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Abstract

Different official and commercial providers of geographic information are currently performing extensive surveys
to capture 3D building structures. These building models are offered to private users to enable them to get a
visual impression of a site from a distant place but also to visualize current plans for changes.

They are also of great interest for scientific and commercial customers because the increasing availability of
computing power makes it possible to perform simulations and analysis on increasingly more detailed models.
In the context of (3D) city models, this could, for example, mean that a simulation tool that could only handle
flat roofs in a previous version may now be able to produce better results using basic roof shapes for each
building part.

With an increasing amount of details that have to be incorporated in an analysis, the surveying effort that is
needed to capture the features that are needed for the application will increase dramatically. In such a situation,
it would be sensible to use an existing highly detailed model and extract the features needed for the application
from this model without having to launch another surveying campaign. This is the aim of generalization: Reduce
the complexity of the data set to a minimum amount of data while retaining a maximum amount of information
of relevance for the application at a semantic complexity that can be handled by the application.

This aim inherently includes an optimization problem with constraints: We want to minimize the size of the
data set and maximize the remaining amount of information of importance for the application (conflicting goals)
under the constraint that the resulting features can be handled by the application.

It will turn out in the course of this thesis that this problem is NP-hard even for the most simple versions
of some very basic problems – the aggregation of simple building models and the simplification of simple
facade structures. A powerful tool for finding globally optimal solutions for such complex optimization problems
and proving the optimality of the solution is Mixed Integer Programming (MIP). In this thesis, MIP-based
approaches for the building aggregation and facade simplification problem are developed; these optimizing
approaches may be computationally expensive, but they can be used to benchmark heuristic approaches.

Since the different features (like windows, roofs, stairways etc.) of which 3D building models are composed are
often quite different in their shape, structure and function and heuristic approaches will usually perform best
if they are as specific as possible, it is a promising approach to try to combine heuristic approaches for the
simplification of the individual features to build a high-quality generalized model.

For this reason, an extensible basic infrastructure for combining different generalization modules for different
parts of a hierarchical feature model is presented in this thesis. In this infrastructure, generative aspects of the
underlying basic model are used to reduce the complexity of conflict resolution in the generalization process.

Besides the formulation of the two sample applications - aggregation of LOD-1 building models and simplifying
cell-based facade models - as MIP problems heuristic approaches for the LOD-1 aggregation problem were
developed and the optimal result from the solution of the MIP problem evaluated as a reference. It turned out
that for this relatively simpleProblem already a simple locally optimized iterative solution produced very good
results.

Keywords:
Generalization, 3D Building Model, City Model



Zusammenfassung

In den letzten Jahren führen verschiedene öffentliche und private Anbieter von Geodaten vermehrt Vermes-
sungskampagnen zur Erfassung der dreidimensionalen Struktur von Gebäuden durch. Diese Daten dienen bei-
spielsweise dazu, Nutzern einen visuellen Eindruck von der Situation vor Ort zu vermitteln – etwa Touristen,
die eine Stadt bereisen wollen, aber auch Polizisten und Feuerwehrleuten vor einem Einsatz.

Diese Daten sind auch für wissenschaftliche und geschäftliche Abnehmer von zunehmendem Interesse, weil
die steigende Leistungsfähigkeit moderner Rechnerhardware Simulationen auf immer detaillierteren Modellen
ermöglicht.

Mit zunehmender Menge an Details, die in einer Analyse mit einbezogen werden müssen, steigt der Aufwand
für die Erfassung der benötigten Objekte deutlich an. In einer solchen Situation ist es in vielen Fällen sinnvoll,
ein bestehendes hochdetailliertes Modell wiederzuverwenden und die für die Anwendung benötigten Modellteile
zu extrahieren, ohne eine weitere Erfassungskampagne starten zu müssen. Das ist das Ziel der Generalisierung:
Das Verringern der Komplexität der Daten auf eine minimale Datenmenge unter Erhaltung eines maximalen
Informationsumfangs für die Anwendung auf einem semantischen Komplexitätsniveau, das von der Anwendung
verarbeitet werden kann.

Dieses Ziel beschreibt ein Optimierungsproblem mit Nebenbedingungen: Wir wollen die Datenmenge minimie-
ren und den verbleibenden Informationsgehalt maximieren (widersprüchliche Ziele) unter der Nebenbedingung,
dass die ausgegebenen Objektklassen von der Anwendung verarbeitet werden können. Im Rahmen dieser Ar-
beit wird am Beispiel der Aggregation von (LoD-1-)Gebäudemodellen und der Vereinfachung von einfachen
Fassadenstrukturen gezeigt, dass bereits einfache Versionen grundlegender Teilprobleme NP-hart sind.

Ein leistungsfähiges Werkzeug für die Suche nach global optimalen Lösungen für komplexe Optimierungspro-
bleme dieser Art ist Mixed Integer Programming (MIP). In dieser Arbeit werden MIP-basierte Ansätze für die
genauer untersuchten Teilprobleme – die Aggregation von LoD-1-Modellen und die Vereinfachung von Fassa-
denstrukturen – entwickelt. Diese optimierungsbasierten Ansätze können rechenintensiv sein, aber sie können
als Referenz zur Bewertung heuristischer Verfahren verwendet werden.

Da die verschiedenen Objekte (wie Fenster, Dächer, Treppen usw.), aus denen 3D-Gebäudemodelle zusammen-
gesetzt sind, oft sehr unterschiedlich in ihrer Form, Struktur und Funktion sind und heuristische Ansätze in
der Regel zu den besten Ergebnissen führen, wenn sie möglichst spezifisch auf ein Problem zugeschnitten sind,
ist es ein vielversprechender Ansatz, heuristische Ansätze zur Vereinfachung der einzelnen Objektklassen zu
kombinieren, um qualitativ hochwertige generalisierte Modelle zu erzeugen.

Aus diesem Grund wird im Rahmen dieser Arbeit eine erweiterbare Basis-Infrastruktur für die Kombination
verschiedener Module zur Generalisierung der einzelnen Teile eines hierarchischen Modells vorgestellt. In die-
ser Infrastruktur werden generative Aspekte des zugrundeliegenden Modells genutzt, um die Komplexität des
Konfliktsauflösung in der Generalisierung zu reduzieren.

Neben der Formulierung der beiden Beispielanwendungen – Aggregation von LOD-1-Gebäudemodellen und
Vereinfachung zellenbasierter Fassadenmodelle – als MIP-Probleme wurden heuristische Ansätze für das Problem
der Aggregation von LOD-1-Modellen entwickelt und mit dem optimalen Ergebnis aus der Lösung des MIP-
Problems als Referenz evaluiert. Dabei stellte sich heraus, dass für dieses Problem bereits eine einfache lokal
optimierende iterative Lösung sehr gute Ergebnisse brachte.

Schlagworte:
Generalisierung, 3D Gebäudemodelle, Stadtmodelle
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1. Introduction

1.1. Motivation

With the growing availability of computing power, increasingly more fine-grained simulations of physical phe-
nomena are conducted, especially in research areas of special economic or social interest. Beyond a certain level
of detail in the analysis, results that meet the requirements and merit the additional effort can only be achieved
if true three-dimensional building models with detailed facade and roof structures are used.

One example for this trend is the INSPIRE (EU, 2007) directive of the European union that requires all member
states to perform noise emission surveys and simulations based on 3D building models and detailed road and
traffic models. Further fields of propagation analysis include the calculation of coverage areas for different
radio antennas for cellphone or data service base stations and shading analysis for estimating the potential for
photovoltaic energy production on roofs.

Because of such special application requirements and the increased 3D surveying activities of both official and
commercial data providers, highly detailed 3D building and city models are going to be available in the close
future.

In order to make the huge surveying effort accessible to different users, two basic steps are necessary: the
augmentation of the data set with application-specific data that will in most cases come from external sources
(data integration) and a reduction of the complexity of the data set to meet the requirements of the application
(generalization).

There are two main reasons for generalization:

• Data volume – If a model is more detailed than necessary for an application, the additional effort for
the computations can increase beyond a sensible limit for the given application without yielding better
(often even producing worse) results.

• Semantic complexity – If a model contains structures that the application is not prepared to deal with,
it will fail. This can either happen because an algorithms is faced with a feature class that it does not
know and cannot handle or because the algorithms cannot additional detail well and produce worse results
than for a simplified model.

The definition of generalization introduced in the abstract “Reduce the complexity of the data set to the minimum
necessary volume at a semantic complexity that can be handled by the application.” implies an optimization
problem; this optmization problem is investigated in this thesis for the generalization of 3D building models.

In this problem statement, the second part referring to the problem of semantic complexity is rather a hard
constraint: The result of the generalization has to fulfill minimum requirements of the application that make
sure that the resulting data set can be used.

The first goal in the definition is a tradeoff between possibly better application results because of the availability
of additional information, computational cost and the risk of cluttering described above.

In order to keep the complexity of this optimization problem – especially the risk of silent failures – under
control, this problem is usually simplified by using hard constraints (in most cases in the form of minimum size
thresholds for features) to ensure that the client application can handle the generalized model.

Note that even in this slightly simplified form, the problem still remains computationally complex: We will see
in the course of this thesis that even the most simple forms of some of the most basic sub-tasks in the 3D
building generalization problem are NP-hard (i.e. at least as complex as the well-known Traveling Salesman
problem and probably not solvable in polynomial time).

From the analysis of the simple problems, we can conclude that most sub-problems in the generalization process
are NP-hard because almost all of them will include multiple independent decisions (e.g. between the application
of different generalization operators or between assigning features to different groups), leading to a combinatorial
optimization problem which is often the root cause for the NP-hardness.
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In order to tackle this complexity, a hierarchical approach is introduced in this thesis in which different ge-
neralization algorithms can be combined to generate a simplified model. For the two sub-problems that are
shown explicitly to be NP-hard in this thesis, the aggregation of LoD 1 building models and the simplification
of facade structures, approaches based on Mixed Integer Programming (MIP) for finding exact optima for a
given objective function are developed.

1.2. Overview

After this introduction, chapter 2 covers some basic concepts in the context generalization and optimization. In
the next chapter, different ways to model geometry and 3D building models are discussed; in the context of this
thesis, especially the distinction between direct and generative modeling is relevant because generative modeling
supports the concept of minimum parameterization that simplifies the generalization process. CityGML is the
OGC (Open Geospatial Consortium) standard and the most important current format for the exchange of
city models; its underlying model has a large basic feature set from which semantically rich models can be
constructed.

Chapter 4 covers different approaches in the field of 3D building generalization. In most publications up to date,
algorithms for special aspects of the 3D building generalization problem are introduced. The most frequently
investigated fields are LoD 1 (only flat roof structures) building model simplification, simplification of models
consisting of collections of wall and roof surfaces, and special aspects of large-scale generalization based on
semantic features.

In the next chapter, a hierarchical building model is introduced together with a callback-based infrastructure
for combining different simplification approaches to build a generalized model. This modeling and generalization
infrastructure is designed to be extensible for different feature types and generalization algorithms.

In chapter 6, an algorithm for the simplification of building footprints based on a full-spectrum Hough Transfor-
mation and a flexible least-squares fitting scheme is presented in which relations like parallelity and collinearity
are emphsized because they are prominent features in most building footprints. Such a simplified fooprint be
used, for example, to provide more meaningful input footprints for generalization algorithms for LoD 1 building
models.

In chapter 7, the aggregation of LoD 1 building models is investigated as an optimization problem, and a
translation of this application to a Mixed Integer Programming (MIP) problem is introduced. The optimal
solutions obtained using MIP software are used to evaluate heuristic approaches that are also presented in this
chapter.

In chapter 8, two different MIP-based approaches to the problem of facade structure homogenization are intro-
duced and compared. The first one based on template instancing describes the problem more directly than the
second one based on a flow model; the MIP solver could, however, solve considerably more complex instances of
the second MIP representation wihtout running out of memory, probably because fast and effective heuristics
for finding good solutins for flow problems are integrated in the solver and the first representation contained
too many ambiguities.
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2.1. Resolution and accuracy

Resolution and accuracy are clearly distinguished principles (JCGM, 2008): While the resolution of a mea-
surement is the smallest distinguishable unit, the accuracy is an upper bound to the difference between a
measurement and the true value of the phenomenon that was measured.

An additional term that should not be confused with resolution and accuracy is precision: The precision of a
measurement is the interval in which repeated measurements will fall under equal conditions. A stopwatch may,
for example, have a resolution and perhaps even an internal accuracy (reliability of the measurement of the time
between the impulses generated by pressing the button(s)) of 1ms (3 digits for decimal fractions of a second),
but the precision of the system of a person measuring the duration of a given event is worse than 0.1s because
it is dominated by the time the person needs to react and press the buttons.

In cartography, the concepts of resolution and accuracy are implicitly incorporated in the recommendations and
requirements associated with different map scales: The scale of a map is the ratio of distances in the real world
to distances on the map. In most cases, this ratio is given in the form of 1 : X where the scale denominator
X is a real number – usually a multiple of 1000. Common map scales are 1 : 1, 000 (large scale), 1 : 10, 000,
1 : 20, 000 or 1 : 50, 000 (intermediate scale), 1 : 100, 000, and 1 : 1, 000, 000 (small scale).

Resolution and accuracy are related to scale by the constraints of the physical medium of the printed map:
An experienced cartographer can, for example, achieve a mapping accuracy of 0.1mm, so it is impossible to
get overall accuracies of more than 0.1mm × X where X is the scale denominator of the map. For a scale of
1 : 50, 000, this means that accuracies better than 0.1mm× 50, 000 = 5m are unlikely to be achieved.

As far as resolution is concerned, the minimum distinguishable size for objects in a map varies depending on the
geometric type (point, line or area) and the shape of the object. For a point, the minimum diameter may, for
example, be 2mm, so a point feature on a map with a scale of 1 : 50, 000 would cover a circle with a diameter
of 2mm× 50, 000 = 20m in the real world.

Resolution and accuracy are important in the context of the generalization process because they are well-known
concepts that can be used to express goals for the generalization process. In the context of hierarchical building
models, the term resolution refers to the minimum size of a feature in the generalized model.

When it comes to accuracy, one has to distinguish between relative and absolute accuracy: If we have feature
that is defined in relation to a higher-level feature like a window in a wall, we define the relative accuracy of
a feature as the difference between the original and its generalized version in the coordinate system defined by
the parent feature while the absolute accuracy is the difference between the original and the resulting feature
in world coordinates.

In the case of the window in the wall, this distinction means that if the wall changed its position in the
generalization process (for example, due to a displacement operation), then the relative accuracy would measure
the change of the window on the wall while the absoute accuracy would also be affected by the displacement
of the wall, so the absolute accuracy would be higher if the window remained at its original position in world
coordinates which would, in this case, not even be on the wall but “dangling in the air”.

For this reason, we will usually refer to the relative accuracy when accuracies are used as quality criteria.
For some applications, it may, however, be important to preserve a given global accuracy. In these cases, the
positions of all features after the generalization have to be compared to their originals in global coordinates.
One way to ensure a given relative or absolute accuracy is to use the Hausdorff property introduced in section
2.1.1.

In this thesis, the concept of a (target) resolution ̺ is used to describe the level of geometric simplification that
is intended by the user. This also includes the notion that a relative accuracy in the order of the given target
resolution should be preserved.

One way of customizing the generalization process for a given application is to specify different target resolutions
for different features or feature types according to spatial criteria: For a flooding scenario, one can, for example,
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imagine that buildings up to a given distance from a river should be given at a resolution of 1m (but for their
roofs, a resolution of 5m may be sufficient) while features on hills of sufficient height may not be needed at all
(̺ = ∞).

Special parameters, especially parameters concerning semantic aspects like penalties for aggregating buildings
with different functions, are strongly application-specific and have to be handled separately: Given similar
geometric constellations, for example, the question if it is worse to aggregate a given church with the adjacent
supermarket or prison (or not aggregate it with any of them), can only be answered by the application.

This problem is not treated to its full depth in this thesis; one way to handle it without bothering the user
with the necessity of trying to develop a deep understanding of each atomic generalization step is to pre-
define importance levels for different properties that could be transformed into sensible weights for normalized
parameter values. The user would then only have to choose the importance levels for different properties.

2.1.1. Hausdorff distance

The Hausdorff distance (Hausdorff, 1914) defines the distance between two sets X and Y as the maximum of
the shortest distance from any element of X to Y and the distance from any element of Y to X:

dH(X,Y ) = max{ sup
x∈X

( inf
y∈Y

d(x, y)), sup
y∈Y

( inf
x∈X

d(x, y)) }

where sup means the supremum and inf means the infimum. Since all sets (objects) we will encounter in this
context can be considered closed and bounded, the suprema and infima in the definition are true maxima and
minima.

Abbildung 2.1.: The Hausdorff distance.

Figure 2.1 shows an example of two sets X and Y ; both sets are closed areas in the plane, Y was depic-
ted in a wireframe view in order to avoid occlusions. X and Y may, for example, be the original and a
simplified footprint of a building. As the figure shows, the two parts of the Hausdorff distance – the maxi-
mum distance dX→Y := supx∈X(infy∈Y d(x, y) ) from any element in X to Y and the maximum distance
dY→X := supy∈Y (infx∈X d(x, y) ) from any element in Y to X – are usually not identical. Because the maxi-
mum operator is commutative, the Hausdorff distance itself is symmetric: dH(X,Y ) = dH(Y,X).

Another interpretation of this measure is that each element of X is within a buffer of dH(X,Y ) around Y and
each element of Y is within a buffer of dH(X,Y ) around X which makes this measure a sensible candidate to
define an important property for a generalization step: The Hausdorff distance between the original and the
generalized model should not exceed the target resolution. This is a standard way to control the error produced
by a simplification in computer graphics (Luebke et al., 2002).

Figure 2.1 shows, however, that the original definition of the Hausdorff distance may restrict the possibilities
for generalization operators too far for our purposes. Imagine that X is some original object – for example,
the footprint of a building – and Y is a generalized version of this object: If our target resolution is ̺, then Y
would not be a valid simplification of X although the protrusion of X that causes the high value for dH(X,Y )
is narrow enough to be cut off at resolution ̺. In an extreme case, an antenna with a height of 20m and a
diameter of 5cm would have to be included in a generalized model with a target height resolution of 10m – a
resolution level at which even the basic shape of most roofs would be considered irrelevant. This is obviously
not what we intend.

For this reason, we use a slightly modified Hausdorff distance to measure the difference e (generalization error)
between an original model X and a generalized version Y of X:
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e(X,Y ) = dH(X, Y ∪ (R3 \X) ).

This means that if we restrict e(X,Y ) to be less than ̺, then the generalized version should be contained within
a ̺-buffer of the original: It may not produce new protrusions or isolated areas. The original X, on the other
hand, does not need to be covered by the buffer around Y if it can be covered by an inward-facing (from R

3 \X)
̺-buffer around itself.

Note that, according to this measure, ̺ is the radius of (parts of) objects that may be deleted at will in a
selection process, not their diameter. A pure selection step is included in this definition by setting Y = ∅.
Obviously, this measure is not symmetric.

This measure defines a sensible property of valid generalization operations with the purpose of controlling the
generalization process: If, for example, a feature is enlarged, it should be ensured by the generalization process
that it will not exceed the limit defined by the ̺-buffer around the original feature. On the other hand, a
feature X should not be removed if its size according to the modified Hausdorff measure is greater than ̺, i. e.
e(X, ∅) > ̺.

Note that conflicts occurring after the generalization of a feature may, for example, trigger the displacement
of another feature which could result in other conflicts and lead to different deadlock or livelock situations if
the conflicts and resulting generalization operations form a kind of closed loop. To prevent such effects is the
responsibility of the generalization process; the locality requirement for a given feature can be used for the
detection and as an aid in the prevention of stalling situations. However, it does not, as such, make sure that
such situations cannot occur.

Since computing the Hausdorff distance between two objects is computationally quite expensive, this require-
ment will usually be ensured and tested in practical applications by making sure that the axis-aligned bounding
box of a given feature (either in global or in feature coordinates) is not extended by more than ̺ in each directi-
on. This approach has the additional benefit of a native support of different resolutions for position and height
if the coordinate system in which the bounding box is defined is aligned with the up direction.

In a hierarchical approach and in any context in which different generalization operations can be performed
in sequence, it may happen that even if each individual operation preserves the Hausdorff property, the final
result may “drift away” and have a Hausdorff distance of more than ̺ form the original. In this context, it
is also important if the Hausdorff property is applied with respect to the relative or absolute accuracy: If,
for example, a wall surface is displaced in the generalization process, then it makes little sense to apply the
Hausdorff property to the absolute position of a window located on that wall because the window should be
located within a ̺-buffer of its original position on the wall than its absolute original position in space,

In the context of features with strongly different extents in different dimensions, the Hausdorff measure can
also be misleading: A wall with a thickness of 30cm could, for example, be eliminated at a resolution ̺ of 15cm
which is obviously not the intended result. For this reason, additional rules have to be introduced to preserve
relevant features.

2.1.2. (Nested) Earth Mover’s Distance

In order to assess the quality of a generalized model, the nested Earth Mover’s Distance (nEMD) introduced by
Kim et al. (2004), a special case of the general Earth Mover’s Distance (EMD) (Rubner et al., 2000) measure,
is an alternative to the Hausdorff metric. The Earth Mover’s Distance measures the difference between two sets
as an amount of “work” needed to transform one set into the other. An analogy to illustrate this measure is to
define the difference between two piles of dirt by the amount of some kind of work necessary to transform the
first one into the second by moving a minimumm amount of material.

Similar to the situation in the analogy, different work or cost functions can be imagined. In the analogy, one
could, for example, measure the amount of energy or the cost (in money, using a given set of equipment) needed
to move the required amount of earth. The two main factors are – in the analogy as well as in the difference
measure – the “volume” or “mass” to be moved and the distance over which the material has to be transported.

The nested Earth Mover’s Distance is a grah similarity measure that can be tuned to take structures within
the model into account in the calculation of the difference between models. It operates on models represented
by attributed relationship graphs (ARG) in which the features of which is composed are the nodes and relations
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between features are modeled as edges. Both nodes and edges have attributes that can be used in the definition
of the cost function for the nEMD.

The nEMD offers many degrees of freedom that make it a promising candidate for application-specific similarity
measures in the assessment of generalization operators for hierarchical models:

• The construction of the ARG from the feature hierarchy can be defined according to the application,
especially the relationships between the features and parameterization of the features and the relations.

• Depending on the application, different strategies can be applied in order to guide the process of deter-
mining the correspondences between the nodes in the original and the generalized model.

• Custom cost functions can be applied to determine the differences between the corresponding nodes in
the original and the generalized models depending on the parameterizations of the nodes: The cost is
determined in parameter space instead of being limited to geometry.

While (especially the general) Hausdorff distance measures the extreme differences between two models, the
(n)EMD aims at measuring the accumulated impact of the transformation on the original shape. By assigning
higher weights to different parameters, changes in these parameters lead to higher costs for changing these
parameters (“moving heavier stuff”) in the generalization process, so generalization options in which these
parameters are changed significantly are less likely to occur.

In order to achieve this, the (n)EMD offers several degrees of freedom that can help to adjust it to specific
feature types and applications. In the context of this thesis, the (n)EMD will not be used directly, but some
of the custom difference measures like the (pseudo-) volume change in chapter 7 can be expressed in the form
of nEMD terms. One of the most demanding tasks in the development of application-specific generalization
processes is the balancing of cost or objective function terms for the evaluation generalization alternatives, for
the earth mover’s distance as well as in the approches presented in this thesis.

2.2. Cartographic Generalization

The most laborious and expensive part of mapping is data acquisition or surveying. The physical production of
tangible maps is also an expensive task – especially the preparation of the actual printing process consisting of
involved drawing and the production of the original etchings.

Since many applications of 2D maps share common topics of interest like topography, traffic, water bodies, and
settlements, map content tends to be reused for different purposes. The most straightforward way of reusing
map content is to use the same map for different applications. With the establishment of national surveying
authorities, different map formats (especially topographic and cadastral), were standardized in many countries.

In order to save the effort of having to launch different surveys to acquire the data for maps with similar topics
at different scales, smaller scale maps are usually derived from larger scale maps – especially if the producer of
both maps is the same; for example, a mapping agency that publishes topographic maps at different scales.

Historically, this classical map generalization process was performed manually by cartographers who drew the
shapes of the features in the generalized map on a see-through paper draped over the original map.
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Abbildung 2.2.: Visualization of generalization operators (from Haunert (2009) after Hake et al. (1996)).
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Figure 2.2 illustrates the most frequently used generalization operators for cartographic applications:

• Simplification – An object is represented by a simplified version of itself.

• Enlargement, Exaggeration – In many cases, objects are too small to be recognizable at the target
scale andhaveto be enlarged; objects of higher importancemay be exaggerated beyond the necessity of
being visible in order to make them more prominent.

• Displacement – In order to avoid cluttering the resulting map, objects may have to be shifted away from
their original position.

• Aggregation – Objects of the same class are merged into one bigger object of the same class.

• Selection of relevant or elimination of less relevant features to avoid cluttering the resulting map.

• Classification, Symbolization – Objects of more special classes are treated as objects ofmore general
classes andmay be represented by a symbol for this more general class.

• Typification – n objects of similar classes are represented by k < n objects of the same or a more general
class.

Most approaches in the context of 3D buiding model generalization address the transformation of special classes
of features between different scales. In most cases, these approaches can be traced back to an adapted application
of one or more of the classical generalization operators.

2.3. Building Generalization in 2D and in 3D

In 2D, a building is essentially represented by its footprint with some semantic information attached in the form
of a parameter vector that will usually contain values for the function of the building and (optionally) some
additional hints as to the shape of the building like its height and the number of floors.

In 3D, a lot of additional entities have to be captured and modeled: A building may consist of different wings
with wall and roof structures, there are windows, doors, balconies, intrusions, protrusions, additions, and a vast
amount of additional possible features even in quite regularly shaped buildings. For this reason, the generaliza-
tion of buildings is inherently considerably more complex in 3D than in 2D.

Because of gravity, the third (vertical) dimension is inherently quite different from to the two horizontal dimen-
sions: While the direction of the other two unit vectors is more or less arbitrary, the vertical dimension is more
or less unique for local coordinate systems – although there are, of course, some local distortions of the earth’s
gravity field (that will, however, have no measurable effect in the range of accuracy that we are dealing with in
this context).

Since gravity defines the statics of a building, it is one of the most relevant factors in the structure of buildings
and therefore also in the structure of building models – severely limiting the feasible size of a building in the
vertical direction: While settlement structures may have extents of many kilometers in the horizontal dimensions,
their vertical extent will in most cases be below 20m with high rise buildings in the downtown areas of some
larger cities in order of 100m up to 300m; the currently tallest building in the world, the Burj Khalifa in Dubai,
has a height of “just” about 830m which is still an order of magnitude smaller than the diameter of an average
city.

This means that if we move from larger to smaller scales, the third dimension will decrease in importance much
faster than the others: If we assume a resolution of 5m (meaning that differences of less than 5m can no longer
be perceived), then the roof shapes of most buildings will be irrelevant because they could not be distinguished
from simple flat-roofed placeholders, which, in turn, are rather 2D entities because they simply consist of a
footprint polygon and a uniform height value.

Assuming that the minimum size to represent a roof shape in a visualization scenario would be at least 5mm,
the cartographic scale corresponding to the resolution of 5m would be about 1 : 1, 000 which means that the
third dimension becomes geometrically more or less irrelevant at scales that are well inside the range that would
be referred to as large scale in cartography.

For this reason, the terms large, intermediate and small scale will, in this context, refer to different ranges
compared to cartography. Along the lines of the CityGML level-of-detail (LoD) definitions (see section 3.3), a
rough classification for buildings can be derived:
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• Large scale (LoDs 3 and 4: detailed facade structures): 0.5m of resolution or better,

• Intermediate scale (LoD 2: 3D structures like roof shapes preserved): 0.5m–5m of resolution,

• Small scale (LoD 0 and 1: 3D information more or less reduced to height, 2.5D flat-roofed representatives
for buildings): worse than 5m of resolution.

The explosion of complexity from 2D to 3D is, in part, caused by these different inherent scales: The majority
of the multitude of different features classes (like balconies, windows, etc.) appearing in 3D models are simply
too small to be represented in a sensible way at the usual mapping scales of 1:1000 and smaller.

Beyond the issues of scale and detail, an additional problem is occlusion: A 2D (or 2.5D) scene can be represented
completely in a single static view (map), while a true 3D scene can never be visualized completely in a single
static view due to occlusions. Although this is a trivial observation, it is important because it means that there
is no canonical representation tool like the map for 3D data.

Over the centuries, best practices and standards have been established for the representation of 2D objects in
well-defined multi-purpose map formats like topographic maps. Such a standard defines selection (importance
of different objects) and representation rules like minimum sizes of objects (affected by the map scale and
mapping accuracy) for a given map format. Due to the manageable number of object classes and the canonical
perspective, such a standard format proves sufficient for most applications using 2D data, especially if there is
the option of introducing thematic layers.

Note, however, that these standards usually only define constraints that a model at a given scale has to satisfy
like minimum sizes for objects of a given class. These standard sizes are often the result of graphical constraints
defined by the medium of the map printed on paper: At usual viewing distances (< 1m), it would be, for
example, be difficult for the human eye to perceive lines of a width of less than 0.05 millimeters.

2.4. Generalization and structure recognition

The terms structure recognition and feature extraction appear in different parts of this thesis referring more or
less to the same problem. In a single layer of abstraction, a distinction between the two concepts may be that
structure recognition refers to the identification of special patterns (like distributions in a line or regular grid)
of known features while feature extraction refers to the identification of special semantic entities (like windows
or protrusions) in semantically less structured geometric data like polygon meshes.

Since in a hierarchical modeling framework special distributions of features can be interpreted as special semantic
features on a higher level of the modeling hierarchy and the identification of a special structure that is associated
with a semantic entity may also be referred to as a structure recognition process, both terms may appear in
this thesis for the general problem.

Generali-

zation

Feature

Extraction
Data

integration

Abbildung 2.3.: Generalization, structure recognition and data integration are closely interdependent.
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One crucial problem in the processing of 3D city models is the strong interdependence of generalization, structure
recognition and data integration, especially if application-specific data is needed.

Imagine, for example, a scenario in which noise level data has to be processed. Important data for such an
application will usually not be part of a general-purpose 3D city model format, e.g. traffic volume on the roads,
noise reflectance properties of different building materials, and detailed information about the geometry and
materials of crucial features like bridges and noise barriers.

This kind of application data will usually be kept in special databases. In the spirit of generalization as the
extraction of relevant information, just these pieces of information are, however, of fundamental importance
for the generalization process. For this reason, a data integration or conflation step is necessary to be able
to support generalization processes with an integrated view of the structure of the model provided in a basic
general-purpose framework and the application data possibly available only from different sources.

In the context of generalization, structure recognition in the narrower sense of identifying special patterns of
features is of special importance because information about the presence of these patterns is necessary for the
applicability of standard generalization operators like typification.

If specialized generalization procedures are available for special features that are not modeled explicitly in the
data, then it can make sense to try to identify them in the data; it may, for example, be possible to identify
(patterns of) windows and balconies in raw polygon data in order to be able to apply specific generalization
operators for these features.

Especially in a hierarchical model, the entanglement of generalization and structure recognition can make
alternating and interdependent generalization and structure recognition steps necessary: At a given resolution,
it may be possible to simplify a group of features that was initially quite different in such a way that they are
homogeneous after the simplification. Employing typification, this group of homogeneous features could then
be replaced by a lower number of similar features.

If the structures are not perfectly homogeneous in the first place and the generalization task is treated as an
optimization problem (as outlined in section 2.5), the entanglement becomes even closer because the quality
of the final result depends on the combination of the decisions taken in the original simplification, in the
homogenization process, and in the final aggregation or typification in our example: The optimality of the result
can only be ensured if all steps were executed within the same optimization procedure.

2.5. Optimization and Computational Complexity

2.5.1. Theory of Computational Complexity: the class NP

Decision problems are problems to which the answer is either “yes” or “no”, depending on the values of a
potentially infinite number of input variables. The complexity class NP (Cook, 1971) is defined as the class of
decision problems that can be solved by a Nondetermininistc Turing machine in Polynomial time (with respect
to the length of the input), so the popular interpretation that NP stands for “non-polynomial” is wrong.

In fact, the question if all problems in NP can be solved by a deterministic Turing machine (roughly corre-
sponding to a traditional computer) in polynomial time is one of the most famous open questions in theoretical
computer science (the “P vs. NP” problem) and one of the seven Millennium Problems (Jaffe, 2005) for which
the Clay Mathematics Institute offers $1,000,000 to the first person to solve it. While the most common guess is
that P 6=NP (meaning that not all problems in NP can be solved in polynomial time by a deterministic Turing
machine), this has not been proved yet.

An alternative definition of the class NP is that it is the class of polynomially verifiable decision problems: Given
an assignment of values to the input variables, a deterministic Turing machine can verify in polynomial time if
the answer to the original decision problem is indeed “yes” for this assignment. The original question if there is
an assignment for which the answer is “yes” may, however, be hard and require a super-polynomial number of
steps on a deterministic Turing machine (if P 6= NP ).

Cook (1971) showed that the Satisfiability (Sat) problem that asks if a given Boolean formula is satisfiable
is NP-hard. This means that every problem A in NP can be reduced to Sat: If an efficient (polynomial time)
deterministic solution for Sat exists, then this algorithm can be used to solve any other problem A in NP in
deterministic polynomial time. Such a reducibility can be proved by giving a polynomial-time algorithm that
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transforms an instance a of A to an instance a′ of Sat in such a way that the answer to a′ is “yes” if and only
if the answer to a is “yes”.

If a problem is NP-hard and in NP, then it is called NP-complete. Many NP-hard problems are not NP-complete
because they are not decision problems; a prominent case are optimization problems that ask for the best solution
for a given problem and not for a “yes” or “no” decision. The corresponding decision problem that can be defined
for an optimization problem A asks if there is a solution for A with a cost lower than a constant k.

In the original proof, Cook had to show that every single problem in NP can be reduced to Sat. Fortunately,
the polynomial-time reducibility relation is transitive: If A can be reduced to B and B can be reduced to C,
then A can also be reduced to C. This is true because a polynomial runtime for the reductions is required: If
the reduction r1 from A to B and the reduction r2 from B to C can be achieved in polynomial time, then the
sum of the runtimes of the polynomials r1 and r2 is, of course, also a polynomial. For this reason, Cook’s proof
is a most helpful device if we want to prove that a given problem is NP-hard: Because we know that Sat is
NP-hard, we only have to show that Sat can be reduced to our given problem.

Taking this idea further, we only have to reduce any problem known to be NP-hard to our problem to show
that it is NP-hard. Using this technique, a large number of problems have been shown to be NP-complete, often
using reductions to problems that were proved to be NP-hard before. Almost all of these paths of reductions
lead back to Cook’s original NP-hardness proof for Sat.

Any problem in NP
↓ Cook (1971)

Sat

↓ Cook (1971)
3-Sat

↓ Lichtenstein (1982)
planar 3-Sat

↓ appendix B
Bounded difference tiling

Abbildung 2.4.: NP-hardness proof for the bounded difference tiling problem underlying the facade homogenization problem
(section 8): Chain of reductions (Appendix B).

Figure 2.4 illustrates such a reduction chain for the problem of facade homogenization introduced in section 8
(the proof itself is given in Appendix B): Cook (1971) showed that every problem in NP can be reduced to Sat

and that each Sat problem can be reduced to 3-Sat, a specialized version of Sat with only 3 literals per clause.
Lichtenstein (1982) showed later that even the planar version of 3-Sat is NP-hard by reducing 3-Sat to planar
3-Sat. In Appendix B, we will see that planar 3-Sat can be reduced to the facade homogenization problem, so
we know that any problem in NP can be reduced to the facade homogenization problem by applying the four
transformations in Figure 2.4.

Having shown that a problem is NP-hard means that it is unlikely that we will find a polynomial-time algorithm
that solves it. For this reason, it makes sense to try to divide the problem into as small independent instances
as possible and to develop heuristic approaches to find good solutions (instead of the global optimum) if we are
faced with an optimization problem.

Because many NP-hard problems are of high economic interest (for example, the well-known Traveling Salesman
Problem for the transportation industry), a lot of research effort has been spent to develop strategies for solving
as many and as large instances of NP-hard problems as possible. In the context of optimization problems, Mixed
Integer Programming (MIP, see section 2.5.3) is an important tool: It offers a model to represent optimization
problems in the form of a set of constraints and an objective function and there is high-performance software
to solve problems given in this form, so if we can express our problem in the form of a MIP instance, we can
profit from the effort of the highly experienced experts who contributed to the development of the software.

