE DATA 127

20 40 60 80 100 120 140 160 180 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 [m

]

Frame [−]

 

 

X

20 40 60 80 100 120 140 160 180 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 [°

]

Frame [−]

 

 

ω

20 40 60 80 100 120 140 160 180 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 [m

]

Frame [−]

 

 

Y

20 40 60 80 100 120 140 160 180 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 [°

]

Frame [−]

 

 

φ

20 40 60 80 100 120 140 160 180 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 [m

]

Frame [−]

 

 

Z

20 40 60 80 100 120 140 160 180 200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

D
iff

er
en

ce
 [°

]

Frame [−]

 

 

κ

Figure 5.16: Bundle adjustment results for the estimated camera parameters with 2-sigma

error bounds
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Figure 5.17: Robust bundle adjustment results for the estimated camera parameters with

2-sigma error bounds.
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the consistency is approximately cc ≈ 3.6 and the precisions are equal. Obviously, in the

case of the Kalman filter the robustification has no influence on the results for this dataset.

The outliers caused by the tracking are not predominantly characterized by large errors

in consecutive images. Rather the erroneous tracking leads to an apparent non-stationary

motion of the corresponding object point. Because the reweighting method in the Kalman

filter identifies outliers by analyzing the innovation in consecutive images and the influence of

a small motion of an object point to the innovation is small, it seems that there is no reason

to reweight an observation. In table 5.8 we summarized the benchmark value for the four

experiments using the synthetic image dataset. A very interesting fact is, that the Kalman

filter based solution performs better than the non-robust version of the bundle adjustment.

We guess again, that the reason could be the apparent non-stationarity of the erroneous

object points caused by a continuous drift of the tracked feature. In the Kalman filter a

violation of the stationary assumption tends to a drift of the object point location. Therefore

the residuals in the update step will be slightly decreased and its influence on the camera

orientation will be reduced. We can observe that in case of a robust bundle adjustment the

influence of the outliers are reduced and the result will outperform the Kalman filter.

experiment consistency cc precision cp benchmark cb

Bundle 42.8 49694 2116964

Bundle (robust) 42.6 28529 1221041

Kalman filter 3.6 427315 1529768

Kalman filter (robust) 3.6 427422 1532663

Table 5.8: Summary of the benchmarking for synthetic image sequence consist of a pho-

togrammetric strip.
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Figure 5.18: Kalman filter results for the estimated camera parameters with 2-sigma error

bounds.
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Figure 5.19: Robust Kalman filter results for the estimated camera parameters with 2-sigma

error bounds.
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The second synthetic scene consists of a model of the Basilica St. Peter in Rome. In

this experiment the ground truth trajectory of the camera describes a circular trajectory

with a radius of 80 m and a flight altitude of 30 m. Consecutive images are rendered every

degree. The pitch angle of the camera is adjusted to φ = 15◦. In figure 5.20 few selected

images can be seen. Four control points with its ground truth data on the front of the

basilica will be used to introduce a reference coordinate system. In a first step we applied the

Figure 5.20: Images of the synthetic image sequence of the Basilika St. Peter in Rom.

tracking algorithm to this sequence. Here two major problems appear. First, after some time

the tracking algorithm lose tracks of features. The reasons are occlusions and appearance

changes due to perspective changes. This leads to short tracks. Second, the object points are

apparently non-stationary due to the occlusions and specular surfaces. Therefore, we adjust

the tracking algorithm in a way, that the mean number of simultaneous tracked image points

are large (NX ≈ 220). In a second step we computed approximate values for every tracked

object points by intersecting the projection rays using the ground truth camera orientations.

In the first experiment we applied a robust bundle adjustment to the dataset, where the
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influence of outliers will be reduced by a reweighting method using the Huber-weighting func-

tion. The algorithm diverges due to the large number of outliers. Obviously, the reweighting

method is not able to detect the huge number of outliers and to reduce their effects.

