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Abstract

The launch of the GRACE mission has generated a broad interest within the geophysical
community in the detection of temporal gravity fields and their applications, e.g. the de-
tection of ice mass loss over Greenland and Antarctica, the hydrological cycle over Amazon
and central Africa and the estimation of sea level rise. However the spatio-temporal resolu-
tion of GRACE solutions is limited by a restricted sensitivity of the metrology system, the
reduced isotropy of the inline leader-follower formation (which mainly manifests itself in a
North-South striped error pattern) and the temporal aliasing of high frequency time variable
geophysical signals into the long time-interval solutions.
When using high quality sensors in future gravity missions, aliasing of the high frequency

(short period) geophysical signals to the lower frequency (longer period) signals is one of the
most challenging obstacles. Two sampling theorems mainly govern the space-time sampling
of a satellite-mission: (i) a Heisenberg-type principle in satellite geodesy which states that the
product of spatial resolution and time resolution is constant, and (ii) the Colombo-Nyquist
rule (CNR), which requires the number of satellite revolutions in the full repeat-cycle to be
equal at least twice the maximum spherical harmonic degree to be detected. The latter rule,
therefore, limits the spatial resolution of the solution.
This study investigates the quality of sub-Nyquist recoveries, i.e. solutions from time inter-

vals shorter than required by CNR, of different orbit configurations and satellite formations.
In particular, the dependence of such quality on the measurement duration and ground-track
patterns is investigated. It is shown that (i) the number of observations with specific coverage
of the Earth by a satellite configuration (as indicated by a modified Colombo-Nyquist rule),
(ii) the mission altitude and (iii) avoidance of large unobserved gaps by satellite ground-track
patterns have the most important effect on the quality of the recoveries. The sub-cycle con-
cept apparently does not play an important role in assessing the quality.
Moreover, the study investigates the modified Colombo-Nyquist rule for two pairs of satel-

lites, where the number of revolutions by both satellite pairs is taken into account. It is also
found that sub-Nyquist recoveries by such double pair scenarios outperform the ones from
single inline satellite missions with twice the size of time intervals. It is indeed expected
that using an inclined satellite mission, together with a near-polar mission, adds East-West
measurement component to the North-South component of the near-polar satellite mission.
Furthermore, the short time interval recoveries suffer less from temporal aliasing of certain
time-variable gravity field components. Consequently, it means that the recovery also bene-
fits from higher time resolution.
The gravity recovery simulations of this study are based on a quick-look tool, developed at

the Institute of Geodesy, University of Stuttgart. The closed-loop simulation tool assumes a
nominal repeat orbit for a satellite mission. Based on the quality assessment of the recov-
eries and the technical concerns with the implementation of formation flights, a near-polar
moderate pendulum formation with an opening angle of less than 10 ◦, approximately 300 km
altitude and almost homogeneous gap evolution is suggested for a next generation of single
pair gravity mission. For double pair satellite missions, a combination of a near-polar inline or
moderate pendulum and a 72 ◦ inclined inline pair is recommended. The suggested optimal
scenarios of this study are selected through the quality assessment of sub-Nyquist gravity

7



Abstract

recoveries of different configurations.
It is also shown that the quality of the sub-Nyquist gravity recoveries can be improved by

employing post processing tools. The post-processing tools of this research study include a
white noise filter, based on EOF+KS-Test analysis and a regularization method which can
handle all kinds of noise. The tools are employed to deal with the poorer quality of short-time
interval recoveries due to the spatial aliasing, although it is almost impossible to remove all
noise without diminishing some of the real signals.
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Zusammenfassung

Die Schwerefeldmission GRACE hat seit ihrem Satellitenstart ein großes Interesse inner-
halb der Geowissenschaftsgemeinde in Bezug auf die Bestimmung zeitlicher Schwerefelder
und deren vielfachen Anwendungen geweckt: die Modellierung des Eismassenschwundes über
Grönland und der Antarktis, die Quantifizierung des Wasserkreislaufs im Amazonas-Becken
und innerhalb Zentralafrikas, oder die Schätzung des Meeresspiegelanstiegs. Die räum-
liche und zeitliche Auflösung von GRACE Feldern ist jedoch durch einige Einflussfaktoren
eingeschränkt. Dazu gehören die begrenzte Sensitivität der Messsysteme und die Nicht-
Isotropie der Leader-Follower-Formation, was sich hauptsächlich als Nord-Süd gestreiftes
Störungsmuster manifestiert. Des Weiteren schleichen sich sogenannte Aliasing-Fehler, verur-
sacht von schnellen zeitvariablen geophysikalischen Gravitationssignalen in die monatlichen
Lösungen ein.
Eine der größten Herausforderungen bei der Anwendung neuer Sensorgenerationen in zukün-

ftige Schwerefeldmissionen besteht darin, das Aliasing kurzperiodischer geophysikalischer Sig-
nale zu begrenzen. Zwei Abtast-Theoreme beschreiben das raumzeitliche Abtastverhalten
einer Satellitenmission: (i) ein Heisenberg-ähnliches Prinzip, welches besagt, dass das Pro-
dukt von räumlicher und zeitlicher Auflösung konstant ist; und (ii) die Colombo-Nyquist
Regel (CNR), welche eine Anzahl von Satellitenumläufen innerhalb des Wiederholungszyk-
lus bedingt, die mindestens dem Doppelten des maximalen Kugelfunktionsgrades entspricht.
Letzteres Theorem begrenzt daher die räumliche Auflösung.
Die vorliegende Studie erforscht die Qualität von sub-Nyquist Schwerefeldlösungen, also von

Lösungen aus Zeitintervallen die kürzer sind als strikt von CNR benötigt, unterschiedlicher
Orbitkonfigurationen und Satellitenformationen. Insbesondere wird die Abhängigkeit dieser
Qualität von dem Beobachtungszeitraum und dem Muster der Satellitenbodenspuren unter-
sucht. Es zeigt sich, dass die Qualität der Schwerefeldlösungen wesentlich von folgenden
Faktoren beeinflusst wird: (i) das raum-zeitliche Abtastverhalten einer Satellitenkonfigura-
tion, ausgedrückt durch eine modifizierte CNR, (ii) die Höhe der Satellitenbahn und (iii) das
Vermeiden von großen unbeobachteten Lücken in der Zeitentwicklung der Bodenspur. Offen-
sichtlich spielt beim Letzteren das sub-cycle Konzept keine bedeutende Rolle.
Darüber hinaus erforscht die Arbeit eine modifizierte Colombo-Nyquist Regel für zwei

Satellitenpaare, bei der die Anzahl der Umläufe beider Satellitenpaare berücksichtigt wird.
Es wird sogar gezeigt, dass sub-Nyquist Ergebnisse zweier Satellitenpaare die Ergebnisse eines
einzelnen Satellitenpaares mit doppelter Messdauer übertreffen. In einer Konfiguration zweier
in-line Satellitenpaare, das eine polar und das andere auf einer geneigten Bahn, stellt man
wie erwartet eine gewisse Ost-West Sensitivität fest. Des Weiteren wird festgestellt, dass
die Schwerefeldlösungen aus kurzen Beobachtungszeiträumen weniger von Aliasing-Fehlern
betroffen sind. Folglich profitieren die Lösungen von einer höheren zeitlichen Auflösung.
Die Schwerefeldsimulationen dieser Arbeit basieren auf einem quick-look Instrument, welches

am Geodätischen Institut, Universität Stuttgart, entwickelt wurde. Das closed-loop Ver-
fahren geht von Satellitenmissionen mit nominalen Wiederholungsbahnen aus. Basierend auf
der Qualitätsbewertung der Schwerefeldlösungen und der technischen Realisierbarkeit von
Formationsflügen empfiehlt sich als potenzielle künftige Schwerefeldmission (in Einzelpaar-
Modus) der Einsatz einer moderaten Pendelformation (mit einem Öffnungswinkel von weniger
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Zusammenfassung

als 10 ◦) auf einer fast-polaren Bahn in etwa 300 km Höhe. Das Wiederholungsmuster sollte
dabei so gewählt werden, dass die Bodenspur sich ohne große Beobachtungslücken entwickelt.
Für Missionen bestehend aus zwei Satellitenpaaren könnte das eine Paar im in-line Modus
oder als moderates Pendel (fast-)polar die Erde umkreisen, das zweite Paar dagegen auf
einer Bahn mit z.B. 72 ◦ Bahnneigung fliegen. Die vorgeschlagenen Optimal-Szenarien dieser
Arbeit stammen aus der Bewertung einer Vielzahl von sub-Nyquist Schwerefeldlösungen un-
terschiedlicher Konfigurationen.
Es wurde ebenso festgestellt, dass die Qualität der sub-Nyquist Schwerefeldlösungen durch

Nachprozessierungsverfahren verbessert werden kann. Methodisch wurde einerseits eine em-
pirische Orthogonalzerlegung (EOF) mit anschließender Kolmogorov-Smirnov (KS) Testanal-
yse eingesetzt, was in der Kombination einen kräftigen Filter zum Unterdrücken von weißem
Rauschen darstellt. Andererseits konnten mittels Regularisierung weitere Rauscharten be-
handelt werden. Die Nachprozessierungswerkzeuge sind teilweise in der Lage, Aliasing-Fehler
zu beseitigen. Die Gefahr besteht nichtsdestotrotz, dass gleichzeitig Signale mitrausgefiltert
werden.
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1 Introduction

1.1 What is Satellite Geodesy?
Helmert (1880) defined geodesy as the science of the measurement and mapping of the Earth’s
surface. Measuring devices are mainly operating within the Earth’s gravity field. Therefore,
most of the geodetic observations are gravity field dependent. That means gravity field
mapping always come with geometric mapping.
Utilizing satellites for mapping and determination of gravity field of the Earth is the subject

of satellite geodesy. Therefore, satellite geodesy mainly deals with the following problems
(Seeber, 2003):

1. Determination of precise global, regional and local three-dimensional positions, e.g. the
establishment of geodetic control;

2. Determination of Earth’s gravity field and functionals of the field such as a precise
geoid;

3. Measurement and modelling of geodynamical phenomena, e.g. polar motion, Earth
rotation.

Dynamic Satellite Geodesy is the application of celestial mechanics to geodesy. In partic-
ular, it describes the satellite orbits under the influence of gravitational forces. That also
provides a tool for gravity field recovery from orbit analysis when we know how gravity dis-
turbances cause orbit perturbations. Therefore, the satellites in dynamic satellite geodesy are
employed as gravity field sensing devices, where the satellites are considered as passive point
masses whose orbit is mostly controlled by the gravity field of the Earth. The problem in
dynamical satellite geodesy can be simplified as follows: Given the orbit from observations,
determine the gravity field. That means the satellite geodesy is within the celestial mechan-
ics. However, when satellite observations are used for solving the geophysical problems, it is
connected to many disciplines like hydrology, meteorology, solid Earth study, oceanography,
etc.

1.2 History of Gravity Measurement by Satellite Missions
After the launch of SPUTNIK-1 in 1957, satellite geodesy became an active field of geodetic
research. The tracking of SPUTNIK-1 provided important information for determining the
oblateness of the Earth which is responsible for the largest difference of the real Earth from
spherical shape.
During the years 1959 – 2000, several techniques and satellites were employed for Earth’s

gravity field determination. Among them were the Doppler tracking from U.S. Navy TRANET
network, Earth-to-Lunar Tracking, satellite altimetry and GPS tracking in the following
decades. During these years, satellite methods with increased observation accuracy were in-
creasingly employed by the surveying community and replaced conventional methods (Seeber,
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1 Introduction

2003).
The launch of the German satellite CHAllenging Minisatellite Payload (CHAMP) in 2000,

managed by German Research Centre for Geosciences (GFZ) and German Aerospace Center
(DLR), opened a new era in modelling the Earth’s gravity field. One of the goals of CHAMP
was to determine of the Earth’s gravity field using a high precision GPS receiver (Reigber et
al., 1999).
In 2002 the satellite pair Gravity Recovery And Climate Experiment (GRACE) was launched.

The GRACE mission aimed for improvement of the gravity field determination using tracking
between the two low satellites (ll-SST), i.e. a tracking pair of satellites in Low Earth Orbit
(LEO) (Figure 1.1). The mission was capable of measuring the time-variable gravity field,
and increased spatial resolution of mass transport measurement inside the Earth system.
The original GRACE mission was designed for five years performance in orbit. However,
the satellite mission provided gravity field measurements beyond the designated lifetime up
to the time of writing this statement, but the batteries failure may shorten lifetime of the
mission at any time. Moreover, the mission may run out fuel and changes its orbit to lower
altitudes due to atmospheric drag forces. The launch of GRACE provided unprecedented
improvement in determining the Earth’s gravity field and the data are vastly used for geo-
physical purposes, among them for hydrological, glaciology and atmospheric studies. The
GRACE mission consists of two identical satellites in near-polar orbit (by inclination of 89 ◦)
that are separated in along-track direction by approximately 220 km. The mission altitude
is approximately 500 km, but due to lack of altitude control, the satellites’ orbit continually
decays by atmospheric drag forces. A K-Band microwave ranging system is employed to mea-
sure the distance change between the two satellites at level of few tenths of micron/second.
The main observable of the GRACE satellite mission is the set of inter-satellite range-rate
measurement. The GPS receivers on the satellites allow for precise orbit determination of the
satellites as well as precise time-tagging of the inter-satellite range-rate measurements (Tap-
ley et al., 2004). Moreover, each spacecraft is equipped with a high precision accelerometer
to measure and remove the effect of all non-conservative forces like atmospheric drag, solar
radiation pressure, Earth radiation pressure which allows to isolate the gravitational motion
of the satellites (Touboul et al., 1999).
The single satellite mission Gravity Field and Steady-State Ocean Circulation (GOCE) was

designed to concentrate on a higher resolution and much more accurate static field model of
the Earth’s gravity field (Drinkwater et al., 2007). The mission was launched in March 2009
by the European Space Agency (ESA) and the first results from the mission showed a great
success in achieving its targets. However, due to its special design, the mission is not able to
determine the time-variable gravity field.

1.3 Limitations of Current Missions

The GRACE satellite mission has provided the time varying gravity field at about 400 km
spatial resolution and monthly time resolution. The satellite GOCE, on the other hand,
provides the static gravity field at spatial scale of 100 km. However, there is still room for
improvement of both static and time variable fields. Figure 1.2 illustrates frames of spatial and
temporal scales covered by the GRACE and GOCE satellite missions together with gravity
field recovery requirements of future gravity missions in different spatial and temporal scales of
Earth’s geophysical processes. It is seen that while some geophysical phenomena like sea level
change is within the provided resolution by GRACE, other phenomena such as ocean tides
and instantaneous or small co-seismic deformation are beyond the capability of GRACE to
detect. Several previous studies (e.g. Loomis et al., 2011) discuss the largest errors associated
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GPS satellites

ll-SST

hl-SST

Earth

Figure 1.1: Measurement principle of GRACE configuration.

with the GRACE mission such as the errors within the microwave ranging instrument, the
accelerometers, attitude control, orbit determination, temporal aliasing due to undersampling
geophysical signals and mis-modelling unwanted signals. Moreover, Bonin et al. (2012) make
a discussion over the poor measurement ability and reliability of high frequency signals for
the short time solutions of GRACE. These errors are obviously the subjects of improvement
in the design of next generation of satellite missions for time-variable gravity field.

1.4 Future Mission Requirements and Optimizing Gravity Field
Recovery

Obviously, it is not possible to determine the full range of spatial and temporal scales of
gravity field by any single satellite mission. However, with the design of future missions, one
can achieve more than what is now provided by GRACE and GOCE. As it has been men-
tioned, not only the design of mission orbit and formation type, but also the improvement in
measuring instrument and the geophysical models (provided by other methods like terrestrial
gravity information) contribute to the final improvement of gravity field recovery.
Regarding the aliasing error by under-sampling, it is very important to consider two main

sampling theorems which govern the space-time sampling of a satellite-mission:

(i) a Heisenberg-type principle in satellite geodesy which states the product of spatial
resolution and time resolution is constant (ESA, 2007; Reubelt et al., 2010);

(ii) the Colombo-Nyquist rule (CNR), which requires the number of satellite revolutions
in the full repeat-cycle to be equal or at least twice the maximum spherical harmonic
degree to be detected (Colombo, 1984).

CNR limits the maximum spherical harmonic degree to detect and consequently the spatial
resolution of the gravity solution. That means the short-time gravity solutions of a satellite
mission with high temporal resolution but with the time-interval shorter than the CNR re-
quirement suffer from insufficient samples in the spatial domain which is then responsible for
significant spatial aliasing. The problem is also caused by inhomogeneous satellite coverage of
the Earth system in short-time intervals. On the other hand, the long-time gravity solutions
with high spatial resolution suffer from low temporal resolution. The trade-off between spa-
tial and temporal resolutions is addressed by a Heisenberg-type principle in satellite geodesy.

13



1 Introduction

Static

Secular

Decadal

Interannual

Seasonal

Sub-seasonal

Diurnal

Semi-diurnal

Instantaneous

10000 1000 100 10 1

10000 1000 100 10 1

spatial
resolution

time
resolution

[km]

[km]

CO-SEISMIC DEFORMATION

VOLCANOS

SOLID EARTH AND OCEAN TIDES

SLOW +
SILENT

EARTHQUAKES

POST -
SEISMIC

DEFORMATION

CORE
MODES

ATMO-
SPHERE

BASIN SCALE
OCEAN FLUX

POLAR ICE
MASS BALANCE

SEA
ICE

SEA LEVEL
CHANGE

MANTLE CONVECTION

TECTONICS

QUASI STATIC
OCEAN CIRCULATION

(SURFACE)

ICE BOTTOM
TOPOGRAPHY

BATHYMETRY

INERTIAL
NAVIGATION

COASTAL
CURRENTS

TOPOGRAPHIC CONTROL

FRONTS

SOIL MOISTURE
RUN OFF

GROUND
WATER

SNOW

HYDROLOGY

ATMO-
SPHERE

HYDROLOGY

OCEAN
BOTTOM

CURRENTS

GLACIAL
ISOSTATIC

ADJUSTMENT

GLOBAL HEIGHT
SYSTEM

CORE
NUTATION

GRACE

GOCE

PLANETS

Higher

resolution

in space

Higher

resolution

in time

H
ig

h
e
r 

 p
re

c
is

io
n

Figure 1.2: Spatial and temporal scales of geophysical processes and gravity recovery require-
ments after GRACE and GOCE (Sneeuw et al., 2005).
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1.4 Future Mission Requirements and Optimizing Gravity Field Recovery

However, the works by Visser et al. (2011) and Weigelt et al. (2012) show the spatial reso-
lution can be improved, not by twice the maximum degree Lmax, but by Lmax itself. That
means one may achieve satisfying gravity solutions in the time-intervals which are shorter
than what is required by CNR.
The Colombo-Nyquist rule can be expressed as follows: When using high quality sensors in

future gravity missions, aliasing of the short period geophysical signals to the longer period
signals is one of the most challenging obstacles for improving the quality of gravity field recov-
ery. In other words, under-sampling of geophysical signals causes aliasing of high frequency
signals to the lower frequencies. The Nyquist sampling rule, in general, implies that for the
geophysical phenomena with the frequencies higher than half of the sampling frequency, the
signals alias to the lower frequencies phenomena. In satellite geodesy, this law is expressed
by Colombo-Nyquist rule (as above). Different strategies have been introduced to deal with
this problem. For example,

(i) more frequent sampling with more than one pair of satellite missions as Bender et al.
(2008) show by employing a second pair of GRACE-like (inline) satellite formation in
an inclined orbit (in addition to the original near-polar inline mission);

(ii) improving the geophysical models by other methods to subtract their effects on the
final solutions for geophysical signals of interest (dealiasing), particularly, dealiasing of
atmosphere, ocean and tides by better modelling to deduce hydrological and ice signals
(e.g. improved non-tidal atmospheric and oceanic de-aliasing for GRACE and SLR
satellites, Flechtner et al., 2010);

(iii) co-estimating the parameters which vary at high frequencies, like estimating spherical
harmonic coefficients which describe the high frequency signals (e.g. estimating low
resolution gravity fields at short time intervals to reduce temporal aliasing errors, Wiese
et al., 2011a).

Another important problem associated with a GRACE-like formation is the correlation be-
tween coefficients of a specific order and the same parity of degree which leads to longitudinal
(North-South) striping in the gravity solutions. This problem is due to the fact that GRACE-
like formation scenarios are not sensitive to the East-West variations of the gravity field. The
difficulty arises when we want to separate the correlated coefficients in the estimation process.
Different techniques are introduced by several studies, categorized to:

(i) the methods which are independent of outside information and based on empirical filters
(Swenson and Wahr, 2006; Chambers, 2006; Chen et al., 2007; Schrama et al., 2007;
Wouters and Schrama, 2007; Davis et al., 2008; Duan et al., 2009);

(ii) the methods which use the error-covariance information (Koch and Kusche, 2002; Kusche,
2007; Klees et al., 2008; Save, 2009; Lorenz, 2009; Kurtenbach, 2011).