One drawback of modeling with MIP is the fact that most solvers can only handle linear and (to a limited
degree) quadratic terms in the constraints and the objective function which means that some constraints may
need some thought in order to come up with a linear MIP representation and some may be impossible to express
in terms of a (linear) MIP model at all. Even though the restriction to linear and quadratic terms may seem
very strong, we will see in the course of this thesis that it allows us to model many aspects of the generalization
process.
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2.5.2. Optimization problems

As we have seen, generalization is inherently an optimization problem: We want to extract a new model that
best preserves the relevant content of the original one while minimizing the complexity of the resulting model.
This means that, in most cases, we are faced with the two conflicting goals of preserving as much of the original
structure as possible and to simplify the model as far as possible.

In order to deal with these conflicts in a structured way, we can define quality measures (constraints) that
express desirable or bad properties of a resulting model. We distinguish between hard constraints that have to
be satisfied in any case and soft constraints that incur a penalty depending on the degree to which they are
violated. The goal of the optimization process is to minimize a cost function derived from the penalties for the
violation of the soft constraints while satisfying all hard constraints.

In the context of optimization theory, the soft constraints are usually put into a single cost function that is
supposed to be minimized – this is equivalent to maximizing a reward function; the two concepts can easily be
converted into each other by multiplying the function with -1 (inverting the sign). In the literature, the mini-
mization version is the standard representation. Most solvers offer both versions for their input and internally
convert it to the minimization form if necessary.

While it is not always possible to merge all soft constraints and penalties into a single closed function, this will be
the case in all optimization problems we will encounter in the context of this thesis, so we will use the definitions
of the optimization community and distinguish between a set of (hard) constraints and an optimization function
in which the penalties incurred by the soft constraints are collected: The term constraint will only be used for
the hard constraints in the following.

Formally, the problem is given by

min
x

f(x)

subject to gi(x) ≤ 0, i ∈ {0, . . . , k}

[hi(x) = 0, i ∈ {0, . . . , l}]

where x is a set of variables, f(x) is the objective function to be minimized, and the gi(x) are a set of (hard)
inequality constraints. A constraint of the form gi(x) ≥ 0 can easily be transformed to this form by negating the
inequality: g′i(x) := −gi ≤ 0. The equality constraints hi(x) = 0 can be expressed in the form of two inequalities:
hi(x) ≤ 0 and −hi(x) ≤ 0. For this reason, they are set in brackets here because it is not necessary to include
them in a canonical representation of the problem.

Since we know that it is easy to transform those forms into the canonical representation and software for solving
optimization problems offers the option to use them in problem descriptions (converting the problem to the
canonical form internally if necessary), we will use “=”, “≤”, and “≥” constraints throughout this thesis in the
way that best supports the explanations given in the text without explicitly converting them to the canonical
form.

Note that auxiliary variables can be defined and forced to assume the intended values in (hard) constraints in
order to be used in the objective (cost or reward) function. Even if the constraints and the objective function
may only consist of linear terms in the variables of the optimization problem, concepts like piecewise linear
penalties (approximating, for example, more complex functions) or case distinctions and logical operations on
Boolean variables can be expressed.

According to the structure of the constraint and objective functions, there are different classes of optimization
problems defined by restrictions on the constraints and the objective functions. While most of those problems
are (NP-)hard, there is still a big difference between those problem classes: While most instances of some classes
of problems are solvable (for moderate instances) by up-to-date software, there are only theoretical approaches
for the solution of others that have not yet found their way into standard software and/or are too specialized to
have been streamlined for performance far enough to yield high-quality solutions for most moderate instances
in reasonable time.

An important basic distinction concerns the nature of the variables in the constraints and the objective function:
If there are discrete (integer) variables in the problem, it becomes much harder than in the all-continuous case:
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If, for example, all variables in a linear (all constraints and the objective function are linear in terms of the
variables of the problem) optimization problem are continuous, the problem can be solved in polynomial time
while the problem becomes NP-hard if (some of) the variables may be be discrete – the special case in which
all variables are Boolean (assuming only values 0 or 1) is one of the 21 problems that Karp (1972) proved to be
NP-hard.

objective

function

Abbildung 2.5.: Continuous and Integer optimization: A problematic case.

The reason for this effect is that while we can determine the best continuous solution in polynomial time, this
will usually not be a feasible solution in which the variables must have integer values. Figure 2.5 illustrates
that this can indeed be a serious obstacle to finding the best integer solution: In the drawings, the dotted
parallel lines are iso-value lines of the objective function; the arrow points in the direction of the best objective
values. The bold black lines illustrate the polygon defined by the constraints. Neither of the neighboring integer
solutions (dots on the grid) around the best continuous solution (black cross) is the best feasible integer solution
with respect to the objective function, so the intuitive approach of testing all neighbors of the best continuous
solution would not yield the right solution in this case even though two of them are feasible – a feasible neighbor
of the best solution is not automatically the best feasible solution.

Note that the dimension of this drawing is the number of discrete variables in the problem, so if we had 3
instead of two variables, the feasible region would be a convex polyhedron in 3D, and there would be 8 instead
of 4 neighbors of the best solution: The number of neighbors is 2n where n is the number of dimensions, so an
exhaustive search of the neighbors will lead to exponential runtime complexity without providing a guarantee
that the optimum will be found.

If some of the variables in an optimization problem are integer and some are continuous, the problem is called a
mixed integer program where the term “program” dates back to the time of G. Dantzig’s (Dantzig, 1951) original
paper on the subject and refers to (military) planning or scheduling rather than programming a computer.

Another important distinction between optimization problems concerns the form of the constraints and the
objective function: If the constraints and the objective function consist only of linear expressions in the variables
of the optimization problem, we have linear optimization problem. If there are quadratic terms in the objective
function and the constraints are all linear, the problem is referred to as a quadratic optimization problem. If
there are quadratic terms in the constraints, the optimization problem is called quadratically constrained and
considerably harder to solve – quadratically constrained problems are NP-complete even if all variables are
continuous.

If we are concerned with mixed integer problems, most solvers can handle linear programs up to considerable
sizes; some (e.g. the CPLEX software) are able to handle intermediate quadratic and some quadratically cons-
trained problems. There are still comparatively small-sized linear problems left that because of their structure
and NP-hardness of the general problem cannot be solved even by advanced solvers.

2.5.3. Mixed Integer Programming (MIP) Software

As we have seen in the last section, the term Mixed Integer Programming refers to all optimization problems
in which non-continuous variables occur. Unfortunately, most available software products for solving such op-
timization problems are limited to linear and – to a limited extent – quadratic or quadratically constrained
problems.

Two of the most prominent software systems for solving MIP problems are the free lp solve (Berkelaar et al.,
2004) software and the commercial solver CPLEX (IBM ILOG, 2011) that is free only for academic use. While
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lp solve handles only linear MIP problems, CPLEX can solve quadratic or quadratically constrained problems
as well. For this reason, CPLEX was used in the experiments for this thesis because a least squares adjustment
in the computation of intermediate values can only be achieved using quadratic optimization problems.

Most MIP solving software is based on some basic strategies for solving linear MIP problems – the most
prominent ones are based on generating cutting planes and the Branch-and-Bound principle or on the Branch-
and-Cut approach, a combination of cutting planes and Branch-and-Bound these approaches will be introduced
briefly in this section. There are special versions of these approaches for the solution of nonlinear MIP problems,
especially for solving quadratic problems. More complex nonlinear MIP problems require more sophisticated
approaches with (currently) much lower probabilities of finding an optimum solution with a reasonable amount
of resources.

objective

function

objective

function

objective

function

(a) Original situation: Relaxed
MIP solution.

(b) A cutting plane. (c) A Branch-and-Bound step.

Abbildung 2.6.: Cutting plane and Branch-and-Bound approaches to solving linear MIPs.

Cutting planes were first used in Dantzig et al. (1954) to solve instances of the Traveling Salesman problem.
Later, Gomory (1958) introduced a more general approach to solve arbitrary MIP problems. The basic idea
(illustrated in figure 2.6(b) for the situation described in section 2.5.2) of the cutting plane approach is to solve
the relaxed problem (without the integrality constraint) and, if this solution is not integer, to generate a new
constraint (bold line) that separates the non-integer optimum solution (black cross) from the feasible region
without rendering any feasible integer solution infeasible. Note that if each cut separates a non-empty part from
the interior (not just the boundary) of the feasible region, then a series of cuts will eventually find the best
integer solution.

Most of the cutting schemes (including Gomory’s) suffer, however, from the problem that it is often necessary
to generate a huge number of cuts to find the optimum integer solution and that they suffer from numeric
instability

Branch-and-Bound is the second general-purpose approach to solve linear MIP problems. The basic idea was
first described by Land and Doig (1960) in the context of operations research. Dakin (1965) refined the approach
and made it more efficient by introducing a new way of storing the tree representing the branching history.

As in the cutting plane approach, the first step is to solve the relaxed problem. In the Branch step, one of the
variables xi for which the relaxed solution is not integer is chosen as the pivot variable and the original problem
is split into two sub-problems: In the first one, a constraint of the form xi ≤ ⌊X⌋ is added; in the second one,
the constraint xi ≥ ⌈X⌉ is added, where X is the non-integer value of xi for the non-integer optimum solution.
The algorithm is then recursively applied to the two resulting problems, forming a binary search tree.

Once a feasible integer solution has been found (that is not yet known to be the best one), we can compute the
corresponding objective value V and use in the Bound step: Whenever a new problem is created in a branch
step and its relaxation has been solved, we can compare the objective value v of the relaxed solution to the
value V . We know that no integer solution in the current branch can be better than the value v of the relaxed
solution, so if v is worse than V , we can discard the whole branch at once. Especially if we can discard early
branches in the search tree, this can save masses of computations. Once we find an integer solution with an
objective value V ′ that is better than our global value V , we can set V = V ′ for all succeeding bound steps.

The two basic strategies for evaluating such a search tree are depth-first and breadth-first search: In depth-first
search, the first problem is evaluated at once in each branch step; only if all subproblems in the first branch have
been solved, the second problem in the current branch will be considered. This strategy is fast in finding integer
solutions, but they may be of poor quality. In breadth-first search, the problems are solved as they evolve, so
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all nodes on each level of the branch tree are expanded before the algorithm progresses to the next level. This
approach may need a long time until it produces an integer solution but once it fins one, it is usually of a high
quality.

In most up-to-date solvers, the two approaches are combined and enhanced by heuristics in the choice which
node should be expanded next: One idea may be to start with a depth-first search in which the node with the
best objective value v of the relaxed solution is expanded first. Once an integer solution is found this way, this
can be used in the bound step in a breadth-first search. If parallel threads are available, another approach could
be to have some threads perform depth-first searches, supplying parallel breadth-first threads with (hopefully
tight) bounds.

Nemhauser and Wolsey (1988) showed that an intelligent combination of cutting planes and the Branch-and-
Bound principle can enhance the performance of MIP solvers considerably. In the same paper, they show how
to overcome some of the numerical problems in cutting plane approaches. This Branch-and-Cut approach is one
of the core elements in most current solvers.

While most solvers are based on these three basic strategies, they are refined and augmented by heuristic
elements for special problems like network flow problems. High-performance solvers like CPLEX analyze the
problem at hand searching for such special structures and automatically choose an applicable heuristic that can
help the program to find and verify optimum solutions much faster than a less flexible standard application of
one of the basic strategies.

In the course of this thesis, for example, the runtime for the same building aggregation instance was reduced
from about one hour to less than one minute with the change of version from CPLEX 12.0 to CPLEX 12.2,
probably because a fitting heuristic was implemented between the two versions. Because of the high econmic
interest and the complexity of the Mixed Integer Programming, details about the inner structure of commercial
solvers (concerning parameters, heuristics, branching decisions, etc.) are well-kept secrets of the companies that
developed the solvers.

The process of finding the optimum solution can be accelerated considerably by supplying the solver with
an initial feasible solution, especially if it is as close as possible to the original: The objective value for the
initial solution can immediately be used in the Bound step, and many branches of the search tree may be cut
at very early stages. This is an interesting opportunity to combine problem-specific heuristic and optimizing
approaches: A solution obtained by a fast heuristic approach may be used to speed up the MIP solving process
used to determine an optimum solution.

2.5.4. Modeling with MIP

Mixed Integer Programming is used to model a wide range of optimization problems, especially in areas where
optimum or at least high-quality solutions to difficult (usually, NP-hard) optimization problems are of high
economic interest – for example, in the context of route planning in the transportation industry or portfolio
optimization in finance.

In this context, MIP is an interface between the user and the theoretical computer scientists and specialized
mathematicians who develop sophisticated algorithms to solve as complex instances as possible of those NP-
hard problems using a reasonable amount of resources. Even though it may require some analytic effort and
creativity to express the problem at hand in the form of a MIP problem, this is often considerably less difficult
than trying to implement an application-specific solution scheme which without a deep understanding of the
field of optimization will almost certainly be outperformed by a high-quality MIP solver operating on a MIP
representation of a reasonable quality.

The performance of a MIP solver for a given problem can suffer considerably due to a problematic MIP repre-
sentation. With some experience or a new approach, it is, however, possible to avoid the most critical pitfalls
and come up with a working solution.

One of the most performance-critical issues is ambiguity: If there are many solutions to the MIP problem that
essentially encode the same solution to the original problem in the application, the solver may have to evaluate
all of them to prove the optimality of a solution. Especially if there are different independent ambiguities in
different parts of the model, the number of solutions that have to be evaluated completely in the worst case is
the product of all the independent possibilities.

Sometimes it is difficult to avoid the ambiguities completely. In such a case, it is sometimes more sensible
to develop a new approach, especially if this approach is likely to profit from a built-in specialized heuristic
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approach provided by the solver. The facade homogenization problem described in section 8 is an example
for such a case: The original direct modeling of the problem (section 8.1) showed low performance because of
hard-to-resolve ambiguities and the lack of fast heuristics for the structure of the problem. The graph-based
approach in section 8.2 describes the problem less directly but most ambiguities can be weeded out quite easily
using this approach and it profits from CPLEX’s optimized algorithms for handling flow problems.

In order to illustrate the procedure of modeling with (linear) MIPs and some of the special aspects and peculia-
rities of this approach, we will derive a way to express Boolean operations in the form of linear MIPs. We will
use a simple positive representation for Boolean variables: a value of 1 represents the true and 0 represents
the false state of a Boolean variable). The mapping of the Boolean expressions to linear programs is similar
to the one presented, for example, by FICO Decision Management Community Forum (2009).

The negation

X ≡ ¬a

can easily be expressed by

X = (1− a) :

If a is true (=1), then X = 1− 1 = 0 =false; if a is false, then X = 1− 0 = 1 =true.

Next, we consider the conjunction

X ≡
∧

a∈A

a

of the boolean variables a in a set A. Since we want the result to be a linear program, we can only use ≤ and ≥
relations of sums (or differences) of variables with constant factors. We do not know how many of the variables
in A are going to be true, so we have to split the two implications in the ≡ relation by setting a lower and an
upper bound for X in such a way that X is true if and only if all variables in A are true.

We can derive the lower bound by a simple consideration: We want X to be forced to be true (equal 1) if all
variables a in A are true. In this case, we have |A| true variables on the right side of our equivalence relation.
If we simply sum up the variables a in A, we get |A| if all a are true and any value between 0 and |A| − 1 if
any of the variables is false, so if we subtract |A| − 1 from this sum, we get:

X ≥
∑

a∈A

(a)− (|A| − 1).

This ensures that X has to be true if all a are true because in this case, the right hand side of the first
constraint is |A| − (|A| − 1) = 1. In all other cases, the right side of the first constraint is less than or equal to
zero, so the constraint is relaxed.

In order to capture the equivalence relation, we have to set an upper bound for X. Otherwise, we could simply
fix X to true and our constraint would always be satisfied. A simple first idea is to introduce constraints that
ensure that X cannot be true if any of the variables a in A is not set:

∀a ∈ A : X ≤ a.

These constraints ensure that X cannot be 1 if any of the variables a is 0. This would, however, produce |A|
constraints which can harm the efficiency of the solver. For this reason, it makes sense to step back and take a
slightly less direct look at the problem in order to be able to put the idea into a single constraint.

We want to make sure that X can only be true (equal 1) if all |A| variables in A are true. One way to look
at this is to imagine a pair of scales: The left side containing the X variable may only be allowed to rise to the
true level if the |A| variables on the right side are also true. For this reason, we scale the X (with natural
values of 0 or 1) on the left side by a “weight” of |A|:
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|A|X ≤
∑

a∈A

(a) .

If X is true, then the left side is |A|. This is only feasible if the right side is ≥ |A| which, in turn, is only the
case if all variables in A are true.

This example shows some of the basic issues of modeling with MIP:

• In many cases, equalities have to be broken down into two different (sets of) constraints for both directions.

• There are many different ways to transform even a quite basic single constraint into a MIP representation.
When it comes to modeling a more complex task like, for example, the generalization scenarios described
in sections 7 and 8, there are lots of feasible approaches – though not all of them will be efficient.

• It is often necessary to dismiss a first approach and take new line of thought in order to resolve performance
issues.

• Even comparatively easy tasks may need some amount of experience and/or creativity to come up with
a high-performance solution. The author does not give any guarantee that the approaches introduced in
this section (or anywhere in this thesis) are the best imaginable ways to express a given problem.

• There is often an element of trial-and-error.

For the disjunction

X ≡
∨

a∈A

a

we can use the same ideas. For the ≥ direction, we use the scales analogy that we used for the ≤ direction in
the case of the conjunction:

|A|X ≥
∑

a∈A

(a) .

This means that if any of the variables a in A is true, then the right side is greater than 0 and X has to be
true; if all a are false, then the right side is 0 and X may be true or false. Because we have scaled the X
on the left side with the factor |A|, all variables a in A can be true without rendering the constraint infeasible.

This leads to some more observations concerning the modeling with MIP:

• Reuse successful patterns / ideas / approaches.

• If you want a binary variable to be set to true if a right-hand expression is > 0, scale it with a factor M
that is bigger than (or equal to) the maximum possible value of the right side.

• Such so-called “big-M” values appear in several approaches and general tricks, for example, in several
places in Haunert (2009). They should be set as tight as possible because otherwise, they may tip the
direction of the choices of the solver in the wrong direction and thus make it explore less promising
branches of the decision tree before finding the optimum. In the case of the disjunction, setting M is easy
because we know that the right side will always be smaller than |A| and that this value can indeed be
assumed, so M = |A| is safe and the best choice concerning the optimization process.

For the ≤ direction, we invert the “sum-up-the-right-side-and-offset” technique we used for the ≥ case in the
case of the conjunction:

X ≤ |A| −
∑

a∈A

(1− a) .

The term 1− a in the sum is 1 if a is the negation of a shown above, so the sum counts the number of false
values a in |A|. If all a in A are false, then the sum is |A|, so the right side is |A|−

∑

a∈A (1− a) = |A|−|A| = 0,
so X has to be false. In all other cases, the sum is smaller than |A|, so the right side is ≥ 1 and X can be
true.
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Boolean operations were introduced here to give the reader an impression of how some constraints that are not
directly linear equations in their nature can be expressed in the language of Mixed Integer (Linear) Programming.
In the context of this thesis, several constraints will appear that after having been established have to be
translated to become linear expressions. If this happens, there will be an explanation of why the linear forms
given in the text have the desired effect.

The rationale behind using MIP to solve optimization problems is that it allows us to transform the problem
of finding the optimum solution into the descriptive problem of specifying the properties that a valid solution
must have. Sometimes, it is difficult to derive a sensible MIP representation, i. e. one that reflects the original
problem well and can be handled by the solver of choice with an acceptable need of computational ressources,
for a given application. It is, however, usually easier to do this for someone who is not a dedicated expert in
optimization than to implement an own strategy for finding an optimal solution (and proving that it is optimal).

For this reason, MIP is a valuable tool in situations where finding exactly optimal solutions (at the cost of
increased comutational cost) is required or desirable. Examples for such situations are the production of fixed
LoD representations in a model that are processed once and distributed to many clients, or as a refrence in the
evaluation of heuristic approaches. Another application is the evaluation of the objective functions themselves
in user surveys: If we present users with results that are provably the best ones for a given objective function,
and they reject the results, we can be confident that the objective function was not suitable.

An alternative to MIP is Constraint Logic Programming (CLP), an extension of Logic Programming. Especially
in contexts in which many constraints consisting of Boolean operations appear in the model, CLP is an interesting
alternative to MIP. In the cases investigated in this thesis, Boolean operations appear in a comparatively small
number of constraints (they were only used as a simple example for the introduction in this section); for this
reason, CLP-based implementations of the problems were not tested. It remains, however, an interesting topic for
further research to investigate the potential of CLP – especially for the template-based facade homogenization
approach where many Boolean constraints are involved.
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3. Building and City Models

The terms building and city model appear in different places throughout this thesis. The difference between
the two concepts is obvious: While a building model represents only buildings, a city model encompasses any
entities that may appear in a city.

In the CityGML city model, for example, there are several different classes of city objects: buildings, transpor-
tation, terrain, water bodies and more. In fact, since almost all kinds of objects can appear in cities, a city
model comes close to a world model as far as semantic depth is concerned.

On the other hand, dedicated building information models may contain more detailed information on a building
than a city model would usually allow to specify. The question up to which semantic depth buildings are
represented within a city model depends on the available data, the storage capacity and computing power of
the underlying hardware infrastructure and the demands of the users.

In the case of the CityGML data model (section 3.3), for example, there is a limited basic set of supported
building features and more complex models like dedicated building information models (section 3.2) can be
referenced, so applications that need special information beyond the scope of the specification of CityGML can
look them up.

3.1. Modeling geometry

There are different approaches to modeling the geometry in building and city models. In general, we can
distinguish between boundary representations and (volumetric)primitive-based descriptions for modeling solids
in 3D. In a boundary representation, an object is described by its boundary surface, i.e. the surface in space
that separates its interior from its exterior (the rest of the universe). If this boundary surface is not closed, it
does notdescribe a proper solid: There are either isolated surfaces or holes in the boundary of the solid. An
important aim of primitive-based descriptions is to ensure that objects are indeed valid solids in space.

One of the most simple and most common representations of objects in Computer graphics is a boundary
representation using a triangular mesh: the representation simply consists of a list of triangles. This approach
is motivated by the fact that all continuous surfaces can be approximated by a triangle mesh to an arbitrary
degree of accuracy in a Hausdorff (see section 2.1.1) sense.

A simple (not indexed) triangulation simply lists the coordinates of the vertices (corner points) of the triangles.
This means that the coordinates of most vertices will be stored multiple times because most vertices will be
used by two or more triangles in a closed mesh. In an indexed triangulation, the coordinates for each vertex are
stored only once and the triangles in the list are represented by the IDs of their corner vertices, so the indexed
triangulation saves a considerable amount of memory.

Another advantage of this approach is that due to small numeric inaccuracies it may happen that the coordinates
for the same vertex are slightly different in different triangles in a non-indexed representation which would lead
to small holes that could break the topology of an otherwise closed surface. Note, however, that there is no
inherent simple operator to check the topological consistency of a triangulation: There may be overlaps and
gaps between the triangles in the indexed as well as the non-indexed version. Most graphics hardware directly
supports indexed and non-indexed triangle meshes.

Some data structures explicitly model topological relationships between parts of an object. An example of such
a topological data structure are winged-edge data structures for 2-dimensional objects, for example the doubly
connected edge list (DCEL) structure in which an object is represented by a list of edges with references to
their start and end vertex objects and the face objects on their right and left sides and the succeeding (and
preceding) edges in the loops corresponding to the adjacent faces.

For the vertices, a reference to an incident edge is stored. Using this edge, all incident edges can be retrieved
following a sequence of successors and predecessors of the edge. The faces store references to one incident edge;
following the successors of this edge (with respect to the face), the vertices and edges on the border of the
face can be traversed. Through the links to the faces to the right and left of each edge, the topology of the
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configuration is explicitly available. In a variation of this representation, the half-edge data structure, each edge
is split into its two directed half-edges; each half-edge stores a reference to its twin (the half-edge in the opposite
direction) and a link to the single face on its left side.

The advantage of such a topological data structure is that topological inconsistencies can be detected more
easily than in a data structure that stores the different faces independently. Additionally, geometric operations
like the Boolean operators of intersection or union can be implemented more efficiently and more robustly on
such a representation; one approach to this problem can, for example, be found in Mäntylä (1986).

A different approach to representing solid objects in 3D is to compose these objects as a combination of simpler
primitives. The most basic form of such a compositional approach is a voxel model: Similar to approximating
an area by a raster of pixels, the 3D domain is segmented into an axis-aligned grid of voxels; the object is
approximated by the union of all voxels that are intersected or covered by the object.

Such a representation can approximate the object up to the resolution of the underlying grid. Since, however,
the number of cells rises cubically with the resolution of the grid, a detailed representation of a complex object
will usually need an excessive amount of memory even if compression approaches like octrees are employed. For
approximations, this representation can, however, be quite useful and it allows a straight-forward voxel-wise
implementation of the Boolean operators.

All voxel models are topologically correct (closed) solids because they are the union of non-overlapping cubes.
Especially in the context of visualization, it is sometimes necessary to extract a boundary representation from
this voxel data. The most commonly used algorithm for this purpose is the Marching Cubes (Lorensen and
Cline, 1987) algorithm. In its standard implementation, this algorithm does not yield a closed surface in many
cases which can lead to visible artifacts in visualization scenarios and break algorithms for evaluating boundary
representations. For this reason, there are modified versions of this algorithm that produce closed boundary
representations.

Another common compositional approach is Constructive Solid Geometry (CSG). A CSG model is defined
by Boolean operations on a set of parameterized primitives – usually cuboids, ellipsoids (especially spheres),
cylinders, prisms, pyramids, and cones, depending on the software package. The representation of the model is
given by the CSG tree in which the leaves are the primitives involved in the construction and the internal nodes
are the Boolean operations.

CSG is an extremely powerful tool and frequently used in engineering because through the union and set
difference operators, it is easy to model a basic shape and fill in details by adding or removing parts – especially
the second possibility of removing parts is difficult to model in other representations.

Additionally, the basic primitives involved in CSG are usually valid closed solids. This means that their boundary
forms a proper closed surface bounding a volume. If regularized Boolean are used, all CSG models are valid
solids: There will be no artifacts of two or less dimensions left “hanging in the air” even after set difference
operations – at least if we assume infinite precision or apply topologically robust rounding operations.

In generative modeling, the object is described as the final result of a sequence of operations. In this general
sense, CSG can be interpreted as a special case of a generative modeling approach: The model is the result of
applying the Boolean operations to the basic primitives.

In his dissertation, Sven Havemann (2005) proposes a more involved generative modeling approach for mes-
hed surfaces based on Euler operators. Models are created using these operators as parts of a stack-based
programming language similar to the PostScript (Adobe, 1999) document description language.

In the framework of this Generative Modeling Language, sequences of basic operations like creating vertices,
edges or faces can be stored and parameterized to form so-called macros that can be used to describe geometric
properties of more complex structural entities.

Beyond the composite primitives of CSG, this framework specifies operators like “push-pull” in which prismatic
volumes can be defined by projecting polygons in their normal direction; another important capability is the
possibility to “explode” entities to get access to their boundaries: This operator is used to access the faces
bordering a solid (for example, the walls in a building model) or the edges bordering an area.

The advantage of such a procedural representation is that it offers the possibility to capture the structural
similarities and regularities that appear everywhere in architecture like the arrangement of windows in regular
patterns (with possible exceptions like doors or staircase units with shifted windows) and uniform storey heights
across otherwise different facade units in an intuitive way.
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Shape grammars are another approach to describe a procedural way of creating models. Instead of a stack of
objects and operators, the shapes are created by replacing symbols defined by the grammar using productions:
The symbols of the grammar usually correspond to objects and structures supported by the language described
by the grammar; the productions define how valid models can be formed using these concepts.

3.2. Building information models (BIM)

Building information models (BIM ) are used to exchange building information for the construction and mainte-
nance of buildings. One of the most widely used BIM formats is, for example, the Industry Foundation Classes
(IFC) standard. While geographic information formats for the representation of buildings often have a strong
emphasis on the exterior of a building, BIM models explicitly model many additional features like walls as a
brickwork structure or the electricity and air conditioning system.

Since a BIM contains almost all information needed for the maintenance of a building, it can grow quite large.
For this reason, generalization steps would, in most cases, be needed to import a BIM into a model of a city:
Adding an unfiltered BIM including a complete (down to the last electric wall socket) model of a high-rise
building to a city model without a generalization step would considerably increase the size and complexity of
the model and may even cause a failure of signficant slow-down of the system frontend.

3.3. CityGML

The CityGML (Gröger et al., 2008) model is a standard defined by the Open Geospatial Consortium (OGC)
for the exchange of city models. Beyond building models, CityGML covers a wide range of additional thematic
layers for transportation, terrain, water bodies and more. Additionally, it is designed to be extensible through
Application Domain Extensionss (ADEs) for special purposes in which additional attributes can be defined for
existing feature types and new feature types can be defined. There are, for example, ADEs for noise simulation
models and for the modeling of bridges and tunnels.

Description Positional /
height accu-
racy

Minimum
footprint
diameter

LoD 0 2.5-dimensional terrain model with an optional map or ae-
rial image texture.

– – –

LoD 1 Buildings modeled as blocks (flat roofs only). 5m – 6m x 6m
LoD 2 General roof structures added. 2m 1m 4m x 4m
LoD 3 Detailed roof and facade structures, building installations

(balconies, dormers, chimneys, ...).
0.5m 0.5m 2m x 2m

LoD 4 Detailed interior model added. 0.2m 0.2m –

Tabelle 3.1.: CityGML LoD specification with recommended accuracies.

CityGML defines five distinct levels of detail (LoD). For each of these levels, there is a recommendation for the
resolution up to which this level is intended to be used.Table 3.1 lists the features that should be added to the
model for a given LoD and the recommended minimum accuracies associated with the LoD; a “–” means that
the value is not specified or not applicable.

Figure 3.1 shows images of models in the different LoD; the specifications of the LoD and the images are taken
from Kolbe et al. (2005). The recommendations for the choice of the different LoD are based on typical sizes
for the entities added for a higher LoD: If, for example, we have a target positional resolution of 5m, then most
roof structures will be small enough to be dropped according to the Hausdorff concept. For this reason, it makes
sense to model roof structures only if the positional resolution is 5m or higher.

In CityGML, city models are represented in a composition tree: the more general entities like building parts
maintain references to their smaller parts like roofs or walls which in turn store references to their dependent
features like windows or doors.

Figure 3.2 shows some of the concepts related to the modeling of buildings in CityGML: A building is formed
by building parts with a specific roof structure. This way, a larger building consisting of several parts (like wings
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(a) LoD 0. (b) LoD 1. (c) LoD 2.

(d) LoD 3. (e) LoD 4.

Abbildung 3.1.: CityGML Levels-of-Detail (LoD) (from Kolbe et al. (2005)).

Abbildung 3.2.: Structure of CityGML LoD 3 buildings (UML, right), illustrated by a model (left) (from Gröger and
Plümer (2012)).

or sections in a mostly homogeneous building block stretching along a street) can be modeled as a single entity
while still preserving the different parts as distinct objects.

CityGML is an application schema of the GML (Geographic Modeling Language, Portele (2007)) standard defined
by the OGC and the International Standard Organization ISO and inherits its geometry model. This means
that the geometry of each object is represented explicitly in the form of geometric primitives like polygons and
points.

While this fact gives the user the freedom to model the geometry of the features up to any degree of precision,
this concept also introduces unchecked redundancies in the model because the geometry and the semantic
annotations may not match. Consider, for example, the building in figure 3.2: If the roofType annotation for
building part bp1 had been flat instead of gabled, the model would still have been valid but semantically wrong.

Trying to automatically derive semantic information from unstructured data – which is essentially the general
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feature extraction problem described in section 2.4 – is, however, an extremely complex problem that is far from
solved and the topic of a lot of ongoing research as outlined in section 2.4.

Nagel et al. (2009) lists some requirements for input data sets and reconstruction processes for the transformation
of unstructured data to CityGML. Especially many of the consistency requirements are often not met, so many
owners of 3D models shrink back from the effort of trying to extract a correct semantic structure from their
data.

There is no generic way to model patterns of features like regular grids or symmetric groups of features in
CityGML. Such structural information can provide valuable hints for generalization operations or may even
be a necessary precondition: Operators like typification need, for example, by definition a set of at least two
features as their input.

3.4. Grammar-based Modeling of Building Structures

There are several shape grammars that describe different aspects of building and city modeling – Duarte (2002),
Downing and Flemming (1981), and Flemming (1987), for example, develop different grammars for buildings
designed by Alvaro Siza, for patterns of bungalows, and for Queen Anne style buildings. A grammar for modeling
facade structures is a crucial part of the algorithm for the extraction of facade structures from Lidar and image
data of Ripperda and Brenner (2009).

The advantage of such highly specialized grammars is that the semantic concepts associated with the symbols of
the grammar are clearly defined: A reference to the documentation will tell us that a feature (usually modeled
by a symbol) called, for example, a “balcony” does indeed refer to a platform protruding from a wall. While
this seems obvious, we will see in a moment that this correspondence may be lost if the modeler is given the
degree of freedom to define own symbols and productions.

Abbildung 3.3.: A Model of a building block created using the CityEngine Software (from the CityEngine homepage (ESRI,
2012)).

In the CGA shape grammar, for example, that is used for modeling geometry in the CityEngine (ESRI, 2012)
software developed (among others) by Pascal Müller et al. (2006) and Peter Wonka et al. (2003), the user can
define new symbols and productions.

Using this feature, the basic infrastructure for modeling geometry can be used to effectively derive special
grammars for radically different architectural styles and structures from Ancient Pompeii through the typical
19th century building blocks in Paris (Figure 3.3 shows an example created using the Paris style set of rules)
to futuristic Metropolis skyscraper structures within the same framework.

This flexibility means, however, that there is no inherent correspondence between the symbols of the grammar
and the semantic entities represented by these symbols. In this context, different languages, sub-type relations
and abbreviations can cause problems even if the modeler strived to use readable names: A symbol representing a
French window might simply be called “Window” or “Fenster” (German) or more specifically “FrenchWindow”
or “FrnWnd” – introducing the problem of resolving abbreviations and sub-type relations: A generalization
algorithm would have to be either specifically designed to handle French windows or to know that a French
window is a special kind of window.

These problems can make concepts that are intuitively obvious for a human reader incomprehensible for an
automated generalization process – although especially this semantic content could provide valuable information
for application-specific generalization.
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3.5. Direct vs. Generative Modeling

While the structure of a city or building is stored directly in explicit modeling systems like CityGML, it is, in
a grammar-based system, usually encoded as the result of a series of productions from the start symbol of the
grammar. In this respect, the relationship between explicit and grammar-based modeling systems is similar to
the relationship between direct and generative modeling systems for geometry. For this reason, direct modeling
systems usually use direct methods to represent the geometry of the features while grammar-based models go
more naturally with generative modeling of geometry.

Note that while generative modeling is often associated with grammar-based modeling frameworks, parts of the
models may be built directly in a grammar-based modeling environment and there may be generative aspects
in otherwise descriptive modeling frameworks like the construction of facade structures from the composition
of simple building part models.

U +

Abbildung 3.4.: Generative vs. direct modeling.

Figure 3.4 illustrates how the (moderately) complex overall shape of a building with a the small extension (top)
is split up into its basic parts in two different ways in direct and generative modeling approaches:

• In the generative approach (left), the basic shapes are simple gabled-roofed building parts, but the com-
posing operation is more involved: An underlying engine will have to be able to perform the union (∪)
operation on the primitives.

• The direct modeling system (right) stores the parts as they appear in the final model. In this case, the
geometry of the parts may become arbitrarily complex and – in the case of heavy and complex overlaps –
hardly recognizable, especially for automatic analysis tools like generalization processes. The composition
algorithm is simple: just collect all surfaces. There is, however, no inherent way to check for (and repair)
inconsistencies in the model, especially if parts of the model are changed.

While it is possible (although, due to rounding errors, sliver polygons etc., not as trivial as it may appear on
the first glance) to derive a neatly partitioned boundary representation from a generative model (and most
generative modeling software provides means to do so), the converse is considerably more difficult, especially if
we have to interpret a given model in terms of semantically defined instead of arbitrary CSG primitives. In fact,
this is bringing us back to the ubiquitous feature extraction from “polygon-soup” problem outlined in section
2.4.

The hardness of this feature identification process is a huge problem in the context of city models: It is easier to
generate sets of polygons from a survey (e.g. a laser scan) than a model composed of semantically meaningful
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primitives – especially having to bear in mind that such a model is probably not going to be able to interpret
all occurring building structures. Additionally, almost all existing city models consist mainly of more or less
structured lists of polygons.