In a second experiment we applied a bundle adjustment to this synthetic dataset by

eliminating outliers iteratively. Here, we estimate the variance components of all groups of

observations to have a part of the determination of individual object points, c. f. section

3.3.2. In every iteration all groups with a variance component above a threshold of Θσ0 > 2

will be identified. We eliminate the observations of the worst 10% groups and run the

algorithm again. The resulting residuals between the ground truth and estimated camera

trajectory are shown in figure 5.21. The computed square root of the variance factor of the

remaining observations is σ̂0 = 0.63 [1]. The dataset contains of N = 2536 object points. The

outlier detection method classified 1166 object points as outliers. We can observe, that the

result is not consistent. The estimated accuracy does not reflect the true uncertainty of the

results. Also the outlier detection method based on the variance component cannot detect

all apparently non-stationary object points in this sequence. A more robust implementation

should detect outliers using a filter step prior to the adjustment. The filter can determine

the relative orientation between two selected images using the coplanarity constraint. In case

of a huge number of wrong correspondences a robust estimation can be achieved using the

RANSAC-procedure following Fischler & Bolles (1981). Object points should be eliminated,

where the coplanarity constraint does not hold. From the concept of the Kalman filter we

typically are not able to fall back to previous observations. Observe, that these observations

are already encoded in the state of the system and cannot be removed.

In a third experiment using this dataset we tried to estimate the trajectory by a Kalman

filter based approach using the inverse distance representation. We observed an early diver-

gence of the filter process. We suppose that the huge number of outliers in the observation

cause numerical instabilities.

In the previous sections we analyzed the capability of the Kalman filter to the task

of simultaneous localization and mapping from image sequences. The experiments were

restricted to the case of classical photogrammetric strips. We first derived a general law

to assess the stochastical accuracy of a photogrammetric strip. The law is generalized to

get the accuracy under different kinds of flight configurations. Second, we compared the
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Figure 5.21: Robust bundle adjustment solution using outlier detection by variance compo-

nent estimation on the Basilika dataset.
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Kalman filter results their accuracy and precision using synthetic data. We showed that a

bias occurs. However, the influence of the bias can be reduced using advanced initialization

and representation strategies for new object points. Synthetic image sequences were used to

evaluate the capability of the proposed methods using a real point based feature tracking.

5.4 Real experiment evaluation

In this section we will apply our Kalman filter approach to a real image sequence acquired

by an unmanned aerial vehicle. In contrast to the experiments using simulated data we do

not have control about systematic errors that occur due to camera calibration errors and

unexpected errors in the feature tracking. First we will give an overview about the hardware

system and the flight-test area. Thereafter, we will present our method to reduce systematic

errors and get high accuracy reference data for the camera orientation. We will present the

results of the Kalman filter based approach and evaluate the results.

5.4.1 Used hardware architecture

The real data experiment shown below is based on image sequences taken with the UAV from

Microdrones GmbH. The drone shown in figure 5.22 is an electric powered quad-copter, which

is manually controlled. Its empty weight is 585 g, it can carry up to approximately 200 g of

payload and its diameter is approximately 70 cm. This drone is equipped with a Panasonic

Lumix camera with a resolution of 848 x 480 pixels, a viewing angle of approximately 60◦

and a frame rate of 30 Hz in video mode. The camera can be tilted from 0◦ to 90◦ nadir

angle. The battery allows a flying time up to approximately 30 minutes. The image sequence

is stored on a flash card and compressed as a quick time movie. In addition, the drone

carries an inertial system for flight stabilization and a code based GPS-receiver for automatic

position hold. The drone’s position, low resolution video data of the camera and status data

of the drone will be transmitted to a base station for flight guidance of the operator. We

point out that due to the low weight of the drone it is difficult to steer manually along a

defined flight trajectory. Especially, the drone is highly sensitive to wind changes that cause

high angular accelerations of the camera orientations. As a consequence the images taken by

the camera can be unsharp.

We already mentioned that the proposed algorithms are developed for calibrated cameras
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Figure 5.22: Used hardware. Drone MD 4-200 from Microdrones c© equipped with a Pana-

sonic Lumix video camera.

only. The used camera is a low cost consumer camera with variable focal length. In the video

mode the focal length can be fixed to infinity. For a practical use of the whole system the

calibration of the camera has to be done in a laboratory. First we will analyze the stability of

independent camera calibrations. Therefore, we performed four independent calibrations in

the laboratory on different days. The calibration is done with a radial symmetric model up to

a quadratic term (c. f. McGlone et al. (2004) p. 297ff), where the principal distance c, scale

difference for the principal distance m, principal point xh and yh, shear s and two coefficients