There are other sources of errors associated with the quality of gravity recoveries. How-
ever, even for the current GRACE, the error sources are not completely understood (Visser
et al., 2010). By simulation tools, one can investigate the effect of individual error sources
separately, although it can be just an approximation of reality. Here, a very brief discussion
of two of these error sources is given.
The K-band microwave ranging instrument in GRACE mission measures the inter-satellite

baseline distances to the micrometer level which makes a limit in the spatial resolution of
gravity recoveries. Bender (1992); Colombo and Chao (1997); Bender et al. (2003); Aguirre-
Martinez and Sneeuw (2002) discuss replacement of the microwave ranging instrument with
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a laser interferometer which allows to measure the inter-satellite distances with higher accu-
racy. By the replacement, the expected improvement in sensor precision is approximately 3
orders of magnitude which is, then, in nanometer level.
Another limit of GRACE mission performance is the use of accelerometers to measure the

non-gravitational forces. In contrast, the GOCE mission takes advantage of single-axis drag-
free control by using a shielded proof mass as a reference point which can be employed for the
inter-satellite measurements. The mission accelerometry senses drag forces and compensates
them by employing electric propulsion. The proof mass acceleration noise of GOCE is lower
than the noise level of an accelerometer. That is because the uncertainty associated with ac-
celerometer scale factor is avoided. The GOCE mission successfully implemented single-axis
drag-free control (Drinkwater et al., 2007). Further developments in drag-free system may
allow us to benefit from better sensitivity of short wavelength features of the gravity field
by flying the spacecraft in lower altitudes (Aguirre-Martinez and Sneeuw, 2002). However,
flying at lower altitudes causes drag forces to increase exponentially which limits the lifetime
of the mission. This fact should also be considered when formation flights for future missions
are designed. As an example, the GRACE mission was originally designed for 5 years in oper-
ation at an altitude of 480 km, while GOCE is expected to be in operation for approximately
2 years at its orbit around 255 km.
Finally, it should also be mentioned that some previous studies (Sharifi et al., 2007; Wiese

et al., 2009; Elsaka, 2010; ESA, 2011) show that alternative formations like Pendulum,
Cartwheel, LISA, ... which measure other components than only the along-track GRACE
measurement component improve the quality of the gravity recoveries. Moreover, dealing
with the Heisenberg-type principle in satellite geodesy, Bender et al. (2008) suggests that
employing two pairs of satellites, one pair in a near-polar orbit and the other in a lower
inclined orbit, improves the quality of recoveries of the time-variable gravity field in both
spatial and temporal domains. A range of parameters’ choices for the dual satellite missions
are also suggested by Wiese et al. (2011b) for the mission design. Obviously, these studies
should also be integrated to the work of searching for the optimal solutions of future gravity
satellite missions. Moreover, one important issue which should be considered in orbit design
is the coverage pattern of satellite mission i.e. the distribution of ground-tracks. It is ex-
pected that the mission scenarios with different ground-track distributions result in different
spatial resolutions of gravity recoveries.
Clearly, from the viewpoint of orbit and formation flight design, it is desirable to have the

best possible resolution in time and space domains, for example by employing more pairs
of satellites in lower altitudes than GRACE. However, the technical problems associated
with some of the formations as well as costs of those scenarios limit the search space to the
formation flights which are optimal in all the involving areas.

1.5 Overview of the Thesis

The purpose of this research is to assess the quality of short-time (high temporal resolutions)
gravity recoveries, when the number of samples is smaller than required by the Colombo-
Nyquist Rule. Although Kurtenbach (2011) explains methods to achieve even daily solution
by help of Kalman filter and external signal information, this work mostly searches for optimal
satellite configurations and formation flights for sub-Nyquist time interval solutions. Thus,
the sampling issue by different scenarios is at the center of attention here. A quick-look
software is employed in closed loop simulations of different scenarios and the effect of orbital
coverage by given satellite configurations is studied as well. Furthermore, the improvement of
gravity recovery quality by employing more than one satellite mission and alternative forma-
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tions is investigated. Afterwards, Empirical Orthogonal Functions (EOF) analysis together
with Kolmogorov-Smirnov test (KS-Test) for white noise identification and filtering as well as
regularization are exploited as post-processing tools to handle the spatial resolution decrease
of retrieved fields. In addition, EOF analysis is used as a correlation analysis tool for quality
assessment of the retrieved gravity fields by different mission scenarios.
This study assumes the use of a laser interferometry tracking system for inter-satellite

distance measurement, and does neither consider non-gravitational forces nor gravitational
forces by third body objects (Sun, Moon and the planets). Furthermore, only the temporal
aliasing effect of geophysical models by different orbit configurations, formation flights and
different time-interval gravity solutions as well as the effect of white noise on the solutions
are investigated. The aliasing effects in a colored noise environment is not included in this
study.
A short description for each of the remaining six chapters is provided as follows:

• Chapter 2 provides an overview of mathematical background and basis needed for
description of Earth’s gravity field. The Earth’s potential field is described in terms of
spherical harmonic coefficients. Moreover, the relevant properties of spherical harmonics
are briefly discussed.

• Chapter 3 presents the basics of satellite geodesy. The chapter contains a brief overview
of reference systems, Earth rotation, Linear Perturbation Theory (LPT), Hill’s Equa-
tions of satellite motion and the determination of the Earth’s gravity field from satellite
orbit. A trade-off between spatial and temporal resolutions by satellite missions in terms
of the fundamental sampling theorems and the sub-cycle concept are briefly discussed.

• Chapter 4 starts with an overview of gravitational forces acting on a satellite and the
time-variable gravity field models used in this study. The important non-gravitational
forces are also briefly mentioned. Two tools, an orbit integration software and a quick-
look simulation tool, which are employed for simulating the orbits of satellite mission
scenarios in the time-variable Earth’s gravity forces are introduced. A comparison of
the results by the orbit simulation softwares is then given. Moreover, a regularization
method in data inversion for gravity solution is introduced in this chapter. The chap-
ter also provides a mathematical overview of Empirical Orthogonal Functions (EOF)
analysis together with Kolmogorov-Smirnov test (KS-Test) as a post-processing tool
for dealing with white noise. Furthermore, a brief discussion over the use of EOF as
a correlation analysis tool for comparison of the input and output of the closed loop
simulation of this study is provided.

• Chapter 5 This chapter provides a short discussion over satellite orbit design for future
satellite mission scenarios. The Earth coverage by satellite ground-tracks of different
single pair inline missions and the scheme design of alternative formations and double
pair scenarios are briefly discussed.

• Chapter 6 deals with assessment of quality of sub-Nyquist gravity field recovery of dif-
ferent satellite orbit configurations and formation flights. In this chapter, the quality of
gravity solutions of the time-intervals with the number of satellite revolutions below the
required number by Colombo-Nyquist rule is investigated. Furthermore, three satellite
mission scenarios with near-optimal gravity solutions in terms of spatial and temporal
resolutions are chosen and then subjected to the post-processing tools.

• Chapter 7 contains a brief summary and conclusion of the dissertation. Recommenda-
tions for further research are also provided.
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2 The Earth’s Gravitational Field

This chapter provides an overview of the mathematical background needed for a description
of Earth’s gravity field. The Earth’s potential field is described in terms of spherical harmonic
coefficients. Moreover, some important properties of spherical harmonics are briefly discussed.

2.1 Potential Theory
According to Newton’s universal law of gravitation, the attraction force between two masses
m1 and m2 at a distance r = r2 − r1 from each other is

F = −Gm1m2
r2 − r1
‖r2 − r1‖3

(2.1)

where G is the universal gravitational constant with the value (6672± 4)× 10−14 m3s−2kg−1.
By combining the Equation (2.1) and Newton’s second law F = ma, one can find the accel-
eration of the particle m2 under the attraction force by particle m1 by

a = −Gm1
r2 − r1
‖r2 − r1‖3

(2.2)

The acceleration a is called the gravitational field which is described here by g(r). Because
gravitation is a conservative force, i.e. the work done by gravitational field from one position
to another is path-independent, the gravitational force vector can be written as the gradient
vector of a scalar potential function V :

g(r) = ∇V (r) (2.3)

With a mass distribution over a body Q, the gravitational force function at point P can
be obtained as an integral over the total volume v with a vector length l and a continuous
density function ρ(rQ):

g(rP ) = −G
∫∫∫
v

ρ(rQ) l
l3PQ

dv (2.4)

Therefore, the continuous gravitational potential V over the whole space is obtained by

V (r) = G

∫∫∫
v

ρ(rQ)1
l
dv (2.5)

The formula implies that the potential at infinity gets zero value.

2.2 Earth’s Potential in terms of Spherical Harmonics
The total force on a body at rest on the surface of the Earth is the vectorial summation
of attractive gravitational force and the centrifugal force coming from the Earth’s rotation.
This summation is called gravity.
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Figure 2.1: Spherical coordinates representation.

The centrifugal potential which is due to centrifugal force is not difficult to handle by an
analytic function. Then, the gravitational potential, V , is the most difficult part which needs
more attention. Considering this fact that the gravitational potential is a harmonic func-
tion outside an attracting mass, we can then expand the function into a series of spherical
harmonics. This spectral way of representation of the potential by spherical harmonics is
advantageous for many purposes in geodesy and geophysics.

The gravitational potential, V , of a point mass outside the Earth’s surface is the solution
to Laplace’s equation (Hofmann-Wellenhof and Moritz, 2006):

∇2V = ∂2V

∂x2 + ∂2V

∂y2 + ∂2V

∂z2 = 0 (2.6)

The equation above is in Cartesian coordinates which is not very convenient when dealing
with the Earth’s potential. A more natural system of coordinates are the spherical coordinates
with the following conversion to Cartesian coordinates:

xy
z

 =

r sin θ cosλ
r sin θ sinλ
r cos θ

 (2.7)

where r is the distance between the center of mass of the Earth to the point mass, θ is the
colatitude and λ is the longitude of the point mass in spherical coordinates (Figure 2.1).
Therefore, the Laplace equation in the spherical coordinates is obtained as follows

∇2V = 1
r2

∂

∂r

(
r2∂V

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂V

∂θ

)
+ 1
r2 sin2 θ

∂2V

∂λ2 = 0 (2.8)

Using “separation of variables” method for solving the Laplace equation, the gravitational
potential is written in the following form

V = R(r)Θ(θ)Λ(λ) (2.9)
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2.3 Normal Field

After many mathematical steps, the gravitational potential can be determined as

V (r, θ, λ) = GM

RE

∞∑
l=0

(
RE
r

)l+1 l∑
m=0

Plm(cos θ)(Clm cosmλ+ Slm sinmλ) (2.10)

where RE is the Earth’s radius, G is the universal gravitational constant, M is the Earth’s
mass, Plm(cos θ) are the associated Legendre functions and Clm and Slm are the spherical
harmonic coefficients with l and m degree and order of the coefficients. The dimensioning of
the equation is performed by the constant factor GM/RE.
Leaving out the radial part in (2.10) gives the potential at the surface. For reasons of com-

pactness, the gravitational potential is usually written in terms of surface spherical harmonic
Ylm(θ, λ) of degree l and order m as follows:

V (r, θ, λ) = GM

RE

∞∑
l=0

(
RE
r

)l+1 l∑
m=0

KlmYlm(θ, λ) (2.11)

where Klm are spherical harmonic coefficients, corresponding to Ylm(θ, λ). The surface spher-
ical harmonic Ylm(θ, λ) is only a function of the angles θ and λ. The radial part is, then,
called solid spherical harmonics.
Surface spherical harmonics are conventionally described in different categories according

to the way they divide the Earth. Cosines and sines of wave number m have 2m regularly
spaced zeros. On the other hand, the Legendre function Plm(cos θ) exhibits (l − m) zero
crossings in a pattern which is close to equi-angular, but not fully regular. However, the
sign changes of any Ylm(θ, λ) in both directions tile the Earth in a chequer board pattern of
(l −m+ 1)× 2m pieces (Figure 2.2). The following classification is then applied (Hofmann-
Wellenhof and Moritz, 2006; Sneeuw, 2006a):

• m = 0: Zonal spherical harmonics - In the case m = 0, the sine-part is zero, that
means the coefficients Sl,0 do not exist. Furthermore, with the condition of m = 0,
the cosine-part equals 1, i.e. there is no variation, but with Pl,0 we get (l + 1) latitude
bands which are called zones.

• l = m: Sectorial spherical harmonics - With this condition, 2l sign changes occur in
longitude direction, but there is no change in direction of the latitudes. The Earth is
divided in so-called sectors which are longitude bands.

• l 6= m and m 6= 0: Tesseral spherical harmonics - By this condition, the Earth gets a
pattern of tiles with alternative sign. These functions are called tesseral.

2.3 Normal Field

Geodetic observables are functions of geometry (r) and the gravity field (W ) of the Earth:

f = f(r,W ) (2.12)

A Taylor series with truncation after the linear term is employed to provide a linear obser-
vation equation of (2.12). In order to perform this linearization a rotationally symmetric
ellipsoid is used as a proper approximation. The geoid which is a representation of Earth’s
physical shape, deviates only less than 100 m from this ellipsoid.
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2 The Earth’s Gravitational Field

Figure 2.2: Schematic representation of some examples of surface spherical harmonics (Cour-
tesy: Wikipedia).

The potential and the gravity field with that ellipsoid are called normal potential and nor-
mal gravity (Hofmann-Wellenhof and Moritz, 2006). The actual gravity potential W , then,
is described by the following linearization:

W = U + T (2.13)

where W is the full gravity potential, U is the normal potential and T is the disturbing
potential. To use a standard global normal field for everyone, International Association of
Geodesy (IAG) has introduced number of commonly accepted Geodetic Reference System
(GRS) over the last century. Tabel 2.1 shows the parameters of GRS30, GRS67 and the
current GRS80 which has been adopted by many global and regional systems and datums.
For example, the WGS84 uses the parameters from GRS80 with some small changes. In this
table, a is the semi-major axis of the ellipsoid, f is ellipsoid flattening, GM0 is the Earth’s
gravitational constant and ω is the Earth rotation rate. The flattening coefficient is given by

f = a− b
a

(2.14)

where a and b are respectively the semi-major (equatorial radius) and semi-minor (polar ra-
dius) axes of the ellipsoid.

The geometry of the ellipsoid is determined by the semi-major axis, a, and the flattening,
f , for respectively size and shape of the ellipsoid. The physical field (here: normal gravity)
is described by the geocentric gravitational constant, GM0, and the Earth rotation rate, ω.
These 4 parameters define the normal field completely, although any other set of 4 indepen-
dent parameters would do the same. For instance, GRS80 uses the dynamical form factor J2
instead of geometric factor f .
The normal potential has the following properties (Hofmann-Wellenhof and Moritz, 2006;
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2.4 Geoid

Table 2.1: Basic parameters of normal fields

GRS30 GRS67 GRS80
a [m] 6378388 6378160 6378137
f−1 297 298.247167 298.257222

GM0 [1014 m3 s−2] 3.986329 3.986030 3.986005
ω [10−5 rad s−1] 7.2921151 7.2921151467 7.292115

Sneeuw, 2006a):

• it is rotationally symmetric (zonal)

• it has equatorial symmetry,

• it is constant on the ellipsoid.

The last property defines the rotating Earth ellipsoid to be an equipotential surface or level
surface.

2.4 Geoid
The geoid is defined as a surface of constant gravity potential energy coinciding with the mean
sea level. The geoid height, N , is then defined with respect to a reference ellipsoid (Figure 2.3).
The disturbing potential, T , is defined as the difference between the actual potential on the
geoid, W , and the normal potential, U , associated with the reference ellipsoid (Torge, 2001):

T = W − U (2.15)

After some mathematical calculations and approximation, we obtain

T = GM0
RE

∞∑
l=2

l∑
m=0

(
RE
r

)l+1
P̄lm(cos θ)(C̄∗lm cosmλ+ S̄∗lm sinmλ) (2.16)

where
C̄∗lm = C̄lm − c̄lm
S̄∗lm = S̄lm − s̄lm

and P̄lm, C̄lm and S̄lm are fully normalized associated Legendre functions and fully normalized
potential coefficients (Torge, 2001):

P̄lm(cos θ) =
[(2l + 1)(l −m)!

(l +m)!

]1/2
Plm(cos θ)

{
C̄lm
S̄lm

}
=
[ (l +m)!

(2l + 1)(l −m)!

]1/2{
Clm
Slm

}

Please note that c̄lm and s̄lm are the coefficients associated to normal potential, U , while C̄lm
and S̄lm are associated to full gravity potential, W . Moreover, the Equation (2.16) assumes
that the origin of the coordinate system is located at the Earth’s center of mass, therefore
all terms with l = 1 are zero.
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N

Figure 2.3: Schematic representation of reference ellipsoid and geoid, and definition of geoid
height N .

The geoid height, N , is calculated from the disturbing potential (Torge, 2001):

N = T

γ
(2.17)

where γ = GM
r2 . The γ definition, here, uses a spherical approximation for the Earth, whereas

γ in reality is taken from the reference ellipsoid.
Combining the equations above provides the geoid height in terms of spherical harmonics

which is also a function of time t:

N(t) = RE

∞∑
l=2

l∑
m=0

P̄lm(cos θ)
(
C̄∗lm(t) cosmλ+ S̄∗lm(t) sinmλ

)
(2.18)

The gravitational signal change in terms of geoid height (from one time epoch to another
epoch) is therefore determined as follows

∆N = RE

∞∑
l=2

l∑
m=0

P̄lm(cos θ)(∆C̄lm cosmλ+ ∆S̄lm sinmλ) (2.19)

where ∆C̄lm and ∆S̄lm are the coefficients change in time, here. Since the normal field
difference out from one time to the next time, its denotation has dropped. The summation
to infinity is substituted by some finite maximum degree lmax in practice.

2.5 Surface Mass Density

It is common to express the Earth’s gravity field changes in terms of surface mass density. As-
suming the geoid change is caused by density redistribution ∆ρ(r, θ, λ) in a layer of thickness
H of Earth’s surface, the surface density change, ∆σ, is defined as (Wahr et al., 1998)

∆σ(θ, λ) =
∫

layer
∆ρ(r, θ, λ)dr (2.20)

For a gravity satellite missions such as GRACE, this layer is on the order of 10 − 15 km,
which is thick enough to include the significant mass changes in hydrological storage, ice caps,
atmosphere, oceans and solid Earth.
The surface density change can be determined in terms of Legendre functions and spherical

harmonics (Wahr et al., 1998)

∆σ(θ, λ) = REρE
3

∞∑
l=0

l∑
m=0

2l + 1
1 + kn

P̄lm(cos θ)(∆C̄lm cosmλ+ ∆S̄lm sinmλ) (2.21)
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where ρE is the Earth’s average density and kn are the elastic Love numbers as computed by
Han and Wahr (1995), describing the solid Earth deformation to a load.
The Equivalent Water Height (EWH) is calculated by ∆σ/ρw with ρw as the water density

(kg/m3). Note that in (2.21), the elastic response of the Earth deformation to the load is
considered. The equation also assumes that (lmax + 2)H/RE << 1.

2.6 Geoid Degree Error
The degree variance of the normalized potential coefficients is defined as

σ2
l =

l∑
m=0

(C̄2
lm + S̄2

lm) (2.22)

The degree RMS is then defined by

σl =
(

1
2l + 1

l∑
m=0

(C̄2
lm + S̄2

lm)
)1/2

(2.23)

Applying the definitions to the signal difference, the degree difference variance and the
degree difference RMS are calculated as (Kim, 2000)

σ2
l (∆) =

l∑
m=0

(∆C̄2
lm + ∆S̄2

lm) (2.24)

σl(∆) =
(

1
2l + 1

l∑
m=0

(∆C̄2
lm + ∆S̄2

lm)
)1/2

(2.25)

with
∆C̄lm = (C̄lm)estimate − (C̄lm)truth

∆S̄lm = (S̄lm)estimate − (S̄lm)truth

Obviously, in the equation above, the truth can not be known in reality. However, in the
frame of closed-loop simulation of this study, the input geophysical models to the simulations
are considered as truth.

The geoid degree difference variance is given by multiplying the degree difference variance
of Equation (2.24) by the square of the Earth’s radius (Torge, 2001)

σ2
l (∆N) = R2

Eσ
2
l (∆) = R2

E

l∑
m=0

(∆C̄2
lm + ∆S̄2

lm) (2.26)

The geoid degree difference is then defined as

∆Nl =
(
σ2
l (∆N)

)1/2
= RE

(
l∑

m=0
(∆C̄2

lm + ∆S̄2
lm)
)1/2

(2.27)

The Equation (2.27) provides the error as a function of order.
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3 Sampling the Earth’s Gravity Field from
Satellite Orbit

This chapter provides the basics of satellite geodesy. The chapter contains a brief overview
of reference systems, Earth rotation, Linear Perturbation Theory (LPT), Hill’s Equations
of satellite motion and the determination of the Earth’s gravity field from satellite orbit.
A trade-off between spatial and temporal resolutions by satellite missions in terms of the
fundamental sampling theorems and the sub-cycle concept are briefly discussed.

3.1 Reference Systems
3.1.1 International Earth Rotation and Reference Systems Service (IERS)
The International Earth Rotation and Reference Systems Service (IERS), initiated in 1987,
is concerned with the maintenance of the IERS Reference System. Different space geodetic
techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR),
Lunar Laser Ranging (LLR) and Global Positioning System (GPS) are employed for com-
putation of the Earth rotation parameters. In the Central Bureau, the information from
different Analysis Centers and different techniques are then combined to provide the regular
updates of the IERS Reference System (Seeber, 2003).
The IERS Reference System includes:

• IERS Standards, a set of models and parameters, which are used by the Analysis Centers

• the International Celestial Reference Frame (ICRF)

• the International Terrestrial Reference Frame (ITRF)

The ICRF is realized by a catalog of compact extragalactical radio sources. The ITRF is
realized by a set of terrestrial station coordinates and velocities.
The definitions of Celestial and Terrestrial Reference Frames are based on realization of
Celestial and Terrestrial Reference Systems.

Celestial Reference System

The small motions of the rotation axis of the Earth are described as the sum of following
components

• astronomical precession and nutation

• polar motion

The direction of Celestial Ephemeris Pole (CEP) axis is computed from the theory of nutation
and precession. The origin of International Celestial Reference System (ICRS) is placed at
the barycenter of the solar system. The orientations of ICRS axes are then defined as the
following axes at epoch J2000.0

• the CEP
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• the equinox

• perpendicular to the former two axes, completing a Cartesian coordinate system

The ICRF is a realization of the ICRS including astronomical coordinates of about 200
extragalactical radio sources at the epoch J2000.0. The transformation from the ICRF to a
system with CEP as its third axis is given by the theory of nutation and precession.