This is probably one of the reasons for the decision of the designers of CityGML to use direct modeling and
one of the reasons of the success of CityGML: Existing models can easily be transformed to CityGML. In a
quick import routine, the building of figure 3.4 could, for example, be be stored as a single unstructured LOD2
building object with a list of all polygons in the direct model as its geometry. In a slightly more advanced
conversion, all vertical polygons would be labeled as Wall and all other ones as Roof surfaces.

This is already a step forward towards automated analysis of city models: Instead of having to deal with more
or less arbitrarily labeled (“building”, “Bld”, “tree”) groups (if the polygons are grouped at all) of polygons
forming the city model, we can now expect that

• the given group of polygons does indeed exactly (with no missing or excess surfaces) form a building (and
not a tree) and

• we can distinguish between roof and wall surfaces.

Generative models are often used in order to automatically generate similar feature hypotheses for automatic
model selection processes. For N. Ripperda (2010), for example, the goal is to derive a semantic interpretation
of facade structures from laser scanner measurements and images. In the context of the extraction process,
different facade structures are generated from the facade grammar and evaluated in a randomized (reversible
jump Markov Chain Monte Carlo) framework. Both the goal of extracting a sensibly structured semantic model
and the necessity of producing “similar” models favor using generative (grammar-based) models.
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4. Related Work: Building model generalization

In this section, several approaches to solve different special problems in the context of 3D city model genera-
lization are presented. The approaches can be classified by the amount of semantic information they take into
account and by the levels of detail at which they can be applied.

In the first group of algorithms, building models consisting mainly of wall and roof surfaces are divided by
planes into different chunks; the generalization process is applied to a semantic interpretation of the surfaces in
the chunks. The simplification of LOD 1 building models through aggregation and simplification of the footprint
polygons is also a topic that has been investigated in different publications. In the third section of this chapter,
texture generalization and non-photorealistic drawing are introduced.

Section 4.4 introduces some algorithms for the generalization of features that are of special importance at large
scales. The final section of this chapter covers approaches in which only the geometry of the surfaces forming
the building models is taken into account – in these approaches, semantic knowledge about the structure of
buildings appears only in the algorithms but neither in the input nor output models.

All currently available approaches address limited situations concerning feature classes, scale ranges and target
application that can be handled. In the following chapters of this thesis, we will see for a few examples that
even the most basic and trivial problems occurring in the context of 3D building model generalization tend to
turn out to be NP-hard if they are formulated as optimization problems, so it is extremely unlikely that an
integrated approach with acceptable runtime behavior for the whole problem can be developed. For this reason,
it would be desirable to combine the different existing heuristic approaches.

In his dissertation, Bo Mao (2011), for example, presents a framework in which he integrates different algorithms
for the generalization and visualization of 3D city models. Some of these algorithms are presented in earlier
publications that form an important part of his compilation thesis. Within his framework, dedicated approaches
are applied for the generalization at block, building and facade levels of detail: The framework provides a single
visualization and generalization approach for a given situation – it does not directly support the integration of
application-specific or other third-party generalization or feature recognition algorithms.

This is a significant problem in the development of the field of generalization of 3D models: There are many
powerful approaches for different sub-problems but in order to create a tool that can perform 3D city model
generalization for different applications, it would be desirable to have a platform in which different algorithms
could be integrated which would enable the developers of simplification approaches to focus on the most relevant
feature types for their applications and reuse existing simplification modules for the rest. Such a framework
does, however, not exist; in section 5, some basic concepts for such a framework are presented.

4.1. Plane-based segmentation and semantic interpretation

In Thiemann (2002), Frank Thiemann outlines his idea of using CSG models for the representation of building
shapes: If a suitable hierarchical representation of a feature is given, this can significantly simplify the gene-
ralization process because it may be possible to generalize different parts independently and to identify parts
that may be left out for a given level of detail. In CSG models, the shape of an object is modeled by a series of
Boolean operations (union or difference) between simple basic primitives; in Thiemann (2002), these primitives
are convex polyhedra.

The segmentation process is described in more detail in Thiemann and Sester (2004). Similar to the approach
described in Ribelles et al. (2001) for triangle meshes, the CSG model is derived from a traditional boundary
surface representation by cutting the shape using the planes of its boundary surfaces as shown in figure 4.1(b);
a resulting segmentation is shown in figure 4.1(c). When the building is cut by a plane, it is possible that several
different connected components (features) are the result. The roof surface in 4.1(a), for example, separates the
chimney and the dormer feature from the rest of the building. In each step, only one feature is separated from
the rest of the building, and the process is applied recursively to both resulting parts.

In order to produce a CSG tree that gives a hierarchical description of the building that ranks the features by
their geometric impact on its shape, the sequence of the cuts is important. In Thiemann and Sester (2004), the
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(a) Original model. (b) Planes. (c) A Segmentation

Abbildung 4.1.: Segmentation process in Thiemann and Sester (2004)

relative enlargement of the affected surfaces v = Anew/Aold in the cut plane after the cut is used to assess the
quality of a feature cut, and the cut with the best (lowest) score is applied in each step. Only if no cut with a
single plane yields a feature with a value v ≤ 1, then combinations of two or more cutting planes are tested. In
order to find a global optimum, all combinations of cut planes would have to be tested which would amount to
an exponential number of possibilities.

Abbildung 4.2.: Class diagram for building features according to (Thiemann and Sester, 2005)

In (Thiemann and Sester, 2005), a rule-based approach for a semantic interpretation of the CSG nodes extracted
by this process is introduced: Depending on different parameters and relations between the nodes, they are
classified as different features like walls, windows, doors or balconies. Figures 4.2 and 4.3 show the UML class
diagram and the classification rules for different parts of a building.

Using these rules, most primary building features were identified correctly in the data sets used for the survey.
Such a classification could either be used directly in semantics-based generalization processes or to identify
patterns of features like regular distributions of windows and other higher-level structures in order to support
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Abbildung 4.3.: Classification rules for building features according to (Thiemann and Sester, 2005)

generalization operators like typification that operate on structures of features.

For this reason, the approach is a very promising step in handling the strong interdependence of generalization
and feature recognition outlined in section 2.4. Especially the problem of identifying structures of features in
the CSG tree remains, however, a challenge that would have to be tackled to take full advantage of the potential
of this approach. The ambiguities in the order of the extracted features in the CSG tree and possibly conflicting
assignments of features to different structures are the degrees of freedom in the global optimization problem of
the interleaved generalization and feature extraction steps introduced in section 2.4.

In Thiemann and Sester (2006), an approach for the simplification of 3D building models is proposed that
replaces a more complex building part by a parameterized primitive using least squares adjustment. For this
purpose, a set of points is sampled from the surfaces of the original model and in the final adjustment, the
parameters of the primitive are determined by a least squares fitting of the primitive to the point cloud. This
idea is similar to the approaches used in Brenner (2003) or Brenner (2000) for the extraction of 3D building
models from laser scan data.

(a) Cuboid. (b) L-shaped flat roof. (c)L-shaped gabled roof.

Abbildung 4.4.: Fitting different primitives to a building model according to Thiemann and Sester (2006) (from Sester
(2007))
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Figure 4.4 shows the result of fitting different primitives to a more complex L-shaped building. The best primitive
for a given building can be determined by an evaluation function that takes the residual error after the least
squares fitting and the complexity of the fitted primitive into account.

Martin Kada (Kada, 2007b) modifies and combines the approaches in Thiemann and Sester (2004) and Thiemann
and Sester (2006) to build a workflow for the simplification of complex building models.

(a) Original model. (b) Facade planes. (c) Cells.

(d) Occupied cells. (e) Primitive instancing. (f) Final result.

Abbildung 4.5.: Generalization Workflow according to Kada (2007a)

For the initial decomposition, an approach similar to the one presented in Thiemann and Sester (2004) is used.
Instead of using all planes in the building model, only the wall surfaces are considered for the split operations.
Additionally, all wall surfaces within a given buffer are treated as a single split plane to make sure that only
the bigger facade elements are used in the decomposition. The width of the buffer can be used to control the
degree of generalization that is applied to the model.

For the resulting cells (see figure 4.5(c)), the best-fitting primitives are determined in a process similar to the
one described in Thiemann and Sester (2006) as shown in figure 4.5(e). As an extension to Thiemann and Sester
(2006), the shapes in the adjacent cells are also taken into account when the primitives are fitted to the cells.
This ensures smooth connections between the parts, resulting in a convincing overall result in many cases as
shown, for example, in figure 4.5(f).

Abbildung 4.6.: Circular turrets are simplified separately in Kada (2007a).

Features with rounded footprints can lead to errors in the cell decomposition of the footprint in the first step.
For this reason, they are detected and removed from the model in a preprocessing step, simplified separately,
and added to the simplified model in a final postprocessing step. Figure 4.6 illustrates this process.

This basic workflow of separating different parts of the model, independently applying simplification procedures,
and merging the results is an important underlying design principle in the development of a framework for the
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orchestration of different generalization approaches.

4.2. Small scale simplification approaches (LoD 1)

Glander and Döllner (2007) introduce an aggregation-based generalization approach for LoD 1 (according to
the CityGML specification) building models in which the buildings within a block (defined by the cells of the
road network graph) are, by default, merged into a single built-up area of an intermediate height. Depending
on the distance from the point of view, blocks separated by small streets may be merged across the streets.

As an exception, landmark buildings or building complexes can be retained at higher levels of detail and shown in
an emphasized representation. In order to resolve conflicts caused by enlarged landmark buildings, intersecting
enlarged landmarks are shifted iteratively until all conflicts are resolved.

Abbildung 4.7.: Abstract representation of city blocks with landmark buildings (Glander and Döllner (2009)).

Figure 4.7 shows an example of a data set; most blocks are aggregated into built-up areas and some landmark
buildings were preserved. while the landmarks in the foreground are mainly emphasized by their higher level
of detail (being retained as distinct entities with a close-to-original geometric representation), the landmarks in
the distance are enlarged in order to enable the viewer to recognize them.

The approach also defines intervals of distances at which each landmark is displayed in different ways: At
close distances, the landmark is displayed in its full geometry without enlargement; at intermediate distances,
the feature will always cover the same amount of pixels in the display, at large distances, it disappears. This
corresponds to the life span of traditional cartographic point features in scale space: At large scales, they may
be polygons, at intermediate scales, they are represented by symbols, at small scales, they may disappear.

Since there is usually only a limited number of landmarks (compared to the total amount of space available)
and the landmark buildings take precedence over the road parcels and the rest of the built-up area in the block,
deadlock situations in the iterative displacement procedure for enhanced landmarks in which no shift is possible
because the space available is not sufficient for all features – for example, because a cell in the road network
could not hold all features – are highly unlikely in this case.

Because in real-world data sets there are usually few landmarks and it is usually possible to extend the space
covered by the conflicting landmarks, live lock situations in which a series of displacements produces a situation
that was encountered before (leading to an infinite loop in the iterative displacement algorithm) are also not
relevant for the approach in practice.

Anders (2005) proposes a generalization approach for 3D building models that is based on the combination of
the 2D simplification of the outlines of the building ensembles in the main directions of the building.

Figure 4.8 shows the different steps of the algorithm: In the first step, the main directions of a building ensemble
are determined, and the buildings are projected parallel to the resulting main directions. These “shadows” of
the buildings in the main directions are then simplified using a polygon simplification approach. The simpli-
fied shadows are then extruded in the corresponding directions, and the resulting shape is determined as the
intersection of these extruded polygons.
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Abbildung 4.8.: Simplification of projections in main directions (Anders (2005)).

The example shows, for example, that the heights of buildings that are shadowed by bigger ones in both
horizontal main direction may be enlarged without control (e.g. in Figure 4.8 in the center). This approach
is mainly suited for the simplification of LoD 1 buildings because the simplification of the outlines of sloped
structures may be a problem.

Additionally, the risk of occlusions increases strongly with the introduction of additional features like dormers
that appear at larger scales.

4.3. Texture simplification and non-photorealistic rendering

In Döllner and Buchholz (2005), a building model is introduced that supports different levels of quality for
different buildings. These different levels refer mainly to the design process: Details can be added to existing
buildings. The system does not support generalization in the sense that less detailed models can be derived
from a detailed one according to the needs of an application.

It offers, however, the option of real-time photorealistic and non-photorealistic rendering using textures of
different complexity for objects at close and far distances. It is also possible to retain higher levels of detail for
landmark buildings at larger distances.

Abbildung 4.9.: Non-photorealistic rendering of a scene from a city model (in Döllner and Buchholz (2005)).

In order to store and retrieve textures at different levels of detail efficiently, they are organized in a tree of texture
atlases in which the textures are stored in a quadtree structure defined on the distribution of the buildings in
the model. This enables the system to retrieve the textures for the building features at an appropriate level of
detail according to their closeness to the camera position.

Especially the feature of non-photorealistic rendering is interesting in the context of generalization because it
offers more options for the visualization of application-specific data.

4.4. Feature-specific large-scale simplification approaches

In some highly detailed building models – especially if they are derived from building information models – the
walls are often modeled as solid 3D objects. In the CityGML standard, solid wall structures can be found in
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models of LoD 3 or 4. In order to reduce the complexity of such a model, Fan et al. (2009) propose to extract
the exterior surfaces and use them to represent the building, reducing the solid walls to 2D wall surfaces.

In order to identify the exterior surfaces, a central point for the building is calculated in a first step. The authors
report that the centroid of the centroids of all wall surfaces had a higher likelihood of being located inside the
building than the centroid of all corner points of the surfaces of the wall solids. For this reason, the centroid of
the centroids was chosen. Note that this is still not guaranteed to lie inside of the building.

In the next step, all planes that belong to the same wall are identified in the original model. In CityGML, this
correspondence is often modeled explicitly: The geometry of a CityGML WallSurface feature is given by a GML
MultiSurface object that includes the surfaces bordering the solid wall element. Then an overall plane equation
for the wall is determined by a least squares fitting of a plane to the point cloud defined by the corners of the
wall’s surfaces.

In the following step, the side surfaces of the wall are eliminated in a selection process: All surfaces that are
perpendicular to the wall plane are discarded. Of the remaining surfaces, those with the greatest distance to
the building center determined in the first step form the exterior shell that is used as a representative of the
building. Finally, the window and door features associated with the wall are projected on the exterior shell.

In this context, Fan (2010) also presents a more sophisticated approach to the typification problem for regular
distributions of windows on facades together with a user survey in which the quality of different window
typification approaches was rated by students of geodesy.

4.5. Geometry-based simplification of adjacent roof and wall surface combinations

In the 2-dimensional case, the combination of feature extraction from geometric data and the simplification
(usually through removal) of the features is a common technique: In the line simplification algorithm presented
by Jenks (1989), for example, outliers and small structures are identified and removed in a filtering process in
which a window of tree points on the line is examined and the second one is eliminated if it is too close to the
first or the first and third point are close (one-point outlier detection) or the two line segments linking the three
points are almost collinear.

The algorithm for the simplification of building footprints presented in Sester (2001) allows to identify and
simplify more sophisticated patterns formed by consecutive vertices and is better adapted to the special case
of building footprints: There are procedures to make sure that the result is still a closed polygon without
self-intersections in the implementation; additionally, the orthogonality of the different wall segments is better
preserved than in most previous line simplification algorithms.

Forberg (2007) extends this principle of simplifying local geometric patterns to the third dimension. In Forberg
(2005) she shows that using vector-based dilation and erosion techniques alone, not all small intrusions and
extrusions of sizes below a given resolution can be identified and removed.

She introduces an approach for the simplification of models that are composed of orthogonal surfaces that
is based on shifting surfaces in the direction of their normals in order to fill small gaps or to remove small
protrusions.

In order to apply these simplifications, all surfaces involved in the local patterns are supposed to be coplanar or
perpendicular to each other. Especially sloped roof surfaces are, however, not aligned this way. For this reason,
the set of rules illustrated in Figure 4.10 is used to orthogonalize sloped roof surfaces; the applicability of the
rules depends on the target resolution and the size of the structures to be simplified. This means that this
orthogonalization is a generalization step in its own right.

Fan et al. (2009) extend the building footprint simplification approach described in Sester (2001) by introducing
further rules for the identification of further special structures in the footprint polygon in order to simplify LoD
1 building models. Bo Mao (2011) uses this approach to simplify the outlines of LoD 1 buildings in his framework
for the generalization of 3D building models.
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Abbildung 4.10.: Rules for the orthogonalization of adjacent roof surfaces (side views, taken from Forberg (2005)).



5. Towards a flexible infrastructure for orchestrating the generalization
and structure recognition cycle

In the course of this thesis, two of the most basic and straightforward parts of the generalization problem for
3D building models – the aggregation of LoD 1 building models and the simplification of facade structures –
are going to be shown to be NP-hard, so it is unlikely that a fast or even a polynomial-time algorithm exists
that finds an optimum generalization result. For this reason, it makes sense to develop heuristic algorithms to
find good solutions using an acceptable amount of resources.

In the face of this high complexity of even the most basic parts, the search space for the overall building
generalization problem has to be reduced. In order to produce high-quality solutions with an acceptable need of
computing resources, knowledge about semantics of the objects to be simplified is crucial: A specific heuristic
approach for the simplification of a given feature (class) should be straightforward, computationally efficient
and include options to deal with conflicts arising from the simplification of adjacent features.

In Guercke and Brenner (2009), Guercke et al. (2009a) and Guercke et al. (2009b), some initial considerations
are outlined for a framework for the integration of different generalization and pattern identification procedures.
In this section, a more comprehensive and structured treatment of this subject will be presented.

5.1. A semantics-based model to support the generalization process

The city model used in the generalization framework is designed with the goals of extensibility and minimum
parameterization in mind. Extensibility refers to the possibility of adding new feature types – preferably as sub-
types of existing classes – and to add application-specific data to existing features. Minimum parameterization
means that the definition (initialization) of a feature should need as few parameters as possible.

In order to achieve such a minimum parameterization, the model combines a direct and a generative represen-
tation: The final model contains a full representation of the geometry of the features, but the parameters and
structures used for the generative construction of the model are retained and can be used for the analysis of the
model and as a basis for the construction of the generalized version.

This model is similar to the one introduced by A. Fischer (2005) for the automatic reconstruction of buil-
ding models from aerial images. Especially the concepts of a minimum parameterization and the inference of
parameter values for dependent features from higher-level features are used in the reconstruction process.

The model presented here is, however, more generic and flexible because it allows arbitrary compositions (CSG
operations) of features while the model presented by Fischer (2005) supports only special compositions. The
increased felxibility of the model presented here comes, however, at the price of increased computational cost
because the intersections between the features involved in the composition have to be calculated explicitly.

Most city models that are currently available are not composed of this kind of parameterized primitives; their
shape is usually defined by a set of surfaces in a boundary representation in purely geometric as well as in
CityGML models – in CityGML, it is, however, possible to add hints to model entities that indicate a special
shape: A roof may, for example, have an annotation stating that it is (supposed to be) a gabled roof. The problem
of deriving such a primitive-based representation from a surface-based one is strongly related to the problem
of identifying sematic structures in unstructured surface sets outlined by C. Nagel et al. (2009): Parameterized
semantic primitives are an abstract representation for parts(sub-trees in the model hierarchy) of the model in
which the geometry is defined implicitly by the semantics.

5.1.1. Features as composite entities

The model is organized in a hierarchical way based on the semantic structure of the basic feature set. In this
model, there is a strong distinction between the necessary parts of a feature and optional additions: The types
and names of the necessary parts are defined statically for each feature type – a building part, for example,
consists of a body (brickwork structure) and a roof. This consists of relation means that a child is a part
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of its parent rather than an addition: The parent consists of its parts, meaning that it is incomplete if one of
them is missing.

In the default feature set, the valid types for optional additions are not restricted. An application may, however,
introduce restrictions on the types of possible additions for each feature type. In order to formalize the options
for creating a valid model for a given application, a grammar can be used in which the productions for creating
additions to the features are limited to a sensible subset of the feature types.

While limiting the set of feature types that may be attached as optional additions to a feature of a given type,
such a limitation is not included in the basic framework, because constellations that may not make sense on
the first glance can prove useful: Adding a roof to a window may not seem logical, but if it is allowed, we can
use all the features in our roof modeling feature toolkit to model roof-like constructions on protruding window
frames. The same holds, for example, for roof constructions on chimneys.

Allowing to add a building part or even a building object to a wall or another building part makes the whole
expressibility of the building model framework available for modeling protruding additions to a building. Due
to these reusability considerations, there are no constraints concerning minimum sizes for a given feature type
in the basic feature model. This kind of constraints may be introduced by an application in a special grammar
specifying constraints on valid models.

The distinction between parts and additions is important especially in the context of generalization. Assume,
for example, a simple selection process based on the size of a feature and imagine a feature that, as a whole,
is big enough to be retained in the generalization process while one (or some or all) of its necessary parts fall
below the size threshold. In such a case, we would, for example, be left with with a building part without a roof
or with a huge building complex that was erased completely because all of its parts were just too small to be
retained.

For this reason, the default generalization behavior will assume that all parts of a feature have to be retained,
even if they would usually be removed in a selection process, if the parent feature should be retained. The child
feature will, however, be simplified to the most simple representation available in such a case. As the result of
such a valid simplification of the parts, the parent feature may also become irrelevant and be removed.

Additions are optional parts of a feature that may be deleted by generalization processes. Such a removal of
additions can cause the parent feature to become irrelevant, especially in geometry-based selection processes.

5.1.2. Abstract view of the model hierarchy

Figure 5.1 shows the most abstract view of the feature composition tree. The underscore “ ” in front of the
class identifiers in the UML diagrams means that a class is abstract or, in Java terminology, an interface. For
the sake of readability and conciseness, these classes have public properties instead of abstract getter and setter
methods in the diagrams.

The most important relation is the part relationship: A higher-level feature is composed of its part features
(terminal features have no parts). In the diagram in 5.1, this relation is emphasized by a bold arrow with a
filled tip, while the minor importance of the additions is emphasized by a dotted arrow. Although the this is
the reverse direction of the standard UML aggregation symbol, the direction of the arrow from the feature to
the parts was chosen for two reasons: the feature holds the references to its parts, so it is their “owner” and –
in contrast to the difference between aggregation and composition in UML – the difference between a part and
an addition is that the parent feature is not complete without its parts, while the UML composition is used if
the parts depend on the parent feature.

The shape of all features is defined in their own coordinate system: Wherever this is sensible, a coordinate
system in which the feature’s shape can be represented by a minimum number of parameters is used. For a
rectangular building part, for example, such a “natural” coordinate system will have its x and y axes aligned
with its sides because in this case, it can be represented completely by its width and depth (and eaves height).

In the case of skewed planes like an inclined rectangular roof plane, for example, a “minimum” coordinate
system would be aligned with the rectangle. In this case, however, it would be necessary to keep track of the
local UP vector throughout the whole model in order to be able to access it when child features like chimneys
and dormers have to be aligned because those features are usually pointing upwards. For this reason, the z axis
is always assumed to point in the direction of the UP vector which should, within the bounds of the precision
associated with the model, point in the opposite direction of the local gravity vector.
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Since the shape of a feature is defined in its own coordinate system, a transform will usually be needed in
relations between features in order to perform spatial analysis on them and in order to place the lower-level
features in the composition hierarchy; this is the reason why relations between features will usually involve a
FeatureLink object that stores the source and target of the relation together with the transform from the source
to the target coordinate system.

Application data can be added to all features in the form of (key,value) pairs in which the key is the name of
the attribute and the value may be any type; in the case of a Java-based implementation, the type of the values
would be Object ; access to this application data is managed through the getData(..) method of the Feature
interface where the KeyClass of the object representing the parameter that is accessed may simply be a string or
an object of a special parameter key class (which would require a registration procedure for parameter IDs but
can speed up the lookup process because the features’ attribute maps would be queried by object IDs instead
of strings).

Application-specific feature types can be defined as subtypes of the feature classes introduced in the following.
All of the feature types introduced in this section are derived from the Feature interface; in order to be used
within the generalization framework, a new feature type has to implement this interface.

A new feature type should, however, be derived from the most specific known feature type because only then
it could be ensured that a higher-level generalization process could make its decisions based on the type of the
feature; a facade layout algorithm would, for example, profit from knowing that a new type FrenchWindow is
a special kind of window, so it could apply its layout rules for windows to it.

Abbildung 5.1.: Composition of features.

By default, the part and addition (for the optional additions) relations use MultiFeatureLink objects that pool
several FeatureLink objects. This construction allows a straight-forward integration of patterns of features as
implementations of the MultiFeatureLink interface; the UML diagram shows the RegularGridStructure and the
SymmetricStructure (not implemented in the current version) as examples.

The Surface class in the geometry package defines an abstract functional surface concept that maps each point
U = (u, v) in parameter space to a point X = (x, y, z) in the enclosing 3D coordinate system and optionally
provides a local normal vector N0 for each point in parameter space.

Note that the parameters u, v,Nu, and Nv of the RegularGridStructure are defined in the parameter space of
the underlying Surface. This means that distributions along bending lines or curved surfaces can be realized by
changing the underlying surface. In the most cases, the surface will, however, simply be a plane, but even in this
case, this representation has a great advantage: We do not need different grid structure classes for laying out
horizontal (like regular distributions of buildings in the plane), vertical (windows in a wall) or skewed (features
on an inclined roof surface) planar grid structures.

In order to lay out features on such inclined surfaces, the (u, v) → (x, y, z) mapping from parameter to real-world
space in the Surface or Plane class usually provides the functionality needed in a very intuitive and flexible
way without having to change the z direction: The underlying surface defines the position and azimuth for the
feature, and the feature can rely on a z axis pointing upwards for its layout. Of course, this can lead to violations
of our goal of using minimum parameter sets wherever posiible, but otherwise the UP vector would have to be
traced throughout the system.

Each feature stores a reference to its 3D bounding box. In a FeatureLink or MultiFeatureLink, the bounding
boxes of the referred features after the FeatureLink transform can be stored. This allows the system to retrieve
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the bounding boxes of the parts and additions of a feature and to adjust the parent’s bounding box according
to changes in its children.

Having the bounding boxes of a feature’s children available (even if we have to calculate them on demand) turn
our feature hierarchy into a search structure similar to an R tree (Guttman, 1984): If we want to check which
parts of a feature intersect a given search shape, we can exclude all children from the search that have bounding
boxes that do not intersect the search shape.

Abbildung 5.2.: Nested structure of a church-like building model.

Figure 5.2 illustrates this nested structure. The main part and the tower are the building parts of which the
whole building is composed. Both have a body and a roof – the main part has a gabled roof, the tower has a
tent roof. In the figure, the bounding boxes around the parts are shown. Because the z axis is aligned with the
UP vector, the inclined roof surfaces need to store more that the minimum parameters of width and depth and
their bounding box is larger than the minimal one that wolud have no height for an ideal plane. On the other
hand, the alignment of the dormers would have been considerably more complicated if the coordinate system
would have followed the direction of the roof surface on which they are defined – and impossible without a
tracing of the local coordinates of the UP vector.

In this work, the emphasis is on building models. Note that there are many further thematic layers in a city
model; in CityGML, there are, for example, six default thematic layers for terrain, land use, transportation,
vegetation, water bodies and sites, in particular buildings. Such a more detailed structure of thematic layers
can be achieved by deriving special feature types for the desired thematic view and registering a new thematic
layer.

5.1.3. Notation (UML)

The documentation of the structure of the models is based on the UML (Unified Modeling Language) nota-
tion described, for example, by Rumbaugh et al. (2004). For reasons of legibility, some short notations were
introduced.

In order to avoid cluttering the succeeding diagrams, the part relation will be marked by a [P] followed by
the identifier by which the part can be accessed from the higher-level feature. In figure 5.3, for example, the
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arrow between the BuildingPart and BuildingBody types means that there is a field (or rather, in accordance
with the Java interface model, an abstract getter method) that refers to an MultiFeatureLink object that pools
references to FeatureLink objects pointing to BuildingBody objects.

The parts data field or getParts() method in the Feature interface is supposed to give access to the union of
all different parts of the feature, either as a mapping from the identifiers to the parts or simply as the list of
the parts.

A dashed arrow with a label starting with a [L] means a general relation (link) from the source to the target
class through a MultiFeatureLink.

5.1.4. The building model

In the default feature set, a Building can be composed of different BuildingParts which, in turn, can be
composites. This offers the possibility of representing a nested composition structure for a building complex. A
city block may, for example, consist of several building parts built along its perimeter or forming “letter-like
(E, T, F, O) patterns” where each part consists of a row of other, more fine-grained building parts.

Abbildung 5.3.: Abstract structure of a building in the default feature set.

A BuildingPart consists of a Body and a Roof structure. The BuildingBody is bordered by WallSurfaces.
The Roof consists of RoofSurfaces and Gables which are wall surfaces that are defined by the roof structure.

In order to model facade structures that are the result of merging wall surfaces and gables from different
building parts – for example, the front facades of building complexes with different wings, Facade objects
may be added to a building to provide a facade-oriented view of the whole building. A facade consists of
CompositeWallSurfaces that are, in turn, composed of different wall surfaces. Since a gable is a wall surface,
gables can also be part of a composite wall surface. The [L] annotation on an arrow in the diagram means that
the relation includes a MultiFeatureLink between the source and the target.

Facades and composite wall surfaces are needed to control the distribution of facade elements like windows and
doors because their distribution depends rather on the actual shape of the area on which they are distributed than
on the units of which this surface was composed. The regular facade grid structures on which the simplification
approaches introduced in chapter 8 operate can be integrated into the framework as Facade structures.

All roofs can be modified by adding hip objects. The Hip is the base class for all classic hip forms and provides
a set if cutting planes. The general Hip interface allows using arbitrary cut surfaces which may be needed to
model the curved roof and hip surfaces in oriental architecture. In the current design, only PlanarHips are used
that are restricted to planar cutting surfaces.
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Abbildung 5.4.: Building parts in the default feature set.

Figure 5.4 shows some more specific classes for the composition of building parts. The most basic roof types
consisting of a single surface, the flat and the shed roof, can be placed on arbitrary footprints. The gabled and
mansard roofs require rectangular footprints.

Note that the default classes assume regular (symmetric) roof structures. In order to model asymmetric struc-
tures with shifted ridge or break lines, additional AsymmetricGabledRoof or AsymmetricMansardRoof types
would have to be introduced.

The parameters printed bold in the UML diagram are the minimum parameters needed to describe the feature
completely. The set of these parameters is used in the model construction process described in section 5.2. In
the process of assembling the model, these parameters can, in many cases, also be derived from the construction
parameters of other features.

An example for such an inference of parameters is the construction of a building part with a gabled roof: For
the construction of such a building part, we only need to know its width, depth, eaves and ridge height, and
optionally a roof overhang width and a Boolean value to specify if the gable is aligned with the width or with
the depth of the rectangular body.

Not all building models to be handled in the generalization framework will include the high levels of detail
that can be modeled in terms of the feature hierarchy introduced here. Many of the currently available city
models are limited to LoD 1 building models in which all buildings are represented only by their footprints and
a uniform height.

In order to distinguish between LoD 1 buildings and buildings that are actually known to have a flat roof, we can
introduce a dedicated LoD1Building class implementing the Building interface. Since roof structures usually
have extents of several meters, LoD 1 buildings will also be notable by their low resolution in the z direction.

Building models are often created from cadastre or other high-resolution 2D map data with accuracies of a few
centimeters in the footprint. Since information on the more detailed structure of the buildings like roof and
facade are often not available, the highly detailed footprints are often combined with an approximate height to
produce 3D building models in LoD 1.

If the low resolution resulting from the missing information about the 3D structure of the buildings is indeed
sufficient for an intended application, the models can be simplified considerably by aggregating buildings and
by simplifying the footprint polygons. In chapter 7, an optimization-based and two heuristic approaches for the
aggregation of LoD 1 buildings and a heuristic approach for the simplification of the footprint polygons are
introduced.
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5.2. Assembling the model

Having to specify all parameters in the construction of all features in the building hierarchy would lead to
ambiguities and create numerous opportunities for errors. For this reason, the concrete classes in the feature
hierarchy expose a minimum set of parameters that completely define a feature of this class.

By default, features are initialized from such a minimum parameter set to the maximum depth in the composition
hierarchy: Knowing, for example, the width, depth and eaves heights of a RectangularBuildingPart, we can
immediately instantiate its Body with the floor and wall surfaces as well as the transformations from the body
to the natural coordinate systems of the different surfaces.

The number of necessary parameters can also be reduced if dependent parameters are inferred from existing
features: The width and depth of a gabled or Mansard roof are, for example, determined by the width and
depth of the building part on which the roof is built – apart from possible roof overhangs that may be defined
independently.

This is a great advantage when it comes to storing, transmitting and processing models: Only those features
that are actually needed have to be expanded; other features may not be needed to be created at all. Especially
if there is an implicit order for the part children of of a feature, this property is extremely useful.

A tent roof on footprint defined by a regular footprint polygon, for example, is defined completely by the number
n and length of the edges in the footprint and its ridge point height. If we want to visualize such a roof, we
do not need to construct the roof surface features along with the appropriate transforms, but we can build the
triangles forming the roof directly which will save us a lot of effort.

With a defined ordering of the surfaces, we can preserve this potential for saving resources even if there is an
addition to one of the surfaces – a chimney, for example: In the representation and in the construction process
we only need to pay special attention to the surface for which the exception occurs; all other surfaces can still
share the same model instance or they can be created implicitly as in the visualization scenario.

In their parametric representation, all features are independent and intersections between features are ignored.
Due to the composition of the features, however, there may be conflicts and new features may be created.

One of the most prominent cases of composite features are CompositeSurface features that emerge whenever
two or more surfaces from different features are joined in a continuous way, forming a single surface. A simple
case is, for example, the surface formed by a gable element and the wall surface below it.

While the outer shape of such a composite surface is defined by the surfaces of which it is composed, the
distribution of the features on the surfaces is usually independent of the borders of the defining surfaces: a
window in the front of a gabled house may, for example, cross the line between the gable and the wall below it;
as far as the facade structure is concerned, only the overall shape of the composite wall element matters.

Figure 5.5 shows some features of the composite wall building process. The first row shows a situation in which
a wall surface of a building part with a regular grid of window features is partially occluded by another building
part if no additional measures are taken: The occluded part of the wall and the occluded windows survive in the
interior of the building complex – which is, of course, very unlikely to match the true structure of the interior
of the building. Especially if interior features are modeled explicitly, this is not acceptable.

For this reason, the wall composition module calculates the intersections of all other building parts with each
wall surface and clips the surfaces accordingly; the result is shown in figure 5.5(b). Using the updated shape
of the wall surface, a conflict resolver or the default layout function of the array (just mark the links to the
occluded windows and suppress them when the array is asked for its children) may be applied to allow the array
to fit to the surface.

Figure 5.5(c) shows that it makes sense to merge adjacent coplanar wall surface objects into a single composite
wall feature: In this case, layout strategies for facade elements have access to the true surface on which they
reside and not only to the part for which they happend to have been defined.

This process has not yet been implemented for the roof surfaces; it would, however, use exactly the same
principles as the composition and clip algorithms as the algorithm for building the wall surfaces.

The model building sequence introduced in this section is very similar to the model construction process in the
CityEngine software: In a first step, the basic volumes of the building (complex) are constructed. After that, the
surfaces forming the boundary of this volume are calculated retaining the semantic classes of the surfaces (wall
or roof). After that, facade structure and building installation features are added to the wall and roof surfaces.
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(a) Occlusion without clipping (front and bottom front view)

(b) Occlusion with clipping (front and bottom front view)

(c) Composition with and without union operator.

Abbildung 5.5.: Features on composite walls.

5.3. Generalization as a tree traversal

A simplification module is typically designed to handle a given feature type or a special kind of (Multi)FeatureLink
representing a structure like regular grids of features or facade part structures similar to those introduced in
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(Ripperda and Brenner, 2009). We will only consider simplification approaches that can be associated with a
single feature (link) type in this section. In the following, this feature (link) type will be referred to as the basic
feature type for which the simplification class was defined.

Note that the restriction to simplification modules for single feature (links) is not as strong as it may appear
because groups of features are collected in (Multi)FeatureLinks, so structure recognition and simplification can
be performed on the level in composition hierarchy where the structures are defined.

The scope of a given simplification instance is the set of features or feature types that it can handle by itself.
This scope will usually include the basic feature (link) instance with which it is associated and some of its
children in the composition hierarchy, especially the parts of the basic feature because there is at least some
partial knowledge about their feature type and semantic function while an addition may be anything.