A1 and A2 for radial symmetric polynomial distortion are estimated. Given the parameter

for the calibration we compute a look-up table for every pixel to obtain a direction vector

for observed object points in the camera coordinate system. The average of the four look-up

tables is used as our final calibration. In the figures 5.23 the absolute differences between

the average calibration to the four independent calibrations projected to the image space

using an average principal distance are visualized. In table 5.9 the minimum and maximum

of the error displacements between the average calibration and independent calibrations are

summarized. We can observe that the calibration can be assumed to be stable up to an error

of 0.6 pixel displacement. This non-linear error in the calibration will effect the geometric

reconstruction as a systematic error in an unpredictable manner.
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Figure 5.23: Absolute displacement error in pixel between independent camera calibrations

using the average principal distance.

width height absolut

(min/max) [pel] (min/max) [pel] (min/max) [pel]

A -0.40/0.21 -0.03/0.41 0.00/0.51

B -0.05/0.29 -0.25/0.02 0.00/0.34

C -0.24/0.53 -0.12/0.34 0.00/0.63

D -0.44/0.09 -0.34/-0.02 0.06/0.55

Table 5.9: Minimum and maximum of the absolute displacement error in pixel between

independent camera calibrations.

5.4.2 Flight-test area and reference data

Our real image sequence was acquired by the UAV in our flight-test area shown in figure 5.24,

that is also used as an agriculture-test area. The test area consists of a grid of signalized

control points. The grid is defined in a way, that following the predefined flight path at least

four control points are visible in every image. Therefore, approximate values of the camera

orientation can be computed using a spatial resection. The control point coordinates are



138 CHAPTER 5. EVALUATION OF THE PROPOSED METHODS

Figure 5.24: High altitude image of the flight-test area and control point field in the test area

in a local coordinate system. Additionally the planed camera trajectory is visualized.

measured using a Laser Total Station with an overall accuracy of approximately σ = 1 cm in

all coordinate components.

The overall acquired image sequence consists of multiple photogrammetric strips. A part

of the image sequence consisting of 978 images is taken to perform the test of our algorithm.

The average altitude over ground is approximately Hg = 30 m, the length of the strip is 130

m. Because of the light weight of the drone and the influence of the wind an overall vertical

view cannot be guaranteed. The average flight speed is v ≈ 3ms and the flight time is ≈ 40

seconds.

To evaluate the results of our Kalman filter approach, we perform a bundle adjustment

incorporating all control points visible in the image sequence with known coordinates and all

tracked features. The control points in the images are identified manually by an operator and

are measured by a template matching with subpixel accuracy. We assume a measurement ac-

curacy of all features in the images of σxy = 0.25 [pel]. Furthermore, all image measurements

are corrected due to the nonlinear terms of the camera calibration. In average NX = 30



5.4. REAL EXPERIMENT EVALUATION 139

−100
−50

0
50

100

−100
−50

0
50

100

0

20

40

Figure 5.25: Reference trajectory of the camera orientation of the test image sequence. The

shown camera trajectory consists of every 50th image of the sequence. In red all estimated

object points and in blue all control points are visualized.

features are visible per image. The result of the bundle adjustment is shown in figure 5.25.

The estimated square root of the variance factor is σ̂0 ≈ 1.14.

5.4.3 Kalman filter based results of a real image sequence

As we have shown in section 5.2 the best results of a Kalman filter based approach can be

obtained by using the inverse distance initialization for new object points. Here we compare

the results of the high accuracy bundle adjustment to the Kalman filter results using this

initialization method. The filter is initialized introducing the control points of the first image

with an accuracy of σ = 1 cm. We activate the proposed robustification method to reduce the

effect of outliers. The initial camera orientation can be obtained by a spatial resection using

the visible control points. The object points will be reparameterized from the inverse distance

representation to the Euclidean representation using a roundness measurement threshold of

ΘL = 0.5, c. f. section 4.3.4.3. This reduces the size of the state length significantly. As we

have shown in figure 5.9 on page 117, this threshold can avoid the effect of the bias. Up to

image number n = 200 initial control points are visible. Therefore, the resulting difference

between the bundle adjustment and the Kalman filter based approach shown in figure 5.26

is small. Between image number n = 220 and 240 the camera orientation tilts with a huge

angular acceleration and the image sequence shows blurring effects. Therefore, some feature

tracks are lost and we observe a decrease of the accuracy in the resulting camera orientation.

