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Abstract 

The surface reconstruction of objects by means of digital photogrammetry and terrestrial 
laser scanning (TLS) has been a topic of research for long time. This has led to high advances 
of such systems, which offer the opportunity to collect reliable and dense 3D points of object 
surfaces. Because of the speed and efficiency of data acquisition using terrestrial laser 
scanners, soon it was believed that close-range and/or terrestrial photogrammetry would be 
replaced by TLS systems. Then again, many researchers stated that the photogrammetric 
acquisition techniques can deliver similar results that can be realized with much lower cost 
using dense image matching algorithms. However, to reach the highest possible degree in 
efficiency and flexibility of data acquisition, it has become more obvious that the combined 
use of both techniques would assure complete and consistent results, especially in the case of 
complex objects like heritage sites. This combination enables the exploitation of the benefits 
of these measurement principles. Time-of-flight (TOF) TLS systems can be used for acquiring 
large-scale point clouds at medium range distances, while image based surface 
reconstruction methods enable flexible acquisition with high precision at short distances. 

Therefore, within this research the potential of combining digital images and TLS data for 
close-range applications in particular, 3D data recording and preservation of cultural 
heritage sites is discussed. Furthermore, besides improving both the geometry and the visual 
quality of the model, this combination promotes new solutions for issues that need to be 
investigated deeply. This covers issues such as filling gaps in laser scanning data to avoid 
modeling errors, retrieving more details in higher resolution, target-free registration of 
multiple laser scans.  The integration method is based on reducing the feature extraction 
from a 3D to a 2D problem by using synthetic/virtual images derived from the 3D laser data. 
It comprises three methods for data fusion. The first method utilizes a scene database stored 
in a point-based environment model (PEM), which stores the 3D laser scanner point clouds 
associated with intensity and RGB values. The PEM allows the extraction of accurate control 
information, camera positions related to the TLS data and 2D-to-3D correspondences 
between each image and the 3D data, for the direct computation of absolute camera 
orientations by means of accurate space resection methods. Precedent to that, in the second 
method, the local relative orientations of the camera images are calculated through a 
Structure-from-Motion (SfM) reconstruction method. These orientations are then used for 
dense surface reconstruction by means of dense image matching algorithms. Subsequently, 
the 3D-to-3D correspondences between the dense image point clouds and those extracted 
from the PEM can be determined. This is performed by reprojecting the dense point clouds 
onto at least one camera image, and then finding the 3D-3D correspondences between the 
reprojected points and those extracted from the PEM. Alternatively, the 3D-3D camera 
positions can be used for this purpose. Thereby, the seven-parameters transformation is 
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obtained and then employed in order to compute the absolute orientation of each image in 
relation to the laser data. 

The results are improved further by introducing a general solution, as a third method, that 
combines both the synthetic images and the camera images in one SfM process. It provides 
accurate image orientations and the sparse point clouds, initially in an arbitrary model space. 
This enables an implicit determination of 3D-to-3D correspondences between the sparse 
point clouds and the laser data via 2D-to-3D correspondences stored in the generated 
images. Alternatively, the sparse point clouds can be projected onto the virtual images using 
the collinearity equations in order to increase measurement redundancy. Then, a seven-
parameter transformation is introduced and its parameters are calculated. This enables 
automatic registration of multiple laser scans. This holds particularly in case of laser scans 
that are captured at considerably changed viewpoints or non-overlapping laser scans. 
Furthermore, surface information can also be derived from the imagery using dense image 
matching algorithms. Due to the common bundle block adjustment, the results possess the 
same scale and coordinate system as the laser data and can directly be used to fill gaps or 
occlusions in the laser scanner point clouds and resolve small object details. 

In addition, two image-based methods were developed for the automatic pairwise 
registration of multiple laser scans based on the PEM and the geometric relationship of 
common keypoints between scans. This includes a scan organization step using a directed 
graph structure that accurately and quickly identifies scan connections sharing keypoints 
between all unorganized laser scans. 

Moreover, by taking advantage of the availability of cultural heritage objects in form of 3D 
physical models, these models are recorded using image and range-based techniques. This is 
not only for documentation and preservation issues, but also for historical interpretation, 
restoration and educational purposes. 

The proposed methods were tested on real case studies with various scene images and range 
sensors in order to demonstrate the generality and effectiveness of the presented approaches. 
It is hoped that this thesis not only introduces a new method for combining digital images 
and laser scanner data, but also points out to some important issues together with some 
solutions in practice for low-cost close-range applications. This motivates the fusion of other 
available low-cost sensors such as Kinect range cameras or mobile phone cameras for indoor 
and outdoor applications. 
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Zusammenfassung 

Die digitale Oberflächenrekonstruktion mit Hilfe von digitaler Photogrammetrie und 
terrestrischem Laserscanning (TLS) stellt seit längerer Zeit ein Forschungsthema dar. Dies 
führt zu einer ständigen Weiterentwicklung solcher Systeme, die eine zuverlässige und 
dichte 3D-Punkterfassung von Objektoberflächen ermöglichen. Aufgrund der Geschwindig-
keit und Effizienz der Datenerfassung mittels TLS glaubte man bald nach dem Aufkommen 
dieser Methode, dass die Nahbereichsphotogrammetrie durch TLS Systeme ersetzt werden 
würde. Andererseits legten viele Wissenschaftler dar, dass die photogrammetrische Erfas-
sung durch die Verwendung von Verfahren zur dichten Bildzuordnung (Dense Image 
Matching) mit viel geringeren Kosten realisiert werden könne. Jedoch wurde offensichtlich, 
dass das Erreichen des höchsten Effizienz- und Flexibilitätsgrades nur durch den gemein-
samen Einsatz beider Techniken zu erreichen ist und komplette und konsistente Ergebnisse 
sicherstellt, vor allem bei der Erfassung von komplexen Objekten wie Kulturdenkmälern. 
Diese Kombination ermöglicht die Ausnutzung der Vorteile beider Messprinzipien: Laufzeit-
messung TLS können eingesetzt werden, um großräumige Punktwolken in mittleren 
Distanzen zu erfassen, wohingegen die bildbasierte Oberflächenrekonstruktion eine flexible, 
hochpräzise Erfassung auf kurze Distanzen ermöglicht. 

Daher diskutiert diese Arbeit das Potential der Kombination von digitalen Bildern und TLS-
Daten für Anwendungen im Nahbereich, wobei im Speziellen auf die 3D-Datenerfassung für 
die Konservierung von Kulturdenkmälern eingegangen wird. In dieser Arbeit wird ein 
automatisches Verfahren für die Kombination von Bildern und Laserscanner-Daten 
präsentiert, welche das Ziel verfolgt, eine vollständige digitale Repräsentation einer Szene zu 
erstellen. Über diese Verbesserung der geometrischen und visuellen Qualität des Modells 
hinaus hat diese Kombination des Weiteren zum Ziel, Probleme aufzuzeigen, die weiterer 
Untersuchungen bedürfen. Dazu gehören das Füllen von Datenlücken in den TLS-Daten, um 
Modellierungsfehler zu vermeiden, und die Erfassung von mehr Details in höherer Auf-
lösung sowie die Zielmarken freie Registrierung mehrerer Scans. Das Integrationsverfahren 
basiert auf der Reduktion der Merkmalsextraktion von einem 3D- auf ein 2D-Problem durch 
die Verwendung synthetischer bzw. virtueller Bilder, welche aus den 3D-Laser-Daten 
berechnet werden.  

Das Verfahren besteht aus drei Methoden zur Datenfusion. Die erste Methode verwendet 
eine Szenendatenbank, welche in einem punktbasierten Umgebungsmodell (Point-based 
Environment Model – PEM) gespeichert ist und die 3D TLS-Punktwolken zusammen mit 
ihren Intensitäts- und RGB-Werten enthält. Das PEM erlaubt die Extraktion präziser 
Kontrollinformation sowie Kamerapositionen relativ zu den TLS-Daten und 2D-3D-
Korrespondenzen zwischen jedem Bild und den 3D-Daten, was die direkte Berechnung von 
absoluten Kameraorientierungen mit Hilfe von präzisen räumlichen Rückwärtsschnitten 



Zusammenfassung   11 

 
ermöglicht. Die zweite Methode verwendet einen Structure-from-Motion-(SfM)-Ansatz für 
die vorangehende Berechnung der lokalen relativen Orientierungen der Bilder. Diese 
Orientierungen werden eingesetzt, um eine Oberflächenrekonstruktion mittels Verfahren 
zur dichten Bildzuordnung zu berechnen. Daraufhin können die 3D-3D-Korrespondenzen 
zwischen dem Ergebnis der dichten Bildzuordnung und Punkten des PEM bestimmt 
werden. Hierfür wird die dichte Punktwolke in mindestens ein Kamerabild projiziert und 
die 3D-3D-Korrespondenzen zwischen den projizierten Punkten und jenen aus dem PEM 
extrahierten gesucht. Alternativ können auch die 3D-3D-Kamerapositionen für diesen Zweck 
eingesetzt werden. Dadurch werden die Parameter einer Helmert-Transformation berechnet 
und eingesetzt, um die absolute Orientierung jedes Bildes in Bezug zu den TLS-Daten zu 
bestimmen. 

Die Ergebnisse werden durch die Einführung einer allgemeingültigen Lösung, der dritten 
Methode, weiter verbessert, welche die synthetischen Bilder und die Kamerabilder in einem 
gemeinsamen SfM-Prozess vereint. Dieser Prozess hat genaue Bildorientierungen und dünn 
besetzte Punktwolken zum Ergebnis, welche zunächst in einem beliebigen Koordinaten-
system vorliegen. Dies ermöglicht eine implizite Bestimmung von 3D-3D-Korrespondenzen 
zwischen der dünn besetzten Punktwolke und den TLS-Daten unter Verwendung der 2D-
3D-Korrespondenzen, die in den generierten Bildern enthalten sind. Alternativ können die 
dünn besetzten Punktwolken mittels der Kollinearitätsgleichung auf die virtuellen Bilder 
projiziert werden, um die Messredundanz zu erhöhen. Daraufhin werden die Parameter 
einer Helmert-Transformation berechnet. Deren Verfügbarkeit ermöglicht eine automatische 
Registrierung mehrerer Laserscans, insbesondere solcher, die mit stark unterschiedlichen 
Sichtfeldern oder ohne Überlappung erfasst wurden. Darüber hinaus können über die dichte 
Bildzuordnung weitere Oberflächeninformationen aus den Bildern extrahiert werden. 
Aufgrund der gemeinsamen Bündelblockausgleichung liegen die Ergebnisse dieses Schrittes 
im gleichen Koordinatensystem und mit dem gleichen Maßstab vor wie die TLS-Daten und 
können daher direkt verwendet werden, um Datenlücken oder verdeckte Bereiche in den 
TLS-Punktwolken zu füllen oder kleine Objektdetails aufzulösen. 

Darüber hinaus wurden zwei bildbasierte Methoden für die automatische paarweise 
Registrierung von mehreren Laserscans basierend auf dem PEM und den geometrischen 
Beziehungen zwischen gemeinsamen Punkten entwickelt. Dies beinhaltet einen Schritt zur 
Organisation der Scans auf Basis einer gerichteten Graphstruktur, die präzise und schnell 
Verbindungen zwischen einzelnen Scans anhand von Merkmalspunkten zwischen allen 
Scans identifiziert. Des Weiteren werden 3D-Modelle von Denkmälern genutzt, indem diese 
mittels bild- und distanzmessenden Techniken erfasst und sowohl für Dokumentation und 
digitale Erhaltung, als auch für geschichtliche Interpretation, Restaurierung und Bildung 
nutzbar gemacht werden. Die vorgeschlagenen Methoden wurden im Rahmen von Fall-
studien anhand von verschiedenen Bildern und unter Verwendung verschiedener Sensoren 
getestet, um ihre Allgemeingültigkeit und Effizienz aufzuzeigen. 
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Über die Präsentation einer neuen Methode für die Kombination von Fotografien und 
Laserscanner Daten hinaus, werden in dieser Arbeit einige wichtige Probleme und deren 
Lösungen in der Praxis von Low-cost Nahbereichsanwendungen aufgezeigt. Dies soll die 
Datenfusion von Low-cost Sensoren wie der Microsoft Kinect und Mobiltelefonen für 
Anwendungen im Innen- und Außenbereich motivieren. 
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1 Introduction 

1.1 Motivation 
Over recent years, the generation of three-dimensional (3D) photo-realistic models of the real 
world has been one of the most interesting topics in digital photogrammetry and LiDAR 
(Light Detection And Ranging) applications. A typical illustration is the 3D data recording 
and preservation of cultural heritage sites by generating comprehensive virtual reality 
models. Cultural heritage is invaluable and irreplaceable for humanity. It builds a bridge and 
a link to the past for better understanding of history, and elevates a sense of spiritual, social 
and common identity. Therefore, the cultural heritage data recording and preservation is still 
significant at the present time as a result of a globally increase in population, industrial 
developments, urbanization and armed struggles. As the Getty Conservation Institute, Los 
Angeles, USA notes "Today the world is losing its architectural and archaeological heritage faster 
than it can be documented". It is clear that 3D digital preservation of all areas, countries, and 
communities should be performed and made easily obtainable and accessible for public use. 
However, there are many challenges in digital preservation and documentation projects 
related to the implemented technology, data management, data archiving, public delivery, 
and educational resources. Thus, a complete process for heritage recording and preservation 
is desirable (Kacyra, 2009). 

Close-range photogrammetry and terrestrial laser scanning (TLS) are two typical techniques 
to reconstruct 3D objects (Fritsch et al., 2011). Both techniques enable the collection of precise 
and dense 3D point clouds. However, due to specific requirements in different 
reconstruction projects and the different characteristics of both methods, none of the sensor 
technologies is superior over the other. Typical requirements are principally related to the 
geometric accuracy, photorealism, completeness, automation, portability, time, and cost. TLS 
is a polar measurement system, which directly generates 3D object points. Many current TLS 
systems provide color information as well. The resolution of the final point cloud is defined 
by the angular resolution of the instrument, while the precision of the points is mainly 
defined by the distance precision. This leads to a rather consistent precision behavior over a 
medium range. However, the resolution of TLS point clouds at the object is limited due to 
the minimum acquisition distance and the limited distance precision. Thus, small object 
features might not be sufficiently resolved. A higher point density on the object can be 
reached using photogrammetry. By using imagery acquired at short distance in combination 
with photogrammetric surface reconstruction methods, point clouds with high resolution at 
the object and high precision can be derived. This enables the reconstruction of small object 
features. Since resolution and precision of the point cloud are directly dependent on the 
image scale, the latter can be chosen flexibly according to the application needs. Beside 
higher geometrical resolution, dense color information is available, which can be beneficial 
for analytical purposes besides making the visualization of the resulting 3D model more 
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compelling. A drawback of image-based reconstruction is the missing scale information. 
Since photogrammetry is a triangulating measurement principle, additional ground truth 
must be introduced to determine the object scale. Typically, this is solved by utilizing ground 
control points (GCPs) or scale bars - which typically implies additionally manual work.  

State-of-the-art TLS systems are integrated or can be equipped with a standard digital 
camera. This enables the collection of high-resolution images, which are automatically 
registered to the acquired 3D point clouds. But, there are considerable limitations due to 
fixing the relative position between the two sensors (Liu et al., 2006). These limitations cover 
the following aspects. At first, there is a lack of two-dimensional (2D) sensing flexibility since 
the acquisition of the images and laser point clouds take place at the same viewpoint. This 
also includes range sensor’s constrains like standoff distance (distance between the sensor 
and the object) which results in limitations on the camera’s area coverage and image quality. 
Moreover, in some cases there might be a need to collect additional images, e.g. for filling 
gaps in laser point clouds due to occlusions that cannot be handled by the fixed relative 
position of both sensors. 

Even with the high advance of TLS systems, the resolution of laser point clouds can still be 
insufficient to reconstruct small features, clean edges or breaklines. Furthermore, in case of 
spatially complex objects and difficult topography as often occurring at heritage sites, a 
complete coverage of data acquisition from different viewpoints is required. In order to 
avoid occlusions resulting from such complex objects, many scanning positions and thus 
high efforts for setting up and dismounting the laser scanner are required. Accordingly, TLS 
data acquisition of such objects can be relatively time-consuming and effort-intensive. On the 
contrary, state-of-the-art image based reconstruction algorithms offer more flexible data 
acquisition and are depending on the selected image scale, higher resolution and precision. 
Furthermore, this provides more accurate and reliable edge extraction (Chen et al., 2004; 
Zhang, 2005). However, image based surface reconstruction has difficulties in case of limited 
or poor texture. Furthermore, a large amount of imagery is needed to collect large objects at 
high resolution. This leads to larger post processing efforts than for laser scanning, which 
can however be covered with the constantly evolving development of more efficient 
algorithms as well as computation hardware.  

It has become more obvious that not only one particular sensor technology and associated 
algorithms can pledge efficient and reliable results, particularly in case of complex scenes 
like cultural heritage sites. Several authors have already proposed solutions for combined 
usage of image and LiDAR data in order to exploit beneficial characteristics of both 
photogrammetric and TLS techniques (Brenner, 2005; Chen et al., 2004). As (Ackermann, 
1999) has put it:  “The systematic combination of digital laser and image data will constitute an 
effective fusion with photogrammetry, from a methodological and technological point of view. It would 
resolve the present state of competition on a higher level of integration and mutual completion, 
resulting in highly versatile systems and extended application potential. [...] It would be a complete 
revolution in photogrammetry if image data could directly be combined with spatial position data”. 



1.2 Objectives 15 

 
Under this point of view, different integration solutions of photogrammetric and LiDAR 
techniques have been attempted. 

Some integration approaches aim at improving the generated point clouds in terms of 
completeness and reliability by measuring corresponding straight lines (Alshawabkeh & 
Haala, 2004) or using available surveying data such as GCPs and GPS stations (El-Hakim et 
al., 2008). Others are combining radiometric data from the images and range information 
acquired by TLS in order to simplify the extraction of information (Bornaz & Dequal, 2003; 
Alshawabkeh, 2006). However, in the previously mentioned works, mostly single images 
and manual extraction from laser data are taken into consideration. (Becker & Haala, 2007) 
present a combined use of terrestrial image and LiDAR data for the extraction of façade 
geometry and the refinement of the façade with detailed window structures. In (Nex & 
Rinaudo, 2010), they consider a reciprocal cooperation between photogrammetric and 
LiDAR techniques in order to extract building breaklines in space, to perform point cloud 
segmentation and to speed-up the modeling process. (Zheng et al., 2013) propose a method 
for registering optical images with LiDAR data by minimizing the distances from the 
photogrammetric matching points to terrestrial LiDAR data surface with the collinearity 
equations as the basic mathematical model. However, initial values (obtained by manual 
selection of a minimum set of point correspondences) are still required and it is prone to fail 
if the laser data surface is too flat. 

As a logical follow-up, in order to achieve an improved results than could be achieved by the 
use of a single sensor alone, a new integration approach of photogrammetric and LiDAR 
techniques at the data level is proposed in this thesis. It utilizes synthetic images created 
from the TLS data in order to simplify the extraction of 3D information. The term 
“integration” can be defined as the fusion of two separate entities, resulting in the creation of 
a new entity (Roennholm et al., 2007). Our proposed fusion approach is firstly based on the 
potential to develop an efficient pipeline able to fuse multi data sources and sensors for 
different applications. Secondly, it yields at an increase in automation and redundancy in 
order to satisfy the demands of the final user (geodesist, archaeologist, architect, etc.). 
Finally, it represents a direct solution for data registration and results in dense surfaces and 
detailed structures with high resolution texture. 

 

1.2 Objectives 
The main objective of the thesis is to integrate/combine high-resolution digital images and 
terrestrial laser scanner point clouds in order to have a complete representation of a scene. In 
particular, this integration will serve photogrammetric close-range applications like cultural 
heritage data recording by generating comprehensive 3D virtual reality models. Therefore, 
the proposed method aims at complementing each technique with the other where 
individual weakness of an individual technique can be defeated. Besides improving both the 
geometry and the visual quality of the model, this integration directs at promoting issues 
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that need to be investigated deeply such as filling gaps in laser scanner data to avoid 
modeling errors, reconstructing more details in higher resolution and target-free registration 
of multiple laser scans. For that, both input sources have to be registered in one coordinate 
system. Then an automatic data fusion through certain steps can be followed. This also 
provides a direct solution for multiple scan registration, especially in case of scans acquired 
at significantly changed viewpoints or that have even no overlap. Furthermore, within this 
thesis image-based methods for the pairwise registration of multiple scans are introduced.  

In addition, this thesis will take advantage of the availability of cultural heritage objects in 
form of 3D physical models by recoding these models not only for documentation and 
preservation issues, but also for visual tourism, historical interpretation, restoration and 
educational purposes. 

Under that, the following tasks are the major contributions achieved in this thesis: 

 Generating reflectance and/or RGB image as a 2D representation of 3D TLS data by 
projecting the 3D Cartesian coordinates of each single laser scanner point cloud to a 
virtual image plane in a central perspective representation. The advantage of 
generating such synthetic images is that the data registration can be performed 
without feature extraction and segmentation processes in the 3D laser data.  

 Developing two automatic procedures for combining digital images and laser scanner 
data based on a scene database stored in a point-based environment model (PEM). 
The PEM allows the extraction of accurate control information for direct absolute 
camera orientations by means of accurate space resection methods, and the 
calculation of seven-parameter transformation for data combination. 

 Proposing a fully automatic fusion approach based on a bundle block adjustment for 
the orientation estimation of camera images and synthetic images created from laser 
scanner data by means of a Structure-from-Motion (SfM) reconstruction method. 
Adding camera images to the registration of images from TLS can improve the block 
geometry. This holds particularly in case of laser scans captured at considerably 
changed viewpoints with little overlap between the scans or if parts of the scene are 
occluded, as well as completely non-overlapping laser scans. Besides improving the 
overlap and the block geometry, the registered camera images can be used for adding 
texture to the geometry acquired by the scanner. Furthermore, gaps within the point 
clouds can be filled by point clouds from dense image matching, where higher 
resolution can also be used to recover more details than possible with TLS. This 
approach, for several applications, can promote the data registration accuracies to a 
point where an optimization step can be ignored.  

 Presenting and developing two image-based methods for the automatic pairwise 
registration of multiple laser scans. These methods enable a coarse scan registration, 
which provides very good a priori alignment for further global registration by means 
of any surface matching algorithm, e.g. the Iterative Closest Point (ICP). 
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 Introducing a method based on range and image acquisition techniques for recording 

heritage sites, which are in form of 3D physical models for different purposes. 

 

1.3 Thesis Outline 
This dissertation is organized in eight chapters that give a description of the proposed 
methods and the performed tests. Chapter 1 shows the motivation and the background for 
our study, the objectives of the research and the thesis organization. In the following, 
Chapter 2 reviews shortly the state-of-the-art methods and techniques of generating 3D 
digital models. In particular, an overview of most common algorithms and already achieved 
results is given and particular attention is kept to the limits of these methods. 

The calculation steps of the reflectance and the RGB images from laser scanner data are 
presented in Chapter 3. The focus is to build these virtual images in a central perspective 
representation. In Chapter 4, details about our developed data integration methods starting 
by two methods for combing digital images and TLS data using a scene database stored in a 
point-based environment model are given. It provides accurate control information for 
image and data combination. Then, a general integration approach based on a combination 
of the generated images from laser data and the camera images in one bundle adjustment 
(BA) is described. Furthermore, experimental results are shown using a real case study to 
demonstrate the effectiveness of the presented approaches. 

In Chapter 5, two image-based methods for the automatic pairwise registration of multiple 
laser scans and a multi-view target-free registration method resulted from applying the 
general integration approach are given with an illustration of experimental results. Chapter 6 
presents a case study of recording 3D physical models of a heritage site and what 
methodology and technique have been used. A selection of case studies of our developed 
methods with description of the materials, what sensors have been used for the data 
acquisition, all solved problems and achieved results are highlighted in Chapter 7. Finally, 
Chapter 8 summarizes the solved tasks; extracts the conclusions from the work and gives 
few future points to discuss. In particular, mobile phones as low-cost sensors have been also 
utilized in the integration solution for registering non-overlapping scans. 
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2 Generation of 3D Models - An Overview 

The need for 3D digital models is increasing day after day. They became financially 
manageable to some extend in diverse fields and applications such as visualization, 
animation, navigation and virtual city models. In particular, 3D photo-realistic modeling is 
desired for the 3D recording and preservation of cultural heritage sites. These models play 
an essential role in case of loss or damage, tourism and museum purposes. The requirements 
specified for several applications, mainly 3D recording, involve generating high quality 3D 
models in terms of completeness, geometric accuracy and photo-realistic appearance. Under 
that, the processing chain of generating these models comprises four well-known steps: data 
acquisition and geometric reconstruction, surface generation, texture mapping and 
visualization. In this chapter, an overview of the most relevant methods to the solved tasks 
in this thesis from different viewpoints is given. 

 

2.1 Data Acquisition and Geometric Reconstruction 
Generally, in close-range and/or terrestrial applications, three approaches are used for data 
capturing and surface point recovering of a scene. These methods are: image-based 
approach, range-based approach and a combined approach of the latter both methods. The 
former demands sensor calibration to obtain orientation information followed by a series of 
measurements and calculations to get the recovered 3D object surface points. While, the 
range-based approach hands over directly the measured surface points (3D point clouds) 
without further effective processing steps. The combined use of the image- and range-based 
techniques requires a registration step of both input sources that delivers efficiently complete 
and detailed 3D models. 

2.1.1 Image-Based Approach   
The main idea of this approach is to derive reliable measurements and 3D geometric models 
by means of photographs (mainly photogrammetry and computer vision). It utilizes 2D 
image measurements to recover 3D object surface information through a mathematical 
model (Luhmann et al., 2007). This method is widely used to recover geometric surfaces of 
architectural objects (El-Hakim, 2002) or acquire 3D measurements from single or multiple 
images where the projective geometry is present (Nister, 2004a). An intensive review of the 
terrestrial image-based modeling technique is presented in (Remondino & El-Hakim, 2006). 
They address the main problems and the available solutions for the generation of 3D models 
from terrestrial images. (Remondino et al., 2008; Manferdini & Remondino, 2012) report 
methodologies of image-based 3D reconstruction techniques for detailed surface measure-
ment and reconstruction. 
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In the computer vision community, fully automated 3D reconstruction methods based on 
structure-from-motion (SfM) algorithms, which refer to the simultaneous estimation of 
camera orientations and sparse 3D point clouds from a set of image correspondences, have 
been reported intensively, see (Pollefeys et al., 2004; Vergauwen & Van Gool, 2006; Snavely 
et al., 2008; Farenzena et al., 2009; Barazzetti et al., 2011). Calibrated or uncalibrated cameras 
can be involved in the SfM reconstruction method. This is since the computational solution 
for the camera model is usually embedded in the SfM process using the actual object 
measurements. In addition to that, the SfM method has been also adopted for commercial 
use, capturing and viewing real objects in 3D, e.g. ARC3D, Microsoft Photosynth, 
Autodesk®123DCatch and Agisoft PhotoScan. These methods usually require very short 
intervals between consecutive images to ensure constant illumination and scale between 
successive images. Therefore, they are primarily useful for visualization, object-based 
navigation, object recognition, robot motion planning, and image browsing purposes and not 
for metric and accurate 3D recording and modeling purposes (Manferdini & Remondino, 
2012). However, the automation level has reached a substantial development with the 
capability to orient huge numbers of images (Snavely et al., 2008). More details about the 
SfM methods are reported in Appendix A. 

Using passive1 sensors, the image-based approach generally involves three steps: capturing 
photographs, providing and estimating camera orientation (interior and exterior 
orientations) and surface point recovering by measuring interest points in the photos, which 
results in calculating the 3D object coordinates of the interest points. This is usually followed 
by a 3D dense reconstruction step. In the following, a general overview is presented. 

2.1.1.1 Image Acquisition 

In principle, a minimum of two images is sufficient to reconstruct a scene and 3D 
information can then be derived using perspective/projective geometry formulations (Gruen 
& Huang, 2001). In order to have precise 3D coordinates of the measured points in the 
images and having adequate ray intersection, the image stations must be well distributed. 
This accentuates the importance of the photogrammetric network design, which is 
performed usually by photogrammetrists. These experts provide a set of rules on how to 
collect images, where to set up the camera, how many images to capture etc. In the task of 
planning, one could refer to the recommendations suggested by the comité international de 
photogrammétrie architecturale (CIPA), 3x3 Rules for simple photogrammetric documenta-
tion of architecture, or the efficient capturing approach with “One panorama each step” 
which ensures complete coverage and sufficiently redundant observations for a surface 
reconstruction with high precision and reliability (Wenzel, et al., 2013). 

Studies in close-range photogrammetry (Fraser, 1996; Clarke et al., 1998; Gruen & Beyer, 

                                                      
1 Passive sensors (e.g. digital cameras), as light measuring technologies, do not emit any kind of 
radiation themselves, but instead rely on detecting reflected ambient radiation. They allow the 
reconstruction of 3D coordinates from the analysis of 2D intensity images. 
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2001;El-Hakim et al., 2003a) have confirmed several factors which influence the accuracy of 
photogrammetric measurements:  

 The ratio base-to-depth (b/d): the network accuracy increases with the increase of this 
ratio and using convergent images rather than images with parallel optical axes. 

 The number of captured images: the accuracy improves significantly with the number of 
images where a point appears. But measuring the point in more than four images gives 
less significant improvement. 

 The number of the measured points in each image: the accuracy increases with the 
number of measured points per image. However the increase is not significant if the 
geometric configuration is strong and the points being measured are well defined (like 
targets) and well distributed in the image. In addition, this also applies for the utilized 
control points. 

 The image resolution (number of pixels): on natural features, the accuracy improves 
significantly with the image resolution, while the improvement is less significant on well-
defined largely resolved targets.               

2.1.1.2 Camera Orientation 

In order to understand camera orientation, the basic concepts2 of photogrammetry need to be 
introduced. The collinearity equations, which are the mathematical fundamental model in 
photogrammetry, can be exactly derived from the mathematical central projection. For that, 
the camera coordinate system must be defined in advance. 

Camera Coordinate System 

Figure 2.1 illustrates the definition of a camera coordinate system; where ( , , )X Y Z  and ( , )x y  

are the world and the camera coordinate systems respectively. The perspective center and 
the principal point are denoted by O and PP respectively. The camera coordinate system is a 
right-hand system. 

Central Projection 

A mathematical form of the central projection in the three dimensions is given by 
 

                                              
0 0

0 0

0

( , , )x

X X x x
Y Y m R y y
Z Z c

                                             (2.1) 

 

where ( , , )X Y Z  are the coordinates of an object point in the world coordinates; 0 0 0( , , )X Y Z

are the coordinates of the camera perspective center in the world coordinates;  

                                                      
2 They also apply to computer vision with slight differences in definition and terminology, but this is 
beyond the scope of this thesis. 
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Fig.2.1. Camera coordinate system as defined in photogrammetry (left) and in computer vision (right). 

 

, 1,2,3( , , ) [ ]ij i jR r , 1,2,[ ]ij i j,][  is the rotation matrix from the camera coordinate system to the world 

coordinate system, and ( , , )  are the three rotation angles; 0 0 0( , , , , , )X Y Z are the six 

parameters of the exterior orientation; ( , )x y  are the coordinates of an image point in the 

camera coordinates; 0 0( , )x y  are the coordinates of the principal point ( )PP , and c is the focal 

length or principle distance (the sign of c depends on the definition of the camera 
coordinates: c  in photogrammetry and c  in computer vision; see Figure 2.1). They are 
often called the three interior orientation parameters; xm  is the scale factor given by 

 

                                       13 0 23 0 33 0
1 ( ) ( ) ( )xm r X X r Y Y r Y Y
c

                                  (2.2) 

 

The camera model in equation 2.1 has 9 degrees of freedom (DOF), i.e., the three interior 
orientation parameters and the six exterior orientation parameters. 