Due to the consistent use of interfaces that may be realized by different concrete classes in the building model,
a single simplification module will in many cases cover only its basic feature (link) for the more generic feature
types: A BuildingPart, for example, only knows that it consists of a BuildingBody and a Roof, both of which
may have quite complex structures. A generic BuildingPart simplification module will therefore have to rely
on external modules for the simplification of the BuildingBody and the Roof, performing only a basic check
that there is no gap between the resulting roof and body objects.

A simplification module for a concrete class like a MansardRoof can, on the other hand, be much more concrete
itself: Depending on the resolution and on the intent of the developer, it will, for example, return a gabled or
a flat roof. The height of a resulting flat roof illustrates that there are many options even for a very simple
generalization operator: It could be fixed to the average, the maximum (ridge) or the minimum (eaves) height
of the original roof or to a height that preserved the volume of the original.

Alternatively, it can be marked as a free variable for simplification processes on higher levels of the composition
hierarchy. The aggregation approach for LoD 1 (flat roof) building models described in section 7, for example,
uses such ranges for the possible heights of the buildings to determine which buildings may be aggregated and
to set the heights of the aggregated buildings.

The key of the modular approach that is introduced in this section is that there is a callback or orchestration
module that is available to all simplification modules. Whenever a simplification module instance encounters a
child feature that is not within its scope (or that it does not want to handle for some reason), it can ask the
callback module to produce a simplification handler for this feature.

It will then ask the handler to produce a simplified version or a set of simplified versions of the client feature for
evaluation. The simplification module for a given feature is responsible for the integration of the simplified child
features. If the handlers for the child features offer different simplified versions, it can choose the combination
of simplified children that scores best with regard to the goal of the generalization process.

The objective of the generalization process depends on the application. For this reason, a single basic imple-
mentation can only cover the most basic use cases. A most promising approach to save users from having to
implement specific handlers for all combinations of features and use cases is to provide parameterized generali-
zation tools for the standard features that can generate different feature-specific simplification options for the
geometry, ensuring that the result is a valid feature (for example, from a Mansard to a gabled or flat roof) but
not taking the semantic context of the feature into account.

One of the most crucial problems in the context of generalization is the weighting of structural (geometric) and
semantic parameters in the objective. One way to deal with this problem is to provide default values for the
parameters and offer different granularities of fine-tuning options like IMPORTANT vs. INSIGNIFICANT

(that are transformed to weights internally based on the range of the parameter values) or more elaborate
mappings from parameter value differences to penalties for the objective function.

The critical part of this approach is to check if integrity constraints are violated when the simplified features are
combined to form the overall simplified feature. At this point, the generative approach to the construction of a
building model is an advantage: The generalization process is, in fact, building a model in a very similar way to
the original construction, so integrity checks for the model construction can be reused in the generalization. The
fact that this approach enables integrity checks to be performed on higher semantic abstraction levels offsets
the initial effort of having had to implement clipping algorithms to determine the resulting shapes from the
generative description of the model.

Figure 5.6 shows the generalization process for a simple composite facade surface with a regular grid of window
objects; the generalization parameter ̺ is the geometric (Hausdorff) difference threshold introduced in section
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Original. ̺ = 0.8m. ̺ = 1.2m.

̺ = 1.3. ̺ = 1.6 ̺ = 2.0. ̺ = 3.0. ̺ = 5.0.

Abbildung 5.6.: Generalization sequence for a simple facade structure at different resolutions

2.1.1. Note that the shape of the surface changes as the shapes of the roofs change from gabled to flat roofs.
Using the assembling process described in the previous section, many of the possible conflicts caused by these
changes in the supporting surface of an array of holes can be handled gracefully by the conflict resolution of the
generating process.

Using the callback mechanism introduced here, algorithms for the simplification of features modeled at higher
levels of detail than the standard classes can be integrated in the generalization process as long as suitable
integrity concepts exist. An example for such a situation is the approach for the simplification of highly detailed
roof models consisting of individual roof tiles modeled as 3D objects introduced in (Guercke et al., 2010): This
approach together with the more detailed roof surface model can be integrated in the standard generalization
workflow if the supporting beams between roof and wall surfaces are modeled in a consistent way.

5.4. Summary and Discussion

In this chapter, a modular approach for the flexible integration of different simplification operators in a genera-
lization process for 3D building models was presented. In its core, this approach consists of a flexible framework
for the management of different generalization handlers that collaborate to construct a resulting generalized
building model in a generative way. The generalization handlers can also be seen as agents in an agent-based
framework.

Original. ̺ = 0.6m. ̺ = 1.5m.

Abbildung 5.7.: Generalization sequence for a church-like building model.

Due to the composition-based strategy, complex building structures can be assembled from simple basic shapes,
and the more complex Boolean operations for the construction of the resulting wall and roof surfaces are
handled by the underlying geometry engine. Figure 5.7 shows a generalization sequence for a slightly more
complex building model that can be handled by the current version of the standard feature set included in the
framework.

Note that the bounding boxes of the features in the hierarchy form a nested structure similar to an R-tree
(Guttman, 1984) (although they are not aligned with the coordinate axes and explicitly balanced) that can be
used for efficient spatial queries.
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Abbildung 5.8.: A facade structure covering a part of a block.

The current version of the framework handles only the quite basic feature set introduced in this chapter. In order
to process more complex situations, more sophistcated models are going to be helpful or necessary – especially
for modeling facade structures.

So far, the resolution of conflicts and measures for the improvement of the quality of the resulting generalized
model are currently completely left to the individual generalization handlers; currently, the default composite
surface builders and error handlers of the generative modeling infrastructure are used.

In order to account for the combinatoric nature (the global optimum may be a combination of locally sub-
optimal solutions) of the building generalization problem (which causes it to be NP-hard in many cases), a
sophisticated backtracking system is necessary that enables the generalization handlers to propose alternative
generalized features that resolve hard conflicts reliably and lead to an improvement of the global quality of the
overall generalized model.



52 5. Towards a flexible infrastructure for orchestrating the generalization and structure recognition cycle



6. Geometric Building Footprint Simplification Using a Modified Hough
Transform and Least Squares Adjustment

The first step in the generalization of data sets containing LoD 1 building models is usually the simplification
of the footprints. In many cases of data sets currently available – especially if the input is cadastre data –, we
have large data sets containing very detailed footprints with accuracies in the range of centimeters, but there
is little or no information on the roof shapes or the structure of the facades. If we are interested in a general
resolution (not specially focused on the shape of the footprint), this means that these models can only provide
an overall accuracy of several meters in 3D because the roof and facade structures can easily have sizes in these
ranges. For this reason, it does not make sense to preserve the fine-grained structures of the footprint in a 3D
model with a uniform target resolution because this feigns an accuracy that cannot be guaranteed by the model
and only creates huge amounts of data.

Several approaches have been proposed to tackle the problem of line simplification. In selection-based approaches
like the ones presented by Douglas and Peucker (1973) or Jenks (1989), the vertices of the resulting line are a
subset of the vertices of the original line.

Estkowski and Mitchell (2001) showed that the basic problem of selecting a minimum number of vertices from an
original line string that form a line string without self-intersections with a Hausdorff distance (see section 2.1.1)
of less than ǫ to the original is NP-hard. Haunert and Wolff (2008) introduce a way to include size constraints
into a MIP model of the polygon simplification problem.

Most general line simplification algorithms share the problem that they need additional measures to avoid self-
intersections of the resulting line segments and that they often do not preserve the characteristic features of
building footprints like orthogonality and dominating directions well.

For this reason, special algorithms for the simplification of building footprints have been developed. Staufenbiel
(1973) and Sester (2005) present rule-based approaches; an agent-based approach is described in Lamy et al.
(1999). In section 4.5, some more recent rule-based approaches for the simplification of building footprints are
presented in the context of the simplification of LoD 1 building models.

The approach by Sester and Neidhart (2008) consists of two steps: In a first step, an initial set of line segments
that approximate the original footprint is determined using the RANSAC principle. In a second step, the initial
line segments are fitted more closely to the original line and parallelity and orthogonality relations between
segments are emphasized in a least squares adjustment process.

The approach that is described in this section was first introduced in Guercke and Sester (2011). It is similar to
the approach by Sester and Neidhart (2008): It also consists of an initial line segment generation and a refinement
step based on least squares adjustment. Instead of RANSAC, the Hough transform is used to generate the initial
line segment hypotheses in the new approach.

In order to increase the flexibility of the approach, line segment hypotheses may be generated, dropped or
merged in the fitting process, and the assignment of parts of the original polygon to the different extracted lines
may be changed. In the least squares adjustment step, the observation equations were also changed slightly
compared to Sester and Neidhart (2008).

Note that although the problem of finding an optimal polygon approximating the original footprint – where
there may be different definitions of optimal – seems to be a continuous optimization problem and therefore
less difficult to solve than the obviously discrete problem of choosing the optimum subset of the vertices of the
original footprint (which was shown to be NP-complete by Estkowski and Mitchell (2001)), the approximation
problem is indeed probably even more complex for most sensible definitions of optimality because a more subtle
combinatoric aspect is hidden in the association between the parts of the original polygon (in our case, the
sampled points) and the approximating one (the extracted line segments) – especially if the approximating
polygon is required to be free of self-intersections.

We leave the NP-hardness proofs and investigation of different quality measures to further research. In the
context of this investigation, bad initial segments can be compensated in part by the iterative adjustment
process in which the assignments of the sampled points to the extracted line segments and the relationships
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between the extracted segments are updated heuristically between the iterations in order to increase the quality
of the result.

A special treatment of holes is not part of the current implementation, two ways of dealing with them in a
topologically clean way are outlined in the results section (6.4).

6.1. Full-spectrum Hough transform

The Hough transform was chosen for generating the initial line hypotheses because it offers a means to identify
the dominating directions in a set of points or line segments in the order of their weight – where the weight
may be defined by the number of supporting points or the total length of the supporting line segments.

In its general form, the Hough transform can be used to identify shapes by transforming the raw data into the
parameter space of the shapes to be detected. In practical implementations, this space is usually discretized,
and all raw data points cast a “vote” for the cells representing parameter combinations that are consistent with
them. After the voting of all raw data sets, the cells with the highest values are the parameterizations of the
shapes with the strongest support in the raw data.

In our example, the shapes to be detected are straight lines in 2D. Such a straight line can be parameterized by
an angle ϕs giving its direction and the closest distance d of the line to the origin. In the examples, a geographic
definition of the angle ϕ is used (0◦ means that the line points in “North” or positive y direction, and the angle
is measured in clockwise orientation), and the footprint polygons are given in clockwise order.
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(a) Relevant parameters ϕs and d

of the line segment.
(b) Resulting point in Hough space.

Abbildung 6.1.: A line segment voting as a single point in Hough space.

Given a footprint polygon, we have different options in our choice of how to treat the raw data. The most
simple approach is to let each line segment in the footprint vote for the parameters of its associated straight
line with a weight corresponding to its length. This procedure is illustrated in Figure 6.1: The direction ϕs of
the line segment in question is about 50◦, the distance d is the perpendicular distance of the infinite straight
line (dashed line) defined by the segment (arrow) to the origin. Note that the position of the line segment on
the line does not affect these parameters, so all line segments lying on the same straight line will vote for the
same cell in the Hough accumulator.

In the case of highly detailed footprints from cadastre data in which the main directions are often present in
the smaller parts, this approach sometimes succeeds in finding dominant directions. In most cases, however, it
will fail – especially in the case of noisy data where the main directions have to be filtered out of jagged outlines
like the one shown in figure 6.2.

In such a case, almost none of the original line segments points in the direction of the underlying main directions.
Especially if a strong zig-zag pattern overlays the original shape, the directions of the line segments may differ
by almost 90◦ from the main directions.

A more robust approach is to represent the footprint polygon by a set of regularly sampled points as shown in
figure 6.2. The main directions of the original footprint are then approximated by the main directions of the
point set by the traditional Hough Transform known from image analysis.

Figure 6.3 illustrates this process for a single point: Each straight line passing through the point p is defined
by a unique combination of parameters ϕ and d. The perpendicular distance d of the straight line to the origin
can directly be calculated as a function of the direction ϕ because the point p through which the line has to
pass and the direction ϕ unambiguously define the line.
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Abbildung 6.2.: Distribution of sampling points on an irregular footprint shape.
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(a) A point votes for all lines
passing through it.

(b) Resulting sine wave pattern in Hough space.

Abbildung 6.3.: A single point voting for a sine wave pattern in Hough space.

Since our buffer in parameter space is discrete, we can use this functional dependency to calculate the d value of
the cell for which the segment will vote. Given the definition of ϕ0 in the figure, we get d(ϕ) = d0 cos (ϕ− ϕ0)
where d0 is the distance |p| of p to the origin and ϕ0 the angle corresponding to the vector (−yp, xp)

T pointing
perpendicularly to the left of the position vector p = (xp, yp).

The score of the cells in the Hough buffer is then the number of sampled points lying on the straight line
parameterized by the ϕ and d values of the cell.

Note that in this case, we do not use the direction of the line segments but only the sampled points on the
footprint polygon. Since the points have no inherent direction, the resulting spectrum will be anti-symmetric:
d(ϕ) = −d(−ϕ). In other words, we cannot determine the correct orientation for a straight line connecting a
set of points.

Because of this phenomenon, the spectrum of the angles is reduced to 180◦ in the traditional Hough Transform
for image analysis: The pixels are single points, and no directions for the straight lines to be extracted are
known a priori in most image analysis scenarios.

In our case, we do, however, have information on the direction in which a derived straight line may pass through
a sampled point on the footprint: While we cannot expect it to be directly aligned with the direction of segment
on which the sampled point p is located (in this case, we could simply have let the segment vote as a point in
Hough space as described in the first scenario), we may assume that in order for p to vote for a straight line
(ϕ, d), the angle ϕ should not differ excessively from ϕs, where ϕs is the direction of the segment on which p is
located.

We define an angle tolerance ∆ϕ and let each sampled point on the footprint vote for all lines with a direction
of (ϕs ±∆ϕ) as shown in figure 6.4. As 6.4 shows, calculating the actual values involves a case distinction to
perform the periodic wrapping around 0◦ = 360◦.

In the figure, ϕs is 10◦ and ∆ϕ is 110◦. Due to the comparatively large value for ∆ϕ, strong zig-zag or stairs
patterns will vote for their main common direction as well as for the actual directions of the segments involved.
Depending on the resolution (pixel size) Rϕ and Rd of the Hough buffer, there will be a single maximum for
the main direction of the zig-zag pattern or different maxima for the individual segments that form the pattern:
The parameters ∆ϕ, Rϕ and Rd control the level of generalization employed in the first line extraction step.

In the experiments, the parameters of the Hough buffer were set to conservative values: ∆ϕ = 120◦ ensures that
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(a) Opening angle ∆ϕ (b) Windowed voting pattern.

Abbildung 6.4.: A short segment voting for a windowed sine wave pattern in Hough space.

zig-zag and stairs patterns can be approximated by their interpolating direction as well as the actual directions
of the original edges. Rϕ was also set to a small fixed value of 3◦, and the distance resolution Rd and the
sampling distance ǫp between the sampled points on the original outline were set to 0.1 · ̺ (but not less that
10cm in order to avoid excessive memory demands for large scales).

(a) After the first step. (b) After the second
step.

(c) After the third
step.

(d) Final set of line
segments.

Abbildung 6.5.: Line segments generated in the initial Hough-based extraction process.

(a) Original Hough buffer.

(b) Hough buffer after first step.

(c) Hough buffer after second step.

Abbildung 6.6.: Hough buffer at different stages of the edge extraction process.

Figures 6.5 and 6.6 show the extracted line segments and the Hough buffer after the first line extraction steps.
In order to avoid that a sampled point votes for multiple lines, each line extraction consists of the following
phases:

1. All (directed) sampled points vote for their associated windowed sine pattern in the Hough accumulator.

2. The line l corresponding to the cell with the maximum value in the Hough buffer is selected as the next
line hypothesis.

3. All sampled points within a distance of ǫline are associated with the line l and removed from the pool of
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the sampled points.

4. Repeat until the last extracted line has an insufficient number of supporting points.

In phase 3, the extracted straight line is split into line segments. The straight line shown in figure 6.5(b),
for example, was split into two segments as shown in figure 6.5(c). This is achieved by projecting the points
associated with the extracted line onto this line in their order on the original polygon. If there is a gap of more
than dmax,seg between the projections of two consecutive points, then the current segment is closed and a new
one is initialized.

Segments with lengths of less than lmin are discarded. In order to avoid that a straight line supported by a
large number of very short segments stops the extraction process or causes an infinite loop by being extracted
several times, the points associated with the extracted line can be left in the sample pool, but for the next run,
the parameters of the “corrupt” line have to be added to a blacklist until the next line producing valid segments
has been extracted. Since such a problem never occurred for the test data, this procedure was not included in
the reference implementation.

For the experiments, the parameters lmin and ǫline are set to the target resolution ̺, and dmax,seg is set to 1.5 ·̺
– in a pure Hausdorff interpretation, it could have been set up to 2 · ̺ (because the points between the segment
end points could be covered from both ends), but the slightly less strict setting reduced overshoots (see section
6.3) considerably.

The computational complexity of this approach is dominated by the size of the Hough buffer which is controlled
by the resolution Rϕ and Rd in parameter space. The dependency of the parameter Rϕ on the global resolution
̺ is quite complex because it depends, among other factors, on the distance of a given line segment from the
origin. Since fast computations were not the prominent goal in the tests, these values were fixed generously
(high accuracy at the cost of additional computing ressoures needed) for all resolutions at 2◦ and 0.2m in the
tests.

Fine-tuning these parameters may increase the quality of the initial set of segments, but since the results were
of sufficient quality in the tests and the segments are adjusted to the data in the next step anyway, this task is
left as a subject for further research – especially because there are still far more serious issues left that have to
be resolved in order to use this approach in a productive environment.

Note that the size of the Hough buffer also depends on the maximum distance dmax of any point p on the
outline of the footprint to the origin of the coordinate system because the value for the parameter d for which
p will vote in the Hough buffer will vary between +dmax and −dmax.
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Abbildung 6.7.: Impact of small angle changes for objects far from the origin.

For this reason, it is not wise to use global coordinates directly for Hough analysis: In the case of Gauss-Krueger
coordinates, for example, we would have to sample values in the order of millions of meters in a raster of Rd

(usually in the order of a few decimeters) which would easily fill all available memory.

Additionally, a small variation of the angle ϕ has a huge impact on the resulting line in the target area if the
target is far from the origin as shown figure 6.7. With an angular resolution of 3◦, both segments s0 and s1
would, for example, be represented by the same cell in the Hough buffer. Due to this effect, the resolution Rϕ

would have to be increased as well, increasing the irrational memory requirements even further.

For this reason, the buildings were analyzed in a local metric coordinate system with the origin in the center of
their bounding box. This kept the dmax values below 200m for all investigated buildings and yielded sufficient
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angular and distance resolutions for all our tests. After the simplification, the resulting footprints can be
transformed back to the original coordinate system.

6.2. Least squares adjustment to refine the line segments

After the initial line segments have been determined, an adjustment process is initialized to increase the quality
of the extracted line segments. Since some of the observation equations in this context are not linear, an iterative
process is used to fit the segments to the data. After a configurable number of iterations, the correspondences
between the extracted line segments and the sampled points on the original segments as well as the relations
between the segments are updated.

The current state of the adjustment process is given by a set of line segments si with line parameters ai, bi
and di where ai and bi are the x and y components of the normalized normal vectors of the line, and di is its
perpendicular distance to the origin (Hessian normal form of the line in the plane). For each line segment, the
corresponding start and end point are are stored as well as a list Si of the supporting sampled points associated
with the line.

The most characteristic relations between segments forming a building footprint are parallelity and orthogonali-
ty. If two segments are almost parallel or orthogonal to each other, the algorithm aims to emphasize this relation
by trying to force the segments to be exactly parallel or orthogonal. If two segments are (almost) parallel and
have similar distances to the origin, then the algorithm will also try to align them to be perfectly collinear.

At each iteration of the least squares adjustment process, the following linearized observation equations are
evaluated – the old values that are used as constants because of the linearization are marked by the subindex

old; the variables of the adjustment problem are bold:

1. The normal vectors have to be normalized:

∀i ∈ segs : ai · ai,old + bi · bi,old = 1

2. Fit the approximating line segments to the sampled points p ∈ Si associated with the current segment:

∀i ∈ segs, ∀p ∈ Si : ai · px + bi · py + di = 0

3. Emphasize the relation of perpendicular segments – the dot product of the normal vectors should become
0:

∀i, j ∈ S⊥ : #    »n0,i ·
#    »n0,j = ai · aj + bi · bj

!
= 0

linearized
−→ ai · aj,old + aj · ai,old + bi · bj,old + bj · bi,old

!
= 0

!
= 0

where S⊥ is the set of perpendicular segments.

4. Emphasize the relation of parallel segments – the length of the cross product vector of the normal vectors
should become 0 (the z component of the normal vectors in the plane is 0):

∀i, j ∈ S‖ : ‖ #    »n0,i ×
#    »n0,j‖

2
= ai · aj − bi · bj

!
= 0

linearized
−→ ai · aj,old + aj · ai,old − bi · bj,old − bj · bi,old

!
= 0

where S‖ is the set of parallel segments. If segments i and j are neighbors and sufficiently close, we
introduce an additional observation to bring them even closer in order to merge them if possible:

∀i, j ∈ S‖,close : di = dj

This observation assumes that segments i and j are sufficiently close to parallel and that the segments are
located close to the origin.

5. In order to alleviate the conflicts between segment fitting and emphasis of relations, additional observations
are added to shift the resulting line segments in order to better fit the points without changing their
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direction:

∀i ∈ segs, ∀p ∈ Si : −di = px · ai,old + bi,old · py

The first observation is rather a hard constraint. For this reason, it receives a high weight of 108 in the experi-
ments. With other weights increasing with the number of iteration, the value may have to be increased as well
in order to make sure that this observation always takes precedence over the other observations.

In the first phase of the adjustment schedule, the aim is to make the line segments “snuggle” more tightly to
the original polygon – due to the discrete nature of the Hough buffer, the extracted line segments may deviate
from the best-fitting line by ±Rϕ in the angle and by ±Rd in the orthogonal distance to the origin. For this
reason, the set of observations (2) that represents this aim receives a constant weight for all iterations.

In the later stages of the adjustment, the relations between the segments receive increasing weights in order to
make sure that they are well preserved in the final result. Therefore, the observations (3-5) that are used to
emphasize the orthogonality, parallelity and collinearity relations between segments receive increasing weights
with with the number of iterations.

This adjustment towards emphasized relations, however, means that segments have to be rotated which, in
turn, means that they will not fit their associated points optimally, and using observation (2) to improve the
fitting of the points would mean that the orientation change due to the relationships of the segments would
be (partially) undone. For this reason, observation (5) is used to improve the fitting of the segments to the
sampled points without changing the direction of the segments: Only the offset is changed in the application
of this observation, and the line segment is shifted in the direction of its normal. The weight of observation
(5) is increased with number of iterations along with the weight of the relationship observations to support the
emphasis on the relations compared to the adjustment of the directions of the segments to the data.

In the split-and-merge step, the correspondences between the sampled points and the approximating line seg-
ments and the relations between the segments are updated. This step is conducted after every kth iteration of the
adjustment process. In the experiments, k was set to 3 in order to give the adjustment process the opportunity
to “settle down” after the possible perturbations caused by the change of the support sets of the line segments
and due to the new and deleted line segments.

In order to determine the predecessors and successors of a line segment, the sampled points on the outline are
traversed and the line segments with which they are associated are added to a list in the order in which they
are encountered. Especially in corners, the resulting list of the segments will often contain alternating sequences
of the same pair of segments. Such alternating sequences are removed from the list. This segment sequence
building process is performed in the course of the split-and-merge steps and before the first adjustment process
is started.

The parallel and perpendicular relations between the segments are refreshed after each recalculation of the order
of the line segment hypotheses. If two succeeding segments are almost perpendicular or parallel, then the weight
of the relation in the adjustment process is increased in order to emphasize relations between adjacent segments.
If the distance between two line segments is greater than a threshold, then the relation is not considered in order
to avoid that small segments in different parts of the building distort its overall shape. Another useful feature
would be to scale the weight of the relations with the length of the segments in order to emphasize relations
between long segments. This is, however, not included in the current implementation yet.

The first part of the split-and-merge step is to refresh the mappings from the sampled points on the outline to
the line hypotheses. First, the interaction with the pool of the unclaimed samples that could not be associated
with a line segment in the previous step is performed: If the distance from a point in the support set of the
current segment to the segment has increased beyond the distance threshold ̺, then it is released back to the
unclaimed pool. If the distance from an unclaimed sample to the current segment is lower than ̺, then it is
removed from the unclaimed pool and added to the support of the current segment.

Due to the release of sampled points from the support sets of line segments to the pool of unclaimed samples,
it may be possible to detect new line segments of sufficient length. For this reason, the Hough-based initial
segment extraction step described in the preceding section is now applied again to the samples in the pool of
unclaimed samples. If new segments were generated in this process, they are integrated into the segment order
by running the segment sequence building process described above.

If two succeeding line segments are close enough and almost parallel, they can be merged. The resulting segment
is formed by a weighted average of the parameter values of the segments to be merged in which the weight is
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the length of the segments. If the parameters were determined by a least squares adjustment of the sampled
points associated with the segments to be merged, then the effects of the previous effort to enforce the relations
between the segments can be undone. For this reason, no least squares adjustment is performed between the
main adjustment steps.

After this interaction with the pool of unclaimed samples has been performed, samples can be reassigned from
one segment to another if the distance to the other segment is lower than the distance to its current segment. In
order to keep the computational complexity at a reasonable level, the sampled points are tested only in relation
to the predecessor and successor of the line with which they were associated before. If the sampled point is
closer to the predecessor or successor of the current segment, it is removed from the support set of its current
segment and added to that of the segment to which it has the minimum point-line distance.

After this remapping of the samples, the start and end points of the segments are updated by projecting the
supporting points on the line associated with the segment. If there are gaps in the projection of the points on
the line, the segment will have to be split as in phase 2 of the initial extraction algorithm presented in the
preceding section.

If a segment becomes too short in this process, it is deleted and removed from the segment list, and its supporting
samples are returned to the pool of unclaimed samples. A shorter segment running close and parallel to a longer
one that covers it completely is also deleted, and its supporting samples are transferred to the longer segment if
they are close enough to it. The deleted line segments are simply removed from the sequence of the line segments.
After segments are merged or deleted, a new support swapping process may be started for the neighbors of the
affected segments.

Especially after segments were deleted, new samples will appear in the pool of unclaimed samples. These samples
may allow us to detect new line segments in the pool of unclaimed samples, and we can again look for them
by applying the Hough-based extraction algorithm and starting a new iteration of the split-and-merge process
until no more segments are deleted and no new segments are detected. In the current implementation, only one
iteration of the split-and-merge process was performed.

In the experiments, a fixed number of 20 adjustment iterations was performed. This value was determined
heuristically by testing the process manually for the most critical (i.e. the largest and most complex) and
several randomly chosen buildings. After 15 iterations, no more segments were created or deleted in almost all
cases, and the fitting of the segments to the original data did not improve noticeably with further iterations.
To be on the safe side, 20 iterations were used in the tests for the whole data sets.

(a) Original strokes. (b) After 3 iterations. (c) After 12 iterations. (d) Final result.

Abbildung 6.8.: Least squares refinement of the segments.

Figure 6.8 illustrates the adjustment process for an example: After the first three adjustment iterations, the
segments are better fitted to the data points, and after the first split-and-merge step, three segments could be
merged or removed from the list (Figure 6.8(b)). After twelve iterations, we observe that the relations between
the segments are more pronounced than after the first iterations, and that the segments still fit well with the
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data points. This was achieved in part by introducing the parallel shifting observation (5) and the increasing
weight of this observation.

After all adjustment steps have been performed, the line segments will usually not form a closed polygon. For
this reason, they have to be “stitched” together in order to form a valid footprint. In the experiments, this was
done using simple deterministic set of rules.

(a) Intersection. (b) Parallel segments. (c) Perpendicular
segments.

(d) Default case.

Abbildung 6.9.: Rules for linking the line segments to form a closed footprint polygon.

Figure 6.9 illustrates these rules. They are applied to consecutive segments in the segment sequence and tested
in the order defined in the figure:

1. If the intersection point of the segments is closer than ̺ to the end point of the first and the starting point
of the second segment, the segments are simply extended to meet in their intersection point (Fig 6.9(a)).

2. If the segments are parallel, then a new perpendicular (to both) segment is created halfway between the
end point of the first and the starting point of the second segment (Fig 6.9(b)).

3. If the segments are perpendicular, then an inward-facing corner is inserted between the end of the and the
start of the second. The rationale between this solution is that if there had been a regular corner, they
would have directly and rule (1) would have applied ((Fig 6.9(c)).

4. In all cases (skewed segments) the end of the first and the start of the second segments are simply connected
by a new segment (Fig 6.9(d)).

This simple heuristic approach produced valid and sensible results for the vast majority of building footprints in
the test datasets. In figure 6.8, we can see that the final stitching produced a convincing closing of the footprint
polygon (in this well-behaved example, only rules (1) and (2) were applied).

6.3. Main Issues

Almost all topological errors in the test runs could be traced back to problems in the segment ordering procedure.
One of the most prominent of these problems is, especially at small scales, the “overshoot” effect.

(a) Original strokes. (b) After last iteration. (c) Final result.

Abbildung 6.10.: Overshoot
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Figure 6.10 illustrates the structure of an overshoot: A segment stretches through the footprint and holds
support samples on another segment on the other side of the building. In the original segment ordering list,
such a segment will appear twice (or more often due to alternating association of samples, but this case is
filtered out effectively).

In the example in figure 6.10, segment 3 obviously is the culprit: Its overshooting part will be registered after
segment 2 and its main part after segment 5, so the segment list after the cleaning of alternating segments
would be 0,1,2,3,4,5,3. In the current implementation, the first instance of the two appearances of segment 3 is
kept. For this reason, the strange final polygon shown in 6.10(c) is the logical result of stitching the sequence
0,1,2,3,4,5: segments 3 and 4 and segments 5 and 0 are stitched together using stitching rule no. 4 (connect end
points).

In the case of this example, the reason for the overshoot was that the link of the structure attached to the
corner of the building was too narrow. A reason why the segment could find the support on the opposite side
of the polygon is the fact that in the current version of the algorithm, the direction of the original polygon in
the sampled points is considered only in the filling of the Hough buffer but not in the process of collecting the
supporting samples for a line segment.

(a) Original strokes. (b) Final result.

Abbildung 6.11.: A small building at small scales.

The building in figure 6.11 is just “too small to live” at the low resolution of 2.5m used in the example: The
sides of the polygon are so close that the first line hypothesis covered all samples on both sides for all three
main parts of the building. Taking the direction of the original polygon in the samples into account would have
solved this problem, but the problem only occurs if the sides are closer than the resolution, and the affected
part would be a candidate for being removed.

Note that after the adjustment process, the two segments at the bottom are close to parallel. For this reason,
stitching rule no. 2 is applied and the segments are connected by a perpendicular line halfway between the end
of the first and the start of the second segment. For this reason, the second (upper) segment is shortened.

(a) Original strokes. (b) After last iteration. (c) Final result.

Abbildung 6.12.: Different mistakes as a result of a problematic stairs pattern interpretation.

Figure 6.12 illustrates that stairs patterns can sometimes cause severe problems for the approach. The root of
these problems is the inherent ambiguity of such a stairs pattern: The main directions of the overall footprint
may either be aligned with the directions of the edges forming the stairs or with the direction of the regression
line of the pattern. The choice of the best-fitting direction depends on the resolution and on the main directions
of the rest of the footprint: If we have a very high resolution, then the simplified lines are more likely to follow
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the original lines; if significant parts of the pattern can be covered by a single line (with its ̺-buffer), then this
line will have a high score in the Hough accumulator and a high probability of being selected for generating line
segment hypotheses.

In the figure, the different parts of the stairs were small enough to be crossed by valid line segments aligned with
the regression direction. These segments, however, did not cover the whole of the pattern, so additional parallel
segments were generated where enough samples were left uncovered. This leads to a “dangling parallels” effect:
There are short segments running parallel to a long one that covers their whole extent in the projection on the
main direction and appears before and after the small segment in the segment order.

In the current implementation, these segments are only removed if they are closer that ̺ to the covering long
segment. Especially if the covered smaller segments have significant lengths, an alternative approach would be
to split the longer segments by cutting out the projection of the shorter one. In this case, one would, however,
have to ensure that the remaining parts of the longer segments still remain longer than lmin. The situation in the
lower part of the polygon is similar the effect of such an approach: The resulting pattern will be a rectangular
zig-zag pattern following the regression direction.

In the final set of segments shown in figure 6.12(b), we can also observe mixed interpretations of the stairs
pattern: There segments in the simplified version that are aligned with the original ones and segments that are
aligned with the main direction of the pattern. In order to avoid such a situation, we can try to identify the
stairs patterns as early as possible: In the Hough buffer, for example, the original segments forming the stairs
pattern show as two parallel columns of peaks.

6.4. Results

For the evaluation of the simplification approach, the cadastre (ALK) data sets of Dortmund and Hanover
introduced for the LoD 1 aggregation problem were used. Another data set consisting of raw footprints derived
from laser scanner data from an aerial survey of a part of the city of Hanover was used to test if the approach
could handle very irregular footprints. The irregular footprints used in most figures in the preceding section
were taken from this data set.

In most cases, the approach could handle both data sets equally well, but some major issues remain that have
to be solved in order to consider using the approach in a productive environment. Some of these issues have
been discussed in the previous section (6.3).

Figure 6.13 illustrates the result of the algorithm at different scales for a part of the Hanover data set. The
buildings were simplified independently without checking for intersections; especially in the 2.5m version, several
examples of intersections can be found. In the top right corner, the building used for the “overshoot” example
from section 6.3 (figure 6.10) can be found.

Since the algorithm processes the building outlines of the buildings independently, there may be overlaps between
buildings in the result and direct (wall-to-wall) adjacency relations may be lost.

Additionally, the quantization error of the Hough transform is sometimes not completely alleviated by the
adjustment process: Some generalized buildings are rotated by a few degrees compared to the best orientation
one would intuitively have expected and sometimes the generalized segments are shifted a little inwards compared
to their expected locations. Again, these effects are more pronounced in the smaller scale (2.5m) version.

The tables in this section illustrate the average data reduction achieved by the algorithm for the different data
sets. In order to get a less biased view of the performance of the algorithm, the buildings were classified according
to the number of segments in the footprints, and each class was evaluated separately.

Especially in the cadastre data sets, buildings often tend to have regular shapes. If we start with a rectangular
building, we can hardly expect a simplification algorithm to come up with a sensible simplified version of such
a building containing a lower number of segments. For this reason, these trivial buildings were counted but the
algorithm was not evaluated for them.

The classification into small, medium and large footprints (concerning the number of segments) shows that with
an increasing number of segments, an increasing relative reduction could be achieved. This is a sensible result
because an increased geometric complexity is often the result of comparatively small features like additions or
steps to the ground floor.
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Abbildung 6.13.: Overlay of original ALK footprints and generalized version at ̺ = 1.0m and ̺ = 2.5m for a part of the
Hanover data set.
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simple (≤ 8) 8125 40 21% 56 25% 798 32.5%
intermediate (≤ 15) 6477 52 28% 32 35.5% 85 55%
large (≤ 50) 2643 38 34% 16 42% 14 66%
arc (> 50) 540 21 77.5% 5 81% 20 88%

Tabelle 6.1.: Reduction of line segments achieved at different resolutions for the Hanover ALK data set.

A special case in the cadastre data sets are footprints with arcs. These arc sections are often approximated by
huge numbers of segments (often about 50 for a quarter of a circle) in the cadastre data, and they can usually be
reduced to just a handful (depending on the resolution, but often 5 segments are sufficient) of segments within
the desired accuracy.
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Since the algorithm will achieve very high compression rates at little cost in such a situation, buildings with
more than 50 segments form a separate class. Several milder cases of such an oversampling of arcs will also be
found in the medium and large classes. In order to cleanly separate these instances from the rest, an explicit
arc recognition process would be necessary.
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trivial (≤ 4) 0 0 – 0 – 0 –
simple (≤ 8) 45713 61 22.5% 46 23% 226 25%
intermediate (≤ 15) 9793 75 25% 35 32% 41 51%
large (≤ 50) 1273 13 27% 8 37% 2 62%
arc (> 50) 47 6 39% 2 49% 1 70%

Tabelle 6.2.: Reduction of line segments achieved at different resolutions for the Dortmund ALK data set.