Between the image number n = 390 and 400 some tracked features are erroneous. This results
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Figure 5.26: Difference between high accuracy bundle solution and Kalman filter based so-

lution. Initialization using inverse distance representation with 30 m distance, reparameter-

ization with a roundness test value of ΘL = 0.5. Left: Kalman filter result for the camera

position parameters Right: Kalman filter result for the camera orientation parameters.
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in an immediate change of the camera orientation. However, we can observe an apparently

continuous drift in the estimated parameters. We suppose, this drift comes from the erroneous

camera calibration and acts as a constant systematic error.

Discussion: In this section we presented our results for a real image sequence. In

opposite to the experiments using a simulated environment additional influences on the results

occur. First, we do not have ground truth data for the camera orientation. Instead, we used

the results of a robust bundle adjustment incorporating high accuracy control points in all

images. Nevertheless, the bundle adjustment is influenced by systematic errors of an imperfect

camera calibration. We are not able to quantify this error. However, the bundle adjustment

incorporate control point coordinates and the influence of the imperfect calibration can be

assumed to be small. In the Kalman filter based approach, the information of the control

points are neglected except for the initial images. We observed a continuous drift in the

estimated camera orientation parameters. Second, gross errors in the feature tracks have a

significant effect to the Kalman filter based estimate. Obviously, our robustification method

is not able to reduce the effect of outliers completely. At present the algorithm does not

have a prefiltering to identify gross errors in the feature tracking. This could be achieved by

verifying the coplanarity constraint or the homography constraint1 in consecutive images (c. f.

section 3.2.2). Third, the real image sequence shows huge angular accelerations. Therefore,

some feature tracks are lost in corresponding images. The associated object points recur

in the following images. An advanced algorithm should reidentify these object points and

continue the feature track. An alternative way is to stabilize the angular camera orientation

by force to the nadir view by a hardware solution.

1The homography constraint can be used in case of small camera location chances or a planar object space.
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Chapter 6

Conclusion and future work

In this thesis the theory and the applicability of a Kalman filter based framework has been

presented that can be used to solve the task of simultaneous localization and mapping using

image sequences only. It has been shown that the reconstruction of the trajectory of a single

calibrated camera using point based features is feasible. Although, Kalman filter based

solutions as an online SLAM approach need to consider additional issues as opposite to full

SLAM approaches such as a bundle adjustment. These issues can be separated into two

different aspects.

First, it has been shown that the continuous enlargement of the state requires an adequate

initialization method for geometric entities. The initialization method has to be taken into

account of the non-Gaussian distribution of the recovery of an object point coordinate for

small disparities in consecutive frames. When neglecting this issue a continuous bias occurs.

A comparison of the results using instant initialization methods and delayed initialization

methods has been shown. It seems that the inverse distance parameterization of new object

points is the best way to overcome the bias effect.

Second, compared to a bundle adjustment the detection of gross errors in the observations

in a Kalman filter based method is more difficult. In case object points are non-stationary,

their identification seems to be apparently impossible without having any access to previous

observations of the object point.

In case of image sequences acquired by an unmanned aerial vehicle the approaches has a

great potential shown by synthetic data. If gross errors can be excluded and systematic errors

from imperfect camera calibration can be minimized the results are comparable with a bundle

adjustment solution. The advantage compared to the bundle adjustment appears, when the
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number of object points is small and the number of images is large. If the application requires

a state solution at any point of time the computational complexity can be significantly reduced

using a Kalman filter based approach. However, in case of real image data Kalman filter based

approaches are extremely sensitive to outliers.

This thesis consists of novel algorithms and methods close to the Kalman filter based

simultaneous localization and mapping task. The first contribution of this work is a general

derivation of the recursive update of the Kalman filter. This derivation is based on implicit

measurement equations. Similar to the derivation of the least square methods based on the

Gauss-Helmert-model (c. f. McGlone et al. (2004) p. 79ff) it has been shown that the classical

iterative non-linear as well as the non-iterative and linear Kalman filter are specializations

of our general Kalman filter. A significant improvement can be expected by using a Kalman

filter based SLAM solution incorporating new geometric entities using this general framework.