Collinearity Equations 

In Cartesian coordinates of Euclidean geometry, the photogrammetric collinearity equations 
can be derived by eliminating the scale factor in equation 2.1 as follows: 
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                              (2.3) 

 

As in equation 2.1, the photogrammetric camera model has 9 DOF as the central projection. 
In practice, there might exist distortion which causes deviations from the ideal model of 
central perspective. Therefore, the collinearity equations can be extended by adding 
distortion and random errors as in equation 2.3, where ( , )x y  are the distortion terms, and

 represents the random error. The distortion errors are often represented by parametric 
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models which are known as self-calibration models. For example, the Brown self-calibration 
model in close-range photogrammetry which includes the three interior orientation 
parameters, the symmetric radial distortion (in the two image coordinates) and the 
decentering distortion (radial and tangential components). Therefore, the interior parameters 
are often represented by the three interior orientation parameters 0 0( , , )x y c  as well as the 

distortion parameters. These parameters are calculated by means of a camera calibration 
process. Three methods based on the reference object used, time and location can be utilized: 
laboratory calibration, test field calibration and self-calibration (Luhmann et al., 2007). 

A typical solution to estimate the six exterior orientation parameters and/or the network 
geometry, with or without self-calibration and having a number of control points, is by 
performing bundle block adjustment based on the collinearity equations as a functional 
model (Brown, 1976; Triggs et al., 2000). The required 2D image correspondences can be 
measured in the photos manually or automatically. These 2D points are used also to estimate 
the relative orientation between each image pair (translation and rotation of one image with 
respect to the second) without considering the control points. This results in recovering the 
photogrammetric model in an arbitrary model space. Furthermore, if we consider the 
orientation of a single image, a number of control points in general position (according to 
equations 2.3, ≥ 3 points if calibration is available or ≥ 6 points without calibration) and their 
2D projections in the image are required. This enables solving the so-called Perspective-n-
Point (PnP) problem in computer vision, also known as space resection in photogrammetry. 
It aims at estimating the camera orientation from a set of 3D-to-2D point correspondences. 
Space resection by collinearity is a common used method to determine the orientation 
parameters. This requires initial approximations for the unknown parameters, since the 
collinearity equations are nonlinear, and thus have been linearized using Taylor’s theorem. 

2.1.1.3 Surface Points Recovering 

Once the images are oriented using the 2D image correspondences and the camera 
calibration (if available), the corresponding 3D object points are recovered by means of a 
forward intersection process by applying the collinearity equations. This, by definition for 
single 3D point recovering requires at least two light rays formed by the camera station, 
image and object point. However, to perform automatic image matching, the determination 
of point correspondences between two or more images in order to reconstruct 3D surfaces is 
still a crucial step in 3D reconstruction. Some automated matching algorithms, e.g. 
(D’Apuzzo, 2003; Gruen et al., 2004; Ohdake & Chikatsu, 2005) rely on cross-correlation or 
least squares matching (LSM) algorithm (Gruen, 1985a) on stereo or multiple images. Other 
advanced matching approaches are based on feature and/or area-based techniques, e.g. 
(Zhang, 2005). They allow us to match features between images taken with different cameras, 
with different zoom and exposure settings, from different angles, and in some cases at 
completely different times of day (Snavely et al., 2008). 

Once the correspondences are matched, their corresponding image coordinates are trans-
formed into 3D information through a mathematical model like collinearity equations or 
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camera projection matrix. (Remondino et al., 2008) review the recent developments and 
performance analysis of the image matching techniques not only to develop a fully auto-
mated procedure for 3D object reconstruction, but also for detailed surface reconstruction of 
heritage objects. These matching methods often show wrong matching results which appear 
in areas with poor texture. Accurate dense 3D reconstructions can then be applied 
automatically, see (Furukawa & Ponce, 2007 and 2010; Hirschmueller, 2005 and 2008; Hiep et 
al., 2009; Rothermel et al., 2012) and free packages such as MicMac, PMVS, SURE. More 
details about the PMVS and the SURE methods are reported in Appendix B. 

Finding Correspondences 

The goal of correspondence estimation or image matching is to find sets of matching 2D 
pixels across a set of images, in which each set of the matching pixels ideally represents a 
single point in 3D (Snavely et al., 2008). In general, image matching techniques can be 
classified according to the procedure and the parameters used in the correspondence 
(homologous point) extraction, as follows (Nex, 2010): 

 Feature Based Matching (FBM). It comprises the following steps: as a first step, interest 
point, region or edge operators extract features in each individual image. Then, a set of 
characteristic attributes (feature descriptors) is computed for each feature. These 
descriptors are usually determined under certain assumptions regarding the local object 
geometry and the geometric or the radiometric constraints. Furthermore, feature 
description can be determined simultaneously by the features operators, e.g. the scale 
invariant feature transform (SIFT) region operator (Lowe, 2004). Finally, features are 
matched across all images by comparing their descriptors. 
(Tuytelaars & Mikolajczyk, 2008) survey intensively the most widely used local invariant 
feature detectors (interest points, regions or edge segments) with a qualitative evaluation 
of their respective strengths and weaknesses. In (Haralick & Shapiro, 1993), they report 
that a distinctive feature operator have to satisfy the following characteristics: (i) 
Distinctness (features should stand out clearly against the background and be unique in 
its neighborhood). (ii) Invariance (feature estimation should be independent of geo-
metrical and radiometric distortions). (iii) Stability (the selection of interest points should 
be robust to noise and blunders). (iv) Uniqueness (features should possess a global 
uniqueness, in order to improve the distinction of repetitive patterns). (v) Interpretability 
(features should have a significant meaning to be used in correspondence analysis and 
higher image interpretation). Examples of feature operators can be mentioned such as the 
Harris interest point operator (Harris & Stephens, 1988), the MSER (Maximally Stable 
Extremal Region) region operator (Matas et al., 2004) and the Canny edge operator 
(Canny, 1986). 

To conclude, feature points are more invariant to geometric and radiometric trans-
formations than area-based methods. The FBM methods are flexible with respect to sur-
face discontinuities with the availability of approximate values. But, they are computatio-
nally expensive and require setting up a large number of parameters. Furthermore, the 
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number of extracted points per image is usually limited and the accuracy is also limited 
to the accuracy of the feature extraction process (normally in sub-pixel range). The FBM 
technique is largely implemented in image orientation algorithms, e.g. SfM methods. 

 Area Based Matching (ABM). This method determines correspondences based on the 
similarity of the radiometric levels within image windows. It is used widely in aerial 
photogrammetry, where the assumption that two local windows considered on two 
homologous images have similar radiometric level values is fulfilled. Moreover, local 
windows must represent contiguous (very close or connected) points in the object space 
in order to assure stable matching. Examples of ABM methods are the cross-correlation 
(e.g. Zhang, 2005; Zhao et al., 2006) and LSM techniques (e.g. Gruen, 1985a; Gruen & 
Baltsavias, 1988). The ABM technique is widely used for dense surface reconstruction. 

Compared to FBM techniques, the ABM methods provide higher performance and better 
accuracy with reduced computational costs, particularly in well-textured image areas 
and considering reduced geometric distortions. However, they require adopting several 
constraints (e.g. epipolar3 geometry) to reduce the search area of the homologous points 
in the images in order to discard mismatches and increase the redundancy as well 
(Zhang, 2005). 

 Relational Matching (RM). These techniques can reduce the unreliability of the 
matching results using FBM or ABM methods by introducing constraints that enable the 
removal of blunders and mismatches. They define probabilistic cost functions, which 
evaluate the relative position of the matching candidates. These functions exploit 
compatibility or topological constraints such as surface smoothness and uniqueness 
constraints. This involves assigning unique matches to a set of features in an image from 
a given list of possible candidates. Then, the search space is restricted by means of a cost 
function optimization analysis (Nex, 2010). For example, (Pajares et al., 1998) transform 
the similarity, smoothness and uniqueness constraints into an energy function whose 
minimum value corresponds to the best solution for solving the global stereovision 
matching problem. 

In general, automated algorithms based on image matching such as relative orientation/SfM 
and dense surface reconstruction methods have to deal with erroneous measurements. For 
that, a combination of different similarity measures and matching techniques together with 
applying thresholds and additional constraints can reduce the amount of errors. Besides RM 
techniques, data snooping or robust statistical algorithms are used to discard wrong matches 
and blunders in order to estimate the model parameters using only correct matches. These 
algorithms are usually based on robust adjustment techniques, e.g. (Gruen, 1985b) or the 

                                                      
3 Epipolar geometry is the geometry of stereo vision (two cameras view a 3D object from two distinct 
positions). This compels a number of geometric relations between the object points and their 
projections onto the 2D images that leads to constraints between the image points, under the 
assumption that the pinhole camera model is applied (Hartley & Zisserman, 2003). 
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Random Sampling and Consensus (RANSAC) algorithm (Fischler & Bolles, 1981). More 
information about the RANSAC method is reported in Appendix C.  

Multi-View Stereo Reconstruction 

The aim of multi-view stereo (MVS) matching and reconstruction techniques is to recover 3D 
object models from a set of images with known camera interior and exterior orientation. 
Having the camera parameters for an image, we can compute a viewing ray per pixel, i.e., a 
ray in space containing all 3D object points that project to this pixel. But still the distance of 
the visible object point to the camera along the viewing ray and accordingly also its 3D 
position is unknown. Therefore, MVS aims at calculating these distances (depths) for each 
pixel which result in generating dense 3D object surface points (Snavely et al., 2010). As 
depicted in Figure 2.2, each depth along a viewing ray in one image yields a different 
projected location in the other images. Therefore, we look for the depth for which the 
projected locations in all involved images (> two images) look as similar to each other as 
possible. In analog to correspondence problem, MVS method determines the depth for which 
the resulting corresponding patches (small regions in the images around the projected 
locations) are consistent (Snavely et al., 2010). In the last few years, several high-quality MVS 
techniques have been introduced and improved rapidly. (Scharstein & Szeliski, 2002) show 
different overviews on stereo matching while multi-image matching techniques are 
compared in (Brown et al., 2003).  (Seitz et al., 2006) present a classification and evaluation of 
recent MVS reconstruction algorithms. It shows that, using six benchmark datasets, the 
PMVS is one of the best submitted methods so far in terms of six key properties: the scene 
representation, photo-consistency measure, visibility model, shape prior, reconstruction 
algorithm, and initialization requirements.  

  

 
 

Fig.2.2. The stereo principle using only two images. 
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Under the above, the complete automation in image-based technique is still an open topic of 
research, particularly in case of complex structures as heritage and man-made objects. This 
also applies to the obtained accuracy, which is still restricted and considered as a major task 
in close-range photogrammetry. Therefore, semi-automatic methods might still be needed 
for 3D accurate reconstruction. 

2.1.2 Range-Based Approach 
Range-based technique is founded on the usage of a laser beam for distance measurements. 
This technique usually makes use of an active4 laser sensor to right away measure distance to 
a large set of points in the target scene. Optical range sensors like triangulation-based, time-
delay-based laser scanners and stripe projection systems or close-range scanners (laser scan 
arms) have received great attention in the last few years, particularly for their 3D modeling 
capability (Manferdini & Remondino, 2012). Current laser scanner technologies can be 
classified into static and kinematic systems. The former is kept in a fixed position during the 
data acquisition, while the latter is mounted on a mobile platform where additional 
positioning systems (e.g. INS, GPS) are required.  

Static LiDAR systems have reached a high level of automation allowing fast and accurate 
surveys like heritage documentation (Van Genechten, 2008; Grussenmeyer et al., 2010). These 
systems have partly replaced some of the conventional methods for the spatial 
documentation of heritage sites, despite their high costs, weight and the frequent lack of 
good texture (Remondino & Rizzi, 2010; Rüther et al., 2012). Laser scanning systems can 
produce data that can vary in terms of point density, field-of-view (FOV), amount of noise, 
incident angle, waveform and texture information (Grussenmeyer et al., 2012). 

A terrestrial laser scanner directly determines the 3D coordinates of all points in the scene: in 
its FOV, horizontally and vertically. Each measured point has a range distance to the scan 
station, a horizontal angle, a vertical angle and corresponding radiometric information 
(reflectance and/or RGB values). In general, the scanner has to be placed in different 
locations in order to cover the whole scene during the data acquisition. Sequentially, the 
acquired 3D raw data requires cleaning (removal of noise and unwanted objects) and scan 
registration into a unique reference system. This produces a single point cloud that forms the 
full surveyed object. In the following, the main types of active TLS systems and scanning 
mechanisms are described in more detail. Moreover, the steps of the range-based approach 
are briefly introduced and the main typical challenges associated with each step are given. 

                                                      
4 Active sensors (e.g. TLS systems), as a light measuring technique, emit some kind of controlled 
radiation and detect its reflection in order to probe an object or environment. They retrieve 3D object 
coordinates automatically.  
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 2.1.2.1 TLS Systems 

Triangulation-based Systems 

The mathematical basis of a triangulation-based laser scanner is the triangle (trigonometry). 
It emits a laser spot/pattern onto the object and uses a camera to look for the location of the 
laser’s projection on the object. The laser emitter and the camera are arranged under a 
constant angle, creating a triangle between them and the laser projection on the object. 
Because of this configuration, the laser projection changes in the camera’s field-of-view 
depending on the distance to the camera (figure 2.3). Knowing the baseline between the laser 
emitter and the camera ( )B and the orientation angles of both the emitted and the reflected 

radiation path , respectively, the coordinates of the object point can be computed through 

the cosine law. By analyzing figure 2.3, the baseline can be calculated as the sum of the X
coordinate of the laser spot on the object and its orthogonal distance to the lens along X : 

 

                                    1 2 tan tan (tan tan )B X X Z Z Z                                     (2.4) 

 
Then, from equation 2.4, the orthogonal distance Z  between the measured object point and 
the system can be calculated as follows: 

                                 ; tan
(tan tan ) ( tan )

B BfZ p f
f p

                                     (2.5)

 

where p  represents the position of the projected laser spot on the imaging sensor and f is 

the camera focal length.  For practical matters, the errors with a triangulation-based laser 
scanner come mainly from the estimation of p , through the error p  (Beraldin et al., 2005). 

Error propagation gives the uncertainty in the distance ( )Z  as in equation 2.6. 

 

 

 

Fig.2.3. Triangulation-based measuring technique.  
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Where p  indicates the uncertainty in laser spot position on the sensor – depends on the 

type of laser spot sensor, peak detector algorithm, signal-to-noise ratio and the image laser 
spot shape. According to equation 2.6, the error in Z is inversely proportional to the 
triangulation baseline ( )B  and the camera focal length ( )f , but directly proportional to the 

square of Z. Therefore, triangulation-based sensors are used in applications requiring an 
operating range that is less than 10 meters (Beraldin et al., 2003). Moreover, the uncertainty 
in the distance is directly proportional to p .  

According to (Van Genechten, 2008), there are possible ways to decrease the uncertainty in 
the distance measurements. (i) Decreasing the distance of the object to the scanner, but this 
increases shadow effects. (ii) Increasing the triangulation baseline, but this also increases the 
shadow effects. (iii) Increasing the camera focal length, but this reduces the FOV. (iv) 
Decreasing the measurement uncertainty, but this leads to more pixels in the sensor. 
However, compared to scanners based on time delay principles, triangulation-based 
scanners have very high accuracies, in the order of microns. In order to avoid the use of 
mechanical fixtures, some innovative modifications have been imposed. Instead of 
moving/rotating the laser emitter to cover the whole object, patterns of points or lines can be 
projected, which cover the whole object at once.  

Time-Of-Flight Systems 

Time-of-flight (TOF) TLS systems, as active scanners, exploit the TOF principle by measuring 
a time frame between two events. In a given medium, light waves travel with a finite and 
constant velocity ( )c . Therefore, when the time delay ( )t  created by light travelling from a 

source to a reflective target surface and back to the source (round-trip) can be measured 
(figure 2.4). The distance to that surface ( )Z  is given by 

 

                                                                       1
2

Z c t                                                             (2.7) 

 

The current accepted value for the speed of light in vacuum is exactly c = 299792,458 
±0,0012km/s. If the light waves travel in air then a correction factor equal to the refraction 
index (depending on the air density) must be applied to the speed value. By applying the 
error propagation on equation 2.7 and considering that the speed of light is constant, the 
range resolution of a TOF system ( )Z  is determined by the resolution of the time 

measurement ( )t as in equation 2.8.  
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Fig. 2.4. Time-of-flight measurement principle, showing the pulse time measurement using the 
leading edge principle (lift). 

 

                                                                               1
2

Z c t                                                           (2.8)   

 

Therefore, the accuracy depends on the clocking mechanism (time measurement). In 
general, two strategies that exploit this measurement principle can be distinguished: 
pulsed TOF and continuous wave (CW)/phase shift systems. 

 Pulsed TOF-Based Scanners. Pulsed TOF scanners exploit laser pulses instead of using 
continuous laser beams. They directly measure the round-trip delay time of a single 
pulse using equation 2.7. These systems scan their entire FOV one point at a time by 
means of laser beam deflection units. They have a slow data acquisition speed compared 
with the phase shift-based systems, but modern pulsed TOF laser scanners such as the 
Leica ScanStation C10 can measure up to 50 kpts/s.   

A TOF system emits a periodic signal whose amplitude varies between energy peaks and 
zero values. Each peak has duration/pulse width - a rise time that determine the range 
resolution of the system. The pulse has typically duration of a few nanoseconds, e.g. 
pulse width of 5ns results in a length of 1.5m, using equation 2.7. Often the pulse is 
assumed to have the Gaussian shape, which is more realistic than a rectangular pulse 
shape. Besides the distribution in time, the pulse is distributed in space perpendicular to 
the propagation direction. This causes a reduction of the pulse energy. The laser beam 
diameter is limited by the boundary of the circular region in which the energy is higher 
than 1,2(1/ )n

ne  (Pfeifer & Briese, 2007). The energy irradiated with the pulse depends on 

the pulse repetition frequency (PRF) as well. The higher frequency, the lower emitted 
energy (short pulse duration), thus decreasing the measurement range. 
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The time derivation method for measuring the return pulse depends on the desired time 
resolution, the counting rate and the required dynamic range of the pulse. Commonly                     
used principles in discriminator design include leading edge timing (constant amplitude) 
(figure 2.4 left), zero crossing timing (derivation), first moment timing (integration) and 
constant fraction timing (find an instant in the pulse when its height bears a constant 
ratio to pulse amplitude) (Van Genechten, 2008). 

The range accuracy mainly depends on the time measurement accuracy and the accuracy 
of the return pulse. Repeating measurements a number of times can increase precision. 
Furthermore, the increase in measurement range and precision can be achieved by 
increasing the emitted power, as the signal to noise ratio (SNR) raises (Pfeifer & Briese, 
2007). However, systematic errors and eye-safety issues in such systems limit the 
measurement range. (Beraldin et al., 2005) state the range uncertainty ( )Z  for a single 

pulse as follows: 
 

                                                                 
2

r
Z

cT
SNR

                                                          (2.9) 

 

where rT is the pulse rise time. The uncertainty in the distance is directly proportional to 

rT and inversely proportional to the SNR ratio. 

Most mid- and long range pulsed TOF scanners provide a range uncertainty of about 
3mm to 50mm within a range of 50m. The advantage of using pulses for TOF systems is 
the high concentration of transmitted laser power, which can achieve the required SNR 
for higher precision at long ranges (up to several hundred meters). The disadvantage is 
the difficulties in detecting the exact arrival time of the backscattered pulse due to the 
changeable nature of the optical threshold and atmospheric attenuation. 

 CW/Phase Shift-Based Scanners. Continuous wave scanners go around the 
measurement of short pulses and avoid using high precision clocks by modulating the 
power or the wavelength of the laser beam. Their signals are typically modulated using 
sinusoidal modulation, amplitude based (AM) or frequency based (FM) modulation, 
pseudo-noise or polarization modulation (Van Genechten, 2008). For the AM, the source 
transmits onto a surface as a continuous wave whose intensity is modulated with a 
defined function, e.g., a sinusoid. The scattered reflection is collected and a circuit 
measures the phase difference between the sent and received signals, which yields the 
time-delay (figure 2.5). The subtraction of two sinusoidal modulated signals is given by 
 
            ( ) sin( ) sin(2 ) sin(2 ( 2 ))m m mS t A t A f t A f t f                      (2.10) 

 
where ( , , )m mA f  are the amplitude, the modulation frequency and the modulated 

wavelength of the light source respectively. 
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        Fig. 2.5. Phase shift-based measurement principle. 

 

The relationship between phase difference ( ) , modulation frequency, and time-delay 

( )t  is described as: 

 

                                                          ;
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                                               (2.11) 

 
According to equations 2.7 and 2.11, the distance to the target surface is given by  
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                                                    (2.12) 

 
Because of the periodicity of the modulated signal, the modulated wavelength of the 
light source limits the unambiguous range to 2,m  which causes a phase delay in the 

sine wave of one complete cycle. According to equation 2.12, the range is proportional to 
the wavelength. Thus, a shorter wavelength yields a reduction in range measurement, if 
the phase shift is constant. The range uncertainty ( )z  in an amplitude modulated laser 

scanner depends on the modulated wavelength and the signal to noise ratio ( )SNR

(Beraldin et al., 2005), and can be described approximately by 
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                                                          (2.13) 

 
The range measurement uncertainty is proportional to modulated wavelength and 
inversely proportional to the Signal-to-Noise Ratio. In order to increase the unambiguous 
range, one can use multiple frequency waveforms in which the target is localized at low 
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frequency (long wavelength) and then an accurate measurement is performed at high 
frequency (short wavelength). In general, phase shift-based scanners have higher speed 
in data acquisition, better resolution, lower noise and more accurate than TOF systems 
but up to a medium range only (< 120m) (Dorninger & Nothegger, 2009), e.g. the Faro® 
Laser Scanner Focus3D has a maximum speed of 976 kpt/sec and ranging accuracy up to 
±2 mm @  10-25m. 

 

 
 

Fig 2.6. Types of laser beam deflection units used in TLS systems (1st row) and types of TLS systems 
according to the FOV (2nd row) (Staiger, 2003 and 2007; Reshetyuk, 2009). 

 

Beam Deflection and Angle Measurement Systems for Time-Delay Systems 

Laser beam deflection system/unit is used in time-delay laser scanners in order to scan their 
entire FOV. It comprises generally one or two scanning mirrors and a servomechanism5. 
There are different types of beam deflection units used in time-delay TLS systems (Figure 2.6 
1st row). Each type determines the FOV of the corresponding TLS system, i.e. the deflection 
of the laser beam in the horizontal and vertical directions decides how much volume can be  
collected from a single scan setup (Figure 2.6 2nd row). According to (Staiger, 2003 and 2007; 

                                                      
5 A servomechanism (servo) is an automatic device that uses error-sensing negative feedback to 
correct the performance of a mechanism and is defined by its function. 
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Gordon & Lichti, 2004; Wehr, 2005; Lichti, 2010), the laser beam deflection can be performed 
by one of the following methods: 

 The laser beam is deflected horizontally and vertically by two mirrors oscillating around 
the horizontal and vertical axes of the scanner. The scanning head remains fixed during 
the data acquisition (figure 2.6 1st row left). Therefore, scanners which exploit this 
technique have a limited FOV. They are called camera-scanners, e.g. the Leica HDS2500 
laser scanner which has a maximum FOV of 400x400. 

 The laser beam is deflected vertically by an oscillating or a rotating polygonal mirror and 
horizontally by means of a servomotor which enables the scanning head to rotate in 
predefined steps around the vertical axis (figure 2.6 1strow middle). At first, a vertical 
scanning profile is made with the mirror then, the scanning head rotates horizontally by 
a specified step around the vertical axis, and afterwards the next vertical scanning profile 
can be made. The latter process is repeating until the complete object is covered. Such 
systems have a full FOV (3600) horizontally and a limited FOV vertically. They are called 
hybrid-scanners, e.g. the Trimble® GX™ 3D Scanner which has a maximum FOV of 
3600x600. Oscillating mirrors are comparatively slow and provide a limited vertical FOV 
(max 900). They are typically utilized in the pulsed TOF scanners (e.g. the Leica HDS3000) 
since the number of points measured per second using such systems is limited by the 
PRF. While, rotating polygonal mirrors are very fast, rotate at constant velocity and can 
provide up to a FOV of 1800 vertically (Reshetyuk, 2009). For example, the RIEGL VZ-
1000 3D terrestrial laser scanner which has a maximum FOV of 3600x1000. 

 The laser beam is deflected vertically by the monogon mirror (flat rotating mirror with a 
single-facet centered on the rotational axis) from a lower vertical limit (-α0, usually a few 
tens of degrees above nadir), up through zenith and down again to the lower limit of 
(1800+ α0), and horizontally with a FOV of 1800, similar to the hybrid-scanners, by means 
of a servomotor (figure 2.6 1st row right). Thus, a vertical scanning profile is made in front 
of and behind the scanner in each step along the acquired profile. The scanned FOV is 
spherical except for a small cone beneath the instrument (Lichti, 2010), i.e. a full FOV 
horizontally and nearly the same vertically can be obtained.  Therefore, these systems are 
called panoramic-scanners, e.g., the Faro® Focus3D which has a maximum FOV of 
3600x3050. Monogon mirrors are very fast and can nearly provide a full FOV vertically. 
They are typically utilized in the phase shift-based TLS systems which exploit continuous 
laser beams, and thus the number of points measured per second is limited by the point 
sampling distance (Reshetyuk, 2009). 
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Fig 2.7. A typical scan configuration of a building with 8 scan stations (4 orthogonal and 4 corner 
scan shots), the 4 corner shots serve scan registration by providing overlapping geometry to connect 
sequential scans, and increase measurement redundancy as well (left). The 3D polar/spherical 
coordinate system (right). 

 

The deflections of the laser beam provide angular measurements, which comprises the 
angular encoders (binary or incremental) by measuring the horizontal and vertical direction 
of the beam. Most TLS systems take advantage of the binary encoding (Schulz, 2008). 
Therefore, the coordinate system of a TLS system is defined by the 3D polar/spherical 
coordinate system ( , , )i i ir  with the three raw observations, range, horizontal direction and 

vertical direction respectively (figure 2.7 right). But, most scanners provide the 3D Cartesian 
coordinates ( , , )x y z  of the acquired object points as an output, which can be considered as 

observables (Lichti et al., 2002). According to figure 2.7 right, the relationship between the 
raw observables and the Cartesian coordinates for a point i  (represented by the vector iX ) is 

given by 
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2.1.2.2 Range Data Acquisition 

With the high scan rate of modern terrestrial laser scanners, e.g. the Faro® Focus3D, but also 
because of the one-button operation and the build in data storage and batteries, the range 
data acquisition is principally not difficult (Rüther et al., 2011). However, several criteria for 
successful field surveying have to be taken into consideration especially in case of complex 
objects like heritage sites. As noted by (Rüther et al., 2012), these items include: complete 
coverage of the site, appropriate scan resolution depending on the required surface details, 
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sufficient scan overlap for scan registration, choice of scanner positions to achieve complete 
scene coverage and good scan overlap, and economic target distribution, if used. 

2.1.2.3 Scan Registration 

In practice, reconstructing a 3D object using a laser scanner requires setting up the scan 
station on more than one location (figure 2.7). In each scan, the point cloud refers to a 
different coordinate system according to its instrument site, as an origin for the local 
coordinate system. Thus, these point clouds in all scans have to be aligned in one reference 
system to finally produce a full representation of the 3D surveyed object. This alignment of 
multiple scans in one coordinate system is called registration. The scan registration is mainly 
performed in two steps: (i) manual or automatic scan alignment using targets or the data 
itself, and (ii) final global alignment based on the Iterative Closest Points (ICP) algorithm 
(Besl & McKay, 1992; Rusinkiewicz & Levoy, 2001) or  least squares matching procedures 
(Gruen & Akca, 2005). A survey of most common registration techniques is presented in 
(Salvi et al., 2007). Besides artificial and/or natural targets, the scan registration approaches 
use distinctive features extracted from laser data to recover the translation and rotation 
parameters for the scan alignment. Therefore, three types of scan registration can be 
distinguished: target-based, range-based and image-based registration. 

 

 
 

Fig.2.8. Different types of targets. (First row) examples of natural targets, (second row and from the 
left) artificial targets: pole target, tilt and turn target, planar target, sphere target and black and white 
paper targets. 

 

Target-Based Registration: 

Knowing at least six coordinates, distributed over three corresponding points (tie points) not 
on the same line, in two point clouds/scans are required in order to achieve uniquely a coarse 
registration. Then, by applying a least squares adjustment or ICP, both sets of 3D points can 
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be aligned in one reference system. These tie points could be artificial targets or natural 
targets (figure 2.8). Natural ones must be selected manually, on contrast to the artificial 
target, which can be selected automatically. This automatic registration requires algorithms 
for fitting shapes, which can detect the specific shapes of the targets such as sphere, reflective 
targets and black and white paper targets. In general, this depends on target acquiring 
distance, laser beam incidence angle and scanning resolution. This has been demonstrated in 
some commercial software such as the Leica’s Cyclone and the Faro® Scene software. For 
example, Faro® Scene is able to detect a completely visible sphere in a scan acquired by the 
Faro® focus3D scanner when scanning with a resolution of 1/4, the distance to the scanner > 
18m and < 1m then, the sphere should have at least 10-15 pixels/points in the scan (Faro 
Technologies Inc., 2011). 

Range-Based Registration: 

The idea of this approach is to identify candidates of corresponding 3D points in the 
overlapping area between each laser scan pair, see figure 2.7. These tie points are then 
utilized in order to estimate initial approximation for the rigid-body transformation 
parameters, see Appendix D.2. This is followed usually by an error minimization step using 
any surface matching algorithm like ICP, which minimizes the distances between the scan 
pair until certain criteria are met. 

Several methods have been introduced in the literature. Point and line features have been 
employed for the scan registration (Stamos & Leordeanu, 2003; Barnea & Filin, 2008). In 
(Dold & Brenner, 2004 and 2006; Dold, 2005; Von Hansen, 2006; Brenner et al., 2008), planar 
patches extracted from 3D LiDAR data have been employed for the calculation of trans-
formation parameters between different point clouds. Corresponding object models  (planes, 
spheres, cylinders and tori) extracted from different scans are used to determine the trans-
lation and rotation parameters of multiple scans (Rabbani et al., 2007). However, the extrac-
tion of line features, plane patches or geometric objects from LiDAR data is still uneasy task. 
Therefore, (Bae & Lichti, 2004 and  2008) use the change of geometric curvature and 
approximate normal vector of the local surface formed by a point and its neighborhood 
search, in addition to the positional uncertainty of laser scanners, for the registration of two 
partially overlapping point clouds.    

Image-Based Registration: 

Recent research work denotes that distinctive features can also be extracted from LiDAR data 
using images that are provided simultaneously with the point clouds either by recording co-
registered camera images (captured by an integrated camera to the scanner) or by generating 
reflectance and/or RGB images from the 3D data. (Forkuo & King, 2004) introduce a fusion 
approach of 3D range data and 2D imagery based on the use of the 3D data and synthetic 
camera images generated from the respective reflectance values via back-projection into a 
regular grid. For that, the extraction of features from images was performed using the Harris 
corner detector (Harris & Stephens, 1988). (Bendels et al., 2004; Al-Manasir & Fraser, 2006; 
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Barnea & Filin, 2007) introduced SIFT features, proposed by (Lowe, 2004), for the registration 
of TLS data where both range information and information from co-registered camera 
images are used. In (Boehm & Becker, 2007), SIFT features are extracted from reflectance 
images which are generated directly from the reflectance values of the TLS data. Reflectance 
images are also used in (Wang & Brenner, 2008) where each SIFT feature descriptor is 
modified with additional entry. The latter represents the mean geometric curvature of a 
surface formed by the projection of a 2D SIFT feature into local 3D space and its 3D 
neighborhood in the point clouds. (Kang et al., 2009) proposed also an automatic registration 
of TLS data using panoramic reflectance images. In (Weinmann et al., 2011), radiometric and 
geometric information derived from TLS data are utilized for estimating the transformation 
parameters between each scan pair. (Alba et al., 2011) presented an automated methodology 
able to register laser scanner point clouds using their panoramic images derived from 
intensity values or RGB data obtained from a co-registered camera. 