In the Dortmund data set, the buildings were already preprocessed for a noise simulation application. As table
shows, the arc oversampling effect is far less pronounced in the Dortmund than in the “raw” Hanover ALK
data set, so we can assume that those oversampled arcs were already thinned out in the preprocessing step or
that the arcs were approximated with a lower number of segments in the surveying workflow. This is also an
explanation for the generally lower compression rates for the Dortmund data set for buildings with complex
footprints.

In some cases, the topological errors were too grave to construct a sensible result. For this reason, the total
number of buildings for each class is given in the first column, and the number of errors is included in the
statistics for the different resolutions. Most of problems of the algorithm will usually not make the process fail,
so several strange results – including (self-) intersections – will be left undetected.

Table 6.1 shows the results for the cadastre data set from the city of Hanover that was also used in section 7.3.
We can see that the compression rate increases with the maximum allowed error bound ̺. At the smallest scale
with an allowed error bound of 2.5m, some of the smaller buildings are sampled in such a coarse way that they
almost fall through the grid, leading to an increased number of errors and peculiar results.

Sometimes, the footprints are too small to be processed by the algorithm because even the main sides of the
buildings are too short to be recognized in the initial extraction process, or only two sides of the building can
be extracted. Especially smaller buildings (which will usually have a low number of segments in their footprint)
are affected by this problem; this explains the high error rates for the trivial and small buildings for the small
scale (2.5m) generalization process.

0.7m
45 Errors

1.0m
28 Errors

2.5m
45 Errors

or
ig
in
al

b
u
il
d
in
gs

er
ro
rs

av
g.

re
d
u
ct
io
n

er
ro
rs

av
g.

re
d
u
ct
io
n

er
ro
rs

av
g.

re
d
u
ct
io
n

large (≤ 50) 545 13 83% 15 86% 39 87%
arc (> 50) 1012 32 90% 13 92% 6 94%

Tabelle 6.3.: Reduction of line segments achieved at different resolutions for the Hanover Lidar data set.

For the buildings in the Hanover Lidar data set, the same classification was used. Due to the irregularity of the
footprints, there were no trivial, simple, or intermediate buildings in the data set; all buildings had more than
15 (large) or even more than 50 (arc) segments. Since the sampled points are distributed in a comparatively
even way on the footprint (no oversampling of arcs) in the Lidar data set, especially the labeling of the arc
classification is misleading in this case.

Table 6.3 shows that most of the redundancies (accounting for more than 80% of the edges) introduced by the
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irregular outlines of the footprints extracted from the Lidar data could be removed even at the largest scale
(̺ = 0.7m) for which the algorithm was evaluated.

(a) Original strokes. (b) Simplified outline and hole.

(c) Simple set difference. (d) Holes are clipped by a buffer around the
outline to keep the polygon closed.

Abbildung 6.14.: Intersections of holes and outline.

In the current implementation, holes in the footprint polygons are not covered. A simple but promising approach
is to simplify the outline and the holes separately and resolve the possible topologic problems later using set
operations. Figure 6.14 shows the two basic options:

• The most straightforward approach is to subtract (set difference) the union (set addition) of the simplified
hole outlines from the simplified main polygon.

Result = Psmp \
⋃

h∈Hsmp

h,

where Psmp is the simplified main polygon and Hsmp is the set of the simplified holes. In this case, the
original polygon may be split into two or more disconnected regions (fig. 6.14(c)).

• In order to avoid this effect, we can use an alternative approach similar to the morphologic operators
(Serra, 1983) of dilation or closing: before the holes are subtracted from the main polygon, they are
clipped by a buffer (e.g. of size ̺) around the boundary of the main polygon. This ensures that the outline
of the main simplified polygon remains intact. Formally, we can write this as:

Result = Psmp \





⋃

h∈Hsmp

(h) \ Bf (∂Psmp, ̺)



 ,

where ∂Psmp is the boundary of the simplified main polygon and Bf (X, ̺) is the polygon defined by a
buffer of size ̺ around object X.

While these approaches may not be optimal for all applications, they are guaranteed to produce topologically cor-
rect (multi-)polygons without self-intersections if the simplified holes and outer loop are free of self-intersections
and the main polygon is bordered by a single closed loop. They are also both (in themselves) valid in the sense
of a Hausdorff interpretation because the result is, by definition, included in a ̺-buffer of the input and vice
versa. In combination with the original simplification, differences of 2 · ̺ may occur if both the simplification
and the hole integration algorithms shift a point in the same direction.
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6.5. Summary and Discussion

In this chapter, an iterative approach for the simplification of building footprints was presented that consists
of an initial phase of generating a set of line segments and a second phase of fitting the line segments to the
original outline.

In the process of generating the initial line segments, a modified version of the Hough transform is used that
takes the direction of the segments into account. In order to increase the quality of the resulting line segments,
a more detailed analysis of the Hough buffer can be considered in future versions of this step: In order to stress
orthogonality and parallelity relations, those relations can be taken into account in the search for the cells with
maximum support in the Hough buffer.

Another necessary step towards more reliable results that can be taken in the initial line extraction process
is to consider multiple maxima in the Hough buffer when a new line is generated: If the support of the line
corresponding to the maximum in the Hough buffer turns out to be very sketchy and a more coherent alternative
line exists with a slightly lower Hough score, then this line should be selected. Additionally, the presence of
many parallel and perpendicular lines in the data can increase the score of a given line segment candidate.

In the second phase, the line segments are aligned with the original outline in an iterative least squares ad-
justment process. With increasing numbers of iterations, the relations between the segments are weighted more
strongly compared to the fitting of the lines to the points on the original outline in the adjustment process in
order to emphasize the relations. In order to reduce line segment flipping effects, the segments are fit to the
data points by parallel shifts rather than by rotating them to fit the data points with increasing numbers of
iterations.

The results obtained using this approach are promising, but in order to use it in a productive environment, it
would be necessary to include self-intersection tests in the line fitting process in order to ensure that the result
will be a valid polygon without self-intersections.

The quality of the results can also be increased by a more graceful handling of stairs patterns in the original
data and in the result – sometimes adjacent parallel lines with small offsets are not merged in the final result
which produces two unnecessary line segments.
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7. Aggregation of LoD 1 Building Models

If adjacent buildings are sufficiently similar, the complexity of a data set can often be reduced by merging them
into a single aggregated building. Especially at small scales, there is a lot of potential for aggregation because
with an increasing simplification of the models and the corresponding reduction of potentially conflicting details
in adjacent buildings, the probability of a sufficient similarity between adjacent buildings increases dramatically.
At LoD 1, finally, the height is almost the only geometric property left that could prevent the aggregation of
adjacent buildings.

(a) Buildings in steep terrain. (b) A naive implementation based on
heights over terrain.

(c) Applying corrections for influence of
terrain after aggregation.

(d) Aggregation taking terrain into account.

Abbildung 7.1.: Aggregation in steep terrain (from Götzelmann et al. (2009)).

When individual buildings are simplified, it makes sense to measure the height Ht(b) of a building b above
the terrain for calculations. When it comes to the aggregation of different buildings, this can be a problem,
especially in steep terrain as illustrated in Figure 7.1.

h

h

0

1

h

ref

Abbildung 7.2.: Absolute heights.

For this reason, we define the following absolute height levels h(b), h0(b), and h1(b) shown in Figure 7.3 for each
building b with respect to a reference surface S (e.g. the WGS84 ellipsoid):

• h(b) – the absolute height of the roof surface of b above S,

• h0(b) – the minimum absolute height of the intersection of b with the terrain relative to S,
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• h1(b) – the maximum absolute height of the intersection of b with the terrain relative to S.

Using absolute heights makes it easy to compare the height levels of adjacent buildings in flat as well as in
steep terrain. If we have a target resolution ̺, a Hausdorff interpretation says that a building may only be part
of an aggregated building (also called cluster in the following) if the absolute height of the cluster after the
aggregation does not differ by more than ̺ from the absolute height h(b) of b. This means that no two buildings
can be part of the same cluster that have a height difference of more than ∆h = 2̺.

(a) The original buildings. (b) Aggregated building: A gap
may occur if no additional mea-
sures are taken.

Abbildung 7.3.: Aggregation across a hole.

Without taking other possible restrictions into account for the moment, we can define a very basic building
aggregation problem: Given a neighborhood graph G, find a minimum set of clusters with |h(bi)− h(bj)| ≤ ∆h

for all pairs of buildings bi and bj that are part of the same cluster. In appendix A, a detailed proof is presented
that this problem is NP-hard even if G is planar and we have only three initial height levels and a fixed ∆h.

For this reason, it is improbable that there is an algorithm that finds the exact optimum for any input in a
reasonable amount of time where a “reasonable amount of time” refers to the notion of theoretical computer
science that considers any runtime acceptable that is bounded by a polynomial in the size of the input.

In this section, a MIP-based optimizing and two heuristic approaches are introduced to solve this problem. In
order to evaluate the optimizing and the heuristic approaches, they were tested on two data sets consisting of
building footprints from the German cadastre data sets (Automatisierte Liegenschaftskarte, ALK) with building
heights derived from laser scans. The first data set contains buildings from a part of the city of Hanover, Germany,
the second one covers a part of the city of Dortmund.

Fortunately, in most cities, the buildings are arranged in blocks separated by streets with a width of some
meters. Each block usually consists of a moderate number of buildings – in the Hanover data set, the largest
block consists of 52 buildings. The vast majority of the blocks even in densely built-up urban areas has less
than 20 buildings.

For those comparatively small numbers of buildings, it is in most cases possible to find an optimum solution for
a block within some seconds by translating the problem into a linear (or quadratic) mixed integer programming
(MIP) problem that is then solved by a special MIP solver software. In section 2.5, a more comprehensive
overview of optimization problems and MIP is given. In the experiments, the CPLEX (IBM ILOG, 2011)
software was used, a very powerful MIP solver developed by ILOG (now part of IBM) that is available for free
for academic use.

The advantage of this approach is that it allows us to benefit from the experience of the developers of the
software. Since optimization is a commercially most attractive domain, the pace of innovation and fine-tuning of
the software is remarkable: While in the first experiments using CPLEX 10, calculations for the more complex
blocks sometimes terminated after several hours because of having used up all available memory, the same
calculations were finished within seconds using CPLEX 12.

Even using the most recent version of CPLEX, however, some blocks still need an infeasible amount of time
for critical combinations of parameters. For this reason, it still makes sense to develop heuristic approaches to
generate acceptable solutions with comparatively little effort. Additionally, the solutions generated by a heuristic
approach can be used to “warm-start” a MIP solver like CPLEX which may speed up the optimization process.

Instead of pitting optimizing and heuristic approaches against each other in a competition, both ways to solve
the problem can support each other – ideally making use of the advantages of both: A heuristic approach can
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usually provide a good solution fast while an optimizing approach will provide the best solution (to the specified
problem) but may need an infeasible amount of resources to do so.

Another example of such a combination is to use an optimizing approach to produce a benchmark for a heu-
ristic one: If the heuristic approach produces good results compared to an optimum solution generated by an
optimizing approach for a data set containing critical cases, then it can be used with an increased level of
confidence for the generalization of a large data set if an optimizing approach would take too many resources
for processing the whole data set. In another scenario, a result of a heuristic approach could be used for a block
if an optimizing default approach exceeded a certain critical amount of resources.

Additionally, optimizing approaches can be used to evaluate if a certain optimization function adequately
represents the intention of the aggregation by producing optimal results for some representative data sets: They
show what the most consequent application of a given set of constraints and (weighted) optimization goals would
produce. These results could then be used to evaluate different sets of of optimization criteria – for example, in
a user survey.

Processing a complete data set at once is neither feasible nor necessary in most cases because, as we have
mentioned, almost all cities are divided into blocks of a manageable size – usually containing less than 20 (in
the worst case around 60) buildings. In order to identify the blocks in data sets of buildings, either the cells
of the road network or a buffer operation may be used. Especially in the context navigation devices, using the
road network is a sensible option, because for this application, buildings must not be merged across a road even
if it is narrow.

Abbildung 7.4.: Part of the Hanover data set, bold lines: block outlines for d = 1m.

In the case of a uniform target resolution ̺, using a buffer operation is the more natural way to perform a
neighborhood analysis: Two buildings bi and bj are considered adjacent if a buffer of size ̺ around building bi
intersects building bj – or, more or less equivalently, if buffers of distance d := ̺/2 around bi and bj intersect
each other.

This neighborhood relation defines a global neighborhood graph G in which the buildings are the vertices and
an edge is inserted if two buildings are adjacent. Usually, this graph will not be connected: the connected
components of G form the blocks on which the calculations will be performed. In most cases, the gaps will
correspond to the road network, so both approaches for the separation of the blocks should yield similar results
for most reasonable values of d. In Figure 7.4, the blocks for d = 1m are surrounded by the bold black outlines.

If d is large, then the blocks can become too large for the optimization-based aggregation process. In this case,
the aggregation process can initially be performed for smaller units (defined, for example, by a buffer operation
with a smaller value of d). Afterwards, the resulting aggregated blocks can be aggregated in the same way as
the smaller units.

At intermediate scales, typification may be employed: groups of buildings of similar height are replaced by other
groups consisting of fewer members with emphasized schematic footprint areas and a similar distribution.
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At very small scales, the aggregation approach of Glander and Döllner (2009) described in more detail in section
4.2 is promising: A whole block of buildings is replaced by extruding the terrain over a common footprint (defined
by the road network or a buffering / closing operation on the footprints of the buildings in the block) by an
average building height. If certain buildings (landmarks) are considerably higher than the rest of the block, they
are not included in the aggregated block but preserved as individual entities.

Within the blocks, we need a neighborhood graph for the aggregation problem because merging buildings across
distances greater than ̺ would violate the Hausdorff criterion introduced in section 2.1.1.

In rural areas or suburbs, the distances between buildings are usually too large for aggregation at scales at which
it still makes sense to use 3D building models – at such small scales, the buildings would be aggregated into
a large abstract “built-up” area, and in terrain of different elevation, this area should follow the terrain. This
would, however, mean that the buildings are no longer LoD 1 buildings in the sense introduced here. For this
reason, we only consider aggregation processes here that produce aggregated buildings with flat roof surfaces of
uniform absolute height.

In addition to the height differences, further criteria can be used to produce aggregations with a minimum (e.g.
visual) impact on the general shape of the block. In order to assess the visual impact of a change of the height
of a building, the area of its footprint is important.

Additionally, all the measures one can think of may be used in hard constraints as well as in an objective
function. An example of the first case is our threshold for height differences: Putting two buildings with a
height difference of more than ∆h into the same cluster is forbidden for a valid solution. Trying to minimize the
total volume change in the course of an aggregation is an example of a measure appearing in the optimization
function.

All experiments were conducted using a Core i7 CPU desktop PC with 16GB main memory and could be
reproduced on a notebook with a Core2 Duo CPU and 3 GB RAM: All problems that could be solved on the
desktop PC could also be solved on the notebook (it may have failed because of missing memory space for the
Branching tree of the Branch-and-Bound solving strategy) but needed about twice the time there. All runtime
measurements in the text refer to the desktop PC.

7.1. Aggregation of LoD 1 Building Models: A MIP implementation

7.1.1. Assigning buildings to clusters

For the basic MIP representation, the association of a building v to a cluster u is represented by a binary variable
Xuv ∈ {0, 1}. The clusters are defined by the ID of one of their members (the center of the cluster); since all
buildings may form individual clusters if no aggregation could be performed, the variables Xuv are defined for
all u, v ∈ B, where B is the set of all building IDs. These definitions are equivalent to the ones described in
Haunert (2009) and Guercke et al. (2011).

In order to express this concept in the form of a MIP problem, several constraints have to be introduced.

Constraint 7.1

All buildings are assigned to exactly one cluster:

∀v ∈ B :
∑

u∈B

Xuv = 1

Constraint 7.2

If building v is assigned to building u, then u has to be the center of a cluster (assigned to itself):

∀u, v ∈ B : Xuv = 1 ⇒ Xuu = 1

Since we want a linear representation of this constraint, we write this in a slightly different way:
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⇔ ∀u, v ∈ B : Xuv ≤ Xuu.

If Xuv = 1, then Xuu has also got to be 1 as well to satisfy the constraint; otherwise, the constraint is
satisfied in any case.

7.1.2. Connectivity

So far, we have ensured that the clusters form a valid partitioning of the set of buildings in the block: Every
building is assigned to exactly one cluster, so the set of clusters covers the set of buildings completely without
overlaps of the clusters.

In order to make sure that only adjacent buildings are merged, a flow model is used. The basic idea behind
this model is simple: If a virtual commodity can be transported from all vertices (buildings) in the cluster to
its center on edges of the neighborhood graph without leaving the cluster, then the cluster is connected, and it
is impossible that the cluster consists of unconnected “islands” or that buildings are merged wildly across the
block.

In (Haunert and Wolff, 2006), the flow model is used to ensure a minimum size for the resulting partitions in
addition to ensuring connectivity. In the case of the building aggregation problem, there are no minimum sizes,
so we only want to ensure connectivity, and the constraints can be simplified.

All buildings generate one unit of flow; the centers are the sinks of the network. For each edge a in the set of
(directed) edges A of the neighborhood graph, two variables are defined to keep track of the flow: the binary
variable Fa ∈ 0, 1 indicates that there is a positive flow on edge a, the continuous variable fa ∈ R represents
the (positive) amount of flow on that edge.

Abbildung 7.5.: Illustration of the flow Model.

Figure 7.5 illustrates the flow model for a simple block: The buildings A and C through F form a cluster C1;
building B could not be merged with the rest. Building F is the center of cluster C1. Since there are four other
buildings in the cluster, it is a sink that consumes a total of four units of flow. Building C receives two units of
flow from D and E and generates one itself, so it transfers 3 units to F . Note that the one unit of flow generated
by E may also have been tranferred directly to F without the detour via C; in this case, the edge EF would
have carried one unit of flow and the edge CF only two units.

Constraint 7.3

First, we make sure that Fa is set if there is a flow on edge a (fa 6= 0) in the neighborhood graph:

∀a ∈ A : M · Fa ≥ fa.

If the number M is greater than any possible value of fa, then Fa has to be set to 1 if fa is grater than 0
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because fa ≥ 0. Since each building generates one unit of flow, the maximum possible flow on an edge is
the number Nb of buildings in the block. For this reason, it is safe to set M = Nb.

Constraint 7.4

Each node (building) v that is not a center generates a one unit of flow so its net outflow should be 1; if
v is a center, it has a negative outflow:

∀v ∈ B :
∑

a=(v,w)

fa −
∑

a=(w,v)

fa ≥ 1−Xvv(M + 1)

∑

a=(v,w)

fa −
∑

a=(w,v)

fa ≤ 1−Xvv

The left side of both constraints is the net outflow fout
v of vertex v, a = (v, w) means that edge a points from

vertex v to vertex w. If vertex v is a center (Xvv = 1), then the constraints are fout
v ≥ 1− (M +1) = −M

and fv ≤ 1− 1 = 0. This means that fout
v is smaller than zero; because we have to define a lower bound

for the case that v is not a sink, the term −Xvv(M +1) makes sure that a sink can consume any possible
amount of flow (which would be M − 1, see constraint 7.3).

If v is not a center, then the equations simplify to fout
v ≥ 1 and fout

v ≤ 1, which means fout
v = 1: A

non-center vertex generates one unit of net outgoing flow.

Constraint 7.5

The commodity may flow only between nodes of the same cluster; this means that if an edge a = (v, w)
carries positive flow, then v and w must belong to the same cluster:

∀a = (v, w), ∀c ∈ B : Xcv ≥ Xcw + (Fvw − 1).

If Fvw = 0, then this constraint is always relaxed. Otherwise, the set of constraints is simplified to
Xcv ≥ Xcw for all v, w; therefore, there is always another constraint Xcw ≥ Xcv in the set, which means
that Xcv = Xcw for all v, w and for all possible centers c – for this reason, Xcv and Xcw will be 1 for the
same center C and 0 for all others: v and w belong to the same cluster defined by C.

Constraint 7.6

The preceding three constraints are sufficient to ensure connectivity. The result may, however, be forking
and interleaving paths from the sources to the sink. There could also be edges with a positive flow leaving
a sink. Because these different results add a lot of complexity to the computation (severely limiting the
size of problems that can be solved within a reasonable amount of time) and can lead to less concise
solutions, we introduce a constraint that makes sure that only one edge from a source and none from a
center carries a positive flow:

∀v ∈ B : Xvv +
∑

a=(vw)

Fa ≤ 1.

If v is a center (Xvv = 1), then none of the outgoing edges from v can carry a positive flow because the
sum (Sout :=

∑

a=(v,w) Fa) of the indicator variables for positive flow out of node v is (lower than or equal

to) zero, meaning that none of the outgoing edges can carry positive flow. If v is not a center (Xvv = 0),
then Sout ≤ 1, which means that one outgoing edge will carry positive flow – one edge must carry positive
flow in order to connect v to its associated center; this is ensured by constraint 7.4.
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7.1.3. Constraints to model the basic LoD 1 aggregation problem

The constraints defined so far form a basic frame for any network optimization problem that requires a parti-
tioning of the underlying connectivity graph. They are a simplified version of the constraints defined in Haunert
(2009). The constraints in this section introduce concepts related to the aggregation of LoD 1 building models.

The first and most basic constraints concern the height of the individual buildings and of the aggregated
buildings. We introduce a variable Hv for each building v that represents its height after the aggregation. The
following constraints enforce the requirements for the heights in the aggregation process.

Constraint 7.7

We ensure that all buildings in a cluster have the same height after the aggregation by forcing the heights
Hv of all buildings v in the cluster with center u to be equal to the height Hu of u after the aggregation:

∀u, v ∈ B : Hv ≤ Hu + (1−Xuv)MH

Hv ≥ Hu − (1−Xuv)MH

This means that Hv = Hu if building v is assigned to the cluster u: In this case, the two constraints
become Hv ≤ Hu and Hv ≥ Hu, so putting them together, we get Hv = Hu. If v is not assigned to
cluster u, we get: Hv ≤ Hu +MH and Hv ≥ Hu −MH , so these constraints are always relaxed if we set
MH := max{|hv − hu|, u, v ∈ B}.

Constraint 7.8

Using the minimum acceptable absolute height hmin(v) defined in chapter ??, we prevent the buildings
from “drowning” in the terrain.

∀v ∈ B : Hv ≤ hmin(v) :

The absolute level Hv of the roof of building v after the aggregation is not lower than hmin(v).

Constraint 7.9

According to the definition of the basic BuildingAggregation problem, no two buildings with a height
difference of more than ∆H can be put in the same cluster:

∀u, v ∈ B : |h(v)− h(u)| ≤ ∆H + (1−Xuv)MH .

If buildings u and v are not part of the same cluster, then the constraint becomes |h(v)−h(u)| ≤ ∆H+MH

which is always true because of the definition of MH in constraint 7.7. If Xuv = 1, then |h(v)− h(u)| has
to be lower than (or equal to) ∆H . This matches the definition of the BuildingAggregation problem.
Note that hu and hv are known in advance and not part of the optimization problem. For this reason, the
term |h(v)− h(u)| is also a constant with respect to the optimization problem, so it can be calculated in
advance, and only its value is inserted in the MIP formulation.

Using the definitions introduced so far, any building in the cluster may be its center. While this does not change
the general result of the optimization process, it can slow down the progress of the MIP solver considerably,
because if Ci is the set of nodes in cluster i in the optimal solution, then there are |Ci| equivalent solutions for
each cluster i. In the worst case, the solver has to examine every combination of choices of the centers for all
blocks in order to determine that they will not lead to better result than the current solution, so the number of
possibilities for all clusters is the product of the number of possibilities for all clusters – which can easily make
the difference between a runtime of seconds and hours (or running out of resources).
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Constraint 7.10

In order to avoid this problem, we simply select the building with the smallest ID as the center of the
cluster if we do not introduce additional constraints that can profit by selecting a special node as the
center of the block:

∀u, v ∈ B : Xuv(ID(v)− ID(u)) ≥ 0.

If ID(v) ≥ ID(u), then ID(v)− ID(u) ≥ 0, and therefore Xuv(ID(v)− ID(u)) ≥ 0 no matter if Xuv = 0
or Xuv = 1. Otherwise (if ID(v) < ID(u)), ID(v)− ID(u) < 0, so Xuv(ID(v)− ID(u)) can only be ≥ 0
if Xuv = 0. This means that the IDs of all buildings in a center are larger than the ID of the center, so
the center is the building with the lowest ID.

Note that this means that we need to define only half of the variables Xuv, namely the set of variables
{Xuv|v ≥ u}. Fortunately, the ID values are constants with respect to the optimization problem, so CPLEX
and any other MIP solver will instantly realize that all Xuv variables will have to be 0 if v < u and
automatically remove these variables from the problem in a matter of seconds.

For this reason, we keep the generality of the representation and save the effort of having to introduce
this restriction into any sum and ∀u, v ∈ B : . . . Xuv . . . expression by defining all Xuv variables. In the
context of introducing semantics and different linear height models, we will see that a problem may be
simplified if the center of a cluster is not the building with the lowest ID but with the best semantic class
or height for the cluster.

7.1.4. Objective functions for the basic problem

So far, we have defined several constraints to model the connectivity of the clusters and to ensure that no
buildings with a height difference of more than ∆h can be part of the same cluster. There is, however, no goal
or objective function yet.

In the framework of MIP (and mathematical optimization in general), there can only be a single objective
function – in Linear Programs, this function additionally has to be linear in the variables of the optimization
problem.

If we want to use different optimization criteria, we can define the corresponding objective functions and compose
the global optimization function as a weighted sum of the different objectives:

F =
∑

WiOi

where Wi is the weight of the objective function Oi corresponding to goal i. If we want our problem to be linear,
all Oi have to be linear. In general, we assume that we want to minimize a cost function, so the overall objective
function is minimized. If a partial objective is to maximize a certain function Oi, we have to invert the sign of
the corresponding weights Wi in the composition of the global objective function.

Objective 7.1

The most basic objective is to minimize the total number of aggregated buildings (clusters):

FClusters = min
∑

v∈B

Xvv

Constraint 7.11

In order to model the absolute value |(Hv −hv)|, we introduce a variable ∆h,v for each building v and the
following constraints:

∀v ∈ B : ∆h,v ≥ Hv − hv

∆h,v ≥ −Hv + hv
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Objective 7.2

The impact of a an aggregation procedure depends strongly on the size of a building: Changing the height of
a building with a large footprint has a greater impact than changing the height of a smaller building. Using
the real area Av of the footprint as a scaling factor for the height difference would, however, emphasize
the footprint size disproportionately in comparison to the height difference. Using A′

v =
√

(Av) yielded
reasonable results; choosing a sensible function for deriving A′

v is a degree of freedom for fine-tuning the
method to fit special user requirements.

FV olume = min
∑

v∈B

∆h,vA
′
v

(a) Two buildings. (b) Minimizing volume
differences: Median height.

(c) Minimizing squared volume
differences: Intermediate (least

squares) height.

Abbildung 7.6.: Minimizing volume differences leads to median instead of intermediate height for the cluster.

This objective will snap the height of the cluster to the height of the building with the median value of hiA
′
i in

the cluster: If one considers two buildings, the total change of volume is minimal if the aggregate receives the
height of the building with the greater value of A′, for example building a in figure 7.6(a). If an intermediate
height h was chosen (right drawing), then an additional volume change of |ha−h|(A′

a−A′
b) compared to choosing

the height of the building with the bigger footprint area (7.6(b)) would be the result. In general, choosing the
height of the smallest building a for which the sum over the values A′ of all buildings with a height of ha or less
is smaller than the sum of the values A′ of the buildings higher than (not of equal height) a will minimize the
sum of the total pseudo-volume change for the aggregated building.

Objective 7.3

Squaring the values will result in an adjustment of the heights within the cluster in a least squares sense,
but the resulting MIP problem is considerably more complex – instead of a linear MIP problem, we have
a quadratic MIP problem:

FV olume = min
∑

v∈B

(∆h,vA
′
v)

2

Using the CPLEX software, this optimization problem could be solved despite the increased complexity
for almost all of the blocks in the test data sets and almost all tested combinations of generalization
parameters; there were, however, more combinations of blocks and parameters for which the problem could
not be solved than in the linear case. Additionally, runtime went up from several seconds to some minutes
on the Core i7 desktop PC for the larger blocks in the usual cases – for the smaller and intermediate-sized
blocks, it usually stayed in the order of seconds.

7.1.5. Extensions

Depending on the application, it may be necessary to distinguish between buildings based on semantic classes
– for example, if buildings with different functions, risk levels or other properties are going to be represented
in, say, different colors in a visualization scenario.
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As in Haunert (2009), we define a set Γ of classes; the function γ assigns a class γv to each building v. Additionally,
there is a function d : Γ2 → R

+
0 that defines the semantic difference between the classes. For each class c ∈ Γ

and for each building v ∈ B, we introduce a binary variable Sv,c; if Sv,c = 1, then building v has the class c
after the aggregation process.

Constraint 7.12

Each building has exactly one class after the aggregation:

∀v ∈ B :
∑

c∈Γ

Sv,c = 1

Constraint 7.13

If building v is assigned to center u, then its class has to match the class of the center:

∀u, v ∈ B, ∀c ∈ Γ : Xuv ⇒ Sv,c = Su,c

⇒ Sv,c ≥ Xuv + Su,c − 1

The second form of this constraints means that if Xuv = 1 and Su,c = 1, then the right side of the
inequality becomes 1 and Sv,c must therefore be set to 1. Since only one Sv,c can be set for each building
v (constraint 7.12), this means that Xuv ⇒ Sv,c = Su,c.

Objective 7.4

Our objective is to minimize the total cost for assigning the new classes to the aggregated buildings by
adding the term WSemOSem to the global objective function where WSem is the weight of the semantic
differences with respect to the other objective values; since we want to minimize OSem, WSem will be
positive:

OSem =
∑

v∈B,c∈Γ

d(γv, c) · Sv,c

Note that d is usually not symmetric: While it may be no problem to make a building of little significance to
the application part of a building of special interest, the converse results in the loss of a significant building
which would incur high costs or may even be fatal.

An important optimization goal for digital city models is the reduction of the amount of data to be stored,
transferred through networks and processed by the application. The number of resulting building objects is
one important aspect of the complexity of the resulting data sets, but the complexity of the resulting building
footprints also contributes to the complexity of the resulting data set.

For this reason, the number of vertices in the resulting polygons is an additional measurement for the complexity
of the result and therefore a quantity to be minimized in the optimization process. In order to include this
measure in the aggregation process, we can count the number of edges (or vertices) saved by the aggregation of
a pair of buildings and try to maximize the sum of the edges saved in the aggregation process.

If the input building footprints are, for example, cadastre data sets or jagged outlines derived from Lidar
interpretation, then artifacts or other features of sizes below the target resolution may unduly influence the
aggregation process because there may be an excessively large number of vertices in the area to be filled up in
the course of the aggregation.

In figure 7.7, for example, all points of the zig-zag patterns forming the sides of the building the face each other
would be counted as successfully eliminated segments in the aggregation although both could have been reduced
to a single line within the given resolution.

Because of this effect, it is necessary to simplify the footprints of the original buildings before the aggregation
takes place. An overview of existing approaches to achieve this and a sketch of a new approach to solve this
problem are given in section 6.
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Abbildung 7.7.: Jagged outlines may influence geometric complexity measures for aggregation.

If all individual building footprints have been simplified to the target resolution, then we can calculate the
geometric benefit ga for each edge a = (u, v) of the neighborhood graph as the number of points on the outlines
saved by joining u and v.

Constraint 7.14

In order to include this measure into our objective function, we first have to introduce decision variables
Ja=(u,v),c that indicate if the buildings u and v belong to the same cluster c:

∀a = (u, v) ∈ A, ∀c ∈ B : Ja,c ≥ Xcu +Xcv − 1 ∧ Ja,c ≤ (Xcu +Xcv)/2

The first term makes sure that Ja,c has to be set if u and v belong to center c, the second part forces Ja,c
to be set to 0 if either u or v does not belong to cluster c. For this reason, Ja,c is true if and only if u
and v belong to center c.

Objective 7.5

Now we can add the term for the geometric benefit to the global objective:

−WGeom

∑

a=(u,v)∈A,c∈B

ga · Ja,c,

where WGeom is the (positive) weight of the geometric benefit compared to the other objectives. Because
the global objective is to minimize a cost function, the term for the benefit has to be added with a negative
sign.

7.1.6. Overview of all constraints and objective function terms

In this section, a list of all constraints and objective function terms in the MIP representation of the LoD 1
building aggregation problem that were introduced in this chapter is given.

The first group of constraints is a common core of most flow-based optimization problem representations and
includes constraints that ensure the connectivity of the clusters in the neighborhood graph. The actual constaints
may be different in other representations (in Haunert (2009), for example, the constraints are more complex
because they are used to ensure minimum sizes for the resulting regions), but the basic structure is similar.
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Assignment of buildings to aggregates; connectivity:

C 7.1 Each building is assigned to ex-
actly one center:

∀v ∈ B :
∑

u∈B Xuv = 1

C 7.2 Buildings can only be assigned to
centers:

∀u, v ∈ B : Xuv ≤ Xuu

C 7.3 Set Fa if fa ≥ 0: ∀a ∈ A : M · Fa ≥ fa.

C 7.4 All buildings generate 1 unit of
net flow (centers are sinks):

∀v ∈ B :
∑

a=(v,w)

fa −
∑

a=(w,v)

fa ≥ 1−Xvv(M + 1)

∑

a=(v,w)

fa −
∑

a=(w,v)

fa ≤ 1−Xvv

C 7.5 No flow across cluster boundari-
es:

∀a = (v, w), ∀c ∈ B : Xcv ≥ Xcw + (Fvw − 1).

C 7.6 At most one outgoing edge car-
ries positive flow (center: none):

∀v ∈ B : Xvv +
∑

a=(vw) Fa ≤ 1.

C 7.10 The center of a cluster is the buil-
ding with the smallest ID:

∀u, v ∈ B : Xuv(ID(v)− ID(u)) ≥ 0.

The second group of constraints is used to model the specific aspects of building aggregation: A uniform height
for all buildings within each cluster and thresholds for individual and total height and volume changes are
enfoced. These height and volume change thresholds control the degree of generalization and can be derived
from the global target resolution.

Constraints to model the buiding aggregation problem:

C 7.7 All buildings in a cluster have the
same height:

∀u, v ∈ B : Hv ≤ Hu + (1−Xuv)MH

Hv ≥ Hu − (1−Xuv)MH

C 7.8 The height of a building may not
lower than threshold hmin:

∀v ∈ B : Hv ≤ hmin(v) :

C 7.9 Forbid height changes of more
than ∆H :

∀u, v ∈ B : |h(v)− h(u)| ≤ ∆H + (1−Xuv)MH .

C 7.11 Set height change variables ∆h,v

for the objective function:

∀v ∈ B : ∆h,v ≥ Hv − hv

∆h,v ≥ −Hv + hv

The goals (objective function terms) are to minimize the number of resulting buildings and the amount of volume
change neccessary to perform the aggregations. If the volume change is squared in the objective function, a least
squares adjustment of the heights of the buildings within each cluster is performed as a part of the solution of
the MIP problem.

In most non-trivial cases, there is a conflict between the two goals because with an increasing number of original
buildings in a cluster (aggregated building), the height differences and, as a result, the volume differences are
likely to increase. In the setup for the experiments, the objective term weights were chosen to make sure that the
first goal of a minimum number of aggregated buildings always took precedence over the second goal in order to
make the results of the MIP-based and the heuristic approaches more comparable. The degree of generalization
is defined by the threshold consraints for the total and individual height and volume changes.
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Components of the objective function:

O 7.1 Minimize the number of aggrega-
ted buildings:

FClusters = WClusters

∑

v∈B Xvv

O 7.2 Minimize sum of volume changes
(absolute values):

FV olume = WV olume

∑

v∈B ∆h,vA
′
v

O 7.3 Minimize sum of squared volume
changes:

FV olume = WV olume

∑

v∈B (∆h,vA
′
v)

2

In most cases, either objective 7.2 or objective 7.3 will be used; for this reason, the name of the objective term
and the weight are the same for both objectives.

In the following table, MIP constraints and objective function terms for modeling semantic aspects and the
geometric complexity of the resulting building shapes are introduced as possible extensions. These extensions
are, however, not part of the current implementation.