Second, a new formulation of a linear prediction for the single camera state model and

the sliding window camera state model has been derived. Here, the prediction of the state

can be computed using matrix vector multiplications only. The angular orientation is defined

by a quaternion representation, so that no singularities can occur. The method is limited to

the case that the angular velocity is small.

The third contribution is a new method to initialize new object points in a delayed manner.

The advantage of this method is that it is not necessary to keep previous camera orientations

inside the state in contrast to other delayed initialization methods. However, it has been

shown in the experiments that this method cannot maintain the consistency of the results.

Forth, a general law to assess the stochastical accuracy of the camera orientation of a

photogrammetric strip has been derived. The law depends on four parameters to describe

different kinds of flight configurations. The law can be considered as a generalization of the

law introduced by Finsterwalder & Hofmann (1964) applied to image sequences. It has been

shown that in image sequences with a small baseline to object distance ratio the law can

predict the achievable accuracy of a photogrammetric strip up to an error of ±50%.

The final major contribution of this work is an analysis of the influence of different ini-

tialization methods for new object points to the Kalman filter based results. The effect of

the bias is still a major challenge using the Kalman filter to solve the SLAM problem.

It has been shown that the analyzed methods have assets and drawbacks concerning

computational complexity and consistency of the results.
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Several main research paths in concatenation of this work are possible. In case the en-

vironment is large the Kalman filter seems to be sensitive to numerical inaccuracy of the

covariance update of the state vector. Advanced methods such as a square root update or

a covariance regularization satisfies numerical stability. Furthermore, it would be very im-

portant to integrate other geometric primitives and constraints between them. The practical

problem to do this is that the observation models and constraints often yield in implicit equa-

tions. In my opinion the most promising approach to incorporate new geometric primitives

for instance lines and planes and constraints between them would be to apply the novel iter-

ative implicit Kalman filter proposed in this thesis. Also the integration of other sensor data

such as GPS and INS is a very interesting topic. The main advantage is that the long term

drift which occurs by systematic errors can be potentially compensated. Although, it must

be studied how these observations have an effect on the inner accuracy of the reconstruction,

especially on the problem of the continuous bias and on the numerical stability of the filter.

Moreover, from a practical point of view the detection of erroneous observation, also known

as the data association problem, would be very important. A major problem faced in this

case is that without the access to past observations, which is usually desired to keep the

memory usage small, the detection of non-stationary objects seems to be impossible. Using

pre-filtering and rating strategies for the observations can possibly improve the robustness

and accuracy of the presented framework. However, further studies are desired regarding to

extended recursive update techniques, incorporate additional sensor data and robustification

methods.
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Appendix A

Appendix

A.1 Angular differentiation of circular motion using quater-

nion

First, lets assume an angle α is a function of time t depends on an initial angle α0, an angular

velocity α̇ and angular acceleration α̈, so

αt = α0 + α̇t+
1
2
α̈t2. (A.1)

Substitute αt into the unit quaternion representation with angle-vector representation we get

q(t) =

 cosαt

sinαtn

 =

 cos α0+α̇t+ 1
2
α̈t2

2

sin α0+α̇t+ 1
2
α̈t2

2 n

 (A.2)

as the quaternion as a function of time. Now lets approximate this quaternion by a Taylor

expansion by

q(t) = q(t0) +
∂qt
∂t

(t− t0) +
1
2
∂2qt
∂t

(t− t0)2 + ... (A.3)

Evaluating equation (A.2) at t0 = 0 and α0 = 0 we get the unit quaternion q(t0) = [1, 0, 0, 0]T.