In addition, a solution combines both approaches, range and image-based is proposed by 
(Yang et al., 2011) where 3D information are used to improve 2D image features and then the 
latter are utilized for wide baseline 3D scene alignment. Further methods exploit the 
knowledge of the shape, that best fits the local geometry of each 3D point neighborhood and 
can improve the fine registration (using ICP) of two point clouds  in terms of time and 
accuracy (Gressin et al., 2013). However, it still requires good a priori alignment of both 3D 
point sets. 

2.1.3 Sensor Integration      
Most of LiDAR systems are supplied or can be integrated with a standard digital camera. 
But, as presented in chapter 1, getting on top of the limits caused by the fixed relative 
position between both sensors, data acquisition obstacles and product quality (e.g. 
photorealism) requires photogrammetry. The latter technique is of low-cost and can 
complement individual weaknesses of the former one. Therefore, it is intuitive to consider 
that data integration of photogrammetric images and laser scanner data can provide 
opportunity for more specific inferences and larger potential (Elstrom et al., 1998; Jansa et al., 
2004; Wendt & Heipke, 2006). Furthermore, this integration shows promising prospects due 
to the complementary characteristics of both data sources (Forkuo & King, 2004; Schneider & 
Maas, 2007). 

Based on the wanted end-product, the nature of the original data or difference in emphasis, 
(Roennholm et al., 2007) denoted four different levels of integration of photogrammetric 
images and laser scanner data as follows: (i) object-level integration where digital images 
and laser data are processed and interpreted separately, e.g. (Remondino et al., 2008; Guidi et 
al., 2008), (ii) photogrammetry aided by laser scanning: the main focus is on image data and 
the laser data supplies necessary information, e.g. (Ressl et al., 2006; Wendt, 2007), (iii) laser 
scanning aided by photogrammetry: image data provide additional information, e.g. (Al-
Manasir & Fraser, 2006; Kang et al., 2007), (iv) tightly integrated laser scanning and optical 



38 2 Generation of 3D Models - An Overview 

 
images: both sensors are integrated at the device level like in the case of current static and 
dynamic LiDAR systems and frame-based 3D range cameras. 

Over the past years, different fusion approaches were presented to integrate digital photos 
with laser scanner data. These approaches were useful in texture mapping of point clouds to 
generate 3D photorealistic models, e.g. (Alshawabkeh & Haala, 2005; Abdelhafiz, 2009), 
extraction of reference targets for registration and calibration tasks, e.g. (El-Hakim & 
Beraldin, 1994), registration of multiple scans by using photos, e.g. (Yang et al., 2011), 
employing photos to reconstruct the main shape of the object and then using laser scanning 
to reconstruct the detailed parts, e.g. (El-Hakim et al., 2003b), geometric reconstruction of 
man-made objects, e.g. (Nex & Remondino, 2011) and last but not least filling gaps in laser 
scanner point clouds caused by occlusions, e.g. (Alshawabkeh, 2006). However, it is clear 
that the fully automatic integration between photogrammetric and LiDAR techniques has 
not yet been introduced. 

2.1.4 Georeferencing   
An important step preceding surface reconstruction, sometimes coming before data fusion, is 
usually the transformation of measurements of an arbitrary coordinate system into a 
reference system, local or global one. This geometric alignment of the measurements with a 
geodetic and/or known reference system is referred as georeferencing. (Schuhmacher & 
Boehm, 2005) classify the geo-referencing methods of TLS as follows: (i) conventional 
georeferencing: by introducing a supporting measurement system like a total station to 
transfer the geodetic control information to the object space; (ii) sensor-driven method: it is 
based on a combination of GPS and digital compass data as initial values for further iterative 
refinement including additional control information; (iii) data-driven method: it is based on 
the datasets which have been georeferenced before, such as digital surface models or virtual 
city models where the acquired data can be matched with the georeferenced one, e.g. by ICP. 

 

2.2 Surface Reconstruction  
In general, redundant point clouds should be removed before a surface model is produced. 
This is followed usually by a segmentation process which divides the point clouds into one 
or more subsets in order to perform further operations on each subset such as fitting to 
surfaces or basic geometrical shapes, and remove unwanted points, etc. The segmentation 
process groups generally different regions of point clouds based on their shared 
characteristics. (Wang & Shan, 2009) categorize roughly the segmentation algorithms based 
on the used mathematical techniques into five groups: edge-based, e.g. (Sappa & Devy, 
2001), surface-growing, e.g. (Rabbani et al., 2006), scan-line, e.g. (Khalifa et al., 2003), 
clustering, e.g. (Sampath & Shan, 2006) and graph partitioning methods, e.g. (Wang & Chu, 
2008). Then, each single point cloud resulted from the segmentation and/or the cleaning 
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process can be converted into a continuous surface in a step referred as surface reconstruc-
tion or modeling. This can be done by fitting smooth surfaces, e.g. (Vosselman et al., 2004) or 
fitting basic geometric shapes, e.g. (Guelch, 2009), or triangulation/meshing, e.g. (Kazhdan et 
al., 2006), see figure 2.9. 

A large number of meshing algorithms have been proposed for surface reconstructions, but 
best results were achieved with a combination of methods where each algorithm responds 
differently according to surface texture, complex details, point resolution and noise (Rüther 
et al., 2012). Further hole filling (hole augmentation) would be desirable especially in case of 
modeling complex objects like heritage sites. This can be solved using automated hole filling 
methods like (Sharf et al., 2004), but their use is still limited. Therefore, semi-automatic 
methods are still needed. Moreover, 3D modeling is considered as a state-of-the-art topic in 
the point cloud processing research, particularly for modeling human body parts and 
complex objects. 

 

2.3 Texture Mapping and Visualization 
Photo-realistic and accurate visualization in many applications like 3D preservation of 
cultural heritage sites is often required. This is achieved usually with texture mapping and 
good visualization engines. The basic idea of texture mapping is to map the real texture 
(photos) to the corresponding 3D geometric surface, which is generated as wireframe or 
mesh models. For each triangle in the mesh, the corresponding image coordinates on the 
photo are computed using the corresponding camera orientations. Then, the textures in the 
computed triangle on the photo are mapped to the triangle mesh to end with a photo-
realistic appearance for the model (figure 2.10). Several approaches have been proposed in 
the literature, see (Wang et al., 2001; El-Hakim et al., 2003b; Alshawabkeh, 2006; Bannai et al., 
2007; Xu et al., 2010; Chen et al., 2012). 

There are several factors that have an effect upon visual quality or photo-realism of a 3D 
model. They are mainly the geometric and radiometric distortions, object occlusions and the 
dynamic range (El-Hakim et al., 2003c; Abdelhafiz, 2009). Regarding the geometric distortion 
factor, it can be reduced when a simple model is produced (by reducing the number of 
triangles), having strong image-geometry registration, full camera calibration and applying 
correct projective transformation between image plane and triangle surface. While the radio-
metric distortion is difficult to avoid due to the usage of multi views/images with different 
illumination conditions, see figure 2.10 left. However, many techniques have been presented 
to overcome this problem, e.g.(El-Hakim et al., 2003c). 

To some extent, the object occlusion problem is still unsolved. Nevertheless, there are some 
successful algorithms which are able to detect occlusions, particularly those which are part of 
the modeled object. On the other hand, un-modeled occlusion such as trees and cars can be 
removed in the pre-processing step by producing a virtual occlusion free image (Boehm, 
2004) or using the photo occlusions finder algorithm (Abdelhafiz, 2009) which can detect the 
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occlusion in images before using the texture. Since low dynamic range causes flattening of 
the saturation at bright areas and lack of ability to resolve details in dark areas, a high 
dynamic range image can be assembled from multiple low dynamic range images on the 
scene captured at different exposure setting (Debevec and Malik, 2008). 

 

 

 

Fig.2.9. Different surface reconstruction methods. (1st row) modeling by fitting smooth surfaces 
(Vosselman et al., 2004), (2nd row) using basic geometric shapes for modeling the buildings and 
roofs (Guelch, 2009), (3rd row, from left to right) meshing by the Poisson algorithm (Kazhdan et al., 
2006) of a carved stone with hieroglyphics texture, the temple of Heliopolis/Al-Matariya, Egypt:  3D 
colored point clouds and shaded wireframe model, a close-up view for a window area depicted in the 
latter model (4th row). 
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To visualize and deal with 3D models, a certain visualization engine must be used such as 
Virtual Reality Modeling Language (VRML) engine or computer game engine (Fritsch, 2003; 
Fritsch & Kada, 2004). The visualization process tries to give free navigation through the 
model taking into account the rate of displaying and avoiding the loss of interactivity. This 
requires taking into consideration the hardware and the software which are involved in the 
visualization process. Concerning the hardware, processing speed is affected by some 
hardware specifications. While rendering, the software is mainly influenced by both the size 
of the geometric model and the used texture. 

                                                          

 
 

Fig.2.10. 3D textured model of a carved stone with hieroglyphics texture, the temple of Heliopolis/Al-
Matariya, Egypt, using co-registered images which are captured by the build-in camera of the Leica 
ScanStation C10 (left) and a close-up view for a window area depicted in the latter model (right). 
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3 Building Reflectance and RGB Images 

Due to the difficulty and the intensive computation of the automatic extraction of distinctive 
features from 3D point clouds, a solution simplifying the feature extraction to a 2D problem 
has already been proposed. This solution is expressed in the generation of reflectance or RGB 
images from the 3D data where other kinds of information such as range information 
(distance of each point cloud), reflectance values (the energy of the backscattered laser beam) 
and RGB data (provided by integrated or additional standard digital camera), can be 
exploited. Employing these synthetic images results in registering both digital images and 
laser scanner data, based on a matching between the generated and the camera images, see 
(Alba et al., 2011). This has been the case since the associated given images by the latter 
integrated or additional cameras might not be beneficial in the feature matching. In 
particular, in case that laser scans are acquired at very different viewpoints where 
conventional matching process using 2D image features can be prone to failure. This is 
because of the considerable limitations due to fixing the relative position between the 
sensors, the scanner and the integrated camera (Liu et al., 2006). Therefore, a solution that 
able to handle large changes in the viewpoints of laser scans is desirable. 

Most TLS systems record the reflectance value as the energy of the backscattered laser light. 
However, the backscattered laser light is a signal of high dynamic range where the returned 
gain from object surfaces is subject to changes over a large range especially for pulsed TOF 
LiDAR systems (Böhm & Becker, 2007). Additionally, most laser scanners are equipped or 
can be integrated by a standard digital camera, which provides color information (RGB 
values) for each acquired 3D point cloud automatically. Therefore, the RGB image illustrates 
the color information of the backscattered laser light. 

In the following, two methods for calculating the reflectance or the RGB images as a 2D 
representation of the 3D laser data can be distinguished. The first method utilizes the 
scanning matrix to directly image the laser scanner polar coordinates (Section 3.1). While the 
second method projects the Cartesian coordinates of each laser scanner point cloud to a 
virtual image plane in a central perspective representation (Section 3.2). 

 

3.1 Imaging Laser Scanner Polar Coordinates 
Most used laser scanners record the measured polar coordinates, which are automatically 
transformed into 3D Cartesian coordinates ( , , )X Y Z  and signal amplitude (intensity i) and 

color values (RGB) of the backscattered laser pulses. Thus, the simplest way to generate the 
reflectance and/or RGB images is the direct imaging of the polar coordinates. As a result, the 
image size is given by the obtained image/scanning matrix resulted by the raster-wise 
sampling of the laser scanner point cloud. The number of pixels results from the defined scan 
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resolution (Fig. 3.1). The advantage of this method is the simple generation of the synthetic 
images where each pixel corresponds to only one 3D laser scanner point cloud. For that, the 
scan resolution has to be taken into account. 

 

 
 

Fig.3.1. The old farm house dataset, from the left, 3D laser scanner point cloud acquired by the Leica 
ScanStation HDS3000 at an approximate sampling distance of 2cm, generated Reflectance and RGB 
images using image matrix. 

 
The disadvantages are related to the characteristics of the image matrix and the generated 
images. Basically, one image matrix is interpreted as one image. This requires, according to 
the mechanism and the design of the laser scanner, one scan section which comprises one 
image matrix. Therefore, this method is limited and inflexible especially in case of having 
multi scan sections or grouped point clouds acquired from different scan stations. Moreover, 
in this representation, image lines do not run straight but are curved. Contrarily, camera 
images are provided with central perspective lenses therefore, with neglecting lens 
distortion, straight lines are imaged as straight lines. This causes changes in the grey values 
along the object lines not only due to the different illuminations but also to the different 
geometries (Meierhold et al., 2010). Additionally, the resulting reflectance and/or RGB 
images requires visual enhancement (histogram equalization, color adjustment …etc.) 
because of the poor contrast and low resolution of the laser scanner’s embedded camera. 
Accordingly, imaging laser scanner polar coordinates as a 2D representation may intricate 
the feature matching process between both digital and synthetic images. 
 

3.2 Central Projection of Laser Scanner Cartesian Coordinates 
Modern TLS systems, e.g. the Faro® Focus3D, deliver images, on which 3D measures are 
stored in 2D arrays. This arrangement conforms the scanning mechanism of most TLS 
systems where scan points are orientated in columns and rows and each 3D point is 
determined by a distance and the angels, in horizontal and vertical directions (3D polar 
coordinate system). By that, the delivered images seem to be distorted where straight lines 
are curved (figure 3.2). As a matter of fact, no exact calibration of the delivered image is 
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known and therefore no direct transformation to a virtual image is possible. Therefore, to 
avoid any difficulties in the feature matching process due to the disagreements between the 
generated/delivered images and the digital camera images, we project the laser point clouds 
of each single scan onto a virtual image plane using the collinearity equations 3.1 (Moussa et 
al., 2012a) ; see figure 3.3. 

 

 
 

Fig.3.2. The Lady Chapel dataset, from the left, 3D laser scanner point clouds acquired by the Faro® 
Laser Scanner Focus3D at an approximate sampling distance of about 7 mm@10m distance, delivered 
Reflectance and RGB images. 
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where ( , )x y are the unknown image coordinates centered around the principle point, 

( , , )X Y Z  constitute the corresponding known object coordinates in the laser point clouds, 

0 0 0 i j( , , , r )X Y Z  denote the known exterior orientation parameters. 

We assume that the projection center of the image is placed at the zero coordinates (origin) of 
the laser scanner coordinate system. The normal of the image plane is generally the viewing 
direction of the scanning system.  The parameter ( )c  represents the defined focal length to 

accomplish the projection onto the generated image. This results in one image holding 
reflectance or color information and the 3D information.  

In a central projection (according to the definition of the camera coordinates in computer 
vision; see chapter 2), if the camera center is at the origin and the image plane is the plane 

Z c  the world coordinates ( , , )X Y Z  are mapped to the point ( , , )c X Z cY Z c  in space or 

( , )c X Z cY Z  on the image plane, i.e. the equation 3.2 describes the central projection 

mapping from world to image coordinates (Hartley & Zisserman, 2003). 



3.2 Central Projection of Laser Scanner Cartesian Coordinates 45 

 
 

( , , ) ( , )X Y Z c X Z cY Z((                                                      (3.2) 

 

A significant advantage of such representation is that, it allows the use of powerful 
algorithms of computer vision applications, e.g. SfM, BA where a pinhole camera model is 
required. Moreover, the similarity between the resulting images and the camera images 
where straight lines are preserved (figure 3.4), allows the use of not only feature operators 
but also line operators on the generated images. The disadvantages are related to the 
characteristics of the generated images, particularly they show small gaps that result due to 
point cloud resolution which alters over the entire image. These gaps can disturb the feature 
matching process. This can be avoided by applying interpolation processes and selecting the 
right point sampling distance during the image generation. Moreover, during the generation 
of the virtual images, it is essential to define the 3D virtual camera coordinate system and 
improve the radiometry as well as the geometry of the generated images. Furthermore, the 
generated images may require visual enhancement. 

 

 
 

Fig.3.3. Central projection representation, the virtual camera is located in the laser scanner’s center. 
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3.2.1 Defining 3D Virtual Camera Coordinate System 
Before applying the collinearity equations to project the laser scanner point clouds onto a 
virtual image plane, during the generation of the synthetic images, it is crucial to define the 
3D camera coordinate system ( , , )X Y Z . Due to the reason that most TLS systems do not offer 

to the user a way to set up the principal axis of angular measurements (zero direction) before 
performing the scanning, a 3D rotation around the vertical axis has to be attempted. 

Let the frame , , ,X Y Z C  define the laser scanner coordinate system, as right-handed 

system (figure 3.5). Since the perspective center of the virtual camera is located in the origin 
of the laser scanner, the 3D camera coordinate system must be defined by the frame

, , ,X Y Z C , as right-handed system. The Z-axis represents the camera principal axis which 

goes through the camera center and orthogonal to the virtual image plane. This requires a 
3D rotation with angle  around the Y  axis as depicted in figure 3.5. 

 

 
 

Fig.3.4. Using collinearity equations, the Reflectance and RGB images generated from point clouds 
acquired by the Leica ScanStation HDS3000 of the old farm dataset (1st row) and from laser point 
clouds acquired by the Faro® Laser Scanner Focus3D of the Lady Chapel dataset (2nd row). 
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Fig.3.5. Definition of 3D virtual camera coordinate system. 

 

The complete rotation ( , , )R  of a spatial coordinate transformation can be defined by the 

successive application of three individual rotations 1( ), 2( ), 3( )R R R  around the three 

axes of the spatial coordinate system , respectively as: 
 
                                                   ( , , ) 1( ) 2( ) 3( )R R R R                                         (3.3) 

 
In this application, an individual rotation around the Y  axis is required, therefore, equation 
3.3 can be reformulated as 

 
                                                                        2( )R                                                              (3.4) 

 
since the corresponding rotation about the Y  axis is designed by the rotation angle . This 

results in the following ( , , )X Y Z target point coordinates: 
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Fig.3.6. Dataset of Stuttgart University building, from the left, 3D laser scanner point cloud acquired 
by the Faro® Laser Scanner Focus3D and generated RGB images with different pixel footprints; interval 
distance in object space (2, 5 and 9cm). 

 

Since the Z-axis is directed to the principal point of the virtual image, i.e. it is directed to the 
horizontal center of the laser scanner point clouds, the rotation angle ( ), from figure 3.5, 

can be simply determined using the following formula: 
 

max min
min ( )

2 2
                                                    (3.6) 

 
where min , max represent, from the laser scanner angular measurements, the smallest and the 

biggest horizontal angels respectively. 

The determination of the viewing direction axis (here the Z-axis) is considered as a 
fundamental step for generating a virtual image from a single or group of laser point clouds. 
Furthermore, this allows building synthetic images with a specific viewing direction 
depending on our data processing requirements. 

3.2.2 Improving Radiometry and Geometry 
Since more projected points per pixel will improve the generated image in terms of 
radiometry and geometry, the pixel size is calculated from projecting the required interval 
distance (point sampling distance) in object space, i.e. larger than the scan interval distance, 
onto the image plane. Accordingly, the pixel size has a direct effect on the required image 
resolution and the desired number of projected points in an image pixel. This allows the 
generation of images with different pixel footprints and interval distances in object space 
especially, in case of having very dense laser point clouds (figure 3.6). Preceding to that, a 
filtering step with respect to the minimum reflectance value can be applied on the raw 3D 
data. Then, an interpolation is performed on the virtual color image to fuse multiple 
information in the same cell and to fill gaps. During this interpolation, a distance based filter  
is applied in order to remove outliers. This is determined by a selection criterion. The filter 
examines each image pixel and establishes a quality value that defines a surrounding area 
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like a circle in a certain distance range from the pixel, see figure 3.7. If a pixel is outside the 
defined surrounding area, the corresponding color information will be discarded. Further-
more, spatially non-consistent cell elements and noisy information will be discarded during 
the interpolation, particularly along object edges and sky points. Thereby, outliers can be 
detected and accuracy is increased. To solve this tasks, we employed the Fast Library for 
Approximate Nearest Neighbors (Muja & Lowe, 2009) and the kd-tree implementation in the 
VLFeat library (Vedaldi & Fulkerson, 2010). 

 

 
 

Fig.3.7. The area surrounding a pixel with radius of 2 pixels in a generated RGB image of the old farm 
house dataset.   

   

 
 

Fig.3.8. The Lady Chapel dataset, from the left, 3D laser scanner point clouds acquired by the Faro® 
Laser Scanner Focus3D and the matched features on the generated RGB image with a close-up view for 
the 4 nearest neighbors (green) which are used in order to interpolate the corresponding object 
coordinates for each feature (red). 

2 Pixels 
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3.2.3 Improving Keypoint Localization 
As the extracted keypoints from the generated images are located with subpixel accuracy, 
e.g. SIFT (Lowe, 2004) features, the corresponding 3D locations have to be calculated from 
the projected points using an interpolation process based on inverse weighted 3D distances 
of nearest neighbor measurements (see figure 3.8). In case that 3D range measurements are 
not available for all neighboring points (e.g. 4 neighbors) in the laser point clouds, this point 
will be excluded. To accomplish these tasks, we employed also the Fast Library for 
Approximate Nearest Neighbors (Muja & Lowe, 2009) and the kd-tree implementation in the 
VLFeat library (Vedaldi & Fulkerson, 2010).  
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4 General Strategy for Digital Images and 
Laser Scanner Data Integration 

In Chapter 2, it has been shown that combining accurate information of image matching and 
laser scanners approaches can overcome individual weaknesses of each singular technique in 
order to reach reliable and improved results almost in all operative conditions. Under this 
point of view, a flexible fusion approach which can ensure accuracy, reliability and con-
sistency in results is still pending. 

The key challenge for the combination of digital images and laser scanner data is finding a 
registration approach that comprises advantageous characteristics in terms of good 
precision, reliability, and low grade of user interaction. In general, the registration process 
can proceed either automatically or manually by placing artificial targets into the scene. The 
latter can be time and effort consuming therefore, it is worthwhile to use the former one. 
Typical automatic registration approaches use distinctive features for the registration of 
digital images and laser scanner data. These features have to be matched in both input 
sources. Accordingly, the registration of both sensors can be based on a matching between 
the generated images from laser scanner data and the camera images. Advantageous is that 
the registration can be implemented without feature extraction and segmentation processes 
in the 3D laser data. 

In (Moussa et al., 2012a) we presented a pipeline for combining digital images and laser 
point clouds based on a scene database stored in a point-based environment model (PEM). 
The PEM allows the extraction of accurate control information for direct absolute camera 
orientation by means of accurate space resection methods. Then, for the purpose of 
improving the previous pipeline’s results, we employed the generated images from the laser 
data and the camera images in one structure-from-motion (SfM) reconstruction process 
(Moussa et al., 2012b; Moussa et al., 2013).  This general strategy provides accurate image 
orientations and sparse point clouds, initially in an arbitrary model space. Furthermore, this 
enables an implicit determination of the 3D-to-3D correspondences between the sparse point 
clouds and laser data via 2D-to-3D correspondences stored in the generated images.  

As a result, the proposed integration methods yield at an increase in automation and 
redundancy, represent a direct solution for data registration, and result in dense surfaces and 
detailed structures with high-resolution texture. In the following, a detailed description of 
the proposed approaches is given in order to introduce the whole used methodologies. 
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4.1 Data Integration Using Accurate Space Resection Methods 
As a first stage, we developed a pipeline for combining digital images and laser scanner 
point clouds that starts by a marker-free registration of digital images based on an extended 
point-based environment model (PEM) of a scene (see Appendix E), which stores the 3D 
laser data associated with intensity and RGB values. The PEM allows the extraction of 
accurate control information for the direct computation of absolute camera orientations with 
redundant information by means of accurate space resection methods. Then, using the 
resulting absolute orientations, oriented dense image point clouds are reconstructed with the 
help of dense image matching algorithms. The resulted point clouds are automatically 
combined with the laser scanner data to form a complete detailed representation of a scene. 

The proposed pipeline can be divided into the following steps, as presented in Figure 4.1. 

 Data Acquisition. The data acquisition put the goodness of the achievable results into a 
better state, i.e. good image quality and noiseless laser scanner data yields an improvement 
in the output of our algorithm. 

 Data Pre-processing. Raw LiDAR data can be filtered with respect to the minimum 
reflectance values, captured images require correction of image distortion (if camera 
calibration is available) and considering only the green channel in order to get similar 
intensity values in the generated and the camera images as well as to reduce illumination 
differences; and resizing digital images to fit as good as possible to the ground sampling 
distance of the  generated images in order to ensure optimal matching performance.  

 

 
 

Fig.4.1. Workflow for the combination of digital images and laser scanner data using accurate space 
resection methods. 
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 Generating Reflectance and RGB Images. The reflectance and RGB images are generated 
using the collinearity equations, as illustrated in chapter 3, section 3.2. Furthermore, we 
found the matching process to work best by setting the image scale of the latter synthetic 
images similar to the camera images. For this purpose, an identical focal length is used. 
 Feature Extraction from Images. The synthetic images and the camera images indicate 
differences related to image resolution, radiometry, illumination and viewing direction. As 
a consequence, the identification of corresponding points between generated and camera 
images requires a robust feature extraction algorithm, which is insensitive to illumination 
and scale differences and employs region descriptors instead of edge detectors (Böhm & 
Becker, 2007). A wide variety of feature operators have been proposed and investigated in 
the literature, e.g. (Tuytelaars & Mikolajczyk, 2008). Generally, repeatability is the most 
important attribute for a feature operator, which indicates the capability of finding the 
same exact feature under different viewing and illumination conditions (Barazzetti et al., 
2010). (Valgren & Lilienthal, 2007) addressed the high repeatability of the SIFT (Lowe, 2004) 
and the Speeded-Up Robust Features (SURF) (Bay et al., 2008) operators in the case of 
terrestrial images. (Morel & Yu, 2009) propose the Affine-SIFT (ASIFT) feature detection 
algorithm which extends the SIFT method to fully affine invariant local image features. The 
ASIFT method is able to detect reliably features that have very large affine distortions that 
are measured by a new geometric parameter, the transition tilt. (Morel & Yu, 2009) report 
that the ASIFT outperforms significantly the state-of-the-art methods such as the SIFT 
(Lowe, 2004), the MSER (Matas et al., 2004), the Harris-Affine and the Hessian-Affine 
(Mikolajczyk & Schmid, 2002 and 2004), e.g., SIFT hardly exceed transition tilts of 2 while; 
ASIFT can handle transition tilts up to 36 and higher. Furthermore, (Morel & Yu, 2009) 
illustrate that most scenes with negligible or moderate camera view angle change that 
match with ASIFT also match with SIFT (usually fewer matching points). Nevertheless, 
when the view angle change becomes important, SIFT and other methods fail while ASIFT 
continues to work. Thus, ASIFT has been selected for our application. More details on the 
ASIFT are reported in Appendix F.  

 Building PEM Feature Database. As reported in Appendix E, the PEM (Boehm, 2007) was 
described as a dense point-wise sampling of the scene surface where each sample is located 
in an approximately regular polar grid and comprised of the 3D coordinates of the surface 
point associated with an intensity value. The PEM features are extracted from the 
corresponding reflectance image by direct mapping of the laser scanner polar coordinates. 
Consequently, according to chapter 3 section 3.1, the use of this method may intricate the 
feature matching process between both reflectance and camera images. Therefore, we 
expand the PEM as follows. Since terrestrial laser scanners provide for each measurement 
intensity and RGB values, we store these values in the PEM. This extension has an 
important advantage, because instead of using only intensity values, a similar approach can 
be also applied on RGB values. This results in extracting redundant information from both 
generated images. Moreover, the intensity values are recorded as the energy of the reflected 
laser beam, which locally illuminates the surface at a very narrow bandwidth of the laser 
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beam. This may outcome in missing some good features which are not visible at the narrow 
bandwidth of the light source (Boehm, 2007). To avoid difficulties in the feature matching 
process between both the generated and the camera images, we generate both virtual 
images in a central perspective representation. In addition to that, we employed several 
improvements on the generated images as described in chapter 3. The generated PEM with 
its list of features, PEM feature database, plays a key role to provide accurate control infor-
mation for direct absolute orientation of hand-held cameras. 

 Camera Image Registration to LiDAR Data. Finding the mathematical mapping by 
calculating the relative orientation between the digital images and the extended PEM 
database is referred as sensor registration. Most registration approaches are classified 
according to their nature (area-based and feature-based) and according to four basic steps 
of image registration procedure: feature detection, feature matching, transform model 
estimation and image transformation and resampling (Zitova & Flusser, 2003). Therefore, in 
the next paragraphs, a marker-free registration pipeline of camera images based on a 
feature matching process with the PEM features database is introduced. This process 
involves determination of correspondences and calculation of camera orientations. 

 Determination of Correspondences. 

Feature Extraction: The ASIFT operator has been used for the extraction and description 
of local invariant features from camera images.   

Feature Matching: The ASIFT associates a descriptor to each detected image feature 
following the standard SIFT operator. Then, feature matching is performed by employing 
a pairwise comparison of descriptor space distances for interest features in each camera 
image to the PEM feature databases, without any preliminary information about the 
image network or epipolar geometry. Moreover, feature matching can be improved by 
using methods that try to find more good matched features, e.g. (Guo & Cao, 2010). 

Up to now, two methods are available for descriptor pairwise comparison: a quadratic 
matching procedure and a kd-tree procedure. Let aI  and bD be a camera image and a PEM 

feature database for the same scene respectively, in which n  and m  are the number of 
ASIFT features that listed and extracted with their descriptors ,a nd  and ,b md  respectively. 

The quadratic matching procedure compares all descriptors of the image aI  with all those 

of the database bD . Then the Euclidean distance between both descriptors is computed as 

a similarity measure and indication to the goodness of the match. To accept or reject a 
match, a constraint (distance ratio) between the first candidate on the ordered list and the 
second-best candidate is applied. The method can be summarized as follows: (i) each 
descriptor ,a nd  is compared with all the descriptors ,b md  by calculating the Euclidean 

distance , ,nm a n b md d d ; (ii) all distances nmd  are listed from the shortest 1
nmd  to the 

longest m
nmd ; (iii) a match is accepted if 1 2

nm nmd d t , [0.5,0.8]t . This procedure is rigidly 

accurate but it is potentially time consuming due to the high computation. 
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The second procedure is based on a kd-tree approach (Beis & Lowe, 1997). The kd-tree is a 
data structure used to quickly solve nearest-neighbor queries. Once a kd-tree of the 
database bD  is built holding all its descriptors then it can be queried using descriptors 

from image aI . For each query descriptor, the nearest and the next-nearest neighbors in 

bD  are returned. Then the distance ratio between the first two candidates is performed to 

determine if there is a match. The kd-tree organizes descriptors in such a way that 
descriptors close together live in nearby regions of the data structure. This results in 
efficient searching. Kd-trees typically use an approximate nearest neighbor search such as 
the approximate nearest neighbors (ANN) library (Arya et al., 1998) and the fast library 
for approximate nearest neighbors (FLANN) (Muja & Lowe, 2009). This procedure is fast 
but is approximate while it preserves more than 95% of correct nearest neighbors (Muja & 
Lowe, 2009). 

Practically, choosing the right descriptor comparison procedure depends on the number 
of images or extracted features involved in the matching process, which results in an 
increase in the computation time (Barazzetti et al., 2010).  