Extensions for modeling membership of semantic classes:

C 7.12 Each building has exactly one
class after the aggregation:

∀v ∈ B :
∑

c∈Γ Sv,c = 1

C 7.13 If building v is assigned to center
u, then its class has to match the
class of the center:

∀u, v ∈ B, ∀c ∈ Γ : Xuv ⇒ Sv,c = Su,c

O 7.4 Minimize sum of class change
penalties:

FSem = WSem

∑

v∈B,c∈Γ d(γv, c) · Sv,c

Extensions for modeling geometric complexity:

C 7.13 Set Ja=u,v,c if u, v belong to clus-
ter c:

∀a = (u, v) ∈ A, ∀c ∈ B : Ja,c ≥ Xcu +Xcv − 1

∧ Ja,c ≤ (Xcu +Xcv)/2

O 7.5 Minimize negative sum of geome-
tric simplification benefits:

FGeom = −WGeom

∑

a=(u,v)∈A,c∈B ga · Ja,c

7.2. Heuristic approaches based on region growing

As shown in the introduction to this chapter, approaches to find optimum solutions (with the resulting risk
of super-polynomial runtime characteristics) and heuristic approaches that try to find good solutions with a
reasonable effort can be used in a complementary fashion in different ways.

In the test scenarios, the objective was to produce a minimum number of buildings without causing height
differences of more than the target resolution. Another hard constraint was that only a limited average per-

building pseudo-volume change ∆
′

V,max was allowed for each block, meaning that for a large block of 50 buildings,

the sum of the pseudo-volume change for all aggregated buildings must not exceed 50×∆
′

V,max. To avoid excessive
changes to single buildings, the pseudo-volume change for each building may also be limited.

Two simple heuristic approaches are introduced here. Both are based on the principle of region-growing: In the
beginning, each building forms a separate cluster. At each step, two clusters are merged; the process terminates
when no further merging operations are possible.

The first one simply chooses an arbitrary possibility when faced with the decision which buildings to merge in a
given step (greedy region-growing heuristic), the second one chooses the “best” aggregation for a given situation
(best-first region-growing heuristic). In the case of the basic BuildingAggregation problem, a good heuristic for
choosing one of the possible aggregation steps is to perform the aggregation step that causes the smallest change
of height or volume.
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(a) Neighborhood graph for a
block, dashed lines: illegal

neighbors.

(b) Heuristic approaches: initial
situation.

(c) After 5 aggregation steps.

Abbildung 7.8.: Stages of the region-growing algorithms.

Figure 7.8 illustrates the process for a block of buildings. Figure 7.8(a) shows the initial neighborhood graph
obtained by testing the intersection of buffers around the buildings. Although the buffers around the buildings
connected by the dashed lines intersect, they should not be considered neighbors because they meet only in
a corner. This can be excluded by applying a negative buffer to the union of the two buffered buildings and
testing if the resulting region – which is the result of the closing operation performed on the buildings – yields
a single shape.

In the beginning, each of the buildings forms a separate cluster; the thin black lines in the figure represent valid
aggregation options. In each aggregation step, a pair of clusters is merged into a single cluster. In the greedy
heuristic approach, an arbitrary pair of clusters is selected. The best-first approach tentatively merges all pairs of
clusters and selects the pair with the minimum impact on the global objective function. If merging the selected
pair of buildings causes a global constraint to be violated, a new pair is chosen. The process terminates if no
more pairs of clusters can be merged. The situation in figure 7.8(c) is a schematic illustration of the general
merging procedure common to both the greedy and best-first heuristic approaches and not an actual result of
either the greedy or best-first approach.

The basic problem of all heuristic approaches is that they have no backtracking options: Once they take the
decision to merge two clusters, they will not be able to revise their decision.

Another problem arises if different constraints have to be satisfied. In this case, the best-first approach can run
into trouble: Different possible aggregation steps may favor one constraint but be harmful in terms of a different
one and vice versa. Since there is no inherent weight between hard constraints, a heuristic approach would have
to incorporate strategies for making a sensible choice in such a situation: In the case of accumulating constraints
like the restricted total pseudo-volume change, for example, one can assign a weight to each constraint value
that increases with the proportion to which the corresponding pool has been used up.

In the case of our examples, the pseudo-volume change is the only part of the objective function – except, of
course, for the number of aggregated buildings. For this reason, there is no conflict between choosing the pair
of clusters with the best objective value and the smallest pseudo-volume changes (in order to avoid using up
the allowed amount of pseudo-volume change): They are the same by the nature of the objective function.

If we had introduced another term rewarding geometric simplifications with a high weight factor, such a conflict
may easily occur: Merging one pair of clusters may have a huge geometric simplification benefit but use up more
of the volume change pool than a different pair with only a small or no geometric benefit. If the former pair
was chosen, then this choice may later prohibit a series of other merges and lead to a worse solution. In the
latter case, a sub-optimal solution will be the result if the the pair with the better objective value would not
have made other parts of an optimum solution impossible. Trying to keep track of two or more possible pairs
in each merging step would lead to an exponential runtime.

In the case of the greedy approach, each additional constraint increases the probability that the approach gets
stuck, i.e. it chooses an aggregation step that prevents many other much more favorable aggregation steps from
being performed.
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1
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4

A

(a) Original buildings in the block. (b) Optimizing approach: 5 buildings,
∆′

V = 237.

A

B

(c) Best-first approach: : 6 buildings,
∆′

V = 149.
(d) Greedy approach: 6 buildings,

∆′
V = 258.

Abbildung 7.9.: Optimizing and heuristic approaches: Backtracking.

The results obtained with the different approaches are compared using the building block shown in Figure
7.9(a). Figure 7.9(b)–(d) show the resulting aggregated buildings for the optimizing (b), the best-first heuristic
(c) and the greedy heuristic (d) approach. The shades are used to distinguish the aggregated buildings; the
assignment of the shades to the different aggregated buildings is random.

The optimizing approach yields the smallest number of aggregated buildings (5), at the expense of a higher
volume change (237). The best-first heuristic approach merged buildings 1 and 2 at an early stage, and thus
could not form the large aggregated building A. For this reason, it produced 6 instead of the optimal number
of 5 aggregated buildings. The greedy approach managed to form the aggregated building A, but because it
also formed the large and expensive (in terms of pseudo-volume change) aggregated building B, it used up its
volume pool early and could not merge any of the buildings 1, 3, or 4 with another building without violating
the maximum average volume change constraint (set to 20 units per building meaning a total pool of 14*20=280
units because there are 14 buildings in the block). For this reason, it also produced 6 aggregated buildings and
a larger total amount of pseudo-volume difference than the best-first heuristic approach (258 vs. 149 units).

7.3. Results

For the experiments, a simple setup was used to test the heuristic approaches: The objective was to minimize
the number of clusters in the aggregated block; if there were different possibilities to achieve the same number
of clusters, then the one causing the smallest pseudo-volume change was to be selected. This was achieved in the
MIP setup by setting the weight for the number of clusters in the result and the weight for the volume-change
to the inverse of the maximum possible total volume change. For the best-first heuristic approach, the target
was to minimize the volume change for each merging step.

Figure 7.10 shows a part of the Hanover data set at different scales. It illustrates that different height thresholds
for the aggregation algorithm presented here indeed form a generalization sequence. As mentioned in the section
on 2D and 3D generalization (section 2.3), small and large scales are, in this case, quite different from those
usually used in cartography. The scale models were produced with a permissive volume change policy using the
optimizing approach; the results from the best-first heuristic approach can, however, not be distinguished from
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(a) Original blocks.

(b) An intermediate-scale model of the blocks in
(a).

(c) A small-scale model of the blocks in (a).

Abbildung 7.10.: A part of the Hanover data set at different scales. The shades distinguish the aggregated buildings.

the optimum ones in most cases if the resulting clusters are not colored and we do not know for which blocks
there are differences. The example was generated using the optimizing approach.

In the tables 7.1 and 7.2, the results of the optimizing and the two heuristic approaches are compared for the
Hanover and the Dortmund data set. In each double column section of the table, one approach is compared to
another.

In each case, only the instances (blocks) for which algorithm A in the “A vs. B” heading of the double column
performed better. In the first double column, for example, the optimizing approach A is compared to the
best-first heuristic one B.

The objective function was defined to be dominated by number of resulting buildings: The weight of the pseudo-
volume change was chosen to be the inverse of the maximum possible pseudo-volume change; for the secondary
objective value at identical number of buildings criterion, the actual values of the objective function from the
optimization problem were used.

For this reason, the optimizing approach does, by definition, never give worse results than the heuristic ones if it
runs successfully. In contrast to the experiments in (Guercke et al., 2011), the quadratic optimization problem
incorporating a least squares adjustment of the heights of the buildings within the clusters was used.

Because such a quadratic problem is considerably more difficult to solve, the MIP solver was started with the
solution of the more successful heuristic approach as a starting solution and given up to 30 minutes to improve
this solution. For this reason, the optimizing approach never produced a worse result than a heuristic one even
if it failed to provide a better solution or prove the optimality of the starting solution in the allocated amount
of time.

For this reason, there are no “X vs. optimizing” double columns in the tables, because they would all have been
empty.

In the first column of each double column, the number of blocks is counted for which algorithm A produced a
lower number of buildings than algorithm B. The number in brackets gives the maximum difference for a single
block between the results of algorithms A and B.

In the first row in table 7.1, for example, the entry 270(2) in the “optimizing vs. best-first” section means that
the optimizing produced a lower number of buildings than the best-first heuristic approach for 270 of the 4095
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simple blocks. The (2) annotation means that there was at least one block for which the best-first approach
produced two buildings more than the optimizing one.

In the second column of each double column, the blocks are counted for which algorithm A produced the same
number of buildings but achieved a better objective value, meaning that the sum of the squared pseudo-volume
differences was lower for A than for B: A could produce the same number of buildings as B, but the difference
between the generalized and the original block was smaller for A than for B.
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trivial (≤ 3) 11363 – – – – – – – –
∆h,max = 1.0m, ∆Vavg,max = 0.7 (restrictive)
simple (≤ 8) 4095 270(2) 524 427(3) 842 177(3) 593 8(1) 49
intermediate (≤ 15) 687 94(1) 153 240(4) 201 182(4) 188 4(1) 14
large (> 15) 134 35(1) 31 83(9) 17 71(9) 18 1(1) 8
∆h,max = 1.0m, ∆Vavg,max = 5000 (permissive)
simple (≤ 8) 4095 3(1) 638 8(2) 728 9(2) 178 3(1) 65
intermediate (≤ 15) 687 1(1) 152 4(1) 176 4(2) 57 0(–) 20
large (> 15) 134 3(1) 39 3(1) 49 2(1) 27 2(1) 8
∆h,max = 1.5m, ∆Vavg,max = 1.5 (restrictive)
simple (≤ 8) 4095 217(2) 597 377(3) 899 174(3) 617 9(1) 66
intermediate (≤ 15) 687 57(1) 136 160(5) 164 119(5) 137 2(1) 16
large (> 15) 134 24(2) 35 74(14) 21 67(14) 21 2(1) 4
∆h,max = 1.5m, ∆Vavg,max = 5000 (permissive)
simple (≤ 8) 4095 11(1) 828 23(1) 1003 22(1) 290 11(1) 67
intermediate (≤ 15) 687 7(2) 200 20(3) 246 19(3) 101 4(2) 26
large (> 15) 134 3(1) 70 3(1) 81 10(2) 33 7(1) 11

Tabelle 7.1.: Data reduction achieved by the optimizing and heuristic approaches at different resolutions for the Dortmund
data set.

The results of the approaches were compared for different resolutions where the resolution was mainly defined
by the threshold on the maximum height change for a building within a cluster. The data sets were processed
with values of 1.0m and 2.5m for this maximum height difference.

Additionally, there was a limit on the average (scaled) pseudo-volume change for all buildings within each
cluster. The algorithms were evaluated with different values for this “global pool” constraint. It turned out that
this parameter has a huge impact on the performance of the heuristic approaches: for more restrictive (lower)
values, it was considerably more probable that the heuristic approaches got stuck after having taken a series of
decisions.

For very permissive values of this parameter, both heuristic algorithms performed almost as well as the opti-
mizing one, especially concerning the number of buildings produced in the output. This is due to the fact that
the algorithms have a much higher probability of recovering from a non-optimal merging decision with a good
sub-optimum solution if the merging process is not terminated early by having used up a global pool.

The actual values for this overview were chosen to illustrate this effect; the low value for the parameter is due
to the fact that it already includes the scaling of the pseudo-volume change in the objective function.

Remember that the NP-hardness of the problem remains and that all heuristic approaches may produce almost
arbitrarily bad results even if we relax this bounded pseudo-volume change constraint completely.

If additional, especially conflicting, accumulating hard constraints like bounds on a semantics-based total penalty
for the whole block were introduced, the heuristic approaches can be expected to perform considerably worse.
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trivial (≤ 3) 208 – – – – – – – –
∆h,max = 1.0m, ∆Vavg,max = 0.7 (restrictive)
simple (≤ 8) 57 5(1) 3 6(1) 4 1(1) 3 0(–) 0
intermediate (≤ 15) 45 5(1) 10 8(4) 13 3(4) 9 0(–) 1
large (> 15) 43 13(1) 8 29(16) 5 24(15) 7 0(–) 0
∆h,max = 1.0m, ∆Vavg,max = 5000 (permissive)
simple (≤ 8) 57 1(1) 19 1(1) 21 0(–) 4 0(–) 0
intermediate (≤ 15) 45 1(2) 20 2(2) 24 1(1) 10 0(–) 0
large (> 15) 43 3(1) 27 3(1) 32 2(1) 19 2(1) 4
∆h,max = 1.5m, ∆Vavg,max = 1.5 (restrictive)
simple (≤ 8) 57 1(1) 6 3(1) 11 2(1) 7 0(–) 0
intermediate (≤ 15) 45 6(1) 9 13(4) 11 8(4) 12 0(–) 1
large (> 15) 43 12(1) 5 34(13) 7 32(13) 8 0(–) 0
∆h,max = 1.5m, ∆Vavg,max = 5000 (permissive)
simple (≤ 8) 57 0(-1) 20 0(–) 21 0(-1) 6 0(–) 1
intermediate (≤ 15) 45 2(2) 26 3(1) 30 2(1) 14 1(2) 2
large (> 15) 43 3(2) 32 4(2) 34 6(1) 23 6(2) 3

Tabelle 7.2.: Data reduction achieved by the optimizing and heuristic approaches at different resolutions for the Hanover
data set.

7.4. Summary and Discussion

In this section, the aggregation of LoD 1 buildings has been introduced as an optimization problem. Having
established that the problem is NP-hard even in its simplest form, we cannot expect that there is an efficient
(polynomial-time) algorithm to find an exact solution for this problem for any input. Fortunately, buildings
are arranged in building blocks, providing a natural partitioning scheme that in almost all cases yields units of
moderate size – almost never exceeding 60 members.

For these small instances, the problem could be solved exactly in most cases by transforming it to a MIP
problem and using special MIP solving software (CPLEX) to determine the optimal solution. Especially if the
quadratic MIP resulting in a least squares adjustment of the heights was used, the optimizing approach could
sometimes not find an optimal solution in an acceptable amount of time.

The focus of this study was to build a MIP-based framework in which aggregation algorithms can be developed
and evaluated rather than to define aggregation algorithms for different purposes. Based on this framework,
different algorithms can be evaluated; for example, in the context of a user survey.

In (Guercke et al., 2011), an approach is outlined to extend the MIP-based approach presented here to LoD 2
building models, i.e. building models with simple roof shapes. Implementing and testing such an approach is a
direction of research worth further investigation because it would allow a more comprehensive benchmarking of
generalization algorithms for LoD 2 buildings that can be expressed in the form of a MIP problem.

The geometric complexity of the individual buildings and the complexity of the aggregation result were not taken
into account in the current version of the aggregation algorithms. Such a geometric analysis only makes sense if
the individual building footprints are already simplified according to the target resolution before the aggregation
is performed. A more detailed description of a possible strategy for the integration of geometric aspects in the
aggregation of buildings with footprints simplified to fit the target resolution is given in (Guercke et al., 2011).
In the preceding chapter, an approach for such a simplification of the building footprints is introduced.



8. Facade Structure Simplification

Special algorithms for the simplification of complex facade layouts are necessary – especially for rows of tow-
nhouses, quite complex decisions may be necessary to determine a sensible simplification across the different
parts.

In the generalization framework described in chapter 5, the facade homogenization process operates on the
facade structure elements in the building composition hierarchy outlined in section 5.1.4. In the course of the
homogenization, it may happen that features have to be merged or deleted – protrusions may, for example, be
pushed back into the main facade. These procedures are, however, not yet implemented in the current prototype.

In this section, we consider facade structures modeled as a grid of (not necessarily aligned) rectangular facade
cells – each cell holds one facade element like a window or a door. For each cell, there is a list of values
representing different properties of the facade element within the cell. These properties may be the protrusion
or indentation of the cell with respect to the rest of the facade, the width, height and offset (in x and z direction)
of a window in the cell, the color of the wall in the background or application-specific data.

Special properties are the width and height of the cells themselves because these should be identical within
each column and row, respectively. We will introduce constraints that ensure this and thus make it possible to
handle these values in the homogenization process below.

As a preprocessing step for operators like typification and to save memory space, the homogenization operator
groups sets of cells into clustered regions in which the parameters of all features are assigned uniform values. In
order to take full advantage of the memory saving potential and especially because applying typification after
the homogenization procedure is simplified significantly by this property, we require the resulting regions to
form rectangles.

Note that aggregation and homogenization are fundamentally different operations: In the homogenization pro-
cess, the number of features is not changed; only the shapes (parameter values) of the features are made
homogeneous across a clustered region. In the case of aggregation, all feaures in the clustered region are merged
into a single feature. Both homogenization and aggregation of feature constellations on an facade are simplifi-
cations of the structure of the facade. As we will see in the results section of this chapter, there are situations
in which there are conflicts between the two operations and situations in which a clever combination of the two
generalization operators can provide the best results.

In many cases, there will already be rectangular regions with homogeneous facade elements in the original
structure. The procedures given in the following can profit from being supplied with a description in which
those regions are specified explicitly, but they give correct results also if all cells are modeled as different regions
in the input model. Especially the performance using the first naive MIP description (see section 8.1) uses the
fact that the size of the initial partitioning can be used as a lower bound for the size of the number of resulting
partitions.

In appendix B, we prove the NP-hardness of even a very trivial case of the homogenization problem in which
the goal is simply to minimize the number of resulting tiles and there is only one property and only four possible
values for this property. For this reason, it is unlikely that there is an efficient algorithm that finds an exact
solution for an arbitrary homogenization problem.

For the comparatively small numbers of cells occurring in the facade homogenization scenario – even in long
stretch of facades, there will hardly be more than a few hundred facade element cells (like windows or doors) on
the front of a block between two intersections – it is, however promising to try and profit from the experience
of the developers of MIP solver software by putting the facade homogenization problem in the form of a MIP
instance and feeding it to such a solver.

8.1. A direct template-based MIP model for facade homogenization

In this section, we will develop a direct MIP (Mixed Integer Programming, see section 2.5) description of
the facade homogenization problem. We will see that although the representation introduced in this section
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correctly describes the problem, the graph-based representation given in the next section can be handled far
more efficiently by the CPLEX solver: While even a very simple facade structure caused CPLEX to run for more
than a day using this simple representation, much more complex facades could be handled within a few minutes
using the graph-based representation because for the graph-based version, fast heuristics for flow problems
within the CPLEX software were able to speed up the process – there were probably also more ambiguities left
in this template-based approach than in the graph-based approach.

The basic idea of this approach is to introduce templates for the tiles in the result. These templates are fitted
into the original data set; constraints make sure that the instantiation of the templates does indeed form a valid
tiling of the original data set. While we have to define tile templates for all possible sensible tilings, one of the
main objectives in the optimization will be to actually use as few of the templates as possible.

First we define variables that hold the grid addresses of the lower left and upper right (inclusive) corners of the
templates. If we know that there were NF homogeneous facade tiles in the input, then there will be NF or less
tiles in the output, so there are four integer variables for each tile template f ∈ {0, ..., Nf − 1}: Xmin,f , Ymin,f ,
Xmax,f , Ymax,f . If we do not know such a lower bound a priori, we have to introduce one template for each cell
in the original facade.
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(0,6)

C
(1,1)

(2,3) E
(4,1)

(5,3)
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(0,1)

(0,2)
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(6,2)
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(7,0)

(7,0)

(a) Original facade. (b) Homogeneous tiles in the
input.

(c) A tiling with four tiles.

Abbildung 8.1.: Different tilings for a facade

Figure 8.1 illustrates this template-based approach: The facade shown in Figure 8.1(a) is known to consist
of the 6 parts (A–F ) shown in Figure 8.1(b) that already have homogeneous parameter values. The numbers
in the brackets give the indices of the lower left and upper right cells covered by the tile, so the format is
(Xmin,f , Ymin,f ), (Xmax,f , Ymax,f ).

Since costs are generated only for adding tiles and for changing parameter values, there will not be more than
those 6 tiles in an optimum tiling: the cost for the additional tiles could not be compensated by avoiding
parameter changes because there is, of course, no change of parameters in the original model.

For this reason, we only need to define Nf = 6 tile templates for this facade. Note that if we set all thresholds
to 0, we must use all these tiles, so we have to use all 6 tiles in this case. Figure 8.1(c) shows a possible result
of the homogenization process with an intermediate resolution ̺ of 0.5m (meaning that the thresholds for the
metric parameters are set to ̺): In this case, for example, the tiles above the ground floor could be covered by
a single tile, so two tiles could be saved.

Constraint 8.1

The first constraint ensures that the X and Y values indeed represent the lower left and upper right
corners of a valid bounding box:

∀f ∈ {1, ..., Nf − 1} : Xmin,f ≤ Xmax,f ,

Ymin,f ≤ Ymax,f .

We define the span of a tile to be the 2D interval covered by the tile:

Span(f) := {(i, j) | Ymin,f ≤ i ≤ Ymax,f , Xmin,f ≤ j ≤ Xmax,f}.
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Each of the X and Y variables may assume values in the range of {0, ..., NC} and {0, ..., NR}, respectively.
This allows us to place tile templates outside the scope of the original facade array in order to dispose of the
templates that were not needed in the tiling: While we have to assign valid X and Y for these templates as
well, they must not interfere with the rest of the tiling of the facade.

We can see this in figure 8.1(c): the two tile templates E and F were not needed for the tiling, but their corner
coordinates still have to be assigned valid values. This is achieved by allowing the X values to be set to the
additional value NC (7 in this case); the two unused templates E and F will have corner indices that keep them
outside the original cell array.

In the example, both templates were placed to cover only the cell (7, 0). Note that any placement of the tiles
outside the original array would have been valid. This introduces ambiguities for valid solutions, which may be
one of the reasons for the poor performance of the template-based approach.

In order to keep track of the facade tiles we did actually use, we define binary variables Af , f ∈ {0, ..., Nf − 1}
that are 1 if tile f is used in the final tiling and 0 if it is not used.
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(a) A tiling violating constraint
8.2: Template C is instantiated,
but not template B.

(b) A tiling satisfying constraint
8.2 but violating constraint 8.3:
Template A is located to the right
of template C.

(c) A valid optimum tiling satisfy-
ing both constraints.

Abbildung 8.2.: Partial disambiguation of the optimum tiling.

Constraint 8.2

In order to avoid ambiguities that would unnecessarily slow down the solver and in order to obtain more
concise solutions, we want to use only the first k tile placeholders if there are k tiles in the solution:

∀f ∈ {1, ..., Nf − 1} : Af ≤ Af−1,

meaning that a template f can only be used if its predecessor f − 1 has been used as well. If we assume
the templates in our example in figure 8.2 to be ordered in alphabetical order, this means that the tiling
in 8.2(a) violates this constraint in multiple cases: A tiling satisfying these constraints would only use the
templates A–D like the one in figure 8.2(b). There is, however, still a lot of ambiguity left because any
permutation of the different template assignments to the resulting tiles would be valid. In our example,
this means that there are 4! = 24 valid assignments left.

Constraint 8.3

For this reason, we define constraints that order the resulting tiles from left to right:

∀f ∈ {1, ..., Nf − 1} : Xmin,f ≥ Xmin,f−1,

so the left side of tile f may not be located on the right of tile f − 1. Note that there is still an ambiguity
because the order of two tiles that are located on top of each other is still undefined. This may be another
reason why the performance of this approach is inferior to that of the graph-based approach given below.

A true ordering of the lower left indices of the tiles could have solved this issue; this is, however, not
included in the current system. One way to easily achive such an ordering is an

”
x before y“ ordering in
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which an additional constraint set ∀f ∈ {1, ..., Nf − 1} : (Xmin,f = Xmin,f−1) ⇒ (Ymin,f ≥ Ymin,f−1) is
added as an extension of the constraints.

Using this constraint leaves only two valid assignments of the instantiated tiles in our example in figure
8.2: The combination given in figure 8.2(c) and the same combination with templates A and B swapped.

Objective 8.1

The primary objective in our optimization process is to produce a minimum number of tiles. This is easily
encoded in an objective term because we explicitly keep track of the number of resulting tiles:

MIN



W#f

Nf−1
∑

f=0

Af



 ,

where W#f is a constant factor that expresses the relative weight of the number of tiles compared to the
other objective terms.

Now we have to make sure that no tiles overlap: For each grid cell (i, j) of our facade array, we define the
Boolean variables F(i,j),f that are true (have value 1) if the cell (i, j) is covered by tile f and false otherwise.
In order to avoid overlaps, we introduce the following group of constraints:

BBB B B B B

BB

CC DD

B

X X X

B B B B

AAA A A A A

DBB F B B B

BC

CC DD

B

X X X

B B B B

AAA A A A A

(a) A valid distribution of true

F(i,j),f assignments.
(b) A distribution violating cons-
traints 8.5 and 8.6.

Abbildung 8.3.: Distribution of true values of F(i,j),f variable assignments for the facade of figure 8.1.

Constraint 8.4

∀(i, j) ∈ Cells :

BG(i, j) +

Nf−1
∑

f=0

F(i,j),f = 1,

where the short form ∀(i, j) ∈ Cells stands for i ∈ {0, ..., NR − 1}∀j ∈ {0, ..., NC − 1}, so the index i
iterates over the rows while the index j iterates over the columns of the facade array. This convention will
be used for the rest of this section.

The term BG(i, j) is true (adds 1 to the left hand side) if cell (i, j) is a background cell, so in this case,
the cell must not be covered by a tile; otherwise, it must be covered by exactly one tile.

For the example in figure 8.3, this means that there are 6 F(i,j),f (F(i,j),A–F(i,j),F ) variables for each
cell (i, j) of which exactly one has to be true if (i, j) is part of the facade and none is true if (i, j)
is a background cell (denoted by the black crosses in the figure). Note that under this constraint, the
assignment shown in figure 8.3(b) is valid.
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Constraint 8.5

Additionally, only active templates may cover a cell:

∀(i, j) ∈ Cells, f ∈ {0, ..., Nf − 1} :

F(i,j),f ≤ Af .

This constraint is violated by the assignment of cell (3, 1) in figure 8.3(b): Template F is not in use. The
other assignments in figure 8.3(b) are still valid.

Constraint 8.6

In order to establish the link between the span of the different tiles and the cells they cover, we have to
make sure that all cells (i, j) within the span of a given tile f are covered by that tile (F(i,j),f = 1) and
that if F(i,j),f = 1 for a given cell (i,j), then the span of f must include this cell:

∀(i, j) ∈ Cells, f ∈ {0, ..., Nf − 1} :

F(i,j),f ⇔ (i, j) ∈ Span(f).

B B B

B B B

B B B A A

A A A

A A A

A A A

A A A A

A A A

(a) A valid constellation if only
F(i,j),f ⇒ (i, j) ∈ Span(f) is enforced.

(b) A valid constellation if only
F(i,j),f ⇐ (i, j) ∈ Span(f) is enforced.

Abbildung 8.4.: Why both directions of F(i,j),f ⇔ (i, j) ∈ Span(f) are relevant in constraint 8.6.

Figure 8.4 illustrates why both directions in the equivalence relation in this constraint are relevant: If we
only enforce F(i,j),f ⇒ (i, j) ∈ Span(f), then we make sure that no cells outside the span of a template
may be associated with this template, but we do not prevent the spans of the facade templates from
overlapping as shown figure 8.4(a). If we only F(i,j),f ⇐ (i, j) ∈ Span(f), then all cells within the span of
a template have to be assigned to this template (preventing overlapping cells), but cells outside the span
of the template may be associated with the template as well as figure 8.4(b) shows.

In order to feed this constraint to a MIP solver, we first convert the expression (i, j) ∈ Span(f) into a set
of linear constraints. In a first step, we define four binary indicator variables (a–d) for the four parts of
the definition of Span(f):

a := (i ≥ Ymin,f ) : cell (i, j) is not located below Span(f).

b := (i ≤ Ymax,f ) : cell (i, j) is not located above Span(f).

c := (j ≥ Xmin,f ) : cell (i, j) is not located to the left of Span(f).

d := (j ≤ Xmax,f ) : cell (i, j) is not located to the right of Span(f).

The four indicator variables a–d are all true if and only if cell (i, j) is contained in Span(f). Figure 8.5
illustrates this fact: If the cell is located neither below or above nor to the left or to the right of the
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b

A A A

c A A A d

A A A

a

Abbildung 8.5.: Illustration of the indicator variables a–d: The letters indicate positions prevented by the indicators.

interval defined by Span(f), then it must be within this area and vice versa. More formally, we can write:
(i, j) ∈ Span(f) ⇔ a ∧ b ∧ c ∧ d.

For the auxiliary variable a, we will explain the conversion of the definition given above to a set of linear
constraints in more detail. The definition a := (i ≥ Ymin,f ) of a can be broken down into the following
two constraints:

a ⇔ (i ≥ Ymin,f ) :

(i ≥ Ymin,f ) ⇒ a → aMi ≥ i− Ymin,f + 0.1

a ⇒ (i ≥ Ymin,f ) → i+Mi ≥ Ymin,f + aMi,

where Mi is a number that is larger than any difference between row indices in our facade array, so we set
Mi := NR+1. Note that any larger value for Mi would lead to the same result, but the smaller a “big-M”
value is chosen, the more stable and the faster most MIP solvers will find a solution.

In the first line, we make sure that a must be true if i ≥ Ymin,f : In this case, the right side of the first
line is larger than 0 (if i = Ymin,f , then it is 0.1) but smaller than Mi, so if a = 1, then the constraint is
fulfilled. If i < Ymin,f , then the right side of the first row is smaller than 0 (-0.9 if i = Ymin,f − 1), and
the constraint is relaxed no matter if a is true (a = 1) or false.

So in order to complete the definition of a, we have to enforce the opposite direction as well. This is done
in the second line: If a is true, then the terms Mi on the left side and aMi on the right side cancel,
and the equation becomes i ≥ Ymin,f . If a is false, then we obtain i+Mi ≥ Ymin,f , so the constraint is
relaxed. Putting both lines together, we obtain a ⇔ (i ≥ Ymin,f ).

The rest of the conversions work in similar way:

b ⇔ (i ≤ Ymax,f ) :

(i ≤ Ymax,f ) ⇒ b → bMi ≥ Ymax,f − i+ 0.1

b ⇒ (i ≤ Ymax,f ) → i+ bMi ≤ Ymax,f +Mi

c ⇔ (j ≥ Xmin,f ) :

(j ≥ Xmin,f ) ⇒ c → cMj ≥ j −Xmin,f + 0.1

c ⇒ (j ≥ Xmin,f ) → j +Mj ≥ Xmin,f + cMj

d ⇔ (j ≤ Xmax,f ) :

(j ≤ Xmax,f ) ⇒ d → dMj ≥ Xmax,f − j + 0.1

d ⇒ (j ≤ Xmax,f ) → j + dMj ≤ Xmax,f +Mj ,

where Mj := NC + 1 is a “big-M” value for maximum column value differences similar to the value Mi

for the rows.
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The constraint 8.6 is then equivalent to

F(i,j),f ⇔ (i, j) ∈ Span(f) ⇔ a ∧ b ∧ c ∧ d.

which can be expressed in the form of a linear set of constraints:

F(i,j),f ⇔ (a ∧ b ∧ c ∧ d) :

(a ∧ b ∧ c ∧ d) ⇒ F(i,j),f → F(i,j),f ≥ (a+ b+ c+ d)− 3.5

F(i,j),f ⇒ (a ∧ b ∧ c ∧ d) → 3.5 · F(i,j),f ≤ (a+ b+ c+ d).

If the variables a through d are true, then the right side in the first line evaluates to 0.5, so F(i,j),f has to
be true to satisfy this constraint. Otherwise the left side is smaller than 0 and the constraint is relaxed.
Conversely, if F(i,j),f is true, the left side in the second line is 3.5, so all variables a through d have to
be true to satisfy the constraint. If F(i,j),f is false, the left side of the line is 0 and the constraint is
relaxed.

The constraints given above allow us to model the structure of the tiling. In the following constraints and
objective terms, the parts of the MIP model are introduced that are defined by the data. For each facade grid
cell, the facade piece represented by the cell is modeled by a list of parameter values. These values may describe
arbitrary properties of the object contained in the cell. Common parameters are, for example, the width and
height of features like doors or windows in the cell, also the color (red, green and blue values of the color) of
the background wall may be part of the parameter list.

For each generic parameter p in the set P of parameters, a difference threshold ∆p and a weight Wp are given.
For special parameters like the width and height of the cell itself, there are additional constraints: The width
of all cells in a column and the height of all cells in a row should, for example, be identical. The features within
a cell should also not protrude across the border of the cell: The width plus the horizontal offset of a feature
should, for example, not exceed the width of the cell holding it. These special parameters and constraints are
not modeled in this first approach but they are added in the more efficient approach described in the next
section.

For each tile placeholder f , there are continuous variables Vf,p that store the values of the parameters p ∈ P .
The difference between this value Vf,p to the original value v(i,j),p in each cell (i, j) covered by tile f must not
be larger than ∆p for each property p.

In order to check this constraint, we must establish the absolute value of this difference. A problem in this
context is that we do not know by which tile a given cell will be covered. For this reason, we have to introduce
variables for the differences D(i,j),f,p for all tile placeholders f in each cell (i, j) and to set these differences to 0
if cell (i, j) is not covered by tile f because otherwise there would be conflicts in the “big-M” terms in the filter
of the active tile.

Constraint 8.7

We define the difference D(i,j),f,p to be the absolute value of the difference between v(i,j),p and Vf,p if cell
(i, j) is covered by f and 0 otherwise:

D(i,j),f,p :=

{

|v(i,j),p − Vf,p|, if (i, j) is covered by f (F(i,j),f = 1)

0, otherwise.

This can be written as the following set of linear constraints:

∀(i, j) ∈ Cells, ∀f ∈ {0, ..., Nf − 1}, ∀p ∈ P :

D(i,j),f,p ≥ v(i,j),p − Vf,p − (1− F(i,j),f )Mp

D(i,j),f,p ≥ −v(i,j),p + Vf,p − (1− F(i,j),f )Mp,
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where Mp is a big-M constant greater than the greatest possible difference between values of the parameter
p. Since we do not want the parameters of the new features to be outside the range of the original para-
meters (the optimization is designed to give intermediate values resulting from least squares adjustment),
Mp can easily be calculated as the difference between the biggest and smallest values of parameter p in
the original data set.

The two lines in the linear form represent the absolute value of the difference |v(i,j),p−Vf,p| in the original
formula. By default, all variables have a lower bound of 0 if not stated otherwise for most MIP solvers. This
is assumed here as well, so D(i,j),f,p will never be less than 0 even if the right side of both lines is smaller
than 0. This will happen if F(i,j),f=false because in this case, (1 − F(i,j),f )Mp equals Mp which is, by
definition, bigger than |v(i,j),p−Vf,p|. Otherwise (if F(i,j),f=true), the term (1−F(i,j),f )Mp evaluates to 0
and disappears. In this case, the two lines together form the constraint D(i,j),f,p ≥ |v(i,j),p −Vf,p| because
one line will evaluate to D(i,j),f,p ≥ |v(i,j),p − Vf,p| and the other one to D(i,j),f,p ≥ −|v(i,j),p − Vf,p|.

Note that we only defined lower bounds for D(i,j),f,p. Because this variable is only going to be used in
contexts where a minimum value is desired (positive occurrence in a MIN objective term and upper bounds
in constraints), this is sufficient. Otherwise, we would have had to define constraints for lower bounds in
a similar way.

Constraint 8.8

We want to ensure that the (absolute value of the) difference between the original value and the value in
the new tile is never larger than ∆p for any parameter p. Since we already have this value, this constraint
is easily established:

∀(i, j) ∈ Cells, ∀f ∈ {0, ..., Nf − 1}, ∀p ∈ P :

D(i,j),f,p ≤ ∆p.

Note that this will also check the values for D(i,j),f,p if cell (i, j) is not covered by tile f , but since these
values are 0 in this case, this is not a problem. Because we do not know in advance which one of the values
D(i,j),f,p will be the one carrying the important value, we have to check them all.