To get the angular velocity we need to differentiate equation (A.2) with respect to time t,

that

q̇ =
∂q
∂t

=
α̇+ α̈t

2

 − sin α0+α̇t+ 1
2
α̈t2

2

cos α0+α̇t+ 1
2
α̈t2

2 n

 (A.4)

and for the angular acceleration

q̈ =
∂2q
∂t

=
∂q̇
∂t

=
α̈

2

 − sin α0+α̇t+ 1
2
α̈t2

2

cos α0+α̇t+ 1
2
α̈t2

2 n

+
(
α̇+ α̈t

2

)2
 − cos α0+α̇t+ 1

2
α̈t2

2

− sin α0+α̇t+ 1
2
α̈t2

2 n

 (A.5)
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In case the angular velocity α̇ is small and α0 = 0 as well as α̈ = 0, then the quaternion

velocity simplifies to

q̇ ≈

 0
α̇
2n

 (A.6)

In case the angular acceleration α̈ is small and α0 = 0 as well α̇ = 0, then the quaternion

acceleration simplifies to

q̈ ≈ α̈

2

 0

1 · n

+
(
α̈t

2

)2
 −1

0 · n

 (A.7)

≈

 0
α̈
2n

 (A.8)

Now we evaluate equation (A.3) up to the second order and we get

q(t) ≈ q(t0) + q̇t+
1
2
q̈t2 =


1

0

0

0

+

 0
α̇
2n

 t+
1
2

 0
α̈
2n

 t2. (A.9)

From equation (A.9) we can see that it is suitable to representing a small angular velocity

by the vector part only and equivalently a small angular acceleration. Furthermore, a per-

turbation of a small angular velocity by a small angular acceleration can be expressed by

q̇ = q̇0 + q̈t =
α̇0

2
n0 +

α̈

2
nt (A.10)

A rotation represented by a quaternion depending on the time t and only on an angular

velocity can be expressed by

q(q̇, t) =

 1

q̇t

 (A.11)

equivalently for an angular acceleration

q(q̈, t) =

 1
1
2 q̈t

2

 (A.12)
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A.2 Linear dynamic model derivation

Let us assume that we have a uniformly accelerated linear motion in 3d space in the time

interval ∆t. Following classical physics this motion can be described by

T t+1 = T t + Ṫ t∆t+
1
2
T̈ t∆t2 (A.13)

If we differentiate with respect to ∆t we get the velocity

Ṫ t+1 = Ṫ t + T̈ t∆t (A.14)

The other partial derivatives of equation (A.13) with respect to T t, Ṫ t and T̈ t are given by

∂T t+1

∂T t
= I 3 (A.15)

∂T t+1

∂Ṫ t
= ∆tI 3 (A.16)

∂T t+1

∂T̈ t
=

1
2

∆t2I 3 (A.17)

The partial derivatives of equation (A.14) with respect to Ṫ t and T̈ t are given by

∂Ṫ t+1

∂Ṫ t
= I 3 (A.18)

∂Ṫ t+1

∂T̈ t
= ∆tI 3 (A.19)

In some cases it is useful to replace the velocity by Ṫ t = T t − T t−1 and equation (A.13) can

be rewritten as

T t+1 = T t + (T t − T t−1)∆t+
1
2
T̈ t∆t2 (A.20)

and therefore the partial derivatives with respect to T t and T t−1 are given by

∂T t+1

∂T t
= I 3 + ∆tI 3 (A.21)

∂T t+1

∂T t−1
= −∆tI 3. (A.22)

In case of uniformly accelerated linear circular motion in 3d space during the time interval

∆t we can compute the partial derivatives in the same manner. To represent the rotation we

will use quaternions. Similar to the linear motion model in equation (A.13) we can compute

the linear circular motion as

qt+1 = q(q̈t)q(q̇t)qt. (A.23)
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We will assume that the angular velocity q̇t and angular acceleration q̈t are small, so that it is

sufficient to use the vector part only. in this case equation (3.36) can be used to concatenate

two rotations. The rotation around a fixed axis in the time interval ∆t given the angular

velocity and angular acceleration can be computed using quaternion representation simply

as

q(q̇) =

 1

q̇t∆t

 (A.24)

q(q̈) =

 1
1
2 q̈t∆t

2

 . (A.25)

Now using equation (3.31) the linear circular motion in equation (A.23) can be written as

qt+1 = Υ(q(q̈))Υ(q(q̇))qt. (A.26)

Also note that using equation (3.31) this can be conveniently rewritten to extract the desired

vector on the right hand side as follows

qt+1 = Υ(
1
2
q̈t∆t

2)Υ(q̇t∆t)qt (A.27)

= Υ(
1
2
q̈t∆t

2)Ῠ(qt)q(q̇t∆t) (A.28)