Removal of Wrong Image Correspondences: Candidate correspondences usually have 
fair mismatches. This is mainly as a result of the nature of the feature descriptors, 
different intrinsic characteristics of images and the nature of the acquired surface 
structure. To exclude these mismatches, the geometric relationship of the features 
(geometric consistency) has to be considered. A typical approach to this problem is to use 
the Random Sampling and Consensus (RANSAC) filtering scheme (Fischler & Bolles, 
1981). The RANSAC is an iterative method to obtain initial parameter estimates of a 
mathematical model together with a list of statistical inliers from a set of observed data 
which contains outliers, and follow this with a refinement step (Winder, 2010). Since each 
2D PEM feature is linked to a 3D laser scanner coordinates, the corresponding 2D camera 
image feature is linked to the 3D coordinates. Therefore, the PEM features can be used as 
3D control points which express the 3D-to-2D correspondences problem. For that, the 
RANSAC is adapted to a closed-form space resection algorithm proposed by (Zeng & 
Wang, 1992) as a mathematical model in order to exclude mismatches. 

 Camera Orientation Based on Accurate Space Resection. Once the 3D-to-2D correspon-
dences are known, the exterior camera orientation relative to the laser data (PEM) can be 
calculated from solving the Perspective-n-Point (PnP) problem (space resection). For that, 
accurate space resection methods are employed for the estimation of the absolute 
orientation of the cameras using redundant information. To improve efficiency and 
accuracy, an outlier rejection procedure based on noise statistics of correct and incorrect 
correspondences is applied. 

Accurate Camera Space Resection: Accurate space resection methods determine the 
orientation of a camera given its intrinsic parameters and a set of correspondences 
between 3D points and their 2D projections. These methods have received much attention 
in both Photogrammetry and Computer Vision. Particularly, in applications which are 
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computationally expensive like feature point-based camera tracking (Lepetit & Fua, 2006) 
which handle hundreds of noisy feature points in real-time. However, for redundant data 
handling, the most accurate methods for solving space resection problem rely on iterative 
optimization methods (Lu et al., 2000). An essential prerequisite for the iterative methods 
is having a reasonable initial estimate. With poor initial values it will be prone to failure. 
In this application, we use the Efficient Perspective-n-Point (EPnP) algorithm (Moreno-
Noguer et al., 2007; Lepetit et al., 2009). EPnP proposed as a non-iterative solution to the 
PnP problem, which is able to consider nonlinear constraints but requires only O(n) 
operation, more description is reported in appendix G. It is used to calculate a good initial 
guess for the orthogonal iteration (OI) algorithm (Lu et al., 2000), which minimizes the 
error metric based on collinearity in object space in order to estimate efficiently the 
camera pose  (position and orientation), see appendix G. 

It is worthwhile to mention that, in case of using an amateur digital camera for 
photograph’s collection; we can consider the results of the EPnP method as initial values 
in the extended collinearity equations by adding additional camera parameters in order to 
estimate the camera calibration.  

Outlier Rejection Procedure: To improve the estimated camera pose in terms of accuracy, 
a statistical outlier removal process is applied to the reprojection errors, in image or object 
space, in order to discard the remaining false correspondences and discriminate the good 
ones. This has been considered under the assumption that a normal (Gaussian) 
distribution of the residual for the good correspondences is present. We employed a 
simple but effective rejection rule, called X84 proposed by (Hampel et al., 1986), which 
utilizes robust estimates for location and scale, i.e., the spread of the distribution, to set a 
rejection threshold, see appendix H. 

 Dense Image Matching. Using the absolute camera orientations, we can reconstruct dense 
image point clouds from the corresponding camera images. For that, we applied a dense 
image matching algorithm in order to reconstruct oriented dense image point clouds which 
are automatically combined together with the laser scanner data. Further complementary 
improvement step using any surface matching algorithm as a fine registration step is 
possible. 

The integration algorithm has been implemented in a Matlab code. 

4.1.1 Experimental Evaluation 
In order to evaluate our results, the developed pipeline was applied to the dataset of the old 
farm house which is considered as a typical application for TLS. The aim was to reconstruct 
the missing upper right part of the façade. 19 photographs have been employed for the 
marker-free registration. The Leica ScanStation HDS3000 and the NIKON D2X (12 Mpix) 
with 20mm lens were the applied sensors (figures 7.3). In the following, an evaluation for all 
pipeline steps is presented. 
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4.1.1.1 Evaluation of Correspondences 

Feature Extraction: 

Inspired by the positive results of using ASIFT operator (figure 4.2), image features were 
extracted in the generated images (1193x597 pixels) and the resized camera images (1201x797 
pixels). 

PEM Feature Database: 

The PEM feature database is a combination of features extracted from both reflectance and 
RGB images, and then labeled after removing duplicate features; see figure (4.3). 

Feature Matching:  

Since the processing time was not yet taken into account, the quadratic matching procedure 
with a distance ration of about 0.63 has been used in our application in order to ensure a 
good robustness. Finding more good feature pairs between each two sets of features, i.e. 
between each camera image features and the PEM feature database is an important issue, 
especially in case of having limited textures like urban buildings where we have lots of glass 
windows. This can be accomplished, as presented in (Guo & Cao, 2010), at first by using the 
matched features as seed points then organize these seed points by adopting the Delaunay 
triangulation algorithm. Finally, we apply Triangle-Constraint (T-C) to increase both the 
number of correct matches and the ratio between the number of correct matches and total 
number of matches (matching score), see figure 4.4.  

 

 
 

Fig.4.2. Old farm house dataset, image correspondences filtered by means of  RANSAC between a 
generated RGB image (above) and a camera image (bottom) acquired with large view angle, detected 
using SIFT operator with 58 keypoints  (left), and AIFT operator with 700 keypoints (right). 
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Fig.4.3. PEM feature database for the old farm house Dataset. 66610 ASIFT features extracted from 
the reflectance image (red dots, upper left), 44571 ASIFT features extracted from the RGB images 
(green dots, upper right), 101782 ASIFT features, derived from both generated images, listed in the 
PEM feature database (bottom). 

 

Removal of Wrong Matches:  

Wrong image matches are removed by the RANSAC based computation of a closed-form 
space resection as a mathematical model (figure 4.5). Additionally, incorrect matches will be 
later excluded in the camera orientation estimation step by the X84 procedure (figure 4.6).  

 

 
 

Fig.4.4. Old farm house dataset, Triangle-Constraint (T-C) for finding more good feature pairs. 
Feature correspondences, filtered by RANSAC, between the PEM feature database and a camera 
image, depicted on the latter, before applying T-C with 271 keypoints (left) and after applying T-C 
with 875 keypoints (right). 
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Fig.4.5. Old farm house dataset, removal of wrong matches. Feature correspondences (red dots), 
between the PEM feature database, represented by a generated RGB image, (above) and a camera 
image (bottom), matched by a quadratic matching procedure with 2895 keypoints (left) and then 
filtered by RANSAC based on a closed-form space resection to obtain 1541 keypoints (right). 

 

4.1.1.2 Camera Orientation 

Accurate Camera Space Resection: 

Once the filtered 3D-to-2D correspondences are determined, the PnP problem can be solved 
using the EPnP algorithm. The EPnP results are used then as an input for the OI algorithm in 
order to improve the results in terms of accuracy. 

 

 

 

Fig.4.6. Feature point correspondences for 19 images of the old farm house dataset. The 
correspondences after ASIFT matching (red), the results after RANSAC filtering (blue) and after 
statistical outlier removal X84 (green). 
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Outlier Rejection Procedure:  

As the EPnP algorithm considers all the 3D-to-2D correspondences without checking their 
reliability, the quality of orientation can be increased by introducing further constraints. 
Therefore, the X84 rule was applied iteratively during the estimation of camera orientation in 
order to exclude outliers (figure 4.7). Accordingly, the overall precision of the orientation is 
in sub-pixel range, which can be improved later by the iterative method (OI). Alternatively, 
the X84 can be also applied on the reprojection errors which are calculated by comparing the 
3D points resulted from RANSAC and that determined by reprojecting the laser point clouds 
into the image using the estimated orientations from space resection. Under the hypothesis 
of Gaussian distribution is present and using equation H.2, a value of 2.97k  is enough to 
meet the purpose of our application, which corresponds to about 2 standard deviations (2 ).

The resulting range of [ 2 , 2 ] , accounts for about 95% of the values.  

To assess the accuracy of the camera orientation, we have performed manual measurements 
by visual inspection of well-localized structures such as corners and junctions using the 
“Australis” software package. The camera orientations of three arbitrary camera images 
captured at different viewing angles have been calculated. Figure 4.8 shows that the accuracy 
reaches a few centimeters level for the positioning accuracy (X, Y, Z) and an improvement in 
the rotational accuracy (quaternions: q1, q2, q3, q4), where rotation variations are very close to 
zero. More details about the quaternions are reported in Appendix I. The accuracy is 
measured in terms of offsets between computed and manual parameters.  

 

 

 

Fig.4.7. The old farm house dataset, outlier removal using the X84 rejection rule. The spread of image 
matched features (bottom) and the corresponding reprojection errors in image space (above) before 
applying the X84 rule (left) and after applying the X84 rule (right). 
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Fig.4.8. Evaluation of the OI method’s results for the old farm house dataset. Residuals of camera 
orientations (depicted in Boxplots), using Australis results as a reference, for three images with 
different viewing directions. X, Y, Z are the camera position and qi is the quaternion rotation value (ϵ 
[0,1]). 

 

4.1.1.3 Dense image matching 

We have generated dense point clouds from the camera images using the corresponding 
calculated absolute orientations. For that, we applied a multi-view dense image matching 
algorithm - in particular, patch-based multi-view stereo (PMVS) method (Furukawa & Ponce, 
2007; and 2010) in order to reconstruct oriented dense image point clouds that automatically 
combined together with the laser data (figure 4.9). More information about the PMVS 
method is reported in Appendix B. 

Figure 4.9 illustrates that the reconstructed dense image point clouds by the PMVS fits 
correctly to the laser point clouds. These results were sufficient for our application, where 
the upper part of the farm house is recovered, gaps in laser point clouds are filled (figure 4.9, 
c) and building façade has been updated (figure 4.9, b, window). Determining the differences 
between image and laser scanner point clouds was carried out in the overlap area using the 
image data as a reference by means of the software CloudCompare 
(http://www.danielgm.net/cc); see figure 4.10. The large distances correspond to points not 
being available in one of the datasets. The standard deviation of the difference amounts to 
approximately 3.8 cm and the mean deviation approximately amounts to 2.7 cm. This is 
under the assumption that a Gaussian distribution of the residuals is present. Therefore, a 
subsequent improvement step using ICP is desirable.  
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Fig.4.9. Dense image matching results using patch-based multi-view stereo (PMVS) algorithm. (a) 
3D laser scanner point clouds, from one scan station, of the old farm house acquired by the Leica 
ScanStation HDS3000. (b) Dense image point clouds generated by the PMVS using the orthogonal 
iteration (OI) algorithm outputs, about 0.5 million pts. (c) Combined point clouds from (a), which is 
depicted with scalar fields & (b). (d) A close-up view for a window area depicted in (c). 

(c) 

(a) 
(b) 

(d) 
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In general, the MVS reconstruction step may output dense point clouds, which are coarsely 
registered with the laser data. These resulting points can provide good a priori alignment 
that is required for a further global registration step using ICP. The quality of this initial 
alignment is influenced by the quality of the estimated camera orientations, which are 
influenced as well by the number and the distribution of corrected 2D-to-3D 
correspondences. Therefore, minimizing reprojection errors (in image and object spaces) 
during the calculation of orientations using outlier removal can play an important role in 
having accurate orientation and good initial alignment. In addition to that, a filtering step is 
expected in order to remove noisy points, which may have an effect upon the quality of the 
fine registration. Hence, applying ICP will improve the registration accuracy. 

 

 
 

Fig.4.10. Comparison of point clouds resulted from dense image matching using PMVS with 19 
camera images and that derived by laser scanner with one scan station, in the overlap area of the old 
farm dataset. It shows the distance error map and the corresponding scale bar of the absolute difference 
distances  5 cm. 

 

4.2 Data Integration Using Accurate Space Resection and SfM 
Reconstruction Methods 
In section (4.1), the integration method delivers absolute camera orientations in relation to 
the laser scanner data. Precedent to that, as a second stage, the local relative orientation 
parameters of the camera images can be calculated by means of a Structure-from-motion 
(SfM) method. Accordingly, using the computed relations between the camera images and 
the laser data, an extended Helmert (seven-parameter) transformation is introduced and its 
parameters are estimated, see Appendix D. Taking advantage of the determined transforma-
tion parameters results in having absolute oriented images in relation to the laser scanner 
data. This followed usually by dense image matching to create georeferenced dense image 
point clouds. Alternatively, after performing dense image matching using the local SfM 



64 4 General Strategy for Digital Images and Laser Scanner Data Integration 

 
results, we can use the determined 2D-to-3D correspondences in the first stage between at 
least one camera image and the PEM database in order to determine the 3D-to-3D 
correspondences between the dense image point clouds and the laser point clouds. This is 
performed after reprojecting the dense image point clouds onto the selected camera image. 
The proposed approach consists of the following steps, as shown in Figure 4.11. 

 

 
 

Fig.4.11. Workflow for the combination of digital images and laser scanner data using accurate space 
resection and SfM reconstruction methods. 

 

 Data Acquisition and Pre-processing. As described in section (4.1), camera images with 
good quality are collected and then a correction of image distortion is performed, if 
calibration is available. 

 SfM Reconstruction. Structure-from-motion methods estimate simultaneously the scene 
structure and the camera motion from images of a scene with little prior information about 
the camera. For that, we employ a modular processing chain, developed locally at ifp by 
(Abdel-Wahab et al., 2012), intended to automatically and accurately process unordered 
sets of images to determine relative image orientations and sparse point clouds of tie points 
without prior knowledge of the scene. More details about the used SfM method are 
reported in Appendix A. 

 Seven-Parameter Transformation. As presented in section (4.1), the first stage delivers 
absolute camera orientations. On the other hand, SfM method in the second stage, hands 
over camera orientations in a local model space. Using the 3D-to-3D correspondences 
(camera positions ≥ 3 well distributed), a similarity transformation that includes the scale 
factor, 3D rotations and 3D translations is computed iteratively. Consequently, the 

Structure-from-Motion Image Registration 

Data Acquisition 

Pre-processing 

Camera Images 

Feature Extraction PEM Feature Database 

Reflectance & RGB Images 

Dense Image Matching 

S
Helmert Transformation 



4.2 Data Integration Using Accurate Space Resection and SfM Reconstruction Methods 65 

 
estimated seven-parameters are applied on the SfM output in order to have absolute 
camera orientations in relation to the LiDAR data. An alternative method is using the 
determined 2D-to-3D points in the first approach between at least one camera image and 
the PEM database. This enables us to determine the transformation parameters. That is, by 
applying dense image matching on the local SfM results and then reprojecting the latter 
into the selected camera image using the collinearity equations (3.1) or the following 
respective transformation equations (central projection in homogeneous coordinates). 

 
                                                                 |x K R t X                                                       (4.1) 

 
where x  represents the unknown 2D image homogeneous coordinates, K is the known 
camera calibration matrix, ( , )R t  denote the known exterior orientation parameters resulted 

from the SfM method and X  constitute the known 3D object homogeneous coordinates of 
the laser data. This allows us to determine the 2D-to-2D correspondences between the 
camera image and the reprojected image point clouds, i.e. the 3D-to-3D correspondences 
between the PEM database or laser data and the image point clouds. Therefore, this method 
requires performing the dense matching step before the calculation of transformation 
parameters. In addition, the same approach can be applied on the sparse point clouds 
resulted from the SfM method by projecting only the sparse points onto the selected image. 
Then, the dense matching step can be employed after the calculation of transformation 
parameters. But, this approach provides less redundant measurements. 

Since some dense matching algorithms provide dense image point clouds separately for 
almost each individual image, e.g. the software SURE (Rothermel et al., 2012), it is more 
robust to only project the single dense point cloud onto the corresponding selected image 
for the seven-parameters estimation. This can filter out incorrect projected points on the 
image, i.e. projected points from object surfaces that are not covered by the selected image. 
Consequently, the estimated transformation parameters can be computed with blunder 
rejection and then are applied on the image data. 

 Dense Image Matching.  Dense point clouds can be reconstructed using the resulted 
absolute or local camera orientations with the help of any dense matching algorithm. The 
resulted point clouds are automatically combined with the laser data to form a complete 
representation of the scene, with an option for further improvement using ICP. 

The algorithm has been implemented in a Matlab code. 

4.2.1 Experimental Evaluation 
To assess the results, the second stage in our developed pipeline was applied also to the 
dataset of the old farm house. 19 photographs have been employed for SfM reconstruction. 
In the following, an evaluation for the pipeline steps is demonstrated. 
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4.2.1.1 Camera Orientation 

SfM Reconstruction: 

Using the SfM method developed locally at the Institute for Photogrammetry (ifp), we 
successfully derived the orientations and the geometry from the used imagery (19 images); 
the results are shown in figure 4.12 left with relative accuracy in image space (root mean 
square of the reprojection error) less than a pixel, about 0.7 pixels. This is considered to meet 
the requirements for the latter dense matching step.  

 

 
 

Fig. 4.12. SfM output: sparse point clouds (colored), 19 camera positions (red dots) of the old farm 
house dataset (left). Reprojected dense image point clouds onto a camera image (red dots) and the 
resulted 3D correspondences (210 keypoints, blue dots) between the latter and the laser point clouds 
which are used for the calculation of the seven- parameters, depicted on the camera image (right). 

 

Seven-Parameter Transformation: 

We have performed two methods for the estimation of the transformation parameters. The 
first method utilizes the determined 3D-to-3D camera positions from space resection and 
SfM methods. Then, a procedure based on an iterative computation of the seven-parameters 
is curried out. After that, the camera orientations resulted from SfM are  transformed by the 
calculated parameters in order to have absolute values. While in the second method, the 3D-
to-3D correspondences between the laser and image point clouds are determined after 
reprojecting the dense image point clouds onto at least one camera image (figure 4.12 right). 
The transformation provides accurate a priori alignment of the dense image point clouds 
with the laser data, which can be improved latter by ICP.  

In order to evaluate the accuracy of the estimated orientations by the SfM method as well as 
transformed by the calculated Helmert parameters, a comparison to the computed camera 
orientation using the “Australis” software package was performed (figure 4.13). In case of 
using the camera positions for the calculation of transformation, the positioning accuracy 
(X,Y,Z) is a few centimeters and the rotation residuals are very small which indicates an 
improvement in the rotational accuracy (q1, q2, q3, q4). While, using the second method 
shows that the accuracies have improved. This is due to the redundant measurements and 
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the good distribution of the used 3D correspondences compared to the limited number of 
camera positions and not very well distributed in the surrounding object of interest.  

 

 
 
Fig.4.13. The old farm house dataset, evaluation of the SfM method’s results. Residuals of camera 
orientations (depicted in Boxplots) resulted by using the camera positions (middle) and the reprojected 
dense image point clouds (bottom) for the seven-parameters estimation, using Australis results as a 
reference, for three images with different viewing directions (above). X, Y, Z are the camera position 
and qi is the quaternion rotation value (ϵ [0,1]). 

 

4.2.1.2 Dense image matching 

Using the absolute camera orientations, we have reconstructed a georeferenced and dense 
point clouds from the corresponding camera images (Figure 4.14). For that, we applied dense 
image matching algorithms - in particular, a hierarchical multi-view stereo based on the 
Semi-Global Matching. This solution was developed locally at ifp and implemented within a 
software package called SURE; see (Rothermel et al., 2012). More details about the SURE 
method are presented in Appendix B. 

 



68 4 General Strategy for Digital Images and Laser Scanner Data Integration 

 

 
 

Fig.4.14. Dense image matching results using the software SURE. (a) 3D laser scanner point clouds, 
from one scan station, of the old farm building façade acquired by the Leica ScanStation HDS3000. (b) 
Dense image point clouds generated by the software SURE using the SfM method’s outputs, about 11 
million pts. (c) Combined point clouds from (a), which is depicted with scalar fields and (b). (d) A 
close-up view for a window area depicted in (c). 

(c) 

(a) (b) 

(d) 
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Figure 4.14 shows that the resulted dense image point clouds fit correctly to the laser point 
clouds and contain almost no noise. These results are considered to meet the requirements of 
our application, where the upper part of the farm house is reconstructed, gaps in laser point 
clouds are filled and building façade has been updated. In order to know the differences 
between the models, point clouds acquired by laser scanner and that obtained by the 
software SURE, a comparison in the overlap area was performed using the latter as a 
reference by means of the software CloudCompare (figure 4.15). The large distances 
correspond to points not being available in one of the datasets. The standard deviation of the 
difference amounts to approximately 3.9 cm and the mean deviation approximately amounts 
to 1.8 cm. These results were improved compared to those resulted by the previous method 
in section (4.1). Nevertheless, a subsequent refinement step using ICP is preferable. 

 

 
 

Fig.4.15. Comparison of point clouds resulted from dense image matching using the software SURE 
with 19 camera images and that derived by laser scanner with one scan station, in the overlap area of 
the old farm dataset. It shows the distance error map and the corresponding scale bar of the absolute 
difference distances  5 cm. 

 

4.3 The Proposed General Workflow 
In section (4.1), imagery has been processed separately in order to calculate the camera 
orientations not taking into account the relative geometry of all images. These orientations 
are employed then to transform the SfM outputs, presented in section (4.2), into object model 
space whereas all images are processed efficiently in one bundle. Using the transformation 
parameters resulted with the help of space resection methods can lead to a reduction in the 
accuracy of image or dense image point cloud alignment with the laser data. In order to 
overcome these problems and improve the previous results a direct integration solution of 
photogrammetric and LiDAR techniques has been attempted. 

As presented in chapter 3, reflectance or RGB images are generated from 3D laser data in a 
central projection. On the other hand, the SfM approach and the subsequent bundle block 
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adjustment are based on the pinhole camera model. Thus, our combination process is based 
on simultaneous bundle block adjustment of camera imagery and those generated from laser 
data, which relies on homologous image coordinates across the views. This integration of 
both input images in one SfM reconstruction process provides accurate image orientations 
and sparse point clouds, initially in an arbitrary model space. This enables an implicit 
determination of the 3D-to-3D correspondences between the sparse point clouds and the 
laser data via the 2D-to-3D correspondences stored in the synthetic images. These 
correspondences enable us to compute the seven-parameter transformation, which provides 
absolute oriented images in relation to the laser data by introducing the scale information to 
the bundle. One advantage of this method is that it retrieves automatically the scale 
information to the image point clouds. Another advantage is that the deformations caused 
by camera interior parameters (focal length, principle point and lens distortion), if calibration 
is not available for input camera images, can be reduced using the bundle adjustment similar 
to self-calibration. Furthermore, this integration strategy yields at a reduction of human 
intervention to the minimum during the whole process and represents a direct solution for 
data registration and combination. 

 

 
 

Fig.4.16. The proposed general workflow for digital images and laser scanner data integration.  

 
The proposed general workflow can be divided into the following steps (figure 4.16). 

 Data Acquisition. Camera images with good quality and noiseless laser scanner data are 
attempted. 

 Data Pre-processing. Laser data can be filtered with respect to the minimum reflectance 
values. Reflectance and/or RGB images must be generated using the collinearity equations 
in a central perspective representation. Furthermore, we found the combined SfM approach 
to work best by setting the image scale of the latter synthetic images similar to the camera 
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images. For this purpose, an identical focal length is used. Furthermore, digital images 
require correction of image distortion (if camera calibration is available). 

 SfM Reconstruction. As presented in section 4.2, for the derivation of accurate exterior 
orientations, the SfM reconstruction method is utilized. It derives the exterior orientations 
without initial values by sequentially adding images to a bundle. Therefore, features are 
extracted from the imagery and matched to each other. By using an initial network analysis 
step, large sets of images can be processed efficiently without performing this step for each 
available image pair. The imagery is a combination of images generated from laser data 
and images captured by a calibrated or uncalibrated camera. 

 Seven-Parameter Transformation. SfM method delivers camera orientations and sparse 
point clouds, initially in an arbitrary model space. Each synthetic image involved in the 
SfM process stores 2D-to-3D correspondences between each image pixel or feature and the 
3D laser data. This allows an implicit determination of the 3D-to-3D correspondences 
between the sparse point clouds and the laser data. To introduce scale information to the 
bundle, a seven-parameter transformation is estimated using the latter 3D correspondences 
and then applied to the SfM output. This results in having absolute oriented images in 
relation to the laser data. An alternative method that can increase measurement 
redundancy is by reprojecting the sparse point clouds onto the synthetic image using 
equation 4.1. Then, the 3D-to-3D correspondences between the sparse point clouds and the 
laser data can be determined using the 2D-to-3D correspondences between the latter 
projected sparse point clouds and the laser data stored in the synthetic image. For the 
reason that some points will be reprojected from object surfaces that are not covered in the 
generated image, the geometric relationship of the 3D-to-3D correspondences should be 
evaluated to remove these wrong points. This can be done using RANSAC filtering scheme 
based on seven-parameter transformation. Furthermore, an outlier removal process can be 
applied on the reprojection errors in object space, e.g. using the X84 rule. As mentioned in 
section 4.2, some dense matching algorithms deliver individual point clouds for almost 
each image, e.g. the software SURE therefore, it is more convenient to perform first a dense 
image matching step and then project only the corresponding single point cloud onto the 
generated image. This can filter out incorrect reprojected points on the generated image.  

 Dense Image Matching. After the estimation of the transformation parameters, the 
orientation parameters for the camera images are known in the laser scanning coordinate 
system. These parameters can be used to retrieve dense surface reconstruction information 
from the images by means of dense image matching methods. The resulting geometry is in 
the coordinate system of the laser scanner and thus scaled. Supplemental improvement of 
point cloud registration using ICP is possible. 

The algorithm has been implemented in a Matlab code. 
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4.3.1 Shifting the Principle Point of the Generated Images 
A combination of images generated from 3D laser data and images collected by a calibrated 
or uncalibrated camera is involved in the SfM process. In particular, if the accuracy 
requirements of the application like cultural heritage data recording are high and a camera 
with high stability and fixed focal length is employed, we use calibration parameters 
determined prior by standard calibration methods for camera imagery. On the other hand, 
the virtual cameras, used to project the laser point clouds onto virtual/synthetic images, are 
assumed to be calibrated. Except the principle point (P), which must be shifted (by an offset 
of dx in x direction and dy in y direction) to the projected point of the laser scanner‘s center 
point into the virtual image plane (P`), see figure 4.17. Thus, the image dimensions have to be 
adapted accordingly. This being the case since in the SfM and the bundle adjustment 
methods, it is considered that the principle point of each image, generated and captured, is 
located in the middle. Therefore, the generated images can not be used directly in our 
algorithm unless the re-centering process is applied. These offsets are calculated in pixels 
using the following equations. 
 

min( ) ( / 2)

min( ) ( / 2)

dx x w

dy y h
                                                        (4.2) 

 
where ( , )x y represent the image coordinates in pixels resulted from applying collinearity 

equations (3.1) and ( , )w h denote the image size in pixels (width and height) which are 

determined by the minimum and maximum values of the latter image coordinates, in  and  
directions. The reason for that shift is related to the data acquisition. For practical reason, 
there is no guaranty that laser scanner center point is corresponded to the center point of the 
acquired scene. Furthermore, if the 3D virtual camera coordinates are correctly defined (see 
chapter 3, section 3.2.1), the offset of dx will be equal to zero. 

4.3.2 Advantages of the proposed approach 
This general approach is directed at combining and complementing several aspects of the 
individual technique. Therefore, the main attempted improvements of our proposed 
approach are described as follows.  

4.3.2.1 Complementing TLS Point Clouds by Dense Image Matching 

Filling Gaps in Laser Scanner Point Cloud: 
TLS data is free from scan gaps or holes only in very particular cases. These gaps occur 
usually due to occlusions or weak reflectivity of object material such as building windows 
with glasses, dark building pipes and so on. Current algorithms as the Poisson algorithm 
(Kazhdan et al., 2006) fill in small gaps automatically during the surface reconstruction and 
offer conventional modeling or cloning options for larger patches. These semi-automatic 
approaches are considered time consuming since they require heavily human intervention. 
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Moreover, using automated hole-filling or surface augmentation methods developed by 
(Sharf et al., 2004), is limited and doubtful especially in heritage documentation  applications 
(Rüther et al., 2012). Thus, our proposed combination method allows us to fill gaps due to 
occlusions or weak reflectivity of object materials using the registered camera images; see 
chapter 7, section 7.2.1). 

Retrieving More Surface Information: 

TLS with distance measurements can be used for acquiring large-scale point clouds at 
medium range distances, while image based surface reconstruction methods enable flexible 
acquisition with high precision at short distances. Therefore, in our combination method, 
camera imagery can complement surface information with higher density (see chapter 7, 
section 7.2.2). Moreover, this combination can be used to retrieve dense surface information 
for complex surface geometries where many scan stations would be needed. On the other 
hand, laser scanning introduces the scale information and delivers high precision also on 
longer distances with low efforts. 

 

 
 

Fig.4.17. Shifting the principle point of the generated image from 3D laser scanner data. 
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4.3.2.2 Automatic Registration of Point Clouds  

Finding the transformation parameters between different point clouds, referred as 
registration, is still a critical task in the research community. Several approaches have been 
developed and presented but still rely on a small dataset. In particular, the target-based 
approach which is considered as a user-based technique, followed by the surface matching 
methods among which the ICP algorithm is mostly used. Since the latter requires initial 
values for the transformation parameters and not all surveyed objects show a geometry 
adequate for application of surface matching algorithms, other methods have been 
attempted using intensity and RGB values (Alba et al., 2011).  

The proposed algorithm presents an automatic methodology able to register different point 
clouds using a combination of camera images and others derived from LiDAR data, intensity 
and RGB values, in one SfM process. Using the resulted absolute camera orientations, on the 
one hand, a direct registration between dense image point clouds and laser scanner point 
clouds is performed. On the other hand, this also results in registering multiple laser scans. 
This is because of the relative orientations between the generated images which are already 
determined at the SfM step and transformed to the absolute coordinate system auto-
matically. Thus, our method provides an efficient solution in one-step for the direct 
registration of both image and laser scanner point clouds. Simultaneously, it performs target-
free registration of multiple laser scans. This also includes the automatic registration of scans 
occluded partially by the neighboring buildings and trees where less overlap is occurred, 
and completely non-overlapping laser scans. That is, since the proposed method allows us to 
provide sufficient overlapping geometry by introducing additional overlapping images into 
the SfM process, which can be matched with the surrounding scans; see chapter 5, section 5.3 
and chapter 7, section 7.3.3. Thus, our general approach can be utilized almost in all 
operative conditions. 

4.3.3 Experimental Evaluation  
To evaluate the results, our proposed general approach was applied also to the dataset of the 
old farm house. 3 RGB images generated from LiDAR data and 35 camera images have been 
employed for the SfM reconstruction. In the following, an evaluation for the whole method 
steps is shown. 

4.3.3.1 Camera Orientation 

SfM Reconstruction: 

We successfully derived the orientations and the geometry from all used imagery (3 
generated and 35 camera images) with relative accuracy in image space (root mean square 
error of the reprojection error) less than a pixel, about 0.8 pixels. This is considered to meet 
the requirements for the latter dense image matching step. 
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Fig. 4.18. 3D-to-3D filtered correspondences (383 keypoints) between sparse point clouds and a laser 
scan of the old farm house dataset using only the features appeared in the corresponding RGB image 
(left). 3D-to-3D filtered correspondences (1064 keypoints) between sparse point clouds and a laser 
scan of the old farm house dataset using all projected sparse point clouds onto the corresponding RGB 
image (right). 