Terrestrial Reference System

Due to the movement of CEP with respect to the surface of the Earth, it is also favorable to
adopt a coordinate system which is fixed to the Earth. The International Terrestrial Reference
System (ITRS) employs some definitions to set a fixed coordinate system with respect to the
Earth. The Conventional Inertial Pole (CIO) at the epoch 1903.0 is determined by the mean
direction of the rotation axis of the Earth by five International Latitude Service stations in
the period 1900.0 to 1906.0. The ITRS is then defined with its origin at the Earth’s geocenter.
The directions of ITRS axes are defined as

• the CIO as the Z-axis

• the 1903.0 meridian of Greenwich as the X-axis

• the Y -axis perpendicular to the former two axis which completes a Cartesian coordinate
system

The ITRF is then a realization of the ITRS by the Cartesian coordinates and velocities of
globally distributed tracking stations.
The transformation between the ITRF and ICRF is given by the pole coordinates xp, yp

and nutation and precession parameters ∆ψ, ∆ε, ζ, ϑ and z.

Other Reference Systems

Several other terrestrial reference systems rather than ITRF are in use. One of the most
important global systems is WGS84 which is maintained by the US Department of Defense
(DoD) and is the reference system of the GPS system. The WGS84 is defined by adopting
Cartesian coordinates of ten DoD GPS Monitoring Stations derived from Doppler observa-
tions on these sites. The system is realized by the ephemerides of the GPS satellites.
For many applications, ellipsoidal coordinate systems are more convenient to use than the

Cartesian systems. The ellipsoidal reference systems can be divided in two main categories (i)
global and (ii) local ellipsoidal reference systems which approximate the Earth respectively
as a whole and a local ellipsoids.

3.1.2 Rotation of the Earth
The orientation of Earth’s rotation axis is changed by the gravitational torques of the Sun,
Moon and the planets on the Earth’s equatorial bulge. These changes are called precession
and nutation and can be predicted with a very high accuracy. There is also a small change of
Earth’s rotation axis with respect to its crust. This small movement is called polar motion.
The general precession is a combined effect of two components

• the Luni-solar precession which is the circular motion of the celestial pole with a period
of 25 800 years and an amplitude equal to the obliquity of the ecliptic of 23.5 ◦. The
Luni-solar precession causes a westerly movement of the equinox of about 50.3 ′′ per
year.
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• the Planetary precession which consists of a 0.5 ◦ per year rotation of the ecliptic re-
sulting in a easterly motion of the equinox by about 12.5 ′′ per century and a decrease
of the obliquity of the ecliptic by about 47 ′′ per century.

Nutation is the short periodic motion of the pole, superimposed on the precession with
oscillations of 1 day to the main period of 18.6 years and a maximum amplitude of 9.2 ′′.
In addition to the movement of the Earth’s rotation axis in space, the rotation axis has

an additional variation with respect to the Earth’s crust. This motion is primarily caused
by the elastic properties of the Earth and the exchange of angular momentum between the
solid Earth, the oceans and the atmosphere. This variation is called polar motion and is the
motion of the true celestial pole (as defined by the models of precession and nutation) relative
to the z-axis of a conventionally chosen terrestrial reference system. The motion consists of
a free and forced oscillations. The free oscillation is counterclockwise with a period of 430
days, which is called Chandler period, and an amplitude of 3 − 6 m. The forced component
also consists of two parts: (i) a diurnal period part which is excited by tidal forces and has
an amplitude of one order of magnitude smaller than the free oscillation, and (ii) an annual
period part which is excited by the annual changes in the atmosphere and has an amplitude
of about the amplitude of the free oscillation.
It should be mentioned that since the nutation and polar motion cannot be predicted by

the models, space geodetic observation techniques are employed to determine them.

3.1.3 Transformation between Reference Frames
The transformation from the Cartesian coordinates referred to the Celestial Reference Frame
at epoch ti to the Cartesian coordinates referred to the Terrestrial Reference Frame at epoch
tj reads as (Seeber, 2003)xy

z


TRFtj

= S(xp, yp,GAST)N(ε,−∆ψ,−ε−∆ε)P(−ζ, ϑ,−z)

xy
z


CRFti

(3.1)

Here, a brief discussion of the rotation matrices S, N and P is given.

Precession Transformation

The transformation between the mean celestial reference positions at epoch ti in days since
J2000.0 (1 January 2000 12:00) to the mean celestial positions at epoch tj is performed by
the following rotation matrices

P(−ζ, ϑ,−z) = Rz(−z)Ry(ϑ)Rz(−ζ) (3.2)

where Ry and Rz are respectively the rotation matrices around Y and Z axis.
The three precession angles ζ, ϑ and z read as (McCarthy and Petit, 2004)

ζ = 2.5976176 ′′ + 2306.0809506 ′′ T + 0.3019015 ′′ T 2 + 0.0179663 ′′ T 3

−0.0000327 ′′ T 4 − 0.0000002 ′′ T 5,

ϑ = 2004.1917476 ′′ T − 0.4269353 ′′ T 2 − 0.0418251 ′′ T 3 − 0.0000601 ′′ T 4

−0.0000001 ′′ T 5,

z = −2.5976176 ′′ + 2306.0803226 ′′ T + 1.094779 ′′ T 2 + 0.0182273 ′′ T 3

+0.000047 ′′ T 4 − 0.0000003 ′′ T 5
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3 Sampling the Earth’s Gravity Field from Satellite Orbit

where
T = (tj − ti)/365 25.0

Nutation Transformation

The transformation from the mean celestial reference positions at the epoch t to the instan-
taneous true celestial positions using the nutation matrix is as

N(ε,−∆ψ,−ε−∆ε) = Rx(−ε−∆ε)Rz(−∆ψ)Rx(ε) (3.3)

where Rx, Ry and Rz are respectively the rotation matrices around X, Y and Z axes, ε is
the obliquity of the ecliptic, ∆ε is the nutation in obliquity and ∆ψ is nutation in longitude.
The obliquity of ecliptic ε at epoch t representing the rotation angle from the ecliptic system
to the equator system is computed through

ε = 23 ◦ 26 ′ 21.448 ′′ − 46.815 ′′ T − 0.00059 ′′ T 2 + 0.001813 ′′ T 3

∆ψ and ∆ε can be computed based on the International Astronomical Union (IAU) precession-
nutation model. The first terms are

∆ψ = (−17.1996 ′′ − 0.01742 ′′ T ) sin(Ω) + (0.2062 ′′ + 0.00002 ′′ T ) sin(2Ω) + ...,

∆ε = (9.2025 ′′ + 0.00089 ′′ T ) cos(Ω) + (−0.0895 ′′ + 0.00005 ′′ T ) cos(2Ω) + ...

where Ω is the mean ecliptic longitude of the lunar ascending node. McCarthy and Petit
(2004) provides the complete series terms of ∆ψ and ∆ε.

Earth Orientation Transformation

The transformation from true celestial to the conventional terrestrial system including the
Earth’s rotation and polar motion at same epoch is computed as

S(xp, yp,GAST) = Ry(−xp)Rx(−yp)Rz(GAST) (3.4)

with GAST the Greenwich Apparent (true) Sidereal Time.
The rotation matrices for the Equation 3.4 read as

S(xp, yp,GAST) =

 1 0 xp
0 1 0
−xp 0 1


 1 0 0

0 1 −yp
0 yp 1


 cos(GAST) sin(GAST) 0
− sin(GAST) cos(GAST) 0

0 0 1


(3.5)

3.2 Theory of Satellite Motion

A satellite, revolving around a perfect sphere, would move on a perfect elliptical Kepler orbit.
However, since the Earth is not spherically symmetrical and is not the only force acting on
the satellite, the true satellite orbit differs from the ideal Keplerian motion. Therefore, the
satellite orbit observations provide information about the satellite orbit perturbation and
consequently the information over the Earth’s disturbing potential. The relation between
orbital perturbation and disturbing potential can be derived by different methods. Two
widely used methods in celestial mechanics are respectively based on the Kaula’s solution of
Lagrange Planetary Equations (LPE) and the Hill’s Equations (HE) (Schrama, 1989).
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3.2 Theory of Satellite Motion

3.2.1 Lagrange Planetary Equations (LPE)

Considering only the gravitational forces on a satellite in orbit, the equation of motion with
disturbing potential T in Cartesian coordinates can be expressed as

r̈ = ∇GM
r

+∇T (3.6)

By transforming the position r and velocity ṙ of the satellite into Keplerian elements, the
time derivative Keplerian elements are derived (Kaula, 1966):

ȧ = 2
na

∂T

∂M
(3.7a)

ė = 1− e2

na2e

∂T

∂M
−
√

1− e2

na2e

∂T

∂ω
(3.7b)

İ = cos I
na2
√

1− e2 sin I
∂T

∂ω
− 1
na2
√

1− e2 sin I
∂T

∂Ω (3.7c)

ω̇ = − cos I
na2
√

1− e2 sin I
∂T

∂I
+
√

1− e2

na2e

∂T

∂e
(3.7d)

Ω̇ = 1
na2
√

1− e2 sin I
∂T

∂I
(3.7e)

Ṁ = n− 1− e2

na2e

∂T

∂e
− 2
na

∂T

∂a
(3.7f)

where n =
√
GM/a3 is the mean motion of the satellite and a, e, I, ω, Ω, M are respec-

tively the semi-major axis, eccentricity, inclination, argument of perigee, right ascension of
ascending node and mean anomaly (see Figure 3.1). The equations of motion (3.7) are called
the Lagrange Planetary Equations (LPE).
Equation (2.16) can provide an expression for the relationship between the disturbing po-

tential and the Legendre functions and spherical harmonic coefficients in spherical coordinates
of satellite positions. Kaula (1966) expresses the perturbing potential in spherical coordinates

T =
∞∑
l=0

l∑
m=0

Tlm,

Tlm = GMRlE
al+1

l∑
p=0

Flmp(I)
∞∑

q=−∞
Glpq(e)Slmpq(ω,M,Ω,Θ)

⇒ T =
∞∑
l=2

l∑
m=0

l∑
p=0

∞∑
q=−∞

GMRlE
al+1 Flmp(I)Glpq(e)Slmpq(ω,M,Ω,Θ) (3.8)

where

Slmpq(ω,M,Ω,Θ) =
[

∆Clm
−∆Slm

]l−m: even

l−m: odd
cosψlmpq +

[
∆Slm
∆Clm

]l−m: even

l−m: odd
sinψlmpq

with ψlmpq = (l−2p)ω+(l−2p+q)M+m(Ω−Θ). Flmp(I) and Glpq(e) are respectively called
inclination function and eccentricity function. Θ is the angle between the equinox and the
Greenwich meridian and is called Greenwich time GAST. Indices l and m are respectively
degree and order as before, while p and q are only summation indices. Kaula (1966) provides
more details of inclination and eccentricity functions.
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Figure 3.1: Three-dimensional geometry of Kepler orbit. The sum of angle of perigee, ω, and
true anomaly, ν, is referred to as argument of latitude, u.

Since it is difficult to find an analytical solution of Equation (3.7), a linearization method
is utilized. The linearization is (nearly) possible because C20 (which is responsible for pa-
rameterization of the Earth’s flattening) is the biggest disturbance. The assumption for the
integration is that the Keplerian elements and the Greenwich sidereal time Θ are only linearly
time dependent, i.e. ω̈ = Ω̈ = M̈ = Θ̈ = 0, meaning ω̇, Ω̇, Ṁ and Θ̇ are constant. Therefore,
the linear solution of the perturbations of Keplerian elements can be written as (Kaula, 1966;
Sneeuw, 2006b)

∆almpq = GMRlE
lal+2 [2FlmpGlpq(l − 2p+ q)]Slmpq

ψ̇lmpq
(3.9a)

∆elmpq = GMRlE
lal+3e

[
FlmpGlpq(1− e2)1/2

(
(1− e2)1/2(l − 2p+ q)− (l − 2p)

)] Slmpq
ψ̇lmpq

(3.9b)

∆Ilmpq = GMRlE
lal+3(1− e2)1/2 sin I

[FlmpGlpq((l − 2p) cos I −m)]Slmpq
ψ̇lmpq

(3.9c)

∆ωlmpq = GMRlE
lal+3

[
(1− e2)1/2e−1FlmpG

′
lpq − cot I(1− e2)−1/2F ′lmpGlpq

] S̄lmpq
ψ̇lmpq

(3.9d)

∆Ωlmpq = GMRlE
lal+3(1− e2)1/2 sin I

[
F ′lmpGlpq

] S̄lmpq
ψ̇lmpq

(3.9e)

∆Mlmpq = GMRlE
lal+3

[
Flmp

(
−(1− e2)e−1G′lpq + 2(l + 1)Glpq

)] S̄lmpq
ψ̇lmpq

(3.9f)

where

ψ̇ = dψ

dt
= (l − 2p)ω̇ + (l − 2p+ q)Ṁ +m(Ω̇− Θ̇) (3.10a)
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F ′lmp = ∂F/∂I (3.10b)
G′lpq = ∂G/∂e (3.10c)

and S̄lmpq as

S̄lmpq(ω,M,Ω,Θ) =
[

∆Clm
−∆Slm

]l−m: even

l−m: odd
sinψlmpq −

[
∆Slm
∆Clm

]l−m: even

l−m: odd
cosψlmpq (3.11)

The ∆’s, here, represent the perturbations to the J2 reference orbit.
The perturbations in the three main satellite directions in terms of Keplerian elements for

near-circular satellite orbits were introduced by Rosborough (1986)

∆x = a(∆ω + ∆Ω cos I + ∆M + 2 sinM∆e+ 2e cosM∆M), (3.12a)
∆y = a(∆I sin(ω +M)−∆Ω sin I cos(ω +M)), (3.12b)
∆z = (∆a− a∆e cosM + ae∆M sinM) (3.12c)

where ∆x is perturbation in the along-track direction (in the direction of satellite velocity
vector), ∆y is the perturbation in cross-track direction and ∆z is the perturbation in radial
direction (the vector connecting the Earth’s geocenter to the satellite).
Using the functions Flmp(I), Glpq(e) and Slmpq(ω,M,Ω,Θ), the relation between the orbit

perturbations can be written as

∆xlmp = a

(
RE
a

)l
Flmp

[
2(l + 1)− 3(l − 2p)γ−1

lmp

γlmp
+ 4p− 3l − 1

γlmp + 1 + l − 4p− 1
γlmp − 1

]
S̄lmp0,

(3.13a)

∆ylmp = a

(
RE
a

)l 1
2γlmp

[(
Flmp
sin I ((l − 2p) cos I −m)− F ′lmp

)
S̄(l+1)mp0

−
(
Flmp
sin I ((l − 2p) cos I −m) + F ′lmp

)
S̄(l−1)mp0

]
(3.13b)

∆zlmp = a

(
RE
a

)l
Flmp

[
2(l − 2p)
γlmp

+ 4p− 3l − 1
2(γlmp + 1) + 4p− l + 1

2(γlmp − 1)

]
Slmp0 (3.13c)

where
γlmp = l − 2p−mλa − Ω + Θ

ω +M
= l − 2p−m 1

βd
(3.14)

with λa is the longitude at an ascending node passage and βd is the number of satellite
revolutions per day.

3.2.2 Hill’s Equations (HE)

Hill (1878) introduced an alternative set of equation of motion which is more suitable when
dealing with circular orbits or orbits with small eccentricities. The approach describes the
satellite motion in a reference frame which co-rotates with the satellite on a circular path
(Figure 3.2). This set of equations is called Hill’s Equations (HE). Schaub and Junkins (2003)
provide the orbital equations referred to the orbital frame as
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Figure 3.2: The local orbital coordinate frame: x along-track, y cross-track and z radial axis.

ẍ+ 2nż = fx = ∂T

∂x
(3.15a)

ÿ + n2y = fy = ∂T

∂y
(3.15b)

z̈ − 2nẋ− 3n2z = fz = ∂T

∂z
(3.15c)

with n the mean motion, (x, y, z) are the coordinates in the along-track, cross-track and
radial directions and (fx, fy, fz) are the components of disturbing forces along the (x, y, z)
axes.
In the non-perturbed case, i.e. when (fx, fy, fz) = (0, 0, 0), the homogeneous solution of

Hill’s equations reads (Schrama, 1989; Sneeuw, 2006b):

x(t) = 2
n
ż0 cosnt+

( 4
n
ẋ0 + 6z

)
sinnt− (3ẋ0 + 6nz0)t+ x0 −

2
n
ż0 (3.16a)

y(t) = y0 cosnt+ ẏ0
n

sinnt (3.16b)

z(t) =
(
− 2
n
ẋ0 − 3z0

)
cosnt+ ż0

n
sinnt+ 2

n
ẋ0 + 4z0 (3.16c)

with initial position vector of (x0, y0, z0) and initial velocity vector of (ẋ0, ẏ0, ż0).
The Equation (3.16) shows that the solution of homogeneous Hill’s equations mainly con-

sists of periodic motion at the orbit frequency n. As it is seen, the x-component contains a
linear term in t. Moreover, the equation shows that the x- and z-components are coupled,
while the y-motion behaves as a pure oscillator, independent from the other components. The
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solution of the homogeneous Hill’s equations allows to analyze the motion of the GRACE-type
and two alternative formations of this study in terms of the parameters in Equation (3.16)
(Sharifi et al., 2007):

• Inline (GRACE-type): x0 = ρx, with ρx as the along-track distance of two satellites
and y0 = z0 = ẋ0 = ẏ0 = ż0 = 0;

• Pendulum: x0 = ρx, y0 = ρy and z0 = ẋ0 = ẏ0 = ż0 = 0, with ρx the along-track
distance and ρy the maximum cross-track distance between the satellites;

• Cartwheel (Radial wheel-type): z0 = ρr, ẋ0 = −2nz0 and x0 = y0 = ẏ0 = ż0 = 0, with
ρr the maximum radial distance. This type of relative motion has an ellipse shape with
axis ratio 2:1.

It has to be noted that the homogeneous HE solution is no longer valid if the chief motion
is not circular (as in Cartwheel formation). Small values of eccentricity can produce mod-
elling errors comparable to those produced by J2 gravitational perturbations or atmospheric
drag (Sneeuw et al., 2008). Moreover, in reality, satellites are perturbed by different disturb-
ing forces. That is particularly caused by the Earth flattening, dominantly influences LEO
satellites motion. Therefore, formation fight design would be more realistic if the J2-field
perturbation is taken into account (Sneeuw et al., 2008). The field perturbation causes a
drift in the right ascension of the ascending node Ω, the argument of perigee ω and the mean
anomaly M . A comprehensive discussion over the subject with the formulation is given in
Sneeuw et al. (2008).
Supposing the satellite orbit is perturbed by a force which can be decomposed into Fourier

series, the particular solution of Hill’s equation is obtained. Consider the perturbation of one
single frequency ω:

ẍ+ 2nż = fx = Ax cosωt+Bx sinωt (3.17a)
ÿ + n2y = fy = Ay cosωt+By sinωt (3.17b)

z̈ − 2nẋ− 3n2z = fz = Az cosωt+Bz sinωt (3.17c)

Then, the solution reads:

x(t) = (3n2 + ω2)Ax + 2ωnBz
ω2(n2 − ω2) cosωt+ (3n2 + ω2)Bx − 2ωnAz

ω2(n2 − ω2) sinωt (3.18a)

y(t) = Ay
n2 − ω2 cosωt+ By

n2 − ω2 sinωt (3.18b)

z(t) = ωAz − 2nBx
ω(n2 − ω2) cosωt+ ωBz + 2nAx

ω(n2 − ω2) sinωt (3.18c)

Balmino et al. (1996) show non-resonant and resonant solutions of the Hill’s equations.
A more general solution of Hill’s equations consist of a combination of the homogeneous

and particular solutions.

3.3 Sampling the Earth’s Gravity Field
The launch of satellite mission GRACE has generated more interest in higher temporal reso-
lution of the mass variations within the Earth gravity field. The monthly gravity solutions of
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the GRACE mission largely suffer from temporal aliasing, while the sub-monthly solutions
are affected by spatial aliasing. The problem is also caused by inhomogeneous satellite cover-
age of the Earth system in short-time intervals. Here, the limitations by the main sampling
theorems in satellite geodesy and the space-time ground-track pattern evolution are briefly
discussed.

3.3.1 Sampling Theorems

The aliasing problem and the spatio-temporal resolution are mainly restricted by two sam-
pling theorems describing the space-time sampling of satellite missions:

(i) a Heisenberg-type principle in satellite geodesy which states that the product of spatial
resolution and time resolution is constant;

(ii) the Colombo-Nyquist rule (CNR), which requires the number of satellite revolutions
within the full repeat-cycle to be equal or larger than twice the maximum spherical
harmonic degree to be detected.