Objective 8.2

Different parameters may be of different importance to a given application. For this reason, it makes sense
to set weights Wp that regulate how strongly differences in the parameters will be penalized in relation
the other parameters. Since we want the resulting parameter values to be determined by a least squares
adjustment, we will minimize the sum of the squares of the differences:

MIN





∑

(i,j)∈Cells

Nf−1
∑

f=0

∑

p∈P

Wp D
2
(i,j),f,p.





In order to wrap up this section, all constraints and objective function terms introduced in this section are
listed in the following table. These constrains define a proper tiling and homogenization of the facade structure
because they enforce that all cells belong to a tile, that exactly the cells within the span of a tile belong to the
tile, and that the parameters of all cells within the tiles are identical after the process.

The set of valid solutions and the evaluation of these solution are identical to those of the graph-based MIP
representation introduced in the next section, but the CPLEX solver needed a significantly smaller amount of
resources for the graph-based version. In the results section of this chapter, it is shown for a sufficiently example
that the constraints for the homogenization of the cell parameters lead to a sensible partitioning of the facade.
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Constraints:

C 8.1 Variables Xmin|max and Ymin|max

define a valid interval:

∀f ∈ {1, ..., Nf − 1} : Xmin,f ≤Xmax,f ,

Ymin,f ≤Ymax,f .

C 8.2 Use only the first k tiles: ∀f ∈ {1, ..., Nf − 1} : Af ≤ Af−1

C 8.3 Order tiles from left to right: ∀f ∈ {1, ..., Nf − 1} : Xmin,f ≥ Xmin,f−1

C 8.4 A cell cannot be covered by more
than one template:

∀(i, j) ∈ Cells :

BG(i, j) +

Nf−1
∑

f=0

F(i,j),f = 1,

C 8.5 Only active temapltes may cover
a cell:

∀(i, j) ∈ Cells, f ∈ {0, ..., Nf − 1} :

F(i,j),f ≤ Af .

C 8.6 A covered cell must be contained in
the span of the covering template:

F(i,j),f ⇔ (i, j) ∈ Span(f) ⇔ (i ≥ Ymin,f ) ∧
(i ≤ Ymax,f ) ∧ (j ≥ Xmin,f ) ∧ (j ≤ Xmax,f ).

C 8.7 Define variable D(i,j),f,p for
change of parameter value due to
homogenization:

D(i,j),f,p :=







|v(i,j),p − Vf,p|,
if (i, j) is covered
by f (F(i,j),f = 1)

0, otherwise.

C 8.8 Threshold for D(i,j),f,p: ∀(i, j) ∈ Cells, ∀f ∈ {0, ..., Nf − 1}, ∀p ∈ P :

D(i,j),f,p ≤ ∆p.

Objective function terms:

O 8.1 Minimize the number of active tem-
plates:

MIN
(

W#f

∑Nf−1
f=0 Af

)

O 8.2 Minimize the weighted sum of squa-
red parameter changes:

MIN
(

∑

(i,j)∈Cells

∑Nf−1
f=0

∑

p∈P Wp D
2
(i,j),f,p.

)

8.2. A graph-based MIP model for facade homogenization

The approach introduced in this section addresses the same facade homogenization problem as the direct
approach described above (section 8.1), but the representation is slightly different; it is rather similar to the
graph-based approaches used in Haunert (2009) for the aggregation of land parcels in map generalization and
in chapter 7.1 for the aggregation of LoD 1 building models.

As in these cases, one member is defined as the representative (also referred to as center in Haunert (2009) and
chapter 7.1) of a unit in the result. In the case of our facade homogenization problem, this means that one cell
will be designated as the representative of a given tile. Note that this representative does not have to be a kind
of geometric center of the tile as the term center suggests – in fact, we will define the center to be the lower
left corner of each tile to avoid ambiguities.

Similar to the representation of cluster membership in section 7.1, We define a set of variables X(a,b),(i,j) that
are true if cell (i, j) is assigned to center (a,b). In our case, the underlying neighborhood graph is implicitly
given by the logical grid structure of the facade.
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Because the center has no other function than to represent the tile, the constraints defined in the rest of this
section are designed in such a way that the center of each tile is the lower left cell in the tile. This definition
has the advantage that it reduces the ambiguity of a valid solution considerably because there is only a single
possible center for a given tile and that it simplifies the constraints for ensuring the rectangular shape of the
clusters significantly. Additionally, it saves variables because the variable X(a,b),(i,j) only has to be defined for
i ≥ a and j ≥ b.

For this reason, iterating over all variables would be denoted in the form: ∀(a, b) ∈ Cells, ∀i ∈ {a, . . . , NR −
1}, ∀j ∈ {b, . . . , NC − 1}). As a short form for this expression we write: ∀(a, b), (i ≥ a, j ≥ b) ∈ Cells, meaning
that i and j will assume all valid values in the given array greater than a or b, respectively.

Note that this implementation is a completely independent alternative to the approach introduced in section
8.1 despite the continued numbering of the constraints.

Constraint 8.9

As in Haunert (2009) and chapter 7.1, the first constraint states that cells can only be assigned to centers
where a center is a cell that is assigned to itself:

∀(a, b), (i ≥ a, j ≥ b) ∈ Cells : X(a,b),(i,j) ≤ X(a,b),(a,b).

BB
(0,1)

A
(0,0)

C
(1,3)

D
(4,3)

X X X

Abbildung 8.6.: Visualization of the true X(a,b)(i,j) variables for a tiling of a facade.

Figure 8.6 shows the X(a,b)(i,j) variables that were assigned the value true for a tiling of our illustration facade.
The black lines connect the cells in the tiles to their centers; the circular lines at the centers illustrate that for
each center c = (a, b), the variable Xc,c is true. Constraint 8.9 ensures that a cell can only point to a center:
Each black line terminates in a center in figure 8.6.

The letters in the centers are of no consequence for the graph-based approach presented in this section; they
illustrate that the tiling shown in this figure is equivalent to the one used in the example in figure 8.2 in the
illustration of the template-based approach introduced in the last section (section 8.1).

Constraint 8.10

Additionally, all cells will belong to exactly one tile (center) if (i, j) is part of the facade and to none if it
is a background cell:

∀(i, j) ∈ Cells :
i

∑

a=0

j
∑

b=0

X(a,b),(i,j) = 1− BG(i, j),

where BG(i, j) is true(=1) if (i, j) is a background cell and false(=0) if not. The black crosses in the
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unoccupied cells in figure 8.6 illustrate that none of the X variables is set to true for the background
cells. For the other cells, this constraint makes sure that only one of the outgoing X variables is set: there
is only one black line from each occupied cell in figure 8.6.

Objective 8.3

Now we can define the objective of using a minimum number of tiles:

MIN



W#f

∑

(a,b)∈Cells

X(a,b),(a,b)



 ,

where W#f is a constant factor that expresses the relative weight of the number of tiles compared to the
other objective terms. The sum counts the number of centers because a center is defined as a cell assigned
to itself.

B

C
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A
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Abbildung 8.7.: Constraint set 8.11 for the tiling in figure 8.6.

Constraint 8.11

The following constraint set ensures that the center of a tile will be its lower left corner and that the
rectangle between a given tile and its associated center must be part of the tile defined by the center:

∀(a, b), (i ≥ a, j ≥ b) ∈ Cells :

X(a,b),(i,j) ≤ X(a,b),(i−1,j) if i > a

X(a,b),(i,j) ≤ X(a,b),(i,j−1) if j > b.

A cell (i, j) can only be assigned to center (a, b) if its predecessors in x (second constraint) and y (first
constraint) direction are also assigned to the same center. Note that if cell (i, j) is already in the same
row or column as the center (a, b), the corresponding predecessor must not be forced to be assigned to the
same center. For this reason, the constraints for the predecessors in y direction are only defined if i > a
and the constraints for the predecessors in x direction are only defined if j > b.

The transitive effect of these constraints on the predecessors ensures that for all tiles (i, j) all cells in the
rectangle spanned by (a, b) and (i, j) must be assigned to (a, b) if (i, j) is assigned to (a, b). Figure 8.7
illustrates this effect for a valid tiling: The horizontal arrows show the implications enforced by the first
constraint (in x direction), the vertical arrows the implications in the y direction. Since the center is the
bottom left cell in the tile, all arrows have to converge towards the center and no predecessor of a cell in
the tile can be left out.
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This does, however, not yet ensure that each tile will be a rectangle.

Abbildung 8.8.: Valid non-rectangular tile under constraint 8.11.

Figure 8.8 shows that in constraint 8.11, there is a “loophole” that allows non-rectangular tiles: In the upper
right corners, fragments may be cut out of the rectangle without violating the constraint. The light gray cells
that define the two basic rectangles of the tile shown in the figure may also be left out; the dark gray cell in the
bottom line, for example, must, however, be part of the tile because it is “covered” by the cell above it.

Constraint 8.12

In oder to ensure that the tiles are rectangles, we define a constraint that works in the opposite direction
compared to constraint 8.11:

∀(a, b), (i > a, j > b) ∈ Cells :

X(a,b),(i−1,j) ∧X(a,b),(i,j−1) ⇒ X(a,b),(i,j)

−→ X(a,b),(i,j) ≥ X(a,b),(i−1,j) +X(a,b),(i,j−1) − 1.

This closes the rectangle in the direction of its upper right corner: If both predecessors of a cell in x and
y direction point to the same center, the cell itself has to point to this center as well. Note the “>” in the
∀-clause: This constraint will only concern cells that are located neither on the same row nor on the same
column of a given possible center. This constraint only works in context with constraint 8.11 because
it only performs the closing in the upper right direction. A more generic implementation in which the
center may be an arbitrary member of the cluster of the cluster would require a more sophisticated set of
constraints.

In the linear form given in the second row, the right side of the constraint is 1 if both predecessors point
to the same center (a, b), so X(a,b),(i,j) has to be true as well in this case. Otherwise, the right side is 0
or -1, so the constraint is relaxed.

The parameters are handled by assigning tile parameter values to the centers of the tiles. Since we do not know
which cells are going to be centers, there have to be parameter placeholders V(i,j),p for each parameter p for
all cells (i, j). For cells that are not centers, we force this variable to equal the value of the center and use it
to calculate the difference D(i,j),p between the original value v(i,j),p of parameter p and the new value V(i,j),p

defined by the covering tile for each tile (i, j).
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Constraint 8.13

First, we make sure that all cells in a tile have the same value for each parameter:

∀(a, b), (i > a, j > b) ∈ Cells, ∀p ∈ P :

V(i,j),p ≥ V(a,b),p −Mp

(

1−X(a,b),(i,j)

)

V(i,j),p ≤ V(a,b),p +Mp

(

1−X(a,b),(i,j)

)

,

where Mp is an adequate “big-M” value for parameter p (see section 8.1), for example the maximum
difference between two values of p in the original facade data set.

If (i, j) is assigned to (a, b), then the term Mp

(

1−X(a,b),(i,j)

)

becomes 0 and the two inequalities can
be merged to the equation V(i,j),p = V(a,b),p. For all other possible centers (a, b), the constraints are
relaxed because Mp is, by definition, greater than any possible difference between V(i,j),p and V(a,b),p, and

Mp

(

1−X(a,b),(i,j)

)

evaluates to Mp in this case.

So all cells within a tile have the same values for each parameter as the center which means, by the
transitivity of the “=” relation, that all cells have the same value.

Constraint 8.14

Now we set the variables D(i,j),p to hold the (absolute value of the) difference between the value V(i,j),p

of parameter p in the tile and the original value v(i,j),p of p in cell (i, j):

∀(i, j) ∈ Cells, ∀p ∈ P : D(i,j),p ≥
∣

∣V(i,j),p − v(i,j),p
∣

∣

−→D(i,j),p ≥ V(i,j),p − v(i,j),p

D(i,j),p ≥ −V(i,j),p + v(i,j),p,

Since we will use the variables D(i,j),p only in contexts where a minimum value is desired, we do not need
to define constraints that enforce an upper bound on D(i,j),p.

Constraint 8.15

Now we can easily implement the constraint of bounding the homogenization error for each parameter in
all cells:

∀(i, j) ∈ Cells, ∀p ∈ P : D(i,j),p ≤ ∆p

Objective 8.4

Finally, we add the penalties for the parameter errors to the objective function:

MIN





∑

(i,j)∈Cells

∑

p∈P

Wp D
2
(i,j),p.





This final objective term ensures that the resulting value for each parameter p for a given tile is the average of
the values in the cells of the tile – if the difference threshold allows the parameter to assume this value.

In order to wrap up this section, all constraints and objective function terms introduced in this section are listed
in the following table.
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Constraints:

C 8.9 Cells can only be assigned to cen-
ters:

∀(a, b), (i ≥ a, j ≥ b) ∈ Cells : X(a,b),(i,j) ≤ X(a,b),(a,b)

C 8.10 A cell is assigned to exactly one cen-
ter:

∀(i, j) ∈ Cells :
∑i

a=0

∑j
b=0 X(a,b),(i,j) = 1− BG(i, j)

C 8.11 Cells in rectangle between a cell and
its associated center must also be as-
signed to the center:

∀(a, b),(i ≥ a, j ≥ b) ∈ Cells :

X(a,b),(i,j) ≤ X(a,b),(i−1,j) if i > a

X(a,b),(i,j) ≤ X(a,b),(i,j−1) if j > b.

C 8.12 Close the rectangle to upper
right:

∀(a, b),(i > a, j > b) ∈ Cells :

X(a,b),(i−1,j) ∧X(a,b),(i,j−1) ⇒ X(a,b),(i,j)

−→ X(a,b),(i,j) ≥ X(a,b),(i−1,j) +X(a,b),(i,j−1) − 1.

C 8.13 Ensure homogeneous parameter
values within the clusters:

∀(a, b),(i > a, j > b) ∈ Cells, ∀p ∈ P :

V(i,j),p ≥ V(a,b),p −Mp

(

1−X(a,b),(i,j)

)

V(i,j),p ≤ V(a,b),p +Mp

(

1−X(a,b),(i,j)

)

,

C 8.14 Define variable D(i,j),p for
change of parameter value due
to homogenization:

∀(i, j) ∈ Cells, ∀p ∈ P :

D(i,j),p ≥
∣

∣V(i,j),p − v(i,j),p
∣

∣

C 8.15 Threshold for D(i,j),p: ∀(i, j) ∈ Cells, ∀p ∈ P : D(i,j),p ≤ ∆p

Objective function terms:

O 8.3 Minimize the number of clusters
(centers):

MIN
(

W#f

∑

(a,b)∈Cells X(a,b),(a,b)

)

O 8.4 Minimize the weighted sum of squa-
red parameter changes:

MIN
(

∑

(i,j)∈Cells

∑

p∈P Wp D
2
(i,j),p.

)

The objectives in this section are the same as in the last section, but the corresponding objective function terms
are different because of the different MIP models.

8.3. Extensions

In the current version, the width and height of the cells and the features are treated like all other parameters
for the cells. This can lead to cells with different widths in the same column or cells with different heights in
the same row when the cells are assigned to different tiles.

Figure 8.9 illustrates this problem with the help of an example in which the effect is very strong: Assuming that
the threshold for width changes is 1.5 units in the raster and all cells in the bottom row can be merged while
those in the top row remain separated.

In this case, all five cells in the bottom row will have a width of 2.5 units after the homogenization while those
in the top row still have their original widths of 4 units for the left and 1 unit for the other cells. The figure
shows that this completely break the integrity of the grid structure because the cells in the columns cannot be
aligned any more and because the overall with of the facade may change considerably – in the example, it is
increased by 4.5 units.
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(a) Original facade. (b) After homogenization.

Abbildung 8.9.: Different cell widths in the same column through homogenization.

The most straightforward approach to avoid this problem is to introduce additional constraints to ensure that
all cells in a column have equal widths and all cells in a row have equal heights:

1. Equal column widths:

∀(i, j) ∈ Cells : V(i,j),w = V(i,j+1),w

if (i, j) and (i, j + 1) are cells for which valid width values are defined; V(a,b),w stands for the value of the
width parameter of the cell (a, b) in the optimization problem.

2. Equal row heights:

∀(i, j) ∈ Cells : V(i,j),h = V(i+1,j),h

if (i, j) and (i+1, j) are cells for which valid width values are defined; V(i+1,j),h is the value of the height
parameter.

3. The total width of the facade across all columns may not change by more than ρ compared to the original
situation:

∀i ∈ Rows :

∣

∣

∣

∣

∣

∣

∑

j∈Cols

CWj −
∑

j∈Cols

V(i,j),w

∣

∣

∣

∣

∣

∣

≤ ρ,

where CWj is the width of column j in the original data.

The small facade structure in figure 8.10 illustrates some of the shortcomings of this strict approach: It can only
handle regular grids of cells. Obviously, such a situation is not given here because the features in the lower cells
overlap features in the cells above them. If a model at a high resolution is requested, the strict constraint would
be impossible to satisfy without changing the width of one of the cells by a value larger than ̺ which would
mean a conflict between hard constraints.

In order to avoid this problem, only those cell borders that are already aligned are required to be aligned after
the homogenization step. This is achieved by inserting dummy cell rows or columns that have a smaller number
of cells than their neighbors. For the example, this means that one dummy cell has to be added in the middle
and two cells have to the bottom row of windows.

After homogenization with suitably high value for ̺, the cells in the aligned area can be merged, and features with
parameters equal to those in the surrounding cells will appear as shown in figure 8.10(b). Such a homogenized
grid can be used for typification in a next step.

The example also shows that homogenization and aggregation may, in combination, yield better results than
applying just one of the two. In the example, the homogenization could only be applied because of the preceding
aggregation of the windows in the rows.
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(a) Original facade. (b) After homogenization
alone (current status).

(c) After aggregation and
homogenization.

Abbildung 8.10.: Aggregation and homogenization.

8.4. Examples and results

The effects of the homogenization process are illustrated with the help of examples in this section. We can see
that the generalization process provides visually convincing results for simple as well as non-trivial setups like
the string of adjacent townhouse facades shown in figure 8.15. In order to resolve issues that are identified in
the course of this analysis, extensions to the method are proposed that are, however, not yet part of the current
implementation.

(a) Original facade. (b) After homogenization.

Abbildung 8.11.: A typical townhouse facade.

Figure 8.12 shows an example of a small facade part modeled after a facade from a typical townhouse. In
this simple case, the protrusions were pushed back into the main facade plane and previously slightly different
measures of the windows were set to identical values.

Because tiles are supposed to be rectangular, the windows in the gables of the dormers on top of the protrusions
are not part of the main tile covering the upper floors. For this reason, they are left in their initial protruding
position because changing the depth of a tile incurs a penalty in the optimization function.

In order to align as many tiles as possible with the main facade plane even if the facade elements could not
be included in a tile on the main plane, we can introduce a term to the objective function that assigns a high
benefit if the depth of a tile can be set to the same value as all its neighbors. This implies that all neighbors
have to have the same depth for this benefit. In the case of our dangling protrusions, the only neighbor is the
main plane, so this will have the desired effect.

Another option would be to allow tiles to cover empty cells that do not belong to the facade. In this case,
the protrusion could have been merged with the main facade tile, and their depth would have been adjusted
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together with the rest of the cells in the tile. Because the homogenization process is also a preparation step for
typification, this would cause new problems because the windows in a typified layout of the facade might not
fit into the gables. For this reason, holes in the tiles are not modeled in the homogenization process.

(a) Original facade. (b) A valid tiling of the facade. (c) After homogenization.

Abbildung 8.12.: Split of an area with identical parameter values.

The simple example in figure 8.12 shows that it is necessary that the homogenization algorithm has the flexibility
to split areas with homogeneous parameters. Had this not been possible, the result would have had to consist
of at least seven tiles – the tiles needed to form the original as shown in figure 8.12(b) – instead of the two that
can be formed by splitting the homogeneous region in the center.

Note that in the figure, the original situation as shown in figure 8.12(a) is not a valid tiling because the central
tile overlaps the others. For the graph-based approach, this is not a problem because it uses only the map
containing the parameter values. The direct MIP approach also relies only on the map for its decisions how to
distribute the samples.

It could, however, run into trouble because the number of templates to be distributed would be limited to three
if the overlapping initial tiles would be given to it as input. In this special case, it would have worked because
only two tiles are needed to cover the facade.

Had it not been possible to split the central initial tile, the seven templates needed to cover the facade would
not have been available. The unavailability of the templates would have been due to the illegal input; the fact
that they would have been necessary would have been due to the impossibility to split the central tile.

A

D

B

E

C

F

(a) Original facade. (b) Facade after first iteration. (c) Facade after second
iteration (final).

Abbildung 8.13.: Homogenization sequence for low penalty for the width and high for the other variables.

In appendix C, the impact of different weights for different parameters is discussed at length for an example.
For this example, the homogenization process was repeated until no more simplification could be achieved.

Figure 8.13 shows the homogenization sequence for the case in which the differences of the width of a facade
part received a low penalty (in relation to the others) while the other parameters (width and height of the
windows) had a high penalty for changes in the homogenization process.

The example was constructed in order to show that different weights for the parameters can be used to guide
the generalization process. In the case shown in figure 8.13, for example, the low penalty for width and the the
high penalty for height changes means that regions B and C are merged first.

Note that the simplification of the top and bottom rows are independent in this example, and the width and
height parameters as well as the depth differences between regions D and E and regions E and F are equal. For
this reason, it can happen that the mergings of the regions in the top and bottom rows are not aligned. In the
case shown in figure 8.13, one would, for example, intuitively have merged regions E and F rather than regions
D and E in order to achieve a more homogeneous appearance.
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Another issue is the fact that small differences in the depth of cells that are not part of the same homogenization
tile are preserved. If we brought them to the same depth, we could save the wall surfaces that are needed to
connect the tiles in order to close the facade. For this reason, it makes sense to add a term to the objective
function that rewards bringing adjacent tiles to the same depth.

Abbildung 8.14.: A facade structure covering a part of a block.

Figure 8.14 shows a facade structure covering one side of a block of townhouses in Hanover (Schneiderberg).
The figure shows a screenshot of a part of a point cloud acquired using the Riegl VMX 250 (Riegl, 2013) mobile
laser scanning device available at the Institute of Cartography and Geoinformatics (IKG).

(a) Original

(b) ̺ = 0.3

(b) ̺ = 5.0m

Abbildung 8.15.: Cells for the facade structure in figure 8.14.

In Figure 8.15, an abstract representation of the facade structure is shown in the first row. In this representation,
ornaments were ignored and windows and doors were treated in the same way. The lines dividing the facade are
the boundaries of the original tiles for the homogenization.

In the following rows, results of the homogenization process are shown for a large scale (̺ = 0.3m) and a small
scale (̺ = 5.0m) generalization request; the gray lines in the figure mark the boundaries of the homogeneous



8.5. Summary and Discussion 105

regions. Note that even for the large scale scenario, many large homogenization groups could be formed because
the parameters of the openings in the tiles were very similar – especially in the upper floors.

Especially the slightly generalized version in the second row shows that in the current version, an alignment of
the heights is only performed within the tiles, not along a whole row of windows – although the windows were
almost aligned in the original model.

The rightmost building in the facade string (shaded in the bottom row of the figure) is similar in its structure
to the example illustrating possible advantages of combinations of aggregation and homogenization. Because in
the current version, only homogenization is applied, the maximum number of four columns of windows (from
the four windows in the top row) are generated in the simplified facade.

8.5. Summary and Discussion

In this chapter, the facade homogenization problem was introduced. It was established that, for data compres-
sion, homogenization in itself is a means of generalization if efficient structures representing grids of identical
features are available.

Two different optimizing approaches to solve the problem were introduced and evaluated. While the first one
describes the problem directly, the second one uses a flow model similar to the one used for the aggregation of
LoD 1 building models described in chapter 7. Note that in both cases, the number of variables, constraints, and
objective function terms grows in the order of O(N2

cellsNparameters). There were, for example, 175,428 variables,
178,057 constraints, and 40,290 objective function terms for the Schneiderberg facade example (without the
alignment constraints) for the graph-based model; the template-based approach.

The fact that the change from the first to the second version dramatically improved the runtime and resource
characteristics shows that a less direct approach to modeling a MIP problem can help to reduce ambiguities
and that MIP solver performance can be increased if heuristics for special cases like flow problems can be used.

In this chapter, the facade homogenization problem was examined in an isolated fashion. Even though facade
homogenization is in itself a generalization step, it is, however, strongly related to aggregation and typifica-
tion; it is, in fact, a degenerated case of a typification in which a set of k features is replaced by a set of k′

identical symbolic features where, for the homogenization, k′ = k and for a typification, k′ < k. As we have
seen, performing an aggregation step before a homogenization step can increase the number of options for the
homogenization.

The decision which of the generalization operators are best applied to which parts of a facade or if an optimal
result can be achieved by different sequences of the operators for the different parts of a facade is a most involved
optimization problem (model selection) on top of the optimization of the homogenization process introduced in
this section.

An important aspect to be integrated in future versions of the facade simplification is the special role of the
(relative) depth of the facade tiles: Even if they do not have anything else in common, we can save several wall,
roof and floor features if two adjacent tiles have the same depth. In the current implementation, this aspect is
not yet considered, so in some cases, adjacent wall tiles with only very small offsets were not merged to form a
single wall surface because the features in the cells of the tiles were not similar enough.
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9. Conclusions and Outlook

9.1. Summary of the MIP-based Optimizing Approaches

Although they are both NP-hard, the two problems of LoD1 building aggregation and facade structure homo-
genization that were investigated as optimization problems turn out to be different in practice because they
represent different classes concerning the applicability of simple heuristic approaches: A simple region-growing
based heuristic approach can be used to find good solutions for the first problem, while finding a promising
approach for the second problem of facade homogenization is considerably more involved.

The main reason for this is the fact that small local changes of a solution can have strong global implications
due to the rectangularity constraint for the clusters: There is no “neighborhood” of other valid solutions around
a valid solution that would allow a “walk” towards a good solution from a bad one, and it is hard to “repair”
a non-valid solution.

This is also a serious problem concerning the applicability of randomized approximation schemes like simulated
annealing, genetic algorithms or Monte Carlo methods (N. Ripperda (2010), for example, used reversible jump
Markov Chain Monte Carlo successfully for facade pattern recognition) to the facade homogenization problem
and the reason why these approaches are not discussed at length in this thesis: For the facade homogenization
problem, these approaches are problematic because of the lack of valid solutions in the neighborhood of a given
solution, and for the LoD 1 building aggregation problem, the simple region-growing heuristic provided almost
optimal results even for the most complex cases, so more complex Monte Carlo approaches were not investigated
in this context for this problem.

For both of these problems, Mixed Integer Programming (MIP) representations were developed; MIP solver
software (CPLEX) was used to obtain optimal solutions for real-world data sets. The advantage of using MIP
(software) is that if our problem can be represented by a set of linear constraints and a linear objective function,
the software can find an optimum solution (and even prove it to be optimal) in many cases although the general
problem is NP-hard.

One reason for using MIP is to find out if a given combination of linear constraint set and linear or quadratic
objective function captures the intent of the generalization well. For both scenarios, the MIP-based generalization
operators provided visually convincing solutions despite the limitation to linear (and quadratic) terms in the
constraints and objective function.

In order to achieve a thorough evaluation of the quality of the generalization operators, a large-scale user survey
would be necessary; the advantage of using MIP solutions in such a survey is that these solutions are optimal,
i.e. they are the result of the most rigorous application of the constraints and objective. Because the details of
the generalization operators are not the focus of this thesis, no extensive user survey was conducted.

For the LoD 1 aggregation problem, a heuristic approach based on region-growing was introduced that uses
criteria comparable to the ones employed in the constraints and objective function of the MIP problem. This
means that we can use the results of the MIP solution as a reference to evaluate the quality of the solutions
from the heuristic approach. In a large-scale application scenario, we can increase our confidence in a heuristic
algorithm by evaluating its results using the MIP results for a representative test data set before the heuristic
algorithm is applied to the whole data set.

Using the facade homogenization problem as an example, it was shown that the same problem can be mapped
to different MIP representations by providing two possible representations based on template instancing and a
flow model. It turned out that the CPLEX solver software could handle only very small problems in the first
representation and considerably more complex ones in flow representation. The most probable reasons for this
result are the larger potential for ambiguities in the first representation and more advanced heuristics for the
flow problem structure in the CPLEX software.
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9.2. Building Footprint Simplification

An important aspect in the aggregation of LoD 1 building models is the degree of geometric simplification
that can be achieved in an aggregation step. This simplification can be measured by counting the total number
of line segments in all building footprints before and after the aggregation. Such a measure is, however, only
meaningful if all individual building footprints have already been simplified to the target scale.

Most LoD 1 building data sets are, however, derived from cadastre data sets, and these cadastre data sets
usually contain very detailed and precise building footprints (in Germany, for example, accuracies of 10cm are
not uncommon). Especially in the modeling of arcs, there is often a large number of edges: Many arcs are
modeled by hundreds of edges where less than 30 would have been sufficient even with accuracy requirements
in the range of decimeters.

For such detailed footprints, an aggregation algorithm would be biased to perform building matches in which
such detailed feature parts are eliminated even though a further total simplification could have been achieved
if the buildings had been simplified before the aggregation.

For this reason, an algorithm for the simplification of buildings is presented in this thesis. In contrast to existing
approaches, this algorithm uses the direction of the edges in the footprint in the determination of the initial
line segment hypotheses; modifications in the following adjustment process include a dynamic reassignment of
parts of the original footprint to line segments in the simplified models in each step.

The results of this approach are promising but some stability issues remain, especially concerning the algorithm’s
ability to produce valid (free of self intersections) output polygons for small input footprint structures. For this
reason, the algorithm was not yet used to produce the input data set to test if the incorporation of constraints
and objective terms for the reduction of geometric detail could improve the results of the LoD 1 aggregation
approaches.

9.3. Orchestration of Specialized Feature Generalization Operators in a Hierarchical
Model

Due to the complexity of even the most basic sub-problems, an infrastructure for combining different approaches
for individual features was proposed. The basic idea to tackle the complexity of the problem is to use generative
modeling and minimum parameterizations to reduce the complexity of conflict resolution when independently
simplified parts are put together again.

In doing this, we have, however, to be aware that if we do not include backtracking strategies in this approach,
we cannot be sure to get the best or even very good results, because the quality of the generalization of a part
of a model depends on the context: An, in itself, strongly sub-optimal generalization of one feature may, for
example, make it fit perfectly with a surrounding pattern that allows a very effective generalization strategy to
be applied.

To develop the ideas sketched in this context into a framework with a wide choice of features and generalization
approaches is one of the most prominent topics for further research that can be derived from this thesis. The
first step in this direction is to integrate the different special approaches derived in the context of this thesis
into the framework. Another promising line of research is to include simplification approaches for structural
features like symmetries or special facade structures.

9.4. Final Summary and Outlook

As we have seen, 3D building generalization is a complex optimization problem in different ways: In the first
place, a generalization approach has to fit the intent of the user, resp. meet the requirements of the given
application if they are (can be) specified exactly. These requirements are often hard to capture analytically,
especially if human factors like aesthetic aspects in map-like representations are part of the optimization problem.

Additionally, resulting analytic optimization problems tend to be NP-hard because in most cases, a large number
of independent decisions have to be taken in the generalization process (which generalization operator to apply,
which features to aggregate etc.), leading to a combinatorial optimization problem.
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Using LoD1 building aggregation and facade homogenization as examples, it was shown that for elementary
generalization problems, analytic representations that produce convincing results can be derived in the form
of MIP problems. Unfortunately (but not surprisingly), it turned out that solving even these elementary basic
problems for small instances, up-to-date hardware was pushed to its limits even using sophisticated commercial
MIP solvers.

For this reason, a closed in-depth MIP-based representation of the complete building generalization problem
will probably be infeasible to compute because the computational complexity of the whole problem is a product
of the complexity of the sub-problems (for each higher level decision, all lower level decisions may have to be
reconsidered).

This means that at least at higher levels, heuristic approaches are likely to be necessary to handle the complexity
of the problem. In many cases, a combination of specific simplification algorithms for the most relevant features
and standard generalization operators for the rest will be the most effective way of designing a heuristic approach
for the complete generalization problem for a given application without having to reinvent the wheel. In order
to support this concept of reusability of generalization algorithms for different features in a hierarchical model,
a structure for a framework for the flexible combination of generalization approaches was sketched in this thesis.

Considering the applicability of exact optimization-based approaches to large real-world data sets, an encoura-
ging aspect is that for almost all feature classes and scales, there are natural opportunities for partitioning in
the structure of city models that usually yield sufficiently small units: For the facade homogenization problem,
for example, the natural units to be considered are the facades around a building complex; for the aggregation
of LoD 1 building models, the natural units are building blocks or, at very small scales, super-blocks defined by
higher-level roads, rivers, or larger areas with few buildings like forests or fields.

If we can split out data set into independent parts, the complexity of the whole calculation is no longer the
product but the sum of the complexity of the partial problems, so if we can identify a maximum complexity for
the single units, the total complexity scales linearly in terms of this complexity: even if the maximum complexity
can already occur if each part contains only one feature, the total complexity for the whole data set of N features
would be bounded by N times the maximum complexity.

Due to the NP-completeness of the problem, the solving software may still need an excessive amount of resources
for finding an optimal solution for some of the parts and proving the optimality of this solution. In these cases,
the best solution that was found by the solver in a given amount of time or an alternative heuristic approach
may be used.

In cases of more complex generalization strategies that introduce far-reaching dependencies (like the requirement
that identical window styles, floor heights or shapes of balconies across block / building complex boundaries
along a street still have to be identical after the generalization), optimization-based methods may still be used
on a global level if approaches for the different parts can be defined that provide a sensibly small number of
alternative solutions (or can be re-evaluated quickly for changing external constraints) and measures for the
quality of the overall solution can be evaluated.

In addition to these considerations, the concept of homogenization without an immediate application of a further
simplification of the enclosing pattern is a new approach in a cartographic context; for the production of a map,
it offers no direct advantage – except, perhaps, for a smoother appearance.

For this reason, it does not appear in the classical list of generalization operators; it is neither a kind of
symbolization because it changes only values of parameters and pattern group memberships but not the structure
of the feature, nor is it aggregation or typification because the number of features is unchanged.

In the context of a digital model in which uniform patterns can be represented in a compressed form, it is,
however, a generalization operator in its own right because it allows a reduction of the size of the data set.
Especially if patterns with exceptions can be modeled, the concept of a minimum description length can be
introduced as a generalization objective that can be balanced against the amount of changes necessary to achieve
the simplification of the representation. An alternative term for this operator may be pattern regularization.
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A. LoD 1 Building Aggregation is NP-hard

The complexity class NP (”nondeterministic polynomial time”) refers to problems that can be solved by a
nondeterministic Turing machine in a number of steps that is bounded by a polynomial function of the size
of the input. NP-hard problems (like the Traveling Salesman Problem) are “at least as complex as the most
complex” problems in NP: every problem in NP can be converted into such a problem in polynomial time.
It is generally assumed that NP-hard problems cannot be solved by traditional (non-quantum) computers in
polynomial time. A more detailed introduction to computational complexity and NP-hardness is provided, for
example, in Garey and Johnson (1979).

Unfortunately, the reduction from the Vertex Cover problem to the AreaAggregation Problem given in (Haunert,
2009) cannot be used to prove the NP-hardness of BuildingAggregation because it relies on postulating a
minimum size for each cluster which is something that cannot be assumed in BuildingAggregation because the
buildings do not cover the underlying plane completely and, for this reason, introducing a minimum area for
aggregated buildings may lead to infeasible problems.

For this reason, we have to find a new approach to establish the computational complexity of the problem. This
section introduces a proof that BuildingAggregation is NP-hard even if we restrict the initial heights of the
buildings to three levels, ∆h is fixed, and the neighborhood graph is planar.

Theorem 1.1

BuildingAggregation is NP-hard even if only three original height levels and an appropriate value of ∆h

are used, the neighborhood graph is planar, and all possible additional constraints are relaxed.

An instance of the BuildingAggregation is given by a neighborhood graph G = (V,E), a function h : V → R

assigning a height to each building, and a maximum height difference ∆h. The corresponding decision problem
asks: Given a set of buildings arranged in a neighborhood graph, is it possible to partition this block into k or
less connected clusters in such a way that |h(vi)− h(vj)| ≤ ∆h if vertices vi and vj are assigned to the same
cluster?

It is known (see e.g. Garey and Johnson (1979)) that an optimization problem is NP-hard if its corresponding
decision problem is NP-hard. For this reason, BuildingAggregation is NP-hard if its decision problem is NP-hard.
We prove this by giving a polynomial-time reduction from the decision problem corresponding to the maximum
independent set problem which is known to be NP-complete (Karp, 1972) even for planar graphs (Berman and
Fujito, 1995) to the decision problem of BuildingAggregation.