 

Seven-Parameter Transformation: 

Once the relative orientations of all images are determined by the SfM method, the 3D-to-3D 
correspondences between the sparse point clouds and the laser data can be easily 
determined using the stored 3D data in the generated images. One single generated image is 
sufficient to determine these correspondences with the sparse surface information (figure 
4.18 left). Depending on the number of image correspondences and their distribution in 
space, a decision can be made to select that single image. Alternatively, the sparse point 
clouds can be reprojected onto the latter image in order to acquire more redundant measure-
ments, if it is necessary (figure 4.18 right). These correspondences allow the estimation of the 
Helmert transformation parameters in order to calculate the orientations in an absolute 
coordinate system, i.e. camera images and all laser scanner data will be registered in one 
coordinate system. Moreover, in order to remove blunders in the used correspondences a 
procedure based on an iterative computation of the seven-parameters was performed. 
Therefore, the calculated parameters provide accurate a priori alignment between the camera 
images and the laser data (figure 4.19). It can be seen that sparse point clouds delivered by 
the imagery in the SfM process fit correctly to the laser point clouds. 

In order to assess the accuracy of the transformed camera orientations, a comparison to the 
computed camera orientations by means of the “Australis” software package was performed 
(figure 4.20). It can be seen that the positioning accuracy (X, Y, Z) is a few centimeters and it 
shows an improvement compared to the results presented in the previous integration 
methods, see figures 4.8 & 4.13. As well as, the rotational accuracy (q1, q2, q3, q4) indicates a 
significant improvement since the rotation residuals are tiny. 
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Fig. 4.19. SfM output: sparse point clouds (blue), 35 camera positions (red dots), 3 scan stations 
(green dots) aligned in one coordinate system with laser point clouds from one scan station (colored) of 
the old farm house dataset. In addition, an ortho view of the former sparse point clouds, camera 
positions and laser scanner stations (lower right corner). 

 

 

 

Fig.4.20. Evaluation of the SfM method’s results in the general integration strategy for the old farm 
dataset. Residuals of camera orientations (depicted in Boxplots), using Australis results as a reference, 
for three images with different viewing directions. X, Y, Z are the camera position and qi is the 
quaternion rotation value (ϵ [0,1]). 
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Fig.4.21. Dense image matching results of the general approach, using the software SURE. (a) 3D 
laser scanner point clouds, from one scan station, of the old farm house acquired by the Leica 
ScanStation HDS3000. (b) Dense image point clouds derived from 35 camera images by means of the 
software SURE, using the SfM method’s outputs. (c) Combined point clouds from (a), which is 
depicted with scalar fields and (b). (d) A close-up view for a window area depicted in (c). 

(c) 

(a) (b) 

(d) 
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4.3.3.2 Dense Image Matching 

The calculated absolute orientations can be used as an input for the software SURE. This 
results in reconstructing dense image point clouds, which are directly combined together 
with the laser scanner data. Figure 4.21 depicts that the dense point clouds fit correctly to the 
laser data because of the accurate alignment. Moreover, the upper part of the old farm house 
is reconstructed, gaps in laser point clouds are filled and building façade is updated. 
Additional step to improve the registration accuracy by ICP is possible.  

To measure the differences between the models, the point clouds acquired by laser scanner 
and that obtained by the software SURE, a comparison in the overlapping area was 
accomplished using the latter as a reference with the help of the software CloudCompare 
(figure 4.22). The large distances correspond to points not being available in one of the 
datasets. The standard deviation of the difference amounts to approximately 3.9 cm and the 
mean deviation approximately amounts to 1.5 cm. These results can meet the requirements 
for the point cloud alignment if we consider that the overlap area covers the house flower 
vases and the house door, which was open in the laser data while it was closed during image 
acquisition. As a result, the difference error increased. Thus, a subsequent fine registration 
step, using error minimization algorithms like ICP, could be optional. Furthermore, this 
result shows an improvement compared to the results presented in sections 4.1 & 4.2. 

 

 

 
Fig.4.22. Comparison of point clouds resulted from dense image matching using the software SURE 
with 35 camera images and that derived by laser scanner with one scan station, in the overlap area of 
the old farm dataset. It shows the distance error map and the corresponding scale bar of the absolute 
difference distances  5 cm. 
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5 Target-Free Registration of Multiple Laser 
Scans  

The registration of multiple laser scans as the task of transforming laser scanner point clouds 
taken from different positions into a common reference system is still an active topic of 
photogrammetric research, e.g. (Yang et al., 2011). A complete detailed representation of 
object surfaces and structures is required for many applications such as heritage data 
recording and preservation. Static LiDAR systems provide an accurate and dense three-
dimensional representation of object surfaces in local model space. However, due to 
occlusion and field of view limitations, a single scan is not sufficient to produce full scene 
coverage, such that multiple of views/scans have to be collected and then registered.  

This scan registration is typically divided into two steps, at first, a coarse registration that 
provides a priori alignment of the scans, and then a fine registration step in order to improve 
the former one. In general, the registration process can either proceed automatically or 
manually by placing artificial targets into the scene. The latter can be time and effort 
consuming therefore, it is worthwhile to use the former one. Typical automatic/target-free 
registration approaches use distinctive features extracted from 3D LiDAR data. These 
features have to be matched between each two scans (scan pair) in order to estimate an initial 
approximation for the 6-parameter rigid-body transformation. This is followed usually by an 
error minimization step using any surface matching algorithm like ICP. 

As presented in chapter 3, in order to simplify the feature extraction out of laser scanner 
data, other kinds of information such as range information, reflectance values and RGB data 
can be exploited; see (Al-Manasir & Fraser, 2006; Dold & Brenner, 2006; Böhm & Becker, 
2007; Wang and Brenner, 2008; González-Aguilera et al., 2009; Barnea & Filin, 2010; Wein-
mann et al., 2011). In (Moussa et al., 2012a), we introduced a scene database for each single 
laser scan stored in a point-based environment model (PEM). This PEM allows also the 
extraction of accurate control information for the automatic pairwise registration of multiple 
scans. A direct multi-view registration of multiple laser scans based on a combination of 
synthetic images and camera images in one bundle block adjustment is presented in (Moussa 
et al., 2012b). In the following, a detailed description of the developed approaches is given in 
order to introduce the completely used methodologies. 

 

5.1 Target-Free Registration Using Accurate Space Resection 
Methods 
We have developed an approach for the automatic pairwise registration of unorganized laser 
scans based on a point-based environment model (PEM), which stores for each scan the 3D 
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locations of the 3D points associated with intensity and RGB values. The PEM allows the 
extraction of accurate control information for the direct computation of relative orientations 
of laser scanner stations by means of accurate space resection methods, with redundant 
information. These orientations provide initial alignment required by any error minimization 
algorithm like ICP as a fine registration step. 

As presented in figure 5.1, the developed approach is divided into the following steps.  

 Data Acquisition and Data Pre-processing. It is considered that noiseless LiDAR data 
yields an improvement in the output. Furthermore, if scan overlap is significant, a sufficient 
number of correspondences or manifold keypoints between scans is expected. This 
improves significantly the goodness of the achievable registration results. Moreover, 
LiDAR data can be filtered with respect to the minimum reflectance values. 

 Building PEM Feature Database. As explained in chapter 4, building a PEM feature list 
requires two processes: generating reflectance and RGB images for each scene/scan and 
then extracting ASIFT keypoints from the latter generated images. Therefore, each laser 
scan with its list of keypoints, PEM feature database, can be used for the pairwise 
registration. 

 Organizing Laser Scans. This step is designed, at first to accurately and quickly identify 
scan connections sharing tie points between all unorganized laser scans. In particular, for 
dealing with a large number of laser scans, the processing time can significantly increase. A 
visibility graph is the output of this step and it is used as a heuristic about the quality of 
connections between the scans. 

 

 
 

Fig.5.1. Workflow for the target-free registration of multiple laser scans using accurate space resection 
methods. 
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Similar approaches introduced to serve structure-from-motion (SfM) methods in order to 
guide image matching and the reconstruction (Farenzena et al., 2009; Barazzetti et al., 2011; 
Abdel-Wahab et al., 2012). Others were used for robust automatic registration of range 
images (Bendels et al., 2004; Körtgen, 2006). In addition to that, this graph reveals the 
structure of all scans and scan clusters in order to sort the scans for the pairwise registration 
where the final registration error is minimal. Finally, it is served for guiding the process of 
pairwise registration instead of trying to register every possible scan pair. In order to 
calculate the graph, the PEM feature lists are matched to each other pairwise and then 
followed by a geometry verification step. 

 Feature Matching.  

The feature matching process is accomplished by employing a pairwise comparison of 
descriptor space distances for the features in each PEM feature database to the other PEM 
databases. For the latter comparison, a kd-tree search is utilized in order to speed up the 
matching process. It is worthwhile to mention that, since we have double direction matching 
between each PEM database pair, i.e., the first database matches to the second and the 
contrary, we either consider one direction or the double direction matching. In case of the 
latter, the matching result should be the intersection of the matching point pairs aggregate 
from the double direction matching in order to consider the most stable keypoints. Taking 
into account one direction matching is leading to the use of direct graph instead of 
undirected one. This can simplify and speed up the construction of the graph.  

 Initialize Visibility Graph. 

A set of unorganized views/scans can be directly described as a graph with two sets of 
vertices and edges. These two view relations are encoded such that each vertex refers to a 
scan while each edge is weighted with a similarity measure connects each scan pairs. For 
that, we follow an approach having some analogy with (Farenzena et al., 2009). We extend a 
2D deployed affinity measure, essentially used for SfM reconstruction tasks, so that befits the 
pairwise registration of 3D laser data. It is calculated by taking into consideration the 
number of common/matched keypoints between each scan pair and how well they are 
spread over both the corresponding generated images (distribution in 2D) and the real scene 
(distribution in 3D), see equation 5.1.  

 

                                      ,

( ) ( )i j i j
i j dis

i j i j

S S CH S CH S
a f

S S A A
                               (5.1) 

  
where ,(1 )i ja  denotes the distance (similarity) measure between a scan pair ( , )i j  as 

, [0,1]i ja . iS  and jS  represent, for the scan pair ( , )i j , the set of matching keypoints in 

scan ( )i  and scan ( )j  respectively. ()CH  is the area of the convex hull of a set of points.

( )i jA A  constitute to the total area of the generated image which is corresponded to a laser 

scan ( )i j  in a scan pair ( , )i j . disf  stands for a distribution factor; equal to 0 if the common 
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keypoints of a scan pair are in one single plane otherwise it sets to 1. The sum of the 
coefficients ( , , )  is equal to 1 where each coefficient is determined empirically or by 

performing statistical tests.  

The first term in the equation 5.1 is an affinity index which measures similarity between 
sample sets, also known as Jaccard index or Jaccard similarity coefficient, and is defined as 
the size of the intersection divided by the size of the union of the sample sets (Jaccard, 
1901). The second term in the equation 5.1 refers to the approximate overlap between each 
scan pair. The 3D distribution of the common keypoints is introduced approximately in 
the last term in the equation 5.1. For that, a certain criterion is required in order to 
determine if the common keypoints of a scan pair are belonging to one single plane or not. 
This can be performed by checking the point-plane distances of the keypoints. At first, we 
calculate the fitted plane and then we compute the point-plane distances of the common 
point correspondences of the scan pair using the equation 5.2. 
 

                                                        
2 2 2

. . .i i i
i

a X bY c Z d
D

a b c
                                            (5.2) 

 
where iD is the point-plane distance of a keypoint i  to the fitted plane, ( , , , )a b c d

representing the fitted plane parameters and ( , , )i i iX Y Z are the 3D coordinates of the 

keypoint i . Then, a certain criterion/threshold is required in order to verify the variance of 
point-plane distances. This value can be determined empirically or self-adaptive by 
applying the error propagation law on equation 5.2. The error of distance variance ( )D  is 

estimated by means of the location error of a keypoint to the fitted plane (equation 5.3). 
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The variances , ,

i i iX Y Z (in X  , Y and Z directions) are derived from the location error of 

a single point i , which depends on the accuracy of the TLS system. These variances are 
computed according to the error propagation law, which applied on the Cartesian 
coordinates retrieved from the 3D polar/spherical coordinates (radius r, inclination , 

azimuth ); see equations 5.4.   
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For that, the range error ( )r and the angular errors (horizontal  and vertical ) are 

only considered. These three accuracies are provided by the manufacture under the 
assumption that data acquisition is performed at a certain range, e.g. in case of the Leica 
ScanStation HDS3000, σr = 4 mm; σφ = σθ = 60 μrad @ 1-50 m range. 

Under the assumption that the range and the angular accuracies are approximately equal 
for all acquired laser scanner point clouds in the certain range and since the influence of 
the angle errors is very small compared to the range error, we can simplify the calculation 
of keypoint variances as: 
 

                                                        X Y Z r                                      (5.5) 

 
By substituting equation 5.5 in the equation 5.3, we find that the 3D distance error ( )D  is 

equal to the range error.  
 

                                                                        D r                                                               (5.6) 

 
Three timers the error of distance variance ( )D  is chosen as a threshold to determine if a 

common keypoint i  of each scan pair is a part of the fitted plane (equation 5.7). Then, we 
look at the percentage of inliers to make decision if the common keypoints of a scan pair 
belong to the single fitted plane or not. 
  

                                                                3i DD                                                           (5.7) 

 
Alternative method is to check the mean value of that absolute distances ( )m , which has to 

be fulfill equation 5.7. Additional constrain can be considered that the determined 
threshold should be at least equal or larger than the approximate sampling distance of the 
acquired laser point clouds. 

The three coefficients ( , , )  express the weight of each term/factor involved in the 

equation 5.1. By means of the constrain 1 which is fulfilled by the latter 

coefficients, the similarity measure between each scan pair is normalized and summarized 
in one single value stored in the adjacency/distance matrix. A distance matrix by 
definition is a two-dimensional array containing the distances, taken pairwise, of a set of 
points. It has a size of N×N where N is the number of vertices in a graph. This symmetric 
distance matrix, as the graph is directed, is used to determine the probable connections 
and disconnections of the scans. 

An initialization is the first step towards organizing the scans, which is performed by 
selecting a defined initial scan pair, i.e., the two vertices connected by the edge with the 
minimum weight/distance in the whole graph. This initial set is expanded then iteratively 
until it contains all the vertices of the graph. Each iteration starts with searching 
unidirectional edges starting from the initial vertices to the remaining vertices and 
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following the edge with the minimum weight. As a result, a structure illustrating the 
order of the scans for the automatic pairwise registration is constructed. Alternatively, a 
direct computation of the shortest path between all vertices in the visibility graph based 
on the minimum distance/weight of the edges can result in sorting the scans for the 
pairwise registration. In addition, there are some important issues should be considered 
by the reconstructed graph. At first, to insure reliability, any matching pair (2 nodes) gains 
less than a minimum number of keypoints/inliers (50 for initialization and 30 for the 
update) is ignored and its corresponding edge is eliminated during the construction of the 
graph. Moreover, if the overlap area between many scans is high, additional constrain can 
be applied in order to speed up and simplify the graph, e.g. each graph node should have 
a maximum of four edges based on edge weight, i.e. the edges with the smallest four 
distances are elected. 

 2D-to-3D Filtering and Updating the Visibility Graph. Since the PEM features are linked 
to their 3D coordinates, a standard RANSAC filtering scheme (Fischler & Bolles, 1981) is 
adapted to a closed-form space resection algorithm proposed by (Zeng & Wang, 1992) as a 
mathematical model in order to exclude mismatches. Using the filtered 2D-to-3D 
correspondences between each scan pair, the initial visibility graph can be updated in 
order to determine the shortest path that ensures a minimum registration error.  

 Pairwise Registration. After sorting the laser scans by checking the similarity and 
determining the shortest path, a pairwise registration of successive scans can be 
accomplished. For that, using the correspondences between each scan pair which are linked 
to their 3D data, the 3D-to-2D correspondences are known. This results in solving the 
Perspective-n-Point (PnP) problem. Therefore, accurate space resection methods are 
employed in order to compute the orientation for the second scan in relation to the first 
scan in each scan pair of the determined shortest path. During the latter calculation, an 
outlier rejection procedure based on the noise statistics of correct and incorrect correspon-
dences is applied in order to improve efficiency and accuracy. The calculated orientations 
provide a reliable coarse registration for the scans in the determined path. 

 Pose Estimation Using Accurate Space Resection Methods. As presented in chapter 4, 
the most accurate methods for solving space resection problem rely on iterative 
optimization methods. A prerequisite for iterative methods is having a reasonable initial 
estimate. With poor initial values it will be prone to failure. Therefore, the EPnP algorithm 
(Lepetit et al., 2009) is used to calculate a good initial guess for the OI algorithm (Lu et al., 
2000).  

 Outlier Rejection. We used the X84 (Hampel et al., 1986) method as a statistical outlier 
removal procedure in order to improve the calculated laser pose in terms of accuracy. The 
final filtered correspondences can be also used to update the reconstructed visibility graph 
by calculating new similarity measures between the scans. This can ensure that the 
determined shortest path fulfills the purpose of having a minimal registration error. 
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 Fine/Global Registration. Since the results of the previous coarse registration provide good 
a priori alignment, the ICP algorithm as fine registration step can be applied. Alternatively, 
the whole set of filtered correspondences between each scan pair in the determined path 
can be used as an input for any surface matching algorithm like ICP or any commercial 
software dealing with point cloud processing such as the Leica’s Cyclone or the Faro® 
Scene software. Where the final registration is computed through a 3D global adjustment of 
all scans by minimizing the registration errors across all scans (Scaioni & Forlani, 2003). 

The algorithm has been implemented in a Matlab code. For graph visualization, a free tool is 
used (http://www.graphviz.org).  

5.1.1 Experimental Evaluation 
In order to evaluate our results, the proposed approach was applied to the dataset of the old 
farm house. The aim was to register 3 scans acquired to cover one building facade. Therefore, 
3 PEM feature databases have been employed for the pairwise registration. In the following, 
an evaluation for all the workflow steps is presented. 

5.1.1.1 Organizing Scans by Similarity 

 Feature Matching:  
The kd-tree descriptor comparison procedure with a distance ratio of about 0.6 has been used. 
Furthermore, the Triangle-Constraint (Guo & Cao, 2010) can be applied to increase both the 
number of correct matches and the matching score, see chapter 4, figure 4.3. 

Initializing Visibility Graph: 
After the determination of the similarity measures, which connect each scan pair, the three 
unorganized scans can be directly described as a directed graph with three vertices and three 
edges. These two view relations are encoded such that the three vertices refer to the number 
of employed scans while the edges denote to the three possible scan pairs. Each edge is 
weighted with a similarity measure calculated between the corresponding scan pair. For the 
calculation of similarity measures, we set the following values: α = 0.5, β = 0.3, γ = 0.2, σr = 
0.004 m (figure 5.2). 

2D-to-3D Filtering and Updating the Visibility Graph:  
Wrong matches are discarded by means of a RANSAC based computation of a closed-form 
space resection (figure 5.3). Additionally, incorrect matches will be later excluded in the pose 
estimation step, by the X84, see figure 5.4. The filtered matches are then used to update the 
initialized visibility graph in order to determine the shortest path (figure 5.5 left). Finding 
out the shortest path between all vertices in the constructed graph, based on the minimum 
weight of the edges, leads to the order of the scans required for the automatic pairwise 
registration. This ensures that the final registration error is minimal. According to the 
shortest path (figure 5.5 right), we have to register, at first scan 1 to scan 2 pairwise then scan 
2 to scan 3 pairwise. 
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Fig.5.2. The initial visibility graph of the old farm house dataset for possible successive pairwise 
registration, with 3 scans labeled with their IDs and 3 scan pairs/connections showing the 
corresponding similarity measures (left). A graphical view of the distance matrix as a heat map, color-
coded between zero/one indicating completely connected/disconnected (right). 

 

 
 

Fig.5.3. Old farm house dataset, removal of false correspondences. Correspondences (red dots), 
between a scan pair depicted on the corresponding generated RGB images, matched by the kd-tree 
descriptor comparison procedure with 4124 keypoints (left) and then filtered by RANSAC based on a 
closed-form space resection to obtain 1563 keypoints (right). 
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Fig.5.4. Keypoint correspondences of 3 scan pairs (from 3 laser scans of the old farm house dataset). 
The correspondences after ASIFT matching (red), after RANSAC filtering (blue) and after applying 
statistical outlier removal X84 (green). 

 

 
 

Fig.5.5. Resulted visibility graph of the old farm house dataset for the successive pairwise registration. 
From the left, the directed initial visibility graph of 3 scans labeled with their IDs and 3 scan 
pairs/connections showing the corresponding similarity measures, graphical view of the distance 
matrix as a heat map (color-coded between zero/one indicating completely connected/disconnected) 
and the updated visibility graph depicting the shortest path.  

 

5.1.1.2 Pairwise Registration 

Once the scans are sorted for the pairwise registration following the shortest path and using 
the filtered 3D-to-2D correspondences, the PnP problem can be solved using the EPnP 
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method. This is performed in order to estimate the pose of the second scan in relation to the 
first scan in each determined scan pair. The EPnP results are used then as an input for the OI 
method in order to improve the results in terms of accuracy. 

As the EPnP algorithm considers all the 3D-to-2D correspondences without checking their 
reliability, the quality of the estimated pose can be increased by applying the X84 rule 
iteratively during the estimation in order to discard outliers. Consequently, the overall 
precision of the orientation is in sub-pixel range in image space, and less than 3σr in object 
space. A value of 2.97k  is enough to meet the purpose of our application. Figure 5.6 shows 
the results for the pairwise registration of the successive scans. 

In order to assess the accuracy of the pairwise registration, we have accomplished a manual 
registration (with a mean registration error of 8mm) of the three scans using natural targets 
by means of the Faro® Scene software. The latter targets (at least 6 targets/points per scan) 
were selected over the object of interest with different heights and in different planes. This 
has been the case since no GCPs are available. Table 5.1 shows that the registration reaches 
about seven centimeters level for positioning accuracy (∆X, ∆Y, ∆Z) and less than nine 
hundredths of a degree level for angular accuracy (∆ω, ∆ω, ∆κ). Additionally, table 1 
demonstrates that the distance error (∆D) between scanner stations is about a centimeter. 
This result provides a good coarse registration for further refinement step using ICP.  

 

 

Fig.5.6. The result of the successive pairwise registration of the old farm house dataset: 3 laser 
scans aligned in one coordinate system, additionally, an ortho view of the latter (upper right corner).  
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However, some drawbacks found also in similar methods presented in the literature, e.g. 
(Kang et al., 2009; Weinmann et al., 2011; Alba et al., 2011) which have to be discussed. The 
proposed method is highly dependent on the good overlap and small change viewpoints 
between laser scans where sufficient number and well distribution of the manifold keypoints 
over the object of interest are required. This is also applied to the space resection methods for 
successful performance. Therefore, scans acquired at considerably changed viewpoints such  
as highly convergent with wide baselines or those, which provide very little overlaps, are 
difficult to process. In case of the latter conditions, finding valid correspondences between 
scans is inconvenient. In accordance to that, our proposed method performs better when 
laser scans show good overlaps and/or acquired with short baselines. 
 

Table 5.1. Pairwise registration accuracy for the old farm house dataset: residuals of registration 
parameters and corresponding pair distances, using manual registration results as a reference and the 
corresponding root mean square of the residuals. 

 

5.2 Target-Free Registration Based on Geometric Relationship 
of Keypoints 
We present an alternative method for the automatic pairwise registration of multiple laser 
scans. This approach performs a successive pairwise registration of unorganized laser scans 
based on the geometric relationship of the common keypoints between the scans. We take 
advantage of the relative geometry of the manifold keypoints between each scan pair by 
comparing their 3D distances. This leads to the calculation of an initial approximation for the 
6-parameters rigid-body transformation between each scan pair, followed usually by a fine 
registration step using ICP. 

As demonstrated in figure 5.7, the proposed method is consisting of the following steps.  

 Data Acquisition, Pre-processing, PEM feature database and Organizing Laser Scans. We 
follow the steps as described in section (5.1). 
Pairwise Registration. After sorting the laser scans by checking the similarity, a pairwise 
registration of successive scans can be performed. For that, using the correspondences 
between each scan pair which are linked to their 3D data, the 3D-to-3D correspondences are 
known. This leads to the estimation of the rigid-body transformation parameters between 
each successive scan pair. Precedent to that, using the geometric relationship of the latter 

Scan Pair ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1-2 0.007 0.034 -0.054 -0.030 -0.063 -0.013 0.013 

2-3 0.002 0.015 -0.075 0.086 0.044 0.031 0.014 

RMS 0.005 0.026 0.065 0.065 0.055 0.024 0.013 
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correspondences, a filtering process in order to remove outliers must be applied. Therefore, 
we check the relative geometry of the correspondences of each scan pair by comparing the 
3D relative distances of the latter correspondences in the first scan to the corresponding 3D 
distances in the second scan. This is controlled by an outlier rejection process. Using the 
filtered 3D-to-3D correspondences between each scan pair, the initial visibility map can be 
updated  in order  to  determine  the  shortest  path  which  ensures a  minimum  
registration error. Then, an initial approximation for the 6-parameters rigid-body 
transformation is computed. This includes the X84 rejection procedure, which is applied on 
the reprojection errors in object space in order to remove the remaining outliers.  These six 
parameters provide accurate a prior alignment for the scans in the determined path. 

  

 
 

Fig.5.7. Workflow for the target-free registration of multiple laser scans using the geometric relation-
ship of the common keypoints between the scans. 

 
 Relative geometric verification. 
The main idea of this process is that, in order to discard wrong correspondences the 
relative geometry of the manifold keypoints in each scan pair is checked by comparing the 
3D relative distances of the keypoints in the first scan to the ones of the corresponding 
keypoints in the second scan. This can be done by building a square symmetric distance 
matrix ( )A , which defines the differences between the latter 3D relative distances. Then, a 

certain criterion, a tolerance error, is required in order to verify distance variances between 
correspondences. For that, we can use the max( )im value, the maximum value of the 

distance difference’s mean value im  (or the standard deviation instead of the mean) in the 

columns of ,A  to be smaller than a threshold This can be determined empirically or self-
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adaptive by applying the error propagation law on these absolute distance differences 
between 3D keypoints. The latter can be done as follows. Equation 5.8 states for the 
absolute distance difference ( )ds  between 3D points a , b  and their corresponding points 

a , b  in each scan pair. 

  

        2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )a b a b a b a b a b a bds X X Y Y Z Z X X Y Y Z Z       (5.8) 

 
where ( )ds denotes to the single distance difference, and ( , , )a a aX Y Z , ( , , )b b bX Y Z ,
( , , )a a aX Y Z and ( , , )b b bX Y Z  are the 3D coordinates of the points , ,a b a and b
respectively. The error of the distance variance ds  is calculated using the error 
propagation law by means of the location error of each two corresponding point pairs, 
assuming that the location error of each point is independent (equations 5.6).  

         
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( );

; ; ; (5.9)

; ;

a b a b a b a b a b a bds X X Y Y Z Z X X Y Y Z Z

a b a b a b

ab ab ab

a b a b a b

a b a b a b

A B C A B C

X X Y Y Z ZA B C
S S S

X X Y Y Z ZA B C
S S S

 
where 

iK is the variance in coordinate direction K  of the point i  which is computed in 

terms of range and angular (horizontal and vertical) errors according to the error 
propagation law, and ijS is the distance between two corresponding points ,i j  in a scan. 

Following the assumptions mentioned in the previous section (5.1) and equation (5.5), the 
equation 5.9 can be simplified as follows. 
 

                                                               2ds r                                                               (5.10) 

 
Three times the error of distance variance ds  is chosen as a threshold to determine the 

correct correspondences (equation 5.11). 
 

                                                         3 6ds i rds m                                                    (5.11) 

 
Using the resulted 3D-to-3D correspondences, at first, the initial visibility map can be 
updated in order to determine the shortest path. Then, a similarity transformation is 
introduced and its 6-parameters are estimated iteratively with blunder rejection. 

 Fine/Global Registration. As mentioned in section (5.1), the ICP algorithm as a fine 
registration step can be applied on the results of the previous coarse registration. Alter-
natively, the whole set of the final correspondences between each scan pair in the 
determined path can be used as an input for any surface matching algorithm or commercial 
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software dealing with point cloud processing where the final registration is computed 
through a 3D global adjustment of all scans. 

The algorithm has been implemented in a Matlab code.  

5.2.1 Experimental Evaluation 
In order to evaluate our results, the proposed approach was applied to the dataset of the old 
farm house. In the following, an evaluation for the whole workflow is presented. 

5.2.1.1 Organizing Scans by Similarity  

The kd-tree descriptor comparison with a distance ratio of about 0.6 has been used and the 
similarity measures are calculated using equation 5.1; see figure 5.2. 

5.2.1.2 Pairwise Registration 

Once the correspondences between each scan pair are known, the corresponding 3D-to-3D 
correspondences can be determined. This enables us to estimate a rigid-body transformation 
between each successive scan pair. Furthermore, using the geometric relationship of the 
latter correspondences, a filtering process in order to remove outliers can be applied. 

 

 
 

Fig.5.8. Old farm house dataset, removal of false correspondences. Correspondences (red dots), 
between a scan pair depicted on the corresponding generated RGB images, matched by the kd-tree 
descriptor comparison procedure with 4124 keypoints (left) and then filtered by RANSAC based on a 
closed-form space resection to obtain 1384 keypoints (right). 
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Fig.5.9. Resulting visibility graph of the old farm house dataset for successive pairwise registration. 
From the left, the updated visibility graph of 3 scans labeled with their IDs and3 scan 
pairs/connections showing the corresponding similarity measures, graphical view of the distance 
matrix as a heat map p (color-coded between zero/one indicating completely connected/disconnected) 
and the final visibility graph depicting the shortest path. 

 

 

Fig.5.10. Keypoint correspondences of 3 scan pairs (from 3 laser scans of the old farm house 
dataset). The correspondences after ASIFT matching (red), after RANSAC filtering (blue) and after 
applying statistical outlier removal X84 (green). 

 

Relative geometric verification: 

We discard wrong correspondences by comparing the relative 3D distances of the manifold 
keypoints between each scan pair. For that, a square symmetric distance matrix that defines 
the differences between the latter 3D distances is established. The maximum value of the 
distance difference’s mean value of each column in the distance matrix is used to filter out 
outliers using equation 5.11 iteratively, see figure 5.8. Then, using the filtered correspon-
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dences, the initial visibility map can be updated in order to determine the shortest path (figure 
5.9 left), and the similarity transformation parameters between each scan pair are estimated 
iteratively. This includes also the X84 method in order to remove the remaining outliers 
(figure 5.10). According to the shortest path (figure 5.9 right), we have to register, at first scan 
1 to scan 2 pairwise, and then scan 2 to scan 3 pairwise.   

 
In order to evaluate the accuracy, the pairwise and the manual registration (in section 5.1) 
results are compared. Table 5.2 shows that the registration accuracy reaches about three 
centimeters level for positioning accuracy (∆X, ∆Y, ∆Z) and about four hundredths of a 
degree level for angular accuracy (∆ω, ∆ω, ∆κ). The distance error (∆D) between scanner 
stations is about two centimeters. These results indicate an improvement in the positional 
and angular accuracies (compared to the results in section 5.1, table 5.1) where the automatic 
pairwise registration provides accurate a priori alignment that can be improved by ICP (see 
table 5.2). 

The proposed method shows very good results when good overlap between laser scans 
occurs. This ensures sufficient number and well distribution of the manifold keypoints over 
the object of interest. Therefore, scans acquired at considerably changed viewpoints such as 
highly convergent with wide baselines or provide very little overlaps can be difficulty 
processed. Therefore, as noted in section (5.1), our proposed approach performs better when 
laser scans show good overlaps and/or acquired with short baselines. 
 
Table 5.2. Pairwise registration accuracy the old farm house dataset: residuals of registration 
parameters and corresponding pair distances, using manual registration results as a reference and the 
corresponding root mean square of the residuals. 