A satellite on a β/α repeat orbit fulfills β revolutions in α nodal days, where β and α are
relative primes. The repeat period of such a mission is then Trep = α where the revolution
time is Trev = α/β. Therefore, the equatorial track spacing (as a representation measure
of the spatial scale) equals to Dspace = 2π/β with Dtime = α as the temporial scale. The
product between the spatial sampling and temporal sampling is thus (ESA, 2007; Reubelt et
al., 2010):

Dspace ×Dtime = 2πα/β = 2πTrev (3.19)

However, since the revolution time Trev of a low-Earth orbit (LEO) varies marginally with
the orbit height, the product of (3.19) can be regarded as constant. This fact is addressed
by a Heisenberg-type principle as a trade-off between spatial and temporal resolution by a
single satellite pair:

Dspace ×Dtime = const. (3.20)

The term ”Heisenberg-type principle in satellite geodesy“ is chosen as an analogy to the
Heisenberg uncertainty principle in quantum physics. That means, the better the temporal
sampling is, the worse the spatial sampling becomes, and vice versa (Figure 3.3). However,
the spatial resolution can be improved by additional satellite pair on interleaved ground-
tracks with a ∆λ-shift (longitudinal shift), whereas the temporal resolution is not changed.
In a similar way, without changing the spatial resolution, adding a satellite pair on the same
ground-track of the initial pair with a ∆t-shift (time shift) improves the temporal resolution
(Figure 3.3). That means, any spatio-temporal sampling requirement can be fulfilled with
different repeat modes, if the time and space shifts and the number of sensors are selected
adequately (Reubelt et al., 2010).
The Colombo-Nyquist rule (CNR), on the other hand, requires

β ≥ 2L (or 2M) (3.21)

where β is the number of satellite revolutions in the full repeat cycle of the satellite (α).
The rule states that the number of satellite revolutions in a time interval should be at least
twice the maximum spherical harmonic degree (l) and order (m) to be detected (Colombo,
1984). This rule consequently limits the spatial resolution of the gravity recoveries. That
means the spatial patterns with l > Lmax are undersampled and alias into the solution.
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Figure 3.3: Space-time sampling of satellite configurations (ESA, 2007).

Similarly, the time-variable signals with periods T < 2Dtime are temporally undersampled
and thus alias into the solution. Equation (3.21) is generally known as the Nyquist rule-
of-thumb for mapping geopotential functions. It is also referred to as the Colombo-Nyquist
rule, which connects the spatial resolution with the sampling. The commensurable ratio β/α
by the satellite motion can be determined using the change rate of the Keplerian elements,
particularly the true anomaly ν, the argument of perigee ω and the right ascension of the
ascending node Ω:

β

α
= ω̇ + ν̇

Ω̇− ωE
= − u̇

Λ̇
= TΛ
Tu

(3.22)

where ωE is the angular velocity of the Earth rotation, and the argument of latitude u is the
sum of the true anomaly and the argument of perigee. The sum of the denominator can be
considered as the change of ascending node longitude in the Earth fixed frame Λ̇. The ratio
is also associated to the revolution time of the satellite Tu and of the nodal day TΛ.
In an ideal case, the sampling can be associated to a maximum resolvable frequency which

is defined by the Nyquist rule for a time series, although the rule-of-thumb needs refinement
for the sampling of the sphere (Weigelt et al., 2009; Visser et al., 2011). Using the Nyquist
criterion, the spatial representation of the spherical harmonic development needs to be ex-
pressed as a time series (Schrama, 1990, 1991; Sneeuw, 2000). The result in a time series
representation of the potential in complex notation reads as:

V (t) = GM

RE

L∑
l=0

l∑
m=−l

l∑
k=−l

(
RE
r

)l+1
K̄lmF̄lmk(I)eiψ̇mkt (3.23)

where K̄lm represents the complex-valued spherical harmonic coefficients, F̄lmk is the complex-
valued inclination function, I is the inclination and i is the imaginary number. The summa-
tion indices are the degree l, the order m and the wave number k. The maximum degree is
L. The angular variable ψ represents the spectral lines of the lumped coefficient spectrum
(Sneeuw, 2000):

ψ̇mk = ku̇+mΛ̇, with − L ≤ m, k ≤ L. (3.24)
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The initial state of the angular variable ψ0
mk is assumed to be zero. The avoidance of spatial

aliasing requires the separation condition of two frequencies ψ̇m1,k1 6= ψ̇m2,k2 . Therefore,
using Equation (3.22), a transformation yields:

m1 +m2
k1 + k2

6= β

α
(3.25)

From this condition, Colombo (1984) shows that in order to avoid aliasing for a given maxi-
mum degree Lmax at least β = 2Lmax revolutions are necessary. That means spatial patterns
with l > Lmax are undersampled and then alias into the solution, i.e. spatial sampling
(Reubelt et al., 2010). Sneeuw (2000) discusses that this is fulfilled if β ≥ 2Mmax which
states to be equivalent to the Nyquist rule-of-thumb used by Colombo (1984) in the con-
ventional triangular SH domain. However, the works by Visser et al. (2011) and Weigelt
et al. (2012) show that the spatial resolution can be improved, not by twice the maximum
degree Lmax (or twice the maximum order Mmax), but by Lmax (or Mmax) itself. That means
a satisfying gravity solution of the time-intervals shorter than what is required by CNR is
achievable.
It should be noted that from the sampling theorem, the time-variable signals with periods

T < 2Dtime are temporally undersampled and hence alias into the solutions (Reubelt et al.,
2010).

3.3.2 Satellite Ground-track Distribution

It is expected that the ground-track distribution in space and time of a satellite mission
scenario has influence on quality of the gravity recovery. Then, the gap evolution of the
satellite mission ground-track is of great interest to be studied. If the correlation between
the gap evolution, which is an indicator of homogeneity of the Earth coverage by the satellite
mission scenario, and the gravity recoveries is meaningful, then one task would be to search
for the mission scenarios and orbital configurations by more homogeneous coverage of the
Earth. That also means for different configurations, at one point of time, the space domain
is almost homogeneously sampled which is good enough for recovery of the gravity field.
Then, this time interval is the temporal resolution of the gravity recovery, while the degree of
homogeneity of spatial coverage of the Earth contributes to the achievable spatial resolution
by the recovery. Figures 3.4 and 3.5 show the ground-track pattern of a satellite mission after
specific time-intervals. The figure illustrates how the satellite ground-track fills in over time.
Assuming Γ = β/α as the number of orbits (satellite revolutions), β, in orbital period, α,

the fundamental interval reads as S = 360 ◦/Γ.

Γ = β

α
= I + N

α
⇒ β = Iα+N (3.26)

where I is the integer part of Γ. The fundamental interval gives the angular space between
two Ascending Node Crossing (ANX) consecutive in time. The sub-interval Si (Si = 360 ◦/β)
is therefore the sampling angle after an entire Repeat Cycle (RC) period. Hence, S can be
expressed by S = α.Si. Within S, the ANX of days n and n + 1 are always separated by a
distance of N or (α−N) sub-intervals Si (ESA, 2011).
The orbits can be classified as drifting orbits when N = 1 or N = α − 1, and as skipping

orbits in the other cases. The sampling of the Fundamental interval of a drifting orbit
is very progressive. Skipping orbits, on the other hand, feature more complex coverage
pattern, that reduce the persistence of large unobserved gaps and feature a very wide range
of spatial/temporal coverage patterns (ESA, 2011).
An useful graphical tool to represent the relationship between spatial and temporal sam-
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Figure 3.4: Ground-track of satellite mission scenario β/α = 503/32 (503 satellite revolutions
in 32 nodal days as the orbit full repeat period) on a selected part of the Earth’s
equator for ascending and descending orbits, after 1, 3, 7 and 32 days.
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Figure 3.5: Ground-track of satellite mission scenario β/α = 503/32 (503 satellite revolutions
in 32 nodal days as the orbit full repeat period) on a selected part of the Earth
for ascending and descending arcs, after 1, 3, 7 and 32 days.
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Figure 3.6: Gap evolution graphs of two repeat orbit scenarios: Rapid gap-filling (left) and
slow gap-filling (right).
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Figure 3.7: Space-time fill-in pattern graphs of the two repeat orbit scenarios of Figure 3.6.

pling is the gap evolution graph at the equator (ESA, 2011). The graphs show the minimum,
the maximum and the average unobserved gaps at each day and can be employed for the
study of influence of ground-track distribution on quality of the gravity solutions by different
mission scenarios and time-intervals (Figure 3.6).
Another illustration tool for evolution of ground-track distribution is the space-time fill-in

pattern graphs (ESA, 2011). These graphs also show how the Earth’s equator is sampled in
time and space (Figure 3.7). The X-axis represents the fundamental interval at the equator,
while the Y -axis represents the duration of satellite orbit. Each square shows an ANX which
represents when it occurs and where it falls within the Fundamental Interval (ESA, 2011).

Sub-cycle: The concept of sub-cycle can be also employed for studying the effect of space-
time ground-track distribution on the quality of gravity recoveries.
A sub-cycle (SC) is the smallest number of days after which an ANX falls at 1 × Si or

(α − 1) × Si from the first ANX (ESA, 2011). At the sub-cycle time-interval the minimum
gap falls down to its final value. That happens after which the maximum and the minimum
gaps get close to each other. The sub-cycle of a drifting orbit is obviously one day.
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3.3 Sampling the Earth’s Gravity Field

The sub-cycle is an interesting parameter to measure how fast an orbit is in reducing the
largest unobserved gap. Some orbits feature additionally one or more secondary SC which
are also interesting in terms of temporal sampling. Figures 3.6 and 3.7 show examples of the
skipping and drifting orbits by gap evolution and space-time fill-in pattern graphs. Being the
drifting orbit β/α = 511/32 (right panel of the figures), its maximum gap width is reduced
as slowly as possible from S to Si and the minimum gap is immediately as wide as Si. The
evolution of the gap width for the skipping orbit β/α = 503/32 (left panel of the figures)
is clearly faster. Figures 3.4 and 3.5 illustrate the ground-track of satellite mission scenario
β/α = 503/32 on a selected parts of the Earth for ascending and descending orbits, after 1,
3, 7 (sub-cycle) and 32 days (full repeat cycle) and the gap evolution of the satellite ground-
track over time. The sub-cycle time-interval of Figures 3.4 and 3.5 (7 days) indicates an
almost good homogeneity of the Earth coverage by the satllite mission.
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4 Simulation Procedure

This chapter starts with an overview of gravitational forces acting on a satellite and the
time-variable gravity field models used in this study. The important non-gravitational forces
are also briefly mentioned. Two tools, an orbit integration software and a quick-look sim-
ulation tool, which are employed for simulating the orbits of satellite mission scenarios in
the time-variable Earth’s gravity forces are introduced. A comparison of the results by the
orbit simulation softwares is then given. Moreover, a regularization method in data inversion
for gravity solution is introduced in this chapter. The chapter also provides a mathemati-
cal overview of Empirical Orthogonal Functions (EOF) analysis together with Kolmogorov-
Smirnov test (KS-Test) as a post-processing tool for dealing with white noise. Furthermore,
a brief discussion over the use of EOF as a correlation analysis tool for comparison of the
input and output of the closed loop simulation of this study is provided. A flowchart of the
research approach and main simulation procedures of the following two chapters is shown in
Figure 4.1.

4.1 Time-variable Gravity Field
The geophysical processes inside the Earth’s system lead to the variations of the Earth’s grav-
itational field. Besides these changes, the non-gravitational forces such as atmospheric drag,
Sun radiation pressure, Earth albedo, etc. act on the satellite. In this study, the influence of
some of the most important gravitational forces caused by mass transports inside the Earth’s
system is investigated. The main geophysical processes and the important non-gravitational
forces, the gravity force by third body (Sun, Moon and planets) and the relativistic effects
are discussed here.

4.1.1 Gravitational Forces by Mass Transport inside the Earth’s System
In this study, the dominant mass variations of atmosphere, ocean, hydrology, ice and solid
Earth (AOHIS) in the Earth system are modeled for the forward simulation environment.
The models were compiled at 6 hours intervals (ESA, 2008; Gruber et al., 2011). However,
the contributions from the atmosphere, oceans, and tides are tried to be removed from the
data using a set of models, leaving all other signals in the gravity solution. Therefore, hydrol-
ogy, ice and solid Earth signals are the main geophysical signals which alias into the gravity
solutions, whereas the aliasing errors from the atmosphere, oceans, and tides are mitigated
by the modelling. Here, the combined ocean and atmosphere models (AO) is considered.
The combined model is mainly responsible for the so-called inverted barometer effect, a ter-
minology used by Doodson (1924) for the first time. Indeed, the mass variation contributions
from the atmosphere and the oceans can not be regarded separately. That is because of
the dynamic response of the oceans to atmospheric mass changes, where the atmospheric
loading is mainly compensated for by the resulting flow in the ocean as it responds to this
loading. A low barometer will allow the sea level to rise and a high barometer will tend
to depress. Moreover, to estimate ocean tide model error, the difference between two tide
models EOT08a (Savcenko and Bosch, 2008) and ocean tide model GOT4.7 (Ray, 2008) is
used. The ocean tide error, as a dealiasing product, is considered as the difference between
these two ocean tide models (Table 4.1). The error can be also considered as an example of
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4 Simulation Procedure

Figure 4.1: Flowchart of simulation procedures of the thesis.

Table 4.1: Model definition AOHIS (Gruber et al., 2011), ocean tide model EOT08a (Sav-
cenko and Bosch, 2008), and ocean tide model GOT4.7 (Ray, 2008) for 1995–2006.

model
Solid Earth DEOS Delft University of Technology
Atmosphere ECMWF ERA-40 re-analysis and

ECMWF operational analysis
Ocean OMCT

Hydrology PCR-GLOBWB driven with
ECMWF meteorological data

Ice ECMWF Operational Analysis
Ocean Tide error EOT08a − GOT4.7

colored noise source in the simulation tools.
Figure 4.2 illustrates the magnitude of the individual models and the combination of them

(AOHIS) in terms of geoid height rms. For the accuracy estimate of a GRACE-like mission,
the rms of geoid height error (here, error: difference between monthly gravity solution and
mean of input models) of a reference simulation of a GRACE-like satellite (with altitude
of 460 km and microwave K-band intersatellite link) is provided in the figure as well. That
shows how a GRACE-like mission deals with the main geophysical signals. For example, the
AOHIS combined signal is above the GRACE-like mission accuracy up to around degree 35,
while that is around degree 18 for the solid Earth. The figure also shows the dominance
of hydrological signals in the models summation (AOHIS). It is important to notice again
that the combined ocean and atmosphere models (AO), as the inverse barometer effect, is
considered. The effect is indeed responsible for the small magnitude of the signal.
Here, the geophysical models of this study are briefly discussed (ESA, 2008; Gruber et al.,

2011).
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Figure 4.2: Geoid height rms of geophysical signals of Table 4.1. The geoid height error rms
of a reference simulation of a GRACE-type mission is shown for comparison.

Solid Earth

The following three solid Earth contributions to the time-variable gravity field have been
provided:

• Post-Glacial Rebound (PGR) trend coefficients: One-year time linear change of
the Stokes coefficients due to Post-Glacial Rebound is considered in the model. For
each coefficient, the linear model is considered as

C = C0 + ĊPGR(t− t0)

where C0 is the initial value of the Stokes coefficients (from a priori static gravity field
model), CPGR are the values in PGR-trend coefficient, t0 is the reference time for the
static field and t is the time of estimation.

• Sumatra coseismic coefficients: The change of Stokes coefficients due to the Suma-
tra earthquake (on 26 December 2004) is considered to be a step function as

Before earthquake: C = C0

After earthquake: C = C0 + Cco

where Cco is the coseismic coefficients.

• Sumatra post-seismic coefficients: The Stokes coefficients changes over and after
a one-year period following the Sumatra earthquake are represented by

Before the earthquake: C = C0

Till 1 year after the earthquake: C = C0 + Ċpost(t− te)
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From 1 year after the earthquake C = C0 + Cpost

where Cpost is the post-seismic coefficients and te is the time of the Sumatra earthquake.
Ċpost is then the coefficients change over time. The post-seismic relaxation is considered
to be negligible after one year after the earthquake.

Obviously, the total effect includes all solid Earth contributions from Post-Glacial Rebound,
coseismic and post-seismic coefficients.

Atmosphere

The European Centre for Medium-Range Weather Forecasts (ECMWF) and the US Na-
tional Centre for Environmental Prediction (NCEP) provide required parameters for mod-
elling atmospheric masses and mass variability such as surface pressure, geopotential height,
multi-level temperature and specific humidity on a 6-hourly basis. However, some signifi-
cant differences between the surface-pressure by both models are reported (ESA, 2008). The
ECMWF ERA-40 re-analysis and ECMWF operational analysis without further processing
are used as atmospheric raw data sets.

Ocean

Oceanic mass distributions are represented by ocean bottom pressure which consist of the
oceanic and atmospheric column above the observation point at ocean bottom. The ocean
model and its underlying physical parameterization is of importance for the gravity solution.
In order to determine long-term ocean mass anomalies caused by transient ocean dynamic,
the global baroclinic Ocean Model for Circulation and Tides (OMCT) has been used in
GRACE data processing as it is also employed in this thesis research for future gravity
missions (Thomas, 2002). In the period relevant for this study, the oceanic model has been
simulated using the operational ECMWF atmospheric data together with daily discharges
from continental hydrology (University of Utrecht), daily discharges from the Greenland ice-
sheet by Bristol Glaciology Centre (BGC) and annual ice discharges from Antarctica BGC
(ESA, 2008).

Hydrology

The forward modelling of hydrology with the large-scale PCRaster GLOBal Water Balance
model (PCR-GLOBWB, Van Beek and Bierkens (2008)) provides daily fields of terrestrial
freshwater storage with a resolution of 0.5 ◦ for the period 1957–2006. The water storage in
the model is expressed as volume including the following stores of the terrestrial part of the
hydrological cycle
• Open freshwater bodies (river stretches and active volumes of lakes and reservoirs)

• Active groundwater storage

• Snow cover

• Interception storage

• Soil moisture
The ground ice, fossil groundwater bodies and inactive lake volumes and salt water intrusions
into estuaries or permeable coastal reservoirs or any anthropogenic abstractions or diversions
of freshwater are not considered in the model. The model, then, was driven with ECMWF
meteorological data for precipitation, air temperature and actual evapotranspiration (ESA,
2008).
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4.1 Time-variable Gravity Field

Ice

In cryosphere, models for mass transport should include two main processes (i) surface mass
balance (precipitation, melting, refreezing and runoff) and (ii) ice dynamical changes (mainly
speed up or slow down of glaciers or ice streams). The Antarctic and Greenland ice sheets
store the vast majority of mass in the cryosphere. Here, the output from a high-resolution
atmosphere model (Van de Berg et al., 2005) was employed for the calculation of Antarctic
surface mass balance, forced at the lateral boundaries by the ERA-40 reanalysis data. For
the ice sheets, a time series of mass fluxes has been calculated using ECMWF Operational
Analysis for the period of this study. The data are provided on a 5 km polar stereographic
grid with 6-hourly time steps and daily time steps respectively for Greenland and Antarctica.
Using regional climate models forced by the re-analysis data, the Surface Mass Balance
(SMB), comprising accumulation-ablation is calculated. The secular trends in ice dynamics,
representing changes which are known from ice height change (dh/dt) and Interferometric
Synthetic Aperture Radar (InSAR) observations, are then superimposed on the SMB. The
ice from non ice-sheet land was treated separately, within the hydrological model (ESA, 2008).

Ocean Tide

Ocean tides are modeled on a global or regional basis. The recent global tide models include
FES2004 (Lyard et al., 2006), GOT00.2 (Ray, 1999), TPXO6.2 (Egbert and Erofeeva, 2002),
CSR4 (Eanes, 1994) and NAO.99b (Matsumoto et al., 2000). FES2004 is provided on a
1/8 degree grid, TPXO6.2 on a 1/4 degree grid and the others on 1/2 degree grids. On
the other hand, regional models may have resolutions down to 5 km. Each of these models
assimilate much of the available tidal data from tide gauges, bottom pressure records and
satellite altimetry. Using onshore gravimetric (Bos et al., 2002) and GPS data (Allinson, 2004;
Schenewerk et al., 2001), independent assessments of relative and absolute model accuracy
have been performed to determine variations due to ocean tide loading. Due to the spatially
extensive permanent GPS network in operation, GPS is a particularly promising approach
(Thomas et al., 2007).
For the eight major constituents of tide models, K1, K2, M2, N2, O1, P1, Q1 and S2, the

ocean tide models are provided as spherical harmonic expansions of amplitudes and phases.
Schrama et al. (2007) provides methods to convert these amplitudes to geopotential time
varying Stokes coefficients and a time averaged estimate for the power in terms of geoid
(ESA, 2008).
Indeed, with perfect models for ocean tides, the temporal aliasing problem in space-borne

gravimetry is largely reduced. However, the improvement of tidal models is the subject of
future research (Savcenko and Bosch, 2008). It is expected that the tidal aliasing effects will be
reduced with the improvement of the tidal models. However, practical considerations require
other solutions. With the availability of high-precision satellite radar altimeter observations
in the past, it will be a challenge to improve tidal models in the near future to such an extent
that the associated gravity field recovery error level is below the recovery error based on
the predicted observation precision for future ll-SST ranging systems (Visser et al., 2010).
This study employs the ocean tidal error as the difference of two ocean tide models, EOT08a
(Savcenko and Bosch, 2008) and GOT4.7 (Ray, 2008), up to spherical harmonic degree and
order 50 for its largest effects. The difference is introduced as a dealiasing product where
the aim is to investigate the effect of tidal aliasing error as one of the most important error
sources in the gravity recovery by satellite missions. The error can be also considered as an
example of colored noise source in the simulation tools.
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4.1.2 Gravitational Forces by Third Body

In addition to the Earth’s gravitational force, the satellite orbit is affected by third-body
tidal forces (mainly from the Sun, the Moon, and the other planets). The tidal forces on the
satellite orbit by the third bodies can be calculated from the positions of the third bodies,
given in the ephemerides DE 405 by NASA-JPL (Standish, 1998). The effect of direct tidal
forces on the satellite orbit is not included in this study.

4.1.3 Non-gravitational Forces

In addition to the gravitational forces due to the Earth and direct tidal forces by the third
bodies, the non-gravitational forces influence the LEO satellite. The non-gravitational forces
must be modeled for precise orbit determination. Although the effects of non-gravitational
forces are not included in the closed loop simulation procedure of this study, they are listed
and briefly discussed here.