= Ῠ(Υ(q̇t∆t)qt)q(
1
2
q̈t∆t

2). (A.29)

The partial derivatives of equation (A.29) w.r.t. qt, q̇t and q̈t are therefore easily obtained as

∂qt+1

∂qt
= Υ(

1
2
q̈t∆t

2)Υ(q̇t∆t) (A.30)

∂qt+1

∂q̇t
= Υ(

1
2
q̈t∆t

2)Ῠ(qt) [03|∆tI 3] (A.31)

∂qt+1

∂q̈t
= Ῠ(Υ(q̇t∆t)qt)

[
03|

1
2

∆t2q̈t

]
. (A.32)

Now we will assume a series of rotations with constant time differences ∆t is given. The

rotational difference between two time steps can be computed as

∆q = qtq−1
t−1. (A.33)
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Assuming a linear circular motion, the rotation at time t + 1 can be obtained according to

equation (A.23) by

qt+1 = q(
1
2
q̈t∆t

2)∆qqt (A.34)

= q(
1
2
q̈t∆t

2)qtq−1
t−1qt (A.35)

= Υ(
1
2
q̈t∆t

2)Υ(qt)Υ(q−1
t−1)qt (A.36)

= Υ(
1
2
q̈t∆t

2)Υ(qt)Ῠ(qt)Vqt−1 (A.37)

= Υ(
1
2
q̈t∆t

2)Ῠ(Ῠ(qt)Vqt−1)qt (A.38)

= Ῠ(Υ(qt)Υ(q−1
t−1)qt)q(

1
2
q̈t∆t

2) (A.39)

The partial derivatives of qt+1 w.r.t. qt−1, q̈ and qt using the chain rule are then given by

∂qt+1

∂qt−1
= Υ(

1
2
q̈t∆t

2)Υ(qt)Ῠ(qt)V (A.40)

∂qt+1

∂q̈t
= Ῠ(Υ(qt)Υ(q−1

t−1)qt)[0|
1
2

∆t2I 3] (A.41)

∂qt+1

∂qt
= Υ(

1
2
q̈t∆t

2)(Υ(qt)Υ(Vqt−1) + Ῠ(Ῠ(qt)Vqt−1)) (A.42)

In some cases the time difference between consecutive images changes. In this case we have

to deal with the time dependent factor denoted as ∆t here. It is given by

∆t =
tt+1 − tt
tt − tt−1

. (A.43)

In case the rotation ∆q is small we can use the concatenation approximation

∆q∆t = U∆t(qtq−1
t−1) = U∆tΥ(qt)Vqt−1 (A.44)

Now using this approximation the new rotation at time t+ 1 can be computed as

qt+1 = Υ(
1
2
q̈t∆t

2)Υ(U∆tΥ(qt)Vqt−1)qt (A.45)

= Υ(
1
2
q̈t∆t

2)Ῠ(qt)U∆tΥ(qt)Vqt−1 (A.46)

= Υ(
1
2
q̈t∆t

2)Ῠ(qt)U∆tῨ(Vqt−1)qt (A.47)

= Ῠ(Υ(U∆tΥ(qt)Vqt−1)qt)q(
1
2
q̈t∆t

2) (A.48)

The derivative w.r.t qt−1 and q̈t is therefore given by

∂qt+1

∂qt−1

= Υ(
1
2
q̈t∆t

2)Ῠ(qt)U∆tΥ(qt)V (A.49)

∂qt+1

∂q̈t
= Ῠ(Υ(U∆tΥ(qt)Vqt−1)qt)[03|

1
2

∆t2I 3]. (A.50)
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The derivative w.r.t. qt using the chain rule is given by

∂qt+1

∂qt
= Υ(

1
2
q̈t∆t

2)(Υ(U∆tΥ(qt)Vqt−1) + Ῠ(qt)U∆tῨ(Vqt−1)). (A.51)

A.3 Uncertainty transfer

Lets assume we have a reference point Xr and a new point Xn close to each other. The

uncertainty of a Euclidean coordinate derived from camera observations can be expressed as

a sum of two independent parts

dXr = dvXr + dcXr (A.52)

dXn = dvXn + dcXn (A.53)

with v as the uncertainty part of the intersection and c as the uncertainty part of the camera

orientation. Furthermore we can assume, that the uncertainty of the new point Xn can be

expressed as the uncertainty of the reference point adding an unknown additional relative

uncertainty.