 

5.3 Target-Free Registration Using SfM Reconstruction 
Method 
As presented in chapter 4, our general integration method enables a direct registration of 
multiple laser scans based on the combination of camera images and synthetic images 
created from laser data in one bundle block adjustment. It provides accurate image orienta-
tions and sparse point clouds, initially in an arbitrary model space. This enables an implicit 
determination of the 3D-to-3D correspondences between the sparse point clouds and laser 
data via the 3D information stored in the generated images. These correspondences allow us 

Scan Pair ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1-2 0.023 0.008 -0.018 -0.027 -0.024 -0.006 -0.015 

2-3 0.025 0.017 0.001 -0.008 -0.006 0.041 0.028 

RMS 0.024 0.013 0.013 0.020 0.018 0.029 0.022 
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to compute the seven-parameter transformation parameters between both data sets. Further-
more, this results in having absolute oriented images, including the generated images, in 
relation to the laser data, i.e. a direct registration of multiple laser scans is achieved. That is, 
since the relative orientations between the generated images are determined at the SfM step 
and transformed to the absolute coordinate system directly. This transformation provides 
accurate a priori alignment for further refinement step using ICP.  

5.3.1 Experimental Evaluation  
As presented in chapter 4, our proposed general integration approach is applied to the 
dataset of the old farm house in order to assess the results. Therefore, 3 RGB images and 35 
camera images have been employed for the SfM reconstruction. The orientations and the 
geometry from all used images were successfully derived (see figure 4.18). Then, the 
correspondences between the sparse point clouds and the laser data can be easily 
determined using the stored 3D data in the generated images. These correspondences allow 
the estimation of the Helmert transformation parameters in order to calculate the orienta-
tions in absolute coordinate system. Furthermore, a procedure based on an iterative com-
putation of the seven-parameters was accomplished in order to remove blunders or outliers.  

To assess the registration accuracy, our target-free registration is compared to the manual 
registration results. Table 5.3 shows that the registration reaches about three centimeter level 
for positioning accuracy (∆X, ∆Y, ∆Z) and about a tenth of a degree level for angular 
accuracy (∆ω, ∆ω, ∆κ). Additionally, table 5.3 demonstrates that the distance error (∆D) is 
two centimeters. These results indicate an improvement in the registration accuracy 
compared to the result of the approach in section (5.1) and very close to the results presented 
in section (5.2). Obviously, the automatic registration provides accurate a priori alignment 
for further global registration step by ICP. However, the precision of the positions is highly 
dependent on the image acquisition geometry – in particular the image scale and the 
intersection angles. Advantageous in the proposed approach is that the integrated camera 
images in the SfM process can strengthen the relative geometry of the generated images. 
Especially in case that scans are acquired at considerably changed viewpoints e.g. wide 
baseline or provide very little overlap, and non-overlapping laser scans. 

 
Table 5.3. Absolute registration accuracy of the old farm house dataset: residuals of registration 
parameters and consecutive pair distances, using manual registration results as a reference and the 
corresponding root mean square of the residuals. 

Scan ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1 0.011 0.007 -0.012 -0.018 -0.099 -0.013 
0.027 

-0.008 
2 0.039 0.012 -0.028 -0.012 -0.018 -0.015 

3 -0.012 0.007 -0.002 -0.037 -0.070 0.037 

RMS 0.024 0.009 0.018 0.025 0.071 0.088 0.020 
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6 Recording Physical Models of Heritage 

The availability of cultural heritage objects in form of 3D historical hand-made models has 
offered a unique opportunity of scientific investigation for conservation, visualization and 
educational purposes. These 3D physical models compared to the available old 2D drawings 
and standard photos can build a bridge to the past in order to provide in more effective way 
information about the heritage. In addition, if geometric accuracy and photo-realism 
requirements are taken into account, the latter models can be an efficient tool not only for 
preservation and tourism purposes, but also for archaeological, historical interpretation and 
restoration issues (Menna et al., 2012). Furthermore, recording such models can offer the 
future prospects to interpret and analyze the past by exploring the 3D virtual environments. 
Therefore, well-known digital technologies using range and image-based acquisition 
methods can be applied on the hand-made models in order to make them obtainable and 
accessible to professionals as well as the public. Advantageous is that the digital data 
recording of these models is firstly based on the potential to preserve the past in parallel 
with the present. Secondly, it offers an opportunity for planning and testing restoration 
activities if it is needed, without risks for the original heritage. Finally, it shares the 
knowledge and the model itself with other researchers in different disciplines and the public.  

In the following, we have carried out a 3D surveying of the Hirsau Abbey hand-made model 
as a case study. This model is preserved at the monastery museum of Hirsau, Germany. The 
work is performed using high-resolution phase difference-based laser scanning and close-
range photogrammetry in order to produce a detailed representation of the 3D model. 

 

 
 

Fig.6.1. The hand-made model of the Hirsau abbey (representing the abbey before the destruction in 
1692) placed in the monastery museum in Hirsau. 
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6.1 3D Surveying of the Hirsau Abbey Physical Model  
The historical model building of the Hirsau Abbey, also called the model of the St. Peter and 
Paul monastery, was built by Ivor and Sigrid Swain – Königswinter, Germany in the year 
1982 with a known scale 1:200 (1 cm = 2 m in the real world) and a size of about (1.1x1.4 m). 
The model has a wonderful overview of the size of the plants and the distribution of the 
buildings (figure 6.1). It reflects the contradictory state just before the destruction of the 
monastery in 1692, it also shows the ducal palace and some buildings from the 17th century, 
which were lately built for the administration of the monastery benefit. But on the 
surrounding walls and the old monastery buildings nothing had been changed. 

6.1.1 TLS Data Acquisition and Processing 
The TLS data acquisition planning is based on the project requirements, well-stable 
resolution over the point clouds in each scan, and the location of the model inside the 
monastery museum. Since the model is placed in a small room on a table at height of about 
1.5m, we set up eight scan stations (4 shots in the corners and 4 orthogonal shots), using the 
Faro® Focus3D laser scanner, in order to ensure acquisition of the whole model with sufficient 
measurement redundancy (figures 6.2). The angular resolution selected for the model in both 
the horizontal and the vertical directions is the full resolution given by the scanner manu-
facturer (at approximate point distance 1.534 mm/10m distance). Multiple scan registration 
can be performed either automatically by means of one of our image-based method using the 
generated images from the laser data (chapter 5) or manually by employing artificial targets, 
e.g. black and white papers, which were placed in the scene. The aim of the laser scanning 
measurement is mainly to fill gaps in the image-based 3D geometry and retrieve scale 
information.  

6.1.2 Photogrammetric Data Acquisition and Processing 
Digital images have been collected for the model reconstruction and texture mapping. Image 
acquisition was performed using an amateur digital camera, the NIKON D3100 with 
resolution of 14.2 Mpx and 24mm lens (figure 7.3). Besides the collection of high-resolution 
imagery that are sufficient for recovering such small parts of the physical model, one of the 
main difficulties was the lighting condition of the museum’s room. This is due to a mix of 
direct daylight passing through the windows and limited indoor lights. In addition, the 
model is placed on a table in the small room where stand-off distance constraint is applied. 
Unfortunately, the table could not be moved to another place; neither could the light be 
controlled. Therefore, the image acquisition was performed keeping the camera with free 
camera setting. Following the approach with “One panorama each step” (Wenzel, et al., 
2013), about 670 photographs with circle image acquisition configuration at different 
distances were collected.  

 



98 6 Recording Physical Models of Heritage 

 

 
 

Fig.6.2. An overview of the 8 aligned laser scans of the Hirsau Abbey hand-made model, acquired by 
the Faro® Laser Scanner Focus3D, depicted in different colors in order to show its corresponding scan 
coverage area. In addition, an ortho view of the former aligned scans (lower right corner). 

 

 
 

Fig.6.3. SfM output: sparse point clouds (colored points), 670 camera positions (red dots) of the 
Hirsau Abbey hand-made model. 

 

This can ensure a complete coverage and sufficiently redundant observations for surface 
reconstruction with high precision. For that, the software SURE was used. Precedent to that, 
the orientations and the geometry from the camera images were successfully derived. The 
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results derived by the SfM method implemented in the Agisoft PhotoScan software are 
shown in figure 6.3 with relative accuracy in image space less than a pixel.  

The resulted dense point clouds derived by SURE (figure 6.4 above) requires post-processing 
steps such as noise filtering, statistical outlier removal and resizing. These tasks have been 
performed using the open source point cloud library (PCL) (Rusu & Cousins, 2011). 

6.1.3 Final Model 
In order to scale the reconstructed model two methods could be followed. The first method is 
following our general integration solution by combining the generated RGB images from the 
TLS data in the SfM process in order to get the transformation parameters. These parameters 
result in registering both datasets; the TLS data and the dese image point clouds of the hand-
made model. Then, the output is scaled by 200 (the model scale) in order to get the model in 
real world coordinates.  A simple method that can minimize the unknown error resulted by 
the last step is the performance of a direct transformation or registration between the dense 
image point clouds and the real model of the existing ruins of the Hirsau Abbey, which were 
already recorded using TLS systems (figure 6.4 middle). This can be done by measuring 
manually at least 3 points in both input datasets in order to get initial alignment. Further-
more, the same approach can be applied on the TLS data of the hand-made model. The latter 
two methods usually require then a further refinement step by ICP. Figure 6.4 bottom shows 
the final alignment of the models, the scaled hand-made model and the real model of the 
Hirsau Abbey site. 

 

6.2 Summary 
In this chapter, a processing pipeline for data recording of a heritage hand-made model is 
presented. Range and image-based data acquisition techniques have been employed in order 
to insure sufficient coverage of the site. The output could be mainly used for preservation, 
educational and museum purposes. The geometric accuracy of the results can not be 
determined implicitly since the accuracy of making the Hirsau Abbey hand-made model 
with was unfortunately not available. The precision of the dense image matching result is 
highly dependent on the image acquisition geometry – in particular the image scale and the 
intersection angles. Moreover, the accuracy of the registration of the reconstructed model to 
the real model of the site was depending on the manual selection of point correspondences 
(number and spatial distribution). This step was uneasy task since most building details of 
the hand-made model are geometrically not the same like reality due to the generalization 
process that applied on the physical model. Furthermore, the complementary improvement 
step using ICP could not improve much the alignment result due to the big differences 
between the physical model and the real world model, e.g. some building were already 
disappeared and others were newly built (figure 6.4 bottom). 
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Fig.6.4. Dense image point clouds derived from 670 camera images by means of the software SURE, 
using the SfM method’s outputs (above). 3D laser scanner point clouds of the Hirsau Abbey ruins 
acquired by the Leica HDS3000 and the Faro® Focus3D (middle). The latter dense image point clouds 
and the laser scanner point clouds aligned in the real world coordinate system of the TLS data 
(bottom). 
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Fig.6.5. 3D triangulated mesh of the hand-made model of the Hirsau Abbey site derived from a 
subsampled point clouds obtained by the SURE from 670 imagery leading to about 2 Mio. points, 
illustrated with/without texture information (above and bottom respectively). 

 

However, the reprojection error in object space is considered as a proper quality measure in 
order to analyze the accuracy of the point cloud registration. For that, the 3D points that 
selected manually in both datasets were utilized and those extracted from the laser scanner 
data were used as a reference. The error can be calculated by comparing the selected points 
from the SURE point clouds after performing the seven-parameters transformation 

( , , )i i iu X Y Z  and the reference points that selected from the laser data ˆ ˆ ˆˆ ( , , )i i iu X Y Z . Then, 

the object space error e  between the observation u  and the ground truth points û  is defined 
by equation 6.1. 
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                                             2 2 2ˆ ˆ ˆ( ) ( ) ( )i i i i i ie X X Y Y Z Z                                           (6.1) 

 

Table 6.1 shows that an overall error of about 1.5m is achieved. This result amounts 
approximately to an error of 7.5mm in the hand-made model. 

The recovered point clouds of the hand-made model are sufficient for further modeling steps 
of the heritage site, see figure 6.5 above and bottom. Nevertheless, it is worthwhile to 
mention that more convenient results could be achieved by directly employing the ground 
plan (footprint map) of the hand-made model in the reconstruction pipeline. For instance, 
this can be done be importing the latter map or photo into the software Trimble SketchUp 
and then sketching the complete building site. This requires also information about the 
height of the buildings which can be provided be the supposed existed building sections and 
drawings. Furthermore, our results can be also used to support the latter reconstruction step. 

 
Table 6.1. Accuracy analysis of point cloud registration for the Hirsau Abbey dataset. Minimum, 
maximum, mean and root mean square values of the residuals (∆X, ∆Y, ∆Z) which are calculated by 
comparing the 3D coordinates of the points selected manually from point clouds resulted by the SURE 
after applying the seven-parameters transformation, and the corresponding 3D coordinates of the 
points from laser scanner data, using the latter as a reference, in X, Y and Z-direction respectively; 
and the corresponding object space error ( )e .  

 ∆X (m) ∆Y (m) ∆Z (m) e  (m) 

min -1.075 -1.353 -1.499 0.360 

max 1.303 0.998 1.378 2.154 

mean 0.325 -0.684 -0.185 0.780 

RMS 0.697 0.921 0.901 1.465 
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7 Case Studies 

In this chapter, the results of the automatic fusion of digital images and laser scanner data for 
cultural heritage data recording purposes are highlighted. Particularly the efficiency of our 
methods is shown by giving an attention to different case studies, in which the outputs of the 
data integration are evaluated and discussed. In addition, the results of the target-free 
registration of multiple laser scans are introduced and then assessed. This also includes the 
automatic registration of scans occluded partially by the neighborhood and completely non-
overlapping laser scans. Therefore, this chapter refers to two case studies that have as input 
data: laser scanner point clouds and terrestrial digital images. In the following, a short 
overview about the data acquisition and sensor used as well as a detailed description of the 
achieved results are presented.  

 

7.1 Data Acquisition  
Besides the old farm house dataset, which is used as a test data for our research, two datasets 
have been used for our investigations: the Hirsau Abbey, Germany and the temple of 
Heliopolis/Al-Matariya, Egypt datasets. The collection of the Hirsau Abbey data was per-
formed in cooperation with the “Association of Hirsau Abbey Friends (Verein Freunde 
Kloster Hirsau e.V.)”, Calw/Germany (a registered association for taking care of the Hirsau 
heritage site) and the “Public Office for Historical Monuments' Care (Landesamt für Denk-
malpflege)”, Stuttgart/Germany. The overall goal of this project, started on May 2009 is to 
preserve digitally the Hirsau Abbey by generating comprehensive 3D virtual reality model 
of the whole site, see (Moussa & Fritsch, 2010). 

In cooperation with the Ministry of State of Antiquities in Egypt, the Egyptian Museum in 
Leipzig/Germany, the Institute for Photogrammetry (ifp) at the University of Stuttgart/ 
Germany and the German University in Cairo (GUC)/Egypt, the acquisition of the Heliopolis 
data was carried out from September 29th to October 25th 2012. The temple of Heliopolis is 
heavily threatened by modern town development and high underwater level. Huge areas are 
lost due to house constructions. Therefore, it was necessary to test new methods of 
documentation that are considerably faster than former techniques. This project is aiming on 
surveying and digital documentation of all structures and monuments in the archeological 
site.  

7.1.1 The Hirsau Abbey 
Hirsau, a village in the northern part of the Black Forest, today a suburb of Calw/Germany, 
has a great history. In particular, the Hirsau Abbey was one of the most prominent 
Benedictine abbeys of Germany. Founded around 830 AD by Count Erlafried of Calw, it 
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served as an abbey until it was destroyed by French soldiers in 1692. By the way, the famous 
William of Hirsau, abbot from 1069 to 1091, introduced the Astrolabe for measuring latitude 
positions. Therefore, the abbey served already more than one millennium ago for geodetic 
purposes, a fact not well-known to the geodetic community. More information about the site 
can be found in (Teschauer, 1991; Würfel, 1998). Today, just ruins are found - one can see the 
Cloister, the ruins of the Hunting Lodge, the Lady Chapel (marked in figure 7.1), the ruins of 
the monastery church St. Peter and Paul and some other Buildings (Figure 7.1). 
 

 
 
Fig. 7.1. An overview of the Hirsau Abbey buildings (© Große Kreisstadt Calw und Oberfinanz-
direktion Karlsruhe Copyright 1991). 

 

7.1.2 The Temple of Heliopolis 
Heliopolis, “City of the Sun” was one of the oldest cities of ancient Egypt, the capital of the 
13th Lower Egyptian Nome that was located five miles (8 km) east of the Nile to the north of 
the apex of the Nile Delta. Heliopolis was the center of the Egyptian Religion for about 2400 
years (2700-300 BC). Today it is mostly destroyed; its temples and other buildings were used 
for the construction of medieval Cairo. The site of Heliopolis has now been brought for the 
most part under cultivation and suburbanization, but some ancient city walls of crude brick 
can be seen in the fields, a few granite blocks bearing the name of Ramesses II remain, and 
the position of the great Temple of Re-Atum is marked by the Al-Masalla obelisk, which is 
located in Al-Matariya Museum (figures 7.2). It still stands in its original position. The 20.7 
meter high red granite obelisk weighs 120 tons, more information about the site can be found 
in (Petrie et al., 1915; Dobrowolska & Dobrowolski, 2006). 
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Fig.7.2. (Left) top view of the Heliopolis site (©2012Google) overlaid with a ground plan (Plan of 
TEMENOS, S = 1/2500, ©Universitätsbibliothek Heidelberg) showing the outer (lower left) and inner 
enclosure walls. (Right) Suq El-Khamis temple (above) and a carved stone and the Obelisk at Al-
Matariya museum (bottom), of Al-Matariya site. 

 

7.1.3 The Applied Sensors 

7.1.3.1 TLS Systems 

As presented in chapter 2, TLS systems as range-based technology have been one of the most 
reliable technologies for obtaining 3D surface object points. It is considered as a modern, 
fully operational and efficient surveying technique used in many applications. In particular, 
if we look upon the advantage of getting immense number of 3D points in short time and 
with little effort. On the contrary, classical photogrammetry requires at least two images 
followed by a series of processing steps until having the 3D point clouds. Terrestrial laser 
scanners perform measurements with a high data acquisition rate. Investigations concerning 
laser scanner mode pointed out that the best result appears up to distances of 50 meters and 
selecting the right scanner is application-dependent. As outdoor scanners can be used up to a 
distance of a hundred meters, indoor scanners work up to a limited distance (Schulz & 
Ingensand, 2004).  
In our hybrid-scanners, the Leica ScanStations HDS 3000 & C10, and the Faro® Laser Scanner 
Focus3D as a panoramic-scanner have been utilized (figure 7.3). The former was used for 
collecting the old farm house and some of the Hirsau Abbey building, while the Faro® 
scanner was used to acquire several buildings in the Hirsau Abbey site. The C10 was 
available for data acquisition at the temple of Heliopolis, Egypt. 

The HDS3000 is a pulsed TOF-based laser scanner operating at a wavelength of 532 nm. It 
measures the distance along a laser beam, which is deflected using a mirror about two axes. 
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Then, the resulted polar coordinates are transformed to Cartesian coordinates centered at 
intersection point of the scanners horizontal and vertical axis. The scanner has a FOV of 3600 
× 2700, with a scan rate up to 4 kpts/sec can be achieved. The theoretical stand-off distance is 
up to 300 m, but measurements at range of 1 m are also possible. The manufacturer specifies 
the accuracy of a single measurement at 50 m distance with 6 mm in the position and 4 mm 
in the range. But when averaging over surfaces, the modeled surfaces precision is about 2 
mm. 
 

 
 

Fig.7.3. The applied sensors, (From left to right) the Leica ScanStation HDS 3000, the Faro®  Laser 
Scanner Focus3D, the Leica ScanStation C10, the NIKON D2X, 12 Mpx with 20 mm focal length 
(above) and the NIKON D3100, 14.2 Mpx with 24 mm focal length (bottom). 

 

The Faro® Focus3D is a phase shift-based laser scanner operating at a wavelength of 905 nm. It 
sends the infrared laser beam into the center of a rotating mirror. The mirror deflects the 
laser on a vertical rotation around the scene being scanned; scattered light from surround-
ings is then reflected back into the scanner. The range measurements are accurately deter-
mined by measuring the phase shifts in the waves of the infrared light. The Cartesian coordi-
nates of each point are then calculated by using angle encoders to measure the mirror rota-
tion and the horizontal rotation of the scanner. The scanner has a FOV of 3600 × 3050, with a 
high measurement speed: up to 976 kpts/sec can be obtained. The possible stand-off range is 
0.6 to 120 m. The manufacturer specifies the maximum ranging error with ±2 mm @ 10-25 m. 

The C10 is also a pulsed TOF-based laser scanner operating at a wavelength of 532 nm. It 
measures the distance along a laser beam, which is deflected using a vertically rotating 
mirror on horizontally rotating base. This optic automatically spins or oscillates for 
minimum scan time. The scanner has a maximum FOV of 3600 × 2700, with a scan rate up to 
50 kpts/sec can be acquired. The possible standoff range is 0.1 to 300 m. The manufacturer 
specifies the accuracy of a single measurement at 50m distance with 6 mm in the position 
and 4 mm in the range. But when averaging over surfaces, the modeled surfaces precision is 
about 2 mm. 
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7.1.3.2 Imaging Sensors 

To perform the photogrammetric reconstruction, texturing of the 3D models and coloring 
laser point clouds, a large number of images have been captured using two cameras: a 
calibrated DSLR camera NIKON D2X, resolution of 12 Mpix and a lens with 20 mm focal 
length, and an amateur DSLR camera NIKON D3100, resolution of 14.2 Mpix with 24 mm 
focal length (figure 7.3 right).  
 

7.2 Data Integration Results and Evaluations 
Our general integration approach, introduced in chapter 4; section 4.3, has been applied to 
one of the Hirsau Abbey ruins; the Lady Chapel and to a carved stone excavated from the 
Heliopolis site. In the following, a description of the achieved results and the performed 
evaluations is presented, for both case studies. 

7.2.1 Case Study 1 
The developed pipeline was applied to the dataset of the Lady Chapel, which is considered 
as a typical application for TLS and photogrammetry. The aim was to fill gaps in the laser 
point clouds of the west and south façades of the building due to occlusions and/or weak 
reflectivity of object materials. Moreover, some façade parts are recovered in higher 
resolution. The laser data was acquired using the Faro® Focus3D. The angular resolution 
selected for the dataset in both the horizontal and the vertical directions is a quarter of the 
full resolution given by the scanner manufacturer (at an approximate sampling distance of 
about 7 mm @ 10m distance). 10 generated RGB images from the laser data were processed 
with 97 camera images captured by the NIKON D2X, in one SfM process. In the following, 
an evaluation of the integration pipeline steps is described. 

7.2.1.1 Camera Orientation 
We successfully derived the orientation and the geometry from all used imagery (10 
generated and 97 camera images); the results derived by the SfM are shown in figure 7.4 left 
with relative accuracy in image space (root mean square error of the reprojection error) less 
than a pixel, about 0.88 pixels. This is considered to meet the requirements for the dense 
image matching step. Then, the seven-parameter transformation parameters are estimated 
iteratively with blunder rejection using the 3D-to-3D correspondences between the sparse 
point clouds and the laser data with the help of the stored 3D data in the generated images 
(figure 7.4 right). The calculated parameters provide accurate a priori alignment between the 
camera images and the laser data where sparse point clouds delivered by the imagery in the 
SfM process fit correctly to the laser point clouds (figure 7.5).  
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Fig. 7.4. SfM output: sparse point clouds (colored), 97 camera positions (red dots) and 10 scan 
stations (green dots) of the Lady Chapel dataset, aligned in one local coordinate system (left). 3D-to-
3D correspondences (415 keypoints) between the sparse point clouds and the laser data which are used 
for the calculation of the seven- parameters, depicted on the corresponding RGB image (right).  

 

 
 

Fig. 7.5. SfM output: sparse point clouds (blue), 97 camera positions (red dots), 10 scan stations 
(green dots) aligned in one coordinate system with laser point clouds from all 10 scan stations of the 
Lady Chapel dataset (colored). In addition, an ortho view of the former mentioned laser and sparse 
point clouds, camera positions and laser scanner stations and point clouds (upper right corner). 
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Since the reprojection error in image space is considered as a proper quality measure in order 
to analyze the accuracy of camera orientations, also from practical point of view, the error in 
object space is of interest. Therefore, we rely upon the laser scanner data as a reference data 
to estimate an absolute error measure of the SfM results since no GCPs are available. This 
object space error can be calculated by comparing the 3D absolute coordinates of the 
triangulated features resulted from the transformed SfM outputs ( , , )i i iu X Y Z  and the 

corresponding 3D coordinates of laser scanner point clouds ˆ ˆ ˆˆ ( , , )i i iu X Y Z . Then, the object 

space error can be calculated using equation 6.1. Table (7.1) summarize our evaluation, an 
overall error of 1.5 cm is achieved. This result amounts approximately to the ground sample 
distance (GSD) of the generated RGB image that corresponds to the reference scan.       

 
Table 7.1. Accuracy analysis of object space error for the Lady Chapel dataset. Minimum, maximum, 
mean and root mean square values of the residuals (∆X, ∆Y, ∆Z) which are calculated by comparing 
the 3D absolute coordinates of the triangulated features resulted from the transformed SfM outputs 
and the corresponding 3D coordinates of laser scanner point clouds, using the latter as a reference, in 
X, Y and Z-direction respectively; and the corresponding object space error (e).  

 ∆X (m) ∆Y (m) ∆Z (m) e  (m) 

min -0.024 -0.029 -0.021 0.002 

max 0.028 0.034 0.022 0.034 

mean 0.000 0.000 0.000 0.014 

RMS 0.008 0.011 0.007 0.015 

 

7.2.1.2 Dense Image Matching 

After the estimation of the transformation parameters, the orientation parameters for the 
camera images are known in the laser scanner coordinate system. These orientation para-
meters can be used to retrieve dense surface reconstruction information from the images 
using the SURE software. The resulting geometry is in the coordinate system of the laser 
scanner and thus scaled. Figures 7.6 and 7.7 depicts that the dense image point clouds fit 
correctly to the laser point clouds because of the accurate data alignment. Moreover, gaps in 
the laser point clouds which result from the weak reflectivity of the window’s material 
(glass) and the drainage pipe's material (black pipe) are filled. In addition, some façade parts 
like the window details are recovered in higher resolution.  

A comparison of the laser point clouds and that provided by the software SURE was 
performed in the overlap area (middle area of the south-west facades) using the latter SURE 
point clouds as a reference. This comparison was accomplished using the software Cloud-
Compare (figure 7.8). The large distances correspond to points not being available in one of 
the datasets. The standard deviation of the difference amounts to approximately 8mm, which 
corresponds to 4σ of the precision of the laser scanning distance measurement. The mean 
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deviation approximately amounts to 8mm. These results can be improved by a subsequent 
improvement step, e.g. using ICP.  

 

 

 

Fig.7.6. Data integration results of the middle area of the Lady Chapel’s south facade. (a) Dense image 
point clouds derived by the software SURE from direct registered imagery using the SfM outputs 
(left) and laser scanner point clouds from 10 scans acquired by the Faro®  Lase Scanner Focus3D with 
resolution of about 7 mm @ 10m (right). (b) A close-up view for a window area depicted in (a), in 
image point clouds and laser point clouds respectively. (c) A detailed view for the window’s upper part 
depicted in (b) in image point clouds (left) and laser point clouds (right). 

 

 

(a) 

(b) 

(c) 
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Fig.7.7. Data integration results of the upper area of the Lady Chapel’s south facade. (a) Dense image 
point clouds derived by the software SURE from direct registered imagery using the SfM outputs 
(left) and laser scanner point clouds from 10 scans acquired by the Faro®  Laser Scanner Focus3D with 
resolution of about 7 mm @ 10 m distance (right). (b) A close-up view for a drainage pipe area 
depicted in (a), in image point clouds (left) and laser point clouds (right). (c) A close-up view 
for a window area depicted in (a), in image point clouds and laser point clouds respectively. (d) A 
detailed view for the window’s upper part depicted in (a) in image point clouds (left) and laser point 
clouds (right).  

 

7.2.2 Case Study 2 
Our integration pipeline was also applied to the dataset of a carved stone excavated (about 
1.7x0.9 meters) from the Heliopolis site, which is considered as an application of TLS and 
close-range photogrammetry in archeology. The aim was to preserve digitally and records 
the object in very high details. This includes each single relief and texture of the hiero-
glyphics showed on the stone.  

(d) 

(c) 

(b) 

(a) 
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Fig. 7.8. Comparison of point clouds resulted from dense image matching using the software SURE 
with 97 camera images and that derived by laser scanner with 10 scan station, in the overlap area of 
the Lady Chapel dataset. It shows the distance error map and the corresponding scale bar of the 
absolute difference distances ≤ 2 cm. 

 

In addition, the resulted detailed model can help in reassembling the two pieces of the 
carved stone. Moreover, the resulted registered imagery to the laser data will be used for 
coloring the laser data since the latter shows inhomogeneous illumination; see figures 2.10. 
This data integration process can provide a new strong tool to archeologists that capable of 
replacing old technologies (classical surveying and hand-made drawings) for the documen-
tation of excavated archeological objects. 

7.2.2.1 Camera Orientation and Dense Matching 

The laser data was acquired at an approximate sampling distance of about 2mm using the 
Leica ScanStation C10. The orientations and the geometry from the 2 generated RGB images 
from laser data and the 34 camera images, captured by the NIKON D2X, were successfully 
derived. The results derived by the SfM method implemented in the Agisoft PhotoScan 
software are shown in figure 7.9 left with relative accuracy in image space less than a pixel, 
about 0.45 pixels. This is considered to meet the requirements for the dense image matching 
step. Then, the seven-parameters transformation are estimated by utilizing the 3D-to-3D 
correspondences between the sparse point clouds and the laser data stored in the generated 
images (figure 7.9 right). This is performed by reprojecting the sparse point clouds onto the 
corresponding RGB image to increase redundancy. For that, the RANSAC filtering scheme is 
used and it is followed by an outlier removal. Figure 7.10 shows that sparse point clouds 
delivered by the imagery in the SfM is correctly aligned with the laser point clouds.  
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Fig. 7.9. SfM output: sparse point clouds (colored), 34 camera positions (red dots) and 2 scan stations 
(green dots) of the carved stone dataset, aligned in one local coordinate system (left). Accurate 3D-to-
3D correspondences (2105 keypoints) between the sparse point clouds and the laser data which are 
used for the calculation of the seven- parameters, depicted on the corresponding RGB image (right). 

 

 
 

Fig. 7.10. SfM output: sparse point clouds (blue), 34 camera positions (red dots), 2 scan stations 
(green dots) aligned in one coordinate system with laser point clouds from two scan stations (colored) 
of the carved stone dataset. In addition, an ortho view of the former sparse point clouds, camera 
positions and laser scanner stations (upper right corner). 
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Table 7.2. Accuracy analysis of object space error of the carved stone dataset. Minimum, maximum, 
mean and root mean square values of the residuals (∆X, ∆Y, ∆Z) which are calculated by comparing 
the 3D absolute coordinates of the triangulated features resulted from the transformed SfM outputs 
and the corresponding 3D coordinates of laser scanner point clouds, using the latter as a reference, in 
X, Y and Z-direction respectively; and the corresponding object space error (e).  

 ∆X (m) ∆Y (m) ∆Z (m) e  (m) 

min -0.003 -0.012 -0.004 0.000 

max 0.002 0.012 0.003 0.012 

mean 0.000 0.000 0.000 0.003 

RMS 0.000 0.004 0.001 0.004 

 

 
 

Fig.7.11. Data integration results of the carved stone dataset. (1st row) dense image point clouds 
derived by SURE (left) and laser point clouds from 3 scans (2 corner shots and 1 orthogonal shot) 
acquired at an approximate sampling distance of about 2 mm by the C10 scanner; (2nd row) close-up 
views for a window areas depicted in the laser point clouds (above) and image point clouds (below). 
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Fig.7.12. 3D triangulated models of the carved stone dataset. 3D triangulated model using the laser 
scanner point clouds from 3 scans acquired at an approximate sampling distance of about 2 mm by the 
Leica ScanStation C10 of about 1.4 Mio. (1st row). 3D triangulated model using the dense image point 
clouds derived by the software SURE from direct registered imagery with subsampled set of around 
5.5 Mio. points, illustrated without/with texture information respectively (2nd and 3rd rows). 
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Moreover, as presented in section 7.2.1.1, an accuracy evaluation of the camera orientations 
using the reprojection error in object space was performed (Table 7.2). It shows that an 
overall error of 4 mm is achieved. This result amounts approximately to the GSD of the 
generated RGB image that corresponds to the reference scan. 