Atmospheric Drag

Atmospheric drag is the most dominant non-gravitational perturbation for the low-orbiting
satellites. The perturbation force is caused by the interaction between surface of the satellite
and the atmosphere particles. The force depends on (i) satellite geometry, (ii) satellite veloc-
ity, (iii) satellite orientation with respect to the flow, and (iv) the density, temperature and
composition of the atmospheric gases (Seeber, 2003). Clearly, the effect of atmosphere drag
decreases rapidly with increasing height. The perturbing forces on the satellite may cause
accelerations varying between 10−3 and 10−9 m/s2 (Seeber, 2003).

Solar Radiation Pressure

The solar particle radiation is proportional to the effective satellite surface area, the reflec-
tivity of the satellite surface and the solar flux. It is also inversely proportional to the square
of the distance between the satellite and the Sun. The direct radiation pressure is mainly
effective in the direction of the satellite along-track motion. The acceleration can reach in
the order of 10−7 m/s2 (Seeber, 2003).

Earth Albedo

The Earth albedo is the ratio between the reflected radiation by the Earth and the incoming
radiation to the Earth. The Earth albedo makes a small pressure on the satellite. Due to
varying distribution of land, sea and clouds, the effect is very difficult to model, but in most
cases it is less than 10% of the direct radiation pressure by the Sun (Seeber, 2003). Obviously,
the effect largely depends on the altitude of the satellite. For example, for the GPS satellites,
the radiation pressure is very small and can be neglected, while for near-Earth satellites, the
force should be considered (Seeber, 2003).

Other Forces

Some other non-gravitational perturbation forces are (Seeber, 2003)

• friction caused by charged particles in the upper atmosphere,

• thermal radiation of the satellite,

• heating effects at shadow boundaries,
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• electromagnetic interaction in the geomagnetic field,

• the inter-planetary dust effect

Due to the very small effects of these forces on the satellite, they are usually considered
for very precise orbital analysis only.

4.1.4 Relativistic Effects
If the satellite travels at a speed that is a substantial fraction of the speed of light, relativistic
effects (provided by Albert Einstein as special relativity theory) must also be considered.
The effects are, however, very small and usually taken in consideration for very precise orbit
determination only (Grafarend, 1991). The relativistic effects include the mass increase,
length contraction and time dilation. McCarthy and Petit (2004) provides the relativistic
correction to the acceleration of a satellite. However, the effect is not considered in the
satellite orbit and gravity recovery simulations of this study.

4.2 Orbit Simulation
The gravity field seen by different satellite orbit configurations and formations can be esti-
mated via a variety of methods while each method has its own advantages and disadvantages.
In this study, a quick-look simulation software has been employed as a gravity recovery sim-
ulation tool. The tool avoids the orbit integration method for the determination of satellite
orbits and therefore provides a fast approach for comparing the results of different formation
scenarios. Instead, the quick-look tool assumes a nominal orbit during the satellite mission
journey, i.e. the gravity field is evaluated along a constant repeat orbit. As a result of the
assumption, the gravity field solutions are only approximations of recovered solutions from
more accurate approaches. Nevertheless, this research study shows that the approximations
by the quick-look tool provide gravity solutions which are in very high agreement with the
results from the satellite orbit integration approach where the influence of the gravity field
on the orbit is considered. The satellite orbit integration approach evaluates the gravity field
along an orbit which is consistent with the gravity field. This approach, therefore, provides
a more realistic approximation of gravity recovery when it is compared with the results of
quick-look simulation tool. However, the orbit integration method requires much longer com-
putation time which is a drawback for implementing a multitude of satellite orbit scenarios.
In the following sections, these two orbit simulation tools are briefly discussed. The recovery
of gravity field from a satellite mission scenario by these two simulation tools are also com-
pared.
Satellite orbit integration can be performed either analytically or numerically. However,

some problems such as the algebraic complexity of the perturbation forces and the deficiency
of their modelling make the analytical methods difficult to implement (Seeber, 2003). The
numerical method, on the other hand, is characterized by its relative simplicity. It determines
the orbit by calculating the state of the satellite (position and velocity vectors) for different
epochs. Seeber (2003) gives the solution of the equation of motion including all perturba-
tions for a step-wise integration. The perturbed satellite motion is formulated through the
following equation

r̈ = −GM
r3 r + Fs (4.3)

where r is the inertial position vector, r̈ is the inertial acceleration vector, and Fs are the
disturbing forces per mass acting on the satellite.
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Figure 4.3: Baseline vector ρ between two satellites.

Equation (4.3) can be re-written in the form of two first order differential equations (Seeber,
2003)

ṙ = v, v̇ = Fs −
GM

r3 r (4.4)

with vector components of

ẋ = vx, v̇x = Fsx −
GM

r3 x

ẏ = vy, v̇y = Fsy −
GM

r3 y

ż = vz, v̇z = Fsz −
GM

r3 z

Satellite to Satellite Tracking For the Satellite to Satellite Tracking (SST) formation flights
and through the calculated values of positions and velocities of each satellite at different
epochs by the orbit integration method, the range, ρ, and range rate, ρ̇, between two satellites
can be computed. The baseline vector between two satellites is calculated by ρ = r2 − r1
(Figure 4.3). Then, the baseline unit vector between the satellites e12 is

e12 = ρ

ρ
(4.5)

The baseline vector is the scalar range times the unit vector in the direction of the baseline:

ρ = ρe12 ⇒ ρ = ρ · e12 (4.6)

The range rate is therefore computed by derivation of the vectorial range:

ρ̇ = ρ̇e12 + ρė12
e12 · e12 = 1⇒ e12 · ė12 = 0

}
⇒ ρ̇ = ρ̇ · e12 (4.7)

Finally, the range acceleration can be computed by further time differentiation

ρ̈ = ρ̈ · e12 + ρ̇ · ė12

= ρ̈ · e12 + ρ̇ · 1
ρ

(ρ̇− ρ̇e12)

= ρ̈ · e12 + 1
ρ

(
ρ̇ · ρ̇− ρ̇2

)
(4.8)

Inserting Newton’s equations of motion in differential mode in terms of gradient of Earth’s
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potential at the positions of satellites 1 and 2 at time epoch t, i.e. ρ̈ = r̈2− r̈1 = ∇V (r2(t))−
∇V (r1(t)), into the Equation (4.8), the range acceleration, ρ̈, between two satellites is there-
fore calculated from the following equation (Seeber, 2003)

ρ̈ = e12 · (∇V (r2)−∇V (r1)) + 1
ρ

(
ρ̇ · ρ̇− ρ̇2

)
(4.9)

Finally, the observation equation is built up by rearranging the Equation (4.9)

ρ̈− 1
ρ

(
ρ̇ · ρ̇− ρ̇2

)
= e12 · (∇V (r2)−∇V (r1)) (4.10)

4.2.1 Realistic Orbit

The positions, r, and velocities, v, of the satellite at desired epochs can be calculated by
suitable methods of numerical orbit integration in the closed loop simulation. Concerning
the numerical method, Seeber (2003) provides several approaches for orbit integration. De-
pending on the applied algorithm, the approaches can be divided into two main categories
(i) single-step and (ii) multi-step methods. The methods depend on the number of points
which are used by proceeding to the next point. A well-known single-step numerical method
is the Runge-Kutta method which employs a Taylor series of a certain order as an extrapo-
lation function. In this procedure, only the last integration step is used. That means the
knowledge of the history of the function is neglected. On the other hand, the multi-step
methods (also called predictor-corrector methods) use the history knowledge of the function
which is aimed to be integrated. The multi-step methods are more often used in satellite
geodesy. In this method, first the satellite position is predicted with a certain algorithm
and then will be corrected. A predicted value Xn+1 is calculated from Xn and Xn−i with
i = 1, 2, ..., n. The value is then substituted in the differential equation of the process which
provides a corrected value of Xn+1 with Ẋn+1. The process, then, is iterated until the result
does not change (Seeber, 2003). Among many multi-step integration methods, a variable
order Adams-Bashforth-Moulton procedure, implemented as MATLAB function ode113, has
been employed in this study. A description of the method can be found in Shampine and
Gordon (1975).
The left side of the Equation (4.10) gives the simulation observables at the epoch t and

can be computed through the calculation of range, range rate and range acceleration values,
yielded from the orbit integration. In this thesis, the range and range rate values are directly
calculated from the positions and velocities of the two satellites, while the range accelera-
tion values come from the calculation of gradient of Earth’s potential at the positions of the
satellite in the realistic orbit over time. It is also important to mention that in the orbit
integration approach, the initial values of satellites positions and velocities, indicated by the
Keplerian elements, are transferred to osculating elements, i.e. the effect of the Earth’s flat-
tening is considered for adjusting the initial satellite states. The osculating orbit means an
unperturbed Keplerian orbit with initial parameters (position and velocity vectors) coincide
with the true perturbed state vectors at a certain epoch. Therefore, the true satellite orbit
can be considered as successive osculating orbits with osculating orbital parameters. Schaub
and Junkins (2003) provide a discussion over this subject and bring a set of formulas for the
transformation.
In order to investigate the time-variable gravity recovery, the static field is subtracted from

the total retrieved field. The result, therefore, includes the spatial aliasing of the static field
by the particular sampling of the formation flight. A flowchart of the realistic orbit approach
is shown in Figure 4.4.
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Total gravity models

(static + time-variable models)

Orbit design

(initial mean Keplerian elements)

Orbit simulation (via orbit integration)

Total gravity solution

Observables

Inversion

Reduction of static field

Time-variable gravity solution

Figure 4.4: Flowchart of the realistic orbit approach of this thesis.

4.2.2 Nominal Orbit

The quick-look simulation software of this thesis has been developed at Institute of Geodesy,
University of Stuttgart. The tool is employed for time-variable gravity field alaising analysis
from ll-SST missions and assumes a constant inclination angle and repeat mode β/α nominal
orbit of the satellite formations within the time interval of the gravity recoveries (i.e. only J2
effect consideration). The software makes use of the observation equation for range accelera-
tion of Equation (4.10). The nominal relative motion of both satellites within the formation
is described by means of the homogeneous solution of the Hill’s equations (3.16), where the
formations are obtained by different initial values for the satellites’ relative state vectors (ρ0,
ρ̇0) (Sharifi et al., 2007).
The right side of Equation (4.10) is calculated at the positions of both satellites in the

nominal orbit for the time interval of interest. The time-variable potential of the Earth at
the positions of the satellites is calculated by the provided time-variable gravity field models
at those epochs. The calculated values for the right side of the equation are set to the left side
as the observables at those epochs. Then, the gravitational potential in terms of spherical
harmonics coefficients is estimated through the system of equations for that time interval
(gravity solution). Although the assumption of keeping the satellites in a perfect nominal
orbit is not realistic, the tool provides a quick comparison of gravity recoveries of different
formations. That is because the quick-look tool avoids orbit integration which is a time-
consuming process. Obviously, a more precise and realistic study of the gravity recoveries
can be later performed in more detail by more realistic tools where the observations can be
rather generated directly from the orbit by evaluating the left side of Equation (4.10).
Figure 4.5 illustrates a flowchart of the orbit simulation and gravity recovery by the nominal

orbit approach.
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Time-variable gravity models
Orbit design

(nominal orbits)

Time-variable gravity solution

Observables

Inversion

Figure 4.5: Flowchart of the nominal orbit approach by quick-look simulation tool of this
thesis.

4.2.3 Validation
In this study, the quick-look tool is utilized for assessing the quality of the recoveries of
different orbit configurations and formation flights. However, the validation of the results
from the quick-look simulation tool by the results from a more realistic tool is a crucial
issue. For this reason, the time-variable gravity solutions of the nominal orbit approach
with its quick-look tool for orbit design (Figure 4.5) and the realistic orbit approach with
orbit integration tool (Figure 4.4) are compared. From the comparison analysis of some
examples, and despite the methodological differences between the two procedures, very strong
correlation between the results of two approaches has been seen. Figures 4.6 and 4.7 illustrate
two examples (7 and 32 days gravity solutions) of a near-polar GRACE-like mission at the
altitude of 333.8 km. The figures imply that the effect of satellite orbit fluctuations in the
Earth’s time-variable gravity field of the orbit integration approach is not significant.

4.3 Gravity Field Estimation
4.3.1 Least Squares Estimation
To recover the time-variable gravitational field of the Earth, the satellite missions’ observa-
tions should be associated to the unknown parameters of the gravity field. The observables of
the ll-SST orbit simulation tools are set to the fundamental least squares estimation (Koch,
1999; Grafarend, 2012)

E{y} = Ax, D{y} = σ2Q = P−1 (4.11)

where

y is m× 1 vector of observations

A is m× n design matrix

x is n× 1 vector of unknowns

σ2 is the scalar variance component

Q is m×m covariance matrix of observations
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Figure 4.6: Logarithmic scale triangle plots of spherical harmonics of recovered gravity field
by orbit integration approach (left) and quick-look tool (right) for 7-day (top)
and 32-day (bottom) recoveries of near-polar GRACE-like mission at the altitude
of 333.8 km.

0 10 20 30 40 50 60 70 80 90

−12

−11.5

−11

−10.5

−10

degree

d
e
g
re

e
 r

m
s
 (

lo
g
1
0
)

 

 

orbit integration

quick−look

0 10 20 30 40 50 60 70 80 90

−12

−11.5

−11

−10.5

−10

degree

d
e
g
re

e
 r

m
s
 (

lo
g
1
0
)

 

 

orbit integration

quick−look

Figure 4.7: Degree rms plots of recovered gravity field by orbit integration approach and
quick-look tool for 7-day (left) and 32-day (right) recoveries of near-polar GRACE-
like mission at the altitude of 333.8 km.
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4.3 Gravity Field Estimation

The Equation (4.11) is usually written as an observation equation

y + e = Ax (4.12)

with E{e} = 0, D{e} = D{y} = σ2Q = P−1. The vector e is the m × 1 observation errors
vector. The vector of unknowns is then estimated by minimizing the squared residuals

x : min ‖Ax− y‖2P (4.13)

which is obtained by the unbiased least squares estimator

x̂ =
(
ATPA

)−1
ATPy (4.14)

Then, the covariance matrix of unknowns reads

Qx̂ =
(
ATPA

)−1
(4.15)

4.3.2 Regularization
In order to stabilize an ill-poised system of normal equations, Koch and Kusche (2002) in-
troduces a Bayesian-type regularization by adding prior stochastic information (e.g from the
geophysical models) about the unknown parameters as constraint. The prior information is
usually stored in a positive definite diagonal matrix.
The regularization methods use the existing information from some measurement sources

as stochastic constraints to deal with both the white and colored noise. Since the launch of
gravity satellite missions, several publications have discussed the regularization methods (e.g.
Xu, 1992; Bouman and Koop, 1998; Koch and Kusche, 2002; Kusche, 2007). The regulariza-
tion methods, indeed, consider the errors of the signal or use information about correlations
in the spectral domain in order to reduce the noise level in the output signal. The filtering
process is mainly performed by constraining the noisy signal to tend to a desired output
signal, which can be done in the spatial or spectral domain. Here, a brief discussion over one
method is introduced.

A Kaula-type Rule for Constraining the Coefficients from Gravity Satellite Missions

Many geodetic problems, especially the estimation of gravity field, are ill-poised problems
(Xu, 1992; Bouman and Koop, 1998). That is due to a bad condition of the normal matrix

N = ATPA (4.16)

The following characteristics of gravity data from satellite missions can cause bad condi-
tioning of the normal matrix

• irregular data distribution due to polar gaps or non-continuous data tracking

• insufficient information about the gravity field in the observable itself

• downward continuation

• bad condition due to stochastic model (e.g. the instrument is unable to measure in the
whole spectral domain)

An ill-conditioned matrix prevents a stable solution of the minimization problem, i.e. the
normal matrix has not enough information for inversion. Bouman and Koop (1998), Xu
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(1992) and Koch and Kusche (2002) introduce a method to regularize the ill-posed system
of normal equations by adding prior information about the unknown parameters. Such data
has then the expectation and dispersion of

E{x0} = x , D{x0} = σ2
KK = P−1

K (4.17)

where x0 is a vector with prior information, K is appropriate covariance and σK is unknown
variance component. Therefore, the minimization problem changes to

x : min ‖Ax− y‖2P + λ‖x− x0‖P 2
K (4.18)

with λ as a positive real number, the ratio between the variance components of the observation
groups

λ = σ2

σ2
K

(4.19)

The unknown parameters are estimated under the constraint that the squared residual be-
tween the a priori values and the estimated parameters is minimal. The observations x0
are commonly assumed to be zero with their appropriate weight matrix PK to be a positive
definite diagonal matrix. The elements of such weight matrix are inversely proportional to
a degree variance model (Koch and Kusche, 2002). Finally, considering this degree variance
model as independent observation, the estimates of unknown parameters would be

x̂ =
(
ATPA+ λPK

)−1 (
ATPy + ITPKx0

)
(4.20)

and covariance matrix of unknowns is

Qx̂ =
(
ATPA+ λPK

)−1
= N−1 (4.21)

Kaula (1966) provides a method to improve the condition for static gravity field determina-
tions by using Kaula rule as a priori degree variance model. The Kaula rule constrains the
coefficients to attenuate with increasing degree according to a power law

σ2
l = 10−10

l4
(2l + 1) (4.22)

Therefore, the regularization matrix (a prior variance matrix) K is filled with elements from
the signal variance model by Kaula’s rule, although Sneeuw (2000) shows that the approach
may lead to a too optimistic error estimate, where the rule is also defined for the static gravity
field only. However, the power law behavior of the Kaula’s rule allows a simple estimation
of a fitting power law, i.e. a degree variance model, for other kinds of spherical harmonic
coefficients. The basic equation for such a power law reads as (Lorenz, 2009)

σ2
l = 10alb (4.23)

with σ2
l as the signal degree variance and a and b the unknown parameters of power law. In

a log-log-graph, the power law is transformed into

log(σ2
l ) = a+ b log(l) (4.24)

The Equation (4.24) shows a straight line in a log-log-graph and can be employed to fit a
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4.4 Empirical Orthogonal Functions (EOF)

power law to the time-variable gravity field. The unknown parameters a and b of the power
law are estimated by a least squares estimation

y = Ax+ e (4.25)

with

vector of observations y = log(σ2
l ),

design matrix A = [Al] = [1 log(l)] , l = 2, ..., Lmax,

unknown parameters of the power law x = [a b], and

residuals e

Therefore, the unknown parameters of the power law are obtained by

x̂ = (ATA)−1ATy (4.26)

In this study, the signal variance of the combined input model AOHIS (see Figure 4.2)
is utilized to estimate the unknown parameters, a and b, of the power law equation (4.24),
where they are used for filling the regularization matrix K (Lorenz, 2009).

4.4 Empirical Orthogonal Functions (EOF)
Several studies (e.g. Rangelova et al., 2007; Wouters and Schrama, 2007) have employed
Principal Component Analysis (PCA) technique, or alternatively EOF analysis technique,
to analyze data from GRACE mission. Generally, EOF analysis is used for capturing the
dominant modes of a time series of data in spatial and temporal domains. Furthermore, the
EOF analysis technique together with a white noise test can be employed for filtering white
noise. The technique can also be utilized as a correlation analysis tool when a comparison
between different fields or data sources is of interest.

4.4.1 Basic EOF Theory

In general, EOF analysis is a technique to study the spatial and temporal variability of
datasets which separates the directions of the largest variances from each other. The technique
uses the principal directions to transform the multi-directional dataset to a reduced subspace
with a lower number of dimensions, while the loss of information by this transformation is
minimal.
The EOFs and PCs of a general real-valued, scalar and homogeneously dimensioned dataset

Z can be obtained by Singular Value Decomposition (SVD) as a convenient procedure

Z = UDV T (4.27a)

z(t, x) =
ρ∑
j=1

uj(t)λjvj(x) (4.27b)

The dataset Z with elements z(t, x) : x = 1, ..., p; t = 1, ..., n (n observations of p variables)
has a set of dominant directions of variance in Euclidean space. The dataset can be a function
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of any two variables, e.g. space, time, pressure, temperature, SH coefficients, etc., arranged in
rows and columns of a data matrix. In many literatures, the column vectors of matrix U are
called Principal Components (PCs) and the column vectors of matrix V are called Empirical
Orthogonal Functions (EOFs). The diagonal matrix D contains the singular values, where
the square root of the eigenvalues λj of the covariance matrix ZTZ are the elements of the
matrix. The matrix D represents the scatter of the dataset Z along the associated eigenvector
vj . The energy percentage of each mode of the total variance can be shown as

Variance of the j-th mode
Total variance = λj

ρ∑
j=1

λj

=
D2
jj

ρ∑
j=1

D2
jj

(4.28)

Generally, the first few modes contribute to the most power in the dataset.
In Preisendorfer (1988), the dominant directions of variance is determined by finding the

eigenvectors ej of the covariance matrix of the dataset ZTZ which form an orthonormal basis
for the data space

Z = AET (4.29a)

z(t, x) =
ρ∑
j=1

aj(t)ej(x) (4.29b)

where aj(t) is a temporal weight to the contribution of the eigenvector ej . The weights,
aj(t), are uncorrelated, and variance of the weights is equal to the variance of the data along
the direction of the associated eigenvector ej . The variables aj and ej respectively refer to
the jth principal component and EOF mode. The maximum number of modes is denoted as
ρ and equals min[n, p].

4.4.2 Selection Rules

Several selection rules have been introduced to chose the modes for the reconstruction of data.
Two of the most used selection rules are Rule N and Kolmogorov-Smirnov Test (KS-Test)
(Preisendorfer, 1988). Rule N method selects the dominant leading modes by keeping the
modes with an associated variance larger than a certain threshold in the data reconstruction.
The KS-Test method is based on the temporal evolution of the principal components. The
test is briefly discussed here.