An independent set of a graph G = (V,E) is a subset V ′ of the vertices of G that does not contain any adjacent
vertices in G. The maximum independent set problem asks for the largest independent set in a given graph, the
corresponding decision problem is to determine if a given graph contains an independent set of a size ≥ k.

We reduce this decision problem to an instance X := {G̃ = (Ṽ , Ẽ),∆h, h, k̃} of the BuildingAggregation decision
problem. The basic idea of the reduction is to have a building bi for each of the vertices vi of the input graph
with a neutral initial height – for example, we can set h(bi) = h0 = 0 for all bi, so we have a set B = {bi|vi ∈ V }
with h(bi) = h0 ∀0 ≥ i < |V |.

Setting, for example, ∆h = 1, we define two additional height levels h− and h+ that are mutually incompatible
but consistent with h0, for example h− = −1 and h+ = 1. If a building bi shares a cluster with another building
of height h+, this means that vi is part of the independent set V ′, if it is associated with a building of height
h−, then it does not belong to V ′. The height levels h− and h+ together with the value of ∆h make sure that
each original vertex is either assigned to V ′ or the rest V \ V ′ of V .

In order to make sure that no pair of connected vertices in G can both be part of an independent set, we
insert a large number of buildings (K > k̃, e.g. K = k̃ + 1) with height h− between the buildings representing
adjacent vertices in G as shown in Fig. A.1(a), so if the adjacent vertices vi and vj were both selected for
the independent set (share a cluster with a building of height h+), then those K buildings would each form
an individual cluster (see Fig. A.1(b)), and the overall limit for the number of clusters k̃ would be exceeded
(we will show that we can define k̃ independent of K). This means that at least one of the vertices in each
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Abbildung A.1.: Reduction from Independent Set to BuildingAggregation: Modeling the independent set property.

pair of adjacent vertices in G is not part of the independent set: in this case, all vertices mij
r can be put

into the same cluster as the unselected vertex as shown in Figure A.1(c). More formally, we define a set of
buildings M := {mij

r |(vi, vj) ∈ E, 0 ≤ r < K} with h(mij
r ) = h− ∀(vi, vj) ∈ E, 0 ≤ r < K and a set of edges

EM := {(bi,m
ij
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r , bj)|(vi, vj) ∈ E, 0 ≤ r < K}. The set M ij = {mij

r |0 ≤ r < K} is the subset of M that
corresponds to the edge (vi, vj) in G; we call this set M ij the M-group corresponding to the edge (vi, vj).
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Abbildung A.2.: Reduction from Independent Set to BuildingAggregation: Maximizing the number of vertices in the inde-
pendent set.

With this setup, there is a simple solution for the aggregation problem: Just select no building for the indepen-
dent set and put everything into one cluster. For this reason, we introduce a penalty for each vertex that is not
part of the independent set by attaching a set of L buildings with a height of h+ to each building bi, introducing
the set P = {pij |0 ≤ i < |V |, 0 ≤ j < L} of buildings and the set Ep = {(bi, p

i
j)|0 ≤ i < |V |, 0 ≤ j < L} of edges

shown in Figure A.2(a). If vi is not part of the independent set (bi is clustered with a building of height h−),
then each building pij forms an isolated cluster as shown in Figure A.2(c), otherwise the vertices can be merged

with the cluster formed by bi (illustrated in Figure A.2(b)). The set P i := {pij |0 ≤ j < L} (the P-group of bi or
vi) is the subset of P that is attached to building bi.
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Abbildung A.3.: Reduction from Independent Set to BuildingAggregation: A simple example with k = 3.

The basic idea is to choose L sufficiently large to keep the maximum number of clusters that can occur in the
case of ≥ k vertices in the independent set smaller than the minimum number of clusters that is possible if
there are < k vertices in the independent set.

Figure A.3 shows the worst-case situation for a simple example. Note that apart from the set V ′
1 = {v0, v2, v4}

shown in the figure, there is another maximum independent set V ′
2 = {v1, v3, v4}. According to the definition

of an independent set, every unconnected vertex is automatically part of a maximum independent set because
it has no adjacent vertices and therefore adding it to an independent set cannot create any conflicts. For this
reason, it is no surprise that vertex v4 is part of both possible maximum independent sets in the example.

If there is an independent set of size ≥ k, then we can form k clusters on a positive height level containing the
k buildings vi in the independent set V ′ and their associated P-groups. In the worst case (if k is the maximum
number of independent vertices), each vertex vj of the n−k (n := |V |) vertices not in V ′ must have at least one
adjacent selected vertex vi. This means that in order to “satisfy” the M-group M ij associated with the edge
(vi, vj), the building bj must share a cluster with M ij – in the worst case, these clusters cannot be merged,
so there are n − k clusters for the buildings not in V ′. Having had to put the buildings corresponding to the
vertices vj not in V ′ on a negative height level, all L buildings in the associated P-groups P j form an isolated
cluster on a positive level, so we have another (n− k) · L clusters.

Summing up, we have at most the following number of clusters for an independent set of size ≥ k:

• k clusters containing the buildings vi ∈ V ′ and their P-groups (level h+)

• n− k clusters containing the buildings bj , vj ∈ V \ V ′ and their adjacent M-groups (level h−)

• (n− k) · L clusters formed by the isolated buildings pjr, vj ∈ V \ V ′, 0 ≤ r < L (level h+)

So, in total, there are at most k + (n− k) + (n− k) · L = n+ (n− k) · L clusters in a minimum partition of G̃
if G has an independent set of size k. This means that if we set k̃ := n+ (n− k) · L, the first (forward) part of
the reduction is true: G contains an independent set of size ≥ k ⇒ G̃ can be partitioned into k̃ or less clusters.

We now have to choose a value for L that makes sure that if G̃ can be partitioned into k̃ clusters, then G must
contain an independent set of size ≥ k. In order to do this, we determine the minimum number of clusters for
an independent set of size k − 1:

• k − 1 clusters containing the buildings vi ∈ V ′ and their P-groups (level h+)

• 1 cluster containing the buildings bj , vj ∈ V \ V ′ and their adjacent M-groups (level h−)

• (n− (k − 1)) · L clusters formed by the isolated buildings pjr, vj ∈ V \ V ′, 0 ≤ r < L (level h+)

So, in total, there are at least (k − 1) + 1 + (n − (k − 1)) · L = k + (n − k) · L + L clusters if there is an
independent set of size k − 1. For an illustration of item 2 in this list, imagine that vertex v2 was not selected
for the independent set in the example in Figure A.3: In this case, all buildings corresponding to vertices not in
V ′ and their M-groups could be merged into a single cluster.
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In order to establish that G has an independent set of size ≥ k if and only if G̃ can be clustered into ≤ k̃, we
have to select the values of L, K, and k̃ in such a way that the two worst cases described above can be separated
by k̃ – so we have choose a value for L that makes sure that the worst-case minimum number of clusters for
|V ′| = k is always lower than the absolute minimum number of clusters for |V ′| = k − 1:

n+ (n− k) · L < k + (n− k) · L+ L

⇔ L > n− k

So choosing L := n − k + 1 (⇒ L ∈ O(n)) separates the worst cases. This means that if we can partition the
neighborhood graph G̃ corresponding to the graph G into less than

k̃ := n+ (n− k)L = n+ (n− k)(n− k + 1) = n+ (n2 − nk + n− nk + k2 − k) = n2 − 2nk + 2n+ k2 − k

clusters, then Gmust have an independent set containing at least k vertices because if the maximum independent
set of G consisted of only k−1 or less vertices, then G̃ could not have been covered by less than k+(n−k)L+L =
k+(n−k)(n−k+1)+(n−k+1) = k+(n2−nk+n−nk+k2−k)+(n−k+1) = n2−2nk+2n+k2−k+1 = k̃+1
legal clusters which is a contradiction to the assumption that we had covered G̃ with ≤ k̃ clusters. This proves
the second (“backward”) part of the equivalence needed for a valid reduction: G contains an independent set of
size ≥ k ⇐ G̃ can be partitioned into k̃ clusters. Setting K := k̃ + 1 = n2 − 2nk + 2n + k2 − k + 1 ∈ O(n2)
makes sure that selecting any two adjacent nodes of G for the independent set would result in at least k̃ + 1
clusters even if the rest of the buildings is neglected, so this is no option. Any clustering not corresponding to
assigning the vertices of G to the independent set or not would also only increase the number of clusters.

Wrapping up the reduction, we collect the components of X and their sizes in order to establish the complexity
of the reduction:

• Ṽ = B ∪M ∪ P → O(n4) vertices:

– B = {bi|vi ∈ V } → |B| ∈ O(n)

– M := {mij
r |(vi, vj) ∈ E, 0 ≤ r < K} → |M | ∈ O(|E| · K) = O(n2n2) = O(n4) (there are at most

O(n2) edges in a graph with n vertices)

– P = {pij |0 ≤ i < |V |, 0 ≤ j < L} → |P | ∈ O(n · L) = O(n · n) = O(n2)

• Ẽ = EP ∪ EM → O(n4) edges:

– EM := {(bi,m
ij
r ), (m

ij
r , bj)|(vi, vj) ∈ E, 0 ≤ r < K} → |EM | = 2|M | ∈ O(n4)

– Ep = {(bi, p
i
j)|0 ≤ i < |V |, 0 ≤ j < L} → |Ep| = |P | ∈ O(n2)

• ∆h = 1.

• h = {h(b) = 0 ∀b ∈ B, h(m) = −1 ∀m ∈ M, h(p) = +1 ∀p ∈ P} → at most O(|Ṽ |) = O(n4) elements.

• k̃ = n+ (n− k)(n− k + 1).

So, in total, we have O(n4) elements (vertices with heights and edges) to create in the reduction and each
individual element can be created in constant time. For this reason, our reduction works in polynomial time.

Since inserting the M-groups and the P-groups does not destroy the planarity of the graph G, G̃ is also planar
if G was planar. Reducing from the independent set problem for planar graphs, we therefore get an instance of
BuildingAggregation with a planar neighborhood graph. For this reason, BuildingAggregation is NP-hard even
if the neighborhood graph is planar, because we can reduce an instance of the planar independent set decision
problem – which we know to be NP-complete – to a planar BuildingAggregation problem.

So using the reduction introduced in this section starting with the planar independent set problem, we have
shown that BuildingAggregation is NP-hard even if only three original height levels (e.g. h+ = 1, h− = −1 and
h0 = 0) and an appropriate ∆h (= 1) are used, the neighborhood graph is planar, and all possible additional
constraints are relaxed.

�
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In this section, we consider the problem of finding a minimum number of rectangular tiles that cover a given
schematic facade representation with a bound ρ on the difference in a single parameter within each cluster. It
will be shown that this problem is NP-hard even if only four different values occur for the property in the array
(if these values are chosen appropriately with respect to the error threshold ρ).

Different problems concerning minimum rectangular tilings of matrices (2D grid structures) are important in
many fields of research, including data base management, electronic circuit design, and many others. The RTile

problem consists of finding the minimum number of rectangles that cover a given matrix if the sum of of the
entries within each tiles is bounded by a given constant value. This problem has been shown to be NP-hard in
Khanna et al. (1998). Different variations of it like its dual, the drtile problem, have been studied in various
papers, e.g. Grigni and Manne (1996), Berman et al. (2001), Nichterlein et al. (2011). In these papers, variations
of the problem and different approximation approaches are introduced.

Unfortunately, the different communities often use different terminology. Dividing a structure by rectangles
is, for example, referred to as tiling, partitioning, or decomposition. If the covering shapes may overlap, the
process is called covering. For this reason, it is difficult to find the appropriate literature. Although many similar
problems are covered, the exact bounded difference rectangle tiling problem does not appear in the literature
to the best knowledge of the author.

Muthukrishnan et al. (1999) generalizes the RTile problem to different classes of metrics and aggregation
functions. Our bounded differences problem, for example, is closely related to the MAX-MAX-DIFF-AVG
problem described there: the goal in MAX-MAX-DIFF-AVG is to find a minimum tiling given a upper bound
for the maximum (first MAX, giving the global aggregation function over the accumulated values in the clusters)
of the maximum (second MAX, referring to the aggregation function in each cluster) of the difference of the
value within a cell to the average value of all cells in the cluster (DIFF-AVG).

0 0

01

Abbildung B.1.: DIFF-AVG and bounded difference: a pathological case.

Our case is a little different to the DIFF-AVG case because we want to restrict the maximum difference of the
values of any pair of cells within a cluster instead of the distance of the value of a cell to the average value
of the cluster. In many cases, these restrictions will lead to similar results, but the DIFF-AVG constraint is
slightly harder because it takes all members in the cluster into account. Figure B.1 shows a pathological case
illustrating this difference: In the case of DIFF-AVG, the four cells cannot be clustered for ρ = 0.5 because the
average value in the tile would be 0.25; in the case of the bounded difference with ρ = 1.0, all cells could be
merged.

Because of the limited space in the publication, Muthukrishnan et al. (1999) do not give a full NP-hardness
proof for the problem. Instead, they refer to Khanna et al. (1998), claiming that a construction similar to the
one used there to prove the NP-hardness of the RTile problem could also be used to prove the NP-hardness of
the MAX-MAX-DIFF-AVG problem.

For this reason and because of the slightly different nature of the MAX-MAX-DIFF-AVG and bounded difference
tiling problems, we will prove that the bounded difference tiling problem is NP-hard in the following.

This proof is based on the approach taken by Moore and Robson (2001) to prove that tiling a given grid with
different simple shapes is NP-hard and the approach by Khanna et al. (1998) to prove the NP-hardness of the
RTile problem. The basic idea is to construct a number of “gadgets” that simulate variables and logic gates
or clauses in a satisfiability problem.

We consider the decision problem of the bounded difference tiling problem: Can a given array be divided into
k tiles if the maximum difference between any pair of entries within a tile is smaller than a constant ρ?
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In our proof, we will reduce the problem of planar 3-satisfiability (3-sat) to the bounded difference tiling
problem, showing that if we could solve the tiling problem efficiently (in polynomial time), we could also solve
planar 3-sat efficiently. Since planar 3-Sat is known to be NP-hard (Lichtenstein, 1982), this means that the
bounded difference tiling problem is also NP-hard.

The 3-sat problem asks if there is a satisfying assignment (meaning that the formula evaluates to true) of
values to the variables in a formula in conjunctive normal form (CNF, meaning a conjunction (AND) of clauses)
in which each clause is a disjunction (OR) of 3 literals (positive or negative occurrence of a variable). In planar
3-sat, the graph G(F ) in which the variables and the clauses of the formula are the vertices and an edge links
a clause to a variable if the variable occurs in the clause (as a positive or negative literal) is planar.

This graph can easily be embedded in the rastered plane in polynomial time: Hopcroft and Tarjan (1974) give
an efficient algorithm for embedding a planar graph in the plane, and Chrobak and Payne (1989) show that this
planar graph can be drawn on a planar grid of dimension (2n−4)x(n−2) = O(n2). The size of our gadgets will
increase this number but since each gadget has a constant size, the overall number of cells needed to represent
G will still be in a low polynomial order (O(n2)).

In our construction, we will develop “gadgets” that represent variables, edges, and clauses. The basic idea is
to build the gadgets in such a way that there are basically two minimum tilings for each variable, representing
positive and negative truth values. In a clause gadget, there is one cell that can only be covered without
producing an additional tile if at least one of the literals (a positive or negative occurrence of a variable) in the
clause is true.

The parameter values in the cells within the black border lines in the figures are set to 0 if not marked otherwise,
the ones outside are set to 5ρ, so it is impossible for a tile to be extended across a border. In the following, only
the tiling of the interior area is considered – a minimum tiling of the exterior background cells can be determined
effectively with polynomial-time algorithms for unconstrained rectangle tilings like the one described in Eppstein
(2009); the size of such a tiling is treated as a constant Kout.

The “+” and “-” signs in some cells represent values of +0.75ρ and -0.75ρ, respectively, so they can be merged
with the neutral cells and with cells of the same sign, but cells of opposite signs cannot be part of the same tile.
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(a) Tiling corresponding to true value. (b) Tiling corresponding to false value.

Abbildung B.2.: Variable gadget with part of an edge.

All gadgets except the clause gadget are constructed in such a way that the tilings for true and false are
balanced, meaning that both tilings have the same size. In the example of the variable gadget shown in Figure
B.2, both tilings have the size 6. It is easy to see that no tilings with fewer tiles are possible.

The variable gadget is the square in the top left corner; we define a tiling to represent the true value for a
variable if this square is covered by a single tile (Figure B.2(a)); in the other case, the variable has the value
false (Figure B.2(b)). The stairs pattern attached to the variable gadget represents an edge; the terminating
cell (5) ensures that the tiling is balanced.

Note that if we add a cell (6) in vertical direction, the true tiling can be extended in vertical direction without
using an additional tile (dotted cell) while the false tiling would need an additional tile to cover cell (6).
Without taking additional measures, there is no such extension for which the false tiling can be extended
while the true one cannot.
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In this situation, we say that the true value of the variable is leading on the edge. Because the true tiling can
be extended only in vertical direction, the orientation of the edge is vertical.

The clause gadgets are designed in such a way that their central tiles are connected to edges on which the values
of the variables are leading for which the corresponding clause is satisfied (evaluates to true); this may be the
true or false tiling for the variable. For this reason, we need an inverter gadget that changes the leading truth
value.

Since we are considering the 3-sat problem, each clause gadgets has three input connector points (cells) to
which edges can be connected. Depending on the connector, the orientation of the incoming edge has to be
horizaontal or vertical. For this reason, we need an orientation change gadget.

Since the graph representing the formula is planar, we do not need gadgets for managing intersections of edges.

X=1 X=1

(a) Bending gadget: true tiling. (b) Bending gadget: false tiling.

X=1 X=0

(c) Horizontal stretching gadget: true tiling. (d) Horizontal stretching gadget: false tiling.

Abbildung B.3.: Edge direction adjustment: Bending and stretching edges.

Ordinary edges can only run diagonally in the plane; by using the bending and stretching gadgets shown in
Figure B.3, the direction and slope of the edges can be adjusted as needed without changing the leading truth
value or the orientation of the edge: Throughout the three bends in Figure B.3(a) and (b) and the in the
stretching in B.3(c) and (d), the true value is leading and has a vertical orientation.

X=1

X

¬X

+

-

X

¬X

X=0

+

-

(a) Inverter gadget: true tiling. (b) Inverter gadget: false tiling.

Abbildung B.4.: Inverter gadget

Since the clauses may also contain negative literals (inverted variables), it is necessary to implement a gadget
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that allows extending a tile if a variable is false. Such a gadget is shown in Figure B.4. Note that the ¬X branch
is extensible in horizontal direction while the X branch is extensible in vertical direction. Using the orientation
change gadget given below, this can be changed as necessary.

If it is not needed, the X branch may be left out or cut off with an appropriate terminator that retains the
balance between true and false tilings.

+

X=1

-

1

3

4

6

2 5

X X

+

X=0

-

2

5

6

1

3

4

(a) Orientation change: true tiling. (b) Orientation change: false tiling.

Abbildung B.5.: Orientation change gadget

The orientation change gadget shown in B.5 changes the direction in which an input tiling may be extended from
vertical to horizontal. Rotating this gadget by 90 degrees allows direction changes from horizontal to vertical.
Note that still the same truth value will be extensible as in the input. In our example, this is the true value of
a variable; it may, however, also be the false value.

X=1

XX

+ -

X=0

XX

+ -

(a) Split gadget: true tiling. (b) Split gadget: false tiling.

Abbildung B.6.: Split gadget

Figure B.6 shows that it is also possible to split an edge; this allows us to let different edges emerge from a
given variable vertex. Note that for both output edges, the input truth value is preserved, and the orientation
in which the truth value can be extended remains vertical. By rotating the gadget, edges of different orientation
and direction may be split.

Using the gadgets introduced so far, we can make sure that edges can be made to arrive at a clause gadget with
any truth value leading in any given orientation and direction. Each of the literals x1, x2, x3 of the clause is
mapped to one of the inputs A, B, C of the clause gadget. The assignment depends on the layout of the planar
embedding of the graph G representing the formula, not on the order of the literals in the clause. Due to the
planarity of G, there is always one such mapping that causes no topological obstacles.

Without loss of generality, we expect the appropriate truth value to be leading with a vertical orientation, so if
there is a negative literal in a clause, there has to be an inverter and an orientation change gadget somewhere
between the variable gadget and the clause gadget. For input A, the edge arrives from the upper or lower left,
for input B from the upper right, and for input C from the lower right direction. Figure B.7 shows minimum
tilings of the clause gadget for different truth levels at the input A, B and C. The variable gadgets directly
attached to the inputs in Figures B.7(a) and (b) were added only for illustration purposes in order to support
the reader in verifying that the gadget is indeed working as intended; in any non-trivial cases, there will be split
and inverter gadgets between the variables and the clauses.

Figure B.7(a) shows that if all inputs have the right truth value, any of them can be extended to cover the
central clause cell, but it is impossible to merge tiles that belong to different variable domains across the clause
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(c) A=1, B=0, C=0 (d) A=0, B=1, C=0. (e) A=0, B=0, C=1

Abbildung B.7.: Clause gadget

cell because of the “-” and “+” above and below the cell. It is left to the reader to verify that there are different
possibilities to tile the gadget with four tiles in this case but that there is no tiling that uses less than four tiles.

If all inputs have the wrong truth value (Figure B.7(b)), then none of the variable tilings can be extended
to cover the central cell. For this reason, the clause gadget cannot be covered by less than five tiles. Figures
B.7(c)-(e) show that even if only one of the inputs is true, there is a tiling with four tiles for the clause gadget
because the tiling of the true input can be extended to cover the central cell and the rest of the gadget can
always be covered by three additional tiles.

It is left to the reader to verify that the gadget can be covered by four (but not less than four) tiles if any pair
of inputs evaluates to true. In order to check this, imagine one of the false inputs being true in Figures
B.7(c), (d), or (e) and check that this does not require using additional tiles. Referring to Figure B.7(a), it is
obvious that this will not offer any opportunities for covering the gadget with only three tiles.

So each clause gadget can be covered by four tiles if and only if the clause evaluates to true; otherwise, five
tiles would be needed. Since all other gadgets are designed to be balanced and there is no way to tile the clause
gadget using three or less tiles, we can now wrap up our reduction:

• Given an instance of planar 3-sat, i.e. a formula F in CNF with three literals in each clause and a
planar associated graph G(F ) defined as above, embed G(F ) in the rastered plane, leaving space for the
the different gadgets. Since all gadgets have a constant maximum extent c in each direction, such an
embedding will use only c(2n− 4)(n− 2) = O(n2) cells according to Chrobak and Payne (1989) and can
be computed in polynomial time (even linear, if only the vertices are placed, and no array is initialized).

• Replace the variable and clause vertices in G(F ) by the appropriate gadgets. This is done by filling the
array A of size O(n2), so the runtime will be O(n2). Let |A| be the number of cells in A.

• Count the number Kout of tiles needed to cover the background cells of A, using e.g. the algorithm given
in Eppstein (2009). This can be done in O(|A|3/2 log |A|) time which is obviously polynomial.

• Count the number Kin of tiles needed to cover the cells in the gadgets except the central cells of the
clause gadgets. This can easily be done by choosing arbitrary truth values for all variables (for example,
all true) and greedily tiling the gadgets. Due to the design of the gadgets, this can be done in linear time
in the number of cells in the gadgets, so O(|A|) is an upper bound for this operation, so this polynomial
as well.
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If and only if A can be tiled by K := Kin +Kout tiles, then there is a satisfying assignment for F : As we have
seen above, the clause gadget excluding its central cell can always be covered by four tiles, so it will count as four
cells in the calculation of Kin. If the clause is satisfied by an assignment (one of the inputs is has the appropriate
truth value), then no additional tiles are needed because the tiling of the true input can be extended to cover
the central cell. For this reason, it always possible to tile A with K tiles if F is satisfiable.

If a clause is not satisfied, then an additional fifth tile is needed to cover its central cell. At this point, it is
important that there is no way to tile a satisfied clause gadget with three or fewer tiles because this could allow
a non-satisfied clause to “slip through”. Since this is not the case, it is impossible to tile A with K tiles if F is
not satisfiable.

This reduction from planar 3-sat shows that covering an array with a minimum number of rectangles with
bounded differences between the cell values within each tile is indeed NP-hard. Since we used only the values
for background, neutral, “+” and “-” cells are used in the reduction, this hardness result holds even if only four
different parameter values are used in the cells.

�



C. Detailed discussion of the influence of different parameter weights in
the facade homogenization problem
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Abbildung C.1.: Original

In this section, the influence of the different weights for the parameters is discussed using the simple artificial
example shown in figure C.1. In this example, we consider three different parameters: the width and height of
the windows within a cell and the depth of the cell, meaning its shift with respect to the main plane of the
facade: a higher depth value means a protrusion, a lower one means an indentation.

The widths and heights of the windows in the example are set to 1m× 2m, 1m× 1m and 1m× 1m in the upper
floors (from left tom right) and to 2.1m× 2.1m for the ground floor. The depths are (from left to right) 0, 0.6
and 1.2m for the ground floor and 0.3, 0.9 and 1.5m for the upper floors. The threshold ∆p for all the three
parameters is set to equal a resolution ̺ of 0, 51m. These values were chosen to illustrate different effects that
occur in the homogenization process.

In order to avoid that there are small differences (below the resolution) in adjacent tiles in the result, the
homogenization process is repeated using the result from the last iteration as the input for the next until no
further simplification occurs. This may, however, cause violations of the Hausdorff property described in section
2.1.1 – for a single run, it is ensured by the ∆p bound on the parameter difference. The setting of the width
and height parameters forbids that cells form the upper and lower floors can be merged in the first run because
either the width or the the depth (or both) are 1.0m in the upper floors while it is 2.1m in the ground floor,
there is no possible intermediate value with a difference of less than ̺ = 0.51m to 1m and 2.1m.

For the experiment, the value W#f was fixed at 100 and the value Wp was set to simulate a different impact for
the different parameters: If a variable has a high importance – so changes to it should therefore be penalized
more heavily, the value Wp was set to 20 for it; otherwise, it was set to 1. We will refer to these values as high
and low importance levels.

Note that the different penalties also define the relation of the parameter difference penalties to the penalty
W#f for the number of resulting tiles, so there is a difference between the version in which all parameters are
high and the one in which all parameters are low.

Figure C.2 shows the result of the optimization runs with high penalties for all parameters. Because the weights
for the width and height of the windows are the same, it does not make a difference if the areas A and B or the
areas B and C are merged. In our test, CPLEX chose to merge areas B and C. Note that although in the case
of this example, all cells within the areas are part of the same tile in the result for all combinations of weights,
this is not always the case.

Given the difference of 1.5m in the depth between areas A and C, it is impossible to merge the three cells A−C
in the first step. The same holds for lower part (areas D−F ). In the second run, however, the the area resulting
from E and F has a depth of 0.9, so it can be merged with area D which still has a depth of 0. According to the
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(a) Original facade. (b) Facade after first iteration. (c) Facade after second
iteration (final).

Abbildung C.2.: Homogenization sequence for high penalties for all variables.

objective of minimizing the sum of the squared differences between the original values and the resulting values
in all cell, the new depth value for the merged cells in the ground floor should be 0.6 because there are 6 cells
with a value of 0.9 and three ones with a value of 0. This would, however, violate the constraint enforcing the
∆p (= 0.51 in the example) bound on the parameter differences. For this reason, the resulting depth is chosen
as close as possible to the optimal value of 0.6 without violating the ∆p constraint, so because the optimum
value is 0.6 and the critical value is 0, the resulting value for the depth is 0 + ∆p = ∆p = 0.51 in this case.
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(a) Original facade. (b) Facade after first iteration. (c) Facade after second
iteration (final).

Abbildung C.3.: Homogenization sequence for low penalty for the height and high for the other variables.

If we have a low importance for the window height (with the rest of the parameters set to high importance;
see figure C.3), then the areas A and B will have to be merged in the first run because the penalty for this
homogenization is lower than it would have been for merging B and C.

Since the depth differences and the parameters of the windows are identical for all cells in the ground floor, the
choice whether the areas D and E or the areas E and F are merged is completely arbitrary in the basic set
of constraints. In the previous setting, a sensible combination was chosen – the tilings of the ground floor and
the upper ones were aligned. This was, however, pure chance. In this second example, the different parts are
not aligned correctly. In order to prefer sensible alignments, additional constraints or objective terms would be
needed.
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(a) Original facade. (b) Facade after first iteration. (c) Facade after second
iteration (final).

Abbildung C.4.: Homogenization sequence for low penalty for the width and high for the other variables.

If the penalty for the differences in the width of the windows is low (and high for the other parameters), then
the areas B and C will have to be merged in the first run of the optimization process; merging A and B would
cause a higher penalty. This is shown in figure C.4.

In this case, the areas D and E were merged in the first run, so the resulting depths will be 0.3m for
the tile resulting from D and E and 1.2m for the cells in area E. The optimum value is, again, 0.6m:
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(6× 0.3m+ 3× 1.2m) /9 = 0.6m. This would, however, violate the ∆p bound on the parameter difference
for the cells in area E, because 1.2m − 0.6m = 0.6m which is greater than ̺ = 0.51m. For this reason, the
resulting depth for the ground floor after the second run will be 1.2m− 0.51m = 0.69m instead of 0.51m which
was the result of merging D and E first (see above). This shows that different orders of merging in different
runs can cause parameters to “drift” in different directions.
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(a) Original facade. (b) Facade after first iteration. (c) Facade after second
iteration (final).

Abbildung C.5.: Homogenization sequence for low penalty for the depth and high for the other variables.

As we have established above, it is not possible to merge cells from the upper and lower floors in the first run
because of the values of 1.0m and 2.1m for one of the width or height parameters. Because of this fact, no cells
from the upper and lower floor are merged (A and D, for example) although the weight for the depth is low

in figure C.5 while it is high for the other parameters.

Fore this reason, the upper and lower floors are treated independently and there is no preference for merging A
and B or merging B and C first in the upper part nor for preferring the merging of either D and E or merging
E and F .
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(a) Original facade. (b) Facade after first iteration.

(c) Facade after second iteration. (c) Facade after third iteration (final).

Abbildung C.6.: Homogenization sequence for high penalty for the width and low for the other variables.

So far, we considered cases in which the majority of the parameter weights was high. The values of the
parameters were chosen in such a way that, in this case, the cost for changing the parameters would have
exceeded the gain of saving another tile if the cells of the upper floors would have been merged in the second
run. With the majority of the weights being low, this is now different.

In order to convince ourselves of the fact that after the first run, the cells of the upper floors can indeed be
merged, we take a closer look at the situation shown in figure C.6. Because the weight for the width is high,
the areas A and B have to be merged in the first run because areas B and C have different window widths, so
merging them would cause a higher penalty.

In order to simplify the descriptions in the following, we will refer to the area resulting from the homogenization
of X and Y as area XY for the next run; if area Z was merged to this area in a following run, the result will be
called XY Z. Note that XY Z and Y ZX have different histories and, as we will see in the following, may have
different parameter values.
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After the first run, the windows in area AB will have a width of 1m and a height 1.5m. The cells in area C
keep their width of 2.0m and their height of 1m. This means that it would be just possible to merge areas AB
and C in the second run. The optimum values for the width and height of the windows would, in this case, be
(12 × 1.0m + 6 × 2.0m)/18 = 1.3̄m for the width and (12 × 1.5m + 6 × 1.0m)/18 = 1.3̄m for the width of the
windows. We round this value to 1.33m.

Due to the ∆p bound on the parameter differences, not all parameters can be set to this value. In the case of
the width of the windows, the value of 2.0m in area C has a difference of 2.0m− 1.33m = 0.67m which is more
than the threshold δp if ̺ = 0.51m. For this reason, the width will be set to the valid value that is closest to
the optimum; in this case, this will be 2.0m− 0.51m = 1.49m.

As far as the height is concerned, we have values of 1.5m for the area AB and 1.0m for area C, so we can set the
height to the optimum value of 1.33m. The depth of area AB is (6× 0.3m+6× 0.9m)/12 = 0.6m; the depth of
area C remains at 1.5m. The optimum value for the depth in ABC is therefore (12×0.6m+6×1.5m)/18 = 0.9m.
With the ∆p constraint, we have to set the depth to 1.5m− 0.51m = 0.99m.

In total, we notice that the values are shifted towards those of the area that was not part of the homogenization
in the first run if they cannot assume the optimum value – in the given example, the height could be set to
the optimum value. This shows that there is a problem in the multi-run strategy: The parameter with the
higher importance value (in this case, the width) finishes farther from the optimum than the one with the lower
importance.

On the other hand, if there is (a set of) cell(s) that have considerably different values for an important parameter
compared to the rest of the facade, this effect reduces the likelihood of merging such a special cell with the rest
of the facade. Additionally, if such a special cell is merged with other cells, the special property is pronounced.
Only if a bigger area is merged as in the example, this is a problem; otherwise, it is a feature rather than a bug.

In the bottom row, CPLEX chose to merge areas D and E in the first and DE and F in the second run. Since all
parameter differences are the same for the bottom row, this is completely arbitrary. As we have seen above, this
leads a depth of 0.69m for the area DEF . Had we merged E and F first, the resulting depth for the area EFD
would have been 0.51m. For this reason, the depth of the final facade would have been slightly different: In the
DEF case, it would have been (18× 0.99m+9× 0.69m)/27 = 0.89m and (18× 0.99m+9× 0.51m)/27 = 0.83m
in this example (with the ABC merging sequence in the upper part). Similar effects with slightly different values
will occur if the merging sequence had been BCA in the upper part.

Now we can go back to see why the areas in the upper floors were not merged in the previous examples. After
the first run, we have values of 0.6m for the depth, 1.5m for the height and 1m for the width of the windows
in area AB. If area C was merged with area AB, the resulting values would be 0.99m for the depth, 1.33m for
the height and 1.49m for the width as explained above.

So the basic (unweighted) cost for this merge is 12× (0.6−0.99)2 ≈ 1.83 for the depth, 12× (1.5−1.33)2 ≈ 0.35
for the height and 12× (1.0− 1.49)2 ≈ 2.88 for the width in area AB and 6× (1.5− 0.99)2 ≈ 1.56 for the depth,
6× (1.0− 1.33)2 ≈ 0.65 for the height and 6× (2.0− 1.49)2 ≈ 1.56 for the width in area C.

Sorted by parameters, we get total unweighted costs of 1.83+1.56 = 3.39 for the depth, 0.35+0.65 = 1.0 for the
height and 2.88+1.56 = 4.44 for the width. Due to the effects analyzed above, the greater unweighted difference
will always occur for the parameter with the higher weight if width and height are weighted differently. For this
reason, we have a total cost of WwidthCwidth = 20× 4.44 = 88.8 for the width.

If all other weights are low(=1), then we get a total cost of 88.8 + 3.39 + 1.0 = 93.2 for merging AB with C.
This cost is just lower than the benefit of W#f = 100 that we get for having saved one facade tile by merging
AB and C. For this reason, area AB is merged with area C in this case. Now we also have the explanation why
this did not occur in the examples we encountered before: In these cases, at least one of the other parameters
had a high weight, so the cost for merging AB and C was greater than the benefit of saving the additional tile.

Due to the symmetry of the example, the explanations and calculations given above for the case of a high

weight for the width can be used for the case of a high weight for the height of the windows . Note that, in this
case, areas B and C will have to be merged first and the values and costs for the widths and heights have to be
swapped appropriately in the assessment of the option of merging area BC with area A. The basic arguments
and values are, however, the same, so it is left to the reader to verify the figures.
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sen. Dissertation, Universität Stuttgart, Deutsche Geodätische Kommission, Reihe C, Heft Nr. 530.

Brenner, C., 2003. Building Reconstruction from Laser Scanning and Images. In: Proceedings of the ITC Earth
Observation Science Department Workshop on Data Quality.

Chrobak, M., Payne, T., 1989. A Linear-time Algorithm for Drawing a Planar Graph on a Grid. Information
Processing Letters 54, 241–246.

Cook, S. A., 1971. The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM
symposium on Theory of computing. STOC ’71. ACM, New York, NY, USA, pp. 151–158.

Dakin, R., 1965. A Tree Search Algorithm for Mixed Integer Programming Problems. The Computer Journal
8, 250–255.

Dantzig, G., Fulkerson, D. R., Johnson, S., 1954. Solution of a large-scale traveling-salesman problem. Journal
of the Operations Research Society of America 2 (4), 393–410.

Dantzig, G. B., 1951. Maximization of a Linear Function of Variables Subject to Linear Inequalities, in Activity
Analysis of Production and Allocation. Wiley, New York, Ch. XXI.
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