By applying the estimated transformation parameters, the orientation parameters of the 
camera images can be then employed for the dense matching using the SURE software. Thus, 
the densely reconstructed point clouds from images is directly aligned with the laser 
scanning point clouds. Figure 7.11 depicts that the dense image point clouds fit correctly to 
the laser point clouds because of the accurate data alignment. In addition, the reliefs and the 
texture details of the hieroglyphics are recovered in higher resolution as well as the relief 
break lines are sharper compared to the result from laser scanning; see figures (7.11 & 7.12). 
In figure (7.12), the surface representation was derived by meshing the point clouds resulted 
from both dense image matching and laser scanner. The latter results provide archeologists a 
direct 3D measurements solution that can replace typical manual measurements and 
drawings. Furthermore, the resulted point clouds can deliver a sufficient resolution to make 
facsimile-drawings, especially if the number of camera images is increased. 

To measure the differences between both models, we performed a comparison between the 
triangulated mesh derived from dense image point clouds and the reference laser scan using 
the software CloudCompare (figure 7.13). The large signed distances correspond to points 
not being available in one of the datasets. The standard deviation of the difference amounts 
to approximately 1.5 mm, which corresponds to the precision of the distance measurement of 
laser scanning (≤ 1σ). The mean deviation approximately amounts to 0.2 mm. This is under 
the assumption that a Gaussian distribution of the residuals is present. This result is 
sufficient for many applications therefore; further improvement steps by ICP can be ignored. 

 

 

 

Fig. 7.13. Comparison of the 3D triangulated mesh derived from dense image matching by the SURE 
and the reference laser scan of the carved stone dataset. It shows the map of signed distances between 
the latter models. 
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7.2.2.1 Coloring Laser Point Cloud 

The estimated camera calibration parameters during the SfM process were used to undistort 
the involving 34 camera images in the SfM. Then, the calculated absolute orientations of the 
latter images can be utilized for the colorization of the laser scanner point clouds, which are 
resulted from 3 laser scans, see figure 7.14. 
 

 
 

Fig. 7.14. Re-colored laser scanner point clouds from 3 scans acquired by the C10 scanner of the 
carved stone dataset using 4 registered camera images. 

 

7.3 Target-Free Registration Results and Evaluations 
Our target-free registration approaches, introduced in chapter 5, have been applied to the 
Lady Chapel dataset. The aim was to register 10 laser scans automatically. In addition, the 
proposed general integration approach, presented in chapter 4, has been also applied on 
additional two building of the Hirsau Abbey in order to investigate the capability of the 
latter approach of registering completely non-overlapping laser scans. In the following, a 
description of the achieved results and the performed evaluations is presented. 

7.3.1 Results of the Target-Free Registration Using Accurate Space 
Resection Methods 
The proposed pairwise registration approach using accurate space resection methods, 
presented in chapter 5; section (5.1), was applied to the Lady Chapel dataset. 10 PEM feature 
databases have been employed for the pairwise registration. In the following, an evaluation 
for the approach steps is given. 
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Fig.7.15. The initial visibility graph of the Lady Chapel dataset for the possible successive pairwise 
registration, with 10 scans labeled with their IDs and connections, and a maximum of four edges per 
node (left). A graphical view of the distance matrix as a heat map, color-coded between zero/one 
indicating completely connected/disconnected (right). 

7.3.1.1 Organizing Scans by Similarity 

This starts by matching the PEM feature databases to each other then, the similarity 
measures that connect each scan pair are determined using equation 5.1. For the calculation 
of similarity measures, we set the following values: α = 0.5, β = 0.3, γ = 0.2, σr = 0.002m. 
Accordingly, the unorganized scans can be directly described as a directed graph (figure 7.15 
left). After that, false matches are discarded by means of a RANSAC based computation of a 
closed-form space resection. The resulted filtered matches are used then to update the 
initialized visibility graph (figure 7.16 1st row left). Then, the shortest path between all 
vertices in the updated graph is determined based on the minimum weight/distance of the 
edges (figure 7.16 2nd row left).    

7.3.1.2 Pairwise Registration 

Once the scans are sorted for the pairwise registration following the shortest path, for each 
scan pair the orientation of the second scan in relation to the first scan is estimated using the 
EPnP and OI methods. In addition, the quality of the calculated orientations can be increased 
by applying the X84 rule iteratively with a value of 2.97k  to discard outliers. Conse-
quently, the overall precision of the orientation is in sub-pixel range and less than 3σr in 
image space and object space respectively. Then, the filtered correspondences are used to 
update the reconstructed visibility graph by calculating a new similarity measures between 
the scans (figure 7.16 2nd row right). The latter figure illustrates that 2 graph edges/connec-
tions were dropped out due to the small number of manifold keypoints maintained 
therefore, 3 clusters of scans are resulted. That since our pairwise method is highly depended 
on the good overlap and small change viewpoints between laser scans where sufficient 
number and good distribution of the keypoints over the object of interest are required. 
Therefore, the connections between the scan pair (Scan5-Scan6) which has large change 
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viewpoints, and the scan pair (Scan9 -Scan10) which has less overlap due to partial occlusion 
by neighborhood have been leaved out; see figure 7.17.  

To assess the accuracy of the pairwise registration, we have performed a registration (with a 
mean registration error of 4 mm) using artificial targets (checkerboard and sphere) and 
natural targets by means of the Faro® Scene software. The latter targets were used only for 
scan Nr.10, while the former ones (at least 6 targets per scan) were placed in the field 
surrounding the object of interest with different heights. This has been the case since no 
GCPs are available. Table 7.3 shows that the registration reaches about eight centimeters 
level for positioning accuracy (∆X, ∆Y, ∆Z) and less than a twentieth of a degree level for 
angular accuracy (∆ω, ∆ω, ∆κ). Additionally, table 7.3 demonstrates that the distance error 
(∆D) between scanner stations is about four centimeters. These results provide good a prior 
alignment for further refinement step using ICP. 

 

 
 

Fig.7.16. (1st row) visibility graph of the Lady Chapel dataset for the successive pairwise registration 
after filtering wrong matches by RANSAC (left) and the corresponding graphical view of the distance 
matrix as a heat map (color-coded between zero/one indicating completely connected/disconnected) 
(right). (2nd row) The visibility graph depicting the shortest path (left) and the updated graph after 
applying the X84 rejection rule (right). 
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Fig.7.17. (From left to right) the scan pairs (Scan5-Scan6) and (Scan9-Scan10) of the Lady Chapel 
dataset respectively, illustrated by the corresponding generated RGB images. 

 
Table 7.3. Pairwise registration accuracy for the Lady Chapel dataset using accurate space resection 
methods: residuals of registration parameters and corresponding pair distances, using manual 
registration results as a reference and the corresponding root mean square of the residuals. 

Scan Pair ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1-2 -0.075 -0.011 0.056 0.009 0.004 0.034 0.034 

2-3 -0.070 0.068 0.028 0.101 0.002 -0.051 0.019 

3-4 -0.019 0.007 -0.002 0.230 0.012 -0.049 -0.016 

4-5 -0.068 -0.086 -0.049 0.178 -0.080 0.113 0.074 

6-7 -0.037  0.012 -0.024 0.212 -0.037 -0.001 0.029 

7-8 -0.078 0.003 -0.012 0.222 -0.042 0.023 -0.063 

8-9 -0.037 0.005 -0.003 0.029 -0.121 0.014 -0.016 

RMS 0.059 0.042 0.032 0.165 0.059 0.053 0.042 

 

7.3.2 Results of the Target-Free Registration Based on Geometric 
Relationship of Keypoints 
The pairwise registration approach based on the geometric relationship of the common 
keypoints between multiple laser scans, presented in chapter 5; section 5.2, was also applied 
to the Lady Chapel dataset. In the following, an evaluation for the approach steps is given. 

7.3.2.1 Pairwise Registration 

As presented in section 7.3.1, the similarity measures, which connect each scan pair, are 
calculated and the visibility graph is initialized (figure 7.15). Since the correspondences 
between each scan pair are known, the corresponding 3D-to-3D correspondences can be 
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determined. Then, wrong correspondences by comparing the relative 3D distances of the 
manifold keypoints between each scan pair are filtered. After that, the filtered 3D-to-3D 
correspondences are used to update the initial visibility map in order to determine the 
shortest path (figure 7.18). This enables us to estimate a rigid-body transformation between 
each successive scan pair iteratively with blunder rejection. Then, the filtered correspon-
dences can be used also to update the reconstructed visibility graph. 

 

 
 

Fig.7.18. (1st row) visibility graph of the Lady Chapel dataset for the successive pairwise registration 
after filtering wrong matches based on the geometric relationship of common keypoints (left) and the 
corresponding graphical view of the distance matrix as a heat map (color-coded between zero/one 
indicating completely connected/disconnected) (right). (2nd row) the latter graph depicting the shortest 
path. 

 
In order to evaluate the registration accuracy, the pairwise and the target registration results 
are compared. Table 7.4 shows that the registration accuracy reaches seven millimeters level 
for positioning accuracy (∆X, ∆Y, ∆Z) and less than fifth hundredths of a degree level for 
angular accuracy (∆ω, ∆ω, ∆κ). The distance error (∆D) between scanner stations is three 
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millimeters. These results indicate considerable improvement in the registration accuracy 
(compared to the results in table 7.3), where the automatic pairwise registration gives results 
very close to the target registration. Therefore, further improvement using ICP can be 
ignored. Even though this method requires sufficient overlap between successive scan, it 
could work out in case of registering scans occluded partially by the neighboring buildings 
and trees as in the scan pair (Scan9 -Scan10). Nevertheless, using this method in case of wide 
baseline scans would be prone to failure. 

 
Table 7.4. Pairwise registration accuracy for the Lady Chapel dataset based on geometric relationship 
of keypoints: residuals of registration parameters and corresponding pair distances, using manual 
registration results as a reference and the corresponding root mean square of the residuals. 

 

7.3.3 Results of the Target-Free Registration Using SfM Reconstruction 
Method 

7.3.3.1 Case Study 1: The Lady Chapel  

As presented in section 7.2.1, camera images and all laser scans, represented by the 
generated images, have been aligned in one coordinate system. The resulted relative orienta-
tions of the generated images provide accurate a priori alignment of the multiple laser scans, 
which can be improved latter by ICP, see figure 7.19. 

In order to assess the accuracy, both target-free and target registration results are compared. 
Table 7.5 shows that the precision of the camera (∆X, ∆Y, ∆Z) and scanner positions amounts 
to approximately three centimeters and about tenth of a degree for the angular accuracy (∆ω, 
∆ω, ∆κ). Additionally, table 2 demonstrates that the distance error (∆D) between scanner 
stations is less than a centimeter. This result provides accurate a priori alignment, which can 

Scan Pair ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1-2 -0.002 -0.001 -0.007 0.006 0.005 -0.008 -0.001 

2-4 0.000 0.004 0.000 -0.025 0.017 0.001 0.004 

3-4 0.002 0.008 -0.002 -0.004 0.028 0.006 0.005 

3-5 0.005 -0.005 0.002 -0.010 0.030 0.019 0.007 

5-6 -0.002  0.008 0.003 0.003 0.033 -0.031 0.001 

6-7 0.001 -0.004 0.006 0.013 0.019 0.041 -0.004 

7-8 0.001 0.002 -0.003 -0.001 0.029 0.005 -0.001 

8-9 -0.001 0.000 -0.003 0.063 -0.029 -0.025 -0.001 

9-10 -0.001 -0.002 0.008 -0.061 -0.003 -0.044 0.002 

RMS 0.002 0.005 0.005 0.031 0.024 0.025 0.003 
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be improved by ICP. However, the precision of the positions is highly dependent on the 
image acquisition geometry – in particular the image scale and the intersection angles.  

 

 
 

Fig.7.19. An overview of the aligned scans, with all 10 scan stations, depicted in different colors in 
order to show its corresponding scan coverage area. 

 

Table 7.5. Absolute registration accuracy of the Lady Chapel dataset: residuals resulting from the 
estimation of registration parameters and consecutive pair distances, using an additional registration 
based on artificial and natural targets as a reference, and the corresponding root mean square of the 
residuals. 

Scan ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1 0,006 -0,026 0,003 -0,018 0,010 -0,165 
0,002 

-0,015 

-0,001 

0,002 

-0,003 

0,005 

0,001 

-0,013 

0,013 

2 0,000 -0,026 0,004 -0,166 -0,127 -0,093 

3 -0,012 -0,036 0,013 -0,010 0,048 -0,054 

4 -0,015 -0,045 0,018 -0,018 -0,004 -0,055 

5 -0.018 -0.019 -0.014 0,033 0,104 -0,060 

6 -0,019 -0,021 -0,017 0,017 0,163 -0,165 

7 -0,011 -0,027 -0,010 0,044 0,103 -0,138 

8 -0,008 -0,028 -0,005 0,015 0,071 -0,140 

9 -0,019 -0,026 -0,013 0,031 0,042 -0,004 

10 0.078 0.011 0.019 0.172 0.052 -0.242 

RMS 0.014 0.029 0.012 0.060 0.090 0.111 0.008 

 

S1 

S2 
.S3 

.S4 

.S5 

.S6 ..S7 .S7
.S8 

.S9 
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Furthermore, one connecting scan, Scan10 (figure 7.17 right), was aligned without the help of 
artificial targets. It was occluded partially by the neighboring buildings and trees where less 
overlap is occurred, and thus it was impossible to place artificial targets visible by other 
scans. In order to provide sufficient overlapping geometry, additional overlapping images 
have been introduced into the SfM process, which could be matched with the surrounding 
scans. This shows the capability of the presented approach of registering laser scans without 
sufficient overlap or completely non-overlapping scans by involving additional images. 

7.3.3.2 Case Study 2: Building 1 at the Hirsau Abbey 

The proposed general integration approach is applied to another building at the Hirsau 
Abbey. The aim was to register two completely non-overlapping laser scans acquired from 
quite different viewpoints (figure 7.20). 2 RGB images generated from 2 scans and only 5 
camera images captured in between (figure 7.20 bottom right), have been employed for the 
SfM reconstruction. The orientations and the geometry from all imagery are successfully 
derived by the SfM method implemented in the Agisoft PhotoScan software (figure 7.21 left) 
with a relative accuracy in image space of about 0.32 pixels. Then, the correspondences 
between the sparse point clouds resulted from the SfM and the laser data can be easily 
determined using the stored 3D data in the generated images (figure 7.21 right). These 
correspondences allow the estimation of the Helmert transformation parameters in order to 
calculate the orientations in an absolute coordinate system. The calculated parameters 
provide accurate a prior alignment between the images and the laser data, where sparse 
point clouds delivered by the imagery in the SfM process fit correctly to the laser point 
clouds, see figure 7.22. 

 

 
 

Fig.7.20. The Building 1 at Hirsau Abbey dataset, from left to right, 3D laser scanner point clouds 
acquired by the Faro® Focus3D (at approximate point distance of about 7 mm @ 10 m distance) and the  
corresponding generated RGB image, for two non-overlapping scans; Scan1 above and Scan2 bottom. 
In addition, the used 5 camera images captured by the NIKON D2X (lower right corner). 
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Fig.7.21. SfM outpu:, sparse point clouds (colored), 5 camera positions (blue image planes) and 2 scan 
stations (pink image planes) of the Building 1 at the Hirsau Abbey dataset, aligned in one local 
coordinate system (left). 3D correspondences (478 keypoints) between the sparse point clouds and the 
laser data (of Scan1) which are used for the calculation of the seven- parameters, depicted on the 
corresponding RGB image (right). 

 

 
 

Fig.7.22. SfM output: sparse point clouds (blue), 5 camera positions (red dots), 2 scan stations (green 
dots) aligned in one coordinate system with laser point clouds (colored) from both scan stations of the 
Building 1 at the Hirsau Abbey dataset.  

Scan2 Scan1 
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Table 7.6. Absolute registration accuracy of the Building 1 at the Hirsau Abbey dataset: residuals of 
registration parameters and consecutive pair distances, using target registration results as a reference 
and the corresponding root mean square of the residuals. 

 

To assess the registration accuracy, we have also performed a registration (with a mean 
registration error of 4 mm) using artificial targets (checkerboard and sphere, at least 8 
targets) placed in the field surrounding the object of interest with different heights, by means 
of the Faro® Scene software. This has been the case since no GCPs are available. Table 7.6 
shows that the registration is less than three centimeters level for positioning accuracy (∆X, 
∆Y, ∆Z) and less than fifth hundredths of a degree level for angular accuracy (∆ω, ∆ω, ∆κ). 
Additionally, table 1 demonstrates that the distance error (∆D) is about three centimeters. 
These results provide very good a priori alignment for further global registration step by any 
error minimization procedure like ICP. The transformed 3D sparse point clouds and the 
determined 3D-3D correspondences between the scans can additionally support the latter 
improvement process.  

7.3.3.3 Case Study 3: Building 2 at the Hirsau Abbey 

The same processing steps described in the previous section were applied also to one other 
building at the Hirsau Abbey. The aim was to register two completely non-overlapping laser 
scans acquired from quite different viewpoints (figure 7.23). 2 RGB images generated and 30 
camera images captured in between, have been employed for the SfM reconstruction. The 
orientations and the geometry from all used images are successfully derived by the SfM 
method (figure 7.24) with a relative accuracy of about 0.35 pixels. Then, the correspondences 
between the sparse point clouds and laser data are determined (figure 7.25 right). These 
correspondences enable the estimation of the seven-parameters transformation in order to 
calculate the orientations in an absolute coordinate system. Accordingly, sparse point clouds 
delivered by the imagery in the SfM process are aligned correctly to the laser data; see figure 
7.25 left. 

To assess the registration accuracy, we have also performed a registration (with a mean 
registration error of 5 mm) using artificial targets (checkerboard and sphere) and natural 
targets (at least 9 targets) placed in the field surrounding the object of interest with different 
heights, by means of the Faro® Scene software. This has been the case since no GCPs are 
available. Table 7.7 shows that the registration reaches about four centimeters level for 
positioning accuracy (∆X, ∆Y, ∆Z) and about six hundredths of a degree level for angular 

Scan ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1 -0.008 0.001 -0.009 -0.009 0.173 -0.040 
 

0.032 
 2 -0.001 -0.032 0.015 -0.006 0.199 0.037 

RMS 0.005 0.023 0.012 0.007 0.187 0.039 0.032 
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accuracy (∆ω, ∆ω, ∆κ). Furthermore, the distance error (∆D) is less than two centimeters. 
These results provide accurate a priori alignment for additional global registration step. 

  

 
 

Fig.7.23. The Building 2 at Hirsau Abbey dataset, from left to right, 3D laser scanner point clouds 
acquired by the Faro® Focus3D (at approximate point distance of about 7 mm @ 10 m distance) 
and the  corresponding generated RGB image, for two non-overlapping scans; Scan1 above and Scan2 
bottom.  

 

 
 

Fig.7.24. SfM output: sparse point clouds (colored), 30 camera positions (blue planes) and 2 scan 
stations (pink planes) of the Building 2 at the Hirsau Abbey dataset, aligned in one local coordinate 
system. 

Scan2 

Scan1 
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Fig.7.25. SfM output: sparse point clouds (blue), 30 camera positions (red dots), 2 scan stations 
(green dots) aligned in one coordinate system with laser point clouds (colored) from both scan stations 
of the Building 2 at the Hirsau Abbey dataset (left).3D correspondences (2104 keypoints) between the 
sparse point clouds and the laser data (of Scan2) which are used for the calculation of the seven- 
parameters, depicted on the corresponding RGB image (right). 

 
Table 7.7. Absolute registration accuracy of the Building 2 at the Hirsau Abbey dataset: residuals of 
registration parameters and consecutive pair distances, using target registration results as a reference 
and the corresponding root mean square of the residuals. 

 

However, the precision of the positions is highly dependent on the image acquisition 
geometry – in particular the image scale and the intersection angles. In addition, in this 
application, the camera calibration was estimated during the reconstruction (self-calibration) 
therefore, using calibration parameters determined prior by standard calibration methods for 
camera imagery can improve the results. Moreover, our method opens the door to utilize 
low-cost sensors like mobile phone for the image collection (see chapter 8, future directions). 
This demonstrates the flexibility of our method. 

It is worthwhile to mention that the number of enrolled camera images into the SfM process 
depends on the overlapping geometry, which must be provided in order to insure sufficient 
matching with the surrounding scans. This is usually influenced by the size of the object of 
interest, topography of the scene and occlusions caused by the neighborhood (building, 

Scan ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1 0.007 0.050 -0.037 -0.026 -0.052 -0.040 
 

0.016 
 2 -0.014 0.004 -0.013 -0.009 0.050 0.010 

RMS 0.011 0.035 0.028 0.019 0.051 0.029 0.016 
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trees, etc.). One the other hand, higher accuracy and small image drift error can be acquired 
be using image circle configuration and strong image network. But, this can be difficult to 
fulfill from practical point of view especially in case of complex objects like heritage sites. 
Furthermore, adding more images in the SfM process can improve the scan alignment due to 
the stable image geometry as well as the increase in the redundancy, where more features 
will be used for the calculation of transformation parameters. Nevertheless, large number of 
images require more time for processing. Fortunately, latest developments in the SfM 
methods are able to resolve the time issue, e.g. (Abdel-Wahab et al., 2012). 
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8 Conclusions and Future Directions 

8.1 Conclusions 
Within the thesis, the potential of combining digital photogrammetry and TLS techniques for 
close-range applications such as cultural heritage data recording and preservation is 
discussed. The proposed solution for data integration is based on the use of synthetic images 
created from the TLS data in order to simplify the extraction of 3D information. This 
integration directs at filling gaps in laser point clouds due to occlusion or weak reflectivity of 
object material, retrieving more object details in higher resolution and registering multiple 
laser scans especially, in case of scans occluded partially by the neighborhood and com-
pletely non-overlapping laser scans. Furthermore, the proposed method allows the use of 
dense image matching algorithms such as SURE on the imagery and its orientation para-
meters. This derives correctly scaled point clouds in the laser scanning coordinate system. 
Moreover, this can be beneficial for applications where high-resolution image point clouds 
can complement large-scale laser scanning point clouds.  

In addition, image-based methods for the automatic pairwise registration of multiple laser 
scans based on the PEM and the geometric relationship of common keypoints between scans 
are also discussed. A visibility graph structure has been exploited for organizing scans by 
similarity. However, these methods are highly depended on the good overlap and small 
change viewpoints between laser scans. Therefore, scans acquired at considerably changed 
viewpoints such as highly convergent with wide baselines or those provide very little 
overlaps, are difficult to process. Moreover, heritage objects in form of 3D physical models 
are recorded not only for documentation issues, but also for historical interpretation, 
restoration, cultural and educational purposes. 

Advantageous is that the proposed integration approach introduces an efficient solution able 
to fuse multi data sources and sensors for close-range applications. Secondly, it yields to an 
increase in automation and redundancy in order to meet the demands of the final user 
(geodesist, archaeologist, architect, etc.). Finally, it represents a direct solution for data 
registration.  

 

8.2 Future Directions 
There are still issues that need to be investigated and studied in order to have further 
improvements and developing. These issues can be summarized as the follows: 

 The use of low-cost sensors such as Kinect range camera and mobile phone should be 
considered in the integration solution. Using their integrated cameras, these sensors can 
be beneficial for recovering more surface information and registering multiple laser scans 
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for indoor and outdoor applications. Furthermore, this can be also expanded to the use of 
the iPad tablet computers with their integrated cameras and online services. That is, since 
modern TLS system can be controlled with such small computers.  

 One of the techniques that could be further integrated is the low-cost photogrammetry by 
the unmanned aerial vehicle (UAV). The technique could be exploited for the integration 
of images captured by the UAVs and those acquired by terrestrial cameras or data 
collected by terrestrial laser scanners. For that, oblique images captured by the UAVs can 
be matched with the imagery captured by terrestrial camera or synthetic images 
generated from TLS data particularly, in case of sharing in the coverage of building 
facades in urban environments. 

 A further robust solution for data fusion could be considered by not only integrating the 
synthetic images  in the SfM process, but also by exploiting the 3D data storied in those 
images in the bundle adjustment process. 

 Raw RGB images captured by the laser scanner’s integrated camera could be also used 
directly in the SfM process as well, since for modern TLS systems, e.g. the Leica C10 and 
P20 the image calibration and orientation information is available. 

 Using linear features instead of point features for image matching in order to reduce 
outliers and to improve registration accuracy. This is the case since the synthetic images 
are generated in a central projection representation, where curved lines are no more 
existed. Furthermore, employing planar patches could lead to better accuracies in the 
final co-registration. 

 The proposed integration approach provides a solution for gap filling in TLS data. This 
motivates us to develop a smarter solution, which can detect gaps or holes in laser point 
clouds and then fills those using only images that cover geometrically the exact gaps in 
both SfM and dense matching processes. 

In the following, an exemplary test of using mobile phone as a low-cost sensor for the 
automatic registration of non-overlapping laser scans is shown. 

 

8.3 Registration of Non-Overlapping Laser Scans Using 
Mobile Phones 
The proposed general integration approach is applied to the building at the University of 
Stuttgart. The aim was to register two completely non-overlapping laser scans acquired from 
quite different viewpoints (figure 8.1 1st row). The laser data was acquired using the Faro® 

Focus3D (at approximate point distance of about 7 mm @ 10 m distance). 2 RGB images 
generated from 2 scans and 18 images captured by the 5 megapixel camera of the HTC 
Wildfire A3333 mobile phone in between, have been employed for the SfM method 
implemented in the Agisoft PhotoScan software (figure 8.1 2nd row left), with a relative 
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accuracy in image space of about 0.32 pixels. Then, the correspondences between the sparse 
point clouds resulted from the SfM and the laser data can be easily determined using the 
stored 3D data in the generated images (figure 8.1 2nd row right). These correspondences 
allow the estimation of the Helmert transformation parameters in order to calculate the 
orientations in an absolute coordinate system. Figure 8.1 3rd row shows that the transformed 
sparse point clouds delivered by the imagery in the SfM process fit correctly to the laser 
point clouds. 
 

 
 

Fig.8.1. The Stuttgart University Building dataset. (1st row) 2 generated RGB images from 2 non-
overlapping laser scans acquired by the Faro® Focus3D (7 mm @ 10 m distance); Scan1 left and Scan2 
right. (2nd row) SfM output: sparse point clouds (colored), 18 camera positions (blue planes) and 2 
scan stations (pink planes) aligned in one local coordinate system (left); 3D correspondences (365 
keypoints) between the sparse point clouds and the laser data (of Scan2) which are used for the 
calculation of the seven- parameters, depicted on the corresponding RGB image (right). (3rd row) The 
latter sparse point clouds (blue), 18 camera positions (red dots) and 2 scan stations (green dots) 
aligned in one coordinate system with laser point clouds (colored) from both scan stations. 

Scan2 

Scan1 
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To assess the registration accuracy, we have performed a registration (with a mean 
registration error of 4 mm) using natural targets, by means of the Faro® Scene software. Table 
8.1 shows that the registration is at four centimeters level for positioning accuracy (∆X, ∆Y, 
∆Z) and about tenth of a degree level for angular accuracy (∆ω, ∆ω, ∆κ). Additionally, table 1 
demonstrates that the distance error (∆D) is less than two centimeters. These results provide 
very good a priori alignment for a further global registration step by any error minimization 
procedure. 

 
Table 8.1. Absolute registration accuracy of the Stuttgart University Building dataset: residuals of 
registration parameters and consecutive pair distances, using target registration results as a reference 
and the corresponding root mean square of the residuals. 

 

 

 
  

Scan ID ∆X (m) ∆Y (m) ∆Z (m) ∆ω (°) ∆φ (°) ∆κ (°) ∆D (m) 

1 -0.016 0.023 0.017 -0.010 -0.137 -0.040 
 

0.017 
 2 0.014 -0.045 0.000 0.087 0.045 0.035 

RMS 0.015 0.036 0.012 0.062 0.102 0.038 0.017 
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Appendices 

A: Structure-From-Motion (SfM)  
Reconstruction of camera orientations and geometry from multiple images of a scene has 
long been and still is an active issue in computer vision and photogrammetry. It has inspired 
a wide variety of different approaches and algorithms. A fully automated and general 
solution of this task in terrestrial applications is still pending in case of unordered image 
datasets especially for close-range and/or low-cost applications. The Structure-from-motion 
(SfM) was originally developed by the computer vision community to simultaneously 
estimate the scene structure and the camera motion from images of a scene with little prior 
information about the camera. 

Having two views, as the simplest SfM problem, has been long investigated. Kruppa, 
hundred years ago, confirmed that knowing five point correspondences in two images 
allows the estimation of the camera poses and the 3D point locations, up to a similarity trans-
form (Kruppa, 1913). Therefore, several five-point algorithms for estimating two-view geo-
metry have been proposed, e.g. (Nister, 2004b). The mathematical and algorithmic aspects of 
the three-view problem have been also studied (Hartley & Zisserman, 2003). For multiple 
views, only specific scenarios (such as the frames of a video) of SfM problem can be solved 
exactly, but for the general case no such closed-form solutions exist, and thus a wide variety 
of SfM methods have been reported (Snavely, 2008).  

Most SfM methods process images in batches and handle the reconstruction process without 
making assumptions about the images in the scene or the acquisition configuration. The 
scalability- the ability to handle a growing amount of work in a capable manner- of a SFM 
method is a key issue (Corsini et al., 2013). One approach is to use the so-called partitioning 
methods (Fitzgibbon & Zisserman, 1998; Gibson et al., 2002), which reduce the reconstruction 
problem to smaller and better conditioned sub-problems that can be then optimized (Steedly 
et al., 2003; Ni et al., 2007). Advantageous is that in such methods, not only the equalized 
error distribution on the entire dataset but also the speed up of the processing time. Lately, 
(Klopschitz et al., 2010) proposed a robust and flexible SfM pipeline where reasoning about 
feature track compatibility and image connectivity is based on image triplets. 

Another approach is to select a subset of input images and feature points that represent the 
entire solution. Hierarchical sub-sampling was firstly proposed by (Fitzgibbon & Zisserman, 
1998) using a balanced tree of trifocal tensors over a video sequence then, this method was 
latter refined by (Nister, 2000). (Shum et al., 1999) divide the sequence into segments, which 
are resolved locally then, they are merged hierarchically, similar to the method presented by 
(Gibson et al., 2002). A method proposed by (Snavely, 2008) deals with sparse datasets 
(community photo collections) by selecting a subset of images whose reconstruction 
approximates the result obtained using the entire dataset. Hierarchical and parallelizable 



B: Dense Image Matching Methods 135 

 
scheme for a SFM method was presented in (Gherardi et al., 2010). They organize images 
into a hierarchical cluster tree and the reconstruction then proceeds from the leaves to the 
root. Partial reconstructions correspond to internal nodes, whereas images are stored in the 
leaves. 

In our applications, besides the SfM method implemented in the Agisoft PhotoScan software, 
a SfM pipeline was employed to retrieve image orientations and geometry by using a divide-
and-conquer strategy to speed up the SfM process from general imagery networks without 
initial orientation values. In the following, an overview of the latter SfM method is given. 

A.1 The Used SfM Method 
An important factor driving the development of a SfM process is that it should make 
effective use of the available data, and preserve as much information as possible.  That is, the 
algorithm should strive to obtain a maximum number of stable homologues image points 
while eliminating erroneous measurements. Having a large number of precise and well-
matched image points improves the quality of the exterior orientation since more informa-
tion is available. Therefore, we employ a SfM pipeline, developed locally at ifp by (Abdel-
Wahab et al., 2012), that intended to automatically and accurately process unordered sets of 
images to determine relative image orientations and sparse point clouds of tie points without 
prior knowledge of the scene.  