Kolmogorov-Smirnov Test (KS-Test)

In statistics, the Kolmogorov-Smirnov Test (KS-Test) is a nonparametric test for the equality
of continuous, one-dimensional probability distributions that can be used to compare a sample
with a reference probability distribution in one-sample KS-Test or to compare two samples
in two-sample KS-Test (Massey, 1951; Boes et al., 1974).
In this thesis, the KS-Test has been used as a tool of white noise detection by analysis

of temporal evolution and property of principal components. The test uses this property
by retaining or rejecting the EOF modes in the data reconstruction (Preisendorfer, 1988).
The power spectral density (PSD) of each principal component uj(t) is calculated through
the Fourier transform, and is then tested for white noise spectrum. The KS-Test compares
the cumulative distribution function (CDF) of the PSD of the principal components with
the CDF of the spectrum of a random white noise process. If the maximum value Dmax of
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Figure 4.8: Principal of Rule KS2: If the maximum difference Dmax between the cumulative
distribution function (CDF) of the power spectrum of the principal component
aj (blue) and a random white noise (red) is larger than a critical value DKS2, the
principal component is assumed as a signal and kept for data reconstruction.

the absolute difference between these two CDFs is less than a critical value DKS2 (depends
on the significance level α and the number of samples), the test hypothesis is accepted, i.e.
the principal component uj is considered as a white noise and thrown away. Otherwise,
the hypothesis is rejected. That means that the principal component is kept for the data
reconstruction (see Preisendorfer, 1988). Figure 4.8 shows the principle of the KS-Test rule.

4.4.3 EOF Analysis + KS-Test as a White Noise Filtering Tool

Dealing with noise is one of the most challenging issue when we look for higher quality of
gravity recovery. The noise can have different sources. Two of the most important noise
sources are (i) sampling error which is caused by formations architecture (for example the
North-South stripes in GRACE recovery) and (ii) the sensor noise. Several filter strategies
have been suggested to deal with these noise. Wouters and Schrama (2007) proposes a fil-
ter based on EOF analysis in combination with KS-Test in the spectral domain (spherical
harmonics) for white noise filtering. Furthermore, Iran Pour and Sneeuw (2012) introduce a
filter operator based on the work by Wouters and Schrama (2007).
In Iran Pour and Sneeuw (2012), the EOF reconstruction plus KS-Test filtering is substi-

tuted by its equivalent formula Z ′ = ULDV T, where L is a diagonal matrix with 0 diagonal
elements when the modes pass the KS-Test (noise) and 1 when they do not (signals). Inserting
UTU = I (identity matrix), the formula can be rewritten as

Z ′ = ULUTUDV T (4.30)

Therefore, the filtered data matrix Z ′ is defined as

Z ′ = ULUTZ = FuZ (4.31)
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where Fu is called left filter operator

Fu = ULUT (4.32)

In a similar way, the right filter operator Fv = V LV T can be employed for data filtering
purpose as Z ′ = ZFv.
Consequently, through the model for left filter operator, the filtered degree rms can be

calculated by error propagation as

QZ′ = FuQZF
T
u (4.33)

In Wouters and Schrama (2007), data are sorted in an order-wise way to remove the
correlation between the spherical harmonics as a function of degree (Swenson and Wahr,
2006). This means that the order of each data matrix is kept fixed. Then, the EOF analysis
is separately done on Clm and Slm coefficients matrices as the data matrices. As an example,
the following matrix shows the time series of the Clm coefficients for the specific order of m,
with SH degrees l = m, ..., lmax for a time series of t = [t1, ..., tn].

Cm =


Cmm(t1) Cmm(t2) · · · Cmm(tn)
Cm+1,m(t1) Cm+1,m(t2) · · · Cm+1,m(tn)

...
... . . . ...

Clmaxm(t1) Clmaxm(t2) · · · Clmaxm(tn)

 (4.34)

4.4.4 EOF Analysis as a Correlation Analysis Tool
EOF analysis can be employed as a correlation analysis tool when two datasets are compared.
For example, the analysis can be used for a closed loop simulation, when the quality of the
simulation output versus the simulation input models is investigated.
Considering two sets of data Z1 and Z2, the SVD decomposition for the datasets would be

Z1 = U1D1V
T

1 (4.35a)
Z2 = U2D2V

T
2 (4.35b)

Therefore, the correlation analysis can be done by the investigation of correlation between
every principal component (temporal mode) of one field and the principal components of the
other field through

Kcorr = UT
1 U2 (4.36)

This thesis research uses the correlation analysis tool for investigation of correlation be-
tween temporal modes of simulation input combined model (AOHIS) and the temporal modes
of gravity solutions from different satellite configurations. The tool can be employed as a mea-
sure for investigating how satellite configurations recover the input gravity field, in particular
for specific geophysical features such as seasonal signature.
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Scenarios

This chapter provides a short discussion over satellite orbit design for future satellite mission
scenarios. The Earth coverage by satellite ground-tracks of different single pair inline missions
and the scheme design of alternative formations and dual pairs scenarios are briefly discussed.

5.1 Mission Scenarios’ Design Concerns

In theory, one can think of every orbit configuration and formation flight with different
number of satellites for future gravity satellite mission. However, the technical challenges
and financial issues with their implementation limit the search space for finding the optimal
missions. The limitation includes the number of satellites in a mission, mission altitude,
tracking technology, mission stability, etc.. These factors are considered in the mission search
space definition of this thesis.
It is expected that the homogeneity level of ground-track pattern of a satellite mission has

influence on quality of the gravity recovery. Moreover, the sensitivity to short wavelength
phenomena in gravity field is largely affected by mission height. Therefore, the effect of an
orbit configuration, defined by number of satellite mission revolutions (β) in its repeat period
(α) and its altitude (h) is of great interest for investigation. The influence of the ground-
track evolution pattern on the gravity recovery can also be described by the sub-cycle concept
which is an indicator of minimum gap size reduction and homogeneity of the Earth coverage
by the mission. If the correlation between the gap evolution of satellite coverage (evolution
of ground-track pattern) and the gravity recoveries is meaningful, then one task would be to
search for the orbit configurations by more homogeneous coverage of the Earth. It can also
mean that for different configurations, at one point of time (in nodal days), the space domain
is quite homogeneously sampled which is good enough for recovery of the gravity field. This
time interval then establishes the temporal resolution of the recovery, whereas the level of
homogeneity defines the spatial resolution.
The orbit design of this study includes (i) near-polar inline (GRACE-like) missions of

different repeat orbits (β/α) for the global coverage, (ii) alternative formation types and (iii)
two pairs of inline missions with different inclination angles. The quality of gravity solutions
of those mission scenarios is investigated in this thesis. Here, the design principles of the
three aforementioned categories of mission scenarios are discussed.

5.2 Inline (GRACE-like) Missions

The effects of satellite repeat orbit, mission height and its ground-track gap evolution for
near-polar inline missions are investigated among different orbit configurations (Table 5.1).
All the formations are assumed to be near polar (with inclination of 89.5 ◦). An inline
GRACE-like formation with repeat orbit of β/α = 503/32 (altitude of 333.8 km) is assumed
as the arbitrary reference configuration for the investigation.
One important orbit design parameter is the satellite altitude. Due to the significant
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Table 5.1: Orbit architectures of the single inline near-polar satellite missions

scenario β α altitude sub-cycle
[rev.] [days] [km] [days]

1.1 507 32 298.4 13
1.2 491 31 299.8 6
1.3 396 25 299.4 6
1.4 364 23 303.3 6
1.5 317 20 296.6 7
1.6 206 13 297.6 6
1.7 95 6 301.3 1
1.8 503 32 333.8 7
1.9 485 31 354.9 14
1.10 391 25 356.4 11
1.11 125 8 360.7 3
1.12 205 13 319.4 4
1.13 142 9 317.0 4
1.14 497 32 387.9 15
1.15 501 32 351.7 3
1.16 509 32 280.8 11
1.17 511 32 263.4 1
1.18 490 31 308.9 5
1.19 488 31 327.2 4
1.20 493 31 281.7 10
1.21 110 7 335.1 3
1.22 495 31 263.7 1

increase of atmospheric drag force by decreasing the altitude, implementation of satellite
missions with the altitudes lower than 300 km is technically challenging (St Rock et al.,
2006; Wiese et al., 2011b). However, in order to investigate the effect of satellite height
on the recovery, a range of satellite altitudes between 260 and 400 km is considered in the
framework of this study.
The effect of repeat orbits of the configurations on the recovery quality is also of great

interest. It is tried to consider a range of repeat orbit within the altitude of 260 to 400 km.
Moreover, the sub-cycles of these configurations are chosen to cover a range of time intervals,
from 1 day (drifting orbit) to long time interval (15 days). The evolution of satellite ground-
track pattern can be therefore studied through the sub-cycles and gap evolution figures.
Figure 5.1 shows the space-time fill-in pattern and ground-track gap evolution graphs of
the configurations of Table 5.1. The space-time fill-in pattern of the figure represents the
fundamental interval (S) at the equator (X-axis) and the duration of a repeat cycle (Y -axis).
Each square in the individual figure represents an ANX and shows when it occurs (number
of the nodal days) and where it falls within S. In the gap evolution graphs, the minimum,
maximum and average unobserved gaps for each day are illustrated (respectively by blue,
red and black curves). The graphs include a range from slow gap-filling ground-tracks, as
in drifting orbits with one day sub-cycles (scenarios 1.7, 1.17 and 1.22), to fast gap-filling
ground-tracks like the ones in missions 1.1, 1.9, 1.10, 1.11 (as examples for different type of
fast gap-filling scenarios).
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(ii) Scenario 1.2: β/α = 491/31, sc = 6 days
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(iii) Scenario 1.3: β/α = 396/25, sc = 6 days
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(iv) Scenario 1.4: β/α = 364/23, sc = 6 days
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(v) Scenario 1.5: β/α = 317/20, sc = 7 days
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(vi) Scenario 1.6: β/α = 206/13, sc = 6 days
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(vii) Scenario 1.7: β/α = 95/6, sc = 1 day
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(viii) Scenario 1.8: β/α = 503/32, sc = 7 days
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(ix) Scenario 1.9: β/α = 485/31, sc = 14 days
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(x) Scenario 1.10: β/α = 391/25, sc = 11 days
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(xi) Scenario 1.11: β/α = 125/8, sc = 3 days
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(xii) Scenario 1.12: β/α = 205/13, sc = 4 days
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(xiii) Scenario 1.13: β/α = 142/9, sc = 4 days
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(xiv) Scenario 1.14: β/α = 497/32, sc = 15 days
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(xv) Scenario 1.15: β/α = 501/32, sc = 3 days
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(xvi) Scenario 1.16: β/α = 509/32, sc = 11 days
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(xvii) Scenario 1.17: β/α = 511/32, sc = 1 day
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(xviii) Scenario 1.18: β/α = 490/31, sc = 5 days
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(xix) Scenario 1.19: β/α = 488/31, sc = 4 days

0 500 1000 1500 2000 2500

5

10

15

20

25

30

distance at equator in [km]

ti
m

e
 i
n
 [
d
a
y
s
]

space−time fill−in pattern for orbit 15+28/31

1

2
3

4

5
6

7

8
9

10

11
12

13

14
15

16

17
18

19

20
21

22

23
24

25

26
27

28

29
30

31

1

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

day

e
q

u
a

to
ri
a

l 
g

a
p

 i
n

 [
k
m

]

gap evolution for orbit 15+28/31

(xx) Scenario 1.20: β/α = 493/31, sc = 10 days
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(xxi) Scenario 1.21: β/α = 110/7, sc = 3 days
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(xxii) Scenario 1.22: β/α = 495/31, sc = 1 day

Figure 5.1: Space-time fill-in pattern (left) and gap evolution graphs (right) of repeat orbits
configurations of Table 5.1.
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5.3 Alternative Formations

Table 5.2: Inline and alternative formation flights for the assumed reference orbit: β/α =
503/32 (altitude of 333.8 km)

formation ρx ρy ρz
[km] [km] [km]

Inline (GRACE-like) 100 0 0
GFO (GRACE Follow-on) 100 10 0

Pendulum 96 43 0
Cartwheel (polar-radial) 100 0 50

Cartwheel (equatorial-radial) 100 0 50

5.3 Alternative Formations
Previous studies such as (Sharifi et al., 2007), (Wiese et al., 2009), (Elsaka, 2010) and (ESA,
2011) show that the use of alternative formations, in which the relative motion contains more
components than only the GRACE-type inline observable, improve the quality of the gravity
recovery. Here, the following formation types are investigated:

(i) Inline (GRACE-like)

(ii) GFO (conservative pendulum formation)

(iii) Pendulum

(iv) Cartwheel (polar-radial)

(v) Cartwheel (equatorial-radial)

The nominal repeat orbit β/α = 503/32 is chosen as an arbitrary reference orbit among
the scenarios with near-homogeneous ground-track pattern. The intersatellite distances of
the formations are shown in Table 5.2. The quality improvement by alternative formations
GFO (GRACE Follow-on as a conservative pendulum formation), Pendulum, polar-radial
Cartwheel and equatorial-radial Cartwheel with β/α = 503/32 (altitude of 333.8 km), com-
pared to the reference inline mission, is investigated. Here, the along-track distance in the
inline mission is set to 100 km (Wiese et al., 2011b). The GFO scenario is considered as a con-
servative Pendulum with a small opening angle around 5 ◦ (i.e. ρy/ρx ≈ 10%, where ρx is the
along-track satellite distance and ρy is the maximum cross-track distance). The Cartwheel
formation makes use of two satellites with one at apogee of its orbit while the other is at
perigee of its orbit. The polar-radial Cartwheel has a radial line of sight vector above the
poles, while the equatorial-radial Cartwheel shows a radial line of sight above the equator.
That means, for the polar-radial Cartwheel, the observable has only a radial component
above the poles and an inline component above the equator, whereas it is vice-versa for the
equatorial-radial Cartwheel. It has to be noted that the orientation of near-polar Cartwheel
formations changes due to perigee drift, caused by the oblateness of the Earth (Sneeuw et
al., 2008). That means these two different scenarios of Cartwheel formation are not stable,
where the latitudes of pure radial or pure along-track components (at pole or equator) change
over time. The perigee drift by J2 (the dominant Earth gravitational perturbation by Earth’s
flattening) is approximately 4 ◦ per day (ω̇ = 4 ◦/day) which is responsible for around 120 ◦
perigee drift in a month (Sneeuw et al., 2008).
The schematic views of GRACE-like and those alternative (advanced) formation flights are

represented in Figures 5.2.
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(i) Inline (GRACE-like) with along-track measurement component

(ii) Pendulum with along-track and cross-track measurement components
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5.3 Alternative Formations

(iii) Cartwheel (polar-radial) with along-track and radial measurement components

(iv) Cartwheel (equatorial-radial) with along-track and radial measurement components

Figure 5.2: Schematic views of inline and alternative formation flights (Elsaka, 2010).
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5.4 Double Pair Missions
Bender et al. (2008) show that the spatial-temporal resolution of the gravity recoveries for
time-variable gravity field can be improved by employing two pairs of inline formations, when
one is in a near-polar orbit and the other is in a lower inclined orbit. Figure 5.3 illustrates a
schematic view of such configuration, while Figure 5.4 illustrates the ground-tracks pattern
distribution of such scenario on Earth’s latitude.
In this study, different scenarios for dual satellite missions are investigated (Table 5.3).

Except for the big polar gap scenario 2.10, the inclination of the second pair of satellites is
set to 72 ◦. That inclination angle is taken from a discussion by Wiese et al. (2011b) which
show that the optimal inclination of the second pair is between 70 ◦ and 75 ◦, when the first
pair is in near polar orbit. Although the work by (Wiese et al., 2011b) holds for full-repeat
period recoveries, they are also assumed to be good choices for shorter time-interval solutions.
The first four scenarios of Table 5.3 consist of two inline missions, one near-polar (89.5 ◦) and
the other inclined (72 ◦) by application of

(i) two long-repeat period missions,

(ii) short-repeat period and long-repeat period,

(iii) long-repeat period and short-repeat period, and

(iv) two short-repeat period orbits.

The next four missions are designed based on the same repeat period scenarios of the first
four missions, but here, it is tried to keep the satellite altitudes at around 300 km. The slow
and fast repeat orbits (long and short repeat periods) of the main four scenarios are chosen
to depict the different sampling scenarios of near-polar and inclined missions. The effect of
missions’ altitude is then investigated by the comparison of the results of first and second
categories of aforementioned main four mission scenarios. The ninth scenario, suggested
by Wiese et al. (2011b) as the optimal scenario, has approximately the same altitude as the
previous four ones, but the repeat periods of the missions are in between of those two previous
categories (13 days). Finally, scenarios 2.10 and 2.11 have polar gaps of 15 ◦ and 7 ◦. The
idea with these two scenarios is to investigate the effect of more samples of the gravity field
in the lower latitudes on the quality of the gravity recoveries of those latitudes.
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5.4 Double Pair Missions

Figure 5.3: Two pairs inline configurations with different inclination angles (Elsaka, 2010).
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Figure 5.4: An example of ground-track pattern of a dual pair inline configuration with dif-
ferent inclination angles (scenario 2.2 of Table 5.3) after 32 days.
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Table 5.3: Orbit architectures of two pairs of satellite missions (∆Ω = 180 ◦)

scenario formation inclination β α altitude
[deg.] [rev.] [days] [km]

2.1 Inline 89.5 503 32 333.8
Inline 72 503 32 305.0

2.2 Inline 89.5 125 8 360.7
Inline 72 503 32 305.0

2.3 Inline 89.5 503 32 333.8
Inline 72 125 8 332.1

2.4 Inline 89.5 125 8 360.7
Inline 72 125 8 332.1

2.5 Inline 89.5 507 32 298.4
Inline 72 488 31 298.3

2.6 Inline 89.5 142 9 317.0
Inline 72 488 31 298.3

2.7 Inline 89.5 507 32 298.4
Inline 72 110 7 306.2

2.8 Inline 89.5 142 9 317.0
Inline 72 110 7 306.2

2.9 Inline 89.5 206 13 297.6
Inline 72 205 13 290.4

2.10 Inline 75 205 13 295.0
Inline 105 206 13 327.3

2.11 Inline 97 206 13 311.7
Inline 72 205 13 290.4
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6 Quality Assessment of Sub-Nyquist
Recovery from Future Gravity Satellite
Missions

This chapter deals with assessment of quality of sub-Nyquist gravity field recovery of different
satellite orbit configurations and formation flights. Here, the quality of gravity solutions of
the time-intervals with the number of satellite revolutions below the required number by
Colombo-Nyquist rule is investigated. Furthermore, three satellite mission scenarios with
near-optimal gravity solutions in terms of spatial and temporal resolutions are chosen and
then subjected to the post-processing tools.

6.1 Quality of the Gravity Field Recoveries
Based on a simplified version of the ll-SST acceleration approach using nominal orbits (quick-
look tool) and Hill’s equations (Chapters 3 and 4), simulations for different repeat orbits of
a single inline satellite pair, alternative formation flights and double satellite pair missions
of Chapter 5 have been conducted. As input, all relevant time-variable gravity fields of
atmosphere, ocean, hydrology, ice and solid Earth (AOHIS) and the difference of two ocean
tide models of the year 2005 have been adopted (Table 4.1). The measurements are simulated
at ∆t = 5 s sampling interval. The error is represented as the difference between the gravity
recovery (output) and the mean of the time-variable gravity models (input) for the same time
interval:

error = gravity solution (output) - mean of the time-variable gravity models (input)

It is important to mention that all geophysical models of this study are smoothed by
220 km Gaussian filter to avoid ringing effects caused by truncation error. Moreover, the
coefficients’ error ∆C00, ∆C10, ∆C11 and ∆S11 are neglected due to the insensitivity of ll-
SST measurement concepts for these coefficients. Indeed, the degree zero term drops out of
the simulations because the total mass in the surface layer is considered constant. For degree
one, there can not be l = 1 gravitational potential for the Earth system when the coordinate
origin is defined as the center of mass, therefore the degree one error has been set to zero, as
well. Furthermore, ∆C20 is ignored in the error simulations. The assumption is taken from
some discussions over the poor determination of C20 by ll-SST measurements, particularly
by GRACE (see Chen et al., 2005).
As discussed before, the Earth coverage by a specific satellite mission scenario, presented

by the gap evolution of the satellite mission ground-tracks, may influence the quality of the
gravity recovery. Therefore, it will be of a great interest to investigate the correlation between
the gap evolutions by different orbit configurations (as an indicator of gaps’ sizes and the
homogeneity of the Earth coverage by the mission scenarios) and their gravity solutions.
Consequently, one task of this study is to search for orbital configurations and formation
flights with optimal homogeneous coverage of the Earth. It is also expected that for each
configuration, at one point of time, the space domain is almost homogeneously sampled.
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Therefore, one may expect a significant quality improvement of the gravity recovery at that
time point. This time interval then stands for the temporal resolution of the solution. The
spatial resolution of such configuration is then determined by the Earth coverage pattern by
that satellite mission.
Here, the validity of Colombo-Nyquist rule in satellite geodesy is investigated. The quality

of the gravity recoveries of different orbit configurations and formations for the time-intervals
with less number of satellite revolutions than what is required by Colombo-Nyquist rule is
investigated.