dXn = dvXr + d∆X (A.54)

This d∆X can be expressed using the difference of equation (A.52) and (A.53)

dXn = dXr + (dvXn + dcXn − (dvXr + dcXr)) (A.55)

Now, lets assume the influence part of the orientation for both points are equal, which is a

sufficient assumption. In this case equation (A.55) simplifies to

dXn = dXr + dvXn − d
v
Xr (A.56)

Now lets rewrite in matrix expression dXr

d∆X

 =

 I I 0

−I 0 I


︸ ︷︷ ︸

A


dvXr

dcXr

dvXn

 (A.57)

and apply the transformation to a Gaussian uncertainty representation which leads to

CXr∆X = A


C
v
Xr 0 0

0 C
c
Xr 0

0 0 C
v
Xn

A
T =

 C
v
Xr + C

c
Xr −C

v
Xn

−C vXn 2C vXn

 =

 CXr −C vXn
−C vXn 2C vXn


(A.58)

Note, that C vXn should be smaller than CXr to guarantee positive semi-definiteness.
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A.4 Accuracy analysis of the general law
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Figure A.1: Approximation error of the four simulated experiments.
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Negative approx. error Positive approx. error

Exp σX σY σZ σω σφ σκ σX σY σZ σω σφ σκ

Fov◦

30 39 27 10 22 11 14 33 21 25 22 41 36

40 40 28 9 25 16 14 31 14 40 17 37 51

50 30 26 11 30 15 14 29 22 34 27 40 45

60 36 34 10 41 24 12 27 1 39 1 9 28

70 26 20 4 25 22 9 24 14 38 17 30 35

80 23 11 6 23 28 13 32 25 33 31 44 29

90 16 11 7 24 25 8 26 19 28 21 38 24

100 12 14 12 15 17 8 25 19 20 21 31 20

110 8 5 7 3 12 5 23 25 29 34 39 28

120 26 18 9 28 36 11 7 21 24 20 14 17

σxy[pel]

0.05 14 12 1 23 15 6 31 20 42 25 46 36

0.1 24 22 7 29 27 10 16 13 21 16 23 23

0.5 20 11 8 22 23 9 22 23 26 23 28 21

1 23 17 9 20 23 7 13 20 25 23 17 20

2 43 24 7 34 44 12 8 11 26 11 11 16

4 34 25 22 27 38 17 15 15 33 12 7 19

8 21 18 9 20 22 7 23 16 34 14 29 27

16 10 10 3 16 17 8 22 26 41 26 35 32

NX [-]

10 62 83 58 87 64 34 25 1 36 3 35 21

15 30 32 29 40 39 20 9 15 24 15 16 18

20 27 25 7 33 32 11 28 16 16 18 40 19

30 16 12 6 20 19 9 26 21 18 28 34 21

35 18 5 4 7 18 4 25 23 31 33 33 28

40 18 18 7 24 18 8 24 16 37 20 33 26

B[m]

0.1 37 23 16 31 40 14 9 11 29 6 4 12

0.5 16 9 8 28 16 8 23 21 29 27 38 41

1 34 29 14 33 24 10 14 15 45 4 21 49

2 10 7 14 26 8 10 27 23 55 24 55 98

4 23 19 16 21 19 9 24 28 72 30 64 140

8 23 14 28 33 23 16 31 33 168 36 58 185

min‖max 62 83 58 87 64 34 33 33 168 36 64 185

Table A.1: Approximation error in percent.
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A.5 Distortion field of the reconstructed object coordinates

in the simulated environment

Figure A.2: Distortion field visualization for the initialization using Euclidean representation.

Color coded distortion of the point field in height direction, arrow field distortion for lateral

and longitudinal component

Figure A.3: Distortion field visualization for the initialization using inverse distance repre-

sentation. Color coded distortion of the point field in height direction, arrow field distortion

for lateral and longitudinal component

Figure A.4: Distortion field visualization for the initialization using stable initialization pro-

cedure. Color coded distortion of the point field in height direction, arrow field distortion for

lateral and longitudinal component
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