The pipeline used for that mainly consists of four processing steps: (i) employing fast image 
indexing to avoid costly matching of all possible image pairs, which dominates computa-
tional complexity along with the multiple bundle adjustment steps, (ii) generating tie points 
by means of feature extraction and matching where the required automatic measurements 
are realized at maximum accuracy and reliability, (iii) building and optimizing a geometry 
graph based on the image network, whereby the dataset can be split into reliable clusters of 
neighboring images that can be processed independently and in parallel within the 
reconstruction step, (iv) merging all clusters and then finally adjusting the full model with 
integrating the ground control points if available. The number of unknowns within the SfM 
process can be reduced by using the interior orientation determined in the test field calibra-
tion. Accordingly, the images are rectified by removing the distortion. A detailed description 
of the individual processing steps and accuracy analyses of the SfM implementation is given 
in (Abdel-Wahab et al., 2012). 

 

B: Dense Image Matching Methods 

B.1 PMVS 
PMVS algorithm is a multi-view stereo (MVS) approach proposed by (Furukawa & Ponce, 
2007 and  2010) to produce a dense set of small rectangular surfaces/patches covering the 
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surfaces visible in the involved views/images. It comprises three steps: match, expand, and 
filter procedures. (i) In the matching procedure, image features are extracted by Harris and 
Difference-of-Gaussians (DoGs) operators and then are matched across multiple views. This 
yields a sparse set of patches associated with salient image regions. Having these initial 
matches, the following two steps are then repeated n times. (ii) Expansion step: it is used to 
spread the initial matches to nearby pixels and obtain a dense set of patches. (iii) Filtering 
step: it utilizes visibility (and a weak form of regularization) constraints to filter out wrong 
matches. Furthermore, a triangulated mesh can be generated from the resulting patch mode, 
and this mesh can be further refined by a mesh based MVS algorithm that enforces the 
photometric consistency with the regularization constraints (Furukawa & Ponce, 2007). 

B.1.1 Fundamentals  

Patch Model: a patch p is a local tangent plane approximation of a surface. The patch 
geometry is determined by its center c(p), unit normal vector n(p) oriented toward the 
cameras observing it, and a reference image R(p) in which p is visible (see Figure B.1 left), i.e., 
a patch is an oriented 3D rectangle where one of its edges is parallel to the x-axis of the 
camera associated with R(p). The rectangle/patch size is chosen in a way that the smallest 
axis-aligned square in R(p) containing its image projection is of size μ×μ pixels. 

Photometric Discrepancy Function: Let V(p) denote a set of images in which p is visible, the 
photometric discrepancy function g(p) for p is given by 
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                                            (B.1) 

 

where h(p, I, R(p)) is a pairwise photometric discrepancy function between images I and R(p), 
which is computed by overlaying a μ×μ grid on p; sampling pixel colors q(p,Ii) through 
bilinear interpolation at image projections of all the grid points in each image Ii/Ri and then 
computing one minus the normalized cross-correlation score between q(p, I) and q(p, R(p)).  

 

 

 

Fig. B.1. (From left to right) an oriented 3D rectangle patch p, the photometric discrepancy of a patch 
which is given by one minus the normalized cross correlation score between sets q(p, Ii) of sampled 
pixel colors (Furukawa & Ponce, 2007). 
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It is assumed that the surface of a scene is lambertian therefore, to discard non-lambertian 
only images whose pairwise photometric discrepancy score with the reference image R(p) is 
below a certain threshold α are used. Therefore, V(p) in equation B.1 is replaced  by 

*( ) \ ( ), ( , , ( ))V p I I V p h p I R p and thus g(p) is replaced by g*(p). 

Patch Optimization: the aim is to recover patches whose discrepancy scores are small. Each 
patch p is reconstructed separately in two steps: initialization of the patch parameters (c(p), 
n(p), V (p), R(p)) and optimization of its geometric component, c(p) and n(p) using constrains 
and parameterization methods respectively, see (Furukawa & Ponce, 2007). 

Image Model: due to the lack of connectivity information, it is an uneasy task to search or 
access neighboring patches, enforce regularization, etc. Therefore, the image projections of 
reconstructed patches in their visible images are tracked. 

B.1.2 Patch Reconstruction  

Each image can be associated with a regular grid of pixel cells therefore; the PMVS algorithm 
aims to reconstruct at least one patch in every image cell. The algorithm is divided into the 
following steps: 

1. Initial feature matching: the aim is to generate a sparse set of patches across all views. 
This step comprises feature detection and matching processes. At first, blob and corner 
features are detected in each image using the DoG and Harris operators. In the matching 
process, for each image Ii, O(Ii) denotes the optical center of the corresponding camera. 
For each feature f detected in Ii, the set F of features f ` of the same type in the other 
images that lie within two pixels from the corresponding epipolar lines are collected and 
then triangulated to get the 3D points associated with the pairs (f , f `). Then, these points 
are considered in order of increasing distance from O(Ii) as potential patch centers, and 
attempt to generate a patch from the points one by one until it is succeed; more details 
are reported in (Furukawa & Ponce, 2007).  

2. Expansion: it attempts to make patches dense, i.e., to reconstruct at least one patch in 
every image cell, and to repeat taking existing patches and generating new ones in 
nearby empty spaces. This covers, at first, identification of a set of neighboring image 
cells that satisfy certain criteria, then performing a patch expansion procedure for each 
one of these cells, see (Furukawa & Ponce, 2007).  

3. Filtering: this process is iterated n times remove incorrect matches. Three filters are used 
for this step. The first filter exploits visibility consistency (neighbor information). The 
second filter enforces more strictly the visibility consistency using the depth map test. 
Finally, in the third filter, a weak form of regularization (adjacency information) is 
enforced. 
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B.2 SURE 
SURE is a software solution developed at ifp by (Rothermel et al., 2012) for multi-view 
stereo, which enables the derivation of dense point clouds from a given set of images and its 
orientations. It derives up to one 3D point per pixel. Within SURE, a method based on the 
Semi Global Matching (SGM) algorithm (Hirschmuller, 2005 and 2008) is used for the 
matching between stereo models. SGM uses a global optimization to derive smooth and 
consistent surfaces, while enabling efficient implementations due to approximations. Within 
SURE, a hierarchical extension of the SGM algorithm is used, which enables the processing 
of scenes with large depth/distance variances at short processing time and with low memory 
consumption. In a subsequent triangulation step, the matching results from many stereo 
models are fused by using multiple disparity images for the triangulation of each pixel for 
each image at once. This enables noise reduction and outlier elimination. 

Besides a preprocessing module that performs a network analysis and selection of suitable 
image pairs for the reconstruction process, using connectivity matrices, the SURE software 
comprises three main modules as follows: 

1. Rectification6 Module: within this module epipolar images for the matching process are 
generated. As a result, epipolar lines are horizontal and each object point maps to the 
identical row index in both of the rectified images. Advantageous is that the pixel 
correspondences can be searched along one-dimensional paths which leads to a 
reduction of the processing time. Therefore, this module simplifies the problem of 
finding correspondences across views. 

2. Dense Matching Module: dense matching is carried out on the generated epipolar images 
where disparities/ parallaxes across stereo pairs are calculated. It is based on an extended 
method of the classic approach of SGM (Hirschmueller, 2008) by dynamically estimating 
disparity search ranges (Rothermel et al., 2012). Key advantages are time and memory 
efficient processing, as well as the ability of processing scenes without prior knowledge 
about depth or disparity ranges. 

In the SGM method, using epipolar images, potential correspondences (representing the 
same object) are located in the same row of the images Ib (base image) and Ii (possible 
match image), and the correspondences problem can be simplified by finding the 
disparity (d = xi − xb). Therefore, the SGM algorithm aims to estimate disparities across 
stereo pairs such that the following global cost function (E) is minimized. 
  
               1 2( ) ( , ( )) ( ) ( ) 1 ( ) ( ) 1

b N N
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6 Image rectification is a 2D transformation process that used to project two-or-more images onto a 
common image plane. It corrects image distortion by transforming the image into a standard 
coordinate system.  



C: The Random Sampling and Consensus (RANSAC) Algorithm 139 

 
D is the disparity image that holding disparity estimations of all base image pixels bx . T is 

an operator that amounts to one if the subsequent condition is true and amounts to zero 
else. Nx  represents base image pixels in the neighborhood of bx . N is a certain number of 

approximate (match) images with the base image (Ib). The first term in equation B.2 
represents a data term while, the subsequent two terms refer to surface smoothness. The 
data term is computed by pixel-wise similarity measures ( , )b iC x x . The penalty parameters 

P1 and P2 control the gain of surface smoothing. More details are reported in 
(Hirschmueller, 2008). 

3. Structure Computation Module: within this module redundancy is exploited to eliminate 
blunders and increase the accuracy of depth measurements. Thereby only depth maps of 
stereo models sharing the same base image, Ib, Ii, i=1,...,n are fused. The result is a depth 
image (or point cloud) with respect to the base image. For example, the depth (Z) for a 
stereo pair of epipolar images can be extracted using the well-known formula (Z=Bf/d) 
(so-called normal-case of stereo imagery). B, f, d are the baseline, the focal length and the 
disparity respectively. More details about the general cases such as varying focal length 
in x and y directions and the present of sheering, as well as the case of multiple stereo 
pairs can be found in (Rothermel et al., 2012). 

The SURE determines the 3D object coordinates by minimizing the object space error 
from multiple redundant depths by averaging the estimated depths. Therefore, accuracy 
along the optical ray can be estimated using standard deviations. An approach that 
minimizes the reprojection error in the rectified match images is also implemented. This 
allows the use of a priori knowledge of matching accuracies in dependence of ray 
intersection angles in order to discard outliers. Furthermore, weighted adjustment could 
be used within the minimization of the reprojection error (Rothermel et al., 2012). 
 
 

C: The Random Sampling and Consensus (RANSAC) 
Algorithm 
 

The RANdom SAmple Consensus (RANSAC) algorithm, proposed by (Fischler & Bolles, 
1981), is a general parameter estimation approach for dealing with a large amount of outliers 
in an input data. It was developed within the computer vision community unlike, common 
robust estimation techniques such as M-estimators and least-median squares have been 
adopted by the computer vision community from the statistics literature. RANSAC is a 
resampling technique that generates candidate solutions by using the minimum number of 
observations required to estimate the underlying model parameters. According to (Fischler 
& Bolles, 1981), contrarily to the conventional sampling techniques which utilize as much of 
the input data as possible in order to obtain an initial solution and then proceed to filter out 
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outliers, the RANSAC uses the smallest set possible and proceeds to enlarge this set with 
consistent observations. In general, the input to the RANSAC algorithm is a set of observed 
data values, a parameterized model which can explain or be fitted to the observations, and 
some confidence parameters. 

The basic algorithm is summarized as follows: 

1. Select randomly a minimum subset of the original data required to determine the model 
parameters.  

2. Estimate the parameters of the model using the selected subset. 
3. Determine how many observations/points from the set of the data fit to the solved model, 

with a predefined tolerance. 
4. If the fraction of the number of inliers over the total number points in the set exceeds a 

predefined threshold, re-estimate the model parameters using all the identified inliers 
and terminate. 

5. Otherwise, repeat steps 1 through 4, with a maximum number of iterations/tries (N). 

N is defined high enough to ensure that the probability/confidence p  (usually set to 0.99) 

that at least one of the sets of random samples does not include an outlier. If u  represents the 
probability that any selected data point is an inlier, the probability of observing an outlier 
will be 1v u . The confidence, that at least one minimal selection with m  minimum 
elements out of N  data sets contains no outlier is given by 
 

                                                    1 1 1 1 (1 )
N Nm mp u v                                               (C.1) 

 
and thus with some manipulation, the minimal number of the tries is 
 

                                                                  log(1 )
log 1 (1 )m

pN
v

                                                  (C.2) 

 
For more details on the basic RANSAC formulation, the readers are referred to (Fischler & 
Bolles, 1981;  Hartley & Zisserman, 2003). Moreover, extensions of RANSAC that include the 
use of a Maximum Likelihood framework and importance sampling are reported in (Torr & 
Zisserman, 2000) and (Torr & Davidson, 2003) respectively. 

 

D: 3D Transformation 

D.1 Helmert (seven-parameter) Transformation 
The Helmert (seven-parameter) transformation is frequently used in geodesy- the science of 
the measurement and the mapping of the earth’s surface. It produces distortion-free 
transformations from one datum to another, and involves rotation, scaling and translation. It 
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is named after Prof. Dr. Friedrich Robert Helmert, 1843-1917. He was a German geodesist, an 
important writer on the theory of errors and was considered as the founder of the 
mathematical and physical theories of modern geodesy.  

The seven-parameter transformation applies to point sets , ,i ip q 1,..., ,i m in 3R  therefore, we 

can write the following formula: 
  
                                            ( ) ; ( ) 1( ), 2( ), 3( )i ip dR q t R R R R                                  (D.1) 

 
with ( , , ) represent the three rotation angles vector, and where 

 
1 0 0 cos 0 sin cos sin 0

1( ) 0 cos sin ; 2( ) 0 1 0 ; 3( ) sin cos 0
0 sin cos sin 0 cos 0 0 1

R R R  

 
i.e., ( )R  is an orthogonal matrix 1( ( ) ( ) )TR R  that results by a product of three 

elementary rotation matrices in the three coordinate planes. The remaining parameters are a 
scaling parameter d (unitless scale factor) and a translation vector t  (the three translations 
along the coordinate axes) so that the seven parameters are 3R , 3t R , d R  (Watson, 

2006). Thus, at least two points and one coordinate of a third point are required to determine 
the seven parameters. This gives a system of linear equations with seven equations and 
seven unknowns, which thus can be solved. The Helmert transformation is a similarity 
transformation (preserve geometrical shapes).  

D.2 Rigid-Body (six-parameter) Transformation 
In mathematics, a rigid transformation (isometry) of a vector space preserves distances 
between every pair of points. In general, rigid transformations of the space 3R  include 
rotations, translations, reflections, or their combination. In our application, the rigid-body 
transformation is referred to a transformation which can be decomposed as 3D rotations 
followed by 3D translations (six parameters). This transformation is also known as proper 
rigid transformation. In mechanics, proper rigid transformations in a 3D Euclidean space are 
used to represent the linear and the angular displacement of rigid bodies. 

According to equation D.1, the rigid-body transformation can be defined as 
 

                                                                     ( )i ip R q t                                                          (D.2) 

 
where the scale factor is equal to unity. In our applications, a linear transformation 
(translation, reflection, orthogonal rotation, and scaling if needed) was determined using the 
Procrustes analysis implemented in Matlab, which is a form of statistical shape analysis used 
to analyze the distribution of a set of shapes. Quite often more than seven equations are 
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available for the transformation calculation therefore, this input information is used in a least 
squares parameter estimation. 

 

E: The Point-Based Environment Model (PEM)  
(Boehm, 2007) introduced the point-based environment model (PEM) as a representation of 
the absolute coordinate frame of a scene where a prior knowledge of the scene is stored. A 
PEM is a dense point-wise sampling of the scene surface that can easily be acquired by 3D 
active sensors, such as TLS systems and machine vision cameras.  Where each sample is 
comprised of the location of the surface point (3D coordinates) associated with an intensity 
value. The PEM mainly comprises a laser scanner point cloud with associated intensity 
values. The rigid geometry of the point cloud plays an important role in providing accurate 
control information for camera orientation (Boehm, 2007). Laser scanners usually acquire 
point clouds in almost a regular raster by two angles of deflection, horizontally and verti-
cally. Therefore, the recorded intensity values as the intensity of the reflected beam can be 
interpreted as an intensity/reflectance image using the scanning matrix. 

For a PEM, features are automatically extracted from the corresponding reflectance image. 
These extracted landmarks are intensity features and are used for image orientation. But, 
some good features which are not visible at the narrow bandwidth of the light source might 
be missed. In (Boehm, 2007), image features were extracted using the Harris-Stephens corner 
operator (Harris & Stephens, 1988). The PEM and its extracted landmarks were used as a 
navigational frame for subsequent image orientation.  

In (Moussa et al., 2012a), the PEM is expanded as follows: (i) since TLS systems provide for 
each measured point intensity and RGB values, these values are stored in the PEM. (ii) Using 
the latter values, intensity and RGB, synthetic images based on a central projection of the 
laser scanner point clouds are generated (see chapter 3 section 3.2). Moreover, the PEM 
features are extracted using the Affine-SIFT (ASIFT) operator (Morel & Yu, 2009).  
 

F: The Affine-Scale Invariant Feature Transform (Affine-
SIFT/ASIFT)  
The Scale invariant Feature Transform (SIFT) proposed by (Lowe, 2004) deals strictly with 
the four similarity variances (2 translations, rotation, and scale (zoom)) of image local 
features by simulating zooms out and by normalizing translations and rotation.  Therefore, 
(Morel & Yu, 2009) introduce the Affine-SIFT (ASIFT) feature detection algorithm which 
extends the SIFT method to fully affine invariant local image features by covering 
additionally the left two shearing parameters. This being the case since the deformations of 
physical objects can be well approximated by the six affine parameters on the image plane. 
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The ASIFT method simulates a set of sample views of the initial images, obtainable by 
varying the two camera axis orientation parameters, namely the latitude and the longitude 
angles, which are not considered by the SIFT. Then it applies the SIFT method itself to all 
images therefore, the ASIFT covers effectively all six parameters of the affine transformation 
without any dramatic computational load. The ASIFT method is able to detect reliably 
features that have very large affine distortions which are measured by a new geometric 
parameter, the transition tilt. Moreover, (Morel & Yu, 2009) report that state-of-the-art 
methods hardly exceed transition tilts of 2 for the SIFT (Lowe, 2004), 2.5  for the Harris-
Affine and the Hessian-Affine (Mikolajczyk & Schmid, 2002 and 2004), and 10 for MSER 
(Matas et al., 2004) while, ASIFT can handle transition tilts up to 36 and higher. Furthermore, 
experiments performed by (Morel & Yu, 2009) showed that in case of scenes with important 
camera view angle change, SIFT and other methods fail while ASIFT continues to work. In 
the following, basic concepts and a description of the ASIFT method are given. 

F.1 Affine Camera Model 
As depicted in Figure F.1 left, digital image acquisition of a flat object can be described as 
u=S1G1Aτu0 where τ is a plane translation due to the camera motion. The Gaussian kernel 
(G1) is assumed to be broad enough to ensure no aliasing by the 1-sampling, therefore with a 
Shannon-Whittaker7 interpolation (I), the continuous image from its discrete version is given 
by IS1G1Aτu0 = G1Aτu0, where S1 will be omitted. 

 
 

 

 

Fig. F.1. (From left to right) the projective camera model and the affine local approximation illustrated 
by one of the first perspectively correct Renaissance paintings by Paolo Uccello, an Italian painter, 
1397-1475 (Morel & Yu, 2009). 

                                                      
7 Shannon-Whittaker interpolation is a method to construct a continuous-time band-limited function 
from a sequence of real numbers (Whittaker, 1935). 
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F.2 Affine Local Approximation 
In order to simplify the affine camera model, the planar projective map (A) is reduced to an 
affine map. Figure F.1 right shows the perspective on the ground is strongly projective where 
the rectangular pavement of the room becomes a trapezoid. But, the local deformation is 
affine where each tile on the pavement is almost a parallelogram. Using the first order of 
Taylor formula, any planar smooth deformation can be approximated around each point by 
an affine map. Therefore, local perspective effects can be modeled by local affine transforms 
u(x, y) → u(ax + by + e, cx + dy + f) in each image region (Morel and Yu, 2009). 

F.3 Affine Map Decomposition 
Any affine map A with strictly positive determinant (det(A) > 0) has a unique decomposition 
which is given by 
 

                 1 2

sin 0 sin
( ) ( )

sin cos 0 1 sin cost

a b coc t coc
A H R T R

c d
                (F.1) 

 
where, see figure F.2 left, [0, ]  is the longitude angle between camera optical axis and a 

fixed vertical plane; arccos(1/ )t : latitude angle between the optical axis and the normal to 

the image plane; Tilt 0 01 [0 ,90 ]t ; is the rotation angle of the camera around optical 

axis;  is the zoom parameter. 
 
  

 
 

Fig. F.2. (From left to right) the geometric interpretation of affine decomposition and  an illustration 
of high transition tilt (Morel & Yu, 2009). 

 

F.4 Transition Tilt 
By comparing two images, v(x,y) = u1(A(x,y)) and w(x,y) = u2(B(x,y)); A and B are two affine 
maps, which are usually slanted/oblique views of an flat scene, the transition tilt quantifies 

Camera 

 u0 

 u0: frontal view of flat 
object 
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the tilt between both images. Using equation F.1 we get 1

1 2( ) ( )BA H R T R and the transi-

tion tilt satisfies t1/t2 ≤τ(u1,u2) ≤t1t2. Figure F.2 right depicts an example of high transition tilt. 
The frontal image (above) is squeezed in one direction on the left image by a slanted view, 
and squeezed in an orthogonal direction by another slanted view. The absolute tilt is about 6 
in each view. The resulting transition tilt from left to right is actually 6x6=36. 

F.5 ASIFT Algorithm  
ASIFT method simulates the two parameters that model the camera optical axis direction 
(the original and simulated images are represented respectively by squares and parallelo-
grams, see figure F.3). Then, SIFT method is applied to compare the simulated images, so 
that all the 6 affine transformation parameters are covered. In fact, ASIFT simulates the scale, 
the camera longitude angle and the latitude angle (the tilt) and normalizes the two 
translations and the rotation (Morel & Yu, 2009). The ASIFT method comprises the following 
steps: 

1. For each image, all possible affine distortions caused by the change of camera optical axis 
orientation from a frontal position are simulated. These distortions rely on the longitude 
ϕ and the latitude θ (tilt). The images go through two rotations, firstly ϕ and then the 
tilts with parameter 1/ cost (a tilt by t in the direction of x is the operation u(x,y) → 

u(tx,y)). For digital images, the tilt is performed by a directional t-subsampling. This 

requires the convolution by a Gaussian with standard deviation 2 1c t , usually c is set 
to 0.8 in order to ensure a very small aliasing error. The rotations and tilts are performed 
for a finite and small number of ϕ and θ angles where the sampling steps making certain 
of that the simulated images keep close to any other possible view generated by other 
values of ϕ and θ. 

2. All simulated images are compared by the SIFT or by any other similarity invariant 
matching method. The SIFT region operator identify distinctive image features location 
and scale using the Difference-of-Gaussian (DoG) function (Lowe, 2004) in scale space 
and their orientation with the local image gradient orientation. 

ASIFT, by comparing many pairs, can therefore accumulate and filter out many wrong 
matches resulted by the SIFT using the epipolar geometry. For that, a robust method 
proposed by (Moisan & Stival, 2004) is used.   

The latitudes (θ) are sampled in such the associated tilts follow a geometric series 1, a, a2, , 
an, with a > 1. The choice a=√2 is a good compromise between accuracy and sparsity and 
usually n is set to 5 where the tilt can go up to 32 (Morel & Yu, 2009). While, The longitudes 
(ϕ), for each tilt, are an arithmetic series 0, b/ t, …, kb/t, where b  72° and k is the last integer 
such that kb/ t < 180°. 
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Fig. F.3. An overview of ASIFT algorithm (Morel & Yu, 2009). 

 

G: Accurate Space Resection Methods 
For the reason that minimal Perspective-n-Point (PnP) solutions can be quite noise sensitive 
and also suffer from bas-relief8 ambiguities, it is often preferable to use a linear (six-point) 
algorithm to estimate an initial pose and then optimize the latter using an iterative technique. 
Therefore, in our application, the Efficient Perspective-n-Point (EPnP) algorithm (Moreno-
Noguer et al., 2007; Lepetit et al., 2009) is used to calculate a good initial guess for the 
orthogonal iteration (OI) algorithm (Lu et al., 2000). In the following a description of the 
latter two methods is given. 

G.1 The Efficient Perspective-n-Point (EPnP) Algorithm 
The EPnP, proposed by (Moreno-Noguer et al., 2007; Lepetit et al., 2009) as a non-iterative 
solution to the PnP problem. It shows a computational complexity grows linearly 
( ( ), 4),O n n  using a system with both linear and quadratic equations, which is much lower 

complexity than non-iterative state-of-the-art methods. The EPnP algorithm is much faster, 
even more accurate than other non-iterative methods, and much faster than iterative 
methods with only little loss in accuracy. It is applicable for both planar and non-planar 
configurations, less sensitive to noise and does not require an initial estimate. 

The EPnP algorithm is based on the idea of expressing each point of a set of n  3D known 
points , 1,...,w

ip i n  in the world coordinate system as a weighted sum of four virtual and 

non-coplanar control points , 1,...,4w
jc j  for general configurations, as follows: 

                                                      
8 Bas-relief refers to a kind of sculpture in which objects, often on ornamental friezes, are sculpted with 
less depth than they actually occupy. When lit from above by sunlight, they appear to have true 3D 
depth due to the ambiguity between relative depth and the angle of the illuminant (Szeliski, 2010). 
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where ij  are homogeneous barycentric coordinates. As in the world coordinate system, 

,w w
i jp c  and ij  are known, the same relation holds in the camera coordinate system. Hence, 

the points c
ip  can be expressed via the control points c

jc , which leads to the equation (G.2): 
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u
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where iw  are scalar projective parameters, K denotes to the camera calibration matrix and iu  

represents the 2D projections of the reference 3D points. Expanding equation (G.2) yields the 
following: 
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                                           (G.3) 

 

where ( , )x yf f  constitute to the focal length coefficients, 0 0( , )x y  represents the principal 

point coordinates, ( , , )c c c
j j jX Y Z  are the coordinates of the control points and ( , )i ix y  are the 2D 

coordinates of iu . This linear system has 12 unknown parameters from the control points 

and, additionally n  unknown parameters iw . The last row of equation G.3 implies that 
4

1
.w

i ij j
j

w z  By submitting the latter expression in the first two rows and catenating and 

arranging the resulting linear equations (two for each reference point) for all n  reference 
points, a linear system can be generated (equation G.4). 
 

                                                                              0Mx                                                               (G.4) 
 

where 1 2 3 4( , , , )cT cT cT cTx c c c c  is a 12-vector made of the unknowns and M  is 2 12n  matrix. 

The solution x  then leads to the camera coordinates c
ip  of the 3D points. Once the world 

coordinates and the camera coordinates of the 3D reference points are known, the rotation 
and the translation parameters aligning both coordinate systems can be recovered by means 
of standard methods (Arun et al., 1987; Horn et al., 1988; Umeyama, 1991). A further 
optimization step using the Gauss–Newton algorithm is presented in (Lepetit et al., 2009). 
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G.2 The Orthogonal Iteration (OI) Algorithm 
In the OI algorithm, proposed by (Lu et al., 2000), the pose estimation problem is formulated 
in a way that the error metric is minimized based on collinearity in object space. The method 
is iterative and directly computes orthogonal rotation matrices, which are globally 
convergent. The error metric is defined as follows: 
                                                                    i i ie I V Rp t                                                    (G.5) 

 
where ip  is a set of noncollinear 3D reference points ( , , ) , 1,..., , 3T

i i i ip X Y Z i n n  expressed 

in an object-centered reference frame, R and t  are the rotation matrix and the translation 

vector, respectively, ;
T

i i
i T

i i

v vV
v v

 iv  is the projection of the 3D points onto the normalized 

image plane. Then, a minimization of the sum squared error is performed over R and t  
(equation G.6). 
 

                                                                   
2

1
, n

ii
R t e                                                       (G.6) 

 

The algorithm is known to be fast and globally convergent pose estimation, and very robust 
regarding the effect of noise.  

 

H: Outlier Rejection Rule (X84) 
Under the assumption that a normal (Gaussian) distribution of the residual ( )ix for the good 

correspondences is present, (Hampel et al., 1986) introduced a simple but effective rejection 
rule, called X84, which utilizes robust estimates for location and scale, i.e., the spread of the 
distribution, to set a rejection threshold. The median imed  is a robust location estimator and 

the Median Absolute Deviation ( )MAD  is a robust estimator of the scale (equation H.1). 

 

                                           ( )i i j jMAD med x med x                                           (H.1)  

 

In order to use the MAD as a consistent estimator for the estimation of the standard deviation
, one takes: 
 

                          ; 1.4826kMAD k                                                               (H.2) 

 

where k is a constant scale factor depending on the distribution. The X84 rule rejects values 
which are more than kMADs  away from the imed . Furthermore, this rejection rule has a 

breakdown point of 50%: any majority of the data can overrule any minority. 
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I: Quaternions  
Quaternions were first described by William Rowan Hamilton, a 19th-century Irish 
mathematician, as a number system that extends the complex numbers. A quaternion can be 
conveniently thought of as either (i) a vector with four components; or (ii) a scalar plus a 
vector with three components; or (iii) a complex number with three different imaginary parts 
(Horn, 2001). There is a substantial body of quaternion mathematics that is beyond the scope 
of this thesis. Therefore, we report the general definitions required to use the quaternions as 
a representation of the orientations and rotations of objects in three dimensional space. Then, 
a particular attention is given to the relationship between the quaternions and the spatial 
rotations. For more details on the basic formulation of quaternions, see (Kuipers, 1999).  

I.1 General Definitions 

 A quaternion, 4q R , is represented as a vector with 4 components, 3 of which are 

imaginary: 0 1 2 3q q q i q j q k .                                    

 Multiplication is defined using the rules: 2 2 2 1i j k ijk . 

 Conjugation of a quaternion can be expressed as *
0 1 2 3q q q i q j q k  .                                            

 The norm of the quaternion is 2 2 2 2
0 1 2 3q q q q q . 

 A unit quaternion is a quaternion of norm one: qU q q . 

 The inverse of a quaternion is 1 *q q q .  

 A rotation can be represented with composite product by a unit quaternion r : 

*( )R q rqr  where 
1 ( )
2 cos ( )sin

2 2
x y zu i u j u k

x y zr e u i u j u k , ( )x y zu u i u j u ku ((  is the 

unit vector representing the three Cartesian axes. Therefore, the unit quaternion 
corresponds to a rotation with the angle  around the axis which is defined by the unit 
vector uu . 

I.2 Quaternions and Rotation 
Unit quaternions provide a convenient mathematical notation for representing orientations 
and rotations of objects in three-dimensional space. Compared to Euler angles they are 
simpler to compose, able to avoid the problem of gimbal lock9 and more numerically stable 
and might be more efficient than rotation matrices (Perumal, 2011).  In our application, due 
to the different constellation of the rotation matrices (because of the different combinations 
of basic rotations) which are derived from different algorithms (e.g. space resection, the SFM 

                                                      
9 Gimbal lock is a phenomenon in which one of the rotation axes realigns with the other axis and 
eventually causes loss of one degree of freedom (Perumal, 2011). 
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methods), it was important to find a common representation for the rotation matrices. This 
allows the comparison of the different orientation results, and thus the quaternions have 
been utilized. For that, according to (Kuipers, 1999), each rotation matrix is converted to an 
axis-angle representation (equations I.1) and then the output is transformed to unit 
quaternions (equation I.2). 

I.2.1 Converting Rotation Matrix to Axis-Angle Representation 

The axis-angle representation of a rotation parameterizes a rotation of a rigid-body in a 
three-dimensional space by two values: (i) a unit vector (representing the three Cartesian 
axes) ( , , )x y zw w w w  that indicates the direction of an axis of rotation, and (ii) an angle 

which describes the magnitude of the rotation about the axis. To retrieve the axis-angle 
representation of a rotation matrix 3 3 , 1,2,3( ( ) )x ij i jR r 1,2( ) , 1,2j j,,,( , both values, the unit vector and the 

rotation angle, can be determined using the following equations: 
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I.2.2 Converting Axis-Angle Representation to Unit Quaternions 

The transformation from axis-angle coordinates to unit quaternions is given by  
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