6.1.1 Recovery Quality from Different Satellite Configurations and Formations

Single Pair Inline Configurations

The GRACE-like configurations of Table 5.1 with inter-satellite distance of ρ = 100 km
are simulated through the quick-look tool. Figure 6.1 illustrates the global (accumulated)
geoid height error rms of 3 to 32-day recoveries for maximum spherical harmonics degree of
45 and 90 by those orbital configurations. Although the solution quality differs from one
configuration to the other, it is important to note that a significant error drop occurs at the
third day for estimated Lmax = 45 and the sixth day for estimated Lmax = 90 for all the
repeat orbits. Figure 6.2 shows a close-up of the Figure 6.1. Moreover, Table 6.1 summarizes
the errors for 5, 6, 7 and 32-days recoveries of Table 5.1 repeat orbits for maximum degree
and order 90. From the table, it can be seen that for the scenarios with error less than 1 cm
for 6-day recovery, the improvement from the fifth to the sixth day is more than 1000 times,
whereas from the sixth to the seventh day is less than 2 times. For the other scenarios, the
improvement from 6-day recovery to 7-day recovery is also not larger than 4.1 times. This fact
confirms that at 6-day gravity solutions, a very significant improvement of spatial resolution
is obtained. Indeed, the problem is caused by the poor conditioning of the normal matrices of
less than 6-day gravity solutions. Figure 6.3 shows the condition numbers of normal matrices
of different gravity solutions, where the condition number (the ratio between the maximal
and the minimal singular values) measures the sensitivity of the solution of a system of linear
equations to errors in the data and provides an indication of the accuracy of the results from
matrix inversion and the linear equation solution.
Figure 6.2 also indicates that for short time solutions, the drifting orbits (with one day

sub-cycle) with similar mission altitudes result in the poorest quality among all the scenarios.
Obviously, scenario 1.7 is excepted, since 6-day is the full repeat period of the orbit. Moreover,
Figure 6.1 and Table 5.1 show that the quality of the recoveries depends on both the altitude
of the satellite and the repeat orbit (β/α). The altitude seems to have a more important
influence, if the very large unobserved gaps (as in drifting orbit) are avoided.

Investigation of Colombo-Nyquist rule To detect the maximum spherical harmonic degree
and order (Lmax and Mmax) by a gravity satellite mission, the Colombo-Nyquist Rule (CNR)
requires number of satellite revolutions of 2Lmax

β ≥ 2Lmax or β ≥ 2Mmax (6.1)

where β is the number of satellite revolutions in repeat cycle of α nodal days. Therefore,
as an example, to detect maximum degree 90 (i.e. spatial resolution up to degree 90), CNR
states that there is a need of at least 180 revolutions in repeat period of the satellite mission.
Similarly, according to CNR, to have a spatial resolution of degree 45, at least 90 satellite
revolutions in the repeat orbit of the mission are needed. However Figure 6.1 and Table 6.1
show that the quality of recoveries is significantly improved around the time interval when
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Table 6.1: Global geoid height error rms for 5, 6, 7 and 32-days recoveries of inline near-polar
configurations of Table 5.1 scenarios for maximum degree 90.

scenario β/α altitude km sub-cycle [days] error [mm]
5-day 6-day 7-day 32-day

1.1 507/32 298.4 13 10526 5.4 3.8 0.8
1.2 491/31 299.8 6 21076 6.5 4.2 0.8
1.3 396/25 299.4 6 19404 6.3 3.9 0.7
1.4 364/23 303.3 6 13718 5.6 4.2 1.0
1.5 317/20 296.6 7 23258 5.9 3.8 0.8
1.6 206/13 297.6 6 14925 5.6 3.8 0.7
1.7 95/6 301.3 1 25460 6.5 6.2 2.8
1.8 503/32 333.8 7 28836 6.9 5.5 1.7
1.9 485/31 354.9 14 9569 26.0 10.7 1.8
1.10 391/25 356.4 11 9750 16.6 8.4 1.7
1.11 125/8 360.7 3 73007 10.6 9.7 3.9
1.12 205/13 319.4 4 53682 7.7 5.7 1.7
1.13 142/9 317.0 4 20909 7.1 5.5 2.0
1.14 497/32 387.9 15 1813900 22.2 10.3 3.4
1.15 501/32 351.7 3 24951 53.5 25.4 2.1
1.16 509/32 280.8 11 928719 2.7 1.9 0.8
1.17 511/32 263.4 1 4826000 139.7 34.8 1.4
1.18 490/31 308.9 5 11977 7.6 6.4 1.4
1.19 488/31 327.2 4 59051 14.7 8.7 3.2
1.20 493/31 281.7 10 629115 3.3 2.0 0.8
1.21 110/7 335.1 3 19792 7.2 6.5 2.8
1.22 495/31 263.7 1 3021400 114.2 29.0 1.4
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Figure 6.1: Global geoid height error rms of GRACE-like configurations of Table 5.1 for re-
coveries up to maximum degree 45 (top) and 90 (bottom).
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Figure 6.2: Close ups of Figure 6.1.
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Figure 6.3: Condition number of the normal matrices of 3, 4, 5, 6, 7 and 8-days recoveries of
maximum degree 90 for β/α = 503/32 repeat orbit (1 s sampling interval).

the number of satellite revolutions equals the maximum spherical harmonics degree and order
which is aimed to be detected:

B ≈ Lmax or B ≈Mmax (6.2)

Here, B is the number of satellite revolutions in a time interval of t. This phenomenon was
already described in Weigelt et al. (2012), denoted as a modification to Colombo-Nyquist
rule with the condition that the number of revolutions in repeat period of mission is larger
than the required number of revolutions:

β ≥ B (6.3)

The condition guarantees that the satellite mission does not repeat itself when the required
revolution number (B) has not been reached.
For the previous examples, this means that for a gravity recovery up to Lmax = 90 about

B = 90 satellite revolutions are needed for a significant error improvement if β ≥ 90. This is
achieved after 6 days for a LEO with approximately 15 revolutions per day. For the recovery
up to Lmax = 45 that is 3 days when β ≥ 45.

Gap evolution effect and quality investigation of sub-cycle recoveries The expectation
for dependency of the quality of gravity recovery on satellite ground-tracks gap evolution was
discussed in the previous chapter. As it was also mentioned, the sub-cycle (SC) is the smallest
number of days after which an ANX falls at 1× Si or (α− 1)× Si from the first ANX (ESA,
2011). That is after when a homogeneous Earth coverage by satellite at sub-repeat intrval
happens, i.e. when the minimum and maximum unobserved gaps by satellite on the Earth get
close to each other. From the description of ground-track gap evolution and the definition
of sub-cycle, a noticeable drop in gravity recovery error is expected for the time with the
minimum gap size and an almost homogeneous ground-track patterns, especially those at the
sub-cycle time intervals. However no significant signature at sub-cycle recoveries for different
repeat orbit configurations of Figure 6.1 is seen, but, as it was mentioned before, the most
significant drop for the repeat orbits happens at the third day for recoveries up to maximum
degree 45 and at the sixth day for recoveries up to maximum degree 90. Figure 6.4 illustrates
the global geoid height error rms for these two cases, while the corresponding sub-cycle time
intervals are shown by vertical lines. The figure does not show any meaningful association
between recovery quality and sub-cycle concept. It only seems that the avoidance of large
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unobserved gap in drifting orbit plays an important role in recovery quality. This fact can be
seen from Figure 6.1 and Table 6.1. That is, in particular, clear for the drifting orbits of sce-
narios 1.17 and 1.22 with one day sub-cycles (a very slow ground-track gap-filling patterns).
The 6-day recovery of the drifting orbit of scenario 1.7 is obviously an exception. Indeed,
6-day is a full repeat orbit of this scenario which means that after 6-day the ground-track
patterns get its most homogeneous distribution.
It is also interesting to investigate a possible correlation between the scenarios with less

homogeneous gap-filling patterns (large difference between maximum and minimum gap or
large unobserved gap by satellite ground-track coverage) and the quality of recoveries. Sce-
narios 1.9, 1.10, 1.14, 1.15, 1.16, 1.17, 1.19, 1.20 and 1.22 of Figure 5.1 almost show these
cases at the 6th day. Looking at Table 6.1, large error values can be seen for those scenarios
at 6-day recoveries. The exceptions are the scenarios 1.16 and 1.20 where the 6-day recov-
ery error is the minimum among all configurations. The reason for thess small errors, most
probably, comes from the low altitude of the mission which is around 280 km. However, for
the very low altitude orbits of scenarios 1.17 and 1.22, the errors are very large. These large
error values are expected by the drifting orbit or very slow gap-filling ground-track (most
inhomogeneous) pattern of these configurations. Considering the effect of mission height as
a source for error reduction, the other scenarios with large error values are mostly associated
with inhomogeneous ground-tracks coverage at the sixth day (Figure 5.1).
For the long time interval recoveries (32-day), it seems that the effect of mission height is

more prominent, although the short repeat period orbits with large unobserved gaps (as in
scenario 1.7, 1.11, 1.13 and 1.21 with respectively 6, 8, 9 and 7 full repeat periods) show low re-
covery quality compared to the missions with similar altitudes (Table 6.1). Other factors may
also contribute to the quality of gravity recoveries. The investigation of those factors should
be considered for future work. One interesting example is scenario 1.19 (β/α = 488/31) with
an almost large error at 32-day gravity solution. The large global error is caused by the
considerable and sudden increase of degree rms error of the configuration around degree 60,
even when the tidal error is not considered in the simulation (Figure 6.5). The reason for
this sudden increase has not been realized in recovery error budget of this research thesis.
Obviously, it is of great interest to investigate the cause in the future work.

Quality assessment of the recoveries of different orbit configurations In summary, it can
be concluded from the discussion above that the fulfillment of the modified Colombo-Nyquist
rule, the mission altitude and avoidance of large unobserved gaps by satellite ground-tracks
pattern are the most important factors for the quality of the gravity recoveries, while the sub-
cycle concept, apparently, plays no important role for the quality. The focus of this research
is on the sub-Nyquist recoveries which fulfill the modified Colombo-Nyquist rule. That is the
time with significant improvement in spatial resolution of the recoveries, while the high time
resolution can be also achieved. Figure 6.6 shows some examples with different repeat orbit
configurations for 6-day gravity recovery. The figure shows that the quality for the drifting
orbit β/α = 511/32 is the worst among the solutions, although it benefits from the lowest
mission altitude. For the other repeat orbits, the degree rms of the errors and geoid height
error rms per latitude are almost similar. However, some small quality improvements can
be seen for scenario 1.20 (repeat orbit β/α = 493/31) for high degrees and low latitudes
(between 45 ◦S and 45 ◦N) which is most likely caused by the lower altitude of the satellite
mission (≈ 282 km).
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Figure 6.4: Global geoid height error rms by some GRACE-like configurations from Table 5.1
for recoveries of maximum degree and order 45 (top) and 90 (bottom). The
vertical dash lines show the corresponding sub-cycle time intervals of the config-
urations.
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32-day recovery of maximum degree 90. No tidal error is considered for the
simulation.
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Figure 6.6: Degree rms of the errors (top) and geoid height error rms per latitude (bottom)
of the 6-day recoveries by some GRACE-like configurations from Table 5.1. The
recoveries are solved for maximum degree 90.
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Table 6.2: Global geoid height error rms for 6 and 32-days recoveries of GRACE-like and
alternative formation flights of Table 5.2 for maximum degree 90.

scenario error [mm]
6-day 32-day

GRACE-like 6.9 1.7
GFO 3.0 1.3

Pendulum 0.9 0.5
Cartwheel (polar-radial) 1.8 0.4

Cartwheel (equatorial-radial) 0.9 0.3

Alternative Formation Flights

Several previous studies (e.g. Sharifi et al., 2007; Wiese et al., 2009; Elsaka, 2010; ESA, 2011)
show that quality of the gravity recovery by alternative formations which also measure other
components than only the along-track GRACE measurement is improved. Table 6.2 shows the
improvements of global geoid height error rms for 6-day and 32-day solutions by alternative
formation flights of the assumed reference orbit β/α = 503/32 of Table 5.2. It can be also
seen that the improvement is significant for the 6-day recoveries, where the GRACE Follow-
on (GFO) conservative pendulum formation with a small opening angle improves the quality
of gravity recovery by more than a factor of two (Table 6.2). That means for the short time
gravity solutions, with smaller number of samples, the additional measurement component
(rather than the only along-track component of the GRACE-like formation) gets a more
important role in the recovery quality. Moreover, Figure 6.7 implies noticeable improvements
for 6-day recovery by Pendulum and equatorial-radial Cartwheel for lower latitudes, while the
polar-radial Cartwheel shows some improvement for higher latitudes between approximately
40 ◦ and 80 ◦. For the 32-day recovery, the performances of polar-radial and equatorial-radial
Cartwheel formations are almost the same (Figure 6.8). The improvement for equatorial-
radial Cartwheel over the polar-radial Cartwheel for 6-day solution is expected, since the
more sensitive radial component get samples over the large equator area. That should be
compared with small polar region with dense satellite sampling. However, for 32-day solution,
this improvement is not significant. That is because the latitudes of pure radial or pure along-
track components (at pole or equator) change over time (perigee drift of approximately 4 ◦).

Double Inline Satellite Missions

Bender et al. (2008) show that the spatial-temporal resolution of the gravity recoveries for
time-variable gravity field can be improved by employing two pairs of inline formations, when
one is in a near-polar orbit and the other in a lower inclined orbit.
One should also think of a revised Colombo-Nyquist rule for two pairs of satellite missions,

if the number of revolutions by both satellite pairs is taken into account. That means the
number of satellite pairs’ revolutions are summed up to result in the total number of scenario
revolutions in specific time interval:

B = B1 +B2 ≈ Lmax or B = B1 +B2 ≈Mmax (6.4)

where B1 and B2 stand for the number of revolutions of satellite pairs 1 and 2.
Figure 6.9 shows a significant error drop for all scenarios of Table 5.3 for 3-day recoveries

of maximum SH degree 90. Moreover, comparing the errors of 3-day recoveries of two pairs of
satellite missions of Table 6.3 with 6-day recoveries of the single inline satellite configurations
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Figure 6.7: Degree rms of the errors (top) and geoid height error rms per latitude (bottom)
of the 6-day recoveries by a GRACE-like and alternative formation flights from
Table 5.2 for maximum degree 90.
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Figure 6.8: Degree rms of the errors (top) and geoid height error rms per latitude (bottom)
of the 32-day recoveries by a GRACE-like and alternative formation flights from
Table 5.2 for maximum degree 90.
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of Table 6.1 (with almost same mission altitudes of two pairs missions), shows a quality
improvement of 5 to 10 times for the 3-day recoveries of dual inline missions. The reason,
most likely, is the inclined satellite pair which simply adds East-West measurement sensitivity
to the North-South component of the near-polar formation which not only doubles the amount
of measurements, but also improves the isotropy. Furthermore, the 3-day recoveries suffer less
from temporal aliasing of the input time-variable gravity fields of simulations. That means
the 3-day gravity solutions also benefit from twice higher time resolution than the 6-day
solutions. Comparisons of the 6-day recoveries of single inline satellite mission scenarios and
dual pairs missions implies at least 10 times improvements when employing double pairs.
Obviously, the improvement depends on the altitude and repeat orbits of the single inline
satellite mission scenarios.
Table 6.3 also shows that the quality improvement of dual pairs satellite mission scenarios

for 3-day recoveries depend on the missions altitudes. According to the table, scenarios 2.5 –
2.8 benefit from lower altitudes, which provide higher quality of gravity recoveries. However,
that is not the case for the 6 and 32-days recoveries, where no improvement is seen in the
accuracy level of the Table, i.e. the repeat orbits of Table 6.3 show similar global errors for the
6 and the 32-days recoveries, independent from repeat orbit and altitude of the formations.
For the 3-day recoveries, the second category (scenarios 2.5 – 2.8) displays approximately half
the error size of the first category (scenarios 2.1 – 2.4) with higher altitudes, but no significant
error difference can be observed inside the two categories for the 3-day solutions. As an
example Figure 6.10 illustrates the similar quality performance for 3-day gravity solution
of scenarios 2.5 – 2.9. This implies that the performance of the formations for the 3-day
solutions is almost independent from the repeat patterns, although more investigations should
be addressed within the combinations of different repeat modes, esp. those of drifting and
slow gap fill-in orbits.

Polar-gap scenarios It is also of great interest to investigate the effect of denser sampling of
the gravity field in the lower latitudes on the gravity recoveries by low-inclination scenarios.
A scenario of two satellite missions, neither of them a polar orbit, causes a polar gap in
Earth coverage by the satellites’ ground-track patterns, and at the same time sample the
lower latitudes denser. As examples, two mission scenarios 2.10 and 2.11 of Table 5.3 with
respectively 15 ◦ and 7 ◦ polar gap radii are studied here. Figure 6.11 illustrates the ground-
track pattern of scenario 2.10 for a selected part on the Earth as an example. The latitude-
dependent geoid height error rms of these two scenarios are illustrated in Figure 6.12, where
they are also compared with the error of scenario 2.9 with only 0.5 ◦ polar gap radius. For
scenario 2.10 (15 ◦ polar gap radius), the figure does not show improvement in low latitudes
for a 3-day recovery, while the quality of the 6-day recovery is very poor in those latitudes.
For scenario 2.11, where a Sun-synchronous orbit (I = 97 ◦) with a polar gap radius of 7 ◦ is
employed, some improvements in high latitudes can be seen. This is just below a colatitude
of 7 ◦ where the quality significantly drops. That means the 7 ◦ gap in polar areas does
not affect the spherical harmonics associated with other areas very much. Therefore, the
scenarios with small polar gap radii can be considered as options for future satellite missions,
where the poor quality of polar gap area can be dealt by e.g. regularization methods. It is
also important to note that the maximum degree of recoveries has an important effect on the
quality of recoveries in the lower latitudes. In fact, the gravity solution of high SH degrees
suffer more from the polar gap in the satellite coverage than the recoveries of low SH degrees.

90



6.1 Quality of the Gravity Field Recoveries

Table 6.3: Global geoid height error rms s for 3, 6 and 32-days recoveries of dual pairs of
inline satellite missions of Table 5.3 for maximum degree 90. (∆Ω = 180 ◦)

scenario formation inclination β/α altitude error [mm]
[deg.] [rev./days] [km] 3-day 6-day 32-day

2.1 Inline 89.5 503/32 333.8 0.8 0.4 0.2Inline 72 503/32 305.0

2.2 Inline 89.5 125/8 360.7 0.9 0.4 0.2Inline 72 503/32 305.0

2.3 Inline 89.5 503/32 333.8 1.1 0.4 0.2Inline 72 125/8 332.1

2.4 Inline 89.5 125/8 360.7 1.2 0.4 0.2Inline 72 125/8 332.1

2.5 Inline 89.5 507/32 298.4 0.5 0.4 0.2Inline 72 488/31 298.3

2.6 Inline 89.5 142/9 317.0 0.6 0.4 0.2Inline 72 488/31 298.3

2.7 Inline 89.5 507/32 298.4 0.5 0.4 0.2Inline 72 110/7 306.2

2.8 Inline 89.5 142/9 317.0 0.5 0.4 0.2Inline 72 110/7 306.2

2.9 Inline 89.5 206/13 297.6 0.6 0.4 0.2Inline 72 205/13 290.4
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Figure 6.9: Global geoid height error rms of two inline satellite missions scenarios of Table 5.3
for recoveries up to maximum degree 90. The bottom graph is a zoom-in view of
the top figure for 2, 3, 4 and 5-days recoveries.
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Figure 6.10: Degree rms of the errors (top) and geoid height error rms per latitude (bottom)
of the 3-day recoveries by some examples of two pairs of inline satellite missions
from Table 5.3 for maximum degree 90.
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Figure 6.11: A selected part of ground-track pattern of scenario 2.10 with 15 ◦ polar gap
radius.

6.1.2 Effect of White Noise on the Recovery Quality

Besides the aliasing effects of time-variable gravity signals, the measurement noise of the
intersatellite link and the accelerometers play an important role for the gravity field accuracy.
For the GRACE mission, the sensor noise is one of the most dominant error sources (Loomis
et al., 2011). However, future ll-SST missions will benefit from enhanced technology as e.g.
laser-link and drag-free system (Mueller et al., 2005; St Rock et al., 2006; Alnis et al., 2008;
Pierce et al., 2008; Marchetti et al., 2008; Loomis et al., 2011; ESA, 2011) which aim to
reduce the sensor noise significantly by one or two orders of magnitude. Then, aliasing will
be the most severe error source, at least if the state-of-the-art background model errors are
considered, which are the limiting problem of de-aliasing products.
Nevertheless, it is worth to study the effect of measurement noise on future mission options.

Here, a simple white noise model with a power spectral density (PSD) of 10−10 m s−2/
√

Hz on
the level of range accelerations, applied in the quick-look-tool, is introduced. This corresponds
to a mean level over the measurement bandwidth of realistic instrument scenarios, mentioned
in ESA (2011) and Sheard et al. (2012).
Table 6.4 summarizes the effect of white noise in terms of global geoid height error rms

for different time-interval recoveries of inline, alternative and dual pair formation flights.
Although a significant improvement can be seen by employing alternative formations rather
than GRACE-like mission, the table shows very small values compared to the global geoid
height error rms by geophysical models of Table 6.2. In addition, the error improvement
by long time interval recovery of inline mission, compared to 6-day recovery, is shown in
Table 6.4. That is also seen for two pairs of satellite missions, where the 6-day recovery
produces smaller error, compared to 3-day recovery. Furthermore, a significant improvement
of order 5 is realized for white noise effect by employing two pairs of inline satellite missions
rather than only a single inline mission, even when the gravity is solved for short time interval
of 3-day rather than 6-day.
Figures 6.13, 6.14 and 6.15 illustrate the effect of white noise on the spherical harmonics

spectrum of
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Figure 6.12: Geoid height error rms per latitude of the 3-day (top) and 6-day (bottom) re-
coveries by two pairs of inline satellite missions scenarios 2.9, 2.10 and 2.11 from
Table 5.3 with respectively 0.5 ◦, 15 ◦ and 7 ◦ polar gap radii. The recoveries are
solved to maximum degree 90.
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Table 6.4: The white noise effect in terms of global geoid height error rms for different time-
interval recoveries of GRACE-like, alternative and dual inline missions of Table 5.2
and scenario 2.2 of Table 5.3 for maximum degree 90.

scenario error [mm]
3-day 6-day 32-day

GRACE-like - 0.27 0.03
GFO - 0.07 -

Pendulum - 0.02 -
Cartwheel (polar-radial) - 0.07 -

Cartwheel (equatorial-radial) - 0.03 -
Dual pairs of inline missions 0.05 0.01 -

elm =
√
C2
lm + S2

lm (6.5)

The figures show a considerable error decrease for the harmonics near the sectorial band
l = m for the Pendulum compared to the inline formation, while a clear improvement in this
band can even be seen for the conservative pendulum formation of GFO. As expected, the
improvement is most significant when two inline satellite pairs are employed. Moreover, for
both GRACE-like and two pairs missions, the high degrees and orders of spherical harmonics
are less affected by white noise in the long time interval gravity solutions (Figures 6.14
and 6.15).
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Figure 6.13: SH error spectrum, due to white noise for 6-day recoveries of inline and alter-
native formation flights of Table 5.2 for maximum degree 90. The coefficients
values are in logarithmic scale.
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Figure 6.14: SH error spectrum, due to white noise for 6-day (left) and 32-day (right) re-
coveries of inline formation flight of Table 5.2 for maximum degree 90. The
coefficients values are in logarithmic scale.

order

d
e

g
re

e

 

 

0 20 40 60 80

0

10

20

30

40

50

60

70

80

90

order

d
e

g
re

e

 

 

0 20 40 60 80

0

10

20

30

40

50

60

70

80

90

 −18 −17 −16 −15 −14 −13 −12 −11 −10

Figure 6.15: SH error spectrum, due to white noise for 3-day (left) and 6-day (right) recoveries
of two pairs of inline satellite missions of scenario 2.2 from Table 5.3 for maximum
degree 90. The coefficients values are in logarithmic scale.
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6.2 Error Simulations and Post-processing
The quick-look software of this research study is employed to find optimal orbit configura-
tions and formation flights from the mission scenarios of Tables 5.1, 5.2 and 5.3. The error
simulation of the selected scenarios is performed by a simple assumption that 10% of the
input geophysical signals (models) is unknown. That means 90% of the true geophysical sig-
nals from time-variable gravity fields (AOHIS) are considered as known background model.
However, this assumption considers a very simple model for the error simulation which is not
realistic, but can still be an appropriate choice for the closed loop simulation of this thesis.
It is of great interest to investigate more realistic and sophisticated models’ errors in future
work. One possibility could be by introducing difference of two models of a same geophysical
field as model error of the field (as assumed for ocean tide error of this study).
The simulation and recovery steps of this research study are only performed for 10% of the

total signals in addition to the ocean tide error. This part is then called the models’ error.
Only the retrieved signals (recovery) from the models’ errors are subjected to white noise
filtering and regularization as the post-processing tools. Furthermore, the correlation tool of
this thesis is employed for correlation analysis of the 10% of the geophysical models (AOHIS)
as the input of simulation error and the recovery of that 10% as well as the ocean tide error
and white noise as the output.

6.2.1 Choosing the Optimal Scenarios
Two selection factors play the most important roles in choosing the optimal satellite mission
scenarios: (i) the performance of the mission in retrieving the geophysical signals, and (ii)
technical and stability issues connected with the mission. From a technical viewpoint, the
missions are chosen by the altitude not less than 290 km, while from the view of geodetic
sensitivity an orbit height not larger than 320 km is preferable. That is a trade-off between
higher sensitivity to short wavelength phenomena by lower altitude and a shorter mission life
time due to a larger atmospheric drag force. This decision is due to the expectation that
future satellite missions will benefit from drag-free technology like GOCE which allows the
mission to fly at lower altitudes (Marchetti et al., 2008; St Rock et al., 2006; Wiese et al.,
2011b). Furthermore, an intersatellite distance of 100 km of an inline formation equipped
with laser interferometry is chosen as a trade-off between instrument performance and rel-
ative accuracy in determining short wavelengths features in the gravity field (Wiese et al.,
2009). The stability problem with Pendulum and Cartwheel formations as well as the laser in-
terferometry pointing issue limit the choices to inline formations and conservative Pendulum
formations with small opening angle (GFO). However, due to the higher performance of the
GFO formation compared to the inline configuration, the GFO would be a favorite scenario
for a single pair satellite mission. The scenario is chosen on a repeat orbit of β/α = 507/32
which shows a good performance for 6-day recovery (Table 6.1). For dual satellite pairs, two
different formation scenarios are selected:

(i) a combination of a near-polar and an inclined inline missions, and

(ii) a near-polar GFO formation together with an inclined inline mission.

For both scenarios, the inclination angle of the second pair is considered as 72 ◦. Furthermore,
based on the quality assessment of different configurations, scenario 2.5 of Table 6.3 with
repeat orbits of β/α = 507/32 and 488/31 are chosen. These suggestions consider a prediction
of launching an independent single near-polar GFO formation as the substitute of the current
GRACE in the near future. Therefore, the inclined inline formation can be suggested as
add-on to the near-polar mission afterwards. The second pair then improves the quality
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Table 6.5: Orbit architectures of our chosen optimal scenarios

scenario formation inclination β α
(deg.) (rev.) (days)

7.1 GFO 89.5 507 32

7.2 Inline 89.5 507 32
Inline 72 488 31

7.3 GFO 89.5 507 32
Inline 72 488 31

performance of gravity recovery very significantly.
Table 6.5 summarizes the suggested optimal scenarios for the future missions. The 6-day

recovery of single pair satellite mission (scenario 7.1) and the 3-day recoveries of two pairs
satellite missions (scenarios 7.2 and 7.3) of maximum degree 90 are subjected to the error
simulation and post-processing analysis.

Correlation Analysis

As discussed in Section 4.4, Empirical Orthogonal Functions (EOF) analysis can be employed
as a tool for searching the optimal scenarios. The analysis is especially useful when the mission
scenario design pursues specific purposes (e.g. the temporal signatures such as seasonal
variations of a geophysical phenomenon). Here, the temporal behavior of the geophysical
signals is studied through the modes of principal components of the input and output of
the closed loop simulation tool. The possibility of shifting the temporal or spatial signature
of a geophysical phenomenon represented by a single mode in one field to another mode
in the other field leads the study not only to investigate the correlation of corresponding
modes of the two fields, but also to look at the correlation of each mode from one field to all
the modes from the other field for a specific order (see Subsection 4.4.4). Examples of the
correlation analysis of corresponding modes and the all modes cross-correlation approaches
are respectively represented in Figures 6.16 and 6.17.
Although, the EOF-based cross-correlation analysis can provide detailed information of

the gravity field retrieval processes, the search space of the analysis is extremely vast and
requires lots of efforts which is beyond the scope of this study. Clearly, it would not be
reasonable to conclude from a correlation analysis of limited number of modes and orders.
As an example, Figures 6.16 and 6.17 show that despite the small improvement by employing
two pairs satellite missions compare to single pair formation flight for the first three modes of
order m = 0 (Figure 6.16), no general improvement for cross-correlation of all the modes can
be seen (Figure 6.17). However, as mentioned above, this sort of correlation analysis might be
more helpful when it is used for investigating specific features, recovered by different mission
scenarios. For general selection procedure of the optimal scenarios of this thesis, the analysis
is not very helpful, and therefore has not been employed.

6.2.2 Noise Filtering

Dealing with noise is one of the most challenging issues when higher recovery quality is looked
for. The noise has different sources. Three of the most important noise sources are
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Figure 6.16: The first three temporal (left) and spatial (right) modes of the input field (blue
line) and the recovery (red line) of 6-day for single pair (a) and two pairs (b) of
inline satellite missions for zonal coefficients for a one year time series (2005).
The correlation coefficients between the two fields are provided at the top of
each figure. Please note that the temporal modes are shown in the time scale
of almost one year (60× 6-day solutions), while the spatial modes are calculated
for maximum degree 90.
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Figure 6.17: The correlation coefficients between temporal modes (principal components) of
the input field and the recovery of 6-day for single pair (left) and two pairs
(right) of inline satellite missions for zonal coefficients for a one year time series
(2005).

(i) aliasing errors which are due to under-sampling the signals,

(ii) retrieval errors which are caused by the formation architecture (for example the North-
South stripes in GRACE recoveries), and

(iii) the instruments noise.

Several filter strategies have been suggested to deal with these errors. As it was discussed
in 4.4.3, Wouters and Schrama (2007) proposed a filter based on Empirical Orthogonal Func-
tions (EOF) analysis in combination with Kolmogorov-Smirnov white-noise test (KS-Test) on
the data time series in the spectral domain. Moreover, Koch and Kusche (2002) and Lorenz
(2009) provided regularization methods to deal with both white and colored noise. These
two filters are employed here to minimize the effect of noise on the gravity recoveries.

EOF+KS-Test Filter

Based on Equation (4.32), a left filter operator is utilized for the white noise filtering through
EOF+KS-Test analysis (Iran Pour and Sneeuw, 2012). An example of such filter for four
specific orders is shown in Figure 6.18. Figures 6.19 and 6.20 illustrate how the filter works
on the spherical harmonic coefficients and EWH maps for the selected optimal scenarios.
Figure 6.19 shows the error spectrum of the recoveries of 10% of geophysical models as well
as tidal error and white noise before and after filtering. The corresponding EWH maps of
those products are illustrated in Figure 6.20. The signal energy percentage of accepted modes
for each order for 6-day solution of scenario 7.1 is shown in Figure 6.21, where the energy
percentage is computed through the summation of the variances of PCs aj passing the KS-
Test normalized by the sum of variances of all PCs aj (Wouters and Schrama, 2007).
Table 6.6 provides improvement of the global geoid height error rms values after filtering.

Obviously, the strength of the designed filter depends on the significance level, α, of the KS-
Test in white noise detection. The filter does not differentiate between the noise and the real
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Figure 6.18: The EOF filter operator Fu of 6-day solution of scenario 7.1 for Clm orders
m = 0, 3, 30 and 70 (α = 0.05) with l ≥ m. The color-bar is in logarithmic
scale.

Table 6.6: Improvement of global geoid height error rms by EOF+KS-Test filter for signifi-
cance level, α = 0.05.

scenario global geoid height error rms [mm]
before filtering after filtering

7.1 0.7 0.3
7.2 0.3 0.2
7.3 0.3 0.2

geophysical signals with the global power density smaller than KS-Test threshold level. For
example, Figure 6.19 shows that all the modes of the majority of high orders are recognized as
white noise and then filtered out by the KS-Test. That, obviously, does not reflect the truth.
Therefore, it would be almost impossible to remove all the white noise without diminishing
some of the real signals. It is indeed a very difficult task to find an optimal significance level
of the KS-Test for white noise filtering, while the real signals of interest are kept. Examples
of the effect of three different significance level values on SH spectrum and EWH maps of
6-day recovery of scenario 7.1 are respectively illustrated in Figures 6.22 and 6.23.

Regularization

A regularization method by Koch and Kusche (2002) and Lorenz (2009) (see the discussion
in Subsection 4.3.2) is employed to deal with both white and colored noise. When the aim
is to reestimate a set of spherical harmonic coefficients in terms of sequential estimation,
Equation (4.20) can be rewritten as a spectral filter. Therefore, design matrix A becomes the
identity matrix, observation vector y becomes x̂ and x̂ changes to x̂′

x̂
′ = (P + λPK)−1 Px̂ (6.6)

where x0 = 0. The equation can also be written in form of filter operator Freg:

x̂
′ = Fregx̂ (6.7)
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Figure 6.19: Spherical harmonic coefficients of mean input signals (left) and the recoveries
before (middle) and after (right) EOF+KS-Test filtering for a 6-day recovery of
scenario 7.1 (top) and 3-day recoveries of scenarios 7.2 (middle) and 7.3 (bottom)
for maximum degree 90. The significance level, α, for KS-Test is set to 0.05. The
coefficients values are in logarithmic scale.
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Figure 6.20: Corresponding EWH maps of Figure 6.19
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Figure 6.21: The signal energy pass of Clm and Slm by the KS-Test of 6-day solution of
scenario 7.1 (α = 0.05)
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Figure 6.22: Effect of different significance level of EOF+KS-Test filter, α, on SH spectrum
of 6-day solution of scenario 7.1: α = 0.01 (left), α = 0.05 (middle) and α = 0.25
(right). The coefficients values are in logarithmic scale.
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Figure 6.23: Corresponding EWH maps of Figure 6.22.

with Freg = (P + λPK)−1 P which has the structure of the Wiener filter (Sasgen et al., 2006;
Lorenz, 2009). An example of such filter for 6-day recovery of scenario 7.1 with regularization
parameter λ = 5 is illustrated in Figure 6.24.
In this study, the regularization method is utilized for processing of the recoveries of se-

lected optimal scenarios (Figures 6.25 and 6.26). The optimal regularization parameter, λ, of
Equation (4.18) is chosen with a criterion of having minimum distance of degree rms between
10% of the input models (AOHIS) and the recovery of that 10% when the ocean tide error
and white noise are added as well. Similar to the significance level concept in EOF+KS-Test
filtering, the regularization parameter plays an important role here. Figures 6.27 and 6.28
show the effect of three different values of λ on the SH spectrum and EWH maps. As it is
seen, the small value of regularization parameter (λ = 0.01) fails to handle the main part of
noise, while its large value (λ = 100) diminish many real signals. Furthermore, concerning
the procedure of search for optimal regularization parameter (here λ = 5), it is important to
notice that forcing the degree rms of the recovery to the degree rms of the input models may
remove the unknown signals of the recoveries and therefore smooths the results towards the
input models as the true models. However, since the true models in reality are not known,
that is clearly a disadvantage of this regularization method which uses the input models as
reference. Employing the data from other sources e.g. altimeter or in-situ for the regulariza-
tion will also force the gravity recoveries towards those data. Obviously, more studies should
be addressed to the regularization methods.
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Figure 6.24: The regularization filter operator Freg of 6-day solution of scenario 7.1 (λ = 5).
The color-bar is in logarithmic scale.
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Figure 6.25: The spherical harmonics of the mean input models (left) and the recoveries before
(middle) and after (right) regularization for a 6-day recovery of scenario 7.1 (top)
and 3-day recoveries of scenarios 7.2 (middle) and 7.3 (bottom) for maximum
degree 90. The regularization parameter λ is set to 5 as a near-optimal value.
The values are in logarithmic scale.
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Figure 6.26: Corresponding EWH maps of Figure 6.25
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Figure 6.27: Effect of different regularization parameter, λ, on SH spectrum of 6-day solution
of scenario 7.1: λ = 0.01 (left), λ = 5 (middle) and λ = 100 (right). The
coefficients values are in logarithmic scale.
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Figure 6.28: Corresponding EWH maps of Figure 6.27.
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Sampling Theorems

The possibility of having high temporal and spatial resolutions at the same time are re-
stricted by a Heisenberg-type principle in satellite geodesy and the Colombo-Nyquist rule.
However the modified Colombo-Nyquist rule of this thesis research states that the spatial res-
olution of gravity recovery of a satellite mission is significantly improved with the number of
satellite revolutions to be equal the maximum spherical harmonic (B ≈ Lmax). The modified
Colombo-Nyquist rule enables higher temporal resolution of gravity recoveries, while the high
noise level by spatial aliasing of the sub-Nyquist solutions can be dealt by post-processing
methods. That means for a single pair satellite mission, an almost good gravity recovery of
6-day for maximum degree 90 is achievable (provided that the ground-track coverage is ho-
mogeneous enough). By employing two satellite pairs, one in near-polar orbit and the other
in an inclined orbit, this is even achievable by 3-day solutions according to an interpretation
of the modified CNR for dual formation missions. Strictly speaking, the latter solution is
actually of higher quality. The reason is that an inclined formation rather increases isotropy
by adding East-West measurement components instead of only doubling the amount of sam-
ples. Moreover, the 3-day solution benefits from higher temporal resolution and consequently
less temporal aliasing. An important benefit of having such short time-interval solutions is
that they can be applied as dealiasing products (e.g. Wiese et al., 2011a) independent from
state of the art geophysical models when aiming of time-variable gravity recoveries of longer
time spans, e.g. monthly solutions. Comparing the 6-day recoveries of single inline satellite
missions and 6-day recoveries of two pairs missions implies at least 10 times improvement
by employing dual satellite missions. Obviously, the quality improvement depends on the
altitude, but no significant correlation between the repeat orbits of the dual satellite mission
scenarios and the quality of the solutions has been detected. For the dual pair satellite mis-
sions with polar gap, it has been shown that the scenarios with small polar-gaps (e.g. 7◦)
can be considered as options for the future satellite missions as they may improve the quality
of the solutions in the low latitudes. The poor quality of polar-gap area can be adjusted
by post-processing tools such as regularization methods. Clearly, the maximum degree of
recovery has an important effect on the solutions’ quality in the lower latitudes.

Orbital Parameters It has been shown that using alternative formations like Pendulum
and Cartwheel, the quality of the gravity solutions is considerably improved. However, some
technical challenges like the stability of formation and the pointing issues with the track-
ing system prevent employing them in the near future. On the other hand, a conservative
pendulum formation with a small opening angle (GFO) is technically more realistic, while it
improves the gravity recovery quality for high degrees and low latitudes.
The selection of orbital parameters, especially homogeneous and smooth gap evolution

with avoidance of large unobserved gap (in particular of those in drifting orbit with one day
sub-cycle) and the mission altitude have important roles in the quality of gravity solutions.
Other important key factors which may influence the recovery quality are addressed to the
future works. In particular, it would be of great interest to study the sampling distribution
of satellite missions on longitudinal-latitudinal global grids and its possible effect on quality
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of the gravity recovery. That is also on demand to investigate the effect of distribution of
ground-track patterns of dual pairs satellite missions on the recoveries’ quality in more de-
tails.
It has also been discussed that employing two satellite missions considerably improves

quality of the gravity recovery. Wiese et al. (2011b) suggest a range of parameters’ choices,
while the mission target is very important for the selection. This work has benefited from
Wiese et al. (2011b) suggestions for orbital parameters, although this thesis study has inves-
tigated the effects of some orbital parameters on quality of the short-time gravity solutions
(as called sub-Nyquist solutions). A combination of a near-polar GRACE-like or conservative
pendulum (GFO) formation with a 72◦ inclined inline formation at altitude around 300 km
has been selected as possible optimal future satellite gravity mission scenarios for the sub-
Nyquist recovery.
Several repeat orbits with different altitudes and ground-track pattern evolutions have been

used as the search space for finding optimal scenarios of single pair and double pair missions.
Clearly, more comprehensive search space and finding strategies are necessary to look for
the optimal scenarios. One possibility is to employ genetic algorithm to look for the best
scenarios for the sub-Nyquist solutions, as it has been used for the full repeat period gravity
recovery over the preselected parameters by Ellmer (2011).

Error Analysis

This work has used the error simulation by 10% of the input geophysical models (AOHIS) as
the unknown or models’ error for the post-processing sections. The simulation then included
the models’ error, white noise and ocean tide error. That means 90% of the input models
(AOHIS) are assumed as known signals or background models. This assumption, however,
considers a very simple model for the error simulation which is indeed not realistic. For
the future works, more realistic and sophisticated models’ errors should be investigated.
One possibility for such error scenarios is by introducing difference of two models of a same
geophysical field as model error of a geophysical field, as it has been assumed for ocean tide
error of this study.
The study of different orbit configurations and formation flights of this dissertation was

based on a quick-look simulation tool. The tool assumes a constant repeat orbit, β/α,
(nominal orbit) for the satellite mission. This assumption is, however, not realistic, since
the orbital parameters of the satellite mission changes with the time-variable gravity field
of the Earth. However, the final gravity products of the orbit simulations of the quick-look
tool of this study have shown a very good agreement with the results of an orbit-integration
simulation package. Moreover, because of avoiding the orbit integration, the quick-look
software performance is very fast. Therefore, the tool is suggested for a quick analysis of
the gravity recovery by different mission scenarios. The quick-look tool then provide general
assessment of those mission scenarios which can later be analyzed by more realistic tools in
details.
The simulation procedure of this research has considered the time-variable gravity models

of some geophysical fields in atmosphere, ocean, hydrology, ice and solid Earth (AOHIS).
Furthermore, the difference of two ocean tide models (tidal error) has been added to the
gravity fields as a source for colored noise. The third body gravitational forces (by the Sun,
the Moon and the planets) as well as the non-gravitational forces (like atmospheric drag
force, radiation pressure, and etc.) and the sensors’ colored noise have not been included
in the simulation of satellite mission scenarios. The study has only looked for fast analysis
of closed loop simulation of satellite missions, affected by time-variable gravity fields and
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therefore did not include all the other forces on the satellites as it did not include the errors
which are regarding to the measurement devices. Further works should consider more realistic
scenarios. In particular, it would be of great interest to investigate the effect of colored noise,
produced by satellite sensors and instruments, on different time intervals of gravity solutions
of different mission scenarios.

Post-processing
The post-processing tools of this research study has included a white noise filter, based on
EOF+KS-Test analysis and a regularization method which in general deals with all kinds
of noise. The tools are employed to deal with the high noise level of short-time interval
gravity solutions due to the spatial aliasing. However, it is very important to know that both
filter approaches suffer from disadvantages and may remove some of the geophysical signals
as well. The performance of the filters is highly dependent on the filters’ parameters (the
significance level, α, of KS-Test and the regularization parameter, λ, of the regularization
approach). Obviously, further researches should be addressed to the filter design for both
white and colored noise in the future works.
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